

Cocoa and Objective-C: Up and Running

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Cocoa and Objective-C:
Up and Running

Scott Stevenson

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Download from Wow! eBook <www.wowebook.com>

Cocoa and Objective-C: Up and Running
by Scott Stevenson

Copyright © 2010 Scott Stevenson. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Adam Zaremba
Copyeditor: Nancy Kotary
Proofreader: Sada Preisch

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
April 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Cocoa and Objective-C: Up and Running, the image of a Pampas cat, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80479-4

[M]

1271342831

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xi

1. Setup and First Run . 1
Download and Install Xcode 1
Your First Application 4

Create the Interface 7
Run the Finished Application 11

2. Thinking in Code: Basic C . 15
How Code Works 15
How to Format Code 17
Variables 20

Types 21
Constants 23
Enumerated Types 24
Typedefs 24

Functions 24
Declaring Functions 28

Example: FirstProgram 28
Displaying Values on the Command Line 29
Compile and Run the Example 32

Scope 34
Static Variables 35

Conditionals 36
Example: ShoppingTrip 39

Compile and Run 41
Wrap Up 42

3. Memory and Pointers: Advanced C . 43
Arrays 43
Loops 45

v

Download from Wow! eBook <www.wowebook.com>

Text Strings 47
Multidimensional Arrays 48
Pointers 49

The Purpose of Pointers 50
Using Pointers 50
Pointers and the const Keyword 52

Dynamic Memory 53
Strings and Dynamic Memory 56

Returning Strings from Functions 57
Arrays of Strings 58
Example: AddressBook 59

Compile and Run the AddressBook Example 61
Structs 62
Header Files 64
Compile and Run the HeaderFileTest Example 66
Create Files for the Song Struct 66
Final Example 68

4. Thinking in Objects . 73
Structs and Classes 74

Designing Classes 76
Accessors 77
Inheritance 78
Composition 80
Object Lifetime 81
Built-in Classes 81

5. Basic Objective-C . 83
NSString Basics 84
Using Methods 84

Nested Method Calls 86
Multi-Input Methods 86

Accessors 86
Dot Syntax 87

Creating Objects 88
Basic Memory Management 88

Using Autorelease Directly 90
Declaring a Class 90

Add Methods 91
Implementing a Class 92

init 94
dealloc 95

Example: PhotoInfo 96

vi | Table of Contents

Download from Wow! eBook <www.wowebook.com>

6. More Objective-C . 103
More on Memory Management 103

The Life of an Instance Variable 105
Copying Objects 106

Class Name Prefixes 107
Properties 107

Property Options 109
64-Bit Objective-C 111

Enabling 64-Bit 112
Should I Use 64-Bit? 113
All Further Examples Assume 64-Bit 114

Categories 114
Categories for Private Methods 116

Introspection 118
Protocols 120
Dynamic Messaging 124

Using Selectors to Call Methods 125
Forwarding Messages 126

Exceptions 127
Example: DataCollector 129

Some New Classes and Methods 129
Create the Files 130
Build and Run 136

7. Foundation Value Classes . 137
NSString 138

Ranges and Substrings 140
Using NSString with C Types 141
Comparing Strings for Equality 141
Strings As File Paths 142
Reading and Writing Files with Strings 144

Mutability 148
Advantages of Mutability 149
Advantages of Immutability 150

Core Foundation 150
Memory Management 152
Core Foundation Mutability 153
Toll-Free Bridging 154
Core Foundation Types As Properties 155
Drawbacks of Core Foundation Types 156
Open Source 156

NSNumber 156
CFNumberRef 159

Table of Contents | vii

Download from Wow! eBook <www.wowebook.com>

Cocoa Primitive Types 160
NSDecimalNumber 161
NSNumberFormatter 163
When to Use Which Number Type 165

NSData 166
NSMutableData 168

NSArray 169
Fast Enumeration 171
Blocks 171
NSMutableArray 173
CFArrayRef 174
NSIndexSet 175

NSDictionary 177
NSMutableDictionary 178
CFDictionaryRef 179

NSSet 181
NSMutableSet 182

NSValue 183
NSDate 184

CFDateRef 186

8. Basic Controls . 189
How to Use This Chapter 189
Windows and Views 190
Targets and Actions 193

Buttons 194
Declaring Action Methods 195
Connecting Actions 198
Menus 203
Responder Chain 206
Pop-up Buttons 211
Sliders 214
Text Fields 216

Outlets 218
Datasources 222

Table View Datasource Methods 226
Implementing Datasource Methods 227

Bindings 230
Key-Value Protocols 234
Bindings for Simple Controls 236
Bindings for Complex Controls 242
Tips for Debugging Bindings 244

viii | Table of Contents

Download from Wow! eBook <www.wowebook.com>

9. Designing Applications Using MVC . 247
About This Project 248

Window Controllers 249
View Controllers 250
Core Data 253

Create the Project Files 254
Create the Entities 254
Add Attributes and Relationships 255
Update the App Delegate 261
Add the Quartz Framework 264
Create the Window Controller 264
Create the View Controllers 268
Create the Managed Object Classes 280

Create the User Interface 286
Remove the Default Window 287
Create the Main Window Interface 289
Create the Browser Interface 293
Create the Editor View Interface 297
Create the List View Interface 298

Run the Application 301
Preparing for Release 303

10. Custom Views and Drawing . 307
Basic Geometry 308

Geometry Structs As Strings 310
Geometry Structs As NSValues 311
Cocoa View Coordinates 312
Derived Rects 313
Comparison Functions 314

Basic Drawing 315
NSColor 316
Subclassing NSView 316
Instantiate the View 320
The Graphics Context 323

Bezier Paths 324
Drawing Polygons 324
Drawing Curved Paths 325

Images 329
Loading Image Data 329
Drawing Images in a View 331

Shadows 338
Add a Shadow to StyledImageView 338

Gradients 341

Table of Contents | ix

Download from Wow! eBook <www.wowebook.com>

Drawing a Gradient Background 342
Drawing an Image Sheen 344

Refactoring View Code 349
Why You Should Refactor 350
Goals for Refactoring 350
Refactored Header 352
Refactored Implementation 354
Test the Refactored Version 359

Text 359
Fonts 359
Attributed Strings 360
Add a Title to StyledImageView 365

Handling Mouse and Keyboard Events 370
Keyboard Events 371
Mouse Events 372
Add Event Support to StyledImageView 372

11. The Final Word . 377
The List 377
Websites 378
Last Thought 380

Index . 381

x | Table of Contents

Download from Wow! eBook <www.wowebook.com>

Preface

I’m not sure if this is the first book you’ve picked up to learn Cocoa, but I think it’s the
one that will get you started writing apps. I started teaching Cocoa and Objective-C in
2004, and I have worked with a lot of people who wanted to learn how to write software
so that they could get their ideas onto the screen. But there’s a problem.

There are two kinds of people who want to learn programming. Those in the first group
are wired for the algorithmic mindset; they’re interested in data and the inner workings
of things for their own sake. When they see a dog catch a Frisbee, they think of the
calculations the dog does to catch it. Programming is a natural extension of this mind-
set. My guess is around five percent of the population is actually built this way.

The second (much larger) group has ideas for software that they desperately want to
make real. They’re often graphic or interaction designers. You probably have ideas
about a fantastic Mac, iPhone, or iPad app that you want to create, but you don’t have
a million dollars to hire an engineering staff. It’s very likely that you even like pro-
gramming and data in addition to several other interests, but you don’t see everything
in terms of algorithms.

The problem is that most technical books are written by and for people in the first
group. That means most of the material is being created for those who need the least
help. As a result, a lot of books on programming go unread. In fact, there’s this un-
spoken honor given to anyone who actually finishes reading one: “Wow, he must be
really motivated.”

My problem with this is that there are a lot of people with great ideas in the second
group. Many of my favorite Mac and iPhone apps today come from developers without
a formal computer science background, most likely because they bring different expe-
riences into the mix. I want to encourage more of this. Fortunately, the good folks at
O’Reilly agree with me.

So here’s the deal. I wanted to write this book because I want to help you learn how to
write Mac, iPhone, and iPad apps. I want you to read it so that I get to use whatever
software you end up creating.

xi

Download from Wow! eBook <www.wowebook.com>

This book is made to be accessible to new programmers, but it’s not watered down.
You’re learning to use the same things the professionals use. My job is to make sure
that each page says something useful. For each paragraph, I’ve asked myself, “Does
this help you write your app?” Anything that didn’t meet that standard got cut. But I
haven’t sold you short; if there’s something you need to know to be a good Mac pro-
grammer, I’ve at least told you about it. However, I haven’t spent time on minutiae that
don’t matter for Cocoa.

The content of this book is based on Cocoa tutorials I wrote between 2003 and 2009.
Many of these were published at my personal site, Theocacao, and some of the longer
ones were published at Cocoa Dev Central, a site I didn’t originally create but have run
since 2004. I’ve refined the tutorials based on a one-on-one mentoring program that I
ran over the same period of time. You get the benefit of all those efforts in a single
condensed book.

Your job is to go write world-class Mac, iPhone, and iPad apps, and to tell everyone
else how great Cocoa is. Let’s get started.

Who This Book Is For
This book is for people who want to learn to make great Cocoa apps. I don’t assume
that you already know how to program, or anything about Objective-C or C. You do
need to own an Intel-based Mac running Mac OS X 10.6 Snow Leopard, and you must
know how to install software, launch apps, edit and save files, and so on. Essentially,
you have to know how to use a Mac.

If you know any computer languages at all (even HTML), things will make more sense
from the start. If not, you’ll still be able to make it through this book, but you may find
some parts challenging. Even though Cocoa makes many common tasks easy, your
brain has to adjust to the basic concepts of programming.

To be clear, though, this book is not exclusively for novice programmers. Depending
on your experience level, you can skip a few of the chapters that are designed for
beginners and jump right to the parts that are relevant to your experience.

If you already know C but haven’t done object-oriented programming, start with
Chapter 1, which will walk you through creating a basic Cocoa application. Then move
onto Chapter 4, which introduces object-oriented concepts.

If you know C and at least one object-oriented language (such as Java, Ruby, or C++),
you can start with Chapter 1 for the basic orientation, and then jump ahead to Chapter
5, which introduces Objective-C.

How This Book Is Organized
The chapters in this book are organized as follows:

xii | Preface

Download from Wow! eBook <www.wowebook.com>

http://theocacao.com
http://cocoadevcentral.com

Chapter 1
To build Cocoa apps, you’ll need to know your way around Xcode. Although we’ll
get into Xcode more deeply later, this chapter gives you a quick tour.

Chapter 2
Before you can start programming in Objective-C (the native programming lan-
guage used with Cocoa), you’ll need a background in programming as well as in
the C language. This chapter gets you started with the basics of programming in C.

Chapter 3
A programming language spends all its time moving things around in memory.
This chapter explains how C manages memory and also explains pointers, which
let you work directly with memory locations. Although you won’t need all the low-
level memory manipulation that C is capable of, an understanding of it will help
you better understand Objective-C.

Chapter 4
Here’s where we take a detour from the C language and get into the object-oriented
world. In this chapter, you’ll learn about classes, inheritance, objects, and more.

Chapter 5
Now that you have a basic understanding of object-oriented concepts, it’s time to
move on to Objective-C. This chapter explains Objective-C’s syntax for calling
methods, defining classes, and creating objects.

Chapter 6
Before you can get into Cocoa, there are a few more things you need to learn about
Objective-C. This chapter introduces some intermediate Objective-C concepts,
including memory management, categories, selectors, and more.

Chapter 7
Although you can (and sometimes will) use standard C types in your Cocoa apps,
Objective-C offers a rich set of classes for working with primitive values, such as
integers, floating-point numbers, and strings. This chapter shows you how to use
these value classes.

Chapter 8
Cocoa’s AppKit user interface layer allows you to create applications with rich user
interfaces. This chapter prepares you to work with the built-in controls and connect
them with actions you define in your code.

Chapter 9
Model-View-Controller is the mindset that guides the way you’ll put your Cocoa
apps together. In this chapter, you’ll learn how to write code that coordinates your
data and user interfaces.

Chapter 10
Cocoa includes a rich set of classes for displaying graphics in your apps. In this
chapter, you’ll learn how to work with shapes, images, gradients, and more.

Preface | xiii

Download from Wow! eBook <www.wowebook.com>

Chapter 11
Now that you’ve read through the book, you’re ready to write some apps. This
short chapter gives you a few last pointers to help you on your way.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Cocoa and Objective-C: Up and Running
by Scott Stevenson. Copyright 2010 Scott Stevenson, 978-0-596-80479-4.”

xiv | Preface

Download from Wow! eBook <www.wowebook.com>

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites,
download chapters, bookmark key sections, create notes, print out pages, and benefit
from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596804794/

A full site dedicated to the book is available from the author, and may include additional
examples and announcements about Cocoa user groups and other information you
may find useful as a developer. This book site is at:

http://cocoabook.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

You can email the author directly at:

cocoahelp@me.com

Preface | xv

Download from Wow! eBook <www.wowebook.com>

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596804794/
http://cocoabook.com
mailto:bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
My education didn’t follow the normal path. I taught myself how to program and
learned how to run a business mostly by trial and error. In the end, I think this is the
only option that would have worked for me, but it was possible only because of my
extremely patient and understanding family: my mom, Peggy; my dad, Alan; and my
sister, Jamie. You would not be reading this now if it was not for their support.

There are so many people that have helped me in my work life, but there are a few that
have had a direct impact on this book.

Michael Lopp and Angela Muller were ongoing sources of encouragement and inspi-
ration. This book first came into being over lunch when Michael mentioned something
along the lines of “everyone wants an animal on the cover of their book,” referring to
the iconic O’Reilly covers. By incredible coincidence, Brian from O’Reilly emailed me
about two weeks later. Had Michael not made that comment, this might not have
happened.

I had world-class tech reviewers for this project: Joar Wingfors, Michael Jurewitz, Rob
Rhyne, and Tim Triemstra. Joar, who I originally met through the tutorials I posted
online, tirelessly reviewed an ever-changing book, provided a wealth of essential com-
ments and suggestions, and even helped me fix some bugs in the code. He’s one of the
most talented engineers I know, and I am thrilled to have been able to get his help on
this.

Though he wasn’t involved in this project, I owe a lot to John Mora. He has an ability
to look an impossibly large task in the face and just do it, despite the usual doubts about
whether you know enough or have enough time. It is one of the most impressive traits
I know of, and John has it in spades. Thankfully, I think some of that rubbed off on
me over the 15 years I’ve known him.

Thanks to Kip Krueger for patiently helping me figure out the low-level details of mem-
ory and offering pointers when I was learning C. His mentoring is the reason I’m able
to teach these topics to you now.

When I first started learning Cocoa, there were only two books out on the topic. I chose
Aaron Hillegass’s book Cocoa Programming for Mac OS X (Addison-Wesley). Not only
was it the first Mac programming book I read, it was the first technical book I actually
enjoyed. His book proved to me that you could write in a direct and personal style and
still be taken seriously. Having spent time with him in person, I can also add that he’s
a great guy. There’s no doubt that his influence is weaved into the tutorials I’ve written.

xvi | Preface

Download from Wow! eBook <www.wowebook.com>

http://www.oreilly.com

Brian Jepson is simply a superhero among editors. I’m not sure there’s enough space
to list all of the things he did to make sure this project was a success, but I certainly
could not have done it without him. For any part of the book that you really like, there’s
a good chance he had a hand in it. Follow him on Twitter: @bjepson.

Finally, to the thousands of people who have emailed me over the years with questions
or suggestions about tutorials, I owe a lot to you as well. You helped me refine every-
thing that ended up in this book, and by extension, helped a new generation of Cocoa
developers learn how to program.

This book is dedicated to Gina and Ilya, who both taught me that life’s too short to not
be spent with the people you want to be with.

Thank you.

Preface | xvii

Download from Wow! eBook <www.wowebook.com>

http://twitter.com/bjepson

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1

Setup and First Run

I know you want to start writing apps as soon as possible, but there are three things
you need to know first:

I don’t assume you already know how to program.
You don’t need to have existing experience with Objective-C, Cocoa, Xcode, or
even C. If you have some familiarity with a computer language (even HTML), it
will help you. You do need to be a reasonably proficient Mac user. If you show up
with the desire to learn Mac programming, I’ll walk you through what you need
to know.

The chapters are modular.
If you know C and object-oriented concepts, but not Objective-C specifically, you
can skip to Chapter 5 after learning about Xcode in this chapter. If you’ve already
dabbled in Mac or iPhone programming, and know your way around Objective-C
and some basic Cocoa topics, you can probably jump to Chapter 7. Otherwise,
start right here.

You need a Mac running Snow Leopard.
All of the chapters assume that you’re running Mac OS X 10.6 Snow Leopard,
which runs only on Intel-based Macs.

All set? Good, let’s get Xcode running.

Download and Install Xcode
You can either get Xcode from the Mac OS X install DVD or download it from the
official Mac Dev Center website. The version on the website will always be the newest
one, but the download may take several hours. If you want to get started right away,
you can install from the DVD.

1

Download from Wow! eBook <www.wowebook.com>

If you’re running Snow Leopard and already have the iPhone SDK in-
stalled, you have everything you need to write Mac apps. You can skip
ahead to “Your First Application” on page 4.

To download the newest version of Xcode, go to http://developer.apple.com and click
on Mac Dev Center. The layout of the site changes regularly, but you should look for
a link that says “Register” to create an account. There is a paid membership that offers
access to prerelease software and training videos, but you can start with the free mem-
bership, which requires you only to fill out some basic contact information. After you’ve
registered, return to http://developer.apple.com and log in. Once you’re logged in, look
for a link for downloading Xcode.

If you have a slow Internet connection and want to save yourself a few hours, put the
Snow Leopard Install DVD in the drive and open the folder called Optional Installs as
shown in Figure 1-1.

Figure 1-1. The Optional Installs folder on the Snow Leopard Install DVD

Inside the Optional Installs folder is a package called Xcode.mpkg. Double-click it to
open the installer (see Figure 1-2).

2 | Chapter 1: Setup and First Run

Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com
http://developer.apple.com

The version of Xcode on the DVD is usually older than what is available
on the developer site, so you should upgrade Xcode as soon as you have
the time to download it. The Xcode download at the Mac Dev Center
will show you the version number that’s available. When you run Xcode,
the version number is displayed on the Welcome window below “Wel-
come to Xcode.”

Once the installer is running, you can just accept all of the default options. You will
likely need several gigabytes free for installation. Figure 1-3 shows the installer running.

Figure 1-3. An Xcode install in progress

Figure 1-2. The Xcode.mpkg package inside the Optional Installs folder

Download and Install Xcode | 3

Download from Wow! eBook <www.wowebook.com>

Once the window says installation is complete (see Figure 1-4), go ahead and close the
window.

Figure 1-4. The installer window confirming that Xcode was installed

Your First Application
Launch Xcode. You can find it by clicking on your hard drive icon in the Finder sidebar
and navigating to Developer → Applications. This is separate from the general
Applications folder that holds things like Safari and iTunes. You can also search for it
using Spotlight.

It’s probably a good idea to add Xcode to your Dock since it’s a few
levels down. In theory, this is for easy access, but it’s also a good con-
versation starter if someone sees it on your Mac.

If Xcode asks you for any initial configuration preferences, simply accept the defaults.
Each time Xcode runs you will see a Welcome window that looks something like
Figure 1-5.

4 | Chapter 1: Setup and First Run

Download from Wow! eBook <www.wowebook.com>

The left side of the window has a few items to help you get started, and the right side
lists projects that you’ve used recently. The list will be empty the first time you run
Xcode. Click on “Create a new Xcode project” to get started.

If you closed the Welcome window, you can start a new project by
choosing File → New Project from the menu. You can open the Welcome
window again by choosing Help → Welcome to Xcode.

In the New Project window, click on Application under the Mac OS X section and select
the Cocoa Application icon as shown in Figure 1-6.

Click the Choose button, and you’ll be asked to select a location for the project. Go to
your home folder and create a folder called CocoaBook (you can do this within the Save
dialog). Select the CocoaBook folder as the save location and enter “TextEditNano” as
the project name (see Figure 1-7).

The layout of the New Project window has changed significantly in the
3.x releases of Xcode. If your window doesn’t look similar to the screen-
shot in Figure 1-6, download a newer version of Xcode from http://de
veloper.apple.com.

Figure 1-5. The Xcode Welcome window after the first launch

Your First Application | 5

Download from Wow! eBook <www.wowebook.com>

http://developer.apple.com
http://developer.apple.com

After you click Save, you’ll see the main Xcode window come up, which looks like
Figure 1-8.

Go ahead and click the Build and Run icon in the toolbar to try the app out. You should
see a blank window come up, as shown in Figure 1-9.

This obviously isn’t a useful window, but if it shows up, you know Xcode is working
and you’re ready to start writing Mac apps. Close the application and return to the
main Xcode window.

To close an app that’s running inside of Xcode, you can either choose Quit from the
application’s menu, or just click the Tasks stop sign toolbar icon in Xcode, which is
shown in Figure 1-10.

It’s called Tasks because you may have several things going on in Xcode, and if you
click and hold on this icon, you can select which task you want to stop.

If your application crashes or stops responding, you won’t be able to
use Quit from the application menu. If that happens, just use the Tasks
toolbar item. This is equivalent to a Force Quit, so the application won’t
have a chance to save any data or preferences before closing.

Figure 1-6. The New Project window in Xcode

6 | Chapter 1: Setup and First Run

Download from Wow! eBook <www.wowebook.com>

Create the Interface
At the heart of every great Mac app is a great user interface. You might design the
interface in an image editing program, on a napkin, or just in your head, but eventually
you’ll want to make it real. In Cocoa, there are two ways to create a user interface.

You can manually enter configuration details for controls in your application code
(you’ll learn more about writing code in the next chapter), or you can visually arrange
controls in Interface Builder. In my experience, novice programmers usually jump at
the chance to work visually, but experienced developers sometimes take a bit more
convincing.

Some new programmers think that writing software the hard way makes you a better
programmer, but expert Mac developers measure success by how quickly they can
deliver great results. Interface Builder is not training wheels for Cocoa; it’s a tool to
reduce the amount of “busy work” you have to do when setting up your user interface
(UI), which means you can work more quickly and avoid trivial errors. That leaves you
free to focus on the real work.

Figure 1-7. Create a CocoaBook folder for your projects, and name the project “TextEditNano”

Your First Application | 7

Download from Wow! eBook <www.wowebook.com>

Eliminating busy work is the most important idea in Cocoa. A pro-
grammer who doesn’t need to waste time on tedious tasks is free to focus
on creating features that make her app unique.

Xcode includes an Interface Builder document with each new project, but as you’ve
seen from the blank window, there’s not much to it. In the main Xcode window, click
the disclosure triangle to the left of the blue TextEditNano project icon in the sidebar
to display its contents. Now open the Resources group and double-click the
MainMenu.xib file to open it in Interface Builder. You’ll see a window that looks some-
thing like Figure 1-11.

Double-click the Window icon (circled) to open the main window for the TextEdit-
Nano application. It should look exactly like the blank window you saw when you first
ran the application. This window is your canvas. You can add any UI elements here
that you want to use in your application.

Interface Builder works differently than some other visual development tools. It doesn’t
generate Objective-C code. Instead, it takes snapshots of the state of the objects. The
configuration of all of the controls, including all of their positioning information, is
saved in the MainMenu.xib file and loaded by Cocoa when your app is launched.

Figure 1-8. The Xcode main window showing the TextEditNano project

8 | Chapter 1: Setup and First Run

Download from Wow! eBook <www.wowebook.com>

The .xib file format is an XML version of the standard .nib format that
was Interface Builder’s native format in earlier versions of Mac OS X.
The XML version is easier to use in version control systems, but when
Xcode builds your app, it actually converts XIB files into NIB files. The
original XIB file is preserved, though.

Open Interface Builder’s Library window by choosing Tools → Library from the menu.
The Library window contains ready-to-use UI elements that are built into Cocoa. You
can also download third-party plug-ins or create your own. Type “text view” into the
search field at the bottom of the window to bring up the Text View item, as shown in
Figure 1-12.

Figure 1-9. The blank window you see the first time you run TextEditNano

Figure 1-10. The Tasks button in the Xcode toolbar

Your First Application | 9

Download from Wow! eBook <www.wowebook.com>

If nothing shows up when you search for the text view, make sure that
the Objects tab is selected at the top of the window, and the Library
item is selected in the drop-down menu below it.

Drag the Text View item from the Library window into the application window. This
might be obvious, but you need to drag it to your “prototype” application window that
appeared when you double-clicked on Window in Interface Builder (Figure 1-13), not
the real one from the running application (which you hopefully already closed).

Move the text view so that it’s near the top-left edge of the window. Use the handles
around the outside to resize it so it nearly fills the window, but leave a little bit of space
at the bottom. The exact size isn’t important—just do whatever you think looks right.

Select File → Simulate Interface from the menu, or press Command-R. This will display
the window in Interface Builder’s simulator test mode. The application isn’t actually
running, but you can see a preview of what it will look like and can even type in the
text field. If you try to resize the window, though, you can see that the text view doesn’t
resize with it. Press Command-Q to close the simulator, and we’ll fix this.

Set sizing properties

Select the text view by clicking on it in the prototype window, and choose Tools → Size
Inspector from the menu, or press Command-3. The Inspector window’s title is “Scroll
View Size,” but that’s OK (you may have expected it to be named “Text View Size”).
The scroll view is wrapped around the text view to provide scrolling support for long
runs of text.

Figure 1-11. The MainMenu.xib file for TextEditNano

10 | Chapter 1: Setup and First Run

Download from Wow! eBook <www.wowebook.com>

The Autosizing section of the Inspector controls resizing. The outer anchors control
which edges the view moves with, and the inner arrows control which edges the view
resizes with. That may not make sense when you read it, but fortunately the Inspector
window shows you a live preview as you make changes. You can turn each anchor on
or off by clicking it. Click both sets of internal arrows so the view resizes with the
window. It should look Figure 1-14 when you’re done.

Run the test mode again by pressing Command-R. If you resize the window, the text
view should now resize with it. Press Command-Q to close the simulator, then Com-
mand-S to save the MainMenu.xib file. Switch back to Xcode.

Run the Finished Application
Back in Xcode, click the Build and Run icon in the toolbar (or just press Command-R)
to build the application and run it. This time when the window comes up, you should
see the text view you added. Choose Format → Font → Show Fonts to choose a font,
then type something in the text field (see Figure 1-15).

Figure 1-12. Search for “text view” in the Library window

Your First Application | 11

Download from Wow! eBook <www.wowebook.com>

Even though you haven’t written a single line of code yet, you already have a real Cocoa
application. It can’t save files, but it uses Cocoa’s built-in text view so you can use fonts,
colors (Shift-Command-C), international text, and spellchecking. It also supports drag-
and-drop, text search (try Command-F), and many other features.

Figure 1-13. Drag the text view icon into the prototype window

Figure 1-14. Click both sets of arrows to enable resizing

12 | Chapter 1: Setup and First Run

Download from Wow! eBook <www.wowebook.com>

Figure 1-15. Cocoa has built-in support for advanced text effects

You can also create PDFs from the text and even print. Choose File → Print to bring up
the standard print dialog, and click Preview to convert the text into a PDF as shown in
Figure 1-16.

The document can use features like any other PDF, including text selection, searching,
and annotation. Remember, this is your application that you just made from scratch.

Your First Application | 13

Download from Wow! eBook <www.wowebook.com>

Figure 1-16. Basic PDF generation and printing is built in

14 | Chapter 1: Setup and First Run

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2

Thinking in Code: Basic C

As a Cocoa programmer, your job is to get your ideas onto the screen. When you write
an essay, you use sentences and paragraphs. Writing software works the same way,
though you write lines of code instead. Each line performs a task, such as opening a file
or displaying an image. When you put enough of these lines of code together, you
eventually have an application.

You write these instructions using a programming language. Most Mac and iPhone
apps are written in Objective-C, so that’s what you’ll use in this book. The process of
converting your ideas into code is called, literally, writing code, and the result is source
code. For example, to make your application play the alert sound, you write this line
of code:

NSBeep();

There’s one important detail, though. Objective-C is based on a simpler language,
called C. In fact, Objective-C isn’t just based on C; it’s all of C plus some other stuff.
Programmers like to say it’s a strict superset of C.

So before you start writing Cocoa apps, it helps to learn some C. I’m not going to lead
you into the outer limits of the language; you’ll see just enough to get started. If you
already know C, you can safely skim this chapter.

If this seems confusing, just remember that Objective-C is the language
that defines how you format your code—the grammar. Cocoa defines
what you can make your code do—the overall vocabulary. You create
a Cocoa app by writing code in the Objective-C language.

How Code Works
Mac OS X contains special folders for programmers called frameworks. A framework
helps you do things like animate graphics, display web pages, and create PDFs. These

15

Download from Wow! eBook <www.wowebook.com>

aren’t just for third-party developers; the built-in applications use them too. Applica-
tions can also include their own custom frameworks that aren’t provided by Mac OS X.

You might be used to thinking of Cocoa as a single tool for building Mac apps. In reality,
it’s the foundation for many different frameworks—an entire ecosystem. In fact,
there are more than 90 frameworks in Snow Leopard, and some of those contain
subframeworks.

Each one is designed to help you do something different. For example, the Core
Video framework helps you write an application that can apply real-time special effects
to video. A single Mac application may use many different frameworks, though almost
all inherit basic infrastructure from Cocoa.

The frameworks built into Mac OS X are in /System/Library/
Frameworks (Figure 2-1). Developers can also create their own frame-
works and install them in /Library/Frameworks. Feel free to look around
in there, even if you don’t know what the frameworks do yet.

Figure 2-1. The contents of /System/Library/Frameworks on Snow Leopard

16 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

When you write a line of Objective-C code, you are usually asking a framework to do
something for you. For example, these lines of code download an image from a website
and save it as a TIFF file on my desktop:

id url = [NSURL URLWithString:@"http://cocoabook.com/test.png"];
id image = [[NSImage alloc] initWithContentsOfURL:url];
id tiff = [image TIFFRepresentation];

[tiff writeToFile:@"/Users/scott/test.tiff" atomically:YES];

If you’ve never written code before, this probably all looks pretty strange. It’s a lot like
when you see algebra or a foreign language for the first time. Even though it’s new,
there is a consistent structure that you can learn. Here’s what Cocoa does for you when
you write and run the example lines of code:

1. Finds the IP address for the host cocoabook.com

2. Establishes an HTTP connection to the server at that IP address

3. Creates an image to hold the data

4. Downloads the data, bit by bit, and places it in memory

5. Saves the image data to a TIFF image file on the local disk

Incredibly, you don’t need to know the HTTP protocol, how to resolve IP addresses,
or how to create a TCP connection. Frameworks are designed to abstract these kinds
of details from you so that you can focus on what makes your app unique. As Cocoa
and other frameworks are improved with each new version of Mac OS X and iPhone
OS, your app will often pick up new features without any additional work.

So making Mac apps is really about writing code that uses frameworks. You type spe-
cific instructions into a file in Xcode, then click Build and Run to try them out. When
you do this, Xcode compiles your code into an application, which can be double-clicked
on a Mac, tapped on an iPhone’s home screen, or even run from the command line in
Mac OS X’s Terminal application.

In a sense, the lines of code you write are the “raw materials” of your application. Xcode
then acts as an assembly line, compiling your code into the final product. Compilation
is a fairly complex process, but Xcode handles the basic cases with very little effort on
your part.

How to Format Code
Xcode and Cocoa do a lot of work for you, but you have to do your part by writing
accurate code. If we stay with the theme of you supplying raw materials and Xcode
assembling them, you have to be sure the materials are “built to spec.” In other words,
you need to write code that Xcode can understand.

How to Format Code | 17

Download from Wow! eBook <www.wowebook.com>

Appropriately, when Xcode processes your code it generates something
called assembly code. This is harder for humans to read, but perfect for
computers. You can see this by opening a source code file and choosing
Build → Show Assembly from the menu.

Some programming languages have very complex formatting rules, but C and
Objective-C are pretty simple. That doesn’t mean they’re always easy to use, just that
they have fewer grammar rules than many other languages. We’ll start with something
basic. Let’s say you have some driving instructions:

1. Enter I-280 South.

2. Exit at the De Anza ramp.

3. Make a U-turn at Mariani Avenue.

4. Turn right into Infinite Loop.

Anybody who knows English can read these steps, but I can’t compile them. I’ll convert
them to code:

enterFreeway ("I-280 South");
exitFreewayAtRamp ("De Anza");
performUTurnAtStreet ("Mariani Ave");
turnRightAtStreet ("1 Infinite Loop");

This program won’t actually run, because it assumes four hypothetical
actions that aren’t supported by any framework you’re likely to find on
a Mac or iPhone.

Written languages are flexible. Even if you misspell a word or structure a sentence
strangely, the reader usually knows what you mean. For example, a person knows that
“Mariani Ave” and “Mariani Avenue” are the same, but programming languages are
usually more strict. When Xcode compiles your code, it can’t make conceptual leaps
about what your intentions are.

Word spacing is another key difference. In English, each word is separated by a space
or hyphen, but many programming languages combine several words into one big noun
or verb, such as mailboxSearchField. There’s a consistent pattern to the code: an action,
sometimes followed by additional details. Here’s the first line of that code again:

enterFreeway ("I-280 South");

The line starts with enterFreeway, which is the name of an action. These actions are
called functions. The second part of the line describes which freeway to enter: I-280
South. The technical term for this is an argument or parameter, but I think those are
pretty awkward terms. You can just think of it as an input value.

18 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

Each instruction ends with a semicolon. In C, a semicolon is like a period at the end of
a sentence. Just like sentences, a single instruction can span multiple lines, but almost
all instructions end with a semicolon.

The compiler converts source code into working programs. When you
click Build in the toolbar, Xcode uses the compiler to do a lot of the low-
level work. Besides abstracting a lot of these tedious details, Xcode also
packages up the program as a proper Mac app.

If you write a line of Xcode that isn’t correct, Xcode will display an error when you try
to build. You won’t be able to run your app until you fix the error. These kinds of
mistakes are known as build errors (Figure 2-2).

Figure 2-2. A build error in Xcode

Even the best programmers make mistakes like this every day, but many are easy to fix.
You’ll learn more about this as you use Xcode to build applications.

One thing that C is flexible about is how you use whitespace. All of the lines in the
following example will produce exactly the same result:

enterFreeway ("I-280 South");
enterFreeway ("I-280 South");
enterFreeway("I-280 South");

How to Format Code | 19

Download from Wow! eBook <www.wowebook.com>

Programmers use whitespace to make the intentions of their code more clear, though
there are a lot of different opinions on what “clear code” is. You can usually use what-
ever style works best for you. Teams of programmers usually try to agree on a style that
everyone in the group uses, though there is always room for flexibility in how you
format your code.

Instead of listing every single C formatting rule here, I’m going to move on to more
practical concepts and show you these rules by example. If you ever have trouble typing
in a sample correctly, you can download a working version from the book’s companion
website (see the Preface for information on obtaining the sample code).

Variables
A variable is a container for a piece of data, such as a block of text, an image, or a web
page. You give each variable a name so you can refer to it in code. Like formatting,
there are different conventions for naming variables. When writing Mac software, you
should try to use the same conventions that Cocoa itself uses.

Cocoa is designed to make very large projects manageable, and encour-
ages you to write code that’s easy to understand. Some applications are
made up of hundreds of thousands or millions of lines of code. Using
consistent, clear naming conventions makes it easier for many pro-
grammers to collaborate on a project.

Giving names to things with varying definitions makes them easier to refer to: you see
a movie, eat a meal, drive down a street. It’s just easier to say “breakfast” than “that
thing we did yesterday where we ate bacon and eggs.” You can share information be-
tween different parts of an application using variable names instead of the data they
contain. Let’s start with a simple line of code:

emailMessageToFriend ("Hi there!", "test@example.com");

This seems reasonable. I call the function emailMessageToFriend(), with one input item
for the message and another for the email address. But what if I want to send a different
message, or send the message to a different person? I’d need to change the code, re-
compile it, and rerun it. Clearly, this won’t work.

Variables make it possible to write one piece of code for many different situations by
using a name as a placeholder for the real data. Here’s what the previous line of code
looks like if I use variables instead:

message = "Hi there";
address = "test@example.com";

emailMessageToFriend (message, address);

20 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

I can use the variables message and address to refer to the email contents and recipient
without having to know what they will be ahead of time. I can also make the code more
useful by reusing the message variable as-is, but changing the address variable to send
the same email to other people:

message = "Welcome to Cupertino!";
address = "gina@example.com";
emailMessageToFriend (message, address);

address = "fred@example.com";
emailMessageToFriend (message, address);

address = "sarah@example.com";
emailMessageToFriend (message, address);

If I ever want to change the welcome message, I have to update it in only one place
instead of three.

In a real program, I would make a window that allows the user to select
whom they want to send messages to, ideally using the Mac OS X Ad-
dress Book database to choose from a list of existing contacts.

Types
In C, variables have a type, which describes what kind of data the variable contains. C
has a handful of built-in types for common things like numbers and text, but you can
also create your own.

There are two steps to using a variable in C: declare it, then assign a value to it. You
can change the value of a variable as many times as you want, which is actually what
the term “variable” means. Here’s an example of declaring a variable and assigning it
a value in one step:

int milesPerGallon = 35;

This code creates a new int variable with the name milesPerGallon, and assigns it an
initial value of 35. On a Mac running Snow Leopard, this variable can store any whole
integer up to 2,147,483,647.* No, you don’t need to memorize this.

For floating-point numbers (numbers with decimal points), C has a float type. Here’s
an example:

float exchangeRate = 1.618;

The milesPerGallon and exchangeRate variables have different types, but they do the
same thing: store a value. You can also declare a variable and assign it a value in separate
steps:

* You can see the actual definition for the maximum value in /usr/include/i386/limits.h. Just look for INT_MAX.

Variables | 21

Download from Wow! eBook <www.wowebook.com>

int milesPerGallon;
float exchangeRate;

milesPerGallon = 35;
exchangeRate = 1.618;

Here’s an example of declaring a variable once, assigning it a value, then reassigning it
a new value several times:

int milesPerGallon;

milesPerGallon = 35;
milesPerGallon = 27;
milesPerGallon = 81;

float exchangeRate;

exchangeRate = 1.120;
exchangeRate = 1.114;
exchangeRate = 1.618;

If you try to assign the wrong type of data to a variable, C will usually try to do some
conversion, but you may lose information in the process. For example, if you try to
assign the value 24.5 to milesPerGallon, it will be stored as 24 because int variables
only store whole numbers. Some conversions are not possible, and Xcode will warn you
about these when you compile your application (when Xcode wants to show you
warnings or error messages, it calls your attention to them in the status bar at the bottom
of the window).

Some successful conversions will give a different result than you expect. Most of the
time, assigning an int value to a float variable does what you expect. However, if you
divide one integer value by another integer value, you’ll always get a integer result, even
if you assign the result to a float:

int miles = 366;
int gallons = 8;
float milesPerGallon = miles / gallons;

The milesPerGallon variable will contain the value 45 instead of 45.75. You can use the
cast operation (specify the name of the desired type in parentheses) to force a specific
type conversion. This example converts both miles and gallons to float values before
it performs the division:

float milesPerGallon = (float) miles / (float) gallons;

Technically, you don’t need to cast both values, because the compiler is smart enough
to treat both as float values if you cast at least one of them:

float milesPerGallon = (float) miles / gallons;

Table 2-1 contains a list of some of the most common “primitive” types used in C.

22 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

Table 2-1. Basic C data types

Type Description Examples

int Integer numbers, including negatives 0, 78, –1400

unsigned int Integer numbers (no negatives) 0, 46, 900

float Floating-point decimal numbers, including negatives 0.0, 1.618, –1.4

char Single text character or symbol a, D, ?

In addition to the types listed in the table, there’s also a type called double, which is a
version of float that can hold larger decimal point numbers, and long, which is a larger
version of int. Cocoa has special variable types that automatically adapt to different
sizes as necessary, which you’ll learn about in Chapter 7. I’ll also show you how to
make your own types in Chapter 3.

Constants
In computer programming, constants are variables that can’t be modified once you’ve
assigned a value to them. C has a keyword const that behaves like a constant most of
the time. For example, the compiler won’t let you change the value of an int that you’ve
declared as const:

int currentSpeed = 55;
currentSpeed = 65;

const int maximumSpeed = 75;
maximumSpeed = 80;

If you try to compile this, you’ll get the error: assignment of read-only variable.
Changing currentSpeed is fine, but trying to change the constant maximumSpeed won’t
work. Constants are a way to prevent your code from accidentally changing important
variables. Another way to define a constant in C and Objective-C is to use #define,
which is a preprocessor directive. By convention, these are usually in all capital letters:

#define MAX_MPG 120
if (milesPerGallon > MAX_MPG) {
 errorMessage = "You appear to have a nuclear-powered car.";
}

The preprocessor is a tool that runs behind the scenes when you compile an application.
It does a number of different things, such as handling #include statements, but also
does a search and replace on placeholders you’ve specified with #define. So the
#define directive doesn’t create real variables; it just replaces one string of text with
another before the compiler gets its hands on the code. Here’s what the preceding
example looks like by the time it’s handed off to the compiler:

if (milesPerGallon > 120) {
 errorMessage = "You appear to have a nuclear-powered car.";
}

Variables | 23

Download from Wow! eBook <www.wowebook.com>

In general, #define is common in pure C programs, but it’s not considered such great
style in Cocoa apps. It’s not outright wrong, just considered a bit clumsy or inelegant.
My experience is that const is generally better for Objective-C, especially because Xcode
can do a better job with helping you write code if you use real variables.

Enumerated Types
If you have a group of related values (such as days of the week), you can use C’s enum
keyword to create a group of constant values that you can use in your programs. These
enumerations are integer types, and the values can be used wherever you would use an
integer:

enum { monday, tuesday, wednesday, thursday,
 friday, saturday, sunday };

int day = saturday;

Typedefs
C lets you define your own types with the typedef statement. You can use this to create
aliases to some of the basic types in C, which lets you write code that’s somewhat
self-documenting:

typedef int Distance;
Distance home_to_office = 30;
Distance office_to_cafe = 3;

What’s more, you can combine typedef and enum to create your own type that can only
be assigned one of the values listed in the enum. Doing so eliminates the need to define
the day variable shown earlier as an int, and makes for a more self-documenting
program:

typedef enum {
 monday, tuesday, wednesday, thursday,
 friday, saturday, sunday
} DayOfWeek;

DayOfWeek day = saturday;

Functions
The previous example programs were just flat lists of instructions. That’s fine for very
simple cases, but you need some sort of structure to manage all of the code in a real
application. A function is a way to group multiple instructions together so they can be
used with a single line of code.

When someone asks you what you did today, you might say something like “I went to
the grocery.” You probably don’t say “I opened the door, walked outside, closed the
door, locked it, walked to the car, opened the car door...” because that level of detail

24 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

isn’t relevant to the conversation. Once somebody understands what the phrase “I went
to the grocery store” means, they know that it contains a sensible series of steps. Let’s
see how that might look as a list of steps first:

Buy Groceries

 Open front door
 Walk out front door
 Close front door
 Lock front door

 Walk to car
 Open car door
 Enter car
 Close car door

I know this seems like a ridiculous level of detail, but this is how a computer program-
mer thinks. In general, software cannot make conceptual leaps. You need to spell out
exactly how the application should work. For example, if I wrote out the exact steps
to display a PNG image on screen, they would probably look like this:

Display Image

 Save file path as a variable
 Make sure the path to the file is valid
 Make sure the file at the path is a PNG image

 Reserve memory for an image
 Read data from the file, one byte at a time
 When all data is read in, close the file

 Open a new window to display the image
 Draw the contents of the image into the window

The good news is that frameworks like Cocoa have already done a lot of the groundwork
for you. Cocoa has defined what many of these “lists of tasks” are, and they’re ready
for you to use. That’s what allows you to place an image in a window without knowing
details like the refresh rate of the user’s display.

Now let’s go back and translate the “Buy Groceries” steps into something that looks
more like C code. I’ll create a function called buyGroceries() that itself calls a series of
other functions:

void buyGroceries() {

 openFrontDoor();
 walkOutFrontDoor();
 closeFrontDoor();
 lockFrontDoor();

 walkToCar();
 openCarDoor();
 enterCar();

Functions | 25

Download from Wow! eBook <www.wowebook.com>

 closeCarDoor();
}

There are a few things that may look new here, but you can probably still get the gist
of what’s going on. My buyGroceries() function is calling other functions like
openFrontDoor() and walkOutFrontDoor(). This pattern of functions calling other func-
tions is the essence of structured programming. Let’s take a look at the first line again:

 void buyGroceries() {

There are three things to notice here:

The word void is the return type for the function. The return type could also be int,
float, char, or any other C type. The value a function returns is called a result. When
a function doesn’t return anything, the return type is void. Yes, it’s a slightly strange
convention, but this is just one of the delightful quirks of C.

The function name is followed by a pair of parentheses: buyGroceries().

Programmers usually call the { symbol a “curly brace.” All of the instructions in a
function must be inside of a pair of curly braces. It’s easy to forget to add a curly
brace to the end of the function. So check this first if Xcode shows you an error when
compiling your app.

Let’s look at a few actual functions with return values:

int numberOfPeople () {
 return 3;
}

float dollarsAndCents () {
 return 10.33;
}

We’re using all of the same conventions here as in the previous example. In fact, the
only difference is now we’re using the return statement, which sends a result back to
the caller and ends the function.

There’s a subtle point here. The return statement returns a result to the
caller, but it will also immediately end the function. If you have any code
after the return statement, that code will not run.

When you call a function, you can capture the result in variable of the same type. Here
are some examples:

int count;
count = numberOfPeople();

float totalCost;
totalCost = dollarsAndCents();

26 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

I declared count as an int because the numberOfPeople() function returns an int. You
can also create functions that input values. In the following sample, I have a function
that multiplies the input value by 10, and returns the result. In C, the asterisk character
multiplies two numbers:

int timesTen (int input) {
 return input * 10;
}

Here’s how I can call the function, providing input and capturing the output:

int outputValue = timesTen(18);

When you’re capturing the result of a function, give the variable a type
that matches the return type of the function. So if the function returns
an int value, declare the variable as an int, too.

You can also provide a variable as input:

int inputValue;
int outputValue;

inputValue = 18;
outputValue = timesTen (inputValue);

After this code runs, the variable outputValue will contain the value 180. This is a com-
mon pattern in programming: you provide input to a function; it does a calculation of
some sort and returns a result that you store in a variable. You can also make functions
that take multiple input values. You separate input values with commas:

int difference (int input1, int input2) {
 return input1 - input2;
}

Here’s how to use this function:

int originalCount = 100;
int itemsSold = 10;

// currentStock will contain the value 90
int currentStock = difference (originalCount, itemsSold);

The example code has a line of descriptive text with two slashes at the beginning. This
is called a comment:

// currentStock will contain the value 90

Software can get very complex, and comments help you explain to other people reading
your code what various parts of the program do. It can also help you remember what
the code does. Comments don’t affect how the program runs at all, and you can gen-
erally write whatever you want. There are two styles: single-line and multiple-line:

Functions | 27

Download from Wow! eBook <www.wowebook.com>

// single-line comment
// another single-line comment

/* multiple-line comment
 same multiple-line comment continued */

Many Cocoa programmers seem to use the single-line style, because the slashes at the
beginning of each line make it clear that the rest of the line is not actual code that’s
being used. Use whichever one you prefer.

Declaring Functions
Like variables, functions have to be declared before they can be used. A declaration is
basically just the first line of the function. Here are some examples of declarations for
functions we’ve already used:

int numberOfPeople ();
float dollarsAndCents ();
int timesTen (int x);
int difference (int input1, int input2);

Remember that C is generally very flexible about how you use whitespace. I spaced the
code here so that it lines up and is a bit easier to read, but the declarations would work
exactly the same if written like this:

int numberOfPeople ();
float dollarsAndCents ();
int timesTen (int x);
int difference (int input1, int input2);

You need to be sure that the input and output types in the function declaration match
those in the function implementation; otherwise, Xcode will display errors. For exam-
ple, this is incorrect, and will generate errors if you try to compile it:

// this is incorrect. the declaration says the return type is 'float'
// but the implementation says it is 'int'.

float numberOfPeople ();

int numberOfPeople () {
 return 3;
}

Example: FirstProgram
Now you’re going to take everything we’ve learned about types, variables, and functions
and put together a small sample program that displays values on the command line in
the Terminal. For this example, I’m going to have you use Xcode for editing the files,
but use the command line to actually compile the program. In addition to giving us a
bit of insight about what Xcode is doing behind the scenes, it will also help us stay
focused on the basics of C.

28 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

Go to your CocoaBook folder in the Finder. If you haven’t created the CocoaBook folder
in your home directory yet, do so now. Then, create a new subfolder inside
CocoaBook called ch02. Now open Xcode and choose File → New File. In the template
window, choose Mac OS X → C and C++ → C File, then click Next. See Figure 2-3.

Figure 2-3. Create a new C file in Xcode

In the New File window, type FirstProgram.c into the File Name field, and uncheck the
checkbox labeled “Also create FirstProgram.h.”

Next, type ~/CocoaBook/ch02/ into the Location field. If you want to navigate to the
path visually, click the Choose button and find the folder. Leave all other options in
the window at their default settings and click Finish (Figure 2-4).

Displaying Values on the Command Line
To display values in the Terminal’s command-line environment, we’ll use a built-in C
function called printf(). Programmers often say “print” to refer to displaying values
on the command line. The “f” stands for “format.” So printf() takes a format string,
and “prints” the result.

Example: FirstProgram | 29

Download from Wow! eBook <www.wowebook.com>

A format string is just regular text with placeholders for specific values, such as num-
bers. Two of the format markers you’ll use the most are %i for int values and %f for
float values. Here’s a simple example:

printf ("The first value is: %i", 8+2);

Here’s the output:

The first value is: 10

Here’s another example:

printf ("The second value is: %f", 100.0 / 4.0);

And the result:

The second value is: 25.000000

The printf() function is somewhat special, because it takes a varying number of input
values. That is, for each marker, you need to supply one additional input value:

printf ("First: %i Second: %i Third: %i\n", 10, 100, 1000);

In this example, I provided the format string, plus three additional input values: 10,
100, and 1000. This may be the first time you’ve seen the \n newline character. Even
though it takes two separate key presses on the keyboard, a newline is treated as one

Figure 2-4. Name the file FirstProgram.c and save it in ~/CocoaBook/ch02/

30 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

character by C. This kind of character is call an escape sequence. The backslash right
before the n tells printf() not to treat it as a normal character, but to give it special
status.

The newline character simply creates a new line in the output. Here’s what multiple
calls to printf() look like without it:

Code:

 printf ("First line");
 printf ("Second line");
 printf ("Third line");

Result:

 First lineSecond lineThird line

When I add the \n symbol back in, everything looks right:

Code:

 printf ("First line\n");
 printf ("Second line\n");
 printf ("Third line\n");

Result:

 First line
 Second line
 Third line

Now let’s put all of this to use in a real program. Type the code from Example 2-1 into
the FirstProgram.c file you just created in Xcode. I’ll describe each part individually.

Example 2-1. FirstProgram.c

#include <stdio.h>

int sum (int x, int y);

main () {
 int total = sum (2, 10);
 printf ("Total: %i \n", total);
}

int sum (int x, int y) {
 return x + y;
}

The first line has something we haven’t seen yet: the #include statement. This allows
us to use code that’s built into C, or code written by other programmers. The stdio.h
file contains declarations for functions related to standard input and output. In this
case, we need stdio.h to use the printf() function. Next is the declaration for the
sum() function:

Example: FirstProgram | 31

Download from Wow! eBook <www.wowebook.com>

int sum (int x, int y);

You’ve seen this before. This declares a function with two input values. Now let’s look
at something else that’s new: the main() function:

main () {
 int total = sum (2, 10);
 printf ("Total: %i \n", total);
}

The main() function is always the first thing that gets run in a C program. It’s the starting
point. Inside the function is the same stuff you’ve seen before. You declare the total
variable and use it to capture the result of the sum() function. Then use printf() to
display the result in the Terminal window. Finally, you have these lines of code:

int sum (int x, int y) {
 return x + y;
}

This is your implementation of the sum() function. You just take two input values, add
them together, and return the result. Even though this function appears at the bottom
of the file, you can still call it within main(). The declaration of the sum() function at
the beginning of the file is what makes this possible. If you’re used to other program-
ming languages, declaring functions may seem like an odd requirement, but it is some-
thing that’s necessary to write in C code.

Compile and Run the Example
To keep things simple, and learn about how things are working at a lower level, you’re
going to compile a few programs at the Unix command line. On Mac OS X, you can
get to the command line using the Terminal application in Applications → Utilities.
When you launch it, you’ll see a prompt like the one in Figure 2-5.

If you don’t know how to use the command line, don’t worry—I’ll tell you exactly what
to type. If you haven’t already done so, save the FirstProgram.c file. In Terminal, change
to the folder where the file is by typing this command:

my-mac:~ scott$ cd ~/CocoaBook/ch02/

Everything before the $ is the shell prompt and will look slightly different
on your computer. You should only type what’s shown to the right of
the shell prompt in listings you see in this book.

To compile the application, we’re going to use a command-line program called GCC.
The GCC compiler is a low-level program tool used by Xcode, although it’s used by
other programming environments as well. Type the following command into the Ter-
minal:

my-mac:~ scott$ gcc FirstProgram.c -o FirstProgram

32 | Chapter 2: Thinking in Code: Basic C

Download from Wow! eBook <www.wowebook.com>

http://gcc.gnu.org

To try it out, type the following:

my-mac:~ scott$./FirstProgram

At the command line, Mac OS X searches for programs in a variety of
locations on your computer, but not your current directory. Using ./
tells Mac OS X to run a program that’s in your current directory.

You should see something on the screen like this:

Total: 12

You are now officially a programmer. A new programmer, but a programmer just the
same. If you have any typos in your code, you might see some odd errors, such as these:

FirstProgram.c: In function 'main':
FirstProgram.c:8: error: expected ';' before '}' token

We’ll look at how to fix these sort of errors soon enough, but for now, just go back and
compare your code, one line at a time, to the code in the book. If you still can’t get it
to work, you can download a working version from the companion website mentioned
in the Preface.

Figure 2-5. The command line in the Terminal application

Example: FirstProgram | 33

Scope
When speaking out loud, you sometime use scope to imply what you mean without
explaining it in detail. For example, if I’m standing in a house, saying “the house”
probably means the house I’m currently in. But if I’m standing on a street, “the house”
could mean any house on that street.

In programming, scope is a general term for the visibility of different variables. A global
variable is visible anywhere in the application. Any function anywhere in the program
can use it. A local variable is visible only within a single function.

Local variables will not usually keep their values after the function ends.
That means that if you call a function multiple times, you should set the
values each time. A variable may happen to have the same value, but the
value could also be random data, which can cause incorrect results or
cause the program to crash.

How do you know which is which? It all depends on where you declare the variable. If
you declare a variable outside of any functions (typically near the top), it’s global. If you
declare it inside a function, it’s local. Example 2-2 uses both.

Example 2-2. LocalGlobalVariable.c

#include <stdio.h>

int globalCount = 0;
void addToGlobal ();

main () {

 printf ("global: %i \n", globalCount);
 addToGlobal();
 printf ("global: %i \n", globalCount);
}

void addToGlobal () {

 int localCount = 100;
 globalCount = globalCount + localCount;
}

I declared the globalCount at the top of the file—not inside a function—so it has global
visibility, which means all functions can see it. The localCount variable is declared inside
addToGlobal() so it’s visible only within that function—which is called local visibility.
In fact, you can declare another local variable inside main() with the same name as a
local variable in addToGlobal(). They have different scope, so there’s no conflict:

main () {
 int localCount = 80;
}

34 | Chapter 2: Thinking in Code: Basic C

void declareLocalVariable () {
 int localCount = 100;
}

Variables names don’t have to be unique across the entire application. The names have
to be unique only in their scope. So you can’t have two global variables with the same
name, and you can’t have two local variables in the same function with the same name:

void declareTwoLocalVariables () {

 // This will cause an error. Two variables
 // can't have the same name in the same scope.
 int localCount = 100;
 int localCount = 80;
}

This also touches on another subtle point. You can’t change the kind of data a variable
holds after you’ve declared it. If you make it an int, you can’t later declare it as a
float somewhere else in the program.

Static Variables
If you want a local variable to keep its value even after the function ends, you can use
the static keyword in front of it. You can specify an initial value for a static variable,
but that value is only set the first time the function is called:

#include <stdio.h>

void myFunction () {

 static int numberOfCalls = 1;
 printf("This function has been called %i times\n", numberOfCalls);

 numberOfCalls = numberOfCalls + 1;
}

main () {

 myFunction();
 myFunction();
 myFunction();
}

Here’s the result of this code:

This function has been called 1 times
This function has been called 2 times
This function has been called 3 times

If you use the static keyword with a global variable, it will only be visible within the
same file. This is important for larger programs (especially Cocoa projects), those in
which multiple files are combined into a single application. Marking global variables
as static means they won’t collide with global variables in other files.

Scope | 35

Conditionals
One thing I haven’t talked about yet is how you deal with special cases in your code.
For example, what if you have an email application, and don’t want to let the user send
a message with an empty subject line? In English, a requirement might look something
like this:

Only send the message if it has a subject

In C, you use an if statement to do this. An if statement is one type of conditional. For
this example, I want to make sure that the subject line isn’t empty. Here’s how that
looks in code:

if (lengthOfSubjectLine > 0) {
 sendMessage();
}

The if statement starts with the keyword if, followed by parentheses, which contain
a comparison test, a function, or a variable. Here are some more examples:

// is one less than two? YES.

if (1 < 2) {
 ...
}

// is three greater than four? NO.

if (3 > 4) {
 ...
}

// is firstNumber less than secondNumber? YES.

int firstNumber = 18;
int secondNumber = 36;

if (firstNumber < secondNumber) {
 ...
}

// is firstNumber equal to secondNumber? YES.

firstNumber = 12;
secondNumber = 12;

if (firstNumber == secondNumber) {
 ...
}

36 | Chapter 2: Thinking in Code: Basic C

In this last example, I’m using the equality operator, which is simply a double equals
sign. It tests whether the number on the left is equal to the number on the right:

if (1 == 2) // NO.
if (2 == 2) // YES.

This double equals sign thing looks a little weird, right? Why not just use the regular
single equals sign? It turns out you already use that to assign a value, so if you tried to
use it to test equality too, C wouldn’t know what you were trying to do. You use == to
specifically test for equality. Even experienced programmers occasionally use the single
equals sign when they mean to use the equality operator, so be extra careful when
writing if statements.

You may also want to negate a comparison:

if (dayOfWeek != 5) {
 printf ("Today is not Friday \n");
}

if (dayOfWeek == 5) {
 printf ("Today is Friday \n");
}

The inequality operator (!=) is just an exclamation mark paired with an equals sign.
You use it when you want to check whether two things are not equal to each other.

There’s one important thing to be aware of with the if statement, though. It looks like
an if statement is looking for a “yes” or “no” answer, but what it’s really checking for
is whether the result is zero or anything else.

Read that again: an if statement doesn’t check for “yes” or “no”; it checks for zero or
nonzero. In programming, nonzero means “anything other than zero.”

C really likes numbers. Everything boils down to a number at some level, so even
true/false statements are ultimately a 1 (true) or 0 (false). As a result, this code is
technically correct:

// 1 is the same as YES.

if (1) {

}

// even 95014 is treated as YES by C.

if (95014) {

}

Some programmers use this quirk to take shortcuts in code, but you should try to avoid
it. Instead, use only comparisons that result in reasonable “yes” or “no” answers. You
will make the world a better place if you do. I’m serious.

Conditionals | 37

By the way, this little detail can really trip you up if you accidentally use the single
equals sign instead of the equality operator:

int firstNumber = 0;
int secondNumber = 1;

// I've _accidentally_ used the single equals sign, so I'm
// _assigning_ the value of 'secondNumber' to 'firstNumber'.
// This will always resolve to '1', which is the same as 'YES'.

if (firstNumber = secondNumber) {
 sendMessage();
}

// This is what the code should look like.

if (firstNumber == secondNumber) {
 sendMessage();
}

This may seem obscure, but it’s an invaluable bit of knowledge if your app doesn’t seem
to be doing the right thing. These mistakes are hard to find because it’s technically
correct, so the compiler will allow it.

Sometimes you need to check for more than one thing. For that, you use the logical
“and” operator, which is just two ampersands together: &&.

if (dayOfWeek == 5 && dayOfMonth < 8) {
 printf ("It's the first Friday of the month! \n");
}

And if you want to check for one of two things to be true, you can use the logical “or”
operator, which is two pipes together: ||.

if (dayOfWeek == 6 || dayOfWeek == 7) {
 printf ("It's the weekend!\n");
}

You can, of course, make any combination of these operators, but there will be plenty
of time to get into that later. For now, let’s move on to the final part of the if statement:
the else clause. You can think of “else” as “otherwise.” So instead of just silently ignoring
the message if the subject line is missing, we can use an else clause to do something as
a fallback case:

if (lengthOfSubjectLine > 0) {

 sendMessage();

} else {

 printf ("You forgot a subject line\n");

}

38 | Chapter 2: Thinking in Code: Basic C

An else clause doesn’t have a set of parentheses, because there’s nothing to evaluate.
It just specifies what happens when the if statement ends up with a false. There’s also
a combination of the two, called the else if clause:

if (dayOfWeek == 6 || dayOfWeek == 7) {

 printf ("It's the weekend! \n");

} else if (dayOfWeek == 5) {

 printf ("It's Friday \n");

} else {

 printf ("No weekend yet, but it's only a matter of time. \n");

}

You can include any number of else if clauses, but the initial if must always come
first. The final else isn’t required, but if you have one, it must be at the end.

Example: ShoppingTrip
Developers need hardware to do their programming, so let’s write a small C program
to calculate the cost of hardware you’ll need to make some great apps. This example
will use all of the concepts from the chapter. This may seem like quite a bit of typing,
but every time you type a line of code, you’re burning it into your brain.

As before, go into Xcode and choose File → New File. In the template window, choose
Mac OS X → C and C++ → C File, then click Next.

In the New File window, type ShoppingTrip.c into the File Name field. Uncheck the
checkbox labeled “Also create ShoppingTrip.h.”

Next, type ~/CocoaBook/ch02/ into the Location field. Leave all other options in the
window at their default settings and click Finish. Type the code from Example 2-3 into
the ShoppingTrip.c file.

Example 2-3. ShoppingTrip.c

#include <stdio.h>

// global variables. these are visible from any function.

int totalItems = 0;
float totalCost = 0.0;
float salesTax = 0.0925;

// declare the functions we're going to use.
// we don't need to declare main() because it's built in.

void addToTotal (float cost, int quantity);

Example: ShoppingTrip | 39

float costWithSalesTax (float price);

// this is where the program starts when it runs.

main () {
 float budget = 10000.00;

 // make a new line.
 printf ("\n");

 // set the prices of each item.
 float laptopPrice = 1799.00;
 float monitorPrice = 499.80;
 float phonePrice = 199.00;

 // for each line item, call the addToTotal() function,
 // specifying the item and quantity.

 addToTotal (laptopPrice, 2);
 addToTotal (monitorPrice, 1);
 addToTotal (phonePrice, 4);

 // display a line and then the final total.
 printf ("------------\n");
 printf ("TOTAL for %i items: $%5.2f\n\n", totalItems, totalCost);

 if (totalCost < budget) {
 printf ("You came in under budget!\n\n");

 } else {
 printf ("You're over budget. Time to talk to finance.\n\n");
 }
}

void addToTotal (float cost, int quantity) {

 printf ("Adding %i items of cost $%5.2f\n", quantity, cost);

 // find the cost for this item by multiple cost by quantity.
 // then get the real cost by applying sales tax.
 float calculatedCost = cost * quantity;
 float realCost = costWithSalesTax (calculatedCost);

 // add this amount to the total, and increase the total number
 // of items purchased.

 totalCost = totalCost + realCost;
 totalItems = totalItems + quantity;

 printf ("Subtotal for %i items: $%5.2f\n", totalItems, totalCost);
}

float costWithSalesTax (float price) {

 // remember, 'salesTax' is a global variable.

40 | Chapter 2: Thinking in Code: Basic C

 float taxAmount = price * salesTax;
 float subtotal = price + taxAmount;

 return subtotal;
}

Compile and Run
If you haven’t already done so, save the file. Now launch Terminal and change to the
folder where the file is:

my-mac:~ scott$ cd ~/CocoaBook/ch02/

Type the following command to compile the program:

my-mac:~ scott$ gcc ShoppingTrip.c -o ShoppingTrip

Now try it out:

my-mac:~ scott$./ShoppingTrip

You should see something like this on the screen:

Adding 2 items of cost $1799.00
Subtotal for 2 items: $3930.81
Adding 1 items of cost $499.80
Subtotal for 3 items: $4476.85
Adding 4 items of cost $199.00
Subtotal for 7 items: $5346.48

TOTAL for 7 items: $5346.48

You came in under budget!

The only convention in this example that we haven’t covered yet is the %5.2f in this line:

printf ("TOTAL for %i items: $%5.2f\n\n", totalItems, totalCost);

You already know that %f is a placeholder for a float variable, but the 5.2 is new. This
just describes how many digits should appear on each side of the decimal point. With-
out this, we’d see strange dollars amounts on the screen:

$3930.814941

The 5.2 formats the amounts as we’re used to seeing in currency: two digits after the
decimal point. The 5 could be a larger number for bigger shopping trips, but you’d
most likely keep two digits to the right of the decimal point for dollar amounts.

If there’s anything else in this example that doesn’t make sense, take a few minutes
now to go back and review the earlier parts of the chapter, such as those covering
variable scope and functions.

Example: ShoppingTrip | 41

Wrap Up
Welcome back from your whirlwind tour of the basics of C programming. Keep in mind
that the C language has been in use for decades, and there is a lot more to it than what
we’ve covered here. The goal is to give you just the slices of C that are relevant for day-
to-day work with Objective-C and Cocoa.

At this point, we’re going to look at a few more advanced C topics, and then it’s straight
on to Objective-C and Cocoa.

42 | Chapter 2: Thinking in Code: Basic C

CHAPTER 3

Memory and Pointers: Advanced C

You technically know enough C now to start writing Objective-C code, but I’ve seen a
lot of brand-new Cocoa programmers quickly get in over their heads because they were
missing key C concepts. So to help you avoid that phase, I’m introducing you to a few
hand-picked advanced C techniques. Nothing is in this chapter by accident. If it’s here,
I’m confident you will need it.

This is not a complete course in C. These are just the parts that are likely to help you
in day-to-day Cocoa programming. You’re probably eager to jump right into Cocoa,
so I’ve done everything I can to condense the fundamentals of C into two chapters
instead of an entire book. If you’re already an expert C programmer, though, you can
safely move on to the next chapter.

Arrays
So far, you’ve only used variables that hold a single value, but real programs need to
handle many values at the same time. For example, in a photo sharing application, each
album has some number of photos, but you don’t want to make a separate variable for
each photo in each album.

To manage large groups of data in C, you use arrays. Unlike a normal variable, a single
array can hold many values at the same time. You can create an array of just about
anything: int values, float values, or any other C type. But the key is that an array isn’t
a series of multiple variables. It’s a single variable that contains multiple values.

You can think of a normal variable as a four-door car—a single vehicle with one shared
space for everyone inside. It has only one “compartment.” If you want to carry more
people or things, you need a whole separate car. If you want to store two values, you
need two variables.

By contrast, an array is more like a train with many cars attached. An array is a single
variable with many separate individual compartments, or slots. No matter how many

43

cars you add to a train, the whole thing is still called a train. The same is true for an
array; no matter how many values you add to it, it’s still a single array (see Figure 3-1).*

Figure 3-1. An array stores multiple values in a single variable

Some arrays hold only a few values, but you can create arrays that hold hundreds or
thousands of values. In fact, on a modern Mac, an array could theoretically hold mil-
lions of values or more.

Arrays in C provide very few conveniences or safeguards, but the upside is that they’re
extremely fast. Cocoa has a smarter kind of array called an NSArray, but I want to teach
you about the lower-level C version first, because it’s a good way to learn about memory
management. Let’s start by declaring an array of float values:

float amounts[4];

This is an array called amounts, which can hold multiple float values. The 4 in the square
brackets specifies that this array can hold up to four values. You can also assign values
at the same time that you declare an array:

float amounts[4] = {10.45, 1.618, 81.81, 14.44};

If you declare an array and assign values to it at the same time, you can let C figure out
the number of slots automatically (note the square brackets are empty):

float amounts[] = {10.45, 1.618, 81.81, 14.44};

You can assign and reassign new values to an array whenever you like, but when you’re
getting or setting a value in an array, you need to specify a slot, also called an array
index. Just to be clear, index and value are separate things. A value is at an index in an
array. In the following example, I’m setting a new value at each index, in order:

amounts[0] = 2.1;
amounts[1] = 3.4;
amounts[2] = 212.14;
amounts[3] = 556.21;

You don’t have to set array values sequentially, though. You don’t even have to set all
of them at the same time:

* An especially geeky real-world example of an array is the Very Large Array (VLA) in New Mexico. The VLA
is actually 27 separate radio antennas that act as a single massive dish. You can learn more about the VLA at
http://www.vla.nrao.edu.

44 | Chapter 3: Memory and Pointers: Advanced C

http://www.vla.nrao.edu

amounts[2] = 3.4;
amounts[1] = 212.14;
amounts[3] = 556.21;
amounts[0] = 2.1;

amounts[2] = 3.4;
amounts[1] = 212.14;

I use 0 in the brackets to get to the first slot in an array. You might expect that 1 would
be first, but arrays start counting at zero. As a result, the last index is one less than what
you’d expect. For example, if an array can hold four values, the first value is at index
0, and the last one is at index 3.

You can also copy a value from an array to use in another variable, like this:

float oneValue = amounts[3];

As with all variables in C, you can’t redeclare an array once you’ve created it. In other
words, if you declare an array with 100 values, you can’t change it to 150 several lines
later:

// set this array to hold 100 values.
float amounts[100];

// this will cause an error. you can't redeclare arrays.
float amounts[150];

// this array is implicitly declared to have four slots,
// because four values are supplied.
float timeSamples[] = { 40.1, 200.80, 1.45, 14.6 };

// this array was declared to have four values. you can't redeclare it.
float timeSamples[10];

Now that you can store values in an array, you need a way to read and write the values.
You could write a separate line of code for each value when there are only four of them,
but it’s not practical for an array with thousands of values. This is where loops come in.

Loops
A loop runs the same lines of code a certain number of times. This can make it much
easier to write code that uses arrays. For example, adding five numbers in an array looks
like this:

int values[5] = {12,14,18,21,64};
int total = 0;

total = total + values[0];
total = total + values[1];
total = total + values[2];
total = total + values[3];
total = total + values[4];

Loops | 45

printf ("Total is: %i \n", total);

With a loop, you can just do this instead:

int values[5] = {12,14,18,21,64};
int total = 0;

int i;
for (i = 0; i < 5; i++) {

 total = total + values[i];
}

printf ("Total is: %i \n", total);

This may not seem like much less code with such a small array, but the important idea
is that this loop will work just as well for a thousand values as it does for five. In fact,
loops and arrays are frequently used together, because they complement each other so
perfectly. An array stores a series of values, and a loop provides a way to act on each
value. Here’s a typical for loop:

int i;
for (i = 0; i < 5; i++) {

 total = total + values[i];
}

First, I declare an int variable called i. Cocoa programmers usually choose more de-
scriptive names for variables, but using i for a loop is so common that it’s effectively
exempt from the rule. You can think of i as standing for “iteration,” but the name
doesn’t matter as much as what it does: keeps track of the current “lap” of a loop.

Picture an athlete running around a track during training. Each time she crosses the
finish line, the coach advances his counter by 1 to keep track of how many laps she has
completed. In C, the i variable is the C equivalent of that counter. It increases by 1 each
time the loop runs.

Here’s what the for statement itself looks like:

for (i = 0; i < 5; i++)

It almost looks like a function, but the items in the parentheses are a bit different. There
are three sections in the for statement, with a semicolon (instead of a comma) between
each section. The first section sets the counter to zero:

i = 0

The next part is the “test.” It’s evaluated before each lap to see whether the loop should
continue:

i < 5

46 | Chapter 3: Memory and Pointers: Advanced C

In this case, the for loop checks to see whether i is less than 5. If it is, the code inside
the loop runs for another lap. Otherwise, it ends and the next line of code after the loop
runs.

Finally, this advances the i counter by 1:

i++

This is C shorthand for “add 1 to i,” and you can use it outside of loops, too. This is
the equivalent of the coach pressing the clicker as the runner passes. Then you get to
the core of the loop:

total = total + values[i];

This line of code will run for every iteration of the loop. One item from the values
array will be added to total each time through. Something’s different here, though.
Usually when you want to specify an index in an array, you put a number inside of the
brackets, like this:

values[4];

But here, I’m using the variable i instead:

values[i];

The i counter starts at zero and increases by 1 each time until the loop is complete. So
each time this line of code runs, i will be one number higher, and we’ll automatically
get the next value in the array:

total = total + values[i];

In fact, it’s simpler to write it this way, which has the exact same effect:

total += values[i];

In the first trip through the loop, the i variable is equal to 0, so this line adds the contents
of value[0]. In the next trip, i will be set to 1, so it adds the contents of value[1]. The
i variable works as a stand-in for the index so you can read and write all of the values
with very little code.

Text Strings
I very quickly introduced you to the char data type in the previous chapter. It holds a
single character:

char firstLetter = 'a';
char lastLetter = 'z';

You can also create arrays of char values:

char word[5];
word[0] = 'C';
word[1] = 'o';
word[2] = 'c';
word[3] = 'o';

Text Strings | 47

word[4] = 'a';

char anotherWord[] = {'C','o','c','o','a'};

With one change, an array of char values becomes a string. A string is simply a collection
of text. Strings are used everywhere in programming: for button labels, usernames,
search terms, and so on. Anywhere text is used, a string is involved.

To make an array of char values a real string, you add a null terminator to the end. Like
the newline character, a null terminator is an escape character with a backslash: \0.
Without the backslash, this would be just a normal zero. With the slash, it becomes
the “end cap” on a string:

char fullString[] = {'C','o','c','o','a','\0'};

This is still an array of char values, but the null terminator on the end means that it’s
been promoted to a string. This syntax is fairly awkward. Fortunately, there’s a simpler
way to create strings:

char fullString[] = "Cocoa";

Unlike single char values, a full string is wrapped in double quotes. When you use double
quotes, C automatically adds the null terminator, but the terminator still needs an extra
slot. So even though there are five characters in "Cocoa", the char array actually has six
slots because there’s an extra slot reserved for '\0' at the end to make it a string.

The printf() marker for strings is %s:

char fullString[] = "Cocoa";
printf ("New word: %s \n", fullString);

The code will display this on the command line:

New word: Cocoa

There’s one very important detail here. You can’t return these kinds of strings from a
function the way you can return numbers. It may cause your application to crash or
behave unpredictably. There is a way to create strings that stay around, though. You’ll
find out about that later in the chapter.

Modern C programs need to handle Unicode when dealing with inter-
national text. Fortunately, Cocoa does most of the hard work for you.
Because you’re learning to write Cocoa apps specifically, you can as-
sume that Unicode support is handled for you for the purposes of this
book. In fact, the application you built in the first chapter used Unicode
without you even knowing it.

Multidimensional Arrays
Many applications need to store “arrays of arrays.” A spreadsheet has an array of rows,
and each row has an array of column values. An array in which each slot contains a

48 | Chapter 3: Memory and Pointers: Advanced C

nested set of arrays is called a multidimensional array. A multidimensional array with
two rows and three columns is declared like this:

int cells[2][3];

You can fill in a multidimensional array just like you would a normal array, except that
you specify index numbers for both dimensions (see Figure 3-2):

// first row.
cells[0][0] = 12; // first column.
cells[0][1] = 24; // second column.
cells[0][2] = 36; // third column.

// second row.
cells[1][0] = 48; // first column.
cells[1][1] = 96; // second column.
cells[1][2] = 112; // third column.

Figure 3-2. A multidimensional array as a grid

You can also assign values to a multidimensional array when you declare it:

int cells[2][3] = { {12,24,36}, {38,96,112} };

To assign values to this multidimensional array, you describe a parent array that con-
tains two child arrays, each surrounded by a set of brackets. The child arrays are
separated by commas.

Pointers
Pointers have a reputation for being difficult to learn, but the idea behind them is
simple. A pointer works just a like a mirror: you point it at something, and it will simply
reflect whatever value it’s pointing at. If you change the value of the thing it refers to,
the pointer will reflect that new value. It’s a lot like a Mac file alias or a filesystem link
in Unix. Here’s a simple example of a pointer declaration:

int* numberPointer;

Most of the variables you’ve seen store simple values: integers, floating-point numbers,
and characters. A pointer, though, stores a memory address. A memory address is a
unique identifier, like a car license plate, phone number, or package tracking number.
They refer to something else—a car, a phone, or a package.

Pointers | 49

Every piece of data in every application currently running on your Mac or iPhone has
a memory address. Memory addresses are usually displayed as hexadecimal numbers,
like 0x7fff5fbffa6c. In C, all hexadecimal numbers start with 0x.

HTML and CSS use hexadecimal values for RGB colors. The value
#ff0000 has the highest possible value (ff) for the red channel, and the
lowest values for green and blue. Black is #000000 and white is #ffffff.

Even though they look strange, hexadecimal numbers are still just numbers with 16
values per digit instead of 10. You use letters to represent digits with values higher than
9:

Hexadecimal digits
0 1 2 3 4 5 6 7 8 9 a b c d e f

Every variable you create receives a memory address when the program runs (the actual
address is usually different for each run), such as 0x7fff5fbffa6c. A pointer stores a
memory address so that it can refer back to the original data later. I know that may
sound like a strange idea, because variables already refer to data. So is a pointer just a
variable that points to another variable? Essentially, yes. But that’s just one part of a
bigger picture.

The Purpose of Pointers
When I was first learning about pointers, I understood how they worked but it wasn’t
clear to me why I was using them. So first I’m going to tell you why you need pointers,
then I’ll show you how to use them.

Remember that local variables are not guaranteed to keep their value each time a func-
tion runs, and that they’re visible only inside their own function. But you still may want
to share data between functions. You can use return, but that works only for a single
value. You can also use global variables, but if all of your data has to live in global
variables and you have thousands of different things to store, you soon have a mess.

What you need is a local variable with shared storage that other functions can get to on
demand. You want to create the data once and just pass around the memory address
(the unique ID). In terms of Cocoa, that’s the most important purpose of a pointer—
to share data in many different places in a program.

Using Pointers
Here’s a simple example of creating and using a pointer variable. This example uses
just local data, but it makes more sense if you start small:

int number = 4;
int* numberPointer = &number;

50 | Chapter 3: Memory and Pointers: Advanced C

printf ("number: %i \n", number);
printf ("numberPointer: %i \n\n", *numberPointer);

number = 16;
printf ("number: %i \n", number);
printf ("numberPointer: %i \n", *numberPointer);

This code displays the following output on the command line:

number: 4
numberPointer: 4

number: 16
numberPointer: 16

The numberPointer variable is pointing at the same data as the number variable, so they
stay in sync. When the value of number changes to 16, numberPointer picks it up, too.
To link a pointer to a variable, you put an ampersand in front of the target variable.
When used like this, the ampersand is called the address-of operator:

numberPointer = &number;

The address-of operator returns the memory address for a variable. But there’s some-
thing else that looks a bit strange at first. The asterisk is being used both in the decla-
ration of numberPointer and when you display its value with printf():

int number = 4;
int* numberPointer = &number;
printf ("numberPointer: %i \n", *numberPointer);

In this context, the asterisk is called the dereference operator. Dereferencing means
we’re resolving the pointer to get the actual data that it’s linked to. If you use
printf() to display numberPointer without the dereference operator, you’ll see some-
thing like this:

numberPointer: 1606417004

This is the memory address of the data (in this case, it’s in 10-digit decimal format
instead of hexadecimal). You dereference the pointer to get the actual data.

Let’s be clear on one point: this is all very confusing. If pointers seem complex, it’s not
just you. The way they’re expressed in C is not intuitive, because the asterisk is used
for three separate purposes:

Declaring a pointer
When you declare a pointer variable, you put an asterisk after the type name and
before the variable name:

int* numberPointer;

By the way, the whitespace between the type, the asterisk, and the variable name
doesn’t matter. You’ll see int* numberPointer, int *numberPointer, and even
int * numberPointer. They all work the same.

Pointers | 51

Dereferencing a pointer
You use an asterisk in front of a pointer variable to get the data it refers to. This is
not a declaration, so there’s no type name used:

printf ("numberPointer: %i \n", *numberPointer);

Standard multiplication
The asterisk is also used for general-purpose multiplication. This has nothing to
do with pointer variables at all:

int hoursInWeek = 24 * 7;

So there are actually three separate ways the asterisk is used in C, and they each do
something different. This is easily one of the most confusing parts of C, but fortunately,
it’s a temporary state of confusion. Once you get it, you get it. If it makes the learning
process easier (and this is entirely up to you), every time you see a declaration like this:

int* number;

think this:

int POINTER number;

When you see this:

printf ("numberPointer: %i \n", *numberPointer);

think this instead:

printf ("numberPointer: %i \n", ACTUAL_VALUE(numberPointer));

You should never write code like this, but if you temporarily do this mapping in your
head, the concepts will quickly sink in.

Pointers and the const Keyword
When you use pointers with the const modifier, it behaves slightly differently from
what you saw in “Constants” on page 23. Just as with the example shown there, you
can’t change the value through a pointer that’s been declared const. This will generate
a compile-time error:

int start_speed = 55;
int max_speed = 75;

const int *mph = &start_speed;
*mph = max_speed;

But if you change what the pointer points at, you can effectively change its value without
getting a compiler error:

int start_speed = 55;
int max_speed = 75;

const int *mph = &start_speed;
mph = &max_speed;

52 | Chapter 3: Memory and Pointers: Advanced C

Because pointers give you a level of indirection, there are two ways of changing the
value they point to: modifying the value itself, or modifying what the pointer points to.
With a const pointer, you can’t change the value through the pointer, but you can
always point it at something else.

Dynamic Memory
So far, you’ve used only fixed-size arrays. That’s fine for simple examples, but we don’t
live in a fixed-size world. If you’re writing a music player application, your code needs
to be able to handle thousands of songs, but you can’t possibly know the exact number
ahead of time.

Dynamic memory enables you to work with large amounts of data and calculate the
exact size as the program is running. Doing this with Cocoa and Objective-C is nearly
transparent, but those conveniences will make more sense if you know how C manages
memory at a lower level.

At the center of all of this is the malloc() function, which stands for “memory allocate.”
You use malloc() to request dynamic memory. Here’s an example of requesting mem-
ory to store 10 int values:

int* numbers;
numbers = malloc (sizeof(int) * 10);

In C, you refer to memory blocks using memory addresses. I start by creating an int
pointer variable called numbers, then use the malloc() function to request a block of
memory that is the size of 10 int values. The sizeof() function determines how much
memory a particular kind of value needs. I multiply that by the number of values I want
to store, and pass the result to malloc() as a total number of bytes.

The malloc() function reserves a block of memory at least as big as the size I request,
and returns the address of the new memory block. I then assign the address to the
numbers pointer variable (remember that pointers store memory addresses). Because
malloc() returns a memory address directly, I don’t need to use the address-of operator
(&).

In this case, the asterisk is being used for multiplication to figure out
how big the memory block should be. The equation is:

sizeof (data type) * number of items

It’s easy to get tripped up on this, though, because just one line earlier,
I used the asterisk to declare a pointer variable. These are separate tasks
that both use the asterisk character.

Now that I have a memory block and have assigned its address to the numbers pointer
variable, I’m ready to use it. To do this, I take advantage of the fact that pointers are

Dynamic Memory | 53

movable. The numbers variable initially points at the first “slice” of the memory block,
and I can use the dereference operator to set a value at that first slice:

*numbers = 280;

Then I can move the pointer to the next slice, and set another value:

// move the pointer to the next 'slice' of the memory block.
numbers++;

// set the value at this slice.
*numbers = 230;

Just like I used i++ to advance the counter in a loop, I can use numbers++ to move the
pointer to a new part of the memory block (see Figure 3-3).

Figure 3-3. Move the pointer to the next slot by incrementing the variable

This dynamic memory block now works like an array: it’s a single variable with multiple
slots. You can also jump ahead to a specific value in the memory block. Here’s how
you can move straight to the fifth value (just like arrays, the first value is at zero):

numbers += 4;

Although you can store large amounts of data using malloc(), you need to free() the
memory when you’re done with it. If you don’t, your application will start taking more
and more memory, and will eventually cause the whole machine to run very slowly or
the application will simply crash (or both). This is called a memory leak. To use
free(), pass in a variable that points to the beginning of the memory block—that is,
the first value:

free (numbers);

This will work only if the numbers variable is currently pointing at the beginning of the
memory block. Here’s an example of code that isn’t using free() correctly (if you want
to try this example out, be sure to #include <stdlib.h> at the top):

54 | Chapter 3: Memory and Pointers: Advanced C

// declare an int pointer and create a block of memory
// to hold 10 int values.

int* numbers;
numbers = malloc (sizeof(int) * 10);

// set the first value, move the pointer forward, and
// set the second value.

*numbers = 100;
numbers++;
*numbers = 200;

// this is incorrect. 'numbers' is currently pointing at the
// second value instead of the first value at the beginning
// of the memory block.

free (numbers);

If you were to run the code as-is, you would probably see an error like this:

malloc: *** error for object 0x100100084: pointer being freed was not allocated

This error is saying “there’s no memory block at this memory address that I can free.”
Or more specifically, no memory block starts at this memory address. In this case, I
tried to free a memory block when the pointer’s not at the beginning. One way to solve
this is to create a separate variable that always points at the beginning. This example
shows one correct approach:

int* numbers;
numbers = malloc (sizeof(int) * 10);

// create a _second_ variable to always point
// at the beginning of same memory block.
int* numbersStart;
numbersStart = numbers;

*numbers = 100;
numbers++;
*numbers = 200;

// use the 'numbersStart' variable to free the memory instead.
free (numbersStart);

When you use pointers and dynamic memory, you’re working at a very low level. It’s
easy to make mistakes. If you reserve a block of memory for 10 values, and then write
15 values, the results are unpredictable. You’ll be using memory that you haven’t set
up for this purpose.

Your program may crash, or it may occasionally work fine purely by chance. But you
should never write code that just happens to work some of the time. Fortunately, Cocoa
and Objective-C provide much more supervision.

Dynamic Memory | 55

Strings and Dynamic Memory
Programmers often need to create arrays of strings. For example, if you are making an
address book program, you will probably have an array of names. There’s no way to
know ahead of time how many names the user will want to store or how long each
name will be, so you need to use dynamic memory.

To make strings of varying lengths, I’ll use a new function called asprintf(). Roughly,
the name stands for “allocate dynamic memory for a string using printf conventions.”
You can see why they shortened it.

Like printf(), the asprintf() function takes a format string, but instead of displaying
the result, it creates a memory block large enough to hold all of the characters, plus a
null terminator. When you’re done, you just need to free() the string:

char* fullName;

asprintf (&fullName, "Albert Einstein");
printf ("%s \n", fullName);

free (fullName);

There’s one new convention here. I’m calling the function and providing the variable
fullName as input, but putting the address-of operator in front of fullName. The
asprintf() function works a bit differently than the other ones you’ve used. Instead of
returning the new string directly, it returns by indirection. This means that a function
effectively reroutes a pointer by changing the memory address it’s pointing at.

In this case, asprintf() reroutes the fullName variable to point at the memory block
that contains the new string.

There’s no one rule for which C functions return directly and which
return by indirection. You often have to look it up in the documentation
of the function you’re using. You can find details on standard C func-
tions by searching for them in the Xcode documentation window, which
you can bring up via Help → Developer Documentation.

Because asprintf() accepts format strings the way printf() does, you can include other
kinds of values in the final formatted string:

// declare an int and a float variable.
int total = 81;
float ratio = 1.618;

// declare a string pointer and use asprintf() to
// format the string and reserve dynamic memory.
char* result;
asprintf (&result, "total: %i, ratio: %f", total, ratio);

// display the 'result' string and free the memory.

56 | Chapter 3: Memory and Pointers: Advanced C

printf ("%s \n", result);
free (result);

The result of this code is:

total: 81, ratio: 1.618000

You can use all of the same format markers with asprintf() that you can with
printf(). You should usually avoid adding \n at the end of a format string when using
asprintf(). It’s better to add the newlines when you call printf().

Returning Strings from Functions
Earlier in the chapter, I mentioned that you can’t return standard strings from a function
safely, because local strings can go away when the function ends:

// this won't work.
char[] myFunction () {

 char myString[5] = "Hello";
 return myString;
}

But I told you that there is a safe way to do it. This is it:

char* myFunction () {

 char* greeting;
 asprintf (&greeting, "Hello");
 return greeting;
}

Strings created with asprintf() can be returned, because the data is reserved by
malloc() and won’t go away until you call free() on it. When you return this kind of
string, you’re returning a pointer to the memory that was allocated for the string.

Expert C programmers will be quick to remind you that there are a lot of subtle details
when returning strings from functions or simply dealing with strings in C in general.
But the idea is that, conceptually, you understand that dynamically allocated memory
will not go away until you free it. And that last point is important. Eventually, you must
call free() on any string you create with asprintf().

Again, I’m intentionally glossing over many of the low-level details here, because C-
style strings aren’t something you have to use frequently in Cocoa. I just want you to
understand the basic concept, and you can always research it in more detail later if you
like.

Strings and Dynamic Memory | 57

Arrays of Strings
Now that you’ve learned how to create arrays and strings from dynamic memory, let’s
combine the two. As you know, a string is basically just an array of char values. If you
want an array of strings, you need a multidimensional array of char values:

char names[10][10];

This is like the spreadsheet example I talked about earlier in the chapter, where each
item in a multidimensional array was a cell in a grid. Instead of an array of rows, though,
I have an array of names, and instead of column values, each name string is an array of
char values. But names can be any length, and you won’t know ahead of time how
many strings the user will want to store. This is how you create a variable-size array of
strings:

int count = numberOfNames();
char* arrayOfStrings[count];

Again, remember that a string created from dynamic memory is a char* variable, so
we’re just creating an array of those. An “easy” dynamic array of char values isn’t a
good fit for a string, because a multidimensional array would force us to declare a size
for all of the child arrays as well. This is a problem, because each name is a different
length. You need the full flexibility of dynamic memory.

To try this out, we’re going to allow the program to accept names that the user types
on the command line. Our goal is to do be able to do something like this:

my-mac:~ scott$./names Peggy Alan Jamie

Fortunately, C gives us a way to get input from the command line. It provides it as input
to the standard main() function that every C program uses. Here’s how you can capture
that input as variables:

#include <stdio.h>
main (int inputCount, char* inputValues[]) {

 // we don't want to count the program itself as a name,
 // so our nameCount will be the total inputCount, minus one.
 int nameCount = (inputCount - 1);

 // loop through and print out one string each time.
 int i;
 for (i = 0; i < nameCount; i++) {

 // print each name. we use inputValues[i+1]
 // because the first string is the program name.
 printf ("%s\n", inputValues[i+1]);
 }
}

The inputCount variable tells you how many items the user typed. For this program,
each input item is a name for our address book. The inputValues variable is an array
of strings that has the actual names that were typed in.

58 | Chapter 3: Memory and Pointers: Advanced C

I used the variable names inputCount and inputValues here for clarity,
but most C programs call them argc and argv, for argument count and
argument values. I know, right? You can call them whatever you like.

You can use a loop to get the strings from the inputValues array using inputCount to
determine how many times the loop should run. The only catch is that the program
name itself is the first string (item 0) in the inputValues array. For example, if the pro-
gram is called “names”, the first string in inputValues will be “names”. The code needs
to skip the first item by adding 1 to i each time through the loop.

In the following example program, I’ll reformat the input strings and add them to a
new array.

Example: AddressBook
Open Xcode and choose File → New File. In the template window, choose Mac OS X
→ C and C++ → C File, then click Next (see Figure 3-4).

Figure 3-4. Create a new C file in Xcode

Example: AddressBook | 59

In the New File window, type AddressBook.c into the File Name field. Uncheck the
checkbox labeled “Also create AddressBook.h” (see Figure 3-5).

Figure 3-5. Name the file AddressBook.c and uncheck the option to add AddressBook.h

Next, type ~/CocoaBook/ch03/ into the Location field. Leave all other options in the
window at their default settings and click Finish. Type the following into
AddressBook.c:

#include <stdio.h>

main (int inputCount, char* inputValues[]) {

 // we don't want to count the program itself as a name,
 // so our nameCount will be the total inputCount, minus one.
 int nameCount = (inputCount - 1);

 // tell the user how many names they entered.
 if (nameCount > 0) {
 printf ("You entered %i names \n", nameCount);

 } else {
 printf("You didn't enter any names.\n");

 }

60 | Chapter 3: Memory and Pointers: Advanced C

 // create an array that's large enough to hold the names.
 char* formattedNames[nameCount];

 int i;
 for (i = 0; i < nameCount; i++) {

 // create a new formatted name. we use inputValues[i+1]
 // for the slot because the first string is the program name.
 char* currentName = inputValues[i+1];
 asprintf (&formattedNames[i], "Name %i: %s", i, currentName);
 }

 // display the final result.
 for (i = 0; i < nameCount; i++) {

 printf ("%s \n", formattedNames[i]);
 }

 // free the memory for each string created by asprintf.
 for (i = 0; i < nameCount; i++) {

 free (formattedNames[i]);
 }
}

Compile and Run the AddressBook Example
If you haven’t already done so, save the file. Now launch Terminal and change to the
folder where the file is and compile the program:

my-mac:~ scott$ cd ~/CocoaBook/ch03/
my-mac:~ scott$ gcc AddressBook.c -o AddressBook

To try it out, type the following into the Terminal:

my-mac:~ scott$./AddressBook Alan Peggy Jamie

You should see something like this:

You entered 3 names
Name 0: Alan
Name 1: Peggy
Name 2: Jamie

This is the most complex part of the AddressBook program:

char* currentName = inputValues[i+1];
asprintf (&formattedNames[i], "Name %i: %s", i, currentName);

These two lines grab a name from the inputValues array, reformat it, and add the re-
formatted string to the formattedNames array.

The first step of this is to capture one name in a temporary variable called
currentName. It actually isn’t strictly necessary to create a temporary holding variable,
but it does make the code easier to understand.

Example: AddressBook | 61

Because the first string in inputValues is the name of the program itself, you always
want to get the value at one index higher than the current value of i—effectively skip-
ping the first value—so you use i+1 instead of just i.

The asprintf() function returns by indirection, so you provide a variable name with
the address-of operator in front. But you don’t want to change the whole array each
time, so you specify an index number, too. You want to write a value to a different
index for each iteration of the loop, so you use the i in place of a number in the brackets.

The format pattern is Name: %i: %s, which creates strings like Name 1: Jamie. You
provide two variables to asprintf() to fill in the markers in the format string. The i
variable contains the current iteration of the loop, and currentName contains one of the
names typed in by the user.

The last step is to release the memory for the reformatted name strings. Although our
new, easy-to-use dynamic arrays automatically clean up their memory, the strings cre-
ated with asprintf() do not. You need to free() them manually.

Memory management is hard. Even the best programmers regularly
make mistakes when dealing with memory. Fortunately, it’s much easier
to manage memory in Cocoa and Objective-C than in plain C.

Structs
Arrays can hold a lot of data, but all of the values have to be the same type. Sometimes
you want to store different kinds of values in the same variable. A struct is a structured
group of values. Here’s an example of a struct that stores details about a song:

typedef struct {
 char* title;
 int lengthInSeconds;
 int yearRecorded;
} Song;

At first glance, this looks like two int variables and a char* variable, but it’s actually a
new type of variable that contains multiple values of different types. The typedef state-
ment names the struct. In this case, the name is Song.

Unlike in an array, each value in a struct has a name, also known as a field name. A field
in a struct can be any type, even pointers or other nested structs. Just like functions,
you need to declare structs before you can use them, so it’s usually best to put them at
the top of a file.

You can use structs nearly anywhere you’d use int, float, or char. A struct is basically
a template that you can use to create as many instances as you want. Each Song instance
has its own values for title, lengthInSeconds, and yearRecorded. You assign a value to
field in a struct using the dot syntax convention:

62 | Chapter 3: Memory and Pointers: Advanced C

Song song1;
song1.title = "Hey Jude";
song1.lengthInSeconds = 425;
song1.yearRecorded = 1968;

Song song2;
song2.title = "Let It Be";
song2.lengthInSeconds = 243;
song2.yearRecorded = 1970;

In this example, I created a Song instance called song1, and used the dot syntax to set
values for its title, lengthInSeconds, and yearRecorded fields. I then created a second
Song instance, called song2. When you change the values of one Song instance, the others
are unaffected.

You can make functions that take structs as input, as well as functions that return them
as output. For example, here’s a function that takes length and year values and returns
a new Song instance:

Song createSong (int length, int year) {

 Song mySong;
 mySong.lengthInSeconds = length;
 mySong.yearRecorded = year;
 return mySong;
}

You can then use the function to make a new Song instance:

Song mySong = createSong (324, 2004);

Here’s a function that accepts a Song as input and displays it:

void displaySong (Song theSong) {

 printf ("The song is %i seconds long ", theSong.lengthInSeconds);
 printf ("and was recorded in %i. \n", theSong.yearRecorded);
}

I can then take the instance created with createSong(), and use it as input for
displaySong():

Song mySong = createSong (324, 2004);
displaySong (mySong);

The program will then display this on the command line:

The song is 324 seconds long and was recorded in 2004.

To make this even simpler, I can change the createSong() function to directly call
displaySong() each time it creates a new instance:

Song createSong (int length, int year) {

 Song newSong;
 newSong.lengthInSeconds = length;
 newSong.yearRecorded = year;

Structs | 63

 // display the new song that was created.
 displaySong (newSong);
 return newSong;
}

Now you don’t need to call displaySong() separately—it will happen automatically.
Programmers call this sort of arrangement encapsulation. The goal of encapsulation is
to write functions that are smart enough to manage the tedious bits transparently. In
plain English, encapsulation means “handle the details for me.”

For example, if you decided to add a creation date field to the Song struct, you would
usually have to update all of the places in code a Song instance is created. Because we’re
using the createSong() function, though, you can make the change in one place and all
the other parts of the program that use createSong() will get the benefits.

Encapsulation is one of the most important ideas in Cocoa, and is one of the reasons
you can get fairly sophisticated applications up and running quickly.

Header Files
As you need to declare functions, structs, and globals before you can use them, it helps
to have all of these things in one place. This is what header files do. Header files are
very useful in large projects, because they help you understand what the code does
without having to look through every single line—sort of a “table of contents” for one
part of a program. They usually have a .h file extension.

Use Xcode to create a new file named MathFunctions.c. This time, though, leave the
“Also create MathFunctions.h” checkbox activated so that Xcode creates the
MathFunctions.h header file, too. We’ll use this in an example program shortly. Save
the files in ~/CocoaBook/ch03/. If you need reminders about how to create files in Xcode,
flip back a few pages to an example earlier in the chapter.

Type the following into MathFunctions.h:

int sum (int values[], int count);
float average (float values[], int count);

This header file contains the declarations for two functions we’re going use in this
program. When you create the file, you can either keep the comments Xcode auto-
matically adds or remove them. They won’t affect the way the program runs. Save the
file and open MathFunctions.c.

Xcode has a shortcut for switching back and forth between a pair of .h
and .c files: Option-Command-↑.

64 | Chapter 3: Memory and Pointers: Advanced C

Type the code from Example 3-1 into MathFunctions.c (note that the #include directive
is already in the file).

Example 3-1. MathFunctions.c

int sum (int values[], int count) {

 int i;
 int total = 0;

 for (i = 0; i < count; i++) {

 // add each value in the array to the total.
 total = total + values[i];
 }

 return total;
}

float average (float values[], int count) {

 int i;
 float total = 0.0;

 for (i = 0; i < count; i++) {

 // add each value in the array to the total.
 total = total + values[i];
 }

 // calculate the average.
 float average = (total / count);
 return average;
}

Both functions take an array of values and a count. The sum() function takes an array
of int values, and the average() function takes an array of float values. Save the file
when you’re done, then use Xcode to create a new file called HeaderFileTest.c in the
same folder. This is the main program file, so you don’t need a matching header file.
You can deactivate the checkbox that provides that option. Type the code from Exam-
ple 3-2 into the file.

Example 3-2. HeaderFileTest.c

#include <stdio.h>
#include "MathFunctions.h"

main () {

 int wholeNumbers[5] = {2,3,5,7,9};
 int theSum = sum (wholeNumbers, 5);
 printf ("The sum is: %i ", theSum);

 float fractionalNumbers[3] = {16.9, 7.86, 3.4};

Header Files | 65

 float theAverage = average (fractionalNumbers, 3);
 printf ("and the average is: %f \n", theAverage);
}

After the standard stdio.h, I added an include statement for MathFunctions.h. This al-
lows the program to call the sum() and average() functions. When you include a header
file specific to a program, put the filename in double quotes. When it’s a header file
from a library—such as the stdio.h header from the C standard library itself—put the
file name in angle brackets.

Compile and Run the HeaderFileTest Example
If you haven’t already done so, save all of the source files you have open. Now launch
Terminal and change to the folder where the file is:

my-mac:~ scott$ cd ~/CocoaBook/ch03/

Type the following command into the Terminal to compile the program. Note that this
time you’re combining multiple C files into a single program:

my-mac:~ scott$ gcc HeaderFileTest.c MathFunctions.c -o HeaderFileTest

To try it out, type the following on the command line:

my-mac:~ scott$./HeaderFileTest

You should see something like this:

The sum is: 26 and the average is: 9.386666

One thing you might notice here is that I didn’t ask you to specify the .h header files as
part of the gcc compile command. That’s because the #include statement figures that
stuff out for us. You just need to tell gcc about the .c files.

Create Files for the Song Struct
To work up to the final example in the chapter, you’re going to create a pair of files
that encapsulate everything involving the Song struct. They will contain the declaration
of the struct itself, as well as functions for creating and displaying Song instances.

Use Xcode to create a new file called Song.c and the matching Song.h header file, and
put both in ~/CocoaBook/ch03/. Type the code from Example 3-3 into the .h file.

Example 3-3. Song.h

typedef struct {
 char* title;
 int lengthInSeconds;
 int yearRecorded;
} Song;

66 | Chapter 3: Memory and Pointers: Advanced C

Song createSong (char* title, int length, int year);
void displaySong (Song theSong);

Now type the code from Example 3-4 into Song.c (the #include statement for Song.h
will already be in the file).

Example 3-4. Song.c

#include <stdio.h>

Song createSong (char* title, int length, int year) {

 Song mySong;
 mySong.lengthInSeconds = length;
 mySong.yearRecorded = year;
 mySong.title = title;

 displaySong (mySong);
 return mySong;
}

void displaySong (Song theSong) {

 printf ("'%s' is %i seconds long ", theSong.title, theSong.lengthInSeconds);
 printf ("and was recorded in %i\n", theSong.yearRecorded);
}

Now let’s create a simple program to test whether the Song files are set up correctly.
Use Xcode to make a file called SongTest.c in ~/CocoaBook/ch03/. This is the main
program file, so you don’t need a header file to go with it. Type the code from Exam-
ple 3-5 into SongTest.c.

Example 3-5. SongTest.c

#include <stdio.h>
#include "Song.h"

main () {

 Song allSongs[3];

 allSongs[0] = createSong ("Hey Jude", 210, 2004);
 allSongs[1] = createSong ("Jambi", 256, 1992);
 allSongs[2] = createSong ("Lightning Crashes", 223, 1997);
}

Save all the files you have open, then type the following commands into the Terminal
to compile the program. Remember that you’re combining multiple C files into a single
program:

my-mac:~ scott$ cd ~/CocoaBook/ch03/
my-mac:~ scott$ gcc SongTest.c Song.c -o SongTest

To try it out, type the following into the Terminal to run the program:

Create Files for the Song Struct | 67

my-mac:~ scott$./SongTest

You should see something like this:

'Hey Jude' is 210 seconds long and was recorded in 2004
'Jambi' is 256 seconds long and was recorded in 1992
'Lightning Crashes' is 223 seconds long and was recorded in 1997

In some cases, you might see an error like this:

Song.h:15: error: conflicting types for 'Song'
Song.h:15: error: previous declaration of 'Song' was here

If you do see this, you might have duplicate #include statements. Check your code to
make sure you’re not including Song.h more than once.

Final Example
This example program uses the files you created earlier in the chapter, and covers nearly
everything we’ve learned about C. If this example makes sense to you, you’re ready to
move on to object-oriented programming.

Nearly of the conventions used here were described earlier in the book. If anything is
unclear, go back and review what you’ve already read. The one thing I haven’t covered,
though, is the rand() function. You use this function to generate random numbers.

However, convincing a computer to generate a truly random number is not trivial. You
can get better random numbers from rand() if you “seed” it first by calling the
sranddev() function. You need to seed it only once per run of the program, though.

You can also control the maximum value of the random number using the modulus
operator, which, confusingly, is actually the percent symbol: %. The whole sequence
looks like this:

// seed the random number generator.
sranddev();

// get a random number, with a maximum of 500.
int randomNumber = rand() % 500;

The modulus operator returns the remainder of integer division (no
decimal point), which also can limit the maximum value. For example,
499 divided by 500 is 0 with a remainder of 499. But 500 divided by 500
is 1, with a remainder of 0. So any positive number modulo 500 is limited
to the range 0 to 499. You can also use this to “wrap around” larger
numbers: 1,499 modulo 500 is 499, and 1,501 modulo 500 is 1.

Use Xcode to create a new file called FinalProgram.c, and type the code from Exam-
ple 3-6 into the file. I realize this is a fair amount of code, but actually typing code helps
you learn programming much more quickly than just reading about it.

68 | Chapter 3: Memory and Pointers: Advanced C

Example 3-6. FinalProgram.c

#include <stdio.h>
#include <stdlib.h>
#include "MathFunctions.h"
#include "Song.h"

// global variables.
int yearCount = 12;
int* allYears;

// utility functions.
void setupYears();
int randomSongYear();

main (int inputCount, char* inputValues[]) {

 // we don't want to count the program itself as a song name.
 int songCount = (inputCount - 1);

 // tell the user how many song names they entered.
 if (songCount > 0) {
 printf ("You entered %i song names \n", songCount);

 } else {
 printf ("Didn't enter any song names. \n");
 exit(1);
 }

 // fill in the global 'allYears' array.
 setupYears();

 // seed the random number generator,
 // and get a random number.
 sranddev();
 int randomNumber = rand() % 500;

 // create an "easy" dynamic array of all of the songs,
 // and a separate array of just the song lengths.
 Song allSongs[songCount];
 int songLengths[songCount];

 int i;
 for (i = 0; i < songCount; i++) {

 // choose a random length in seconds (up to 500)
 // and a random song year.
 int length = rand() % 500;
 int year = randomSongYear();

 // get the song name.
 char* songName = inputValues[i+1];

 // create the Song instance using all of the other values.
 allSongs[i] = createSong (songName, length, year);

Final Example | 69

 // finally, copy the length to the 'songLengths' array.
 songLengths[i] = length;
 }

 // display the total length of all songs.
 int combinedLength = sum (songLengths, songCount);
 printf ("The total length of all songs is %i seconds\n", combinedLength);

 // loop through the songs again and make an array of float values.
 float songLengthsAsFloats[songCount];

 for (i = 0; i < songCount; i++) {
 songLengthsAsFloats[i] = songLengths[i];
 }

 // calculate the average length.
 float averageLength = average (songLengthsAsFloats, songCount);
 printf ("The average length is: %.2f seconds\n", averageLength);

 // clean up the memory we malloc'd.
 free (allYears);
}

void setupYears () {

 // reserve memory for all of the year values. we can't use
 // the "easy" dynamic array because 'years' is a global variable.
 allYears = malloc (sizeof(int) * yearCount);

 // choose the starting year.
 int oneYear = 2000;

 // loop through and fill in each value.
 int i;
 for (i = 0; i < yearCount; i++) {

 oneYear++;
 allYears[i] = oneYear;
 }
}

int randomSongYear () {

 // get a random value between 0 and (yearCount-1).
 int yearIndex = rand() % (yearCount-1);

 // now use the index to get a year out of the 'allYears' array.
 int year = allYears[yearIndex];

 return year;
}

Type the following commands into the Terminal to compile the program. Note that
this time we’re combining multiple C files into a single program:

70 | Chapter 3: Memory and Pointers: Advanced C

my-mac:~ scott$ cd ~/CocoaBook/ch03/
my-mac:~ scott$ gcc FinalProgram.c MathFunctions.c Song.c -o FinalProgram

To try it out, type the following into the Terminal to run the program:

my-mac:~ scott$./FinalProgram "Hey Jude" "Jambi" "Lightning Crashes"

You should see something similar to the following, but remember that the song lengths
and years are random, so yours will probably be different:

You entered 3 song names
'Hey Jude' is 409 seconds long and was recorded in 2001
'Jambi' is 445 seconds long and was recorded in 2009
'Lightning Crashes' is 213 seconds long and was recorded in 2001
The total length of all songs is 1067 seconds
The average length is: 355.67 seconds

Remember: if any of this code doesn’t make sense, go back and review the earlier parts
of the book to find something you may have skimmed over. If you can’t get the code
to compile, you can get a working version from the book’s companion site (see the
Preface for details).

Final Example | 71

CHAPTER 4

Thinking in Objects

A funny thing happened on the way to the future. Computers became much more
powerful, and developers decided to take advantage of this potential by making soft-
ware that did a lot more than just process one instruction at a time on the command line.

They built more sophisticated interfaces that could do a lot of things at once. This
allowed software to tackle complex tasks like nonlinear video editing and 3D modeling.
But creating programs with such sophisticated user interfaces required a lot of code.

Expert engineers love simplifying code. They’re obsessed with it. Good programmers
think of ways to write code more quickly, but great engineers think of ways to write
less code to do the same job. There’s a good reason for this. The less code you have,
the easier it is to understand and improve.

The functions in earlier chapters do a calculation and return a result. You store the
result in a variable, and then pass it into another function, like this:

#include <stdio.h>
#include "types.h"

main () {

 char* itemType = "Document";
 int itemCount = countForItemType (itemType);
 int itemTotal = totalForCountOfType (itemCount, itemType);
 char* totalString = formattedTotalForType (itemTotal, itemType);

 printf ("The total for %s is %s", itemType, totalString);
 free (totalString);
}

C is a procedural language, which means that functions and the data are separate, and
the code is fairly linear. You can also say that C is a static language. This means that all
functions have to exist before you call them, and when you call a function, it will run.
There’s no reinterpretation as the program is running. Also, all variables have to be a
specific type, which is called static typing.

73

The upside of this is that the code is predictable and you have complete control. The
downside is that you have manage all of the details manually, which means you end
up doing a lot of busywork. This is hard to picture when working with very small
programs, but it’s very clear when working with programs that are made up of hundreds
of thousands or millions of lines of code.

I think of this as a CEO of a 2,000-person company answering support
calls. He may be good at it, but it’s probably better for everyone if he
runs the company instead. You are the CEO of your application. If you
spend time on low-level details, you may never be able to take on the
bigger tasks. Instead, you delegate the lower-level details to Cocoa.

So engineers started trying to think up better ways to program, and two ideas that took
hold are object-oriented programming and dynamic languages. Standard C had the seeds
of object-oriented concepts with structs. Each struct definition is a template for a certain
kind of thing, like a movie or a document. You create a variable of that struct type, and
you have another instance of the struct with its own set of values. From that single
struct, you can store data for any number of different movies.

By convention, developers started writing functions that used structs instead of indi-
vidual char and int variables. You did this with the createSong() and displaySong()
functions in the previous chapter. Objective-C took this convention and formalized it.

Objective-C also added dynamic features, which means that not everything in your
code has to be defined when you compile. You can declare “typeless” variables and can
use classes and methods that don’t exist yet. This allows the design of the application
to be more flexible, making it much easier to implement things like plug-in support. A
lot of the thinking behind Cocoa is based on the dynamic features of Objective-C.

Structs and Classes
Because you already know how C works from the earlier chapters, the easiest way to
introduce object-oriented concepts is to compare them to structs and functions.

I’m not going into detail about the Objective-C language in this chapter. I’m just using
it as a way to show you object-oriented concepts. This means you will see parts that
don’t make sense yet, such as the @ symbol and square brackets. I’ll cover these and the
rest of the language in detail in the following chapters. For now, just focus on the
concepts.

The Song.h file from Chapter 3 looks like this:

typedef struct {
 char* title;
 int lengthInSeconds;
 int yearRecorded;
} Song;

74 | Chapter 4: Thinking in Objects

Song createSong (char* title, int length, int year);
void displaySong (Song theSong);

In Objective-C, the equivalent Song.h file looks like this:

@interface Song : NSObject

 @property char* title;
 @property int lengthInSeconds;
 @property int yearRecorded;

+ (Song *) song;
- (void) display;

@end

This is called a class, and you may notice that it looks a lot like a struct. This class
interface is the part of the class that goes in the header file. It’s a lot like declaring structs
and functions in a header file. The class implementation goes in a separate file.

This line declares the class name and defines which class it inherits from (see
“Inheritance” on page 78).

Instance variables or properties are very similar to fields in a struct. I’ll describe
properties in more detail in the following chapters; for now, just know that the intent
of struct fields and class properties is the same: to store a unique set of values for
each instance.

Methods are similar to functions, though methods are not freestanding. Each method
belongs to a class. That means that two classes can have display methods that do
completely separate things. Methods have direct access to the class’s properties, so
you don’t need to pass any of those values in when calling a method.

I used a char* C string in this example because you’re already familiar with it, but you
won’t see this in the source code for most Cocoa applications. You can use C strings
in Objective-C, but Cocoa has its own type for strings, which I’ll describe in the fol-
lowing chapters. Other than this one detail, though, this is very much like a class you’d
find in any Cocoa application.

Each instance of a class is called an object. Even though you have only one Song class
(the blueprint), you can have many Song objects. Here’s how you make a Song struct in
C code, compared to making a Song object in Objective-C code:

// creating a Song struct in C.
Song mySong;
mySong.title = "Hey Jude";
mySong.lengthInSeconds = 425;
mySong.yearRecorded = 1968;
displaySong (mySong);

// creating a Song object in Objective-C.
Song* mySong = [Song song];

Structs and Classes | 75

mySong.title = "Hey Jude";
mySong.lengthInSeconds = 425;
mySong.yearRecorded = 1968;
[mySong display];

The rules about including Objective-C class headers are the same as
including C headers with struct definitions. If you refer to a class literally
in code, you have to include its header file. If you don’t include the file,
you will see a build error.

The Song object variable is a pointer. All object variables in Objective-C are pointers
because they’re always stored in dynamic memory—just as if you had allocated them
with the malloc() function. In fact, deep down in Objective-C, that’s exactly what’s
happening.

Designing Classes
At first, classes look like a way to group functions and variables together. That’s tech-
nically true, but not really the main point. The idea is that if you want to describe
something like a photo, it’s easier to create a Photo class with all of the methods and
properties related to that concept rather than a series of structs and functions that
simulate a photo class.

When I first create a class, I don’t think about which methods (functions) it will have.
Instead, I focus on the kind of data it needs to store. So if I’m designing a Game class, I
know it will need at least two player names, two scores, and a game duration. So I just
start with that:

@interface Game : NSObject

 @property char* playerOne;
 @property char* playerTwo;
 @property int playerOneScore;
 @property int playerTwoScore;
 @property int durationInSeconds;

@end

A class isn’t just a big box to put a bunch of things in. Novice programmers may be
tempted to do something like this, because it seems convenient to put everything in
one class:

@interface Game : NSObject

 @property char* playerOne;
 @property char* playerTwo;
 @property int playerOneScore;
 @property int playerTwoScore;
 @property int durationInSeconds;

76 | Chapter 4: Thinking in Objects

 // these are not part of a 'Game' so they're not appropriate for this class.
 @property char* computerName;
 @property int cpuCount;
 @property char* userName;
 @property char* userPassword;

@end

The problem with this is that the computer name, CPU count, user name, and user
password have nothing to do with the Game class. Even if you use them in the same
application, they don’t belong in the same class. Instead, create a separate class for each
distinct kind of data:

@interface Game : NSObject

 @property char* playerOne;
 @property char* playerTwo;
 @property int playerOneScore;
 @property int playerTwoScore;
 @property int durationInSeconds;

@end

@interface Computer : NSObject

 @property char* name;
 @property int cpuCount;

@end

@interface User : NSObject

 @property char* name;
 @property char* password;

@end

If each kind of data is separate from the others, the overall design of your application
is much more flexible. You can change how the Computer class works without affecting
the Game class or the User class. This is very important when creating Mac and iPhone
apps.

Accessors
In the previous chapter, I described how encapsulation is a way to separate the what
from the how. In one example, I showed you how adding a printf() call inside the
createSong() function allowed you to automatically display the Song instance when it’s
created.

Accessors | 77

Accessors are “gatekeepers” for properties. If you use accessors, the details of how the
data is stored is separate from what the data is. For example, here is a pair of accessor
methods for a title property of the Photo class:

- setTitle: newTitle {
 title = newTitle;
}

- title {
 return title;
}

The setTitle: accessor method takes an input value and assigns it to the instance
variable (the actual variable that stores the property data). This is called a setter accessor
method. The title method is the getter accessor method, and it simply returns the
instance variable’s value.

In other object-oriented languages, it’s more common to have a
getValue method and a setValue method, but Objective-C methods
rarely have get as a prefix. It’s used only when returning a value through
indirection.

Now imagine after you wrote this code, you decided to store all your data in a database.
Instead of going and changing every part of the program that sets or gets a photo’s title,
you can just change the accessors in one place:

- setTitle: newTitle {
 saveTitleValueToDatabase(newTitle);
}

- title {
 return titleValueFromDatabase();
}

Software changes a lot. One of the best things you can do as a programmer is make it
easy to change the code. Even though you start out with an idea of how your program
will work, you will probably change your mind later. It’s often hard to “see” the whole
thing in your head before you start (though you’ll get better at this).

Good code is written with a pencil: easily changed. Bad code is written in ink: difficult
to change. If you need to change good code, you can just erase a few things and continue
on. If you need to change bad code, you’re often better off just throwing it out and
starting with a blank slate.

Inheritance
One of the key concepts in object-oriented programming is inheritance, which allows
you to pull in properties and methods from a “parent” class, also known as a

78 | Chapter 4: Thinking in Objects

superclass. For example, if you have both a Song class and a Movie class in your appli-
cation, it might make sense to create a Media superclass that both Song and Movie inherit
from, because they’re both logically an extension of a more generic “media” type. They
can then share instance variables and methods:

@interface Media : NSObject

 @property int duration;
 @property char* format;

 - (void) play;
 - (void) pause;
 - (void) rewind;

@end

All of these things make sense for both Song and Movie objects, but each class can also
add its own functionality. For example, Movie might add properties like aspectRatio
and framesPerSecond, as well as a method called enableSubtitles. The new class, in-
cluding inherited methods, would look like this:

@interface Movie : Media

 @property float aspectRatio;
 @property int framesPerSecond;

 - (void) enableSubtitles;

 // inherited from Media.

 @property int duration;
 @property char* format;

 - (void) play;
 - (void) pause;
 - (void) rewind;

@end

You usually don’t redeclare methods or properties that you inherit from
a superclass. I added the declarations here for clarity.

In this example, Movie is a subclass of Media. Another class could be a subclass of
Movie, bringing in everything from both the Movie class and the Media class. The whole
tree is called a class hierarchy. Most frameworks have a “root” object that all other
classes inherit from. Cocoa actually has two root classes: NSObject and NSProxy, but
almost all of your classes will inherit from NSObject.

Inheritance | 79

Some object-oriented languages have multiple inheritance, which allows
you to inherit from more than one class. Not everyone agrees on whether
this a good or bad thing, though, and the creators of Objective-C deci-
ded not to include it in the language.

In addition to adding methods, subclasses can also override methods from a superclass.
It’s common to override methods when you want to customize existing behavior. For
example, if you want to use a standard Mac OS X button in your application, but would
like to change the clicking behavior, you could create a subclass of NSButton and over-
ride the methods related to clicking.

You don’t use superclasses just to share code, though. A subclass should only inherit
from a class that it’s a logical extension of. For example, you shouldn’t create a subclass
of Media called Camera, because a camera is not a kind of media. Instead, you could
make a generic Device class, and create subclasses for Camera, Phone, and so on.

Composition
Classes can have properties that refer to instances of other classes. This is called com-
position, because you’re combining different kinds of objects together to accomplish a
task:

@interface User : NSObject

 @property char* name;
 @property char* password;

@end

@interface Game : NSObject

 @property User* playerOne;
 @property User* playerTwo;
 @property int playerOneScore;
 @property int playerTwoScore;
 @property int durationInSeconds;

@end

When you want to use methods and properties from another class, but it logically
doesn’t make sense to inherit from that class (a camera isn’t a kind of media), you can
create a property for the other kind of object instead:

@interface Device : NSObject

 @property char* name;
 @property int minFocalDistance;

@end

80 | Chapter 4: Thinking in Objects

@interface Media : NSObject

 @property int duration;
 @property char* format;
 @property Device* recordingDevice;

@end

This way, a Media object can use a Device object, but it doesn’t have to be a Device
object, which makes much more sense. Cocoa encourages you to use composition
much more frequently than subclassing, because subclassing can add complexity,
which means it’s harder to create great software.

Object Lifetime
The last building block concept is object lifetimes. Just like in C, you need to clean up
the memory of objects when you’re no longer using them. The actual process of re-
serving and freeing memory in Objective-C is easier than in C, but the trade-off is that
there are usually more cleanup tasks.

In Objective-C and most other object-oriented languages, a class almost always has an
initialization method. If you don’t add one to your class, you typically inherit it from
the root object. You create an initialization method when you want to set up default
values for things. For example, you might want to set the initial title value for a
Photo object to “Untitled Photo” so it’s not just blank:

- init {
 title = "Untitled Photo";
}

The counterpart to the initialization method is a “cleanup” method, which you create
if you want to clean up memory for any data you have, or maybe display a message in
the console that the object is shutting down:

- dealloc {
 printf ("Deallocating Photo\n");
}

There are some more advanced techniques in Cocoa that we will use the cleanup meth-
ods for, but you need to learn about Objective-C before we can go into that in detail.

Built-in Classes
Most of Cocoa is available to you as classes. Cocoa has hundreds of different classes
that do things like display web pages, record video, create PDFs, and search for files
on the user’s computer. The process of becoming a better Cocoa programmer is really
about learning how these classes work. There are some C functions and structs, too,
but Cocoa is designed as an object-oriented framework.

Built-in Classes | 81

For example, I can make a window object using the NSWindow class (I’ll tell you more
about windows in Chapter 8). In three lines of code, I can create a window object, set
its size and position, and display it on the screen:

id myWindow = [[NSWindow alloc] init];
[myWindow setFrame:NSMakeRect(100, 100, 400, 300) display:YES];
[myWindow orderFront:nil];

I can also set properties on the window, like the title:

myWindow.title = @"An Empty Space";

Once I’ve done that, I can see the window on the screen (Figure 4-1).

Figure 4-1. A window object displayed on the screen

A lot of the code you write in Objective-C is very similar to this. You create an object,
set some properties on it, and then the user can start interacting with the object on
screen. I’ll introduce you to many different Cocoa classes as you continue through the
book.

82 | Chapter 4: Thinking in Objects

CHAPTER 5

Basic Objective-C

When I was first learning Cocoa, some very smart people told me that Objective-C is
C with objects. I hear that now and it sounds like describing the desert as “a place with
a lot of sand.” It’s technically a true statement, but it doesn’t really tell you much about
the language.

Writing a Cocoa app is nothing like writing software with standard C libraries. The C
foundation is just a vehicle, not the basis for how you design your application. In my
experience, there are three standout features of Objective-C:

Compiled speed, dynamic features
Objective-C has the compiled speed of C with many of the features of a dynamic
scripting language. You can use static typing for variables if you want, but the types
are not strictly enforced. You can also load classes and methods as the application
is running, or generate them on the fly.

Compatibility with C and C++
You can freely use C types and libraries within Objective-C classes, as well as in-
tegrate with existing C++ code. In fact, some frameworks in Mac OS X are written
in C.

Cocoa integration
Cocoa is designed for Objective-C, and Objective-C is evolving around Cocoa. You
have other options for languages, but in my opinion, the two are much more pow-
erful together than they are apart.

The first two points are interesting, but the most important feature of Objective-C is
its tight integration with Cocoa. The majority of Mac and iPhone apps are written in
Objective-C, including Xcode itself. Cocoa apps can be written with languages like
Ruby and Python—and some developers do just that and create great software—but
Objective-C is the native tongue of Cocoa.

Even if you later decide to write Mac applications in another language, you should still
learn Objective-C first. It will help you understand how Cocoa works, and you can

83

transfer what you learn to iPhone development. It’s also important because most of the
existing sample and open source code for Cocoa is written in Objective-C.

Objective-C is open source. If you’re an experienced C programmer and
want to see how everything works, go to http://opensource.apple.com/
source/objc4/.

One thing you should know before we start is that, at first, the language syntax will
look really weird. But trust me, this is a temporary state of confusion that almost ev-
eryone gets over in just a few days.

When I was getting ready to write the book, I did a quick survey online of about 120
developers, asking what their biggest initial stumbling block was for learning Cocoa.*

The most common response, by a wide margin, was that Objective-C “seemed strange
at first.”

However, none of the developers said they still feel that way now. So the confusion you
might feel at first is totally normal. A tiny percentage of your time goes into learning
the language. Most of the effort goes into finding out which of the hundreds of classes
in Cocoa are the right match for a task, and how to use the class once you find it.

NSString Basics
Most of the examples in this chapter use NSString objects to store text. I only use it in
a very basic way in this chapter, but I’ll explain the class in more detail in Chapter 7.
NSString objects are so common in Cocoa than they have a special syntax. Here’s an
example:

// a famous quote by Alan Kay.
NSString* quote = @"The best way to predict the future is to invent it.";

The @"string" shortcut creates an NSString object that you can either pass directly into
a method or assign to a variable. You’ll see more examples in the following chapters,
but this is enough to get started.

Using Methods
If you’re familiar with a language like C, C++, Java, or PHP, you’re probably used to
seeing methods or functions called like this:

displayNames();
displayNamesWithPrefix(prefix);
addressBook.displayNames();
addressBook.displayNamesWithPrefix(prefix);

* “What Do People Find Challenging About Cocoa?”.

84 | Chapter 5: Basic Objective-C

http://opensource.apple.com/source/objc4/
http://opensource.apple.com/source/objc4/
http://theocacao.com/document.page/605

This is how you call methods in Objective-C:

[addressBook displayNames];
[addressBook displayNamesWithPrefix: prefix];

Many experienced programmers get tripped up on the method syntax during the first
day or so, then realize it’s not actually that different. The syntax is:

[object method];
[object methodWithInput: inputValue];

Objective-C is a dynamic language, so technically you’re not calling a method directly
when you use this syntax; you’re actually sending a message. Calling a method is basi-
cally issuing an order, whereas sending a message is more like making a request.

When you send a message to an object, the object may call a method with the same
name, it may call another method instead, or it may even redirect the entire request to
another object. There’s a lot of flexibility in Objective-C for interpreting messages.

Sending a message usually calls the method with the same name, so
many programmers use the terms “message” and “method” inter-
changeably. Dynamic messaging enables some great features in Cocoa,
but it’s not something you have to really think about on a minute-to-
minute basis.

Methods can, of course, also return values:

names = [addressBook names];
names = [addressBook namesWithPrefix:prefix];

In addition to calling methods on objects, you can call methods on classes, too, which
is how you create objects. In the following example, I use the string method on the
NSString class, which returns a new NSString object:

id myString = [NSString string];

The id type declares that the myString variable can refer to any kind of object, so
the actual class of the object isn’t known ahead of time. In this example, it’s clear that
the object will be an NSString, so I’ll add the type:

NSString* myString = [NSString string];

This is now an NSString variable, so Xcode will warn me if I try to send a message to
an object that NSString doesn’t support. But it’s just a warning, not an error. Because
Objective-C is a dynamic language, methods can be added to classes as the program is
running, so new methods may show up later.

You might have also noticed that there’s an asterisk to the right of the object type. All
Objective-C object variables are pointer types. The id type is predefined as a pointer,
so there’s no need to add the asterisk to it.

Using Methods | 85

In Chapter 3, I said that Cocoa makes it easier to use dynamic memory.
When you create an NSString object with the string method, Cocoa al-
locates a memory block for the object and returns the address. That’s
why all object variables are pointers.

Nested Method Calls
In many languages, nested method or function calls look like this:

stringWithFormat (format());

The result of format() is passed as input to stringWithFormat(). In Objective-C, nested
messages look like this:

[NSString stringWithFormat:[prefs format]];

You should avoid nesting more than two methods calls, because it’s usually very hard
to read.

Multi-Input Methods
Some methods take multiple input values. In Objective-C, a method name can be split
up into several segments. The declaration for a multi-input method looks like this:

-(BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile;

Here’s how you call the method:

BOOL result = [myData writeToFile:filePath atomically:NO];

These are not just named values. The method itself is actually called -writeTo
File:atomically:, and Xcode will warn you if you misspell any part of it.

Accessors
All instance variables are protected in Objective-C by default, so you should always use
accessors to get and set values. You should even use them when getting and setting
values within the object itself. This is partially just because it’s better encapsulation,
but the other reason is that Cocoa offers some more advanced “generic programming”
features that depend on using accessors properly. Here’s an example of using accessors
for the caption instance variable:

[photo setCaption:@"Day at the Beach"];
currentCaption = [photo caption];

Calling [photo caption] does not read the instance variable directly. It actually calls
the method named caption. In most cases, you don’t add the “get” prefix to accessors
in Objective-C. It’s important that you use standard naming conventions for accessors,
because it enables Cocoa to automate a lot of work for you.

86 | Chapter 5: Basic Objective-C

The “get” prefix is used on some methods that return values by indi-
rection, such as -[NSArray getObjects:range:], which writes directly to
a memory address that you provide.

Dot Syntax
The dot syntax for accessors is part of Objective-C 2.0, which was introduced in Mac
OS X 10.5 Leopard and the first version of the iPhone SDK. This syntax is optional,
and produces the same end result as the traditional style:

photo.caption = @"Day at the Beach";
output = photo.caption;

When you use the dot syntax, you don’t add the “set” prefix to the property name.
Many Cocoa programmers have an opinion on which accessor style is better, but there
is no performance difference at all. It just comes down to what you find more readable.
Personally, I like using the dot syntax, because it reduces the amount of special char-
acters needed to make nested calls. For example, both of these do the same thing:

[[[properties regions] us] setTitle: @"United States"];

properties.regions.us.title = @"United States";

This is just my opinion, though. You can use either style, but choose only one for each
project to keep the code consistent. Most importantly, the dot syntax should only be
used for setters and getters, not for general-purpose methods. Xcode may let you get
away with it, but it’s exceptionally bad style:

// INCORRECT: do not use dot syntax for general methods.
addressBook.rebuildIndex;

// CORRECT: dot syntax should be used for getters and setters only.
// use the brackets for all other methods.
allNames = addressBook.names;
addressBook.names = allNames;

[addressBook rebuildIndex];

In other words, you should use dot syntax only when assigning or retrieving a value.
As an advanced technique, it’s acceptable to mix and match the two styles. Both of
these are correct:

names = [[[system storage] addressBook] namesWithPrefix:prefix];
names = [system.storage.addressBook namesWithPrefix:prefix];

Again, this is an advanced technique and you are never required to use it. I’m just
mentioning it here so you know it’s an option.

Accessors | 87

Creating Objects
There are two main ways to create an object. The first is the one you saw before:

NSString* myString = [NSString string];

This is the more convenient automatic style. In this case, you are creating an autore-
leased object, which means that its memory will be freed automatically. In many cases,
though, you need to create an object using the manual style:

NSString* myString = [[NSString alloc] init];

This is a nested method call. The first is a call to alloc, which reserves memory for the
object. It’s a class method, so it’s called on the NSString class itself. The second piece
is a call to init on the new object. The init method for a class usually does basic setup,
such as setting default values for instance variables. In some cases, you may use a dif-
ferent version of init that takes input:

NSNumber* value = [[NSNumber alloc] initWithFloat:1.0];

Virtually all classes support the manual alloc style, but not all provide the autoreleased
style. The documentation and header file for each class tells you specifically whether it
supports both, but I’ll teach you about the most common cases. If a class supports both
styles, there are trade-offs for each:

Autoreleased style: +string
Requires fewer lines of code, and reduces the possibility that you’ll forget to release
the memory for an object later. This convenience comes at a small performance
cost. The difference is usually minuscule, but you can run into significant slow-
downs when dealing with thousands of objects or more. See the following section
for more details on freeing memory.

Manual style: +alloc
Is slightly faster on a per-object basis than the autoreleased style. More importantly,
some classes offer certain initialization options only in the manual style, in the form
of [[MyClass alloc] initWithFirstName:name], but this varies by class. I tend to
use this style more often to get whatever performance benefits I can.

Basic Memory Management
If you’re writing an application for Mac OS X, you have the option to enable garbage
collection, which means that you generally don’t have to think about memory man-
agement until you get to more complex cases. However, that’s not always an option.
For example, the iPhone SDK does not support garbage collection, or you may find
yourself maintaining an application written by someone who didn’t use garbage
collection.

88 | Chapter 5: Basic Objective-C

The rest of the examples in this book do not use garbage collection. My
reason for this is that you will probably work with a lot of code that uses
conventional memory management. It’s much easier to learn the con-
ventional system from the start than to try to insert it into your under-
standing after using garbage collection.

The conventional, non-garbage-collected memory management system is called refer-
ence counting. It’s similar to using malloc() and free(), but Objective-C has a slightly
different challenge than standard C. In an object-oriented framework, many parts of
the application share the same data, so it’s challenging for you (as the programmer) to
know when an object is no longer being used and can safely be freed.

In the reference counting system, each part of the application keeps track of only its
own references for an object rather than the total in use throughout the entire applica-
tion. The Objective-C runtime takes responsibility for freeing the memory when all of
the references are released. This means you can focus on very isolated cases without
being overwhelmed by all of the places the object is possibly being used (see Figure 5-1).

Figure 5-1. The +alloc method creates an object with a retain count of 1; the +retain method increases
the retain count by 1 (a total of 2), and the -release method reduces it back to 1

It sounds very complicated, but the mechanics are extremely simple. If you create an
object using the manual alloc style, you need to release the object later. Here are two
examples:

NSString* string1 = [NSString string]; // automatic.

 // (code that uses string1 runs here.)

NSString* string2 = [[NSString alloc] init]; // manual.

 // (code that uses string2 runs here.)

[string2 release];

You might be tempted to manually release an autoreleased object just to be sure that
it’s been cleaned up, but doing that will cause a crash. There’s more to learn about
memory management, but let’s first take a look at a few more key concepts.

Basic Memory Management | 89

Using Autorelease Directly
I’ll walk you through memory management in more detail in the next chapter, but
there’s one thing that’s useful to mention here. If you create an object using the manual
+alloc style, you can directly call -autorelease on it. As a result, these two lines of code
are essentially equivalent:

NSString* string1 = [NSString string];
NSString* string2 = [[[NSString alloc] init] autorelease];

This doesn’t save you much typing and is harder to read, but it is important to use this
technique in certain cases. There’s a class method in the example at the end of the
chapter that creates a new object and returns it as autoreleased.

Declaring a Class
I’m going to show you some examples of how to create basic classes, but at this point
you can just follow along and take in the examples. You don’t need to actually create
the files until the final example at the end of the chapter.

An Objective-C class is usually made up of two files. The instance variables and meth-
ods are declared in the ClassName.h file, and the method implementations are in the
ClassName.m file. Here’s what the Photo.h header file looks like for the Photo class:

#import <Cocoa/Cocoa.h>

@interface Photo : NSObject {

 id caption;
 id photographer;
}
@end

Most Objective-C classes import Cocoa.h at the top. Unlike #include in C, the
#import statement prevents a file from being included multiple times.

The @interface statement declares the actual class name, Photo. To the right of that
is a colon and the superclass name, NSObject.

Inside the curly brackets are two instance variables: caption and photographer. Both
are generic id object types, but instance variables are usually declared to be specific
types like Cocoa’s NSString class, or C types like int and float.

Finally, the @end statement ends the class declaration.

Some new programmers mistakenly swap the class name with the file-
name. For example, they might try to declare a class called Photo.h
instead of Photo. Remember .h and .m are for filenames only, not class
names.

90 | Chapter 5: Basic Objective-C

Add Methods
Now that I have some instance variables, I’ll add accessors to retrieve the values:

#import <Cocoa/Cocoa.h>

@interface Photo : NSObject {
 id caption;
 id photographer;
}

- caption;
- photographer;

@end

Remember, you don’t add the “get” prefix to Objective-C methods except in certain
specific cases. A plus symbol before a method name means it’s a class method. A minus
symbol before a method name means it’s an instance method:

+ classMethod;
- instanceMethod;

You call class methods on the class itself, such as +[NSString string]. Many of these
methods exist only to create instances of the class as objects. Instance methods are used
on objects that are instances of a class, such as -[object release].

When declaring a method, ask yourself this: does the method apply to only one instance
or all instances of the class? If it applies to all instances, it’s usually better as a class
method. Otherwise, it should be an instance method. Most methods you create in
Objective-C will probably be instance methods.

Objective-C assumes that all input and output values are id objects, so you’re not
strictly required to provide types. The previous example is technically correct, but it’s
unusual. I’ll add specific types for the instance variables and their accessors:

#import <Cocoa/Cocoa.h>

@interface Photo : NSObject {
 NSString* caption;
 NSString* photographer;
}

- (NSString*) caption;
- (NSString*) photographer;

@end

Now I’ll add setters:

#import <Cocoa/Cocoa.h>

@interface Photo : NSObject {
 NSString* caption;
 NSString* photographer;

Declaring a Class | 91

}
- (NSString*) caption;
- (NSString*) photographer;

- (void) setCaption: (NSString*)input;
- (void) setPhotographer: (NSString*)input;

@end

Setters don’t return a value, so I just set the return type to void. If you’re thinking that
a lot of this code is redundant, you’re right. There are simpler ways to declare accessors
that you’ll learn about in the next chapter, but it’s easier to learn the basics first.

Implementing a Class
Now that the class name, instance variables, and methods are declared in Photo.h, I
can add the method implementation in Photo.m:

#import "Photo.h"

@implementation Photo

- (NSString*) caption {
 return caption;
}

- (NSString*) photographer {
 return photographer;
}

@end

A class implementation starts by importing the header file, which in this case is
Photo.h.

Next is the @implementation statement and the class name, Photo.

After that are any number of method implementations; in this case, these are
-caption and -photographer.

The @end statement at the very bottom ends the class implementation.

It’s easy to type @interface when you mean to use @implementation, so
be careful. Xcode usually fills this part in for you, but if you type it in
wrong by hand, you’ll see all sort of cryptic errors. Remember this: .h
has the @interface and .m has the @implementation.

The getters themselves are very simple—they just return the instance variable. I’m going
to move on to the setters, which I need to spend a bit more time explaining:

- (void) setCaption: (NSString*)input {

92 | Chapter 5: Basic Objective-C

 [caption autorelease];
 [input retain];
 caption = input;
}

- (void) setPhotographer: (NSString*)input {

 [photographer autorelease];
 [input retain];
 photographer = input;
}

A setter’s job is to swap the old value with the new value. Objective-C objects are
different than an int or float, though. When you an assign an object to a variable, it
doesn’t get the value (such as the number 12 or the string “Cupertino”); it gets a
reference to the object.

It’s as if somebody writes down her phone number on a piece of paper and hands it to
you. You don’t get the phone, you get a reference to it so that you can call it later.

In technical terms, an object variable is actually a pointer that refers to
the memory block where the object is. You can then “dial up” that
memory block to get the object, though Objective-C does that part for
you behind the scenes.

So instead of assigning values, a setter for an object variable actually assigns referen-
ces. It’s like scribbling out the phone number on the paper and writing a new one. For
example, this is the code inside the setter for the caption instance variable:

[caption autorelease];
[input retain];
caption = input;

I no longer need the old NSString object that caption refers to, so I call autorelease on
it. I then call retain on the input object because I’m going to assign it to the instance
variable and need it to stay around.

Finally, I set the caption instance variable to be equal to input. Because these are both
objects, the caption now refers to the same object that input does. I can simplify this,
though:

[caption autorelease];
caption = [input retain];

Because the retain method returns a reference to the object, I retain the new object
and assign it to the caption instance variable in one step.

This is very common in Cocoa programs. It may seem confusing, but it will make more
sense as you see examples in context. Don’t feel obligated to figure it all out now. You
can always come back to this section later to review.

Implementing a Class | 93

I use the -autorelease method here instead of -release for several dif-
ferent reasons (most of which are too involved to explain at this point),
but the most important is that caption and input might be the same
object. If that was true, and you were to -release the caption object, it
could immediately be freed and the next line of code would crash the
application. Using -autorelease guarantees that the object will stay
around at least until the setter is done running.

init
Classes usually have an init method to set initial values for its instance variables or do
other setup tasks.

- (id) init {

 if (self = [super init]) {

 [self setCaption:@"Default Caption"];
 [self setPhotographer:@"Default Photographer"];
 }

 return self;
}

Inside the if statement, there’s a single equals sign that assigns the result of
[super init] to self. The self variable refers to the object that the current method
belongs to. Usually a single equals sign inside an if statement is a typo, but this one
is actually intentional.

I combine the assignment and the test to make sure the assignment worked. You
use the super variable to call the superclass’s version of a method. You should always
call [super init] in your own init method so the superclass can do some basic
configuration for you. If [super init] fails for some reason, it will return nil, which
is equal to zero. That would prevent the code inside the brackets from running.

Although it looks like an advanced trick, this is the standard way to write an init
method. I’d usually try to steer you away from combining two actions into one
because it can be confusing, but this one is so common that it’s more confusing to
do something else.

You usually shouldn’t try to make up your own Objective-C conventions unless
you’re sure they’re substantially better than the ones in use. The thing that makes
large Cocoa projects (meaning hundreds of thousands of lines of code or more)
manageable is that most Objective-C code looks the same, so you don’t have to
constantly switch between different styles.

Instance variables are set to nil automatically, so inside the brackets, I set better
default values for caption and photographer. Some Cocoa programmers set the

94 | Chapter 5: Basic Objective-C

instance variables directly inside of -init, but I think using the setters is cleaner and
generally more predictable.

The last part of this method is the statement return self. Any init method you
create has to return self at the end. Your implementation calls the superclass version
of init and captures the result, so you need to actually return the new object to
whoever requested it.

Of course, you can get into a logical paradox as to how the method runs at all if self
is defined inside of it, but explaining the nature of self is outside of the scope of this
book.

Objective-C’s nil keyword is similar to NULL in other languages like C
and Java. The difference is that it’s perfectly safe to call methods on
nil. If any method that returns an object is called on nil, you will receive
a nil back. Methods that return primitive values like int or float will
return 0 or 0.0. This is slightly more complex for methods that return
structs, but this book does not cover that part of Objective-C. To keep
things simple, avoid calling methods that return structs on objects that
might be nil.

dealloc
The dealloc method is called on an object when it is being removed from memory. You
should add this method to your classes and clear references to all of your instance
variables that are objects:

- (void) dealloc {

 [caption release];
 [photographer release];

 [super dealloc];
}

The goal of Objective-C memory management is to balance every alloc or retain with
either a release or autorelease. We don’t need to use autorelease here, and the stand-
ard release is a bit faster. After you release the instance variables, call [super
dealloc] so the Objective-C runtime can actually free the memory. This should always
be the last line of your dealloc method. Another way to do this is to simply set the
instance variables to nil:

- (void) dealloc {

 [self setCaption:nil];
 [self setPhotographer:nil];

 [super dealloc];
}

Implementing a Class | 95

I think this is slightly safer, because any code that happens to try to access the instance
variable will get a nil instead of random memory. The setter will release the old value,
call retain on nil (which does nothing), and then continue on.

Some Cocoa programmers feel that it’s better to call -release on instance variables here
because the object might be in a different state inside -dealloc than it normally is. As
far as I know, -release is the most common style. In reality, either will probably work
fine.

The dealloc method is not called on objects if garbage collection is en-
abled. Instead, you can implement the finalize method. You usually
don’t need to clean up Objective-C objects in finalize, but you might
need to do other housekeeping tasks.

Example: PhotoInfo
Launch Xcode and click “Create a new Xcode project,” or choose File → New Project
from the menu. In the New Project window, click Application under the Mac OS X
section and select the Cocoa Application icon, as shown in Figure 5-2.

Figure 5-2. The New Project window in Xcode

96 | Chapter 5: Basic Objective-C

Click the Choose button, and you’ll be asked to select a location for the project. Go to
the CocoaBook folder you created at the beginning of the book, and create a new sub-
folder called ch05. Select the CocoaBook/ch05/ folder as the save location and enter
“PhotoInfo” as the project name. Click Save.

At this point, you can press Command-R to quickly build and run the application to
make sure that everything works. You should just see a blank window. Quit the test
application, or click the Tasks stop button in the Xcode toolbar.

This example uses the NSLog() function, which works just like printf() with the ex-
ception that you can provide a %@ marker for any object. This will cause NSLog() to call
the -description method on the object you pass in for that marker and display the
return value in the console.

Create a new Objective-C class file by choosing File → New File from the menu. In the
New File window (Figure 5-3), select Cocoa Class under the Mac OS X section, then
select the “Objective-C class” icon and click Next.

Figure 5-3. Creating a new Objective-C class file in Xcode

Name the file Photo.m, and you can accept all of the default options, as shown in
Figure 5-4. Click Finish.

Example: PhotoInfo | 97

Figure 5-4. Name the file Photo.m and accept all of the default options

Open Photo.h by clicking on it in the Xcode sidebar. If you had a group selected when
you chose New File, the class files may be in that group. Type the code in Exam-
ple 5-1 into Photo.h.

Example 5-1. Photo.h

#import <Cocoa/Cocoa.h>

@interface Photo : NSObject {
 NSString* caption;
 NSString* photographer;
}

+ (Photo*) photo;

- (NSString*) caption;
- (NSString*) photographer;

- (void) setCaption: (NSString*)input;
- (void) setPhotographer: (NSString*)input;

@end

98 | Chapter 5: Basic Objective-C

Now click Photo.m in the Xcode sidebar to start editing it, and type the code from
Example 5-2 into the file.

Example 5-2. Photo.m

#import "Photo.h"

@implementation Photo

- (id) init {

 if (self = [super init]) {

 [self setCaption:@"Default Caption"];
 [self setPhotographer:@"Default Photographer"];
 }

 return self;
}

+ (Photo*) photo {

 Photo* newPhoto = [[Photo alloc] init];
 return [newPhoto autorelease];
}

- (NSString*) caption {
 return caption;
}

- (NSString*) photographer {
 return photographer;
}

- (void) setCaption: (NSString*)input {

 [caption autorelease];
 caption = [input retain];
}

- (void) setPhotographer: (NSString*)input {

 [photographer autorelease];
 photographer = [input retain];
}

- (void) dealloc {

 [self setCaption:nil];
 [self setPhotographer:nil];

 [super dealloc];
}

@end

Example: PhotoInfo | 99

You’re almost done. Next, in the Classes group in the Xcode sidebar, open the
PhotoInfoAppDelegate.m file. This class is automatically generated by Xcode when you
create the project, and acts as a sort of “control center” of the application. The one
built-in method is -applicationDidFinishLaunching:, which is the first thing that is
called when the application is actually running and ready to do things. Type the Ex-
ample 5-3 version of -applicationDidFinishLaunching: into PhotoInfoAppDelegate.m,
completely replacing the existing version of -applicationDidFinishLaunching: but leav-
ing the rest of the file untouched.

Example 5-3. PhotoInfoAppDelegate.m

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 Photo* photo1 = [[Photo alloc] init];

 NSLog(@"photo1 caption: %@", photo1.caption);
 NSLog(@"photo1 photographer: %@", photo1.photographer);

 photo1.caption = @"Overlooking the Golden Gate Bridge";
 photo1.photographer = @"(Your name here)";

 NSLog(@"photo1 caption: %@", photo1.caption);
 NSLog(@"photo1 photographer: %@", photo1.photographer);

 [photo1 release];

 Photo* photo2 = [Photo photo];

 NSLog(@"photo2 caption: %@", photo2.caption);
 NSLog(@"photo2 photographer: %@", photo2.photographer);

 photo2.caption = @"Moffett Field";
 photo2.photographer = @"(Your name here)";

 NSLog(@"photo2 caption: %@", photo2.caption);
 NSLog(@"photo2 photographer: %@", photo2.photographer);
}

You will see a few things in the file that you don’t recognize yet, such
as the @synthesize statement. I’ll cover that in the next chapter.

Finally, add the #import statement for the Photo class header at the top of
PhotoInfoAppDelegate.m, as shown in Example 5-4.

100 | Chapter 5: Basic Objective-C

Example 5-4. Top of PhotoInfoAppDelegate.m

#import "PhotoInfoAppDelegate.h"
#import "Photo.h"

@implementation PhotoInfoAppDelegate

Now save any files that you’ve edited and run the project by pressing Command-R. If
you see any errors, double-check that you typed in the code exactly as shown previously.
When you run the application, the main window will still be blank, but you can see
the output from NSLog() in the console by going back to Xcode and pressing Command-
Shift-R:

photo1 caption: Default Caption
photo1 photographer: Default Photographer
photo1 caption: Overlooking the Golden Gate Bridge
photo1 photographer: (Your name here)
photo2 caption: Default Caption
photo2 photographer: Default Photographer
photo2 caption: Moffett Field
photo2 photographer: (Your name here)

Not all of the code snippets in this book are set up as full examples, but if you’d
like to try them out as you go, you can paste them into the -application
DidFinishLaunching: method here and rerun. This won’t work with every single code
snippet in the book because some depend on other pieces of code (in which case you
would see a build error), but it should work in the vast majority of cases.

Example: PhotoInfo | 101

CHAPTER 6

More Objective-C

Now that all of the basic building blocks are in place, I can show you some of the more
technical details of how Objective-C works. I’m going to fine-tune your code, talk more
about reference counting, and then look at some unique features.

Most of the sections in this chapter describe techniques that you will use on a regular
basis. A few of the topics are more advanced and you may not use them often, but if
you need them, you really need them. All of them help you understand how Cocoa
works.

More on Memory Management
In Chapter 5, I walked you through Objective-C’s traditional memory management
system, called reference counting. Each object has a retain count, which is ostensibly
the number of other things that are currently using it. The good news is that you don’t
need to constantly check the retain count. You need to keep track of only your own
references; Cocoa will do the rest.

You can call the retainCount method on any object, but don’t read too
much into what it returns. It may not always reflect the exact number
of retains and releases you have issued. Cocoa intervenes in certain
cases.

The retain count starts at 1 when you create an object with alloc. It goes up and down
as you call retain, release, and autorelease. When the retain count reaches 0, the
Objective-C runtime will call dealloc on the object so that it can be removed from
memory (see Figure 6-1).

The point of all this is that you’re trying to balance all of your memory management
calls. So for every alloc or retain, you must issue exactly one call to either release or
autorelease.

103

That’s the most common explanation of Cocoa memory management, and I didn’t
want to leave out such a crucial bit of lore. That said, I think it’s easier to explain this
in terms of what you need to do instead of how it works internally.

In plain terms, there are usually* only two reasons that you would create an object in
a Cocoa application:

• To keep it as an instance variable (long term)

• To use it temporarily inside a method (short term)

In most cases, the setter method for an instance variable should just autorelease the
old object and retain the new one. You then just make sure to release it in dealloc,
as well:

- (void) setTotalAmount: (NSNumber*)input {

 [totalAmount autorelease];
 totalAmount = [input retain];
}

- (void) dealloc {

 [totalAmount release];
 [super dealloc];
}

That just leaves the case of a “short-term” object that you need only temporarily. For
this scenario, there’s only one rule: if you create an object with alloc or copy, then you
need to call release or autorelease on it by the end of the method. If you create an
object any other way, do nothing:

NSNumber* value1 = [[NSNumber alloc] initWithFloat:8.75];
NSNumber* value2 = [NSNumber numberWithFloat:14.78];

Figure 6-1. When the retain count reaches 0, the dealloc method is called and the object is removed
from memory

* The word “usually” is important here. There are cases where things are a bit more complex, but these basic
rules work the vast majority of the time, and the others are fairly easy to pick up as you encounter them.

104 | Chapter 6: More Objective-C

// only release value1, not value2.
[value1 release];

Here’s a combination case: start with a “short-term” object and set it as a “long-term”
instance variable:

// create a number and set it as the 'total' instance variable.
NSNumber* value1 = [[NSNumber alloc] initWithFloat:8.75];
[self setTotal:value1];

// create another number and set it as the new 'total'.
NSNumber* value2 = [NSNumber numberWithFloat:14.78];
[self setTotal:value2];

// only release the object created with 'alloc'.
[value1 release];

Notice how the rules for managing the “short-term” references are exactly the same,
regardless of whether you end up setting them as instance variables. If you removed
the lines that contain setTotal, the code would still be correct.

The setters are self-contained, so you don’t need to think about how they are managing
memory internally. If you understand this, you understand 90 percent of everything
you need to know about Objective-C memory management.

The Life of an Instance Variable
To help put all of these concepts together, here’s a brief walkthrough of all of the stages
of an instance variable. For the discussion, I’ll call this instance variable title, and it
will be an NSString.

1. Because it’s an instance variable, title starts out as nil.

2. The setter for title is called inside the parent object’s -init method. The setter
autoreleases the existing object (nil, which does nothing), and retains the new
NSString object: @"Cupertino".

3. At some point while the program is running, the user types a new value into a text
field, which triggers the setter to be called again with a new NSString object:
@"Sunnyvale". The old value is autoreleased, and the new object is retained. The
old object may get deallocated at this point, but you don’t have to think about that;
you’ve released your reference to it.

4. Finally, when -dealloc is called on the parent object, it calls the setter for title
one last time using a input value of nil. The setter autoreleases the old value, and
retains the input value (nil, which does nothing). The -dealloc method could also
just call -release on title directly, which usually has the same effect.

More on Memory Management | 105

Copying Objects
Many classes support copying with the -copy method, which creates a new instance of
an object with most the same data as the original. I say “most” because certain values
should not be copied, such as a unique identifier. You manage the memory of a copy
just as if you had created a new object with +alloc:

NSString* originalString = [[NSString alloc] init];
NSString* copyOfString = [originalString copy];

[originalString release];
[copyOfString release];

Classes you create will usually not support copying until you implement the
-copyWithZone: method. Here’s a simple implementation for the Photo class from the
previous chapter.

- (id) copyWithZone:(NSZone *)zone {

 Photo* newPhoto = [[Photo allocWithZone:zone] init];
 newPhoto.caption = self.caption;
 newPhoto.photographer = self.photographer;
 return newPhoto;
}

You can now make copies of Photo objects:

Photo* photo1 = [Photo photo];
photo1.caption = @"Golden Gate Park";
photo1.photographer = @"(Your name here)";

NSLog(@"photo1 caption: %@", photo1.caption);
NSLog(@"photo1 photographer: %@", photo1.photographer);

Photo* photo2 = [photo1 copy];
NSLog(@"photo2 caption: %@", photo2.caption);
NSLog(@"photo2 photographer: %@", photo2.photographer);
[photo2 release];

Here’s the result in the console:

photo1 caption: Golden Gate Park
photo1 photographer: (Your name here)
photo2 caption: Golden Gate Park
photo2 photographer: (Your name here)

The NSZone class represents a “memory zone.” The idea is to keep related objects close
together in memory to improve performance when system resources are constrained.
You’ll rarely see this class used outside of the -copyWithZone: method.

106 | Chapter 6: More Objective-C

Class Name Prefixes
Objective-C does not implement namespaces, which means that all class names and
global variables are in the same global pool. This means that if you are creating a class
with a very general name, such as Image, you want to add a custom prefix to avoid
colliding with classes built into Cocoa, as well as other third-party frameworks you
may decide to use. If you collide with a built-in class name when compiling, you will
see a build error in Xcode (Figure 6-2).

Figure 6-2. A build error in Xcode describing a duplicate class name

To avoid this, prefix your class names with something specific to you or your applica-
tion. For example, if my application is called “Photo Stacks,” I could prefix all of the
classes in the project with PS. So the Image class would instead be called PSImage. If
wanted to reuse this class in several chapters of this book, I could also use the prefix
CB for Cocoa Book. The exact prefix doesn’t matter, as long as it’s unique. It’s better
to do this from the beginning rather than going back and renaming your classes later.

Properties
When I added the accessor methods for caption and photographer in the previous
chapter, you might have noticed that the same code was repeated in the accessor meth-
ods for each class. Properties are a feature of Objective-C that, among other things,
allow you to automatically create accessors in your implementation (.m file). Here’s
the original class declaration (Photo.h):

Properties | 107

#import <Cocoa/Cocoa.h>

@interface Photo : NSObject {
 NSString* caption;
 NSString* photographer;
}

+ (Photo*) photo;

- (NSString*) caption;
- (NSString*) photographer;

- (void) setCaption: (NSString*)input;
- (void) setPhotographer: (NSString*)input;

@end

Here’s what the class declaration looks like once I convert it to use properties:

#import <Cocoa/Cocoa.h>

@interface Photo : NSObject {
 NSString* caption;
 NSString* photographer;
}

+ (Photo*) photo;

@property (retain) NSString* caption;
@property (retain) NSString* photographer;

@end

The @property directive declares a property. The retain in the parentheses states that
the setter should retain the input value, and the rest of the line simply specifies the
type and the name of the property. Properties are not methods—they’re a way to declare
data that the object stores. But you can use them to generate accessors in the imple-
mentation file.

If you are creating software exclusively for 64-bit Macs (see
“64-Bit Objective-C” on page 111), you can use @property declarations
to automatically generate instance variables as well, eliminating the last
bits of redundant code. For compatibility reasons, this is not available
for 32-bit applications.

Here’s the implementation of the class (Photo.m):

#import "Photo.h"

@implementation Photo

 @synthesize caption;
 @synthesize photographer;

108 | Chapter 6: More Objective-C

- (id) init {

 if (self = [super init]) {

 [self setCaption:@"Default Caption"];
 [self setPhotographer:@"Default Photographer"];
 }

 return self;
}

+ (Photo*) photo {

 Photo* newPhoto = [[Photo alloc] init];
 return [newPhoto autorelease];
}

- (void) dealloc {

 [caption release];
 [photographer release];
 [super dealloc];
}

@end

The @synthesize directive automatically generates the setters and getters, so all you
have to implement in this case is the dealloc method. What’s particularly nice is that
the system will generate only accessors that you don’t create yourself. So if you use
@synthesize and then add your own custom getter, the compiler will generate only the
setter.

Property Options
The property declarations give you a few options for controlling how the accessors are
generated. The simplest version of a property looks like this:

@property id name;

The most complex version looks like this:

@property (
 retain,
 getter=firstName, setter=setFirstName,
 nonatomic,
 readwrite
) NSString* name;

This describes the memory management that will be used by the setter. The options
are retain, copy, and assign. For most object properties, use retain or assign, which
work just like the methods by the same names. The assign keyword does no memory

Properties | 109

management at all. It just sets the property to the given value. Use this for nonobject
values like float, int, and BOOL.

If you don’t specify which memory management option you want, the property will
default to assign. This is usually not what you want unless you’re using garbage
collection, so look here first if your application is crashing. Also, if you implement
a custom setter, you should respect the keyword used here. So if you use copy, make
sure your custom setter uses -copy and not -retain.

This allows you to specify the getter and setter names that will be generated. One
of the most common uses for this is to wrap a BOOL property like enabled in a getter
called isEnabled, which is better Objective-C style.

By default, all properties are atomic, meaning that access to that property is thread-
safe. It’s effectively the same as putting a lock around instance variable access in the
getter and setter. The official documentation points out that this doesn’t mean the
entire class is thread-safe, though. In a conventional, non-garbage-collected envi-
ronment, there is a performance cost to make this work. If you’re not using threads,
you can specify nonatomic for better performance. If you’re using garbage collection,
there’s no overhead for using atomic properties. Thread safety is an advanced topic
that is not covered in this book.

By default, properties are readwrite, which means that other classes can freely get
and set the value. Some properties are just designed to provide information, such as
an application version number. If you don’t want any outside classes to set the
property value, you can specify readonly.

This is the property type and name.

In most cases, the defaults work fine. For properties that represent object values,
though, you almost always want to at least specify retain or copy.

Options for accessor implementations

You have two main options for properties on the implementation side. By default, the
@synthesize directive looks for an instance variable with the same name as the property.
For example:

@interface Photo : NSObject {
 NSString* name;
 NSString* storedName;
}
@property (retain) NSString* name;
@end

@implementation Photo
@synthesize name;
@end

If I want the accessors for the name property to use the storedNamed instance variable
instead, I can specify it manually:

110 | Chapter 6: More Objective-C

@implementation Photo
@synthesize name=storedName;
@end

In some advanced cases, you may know that accessors for a property will be generated
while the program is running, but you still want to use the property in code. To compile
that code without errors or warnings, you can use @dynamic instead of the
@synthesize directive:

@implementation Photo
@dynamic name;
@end

This effectively disables all compiler-generated warnings about accessors for this prop-
erty. They will not be generated for you, and you don’t have to implement them yourself
either. However, if the method is not generated as the program is running, an error will
be raised, which will probably prevent the program from running correctly.

64-Bit Objective-C
Most of the Macs sold since 2006 are 64-bit capable. Starting with Snow Leopard, most
of the built-in Mac OS X applications run in 64-bit mode (the fact that the kernel itself
will start up in 32-bit mode on many Macs does not affect this; it’s the CPU architecture
that matters). That opens up a lot of possibilities for processing power in general, but
it has special meaning for Cocoa programmers. The 64-bit version of Objective-C re-
vamps the low-level bits of the runtime to improve speed and overall flexibility. A few
highlights:

Synthesized instance variables
You can use properties to generate both accessor methods and the instance variable
itself. Here’s the 64-bit version of the Photo.h file:

#import <Cocoa/Cocoa.h>

@interface Photo : NSObject
@property (retain) NSString* caption;
@property (retain) NSString* photographer;
@end

Yes, feel free to offer this feature a round of applause. Keep in mind that you can
still declare the instance variables manually if you want—you just don’t have to.

Faster method lookup
The revamped runtime allows a set number of commonly used methods to be
stored in an extra-fast cache. For the most part, this is automatic, so all you know
is that your code runs faster.

Unified geometry variable types
There are two sets of geometry types on the Mac: those defined by Cocoa, and
those defined by a framework called CoreGraphics (which is used by the iPhone

64-Bit Objective-C | 111

SDK as well). In a 32-bit app, you need to convert between these types manually.
In 64-bit, you can use them interchangeably.

Other than these additional features, writing 64-bit Cocoa apps is basically the same
as writing 32-bit apps. By design, Cocoa and Objective-C abstract you from most of
the lower-level details. There are some differences with C primitive types, though. You
can find out about Cocoa’s solution to this in Chapter 7.

The Snow Leopard kernel (the very core of the system) starts up in 32-
bit mode by default on some machines for compatibility reasons, but
this doesn’t directly affect you as a Cocoa developer. The only require-
ment for running 64-bit Cocoa apps is that the Mac itself must be 64-
bit capable.

Enabling 64-Bit
Xcode creates hybrid 32-bit/64-bit projects by default on modern hardware. To check
which architecture a project is currently using, highlight the Project icon in the sidebar
of the main Xcode project window, and choose File → Get Info (or Command-I) to
open the Inspector. Click on the Build tab to see the project’s build settings, as shown
in Figure 6-3.

Figure 6-3. The Architectures option in Project Inspector’s Build tab; the Base SDK is set to Mac OS
X 10.6, but this works for 10.5, too

This project is set up for “32/64-bit Universal,” which means that Xcode will create a
single application that runs on Intel or PowerPC-based Macs, including 32-bit and 64-
bit versions.†

This hybrid setting is basically a compromise, though. Your software will run on most
Macs, and you will get a speed boost on newer machines, but you won’t be able to use
64-bit specific features in your project. This means you won’t get synthesized instance
variables or unified Cocoa/CoreGraphics types. To do that, you need to change this
field to 64-bit Intel.

† The term “universal” means that the app will run on both Intel and PowerPC chips. It’s not directly related
to 32-bit versus 64-bit.

112 | Chapter 6: More Objective-C

Once you’ve done that, the compiled software will run only on Macs introduced since
2006. Some early models of MacBook Pro, for example, will not be able to run the
software. You can always go back and change this setting later, but you might have to
make some changes to your code to restore 32-bit compatibility.

There’s a subtle point here. Even if the Architectures field includes both
32-bit and 64-bit, the Build Active Architecture Only checkbox will
override that and compile for your machine architecture only. This
checkbox is on by default in the Debug configuration, but off in Release.

You can leave this checkbox on during development to shorten compile
times, but switch back to the Release target occasionally to make
sure that everything builds correctly. See “Preparing for Re-
lease” on page 303 for details on how to do this.

Should I Use 64-Bit?
The 64-bit version of Objective-C has some compelling advantages: better overall per-
formance, ability to handle large amounts of data, and less code. You can get some
benefits by building hybrid apps, but the real fun starts when you can write software
built specifically for 64-bit.

So when should you starting doing that? There’s no single answer. The conservative
view is that breaking 32-bit compatibility limits your potential pool of users. However,
there are a few factors to consider:

High-end markets
If your application addresses a specialized high-end need—such as scientific mod-
eling or video production—modern hardware may be a cost of doing business. In
fact, those who don’t upgrade are probably less likely to pay for high-end software.

Enthusiast users
If you’re writing software that appeals to “alpha geeks,” you can usually assume
more modern hardware because they’re thinking about upgrades on a regular basis.
Many factor new computer purchases into their budgets, particularly if their jobs
are focused on technology.

Differentiation
If you’re entering a market with an established product backed by a large company,
you might be able to make an impact by doing something the company can’t do:
target modern hardware. Often big companies do not want to risk cutting existing
customers out of their upgrade revenue, but if you’re starting from zero, you have
nothing to lose. You can create a faster, more streamlined application that is de-
signed for 64-bit.

64-Bit Objective-C | 113

Platform migration
Snow Leopard runs on Intel Macs only. This will likely be a catalyst that sparks a
new upgrade cycle for some users who have PowerPC hardware. When they do
upgrade, they will be buying 64-bit machines.

All of that said, there are a lot of computers in use that are not 64-bit capable, partic-
ularly those owned by casual users and educational institutions. If that’s the type of
user you’re targeting, you may want to support 32-bit machines as well.

All Further Examples Assume 64-Bit
Because of the simpler syntax, performance improvements, and rapid adoption of 64-
bit Macs, the rest of the examples you’ll read here assume you’re compiling for 64-bit
Macs. If you need to write apps for 32-bit Macs or the iPhone, iPad, or iPod touch, the
main difference is that you will need to declare instance variables separately from
properties.

So if you see an example like this:

@interface Bookmark : NSObject
@property (retain) NSString* siteName;
@property (retain) NSString* url;
@end

change it to this to make it compatible with 32-bit Macs (and iPhone OS):

@interface Bookmark : NSObject {
 NSString* siteName;
 NSString* url;
}
@property (retain) NSString* siteName;
@property (retain) NSString* url;
@end

If you want to use the 64-bit conveniences while still targeting 32-bit
Macs, and don’t need to share code with other projects, you might be
able to use the NS_BUILD_32_LIKE_64 build setting in Xcode. See “Bridge
Cocoa and CoreGraphics Geometry” for more.

Categories
Usually when you want to change the way a class works, you create a subclass and
override methods. Some classes are difficult to subclass, though; even if you create a
custom version of NSString, for example, Cocoa’s built-in classes won’t know to use it.

Objective-C’s solution to this is categories, which allow you to add new methods to
existing classes without subclassing them. A subclass is a direct descendant of the orig-
inal, but a category method is sort of “bolted onto” the existing class (see Figure 6-4).

114 | Chapter 6: More Objective-C

http://theocacao.com/document.page/552
http://theocacao.com/document.page/552

If I wanted to add a method to NSString to determine if its contents are a URL, I’d use
an interface declaration like Example 6-1.

Example 6-1. NSString-Utilities.h

#import <Cocoa/Cocoa.h>

@interface NSString (Utilities)
- (BOOL) isURL;
@end

This is similar to a class declaration, except there’s no section for instance variables.
Instead of providing the name of a new subclass, you provide the name of the class you
want to add methods to, and then give the category a unique name in the parentheses.
The name can be whatever you want, though it should communicate what the methods
inside do.

Example 6-2 shows the implementation of the isURL category method. This is not a
good implementation of URL detection; I’m just using it to demonstrate how categories
work.

Example 6-2. NSString-Utilities.m

#import "NSString-Utilities.h"

@implementation NSString (Utilities)

- (BOOL) isURL {

 if ([self hasPrefix:@"http://"])
 return YES;
 else
 return NO;
}

Figure 6-4. Categories are attached to a class, and inherited by the subclasses

Categories | 115

@end

Now you can use this method on any NSString object (Example 6-3).

Example 6-3. UseNSStringCategory.m

NSString* string1 = @"http://cocoabook.com/";
NSString* string2 = @"Cocoa Book";

if ([string1 isURL]) {
 NSLog (@"string1 is a URL");
}

if ([string2 isURL]) {
 NSLog (@"string2 is a URL");
}

This example would display the following in the console:

string1 is a URL

It’s common to include the category name in the filename, so the cate-
gory files are called NSString-Utilities.h and NSString-Utilities.m.

Once a category method is added to a class by Objective-C, the method is available to
all instances of the class, even the ones you didn’t specifically create. The main limita-
tion of adding category methods compared to subclassing is that you can’t add instance
variables to the class.

You can also use categories to replace existing methods on classes. This is an extremely
powerful feature, but I can’t overemphasize how important it is to be careful with this.
If you use a category to replace the NSObject version of -init, for example, your appli-
cation will probably not run long enough to see the main window show up. Adding
methods to existing classes is generally safe; replacing them must be done very carefully
and only with good reason.

If two categories implement or override the same method for the same
class, it’s undefined which one will actually be accepted. You also must
be careful not to accidentally override a method on a built-in Cocoa class
by giving your method the same name—though that applies to sub-
classes, too.

Categories for Private Methods
Many Cocoa programmers use categories to declare private methods. For example, if
you created methods for the Photo class to return a default caption (because the default

116 | Chapter 6: More Objective-C

caption affects every Photo instance, it is declared as a class method) and log the pho-
tographer to the console, you could declare them using categories, like in Example 6-4.

Example 6-4. Excerpt of Photo.m

@interface Photo (Private)
+ (NSString*) defaultCaption;
- (void) logPhotographer;
@end

Objective-C does not currently have a formal “private” designation for methods, so the
convention is simply not to put the category declaration in the main header file. A
common way to do this is to declare the category in the actual Photo.m file, above the
@implementation block (rather than putting the methods in a separate file, as in Exam-
ple 6-4). The method implementations themselves, though, are mixed in with the rest
of the class. Example 6-5 contains an example.

Example 6-5. Excerpt of Photo.m

#import "Photo.h"

@interface Photo (Private)
+ (NSString*) defaultCaption;
- (void) logPhotographer;
@end

@implementation Photo

 @synthesize caption;
 @synthesize photographer;

- (void) dealloc {

 [caption release];
 [photographer release];
 [super dealloc];
}

// private methods.

+ (NSString*) defaultCaption {
 return @"Untitled Photo";
}

- (void) logPhotographer {
 NSLog(@"Photographer: %@", photographer);
}

@end

Here’s an example of using these methods inside the class:

Categories | 117

- (id) init {

 if (self = [super init]) {

 self.caption = [Photo defaultCaption];
 }
 return self;
}

- (void) setPhotographer: (NSString*)input {

 [photographer autorelease];
 photographer = [input retain];
 [self logPhotographer];
}

I used [Photo defaultCaption] here for clarity, but usually it’s better to use [[self
class] defaultCaption] inside of the class. The reason for this is to ensure that the
same code will work for subclasses as well. If you hardcode the class to Photo, you
ignore any alternative versions of +defaultCaption that a subclass may provide. This
means that the subclass would have to manually set the initial caption again in its own
version of the -init method. If you use [[self class] defaultCaption], though, any
new versions provided by subclasses will be used automatically.

Declaring a method outside of the main header file discourages you or
other programmers on your team from writing code that calls that
method incorrectly. By limiting the number of public methods, you
make the intent of the class more obvious, while making it easier to
change the internal workings later.

Introspection
Sometimes you want to find out details about an object beyond what it offers as prop-
erties, such as which class it belongs to or which methods it implements. This is called
introspection. For example, if you want to know which class an object belongs to, you
can use the -isMemberOfClass: method:

- (id) currentObject {
 return [Photo photo];
}

- (void) checkObjectType {

 id object = [self currentObject];
 BOOL isPhoto = [object isMemberOfClass: [Photo class]];

 if (isPhoto)
 NSLog(@"object is an instance of Photo");
}

118 | Chapter 6: More Objective-C

which results in:

object is an instance of Photo

If you are testing this with the PhotoInfo Xcode project from Chap-
ter 5, you can put these methods into PhotoInfoAppDelegate.m and
add a call to [self checkObjectType]; to the -applicationDidFin
ishLaunching: method.

This example uses the +class method, which returns a Class object (as strange as that
sounds). The -isMemberOfClass: method returns YES only if the object is a member of
the exact class you give it—it doesn’t work on subclasses.

If you want to know whether an object is a member of a class or any of the subclasses
of that class, you can use the -isKindOfClass: method. For example, consider the
Movie class, which inherits from the Media class:

@interface Media : NSObject
@property (copy) NSString* author;
@end

@interface Movie : Media
@property float framesPerSecond;
@end

@implementation Media
@synthesize author;
@end

@implementation Movie
@synthesize framesPerSecond;
@end

Now, here’s a possible scenario for these classes:

- (id) currentObject {
 return [[[Movie alloc] init] autorelease];
}

- (void) checkObjectType {

 id object = [self currentObject];

 Class mediaClass = [Media class];
 BOOL isMedia = [object isMemberOfClass: mediaClass];
 BOOL isMediaOrSubclass = [object isKindOfClass: mediaClass];

 if (isMedia) {
 NSLog(@"object is an instance of Media");
 }

 if (isMediaOrSubclass) {
 NSLog(@"object is an instance of Media or a subclass");

Introspection | 119

 }
}

Here’s the result in the console:

object is an instance of Media or a subclass

This is especially important to know about when working with Cocoa’s built-in classes.
In some cases, you may not get an instance of the exact class you specify, possibly for
performance or compatibility reasons. To demonstrate this, I’ll use the -className
method on an instance of NSString:

id object = [NSString string];
BOOL isString = [object isKindOfClass: [NSString class]];

if (isString)
 NSLog(@"object is a string: %@", [object className]);

You might be surprised by the result:

object is a string: NSCFString

I’ll go into more detail about NSString in Chapter 7, and explain how it relates to this
class name. The message here, though, is that you usually want to use
-isKindOfClass: unless you are certain you need a specific class.

That said, expert Cocoa programmers usually don’t pay much attention to which class
an object belongs to. Instead, they just want to know which methods it implements.
One way to do this is by using protocols.

Protocols
A protocol allows you to specify that you want an object that responds to a certain
group of methods, regardless of which class the object belongs to. This is really helpful
when you want to use different kinds of objects together, even though they don’t inherit
from the same parent. For example, imagine you’re creating an application launcher,
and want to display both photos and website bookmarks. The classes look like this:

@interface Media : NSObject
@property (copy) NSString* author;
@end

@interface Photo : Media
@property (copy) NSString* caption;
@property (copy) NSString* photographer;
@end

@interface Bookmark : NSObject
@property (copy) NSString* siteName;
@property (copy) NSString* url;
@end

@implementation Media

120 | Chapter 6: More Objective-C

@synthesize author;
@end

@implementation Photo
@synthesize caption;
@synthesize photographer;
@end

@implementation Bookmark
@synthesize siteName;
@synthesize url;
@end

And here’s the method to add an item to the application launcher window:

- (void) addLauncherItem:(id)newItem;

It doesn’t make sense to specify a single class, because you want both to work. You
can’t define a method twice, so this will just generate a build error:

// INCORRECT: this will generate an error.
- (void) addLauncherItem: (Photo*)newItem;
- (void) addLauncherItem: (Bookmark*)newItem;

Another way to do this is to make both classes inherit from the same superclass, such
as LauncherItem, but this is very rigid design, because the Photo and Bookmark classes
may do many things besides appearing in the launcher window. It would be like saying
a person who buys clothes occasionally is a “clothing buyer,” but that’s a very restrictive
definition. Instead, that person is one who buys clothes in addition to many other things.

You could just leave the input type as id, but it might be nice to make sure that the
class supports the methods you’re trying to call on it ahead of time. The reality is that
the class isn’t that important. I just need to know that an object will provide me some
basic information. This is where protocols come in. I can create a list of methods I want
an object to implement without specifying any one class:

@protocol IconViewInfo <NSObject>
- (NSString*) title;
- (NSString*) fileName;
- (NSString*) summary;
@optional
- (NSString*) author;
- (id) previewData;
@end

This protocol definition lists the methods that any class that claims to support the
protocol must implement. This protocol inherits from the NSObject protocol (yes, it’s
both a class and a protocol), which allows me to use -respondsToSelector: and other
common methods. Most of the methods I added are required, but the two methods
below the @optional line are not.

Now I can use this protocol in my method definition:

Protocols | 121

- (void) addLauncherItem:(id <IconViewInfo>)newItem {
 NSLog(@"Title: %@, Filename: %@, Summary: %@",
 [newItem title], [newItem fileName], [newItem summary]);
}

I’ll also update my class definitions to declare that they conform to the IconViewInfo
protocol:

@interface Media : NSObject
@property (copy) NSString* author;
@end

@interface Photo : Media <IconViewInfo>
@property (copy) NSString* caption;
@property (copy) NSString* photographer;
@end

@interface Bookmark : NSObject <IconViewInfo>
@property (copy) NSString* siteName;
@property (copy) NSString* url;
@end

Each class can implement the methods using the data that it already has:

@implementation Media
@synthesize author;
@end

@implementation Photo

@synthesize caption;
@synthesize photographer;

-(NSString *) title {
 return self.caption;
}

-(NSString *) fileName {
 return [self.caption stringByAppendingPathExtension:@"jpg"];
}

-(NSString *) summary {
 return [NSString stringWithFormat:
 @"'%@' by %@", self.caption, self.photographer];
}
@end

@implementation Bookmark
@synthesize siteName;
@synthesize url;

-(NSString *) title {
 return self.siteName;
}

-(NSString *) fileName {

122 | Chapter 6: More Objective-C

 return [self.siteName stringByAppendingPathExtension:@"webloc"];
}

-(NSString *) summary {
 return [NSString stringWithFormat:
 @"'%@' at %@", self.siteName, self.url];
}
@end

This code creates a bookmark and a photo, and passes them both to addLauncherItem::

Bookmark *bookmarkItem = [[Bookmark alloc] init];
bookmarkItem.siteName = @"O'Reilly Media, Inc.";
bookmarkItem.url = @"http://www.oreilly.com/";
[self addLauncherItem: bookmarkItem];

Photo *photoItem = [[Photo alloc] init];
photoItem.caption = @"Big Tree";
photoItem.photographer = @"That dude who borrowed my camera.";
[self addLauncherItem: photoItem];

This code would display the following in the Xcode console:

Title: O'Reilly Media, Inc., Filename: O'Reilly Media, Inc..webloc,
 Summary: 'O'Reilly Media, Inc.' at http://www.oreilly.com
Title: Big tree, Filename: Big tree.jpg,
 Summary: 'Big tree' by That dude who borrowed my camera

One of the most interesting aspects of protocols is that you can take an existing class,
like NSString, and add category methods to it so that it conforms to the protocol—all
without subclassing. Just declare the required methods in a category and add the pro-
tocol definition at the end:

@interface NSString (IconView) <IconViewInfo>
- (NSString*) title;
- (NSString*) fileName;
- (NSString*) summary;
@end

@implementation NSString (IconView)

- (NSString*) title {
 return self;
}

- (NSString*) fileName {
 return [self stringByAppendingPathExtension:@"txt"];
}

- (NSString*) summary {
 return [@"Summary: " stringByAppendingString: self];
}

@end

Protocols | 123

This is another way to reduce the number of classes in your project. Remember, less
code means that it’s easier to understand; easier to understand is easier to improve; and
improved software always makes the user happy.

Dynamic Messaging
Because Objective-C is a dynamic language, you can store method names (or, techni-
cally, message names) as variables and pass them between different objects. In Objec-
tive-C, the term for a method name is a selector, which is a SEL value type. You can
either create a selector using the @selector() syntax, or you can use the
NSSelectorFromString() function:

SEL homeSelector = @selector(loadHomeScreen:);

NSString* selectorName = @"loadPreviewScreen:";
SEL previewSelector = NSSelectorFromString(selectorName);

If you’ve written C programs before, selectors may seem like function
pointers. The idea is similar, but selectors are a bit more flexible, because
they aren’t linked to a specific class or function implementation.

Selectors must include the entire method name, but they do not include the type in-
formation. For example, here’s a method built into Cocoa:

- (NSComparisonResult) compare: (NSString *)string
 options: (NSStringCompareOptions)mask
 range: (NSRange)compareRange;

A selector for this method looks like this:

SEL compareSelector = @selector(compare:options:range:);

Of course, you want to include the colon at the end of the selector only if the method
actually expects an input value. For example, here’s the -caption method and its se-
lector. It doesn’t take an input value, so the selector does not have a colon at the end.

- (NSString*) caption;

SEL captionSelector = @selector(caption);

Selectors open up a world of options for designing the way your code works. For ex-
ample, if you want to create a text file with a list of methods to call on an object, convert
each line of the file into a selector using NSSelectorFromString(). This can help create
scripting tools or support plug-ins for your application.

You can also use selectors to see whether an object implements a particular method
before calling it. This helps you avoid errors while your program is running, and can
make your application design more flexible. Cocoa uses this feature of Objective-C
extensively to do things like automatically disable menu items if your application

124 | Chapter 6: More Objective-C

doesn’t support certain features and determine which control should respond to a user
action.

Using Selectors to Call Methods
Once you have a method selector, you can call that method on an object using
-performSelector:. If you’re calling the method on another object (in other words, not
self), you’ll often want to use the -respondsToSelector: method first to make sure the
object will actually understand it.

For the purpose of this example, let’s assume that the Photo and Album classes look like
this:

@interface Photo : NSObject
- (NSString*) caption;
- (void) setAlbum:(Album*)album;
@end

@interface Album : NSObject
+ (id) defaultAlbum;
@end

Here are three examples of using -respondsToSelector: and -performSelector: to see
whether an object responds to a method, and then actually calling the method if it does:

Photo* myPhoto = [[Photo alloc] init];
Album* myAlbum = [[Album alloc] init];

SEL captionSelector = @selector(caption);
SEL albumSelector = @selector(setAlbum:);
SEL unknownSelector = @selector(yeahThisMethodDoesntActuallyExist);

if ([myPhoto respondsToSelector: captionSelector]) {

 NSLog (@"Calling '%@'", NSStringFromSelector(captionSelector));
 NSString* caption = [myPhoto performSelector:captionSelector];
 NSLog (@"Photo caption: '%@'", caption);
}

if ([myPhoto respondsToSelector: albumSelector]) {

 NSLog (@"Calling '%@'", NSStringFromSelector(albumSelector));
 [myPhoto performSelector:albumSelector withObject:myAlbum];
}

if ([myPhoto respondsToSelector: unknownSelector]) {

 NSLog (@"Calling '%@'", NSStringFromSelector(unknownSelector));
 [myPhoto performSelector:unknownSelector];
}

[myPhoto release];
[myAlbum release];

Dynamic Messaging | 125

Here’s the result in the Xcode console when I run this code. The method for
unknownSelector is never called, because the object does not respond to it:

Calling 'caption'
Photo caption: 'Untitled Photo'
Calling 'setAlbum:'

By the way, -respondsToSelector: does not look at which methods the class declares
in the header. It checks to see which methods are actually implemented in the class.
This is important, because it means that methods can be added as the program is run-
ning, long after you created the header file.

Forwarding Messages
The basic theory behind dynamic languages is that a flexible design is generally better
than a rigid one. Instead of manually orchestrating every single piece of the program,
you can let the pieces fall into place. One of the ways that Objective-C enables this is
through message forwarding. Forwarding messages in Objective-C is fairly simple, and
requires only the NSInvocation and NSMethodSignature classes.

The NSInvocation class is an object-oriented interface for messages, and NSMe
thodSignature describes the input and output types for a given method that the message
eventually resolves to. Each time you call a method on an object, you are effectively
creating an invocation. In other words, the NSInvocation is the message “in transit,”
but the NSMethodSignature is the destination.

Here’s an example of an object receiving a message for a selector it doesn’t implement,
then forwarding it on to another object that does implement it:

@interface Cat : NSObject
- (void) meow;
@end

@interface Dog : NSObject
- (void) woof;
@end

@implementation Cat
- (void) meow {
 NSLog(@"%@: Meow", [self className]);
}
@end

@implementation Dog

- (void) woof {
 NSLog(@"%@: Woof", [self className]);
}

- (NSMethodSignature*) methodSignatureForSelector: (SEL)selector {

126 | Chapter 6: More Objective-C

 NSString* name = NSStringFromSelector(selector);
 NSLog(@"-[%@: methodSignatureForSelector: %@]", [self className], name);

 if ([Cat instancesRespondToSelector: selector])
 return [Cat instanceMethodSignatureForSelector: selector];

 return [super methodSignatureForSelector: selector];
}

- (void) forwardInvocation: (NSInvocation*) invocation {

 NSString* name = NSStringFromSelector(invocation.selector);
 NSLog(@"-[%@: forwardInvocation: %@]", [self className], name);

 id theCat = [[Cat alloc] init];
 NSLog(@"Forwarding '%@' to %@", name, theCat);
 [invocation invokeWithTarget: theCat];
 [theCat release];
}

@end

Now all I need to do is call -meow on the Dog object, and see what happens. Remember
that the Dog class does not implement the method:

id dog = [[Dog alloc] init];
[dog woof];
[dog meow];

[dog release];

Here’s the result in the console:

Dog: Woof
-[Dog: methodSignatureForSelector: meow]
-[Dog: forwardInvocation: meow]
Forwarding 'meow' to <Cat: 0x100178260>
Cat: Meow

Exceptions
Exceptions are not used as extensively in Cocoa as other frameworks. This is especially
important in the sense that they should not be used to send notifications or general
errors. The official documentation for Objective-C makes it clear that an exception is
“a special condition that interrupts the normal flow of program execution.” Exceptions
are not used the same way in Cocoa as they are in other programming environments.
As soon as an exception is thrown, the application should quit as soon as possible (even
when you catch the exceptions). Continuing to run the application after that point is
generally not safe.

One way to think of this is to throw an exception when there’s a breakdown in the
logic and the application is no longer in a known good state. A missing user datafile is

Exceptions | 127

not a critical error, because you can simply tell the user that the file could not be located,
and return to normal flow. Calling a method that does not exist is an exception in
Cocoa, because that method may have been critical.

Exceptions are usually contained in an NSException object. You won’t use exceptions
frequently while getting started with Cocoa, so I’ll just share a few basic examples with
you. Here’s an example of catching an “unrecognized selector” exception:

NSString* myString = [[NSString alloc] init];

@try {

 char firstChar = [myString characterAtIndex:0];
 int length = [myString length];
 NSLog(@"Length is: %i", length);
}
@catch (NSException * e) {

 NSLog(@"Caught an NSException, returning.");
 NSLog(@"Name: %@", e.name);
 NSLog(@"Reason: %@", e.reason);
 return;
}
@finally {

 // will still get called, even if above returns.
 NSLog(@"Releasing string.");
 [myString release];
}

Here’s the result in the console:

Caught an NSException, returning.
Name: NSRangeException
Reason: *** -[NSCFString characterAtIndex:]: Range or index out of bounds
Releasing string.

The @try block ended as soon as it encountered an error, and the program flow moved
to the @catch block. In this case, the exception was that I tried to get the first character
of an empty string. The @finally block will always run, regardless of what happens in
the @try block or even if I use the return statement. This guarantees that I’ll have a
chance to clean up whatever data I was working on.

And although you won’t be using them often (I did mention exceptions should be used
sparingly, right?), here’s how you throw an exception from within your own code:

int maxDataSize = [self maximumDataSize];
id dataStorage = [self privateDataStorage];

if ([dataStorage length] > maxDataSize) {

 NSException* e;
 e = [NSException exceptionWithName: @"DataSizeException"
 reason: @"Data size is larger than maximum."
 userInfo: nil];

128 | Chapter 6: More Objective-C

 @throw e;
}

Example: DataCollector
Launch Xcode and click “Create a new Xcode project,” or choose File → New Project
from the menu. In the New Project window, click on Application under the Mac OS X
section and select the Cocoa Application icon as shown in Figure 6-5.

Figure 6-5. The New Project window in Xcode

Click the Choose button, and you’ll be asked to select a location for the project. Go to
the CocoaBook folder you created at the beginning of the book, and create a new sub-
folder called ch06. Select the CocoaBook/ch06/ folder as the save location and enter
“DataCollector” as the project name. Click Save.

Some New Classes and Methods
To make this example more interesting, I’m going to quickly introduce you to four new
classes and two new methods:

Example: DataCollector | 129

NSArray and NSMutableArray
Although it supports C-style arrays, Cocoa offers a vastly improved take on the
concept with the NSArray and NSMutableArray classes. I’ll go into more detail in
Chapter 7, but the only two methods you need to know for now are -addObject:
and -objectAtIndex:, which allow you to add an object to an array and retrieve it,
respectively. An instance of NSArray cannot be changed once it’s created, but an
instance of its subclass, NSMutableArray, can be changed at any time.

NSWorkspace
The NSWorkspace class gives you a way to find and launch applications, get icons
for files, present the contents of folders to the user, and many other common tasks.
In this case, I’m going to use it to get a list of running applications.

NSRunningApplication
The -[NSWorkspace runningApplications] method returns an array of
NSRunningApplication objects, each of which contains details about one of the apps
that the user has launched and is currently running.

+[NSString stringWithFormat:]
The +stringWithFormat: method allows you to create an NSString object using the
same format as NSLog(). It’s the Cocoa equivalent of the asprintf() function (see
“Strings and Dynamic Memory” on page 56), though it returns objects instead of
char strings.

-[NSObject description]
The -description method is called on an object anytime the %@ marker is used for
a value in a format string, such as for NSLog() or the +stringWithFormat: method.
The -description method returns a string that describes the object. The default
version just returns the class name and memory address of the object, but most
classes override it to provide more helpful information.

Create the Files
Create a new Objective-C class file by choosing File → New File from the menu. In the
New File window, select Cocoa Class under the Mac OS X section, then select the
“Objective-C class” icon and click Next. Name the file DCDataGroup.m, and accept
all of the default options. Click Finish.

Open DCDataGroup.h by clicking on it in the Xcode sidebar. If you had a group selected
when you chose New File, the class files may be in that group. Type the following into
DCDataGroup.h:

#import <Cocoa/Cocoa.h>

// the protocol required by all items in a data group.
@protocol DCDataItem <NSObject>
- (id) contents;
- (NSString*) typeName;
- (NSString*) title;

130 | Chapter 6: More Objective-C

@optional
- (NSString*) author;
@end

// the main data group class.
@interface DCDataGroup : NSObject

@property (copy) NSString* name;
@property (retain, readonly) NSMutableArray* items;
@property (assign, readonly) int itemCount;

+ (id) runningApplicationsDataGroup;
- (void) addItem:(id <DCDataItem>)newItem;

@end

In this and the following examples, be sure to replace the existing code
in the file with what you’re typing.

Now click DCDataGroup.m in the Xcode sidebar to start editing it, and type the fol-
lowing into the file:

#import "DCDataGroup.h"
#import "NSRunningApplication-DCDataItem.h"

@interface DCDataGroup ()
// privately redefine properties as writable.
@property (retain, readwrite) NSMutableArray* items;
// private methods.
+ (NSString*) defaultName;
@end

@implementation DCDataGroup

@synthesize name;
@synthesize items;

- (id) init {

 if (self = [super init]) {

 self.name = [[self class] defaultName];
 self.items = [NSMutableArray array];
 }
 return self;
}

- (void) dealloc {

Example: DataCollector | 131

 self.name = nil;
 self.items = nil;

 [super dealloc];
}

- (int) itemCount {
 return self.items.count;
}

+ (id) runningApplicationsDataGroup {

 DCDataGroup* newDataGroup = [[DCDataGroup alloc] init];
 newDataGroup.name = @"Application Items";

 // get all running applications.
 NSWorkspace* ws = [NSWorkspace sharedWorkspace];
 NSArray* apps = [ws runningApplications];

 // add each NSRunningApplication to group.
 for (int i = 0; i < apps.count; i++) {

 NSRunningApplication* app = [apps objectAtIndex:i];
 [newDataGroup addItem:app];
 }

 return [newDataGroup autorelease];
}

- (void) addItem:(id <DCDataItem>)newItem {
 [self.items addObject:newItem];
}

+ (NSString*) defaultName {
 return @"Untitled Group";
}

- (NSString*) description {
 return [NSString stringWithFormat:
 @"Data Group: %@ %@", self.name, self.items];
}

@end

Create another Objective-C class called DCTextItem, using the same options as before.
Type the following into DCTextItem.h:

#import <Cocoa/Cocoa.h>
#import "DCDataGroup.h"

@interface DCTextItem : NSObject <DCDataItem>

@property (copy) NSString* contents;
@property (copy, readonly) NSString* typeName;
@property (copy) NSString* title;
@property (copy) NSString* author;

132 | Chapter 6: More Objective-C

@end

And type this into the implementation file, DCTextItem.m:

#import "DCTextItem.h"

@interface DCTextItem ()
// privately redefine properties as writable.
@property (copy, readwrite) NSString* typeName;
// private methods.
+ (NSString*) defaultTitle;
+ (NSString *) defaultAuthor;
@end

@implementation DCTextItem

@synthesize contents;
@synthesize title;
@synthesize typeName;
@synthesize author;

- (id) init {

 if (self = [super init]) {

 self.contents = nil;
 self.title = [[self class] defaultTitle];
 self.typeName = @"Text";
 self.author = [[self class] defaultAuthor];
 }
 return self;
}

- (void) dealloc {

 self.contents = nil;
 self.title = nil;
 self.typeName = nil;
 self.author = nil;

 [super dealloc];
}

- (NSString*) description {
 return [NSString stringWithFormat:@"%@: %@",
 self.title, self.contents];
}

+ (NSString *) defaultTitle {
 return @"Untitled";
}

+ (NSString *) defaultAuthor {
 return @"Unattributed";

Example: DataCollector | 133

}

@end

The last file you need to create for this project will contain a category for
NSRunningApplication. Create a new Objective-C class and name the file NSRun-
ningApplication-DCDataItem.m, using the same options as before.

Open the header file, NSRunningApplication-DCDataItem.h. Type the following code
into the file:

#import <Cocoa/Cocoa.h>
#import "DCDataGroup.h"

@interface NSRunningApplication (DCDataItemMethods) <DCDataItem>

// methods to make NSRunningApplication conform to
// the DCDataItem protocol.
- (id) contents;
- (NSString *) typeName;
- (NSString *) title;

@end

Now open the implementation file, NSRunningApplication-DCDataItem.m. Type the
following code into the file:

#import "NSRunningApplication-DCDataItem.h"

@implementation NSRunningApplication (DCDataItemMethods)

// methods to make NSRunningApplication conform to
// the DCDataItem protocol.

- (id) contents {
 return self.bundleURL;
}

- (NSString *) typeName {
 return @"Application";
}

- (NSString *) title {
 return self.localizedName;
}

- (NSString*) description {
 return [NSString stringWithFormat:
 @"%@: %@", self.title, self.contents];
}

@end

Now that all of the project files are in place, type the following code into
DataCollectorAppDelegate.m (this file was created automatically when you created the

134 | Chapter 6: More Objective-C

new project and can be found in the Classes subdirectory on the Groups & Files pane
on the left of the Xcode window):

#import "DataCollectorAppDelegate.h"
#import "DCDataGroup.h"
#import "DCTextItem.h"

@implementation DataCollectorAppDelegate
@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 NSString* q1;
 q1 = @"We are a way for the universe to know itself.";

 NSString* q2;
 q2 = @"Heard melodies are sweet, but those unheard are sweeter.";

 NSString* q3;
 q3 = @"I owe my success to the fact that I never had a clock in my workroom.";

 // create the text data group.
 DCDataGroup* textDataGroup = [[DCDataGroup alloc] init];
 textDataGroup.name = @"Text Items";

 // text item 1.
 DCTextItem* textItem1 = [[DCTextItem alloc] init];
 textItem1.contents = q1;
 textItem1.title = @"Carl Sagan On the Universe";
 textItem1.author = @"Carl Sagan";

 [textDataGroup addItem:textItem1];
 [textItem1 release];

 // text item 2.
 DCTextItem* textItem2 = [[DCTextItem alloc] init];
 textItem2.contents = q2;
 textItem2.title = @"John Keats on What is Heard";
 textItem2.author = @"John Keats";

 [textDataGroup addItem:textItem2];
 [textItem2 release];

 // text item 3.
 DCTextItem* textItem3 = [[DCTextItem alloc] init];
 textItem3.contents = q3;
 textItem3.title = @"Thomas Edison on Clocks";
 textItem3.author = @"Thomas Edison";

 [textDataGroup addItem:textItem3];
 [textItem3 release];

 // create the applications data group.

Example: DataCollector | 135

 DCDataGroup* appGroup = [DCDataGroup runningApplicationsDataGroup];

 // display the result in the console.
 NSLog (@"%@", textDataGroup);
 NSLog (@"%@", appGroup);

 // all done.
 [textDataGroup release];
}

@end

Build and Run
Save all of the files, then build and run the project. The window will be blank, but you
should see something similar to the following in the console:

Data Group: Text Items (
 "Carl Sagan On the Universe:
 We are a way for the universe to know itself.",
 "John Keats on What is Heard:
 Heard melodies are sweet, but those unheard are sweeter.",
 "Thomas Edison on Clocks:
 I owe my success to the fact that I never had a clock in my workroom."
)
Data Group: Application Items (
 "loginwindow: file://localhost/System/Library/CoreServices/loginwindow.app/",
 "Dock: file://localhost/System/Library/CoreServices/Dock.app/",
 "Finder: file://localhost/System/Library/CoreServices/Finder.app/",
 "Versions: file://localhost/Applications/Versions.app/",
 "Safari: file://localhost/Applications/Safari.app/",
 "TextMate: file://localhost/Applications/TextMate.app/",
 "QuickTime Player: file://localhost/Applications/QuickTime%20Player.app/",,
 "Tweetie: file://localhost/Applications/Tweetie.app/",
 "Xcode: file://localhost/Developer/Applications/Xcode.app/",
 "Preview: file://localhost/Applications/Preview.app/",
 "Terminal: file://localhost/Applications/Utilities/Terminal.app/"
)

The list will reflect whatever applications you have running. Try launching or quitting
some apps and rerunning. You can also try changing the implementation of
-description on either DCTextItem or the NSRunningApplication category to display dif-
ferent details in the console.

136 | Chapter 6: More Objective-C

CHAPTER 7

Foundation Value Classes

Objective-C makes it easy to use standard C types like int, float, and char, but that
doesn’t mean they’re always your best options. Cocoa provides actual classes for storing
common types of data like numbers and strings. These are informally called value
classes, or Foundation value classes.

This is a good time for me to explain that “Cocoa” can actually mean two separate
things. Most people use it very broadly to describe an overall ecosystem to write apps
for Mac, iPhone, iPod touch, and iPad. Some veteran Mac programmers think of Cocoa
specifically as an umbrella framework, which is a framework that contains other frame-
works. Whichever definition you prefer, you should understand what each refers to.
The Cocoa framework itself encapsulates three separate frameworks: Foundation,
AppKit, and Core Data:

Foundation
Provides all of the basic building block classes, such as strings, numbers, arrays,
file access, and so on. This framework is used on Mac and iPhone OS (which is
used by iPhone, iPod touch, and iPad).

AppKit
Provides everything specifically dealing with user interface elements, such as win-
dows, controls, and fonts. AppKit is the Mac counterpart of UIKit on iPhone OS,
and both are built around the same core concepts.

Core Data
Provides data storage, data modeling, and automatic change tracking (also known
as automatic Undo and Redo). You can store data using SQLite, XML, binary
storage, or even create your own store type. Core Data is available on both Mac
and iPhone OS.

137

Historically, Cocoa has been only AppKit and Foundation—not Core
Data. In practice, I think it’s all three. For what it’s worth, the
Cocoa.h file actually imports all three frameworks. In the big picture,
though, this is just a philosophical detail that doesn’t actually change
anything you do.

Although low-level C types are fast and use little memory, they offer very little in terms
of safeguards or conveniences. Safeguards are increasingly important as more Cocoa
apps fetch data from the Internet. Using the Foundation classes instead of C primitives
makes it much harder for anyone to get into the guts of your program over a network
connection. Foundation classes also make it much easier to work with international
text and large numbers, abstracting you from a lot of the tedious details

That said, most Mac apps use a mix of primitive C types and Foundation classes. It will
be more clear when to use each by looking at some of the sample code.

NSString
NSString is Cocoa’s class for working with text. Text is so common in Mac apps that
it might be the class you work with most on a minute-to-minute basis. Here are some
simple examples:

// combining two strings.
NSString* firstName = @"Albert ";
NSString* lastName = @"Einstein";
NSString* fullName = [firstName stringByAppendingString:lastName];
NSLog(@"fullName: %@", fullName);

// combining more than two strings.
NSString* sentence = @"Welcome ";
sentence = [sentence stringByAppendingString:@"to the "];
sentence = [sentence stringByAppendingString:@"future."];
NSLog(@"sentence: %@", sentence);

Here’s the output:

fullName: Albert Einstein
sentence: Welcome to the future.

In the second part of the example, I declared only one string variable, but created three
separate string objects. Using a single variable for all three works out because
+stringByAppendingString: returns an autoreleased object. Each line creates a new
NSString, adding to the contents of the previous one.

Once you assign a new object to a variable, you’ve lost the reference to the original
object and can’t call -release on it, but it’s still taking up memory. Reusing variables
like this only works when creating autoreleased objects, because you don’t need to
manually release them later. This would be a problem if the strings were created with
+alloc instead:

138 | Chapter 7: Foundation Value Classes

NSString* first = @"Monday";
NSString* second = @"Tuesday";
NSString* third = @"Wednesday";

// INCORRECT. this is a memory leak!
// calling -release only once for three +alloc calls!
NSString* dayOfWeek1 = nil;
dayOfWeek1 = [[NSString alloc] initWithString:first];
dayOfWeek1 = [[NSString alloc] initWithString:second];
dayOfWeek1 = [[NSString alloc] initWithString:third];
[dayOfWeek1 release];

// BETTER: doesn't leak, but bad style.
NSString* dayOfWeek2 = nil;
dayOfWeek2 = [[[NSString alloc] initWithString:first] autorelease];
dayOfWeek2 = [[[NSString alloc] initWithString:second] autorelease];
dayOfWeek2 = [[[NSString alloc] initWithString:third] autorelease];

// BEST: when reusing a variable, use a class method
// with built-in autorelease.
NSString* dayOfWeek3 = nil;
dayOfWeek3 = [NSString stringWithString:first];
dayOfWeek3 = [NSString stringWithString:second];
dayOfWeek3 = [NSString stringWithString:third];

The +stringByAppendingString:, -initWithString:, and +stringWith
String: methods all copy the contents of the input string, so you don’t
need to call -copy manually.

Table 7-1 gives a quick overview of some of the other basic methods in NSString.

Table 7-1. Basic NSString methods

Method Description

+stringWithFormat: Creates a string using NSLog() formatting

-length Returns the length of the string

-characterAtIndex: Returns the single character at a specific point in the string

-hasPrefix: Returns YES if the string starts with a specific prefix

-intValue Returns an int version of the string contents (for example, @"12abc" would result in the
integer value 12)

-UTF8String Returns a char* version of the string for use with C functions

-substringFromIndex: Returns a substring with all of the characters between a starting point and the end

-substringWithRange: Returns a substring with a specific starting point and length

-rangeOfSubstring: Searches for the starting point and length of a substring

NSString | 139

Ranges and Substrings
Cocoa uses ranges for working with specific sections of a string. Unlike most Cocoa
types, NSRange is actually a struct, not an object. Because it’s just a regular struct, it’s
not a pointer type so you don’t add an asterisk to it. A range has two integer fields:
location and length:

typedef struct _NSRange {
 NSUInteger location;
 NSUInteger length;
} NSRange;

NSUInteger is simply a way to store unsigned integer values for both 64-
bit and 32-bit systems. See “Cocoa Primitive Types” on page 160 for a
more detailed explanation.

This struct is part of Cocoa itself, so you don’t need to type that code in. The
location field specifies a starting point, and the length field contains the “run” of char-
acters from that starting point. You can use NSRange to get the characters in a specific
portion of a string:

NSString* fullName = @"Albert Einstein";
NSRange myRange = NSMakeRange (0, 6);

NSString* firstName = [fullName substringWithRange: myRange];
NSLog (@"firstName: %@", firstName);

Like an array, a range starts at 0, not 1. Here’s the result of the above code in the console:

firstName: Albert

This code is useful only if we already know where the string is that we want.
NSString provides another method (-substringFromIndex:) that can search for the sub-
string automatically. In this example, I’ll search for a header, and then display all the
text that follows the header:

NSString* fullName = @"Last name: Einstein";
NSRange fieldRange = [fullName rangeOfString:@"Last name: "];

if (fieldRange.length > 0) {

 int start = fieldRange.location;
 int count = fieldRange.length;

 int startOfName = start + count;
 NSString* lastName = [fullName substringFromIndex: startOfName];
 NSLog (@"lastName: %@", lastName);
}

140 | Chapter 7: Foundation Value Classes

I added an if statement to check the length of the range returned from the
-rangeOfString: method. The range will have a length of 0 if the string wasn’t found.
If it is found, it prints the name after the header:

lastName: Einstein

Using NSString with C Types
Even though Cocoa’s value classes are robust and generally easy to use, there are many
cases where you want to work with standard C types. Fortunately, it’s easy to convert
NSString objects to and from primitive types. Here are some quick examples:

NSString* totalString = @"10";
NSString* goldenRatioString = @"1.618";
NSString* cityName = @"Cupertino";

int total = [totalString intValue];
float goldenRatio = [goldenRatioString floatValue];
const char* cityNameCString = [cityName UTF8String];

You can also create strings from primitive C types using +stringWithFormat: and
+stringWithUTF8String:

int count = 100;
float piValue = 3.1415926;
char* starName = "Vega";

NSString* countString = [NSString stringWithFormat:@"%i",count];
NSString* piString = [NSString stringWithFormat:@"%f", piValue];
NSString* starNameString = [NSString stringWithUTF8String:starName];

Comparing Strings for Equality
Each NSString is an object, and the variables that refer to it are pointers to an object.
So if you compare two string variables using the == sign, you’ll be comparing the pointer
address, not characters in the string:

NSString* firstString = [NSString stringWithFormat:@"%i", 10000];
NSString* secondString = [NSString stringWithFormat:@"%i", 10000];

if (firstString == secondString) {
 NSLog (@"The strings are the same");
} else {
 NSLog (@"The strings are not the same");
}

NSLog (@"firstString string: '%@' pointer: %p", firstString, firstString);
NSLog (@"secondString string: '%@' pointer: %p", secondString, secondString);

This displays the following in the console:

The strings are not the same
firstString string: '10000' pointer: 0x100429540
secondString string: '10000' pointer: 0x100403630

NSString | 141

When you use the %p marker to display the string, you can see the exact memory address
of the NSString it represents. As a result, comparing them for equality using the ==
symbol will not give the correct answer. To compare the string contents, we use the
-isEqualToString: method:

NSString* firstString = [NSString stringWithFormat:@"%i", 10000];
NSString* secondString = [NSString stringWithFormat:@"%i", 10000];

if ([firstString isEqualToString:secondString]) {
 NSLog (@"The strings are the same");
} else {
 NSLog (@"The strings are not the same");
}

Now you see this in the console:

The strings are the same

By the way, the reason I used +stringWithFormat: instead of just using the shortcut
syntax to create the string is that those would actually end up being the same object.
For example, here’s a case where I compare two literal strings that I created using the
string shortcut syntax:

NSString* firstCity = @"Cupertino";
NSString* secondCity = @"Cupertino";

if (firstCity == secondCity) {
 NSLog (@"The cities are the same");
} else {
 NSLog (@"The cities are not the same");
}

NSLog (@"firstCity string: '%@' pointer: %p", firstCity, firstCity);
NSLog (@"secondCity string: '%@' pointer: %p", secondCity, secondCity);

This has a surprising result:

The cities are the same
firstCity string: 'Cupertino' pointer: 0x100002068
secondCity string: 'Cupertino' pointer: 0x100002068

Even though I had two variables and typed in two separate strings, I ended up with one
object. The compiler is smart enough not to make a duplicate version of the same string
literal, so the objects are actually the same. This means you could end up with a ==
comparison that works in some cases, but would not work consistently. The main thing
to take away here is to use -isEqualToString: when you want to compare the con-
tents of a string, because it will work regardless of how each string was created.

Strings As File Paths
NSString includes extensive support for managing paths (see Table 7-2), as well as
support for working with files in general. You can refer to files on disk using either
traditional Unix-style paths, such as /Volumes/Macintosh HD/Applications, or using

142 | Chapter 7: Foundation Value Classes

URLs with a file:/// prefix. URLs are encouraged more in Snow Leopard, but there
is a lot of existing Objective-C code that uses regular file path strings, so let’s look at
some of the basics.

Table 7-2. Common NSString methods for file paths

Method Description

-lastPathCompo
nent

Returns the last part of a path, such as a filename

-pathExtension Returns the file extension of the last part of the path, such as .txt

-stringByExpan
dingTildeInPath

Returns a copy with a Unix-style ~username path fully resolved

-stringByDeletin
gLastPathCompo
nent

Returns a copy with the last path item removed, such as the filename

-stringByDele
tingPathExten
sion

Returns a copy with just the file extension removed, such as .html

-stringByAppen
dingPathCompo
nent

Returns a copy with an additional path item (you could use this to add a filename to a folder path,
for example)

-stringByResol
vingSymlinksIn
Path

Returns a copy with any symbolic links fully resolved (does not work with aliases created by the
Finder’s File → Make Alias command)

-isAbsolutePath Returns YES if the path is referenced from the top of the filesystem (such as /Developer/Applications/
Xcode.app)

Here’s a very basic example of working with file paths:

NSString* pathToApp = @"/Applications/Safari.app";
NSString* fullFileName = [pathToApp lastPathComponent];
NSString* fileName = [fullFileName stringByDeletingPathExtension];

if ([pathToApp isAbsolutePath]) {
 NSLog(@"The application's path is absolute.");
}

NSLog(@"pathToApp: %@", pathToApp);
NSLog(@"fullFileName: %@", fullFileName);
NSLog(@"fileName: %@", fileName);

Here’s the output in the console:

The application's path is absolute.
pathToApp: /Applications/Safari.app
fullFileName: Safari.app
fileName: Safari

NSString | 143

Cocoa also provides functions, shown in Table 7-3, to get to commonly used paths and
basic user information. These are freestanding C functions that return NSString objects.
They’re not part of a class.

Table 7-3. Common functions for standard paths

Function Description

NSUserName() Returns the Unix-style username

NSFullUserName() Return the user’s full name

NSHomeDirectory() Returns the user’s home directory as a file path

NSTemporaryDirectory() Returns a path for a place to store temporary files

Here are some examples:

NSLog (@"My user name is: %@", NSUserName());
NSLog (@"My full name is: %@", NSFullUserName());
NSLog (@"My home directory is: %@", NSHomeDirectory());

For me, this displays the following in the console:

My user name is: scott
My full name is: Scott Stevenson
My home directory is: /Users/scott

This is just a quick look at some of the basic file path functions. There’s much more to
files and URLs, as you’ll see later.

Reading and Writing Files with Strings
As common as it is to work with text files in programming, it’s generally somewhat
awkward in standard C. Fortunately, Cocoa makes it very easy to work with files. You
can ask an NSString to write its contents to a file in just one line of code, and then just
as easily read it back in. Here’s how you write the file:

NSString* lastLine = @"Beauty is truth, truth beauty";
NSString* fileName = @"GrecianUrn.txt";
NSString* homeDir = NSHomeDirectory();
NSString* fullPath = [homeDir stringByAppendingPathComponent:fileName];

[lastLine writeToFile:fullPath atomically:NO];

Now I can go look in my home directory and see that the file is there (see Figures 7-1
and 7-2).

The -writeToFile:atomically: method takes a destination file path and a YES or NO to
indicate if the file should be written atomically. In this case, “atomically” specifies that
the method should write to a temporary file before moving it to the location. This is
potentially a more robust way to write to files, but it’s overkill for what we’re doing here.

144 | Chapter 7: Foundation Value Classes

Figure 7-1. The GrecianUrn.txt file in the Finder

Figure 7-2. The GrecianUrn.txt file on the command line, viewed through the Terminal application

The one other important note about this method is that it was deprecated in Snow
Leopard. This means that it will still work, but it will be removed in a future release.
There’s almost always a better version that replaces a deprecated method though, so

NSString | 145

you should usually use the newer version. Here’s the new version that’s recommended
for Snow Leopard and later:

[lastLine writeToFile: fullPath
 atomically: NO
 encoding: NSASCIIStringEncoding
 error: &error];

It’s a bit wordier, but all in the name of safer, more predictable behavior. The additional
input options allow you to specify the text encoding in the string, as well to opt to
receive an error if anything goes wrong. Previously, if the file couldn’t be written, the
method would just silently fail. This version gives you more control.

A longer method name may seem like unnecessary complication, but
one of the stated goals of Mac OS X 10.6 Snow Leopard was to improve
the speed, reliability, or functionality of existing classes. Specifying
string encoding and providing error messages allows developers to write
more robust software.

The upside of this new method is that you can display a message in a dialog box if the
file wasn’t written. To do this, create an NSError variable and set it to an initial value
of nil. You pass in a reference to that variable using the address-of operator (amper-
sand), and the method will populate the variable if an error occurred.

You probably remember this being introduced as returning by indirection (see “Strings
and Dynamic Memory” on page 56). You can usually tell when a value is meant to be
returned by indirection, because you’ll see an extra asterisk on the type name, such as
NSError**. Here’s the declaration for the method:

- (BOOL)writeToFile: (NSString *)path
 atomically: (BOOL)useAuxiliaryFile
 encoding: (NSStringEncoding)enc
 error: (NSError **)error;

Here’s the full version of the code, with error detection:

NSString* lastLine = @"Beauty is truth, truth beauty";
NSString* fileName = @"GrecianUrn.txt";
NSString* homeDir = NSHomeDirectory();
NSString* fullPath = [homeDir stringByAppendingPathComponent:fileName];

NSError* error = nil;
[lastLine writeToFile:fullPath atomically:NO encoding:NSASCIIStringEncoding
 error:&error];

if (error != nil) {
 [NSApp presentError:error];
}

If the method can’t write the file, it creates an NSError object and assigns it to the variable
you provide. If the file is written, the error variable stays set as nil. I can just add a

146 | Chapter 7: Foundation Value Classes

simple test to see whether the error is nonnil, and use the method -presentError: to
display it to the user (see Figure 7-3).

Figure 7-3. An NSError object displayed with the -[NSApplication presentError:] method

If you want to try this out, you can force the display of the error by replacing
NSHomeDirectory() with @"/error/" for the homeDir path. You could, of course, do other
things with the error, such as write it to a file or display it in a custom dialog box. It’s
generally better to display a custom error message when possible, as you can give sug-
gestions that apply specifically to your application.

Although it looks like a class, NSApp is actually a special global variable
that refers to the one and only instance of NSApplication in each pro-
gram. It allows you to perform broad, application-wide tasks, such as
setting the icon in the Dock or finding the frontmost window.

Reading files is similar to writing them. The main difference is that you generally don’t
create a string and then read data into it. Instead, you create a new string using the
contents of a file. Here’s how I create a string with the contents of the file I just created:

NSString* fileName = @"GrecianUrn.txt";
NSString* homeDir = NSHomeDirectory();
NSString* fullPath = [homeDir stringByAppendingPathComponent:fileName];

NSError* error = nil;
NSStringEncoding encoding;

NSString* contents = [NSString stringWithContentsOfFile: fullPath
 usedEncoding: &encoding
 error: &error];

if (error != nil) {
 [NSApp presentError:error];
}

NSLog(@"Contents of '%@': %@", fileName, contents);

NSString | 147

Here’s the result in the console:

Contents of 'GrecianUrn.txt': Beauty is truth, truth beauty

Because this method reads files, it will tell you which string encoding the file used by
writing it to the encoding variable. As with all values that are returned by indirection,
you pass in a reference to the encoding variable using the address-of operator (&).

Both C and Objective-C allow you to span function or method calls
across several lines. This is particularly useful for Objective-C’s multi-
part method names. It’s common to split these methods into multiple
lines and align them at the colon character for readability.

Mutability
Most of the base Foundation value classes come in two flavors: mutable and immuta-
ble. The word “mutable” means that the value of the object can be changed. You can’t
change the contents of an NSString once you create it, but you can change the contents
of an NSMutableString:

NSMutableString* name = [NSMutableString stringWithString:@"Helen"];
[name setString:@"Sarah"];
[name setString:@"Daisy"];

The mutable versions of the value classes inherit all of the methods from their immut-
able superclasses, so methods like -length and -substringWithRange: work exactly the
same. If you have an immutable version of an object, you can get a mutable version
with the -mutableCopy method:

NSString* originalString = @"Friday";
NSMutableString* editableString = [originalString mutableCopy];

[editableString setString:@"Saturday"];
[editableString release];

It’s important to know that calling -copy on a mutable object returns an immutable
version. If you want to copy a mutable object and maintain mutability in the new ver-
sion, you must call -mutableCopy on the original. This is useful, though, because if you
want to “freeze” a mutable object, you can just call -copy on it.

There’s a subtle point here, though. A constant variable (see “Constants” on page 23)
can refer to a mutable object, which means you can’t change the object, but you can
change the contents:

NSMutableString* const name = [NSMutableString stringWithString:@"Lea"];

// OK: 'const' doesn't effect object mutability.
[name setString:@"Sally"];

// ERROR: can't change the object.
name = @"Sally";

148 | Chapter 7: Foundation Value Classes

Because of this, it’s usually useful to declare object variables as const only if they refer
to an immutable object. The const keyword is not part of Objective-C directly—it’s
inherited from C. It’s also important to know that the type you declare for an object
variable doesn’t determine what kind of object it will be. For example, this code will
create a regular NSString, not an NSMutableString:

NSMutableString* name = @"Jane";

Fortunately, Xcode will generally warn you about cases like this when you build your
project. To create a mutable string from a literal string (like @"My String"), you must
use either the +[NSMutableString stringWithString:] class method, or the
-[NSMutableString initWithString:] method:

NSMutableString* name1 = [NSMutableString stringWithString:@"Jane"];
NSMutableString* name2 = [[NSMutableString alloc] initWithString:@"Jane"];
[name2 release];

All of the general rules about mutability—that is, those that don’t directly involve
text, such as -mutableCopy—apply to all mutable Foundation classes, not just
NSMutableString.

Advantages of Mutability
Using mutable objects can make certain kinds of code much more efficient. Creating
objects always takes some CPU power and some memory. If you’re appending hun-
dreds or thousands of string objects, it’s generally much more efficient to make a single
NSMutableString object, and append new text to it directly:

// slower to create 1000 separate strings.
NSUInteger count = 1000;
NSString* total1 = [NSString string];

for (NSInteger i = 0; i < count; i++) {
 total1 = [total1 stringByAppendingFormat:@"%ld", i];
}

// faster to add a single mutable string.
NSMutableString* total2 = [NSMutableString string];
for (NSInteger i = 0; i < count; i++) {
 [total2 appendFormat:@"%ld", i];
}

This is particularly important on highly mobile hardware, such as iPhone and iPad.
Highly mobile devices have far less memory and lower-power CPUs. So even though
you may never see a performance hit from creating thousands of objects on a desktop
machine, the same code can potentially cause a mobile app to slow to a crawl.

Mutability | 149

Advantages of Immutability
The obvious question here is why Cocoa bothers to separate these two. The most im-
portant reason is that immutable NSStrings can save memory, particularly because
“copies” of immutable strings are usually the same string:

NSString* firstString = @"Palo Alto";
NSString* secondString = [firstString copy];

NSLog (@"firstString address: %p", firstString);
NSLog (@"secondString address: %p", secondString);

In the console, we can see that even though -copy was used, we were given back the
same string because it’s immutable. There’s no reason to eat up memory for new objects
when the originals have the same value:

firstString address: 0x1000020a8
secondString address: 0x1000020a8

The other important reason, though, is that you may not want the value of your object
to change. For example, here’s how it could actually cause a security flaw:

CocoaBookSystemUser* guestUser = [CocoaBookSystemUser guestUser];
CocoaBookSystemUser* adminUser = [CocoaBookSystemUser adminUser];

NSMutableString* filePath = [NSMutableString string];

[filePath setString: @"public_file.txt"];
[guestUser grantAccessToFileAtPath:filePath];
[filePath setString: @"super_secret_file.txt"];
[adminUser grantAccessToFileAtPath:filePath];

[guestUser savePrivileges];
[adminUser savePrivileges];

It’s very likely that the guest user would end up getting access to the secret file. The
way to address this is to use the copy option in the @property declaration. This generates
a setter method that calls -copy on objects passed in, including mutable objects. Because
calling -copy on mutable Foundation classes always returns an immutable copy, an
immutable object will always be stored as the property value.

Core Foundation
Foundation provides a set of Objective-C classes like NSString, but many of these
classes actually use code in a lower-level C framework called Core Foundation. You
usually don’t have to think about any of this, because Cocoa handles the details for
you, but there is code out in the world that refers to this framework directly.

Even if you don’t use it every day, it helps to at least understand the basics of Core
Foundation, because some other frameworks are based on the same ideas. First, here’s
a quick test to show you something about the NSString class:

150 | Chapter 7: Foundation Value Classes

NSString* myString = @"The Fighting Mongooses";
NSLog(@"class of myString: %@", [myString className]);

Here’s the result in the console:

class of myString: NSCFString

The Core Foundation string type is CFStringRef, though many Cocoa developers just
refer to it as CFString in conversation. The CF in the class name NSCFString indicates
that an NSString object in Cocoa is actually based on CFString.

Like all of the key Core Foundation data types, CFString is not an Objective-C class.
It’s an opaque struct, or opaque data type, which means that it’s a normal C struct, but
you don’t write code that directly accesses the fields. Instead, you use a series of func-
tions that are designed specifically for CFString. Here are a few of them:

CFStringRef myString = CFSTR("Welcome to Core Foundation.");
CFIndex length = CFStringGetLength (myString);

printf("myString length: %ld\n", length);

if (CFStringHasPrefix(myString, CFSTR("Welcome"))) {
 printf("myString starts with 'Welcome'\n");
}

Here’s the output:

myString length: 27
myString starts with 'Welcome'

The CFSTR("String") macro is the equivalent of the @"String" syntax in Objective-C.
And CFIndex is essentially the same thing as NSInteger. The structural difference is that
Core Foundation types aren’t objects, so you can’t call methods on them. Instead, they
are just data containers that you pass into regular C functions. For more context, here’s
the Foundation and Core Foundation versions of the same program, side by side:

- (void) foundationStringTest {

 NSString* myString = @"Welcome to Foundation.";
 NSInteger length = myString.length;

 NSLog(@"myString length: %ld", length);

 if ([myString hasPrefix:@"Welcome"]) {
 NSLog(@"myString starts with 'Welcome'");
 }
}

void coreFoundationStringTest () {

 CFStringRef myString = CFSTR("Welcome to Core Foundation.");
 CFIndex length = CFStringGetLength (myString);

 printf("myString length: %ld\n", length);

Core Foundation | 151

 if (CFStringHasPrefix(myString, CFSTR("Welcome"))) {
 printf("myString starts with 'Welcome'\n");
 }
}

You’d invoke each of these differently; one is an Objective-C method,
and the other is a C function:

[self foundationStringTest];
coreFoundationStringTest();

What this means is that you can effectively use the core of NSString in regular C files,
because CFString and all of the associated functions are just plain C. This can be really
useful if you want to write a Cocoa app that uses existing C code, such as a C library
that’s used within your company. You can also use CFString directly in your Cocoa
classes because you can use C code anywhere in an Objective-C file.

Memory Management
The memory management system in Core Foundation is heavily based on Objective-
C’s reference counting system. Instead of +alloc, Core Foundation types are created
with functions that have Create in the name:

CFStringCreateWithSubstring();
CFStringCreateCopy();
CFStringCreateWithFormatAndArguments();

Instead of calling -release on objects that you no longer need, you pass structs into
CFRelease():

CFStringRef myString1 = CFSTR("Welcome to Core Foundation.");
CFRange range = CFRangeMake(0, 7);

CFStringRef myString2;
myString2 = CFStringCreateWithSubstring(NULL, myString1, range);

CFShow(myString2);
CFRelease(myString2);

Because I used a function with Create in the name, I have to pass the string into
CFRelease() when I’m done with it. The first input value for the creation function is
the CFAllocatorRef that does the actual memory allocation. I used NULL as the value,
which will cause it to use the default kCFAllocatorDefault. You rarely need to customize
this, so NULL is usually fine.

The CFRange struct is the Core Foundation equivalent of NSRange. The CFShow() method
logs the contents of a CF data struct to the console, but this should only be used for
testing, not in release versions of your app.

152 | Chapter 7: Foundation Value Classes

One other important note here is that CFStringRef ends in Ref, but CFRange does not.
The reason for this is that CFRange is a regular struct; you can freely access its fields. But
CFStringRef is a pointer type, like an Objective-C object. Even though there’s no as-
terisk used when declaring CFStringRef variables, CFStringRef is a pointer type. Here’s
the definition from CFBase.h:*

typedef const struct __CFString * CFStringRef;

This typedef statement declares that CFStringRef is a pointer to a private data struct.
Like Objective-C objects, Core Foundation reference types are allocated from dynamic
memory, and are passed around by reference. A few Core Foundation types like
CFRange don’t end in Ref, and are local variables passed around by value.

Some Core Foundation functions include Get in their name, which means that you are
not returning an object that you own. If you want to keep the object around, you need
to call CFRetain() on it and then CFRelease() it when you’re done with it:

CFStringRef encodingName = CFStringGetNameOfEncoding(kCFStringEncodingUTF8);

CFRetain (encodingName);
CFShow (encodingName);
CFRelease (encodingName);

The Get naming convention is also used for primitive and generic struct values that you
don’t need to retain, such as CFIndex and CFRange. So, to sum up, Core Foundation
memory management has two main rules:

1. When you receive a Ref data item from a function with Create or Copy in the name,
you must CFRelease() the item when you’re done with it.

2. When you receive a Ref data item from a function with Get in the name, you must
CFRetain() the item if you want it to stay around, then CFRelease() the item when
you’re done with it.

Core Foundation Mutability
Like the standard Foundation classes, Core Foundation types come in mutable and
immutable flavors. For example, you can create a CFMutableStringRef and add to it
using the CFStringAppend() function:

CFMutableStringRef street = CFStringCreateMutable(NULL, 0);

CFStringAppend(street, CFSTR("N. "));
CFStringAppend(street, CFSTR("Wolfe "));
CFStringAppend(street, CFSTR("Road"));

CFShow (street);
CFRelease (street);

* /System/Library/Frameworks/CoreFoundation.framework/Headers/CFBase.h.

Core Foundation | 153

The second input value for CFStringCreateMutable() is the maximum length for the
string. If you pass in 0, there will be no predetermined maximum. Here’s the result in
the console:

N. Wolfe Road

Toll-Free Bridging
There are times when you want to use Core Foundation types and Foundation classes
in the same app. In fact, you may need to do this a lot if you’re incorporating existing
C code. Fortunately, there’s no conversion necessary for most of the Core Foundation
types and their Foundation counterparts. Anywhere you would typically use an
NSString, you can use a CFStringRef instead, or vice versa. This is called toll-free bridg-
ing. The one catch is that you have to cast the variable to the expected type to avoid
compiler warnings:

// using an NSMutableString as a CFMutableStringRef.

NSMutableString* street = [[NSMutableString alloc] init];

CFStringAppend((CFMutableStringRef)street, CFSTR("N. "));
CFStringAppend((CFMutableStringRef)street, CFSTR("Wolfe "));
CFStringAppend((CFMutableStringRef)street, CFSTR("Road"));

CFShow (street);
[street release];

// using a CFMutableStringRef as an NSMutableString.
// cast to separate variable for convenience.

CFMutableStringRef colors = CFStringCreateMutable(NULL, 0);
NSMutableString* colorsObj = (NSMutableString*)colors;

[colorsObj appendString:@"Red, "];
[colorsObj appendString:@"Green, "];
[colorsObj appendString:@"and Blue."];

NSLog(@"colors: %@", colors);
CFRelease (colors);

This means that you can and should use NSLog() to display Core Foundation types
instead of CFShow() whenever possible. There are some exceptions, because the two
frameworks do not have the exact same set of classes, but all of the most common types
are supported. In addition to integrating with C, this is also helpful, because Core
Foundation and Foundation do not have the exact same feature sets. Sometimes you
need to temporarily switch types for a small section of code.

One critical detail here is that you don’t need to switch to CFStringRef just because
you’re working in a plain C function:

154 | Chapter 7: Foundation Value Classes

NSString* stringObjectInFunction (char* string) {

 NSString* stringObject;
 stringObject = [NSString stringWithUTF8String:string];
 return stringObject;
}

void testStringObject () {

 NSString* country = stringObjectInFunction("New Zealand");
 NSLog(@"country: %@", country);
}

You can freely use Objective-C classes inside C code as long the as the file itself is
compiled as Objective-C (usually determined by the .m file extension).

Core Foundation Types As Properties
You can create @property declarations for any kind of value, including primitive C types
and structs. Core Foundation types are structs, but their memory is dynamically allo-
cated and managed by a retain and release scheme. If you just use assign in the property
declaration, the memory will never be freed. However, using the retain option will
generate a build error (see Figure 7-4).

Figure 7-4. Xcode displays a build error if you try to use a Core Foundation type with the retain option
in an @property declaration

The way around this is to use the __attribute__ keyword in the declaration to generate
code that works as if the value was a regular Objective-C object:

Core Foundation | 155

@property (retain) __attribute__((NSObject)) CFStringRef name;

This usually isn’t necessary, because most Core Foundation types are toll-free bridged
with their Foundation versions. If you must use a type like CFStringRef, just declare
the property to be NSString and cast it to CFStringRef inside of methods when necessary.

Drawbacks of Core Foundation Types
Even though Foundation uses them at a lower level, Core Foundation data types are
not Objective-C. If you’re using CFString directly, you can’t declare categories on it or
use any of the other special runtime tricks. It’s also generally harder to manage memory
for Core Foundation types.

You can cast it to an NSString, but there’s no reason to use CFString except when you
need pure C. You should use standard Objective-C objects in all other cases, because
you have to write less code and you have a much wider set of programming options
available to you.

Open Source
The source code of Core Foundation is available at http://opensource.apple.com. The
exact path changes between releases, but the easiest approach is usually to click on a
version of Mac OS X on the site’s home page to see all of the open source packages in
that release. In the list of packages, click on the “CF” item, which is followed by a
version number (see Figure 7-5).

Inside the CF directory, you’ll see a list of the .c and .h files for each of the types in Core
Foundation, such as CFString.h and CFString.c (see Figure 7-6).

You can click on the file to see the contents. The source code is covered by the APSL
license, which you can read about at http://www.opensource.apple.com/license/apsl/.

The site has source code for many other interesting packages, including the Mac OS X
kernel (the “xnu” package), many of the built-in Unix tools and libraries, and the source
code for the Objective-C language and runtime. There are also many related open
source projects at http://www.macosforge.org, including the Calendar and Contacts
Server, Grand Central Dispatch, and MacPorts.

NSNumber
Standard C includes several built-in number types, such as int, unsigned int, long,
float, and double. This is a pretty short list, but it would be nice if a single type could
encapsulate all of your number-storing needs. Cocoa’s NSNumber class comes close to
doing just that. It will accept nearly any kind of common number data without having
to contend with data size issues.

156 | Chapter 7: Foundation Value Classes

http://opensource.apple.com
http://www.opensource.apple.com/license/apsl/
http://www.macosforge.org

Unlike many Foundation classes, NSNumber does not have a mutable
subclass.

New Cocoa programmers sometimes assume that because NSNumber is a class, it must
be too slow to use for common tasks. Though the primitive types are faster due to their
simplistic nature, NSNumber is very efficient and offers substantially more flexibility than
the standard C types. Only high-end applications processing large amounts of data very
rapidly will see any practical performance difference. Table 7-4 lists some of the most
common methods.

Figure 7-5. Package list for Mac OS X at http://opensource.apple.com

NSNumber | 157

http://opensource.apple.com

Table 7-4. Common NSNumber methods

Method Description

+numberWithInt: Creates a number with an int

+numberWithFloat: Creates a number with a float

+numberWithBool: Creates a number with a YES or NO value

-intValue Returns an int version of the number

-floatValue Returns a float version of the number

-boolValue Returns an YES or NO version of the value

-stringValue Returns an NSString with the number as text

-isEqualToNumber: Compares the equality of another NSNumber instance

Figure 7-6. The files in the Core Foundation package

158 | Chapter 7: Foundation Value Classes

Fortunately, there’s not much of a learning curve for this class. It pretty much does
what you’d expect. You can create an instance using any standard C number type, and
get the value back later as the same type, or convert it to another type. Here are some
simple examples:

NSNumber* secondsInDay = [NSNumber numberWithInt:(60 * 60 * 24)];
NSNumber* scaleFactor = [NSNumber numberWithFloat:0.865];
NSNumber* enableExtras = [NSNumber numberWithBool:YES];

NSLog (@"secondsInDay: %@ as int: %i", secondsInDay, secondsInDay.intValue);
NSLog (@"scaleFactor: %@ as float: %f", scaleFactor, scaleFactor.floatValue);
NSLog (@"enableExtras: %@ as BOOL: %i", enableExtras, enableExtras.boolValue);

Here’s the result in the console:

secondsInDay: 86400 as int: 86400
scaleFactor: 0.865 as float: 0.865000
enableExtras: 1 as BOOL: 1

There is a complete set of methods for dealing with all of the built-in C number types,
but the naming conventions are consistent enough that you can safely guess what they
are, such as using the +numberWithUnsignedInt: method for creating an instance with
an unsigned int value. The full list, of course, is spelled out in the developer docu-
mentation (Help → Developer Documentation).

CFNumberRef
The CFNumberRef type is fairly simple; it includes only a handful of functions for basic
setting and getting of values. Here are two simple examples:

NSInteger intValue = 2000;
CFNumberRef intNumber = CFNumberCreate(NULL,
 kCFNumberNSIntegerType,
 &intValue);

CGFloat floatValue = 105.3;
CFNumberRef floatNumber = CFNumberCreate(NULL,
 kCFNumberCGFloatType,
 &floatValue);

NSLog(@"intNumber: %@", intNumber);
NSLog(@"floatNumber: %@", floatNumber);

CFRelease(intNumber);
CFRelease(floatNumber);

Here’s the result in the console:

intNumber: 2000
floatNumber: 105.3

NSNumber | 159

A related type is CFBooleanRef, which you use through one of the two constant instan-
ces, kCFBooleanTrue and kCFBooleanFalse. The advantage of this being a Ref type is that
it can be stored in a collection, such as an array (see “NSArray” on page 169 for more
on arrays). Core Foundation also offers a primitive Boolean type, which is effectively
the same as a BOOL in Objective-C:

CFBooleanRef controlEnabled = kCFBooleanTrue;
CFBooleanRef resetPreferences = kCFBooleanFalse;

if (CFBooleanGetValue(controlEnabled) == true)
 NSLog(@"controlEnabled");

if (CFBooleanGetValue(resetPreferences) == true)
 NSLog(@"resetPreferences");

You probably will not use CFNumberRef or CFBooleanRef very often, as NSNumber can
usually do the same work with less code. As with the other Core Foundation types,
these are most useful when working a file that will be compiled as plain C. If you need
to use CFNumberRef, though, you may want to look at CFNumberFormatterRef to format
values.

Cocoa Primitive Types
Although Cocoa is completely compatible with the standard C types, it also offers its
own primitive number types, which are not full-fledged classes (Table 7-5).

Table 7-5. Cocoa primitive number types

Type Description

NSInteger Integer values

NSUInteger Unsigned integer values

CGFloat Floating-point values

The NSInteger and NSUInteger types are set up to refer to the appropriate size depending
on which architecture you’re compiling for: int and unsigned int in 32-bit applications,
and long and unsigned long in 64-bit applications. You’ll see these types anywhere
primitive values are used in Cocoa.

For example, instead of using an int for an array index, you should use an NSInteger:

NSInteger myArray[5] = {1,3,5,7,11};
NSInteger arrayIndex = 4;
NSInteger newValue = myArray[arrayIndex];

The CGFloat provides the same service for floating-point values. Again, you can just use
it anywhere you’d use a float value:

CGFloat scaleFactor = 0.8;

160 | Chapter 7: Foundation Value Classes

You might expect this to be NSFloat, but the 64-bit floating-point type
is defined by a framework called CoreGraphics. Without going into too
much detail here, CoreGraphics is the basis for most 2D graphics in Mac
OS X.

NSDecimalNumber
NSNumber can only store numbers of various sizes; you can’t use it to do arithmetic.
However, you can do mathematical operations with NSDecimalNumber, which is a sub-
class of NSNumber. This is invaluable if you’re creating financial or scientific applications
that need to be precise. You can create instances with a mantissa (significant part of
the value) of up to 38 digits and an exponent from –128 through 127—in other words,
a very big number.

You can create an NSDecimalNumber either from a string value like @"7e22" or using
structured data. Here’s an example of each:

NSDecimalNumber* starsInTheSky;
starsInTheSky = [NSDecimalNumber decimalNumberWithMantissa: 7
 exponent: 22
 isNegative: NO];

NSLog(@"starsInTheSky: %@", starsInTheSky);

starsInTheSky = [NSDecimalNumber decimalNumberWithString:@"7e22"];

NSLog(@"starsInTheSky: %@", starsInTheSky);

Here’s the result in the console:

starsInTheSky: 70000000000000000000000
starsInTheSky: 70000000000000000000000

Both approaches produce the same result, but methods like +decimalNumberWith
String: that read input strings are generally a bit slower than those that create the
objects directly (of course, if you call it thousands of times, you may see a difference).
Once you have a few of these objects, you’ll probably want to do something interesting
with them. Table 7-6 lists some of the most useful methods.

Table 7-6. Common NSDecimalNumber methods

Method Description

+decimalNumberWithMantissa:exponent:isNegative: Creates a decimal number with structured values

+decimalNumberWithString: Creates a number from a string

+maximumDecimalNumber Returns an instance with the maximum possible value

+notANumber Returns an object that represents a nonnumeric value
for error handling

-decimalNumberByAdding: Adds the value of a secondary object, returns the result

NSNumber | 161

Method Description

-decimalNumberBySubtracting: Subtracts the value of a secondary object, returns the
result

-decimalNumberByMultiplyingBy: Multiplies the value of a secondary object, returns the
result

-decimalNumberByDividingBy: Divides the value of a secondary object, returns the
result

Here’s a simple example that calculates the projected world population for 2015:

// current population of 6,778,000,000.
// growth rate of 1.14%.

NSDecimalNumber* population =
 [NSDecimalNumber decimalNumberWithString:@"6.778e9"];
NSDecimalNumber* annualGrowth =
 [NSDecimalNumber decimalNumberWithString:@"0.0114"];

NSDecimalNumber* yearPopulation = population;
NSDecimalNumber* netGain;

NSInteger year;
for (year = 2009; year < 2016; year++) {

 // calculate the net gain for each year using 'annualGrowth'.
 // add the net gain to the current total.

 netGain = [yearPopulation decimalNumberByMultiplyingBy:annualGrowth];
 yearPopulation = [yearPopulation decimalNumberByAdding:netGain];
}

NSLog (@"Projected population for 2015: %@", yearPopulation);

Here’s the result in the console:

Projected population for 2015: 7337738147.3935859258590608915712

To make this number a bit more friendly, you can round the value using the -decimal
NumberByRoundingAccordingToBehavior: method. It accepts any object that implements
the NSDecimalNumberBehaviors protocol. You can make your own class or just create an
instance of the NSDecimalNumberHandler class. The only catch is that the initialization
method for the built-in class is extremely verbose, even by Objective-C standards.
Here’s how to round the value to a whole number:

NSDecimalNumberHandler* round;
NSRoundingMode mode = NSRoundPlain;

round = [NSDecimalNumberHandler decimalNumberHandlerWithRoundingMode: mode
 scale: 0
 raiseOnExactness: NO
 raiseOnOverflow: NO
 raiseOnUnderflow: NO

162 | Chapter 7: Foundation Value Classes

 raiseOnDivideByZero: NO];

NSDecimalNumber* total;
total = [yearPopulation decimalNumberByRoundingAccordingToBehavior:round];

NSLog (@"Projected population for 2015: %@", total);

And the result:

Projected population for 2015: 7337738147

Cocoa also provides a plain C struct called NSDecimal and a collection
of associated functions, but I strongly recommend using the
NSDecimalNumber class instead, because it’s easier to use and integrates
better with the rest of Cocoa.

NSNumberFormatter
Cocoa provides the NSNumberFormatter class to format numbers. You can choose from
a stock formatting style, such as currency, or provide your own formatting pattern.
NSNumberFormatter inherits from the NSFormatter class, which other built-in formatter
classes inherit from as well. The API provides a lot of different options, but let’s just
focus on the simple case of formatting the projected population:

NSDecimalNumber* total;
total = [yearPopulation decimalNumberByRoundingAccordingToBehavior:round];
NSLog (@"Projected population for 2015: %@", total);

NSString* totalString;
NSNumberFormatterStyle formatStyle = NSNumberFormatterDecimalStyle;
totalString = [NSNumberFormatter localizedStringFromNumber: total
 numberStyle: formatStyle];

NSLog (@"Projected population for 2015 (formatted): %@", totalString);

The interesting thing about the +localizedStringFromNumber:numberStyle: class
method is the word localized in the beginning. It applies the user’s preferences for
number formatting, which is usually defined by region. Here’s the result if my format-
ting is set for U.S. standards:

Projected population for 2015: 7337738147
Projected population for 2015 (formatted): 7,337,738,147

If I go into System Preferences → Language & Text → Formats and change my Region
to Belgium, then rerun the program, the formatting in the console changes (note the
different separator character; see Figure 7-7):

Projected population for 2015: 7337738147
Projected population for 2015 (formatted): 7.337.738.147

NSNumber | 163

NSNumberFormatter is actually designed to work with NSNumber; it just
happens that NSDecimalNumber is a subclass of NSNumber. You can use
formatters with either object type.

NSNumberFormatter usually does the most appropriate thing for the situation by default,
but you can override that behavior. In the following example, I specify that the asterisk
character should be used for the thousand separator:

NSNumberFormatter* formatter = [[NSNumberFormatter alloc] init];
[formatter setNumberStyle: NSNumberFormatterDecimalStyle];
[formatter setThousandSeparator:@"*"];
NSString* totalString = [formatter stringFromNumber:total];

NSLog (@"Projected population for 2015 (formatted): %@", totalString);
[formatter release];

Figure 7-7. You can change the region in System Preferences to test number formatting

164 | Chapter 7: Foundation Value Classes

Here’s the result in the console:

Projected population for 2015 (formatted): 7*337*738*147

You can reuse NSNumberFormatter objects any number of times, and they
can be somewhat expensive to set up, so it’s usually a good idea to keep
them around as instance variables if you’re going to format a lot of
values.

NSNumberFormatter also has a hidden talent that you can trigger with NSNum
berFormatterSpellOutStyle. Here’s a quick example:

NSNumber* secondsInDay = [NSNumber numberWithInt:86400];
NSNumberFormatter* formatter = [[NSNumberFormatter alloc] init];
[formatter setNumberStyle: NSNumberFormatterSpellOutStyle];

NSString* secondsAsString = [formatter stringFromNumber:secondsInDay];
NSLog (@"Seconds in day (formatted): %@", secondsAsString);
[formatter release];

Here’s the result:

Seconds in day (formatted): eighty-six thousand four hundred

The spelled-out style isn’t practical for all numbers, but when used in the proper con-
text, it can provide a more friendly experience for the user. If nothing else, though, it’s
a neat trick.

When to Use Which Number Type
Cocoa provides several different numeric types, so let’s run down the list and clarify
when to use each one:

NSInteger, NSUInteger, CGFloat
Use for transient, in-application data, such as an index for an array, a scale factor,
or screen coordinates.

NSNumber
Typically best to use when dealing with persistent user data that will be saved to
disk (either integer or floating-point values).

CFNumber
The Core Foundation number class. You almost always want to use NSNumber in-
stead, the exceptions being when you’re writing code in a file that will be compiled
as plain C, or if you happen to need a specific behavior in Core Foundation.

NSDecimalNumber
Use when dealing with vital user data where high-precision math is important, such
as bank transactions or scientific measurements.

NSNumber | 165

NSDecimal
Generally works the same as NSDecimalNumber, but is implemented as a plain C
struct with companion functions. Unless you know otherwise, it’s usually better
to use the object-oriented NSDecimalNumber class instead.

NSData
You use NSData to store blocks of raw data. This is useful if your app downloads files
over the network, or if you want to save or load data from disk. You can also use
NSData to easily deal with raw memory. You can get a lot done with just a handful of
methods (Table 7-7).

Table 7-7. Common NSData methods

Method Description

+dataWithContentsOfURL: Creates a data object with the contents of a file at a URL

+dataWithContentsOfFile: Creates a data object with the contents of a file at a path

+dataWithBytes:length: Creates a data object by copying raw memory

-writeToURL:atomically: Writes the data to a local file URL

-writeToFile:atomically: Writes the data to a file path

A lot of other classes can read and write NSData objects too, so it’s one of the most
widely used object types in Cocoa. Example 7-1 shows some simple examples.

Example 7-1. NSDataBasics.m

NSString* moviePath = @"/Users/scott/Movies/trailer.m4v";
NSData* movieData = [NSData dataWithContentsOfFile:moviePath];

NSInteger byteCount = 1000;
void* rawMemory = malloc (byteCount);
NSData* rawMemoryAsData = [NSData dataWithBytes:rawMemory length:byteCount];

Data objects are particularly useful with things that can’t be reasonably expressed in
string form, like images. The NSImage class allows you to load image files from disk or
over the network, as well as create images from the contents of a view. Here’s an ex-
ample of loading an image file from disk, and getting the contents as an NSData object:

NSString* file = @"/Library/Desktop Pictures/Plants/Leaf Curl.jpg";
NSImage* image = [[NSImage alloc] initWithContentsOfFile:file];
NSData* imageData = [image TIFFRepresentation];

[image release];

See “Images” on page 329 for more on images. You can also convert other Foundation
objects into NSData objects, which is sometimes necessary for copying data to the
pasteboard, sending it over the network, or storing it in a database. For example, you

166 | Chapter 7: Foundation Value Classes

can convert a string into a data object with the -dataUsingEncoding: method, then write
it to a file:

NSString* streetName = @"Mariani";
NSData* stringData = [streetName dataUsingEncoding:NSUTF8StringEncoding];
NSString* filePath =
 [NSHomeDirectory() stringByAppendingPathComponent:@"/streetName.txt"];
[stringData writeToFile:filePath atomically:YES];

NSUTF8StringEncoding is the most common type of file encoding in Co-
coa. The file encoding determines how the characters in a file or string
are interpreted. This is important for supporting international text, but
file encodings are not covered in this book. Unless you know otherwise,
it’s usually best to use NSUTF8StringEncoding when writing files.

There are four main ways to create NSData objects from existing memory blocks. Know-
ing the different options can significantly improve your code:

+ (id)data;

+ (id)dataWithBytes: (const void *)bytes
 length: (NSUInteger)length;

+ (id)dataWithBytesNoCopy: (void *)bytes
 length: (NSUInteger)length;

+ (id)dataWithBytesNoCopy: (void *)bytes
 length: (NSUInteger)length
 freeWhenDone: (BOOL)b;

These are all variations on the same concept. If you create an NSData object with the
standard +[NSData dataWithBytes:length:] method, the contents of bytes will be cop-
ied. This can be very useful, because the data object can then be passed around without
any concern about the original memory block going away. But some memory blocks
are so big that copying them would put too much strain on system resources. If you
use one of the methods with NoCopy at the beginning, the NSData object will just use the
existing memory block instead of making its own.

The method that ends with freeWhenDone will call free() on the memory block when
the object goes away. This means you can effectively use Cocoa’s memory management
conveniences (like autorelease) to manage memory allocated with the malloc()
function:

NSInteger count = 4;
NSInteger byteCount = (sizeof(NSInteger) * count);
NSInteger* allNumbers = malloc (byteCount);
NSInteger* currentNumber = allNumbers;

for (int i = 0; i < count; i++) {

 // advance pointer and set data.

NSData | 167

 currentNumber = (allNumbers + i);
 *currentNumber = i*100;
}

NSData* data = [NSData dataWithBytesNoCopy: allNumbers
 length: byteCount
 freeWhenDone: YES];

// no need to call free here. NSData does it.
// free()

freeWhenDone exists only for the NoCopy method, because memory is copied by the other
variants of dataWithBytes:, and the NSData object will free any memory that it allocates
itself.

NSMutableData
NSMutableData is the mutable subclass of NSData. It adds a few key methods that allow
you to add or remove data without creating a new NSData object. Here’s an example:

NSMutableData* data = [NSMutableData data];
[data appendData:[@"First" dataUsingEncoding:NSUTF8StringEncoding]];
[data appendData:[@"Second" dataUsingEncoding:NSUTF8StringEncoding]];
[data appendData:[@"Third" dataUsingEncoding:NSUTF8StringEncoding]];
NSLog(@"data: %@", data);

[data resetBytesInRange: NSMakeRange(0,data.length)];
NSLog(@"data after resetting contents: %@", data);

// remove all data.
[data setData: [NSData data]];
NSLog(@"data after removing contents: %@", data);

NSInteger count = 4;
NSInteger byteCount = (sizeof(NSInteger) * count);
NSInteger* allNumbers = malloc (byteCount);
NSInteger* currentNumber = allNumbers;

for (int i = 0; i < count; i++) {

 // advance pointer and set data.
 currentNumber = (allNumbers + i);
 *currentNumber = i*8;
}

[data appendBytes:allNumbers length:byteCount];
NSLog(@"data: %@", data);

[data setData: [NSData data]];
NSLog(@"data after removing contents: %@", data);

free (allNumbers);

This results in the following in the console:

168 | Chapter 7: Foundation Value Classes

data: <46697273 74536563 6f6e6454 68697264>
data after resetting contents: <00000000 00000000 00000000 00000000>
data after removing contents: <>
data: <00000000 00000000 08000000 00000000 10000000 00000000 18000000 00000000>
data after removing contents: <>

CFDataRef and CFMutableDataRef

CFDataRef and CFMutableDataRef are the Core Foundation equivalents of NSData and
NSMutableData. They don’t offer significant advantages over their Foundation counter-
parts for most day-to-day tasks, and are toll-free bridged, so they are not covered in
this book. You can find the exact function names in the Xcode documentation.

NSArray
I think you could make the case that arrays are second only to strings in the competition
for the most-used data type in Cocoa apps. The NSArray class is incredibly versatile and
robust. It can store very large quantities of objects, but is also very easy to use. The
mutable subclass is substantially more useful, but let’s start with the basics. Here’s how
to create an array with three NSString objects:

NSArray* array = [NSArray arrayWithObjects:@"One", @"Two", @"Three", nil];

This method returns an autoreleased instance of NSArray with the objects you provide.
I used a literal string object here, but you can also just use object variables.

The +arrayWithObjects: method takes a varying number of arguments.
Always add a nil at the end of the list. If you don’t, Xcode will generate
a warning similar to “missing sentinel in function call.” If you build and
run without fixing the warning, the app will likely crash when that line
of code is used, because the method will just start loading random
memory.

NSArray objects have some specific behaviors to keep in mind, some of which are dif-
ferent from other programming environments:

• Arrays can contain only objects, not primitive C types, structs, or generic pointers.
The only exception to this are Core Foundation types, which have a special status.
See “NSValue” on page 183 for more on wrapping primitive values in objects.

• Arrays can contain objects of mixed types, so a single array can contain some
NSString objects, some id objects, or instances of any other class, including your
own.

• You can’t store a nil or NULL value in an NSArray, but you can store a special kind
of object called an NSNull. You should use these sparingly, and instead try to only
create arrays with valid objects.

• You can store multiple copies of the same object at different slots.

NSArray | 169

Most of the work you do with arrays is handled by a handful of key methods. Here are
some basic examples:

NSArray* array = [NSArray arrayWithObjects:@"One", @"Two", @"Three", nil];
NSLog(@"array: %@", array);

id object = [array objectAtIndex:1];
NSLog(@"object: %@", object);

NSUInteger indexOfObject = [array indexOfObject:@"Three"];
NSLog(@"indexOfObject: %lu", indexOfObject);

array = [array arrayByAddingObject:@"Four"];
NSLog(@"array: %@", array);

NSArray* array2 = [[NSArray alloc] initWithObjects:@"Five", @"Six", nil];
array = [array arrayByAddingObjectsFromArray:array2];
NSLog(@"array: %@", array);
[array2 release];

The -objectAtIndex: method returns an object at a specific slot. You shouldn’t re-
lease an object returned from this method, and if you want to keep the object (for
an instance variable, for example), you should retain it first.

The -indexOfObject: method takes an object and returns its position in the array. If
the object is not in the array, you will receive the value of NSNotFound instead of the
index. This method uses -isEqual: to find the object, so you don’t necessarily need
to request the exact object, but just an object with the same value.

The -arrayByAddingObject: method returns a new autoreleased array that is the same
as the original, but with the additional object added to the end.

The -arrayByAddingObjectsFromArray: method returns a new autoreleased array that
combines all of the objects from the original and the second array you pass in.

Here’s the result in the console (I reformatted this slightly to make it easier to read):

array: (One, Two, Three)
object: Two
indexOfObject: 2
array: (One, Two, Three, Four)
array: (One, Two, Three, Four, Five, Six)

You can also create a formatted string from an array, or vice versa:

// string from array.
NSArray* array1 = [NSArray arrayWithObjects:
 @"One", @"Two", @"Three", nil];

NSString* formatted = [array1 componentsJoinedByString:@" -- "];
NSLog(@"formatted: %@", formatted);

// array from string.
NSString* list = @"Red * Green * Blue";

170 | Chapter 7: Foundation Value Classes

NSArray* array2 = [list componentsSeparatedByString:@" * "];
NSLog(@"array2: %@", array2);

Here’s the result in the console:

formatted: One -- Two -- Three
array2: (Red, Green, Blue)

Of course, you don’t have to use commas or asterisks. You can specify whatever sep-
arator you like, and it’s not limited to a single character.

Fast Enumeration
Objective-C has a built-in syntax for looping through collection objects such as
NSArray. Here’s what it looks like:

NSArray* weekendDays = [NSArray arrayWithObjects:
 @"Friday", @"Saturday", @"Sunday", nil];

for (id object in weekendDays) {
 NSLog(@"day: %@", object);
}

This is generally much faster and simpler than using the standard C-style for loop in
combination with the -objectAtIndex: method, though there are sometimes cases when
that approach is useful, too. The fast enumeration feature is available to any classes
that support the NSFastEnumeration protocol.

Blocks
When you want to run code against every item in an array, you can use fast enumeration
to loop through it, but there’s another option in Objective-C called blocks. This is a
fairly advanced topic that applies to many classes, but the value is immediately clear
with arrays.

This is an optional topic, and is not required for the rest of the book. If
the concept is a bit hard to wrap your head around now, feel free to skim
it now and come back to it later. I’m including it here only because a lot
of Cocoa apps are starting to use it.

Blocks are nameless inline functions. If you’ve written software in other languages, you
might also know blocks as anonymous functions or closures. They’re a very compact
way to use snippets of code with other methods. Blocks can also be stored as variables
and passed between methods. The syntax takes a bit of explanation. First, here’s one
method from NSArray that takes a block (don’t type this into your code; you’ll see a
complete version of this shortly):

NSArray | 171

- (void)enumerateObjectsUsingBlock: (
 void (^) (id obj, NSUInteger idx, BOOL *stop)
) block;

The thing that takes a bit of work to get your head around is that -enumer
ateObjectsUsingBlock: is an Objective-C method, but the method itself takes another
function (a block) as input. That function will be used on every single item in the array.

You declare a block variable with the caret (^) symbol, which is similar to using the
asterisk for declaring pointers. The void at the beginning states that the block won’t
return a value. The obj variable is a single item from the array; the idx value is the index
of that item; and the stop variable is a pointer to a BOOL. If you want to stop the loop,
resolve the pointer and set the value to YES, as in *stop = YES.

The word block in this declaration is just the name of the variable—it’s
not part of the syntax. The caret (^) is the block declaration symbol.

To use this method, create a block implementation that matches the block signature
that the method provides. The signature declares which input and output items your
block implementation must contain, and what their types should be. Here’s an example
of creating a block implementation for the -enumerateObjectsUsingBlock: method:

NSArray* colors = [NSArray arrayWithObjects:
 @"Red", @"Green", @"Blue", nil];

// enumeration using a block.
[colors enumerateObjectsUsingBlock:

 // beginning of block.
 ^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"%@ at %lu", obj, idx);

 if (idx == 1) {
 NSLog(@"Found index 1, stopping");
 *stop = YES;
 }
 } // end of block.
];

Here’s the result in the console:

Red at 0
Green at 1
Found index 1, stopping

The stop variable is necessary here because using a return statement would end only
the current iteration of the block. The method will call the block once for each item in
the array, so return would just move to the next item in the array. To stop the whole

172 | Chapter 7: Foundation Value Classes

thing, you have to set the value of stop to YES. This isn’t a universal rule of blocks (as
not all blocks are attached to loops)—it’s just how it happens to work for this method.

Here are two versions of the same code, side by side. The first uses a block, the second
uses fast enumeration:

NSArray* colors = [NSArray arrayWithObjects:
 @"Red", @"Green", @"Blue", nil];

// enumeration using a block.
[colors enumerateObjectsUsingBlock:

 // beginning of block.
 ^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"%@ at %lu", obj, idx);

 if (idx == 1) {
 NSLog(@"Found index 1, stopping");
 *stop = YES;
 }
 } // end of block.
];

// standard enumeration.
for (id obj in colors) {

 NSUInteger idx = [colors indexOfObject:obj];
 NSLog(@"%@ at %lu", obj, idx);

 if (idx == 1) {
 NSLog(@"Found index 1, stopping");
 break;
 }
}

NSMutableArray
The joy of using object-oriented arrays increases significantly when you can change
them on the fly without having to create new objects. The NSMutableArray class, of
course, does just that. It works pretty much as you’d expect, adding methods that add,
remove, and replace objects. You can work with individual objects, ranges of objects,
or all of the objects at once. Here are examples of the methods you’ll probably use most
often:

// add objects, then empty the array.
NSMutableArray* painters = [NSMutableArray array];
[painters addObject:@"Leonardo"];
[painters addObject:@"Michelangelo"];
[painters addObject:@"Donatello"];
[painters addObject:@"Raphael"];
NSLog(@"painters: %@", painters);

NSArray | 173

[painters removeAllObjects];
NSLog(@"painters: %@", painters);

// combine arrays, replace items.
NSMutableArray* allMembers = [NSMutableArray array];
NSArray* members1 = [NSArray arrayWithObjects:@"Paul", @"John", nil];
NSArray* members2 = [NSArray arrayWithObjects:@"George", @"Pete", nil];
[allMembers addObjectsFromArray:members1];
[allMembers addObjectsFromArray:members2];

NSUInteger index = [allMembers indexOfObject:@"Pete"];
[allMembers replaceObjectAtIndex:index withObject:@"Ringo"];
NSLog(@"allMembers: %@", allMembers);

Here’s the result in the console:

painters: (Leonardo, Michelangelo, Donatello, Raphael)
painters: ()
allMembers: (Paul, John, George, Ringo)

Fortunately, this class is easy to use. When used in conjunction with the methods
inherited from NSArray, the previous example almost certainly covers nearly all of the
methods you’ll need on a day-to-day basis.

You should never change an array while you are looping through it;
doing so breaks the logic of the loop, possibly causing a crash.

CFArrayRef
In most cases, you should use NSArray and NSMutableArray in Cocoa apps, but the Core
Foundation counterparts, CFArrayRef and CFMutableArrayRef, have a few tricks that
might be helpful. For example, you can ask the array to use your own custom retain,
copy, and release functions as items are added and removed. This may be essential in
certain advanced cases, but it can also be helpful for debugging:

const void* CBRetainValue (CFAllocatorRef allocator, const void *ptr) {

 CFTypeRef cf = (CFTypeRef)ptr;
 CFRetain(cf);

 NSLog(@"CBRetainValue: %@", cf);
 return cf;
}

- (void) retainCallbacksForArray {

 CFArrayCallBacks callbacks = kCFTypeArrayCallBacks;
 callbacks.retain = CBRetainValue;

 CFIndex capacity = 0; // no limit.
 CFMutableArrayRef array;

174 | Chapter 7: Foundation Value Classes

 array = CFArrayCreateMutable(NULL, capacity, &callbacks);

 // items are retained as they are added.
 CFArrayAppendValue(array, @"De Anza Blvd");
 CFArrayAppendValue(array, @"Homestead Rd");

 // works when cast to NSMutableArray as well.
 NSMutableArray* arrayObj = (NSMutableArray*)array;
 [arrayObj addObject: @"Sunnyvale Saratoga Rd"];
 [arrayObj addObject: @"Fremont Ave"];
 [arrayObj addObject: @"Stelling Rd"];

 NSLog(@"array: %@", array);
}

Here’s the result of calling [self retainCallbacksForArray] in the console:

CBRetainValue: De Anza Blvd
CBRetainValue: Homestead Rd
CBRetainValue: Sunnyvale Saratoga Rd
CBRetainValue: Fremont Ave
CBRetainValue: Stelling Rd
array: (
 "De Anza Blvd",
 "Homestead Rd",
 "Sunnyvale Saratoga Rd",
 "Fremont Ave",
 "Stelling Rd"
)

This isn’t something you should need to do on a regular basis, but if you do need it, it’s
invaluable.

NSIndexSet
It’s not always convenient to deal with arrays one index at a time. This is where
NSIndexSet and NSMutableIndexSet come in: they allow you to create collections of in-
dexes inside of arrays. Some Cocoa UI classes use index sets to describe the selection
in controls like table views, where the user can select multiple items at the same time.
For example, you can use this to copy out slices of arrays or remove items from an array:

NSMutableArray* ninjas = [NSMutableArray array];
[ninjas addObject:@"Leonardo"];
[ninjas addObject:@"Michelangelo"];
[ninjas addObject:@"Donatello"];
[ninjas addObject:@"Raphael"];
NSLog(@"ninjas: %@", ninjas);

NSMutableIndexSet* indexSet;
indexSet = [NSMutableIndexSet indexSet];
[indexSet addIndex:1];
[indexSet addIndex:3];

NSArray* someNinjas;

NSArray | 175

someNinjas = [ninjas objectsAtIndexes:indexSet];
NSLog(@"someNinjas: %@", someNinjas);

[ninjas removeObjectsAtIndexes:indexSet];
NSLog(@"ninjas: %@", ninjas);

Here’s the result:

ninjas: (Leonardo, Michelangelo, Donatello, Raphael)
someNinjas: (Michelangelo, Raphael)
ninjas: (Leonardo, Donatello)

You can also use them to filter objects based on the code in the block:

NSMutableArray* streets = [NSMutableArray array];
[streets addObject:@"De Anza Blvd"];
[streets addObject:@"Homestead Rd"];
[streets addObject:@"Sunnyvale Saratoga Rd"];
[streets addObject:@"Fremont Ave"];
[streets addObject:@"Stelling Rd"];
NSLog(@"All streets: %@", streets);

NSIndexSet* roadsIndexes;
roadsIndexes = [streets indexesOfObjectsPassingTest:

 ^(id obj, NSUInteger idx, BOOL *stop) {
 return [obj hasSuffix:@"Rd"];
 }];

NSLog(@"roadIndexes: %lu", roadsIndexes.count);

NSArray* roads = [streets objectsAtIndexes:roadsIndexes];
NSLog(@"roads: %@", roads);

Here’s the result in the console:

All streets: (
 "De Anza Blvd",
 "Homestead Rd",
 "Sunnyvale Saratoga Rd",
 "Fremont Ave",
 "Stelling Rd"
)
roadIndexes: 3
roads: (
 "Homestead Rd",
 "Sunnyvale Saratoga Rd",
 "Stelling Rd"
)

Although it’s not shown in this example, you can also insert objects at all of the indexes
described by an index set, or replace all of the objects at given indexes. This makes it
possible to work with large arrays with many selections very efficiently.

176 | Chapter 7: Foundation Value Classes

NSDictionary
Arrays are used for storing ordered collections of objects, but NSDictionary allows you
to store keyed collections of objects. Each entry in an NSDictionary has a key and a value.
The keys have to be unique within each dictionary, but the values do not. All of the
basic rules for NSArray in terms of mixed types and nil values apply here, too.

Like the other Foundation classes, NSDictionary is both robust and easy to use. Here
are some basic examples of creating dictionaries and retrieving values:

NSString* const CBCityKey = @"city";
NSString* const CBStateKey = @"state";
NSString* const CBZipcodeKey = @"zipcode";

NSArray* values = [NSArray arrayWithObjects:
 @"Cupertino", @"California", @"95014", nil];

NSArray* keys = [NSArray arrayWithObjects:
 CBCityKey, CBStateKey, CBZipcodeKey, nil];

NSDictionary* info;
info = [NSDictionary dictionaryWithObjects:values forKeys:keys];
NSLog(@"info dictionary: %@", info);
NSLog(@"info keys: %@", info.allKeys);
NSLog(@"info values: %@", info.allValues);

NSString* city = [info objectForKey:CBCityKey];
NSLog(@"city value: %@", city);

Technically, keys don’t have to be NSString objects—you could use
NSNumber objects instead—but strings are the most common and gen-
erally the most practical.

You can also create a dictionary by using a variable number of arguments instead of
arrays. The +dictionaryWithObjectsAndKeys: method takes objects and keys in an al-
ternating pattern, ending with a nil:

NSDictionary* info;
info = [NSDictionary dictionaryWithObjectsAndKeys:
 @"Cupertino", CBCityKey,
 @"California", CBStateKey,
 @"95014", CBZipcodeKey,
 nil];

NSDictionary supports both fast enumeration and block enumeration:

NSString* const CBCityKey = @"city";
NSString* const CBStateKey = @"state";
NSString* const CBZipcodeKey = @"zipcode";

NSDictionary* info;
info = [NSDictionary dictionaryWithObjectsAndKeys:

NSDictionary | 177

 @"Sunnyvale", CBCityKey,
 @"California", CBStateKey,
 @"94086", CBZipcodeKey,
 nil];

for (id key in info) {
 NSLog(@"%@: %@", key, [info objectForKey:key]);
}

[info enumerateKeysAndObjectsUsingBlock:

 ^(id key, id obj, BOOL *stop) {
 NSLog(@"%@: %@", key, obj);
 }
];

In these examples, I used string constants for the keys. This isn’t required, but I think
it’s usually a good idea, because it enables the compiler to help you prevent typos. If
you just type literal strings everywhere, it’s really easy for one line of code to say
@"city" and the next line to say @"cityy", which means your program has a bug. Trying
to use a constant that doesn’t exist will generate a build error, which gives you a chance
to fix the mistake before you run the app.

Dictionaries are sometimes useful as a way to try out ideas quickly, without having to
create a bunch of classes. When prototyping, you can treat each key-value pair effec-
tively as an instance variable. Once you’ve decided on a design, though, it’s easier to
make actual classes, because you can take advantage of class-specific categories, over-
ride setters and getters, and so on.

NSMutableDictionary
The NSMutableDictionary class adds methods to NSDictionary that allow you to make
changes on the fly. This makes programming with dictionaries vastly easier. Here are
some examples of the most important methods:

NSMutableDictionary* info1 = [NSMutableDictionary dictionary];

[info1 setObject: @"Looking up at the stars."
 forKey: @"title"];
[info1 setObject: [NSNumber numberWithFloat:1.8]
 forKey: @"focalDistance"];
[info1 setObject: [NSDate date]
 forKey: @"creationDate"];
[info1 setObject: [NSNumber numberWithFloat:1.2]
 forKey: @"exposure"];

NSLog(@"info1: %@", info1);

NSMutableDictionary* info2 = [NSMutableDictionary dictionary];

[info2 setObject: [NSNumber numberWithInteger:500]
 forKey: @"width"];

178 | Chapter 7: Foundation Value Classes

[info2 setObject: [NSNumber numberWithInteger:450]
 forKey: @"height"];
[info2 setObject: [NSNumber numberWithInteger:300]
 forKey: @"dpi"];

[info1 addEntriesFromDictionary:info2];
NSLog(@"info1: %@", info1);

NSArray* keys = [NSArray arrayWithObjects:@"width", @"height", nil];
[info1 removeObjectsForKeys:keys];
NSLog(@"info1: %@", info1);

Here’s the result in the console:

info1: {
 creationDate = "2010-02-10 05:09:43 -0800";
 exposure = "1.2";
 focalDistance = "1.8";
 title = "Looking up at the stars.";
}
info1: {
 creationDate = "2010-02-10 05:09:43 -0800";
 dpi = 300;
 exposure = "1.2";
 focalDistance = "1.8";
 height = 450;
 title = "Looking up at the stars.";
 width = 500;
}
info1: {
 creationDate = "2010-02-10 05:09:43 -0800";
 dpi = 300;
 exposure = "1.2";
 focalDistance = "1.8";
 title = "Looking up at the stars.";
}

This example is pretty simple, but that’s because NSMutableDictionary is a very straight-
forward class. In the vast majority of cases, it just works the way you’d expect.

CFDictionaryRef
The Core Foundation dictionary types are CFDictionaryRef and CFMuta
bleDictionaryRef. In most cases, you should just use the Foundation classes instead,
but CFDictionaryRef does offer a few more options for advanced cases. If NSDiction
ary doesn’t quite do what you want, CFDictionaryRef might be able to. For example,
you can choose to retain keys instead of copying them:

const void* CBRetainValue (CFAllocatorRef alloc, const void *ptr) {

 CFTypeRef cf = (CFTypeRef)ptr;
 CFRetain(cf);
 NSLog(@"CBRetainValue: %@", cf);
 return cf;

NSDictionary | 179

}

- (void) dictionaryWithRetainedKeys {

 // start with standard callbacks, add custom retain option.
 // this will cause the keys to be retained instead of copied.
 CFDictionaryKeyCallBacks keyCallbacks;

 keyCallbacks = kCFCopyStringDictionaryKeyCallBacks;
 keyCallbacks.retain = CBRetainValue;

 CFMutableDictionaryRef dict;
 CFIndex capacity = 0;
 dict = CFDictionaryCreateMutable(NULL,
 capacity,
 &keyCallbacks,
 &kCFTypeDictionaryValueCallBacks);

 CFDictionarySetValue(dict, @"city", @"Palo Alto");
}

You can actually use C types as keys for CFDictionaryRef, but it’s almost always better
to use standard strings. Another option that CFMutableDictionaryRef provides is the
ability to add, replace, or remove a value for a key only if that key doesn’t already exist:

CFStringRef const CBCityKey = CFSTR("city");
CFStringRef const CBStateKey = CFSTR("state");
CFStringRef const CBZipcodeKey = CFSTR("zipcode");

CFIndex capacity = 0;
CFMutableDictionaryRef dict;
dict = CFDictionaryCreateMutable(NULL,
 capacity,
 &kCFCopyStringDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);

CFDictionaryAddValue (dict, CBCityKey, @"San Francisco");
CFDictionaryAddValue (dict, CBCityKey, @"Mountain View");

// will not cause exceptions.
CFDictionaryRemoveValue (dict, CBStateKey);
CFDictionaryReplaceValue (dict, CBZipcodeKey, @"95014");
NSLog(@"dict: %@", dict);

CFDictionaryReplaceValue (dict, CBCityKey, @"Cupertino");
NSLog(@"dict: %@", dict);

CFRelease(dict);

Here’s the result in the console:

dict: {
 city = "San Francisco";
}
dict: {

180 | Chapter 7: Foundation Value Classes

 city = Cupertino;
}

You can do these same things with NSDictionary by checking for an existing key first,
but this does it in one step. I suggest you stick with NSDictionary. In my opinion, it’s
better to have an extra line of code than to switch back and forth between
NSDictionary and CFDictionaryRef.

NSSet
An NSArray is an ordered collections of values; an NSDictionary is an unordered col-
lections of values and keys; and an NSSet is an unordered collection of values (without
keys). Unlike arrays and dictionaries, all of the items in an NSSet are unique, which is
important for certain cases in Cocoa. You will probably not use sets nearly as much as
you use arrays, but it is very helpful to have a few basic ideas about how they work:

// manually created set.
NSSet* days;
days = [NSSet setWithObjects: @"Friday", @"Saturday",nil];
days = [days setByAddingObject:@"Sunday"];
NSLog(@"days: %@", days);

// set from array.
NSMutableArray* planets = [NSMutableArray array];
[planets addObject:@"Earth"];
[planets addObject:@"Mercury"];
[planets addObject:@"Mars"];
[planets addObject:@"Jupiter"];
[planets addObject:@"Jupiter"];
[planets addObject:@"Jupiter"];

NSSet* planetsSet = [NSSet setWithArray:planets];
NSLog(@"planetsSet: %@", planetsSet);

// add an object.
NSSet* morePlanets = [planetsSet setByAddingObject:@"Venus"];
if ([planetsSet isSubsetOfSet:morePlanets])
 NSLog(@"morePlanets is a superset of planetsSet");

// loop through with fast enumeration.
for (id planet in planetsSet) {
 if ([planet isEqual:@"Earth"]) {
 NSLog (@"Found home!");
 }
}

// filter objects with a block.
NSSet* mPlanets = [morePlanets objectsPassingTest:
 ^(id obj, BOOL *stop) {
 return [obj hasPrefix:@"M"];
 }];

NSSet | 181

NSLog(@"mPlanets: %@", mPlanets);

Here’s the result in the console:

days: {(Friday, Saturday, Sunday)}
planetsSet: {(Mercury, Jupiter, Mars, Earth)}
morePlanets is a superset of planetsSet
Found home!
mPlanets: {(Mars, Mercury)}

The two most import things to notice in this example are:

• If you create an NSSet from an NSArray, and the array has duplicate items, the set
will not.

• The items in the set can end up in a different order than in the array. There’s no
inherent order to the items in a set.

NSMutableSet
NSMutableSet, of course, adds the ability to change the set of objects on the fly, but the
methods have a slightly different naming scheme than NSMutableArray or NSMuta
bleDictionary. Here are some basic examples:

NSMutableSet* planets1 = [NSMutableSet set];
[planets1 addObject:@"Earth"];
[planets1 addObject:@"Mercury"];
[planets1 addObject:@"Pluto"];

NSMutableSet* planets2 = [NSMutableSet set];
[planets2 addObject:@"Mars"];
[planets2 addObject:@"Jupiter"];

NSMutableSet* allPlanets = [NSMutableSet set];
[allPlanets unionSet:planets1];
[allPlanets unionSet:planets2];
NSLog(@"allPlanets: %@", allPlanets);

NSMutableSet* notPlanets = [NSSet setWithObject:@"Pluto"];
[allPlanets minusSet:notPlanets];
NSLog(@"allPlanets: %@", allPlanets);

NSMutableSet* overlap = [[allPlanets mutableCopy] autorelease];
[overlap intersectSet:planets1];
NSLog(@"overlap: %@", overlap);

Heres’s the result in the console:

allPlanets: {(
 Mercury, Pluto, Mars, Jupiter, Earth
)}
allPlanets: {(
 Mercury, Mars, Jupiter, Earth
)}

182 | Chapter 7: Foundation Value Classes

overlap: {(
 Mercury, Earth
)}

Although they’re not as widely used as arrays, sets can be very useful when you want
unique collections of objects.

NSValue
NSValue is used to wrap primitive C values in Objective-C objects. In addition to pro-
viding some basic infrastructure for its subclass, NSNumber, it also provides a way to
store raw pointers, or even nonretained references to other Objective-C objects. Unlike
NSData, it stores the primitive type along with the actual data. Here are some basic
examples:

typedef struct {
 NSInteger lengthInSeconds;
 NSInteger yearRecorded;
} Song;

- (NSValue*) structObjectValue {

 Song mySong;
 mySong.lengthInSeconds = 243;
 mySong.yearRecorded = 1970;

 NSValue* item = [NSValue valueWithBytes: &mySong
 objCType: @encode(Song)];
 return item;
}

- (NSValue*) stringObjectValue {

 char* itemName = "Hey Jude";
 NSValue* item = [NSValue valueWithBytes: &itemName
 objCType: @encode(char**)];
 return item;
}

- (void) testValue {

 // value object with a C string.
 NSValue* stringObject = self.stringObjectValue;

 char* stringValue = NULL;
 [stringObject getValue: &stringValue];
 NSLog(@"stringValue: %s", stringValue);

 // value object with a struct.
 NSValue* structObject = self.structObjectValue;

NSValue | 183

 Song mySong;
 [structObject getValue: &mySong];
 NSLog(@"structValue: %ld, %ld",
 mySong.lengthInSeconds, mySong.yearRecorded);

 NSMutableDictionary* songInfo = [NSMutableDictionary dictionary];
 [songInfo setObject:stringObject forKey:@"name"];
 [songInfo setObject:structObject forKey:@"details"];
}

Here’s the result in the console:

stringValue: Hey Jude
structValue: 243, 1970

As you can see, wrapping primitive values and structs in NSValue objects allows you to
store them in arrays, dictionaries, or sets. You can also wrap regular Objective-C objects
in NSValue instances to prevent them from being retained by the collection:

NSMutableString* string1 = [[NSMutableString alloc] init];
[string1 appendFormat:@"Item %ld", 1];
[string1 appendFormat:@"Item %ld", 2];
[string1 appendFormat:@"Item %ld", 3];

NSMutableString* string2 = [string1 mutableCopy];
NSLog(@"string 1 retain count: %lu", string1.retainCount);
NSLog(@"string 2 retain count: %lu", string2.retainCount);

NSValue* stringWrapper = [NSValue valueWithNonretainedObject:string2];
NSMutableArray* array = [NSMutableArray array];
[array addObject:string1];
[array addObject:stringWrapper];

NSLog(@"string 1 retain count: %lu", string1.retainCount);
NSLog(@"string 2 retain count: %lu", string2.retainCount);

Here’s the result in the console:

string 1 retain count: 1
string 2 retain count: 1
string 1 retain count: 2
string 2 retain count: 1

You can also prevent retains on objects added to arrays and dictionaries by using cus-
tom callbacks with CFArrayRef and CFDictionaryRef, but this allows you to achieve the
same end result with less complication.

NSDate
NSDate allows you to calculate points in time as seconds since an event. For example,
here’s how to calculate one full year since the “reference date,” which is January 1, 2001:

NSTimeZone* timeZone = [NSTimeZone systemTimeZone];
NSInteger offset = [timeZone secondsFromGMTForDate:[NSDate date]];
NSInteger seconds = ((60 * 60 * 24 * 365) - offset);

184 | Chapter 7: Foundation Value Classes

NSDate* reference;
reference = [NSDate dateWithTimeIntervalSinceReferenceDate:(-offset)];

NSDate* targetDate;
targetDate = [NSDate dateWithTimeIntervalSinceReferenceDate:seconds];

NSLog(@"reference: %@", reference);
NSLog(@"targetDate: %@", targetDate);

Here’s the result in the console:

reference: 2001-01-01 00:00:00 -0800
targetDate: 2002-01-01 00:00:00 -0800

The reference date is based on the GMT time zone, so I use NSTimeZone to adjust it for
the local machine. Dates are much more useful when paired with NSDateFormatter,
which does the formatting in both directions. You can either convert a regular date
object to a formatted string, or you can create a date object from text.

// standard formatting.
NSDateFormatter* formatter1 = [[NSDateFormatter alloc] init];
[formatter1 setLenient: YES];
[formatter1 setDateStyle: NSDateFormatterShortStyle];
[formatter1 setTimeStyle: NSDateFormatterShortStyle];

NSString* dateString = @"March 24 2001 10:00am";
NSDate* basicDate = [formatter1 dateFromString:dateString];
NSString* formattedDate = [formatter1 stringFromDate:basicDate];
NSLog(@"date only: %@", basicDate);
NSLog(@"short formatted: %@", formattedDate);

NSDateFormatter* formatter2 = [[NSDateFormatter alloc] init];
[formatter2 setLenient: YES];
[formatter2 setDateStyle: NSDateFormatterLongStyle];
[formatter2 setTimeStyle: NSDateFormatterLongStyle];
formattedDate = [formatter2 stringFromDate: basicDate];
NSLog(@"long formatted: %@", formattedDate);

// relative formatting.
NSDateFormatter* formatter3 = [[NSDateFormatter alloc] init];
[formatter3 setLenient: YES];
[formatter3 setDoesRelativeDateFormatting: YES];
[formatter3 setDateStyle: NSDateFormatterShortStyle];
[formatter3 setTimeStyle: NSDateFormatterShortStyle];

NSTimeInterval oneDay = (60*60*24);
NSDate* startDate = [NSDate date];
NSDate* prevDate = [startDate dateByAddingTimeInterval: -oneDay];
NSDate* nextDate = [startDate dateByAddingTimeInterval: oneDay];

NSString* startFormatted = [formatter3 stringFromDate: startDate];
NSString* prevFormatted = [formatter3 stringFromDate: prevDate];
NSString* nextFormatted = [formatter3 stringFromDate: nextDate];
NSLog(@"relative start: %@", startFormatted);
NSLog(@"relative prev: %@", prevFormatted);

NSDate | 185

NSLog(@"relative next: %@", nextFormatted);

[formatter1 release];
[formatter2 release];
[formatter3 release];

Here’s the result in the console:

date only: 2001-03-24 10:00:00 -0800
short formatted: 3/24/01 10:00 AM
long formatted: March 24, 2001 10:00:00 AM PST
relative start: Today 4:18 AM
relative prev: Yesterday 4:18 AM
relative next: Tomorrow 4:18 AM

The most important thing to be aware of is that NSDateFormatter is fairly strict about
how it interprets input strings as dates. For example, don’t set a time style unless an
input string will contain a time. In general, try to be as specific as possible about the
format. You can also provide your own custom format strings. Search for
NSDateFormatter in the Xcode documentation for more details about the format
markers.

There are additional date features available in Cocoa through NSCalendar,
CFCalendarRef, and CFGregorianDate, but they are not covered in this book. The meth-
ods and functions for each are generally easy to understand and you should be able to
get up and running just by viewing the header files.

CFDateRef
The functionality of Core Foundation’s CFDate is nearly identical to NSDate, to the point
that you can practically guess the method names if you’re familiar with their Foundation
counterparts:

CFTimeZoneRef timeZone = CFTimeZoneCopyDefault();
CFAbsoluteTime current = CFAbsoluteTimeGetCurrent();

CFTimeInterval offset = CFTimeZoneGetSecondsFromGMT(timeZone, current);
CFIndex seconds = ((60 * 60 * 24 * 365) - offset);

CFDateRef reference;
reference = CFDateCreate(NULL, -offset);

CFDateRef targetDate;
targetDate = CFDateCreate(NULL, seconds);

NSLog(@"reference: %@", reference);
NSLog(@"targetDate: %@", targetDate);

CFRelease(timeZone);
CFRelease(reference);
CFRelease(targetDate);

186 | Chapter 7: Foundation Value Classes

The net result of this is practically identical to the NSDate version. In addition to the
CFDateRef type, this example uses the CFTimeZoneRef and CFTimeInterval, which are
equivalent to NSTimeZone and NSTimeInterval, respectively. The CFAbsoluteTime type is
similar to the “reference date” in Foundation; it’s a version of CFTimeInterval that starts
counting at January 1, 2001.

If you’re using CFDateRef and can’t use toll-free bridging with NSDate and
NSDateFormatter, you can use CFDateFormatterRef. Although it’s not covered in this
book, the functionality is very similar to Foundation.

NSDate | 187

CHAPTER 8

Basic Controls

You’ve learned Objective-C and the Foundation classes. Now you get to work with the
real power of Cocoa: the AppKit user interface layer. There are three ways to use
AppKit:

Built-in controls
There’s a vast library of built-in controls that you can start using right away, many
of which can be added through Interface Builder. This is great for prototyping, and
sometimes you can ship an app using only these stock controls.

Customized versions of built-in controls
You can customize many of the built-in controls using properties, delegate meth-
ods, or for more direct customization, subclassing.

Brand-new controls from scratch
Many Mac apps use completely custom views that are tuned for features that are
not general enough to be built into Cocoa. For example, the music timeline is
something very few apps need, but is absolutely essential for music production
software. AppKit provides a comprehensive set of building blocks to help you cre-
ate custom views for your app.

This chapter focuses on basic concepts using built-in controls. While you’re learning
how to use text fields, buttons, and other standard classes, you’ll also be learning about
the overall design of AppKit so that you can apply it to your own custom views later.

How to Use This Chapter
Now that you’ve learned the basics of Objective-C and the Foundation classes, you’re
probably feeling more confident about trying things out. There are quite a few examples
in this chapter. The quickest way to learn about Cocoa’s standard controls is to try out
each example as you encounter it. You can create a single Cocoa project in Xcode and
add controls and code as you go. You can also simply read through the chapter to
expose yourself to the concepts, and come back later to try out the examples by hand.

189

Windows and Views
In a Cocoa user interface (UI), everything starts with an instance of NSWindow. You’re
already familiar with the standard Mac OS X windows, which have a title bar and resize
controls, but windows come in many different forms. Not all of them have a title or a
rectangular appearance, and not all of them are even directly visible.

A window is a container for NSView objects (Figure 8-1). A view is an item on the screen
that you can interact with, such as a text field or a button. A view draws itself into the
window, receives user input, and then draws again. Cocoa is an event-based framework,
which means you don’t have to (and shouldn’t) constantly check for user input. Instead,
Cocoa notifies views when something has happened.

Figure 8-1. An NSWindow instance with NSView objects inside

All views and windows inherit support for mouse, keyboard, and multitouch events
from the NSResponder superclass. One important point here is that NSView and
NSWindow are peers—they both inherit directly from NSResponder, as shown in Fig-
ure 8-2. In other words, in AppKit, a window is not a view.

190 | Chapter 8: Basic Controls

The UIKit framework for iPhone, iPad, and iPod touch handles this
differently. The inheritance path is UIResponder → UIView →
UIWindow. In AppKit, though, NSView and NSWindow are peers.

There’s also a subclass of NSView called NSControl. A lot of text fields and buttons are
based on this class. Each NSControl object has one or more NSCell objects. Cells are not
views or responders—NSCell inherits directly from NSObject (see Figure 8-3).

Figure 8-3. How NSControl and NSCell fit into the world of responders and views

For example, in a spreadsheet application, each row of the table could be managed by
a cell. In that scenario, a spreadsheet cell is literally an NSCell object, though many

Figure 8-2. The relationships between NSWindow, NSView, and NSResponder

Windows and Views | 191

simpler controls have cells as well. If you’re a curious about this, you can launch In-
terface Builder now and choose Window → Library, then type “cell” in the search field
to see some of the standard NSCell subclasses, as shown in Figure 8-4.

Figure 8-4. Using NSCell classes in Interface Builder

The iPhone’s UIKit does not have a direct counterpart to NSCell, but
there is a UITableViewCell class that is designed specifically for tables.
The main difference is that UITableViewCell is a subclass of UIView,
whereas NSCell is a subclass of NSObject.

As with most of the other concepts in the book, I don’t expect you to memorize ev-
erything the first time you read it. The idea is just to introduce you to the five basic
classes that make up the AppKit class hierarchy. In fact, let’s review that now:

NSResponder: inherits from NSObject
A superclass that provides basic support for user interaction with mouse, keyboard,
and multitouch to windows and views.

192 | Chapter 8: Basic Controls

NSWindow: inherits from NSResponder, contains multiple NSView instances
Provides a canvas for views to draw into. Some types of windows have title bars
and resize controls, but some are not directly visible.

NSView: inherits from NSResponder
The most common superclass for custom views in Cocoa apps. Provides support
for geometry and drawing, and mouse tracking (for example, for mouseover-style
events).

NSControl: inherits from NSView, NSResponder
A view subclass that many standard controls are based on, such as text fields,
buttons, and table views. Drawing is usually done by one or more NSCell instances.

NSCell: inherits from NSObject, owned by an NSControl
Usually does the drawing for NSControl classes. The same cell class can be used
across multiple controls. For example, a text field cell can be used in either a text
field or a table view.

Nearly everything I’ll introduce you to in this chapter inherits from one of these classes.
When you’re using built-in classes, most of this is automatic. In fact, you saw this in
Chapter 1 when you created a text editor without any code.

This is one of the most rewarding parts of Cocoa—you don’t need to understand how
all of the details work to take advantage of the features. Do you know how to handle
characters from a foreign alphabet as input? Probably not, but you don’t need to, be-
cause Cocoa does it for you. That frees you up to focus on what makes your app unique.

Targets and Actions
At first, Cocoa may seem overwhelmingly complex, but that’s mostly just because it’s
new. It’s true that there are parts of Cocoa that are very complex—sometimes because
the subject matter itself is complex, like multilingual text—and writing software in-
herently demands a lot of your attention, but there’s good news about this, too. By
design, Cocoa uses the same simple building blocks over and over again.

Even the most complex parts of Cocoa are really just layers of simple things stacked on
top of each other. And if you can figure out one layer of simple things, you can figure
out the next. If you stay dedicated to learning each piece, eventually it all starts to make
sense. One of these layers is called targets and actions.

An action is a placeholder for a method, or more specifically a selector (see more about
selectors in the section “Dynamic Messaging” on page 124). NSControl objects use ac-
tions to tell other objects that something has happened (see Figure 8-5). For example,
you’d probably like to know when the user clicks a button on the screen so your app
can perform some task, such as saving a file or opening a web page.

Setting an action for a button is, literally, telling it which method to call when it’s
clicked. It’s the Cocoa equivalent of “Call me at this number when you hear anything.”

Targets and Actions | 193

When that method is called, you can react by running other code in your app to actually
perform the task the user is requesting.

Buttons
Buttons are a convenient starting place for learning about actions, because the flow is
very easy to understand. The user clicks on the button and the action is sent to another
object, called the target. There are more complex buttons with toggle states and other
variations, but the most common version is the standard push button.

Almost all push buttons are instances of the NSButton class,* which inherits from
NSControl. Although there are many built-in visual styles for buttons in AppKit, most
of them are not subclasses. Instead, the visual styles are defined through properties on
the base NSButton class. All of the items in Figure 8-6 are stock NSButton instances with
different styles applied.

Figure 8-6. The many faces of NSButton

There are NSButton subclasses in Cocoa, though. They are mostly used in the cases
where the behavior is fundamentally different than a standard push button.
NSPopUpButton is probably the most prominent example. It displays a list of items that
the user can select from. When an item is selected, it sends the action message to
whichever object is the target. Although it’s a different class with a different behavior,
it still inherits many style options from NSButton. Figure 8-7 shows some of the styles.

Figure 8-5. A control sending an action message to a target

* /System/Library/Frameworks/AppKit.framework/Headers/NSButton.h.

194 | Chapter 8: Basic Controls

Creating a button is as easy as dragging it out from the Library window in Interface
Builder right onto your prototype window. This is a good time to try out the various
button styles. Launch Interface Builder and create a new file using the Application
template found under the Cocoa section of the Choose a Template dialog that appears.
Next, choose Tools → Library to open the object library, then type “push button” in
the search field and drag the push button out from the Library window onto the pro-
totype window (this is the blank window labeled “Window”) as shown in Figure 8-8.

You will rarely, if ever, create a new file from within Interface Builder.
That’s because the Xcode project templates include the appropriate In-
terface Builder files (.xib files or XIBs) needed for your application. You
can add more by right-clicking the Resources folder on the left side of
the Xcode window, choosing Add → New File, and choosing one of the
XIB templates from under Mac OS X → User Interface or iPhone OS →
User Interface.

Select the button and choose Tools → Attributes Inspector (or type Command-1). In
the Inspector, try selecting different options from the “Bezel” list, as shown in
Figure 8-9.

In particular, try Round Textured, Round Rect, and Gradient. You can try the same
thing with NSPopUpButton by searching for “pop up” in the search field. Like other
classes based on NSControl, each NSButton has an NSCell. For most buttons, the cell
class is NSButtonCell. For pop-up buttons, the cell is NSPopUpButtonCell. Figure 8-10
shows the relationships between all of these.

Declaring Action Methods
A control can tell you when the user does something, but you have to have an action
method set up to receive that message. These are called IBAction methods, or simply
action methods. Here are some possible names for action methods. You can name the

Figure 8-7. Various styles of NSPopUpButton, a subclass of NSButton

Targets and Actions | 195

method anything you want, as long as the signature matches the pattern shown in the
examples:

- (IBAction) locationFieldUpdated: (id)sender;
- (IBAction) insertObject: (id)sender;
- (IBAction) saveCurrentRecord: (id)sender;
- (IBAction) reload: (id)sender;
- (IBAction) print: (id)sender;

The IBAction return type is actually an alias for void. Either one will work, but using
IBAction usually lets Xcode and Interface Builder know that it is a valid action method.
As you’ll see shortly, your IBActions will appear in a pop-up menu when you connect
controls to actions. An action method also must take a single id value as input, usually
called sender. In most cases, the sender variable refers to the control that the user
interacted with.

Figure 8-8. Adding a standard button to the prototype window

196 | Chapter 8: Basic Controls

There’s risk of confusion here, because so many of the terms for actions are similar.
Let’s step back and review some key items from the phrase book:

Action
The message that a control sends to another object when the user interacts with it,
such as when a button is clicked. Technically, you could say that an action is an
instance variable that stores an Objective-C selector (a SEL variable).

Target
The object the action is sent to. In many cases, it’s an instance of one of your own
classes. The target may not be the final object that receives the message—it’s just
the starting point.

Action method
A method in the target’s class that receives the action message. It must have a return
type of IBAction (or void) and accept a single id object as input. The input object
will usually be the control that the user interacted with. In many cases, you create
the action method in one of your own classes, though some are built into standard
Cocoa classes.

Figure 8-9. The different options for a button’s appearance under “Bezel”

Targets and Actions | 197

In AppKit, a control can send only one kind of action message. In
iPhone’s UIKit, a control can send multiple kinds of action message.

Connecting Actions
You can connect actions in Interface Builder by holding down the Control key and
dragging from the user interface item toward the object that should receive the message
(you are dragging in the direction of the message). The target must declare at least one
IBAction method for this to work. In simple cases, the target is often your application
delegate.

To help you better understand how all of this fits together, I’m going to have you put
together a simple prototype project so you can learn the concepts by doing them. If you
started Interface Builder earlier, quit it now (you don’t need to save your work on the
view you created back in “Buttons” on page 194). Then, do the following:

Figure 8-10. The relationship between various control and cell classes

198 | Chapter 8: Basic Controls

1. Open Xcode and create a new project based on the Cocoa Application template
(under the Mac OS X template group). Name it “Application”.

2. In Xcode, expand the Classes folder, open the ApplicationAppDelegate.h interface
file, and add the following line just below the @property declaration for the window.
This is the action method:

@interface ApplicationAppDelegate : NSObject <NSApplicationDelegate>
@property (assign) IBOutlet NSWindow *window;
- (IBAction) buttonClicked:(id)sender;
@end

3. Open the ApplicationAppDelegate.m class implementation file and add the follow-
ing method just before the applicationDidFinishLaunching: method:

@synthesize window;

- (IBAction) buttonClicked:(id)sender {
 NSLog(@"Please do not press this button again.");
}

- (void)applicationDidFinishLaunching:(NSNotification *)note

4. Save both the header and implementation files.

5. Expand the Resources folder and double-click MainMenu.xib to open the main XIB
file in Interface Builder.

6. Drag a push button from the Library to the prototype window (the window titled
“Application”).

Now you’re ready to connect the button to an action. Control-drag from the button to
the application delegate as shown in Figure 8-11. The full name of the object is trun-
cated in the figure, but it is “Application App Delegate.” This icon represents the
ApplicationAppDelegate class you just edited in the Xcode project.

When you release the mouse button, a pop-up window allows you to select a method.
You should see only the -buttonClicked: action method you created back in Xcode (see
Figure 8-12).

Once you select an item from the list, the connection is complete, and the button will
call that method whenever it’s clicked. Save your work in Interface Builder, quit Inter-
face Builder, and return to Xcode. Open the Console (Shift-Command-R), then build
and run the Xcode project. When you click the button, you’ll see this message in the
Console:

Please do not press this button again.

You can use the same steps to try out the examples throughout this chapter, although
you’ll be working with different controls and different actions each time.

Targets and Actions | 199

Connecting actions from the HUD

Another way to connect actions is to right-click (or hold Control and click) on an
interface item to bring up a HUD window (see Figure 8-13).†

Figure 8-11. Hold down the Control key and drag from the button toward an object to connect an
action

Figure 8-12. Select the method that the button should use for the action

† HUD is short for Heads Up Display.

200 | Chapter 8: Basic Controls

There are a lot of items listed in this window, including any incoming actions that other
controls send to this button. Each can be connected to a target using the circular con-
nection widget at the end of the row.

To connect the button’s click action, you only need to use the “selector” item in the
Sent Actions group. Drag a line from the selector connection widget toward the object
that should receive the message (you don’t need to hold the Control key when you do
this). You’ll be asked to select a method to complete the connection. Once the action
is set, the connection widget will be filled in and the row will be highlighted (see
Figure 8-14).

If you want to connect the action to a different target or method, you can just drag a
new connection using the connection widget. If you want to clear the connection, click
the small “x” icon next to the left of the target name.

Connecting actions in code

You can also connect actions in code. Usually it’s better to do this in Interface Builder,
because it’s much easier to visualize the results, and Interface Builder will make sure
you don’t do something that’s wildly incorrect. But if nothing else, seeing how to wire
up actions in code helps you understand what happens when you drag connections
between objects.

To connect an action on a control, all you need to do is set the target and the
action properties. You can test the results by simulating a click in code with the

Figure 8-13. Right-click to bring up the HUD window, then drag a connection from “selector” (in the
Sent Actions group) toward the target object

Targets and Actions | 201

-performClick: method. This example creates a button, adds it to the window, connects
an action, and simulates a click.

To try it out yourself, add the code shown to your existing -applicationDidFinish
Launching: method and add the entire -reloadDocument: method to the file as well:

- (void) applicationDidFinishLaunching: (NSNotification *)note {

 NSRect frame = NSMakeRect(10, 40, 90, 40);
 NSButton* pushButton = [[NSButton alloc] initWithFrame: frame];
 pushButton.bezelStyle = NSRoundedBezelStyle;
 [self.window.contentView addSubview:pushButton];

 pushButton.target = self;
 pushButton.action = @selector(reloadDocument:);

 [pushButton performClick:self];
 [pushButton release];
}

- (IBAction) reloadDocument: (id)sender {

 NSLog(@"Calling -reloadDocument: with sender: %@", sender);
}

See “Basic Geometry” on page 308 for more information on NSMakeRect.

Figure 8-14. Once the action is set, the connection widget is filled in and the row is highlighted

202 | Chapter 8: Basic Controls

The -performClick: method itself is an action method, so it takes a sender object as
input. The normal Cocoa convention when calling an action method directly is to pass
in self, though some developers also use nil. Here’s the result in the console:

Calling -reloadDocument: with sender: <NSButton: 0x100194da0>

Menus
The Cocoa menu system is based on the NSMenu and NSMenuItem classes. The classes are
not conceptually complex, but they do have quite a few methods. An NSMenu is a con-
tainer for NSMenuItem objects, and a menu can contain submenus. So each menu can be
a tree of items and other submenus.

All of the basic Cocoa application templates in Xcode come with a MainMenu.xib file,
with built-in common menus like File, Edit, Window, and so on. You can double-click
the Main Menu icon in the document window to display it. Click on a menu name to
open the menu, and select a menu item to display its properties in the Attributes In-
spector (of course, the Attributes Inspector has to be open; if it is not, press
Command-1). See Figure 8-15.

Figure 8-15. Double-click on the Main Menu icon to display it, then click on a menu name

You can add menus or menu items by dragging them out of the Library window. Just
type “menu” in the search box to see all of your options, then drag one over to the
menu bar (see Figure 8-16).

Targets and Actions | 203

Menus are easy to work with in Interface Builder, and you can learn a lot of the basics
just by adding some items to the menu bar and rearranging them. Here are some things
you can try:

Rename items
Rename menu and menu items by double-clicking them and typing in a new name.

Rearrange items
Rearrange menus and menu items by dragging them to different locations. You can
reverse any changes with Undo.

Remove items
You can delete menus and menu items by selecting them and pressing the Delete
key. You can also drag them off of the menu bar to remove them.

Menus have built-in support for key equivalents, such as Command-S for the Save menu
item. Setting the equivalents is simple. Just select a menu item and bring up the
Attributes tab of the Inspector (Command-1). Select the Key Equivalent box and type
a key shortcut that you want to use for the menu (see Figure 8-17).

Figure 8-16. You can drag menus and menu items from the Library window into the menu bar

204 | Chapter 8: Basic Controls

The easiest way to set up a key shortcut for your application is to create a menu item
and assign a key equivalent to it. You don’t need to write any code to do it, and Cocoa
will handle all of the details for you.

Menu items work like buttons, but they’re not actually views—both NSMenu and
NSMenuItem inherit directly from NSObject.‡ Just like with buttons, you can assign ac-
tions for menu items by holding Control and dragging from the item toward the target,
or you can right-click on the menu item to bring up the HUD window (see Figure 8-18).

Even though NSMenu and NSMenuItem are not views, a menu item can
contain a view. This allows you to embed specialized controls in your
menus, similar to the Label color control in the Finder’s contextual
menus.

However, there’s one key difference. The actions in menus have to be sent to different
places, depending on what the user is doing. Cocoa’s solution to this is the responder
chain.

Figure 8-17. Click the Key Equivalent box and type a key shortcut for the menu item

‡ This is a great example of Cocoa’s “shallow class hierarchy” in action. You don’t have to climb up an
inheritance tree to figure out how the class works.

Targets and Actions | 205

Responder Chain
Some actions need to be sent to different targets based on what the user is doing at the
moment. If the application has three text fields in two separate windows, and they all
implement the -copy: action method, which one do you connect the Copy menu item
to? If you send the action to the responder chain, Cocoa will figure that out for you as
the program is running.

The responder chain itself isn’t an actual class but a convention (see Figure 8-19). When
an action message is sent into the chain, Cocoa checks with a series of objects (following
a specific search path) to see if they implement the method. The first object that does
implement the method receives the message.

The first object in the chain is the called the first responder, and it’s usually the last
control that the user clicked on and that currently has focus. Each window has its own
first responder so that focus is maintained even when switching between windows and
applications. Many controls draw a colored border—called a focus ring—when they’re
the first responder (see Figure 8-20).

Figure 8-18. Drag a connection from the menu item to a target

206 | Chapter 8: Basic Controls

Figure 8-19. The responder chain

Figure 8-20. The text field with focus is the current “first responder” in this window

Targets and Actions | 207

NSResponder has a few methods that make all of this work. Keep in mind that these are
not steps in the search, just a list of methods related to the responder chain:

- (BOOL) acceptsFirstResponder;
- (BOOL) becomeFirstResponder;
- (BOOL) resignFirstResponder;

- (NSResponder *) nextResponder;
- (void) setNextResponder:(NSResponder *)aResponder;

- (BOOL) tryToPerform:(SEL)anAction with:(id)anObject;

Cocoa will ask a control if it’s willing to be the first responder. The control returns
YES from -acceptsFirstResponder if it’s ever willing to be first responder. If so, Cocoa
will call -becomeFirstResponder when the user selects the control, and the control
will return YES to confirm.

When the user clicks on another control, Cocoa will call -resignFirstResponder on
the previous control, which returns YES if it’s ready to resign first responder status.
The control can return NO if the user needs to provide a critical piece of data before
doing something else.

Each responder object in the chain knows what the next responder is. You usually
don’t have to set this manually.

Each object in the chain calls -[NSResponder tryToPerform:with:] on the next
responder to see if it implements the selector. If it does, the method is called and the
search is complete. Otherwise, the action message is relayed to the next object in
the chain and -tryToPerform:with: is called again.

If you want to send an action to the responder chain, drag a connection from the control
or menu item to the First Responder icon in the Interface Builder document window.

If you right-click on the First Responder icon, you’ll see a very long list of built-in
actions. Many of them are already connected to common menu items by default. For
example, you can hover over the -copy: action and the Copy menu item will be high-
lighted (you must open the Edit menu before you right-click on the First Responder
icon for this to work; see Figure 8-21).

If you need to set actions in code, you can send actions into the responder chain by
setting the target to nil. This code creates a menu item, but it doesn’t add it to any
menu, so it remains invisible (but still active):

NSMenuItem* menuItem = [[NSMenuItem alloc] init];

menuItem.title = @"Copy";
menuItem.target = nil;
menuItem.action = @selector(copy:);

[menuItem release];

208 | Chapter 8: Basic Controls

Knowing how to create menus in code can be useful if you want to
populate items as the program is running. For example, a plug-in may
be able to provide additional menu items once it’s loaded.

Two meanings of first responder

There’s a subtle but important point here. The NSWindow class and Interface Builder use
the term “first responder” slightly differently. In addition to the methods it inherits
from the NSResponder superclass, NSWindow adds two of its own responder methods:

- (NSResponder *)firstResponder;
- (BOOL)makeFirstResponder:(NSResponder *)aResponder;

1. In code, calling -[NSWindow firstResponder] always returns the NSResponder object
in the window that currently has focus, which means it’s the first object that has a
chance to respond to an action at the time you call the -firstResponder method. If

Figure 8-21. The long list of built-in actions for First Responder; hover over the -copy: action to
highlight the Copy menu item

Targets and Actions | 209

there’s a control in the window that has focus, this method will return a reference
to it.

2. In Interface Builder, the First Responder icon represents the responder chain. In
other words, it is the object in the chain that will respond to an action whenever
that action is sent. This icon does not represent a specific class or object; it’s a stand-
in for the object that will be selected from the responder chain.

The distinction between the two is razor-thin. The difference is that if you try to set a
menu or control’s target (in code) to the result of -firstResponder, you will end up with
some very strange behavior because the action will always go to that object, even when
it no longer has focus. I can’t think of a reason you would ever want to do this:

NSMenuItem* menuItem = [[NSMenuItem alloc] init];

menuItem.title = @"Save";
menuItem.action = @selector(save:);

// INCORRECT. does not use the responder chain. :(
menuItem.target = self.window.firstResponder;

[menuItem release];

If you connect a menu action to the First Responder icon in Interface Builder (or set the
target to nil in code), the action will be sent into the responder chain, starting with the
object that has focus at the time the menu is clicked. This is what you should do:

// CORRECT! will use the responder chain. :)
menuItem.target = nil;

One interesting point is that not all of the objects in the responder chain inherit from
NSResponder. As strange as it sounds, that’s actually what you want, because action
methods are usually not sent to other controls. This might be the most important thing
you will read in this chapter, so I’m going to repeat it with slightly different wording
to make sure you really have it.

Take-away point: The -[NSWindow firstResponder] method returns the NSResponder
object that currently has focus, usually an NSView, NSControl, or NSWindow. The First
Responder icon in Interface Builder allows you to send actions to objects in the res-
ponder chain, and not all of the objects in the chain are NSResponder objects. This is
important, because action methods are usually not sent from one control to another.

Here’s an example of how the -[NSWindow firstResponder] method works. The
contentView property is the root view in a window. All of the views in a window are in
the content view or one of its subviews. You can add this code to any method in your
application, such as in the application delegate’s -applicationDidFinishLaunching:
method:

NSWindow* myWindow = [[NSWindow alloc] init];
NSButton* myButton = [[NSButton alloc] init];
[myWindow.contentView addSubview:myButton];
[myButton release];

210 | Chapter 8: Basic Controls

NSLog (@"firstResponder: %@", myWindow.firstResponder);

[myWindow makeFirstResponder:myButton];
NSLog (@"firstResponder: %@", myWindow.firstResponder);

[myWindow makeFirstResponder:nil];
NSLog (@"firstResponder: %@", myWindow.firstResponder);

[myWindow release];

Here’s the console output:

firstResponder: <NSWindow: 0x100123a90>
firstResponder: <NSButton: 0x10016b870>
firstResponder: <NSWindow: 0x100123a90>

The first responder for a window is initially the NSWindow object itself. You can make a
control the first responder by passing it into -[NSWindow makeFirstResponder:], and
you can set it back to the window by passing in nil instead.

Cocoa usually handles this whole process automatically, but there some cases where
you may want to do it in code. Setting the first responder to nil will commit any pending
changes in a text field, which is especially important to do before saving a document
or when switching between panes in a tab view. You want to make sure all of the user’s
typing has been “locked in” before saving or switching to another tab.

Pop-up Buttons
NSPopUpButton behaves like a cross between a button and a menu, but it’s technically a
subclass of NSButton. You can work with pop-up items purely as title strings, or you
can use the actual NSMenuItem objects.

To add an item to a pop-up button in Interface Builder, double-click the button to
display the menu, then drag in an NSMenuItem from the Library window. You can also
select an existing item and press Command-D to duplicate it. Once you’ve added an
item, double-click it to set the name. You connect a pop-up button action the same
way you do for other buttons, using Control-drag or by bringing up the HUD window
by right-clicking the button.

When the user selects an item, the pop up sends its action message to the target. You
can then ask the pop up for the -selectedItem, -indexOfSelectedItem, or
-titleOfSelectedItem to know which one the user chose. Here’s the code for a method
that responds to a pop-up button action, which you can add to your application dele-
gate’s implementation (.m) file:

- (IBAction) imageFormatPopUpDidChange: (id)sender {

 NSLog(@"selected item: %@", [sender selectedItem]);
 NSLog(@"selected index: %i", [sender indexOfSelectedItem]);
 NSLog(@"selected title: %@", [sender titleOfSelectedItem]);
}

Targets and Actions | 211

You’ll also need to add the declaration to your application delegate’s interface (.h) file:

- (IBAction) imageFormatPopUpDidChange: (id)sender;

For the rest of the examples in this chapter, I’ll just show you the method
implementation. You can derive the declaration needed for the interface
file from the first line of the method implementation.

Then I just need to connect the pop-up button’s action to the class that implements
the action method (see Figure 8-22).

Figure 8-22. Connecting the pop-up button’s action to a target

When adding a new action method, you must add the method declara-
tion and implementation and save both files in Xcode first. Once you’ve
done that, you can switch back to Interface Builder to connect a control
to the action method in the XIB file (in this case, MainMenu.xib). In-
terface Builder automatically reloads the list of methods when you save
the files in Xcode.

When I run the application, I select an item from the pop up (see Figure 8-23).

In the console, I see this result:

selected item: <NSMenuItem: 0x10012aa90 PNG>
selected index: 0
selected title: PNG

212 | Chapter 8: Basic Controls

You can also add, remove, and edit pop-up button items directly in code. Here’s an
example of creating the same pop up in code, making several changes to it. Notice the
difference between -[NSPopUpButton itemArray], which returns an array of
NSMenuItem objects and -[NSPopUpButton itemTitles], which returns NSString objects.
You won’t be able to interact with this pop up, because I remove all of its items at the
end of this program:

NSRect frame = NSMakeRect(10, 40, 120, 40);
NSPopUpButton* popUpButton = [[NSPopUpButton alloc] initWithFrame:frame];
[self.window.contentView addSubview:popUpButton];

[popUpButton addItemWithTitle: @"PNG"];
[popUpButton addItemWithTitle: @"JPEG"];
[popUpButton addItemWithTitle: @"PDF"];
[popUpButton addItemWithTitle: @"TIFF"];
NSLog(@"popUpButton itemArray: %@", popUpButton.itemArray);
NSLog(@"popUpButton itemTitles: %@", popUpButton.itemTitles);

[popUpButton removeItemWithTitle: @"JPEG"];
NSLog(@"popUpButton itemTitles: %@", popUpButton.itemTitles);

[[popUpButton itemWithTitle: @"TIFF"] setTitle:@"M4V"];
NSLog(@"popUpButton itemTitles: %@", popUpButton.itemTitles);

[popUpButton removeAllItems];
NSLog(@"popUpButton itemTitles: %@", popUpButton.itemTitles);

[popUpButton release];

Here’s the output in the console:

popUpButton itemArray: (
 "<NSMenuItem: 0x1001628c0 PNG>",
 "<NSMenuItem: 0x100162b10 JPEG>",
 "<NSMenuItem: 0x100162bd0 PDF>",
 "<NSMenuItem: 0x100162d70 TIFF>"
)
popUpButton itemTitles: (
 PNG,
 JPEG,

Figure 8-23. Selecting an item from the pop-up button

Targets and Actions | 213

 PDF,
 TIFF
)
popUpButton itemTitles: (
 PNG,
 PDF,
 TIFF
)
popUpButton itemTitles: (
 PNG,
 PDF,
 M4V
)
popUpButton itemTitles: (
)

Sliders
Like buttons, sliders send action messages when the user interacts with them. Once
the action message is sent, the target object usually asks the slider for its floatValue,
which represents the current position of the knob. You can create a slider by opening
Interface Builder and searching for “slider” in the Library window (see Figure 8-24).

Once you’ve added the slider to the window, you can select it and bring up the Attrib-
utes Inspector. This allows you to set the minimum and maximum values (see
Figure 8-25).

When the slider knob is all the way to the right, the -[NSSlider floatValue] method
will return the maximum value. When the knob is all the way to the left,
-[NSSlider floatValue] will return the minimum value. You can also set the values in
code with the -setMinValue: and -setMaxValue: methods. In general, though, it’s better
to just do this in Interface Builder. Here’s a sample action method implementation:

- (IBAction) sliderDidChange:(id)sender {

 NSLog(@"sender: %@", sender);
 NSLog(@"sender value: %2.2f%%", [sender floatValue]);
}

Switch back to Xcode and add that method to the app delegate implementation file
(and the corresponding declaration to its interface file). Don’t forget to save your work
in Xcode before you Control-drag from the slider to the application delegate. When I
drag the slider knob around, I see output like this in the console:

sender: <NSSlider: 0x100416e60>
sender value: 73.97%
sender: <NSSlider: 0x100416e60>
sender value: 100.00%
sender: <NSSlider: 0x100416e60>
sender value: 0.00%
sender: <NSSlider: 0x100416e60>
sender value: 24.48%

214 | Chapter 8: Basic Controls

Figure 8-24. Search for “slider” in the Interface Builder Library window

Figure 8-25. Use the Attributes Inspector to set the minimum and maximum values

Targets and Actions | 215

Text Fields
NSTextField is one of the most commonly used classes in Cocoa. It’s flexible and easy
to use, so you rarely need to subclass it. It can be used as an editable text field, or just
as a label for another control. The drawing is done by an embedded instance of
NSTextFieldCell (which is also used in other controls; see Figure 8-26).

Figure 8-26. Search for “text field” in the Interface Builder Library window

Just like the other controls I’ve shown you, you connect an editable text field’s action
to a target. The action is typically sent when the editing session ends, which is triggered
by pressing Return, or selecting another control (see Figure 8-27). You can, however,
set the text field to send an action only when the user presses Return.

This is important for cases like a web browser location field, where you wouldn’t want
to load the URL just because the user selected another control. Text fields can also have
placeholder text, which is a simple way to communicate the purpose of the field to the
user (see Figure 8-28).

I can just add a text field to the window and connect its action to a target. Here’s the
method on the target side:

216 | Chapter 8: Basic Controls

- (IBAction) textFieldChanged:(id)sender {

 NSLog(@"sender: %@", sender);
 NSLog(@"sender text: %@", [sender stringValue]);
}

Switch back to Xcode and add that method to the app delegate implementation file
(and the corresponding declaration to its interface file). Don’t forget to save your work
in Xcode before you Control-drag from the text field to the application delegate. When
I type text in the text field and press Return, I see this in the console:

sender: <NSTextField: 0x10011ffe0>
sender text: I'm stuck in a text field.

Figure 8-27. By default, leaving the text field or pressing Return causes a text field to send its action
message, but you can choose to have the action message sent only when Return is pressed

Figure 8-28. Placeholder text indicates the purpose of a text field to the user

Targets and Actions | 217

Outlets
All of the previous examples in this chapter rely on the sender input variable of an action
method. That is, you can call methods only on the control that the user clicked on.
However, there are many cases where you want to keep a persistent reference to a
control. For example, you may want to allow the user to click a button that changes
the contents of a text field. You couldn’t set the value of the text field using sender in
that case, because it would refer to the button.

To keep a reference to something, you usually allocate an object and assign it to an
instance variable. But when you add user interface elements to your application using
Interface Builder, the objects are loaded automatically when the application starts up.
You can create references to those objects in code using outlets. Outlets are simply
variables that are assigned values by Cocoa at runtime. You start by defining an
IBOutlet property in your class header (such as your application delegate):

@property (retain) IBOutlet NSTextField* mainTextField;

Then add a synthesize statement in the implementation file:

@synthesize mainTextField;

In Interface Builder, right-click on the object (such as the application delegate) with
the IBOutlet to bring up its HUD window. The IBOutlet properties are listed under the
Outlets section in the HUD. Drag a connection from the outlet toward the view it should
be connected to (see Figure 8-29).

Now you can call methods on the outlet in your code, even if it wasn’t the one that sent
the action message. For example, I’ll add this action method to my class header:

- (IBAction) populateTextField:(id)sender;

I’ll use this method body in the class implementation file:

- (IBAction) populateTextField:(id)sender {

 NSDateFormatter* formatter = [[NSDateFormatter alloc] init];
 [formatter setDoesRelativeDateFormatting: YES];
 [formatter setDateStyle: NSDateFormatterLongStyle];
 [formatter setTimeStyle: NSDateFormatterShortStyle];

 NSDate* now = [NSDate date];
 NSString* formattedDate = [formatter stringFromDate:now];
 self.mainTextField.stringValue = formattedDate;

 [formatter release];
}

The mainTextField property refers to the text field outlet, and stringValue is a property
on NSTextField. This method assigns a formatted version of the current date to the text
field. Finally, I connect the button’s action to the -populateTextField: method (see
Figure 8-30).

218 | Chapter 8: Basic Controls

Figure 8-29. Drag a connection from the outlet toward the view it should be connected to

Figure 8-30. Connect the button’s action to the target’s action method

Outlets | 219

I build and run the application, then click the button in the main window. This calls
the -populateTextField: method, which populates the text field with a formatted ver-
sion of the current date (see Figure 8-31).

Figure 8-31. The date appears in the text field after I click the button

Outlets can refer to any object, though they’re most useful for onscreen controls or
other items in the XIB file. Sometimes it’s helpful to use the value of the sender to decide
what value to set on a control referenced by an outlet.

For this example, I’ve added a slider control and two text labels to a standard window.
By default, most controls send action messages only when the user has completed an
action, such as releasing the mouse button. In this case, I want the slider to continuously
send action messages as the user is dragging the knob in the slider. I select the slider in
the window and open the Attributes Inspector. I click the Continuous checkbox under
the Control section in the Inspector (see Figure 8-32).

I then add an IBOutlet property for the text field on the right side of the window, as
well as the declaration for the slider’s action method:

@interface ApplicationAppDelegate : NSObject <NSApplicationDelegate>

@property (assign) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSTextField* sliderCompanionField;

- (IBAction) sliderDidChange:(id)sender;

This interface declaration uses the 64-bit style described in “All Further
Examples Assume 64-Bit” on page 114.

I then add a synthesize statement in the implementation file, along with the imple-
mentation of the action method:

@implementation ApplicationAppDelegate

@synthesize window;
@synthesize sliderCompanionField;

220 | Chapter 8: Basic Controls

- (IBAction) sliderDidChange:(id)sender {

 NSInteger amount = [sender integerValue];
 NSString* label = @"";

 if (amount < 20) {
 label = @"Nano";
 } else if (amount < 40) {
 label = @"Small";
 } else if (amount < 60) {
 label = @"Regular";
 } else if (amount < 80) {
 label = @"Largish";
 } else {
 label = @"Massive";
 }

 self.sliderCompanionField.stringValue = label;
}

Figure 8-32. The Continuous checkbox in the Attributes Inspector instructs the control to send action
messages while the user is moving the knob in the slider control

Outlets | 221

I used integerValue in this example because I don’t need the level of
precision that floatValue offers, and the code is slightly simpler when
dealing with only whole numbers.

Finally I save all my changes in Xcode, return to Interface Builder, and connect the
sliderCompanionField outlet to the text field, and the slider’s action to the
-sliderDidChange: action method as shown in Figures 8-33 and 8-34.

Figure 8-33. Connect the sliderCompanionField outlet to the text field at the right side of the window

Now I build and run the app. As I drag the slider around, the companion text field
updates to reflect the current position (see Figure 8-35).

Datasources
Simple controls like text fields and pop-up buttons work by explicitly getting and set-
ting values. Unless you set a new string for the text field, it won’t change. Some of the
more complex controls in Cocoa use a different technique: they load their data from a
datasource.

In most cases, a datasource object can be a member of any class; often it’s declared as
an id type. It has to implement a few key methods that the view can call to load data.

222 | Chapter 8: Basic Controls

In some cases, the methods are declared in a formal @protocol declaration, but some-
times they’re just included as part of a category in the view’s header file.

For this example, I’m going to make a mock guestbook application. If you’d like to
follow along, create an Xcode project named GuestBook as described in “Connecting
Actions” on page 198 and then open the MainMenu.xib in Interface Builder. First, I
search for “table view” in the Interface Builder Library window to find the icon for
NSTableView, then I drag it out onto the prototype window. I resize it so that it fills most

Figure 8-34. Connect the slider’s action to the -sliderDidChange: action method

Figure 8-35. The value of the companion text field updates as you adjust the slider

Datasources | 223

of the window, and I use the Size Inspector (Command-3) to make sure it resizes with
the window, as shown in Figure 8-36.

Figure 8-36. Adjust the view properties so that the application fills the window

Using the Attributes Inspector, I specify that the table should have two columns. I can
double-click the column headers to set the titles: Name and Date, as shown in
Figure 8-37.

I then click on the columns themselves so I can view their properties in the Attributes
Inspector. I set an identifier for each column. These don’t have to have the same names
as the titles, but it’s usually good if they’re as similar as possible. Identifiers are usually
lowercase, though.

It’s not always easy to select the exact view you want. To see a list of all
of the views under the mouse, hold Command and Shift and right-click
(or Command-Shift-Control-click) above a view. This will allow you to,
for example, select the table column that is embedded in a table. You
can also click on a view to select it, then hold down Command and
Control and use the up or down arrow keys to go higher or lower in the
view hierarchy.

224 | Chapter 8: Basic Controls

For this example, I set them to name and date. For the Date column, uncheck the Ed-
itable checkbox as shown in Figure 8-38, so that the user cannot provide his own value.

Figure 8-38. Uncheck the Editable checkbox

I then connect the table view’s (Command-Shift-Control-click and choose the Table
View first) datasource outlet to my application delegate (see Figure 8-39). I’m using
this as the example because it’s the standard class that’s provided in most Cocoa project
templates, but you can use any object that implements the datasource methods.

Figure 8-37. Set the table column titles

Datasources | 225

Table View Datasource Methods
The datasource methods for NSTableView are described by the NSTableViewDataSource
protocol. I’ve taken the following methods directly from the NSTableView.h header
file, but I’ve chosen a subset of the methods to introduce to you initially:

@protocol NSTableViewDataSource <NSObject>

- (NSInteger) numberOfRowsInTableView: (NSTableView *)table;

- (id) tableView: (NSTableView *)table
 objectValueForTableColumn: (NSTableColumn *)column
 row: (NSInteger)row;

- (void) tableView: (NSTableView *)table
 setObjectValue: (id)object
 forTableColumn: (NSTableColumn *)column
 row: (NSInteger)row;
@end

For each of these datasource methods, you’re expected to either get or set a value based
on the input value passed into the method. For this to work, you need some source
data, but we’ll get to that shortly. The table view itself is passed into each method so
that a single datasource object can provide data for multiple tables. If you only have
one table for each data source, you can ignore the table variable.

This method returns the number of rows the table should have. For example, if you
want to display a week view and have one row for each day of the week, you would

Figure 8-39. Connect the table’s dataSource outlet to the Guest Book App Delegate icon

226 | Chapter 8: Basic Controls

return 7 here. Usually, though, you return the count of an array that you want to use
as source data.

In this method, you return a specific attribute for an object in an array. You figure
out which object to use by using the value of row as the array index. You can deter-
mine the attribute to use by using the -[NSTableColumn identifier] method. This
method uses the identifiers you specified in your XIB file in Interface Builder.

Finally, this method receives an input value that the user typed in to save in your
application’s source data. For example, you might use the row value to find an object
in an array, and then call a setter method on that object that matches the identifier,
such as person.name = object.

The key with these methods is that you never call them directly. Instead, you wait until
the table view needs the data and calls these methods. This is important, because the
views that are built into Cocoa are highly optimized for the design of the framework,
and can provide a much better experience for the user if she has control over when
these methods are used.

The only thing you do have to do in your code is to call -[NSTableView reloadData]
whenever the source data changes without the user’s intervention. Shortly after that,
the table will call the datasource methods to repopulate the rows with fresh data. You
should not do this when the datasource methods are called.

In my experience, the most common reason a table view doesn’t work is that the da-
tasource outlet has not been connected, or it’s connected to the wrong object. Make
sure you connect the outlet to an object that implements these methods, and that you
save the XIB file when you’re done.

Although there are many things that are similar about writing apps for
Mac and apps for iPhone, iPad, and iPod touch, table views are not
among them. NSTableView is a fundamentally different design than
UITableView, so many of the concepts will not translate across directly.

Implementing Datasource Methods
The list of guests for the guestbook will be managed by an NSMutableArray and each
entry in the array will be an NSMutableDictionary. The datasource methods will use the
combination of these to provide values to the table view.

The basic Foundation classes are great for prototyping. If I decided I
wanted to make this a real shipping application with more features, I
would probably create a dedicated class to represent an entry in the
guestbook.

Datasources | 227

First I’ll add properties for the guests array and the guestsTableView outlet. I’m also
declaring an action method called -signIn: that will accept button clicks to add new
guests. Add the lines shown in bold to GuestBookAppDelegate.h:

#import <Cocoa/Cocoa.h>

@interface GuestBookAppDelegate : NSObject <NSApplicationDelegate>

// outlets.
@property (assign) IBOutlet NSWindow* window;
@property (retain) IBOutlet NSTableView* guestsTableView;

// data.
@property (retain) NSMutableArray* guests;

// action methods.
- (IBAction)signIn:(id)sender;

@end

Save your changes to GuestBookAppDelegate.h and open MainMenu.xib in Interface
Builder. Control-drag from the Guest Book App Delegate to the table view, release the
mouse, and select guestsTableView from the menu.

Now I’ll create a basic implementation that synthesizes the properties and provides a
basic set of data. Replace the entire contents of your application delegate implemen-
tation (GuestBookAppDelegate.m) file with the following:

#import "GuestBookAppDelegate.h"

NSString* const CBNameIdentifier = @"name";
NSString* const CBDateIdentifier = @"date";

@interface GuestBookAppDelegate (Private)
+ (id) guestWithName:(NSString*)name;
- (void) setupDefaultGuests;
@end

@implementation GuestBookAppDelegate

@synthesize window;
@synthesize guestsTableView;
@synthesize guests;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 [self setupDefaultGuests];
}

- (void) dealloc {
 self.guestsTableView = nil;
 self.guests = nil;
 [super dealloc];
}

228 | Chapter 8: Basic Controls

// action methods.

- (IBAction)signIn:(id)sender {

 id guest = [[self class] guestWithName:nil];
 [self.guests addObject:guest];
 [self.guestsTableView reloadData];

 // edit the item we just added.
 NSInteger columnIndex = [self.guestsTableView columnWithIdentifier:@"name"];

 [self.guestsTableView editColumn: columnIndex
 row: [self.guests indexOfObject:guest]
 withEvent: nil
 select: YES];
}

// private methods.

+ (id) guestWithName:(NSString*)name {

 if (name == nil)
 name = @"New Guest";

 NSMutableDictionary* guest = [NSMutableDictionary dictionary];
 [guest setObject: name
 forKey: CBNameIdentifier];
 [guest setObject: [NSDate date]
 forKey: CBDateIdentifier];

 return guest;
}

- (void) setupDefaultGuests {

 id guest = [[self class] guestWithName:@"Bruce Wayne"];

 NSMutableArray* newGuests = [NSMutableArray array];
 [newGuests addObject: guest];
 self.guests = newGuests;
 [self.guestsTableView reloadData];
}

@end

Now I need to add the datasource methods to the implementation file (GuestBookApp-
Delegate.m):

// datasource methods.

- (NSInteger) numberOfRowsInTableView:(NSTableView *)table {

 return self.guests.count;
}

- (id) tableView: (NSTableView *)table

Datasources | 229

 objectValueForTableColumn: (NSTableColumn *)column
 row: (NSInteger)row {

 NSDictionary* guest = [self.guests objectAtIndex:row];
 NSString* identifier = column.identifier;

 return [guest objectForKey:identifier];
}

- (void) tableView: (NSTableView *)table
 setObjectValue: (id)object
 forTableColumn: (NSTableColumn *)column
 row: (NSInteger)row {

 NSMutableDictionary* guest = [self.guests objectAtIndex:row];
 NSString* identifier = column.identifier;

 [guest setObject:object forKey:identifier];
}

The datasource methods never explicitly check what the identifier is; they just pass it
directly into the dictionary as a key. The reason this works is that the values of
CBNameIdentifier and CBDateIdentifier match the identifiers in the XIB file. If those
don’t match exactly (including the case of each letter), then the methods won’t work.

All I need to do now is add a button labeled “Sign In” and connect it to the action
method, as shown in Figure 8-40.

Now I build and run the application. Each time I click Sign In, a new row is added to
the guestbook and I can enter the name, as shown in Figure 8-41.

The one thing that could better here is the appearance of the date column. It’s a very
verbose description of the date. You can improve that with an NSDateFormatter. Al-
though you used the class in code in Chapter 7, you can also apply a formatter inside
of Interface Builder. Open the Library window in Interface Builder and type “formatter”
in the search box. Drag the date formatter directly onto the first text field cell in the
Date column, as shown in Figure 8-42.

With the date formatter still selected, open the Attributes Inspector and set the Date
and Time styles to Medium. Save the file and rerun the project. The Date column now
looks much nicer (see Figure 8-43).

Bindings
Using actions and outlets works fine in many cases, but the more data and controls you
have in your application, the more code you need to keep everything wired together.
The more complex the interactions become, the harder it is to keep everything working
properly. One way to simplify all of this is to use Cocoa bindings.

230 | Chapter 8: Basic Controls

Figure 8-40. Connecting the Sign In button to the -signIn: action method

Figure 8-41. Adding a new row in the GuestBook application

Bindings | 231

Figure 8-42. Adding an NSDateFormatter to the Date column

Figure 8-43. The improved Date column in the GuestBook application

The idea behind bindings is simply that you choose a property on a view and bind it to
another object’s property. For example, you could bind the title property of a window
to a documentName property on your application delegate. Once you make this connec-
tion, Cocoa will make sure the two properties stay in sync.

You can configure bindings entirely in code, but it’s more common to set them up in
Interface Builder using the various subclasses of NSController. You can see them by
opening the Library window in Interface Builder and searching for “controller” (see
Figure 8-44).

232 | Chapter 8: Basic Controls

NSObjectController
The basic controller class, which is appropriate for binding a view to a single object.
For example, you could use this to bind a text field to the firstName property of a
Person object.

NSArrayController
Used for setting up bindings for views that display collections of objects, such as
an NSTableView. It provides methods for adding and removing objects, managing
selections, sorting, and more. You’ll probably use this controller class most
frequently.

NSTreeController
Used for views that need to bind to trees of objects, such as an outline view. Use
this class when you want to manage arrays of objects with parent/child
relationships.

Figure 8-44. The classes that inherit from NSController

Bindings | 233

NSUserDefaultsController
Used to bind user interface elements to application preferences. This should be
used for data that is not vital to preserve, such as whether the user wishes to see a
simplified or an advanced version of an interface.

NSDictionaryController
Used to bind views to a series of key-value pairs supplied by an NSDictionary. For
example, you could use this class to display a series of properties for an image.

Key-Value Protocols
The Cocoa Bindings system is supported by three protocols: Key-Value Coding (KVC),
Key-Value Observing (KVO), and Key-Value Binding (KVB). Because this is a high-level
introduction, I’m not going to describe each one in detail, but understanding Key-Value
Coding will helping you in all of your Cocoa projects, not just those that use bindings.

Key-Value Coding

Although it sounds like a complex system, Key-Value Coding is actually a fairly simple
protocol, at least from your perspective. In practice, it means that you can get and set
values indirectly. Instead of calling specific methods, you specify keys by name, and
Cocoa figures out on the fly which methods or properties match up to those keys. Key-
Value Coding works with almost any class in Cocoa. It also works with your own
classes. Imagine a class that looks like this:

@interface Person : NSObject
@property (copy) NSString* firstName;
@property (copy) NSString* lastName;
@end

@implementation Person
@synthesize firstName;
@synthesize lastName;

- (NSString*) firstName {
 NSLog(@"calling -firstName");
 return firstName;
}

- (void) setFirstName:(NSString *)newName {
 NSLog(@"calling -setFirstName:");
 [firstName autorelease];
 firstName = [newName copy];
}

- (NSString*) lastName {
 NSLog(@"calling -lastName");
 return lastName;
}

- (void) setLastName:(NSString *)newName {

234 | Chapter 8: Basic Controls

 NSLog(@"calling -setLastName:");
 [lastName autorelease];
 lastName = [newName copy];
}

- (void) dealloc {
 [firstName release];
 [lastName release];
 [super dealloc];
}
@end

Given this class, I can now use the -setValue:forKey: and -valueForKey: methods:

- (void)applicationDidFinishLaunching:(NSNotification *)note {

 Person* myPerson = [[Person alloc] init];

 [myPerson setValue:@"Bob" forKey:@"firstName"];
 [myPerson setValue:@"Smith" forKey:@"lastName"];

 // get value using KVC.
 NSLog(@"myPerson firstName: %@", [myPerson valueForKey:@"firstName"]);
 // get value using normal accessor.
 NSLog(@"myPerson lastName: %@", myPerson.lastName);

 [myPerson release];
}

Here’s the result in the console:

calling -setFirstName:
calling -setLastName:
calling -firstName
myPerson firstName: Bob
calling -lastName
myPerson lastName: Smith

Using KVC causes Cocoa to dynamically search for a method that matches the key you
provide. In effect, this means that you can write code that’s very generic, just as if your
class were a dictionary. But you can still call methods directly, as well. To make the
value of this more clear, let me show you what happens when I store objects in an array
and use KVC methods to get values out:

Person* myPerson1 = [[[Person alloc] init] autorelease];
[myPerson1 setValue:@"Paul" forKey:@"firstName"];

Person* myPerson2 = [[[Person alloc] init] autorelease];
[myPerson2 setValue:@"John" forKey:@"firstName"];

Person* myPerson3 = [[[Person alloc] init] autorelease];
[myPerson3 setValue:@"George" forKey:@"firstName"];

Person* myPerson4 = [[[Person alloc] init] autorelease];
[myPerson4 setValue:@"Ringo" forKey:@"firstName"];

Bindings | 235

NSMutableArray* array = [NSMutableArray array];
[array addObject:myPerson1];
[array addObject:myPerson2];
[array addObject:myPerson3];
[array addObject:myPerson4];

NSLog(@"Names %@", [array valueForKey:@"firstName"]);

Here’s the result in the console:

calling -setFirstName:
calling -setFirstName:
calling -setFirstName:
calling -setFirstName:
calling -firstName
calling -firstName
calling -firstName
calling -firstName
Names (
 Paul, John, George, Ringo
)

The NSArray versions of -valueForKey: and -setValue:forKey: actually call the same
methods on each item in the array. In the case of -valueForKey:, it actually bundles up
all of the returned values into a new array. This works even if the objects in the array
are not all members of the same class.

Key-Value Coding is useful in many parts of Cocoa, but it’s essential with Cocoa bind-
ings. The fact that it isn’t tied to a particular class means that a view can bind to the
properties of any kind of object. This kind of design is called generic programming, and
it allows you a lot more flexibility when designing your application. Generic program-
ming means there’s less tedious code, which means that your project is simpler and
easier to improve.

Key-Value Coding automatically wraps primitive values as NSNumber
objects. So you can even use -valueForKey: to retrieve values from prop-
erties defined as CGFloat, NSInteger, or NSUInteger (or their standard C
counterparts).

Bindings for Simple Controls
Let’s put this into action. Create a new Cocoa project in Xcode called BasicBindings.
Type the code from Example 8-1 into BasicBindingsAppDelegate.h.

Example 8-1. BasicBindingsAppDelegate.h

#import <Cocoa/Cocoa.h>

@interface BasicBindingsAppDelegate : NSObject <NSApplicationDelegate>

@property (assign) IBOutlet NSWindow *window;

236 | Chapter 8: Basic Controls

@property (copy) NSString* imageTitle;
@property (assign) NSInteger imageScale;

- (IBAction) resetAllValues:(id)sender;

@end

This interface declaration uses the 64-bit style described in “All Further
Examples Assume 64-Bit” on page 114.

Note that there’s only one action method and no outlets. You’re about to see some
Cocoa magic. Type the code from Example 8-2 into BasicBindingsAppDelegate.m.

Example 8-2. BasicBindingsAppDelegate.m

#import "BasicBindingsAppDelegate.h"

NSString* const CBDefaultTitle = @"New Image";
NSInteger const CBDefaultScale = 50;

@implementation BasicBindingsAppDelegate

@synthesize window;
@synthesize imageTitle;
@synthesize imageScale;

// startup and shutdown.
- (void)applicationDidFinishLaunching:(NSNotification *)note {
 [self resetAllValues:self];
}

- (void) dealloc {
 self.imageTitle = nil;
 [super dealloc];
}

// accessors (only implemented for bindings testing).
- (NSString *) imageTitle {
 NSLog(@"-imageTitle %@", imageTitle);
 return imageTitle;
}

- (void) setImageTitle:(NSString *)newTitle {
 NSLog(@"-setImageTitle: %@", newTitle);
 [imageTitle autorelease];
 imageTitle = [newTitle copy];
}

- (NSInteger) imageScale {
 NSLog(@"-imageScale %i", imageScale);
 return imageScale;

Bindings | 237

}

- (void) setImageScale:(NSInteger)newScale {
 NSLog(@"-setImageScale: %i", newScale);
 imageScale = newScale;
}

// action methods.
- (IBAction) resetAllValues:(id)sender {
 self.imageTitle = CBDefaultTitle;
 self.imageScale = CBDefaultScale;
}

@end

Save the files and press Command-B to make sure that everything builds correctly. Now
double-click MainMenu.xib (as with the other projects, it’s in the Resources folder in
the Xcode project) to open it in Interface Builder. Double-click the window icon to
display it, then use items from the Library to create a user interface like the one shown
in Figure 8-45.

Figure 8-45. Add controls from the Library to create a window as shown here

The key pieces are an NSTextField (text field), an NSSlider (horizontal slider), and an
NSButton (push button). You’ll also need three uneditable label text fields. The only
essential label is the one titled “Percentage.” The other two are optional. You need to
connect only one action. Control-drag from the Reset button to Basic Bindings App
Delegate, and connect it to the -resetAllValues: action method. (To get the gray border
at the bottom, click on Window in the MainMenu.xib window, open the Size Inspector
with Command-3, and select Large Bottom Border from the Content Border pop-up
menu.)

238 | Chapter 8: Basic Controls

If you need additional help adding these controls to the window, go
back to the earlier parts of the chapters that introduced NSButton,
NSSlider, and NSTextField. Be sure to set the slider to “Continuous” for
maximum enjoyment from this example.

Connect the bindings

In the window titled MainMenu.xib, Select the Window icon and bring up the Bindings
Inspector (Command-4). This panel may look a bit overwhelming, but you can handle
it. Each of the items in this panel represents a different window property that you can
set up a binding for. Click the disclosure triangle for Title to show the options for the
Title binding.

Click the “Bind to” checkbox, and select Basic Bindings App Delegate from the “Bind
to” pop-up menu. Then type imageTitle into the Model Key Path field. Figure 8-46
shows how the Inspector should look when you are done.

Figure 8-46. Setting the Title binding for the window

This establishes a binding for the window’s title to the app delegate’s imageTitle
property. Whenever one changes, the other will get the new value. Now select the
editable text field you added to the prototype window and open the Bindings Inspector
with Command-4. Use the exact same settings for the text field’s Value binding as you
did for the window’s Title binding: check the “Bind to” box, select Basic Bindings App
Delegate from the “Bind to” pop-up menu, and use imageTitle for the Model Key Path.

Both the window’s Title binding and the text field’s Value binding are bound to the
application delegate’s imageTitle property. All three will stay in sync. Now, select the
slider control and open the Bindings Inspector. Open the Value binding. Just as before,
check the “Bind to” checkbox, and select Basic Bindings App Delegate from the pop

Bindings | 239

up. This time, however, type imageScale in the Model Key Path field. Figure 8-47 shows
how the Inspector will look when you are done.

Make sure you use the Value binding for the slider, not Max Value or
Min Value.

Figure 8-47. Associate the Value binding for the slider with the application delegate’s imageScale
property

There’s one last binding to set up. Select the Percentage label text field and open the
Bindings Inspector. This time, instead of using the Value binding, open the section in
the Inspector called Value With Pattern. Open Display Pattern Value1. Check the “Bind
to” checkbox as before, and select Basic Bindings App Delegate from the pop up. Type
in imageScale for the Model Key Path. As a last step, type %{value1}@% in the field titled
Display Pattern. This will take the value of imageScale and format it with a percentage
sign. It’s similar to the way NSLog() formats strings.

When you’re done, right-click (or Control-click) on the blue Basic Bindings App Del-
egate in the MainMenu.xib window, and open the Referencing Bindings section. Click
on the Multiple arrows to show their contents. Their contents should look like
Figure 8-48.

You probably noticed that I didn’t use the NSController classes in this
example. For simple cases, it’s fine to just bind directly to the application
delegate or most of the other items in the XIB document window.

240 | Chapter 8: Basic Controls

Run the application

Save the XIB file and switch back to Xcode. Press Command-R to build and run the
application. Try typing a name into the text field and press Return. It will appear as the
window’s title. Drag the slider around and you’ll see the Percentage field update. If you
click Reset, all of the controls will go back to their default values, including the window
title (see Figure 8-49).

If you take a look at the console, you’ll see that the accessor methods are getting called.
In effect, the views are using Key-Value Coding to get and set values for keys, which
translate into calls for the accessor methods:

-setImageScale: 80
-imageScale 80
-setImageTitle: Sunnyvale, CA
-imageTitle Sunnyvale, CA
-setImageTitle: New Image
-imageTitle New Image
-imageTitle New Image
-setImageScale: 50
-imageScale 50
-imageScale 50

Figure 8-48. The active bindings in the HUD window

Bindings | 241

Notice that all of this happened with only two properties and no outlets. There are still
many cases in which you want to use outlets, but using bindings means that you can
drastically simplify your code base.

You don’t need to implement accessor methods to use Key-Value Coding or bindings;
I just added them to help you understand how things work. You can use the versions
provided by @synthesize instead. In fact, go ahead and delete the methods and rebuild
the project to see whether the result is the same.

Bindings for Complex Controls
For more complex controls like NSTableView, which displays collections of objects, use
the NSArrayController to set up bindings. In general, using bindings means that the
datasource methods are not used. This isn’t true in all cases, but conceptually an
NSArrayController becomes the datasource when bindings are used for a table view.

To demonstrate this, I’m going to update the GuestBook application that I created
earlier in the chapter. Reopen the project in Xcode now if you’d like to follow along.
First, open GuestBookAppDelegate.m and delete or comment out all of the datasource
methods listed in “Table View Datasource Methods” on page 226. This is optional, but
I just want to prove to you that they’re not needed with bindings.

Next, make the changes shown in bold to the -signIn: method. This replaces
[self.guests addObject:guest] with [[self mutableArrayValueForKey:@"guests"]
addObject:guest] and comments out [self.guestsTableView reloadData]:

- (IBAction)signIn:(id)sender {

 id guest = [[self class] guestWithName:nil];
 [[self mutableArrayValueForKey:@"guests"] addObject:guest];
 // [self.guestsTableView reloadData];

Figure 8-49. Run the application and try out the controls

242 | Chapter 8: Basic Controls

Comment out the same line in the -setupDefaultGuests: method:

- (void) setupDefaultGuests {

 id guest = [[self class] guestWithName:@"Bruce Wayne"];

 NSMutableArray* newGuests = [NSMutableArray array];
 [newGuests addObject: guest];
 self.guests = newGuests;
 //[self.guestsTableView reloadData];

If you make changes directly to a mutable array, any views bound to the
array will not see the changes. Instead, use the -mutableArrayValueFor
Key: method, which returns an array proxy object that is bindings-
aware. Any changes to this proxy object will be sent to the bound views.

Now open the MainMenu.xib file in Interface Builder. Bring up the HUD for the table
view by Shift-Command-Control-clicking on it, selecting the Table View, then right-
clicking on it. Under Outlets, click the “x” icon in the row for the dataSource property
to disconnect the outlet. This step is important.

Open the Library window and search for “array controller”. Drag an instance of
NSArrayController to the XIB document window (the one labeled MainMenu.xib, not
your prototype window). Select it and bring up the Bindings Inspector with
Command-4. Bind the array controller’s Content Array to Guest Book App Delegate
with a Model Key Path of guests (see Figure 8-50).

Figure 8-50. Bind the Content Array to the application delegate’s guests array property

Next, select the Name table column and bring up the Bindings Inspector. (You can
Shift-Command-Control-click on the table to select a specific column.) Bind the col-
umn’s Value to Array Controller with a Model Key Path of name (see Figure 8-51).

Bindings | 243

Do the same for the Date column, but use the Model Key Path of date. Save the XIB
file and switch back to Xcode. You should see that the application runs the same but
with half the code.

Tips for Debugging Bindings
Before we move on from bindings, I want to share with you a few key things to re-
member if anything doesn’t work the way you intended.

Always use accessors
Bindings is based on Objective-C runtime magic that depends on you using acces-
sor methods, especially when setting values. The setter method is what tells ob-
servers that a bound value has changed. If you change an instance variable directly,
the views that are bound to that value will not get updated.

This is the single most important thing you will ever learn about debugging bind-
ings. If something isn’t working, make sure that the setter method is being used.

Method names matter
If you’re implementing custom accessor methods, make sure your methods match
the pattern -set<Key>: for the setter and -<Key> for the getter. So if the property is
firstName, the methods must be called -setFirstName: and -firstName. There are
some exceptions to this, but keep things simple and just use this style. If you use
@synthesize to generate accessors, this is done for you automatically.

Override setters and getters to debug
Bindings uses Key-Value Coding to get and set values. If a value isn’t showing up
where it should, implement the getter and setter for the property and add an
NSLog() statement to each. If they’re not getting called, a property may be mistyped
somewhere.

Figure 8-51. Bind the table column’s value to the arrangedObjects property of the array controller,
and use “name” for the Model Key Path

244 | Chapter 8: Basic Controls

Always remember the Model Key Path
A very common mistake when setting up bindings is to forget to specify a Model
Key Path in the Bindings Inspector. This will usually generate errors like:

-[BasicBindingsAppDelegate copyWithZone:]: unrecognized selector sent to instance

This error shows up because the binding is expecting a value that can be copied,
but as no Model Key Path is specified, it tries to bind the entire object. In this case,
the object is the application delegate, so it tries to copy the application delegate
itself, which generates the -copyWithZone: exception.

Bindings | 245

CHAPTER 9

Designing Applications Using MVC

New Mac and iPhone programmers seem to have a set life cycle. The early part of the
learning process is getting used to Objective-C and maybe some basic memory man-
agement. But that’s just learning how to use your tools. The next step is figuring out
how to arrange your classes and get them to talk to each other.

The first question new Cocoa programmers ask me when they get to this stage is: “How
do I send data between classes?” There’s no magic sendDataToClass method or anything
like that. Instead, you use Model-View-Controller, or, more commonly, MVC. This isn’t
a class—it’s a mindset.

In a nutshell, MVC says that there are three kinds of objects: model objects, which hold
raw data; view objects, which the user can see and click on; and controller objects,
which keep the model and view objects in sync.

If you’re into science fiction, you can think of MVC as the force. It has
no physical form, but it is interwoven into every part of Cocoa. It’s how
Mac and iPhone programmers know how to structure classes.

To see how MVC works, you’re going to create a photo gallery application. This will
be your biggest project so far in the book, but you can definitely handle it. Here are
some of the topics you’ll learn about:

Core Data
As I described in Chapter 7, Core Data is Cocoa’s persistence framework. It’s what
most Cocoa applications use to save and load the data between launches of the
application. This is a fairly advanced topic, but we’re just going to look at a few
high-level concepts.

ImageKit
ImageKit is one of the more impressive frameworks in Mac OS X. It provides many
high-end features like photo grid display, thumbnail scaling, rotation, photo edit-
ing, and much more.

247

Window controllers
So far you’ve only used project templates with default window configurations. I’m
going to show you how to create custom window controllers, because using them
is an essential skill for Cocoa programmers. Window controllers manage all of the
activity within a single window. Typically, each one has its own XIB file.

View controllers
Just as window controllers manage windows, view controllers manage the activity
within views. These are used in many Mac applications, but they’re ubiquitous in
UIKit on iPhone, iPad, and iPod touch. Like window controllers, view controllers
work best when each one has its own XIB file.

About This Project
This application, shown in Figure 9-1, will be structured a lot differently than the other
examples. It’s much more aligned with a “real” Cocoa application. One key difference
is that different parts of the application are sectioned off. This makes it much easier to
change things without breaking the entire project. The key parts are self-sufficient, and
can be freely moved around.

Figure 9-1. The gallery application

248 | Chapter 9: Designing Applications Using MVC

Window Controllers
Examples in earlier chapters used the stock application delegate class to manage the
guts of the application. In big applications, putting everything in a single class leaves
you with a big mess. One way to address this is to use window controllers, which are
instances of NSWindowController. Figure 9-2 shows an example of this.

Figure 9-2. A window XIB with a subclass of NSWindowController set as File’s Owner

A window controller sounds like a big, complex class, but it’s actually very generic.
You almost always subclass the base class and extend it with properties and methods
specific to your custom window. These are the most important methods:

- (id) initWithWindowNibName: (NSString *)windowNibName;
- (void) loadWindow;
- (NSWindow *) window;
- (IBAction) showWindow: (id)sender;

Most windows in Cocoa applications have their own XIB file and associated window
controller. The window controller “owns” both the XIB file and its window, and
this role is actually referred to as File’s Owner in Interface Builder. The
-[NSWindowController initWithWindowNibName:] method creates the window con-
troller and loads the contents of the named XIB file.

About This Project | 249

The -[NSWindowController loadWindow] method actually initializes the window and
loads the contents of the XIB. You can override this method (be sure to call
[super loadWindow] first), and do your own initialization.

You can use the -[NSWindowController window] to get a reference to the NSWindow
instance for any window controller.

The -[NSWindowController showWindow:] method is an action method that simply
displays the window onscreen.

With these base methods, a window controller acts like a “carrying case” for a window.
A window controller isn’t a window itself; it’s a way to manipulate the window and
the items inside without making a big mess. This extra layer of abstraction also means
that you can change the actual window class inside the controller without affecting
other parts of the app.

On top of these base methods, you add properties and actions to support the user
interface. For example, if the window has a slider control and a text field, your view
controller might look like this:

@interface MyCustomWindowController : NSWindowController

@property (retain) IBOutlet NSSlider* slider;
@property (retain) IBOutlet NSTextField* textField;

- (IBAction) sliderDidChange:(id)sender;
- (IBAction) textDidChange:(id)sender;

@end

A line of code to create a window controller and display its window typically looks like
this:

MyWindowController* controller;
controller = [[MyWindowController alloc] initWithWindowNibName:@"Window"];
[controller showWindow:self];

When a window controller is deallocated, it also releases the other items in the XIB.
This vastly simplifies maintenance for each window.

View Controllers
Views can contain main subviews, and can get very complex. This means they’re harder
to manage and also take more memory. Splitting them off into their own XIB files means
that they’re much easier to use, and as a bonus, they are getting loaded into memory
only when they’re needed. Just as window XIBs have windows controllers, view XIBs
have view controllers. View controllers are instances of the NSViewController class (see
Figure 9-3).

250 | Chapter 9: Designing Applications Using MVC

Figure 9-3. A view XIB with a subclass of NSViewController set as File’s Owner

View controllers work on all of the same principles as window controllers, but at a
finer-grained level. A window might be made of a single window controller and a win-
dow XIB file that references the many other view XIB files along with their own view
controllers. You can potentially build an application of any level of complexity with
these very basic building blocks, as shown in Figure 9-4.

You usually subclass NSViewController and add your own properties and methods.
Here are the key methods:

- (id)initWithNibName:(NSString *)name bundle:(NSBundle *)bundle;

- (void) loadView;

- (NSView *) view;

- (void)setTitle:(NSString *)title;
- (NSString *)title;

About This Project | 251

- (void)setRepresentedObject:(id)object;
- (id)representedObject;

The view controller “owns” both the XIB file and its view. As with window con-
trollers, this is called File’s Owner in Interface Builder. The -[NSViewController
initWithNibName:bundle:] method creates the view controller and loads the contents
of the named XIB file. The bundle variable is used for more advanced cases where
your application is built from components or plug-ins.

The -[NSViewController loadWindow] method initializes the view and loads the con-
tents of the XIB. You can override this method (call [super loadView] first), and do
your own initialization.

You can use the -[NSViewController view] to get a reference to the view instance for
any view controller.

You can give a title to a view controller, which can be helpful in automatically pop-
ulating user interface items. You could, for example, use the title of a view controller
in a pop-up button.

This is a generic property to refer to another object that the view describes—often
a model object. For example, if the view displays information about a photo, the
representedObject property might be a Photo object. This is helpful for setting up
bindings in the view, such as binding a text field to a represented object’s caption
property.

Figure 9-4. A window controller manages a window, and has one or more view controllers; a view
controller manages a view

252 | Chapter 9: Designing Applications Using MVC

View controllers are fairly popular on the Mac, but they were only
officially added in Mac OS X 10.5 Leopard. With UIKit on iPhone and
iPad, view controllers are a way of life. In fact, it would be nearly im-
possible to get any work done without them.

Core Data
Core Data is Cocoa’s persistence framework, which means it’s the way most Cocoa
applications store their data. It’s an extremely scalable, flexible framework, but can
even help in simpler applications. It also offers change tracking, which means the Core
Data classes are aware of when you’ve made changes to data in your application, and
can undo or redo those changes with little effort on your part.

Core Data offers several built-in storage types: XML, binary, and SQL. All three store
data according to a design that you provide. That is, you define the types of data you’d
like to store and the relationships between them, and the framework figures out the
details. The SQL storage option is based on the SQLite open source library, which is
especially interesting because of its incredible scaling power (you can learn more about
SQLite at http://sqlite.org). You can also provide your own store type by subclassing
the NSAtomicStore class. This is an advanced feature, but it’s very useful if you have a
custom file format you want to use.

This is a high-level introduction to Core Data, so you won’t use all of its classes in this
chapter, but I want to introduce to a few of the most important ones:

NSManagedObjectModel
The NSManagedObjectModel class describes the different kinds of data you want your
app to store. You’re going to build a photo application in this chapter, so you’ll
create a model that describes photos and albums. You can create models in code,
but it’s usually much easier to create them using Xcode’s built-in graphical mod-
eling tool. A project can contain multiple models, but you’re going to use only one
in this chapter. You don’t need to subclass NSManagedObjectModel.

NSEntityDescription
The NSEntityDescription class describes a single type of data, and belongs to an
NSManagedObjectModel. You’re used to creating classes to describe a kind of data,
but an entity is more abstract than that. It doesn’t have any concept of methods or
implementation. An entity is only a description of data. In this chapter, you’ll create
an entity called Photo and another called Album.

An entity owns multiple instances of NSAttributeDescription and NSRelationship
Description. An attribute is a simple value, like a string, number, or date. A rela-
tionship is a reference to one or more instances of another entity. A Photo might
have a caption attribute, and a relationship to an Album.

As with NSManagedObjectModel, you can create entities, attributes, and relationships
in code, but usually it’s easier to create them visually in Xcode.

About This Project | 253

http://sqlite.org

NSManagedObject
The NSManagedObject class is Core Data’s base data class. Each managed object is
linked to an instance of NSEntityDescription. The entity defines the attributes and
relationships of the managed object. Unlike NSObject, the generic NSMan
agedObject class can be used as-is; you’re not required to subclass it, because it
provides its own storage. In most cases, you will create a subclass for each data
type to add code to support the other parts of the app.

A managed object holds onto its values until the app saves its data to a file on disk.
A generic NSManagedObject instance can act like either a Photo or an Album, de-
pending on the entity it’s using.

NSManagedObjectContext
The NSManagedObjectContext manages NSManagedObject instances. Any time you
need to load or save data, you use the managed object context. It tracks all of the
managed object changes; requests the loading of their data from disk; and handles
Undo, Redo, and Save. You may have many managed object contexts active in an
application at the same time, or you may only have one.

NSPersistentStoreCoordinator
Each individual file that Core Data saves to is called a persistent store. Your appli-
cation can have multiple persistent stores open at the same time and work with all
of the objects in a shared space. NSPersistentStoreCoordinator sets up and man-
ages the persistent stores. Much of this happens automatically, but you can use the
persistent store coordinator directly if you want to.

Although these are the most commonly used classes in Core Data, these descriptions
only scratch the surface of what the framework can do. Once you learn the basics of
how to use it, you should start all new projects with Core Data included. If nothing
else, you’ll get basic saving, loading, and Undo/Redo support for free.

Create the Project Files
Let’s start putting the project together. Open Xcode and create a new Cocoa Applica-
tion project called “Gallery”. Make sure to check the box labeled “Use Core Data for
Storage.” See Figure 9-5.

Create the Entities
Open the Models group in the Xcode sidebar and click on Gallery_DataModel.xcda-
tamodel to open the model editor (see Figure 9-6). This editor allows you to visually
edit the NSManagedObjectModel for your project. The top-left panel lists entities. Click
the small plus button at the bottom of the entity table to create a new entity instance.

Double-click the word “Entity” to edit the name, and type in “Photo” (see Figure 9-7).

Now add another entity and name it “Album” (see Figure 9-8).

254 | Chapter 9: Designing Applications Using MVC

Each row in the entity table has an entry for the Class column. This indicates the
NSManagedObject subclass that will be used for this entity. Double-click the Class entry
for Photo and enter the class name CBPhoto. Set the class name for Album to CBAlbum.
The table should look like Figure 9-9 when you’re done.

As you’re making these changes, you’ll see the graphical grid view change to reflect
what you’ve done. You can arrange the entity graphics any way you like. The graphics
are there to help you understand your application’s data; their actual position doesn’t
affect how the program runs.

Add Attributes and Relationships
Just to the right of the entities table is the properties table. Each entry in here describes
one piece of data for the selected entity. Select the Photo entity in the lefthand table,
then click the plus button in the properties table to the right. Choose Add Attribute
from the pop-up menu (see Figure 9-10).

Once you’ve created the attribute, you’ll see some options for it in the view at the far
right of the window. Type in filePath for the Name field, uncheck Optional, and
choose String from the Type drop-down. You can leave all of the other settings empty,
as shown in Figure 9-11.

Figure 9-5. Create a new Cocoa project, and check the box labeled Use Core Data for storage

Create the Project Files | 255

Figure 9-6. The Xcode data modeler

Figure 9-7. Double-click the Entity title and name it “Photo”

256 | Chapter 9: Designing Applications Using MVC

Figure 9-8. Create an entity named “Album”

Figure 9-9. The completed entity table

Create another attribute called uniqueID with the exact same settings: uncheck Op-
tional, and choose String for the type. Finally, create a nonoptional attribute called
orderIndex with a type of Int 32 (which is a 32-bit integer value). When you’re done,
the attribute list for Photo should look like Figure 9-12.

Click the plus button below the properties table to add another property, but this time
choose Add Relationship from the pop up (see Figure 9-13).

Create the Project Files | 257

Figure 9-10. Add a new attribute to the Photo entity

Figure 9-11. Configure the filePath attribute

Name the relationship album, and make it nonoptional. Choose Album from the Des-
tination pop up. You can leave the other options at their default values, as shown in
Figure 9-14.

258 | Chapter 9: Designing Applications Using MVC

Figure 9-12. The completed attribute list for the Photo entity

Figure 9-13. Add a new relationship to the Photo entity

Now select the Album entity in the entities table in the far left. You can also click on
the Album graphic in the grid view; it has the same effect. Add a nonoptional attribute
to Album called title, and make it type String. In the Default Value field, type in the
text “New Album” (see Figure 9-15).

Create the Project Files | 259

Figure 9-14. Configure the album relationship

Figure 9-15. Add the title attribute to the Album entity, and use “New Album” as the default value

Add a relationship to Album called photos. This time, leave the Optional checkbox
enabled. Select Photo from the Destination pop up, and select album from the Inverse
drop-down.

An inverse relationship is one that is maintained on both sides. For ex-
ample, when you set an object for a Photo’s album relationship, Core
Data will automatically update the Album’s to-many photos relation-
ship, too. This keeps everything in sync without you specifically writing
code to do so.

Now check the To-Many Relationship checkbox, which indicates that each Album can
have multiple Photo items. Finally, select Cascade from the Delete Rule pop up, which
means that when an Album is deleted, all of the Photo objects will be deleted, too.
When you’re done, the relationship should look like Figure 9-16.

260 | Chapter 9: Designing Applications Using MVC

Take a moment and verify that your model looks like the grid view in Figure 9-17. It’s
absolutely critical that each setting is exactly as I described, because Core Data will use
this information to save your application data to disk.

When you’re done, save the model file.

Figure 9-17. Make sure your grid view looks like this

Update the App Delegate
Open the Classes group in the Xcode sidebar, and click on Gallery_AppDelegate.m.
The Xcode template for Core Data applications provides a handful of methods to sup-
port basic loading and saving of data. You can look through these if you’re curious, but
you don’t need to actually change them, except for one small detail.

Figure 9-16. Create the photos relationship for the Album entity

Create the Project Files | 261

In the implementation of the -applicationSupportDirectory: method, there’s one line
that returns the file path:

return [basePath stringByAppendingPathComponent:@"Gallery"];

Replace that line with:

return [basePath stringByAppendingPathComponent:@"CocoaBookGallery"];

The term “gallery” is generic enough that you may have another application that stores
data at the same location. Changing the file path is a way to prevent the data from being
overwritten. You can leave the rest of the methods as-is. In fact, add several line breaks
and a comment above the implementation of the -applicationSupportDirectory:
method to indicate where the built-in methods begin:

// all of these methods are provided by the template.

- (NSString *)applicationSupportDirectory {

Whenever I ask you to add new methods to this class in the chapter, add them above
this line for clarity. Replace everything above the first built-in method with the follow-
ing code:

#import "Gallery_AppDelegate.h"
#import "CBMainWindow.h"
#import "CBBrowserView.h"
#import "CBAlbum.h"
#import "CBPhoto.h"

@implementation Gallery_AppDelegate

@synthesize mainWindow;
@synthesize mainWindowController;
@synthesize selectedAlbum;

@synthesize window;
@synthesize managedObjectModel;
@synthesize persistentStoreCoordinator;
@synthesize managedObjectContext;

- (IBAction) newAlbum: (id)sender {
 [CBAlbum albumInDefaultContext];
}

- (BOOL)applicationShouldTerminateAfterLastWindowClosed:
 (NSApplication *)sender {
 return YES;
}

The -newAlbum: action method will be used by a menu item you’ll add later in the
chapter. The second method is a method that NSApplication calls on its delegate. Re-
turning YES from the method means that the application will quit when the main win-
dow closes.

262 | Chapter 9: Designing Applications Using MVC

Now switch over to the Gallery_AppDelegate.h header file. Remove the curly braces
and all of the literal instance variable definitions inside of them, leaving only the
@property declarations intact. Add a comment to call out which properties are provided
by the template.

Add the following properties, class declarations, and action method to the file. Make
sure all of them are above the properties provided by the template (the first two lines
go above the existing line that reads @interface Gallery_AppDelegate : NSObject, the
last three below it):

@class CBMainWindow;
@class CBAlbum;

@interface Gallery_AppDelegate : NSObject

@property (retain) CBMainWindow* mainWindowController;
@property (retain) CBAlbum* selectedAlbum;

- (IBAction) newAlbum: (id)sender;

When you’re done, the file should match the code in Example 9-1. I’ve put each prop-
erties on two lines for formatting reasons, but you can put each one on a single line.

Example 9-1. The reformatted version of Gallery_AppDelegate.h

#import <Cocoa/Cocoa.h>

@class CBMainWindow;
@class CBAlbum;

@interface Gallery_AppDelegate : NSObject

@property (retain) CBMainWindow* mainWindowController;
@property (retain) CBAlbum* selectedAlbum;

- (IBAction) newAlbum: (id)sender;

// provided by template.
@property (nonatomic, retain) IBOutlet NSWindow *window;

@property (nonatomic, retain, readonly)
 NSPersistentStoreCoordinator *persistentStoreCoordinator;
@property (nonatomic, retain, readonly)
 NSManagedObjectModel *managedObjectModel;
@property (nonatomic, retain, readonly)
 NSManagedObjectContext *managedObjectContext;
- (IBAction)saveAction:sender;

@end

Create the Project Files | 263

Add the Quartz Framework
This project will use a class from Mac OS X’s ImageKit framework called
IKImageBrowserView. You need to add the ImageKit framework to the project before
you can use the class. The ImageKit framework is actually a subframework in the larger
Quartz framework.

Right-click (or Control-click) on the Frameworks → Linked Frameworks group in your
project, and choose Add → Existing Frameworks. Choose Quartz.framework from the
list and click Add (see Figure 9-18).

Figure 9-18. The Quartz.framework item in the frameworks sheet

You can now use any classes in the Quartz framework (including those in ImageKit)
by including the Quartz.h file in any of your header or implementation files.

Create the Window Controller
The window controller class will manage all of the view controllers for the projects,
and each view controller will contain a different part of the user interface. There will
be one window controller class with its own XIB file (Figure 9-19), and three view
controller classes, each with its own XIB file.

Create a new Cocoa class (right-click Classes, choose Add → New File, the choose
Objective-C Class from the Cocoa Class section, as shown in Figure 9-20) with a su-
perclass of NSWindowController. Name the class CBMainWindow.m.

264 | Chapter 9: Designing Applications Using MVC

Figure 9-19. The Gallery main window XIB

Replace the contents of the CBMainWindow.h header file with the code from
Example 9-2.

Example 9-2. CBMainWindow.h

#import <Cocoa/Cocoa.h>
#import <Quartz/Quartz.h>

@interface CBMainWindow : NSWindowController

// outlets.
@property (retain) IBOutlet NSSegmentedControl* viewSelectionControl;

// view management properties.
@property (retain) NSMutableDictionary* viewControllers;
@property (assign) NSViewController* currentViewController;
@property (copy) NSArray* controllerNamesByIndex;

// view management methods.
- (IBAction) viewSelectionDidChange:(id)sender;
- (void) activateViewController: (NSViewController*)controller;
- (NSViewController*) viewControllerForName: (NSString*)name;

@end

Open the CBMainWindow.m implementation file and enter the code from Example 9-3.

Create the Project Files | 265

Figure 9-20. Create the CBMainWindow window controller class

Example 9-3. CBMainWindow.m

#import "CBMainWindow.h"

// the 'static' means these are only visible in this file.
static const NSInteger BrowserViewIndex = 0;
static const NSInteger EditorViewIndex = 1;
static const NSInteger ListViewIndex = 2;

// names for each view.
static NSString* const CBBrowserViewName = @"CBBrowserView";
static NSString* const CBEditorViewName = @"CBEditorView";
static NSString* const CBListViewName = @"CBListView";

@implementation CBMainWindow

// view modes.
@synthesize viewSelectionControl;
@synthesize viewControllers;
@synthesize currentViewController;
@synthesize controllerNamesByIndex;

- (void) loadWindow {

266 | Chapter 9: Designing Applications Using MVC

 [super loadWindow];
 self.viewControllers = [NSMutableDictionary dictionary];

 // match up indexes to names.
 NSMutableArray* names = [NSMutableArray array];
 [names insertObject:CBBrowserViewName atIndex:BrowserViewIndex];
 [names insertObject:CBEditorViewName atIndex:EditorViewIndex];
 [names insertObject:CBListViewName atIndex:ListViewIndex];
 self.controllerNamesByIndex = names;

 // start on browser mode.
 NSViewController* initial;
 initial = [self viewControllerForName:CBBrowserViewName];
 [self activateViewController:initial];
}

- (IBAction) viewSelectionDidChange:(id)sender {

 // find requested view controller.
 NSInteger selection = [sender selectedSegment];
 NSArray* names = self.controllerNamesByIndex;
 NSString* controllerName = [names objectAtIndex:selection];

 // load view controller.
 NSViewController* controller;
 controller = [self viewControllerForName:controllerName];
 [self activateViewController:controller];
}

- (void) activateViewController: (NSViewController*)controller {

 NSArray* names = self.controllerNamesByIndex;
 NSInteger segment = self.viewSelectionControl.selectedSegment;

 NSString* targetName = [controller className];
 NSInteger targetIndex = [names indexOfObject:targetName];

 // update segmented control.
 if (segment != targetIndex)
 [self.viewSelectionControl setSelectedSegment:targetIndex];

 // remove current view.
 [self.currentViewController.view removeFromSuperview];

 // set up new view controller.
 self.currentViewController = controller;
 [[self.window contentView] addSubview:controller.view];

 // adjust for window margin.
 NSWindow* window = self.window;
 CGFloat padding = [window contentBorderThicknessForEdge:NSMinYEdge];
 NSRect frame = [window.contentView frame];
 frame.size.height -= padding;
 frame.origin.y += padding;
 controller.view.frame = frame;

Create the Project Files | 267

}

- (NSViewController*) viewControllerForName: (NSString*)name {

 // see if this view already exists.
 NSMutableDictionary* allControllers = self.viewControllers;
 NSViewController* controller = [allControllers objectForKey:name];
 if (controller) return controller;

 // create a new instance of the view.
 Class controllerClass = NSClassFromString(name);
 controller = [[controllerClass alloc] initWithNibName:name bundle:nil];
 [allControllers setObject:controller forKey:name];

 // use key-value coding to avoid compiler warnings.
 [controller setValue:self forKey:@"mainWindowController"];
 return [controller autorelease];
}

- (void) dealloc {

 self.viewSelectionControl = nil;
 self.viewControllers = nil;
 self.controllerNamesByIndex = nil;

 [super dealloc];
}

@end

Select the Resources group in the Xcode sidebar, and choose File → New File. Select
the “User Interface” group from the Mac OS X section of the template selection win-
dow, then select Window XIB and click Next (as shown in Figure 9-21). Name the file
CBMainWindow.xib.

Now update Gallery_AppDelegate.m to use this new window controller. Add the fol-
lowing implementation of the -applicationDidFinishLaunching: method:

- (void)applicationDidFinishLaunching:(NSNotification *)note {

 CBMainWindow* windowController;
 windowController = [[CBMainWindow alloc] initWithWindowNibName:@"CBMainWindow"];
 [windowController showWindow:nil];
 self.mainWindowController = windowController;
 [windowController release];
}

Create the View Controllers
You’ll now create the three views that define the user interface for the application. Each
one has a separate XIB file and a view controller that owns it.

268 | Chapter 9: Designing Applications Using MVC

Browser view controller

The browser view is the first thing the user sees when the application launches. It shows
a list of Album items on the left, and the main photo grid on the right shows all of the
Photo items in the selected album (Figure 9-22). The photo grid view is an instance of
IKImageBrowserView. You can freely drop images from the finder into the browser view
and they’ll be added to the Core Data store automatically.

Create a new Cocoa class with a superclass of NSObject. Name the class CBBrowser-
View.m (Figure 9-23). Xcode does not provide NSViewController as a standard super-
class from the drop-down, but we can fix that with one line of code in the file itself.

Replace the contents of the CBBrowserView.h header file with the code from
Example 9-4.

Figure 9-21. Create the CBMainWindow window XIB file

Create the Project Files | 269

Example 9-4. CBBrowserView.h

#import <Cocoa/Cocoa.h>
#import <Quartz/Quartz.h>

@class CBMainWindow;

@interface CBBrowserView : NSViewController <NSTableViewDelegate>

// parent window.
@property (assign) CBMainWindow* mainWindowController;

// xib items.
@property (retain) IBOutlet IKImageBrowserView* imageBrowser;
@property (retain) IBOutlet NSTableView* albumsTable;
@property (retain) IBOutlet NSArrayController* albumsArrayController;
@property (retain) IBOutlet NSArrayController* imagesArrayController;

// additional values.
@property (retain) NSArray* imagesSortDescriptors;
@property (assign) CGFloat thumbnailScale;

@end

Open the CBBrowserView.m implementation file and enter the code from Example 9-5.

Figure 9-22. The Gallery browser view

270 | Chapter 9: Designing Applications Using MVC

Example 9-5. CBBrowserView.m

#import "CBBrowserView.h"
#import "CBPhoto.h"
#import "CBAlbum.h"
#import "CBEditorView.h"
#import "CBMainWindow.h"

@interface CBBrowserView (Private)
- (void) setupImageBrowser;
- (void) updateSortOrderForObjects:(NSArray*)items;
@end

@implementation CBBrowserView

@synthesize mainWindowController;
@synthesize imageBrowser;
@synthesize albumsTable;
@synthesize albumsArrayController;
@synthesize imagesArrayController;
@synthesize imagesSortDescriptors;
@synthesize thumbnailScale;

Figure 9-23. Create the CBBrowserView class

Create the Project Files | 271

- (void) loadView {

 [super loadView];

 NSSortDescriptor* sort;
 sort = [NSSortDescriptor sortDescriptorWithKey: @"orderIndex"
 ascending: YES];

 self.imagesSortDescriptors = [NSArray arrayWithObject:sort];
 self.albumsTable.delegate = self;
 [self setupImageBrowser];
}

- (void)tableViewSelectionDidChange:(NSNotification *)notification {

 NSTableView* table = [notification object];
 NSInteger selection = table.selectedRow;
 NSArray* albums = [self.albumsArrayController arrangedObjects];

 CBAlbum* album = [albums objectAtIndex:selection];
 [[NSApp delegate] setValue:album forKey:@"selectedAlbum"];
}

#pragma mark -
#pragma mark Image Browser

- (void) imageBrowser: (IKImageBrowserView *)browser
 cellWasDoubleClickedAtIndex: (NSUInteger)index {

 NSArray* visiblePhotos = [self.imagesArrayController arrangedObjects];
 CBPhoto* photo = [visiblePhotos objectAtIndex:index];

 CBMainWindow* window = self.mainWindowController;
 id editor = [window viewControllerForName:@"CBEditorView"];

 if ([editor isKindOfClass:[CBEditorView class]])
 [(CBEditorView*)editor editPhoto:photo];
}

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender {

 IKImageBrowserView* browser = self.imageBrowser;

 NSPasteboard* pboard = [sender draggingPasteboard];
 NSUInteger dropIndex = [browser indexAtLocationOfDroppedItem];
 NSArray* photos = self.imagesArrayController.arrangedObjects;

 // indexes to place photos.
 NSMutableIndexSet* indexSet = [NSMutableIndexSet indexSet];
 [indexSet addIndex:dropIndex];

272 | Chapter 9: Designing Applications Using MVC

 // the move might be within the view.
 if ([sender draggingSource] == browser) {

 NSIndexSet* selected = browser.selectionIndexes;
 NSArray* draggingItems = [photos objectsAtIndexes:selected];
 NSMutableArray* reorderedItems = [photos mutableCopy];

 [reorderedItems removeObjectsInArray:draggingItems];

 NSUInteger newDropIndex = dropIndex;
 NSUInteger index = 0;
 NSUInteger firstIndex = selected.firstIndex;

 for (index = firstIndex; index != NSNotFound;
 index = [selected indexGreaterThanIndex:index]) {

 if (index < dropIndex)
 newDropIndex -= 1;
 else
 break;
 }

 NSRange dropRange = NSMakeRange(newDropIndex, draggingItems.count);
 NSIndexSet* dropIndexes = [NSIndexSet indexSetWithIndexesInRange:dropRange];

 [reorderedItems insertObjects:draggingItems atIndexes:dropIndexes];
 [self updateSortOrderForObjects:reorderedItems];
 [reorderedItems release];
 return YES;
 }

 NSMutableArray* newItems = [NSMutableArray array];
 CBAlbum* album = [[NSApp delegate] valueForKey:@"selectedAlbum"];

 // get list of files.
 NSArray* fileNames = [pboard propertyListForType:NSFilenamesPboardType];
 NSInteger indexCount = 0;
 if (fileNames.count < 1) return NO;

 for (NSString* file in fileNames) {

 CBPhoto* newItem = [CBPhoto photoInDefaultContext];
 newItem.filePath = file;
 [newItems addObject:newItem];
 [indexSet addIndex: dropIndex+indexCount];
 newItem.album = album;
 indexCount++;
 }

 NSMutableArray* array = [photos mutableCopy];
 [array insertObjects:newItems atIndexes:indexSet];
 [self updateSortOrderForObjects:array];
 [array release];

Create the Project Files | 273

 return YES;
}

- (NSDragOperation)draggingEntered:(id <NSDraggingInfo>)sender {
 return NSDragOperationCopy;
}

- (NSDragOperation)draggingUpdated:(id <NSDraggingInfo>)sender {
 return NSDragOperationCopy;
}

#pragma mark -
#pragma mark Private

- (void) setupImageBrowser {

 IKImageBrowserView* browser = self.imageBrowser;
 browser.draggingDestinationDelegate = self;
 browser.delegate = self;
 browser.cellsStyleMask = (IKCellsStyleShadowed|IKCellsStyleTitled);
 browser.zoomValue = 0.55;

 // base attributes.
 NSFont* font = [NSFont systemFontOfSize:11];
 NSColor* textColor = [NSColor colorWithCalibratedWhite:0.8 alpha:1.0];
 NSColor* textColorAlt = [NSColor colorWithCalibratedWhite:1.0 alpha:1.0];
 NSColor* background = [NSColor colorWithCalibratedWhite:0.2 alpha:1.0];

 // text attributes.
 NSMutableDictionary* attr;
 attr = [NSMutableDictionary dictionary];
 [attr setObject:textColor forKey:NSForegroundColorAttributeName];
 [attr setObject:font forKey:NSFontAttributeName];

 // selected text attributes.
 NSMutableDictionary* attrAlt;
 attrAlt = [NSMutableDictionary dictionary];
 [attrAlt setObject:textColorAlt forKey:NSForegroundColorAttributeName];
 [attrAlt setObject:font forKey:NSFontAttributeName];

 // set text attributes.
 [browser setValue: attr
 forKey: IKImageBrowserCellsTitleAttributesKey];
 [browser setValue: attrAlt
 forKey: IKImageBrowserCellsHighlightedTitleAttributesKey];
 [browser setValue: background
 forKey: IKImageBrowserBackgroundColorKey];
}

- (void) updateSortOrderForObjects:(NSArray*)items {

 NSMutableArray* arrangedItems = [NSMutableArray array];
 NSInteger orderIndex = 0;

274 | Chapter 9: Designing Applications Using MVC

 for (CBPhoto* item in items) {
 // only do each item once.
 if ([arrangedItems containsObject:item]) continue;
 item.orderIndex = [NSNumber numberWithInteger:orderIndex];
 [arrangedItems addObject:item];
 orderIndex++;
 }

 // reload the array controller.
 [self.imagesArrayController rearrangeObjects];
}

- (void) dealloc {

 self.imageBrowser = nil;
 self.albumsTable = nil;
 self.albumsArrayController = nil;
 self.imagesArrayController = nil;
 self.imagesSortDescriptors = nil;

 [super dealloc];
}
@end

Select the Resources group in the Xcode sidebar, and choose File → New File. Select
the “User Interface” group from the Mac OS X section of the template selection
window, then select View XIB and click Next (Figure 9-24). Name the file
CBBrowserView.xib.

Editor view controller

The editor view uses the IKImageView class, which allows you to view and edit images,
as seen in Figure 9-25. If you double-click the image in the editor view, you can bring
up an adjustment panel. Because this project is for demonstration purposes and I don’t
want it to become overwhelmingly complex, the changes in the editor view won’t be
saved back to the file, but you can see what it does.

Create a new Cocoa class with a superclass of NSObject. Name the class
CBEditorView.m.

Replace the contents of the CBEditorView.h header file with the code from Example 9-6.

Example 9-6. CBEditorView.h

#import <Cocoa/Cocoa.h>
#import <Quartz/Quartz.h>

@class CBMainWindow;
@class CBPhoto;

@interface CBEditorView : NSViewController

Create the Project Files | 275

@property (assign) CBMainWindow* mainWindowController;
@property (retain) IBOutlet IKImageView* imageView;

- (void) editPhoto: (CBPhoto*)photo;

@end

Figure 9-24. Create the CBBrowserView view XIB file

Open the CBEditorView.m implementation file and enter the code from Example 9-7.

Example 9-7. CBEditorView.m

#import "CBEditorView.h"
#import "CBPhoto.h"
#import "CBMainWindow.h"

@implementation CBEditorView

@synthesize mainWindowController;
@synthesize imageView;

276 | Chapter 9: Designing Applications Using MVC

- (void) loadView {

 [super loadView];
 [self.imageView setImageWithURL:nil];
}

- (void) editPhoto: (CBPhoto*)photo {

 if (self.view == nil) [self loadView];
 NSURL* url = [NSURL fileURLWithPath:photo.filePath];

 [self.imageView setImageWithURL:url];
 [self.mainWindowController activateViewController:self];
}

- (void) dealloc {

 self.imageView = nil;
 [super dealloc];
}

@end

Figure 9-25. The Gallery editor view

Select the Resources group in the Xcode sidebar, and choose File → New File. Select
the “User Interface” group from the Mac OS X section of the template selection win-
dow, then select View XIB and click Next. Name the file CBEditorView.xib.

Create the Project Files | 277

List view controller

The third and final view is the list view. It displays a flat list of the photos across all
albums in a table view (see Figure 9-26). Double-clicking a photo opens it in the editor
view.

Figure 9-26. The Gallery list view

Create a new Cocoa class with a superclass of NSObject. Name the class CBListView.m.

Replace the contents of the CBListView.h header file with the code from Example 9-8.

Example 9-8. CBListView.h

#import <Cocoa/Cocoa.h>

@class CBMainWindow;

@interface CBListView : NSViewController

@property (assign) CBMainWindow* mainWindowController;
@property (retain) IBOutlet NSTableView* imagesTable;
@property (retain) IBOutlet NSArrayController* imagesArrayController;

- (IBAction) tableViewItemDoubleClicked:(id)sender;

@end

278 | Chapter 9: Designing Applications Using MVC

Open the CBListView.m implementation file and enter the code from Example 9-9.

Example 9-9. CBListView.m

#import "CBListView.h"
#import "CBMainWindow.h"
#import "CBPhoto.h"
#import "CBEditorView.h"

@implementation CBListView

@synthesize mainWindowController;
@synthesize imagesTable;
@synthesize imagesArrayController;

- (void) loadView {

 [super loadView];

 self.imagesTable.target = self;
 self.imagesTable.doubleAction = @selector(tableViewItemDoubleClicked:);

}

- (IBAction) tableViewItemDoubleClicked:(id)sender {

 NSInteger row = self.imagesTable.clickedRow;
 NSArray* visiblePhotos = [self.imagesArrayController arrangedObjects];
 CBPhoto* photo = [visiblePhotos objectAtIndex:row];

 CBMainWindow* window = self.mainWindowController;
 id editor = [window viewControllerForName:@"CBEditorView"];

 if ([editor isKindOfClass:[CBEditorView class]])
 [(CBEditorView*)editor editPhoto:photo];
}

- (void) dealloc {

 self.imagesTable = nil;
 self.imagesArrayController = nil;
 [super dealloc];
}

@end

Select the Resources group in the Xcode sidebar, and choose File → New File. Select
the “User Interface” group from the Mac OS X section of the template selection win-
dow, then select View XIB and click Next. Name the file CBListView.xib.

Create the Project Files | 279

Create the Managed Object Classes
I mentioned before that you can use NSManagedObject instances as-is because the entity
they’re associated with has all of the information about what data can be stored. But
because you’re using the generic NSManagedObject class, you can’t call getter and setter
methods like -firstName and -setFirstName: to change their values. Instead, you can
use generic Key-Value Coding methods:

NSManagedObjectContext* context = self.managedObjectContext;

NSManagedObject* photo;
photo = [NSEntityDescription insertNewObjectForEntityForName: @"Photo"
 inManagedObjectContext: context];

[photo setValue: @"/Library/Desktop Pictures/Nature/Earth.jpg"
 forKey: @"filePath"];

NSLog(@"photo filePath: %@", [photo valueForKey:@"filePath"]);

Here’s the result in the console:

photo filePath: /Library/Desktop Pictures/Nature/Earth.jpg

This code won’t run correctly in the Gallery project just yet, because
you’re still building the application, but feel free to come back and try
this example later.

Here’s a quick look at what this example does:

First, I get a reference to the application delegate’s instance of NSManagedOb
jectContext. I need this to fetch existing managed objects, create new managed
objects, or to save changes to the data.

I create a new NSManagedObject using the entity named Photo. That is, even though
I’m using the generic NSManagedObject class, the data it can store is defined by the
entity.

To set a value on a managed object, I use the Key-Value Coding
-setValue:forKey: method, with the attribute name filePath as the key. I defined
this attribute in the graphical model editor.

To retrieve the value, I use the Key-Value Coding -valueForKey: method, again using
the filePath attribute name.

This works fine, but it’s somewhat limiting because you can use only the
-setValue:forKey: and -valueForKey: methods. It would be better if you could declare
properties, call methods directly, and add methods to the class to support features
specific to each time. This also has the significant advantage of allowing the compiler

280 | Chapter 9: Designing Applications Using MVC

to do type checking to make sure you’re not trying to pass an NSNumber to a property
that is defined as a string.

You can do all of this by creating a custom subclass of NSManagedObject for each entity
type. You already added the custom class names in the model editor, so now you’ll
create the actual class files. Add two new Objective-C classes that are subclasses of
NSObject. Name them CBPhoto and CBAlbum.

Implement the photo class

Replace the contents of the CBPhoto.h header file with the code from Example 9-10.

Example 9-10. CBPhoto.h

#import <Cocoa/Cocoa.h>

@class CBAlbum;

@interface CBPhoto : NSManagedObject

// attributes.
@property (retain) NSString* filePath;
@property (retain) NSString* uniqueID;
@property (retain) NSNumber* orderIndex;

// relationships.
@property (retain) CBAlbum* album;

// non-modeled properties.
@property (readonly) NSImage* largeThumbnail;

// methods.
+ (id) photoInDefaultContext;

@end

Replace the contents of the CBPhoto.m implementation file with the code from
Example 9-11.

Example 9-11. CBPhoto.m

#import "CBPhoto.h"
#import <Quartz/Quartz.h>

@interface CBPhoto ()
@property (retain) NSImage* thumbnail;
- (void) generateUniqueID;
@end

@implementation CBPhoto

// use 'dynamic' for Core Data properties.
@dynamic filePath;

Create the Project Files | 281

@dynamic uniqueID;
@dynamic orderIndex;
@dynamic album;

// use 'synthesize' for normal properties.
@synthesize thumbnail;

+ (id) photoInDefaultContext {

 NSManagedObjectContext* context = [[NSApp delegate] managedObjectContext];

 CBPhoto* newItem;
 newItem = [NSEntityDescription insertNewObjectForEntityForName:@"Photo"
 inManagedObjectContext:context];

 newItem.filePath = nil;

 return newItem;
}

- (NSImage*) largeThumbnail {

 // 'largeThumbnail' is used by the list view.

 if (self.thumbnail) return self.thumbnail;

 NSSize size = NSMakeSize(250, 250);
 CFStringRef path = (CFStringRef) self.filePath;
 CFURLRef url =
 CFURLCreateWithFileSystemPath(NULL, path, kCFURLPOSIXPathStyle, NO);

 // use QuickLook to generate a thumbnail of the image.
 CGImageRef thumb = QLThumbnailImageCreate(NULL, url, size, nil);
 NSImage* image = [[NSImage alloc] initWithCGImage:thumb size:size];
 self.thumbnail = image;

 CFRelease(url);
 CFRelease(thumb);
 [image release];

 return image;
}

#pragma mark -
#pragma mark Core Data Methods

- (void) awakeFromInsert {

 // called when the object is first created.
 [self generateUniqueID];
}

#pragma mark -
#pragma mark 'IKImageBrowserItem' Protocol Methods

282 | Chapter 9: Designing Applications Using MVC

-(NSString *) imageTitle {

 NSString* fullFileName = self.filePath.lastPathComponent;
 return [fullFileName stringByDeletingPathExtension];
}

- (NSString*) imageUID {

 // return uniqueID if it exists.
 NSString* uniqueID = self.uniqueID;
 if (uniqueID) return uniqueID;
 [self generateUniqueID];
 return self.uniqueID;
}

- (NSString *) imageRepresentationType {
 return IKImageBrowserPathRepresentationType;
}

- (id) imageRepresentation {
 return self.filePath;
}

#pragma mark -
#pragma mark Private

- (void) generateUniqueID {

 NSString* uniqueID = self.uniqueID;
 if (uniqueID != nil) return;
 self.uniqueID = [[NSProcessInfo processInfo] globallyUniqueString];
}

- (void) dealloc {

 // Core Data properties automatically managed.
 // Only release sythesized properties.
 self.thumbnail = nil;
 [super dealloc];
}

@end

CBPhoto implements the IKImageBrowserItem protocol from IKImageBrowserView, which
uses protocols to support the display of items instead of providing specific classes you
need to implement. The reason for this is that you may want any object to be an item
in the browser view, and not necessarily just images. For example, you could display
sound files with waveform preview icons. If the view required you to return a special
“browser view item” object, you’d have to create a subclass of it just so you could add
an instance variable for the sound object.

Create the Project Files | 283

CBPhoto already has all of the necessary data needed for the image browser, but it’s
based on NSManagedObject, which isn’t related to IKImageBrowserView at all. Because of
flexible design of IKImageBrowserView, the class doesn’t matter, because you just have
to implement the methods that the IKImageBrowserItem protocol declares. This means
you can use CBPhoto objects directly within the view.

Example 9-12 lists methods declared by the IKImageBrowserItem protocol (this is pulled
into your project by the ImageKit framework, which is itself pulled in by the Quartz
framework you added earlier).

Example 9-12. Excerpt from IKImageBrowserView.h

@interface NSObject (IKImageBrowserItem)

- (NSString *) imageUID; /* required */
- (NSString *) imageRepresentationType; /* required */
- (id) imageRepresentation; /* required */

- (NSUInteger) imageVersion;
- (NSString *) imageTitle;
- (NSString *) imageSubtitle;
- (BOOL) isSelectable;

@end

I stripped out a lot of the comments for space reasons, but go and look at them in
IKImageBrowserView.h when you get a chance (you can search for the filename with
Spotlight). This is the kind of code you should write.

In essence, this protocol is the view’s way of saying, “If you give me an image, an image
type, and a unique ID, I’ll let you join the party.” The view works exactly the same for
all objects as long as it gets the data it needs, and you can add the required methods to
existing classes using a category.

Implement the album class

The next step is to fill in the header and implementation for CBAlbum. Replace the con-
tents of the CBAlbum.h header file with the code from Example 9-13.

Example 9-13. CBAlbum.h

#import <Cocoa/Cocoa.h>

@interface CBAlbum : NSManagedObject

@property (retain) NSString* title;
@property (retain) NSSet* photos;

+ (id) defaultAlbum;
+ (id) albumInDefaultContext;

@end

284 | Chapter 9: Designing Applications Using MVC

Replace the contents of the CBAlbum.m implementation file with the code from Ex-
ample 9-14.

Example 9-14. CBAlbum.m

#import "CBAlbum.h"

@implementation CBAlbum

// use 'dynamic' for Core Data properties.
@dynamic title;
@dynamic photos;

+ (id) albumInDefaultContext {

 NSManagedObjectContext* context =
 [[NSApp delegate] managedObjectContext];

 CBAlbum* newItem;
 newItem = [NSEntityDescription insertNewObjectForEntityForName:@"Album"
 inManagedObjectContext:context];

 return newItem;
}

+ (id) defaultAlbum {

 NSManagedObjectContext* context =
 [[NSApp delegate] managedObjectContext];

 NSEntityDescription* entity
 = [NSEntityDescription entityForName: @"Album"
 inManagedObjectContext: context];

 // create a fetch request to find 'Default' album.
 NSFetchRequest* fetch = [[NSFetchRequest alloc] init];
 fetch.entity = entity;
 fetch.predicate
 = [NSPredicate predicateWithFormat:@"title == 'Default'"];

 // run fetch and make sure it succeeded.
 NSError* error = nil;
 NSArray* results = [context executeFetchRequest:fetch error:&error];
 [fetch release];
 if (error) {
 NSLog(@"error: %@", error);
 return nil;
 }

 // create the album if it doesn't exist.
 CBAlbum* album = nil;
 if (results.count > 0) {
 album = [results objectAtIndex:0];
 } else {
 album = [self albumInDefaultContext];

Create the Project Files | 285

 album.title = @"Default";
 }

 return album;
}

// used by the list view.
- (NSImage*) image {
 return [NSImage imageNamed:NSImageNameFolder];
}

@end

Now that the custom classes have been created and associated with their entities in the
model, you can use their properties and methods directly:

NSManagedObjectContext* context = self.managedObjectContext;

CBPhoto* photo;
photo = [NSEntityDescription insertNewObjectForEntityForName: @"Photo"
 inManagedObjectContext: context];

photo.filePath = @"/Library/Desktop Pictures/Nature/Earth.jpg";

CBAlbum* album;
album = [NSEntityDescription insertNewObjectForEntityForName: @"Album"
 inManagedObjectContext: context];

album.title = @"Photos of Earth";
photo.album = album;

NSLog(@"photo title: %@", photo.filePath);
NSLog(@"album title: %@", album.title);
NSLog(@"Photos in '%@': %lu", album.title, album.photos.count);

Here’s the result in the console:

photo title: /Library/Desktop Pictures/Nature/Earth.jpg
album title: Photos of Earth
Photos in 'Photos of Earth': 1

Create the User Interface
Now that you’ve created all of the classes, it’s time to set up the interface. There are
three main steps to this:

1. Remove the default window provided by the Xcode template. Because you added
your own window XIB and window controller, you don’t need the default one.

2. Set up the UI of the main window. The window will host each of the custom views
stored in the view XIBs, but the window itself has some controls.

286 | Chapter 9: Designing Applications Using MVC

3. Set up the UI of each of the view XIBs. Right now, each of the views are empty.
You need to add some controls to them before they’re useful. You’ll also bind the
views to an NSManagedObjectContext to load data from the persistent store.

Remove the Default Window
This part is easy. Double-click MainMenu.xib in the Xcode sidebar to open it in Interface
Builder. Select the Window icon (Figure 9-27) and press Delete to remove it. That’s it.
It should now look like Figure 9-28.

Figure 9-27. The MainMenu.xib file with the default window icon

Figure 9-28. The MainMenu.xib file once the default window icon is removed

Create the User Interface | 287

Add the album menu

There’s one more thing to do in this file. Double-click the Main Menu icon to open it.
Search for “submenu” in the Library and drag an NSMenuItem to the menu. Place it after
the View menu and before the Window menu. Double-click the menu and rename it
to Album.

Single-click the Album menu to display the menu item inside. Double-click the menu
item and rename it to New Album. Select the menu item and open the Attributes In-
spector by pressing Command-1. Click in the Key Equivalent box and type Command-
N to bind the menu command to that key shortcut.

Click on First Responder and bring up the Attributes Inspector. Click the plus button
to add a new action, and type newAlbum: for the name (see Figure 9-29). Control-drag
from the New Album menu item to First Responder and select the newAlbum: action.

Figure 9-29. Click the plus button to add a new First Responder action, and type newAlbum: for the
name

Save the file, close it (because you won’t want to make any more changes to it right
now), then switch back to Xcode. It’s important to close documents in Interface Builder
when you’re no longer using them to avoid changing the wrong file.

288 | Chapter 9: Designing Applications Using MVC

Create the Main Window Interface
Double-click on CBMainWindow.xib in the Xcode sidebar to open it in Interface
Builder. First and most importantly, select the File’s Owner icon in the document win-
dow and press Command-6 to bring up the Identity Inspector. Type CBMainWindow in
the Class field (Figure 9-30). This enables the window controller to manage this XIB.

Figure 9-30. Select File’s Owner and set the class to CBMainWindow using the Identity Inspector
(press Command-6)

Next, Control-drag a connection from File’s Owner to the Window icon and choose
the window outlet. Then Control-drag a connection from the Window icon over to File’s
Owner and select the delegate outlet.

Set window sizing

Click the Window icon in the document window and bring up the Size Inspector
(Command-3). In the Minimum Size section of the Inspector, click Use Current. This
will use the window’s current size as the minimum. You should always set a minimum
size on windows to prevent your controls from being rendered at unusual sizes.

Create the User Interface | 289

If you want to set the initial size and location of a window (which is
always a good idea), place the prototype window wherever you like,
resize it to whatever dimensions you prefer, then click Use Current in
the Content Frame section of the Inspector. Save the file to apply the
changes.

Select Large Bottom Border from the Content Border pop up. This will add a dragable
control surface to the bottom of the window. Finally, press Command-1 to switch to
the Attributes Inspector and rename the window to Gallery.

Add controls

Open the Library window with Command-Shift-L and search for “segment”. Drag out
an instance of NSSegmentedControl and place it at the bottom-right of the window, inside
the content border you added earlier.

With the control still selected, bring up the Size Inspector. In the Autosizing section,
disable the top and left struts, but enable the bottom and right ones so that the control
stays anchored in the lower-right portion of the window. You can use the preview view
in the Autosizing section as a guide. Switch to the Attributes Inspector and select Tex-
tured Rounded from the Style pop up.

Make sure to drag out NSSegmentedControl from the Library, not
NSSegmentedControlCell. You can’t place the cell directly on the
window.

While still in the Attributes Inspector, select Segment 0 from the segment pop up. This
allows you to edit settings for the first segment of the control. Type (or select)
NSIconViewTemplate in the Image combo box. Select Segment 1 and type
NSQuickLookTemplate for the Image name. Switch to Segment 2 and type NSListView
Template in the Image field (see Figure 9-31).

Finally, bring the Library window back to the front and search for “label”. Drag out
the instance of NSTextField that has the name Label. Place it at the bottom-left part of
the window. In the Size Inspector, choose Small from the Size pop up. In the Autosizing
section, disable the top strut and enable the bottom one so it stays anchored to the
bottom-left portion of the window. When you’re done, the window should look like
Figure 9-32.

Set up bindings

Search for “array controller” in the Library and drag an instance of NSArrayControl
ler to the XIB document window. Select the array controller, then single-click its name
and change it to Photos. Switch to the Attributes Inspector by pressing Command-1.

290 | Chapter 9: Designing Applications Using MVC

Select Entity from the Mode pop up, and type Photo in the Entity Name field. Enable
the Prepares Content checkbox. When you’re done, it should look like Figure 9-33.

Open the Bindings Inspector with Command-4. Under the Parameters section, bind
Managed Object Context to Application with a Model Key Path of dele
gate.managedObjectContext.

Select the text field label at the bottom-left corner of the window and bring up the
Bindings Inspector. Under the Value With Pattern section, open Display Pattern
Value1. Bind to Photos with a Controller Key of arrangedObjects and a Model Key Path
of @count. Finally, type %{value1}@ photos in the Display Pattern field. This will take

Figure 9-31. Set the image for Segment 0 to NSIconViewTemplate

Figure 9-32. The CBMainMenu.xib window with controls added

Create the User Interface | 291

the total count of photos and add the string “photos” on the end. It’s similar to the way
NSLog() formats strings. Figure 9-34 shows how the bindings should look.

Figure 9-33. Configure the Attributes settings for the Photos array controller as shown

Figure 9-34. Configure the text field bindings as shown

292 | Chapter 9: Designing Applications Using MVC

Connect outlets and actions

Right-click File’s Owner to bring up its HUD window. Connect the viewSelec
tionControl outlet to the segmented control at the bottom-right of the window. Now
control-drag from the segmented control to File’s Owner, and select the -viewSelec
tionDidChange: action.

Save and close the XIB file, and switch back to Xcode.

Create the Browser Interface
Double-click CBBrowserView.xib to open it in Interface Builder. Select the File’s Owner
icon in the document window and press Command-6 to bring up the Identity Inspector.
Type CBBrowserView in the Class field. This enables the view controller to manage this
XIB. Next, Control-drag a connection from File’s Owner to the Custom View icon and
choose the view outlet.

The interface is made up of two main parts: the table view on the left side of the image
and the browser view on the right. Double-click on the Custom View icon in the docu-
ment window to display the view.

Set up the album table

Drag out an NSTableView from the Library and place it onto the view. Resize it so it fills
the entire height of the window and roughly one-third of the width (the exact size is
not important in this case).

Make sure that the table’s enclosing scroll view is selected by confirming that the At-
tributes Inspector’s title is “Scroll View Attributes.” If it isn’t, Control-Command-Shift-
click on the table and select Bordered Scroll View.

Remember this technique to select a specific part of a view hierarchy,
because you’ll need to use it throughout the rest of the chapter. For
example, if I say “select the table view,” you must make sure that the
table itself is selected, not one of the columns or the scroll view. This is
critical when creating XIB files.

With the scroll view selected, switch to the Size Inspector. Enable the top, left, and
bottom struts, and enable the vertical springs. The idea is that the view should resize
its height to match the window, but keep a constant width and stay anchored to the
left side of the window. Next, select the table view inside of the scroll view and bring
up the Attributes Inspector.

Create the User Interface | 293

Again, make sure the Inspector title says “Table View Attributes.” If it
says “Scroll View Attributes,” Control-Command-Shift-click on the
view and select the table view.

With the table selected and the Attributes Inspector open, choose Source List from the
Highlight pop up. Make sure that the table has two columns using the Columns stepper
control. Now select the table header view (across the top of the table), and drag the
column divider to resize the left column so it’s just wide enough to hold a fairly small
icon, as shown in Figure 9-35.

Figure 9-35. Resize the left table column so it’s just wide enough for a small icon

In the Library window, search for “image cell” and drag an NSImageCell instance to the
first column of the table. Finally, reselect the table itself and switch to the Attributes
Inspector. Uncheck the Headers checkbox to hide the table columns. Select the text
field cell inside of the right column, open the Size Inspector, and choose Small from
the Size pop up.

This style of table is called a “source list” in Mac application design.

294 | Chapter 9: Designing Applications Using MVC

Set up the image browser

Search for “image browser” in the Library window, and drag an instance of
IKImageBrowserView onto the custom view. Select Layout → Embed Objects In → Scroll
View. Open the Attributes Inspector and enable the Automatically Hide Scrollers
checkbox. Switch to the Size Inspector and enable all of the sprints and struts so the
image browser resizes in both dimensions with the window. Position the browser view
against the right edge of the table view, and resize it to fill the remaining space of the
custom view. It should look like Figure 9-36 when you’re done.

Figure 9-36. The basic layout of the browser view

Set up bindings

Add two NSArrayController objects to the XIB document window. Select one and then
single-click its title to edit it. Name it Albums, and use the same technique to rename
the other array controller to Photos. Select the Albums array controller and open the
Attributes Inspector.

Select Entity from the Mode pop up, and type Album in the Entity Name field. Enable
the Prepares Content checkbox. When you’re done, it should look like Figure 9-37.

Create the User Interface | 295

Figure 9-37. Configure the Attributes settings for the Albums array controller as shown

Switch to the Bindings Inspector by pressing Command-4. Under the Parameters sec-
tion, bind Managed Object Context to Application with a Model Key Path of dele
gate.managedObjectContext. Now select the Photos array controller and switch to the
Attributes Inspector by pressing Command-1. Select Entity from the Mode pop up, and
type Photo in the Entity Name field. Enable the Prepares Content checkbox. When
you’re done, it should look like Figure 9-38.

Switch to the Bindings Inspector by pressing Command-4. Under the Controller Con-
tent section, bind Content Set to Albums (make sure you bind Content Set, not Content
or Content Array) with a Controller Key of selection and Model Key Path of photos
(see Figure 9-39). This ensures that the browser view will display only photos that
belong to the currently selected album.

You generally use the Content Set binding when binding to Core Data
collections, because to-many relationships are represented as instances
of NSMutableSet, not NSMutableArray. One key point here is that all of
the items in a set are unique. Even though sets don’t have any inherent
order, you can introduce your own ordering scheme with sort descrip-
tors, which Gallery does with CBPhoto objects using the orderIndex
property.

Under the Controller Content Parameters section, bind Sort Descriptors to File’s
Owner with a Model Key Path of imagesSortDescriptors. This will use the imagesSort
Descriptors property in the CBBrowserView class. Then, under the Parameters section,

296 | Chapter 9: Designing Applications Using MVC

bind Managed Object Context to Application with a Model Key Path of dele
gate.managedObjectContext.

Back, in the custom view, select the left-side image table column and open the Bindings
Inspector. Bind Value to Albums, with a Controller Key of arrangedObjects and a Model
Key Path of image. Select the right-side text table column. Bind Value to Albums, with
a Controller Key of arrangedObjects and a Model Key Path of title.

Select the image browser view and open the Bindings Inspector. Bind Content to Photos
with a Controller Key of arrangedObjects.

Connect outlets

Right-click the File’s Owner icon and connect the albumsArrayController and
imagesArrayController outlets to the Albums and Photos array controllers, respec-
tively. Connect the albumsTable outlet to the table view, and the imageBrowser outlet to
the image browser view. Save and close the XIB file and switch back to Xcode.

Create the Editor View Interface
The editor view interface is much simpler, because all of the hard work is done by
ImageKit. Double-click CBEditorView.xib to open it in Interface Builder. Select the
File’s Owner icon in the document window and press Command-6 to bring up the
Identity Inspector. Type CBEditorView in the Class field. Right-click the File’s Owner
icon to bring up its HUD window, and drag a connection from the view outlet to the
Custom View icon, as shown in Figure 9-40.

Figure 9-38. Configure the Attributes settings for the Photos array controller as shown

Create the User Interface | 297

Search for “image view” in the Library and drag an instance of IKImageView to the
custom view. Resize it to fill the entire view. With the image view still selected, bring
up the Size Inspector and activate all of the springs and struts so that the view resizes
with the window.

Finally, right-click on File’s Owner and connect the imageView outlet to the image view
you added. Save and close the XIB file and switch back to Xcode.

Create the List View Interface
Double-click CBListView.xib to open it in Interface Builder. Select the File’s Owner
icon in the document window and press Command-6 to bring up the Identity Inspector.

Figure 9-39. Bindings for the Photos array controller (Sort Descriptors binding not shown)

298 | Chapter 9: Designing Applications Using MVC

Type CBListView in the Class field. Next, Control-drag a connection from File’s Owner
to the Custom View icon and choose the view outlet.

Search for “table view” in the Library and drag an NSTableView to the custom view, but
don’t resize it yet. Select the table view (inside the scroll view) and open the Attributes
Inspector. Increase the column count to 3. Reposition and resize the table view so it
fills the entire custom view.

Select the Scroll View icon and open the Size Inspector. Activate all of the springs and
struts so that the view resizes with the window. Rename the table columns by double-
clicking them. From the left, name them Image, Album, and File Path. Search for “image
cell” in the Library and drag an NSImageCell object onto the first column (Figure 9-41).

Set up bindings

Drag an NSArrayController out from the Library and drop it onto the XIB document
window. Rename it to Photos. Select the array controller and open the Attributes In-
spector. Choose Entity from the Mode pop up, and type Photo in the Entity Name field.
Enable the Prepares Content checkbox.

Open the Bindings Inspector with Command-4. Under the Parameters section, bind
Managed Object Context to Application with a Model Key Path of dele
gate.managedObjectContext.

Back in the table, select the image column at the far left. Open the Bindings Inspector
and bind the column’s Value to Photos with a Controller Key of arrangedObjects and
a Model Key Path of largeThumbnail (see Figure 9-42).

Figure 9-40. Connect the File’s Owner view outlet to the Custom View icon

Create the User Interface | 299

Figure 9-41. Drag an NSImageCell onto the first table column

Figure 9-42. Bind the image column to Photos with a Controller Key of arrangedObjects and
largeThumbnail for the Model Key Path

300 | Chapter 9: Designing Applications Using MVC

Select the Album table column and open the Bindings Inspector. Bind Value to Photos
with a Controller Key of arrangedObjects and a Model Key Path of album.title. Finally,
select the File Path table column. In the Bindings Inspector, bind Value to Photos with
a Controller Key of arrangedObjects and a Model Key Path of filePath.

Connect outlets

Right-click the File’s Owner icon and connect the imagesArrayController outlet to the
Photos array controller. Connect the imagesTable outlet to the table view. Save and
close the XIB file and switch back to Xcode.

Run the Application
At long last, you’re done. Save all open files in Xcode or Interface Builder, and press
Command-R to build and run the project. Once the application is running, find some
photos on your Mac and drag them into the browser view (Figure 9-43). Try rearranging
the photos.

Figure 9-43. The finished Gallery application; double-click an image in the browser or list view to
open it in the editor view

Run the Application | 301

You can also make a new album from the Album menu, and drag different photos in.
Double-click an image in the browser or list view to open it in the editor view.
Double-click the image while in the editor view to bring up the image adjustment panel
(Figure 9-44). Click the browser or list item in the segmented controls to switch back.

Your data is automatically saved by Core Data when you quit the application. Add
some photos and albums, then press Command-Q to quit. Relaunch the application
and all of your data will be back. If you want to permanently remove the saved data,
delete the CocoaBookGallery folder in /Users/<yourusername>/Library/Application
Support.

Your data will not be saved if you click the Tasks stop icon in the Xcode
toolbar. This directly ends the program without going through the nor-
mal channels; it’s equivalent to a Force Quit.

Figure 9-44. Double-click an image in the editor view to bring up the image adjustment panel

302 | Chapter 9: Designing Applications Using MVC

Preparing for Release
If you want to run this application outside of Xcode or on another Mac, you need to
build with the Release Configuration. Select Release as the Active Configuration from
the Xcode Toolbar as shown in Figure 9-45.

Figure 9-45. Select Release as the Active Configuration from the Xcode toolbar

In the same toolbar, verify that Active Architecture is x86_64. Next, double-click the
Gallery project icon at the top of the Xcode sidebar to open the Project Inspector. Make
sure the Architectures field is only 64-bit Intel (see Figure 9-46). If it contains other
items, the project will not build, because Gallery uses 64-bit Objective-C features.

Press Command-R to build and run and make sure everything works. This build will
probably take a bit longer than the Debug build, which is why you don’t generally build
as Release while you’re working on the project. Finally, open the Products group near
the bottom of the Xcode sidebar. Right-click on Gallery.app and choose Reveal in
Finder (Figure 9-47).

This will actually take you to the finished Gallery application in the Finder, as shown
in Figure 9-48 (you don’t need to copy the file labeled Gallery.app.dSYM). You can
copy this file to any other 64-bit Mac running Snow Leopard.

Now you just need to hire an icon artist.

Preparing for Release | 303

Figure 9-46. Gallery uses 64-bit Objective-C features, so make sure you’re only building for 64-bit
Intel

304 | Chapter 9: Designing Applications Using MVC

Figure 9-47. Right-click the Gallery.app item in the Products group and select the Reveal in Finder
item to display it in the Finder

Figure 9-48. The Gallery application in the Finder

Preparing for Release | 305

CHAPTER 10

Custom Views and Drawing

If you’re looking to get started with graphics programming, you’ve come to the right
place. Mac OS X has a lot of graphics frameworks to choose from, and each one spe-
cializes in something different. Here’s a quick rundown of the main players:

AppKit
The UI part of Cocoa has classes and methods for dealing with colors, geometry,
styled text, bitmap images, and complex paths. This is the first place you should
start when writing custom drawing code for the Mac UI.

Core Graphics
This is the lower-level, C-based framework for 2D drawing in Mac OS X. Core
Graphics is also part of the iPhone SDK, so you can share code easily. The drawback
is that the C functions and memory management are not as convenient or as flexible
as the Objective-C AppKit drawing classes.

Core Animation
This is a relatively new framework that’s part of both Mac OS X and the iPhone
OS. It’s based on OpenGL and allows you to use a lot of impressive 3D and tran-
sition effects, but it has an easy-to-use Objective-C interface. Because it uses the
GPU, it’s incredibly fast. You can also combine Core Animation with AppKit in
certain cases.

Core Image
This framework allows you to apply special effects to your images and views, such
as Gaussian Blur, bloom, color adjustments, and even transitions like page curls
and dissolves. This isn’t an API that’s useful for general drawing. Instead, you
usually combine it with another framework. Core Image is currently not available
in the iPhone SDK.

It’s probably tempting to go straight to Core Graphics because it’s available on both
Mac and iPhone, and plain C functions are slightly faster. However, I think program-
mers who go this route are giving up a lot of features that make it fun and easy to write
Cocoa code.

307

The Core Graphics structs and functions are easier to use than most C libraries, but
they’re not nearly as convenient or fault tolerant as Objective-C classes. Using AppKit
means that you can use autorelease, add categories, and easily store objects in collec-
tions. You also end up writing far less code, because objects can usually keep track of
their own state easily. And the amount of view drawing code you’ll be able to share
between Mac and iPhone is fairly low anyway, because the UIs are usually very different.

For these reasons—and others we’ll eventually get to—this chapter is all about making
custom views with the AppKit classes. But the concepts and even names are very similar
to those in Core Graphics, so you’re basically learning both at the same time.

Basic Geometry
All drawing in AppKit starts with a point—an x and y coordinate in the view. Views
use the NSPoint struct to describe these points. Many of the AppKit geometry types,
though, are actually aliases to the Core Graphics geometry types. So an NSPoint is ac-
tually another name for a CGPoint. There is no performance penalty for this, because
they are just linked by a typedef statement.

The bridging of the AppKit and Core Graphics geometry types is only
automatic for 64-bit applications. If you’re writing 32-bit Mac applica-
tions, you have to convert these types manually.

Here’s the definition for the NSPoint struct and its counterpart, CGPoint:

typedef CGPoint NSPoint;

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

Looking past the slightly odd C syntax, you can see that an NSPoint is just a CGPoint,
which has two fields: x and y. Both fields hold floating-point values, so you can create
a point with an x value of 1.5, and a y value of 1.0. This might be surprising, because
you technically can’t have “half a pixel” on a monitor, but there’s a reason for this.

Cocoa uses a scalable graphics systems, which means that it’s designed to work well at
different resolutions. Using floating-point values makes this arrangement work better,
as a high-resolution display might have 1.5 times more pixels per inch than another
monitor. The main way this affects you is that you may need to round coordinate values
to whole numbers to get pixel-exact drawing.

308 | Chapter 10: Custom Views and Drawing

That said, this chapter is about drawing UI elements on Mac OS X. To avoid awkward
language, I’ll use the term “pixels” to describe coordinates, but remember that Cocoa
technically considers them units.

You can either create an NSPoint directly or use the NSMakePoint() function. This is an
inline function, which means the code is effectively copied directly into the place where
it’s called. In other words, you don’t incur the overhead you normally would when
calling a function. Here are some examples of creating NSPoint structs:

NSPoint point1;
point1.x = 4;
point1.y = 11;

NSPoint point2;
point2.x = 12;
point2.y = 21;

NSPoint point3 = NSMakePoint (19, 8);
NSPoint point4 = NSMakePoint (24, 18);

The NSSize type has two floating-point values: width and height. It’s interchangeable
with the CGSize type:

typedef CGSize NSSize;

struct CGSize {
 CGFloat width;
 CGFloat height;
};
typedef struct CGSize CGSize;

You can either create NSSize structs directly or use the NSMakeSize() function. Here are
some examples:

NSSize size1;
size1.width = 1920;
size1.height = 1200;

NSSize size2;
size2.width = 16;
size2.height = 16;

NSSize size3 = NSMakeSize (1024, 768);
NSSize size4 = NSMakeSize (640, 480);

An NSRect is simply a combination of an NSPoint field called origin, and an NSSize field
called size. As with the other types, it’s based on its CGRect counterpart:

typedef CGRect NSRect;

struct CGRect {
 CGPoint origin;
 CGSize size;
};
typedef struct CGRect CGRect;

Basic Geometry | 309

You’ll see NSRect used everywhere in Cocoa view and image classes. Like the other
geometry types, you can create an NSRect manually or use the NSMakeRect() function:

// create a rect from separate point and size variables.
NSPoint origin1 = NSMakePoint (0, 0);
NSSize size1 = NSMakeSize (40, 40);

NSRect rect1;
rect1.origin = origin1;
rect1.size = size1;

// create a rect one field at a time.
NSRect rect2;
rect2.origin.x = 4;
rect2.origin.y = 4;
rect2.size.width = 32;
rect2.size.height = 32;

// create the whole rect in a single line.
rect3 = NSMakeRect (20, 80, 200, 200);

Geometry Structs As Strings
Once you’ve created a rect, size, or point, you may want to convert it into a string to
display in the console, and there are built-in functions to do that: NSStringFrom
Rect(), NSStringFromSize(), and NSStringFromPoint(). All take one of the geometry
types as input and return a descriptive string:

NSRect rect1 = NSMakeRect (0, 0 , 200, 400);
NSString* rectString1 = NSStringFromRect (rect1);
NSLog (@"rect1: %@", rectString1);

NSSize size1 = NSMakeSize (256, 256);
NSString* sizeString1 = NSStringFromSize (size1);
NSLog (@"size1: %@", sizeString1);

NSPoint point1 = NSMakePoint (100, 100);
NSString* pointString1 = NSStringFromPoint (point1);
NSLog (@"point1: %@", pointString1);

The result:

rect1: {{0, 0}, {200, 400}}
size1: {256, 256}
point1: {100, 100}

It also works the other way. Once you have one of these nicely formatted strings, you
can use them to create actual structs using NSRectFromString(), NSSizeFromString(),
and NSPointFromString():

NSString* rectPlist = @"{{0, 0}, {200, 400}}";
NSString* sizePlist = @"{256, 256}";
NSString* pointPlist = @"{100, 100}";

NSRect rect1 = NSRectFromString (rectPlist);

310 | Chapter 10: Custom Views and Drawing

NSSize size1 = NSSizeFromString (sizePlist);
NSPoint point1 = NSPointFromString (pointPlist);

It probably seems strange to convert a rect to a string and then back to a rect again, but
this is useful for quickly saving geometry data using the NSString methods for reading
and writing files, or if you’re copying data between applications.

Geometry Structs As NSValues
Geometry structs are not objects, so you can’t store them in collections; you need to
convert them. You can use NSValue to wrap the struct, and then store the NSValue object
in the collection. For example, to create an NSValue that wraps an NSRect, you use the
+valueWithRect: method. As a bonus, NSValue is actually smart enough to do the con-
version of the struct for you when you display the value object in the console:

NSRect newRect = NSMakeRect (10, 10, 100, 100);
NSSize newSize = NSMakeSize (40, 40);
NSPoint newPoint = NSMakePoint (4, 4);

NSValue* rectObject = [NSValue valueWithRect:newRect];
NSValue* sizeObject = [NSValue valueWithSize:newSize];
NSValue* pointObject = [NSValue valueWithPoint:newPoint];

NSMutableArray* array = [NSMutableArray array];
[array addObject:rectObject];
[array addObject:sizeObject];
[array addObject:pointObject];

NSLog (@"NSValue 0: %@", [array objectAtIndex:0]);
NSLog (@"NSValue 1: %@", [array objectAtIndex:1]);
NSLog (@"NSValue 2: %@", [array objectAtIndex:2]);

The result in the console:

NSValue 0: NSRect: {{10, 10}, {100, 100}}
NSValue 1: NSSize: {40, 40}
NSValue 2: NSPoint: {4, 4}

When you need to get the actual geometry struct back out, you just call either
-rectValue, -sizeValue, or -pointValue on the value object:

NSRect newRect = NSMakeRect (0, 0, 80, 180);
NSSize newSize = NSMakeSize (16, 16);
NSPoint newPoint = NSMakePoint (0, 0);

NSValue* rectObject = [NSValue valueWithRect:newRect];
NSValue* sizeObject = [NSValue valueWithSize:newSize];
NSValue* pointObject = [NSValue valueWithPoint:newPoint];

// convert the contents of the NSValue object back
// into a geometry struct.

NSRect storedRect = rectObject.rectValue;

Basic Geometry | 311

NSSize storedSize = sizeObject.sizeValue;
NSPoint storedPoint = pointObject.pointValue;

Cocoa View Coordinates
Most onscreen controls in Cocoa apps are subclasses of NSView. The view system gives
you a canvas on which to draw images for the user to see, as well as gets input from the
keyboard, mouse, and even touch events on newer hardware. But let’s start with
drawing.

First, it’s important to understand that views don’t live out on their own. They’re a part
of a view hierarchy. The window has a content view, which is the root view for that
window. The content view has any number of subviews, and each of those can have its
own subviews. So each window essentially has a view “tree” that starts with the content
view.

A view has two NSRect properties that describe its size and location: bounds and
frame. The bounds is the view’s internal coordinate system, and the frame is the view’s
coordinates inside its parent. If you want to move a view around inside the window,
you have to change its frame.

Because it’s based on the PDF drawing model, Cocoa uses the Cartesian coordinate
system by default, which means the origin is in the bottom left, and higher values go
up and to the right (see Figure 10-1). This is different than iPhone and HTML/CSS
coordinates, where the origin is in the upper left.

Figure 10-1. The default Cartesian coordinate system in NSView, with the origin in the bottom left

You can change this behavior by implementing -isFlipped in your NSView subclass and
returning YES. Once you do this, the view’s origin will be in the upper left:

312 | Chapter 10: Custom Views and Drawing

- (BOOL) isFlipped {
 return YES;
 }

However, I don’t strongly recommend this. I do think it’s more natural to describe
coordinates starting in the upper left, but most of Cocoa uses the Cartesian system, so
you can end up swimming upstream a lot. You can use a flipped coordinate system in
your view, but my recommendation is to use the standard system, especially if you’re
using Core Animation.

Derived Rects
Cocoa provides functions that take an existing NSRect, make a copy, and alter it in some
way before returning it. For example, NSOffsetRect() takes a rect and returns a copy
that’s shifted by some amount. This is useful if you want to create a photo mosaic with
several images side by side. Remember, in the default Cartesian system, positive values
given to NSOffsetRect() move the rect up and to the right, and negative values move
the rect down and to the left:

NSRect rect1;
rect1.origin.x = 100;
rect1.origin.y = 100;
rect1.size.width = 30;
rect1.size.height = 25;

// In the NSView Cartesian system, rect2 will be
// 10 units to the right of and 5 units above rect1.
NSRect rect2 = NSOffsetRect (rect1, 5, 10);

// In the NSView Cartesian system, rect2 will be
// 40 units to the left of and 60 units below rect1.
NSRect rect3 = NSOffsetRect (rect1, -40, -60);

The NSIntersectionRect() function takes two rects and returns a new rect covering only
the overlapping area between the two:

// get the common area between two rects.

NSRect rect1 = NSMakeRect (0, 0, 30, 25);
NSRect rect2 = NSMakeRect (5, 5, 30, 25);

NSRect rect3 = NSIntersectionRect (rect1, rect2);

You can use the NSUnionRect() function to get a rect that completely surrounds both
of the smaller input rects:

// get a combination of two rects.
NSRect rect1;
rect1.origin.x = 0;
rect1.origin.y = 0;
rect1.size.width = 30;
rect1.size.height = 25;

Basic Geometry | 313

// you can use standard C operators to adjust rects.
NSRect rect2 = rect1;
rect2.origin.x += 5;
rect2.origin.y += 10;

NSRect rect3 = NSUnionRect (rect1, rect2);

The NSInsetRect() function is useful when creating one rectangle embedded in another,
such as drawing a frame and then an image inside:

NSRect rect1;
rect1.origin.x = 0;
rect1.origin.y = 0;
rect1.size.width = 30;
rect1.size.height = 25;

// get the "inset" version of a rect.
NSRect rect2 = NSInsetRect (rect1, 2, 2);

// you can use negative values to create an "outset" rect.
NSRect rect3 = NSInsetRect (rect1, -10, -20);

Comparison Functions
Because the geometry structs aren’t objects, you can’t use -isEqual: to compare them.
Instead, you use a few comparison functions made specifically for this purpose:
NSEqualPoints(), NSEqualRects(), and NSEqualSizes():

NSRect rect1 = NSMakeRect (0, 0, 280, 101);
NSRect rect2;
rect2.origin.x = 0;
rect2.origin.y = 0;
rect2.size.width = 280;
rect2.size.height = 101;

if (NSEqualRects (rect1, rect2))
 NSLog (@"rect1 and rect2 are equal");

NSSize size1 = NSMakeSize (42, 42);
NSSize size2 = NSMakeSize (24, 24);

if (NSEqualSizes (size1, size2))
 NSLog (@"size1 and size2 are equal");

// comparison functions are useful when testing
// for the 'zero' constants like NSZeroPoint.

NSPoint point1 = NSMakePoint (0, 0);

if (NSEqualPoints (point1, NSZeroPoint))
 NSLog (@"point1 and NSZeroPoint are equal");

The result in the console:

314 | Chapter 10: Custom Views and Drawing

rect1 and rect2 are equal
point1 and NSZeroPoint are equal

There are also a few functions to do spatial comparisons (Table 10-1). These are useful
for user interactions like drag-and-drop.

Table 10-1. Spatial comparison functions

Method Description

NSIntersectsRect() Returns YES if the rects at least partially overlap

NSContainsRect() Returns YES if the first rect completely contains the second

NSPointInRect() Returns YES if the point is inside the rect

Here are some examples, including one practical case where you want to see if a point
is inside the frame of a view:

NSRect rect1 = NSMakeRect (10, 10, 40, 40);
NSRect rect2 = NSMakeRect (10, 10, 500, 500);

if (NSIntersectsRect (rect1, rect2))
 NSLog (@"rect1 intersects rect2");

if (NSContainsRect (rect1, rect2))
 NSLog (@"rect1 contains rect2");

// check to see if a point is inside the view.

NSPoint point1 = NSMakePoint (10, 10);
NSRect rect3 = NSMakeRect (0, 0, 200, 200);
NSView* view = [[NSView alloc] initWithFrame:rect3];

if (NSPointInRect (point1, view.frame))
 NSLog (@"point1 is inside the view");

[view release];

Here’s the result in the console:

rect1 intersects rect2
point1 is inside the view

Basic Drawing
There are two absolute essentials if you want to do any drawing: a color and something
to draw. You use the NSColor class to create colors, and the “something” can be a simple
rectangle to start. Well, actually, there’s a third thing: you need somewhere to draw.
In this case, the “somewhere” will be a view.

Basic Drawing | 315

NSColor
The NSColor class can do some fairly impressive tricks, but I just want to introduce you
to the basics. Here’s a simple set of examples that demonstrates almost everything you’ll
need on a day-to-day basis:

// basic color constants.
NSColor* color1 = [NSColor redColor];
NSColor* color2 = [NSColor greenColor];
NSColor* color3 = [NSColor blueColor];
NSColor* color4 = [NSColor purpleColor];
NSColor* color5 = [NSColor yellowColor];
NSColor* color6 = [NSColor orangeColor];

// completely transparent.
NSColor* color7 = [NSColor clearColor];

// color by channel, including alpha.
NSColor* color8 = [NSColor colorWithCalibratedRed: 0.25
 green: 0.30
 blue: 0.45
 alpha: 1.0];

// white value with alpha.
NSColor* color9 = [NSColor colorWithCalibratedWhite: 0.45
 alpha: 0.8];

Each of the color channels is a value between 0.0 and 1.0. If your reference colors are
RGBA values between 0 and 255, you can do some quick math to get a floating-point
value:

// divide by 255 to get floating-point value between 0.0 and 1.0.
NSColor* color = [NSColor colorWithCalibratedRed: (122.0/255.0)
 green: (224.0/255.0)
 blue: (185.0/255.0)
 alpha: (128.0/255.0)];

Once you have a color, you usually set it with the -[NSColor set] method and then
draw a shape or text. You can also set the stroke and fill colors separately:

NSColor* color1 = [NSColor redColor];
[color1 set];

NSColor* color2 = [NSColor greenColor];
[color2 setStroke];

NSColor* color3 = [NSColor blueColor];
[color3 setFill];

Subclassing NSView
Create a new Cocoa project called “BasicCocoaDrawing” and place it in ~/CocoaBook/
ch10/. Add to the project an Objective-C class that is a subclass of NSView, as shown in
Figure 10-2.

316 | Chapter 10: Custom Views and Drawing

On the second screen, name the file ShapesAndColorsView.m, and make sure the
checkboxes for “Also create ShapesAndColorsView.h” and the BasicCocoaDrawing
item in the Targets section are both checked, as shown in Figure 10-3.

Be sure to select NSView from the “Subclass of” drop-down or the view
will not work.

Xcode will create a basic version of the class implementation that looks something like
this:

#import "ShapesAndColorsView.h"

@implementation ShapesAndColorsView

- (id)initWithFrame:(NSRect)frame {
 self = [super initWithFrame:frame];
 if (self) {
 // Initialization code here.
 }
 return self;
}

Figure 10-2. Creating a new NSView subclass in Xcode

Basic Drawing | 317

- (void)drawRect:(NSRect)dirtyRect {
 // Drawing code here.
}

@end

Figure 10-3. Name the file ShapesAndColorsView.m and add it to the BasicCocoaDrawing target

The -initWithFrame: method is like the -init method in most classes, but it takes a
frame as an initial location and size for the view. You don’t need to set up any default
values yet, but let’s change the formatting so it’s more familiar (see Example 10-1).

Example 10-1. ShapesAndColorsView.m -initWithFrame:

- (id)initWithFrame:(NSRect)frame {

 if (self = [super initWithFrame:frame]) {

 }
 return self;
}

Functionally, this is exactly the same as the stock version. I just want you to understand
there’s nothing strange going on in this method. The -drawRect: method is brand new,

318 | Chapter 10: Custom Views and Drawing

though. This is where you get your hands dirty with pixels. You’re going to use the
NSRectFill() function to draw, and it takes a single rect as input. Rewrite the
-drawRect: method so it looks like this:

- (void)drawRect:(NSRect)dirtyRect {

 NSColor* backgroundColor = [NSColor orangeColor];
 NSColor* foregroundColor = [NSColor yellowColor];

 // get the view geometry and fill the background.

 NSRect bounds = self.bounds;
 [backgroundColor set];
 NSRectFill (bounds);

 // inset each side by 25%. when added together, this
 // means the shape will be half the width and height
 // of the view.

 CGFloat insetX = (NSWidth (bounds) * 0.25);
 CGFloat insetY = (NSHeight (bounds) * 0.25);
 NSRect shape = NSInsetRect (bounds, insetX, insetY);

 [foregroundColor set];
 NSRectFill (shape);
}

If you’re not a geometry expert, don’t worry: this is simple math. I want the shape to
be exactly half the size of the view. The NSWidth() and NSHeight() functions return the
width and height of the bounds rect. I multiply both by 0.25 to get 25% of each value,
and pass the rect and the inset amounts into NSInsetRect() to get a shape in the middle
of the view.

But if I want to make a shape with half the width and height, why am I using 0.25? The
NSInsetRect() function applies the inset amount to each side. If I ask for a 50% inset
for the height, I’ll end up with 50% off the top and 50% off the bottom, for a total of
100%. The shape would end up with a height of 0, and I’d never see it onscreen.

When to draw

As an application developer, you don’t directly tell your views to draw—Cocoa handles
that. You just need to wait for the -drawRect: method to be called. This method may
be called many times per second, so make sure it’s efficient. For example, if you have
code that figures out where objects should appear, you should calculate that once and
save the result as an instance variable so that it’s cached.

If any data that affects the view changes—such as the location of an object—update
your caches, then call [myView setNeedsDisplay:YES] to tell Cocoa that you need an
update. The view system collects all of those requests and combines them into a single
call to -drawRect: when it’s time to draw.

Basic Drawing | 319

If you’re trying to call -drawRect: directly, you may want to rethink how
your classes are set up. The drawing system is designed to make things
easier for you, and trying to work outside of it will usually make the view
draw incorrectly or just cause the app to crash.

Instantiate the View
There are two ways to add a view to a window, and it’s important to know about both.
First, let’s do it in code. Change BasicCocoaDrawingAppDelegate.m to look like the
following:

#import "BasicCocoaDrawingAppDelegate.h"
#import "ShapesAndColorsView.h"

@implementation BasicCocoaDrawingAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 NSRect viewFrame = [self.window.contentView bounds];

 ShapesAndColorsView* shapeView;
 shapeView = [[ShapesAndColorsView alloc] initWithFrame:viewFrame];
 [self.window.contentView addSubview:shapeView];
 [shapeView release];
}

@end

Make sure to add the #import "ShapesAndColorsView.h" statement at the
top of the file to avoid build errors.

Bounds and Frames
I used the bounds of the window’s content view (the root view) as the frame for the
ShapesAndColorsView. This is an easy way to get a rect that fills the whole window, but
you don’t have to do it this way. In fact, I could also use the content view’s frame, but
that won’t always do what you expect in other cases. Here’s why.

You might think giving the parent and child the same frame would make them equal,
but a view’s frame is relative to its parent, so an origin of 10,10 isn’t a location in the
window; it’s a location in the parent view. Using the parent’s bounds for this often
works out better because the origin is usually 0,0:

NSRect frame = NSMakeRect (10, 10, 100, 100);
NSView* parentView = [[NSView alloc] initWithFrame:frame];

// this will completely fill the parent view because the origin is 0,0.
NSView* childView = [[NSView alloc] initWithFrame:parentView.bounds];
[parentView addSubview:childView];

320 | Chapter 10: Custom Views and Drawing

In the next listing, giving the parent and the child the same frame places the child at
10,10 in the parent, so there will be empty space at the bottom-left corner of the view:

NSRect frame = NSMakeRect (10, 10, 100, 100);
NSView* parentView = [[NSView alloc] initWithFrame:frame];

// this will leave ten pixels empty at the left and the bottom.
NSView* childView = [[NSView alloc] initWithFrame:parentView.frame];
[parentView addSubview:childView];

That said, the origin of bounds is not always 0,0, but this is the most common behavior
in simple cases.

Save the file and run the project. You should see a big square in the middle of the
window (Figure 10-4).

Figure 10-4. The first run of BasicCocoaDrawing

Remember, you haven’t edited the XIB file yet—this is all in code. If you resize the
window, though, you’ll see the view isn’t resizing with it. In Interface Builder, you could
fix this with the Size Inspector, but you can also do it in code using the NSView
autoresizingMask property.

Basic Drawing | 321

Setting resizing values in code

The autoresizingMask property uses a bitmask value, which we haven’t talked about
much yet. It’s a lower-level C technique for combining multiple “flags” into a single
value. Sometimes you need only one value, but if there are more, you combine them
using the pipe symbol, which is formally called the bitwise OR operator:

NSInteger bitmask = (FirstValue | SecondValue | ThirdValue);

The possible values for the autoresizingMask property are listed at the top of NSView.h
(Example 10-2).

Example 10-2. Excerpt of NSView.h; possible values for the autoresizingMask property

enum {
 NSViewNotSizable = 0,
 NSViewMinXMargin = 1,
 NSViewWidthSizable = 2,
 NSViewMaxXMargin = 4,
 NSViewMinYMargin = 8,
 NSViewHeightSizable = 16,
 NSViewMaxYMargin = 32
};

Each of these describe a different resizing switch that you can “turn on” for the view
(see Table 10-2).

Table 10-2. NSView resizing mask values

Value Description

NSViewNotSizable No resizing at all

NSViewMinXMargin The left margin resizes, anchoring the view to the right

NSViewMaxXMargin The right margin resizes, anchoring the view to the left

NSViewMinYMargin The bottom margin resizes, anchoring the view to the top

NSViewMaxYMargin The top margin resizes, anchoring the view to the bottom

NSViewWidthSizable The view’s width changes with its parent

NSViewHeightSizable The view’s height changes with its parent

To put this in context, using the NSViewMinYMargin means the “minimum y margin” will
be allowed to resize. In the Cartesian system, that means the bottom of the view. So if
you apply NSViewMinYMargin to a view’s resizing mask, you are saying that the empty
space on the bottom should flexible, effectively “anchoring” the view to the top of its
parent.

In this example, the view completely fills the window, so all you need to do is tell the
view to resize its width and height with its parent. Here is the method with the autore-
sizing mask applied:

322 | Chapter 10: Custom Views and Drawing

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 NSRect viewFrame = [self.window.contentView bounds];

 ShapesAndColorsView* shapeView;
 shapeView = [[ShapesAndColorsView alloc] initWithFrame:viewFrame];
 [self.window.contentView addSubview:shapeView];

 // resize with the window.
 NSInteger resizingMask = (NSViewWidthSizable | NSViewHeightSizable);
 [shapeView setAutoresizingMask:resizingMask];

 [shapeView release];
}

Save the file and rerun the project; you should see that the view now resizes with
the window. As a bonus, you now understand what the Size Inspector is doing behind
the scenes when you click on the resize arrows.

The Graphics Context
The thing I found most confusing when I was first learning drawing in Cocoa was the
-[NSColor set] method. Usually you set something on an object—using some value as
input. I couldn’t figure out what “set” meant if I wasn’t providing a value. What’s
actually happening here is that there is an invisible force in the background called the
graphics context, which is an instance of NSGraphicsContext (see Table 10-3).

Table 10-3. Common methods for NSGraphicsContext

Name Description

+currentContext Returns the “current” context

+saveGraphicsState: Creates and activates a new working copy of the context

+restoreGraphicsState Restores the previously saved context

-isDrawingToScreen Returns NO if not drawing to the screen, such as for printing

-setShouldAntialias: Defines if lines and text should be antialiased (YES by default)

-setCompositingOperation: Sets compositing style, such as NSCompositeSourceOver

The graphics context keeps track of settings that affect drawing, including the current
color. Calling the -set method on an NSColor assigns it to the graphics context. When
NSRectFill() function is called, it uses that color for drawing. Graphic contexts are
stacked, which means you can create a copy of the current context using
+saveGraphicsState, make some changes, draw something, then restore the original
context with +restoreGraphicsState, as shown here:

// make the current color 'blue'.
[[NSColor blueColor] set];
NSRectFill (outerRectangle);

Basic Drawing | 323

[NSGraphicsContext saveGraphicsState];

 // make the current color 'white'.
 [[NSColor whiteColor] set];
 NSRectFill (innerRectangle);

[NSGraphicsContext restoreGraphicsState];

// after restoring, the current color is blue again.
NSRectFill (innerRectangle);

Just like with retain and release, you have to balance each
+saveGraphicsState with exactly one +restoreGraphicsState. If you re-
store too many times, you’ll see errors in the console and your view will
likely draw indirectly.

When the -drawRect: method is called on a view class, Cocoa automatically sets up a
graphics context for you. This means that you don’t have to worry about where to draw
on the screen. One important note about this, though, is that the method actually passes
in a rect:

- (void)drawRect:(NSRect)rect;

This rect is the invalidated region in your view, meaning that anything inside of it needs
to be redrawn. You can redraw the entire view, but drawing just the invalidated area
may be much more efficient. The catch is that figuring out how to redraw just this
section can be difficult. In some cases, running the calculations could actually take
longer than just redrawing the entire view. So the rect is more a guideline about where
to draw than a rule.

Bezier Paths
Only very simple shapes can be described as rectangles, but you can use NSBezier
Path to create any kind of 2D shape you can imagine.

Bezier paths are the heart of Cocoa’s vector drawing system; they allow you to draw
without being tied to a specific resolution. This makes it possible, for example, to
implement a zooming feature in a drawing program. Unlike NSRect structs,
NSBezierPath instances are full objects that can draw themselves into a view.

Drawing Polygons
An instance of NSBezierPath isn’t necessarily curved; you can use paths to create multi-
sided polygons one point at a time. Create a project as shown in “Subclassing
NSView” on page 316, but use the following -drawRect: method instead:

- (void)drawRect:(NSRect)dirtyRect {

324 | Chapter 10: Custom Views and Drawing

 [[NSColor blueColor] set];
 NSRectFill (self.bounds);

 NSRect bounds = self.bounds;
 CGFloat width = bounds.size.width;
 CGFloat height = bounds.size.height;

 NSBezierPath* path = [NSBezierPath bezierPath];

 // use -moveToPoint to go to the starting point.
 [path moveToPoint: NSMakePoint(width*0.35, height*0.1)];

 // use -lineToPoint for all lines.
 [path lineToPoint: NSMakePoint(width*0.65, height*0.1)];
 [path lineToPoint: NSMakePoint(width*0.65, height*0.6)];
 [path lineToPoint: NSMakePoint(width*0.9, height*0.6)];
 [path lineToPoint: NSMakePoint(width*0.5, height*0.9)];
 [path lineToPoint: NSMakePoint(width*0.1, height*0.6)];
 [path lineToPoint: NSMakePoint(width*0.35, height*0.6)];

 // close the path at the end.
 [path closePath];

 [[NSColor whiteColor] set];
 [path fill];
}

Calling the -fill method on a path will draw the contents in the current graphics
context. Figure 10-5 shows the result when drawn into a view.

Drawing Curved Paths
The NSBezierPath class has quite a few methods for adding curves to a shape. In the
previous example, you added straight lines to a path using -lineToPoint. This is the
curved version:

- (void)curveToPoint: (NSPoint)endPoint
 controlPoint1: (NSPoint)controlPoint1
 controlPoint2: (NSPoint)controlPoint2;

The control points literally control the curve, acting like a form of gravity. In the fol-
lowing example, the start and end points of the path are at the bottom-left and top-
right corners of the view. The control points are at the bottom-right and top-left corners:

- (void)drawRect:(NSRect)dirtyRect {

 [[NSColor colorWithDeviceRed:0.2 green:0.6 blue:0.1 alpha:1.0] set];
 NSRectFill(self.bounds);

 NSBezierPath * path = [NSBezierPath bezierPath];
 path.lineWidth = 6.0;

 NSRect bounds = self.bounds;
 CGFloat width = NSWidth (bounds);

Bezier Paths | 325

 CGFloat height = NSHeight (bounds);

 NSPoint startPoint = NSMakePoint (width * 0.1, height * 0.1);
 NSPoint endPoint = NSMakePoint (width * 0.9, height * 0.9);

 [path moveToPoint: startPoint];

 [path curveToPoint: endPoint
 controlPoint1: NSMakePoint (width * 0.9, height * 0.1)
 controlPoint2: NSMakePoint (width * 0.1, height * 0.9)];

 [[NSColor colorWithDeviceRed:0.2 green:0.8 blue:0.3 alpha:0.9] set];
 [path fill];

 [[NSColor colorWithDeviceWhite:1.0 alpha:1.0] set];
 [path stroke];
}

Figure 10-5. An arrow created with NSBezierPath

Figure 10-6 shows the result when drawn into a view.

326 | Chapter 10: Custom Views and Drawing

Figure 10-6. A curved shape created with NSBezierPath

You can also add arcs to a path using one of the following methods:

- (void)appendBezierPathWithArcWithCenter: (NSPoint)center
 radius: (CGFloat)radius
 startAngle: (CGFloat)startAngle
 endAngle: (CGFloat)endAngle
 clockwise: (BOOL)clockwise;

- (void)appendBezierPathWithArcFromPoint: (NSPoint)point1
 toPoint: (NSPoint)point2
 radius: (CGFloat)radius;

The “from point” method is similar to the other methods you’ve used; it draws an arc
from one point to another. The “with center” method starts at center and draws a circle
with the radius you supply. You can draw portions of a circle if you want to create
shapes in the style of pie charts. Here’s an example of drawing an arc from the center:

- (void)drawRect:(NSRect)dirtyRect {

 [[NSColor purpleColor] set];
 NSRectFill(self.bounds);

 NSBezierPath * path = [NSBezierPath bezierPath];
 path.lineWidth = 6;

Bezier Paths | 327

 NSPoint origin;
 origin.x = NSWidth(self.bounds) * 0.5;
 origin.y = NSHeight(self.bounds) * 0.5;

 CGFloat radius = NSWidth(self.bounds) *0.25;

 [path moveToPoint: origin];
 [path appendBezierPathWithArcWithCenter: origin
 radius: radius
 startAngle: 0
 endAngle: 321
 clockwise: NO];

 [[NSColor magentaColor] set];
 [path fill];

 [[NSColor whiteColor] set];
 [path stroke];
}

Figure 10-7 shows the result when drawn into a view.

Figure 10-7. An arc created with NSBezierPath

328 | Chapter 10: Custom Views and Drawing

Images
There are many different image types available to you as a Mac programmer, but the
two most common are NSImage and CGImage (formally called CGImageRef). These used
to be very different and not easily interchangeable, but that changed in Snow Leopard.
The guts of NSImage are now backed by CGImage, so it’s much easier to switch between
them. You can’t cast them directly, but you can use these two NSImage methods:

- (id)initWithCGImage: (CGImageRef)cgImage
 size: (NSSize)size;

- (CGImageRef)CGImageForProposedRect: (NSRect *)rect
 context: (NSGraphicsContext *)context
 hints: (NSDictionary *)hints;

Your first instinct when reading this might be to think, “OK, CGImage is the main type,
so I’ll just use that.” The major drawback, though, is that CGImage is not actually an
Objective-C class. Like Core Foundation’s CFStringRef type, CGImageRef is an opaque
struct type. That means you can’t add categories to it, or use any of the generic pro-
gramming techniques that Cocoa is known for. Instead, you have to use it as a data
container, and pass it around to various C functions like CGContextDrawImage().

Instead, I suggest using the more flexible NSImage class, which has all of the Objective-
C goodness built right in. The other major advantage is that several of the standard
Cocoa view classes already know how to display an NSImage without any conversion.
And if you decide you want to use garbage collection, it will just work out of the box.
The only downside is that NSImage does not exist on the iPhone, but there is a class
that’s roughly equivalent called UIImage.

Loading Image Data
The two main ways to load existing image data are to read in the contents of an existing
image file, or to request standard artwork from Cocoa. Using standard artwork is help-
ful if you want to use the same icons Mac OS X itself uses for things like the color picker
or the computer itself. If you’re loading a custom image from a file, though, you usually
want to copy it into your project because there’s no way to guarantee which files will
be on your user’s machine.

Loading an image from your project

First, track down an image that you want to use. Almost any image will work, such as
a PNG or JPEG file. You can download it from a website or just use something from
your photo library. You probably want to use something that isn’t too big—around
1,000 × 1,000 pixels is good. Drag the file from the Finder to your Resources folder in
your project, and when Xcode asks, confirm that you want to copy the file and add it
to the target, as shown in Figure 10-8. (You can use the project shown in “Subclassing
NSView” on page 316 as a starting point for this.)

Images | 329

Once the image is in the project, you can use the NSImage class method +imageNamed:
to automatically load it (let’s hear it for object-oriented design). My file is called Space-
Shuttle.jpg,* so here’s the code I would use to load it as an NSImage object:

NSImage* mainImage = [NSImage imageNamed:@"SpaceShuttle"];

Even though it would be really easy to add this to the -drawRect: method, I don’t want
to do that, because it means the image would be re-created every single time, which
could be really slow. So instead, I’m only going to load it once, when the application
starts up.

Loading standard Cocoa artwork

You use the same +imageNamed: method to load standard artwork, but instead of pro-
viding a filename, you use one of the constants declared in AppKit’s NSImage.h header
file. Example 10-3 lists a few of the more interesting ones.

Example 10-3. Excerpts from NSImage.h—standard artwork constants

NSString *const NSImageNameComputer;
NSString *const NSImageNameColorPanel;
NSString *const NSImageNameUser;
NSString *const NSImageNameNetwork;

Figure 10-8. Confirm that you want the file copied into the project and added to the target

* Public domain image from NASA: http://commons.wikimedia.org/wiki/File:STS-125_Atlantis_Liftoff_02.jpg.

330 | Chapter 10: Custom Views and Drawing

http://commons.wikimedia.org/wiki/File:STS-125_Atlantis_Liftoff_02.jpg

For example, here’s how I can create an image that represents the computer:

NSImage* computerImage = [NSImage imageNamed:NSImageNameComputer];

The great thing about this is that the image itself will change depending on the computer
that is actually being used. So this same line of code will return a laptop icon if the user
has a portable Mac, but it will return a different icon if the app is running on a desktop
machine.

One important note here is that the actual artwork for an image name is not guaranteed
to be the same for each release of Mac OS X, but the intent of the image is. In other
words, use the NSImageNameColorPanel only if you really want to indicate a color panel.
Using it to represent something else that roughly fits the icon’s appearance may cause
confusion for the user if the artwork suddenly changes.

Cocoa’s standard artwork image names are global variables, so don’t
add quotes around them. Even if the variable name and the string con-
tents of that variable happen to be the same (for example: NSString*
NSImageNameComputer = @"NSImageNameComputer"), it’s better to let the
compiler make sure the constant you asked for actually exists.

The complete list of standard artwork names is located at the bottom of NSImage.h,
but you can also see some of the names in Interface Builder by opening the Library
panel and clicking on the Media tab (see Figure 10-9). This won’t necessarily show you
the complete list, but it’s an easy way to get a quick glance at some of the most common
items. Even better, this tab will also show you all of the images that you’ve added to
the project.

Drawing Images in a View
NSImage is a fairly complex class, but basic drawing is easy. These are the two most
common methods for drawing:

- (void)drawAtPoint: (NSPoint)point
 fromRect: (NSRect)fromRect
 operation: (NSCompositingOperation)op
 fraction: (CGFloat)delta;

- (void)drawInRect: (NSRect)rect
 fromRect: (NSRect)fromRect
 operation: (NSCompositingOperation)op
 fraction: (CGFloat)delta;

One takes an NSPoint as the first input item, and the other takes an NSRect. All of the
other input items are the same. The main difference between the two is if you specify
a rect, the image you draw will be scaled to fill the entire area of the rectangle. If you
specify a point, the natural image size will be used (but no larger than the size of
fromRect).

Images | 331

You can use fromRect if you want to draw only a portion of the source image in a view.
For example, if the source image is 1,000 × 1,000, but the view you’re drawing into is
only 200 × 200, you can specify a fromRect that is 200 × 200. This is useful for panning
around inside large images, for example. You can also pass in NSZeroRect here to just
draw the whole thing.

The operation value is a bit harder to explain. Some image editing programs have a
concept called blend mode, which is basically the same thing as a compositing operation
in Cocoa. This is an advanced topic that I won’t cover in detail here. Instead, I’ll just
use NSCompositeSourceOver.

The last input item is a floating-point value called fraction. You use this to draw images
with different levels of transparency. For example, to draw an image at 50% opacity,
you would use a fraction value of 0.5.

In Xcode, add a new NSView class to the BasicCocoaDrawing project. Name the class
StyledImageView.m, and make sure the checkboxes for “Also create StyledImage-
View.h” and the BasicCocoaDrawing item in the Targets section are both checked.

Add the properties from Example 10-4 to StyledImageView.h.

Figure 10-9. The Media tab in Interface Builder’s Library panel shows some of Cocoa’s standard
artwork

332 | Chapter 10: Custom Views and Drawing

Example 10-4. StyledImageView.h

#import <Cocoa/Cocoa.h>

@interface StyledImageView : NSView

@property (retain) NSImage* mainImage;
@property (retain) NSColor* backgroundColor;
@property (retain) NSColor* borderColor;

@end

In StyledImageView.m, change the implementation of the view to that in Example 10-5.

Example 10-5. StyledImageView.m

#import "StyledImageView.h"

@implementation StyledImageView

 @synthesize mainImage;
 @synthesize backgroundColor;
 @synthesize borderColor;

- (id)initWithFrame:(NSRect)frame {

 if (self = [super initWithFrame:frame]) {

 }
 return self;
}

- (void)drawRect:(NSRect)rect {

 NSRect bounds = self.bounds;

 // draw a background color.
 [self.backgroundColor set];
 NSRectFill (bounds);

 CGFloat insetX = NSWidth (bounds) * 0.10;
 CGFloat insetY = NSHeight (bounds) * 0.10;
 NSRect imageRect = NSInsetRect (bounds, insetX, insetY);

 // draw the image.
 NSImage* image = self.mainImage;

 [image drawInRect: imageRect
 fromRect: NSZeroRect
 operation: NSCompositeSourceOver
 fraction: 1.0];

 // draw a border around the image.
 [self.borderColor set];

Images | 333

 NSBezierPath* imageFrame = [NSBezierPath bezierPathWithRect:imageRect];
 imageFrame.lineWidth = 4;
 [imageFrame stroke];
}

- (void) dealloc {

 self.mainImage = nil;
 self.backgroundColor = nil;
 self.borderColor = nil;

 [super dealloc];
}

@end

Now in BasicCocoaDrawingAppDelegate.m, change the implementation of
-applicationDidFinishLaunching: so that it uses StyledImageView instead of the shape
view you used before. Be sure to replace @"SpaceShuttle" with the name of the image
you added to the project earlier:

#import "BasicCocoaDrawingAppDelegate.h"
#import "StyledImageView.h"

@implementation BasicCocoaDrawingAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 NSRect viewFrame = [self.window.contentView bounds];

 StyledImageView* imageView;
 imageView = [[StyledImageView alloc] initWithFrame:viewFrame];

 // set properties for this instance of the view.
 imageView.mainImage = [NSImage imageNamed:@"SpaceShuttle"];
 imageView.backgroundColor = [NSColor darkGrayColor];
 imageView.borderColor = [NSColor whiteColor];

 // resize with the window.
 NSInteger resizingMask = (NSViewWidthSizable | NSViewHeightSizable);
 [imageView setAutoresizingMask:resizingMask];

 // add to content view and release.
 [self.window.contentView addSubview:imageView];
 [imageView release];
}

@end

Now save all of the files and rerun the application. You should see your image drawn
in the center of the view with a border around the outside, like in Figure 10-10.

334 | Chapter 10: Custom Views and Drawing

Preserving aspect ratio

The one thing you might notice while resizing the window is that the view doesn’t keep
the image proportional, so you can end up with a really skinny or flat image. That’s
usually not what the user would want to see, so let’s fix it with a category on NSImage.

In Xcode, create a new Objective-C class file called NSImage-Utilities.m (with the
header file), and make sure it’s added to the target. You don’t actually want a class in
this case, so change NSImage-Utilities.h to look like this:

#import <Cocoa/Cocoa.h>

@interface NSImage (Utilities)

@end

Now add the declaration to NSImage-Utilities.h for the method that will figure out the
correct proportional rect to draw into:

#import <Cocoa/Cocoa.h>

@interface NSImage (Utilities)
- (NSRect) proportionalRectForTargetRect:(NSRect)targetRect;
@end

Figure 10-10. StyledImageView drawing an image

Images | 335

The implementation of this method is pretty easy if you understand the theory behind
it; figure out if the width or height will require a larger amount of adjustment, and apply
that adjustment equally to both sides. So if the width is 50% less and the height is 25%
less, reduce both sides by 50% to keep the image proportions. Got it? Good. See Ex-
ample 10-6 for the code for NSImage-Utilities.m.

Example 10-6. NSImage-Utilities.m

#import "NSImage-Utilities.h"

@implementation NSImage (Utilities)

- (NSRect) proportionalRectForTargetRect:(NSRect)targetRect {

 // if the sizes are the same, we're already done.
 if (NSEqualSizes(self.size, targetRect.size)) return targetRect;

 NSSize imageSize = self.size;
 CGFloat soureWidth = imageSize.width;
 CGFloat sourceHeight = imageSize.height;

 // figure out the difference in size for each side, and use
 // the larger adjustment for both edges (maintains aspect ratio).
 CGFloat widthAdjust = targetRect.size.width / soureWidth;
 CGFloat heightAdjust = targetRect.size.height / sourceHeight;
 CGFloat scaleFactor = 1.0;

 if (widthAdjust < heightAdjust)
 scaleFactor = widthAdjust;
 else
 scaleFactor = heightAdjust;

 // resize both edges by the same amount.
 CGFloat finalWidth = soureWidth * scaleFactor;
 CGFloat finalHeight = sourceHeight * scaleFactor;
 NSSize finalSize = NSMakeSize (finalWidth, finalHeight);

 // actual rect we'll use for the image.
 NSRect finalRect;
 finalRect.size = finalSize;

 // use the same base origin as the target rect, but adjust
 // for the resized image.
 finalRect.origin = targetRect.origin;
 finalRect.origin.x += (targetRect.size.width - finalWidth) * 0.5;
 finalRect.origin.y += (targetRect.size.height - finalHeight) * 0.5;

 // return exact coordinates for a sharp image.
 return NSIntegralRect (finalRect);
}

@end

336 | Chapter 10: Custom Views and Drawing

The last step is to use this category in the view. Add the code for the category at the
top of StyledImageView.m:

#import "StyledImageView.h"
#import "NSImage-Utilities.h"

Then, add a line to call the category method to get a proportional rect for the image,
right below where the image is fetched from the property:

NSImage* image = self.mainImage;
imageRect = [image proportionalRectForTargetRect:imageRect];

Now rerun the app; you should see that the aspect ratio is maintained for any window
size as shown in Figures 10-11 and 10-12.

Figure 10-11. The “stretched” image before the fix

Figure 10-12. The proportionately sized image after the fix

Images | 337

Shadows
The NSShadow class adds shadows to shapes or text. Using a shadow is very similar to
using a color—you create one and call -set to apply it to the current graphics context.
The shadow will be applied to all drawing after that point. Here’s a simple example:

NSShadow* dropShadow = [[NSShadow alloc] init];

dropShadow.shadowBlurRadius = 8.0;
dropShadow.shadowOffset = NSMakeSize(0,-6);
dropShadow.shadowColor = [NSColor blackColor];
[dropShadow set];

NSRect fillRect = NSMakeRect (20, 20, 100, 100);
[[NSColor whiteColor] set];
[NSBezierPath fillRect:fillRect];

[dropShadow release];

You can set the shadowColor property to +[NSColor whiteColor] to create
a glow effect around an object.

The one important detail is that there’s no way to unset a shadow. You can try to set
the blur radius to zero or the color to +[NSColor clearColor], but I think it’s usually
better to save the graphic context right before you set the shadow, then restore the
previous context (which doesn’t have the shadow) when you’re done. There is a cost
to save and restore the context, but to me, it makes more sense to remove the shadow
from the equation when you’re done using it instead of trying to make it invisible.

Add a Shadow to StyledImageView
To see how all of this works, let’s add a shadow to the image in StyledImageView. First,
add a new property to the class to control whether the shadow should be used. It’s
usually a good idea to add these sorts of settings to increase reusability of the class. Add
the line shown in bold to StyledImageView.h:

#import <Cocoa/Cocoa.h>

@interface StyledImageView : NSView

@property (retain) NSImage* mainImage;
@property (retain) NSColor* backgroundColor;
@property (retain) NSColor* borderColor;
@property (assign) BOOL shouldAddShadow;

@end

338 | Chapter 10: Custom Views and Drawing

Now, in StyledImageView.m, add a category interface with an empty name and declare
the private imageShadow property and the private +defaultImageShadow class method (see
Example 10-7). You can declare private properties only in class continuations (catego-
ries without names), not named categories.

Example 10-7. Excerpt of StyledImageView.m

#import "StyledImageView.h"
#import "NSImage-Utilities.h"

@interface StyledImageView ()
// private properties.
@property (retain) NSShadow* imageShadow;
// private methods.
+ (NSShadow*) defaultImageShadow;
@end

Then, not far below that, add synthesize statements for the new properties:

@implementation StyledImageView

@synthesize mainImage;
@synthesize backgroundColor;
@synthesize borderColor;
@synthesize shouldAddShadow;
@synthesize imageShadow;

In this case, I want you to actually override the setter for shouldAddShadow only. If the
input value is YES, you’ll create the shadow and save it as an instance variable. If it’s
NO, you’ll set the instance variable to nil. We don’t need to do anything special for the
getter, so you’ll just keep the default implementation.

I’m also going to have you implement the +defaultImageShadow class method to return
a preconfigured shadow object, so that we don’t have to stuff all of that code in the
setter method. Add these methods to the bottom of the class (but obviously before the
@end):

- (void) setShouldAddShadow:(BOOL)shouldAdd {

 // if the new value is the same, just return.
 if (shouldAddShadow == shouldAdd) return;

 // set the new value.
 shouldAddShadow = shouldAdd;

 if (shouldAddShadow)
 self.imageShadow = [[self class] defaultImageShadow];
 else
 self.imageShadow = nil;

 // redraw.
 [self setNeedsDisplay:YES];
}

Shadows | 339

#pragma mark Private

+ (NSShadow*) defaultImageShadow {

 NSShadow* newShadow = [[NSShadow alloc] init];
 newShadow.shadowBlurRadius = 8.0;
 newShadow.shadowOffset = NSMakeSize(0,-6);
 newShadow.shadowColor = [NSColor blackColor];

 return [newShadow autorelease];
}

Because NSShadow is an object, you need to release it in -dealloc, so add the line shown
in bold to that method:

- (void) dealloc {

 self.mainImage = nil;
 self.backgroundColor = nil;
 self.borderColor = nil;
 self.imageShadow = nil;

 [super dealloc];
}

Now, add code to the -drawRect: method to apply the shadow:

// save the graphics context, apply the shadow, and draw the image.
[NSGraphicsContext saveGraphicsState];

 [self.imageShadow set];

 [image drawInRect: imageRect
 fromRect: NSZeroRect
 operation: NSCompositeSourceOver
 fraction: 1.0];

// restore the context so the frame doesn't get a shadow.
[NSGraphicsContext restoreGraphicsState];

There’s a subtle point here. If the shouldAddShadow property is set to NO, the
imageShadow object will be nil. But because you can freely send messages to nil, it’s
absolutely fine to call [self.imageShadow set] every time through. The only downside
is that the graphics context is saved and restored each time, regardless of whether the
shadow is there. I left it in for this example to make the code more clear, but you can
choose whichever approach works best for you. Just keep in mind that you may never
see any practical difference in speed, and simpler code is easier to improve and debug.

The last step is to go back to BasicCocoaDrawingAppDelegate.m, and specify that you
want the shadow added:

// set properties for this instance of the view.
imageView.mainImage = [NSImage imageNamed:@"SpaceShuttle"];
imageView.backgroundColor = [NSColor darkGrayColor];

340 | Chapter 10: Custom Views and Drawing

imageView.borderColor = [NSColor whiteColor];
imageView.shouldAddShadow = YES;

Now save all of the edited files and rerun the application. As shown in Figure 10-13,
you should see that the image now has a drop shadow behind it. The effect is subtle,
but that’s intentional. The ideal case is that the user isn’t consciously aware of the drop
shadow, but the image presentation simply seems more elegant. You don’t want to hit
the user over the head with a “Hey, look at this shadow here.”

Figure 10-13. The image drawn with a drop shadow applied; it’s subtle, but effective

Gradients
In the world of Cocoa graphics programming, gradients are a master’s tool. If used
properly, they can help you hit the UI presentation out of the park. But used carelessly,
they can bring down the entire experience. Just like shadows, the key is to use gradients
to accent the user interface, not overwhelm it.

You use the NSGradient class to create gradients in Cocoa, but they work differently
from colors or shadows. You don’t set a gradient on the graphics context. Instead, you
draw it directly into a rect or a bezier path. NSGradient supports multiple-segment gra-
dients (formally called multistop gradients), and you can draw them either linearly or
radially.

Gradients | 341

The most common use for gradients in Mac and iPhone apps is to simulate a light
source. So if you start with a light color at the top of the screen, and transition to a
darker color, you’re creating the illusion of light shining down from the top of the
window. In this case, I want you to draw a gradient on the view’s canvas, behind the
main image.

Drawing a Gradient Background
Open StyledImageView.h and add a new property for the gradient:

@interface StyledImageView : NSView

@property (retain) NSImage* mainImage;
@property (retain) NSColor* backgroundColor;
@property (retain) NSColor* borderColor;
@property (assign) BOOL shouldAddShadow;
@property (retain) NSGradient* backgroundGradient;

@end

In StyledImageView.m, add a synthesize statement for the property:

@implementation StyledImageView

@synthesize mainImage;
@synthesize backgroundColor;
@synthesize borderColor;
@synthesize shouldAddShadow;
@synthesize imageShadow;
@synthesize backgroundGradient;

Because gradients are objects, you also need to remove the reference in the dealloc
method:

- (void) dealloc {

 self.mainImage = nil;
 self.backgroundColor = nil;
 self.borderColor = nil;
 self.imageShadow = nil;
 self.backgroundGradient = nil;

 [super dealloc];
}

Right now, the -drawRect: method has all of the drawing code inline. But now that
drawing the background will include two separate steps, it makes sense to break it off
into a separate method. Add this private method declaration to the class continuation
in StyledImageView.m:

@interface StyledImageView ()
// private properties.
@property (retain) NSShadow* imageShadow;
// private methods.

342 | Chapter 10: Custom Views and Drawing

+ (NSShadow*) defaultImageShadow;
- (void) drawBackgroundInRect:(NSRect)rect;
@end

Grouping drawing code into several methods doesn’t just make the code
easier to read—it also makes it easier to create subclasses later. For ex-
ample, if I wanted to make a subclass of this view with a different back-
ground, I can override only -drawBackgroundInRect: instead of having
to reimplement the entire -drawRect: method.

Now, add the method itself to the class:

- (void) drawBackgroundInRect:(NSRect)rect {

 // draw a background color.
 [self.backgroundColor set];
 NSRectFill (rect);

 // draw background gradient.
 [self.backgroundGradient drawInRect:rect angle:90.0];
}

Change -drawRect: to call this new method:

- (void)drawRect:(NSRect)rect {

NSRect bounds = self.bounds;
[self drawBackgroundInRect:bounds];

CGFloat insetX = NSWidth (bounds) * 0.10;
CGFloat insetY = NSHeight (bounds) * 0.10;

Some new Mac programmers are surprised you can call draw outside of
-drawRect: method. The key is that you can draw from methods that
-drawRect: calls directly. But you don’t want to draw any other time,
because the graphics context won’t be set up correctly.

Now you just need to create a gradient and set it on the view. Here’s how to do that in
BasicCocoaDrawingAppDelegate.m:

StyledImageView* imageView;
imageView = [[StyledImageView alloc] initWithFrame:viewFrame];

// create background gradient.
NSColor* gradientBottom = [NSColor colorWithCalibratedWhite:0.18 alpha:1.0];
NSColor* gradientTop = [NSColor colorWithCalibratedWhite:0.35 alpha:1.0];

NSGradient* gradient = [[NSGradient alloc] initWithStartingColor:gradientBottom
 endingColor:gradientTop];

// set properties for this instance of the view.

Gradients | 343

imageView.mainImage = [NSImage imageNamed:@"SpaceShuttle"];
imageView.backgroundColor = [NSColor darkGrayColor];
imageView.borderColor = [NSColor whiteColor];
imageView.shouldAddShadow = YES;
imageView.backgroundGradient = gradient;

[gradient release];

// resize with the window.
NSInteger resizingMask = (NSViewWidthSizable | NSViewHeightSizable);

Save all the files and rerun the project. You will now see a background gradient behind
the main image, as shown in Figure 10-14.

Figure 10-14. The StyledImageView with a background gradient

The gradient is subtle, but that’s intentional. You don’t want to hit the user over the
head with a gradient—you just want to make the lighting more convincing.

Drawing an Image Sheen
Drawing a sheen over an image simulates a glass surface material. Just like with shadows
and gradients, the key is to use the sheen effect sparingly. In this case, you’re going to
draw a sheen over the main image in StyledImageView. The secret behind this effect is
to use a gradient that fades from a white color with an alpha value of around 0.8 to a
white color with an alpha of 0.0. You’ll also use a multistop gradient to refine the look.

344 | Chapter 10: Custom Views and Drawing

Calculate the sheen path

Create a new Objective-C category in the project, and name it NSBezierPath-
Utilities.m. Change NSBezierPath-Utilities.h (the header file) to look like Example 10-8.

Example 10-8. NSBezierPath-Utilities.h

#import <Cocoa/Cocoa.h>

@interface NSBezierPath (Utilities)
+ (NSBezierPath*) sheenPathForRect:(NSRect)myRect;
@end

Change the implementation to look like Example 10-9.

Example 10-9. NSBezierPath-Utilities.m

#import "NSBezierPath-Utilities.h"

@implementation NSBezierPath (Utilities)

+ (NSBezierPath*) sheenPathForRect:(NSRect)myRect {

 CGFloat minX = NSMinX(myRect);
 CGFloat maxX = NSMaxX(myRect);
 CGFloat maxY = NSMaxY(myRect);

 // scale the base of the sheen with the image.
 CGFloat bottomLeftY = myRect.origin.y + (myRect.size.height * 0.25);
 CGFloat bottomRightY = myRect.origin.y + (myRect.size.height * 0.9);

 NSPoint point1 = NSMakePoint (minX, bottomLeftY);
 NSPoint point2 = NSMakePoint (maxX, bottomRightY);
 NSPoint point3 = NSMakePoint (maxX, maxY);
 NSPoint point4 = NSMakePoint (minX, maxY);

 // for the arc that crosses the image.
 NSPoint control1 = NSMakePoint (minX * 0.9, maxY * 0.9);
 NSPoint control2 = NSMakePoint (maxX * 0.9, maxY * 0.9);

 // create the path.
 NSBezierPath* sheenPath = [NSBezierPath bezierPath];

 // starting point.
 [sheenPath moveToPoint: point1];

 // arc to the other side.
 [sheenPath curveToPoint: point2
 controlPoint1: control1
 controlPoint2: control2];

 [sheenPath lineToPoint:point3];
 [sheenPath lineToPoint:point4];
 [sheenPath closePath];

Gradients | 345

 return sheenPath;
}

@end

Unlike the other category, this is a class method that creates a new instance of
NSBezierPath, which can be used for a sheen. Another approach is to add a category
instance method on NSImage that returns a copy with a sheen drawn on top, but this
approach is a bit more flexible, and increases the chances I can use this in another
application later.

Category class methods technically don’t have to be attached to the type
of thing you’re creating. I could add this method to NSImage, or even
NSNumber, but that’s really bad style. It will also cause confusion for any-
one who looks at my code later. Whenever possible, add the method to
the class of the thing you’re creating.

Add the import statement at the top of StyledImageView.m:

#import "StyledImageView.h"
#import "NSImage-Utilities.h"
#import "NSBezierPath-Utilities.h"

Add sheen properties and methods

Like with the image shadow, you don’t want the view to re-create the sheen each time
-drawRect: is called. It’s much more efficient to create it once and save it as a private
property. You’ll also add a public property to turn the sheen on or off. First, add the
public property to enable the sheen to StyledImageView.h:

@interface StyledImageView : NSView

@property (retain) NSImage* mainImage;
@property (retain) NSColor* backgroundColor;
@property (retain) NSColor* borderColor;
@property (assign) BOOL shouldAddShadow;
@property (retain) NSGradient* backgroundGradient;
@property (assign) BOOL shouldAddSheen;

@end

Now add the private sheen property and methods to StyledImageView.m:

@interface StyledImageView ()
// private properties.
@property (retain) NSShadow* imageShadow;
@property (retain) NSGradient* imageSheen;
// private methods.
+ (NSShadow*) defaultImageShadow;
+ (NSGradient*) defaultImageSheen;
- (void) drawBackgroundInRect:(NSRect)rect;

346 | Chapter 10: Custom Views and Drawing

- (void) drawImageSheenInRect:(NSRect)rect;
@end

Add synthesize statements for the two new properties:

@implementation StyledImageView

@synthesize mainImage;
@synthesize backgroundColor;
@synthesize borderColor;
@synthesize shouldAddShadow;
@synthesize imageShadow;
@synthesize backgroundGradient;
@synthesize shouldAddSheen;
@synthesize imageSheen;

Be sure to release the sheen gradient in dealloc:

- (void) dealloc {

 self.mainImage = nil;
 self.backgroundColor = nil;
 self.borderColor = nil;
 self.imageShadow = nil;
 self.backgroundGradient = nil;
 self.imageSheen = nil;

 [super dealloc];
}

Now, override the setter for shouldAddSheen so that the view will regenerate the gradient
when it’s turned on:

- (void) setShouldAddSheen:(BOOL)shouldAdd {

 // if the new value is the same, just return.
 if (shouldAddSheen == shouldAdd) return;

 // set the new value.
 shouldAddSheen = shouldAdd;

 if (shouldAddSheen)
 self.imageSheen = [[self class] defaultImageSheen];
 else
 self.imageSheen = nil;

 // redraw.
 [self setNeedsDisplay:YES];
}

Gradients | 347

One optimization you could do here is to keep the gradient around even
after it’s “turned off” so that you don’t have to re-create it if it’s turned
back on later. I’d call this obsessive optimization. It takes more code, and
the gain is so small that the user will never see a difference. And the
gradient still takes up memory in the meantime. If your optimization
won’t actually result in anything tangible, you’re better off spending the
same time on something else.

Add the private class method to generate the sheen gradient:

+ (NSGradient*) defaultImageSheen {

 NSColor* color1 = [NSColor colorWithDeviceWhite:1.0 alpha:0.80];
 NSColor* color2 = [NSColor colorWithDeviceWhite:1.0 alpha:0.10];
 NSColor* color3 = [NSColor colorWithDeviceWhite:1.0 alpha:0.0];

 // a location of 0.0 is the 'start' of the gradient; 1.0 is the 'end'.
 NSGradient* sheen = [[NSGradient alloc] initWithColorsAndLocations:
 color1, 0.0, color2, 0.4, color3, 0.8, nil];

 return [sheen autorelease];
}

Now implement the method that draws the sheen:

- (void) drawImageSheenInRect:(NSRect)rect {

 NSBezierPath* sheenPath = [NSBezierPath sheenPathForRect:rect];

 // draw at 280.0 degees to simulate a light source from the upper-left.
 [self.imageSheen drawInBezierPath:sheenPath angle:280.0];
}

And add a line to call this method in -drawRect: after the image has been drawn:

// restore the context so the frame doesn't get a shadow.
[NSGraphicsContext restoreGraphicsState];

// draw the sheen.
[self drawImageSheenInRect:imageRect];

// draw a border around the image.
[self.borderColor set];
NSBezierPath* imageFrame = [NSBezierPath bezierPathWithRect:imageRect];
imageFrame.lineWidth = 4;
[imageFrame stroke];

Finally, add a line to activate the sheen in BasicCocoaDrawingAppDelegate.m:

imageView.shouldAddShadow = YES;
imageView.backgroundGradient = gradient;
imageView.shouldAddSheen = YES;

Save all of the files and rerun the project. You should now see a sheen applied to the
image, as shown in Figure 10-15.

348 | Chapter 10: Custom Views and Drawing

Figure 10-15. The StyledImageView with a sheen gradient added to the image

Refactoring View Code
You’ve added a lot of new code to this view while working through the chapter, and
now it’s a bit harder to follow. When you hit this point, you basically have three options.

Allow the code to be messy
This is the path of least resistance. You wrote the code once and don’t see any
reason to write it again. A rookie move. You get no points.

Rewrite the code
You’ve painted yourself into a corner and want to rewrite everything from scratch.
Your heart is in the right place, but rewriting is tricky. Rewriting the big parts is
obvious; it’s all of the subtle issues you fixed along the way that will be hard to
reimplement. That said, sometimes there’s no other option and rewriting is the
only clear course (maybe about 15 percent of the time), but usually it’s overkill.

Refactor the code
Refactoring is a middle ground. You take what already works and rearrange it in a
way that makes more sense. One version of refactoring is where you just rename
variables and methods; another is where you change how the methods are

Refactoring View Code | 349

connected. You still risk breaking something that works, but not nearly as much
as with rewriting. And this is much better than allowing the code to be a mess.

Why You Should Refactor
If your code is messy, you’ll have a harder time debugging it and other people will have
an even harder time understanding what it does. You might think, “Well, no one is
ever going to see this code other than me,” but there’s a good chance the universe will
prove you wrong. Code has a way of finding a path out into the world through the
smallest cracks. You may hand the project over to someone else, or you may show the
code to someone who is considering hiring you. The last thing you want to preface an
email with is, “Sorry, this code is sort of a mess.”

But even if you don’t believe that, there’s another reason. Messy code slows progress—
it’s like trying to run a race in the snow. Yes, you can technically move forward, but
not nearly as fast as you’d like. Clean code is easy to improve. If you layer new features
on top of messy code, it’s probably going to fall over and take you down with it. And
if the existing code is disorganized, any new code you add will probably end up the
same. It’s easier to throw dirty clothes on the floor of an already messy room.

Most importantly, though, you may forget how your code works. This often happens
to developers who come back to a project after working on something else for a while.
Always consider “future you” when you think about how well-written your code is.

Some programmers don’t see any of this as a problem. They think that it’s good enough
if the code compiles and runs. But you don’t want to be just some programmer, do you?
Since we’re in the process of making you a superstar engineer, you need to fix this. So
let’s keep the core of the view intact, but move some parts around so it makes more
sense. Then you’ll be ready to add new functionality.

The other major benefit that refactoring has over rewriting is that you can do it in
chunks, which means the app continues to work in the meantime. You should always
have a version of the app running, even if it’s missing some features.

Goals for Refactoring
There are a few goals I have in mind for refactoring the StyledImageView class:

• Make the code easier to read.

• Make the view easier to customize.

• Make the methods more symmetrical.

“Easier to read” is somewhat subjective. Coding styles are like fingerprints. Everyone’s
brain works a bit differently and each person has different opinions about what good
code looks like, so two versions of the same class never turn out exactly the same. But

350 | Chapter 10: Custom Views and Drawing

just because it’s subjective doesn’t mean it’s irrelevant, so let’s come up with the best
version of the class we can.

“Easier to customize” is a bit different. You can make life easier on yourself and other
people you work with by making it easy to change how a class works. A key difference
between a good programmer and a great engineer is the ability to design a class that is
both easy to use as-is and friendly to customization.

It is possible to have too many customization options. If you have to
wade through dozens of properties just to do something basic, the class
is probably too complex. An expert engineer knows where the sweet
spot is between simplicity and flexibility, but this mostly comes with
experience.

The “symmetrical” part is a bit more objective (so to speak). Let me explain what
symmetry means in this context. If you have two methods that do similar things, they
should have similar names. This is asymmetrical code (something you can improve):

- (NSArray*)itemsSortedByName;
- (NSArray*)dateSortedItems;

This is the symmetrical version:

- (NSArray*)itemsSortedByName;
- (NSArray*)itemsSortedByDate;

The advantage of this is clear. You don’t have to mentally deconstruct the design and
think, “Ah, these do the same thing; they just use a different sort value.” If your class,
method, and variable names are symmetrical, the similarities will be obvious. The more
symmetrical the methods are, the easier the view is to use and customize.

Symmetry in practice

This symmetry thing is really important—it’s another one of those “good programmer”
versus “great engineer” things—but a lot of new Mac programmers don’t get enough
guidance about it early on, so I want to give you one more example. This isn’t just about
naming things consistently, but about using similar input and output types as well.
Here’s an example of some code that needs fixing:

NSRect textBounds = [self textBounds];
NSRect bounds = self.boundsOfContainer;
NSSize size = [self sizeOfShape];

The local variable names are inconsistent—bounds of what?—and there’s a mix of dot
syntax and standard messaging syntax. But the bigger problem is the methods them-
selves. For this example, let’s assume the implementations look like this:

- (NSRect) textBounds {
 return text.bounds;
}

Refactoring View Code | 351

- (NSRect) boundsOfContainer {
 return container.bounds;
}

- (NSSize) sizeOfShape {
 return shape.bounds.size;
}

The methods should have the same naming pattern and return types, if possible. Keep
the big picture of your code in mind. Even if there’s one of line of code somewhere in
the app that wants an NSSize value, it’s better for this method to be consistent with the
others and return an NSRect. The other code calling this method can get the size value
out of it later. Here are the updated versions of the methods:

- (NSRect) textBounds {
 return text.bounds;
}

- (NSRect) containerBounds {
 return container.bounds;
}

- (NSRect) shapeBounds {
 return shape.bounds;
}

Now, let’s fix the calling code:

NSRect textBounds = self.textBounds;
NSRect containerBounds = self.containerBounds;
NSSize shapeSize = self.shapeBounds.size;

If you prefer using the standard messaging syntax with square brackets for properties,
you can also do this:

NSRect textBounds = [self textBounds];
NSRect containerBounds = [self containerBounds];
NSSize shapeSize = [[self shapeBounds] size];

Changing the method and variables took very little effort, but the code is far more
symmetrical. It’s much easier to see the meaning at a glance. The one note here is that
I kept shapeSize as an NSSize because I presumably still need to use that value some-
where else, but I do the conversion on the caller side, so that all of the accessor methods
are consistent.

Refactored Header
Replace the current contents of the StyledImageView.h header file with the following
refactored version. I split the file up into three main sections: the delegate protocol,
public properties for the view, and methods that view subclasses can override. I marked
them with the #pragma mark statements so that they’re divided up in Xcode’s method
drop-down list:

352 | Chapter 10: Custom Views and Drawing

#import <Cocoa/Cocoa.h>

#pragma mark -
#pragma mark Delegate Protocols

 // allows another class to calculate the geometry.
@protocol StyleImageViewGeometryDelegate <NSObject>
- (NSRect)imageRectForContentRect:(NSRect)contentRect;
@end

#pragma mark -
#pragma mark Class Definiton

@interface StyledImageView : NSView

#pragma mark -
#pragma mark Main Properties

 // content.
@property (copy) NSImage* mainImage;

 // colors and gradients.
@property (retain) NSGradient* backgroundGradient;
@property (retain) NSColor* backgroundColor;
@property (retain) NSColor* borderColor;

 // display options.
@property (assign) BOOL shouldAddShadow;
@property (assign) BOOL shouldAddSheen;

 // delegate.
@property (assign) id<StyleImageViewGeometryDelegate> delegate;

#pragma mark -
#pragma mark Drawing Methods

 // drawing methods for subclasses to override.
- (void) drawBackground;
- (void) drawImage;
- (void) drawImageBorder;
- (void) drawImageSheen;

@end

The two main sections are split up into six subsections:

A protocol that lists methods for the delegate to respond to. The protocol inherits
from the NSObject protocol, so that I can call -respondsToSelector: without getting
warnings.

The content section lists properties that store the actual data being displayed. For
now, it’s just the mainImage property, but I can add other content here later.

Refactoring View Code | 353

The colors and gradients section lists individual drawing attributes that the owner
of this view can set.

The display options section has properties that turn special features on or off. These
are different from the colors and gradients, because the caller only has to specify that
the attributes should be used. The details are worked out by the view automatically.

The delegate responds to the geometry protocol messages.

The drawing methods actually draw the view in separate steps. These could be
overridden by subclasses to customize the drawing. There’s no reasonable way to
make these properties.

There isn’t an “official” layout for Cocoa classes; this is just one example. The goal is
to group things that are related to each other, and make it as clear as possible what the
most important properties and methods are. In this header, I put mainImage and the
color-related properties near the top, because they’ll be used for every instance of this
view. The other methods that can be overridden by subclasses are farther down because
they’re not quite as critical.

Refactored Implementation
I’ve also reorganized StyledImageView.m a bit, partially to bring it in line with the
header. Ideally, you always want your properties to appear in the same order. So since
I list mainImage as the first property in the header, I put the @synthesize statement for
mainImage first, and release it first in -dealloc. The more you can stay consistent like
this, the less likely it is that you’ll forget a property.

I’ve broken the implementation up into a few separate parts. Delete the contents of
StyledImageView.m, then type each part into Xcode as you go so that you can try the
new version when you’re done. Here’s the top of StyledImageView.m:

#import "StyledImageView.h"
#import "NSImage-Utilities.h"
#import "NSBezierPath-Utilities.h"

@interface StyledImageView ()
// private properties.
@property (assign) NSRect contentRect;
@property (readonly) NSRect imageRect;
@property (retain) NSShadow* imageShadow;
@property (retain) NSGradient* imageSheen;

// private methods.
+ (NSShadow*) defaultImageShadow;
+ (NSGradient*) defaultImageSheen;
@end

@implementation StyledImageView

354 | Chapter 10: Custom Views and Drawing

// content.
@synthesize mainImage;
@synthesize contentRect;

// colors and gradients.
@synthesize backgroundGradient;
@synthesize backgroundColor;
@synthesize borderColor;

// display options.
@synthesize shouldAddShadow;
@synthesize shouldAddSheen;
@synthesize imageShadow;
@synthesize imageSheen;

// delegate.
@synthesize delegate;

- (id)initWithFrame:(NSRect)frame {

 if (self = [super initWithFrame:frame]) {

 }
 return self;
}

- (void) dealloc {

 self.mainImage = nil;
 self.backgroundGradient = nil;
 self.backgroundColor = nil;
 self.borderColor = nil;
 self.imageShadow = nil;
 self.imageSheen = nil;
 self.delegate = nil;

 [super dealloc];
}

This is mostly the same as before, except the methods are reorganized a bit. All of the
drawing methods have been moved out into the public header file, but the class meth-
ods that return the default shadow and image sheen are still in place. There are two
new private properties: contentRect and imageRect. The content rect contains all draw-
ing, and the image rect is the where the actual image is drawn. I made the imageRect
property readonly because there’s no instance variable—it’s calculated each time
-drawRect: is called by calling -imageRect.

Refactoring View Code | 355

In my experience, not many developers use the readonly keyword for
private properties. The more common way to do this is to define an
-imageRect method. Personally, I like using properties not just to syn-
thesize instance variables and accessors, but to describe any property-
like values.

Here are the accessor method implementations for StyledImageView.m:

#pragma mark -
#pragma mark Property Accessors

- (void) setShouldAddShadow:(BOOL)shouldAdd {

 if (shouldAddShadow == shouldAdd) return;
 shouldAddShadow = shouldAdd;

 if (shouldAddShadow)
 self.imageShadow = [[self class] defaultImageShadow];
 else
 self.imageShadow = nil;

 [self setNeedsDisplay:YES];
}

- (void) setShouldAddSheen:(BOOL)shouldAdd {

 if (shouldAddSheen == shouldAdd) return;
 shouldAddSheen = shouldAdd;

 if (shouldAddSheen)
 self.imageSheen = [[self class] defaultImageSheen];
 else
 self.imageSheen = nil;

 [self setNeedsDisplay:YES];
}

#pragma mark -
#pragma mark Geometry

- (NSRect) imageRect {

 // first, check with the delegate.
 if ([self.delegate respondsToSelector:@selector(imageRectForContentRect:)])
 return [self.delegate imageRectForContentRect:self.contentRect];

 // if delegate didn't return a value, calculate it.
 NSImage* image = self.mainImage;
 return [image proportionalRectForTargetRect:self.contentRect];
}

356 | Chapter 10: Custom Views and Drawing

The shadow and sheen methods are basically the same, other than the fact that I
removed the comments. The -imageRect method is the implementation for the
imageRect property definition. I start by asking the delegate if it responds to
-imageRectForContentRect:. If it does, I just use the value it returns. Otherwise, I will
pass the contentRect value into the -[NSImage proportionalRectForTargetRect:] cate-
gory method I added before to get an imageRect value. Previously, I was just using the
view bounds property directly, but adding an intermediate content rect is a bit more
flexible without adding much complexity.

I don’t need to check for a valid delegate first, because the delegate
instance variable defaults to nil, which will always respond NO for meth-
ods that return BOOL values. When I call -respondsToSelector: on a
nil delegate, it will be the same as if an actual object didn’t respond to
the method.

Now let’s add the drawing methods that do the bulk of the work:

#pragma mark -
#pragma mark Drawing

- (void)drawRect:(NSRect)rect {

 // set up the content rect that will be used by the other
 // drawing methods.
 NSRect bounds = self.bounds;
 CGFloat insetX = NSWidth (bounds) * 0.10;
 CGFloat insetY = NSHeight (bounds) * 0.10;
 self.contentRect = NSInsetRect (bounds, insetX, insetY);

 // call each drawing method separately.
 [self drawBackground];
 [self drawImage];
 [self drawImageBorder];
 [self drawImageSheen];
}

- (void) drawBackground {

 [self.backgroundColor set];
 NSRectFill (self.bounds);

 [self.backgroundGradient drawInRect:self.bounds angle:90.0];
}

- (void) drawImage {

 NSImage* image = self.mainImage;
 [NSGraphicsContext saveGraphicsState];

 [self.imageShadow set];

Refactoring View Code | 357

 [image drawInRect: self.imageRect
 fromRect: NSZeroRect
 operation: NSCompositeSourceOver
 fraction: 1.0];

 [NSGraphicsContext restoreGraphicsState];
}

- (void) drawImageBorder {

 [self.borderColor set];
 NSBezierPath* imageFrame = [NSBezierPath bezierPathWithRect:self.imageRect];
 imageFrame.lineWidth = 4;
 [imageFrame stroke];
}

- (void) drawImageSheen {

 NSRect rect = self.imageRect;
 NSBezierPath* sheenPath = [NSBezierPath sheenPathForRect:rect];

 // draw at 280.0 degrees to simulate a light source from the upper-left.
 [self.imageSheen drawInBezierPath:sheenPath angle:280.0];
}

Again, because I’m refactoring instead of rewriting, most of the code is the same. The
main difference is that -drawRect: sets the contentRect property first, then calls the
other drawing methods that use that contentRect value to figure out where to draw.
Another (slightly faster) way to do this is to pass the contentRect into each method,
but that makes the code harder to change later. If I decided I wanted to pass in an
NSSize instead, I’d have to change all of the methods. In this case, I’ve decided that the
flexibility is worth the tiny performance hit of saving the rect as a property each time.

It’s always important to think about how to make your code flexible,
but it’s even more important when you make a class that others can
reuse and customize. If you change the core methods of the class, other
developers will have to go back and rewrite their code. They may never
get around to that, so you’ll be stuck supporting an older version.

Finally, there are two methods that provide default values for drawing properties. These
were private methods before, but they’re now listed in the public class header. They’re
unchanged from the previous version, but I’m including them for completeness:

#pragma mark -
#pragma mark Default Values

+ (NSShadow*) defaultImageShadow {

 NSShadow* newShadow = [[NSShadow alloc] init];
 newShadow.shadowBlurRadius = 8.0;
 newShadow.shadowOffset = NSMakeSize(0,-6);

358 | Chapter 10: Custom Views and Drawing

 newShadow.shadowColor = [NSColor blackColor];

 return [newShadow autorelease];
}

+ (NSGradient*) defaultImageSheen {

 NSColor* color1 = [NSColor colorWithDeviceWhite:1.0 alpha:0.80];
 NSColor* color2 = [NSColor colorWithDeviceWhite:1.0 alpha:0.10];
 NSColor* color3 = [NSColor colorWithDeviceWhite:1.0 alpha:0.0];

 NSGradient* sheen = [[NSGradient alloc] initWithColorsAndLocations:
 color1, 0.0, color2, 0.4, color3, 0.8, nil];

 return [sheen autorelease];
}

@end

Test the Refactored Version
Of course, refactoring is only useful if the app still builds and runs. So save all of the
files, and then build and rerun the application. Everything should look the same as
before. Now we can start adding new features.

Text
The built-in NSTextField and NSTextView classes are extremely versatile, and they should
work for many common cases. But you still may want to draw text in a custom way,
or maybe you want to draw a lot of text without the overhead of many NSTextView
instances, or maybe you just need to draw text directly on top of a button. For all of
these reasons and more, it helps to know something about text.

Keep in mind that the text system is one of the most complex parts of Cocoa. The idea
of text seems simple until you factor in things like Unicode, writing direction, kerning,
completions, and so on. AppKit handles all of these things, so the code has to exist to
deal with them. As a result, there may be times when you have to look through a lot of
methods to find what you need. But eventually, you may need those exact methods that
you skipped over before.

Fonts
The NSFont class allows you to select fonts at different sizes and styles. Once you have
a font object, you can apply it to an attributed string. Like the rest of the Cocoa text
system, fonts have a lot of knobs and dials, but you can get some basic things done very
easily. To create a font object with 18-pt. Helvetica, for example, all I need to do is this:

NSFont* myFont = [NSFont fontWithName:@"Helvetica" size:18.0];

Text | 359

There’s another class you should know about here that will make your life much easier.
It’s called NSFontManager. This class does the grunt work for the font panel that pops
up in most Mac apps. In addition to its main function, though, it’s a great way to apply
font attributes in just a few lines of code. Here’s how you can create 18-pt. Helvetica
Bold:

NSFont* myFont = [NSFont fontWithName:@"Helvetica" size:18.0];
NSFontManager* fontManager = [NSFontManager sharedFontManager];
myFont = [fontManager convertFont:myFont toHaveTrait:NSBoldFontMask];

It’s just as easy to create 18-pt. Helvetica Oblique (also known as Helvetica Italic):

NSFont* myFont = [NSFont fontWithName:@"Helvetica" size:18.0];
NSFontManager* fontManager = [NSFontManager sharedFontManager];
myFont = [fontManager convertFont:myFont toHaveTrait:NSItalicFontMask];

The other class that does all this is NSFontDescriptor. It’s a far more comprehensive
take on fonts, with a much finer-grained level of control for things that typography
experts need to do their jobs. But it’s arguably overkill if you just want a bold or italic
font. So for this chapter, we can just use NSFontManager and let it work out the details
for us. (Hooray for encapsulation!)

Attributed Strings
In most cases, use NSAttributedString to draw text in AppKit. This class is actually not
a direct subclass of NSString. Instead, it implements -initWithString: and -string to
convert between the two types. The attributed part of the name means that the text has
style attributes like font and color.

You customize the appearance of text by creating dictionaries of attributes. Although
the core NSAttributedString is part of Foundation, many of the important parts—
including the actual attribute keys—are added by AppKit. Example 10-10 shows some
of the most commonly used keys.

Example 10-10. Excerpt of AppKit.framework/Headers/NSAttributedString.h

NSString *NSFontAttributeName;
NSString *NSParagraphStyleAttributeName;
NSString *NSForegroundColorAttributeName;
NSString *NSUnderlineStyleAttributeName;
NSString *NSSuperscriptAttributeName;
NSString *NSBackgroundColorAttributeName;
NSString *NSUnderlineColorAttributeName;
NSString *NSStrikethroughStyleAttributeName;
NSString *NSStrikethroughColorAttributeName;
NSString *NSShadowAttributeName;
NSString *NSObliquenessAttributeName;

Here’s how to set a text color and font and draw the result in a view. Create a project
as shown in “Subclassing NSView” on page 316, but use the following -drawRect:
method instead (Figure 10-16 shows the results):

360 | Chapter 10: Custom Views and Drawing

- (void)drawRect:(NSRect)rect {

 [[NSColor darkGrayColor] set];
 NSRectFill (self.bounds);

 NSString* text = @"All of this text is Times white.";
 NSMutableDictionary* attributes = [NSMutableDictionary dictionary];

 // use white text.
 [attributes setObject: [NSColor whiteColor]
 forKey: NSForegroundColorAttributeName];

 // use 72pt Times.
 [attributes setObject: [NSFont fontWithName: @"Times" size: 72.0]
 forKey: NSFontAttributeName];

 NSAttributedString* styledText = nil;
 styledText = [[NSAttributedString alloc] initWithString: text
 attributes: attributes];
 [styledText drawInRect:self.bounds];
 [styledText release];

}

Figure 10-16. Drawing an NSAttributedString in a view

You can also skip the intermediate step of creating an NSAttributedString object, and
just draw a regular NSString with a dictionary of attributes:

[[NSColor darkGrayColor] set];
NSRectFill (self.bounds);

NSString* text = @"All of this text is Times white.";
NSMutableDictionary* attributes = [NSMutableDictionary dictionary];

[attributes setObject: [NSColor whiteColor]

Text | 361

 forKey: NSForegroundColorAttributeName];

[attributes setObject: [NSFont fontWithName: @"Times" size: 72.0]
 forKey: NSFontAttributeName];

[text drawInRect:self.bounds withAttributes:attributes];

The interesting thing about this is that NSString is a Foundation class, so it doesn’t have
any built-in support for drawing. Instead, AppKit includes a file called
NSStringDrawing.h,† which adds category methods to NSString for drawing.

The NSAttributedString class has a major limitation, though. All of the text has the
same set of attributes. The more flexible NSMutableAttributedString class allows you
to add, remove, or change attributes in individual parts of the string using NSRange
values to identify specific blocks of text. Here’s an example of applying one attribute
to the whole string, and another attribute to only part of the string:

[[NSColor whiteColor] set];
NSRectFill (self.bounds);

NSString* text = @"Regular Text. Bold Text.";

NSMutableAttributedString* styledText;
styledText = [[NSMutableAttributedString alloc] initWithString:text];

// create a 48pt Helvetica font.
NSFont* font = [NSFont fontWithName: @"Helvetica" size: 48.0];

// add font attribute to all text using the entire range.
[styledText addAttribute: NSFontAttributeName
 value: font
 range: [text rangeOfString:text]]; // not a typo!

// create a bold font.
NSFontManager* fontManager = [NSFontManager sharedFontManager];
NSFont* boldFont = [fontManager convertFont:font toHaveTrait:NSBoldFontMask];

// add bold font to part of the string.
[styledText addAttribute: NSFontAttributeName
 value: boldFont
 range: [text rangeOfString:@"Bold Text."]];

[styledText drawInRect: self.bounds];
[styledText release];

Figure 10-17 shows what it looks like when rendered in a view.

Paragraph styles

Most of the base text attributes like fonts and colors apply to groups of characters.
NSParagraphStyle and NSMutableParagraphStyle give you control over the bigger picture

† /System/Library/Frameworks/AppKit.framework/Headers/NSStringDrawing.h.

362 | Chapter 10: Custom Views and Drawing

of how entire blocks of text are arranged in the view, using properties like alignment,
line spacing, and indentation. Here’s how to center text in an attributed string:

[[NSColor colorWithDeviceRed: 168.0 / 255.0
 green: 128.0 / 255.0
 blue: 0.0 / 255.0
 alpha: 255.0 / 255.0] set];

NSRectFill (self.bounds);

NSString* text = @"Centered Text.";
NSMutableDictionary* attributes = [NSMutableDictionary dictionary];

[attributes setObject: [NSFont fontWithName:@"Helvetica" size:85.0]
 forKey: NSFontAttributeName];

[attributes setObject: [NSColor yellowColor]
 forKey: NSForegroundColorAttributeName];

// center text with paragraph style.
NSMutableParagraphStyle* centerStyle = [[NSMutableParagraphStyle alloc] init];
[centerStyle setAlignment:NSCenterTextAlignment];

[attributes setObject: centerStyle
 forKey: NSParagraphStyleAttributeName];

NSRect textRect = NSInsetRect (self.bounds, 30, 30);
[text drawInRect: textRect withAttributes: attributes];

[centerStyle release];

Figure 10-18 shows the result in the view.

Text sizes and vertical alignment

NSAttributedString has a method called -size that calculates the size of the string—
with all of the attributes factored in—before it’s actually drawn. This helps you

Figure 10-17. A string with multiple attributes

Text | 363

rearrange your view before drawing to accommodate text. In this example, I use the
height of the string to vertically center the text rect in the view:

[[NSColor blackColor] set];
NSRect viewBounds = self.bounds;
NSRectFill (viewBounds);

NSString* text = @"Red Orange Yellow";

NSMutableAttributedString* styledText = nil;
styledText = [[NSMutableAttributedString alloc] initWithString:text];

NSString* colorKey = NSForegroundColorAttributeName;

// apply color to each word.
[styledText addAttribute: colorKey
 value: [NSColor redColor]
 range: [text rangeOfString:@"Red"]];

[styledText addAttribute: colorKey
 value: [NSColor orangeColor]
 range: [text rangeOfString:@"Orange"]];

[styledText addAttribute: colorKey
 value: [NSColor yellowColor]
 range: [text rangeOfString:@"Yellow"]];

// apply a 32pt Helvetica font to all of the text.
[styledText addAttribute: NSFontAttributeName

Figure 10-18. Drawing centered text using NSParagraphStyle

364 | Chapter 10: Custom Views and Drawing

 value: [NSFont fontWithName: @"Helvetica" size: 32.0]
 range: [text rangeOfString:text]];

// center the text horizontally and truncate any text that doesn't fit.
NSMutableParagraphStyle* pStyle = [[NSMutableParagraphStyle alloc] init];
pStyle.alignment = NSCenterTextAlignment;
pStyle.lineBreakMode = NSLineBreakByTruncatingTail;

[styledText addAttribute: NSParagraphStyleAttributeName
 value: pStyle
 range: [text rangeOfString:text]];

[pStyle release];

CGFloat viewWidth = viewBounds.size.width;
CGFloat viewHeight = viewBounds.size.height;
CGFloat textHeight = styledText.size.height;

// make the rect the entire width of the view, but only as
// high as the text itself. center it vertically.

NSRect textRect;
textRect.size = NSMakeSize (viewWidth, textHeight);
textRect.origin = NSMakePoint (0, (viewHeight - textHeight) * 0.5);

// add some padding around the edges.
textRect = NSInsetRect (textRect, 30, 0);
[styledText drawInRect: textRect];

[styledText release];

Figure 10-19 shows the final result.

If this seems too complex, remember that these classes aren’t only for
drawing small bits of text in views. The Cocoa text system is also used
as the basis for full-fledged word-processing applications. That said, you
can often let the built-in classes like NSTextField, NSTextView, and
NSFontManger do the hard work for you.

Add a Title to StyledImageView
Using your new knowledge of attributed strings, you’re going to add an image title to
StyledImageView, so open the BasicCocoaDrawing project. First, add a title property
to StyledImageView.h:

@interface StyledImageView : NSView

#pragma mark -
#pragma mark Main Properties

// content.

Text | 365

@property (copy) NSImage* mainImage;
@property (copy) NSString* title;

In the same file, declare a method that draws the title in the view:

#pragma mark -
#pragma mark Drawing Methods

// drawing methods for subclasses to override.
- (void) drawBackground;
- (void) drawImage;
- (void) drawImageBorder;
- (void) drawImageSheen;
- (void) drawTitle;

Figure 10-19. Centering text vertically by calculating the height before drawing

While you’re here, go to the top of the file and add another method to the geometry
protocol so the delegate can return a custom rect for the title if it wants to:

#pragma mark -
#pragma mark Delegate Protocols

// allows another class to calculate the geometry.
@protocol StyleImageViewGeometryDelegate <NSObject>
- (NSRect)imageRectForContentRect:(NSRect)contentRect;
- (NSRect)titleRectForContentRect:(NSRect)contentRect;
@end

Save the file and switch over to StyledImageView.m to update the implementation. First
add new private properties for titleRect and textAttributes, and a private method for
configuring the text attributes:

366 | Chapter 10: Custom Views and Drawing

@interface StyledImageView ()
// private properties.
@property (assign) NSRect contentRect;
@property (readonly) NSRect imageRect;
@property (readonly) NSRect titleRect;
@property (copy) NSDictionary* textAttributes;
@property (retain) NSShadow* imageShadow;
@property (retain) NSGradient* imageSheen;

// private methods.
+ (NSShadow*) defaultImageShadow;
+ (NSGradient*) defaultImageSheen;
- (void) setupTextAttributes;
@end

The -setupTextAttributes method will create a dictionary with the text styles, then
assign it to the textAttributes property. Add synthesize statements for the new prop-
erties and release them in -dealloc:

@implementation StyledImageView

// content.
@synthesize mainImage;
@synthesize title;
@synthesize contentRect;
@synthesize textAttributes;

// colors and gradients.
@synthesize backgroundGradient;
@synthesize backgroundColor;
@synthesize borderColor;

// display options.
@synthesize shouldAddShadow;
@synthesize shouldAddSheen;
@synthesize imageShadow;
@synthesize imageSheen;

// delegate.
@synthesize delegate;

- (id)initWithFrame:(NSRect)frame {

 if (self = [super initWithFrame:frame]) {

 }
 return self;
}

- (void) dealloc {

 self.mainImage = nil;
 self.title = nil;
 self.textAttributes = nil;

Text | 367

 self.backgroundGradient = nil;
 self.backgroundColor = nil;
 self.borderColor = nil;
 self.imageShadow = nil;
 self.imageSheen = nil;
 self.delegate = nil;

 [super dealloc];
}

The imageRect and titleRect properties are readonly, so I don’t need to
@synthesize the accessors or manage the memory. I only implement a
single method for each, which returns the value.

Now I need to rework the geometry methods a bit, because there are now two things
in the view: the image and the title. Both of these need a separate rect to draw into,
though both will be inside of the overall contentRect property. I’m going to add the
-titleRect method, but I’m also going to change -imageRect to take the title into ac-
count. Use these method implementations in your copy of the project:

#pragma mark -
#pragma mark Geometry

- (NSRect) imageRect {

 // first, check with the delegate.
 if ([self.delegate respondsToSelector:@selector(imageRectForContentRect:)])
 return [self.delegate imageRectForContentRect:self.contentRect];

 NSRect imageRect = self.contentRect;

 // if there's a title, make room for it in the view.
 if (self.title) {
 imageRect.size.height -= 34;
 imageRect.origin.y += 34;
 }

 // if delegate didn't retun a value, calculate it.
 NSImage* image = self.mainImage;
 return [image proportionalRectForTargetRect:imageRect];
}

- (NSRect) titleRect {

 // first, check with the delegate.
 if ([self.delegate respondsToSelector:@selector(titleRectForContentRect:)])
 return [self.delegate titleRectForContentRect:self.contentRect];

 // use the imageRect as a base value, but resize and reposition
 // so that it doesn't overlap the image.
 NSRect titleRect = self.imageRect;
 titleRect.size.height = 24;

368 | Chapter 10: Custom Views and Drawing

 titleRect.origin.y -= 40;
 return titleRect;
}

Next, I need an implementation for the -drawTitle method. Instead of just drawing the
text, though, I want to place it in a container (or make it “anchored” as they say in the
design biz). To make it look a bit nicer, I’m going to create a round rect using
the NSBezierPath method designed for this. And as one extra feature, I want to display
the size that the image is currently rendered at—such as 256 × 256—after the title itself.
Add this code right below the -drawImageSheen method in StyledImageView.m:

- (void) drawTitle {

 if (self.title == nil) return;

 NSRect titleRect = self.titleRect;

 NSBezierPath* titleContainer;
 titleContainer = [NSBezierPath bezierPathWithRoundedRect: titleRect
 xRadius: 8.0
 yRadius: 8.0];

 [[NSColor colorWithDeviceWhite:0.18 alpha:1.0] set];
 [titleContainer fill];

 CGFloat imageWidth = self.imageRect.size.width;
 CGFloat imageHeight = self.imageRect.size.height;
 NSString* formatString = @"%@ - %1.0f x %1.0f";
 NSString* titleString = [NSString stringWithFormat: formatString,
 self.title,
 imageWidth,
 imageHeight];

 if (self.textAttributes == nil)
 [self setupTextAttributes];

 NSAttributedString* drawingString;
 drawingString = [[NSAttributedString alloc] initWithString: titleString
 attributes: self.textAttributes];

 [drawingString drawInRect: NSInsetRect(titleRect, 10, 2)];
 [drawingString release];
}

Now, add the implementation for the private -setupTextAttributes method that was
declared at the top of the file:

- (void) setupTextAttributes {

 NSMutableParagraphStyle * pStyle = [[NSMutableParagraphStyle alloc] init];
 [pStyle setAlignment: NSCenterTextAlignment];

 // create the font and color.
 NSColor* color = [NSColor whiteColor];

Text | 369

 NSFont* font = [NSFont boldSystemFontOfSize:[NSFont systemFontSize]];

 // combine into an attributes dictionary for an attributed string.
 NSMutableDictionary * attrs = [NSMutableDictionary dictionaryWithObjectsAndKeys:
 font, NSFontAttributeName,
 color, NSForegroundColorAttributeName,
 pStyle, NSParagraphStyleAttributeName,
 nil];
 [pStyle release];

 self.textAttributes = attrs;
}

Add a line in -drawRect: to call the -drawTitle method:

[self drawBackground];
[self drawImage];
[self drawImageBorder];
[self drawImageSheen];
[self drawTitle];

Finally, in BasicCocoaDrawingAppDelegate.m, add a line to -applicationDidFinish
Launching: to set the title for the image:

imageView.mainImage = [NSImage imageNamed:@"SpaceShuttle"];
imageView.title = @"SpaceShuttle";
imageView.backgroundColor = [NSColor darkGrayColor];
imageView.borderColor = [NSColor whiteColor];

You have to set the title manually on the view, because an NSImage object
isn’t directly associated with a file. You can set the name of an image
object using image.name = @"My Title", but that’s no easier than setting
the title on the view itself.

Save all of the files and rebuild the app. You should see the title and the size below the
image, like Figure 10-20.

Handling Mouse and Keyboard Events
The one missing piece to all of this is how to handle user interaction in a custom view.
The event system in Cocoa is very sophisticated and has a lot of options, but just to get
you started, I’m going to show you how to handle a mouse click-and-drag event and a
single key press. When this example is complete, you will be able to drag the image
around the view, and press the “r” key to reset its location.

The main player in all of this is NSEvent. NSResponder declares a number of built-in
methods related to user input, most of which take an NSEvent object as input. Here are
the most common ones to implement in a view:

- (void) mouseDown: (NSEvent *)event;
- (void) mouseDragged: (NSEvent *)event;

370 | Chapter 10: Custom Views and Drawing

- (void) mouseUp: (NSEvent *)event;
- (void) keyDown: (NSEvent *)event;

- (BOOL) acceptsFirstResponder;
- (BOOL) becomeFirstResponder;

I first introduced you to the first responder methods in Chapter 8. In this case, you’ll
return YES from both -acceptsFirstResponder and -becomeFirstResponder to indicate
that you’d like your view to receive user keyboard events.

Figure 10-20. The image title and size rendered in the view

Keyboard Events
The most common way to start accepting keyboard events is to implement the method
-[NSResponder keyDown:] in your view. There are two main approaches to take in your
implementation. You can manually check the characters in the event object by calling
the -characters: or -charactersIgnoringModifiers: methods:

- (void) keyDown:(NSEvent *)event {

 NSString* characters = [event charactersIgnoringModifiers];

 // use 'v' key to go full screen.
 if ([characters isEqualToString:@"v"]) {
 [self enableFullScreenView];

Handling Mouse and Keyboard Events | 371

 }
}

Another approach is to hand off processing to the -interpretKeyEvents: method. The
advantage to this is that it allows NSResponder to convert common key shortcuts into
calls to methods on your view. For example, the Command-Right Arrow key sequence
is converted into a call to the -moveToEndOfLine: method on your view. In general, it’s
better to use this approach when you can, because Cocoa will do more work for you.

Mouse Events
A normal mouse click is handled by implementing the -[NSResponder mouseDown:]
method. You can get the number of clicks for the event with -clickCount, and the
location of the mouse during the click with -locationInWindow. In many cases, though,
you want the location of the mouse in your view, which you can get by using the
-[NSView convertPointFromBase] method:

- (void) mouseDown:(NSEvent *)event {

 NSPoint pointInWindow = event.locationInWindow;
 NSPoint pointInView = [self convertPointFromBase:pointInWindow];

 if (event.clickCount > 1) {
 NSLog(@"double click at: %@", pointInView);
 } else {
 NSLog(@"single click at: %@", pointInView);
 }
}

You can use all of the same techniques within the -mouseDragged: and -mouseUp: meth-
ods in your view.

Add Event Support to StyledImageView
The implementation of this feature is actually quite simple. Open StyledImageView.m
and add the two new private properties shown in bold:

@property (retain) NSShadow* imageShadow;
@property (retain) NSGradient* imageSheen;
@property (assign) NSRect customImageRect;
@property (assign) NSPoint mouseDownPointInImage;

And add synthesize statements for them as well, as shown in bold here:

// delegate.
@synthesize delegate;

// events.
@synthesize customImageRect;
@synthesize mouseDownPointInImage;

Add default values for them to -initWithFrame:, as shown here:

372 | Chapter 10: Custom Views and Drawing

- (id)initWithFrame:(NSRect)frame {

 if (self = [super initWithFrame:frame]) {
 self.customImageRect = NSZeroRect;
 self.mouseDownPointInImage = NSZeroPoint;
 }
 return self;
}

Add two lines to the top of the -imageRect implementation to check for a custom image
rect value:

- (NSRect) imageRect {

 if (NSEqualRects(self.customImageRect, NSZeroRect) == NO)
 return self.customImageRect;

 // first, check with the delegate.
 if ([self.delegate respondsToSelector:@selector(imageRectForContentRect:)])
 return [self.delegate imageRectForContentRect:self.contentRect];

And finally, add the method implementations themselves to the bottom of the class:

#pragma mark -
#pragma mark Events

- (void) mouseDown:(NSEvent *)event {

 NSPoint pointInWindow = event.locationInWindow;
 NSPoint pointInView = [self convertPointFromBase:pointInWindow];
 NSRect newRect = self.customImageRect;

 // if the user rect is empty, use the default image rect.
 if (NSEqualRects(newRect, NSZeroRect))
 newRect = self.imageRect;

 // make sure.
 if (NSPointInRect(pointInView, newRect)) {

 NSPoint pointInImage = pointInView;
 pointInImage.x -= newRect.origin.x;
 pointInImage.y -= newRect.origin.y;

 self.mouseDownPointInImage = pointInImage;
 self.customImageRect = newRect;
 }
}

- (void) mouseDragged:(NSEvent *)event {

 // don't do anything if mouse is outside of image.
 if (NSEqualPoints(self.mouseDownPointInImage, NSZeroPoint)) return;

 NSPoint pointInWindow = event.locationInWindow;
 NSPoint pointInView = [self convertPointFromBase:pointInWindow];

Handling Mouse and Keyboard Events | 373

 // start with current customImageRect.
 NSRect newRect = self.customImageRect;
 newRect.origin.x = pointInView.x;
 newRect.origin.y = pointInView.y;
 newRect.origin.x -= self.mouseDownPointInImage.x;
 newRect.origin.y -= self.mouseDownPointInImage.y;

 self.customImageRect = newRect;
 [self setNeedsDisplay:YES];
}

- (void) mouseUp:(NSEvent *)event {

 self.mouseDownPointInImage = NSZeroPoint;
}

- (void)keyDown:(NSEvent *)event {

 [self interpretKeyEvents:[NSArray arrayWithObject:event]];
}

- (void)insertText:(id)string {

 // reset if the key pressed was 'r'.
 NSString* resetKey = @"r";
 if ([string isEqual:resetKey]) {
 self.customImageRect = NSZeroRect;
 [self setNeedsDisplay:YES];
 }
}

- (BOOL) acceptsFirstResponder {
 return YES;
}

- (BOOL) becomeFirstResponder {
 return YES;
}

Save the file. Rebuild and rerun the project with Command-R. You can now drag the
image around inside the view, and press the “r” key to reset its size and location to the
default value for the current size of the window (see Figure 10-21).

374 | Chapter 10: Custom Views and Drawing

Figure 10-21. You can set a custom image location by dragging it around the view, and hit the “r”
key to reset the size and location

Handling Mouse and Keyboard Events | 375

CHAPTER 11

The Final Word

You’ve made it to the end of the book. I’m thrilled, amazed, and impressed. Although
I hope this is different from any programming book you’ve ever read, it’s still a lot of
reading. So now that you’re here, what’s next? Hopefully, you’re going to go write some
apps. To help you with that, I want to give you a few last pointers.

But first, a few essentials. The home base for this book is at http://cocoabook.com, and
the official O’Reilly catalog page can be found at http://www.oreilly.com/catalog/
9780596804794/. My personal site is http://theocacao.com, and I’m @scottstevenson
on Twitter. You can email me at cocoahelp@me.com.

The List
Being a Cocoa developer is about more than just writing a lot of code. There are a few
key things you must know to make world-class apps for Mac, iPhone, iPad, and iPod
touch:

Presentation matters
Many developers come to Mac or iPhone from other platforms and miss this. I
cannot possibly overstate how critical it is to have a well-designed user interface,
application icon, and website. These things tell your users that you care about your
software. Your audience appreciates quality user experiences by definition—that’s
why they bought a Mac in the first place. If two apps occupy the same space with
roughly the same features, the one with the better UI usually wins. Invest in the
user experience.

Trust the frameworks
Another thing I see come up with some new Cocoa programmers is an inexplicable
resistance to using the built-in frameworks. The reasoning is usually either that
they’re not sure if the built-in frameworks are good, or they want to have complete
control. The frameworks built into Mac OS X are good, and get better with each
release; you want to get on that train so that you get new features in the future. It’s
almost always in your best interest to bend the frameworks to your will instead of

377

http://cocoabook.com
http://www.oreilly.com/catalog/9780596804794/
http://www.oreilly.com/catalog/9780596804794/
http://theocacao.com
http://twitter.com/scottstevenson
mailto:cocoahelp@me.com

trying to write something from scratch. Trust the frameworks, and don’t worry
about not having enough code to write; there’s plenty of interesting work to do.

Use Interface Builder
Along the same lines as frameworks, some new Cocoa developers want to figure
out how to write apps without using XIB files. Don’t waste time trying to do this.
Interface Builder is there to help you do your job. It’s been around for a long time,
and the concept is battle-tested. The best Cocoa programmers in the world use
Interface Builder every day.

Write code
This sure seems obvious, doesn’t it? The best way to become a better Cocoa pro-
grammer is to do more of it. Don’t worry about doing it right the first time. I wrote
some absolutely horrible code when I first started, because I simply didn’t know
what I was doing. But I did it more and more, and got better each time I made
something. Spend five hours working on some Cocoa project—any project—every
single week.

Simplify
When in doubt, simplify. If you don’t know where to start with your app or don’t
know how to design your user interface, start with the simplest thing that will work
and build on it. This approach will never steer you wrong, because you won’t build
anything you don’t need. All great apps are built on a few great ideas. Don’t waste
time thinking up more complexity for your app. Simplify.

The user is in control
If you only take one thing away from the list, make it this. The user is always in
control. Never do things behind his back, even with good intentions. Never change
the user’s data, rearrange preferences, or autoupdate anything without asking. This
was once phrased to me as something along the lines of, “If you place a book on a
table, you expect it to still be there the next time you come into the room.” Ask
before changing anything.

Have fun!
Writing software is very demanding. You can produce world-class apps only if you
enjoy doing it. The best engineers I’ve ever worked with are not driven by a need
to work hard, but a deep desire to make the best thing they possibly can, and they
stay at it long after everyone else would have given up. They do it because they love
making great things. If you’re not having fun writing software, why are you doing
it?

Websites
There are some websites out there that can help you learn more about Cocoa. I’m
involved with some of them, but others are simply things that I’ve found to be incredibly
useful:

378 | Chapter 11: The Final Word

CocoaBook.com
The home base for this book is http://cocoabook.com. This is where you can find
examples from the book and any news that I think is relevant to you as a reader.
You may also be able to find some expanded versions of projects from the book
here.

O’Reilly catalog page
The O’Reilly page for this book is http://www.oreilly.com/catalog/
9780596804794/. This is another way to get information on the book, including
corrections and other extra information you might find helpful.

Theocacao
My personal site is at http://theocacao.com. I usually write about Cocoa, general
programming, or user interface design. There are years of articles in the archives,
and you’ll probably find at least some of it useful. I also sometimes announce
upcoming events in the San Francisco Bay Area for Cocoa programmers.

Cocoa Dev Central
The long-running Cocoa tutorial site at http://cocoadevcentral.com contains many
articles that I’ve written over the years. Although I’m not the original founder, I’ve
been running it since 2004. The tutorials I’ve written since were the inspiration for
this book.

CocoaHeads
An international user group for Mac, iPhone, iPad, and iPod touch programmers
is at http://cocoaheads.org. Chances are pretty good that there’s a chapter near you.
If there isn’t, consider starting one. Meeting with other Cocoa programmers in
person is one of the best ways to get better at what you do.

NSCoder Night
NSCoder Night events at http://nscodernight.com are weekly “hands-on” meetings
where Cocoa programmers get together to write and collaborate on code. There
are many locations listed on the site, and this may be one of your best tools for
getting help on a weekly basis. If you don’t see a chapter, consider starting one.

Daring Fireball
John Gruber has one of the most well-written and useful sites devoted to goings-
on in the world of Mac, iPhone, iPad, and iPod touch. If you want to keep pace
with the overall ecosystem that you’re writing software for, bookmark http://dar
ingfireball.net. I read this site every day.

Well-Placed Pixels
http://wellplacedpixels.com has an ever-growing collection of exceptional Mac and
iPhone apps. Browsing through the gallery gives you a feel for what the best apps
on the platform look like and how they work. These should be your model.

Websites | 379

http://cocoabook.com
http://www.oreilly.com/catalog/9780596804794/
http://www.oreilly.com/catalog/9780596804794/
http://theocacao.com
http://cocoadevcentral.com
http://cocoaheads.org
http://nscodernight.com
http://daringfireball.net
http://daringfireball.net
http://wellplacedpixels.com

Last Thought
I have one last thing I’d like to leave you with: the quote that sits at the top of my
personal site. It’s a lyric by Peter Gabriel that I think perfectly sums up how to think
about your potential in this line of work:

“All of the buildings, all of those cars were once just a dream in somebody’s head.”

Any piece of software—or, for that matter, any thing—you’ve seen and admired was
dreamed up by someone who then decided to make it real. If you have some version of
that in your head today, stop reading this and get back to Xcode right now. Don’t wait
until tomorrow or next week. Go write it now.

380 | Chapter 11: The Final Word

Index

Symbols
32-bit Macs, adapting 64-bit applications for,

114
64-bit Objective-C, 111–114

enabling 64-bit, 112
reasons to use, 113

& (ampersand)
&& (logical and) operator, 38
address-of operator, 51, 146

* (asterisk)
dereference operator, 51, 52
in pointer declarations, 51
multiplication operator, 27, 52

, (comma), separating input values for
functions, 27

{ } curly braces, enclosing function
instructions, 26

. (dot syntax)
accessors in Objective-C, 87
assigning value to struct field, 62

@dynamic directive, 111
@end statement

ending class implementations in Objective-
C, 92

ending Objective-C class declarations, 90
= (equals sign)

== (equality) operator, 37
comparing strings, 141

assignment operator, 38
@implementation statement for Objective-C

classes, 92
!= (inequality) operator, 37
@interface statement in Objective-C class

declarations, 90

– (minus sign) before instance methods, 91
() (parentheses), in function names, 26
% (percent sign), modulus operator, 68
| (pipe character), || (logical or) operator, 38
+ (plus sign) before class methods, 91
@property declarations with retain option for

Core Foundation types, 155
@property directive, 108
“ ” (quotation marks, double), surrounding

strings, 48
@selector() method, 124
; (semicolon), ending statements in C, 19
// (slashes), preceding comments, 27
[] (square brackets), index operator, 47
@"string" shortcut, creating NSString objects,

84
@String syntax, equivalence to CFSTR

("String") macro, 151
@synthesize directive, 109

A
acceptsFirstResponder method, 208
accessor methods, 77

generation of, property options for, 109
generation using properties under 64-bit

Objective-C, 111
in Objective-C, 86–87

declaring, 91
dot syntax, 87

options for properties for accessor
implementations, 110

use in bindings, 244
action methods, 196
action property, 202
actions, 193, 194

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

381

(see also targets and actions)
terminology and definitions, 197

addLauncherItem: method, 121
addObject: method, 130
address-of operator (&), 51, 146
AddressBook program (example), 59–62

compiling and running, 61
alloc method, 88, 103

manual style, 88
calling -autorelease directly on objects,

90
anonymous functions or closures, blocks as,

171
AppDelegate, updating for Gallery (example),

261–264
AppKit, 137

basic classes, 192
controls, 189
custom drawing code for Mac UI, 307

applicationDidFinishLaunching: method, 268
applicationSupportDirectory: method, 262
APSL license, 156
Architectures option (Project Inspector), 112
arcs, adding to Bezier path, 327
argc and argv variables, 59
arguments, 18
arrayByAddingObject method, 170
arrayByAddingObjectsFromArray method,

170
arrays, 43–45

CFArrayRef and CFMutableArrayRef, 174
char array, converting to string, 48
creating formatted array from string, 170
declaring and assigning values, 44
indexes, 44
multidimensional, 49
NSArray class, 169
NSIndexSet, 175
NSMutableArray class, 173
running code against every item, using

blocks, 171–173
of strings, 56, 58–59

AddressBook program (example), 59–
62

use with for loops, 46
arrayWithObjects method, 169
asprintf() function, 56

format strings, 56

strings created with, returning from
functions, 57

assembly code, 18
assignment

assigning values when declaring an array,
44

assignment operator (=), 38
atomic properties, 110
attributed strings, 360–365

paragraph styles, 363
text sizes and vertical alignment, 364

attributes, 253
adding to entities, 255

autorelease method, 103
autoreleased objects, 88

reusing, 138
using autorelease directly, 90

autoresizingMask property (NSView), 321
average() function, 65

B
becomeFirstResponder method, 208
Bezier paths, 324–328

calculating sheen path, 345
creating round rect, 369
drawing curved paths, 325–328
drawing polygons, 324

binary storage, Core Data, 253
bindings, 230

configuring for Gallery (example) browser
interface, 295

configuring for Gallery (example) list view
interface, 299

configuring for Gallery (example) main
window, 291

debugging, 244
for complex controls (example), 242–244
for simple controls (example), 236–242

connecting the bindings, 239
running application, 241

Key-Value Coding (KVC), 234–236
Key-Value protocols, 234
NSController class and subclasses, 232
representedObject property, 252

blocks, 171–173
support by NSDictionary, 177

Boolean types, 160
bounds, 312, 320
Bridge Cocoa, 114

382 | Index

browser interface, creating for Gallery UI
(example), 293–297

connecting outlets, 297
setting up album table, 293
setting up bindings, 295
setting up image browser, 295

browser view controller, creating, 269–275
build errors, 19
buttons, 194

connecting bindings, 239
creating, 195
NSButton class, 194
NSControl class, 191, 193
NSPopUpButton class, 194
pop-up, 211–214

C
C language, 15–42

arrays, 43–45
arrays of strings, 58–59
code, how it works, 16
conditionals, 36–39
example program calculating cost of

hardware, 39–41
compiling and running program, 41

final program (example), 68–71
FirstProgram (example), 28–33

compiling and running the program, 32
displaying values on command line, 29

formatting code, 17
functions, 24–28

declaring, 28
header files, 64–66
loops, 45–47
memory management, 53–55
multidimensional arrays, 49
number types, built-in, 156
pointers, 49–53
procedural and static language, 73
scope of variables, 34–35

static variables, 35
structs, 62–64

creating files for Song struct (example),
66–68

text strings, 47
variables, 20–24

constants, 23
enumerations, 24
typedefs, 24

types, 21
calendar types, 186
Cartesian coordinate system in NSView, 312
categories, 114–118

adding category methods to NSString so it
conforms to protocol, 123

category for NSRunningApplication
(example), 134–136

for private methods, 117
unnamed, class continuations, 339

cells
buttons, 195
NSCell objects, 191

CFAbsoluteTime type, 187
CFAllocatorRef, 152
CFArrayRef, 174
CFBooleanRef type, 160
CFCalendarRef type, 186
CFDataRef and CFMutableDataRef objects,

169
CFDateRef type, 186
CFDictionaryRef type, 179
CFGregorianDate type, 186
CFIndex objects, 151
CFMutableArrayRef, 174
CFMutableDictionaryRef type, 179

adding, replacing, or removing value for key,
180

CFMutableStringRef, 153
CFNumber type

when to use, 165
CFNumberFormatterRef type, 160
CFNumberRef type, 159
CFRange struct, 152
CFRelease() function, 152, 153
CFRetain() function, 153
CFShow() function, 152

using NSLog() instead to display Core
Foundation types, 154

CFSTR ("String") macro, equivalence to
@string syntax, 151

CFStringAppend() function, 153
CFStringCreateMutable() function, 154
CFStringRef objects, 151
CFTimeInterval type, 187
CFTimeZoneRef type, 187
CGFloat class, 160
CGFloat type, 165
CGImage class, 329

Index | 383

CGPoint structs, 308
CGRect objects, 309
CGSize structs, 309
char type, 22

converting char array to string, 48
child arrays, 49
class continuation, 339
class files, creating new Objective-C class file in

Xcode, 97
class hierarchy, 79
class methods in Objective-C, 91

distinguishing from instance methods, 91
classes, 75–77

accessor methods for properties, 77
built into Cocoa, 81
calling methods on, in Objective-C, 85
categories attached to, 114–118
declaring in Objective-C, 90

adding methods, 91
designing, 76–77
finding whether object is member of class or

any subclasses, 119
implementing in Objective-C, 92

dealloc method, 95
init method, 94

inheritance, 79
initialization method, 81
name prefixes, 107
objects, 75
properties, 107–111

referring to instances of other classes,
80

className method, using on NSString
instance, 120

cleanup methods for objects, 81
Cocoa

32-bit apps, 112
32-bit/64-bit hybrid projects created by

Xcode, 112
64-bit Cocoa apps, 112
built-in classes, 81
definitions of and constituent frameworks,

137
exceptions, 127
foundation for frameworks, 16
Foundation value classes, 137

(see also Foundation value classes)
memory management, 103
primitive types, 160

root classes, NSObject and NSProxy, 79
view coordinates, 312
websites for further information, 378

Cocoa development for world-class
applications, 377

CocoaBook folder, creating, 5
code, writing, 15

formatting code, 17
using frameworks, 16

collections
fast looping through, 171
keyed collections of objects, 177

color
NSColor class, 316
ShapesAndColorsView (example), 319

command line
displaying values on, using printf(), 29
input from, 58
in Terminal application, 32

comments, 27
comparison functions for geometry structs,

314–315
compiling applications, 19

gcc compiler, 32
ShoppingTrip (example), 41

composition, 80
conditionals, 36

if statement, 36
const keyword, 23

pointers and, 52
constants, 23

referring to mutable objects, 148
controller objects, 247
controls, adding to main window of Gallery

(example), 290
controls, basic, 189–245

bindings, 230
for complex controls (example), 242–

244
for simple controls (example), 236–242
Key-Value protocols, 234–236
tips for debugging, 244

datasources, 222–230
implementing methods, 227–230
table view datasource methods, 226

outlets, 218–222
targets and actions, 193

buttons, 194
connecting actions, 198–203

384 | Index

declaring action methods, 196
menus, 203–205
pop-up buttons, 211–214
responder chains, 206–211
sliders, 214
text fields, 216

windows and views, 190–193
coordinates, Cocoa views, 312
copy method

calling on mutable object, 148
copying objects, 106
objects created with, calling release or

autorelease at end of method,
104

copyWithZone method, 106
Core Animation framework, 307
Core Data, 137, 247, 253

built-in storage types, 253
important classes, 253

Core Foundation, 150–156
drawbacks of types, 156
memory management, 152
mutability, 153
source code, open source, 156
string type, CFStringRef, 151
toll-free bridging to Foundation classes,

154
types as properties, 155

Core Graphics framework, 307
Core Image framework, 307
CoreGraphics Geometry, 114
“Create” functions in Core Foundation, 152
curved paths, drawing, 325–328

D
data objects, 166–169

NSMutableData, 168
data types (see types)
DataCollector (example), 129–136

building and running the project, 136
creating the files, 130–136
new classes and methods, 129

datasources, 222–230
implementing methods, 227–230
table view datasource methods, 226

dataUsingEncoding: method, 167
dates and time

calendar types, 186
CFDateRef, 186

NSDate class, 184
NSDateFormatter class, 185, 230
NSTimeZone class, 185

DCTextItem class, creating, 132
dealloc method, 81, 95, 103

called on parent object of instance variable,
105

debugging bindings, 244
#define directive, 23
dereference operator (*), 51, 52
description method, 130
development of world-class applications,

things to know, 377
dictionaries

CFDictionaryRef and
CFMutableDictionaryRef, 179

NSDictionary, 177
NSMutableDictionary, 178

dictionaryWithObjectsAndKeys: method, 177
directives, 23
dot syntax

accessor methods in Objective-C, 87
drawing, 307, 315–324

(see also graphics programming)
grouping drawing code into several

methods, 342
instantiating views, 320–323
NSColor class, 316
NSGraphicsContext, 323
subclassing NSView, 316–320
using Bezier paths, 324–328

drawing curved paths, 325–328
polygons, 324

drawRect: method, 319
adding code to apply shadow, 340
calling draw outside of, 343
graphics context, 324

dynamic languages, 74
dynamic memory, 53–55

strings and, 56–57
returning strings from functions, 57

dynamic messaging, 124–127
forwarding messages, 126
using selectors to call methods, 125

E
editor view controller, 275–277
editor view interface, creating for Gallery

(example), 297

Index | 385

else clause (if statement), 38
encapsulation, 64, 77
encodings, 167
entities, 253

adding attributes to, 255
adding relationships to, 257
creating for Gallery project (example), 254

enum keyword, 24
using typedef with, 24

enumerateObjectsUsingBlock: method, 171
enumeration

block, 171–173
fast and block, support by NSDictionary,

177
fast, through built-in looping syntax, 171

enumerations, 24
equality operator (==), 37

comparing strings, 141
escape sequences, 31
events

handling mouse and keyboard events, 370–
374

adding event support to
StyledImageView, 372–374

keyboard events, 371
mouse events, 372

exceptions, 127
throwing within your own code, 128

F
file paths

common functions for standard paths, 144
NSString methods for, 143

filePath attribute, 280
files, reading and writing with strings, 144–

148
first responder, 206

actions, 208
adding new, 287
meanings of, 209

float type, 21, 22
%f placeholder for float variable, 41
array of float values, 44

focus ring, 206
fonts, 359
for loops, 46–47

using arrays with, 46
format strings

asprintf() function, 56

printf() function, 29
formatting code, 17
Foundation framework (Coco), 137
Foundation value classes, 137–187

immutability, 148
advantages of, 150

mutability, 148
advantages of, 149

NSArray, 169–176
NSData, 166–169
NSDate, 184–187
NSDecimalNumber, 161–163
NSDictionary, 177–181
NSNumber, 156–166
NSSet, 181–183
NSString, 138–148
NSValue, 183–184
toll-free bridging between Core Foundation

types, 154
frames, 312, 320
frameworks, 16

for graphics, 307
trust in, 378

free() function, 54
functions, 18, 24–28

capturing result in variable, 26
Core Foundation, “Get” in name, 153
declarations, header file containing, 64
declaring, 28
example function buyGroceries(), 25
inputting values, 27
return statement, 26
return type, 26
returning strings, 57
returns by indirection, 56
taking structs as input or returning structs,

63

G
gcc compiler, 32, 41
generic programming, 236
geometry, 308–315

Cocoa view coordinates, 312
comparison functions for structs, 314–315
derived rects, 313
points, 308
rects, 309
size, 309
structs as NSValues, 311

386 | Index

structs as strings, 310
geometry types, unified, using 64-bit Objective-

C, 112
“Get” in Core Foundation function names,

primitives, and generic struct values,
153

getter (accessor) methods, 78
specifying names, 110

global variables, 34
static keyword with, 35

gradients, 341–348
drawing an image sheen, 344–348

adding sheen properties and methods,
346–348

calculating sheen path, 345
drawing gradient background, 342–344
drawing image sheen, 344

graphics programming, 307–374
basic drawing, 315–324

instantiating views, 320–323
NSColor class, 316
NSGraphicsContext, 323
subclassing NSView, 316–320

basic geometry, 308–315
Bezier paths, 324–328

drawing curved paths, 325–328
drawing polygons, 324

Cocoa view coordinates, 312
derived rects, 313
frameworks, 307
geometry

structs as NSValues, 311
structs as strings, 310

geometry structs
comparison functions for, 314–315

gradients, 341–348
drawing image sheen, 344–348

handling mouse and keyboard events, 370–
374

adding event support to
StyledImageView, 372–374

keyboard events, 371
mouse events, 372

images, 329–338
drawing in a view, 331–338
loading image data, 329–331

refactoring view code, 349–359
goals for refactoring, 350–352
header, 352–354

reason to refactor, 350
refactored implementation, 354–359

shadows, 338–341
adding to StyledImageView, 338–341

text, 359–370
adding title to StyledImageView, 365–

370
attributed strings, 360–365
fonts, 359

H
header files, 64–66

compiling and running, 66
creating for Song struct (example), 66
refactored view header, 352–354

HUD (Heads Up Display) window, connecting
actions from, 200

I
IBAction methods, 196
IBOutlet property, 218
IconViewInfo protocol, 122
id type, Objective-C object variables, 85
if statements, 36–39

checking if result is zero or nonzero, 37
comparison tests in, 36
else clause, 38
logical and (&&) and logical or (||)

operators in, 38
IKImageBrowserItem protocol, 283
IKImageBrowserView class, 264, 269, 283
IKImageBrowserView objects, 295
ImageKit framework, 247, 264
images, 329–338

drawing in a view, 331–338
preserving aspect ratio, 335–338

loading image data, 329–331
standard Cocoa artwork, 330

immutability, 148
advantages of, 150

#import statements in Objective-C, 90
#include statement, 31

for header files, 65
indexes

array, 44, 175
string, 140

indexOfObject method, 170
indirection, returns by, 56

Index | 387

inequality operator (!=), 37
inheritance, 79
init method, 94
initialization methods (classes), 81
initWithFrame: method, 318
initWithNibName:bundle: method, 252
initWithWindowNibName method, 249
inline functions, 309
instance methods in Objective-C, 91

distinguishing from class methods, 91
instance variables, 75

declarations for classes in Objective-C, 90
life of, 105
setting initial values for, 94
synthesized, using 64-bit Objective-C, 111

int type, 22
integers, using in ranges, 140
Interface Builder, 8, 378

First Responder icon, 210
setting sizing properties, 10
using NSCell classes in, 192

interfaces, class, 75
introspection, 118
isEqualToString: method, 142
isFlipped method, 312
isKindOfClass: method, 119
isMemberofClass: method, 118

K
kCFBooleanTrue and kCFBooleanFalse types,

160
key equivalents for menu commands, 204
Key-Value Coding (KVC), 234–236, 280
keyboard events, 371
keyboard, support through NSResponder, 190,

192
keyed collections of objects, 177

L
launcher window (application), adding method

to item in, 121
list view controller, 278–279
list view interface, creating for Gallery

(example), 299
connecting outlets, 301
setting up bindings, 299

loadView method, 252
loadWindow method, 250

local variables, 34
localizedStringFromNumber:numberStyle:

method, 163
logical and operator (&&), 38
logical or operator (||), 38
loops, 45–47

fast enumeration through collection objects,
171

for statements, 46

M
Mac OS X

frameworks, 16
package list for, 156

main() function, 32
input from command line, 58

MainMenu.xib file, 203
adding album menu, 288
removing default window icon, 287

mainTextField property, 218
malloc() function, 53
managed objects, 254

creating classes for Gallery project
(example), 280–286

album class implementation, 284–286
photo class implementation, 281–284

manual style of memory allocation for
Objective-C objects, 88

Media class, determining whether object is
member of class or any subclasses,
119

memory
allocating for objects in Objective-C, 88
dealloc method for Objective-C classes, 95
deallocating for objects, 81
dynamic, 53–55

strings and, 56–57
reserving and freeing for objects, 81

memory address, 51
memory leaks, 54
memory management, 44, 103–106

basic, in Objective-C, 88
copying objects, 106
in Core Foundation, 152
life of instance variable, 105
NSData objects, 167
in Objective-C

using autorelease directly, 90
setter accessors, 110

388 | Index

memory zone, represented by NSZone class,
106

menus, 203–205
assigning actions for menu items, 205
built into Cocoa application templates, 203
built-in support for key equivalents, 204
renaming, rearranging, or removing items,

204
message forwarding, 126
methods, 75

adding new to existing classes without
subclassing them, 114

calling using selectors, 125
declarations for classes in Objective-C, 90
declaring class and instance methods in

Objective-C, 91
faster lookup using 64-bit Objective-C, 111
implementations for Objective-C classes,

92
private, categories for, 117
replacing on existing classes using

categories, 116
storing method names in selectors, 124
using in Objective-C, 84

multi-input methods, 86
nested method calls, 86

Model Key Path in Bindings Inspector, 245
model objects, 247
Model-View-Controller design (see MVC

applications design)
modulus operator (%), 68
mouse events, 372
mouse, support through NSResponder, 190,

192
Movie class, determining whether object is

member of class or any subclasses,
119

multi-input methods, 86
multidimensional arrays, 49
multiple-line comments, 27
multiple-segment gradients, 341
multiplication operator (*), 27, 52
mutability, 148

advantages of, 149
Core Foundation, 153
NSMutableArray class, 173
NSMutableData class, 168

mutableArrayValueForKey: method, 243
mutableCopy method, 148

MVC applications design, 247
Core Data, 253
creating project files, 254–286

adding attributes and relationships, 255–
261

adding Quartz framework, 264
creating entities, 254
creating view controllers, 268–279
creating window controller, 264–268
managed object classes, 280–286
updating AppDelegate, 261–264

creating user interface, 286–301
creating browser interface, 293–297
creating editor view interface, 297
creating list view interface, 299
creating main window interface, 289
removing default window, 287

preparing application for release, 303
running the application, 301
view controllers, 250
window controllers, 249

N
\n (newline) character, 31

asprintf() function and, 57
name prefixes, Objective-C classes, 107
nested method calls, 86
newline character (\n), 31
next responder, 208
nil keyword, 95
NSApp variable, 147
NSArray class, 130, 169

converting array to or from formatted string,
170

fast enumeration, 171
key methods, 170
NSSet created from, 182
specific behaviors different from other

programming environments, 169
using blocks, 171
valueForKey: and setValue:forKey:

methods, 236
NSArrayController class, 233
NSArrayController objects, 242
NSAtomicStore class, 253
NSAttributeDescription class, 253
NSAttributedString class, 360

limitations, 362
NSBezierPath class

Index | 389

drawing curved paths, 325–328
drawing polygons, 324

NSButton class, 194
NSButton objects, adding to application

window, 238
NSButtonCell class, 195
NSCalendar class, 186
NSCell class, 193
NSCell objects, 191
NSColor class, 316

set method, 316, 323
NSContainsRect() function, 315
NSControl class, 193
NSControl objects, 191

use of actions, 193
NSController class and subclasses, 232
NSData class, 166–168

converting other Foundation data objects
into, 166

creating NSData objects from existing
memory blocks, 167

memory management, 167
NSDate class, 184
NSDateFormatter class, 185, 230

interpretation of input strings as dates, 186
NSDecimal struct, 163

when to use, 166
NSDecimalNumber class, 161–163

common methods, 161
when to use, 165

NSDecimalNumberBehaviors protocol, 162
NSDecimalNumberHandler class, 162
NSDictionary class, 177

support of fast and block enumeration, 177
NSDictionaryController class, 234
NSEntityDescription class, 253
NSEqualPoints() function, 314
NSEqualRects() function, 314
NSEqualSizes() function, 314
NSError object, displayed with -

[NSApplication presentError]
method, 147

NSError** variable, 146
NSEvent class, 370
NSException objects, 128
NSFastEnumeration protocol, 171
NSFont class, 359
NSFontDescriptor class, 360
NSFontManager class, 360

NSFullUserName() function, 144
NSGradient class, 341
NSGraphicsContext class, 323
NSHeight() function, 319
NSHomeDirectory() function, 144
NSImage class, 166, 329

imageNamed: method, 330
NSImageCell objects, 294
NSIndexSet class, 175
NSInsetRect() function, 314, 319
NSInteger class, 160, 165
NSIntersectionRect() function, 313
NSIntersectsRect() function, 315
NSInvocation class, 126
NSLog() function, 139

using instead of CFShow() to display Core
Foundation types, 154

NSMakePoint() function, 309
NSMakeRect() function, 310
NSMakeSize() function, 309
NSManagedObject class, 254, 280

subclasses to be used for entities, 255
NSManagedObjectContext class, 254

getting reference to application delegate’s
instance, 280

NSManagedObjectModel class, 253
NSMenu class, 203
NSMenu objects, 205
NSMenuItem class, 203
NSMenuItem objects, 205

use with pop-up buttons, 211
NSMethodSignature class, 126
NSMutableArray class, 130, 173
NSMutableAttributedString class, 362
NSMutableData class, 168
NSMutableDictionary class, 178
NSMutableIndexSet class, 175
NSMutableParagraphStyle class, 363
NSMutableSet class, 182
NSMutableString class, 148

initWithString: method, 149
stringWithString: method, 149

NSMutableString objects, advantages of using,
149

NSNumber class, 156
common methods, 157
methods dealing with built-in C number

types, 159
when to use, 165

390 | Index

NSNumber objects, Key-Value coding
wrapping primitive values as, 236

NSNumberFormatter class, 163
NSNumberFormatterSpellOutStyle, 165
NSObject objects

description method, 130
init method, replacement with category,

116
NSObject protocol, 121
NSObjectController class, 233
NSOffsetRect() function, 313
NSParagraphStyle class, 363
NSPersistentStoreCoordinator class, 254
NSPoint structs, 308

creating, 309
NSPointFromString() function, 310
NSPointInRect() function, 315
NSPopUpButton class, 194, 211
NSPopUpButtonCell class, 195
NSProxy class, 79
NSRange struct, 140
NSRect structs, 309

wrapping as NSValue, 311
NSRectFill() function, 319
NSRectFromString() function, 310
NSRelationshipDescription class, 253
NSResponder class, 190, 192, 370

methods, 208
mouseDown: method, 372

NSRunningApplication objects, 130
NSSegmentedControl objects, 290
NSSelectorFromString() function, 124
NSSet class, 181
NSShadow class, 338
NSShadow objects, dealloc method, 340
NSSize structs, 309
NSSizeFromString() function, 310
NSSlider class, floatValue method, 214
NSSlider objects, adding to application

window, 238
NSString class, 84, 138–148

adding category methods to conform to
protocol, 123

adding new method using categories, 115
alloc method, 88
basic methods, 139
methods for file paths, 143
ranges and substrings, 140

reading and writing files with strings, 144–
148

using with C types, 141
NSString objects

based on Core Foundation CFString object,
151

C functions returning standard paths, 144
drawing, 361
immutable, advantages of, 150
life of instance variable, 105
stringWithFormat: method, 130

NSStringFromPoint() function, 310
NSStringFromRect() function, 310
NSStringFromSize() function, 310
NSTableView class, 224, 293
NSTableView objects, 242
NSTableViewDataSource protocol, 226
NSTemporaryDirectory() function, 144
NSTextField class, 216, 359
NSTextField objects

adding to application window, 238
populating text field using outlets, 218

NSTextView class, 359
NSTimeInterval class, 187
NSTimeZone class, 185, 187
NSTreeController class, 233
NSUInteger class, 160, 165
NSUnionRect() function, 313
NSUserDefaultsController class, 234
NSUserName() function, 144
NSUTF8StringEncoding, 167
NSValue class, 183

wrapping regular Objective-C objects in
instances, 184

NSValue objects, geometry structs as, 311
NSView class, 193, 312

autoresizingMask property, 321
NSControl subclass, 191
resizing mask values, 322
subclassing, 316–320

NSViewController class, 249, 250
key methods, 251

NSWidth() function, 319
NSWindow class, 82, 193

firstResponder method, 209
makeFirstResponder: method, 211

NSWindow objects, 190
relationship with NSView and

NSResponder, 191

Index | 391

NSWindowController class, 249
important methods, 249
subclassing, 264

NSWorkspace class, 130
NSZone class, 106
null terminator (\0), 48
numberOfRowsInTableView: method, 226
numbers, 156–166

CFNumberRef type, 159
Cocoa primitive types, 160
NSDecimalNumber class, 161–163
NSNumber class, 156
NSNumberFormatter class, 163
when to use which type, 165

O
object-oriented concepts, 73–82

accessor methods for class properties, 77
built-in classes, 81
composition, 80
inheritance, 79
object lifetime, 81
structs and classes, 74

object-oriented programming, 74
objectAtIndex: method, 130, 170
Objective-C, 15, 83–101

64-bit, 111–114
enabling 64-bit, 112
reasons to use, 113

accessors, 86–87
blocks, 171–173
categories attached to classes, 114–118
class name prefixes, 107
creating objects, 88
DataCollector (example), 129–136

building and running the project, 136
creating the files, 130–136
new classes and methods, 129

declaring classes, 90
adding methods, 91

dynamic features, 74
dynamic messaging, 124–127

message forwarding, 126
using selectors to call methods, 125

exceptions, 127
implementing classes, 92

dealloc method, 95
init method, 94

introspection, 118

memory management, 103–106
basic, 88–90
copying objects, 106
life of instance variable, 105

methods, 84
multi-input, 86
nested method calls, 86

NSString class, 84
Photo Info program (example), 96–101
properties, 107–111
protocols, 120–124

objects
created using alloc or copy, calling release or

autorelease, 104
creating in Objective-C, 88
defined, 75
Objective-C, wrapping in NSValue

instances, 184
objectValueForTableColumn: method, 227
opaque struct or opaque data type, 151
outlets, 218–222

connecting for Gallery (example) browser
interface, 297

connecting for Gallery (example) list view
interface, 301

connecting in actions in Gallery (example)
main window, 293

datasource outlet for table view, 225
IBOutlet properties, 218

P
paragraph styles, 363
parameters, 18
parent array, 49
PDF generation and printing (Xcode), 12
performClick: method, 202
performSelector: method, 125
persistence framework (Core Data), 253
pixels, 309
pointers, 49–53

const keyword and, 52
creating and using, 50
dynamic memory and, 53–55
Objective-C object variables, 85

points, 308
polygons, drawing, 324
pop-up buttons, 211–214

adding item to button in Interface Builder,
211

392 | Index

adding, removing, or editing items directly
in code, 213

connecting action to target, 212
selecting an item, 212

populateTextField: method, 218
preprocessor directives, 23
presentation, 377
presentError: method, 147
primitive number types

C language, 156
Cocoa, 160

printf() function, 29
string marker (%s), 48

private methods, categories for, 117
procedural languages, 73
properties, 107–111

binding, 232
class, 75

accessor methods for, 77
referring to instances of other classes,

80
Core Foundation types as, 155
declarations, options controlling generation

of accessors, 109
generating both accessor methods and

instance variables using 64-bit
Objective-C, 111

options for accessor implementations, 110
protocols, 120–124

adding category methods to existing class so
it conforms to protocol, 123

Q
Quartz framework, 264

R
rand() function, 68
random numbers, generating, 68–71
rangeOfString: method, 141
ranges

CFRange struct, equivalent of NSRange,
152

working with strings, 140
readwrite or readonly properties, 110
rects, 309

converting to and from strings, 311
derived, 313
drawing, 319

Ref, Core Foundation types not ending in, 152
refactoring view code, 349–359

goals for refactoring, 350
symmetry in practice, 351

header, 352–354
reasons to refactor, 350
refactored implementation, 354–359

reference counting, 89, 103
in Core Foundation, 152

relationships, 253
adding to entities, 257

release method, 103
reloadData method, NSTableView, 227
representedObject property, 252
resignFirstResponder method, 208
resizing mask values (NSView), 322
responder chains, 206–211

built-in actions for first responder, 208
first responder, 206
meanings of first responder, 209
NSResponder methods for, 208
setting actions in code, 208

respondsToSelector: method, 121, 125
restoreGraphicsState method

(NSGraphicsContext), 323
retain method, 93, 103
retainCallbacksForArray method, 175
retainCount() method, 103
return statements, 26
return types, 26

input and output in function declaration,
28

returns by indirection, 56
rounding decimal numbers, 162
running MVC application, 301

S
saveGraphicsState: method

(NSGraphicsContext), 323
scope, 34–35
SEL value type, 124
selectors, 124

action as placeholder for, 193
object receiving message for unimplemented

selector, forwarding to an object
implementing it, 126

using to call methods, 125
self variable, 94
sender input variable of action methods, 218

Index | 393

setObjectValue: method, 227
setRepresentedObject: method, 252
sets

NSMutableSet, 182
NSSet, 181

setter (accessor) methods, 78
memory management, 104, 110
specifying names, 110

setTitle method, NSViewController, 252
setValue:forKey: method, 235, 280
shadows, 338–341

adding shadow to StyledImageView, 338–
341

sheen over an image, drawing, 344–348
adding sheen properties and methods, 346–

348
calculating sheen path, 345

showWindow: method, 250
single-line comments, 27
size, 309
sizeof() function, 53
sizes of text, 364
sizing properties, setting, 10
sliders, 214

connecting Value binding to application
delegate imageScale property,
240

continuously sending action messages as
user drags knob, 220

source code, 15
SQLite, 253
sranddev() function, 68
static keyword, 35
static typing, 73
static variables, 35
stringByAppendingString: method, 138
strings, 47

arrays of, 58–59
AddressBook program (example), 59–

62
attributed strings, 360–365
CFMutableStringRef, creating and adding

to it, 153
comparing for equality, 141
converting to data objects, 167
Core Foundation string type CFStringRef,

150
creating formatting string from an array,

170

creating from geometry structs, 310
creating NSDecimalNumber from, 161
creating structs from, 310
dynamic memory and, 56–57

returning strings from functions, 57
as file paths, 143
immutable, advantages of, 150
mutable, creating from literal string, 149
NSString class, 84
quotation marks (“ ”) surrounding, 48
ranges and substrings, 140
reading and writing files with, 144–148

stringWithFormat: method, 130, 141
string created with, equality comparisons,

142
stringWithUTF8StringFormat method, 141
structs, 62–64

as strings, 310
assigning value to a field, 62
comparison to classes, 74–77
Core Foundation data types, 151
creating files for Song struct (example), 66–

68
creating from strings, 310
field names, 62
functions taking as input or returning as

output, 63
geometry struct comparisons, 314–315
geometry structs as NSValues, 311
seeds of object-oriented concepts, 74

subclasses, 79
substringFromIndex: method, 140
subviews, 312
sum() function, 32, 65
superclass, 79

T
table view

connecting datasource outlet, 225
creating, 223
datasource methods, 226

target property, 202
targets and actions (controls), 193

buttons, 194
connecting actions, 198–203

from the HUD, 200
in code, 201

connecting actions and outlets in Gallery
main window, 293

394 | Index

declaring action methods, 196
menus, 203–205
pop-up buttons, 211–214
responder chains, 206–211

meanings of first responder, 209
sliders, 214
text fields, 216

targets, defined, 197
Terminal application

command line, using to compile and run
program, 32

displaying values on command line, 29–32
text, 359–370

adding title to StyledImageView, 365–370
attributed strings, 360–365

paragraph styles, 363
text sizes and vertical alignment, 364

fonts, 359
text fields, 216

adding field to window and connecting its
action and target, 216

connecting bindings, 239
NSControl class, 191, 193
placeholder text, 216
responder chain and, 206

text strings, 47
thread safety, atomic properties and, 110
toll-free bridging, 154
touch events, support through NSResponder,

190
tryToPerform:with: method (NSResponder),

208
typedefs, 24
types, 21

C language
using with NSString objects, 141

common primitive types in C, 22
constants, 23
conversions, 22
Core Foundation, as structs, 151
defining your own with typedefs, 24
enumerated, 24
input and output types in function

declaration, 28
input and output values of instance variable

accessors, 91
return type for functions, 26
static typing, 73

U
UIImage class, 329
umbrella framework, 137
Unicode, 48
units, 309
universal applications, 112
unsigned int, 22
user interface, creating, 7–11

setting sizing properties, 11
user is in control, 378

V
value classes (see Foundation value classes)
valueForKey: method, 235, 280
values, wrapping primitive C values in

Objective-C objects, 183
variables, 20–24

arrays, storing multiple values in single
variable, 43

capturing function results, 26
constants, 23
declaring and assigning values, 21
defining your own types with typedefs, 24
scope, 34–35

static variables, 35
types, 21

vertical alignment of text, 364
view controllers, 248, 250

creating for Gallery project (example), 268–
279

browser view controller, 269–275
editor view controller, 275–277
list view controller, 278–279

subclassing NSViewController and adding
properties and methods, 251

view method, 252
view objects, 247
views, 190–193

adding event support to StyledImageView,
372–374

adding title to StyledImageView, 365–370
Cocoa view coordinates, 312
contained in menu items, 205
drawing images in, 331–338

preserving aspect ratio, 335–338
instantiating, 320–323

setting resizing values in code, 322
NSView objects, 190

Index | 395

refactoring code for, 349–359
goals for refactoring, 350–352
header, 352–354
reasons to refactor, 350
refactored implementation, 354–359

subclassing NSView, 316–320
support for mouse, keyboard, and

multitouch events from
NSResponder, 190

when to draw, 319
viewSelectionControl outlet, 293
viewSelectionDidChange: action, 293
visibility of variables, 34

global and local, 34

W
website for this book, 377
websites for Cocoa, 378
whitespace in C, 19
window controllers, 248, 249

creating for Gallery project (example), 264–
268

important methods, 249
properties and actions supporting UI, 250

window method, 250
windows, 190–193

adding views, 320–323
creating main window interface for Gallery

(example), 289
adding controls, 290
configuring bindings, 291
connecting outlets and actions, 293
window sizing, 289

creating using NSWindow class, 82
support for mouse, keyboard, and

multitouch events from
NSResponder, 190

views, NSView objects, 190
writeToFile:atomically: method, 144

X
Xcode

build error, 19
build error describing duplicate class name,

107
creating first application

closing new application, 6
launching Xcode, 4

running finished application, 11
running new application, 6
starting new project, 5
user interface, 7–11

downloading and installing, 1
hybrid 32-bit/64-bit projects by default,

112
XIB file associated with window controllers,

249
.xib file format, 8
XIBs associated with view controllers, 250
XML, Core Data storage type, 253

396 | Index

About the Author
Scott Stevenson has been developing Cocoa apps for eight years and has been teaching
others how to do it for six years. He created the popular Mac programming blog
Theocacao, and has been the principle author and editor of Cocoa Dev Central since
taking responsibility for it in 2003. He has also organized and presented at many Silicon
Valley CocoaHeads meetings. Scott lives in the San Francisco Bay Area.

Colophon
The animal on the cover of Cocoa and Objective-C: Up and Running is a Pampas cat
(Leopardus pajeros). Named for the Pampas region of South America, the Pampas cat
is relatively small for a wild cat and resembles domestic cats in size and stature: adults
grow to only about two feet high and weigh between three and four kilograms. Indi-
viduals display varying combinations of stripes and spots on their coats, and vary in
color depending on geographical location; dominant colors include grey, yellow-
brown, rust, and black.

The Pampas cat exists only in western central South America, but enjoys a wide
distribution therein. The species has shown that it can thrive not only in the open
grasslands with which it is most often associated, but also in the woodlands of Gran
Chaco and central Brazil, the low-lying swampy areas of Uruguay, the semiarid desert
of Patagonia, and the elevations of the Andes. In fact, the only significant South Amer-
ican habitat in which it cannot be found is the rain forest, either temperate or tropical.

Scientific classification for the Pampas cat has become a complicated issue over the past
two decades. Formerly, the Pampas cat was considered only a subspecies of the Colo-
colo (Leopardus colocolo), which itself previously belonged to the separate, now defunct
genus Oncifelis. The Pampas cat was distinguished as its own species in 2005, along
with the Pantanal cat (Leopardus braccatus), but taxonomists still disagree about
whether there is enough biological difference to validate the move. Despite their wide
range, relatively few specimens are captured for genetic testing.

The cover image is from J. G. Wood’s Animate Creation. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

http://theocacao.com/
http://cocoadevcentral.com/

	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Setup and First Run
	Download and Install Xcode
	Your First Application
	Create the Interface
	Set sizing properties

	Run the Finished Application

	Chapter 2. Thinking in Code: Basic C
	How Code Works
	How to Format Code
	Variables
	Types
	Constants
	Enumerated Types
	Typedefs

	Functions
	Declaring Functions

	Example: FirstProgram
	Displaying Values on the Command Line
	Compile and Run the Example

	Scope
	Static Variables

	Conditionals
	Example: ShoppingTrip
	Compile and Run

	Wrap Up

	Chapter 3. Memory and Pointers: Advanced C
	Arrays
	Loops
	Text Strings
	Multidimensional Arrays
	Pointers
	The Purpose of Pointers
	Using Pointers
	Pointers and the const Keyword

	Dynamic Memory
	Strings and Dynamic Memory
	Returning Strings from Functions

	Arrays of Strings
	Example: AddressBook
	Compile and Run the AddressBook Example

	Structs
	Header Files
	Compile and Run the HeaderFileTest Example
	Create Files for the Song Struct
	Final Example

	Chapter 4. Thinking in Objects
	Structs and Classes
	Designing Classes

	Accessors
	Inheritance
	Composition
	Object Lifetime
	Built-in Classes

	Chapter 5. Basic Objective-C
	NSString Basics
	Using Methods
	Nested Method Calls
	Multi-Input Methods

	Accessors
	Dot Syntax

	Creating Objects
	Basic Memory Management
	Using Autorelease Directly

	Declaring a Class
	Add Methods

	Implementing a Class
	init
	dealloc

	Example: PhotoInfo

	Chapter 6. More Objective-C
	More on Memory Management
	The Life of an Instance Variable
	Copying Objects

	Class Name Prefixes
	Properties
	Property Options
	Options for accessor implementations

	64-Bit Objective-C
	Enabling 64-Bit
	Should I Use 64-Bit?
	All Further Examples Assume 64-Bit

	Categories
	Categories for Private Methods

	Introspection
	Protocols
	Dynamic Messaging
	Using Selectors to Call Methods
	Forwarding Messages

	Exceptions
	Example: DataCollector
	Some New Classes and Methods
	Create the Files
	Build and Run

	Chapter 7. Foundation Value Classes
	NSString
	Ranges and Substrings
	Using NSString with C Types
	Comparing Strings for Equality
	Strings As File Paths
	Reading and Writing Files with Strings

	Mutability
	Advantages of Mutability
	Advantages of Immutability

	Core Foundation
	Memory Management
	Core Foundation Mutability
	Toll-Free Bridging
	Core Foundation Types As Properties
	Drawbacks of Core Foundation Types
	Open Source

	NSNumber
	CFNumberRef
	Cocoa Primitive Types
	NSDecimalNumber
	NSNumberFormatter
	When to Use Which Number Type

	NSData
	NSMutableData
	CFDataRef and CFMutableDataRef

	NSArray
	Fast Enumeration
	Blocks
	NSMutableArray
	CFArrayRef
	NSIndexSet

	NSDictionary
	NSMutableDictionary
	CFDictionaryRef

	NSSet
	NSMutableSet

	NSValue
	NSDate
	CFDateRef

	Chapter 8. Basic Controls
	How to Use This Chapter
	Windows and Views
	Targets and Actions
	Buttons
	Declaring Action Methods
	Connecting Actions
	Connecting actions from the HUD
	Connecting actions in code

	Menus
	Responder Chain
	Two meanings of first responder

	Pop-up Buttons
	Sliders
	Text Fields

	Outlets
	Datasources
	Table View Datasource Methods
	Implementing Datasource Methods

	Bindings
	Key-Value Protocols
	Key-Value Coding

	Bindings for Simple Controls
	Connect the bindings
	Run the application

	Bindings for Complex Controls
	Tips for Debugging Bindings

	Chapter 9. Designing Applications Using MVC
	About This Project
	Window Controllers
	View Controllers
	Core Data

	Create the Project Files
	Create the Entities
	Add Attributes and Relationships
	Update the App Delegate
	Add the Quartz Framework
	Create the Window Controller
	Create the View Controllers
	Browser view controller
	Editor view controller
	List view controller

	Create the Managed Object Classes
	Implement the photo class
	Implement the album class

	Create the User Interface
	Remove the Default Window
	Add the album menu

	Create the Main Window Interface
	Set window sizing
	Add controls
	Set up bindings
	Connect outlets and actions

	Create the Browser Interface
	Set up the album table
	Set up the image browser
	Set up bindings
	Connect outlets

	Create the Editor View Interface
	Create the List View Interface
	Set up bindings
	Connect outlets

	Run the Application
	Preparing for Release

	Chapter 10. Custom Views and Drawing
	Basic Geometry
	Geometry Structs As Strings
	Geometry Structs As NSValues
	Cocoa View Coordinates
	Derived Rects
	Comparison Functions

	Basic Drawing
	NSColor
	Subclassing NSView
	When to draw

	Instantiate the View
	Setting resizing values in code

	The Graphics Context

	Bezier Paths
	Drawing Polygons
	Drawing Curved Paths

	Images
	Loading Image Data
	Loading an image from your project
	Loading standard Cocoa artwork

	Drawing Images in a View
	Preserving aspect ratio

	Shadows
	Add a Shadow to StyledImageView

	Gradients
	Drawing a Gradient Background
	Drawing an Image Sheen
	Calculate the sheen path
	Add sheen properties and methods

	Refactoring View Code
	Why You Should Refactor
	Goals for Refactoring
	Symmetry in practice

	Refactored Header
	Refactored Implementation
	Test the Refactored Version

	Text
	Fonts
	Attributed Strings
	Paragraph styles
	Text sizes and vertical alignment

	Add a Title to StyledImageView

	Handling Mouse and Keyboard Events
	Keyboard Events
	Mouse Events
	Add Event Support to StyledImageView

	Chapter 11. The Final Word
	The List
	Websites
	Last Thought

	Index

