




Casimir Saternos

Client-Server Web Apps with
JavaScript and Java



Client-Server Web Apps with JavaScript and Java
by Casimir Saternos

Copyright © 2014 EzGraphs, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Allyson MacDonald
Production Editor: Kristen Brown
Copyeditor: Gillian McGarvey
Proofreader: Amanda Kersey

Indexer: Judith McConville
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

April 2014: First Edition

Revision History for the First Edition:

2014-03-27: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449369330 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Client-Server Web Apps with JavaScript and Java, the image of a large Indian civet, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36933-0

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449369330


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

1. Change Begets Change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Web Users                                                                                                                            2
Technology                                                                                                                          3
Software Development                                                                                                      4
What Has Not Changed                                                                                                    5

The Nature of the Web                                                                                                   6
Server-Driven Web Development Considered Harmful                                          7

Why Client-Server Web Applications?                                                                           8
Code Organization/Software Architecture                                                                 8
Flexibility of Design/Use of Open Source APIs                                                         8
Prototyping                                                                                                                     9
Developer Productivity                                                                                                  9
Application Performance                                                                                              9

Conclusion                                                                                                                        11

2. JavaScript and JavaScript Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
Learning JavaScript                                                                                                          14
JavaScript History                                                                                                            15
A Functional Language                                                                                                   16

Scope                                                                                                                              17
First-Class Functions                                                                                                   18
Function Declarations and Expressions                                                                    20
Function Invocations                                                                                                   22
Function Arguments                                                                                                    22
Objects                                                                                                                           23

JavaScript for Java Developers                                                                                        23
HelloWorld.java                                                                                                            23

iii



HelloWorld.java (with Variables)                                                                               27
Development Best Practices                                                                                           29

Coding Style and Conventions                                                                                   29
Browsers for Development                                                                                         29
Integrated Development Environments                                                                    30
Unit Testing                                                                                                                   31
Documentation                                                                                                             31

Project                                                                                                                                31

3. REST and JSON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
What Is REST?                                                                                                                  38

Resources                                                                                                                       38
Verbs (HTTP Request Methods)                                                                                38
Uniform Resource Identifiers                                                                                     39

REST Constraints                                                                                                             40
Client–Server                                                                                                                41
Stateless                                                                                                                          41
Cacheable                                                                                                                       42
Uniform Interface                                                                                                         42
Layered                                                                                                                           42
Code on Demand                                                                                                         43

HTTP Response Codes                                                                                                   43
What Is Success?                                                                                                           43

JSON (JavaScript Object Notation)                                                                               44
HATEOAS                                                                                                                         46

REST and JSON                                                                                                            47
API Measures and Classification                                                                                   48
Functional Programming and REST                                                                             49
Project                                                                                                                                50
Other Web API Tools                                                                                                      54
Constraints Redux                                                                                                           54

4. Java Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Java Language                                                                                                                   58
Java Virtual Machine (JVM)                                                                                           58
Java Tools                                                                                                                           60
Build Tools                                                                                                                        61

Benefits of Maven                                                                                                         63
Functionality of Maven                                                                                               64
Version Control                                                                                                            65
Unit Testing                                                                                                                   65

JSON Java Libraries                                                                                                         66

iv | Table of Contents



Projects                                                                                                                              66
Java with JSON                                                                                                             66
JVM Scripting Languages with JSON                                                                        69

Conclusion                                                                                                                        72

5. Client-Side Frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Overview                                                                                                                           75
Starting Point One: Responsive Web Design                                                               77

HTML5 Boilerplate                                                                                                      78
Bootstrap                                                                                                                       79

Starting Point Two: JavaScript Libraries and Frameworks                                        79
Browser Compatibility                                                                                                 79
Frameworks                                                                                                                   80
Functionality                                                                                                                 80
Popularity                                                                                                                      81

Obtaining Starter Projects                                                                                              82
Download Directly from Repositories                                                                      82
Download from Starter Sites                                                                                      82
IDE-Generated Starter Projects                                                                                 83

The Rise of the Front-End Engineer                                                                             83
Client-Side Templating                                                                                                84
Asset Pipelines                                                                                                              84
Development Workflow                                                                                              85

Project                                                                                                                                85
Conclusion                                                                                                                        88

6. Java Web API Servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Simpler Server-Side Solutions                                                                                        90
Java-Based Servers                                                                                                           91

Java HTTP Server                                                                                                         92
Embedded Jetty Server                                                                                                93
Restlet                                                                                                                             95
Roo                                                                                                                                 96
Embedded Netty Server                                                                                            100
Play Server                                                                                                                   102
Other Lightweight Server Solutions                                                                        105

JVM-Based Servers                                                                                                        105
Jython                                                                                                                           106

Web Application Servers                                                                                               107
Development Usage                                                                                                       107

Table of Contents | v



Conclusion                                                                                                                      107

7. Rapid Development Practices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Developer Productivity                                                                                                 109
Optimizing Developer and Team Workflow                                                              112

Example: Web Application Fix                                                                                 114
Example: Testing Integration                                                                                    115
Example: Greenfield Development                                                                          116

Productivity and the Software Development Life Cycle                                          117
Management and Culture                                                                                         117
Technical Architecture                                                                                              118
Software Tools                                                                                                             119
Performance                                                                                                                120
Testing                                                                                                                          120
Underlying Platform(s)                                                                                             122

Conclusion                                                                                                                      122

8. API Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
A Decision to Design                                                                                                     124
Practical Web APIs Versus RESTful APIs                                                                   125
Guidelines                                                                                                                       127

Nouns as Resources; Verbs as HTTP Actions                                                        127
Query Parameters as Modifiers                                                                                128
Web API Versions                                                                                                      129
HTTP Headers                                                                                                            130
Linking                                                                                                                         130
Responses                                                                                                                    130
Documentation                                                                                                           130
Formatting Conventions                                                                                           131
Security                                                                                                                        131

Project                                                                                                                              131
Running the Project                                                                                                   132
Server Code                                                                                                                 132
Curl and jQuery                                                                                                         134

Theory in Practice                                                                                                         135

9. jQuery and Jython. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
Server Side: Jython                                                                                                         138

Python Web Server                                                                                                    138
Jython Web Server                                                                                                      138
Mock APIs                                                                                                                   139

Client Side: jQuery                                                                                                         140

vi | Table of Contents



DOM Traversal and Manipulation                                                                          141
Utility Functions                                                                                                         142
Effects                                                                                                                           142
Event Handling                                                                                                           143
Ajax                                                                                                                               143

jQuery and Higher-Level Abstractions                                                                       143
Project                                                                                                                              144

Basic HTML                                                                                                                145
JavaScript and jQuery                                                                                                145

Conclusion                                                                                                                      147

10. JRuby and Angular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149
Server Side: JRuby and Sinatra                                                                                     150

Workflow                                                                                                                     150
Interactive Ruby Shell                                                                                                151
Ruby Version Manager (RVM)                                                                                151
Packages                                                                                                                       152
Sinatra                                                                                                                          153
JSON Processing                                                                                                        154

Client Side: AngularJS                                                                                                   155
Model                                                                                                                           155
Views                                                                                                                            156
Controllers                                                                                                                  156
Services                                                                                                                        156

Comparing jQuery and Angular                                                                                 156
DOM Versus Model Manipulation                                                                          157
Unobtrusiveness of Angular                                                                                     157

Project                                                                                                                              158
Conclusion                                                                                                                      165

11. Packaging and Deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Java and JEE Packaging                                                                                                 167
JEE Deployment                                                                                                             169

GUI Administration                                                                                                  171
Command-Line Administration                                                                              173

Non-JEE Deployment                                                                                                   174
Server Outside                                                                                                            175
Server Alongside                                                                                                        176
Server Inside                                                                                                               177

Implications of Deployment Choice                                                                           178
Load Balancing                                                                                                           178
Automating Application Deployment                                                                     180

Table of Contents | vii



Project                                                                                                                              181
Client                                                                                                                            181
Server                                                                                                                           182

Conclusion                                                                                                                      182

12. Virtualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Full Virtualization                                                                                                          183
Virtual Machine Implementations                                                                              185

VMWare                                                                                                                      185
VirtualBox                                                                                                                   185
Amazon EC2                                                                                                               186

Management of Virtual Machines                                                                               186
Vagrant                                                                                                                         186
Packer                                                                                                                           186
DevOps Configuration Management                                                                      187

Containers                                                                                                                       188
LXC                                                                                                                              188
Docker                                                                                                                         189

Project                                                                                                                              190
Docker Help                                                                                                                191
Image and Container Maintenance                                                                         191
Java on Docker                                                                                                            192
Docker and Vagrant Networking                                                                             194

Conclusion                                                                                                                      195

13. Testing and Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
Types of Testing                                                                                                              198

Formal Versus Informal                                                                                            198
Extent of Testing                                                                                                         198
Who Tests What for Whom?                                                                                    199

Testing as an Indicator of Organizational Maturity                                                  199
CMM to Assess Process Uniformity                                                                       200
Maven to Promote Uniform Processes                                                                   200
BDD to Promote Uniform Processes                                                                      202

Testing Frameworks                                                                                                      203
JUnit                                                                                                                             204
Jasmine                                                                                                                         205
Cucumber                                                                                                                    205

Project                                                                                                                              206
JUnit                                                                                                                             207
Jasmine                                                                                                                         207
Cucumber                                                                                                                    209

viii | Table of Contents



Maven Site Reports                                                                                                    209
Conclusion                                                                                                                      210

14. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211
Community                                                                                                                     211
History                                                                                                                             212
Coda                                                                                                                                 212

A. JRuby IRB and Java API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213

B. RESTful Web API Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

C. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229

Table of Contents | ix





There are only two hard things in Computer
Science: cache invalidation and naming things.

—Phil Karlton

Preface

While cache invalidation is not a difficulty encountered when writing a book, choosing
a suitable title is. The title of this book is intended to represent a broad area of changes
in web development that have resulted in a new approach to designing web applications.

Of course, many aspects of web development can be considered new. Developers scram‐
ble to keep up with enhancements to desktop browsers, new mobile device clients,
evolving programming languages, the availability of faster processors, and an increas‐
ingly discerning audience of users with growing expectations about usability and in‐
teractivity. These changes require developers to continually innovate when coming up
with solutions for their specific projects. But many of these solutions have broader
implications and are not isolated to any particular project.

Therefore, I chose “client-server” as the term which in many ways captures the changes
to web development that have occurred in response to these innovations. Other de‐
scriptions of modern development practices currently in vogue don’t adequately rep‐
resent the problem domain. Web application development is associated with desktop
browsers, but excludes the increasingly relevant area of mobile applications.

The terms Single Page Application and Single Page Interface have been used to distin‐
guish modern web applications from earlier static websites. These terms correctly iden‐
tify modern sites as far more dynamic and interactive than their predecessors.

However, many modern dynamic applications are made up of multiple pages rather
than a single page. The focus in these terms is on the page, the client portion of an
application. They make no specific statement about corresponding server-side devel‐
opment. There are JavaScript frameworks that are also associated with highly dynamic
pages (such as Angular, Ember, and Backbone), but these are also concerned with the

xi



client tier. I wanted the title of this book to encompass more than front-end innovations
and to recognize the corresponding server-side design and web service messaging.

The method of communication captured by the popular acronym REST (Representa‐
tional State Transfer) does suggest the web service messaging style. But the definition
of REST as specified by its author Roy Fielding is very limiting. On his blog, Fielding
lists specific restrictions to REST that are commonly violated in so-called RESTful APIs.
And some even question whether a JSON API can be truly RESTful due to the fact that
it does not satisfy all of the constraints associated with the style of architecture. There
is a continuum by which REST services can be described; so that an API can be described
as RESTful only to the degree that it adheres to the constraints. REST does include client-
server as one of its constraints, and the verb and URL naming conventions are certainly
applicable.

So a JavaScript client consuming messages from a pragmatic “RESTful” API is a signif‐
icant part of the method of development. What about the server component?

Java Enterprise Edition (JEE) includes the JAX-RS API, which uses Java’s flavor of REST
(which is not inherently strict) and is demonstrable using the Jersey reference imple‐
mentation. But limiting to JAX-RS web application development ignores frameworks
and alternate JVM language solutions that are available and particularly appealing for
quick prototypes.

And so crystallizing the intentions of a book in a simple, catchy title is not an easy task.
Fortunately, James Ward did a presentation at OSCON 2012 in which he described the
development of “Client-Server Web Applications with HTML5 and Java.” He listed the
benefits of a method of web application development that is increasingly popular, a
method that I have been involved with in recent years on various projects. And the
phrase “client-server” is the key to understanding what this method is. It captures the
fundamental architectural changes that include aspects of the terms listed above, but
represents the distinct partitioning between the client and server and considers each of
the roles significant.

A client-server architecture of web applications requires a shift (in some cases seismic)
in the way programmers work. This book was written to enable developers to deal with
this revolution. Specifically, it is intended to provide a proper perspective in building
the latest incarnation of modern web applications.

Who Is This Book For?
This book is written for web application developers who are are familiar with the Java
programming language, as well as HTML, JavaScript, and CSS. It is geared toward those
who “learn by doing” and prefer to see and create specific examples of new technologies
and techniques integrated with standard tools. If you want a better understanding of

xii | Preface

http://bit.ly/1g7Min9
http://bit.ly/1lDCAuh
http://bit.ly/1fh2AGt
http://bit.ly/1bXOKei
http://www.jamesward.com


recent developments in JavaScript and how the language and its development process
compare with those of Java, this book is for you.

A bit of a balancing act is evident as you read this book. On the one hand, the most
important thing you can take away is a sense of the “big picture”—the influences and
trends causing a shift in the technologies in use. On the other hand, technologies are
often best understood by seeing specific examples. If you are interested in an overview
of how these technologies actually fit together, you will benefit from this book.

My goal in writing this is to help you to make informed decisions. Good decisions result
in the right technologies being used on new projects. They allow you to avoid pitfalls
caused by mixing incompatible technologies or having the wrong expectations about
the implications of a given decision. They help you to step into projects in process and
better support existing code. In short, informed decisions will make you a more pro‐
ductive programmer. They help you make effective use of your time in researching areas
of specific interest in your work now and in the future.

How This Book Is Organized
Chapter 1 provides a general overview of the client-server web application architecture.
It discusses the history of web development and provides a justification for the paradigm
shift in development. This leads into the next three chapters that will describe the tools
used in the development process.

Chapter 2 describes JavaScript and the tools used in JavaScript development.

Chapter 3 introduces web API design, REST, and the tools used when developing
RESTful applications over HTTP.

Chapter 4 pertains to Java and other software that’s used in the remainder of this book.

The next section of the book discusses higher-level constructs (such as client libraries
and application servers) and how these provide separation and allow for rapid devel‐
opment.

Chapter 5 describes major client-side JavaScript frameworks.

Chapter 6 addresses Java API servers and services.

Chapter 7 discusses rapid development practices.

Chapter 8 delves into API design in greater depth.

With an understanding of libraries and a process for speedy development of prototypes,
the next several chapters apply these to specific projects using various JVM languages
and frameworks. The next two chapters use lightweight web servers and microframe‐
works instead of traditional Java web application packaging and servers.

Chapter 9 provides an overview of a project using jQuery and Jython.

Preface | xiii



Chapter 10 documents the development of a project using JRuby and Angular.

The final chapters detail projects using traditional Java web application servers and
libraries.

Chapter 11 looks at the range of packaging and deployment options available in the Java
ecosystem.

Chapter 12 explores virtualization and innovations emerging from the management of
large server environments.

Chapter 13 draws attention to testing and documentation.

Chapter 14 wraps up with some final thoughts on responding to the tumultuous changes
to Internet-related technologies and software development.

Appendix A describes how to explore and manipulate Java classes interactively.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to variables, method
names, and other code elements, as well as the contents of files.

Constant width bold

Highlights new code in an example.

Constant width italic

Shows text that should be replaced with user-supplied values.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

xiv | Preface



Code Examples
Projects and code examples in this book are hosted on https://github.com/java-
javascript/client-server-web-apps. You can view them online or download a .zip file for
local use. The assets are organized by chapter.

The code examples provided in this book are geared toward illustrating specific func‐
tionality rather than addressing all concerns of a fully functional application. Differ‐
ences include:

• Production systems include greater refinement of selected data types, validation
rules, exception handing routines, and logging mechanisms.

• Most production systems will include one or more backend datastores. To limit the
scope of discussion, databases are not accessed in most of the examples.

• The modern web application includes a large amount of infrastructure geared to‐
ward mobile device access and browser compatibility. Again, unless these are the
specific topic of discussion, responsive design is eschewed for a more minimal
design.

• The practice of some degree of unobtrusive JavaScript to separate CSS and Java‐
Script from HTML is a generally accepted best practice. In the examples in this
book, they are frequently commingled because all aspects of a given application can
be immediately apprised by viewing a single file.

• Unit tests and testing examples are only included when they are directly related to
the topic under discussion. Production systems would include far greater test cov‐
erage and extensive testing in general.

That said, this book is intended to help you get your job done. In general, you may use
the code in this book in your programs and documentation. You do not need to contact
us for permission unless you are reproducing a significant portion of the code. For
example, writing a program that uses several sections of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Client-Server Web Apps with JavaScript
and Java” by Casimir Saternos (O’Reilly). Copyright 2014 EzGraphs, LLC.,
978-1-449-36933-0.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Preface | xv

https://github.com/java-javascript/client-server-web-apps
https://github.com/java-javascript/client-server-web-apps
http://bit.ly/1hcCHOX
http://bit.ly/1guPBTM
mailto:permissions@oreilly.com


Long Command Formats
Code displayed inline will be adjusted to be readable in this context. One convention
used is that of backslashes to allow newlines in operating system commands. So for
instance, the following commands are equivalent and would execute the same way in a
bash session. (Bash is a standard operating system shell that you see when accessing a
Linux server or Mac OS X at the command line.)

ls -l *someVeryLongName*
...
ls -l \
*someVeryLongName*

The same convention also appears in other settings where OS commands are used, such
as Dockerfiles.

Similarly, JSON strings, being valid JavaScript, can be broken up to fit on multiple lines:

o={"name": "really long string here and includes many words"}

// The following, as expected, evaluates to true.
JSON.stringify(o)=='{"name":"really long string here and includes many words"}'

// The same string broken into multiple lines is equivalent.
// So the following statement also evaluates to true.
JSON.stringify(o)=='{"name":' +
                   '"some really long ' +
                   'JSON string is here' +
                   ' and includes many, many words"}'

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xvi | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/


How to Contact Us
Every example in this book has been tested, but occasionally you may encounter prob‐
lems. Mistakes and oversights can occur and we will gratefully receive details of any that
you find, as well as any suggestions you would like to make for future editions. Please
address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/client-server-web-apps-js.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thank you to the following people:

• Meg, Ally, Simon, and the gang at O’Reilly for the opportunity to write this book.
• My brother Neal Saternos and Dr. James Femister for the early suggestions from

days gone by that I might be able to do the “programming thing.”
• Michael Bellomo, Don Deasey, and Scott Miller for their time and expertise as

technical reviewers.
• Charles Leo Saternos for taking a break from Lua game development to do some

fine image and design work.
• Caleb Lewis Saternos for inspiration in perserverence (early morning run anyone?)

and editorial work.
• David Amidon for the first opportunity to work as a software developer and Doug

Pelletier for first the opportunity to develop Java web apps.

Preface | xvii

http://oreil.ly/client-server-web-apps-js
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


• All the folks that headed up the projects that inspired this book, including managers
Wayne Hefner, Tony Powell, Dave Berry, Jay Colson, and Pat Doran, and chief
software architects Eric Fedok and Michael Bellomo.

• Geoffrey Grosenbach from PluralSight, Nat Dunn from Webucator, Caroline Kvit‐
ka (and others from Oracle and Java Magazine) for technical writing opportunities
over the past several years that led to the current one.

• My parents Leo and Clara Saternos for bringing me up in a loving household that
included a Radio Shack Color Computer when having a PC at home was still a
novelty and my sister Lori for reminders of important things that have nothing to
do with programming.

My love and thanks to my wonderful wife Christina and children Clara Jean, Charles
Leo, Caleb Lewis, and Charlotte Olivia for the consistent love, support, patience, and
inspiration while this project was underway.

Finally, J.S. Bach serves as a creative inspiration on many levels. Not the least of which
is the dedication that would appear at the beginning of his works—and so I say with
him, Soli Deo Gloria.

xviii | Preface

http://pluralsight.com/training
http://www.webucator.com
http://bit.ly/1fZijLH


The entrepreneur always searches for a change,
responds to it, and exploits it as an opportunity.

—Peter Drucker

CHAPTER 1

Change Begets Change

What kinds of changes encourage developers to adopt a client-server approach? Shifts
in user behavior, technology, and software development process are the significant
forces that have driven developers to change their patterns of design. Each of these
factors, in a unique and significant way, makes established patterns obsolete. Together
they have encouraged related innovations and a convergence in practice despite the
absence of enforcement or mandated standardization.

Web users have changed. In the early days of the Web, users were satisfied with static
pages and primitive user interfaces. The modern web user has come to expect a high-
performance, interactive, well-designed, dynamic experience. These higher expecta‐
tions were met with an explosion in new technologies and expansion of web browser
capabilities. Today’s web developer needs to use tools and a development approach that
are aligned with the modern web scene.

Technology has changed. Browsers and JavaScript engines are faster. Workstations and
laptops are far more powerful, to say nothing of the plethora of mobile devices now
being used to surf the Web. Web service APIs are the expectation for a modern web
application rather than a rare additional feature. Cloud computing is revolutionizing
the deployment and operation of web applications.

1



Software development has changed. The now popular “Agile Manifesto” values:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

It is now possible to quickly spin up web applications that prove—at least on a small
scale—the viability of a given technology. There is tremendous value to prototyping. As
Fred Brooks, author of The Mythical Man Month (Addison-Wesley Professional), fa‐
mously stated: “Plan to throw one away; you will, anyhow.” A prototype can allow for
early customer or end user interaction that helps solidify requirements early in the
process. It is no longer an insurmountable task to write a functional web application in
a matter of minutes.

Web Users
Modern web application users have well-defined expectations about how they will be
able to interact with a web application:

• Web applications will be available across multiple platforms.
• They will provide a consistent experience across devices.
• They will respond with little or no latency.

The Gartner group claims that in 2014, the personal cloud will replace the PC at the
center of users’ digital lives. There are many implications for web app development.
Users are more technologically savvy and have high expectations for site responsiveness.
They are less passive than in previous years and instead are interactive and engaged.
Websites need to be designed in a way that suggests no limitations in the ability of a
browser to mimic native application experience.

Users expect an application to be exposed in various ways and available in different
situations. Responsive design and support for multiple browsers, platforms, and devices
are the new norm. The use of JavaScript libraries and frameworks is essential to support
the wide variety of target clients.

The New York Times recently reported on the impatience of web users. Among its
findings: a company’s website will be visited less often than that of a close competitor if
it is slower by more than 250 milliseconds. Performance needs to be a key consideration
in web application development.

2 | Chapter 1: Change Begets Change

http://gtnr.it/1omcPRg
http://nyti.ms/1esukXm


Technology
Java web application developers are typically familiar with server-side dynamic content.
J2EE and JSP have been refined into JEE and JSF. Projects such as Spring provide ad‐
ditional capabilities geared toward server-side development. This mode of development
made a great deal of sense in the early days of the Web, when web pages were relatively
static, servers were relatively fast, JavaScript engines were slow, and there were few
libraries and techniques to address browser incompatibilities.

By way of contrast, a modern client-server approach involves a server largely responsible
for providing access to resources (typically communicated as messages in XML or
JSON) in response to client requests. In the old server-driven approach, the browser
requested an entire page and it was generated (along with relevant data) for rendering
in the browser. In the client-server approach, the server initially serves pages with little
data. The pages make asynchronous requests to the server as the user interacts with it
and the server simply responds to these events with messages that cause the current
page to be updated.

Initial web development efforts consisted of the creation of static HTML sites. Later,
these sites were augmented with dynamic content using server-side processing (CGI,
Java Servlets). Subsequently, more structured language integration emerged using
server-side templating (ASP, PHP, JSP) and MVC frameworks. More recent technologies
continue in the same tradition and provide additional abstractions of one sort or
another.

Based upon a desire to shield developers from design concerns and the underlying
architecture of the Web, component-based frameworks have emerged. Tag libraries were
an early innovation, and now a component-based approach has been widely adopted
in several popular frameworks:

• Java Server Faces (JSF), an XML-based templating system and component frame‐
work with centralized configurable navigation.

• The Google Web Toolkit is another component framework that leverages the abil‐
ities of Java programmers by letting them focus on Java coding with little need to
directly modify HTML, CSS, or JavaScript.

Each of these frameworks has its place and has been used successfully in production
systems. But like many solutions that try to hide underlying complexities, their usage
is problematic in situations where you need greater control (such as the ability to inte‐
grate large amounts of JavaScript) or you do not conform to the framework assumptions
(for instance, availability of server sessions). This is because these solutions attempt to
hide the fundamental architecture of the Web, which uses an HTTP request-response
protocol following the client-server computing model.

Technology | 3



Browser innovations also led to a shift of responsibility from the server to the client. In
the late 1990s, Microsoft developed the underlying technologies that led to Ajax (a term
coined on February 18, 2005 by Jesse James Garrett). Ajax is an acronym for “asyn‐
chronous JavaScript and XML,” but is more generally applied to various technologies
used to communicate with the server within the context of a given web page. This
allowed small messages to be sent, which made better use of bandwidth when designing
JavaScript-based web applications. Browser performance has increased significantly due
to processor improvements and optimizations to JavaScript engines, so it has made
sense to offload more work from the server to the browser. User interface responsiveness
has evolved to a new level of sophistication.

Mobile device browsers have also provided an additional incentive to further isolate
client-side code from the server. In some cases, a well-designed application leveraging
responsive design principles can be created. If this is not an option, a single consistent
API available for all device clients is very appealing.

Roy Fielding’s doctoral dissertation in 2000 led Java EE 6 to new APIs that deviated from
the previous component-based trajectory. JAX-RS (Java API for RESTful Web Services)
and Jersey (a “production quality reference implementation”) are designed to create
applications reflecting a client-server architecture with RESTful communications.

Software Development
In the past, setting up a new Java project was a rather monumental task. A vast array of
configuration options made it tedious and error-prone. Very little was automated, as
the assumption was that each project would have unique characteristics that developers
would want to account for to meet their specific requirements.

Later influences led to innovations that made setting up a project much simpler. “Con‐
vention over configuration” was an influential mantra of the Ruby on Rails community.
Maven and other Java projects also chose sensible defaults and target easy setup for a
subset of popular use cases.

The availability of scripting languages on the JVM makes it possible to speed develop‐
ment by bypassing the somewhat rigorous type checking of Java. Languages like Groovy,
Python (Jython), and Ruby are loosely typed and constructed in a manner that requires
less code to accomplish equivalent functionality. So-called microframeworks like Sina‐
tra or Play provide minimal Domain Specific Languages (DSLs) to quickly write web
applications and services. And so today, it is a trivial task to set up a minimal set of web
services in a development environment.

The failure of enough large-scale waterfall-style software projects has also made it clear
that there are many advantages to producing a small-scale version of the final product.
A prototype (or prototypes) of the final product can serve many purposes:

4 | Chapter 1: Change Begets Change

http://bit.ly/MLOLbU


• Verify technical foundation of the project
• Create constructs that bridge disparate technologies to be used together
• Allow end user interaction to clarify intended usage and user interface design
• Allow system designers to clarify the interfaces and data structures to be passed

between systems
• Allow programmers to work on different parts of the application in parallel

Prototypes have numerous benefits:

• They are a specific, tangible asset representing the final system to be designed. As
such, they incorporate information that is otherwise stored in design documents,
diagrams, and other artifacts (and frequently in more informal locations like email
and people’s memories of water-cooler conversations).

• Prototypes are concrete implementations. As such, they present the requirements
in a much more tangible form. This can lead to a better understanding of the extent
and quality of the requirements gathered, and can suggest areas where there is need
of clarification.

• Prototypes can immediately expose potential points of failure that are not apparent
before attempting a specific implementation.

• The preceding benefits can lead to better estimates and scheduling due to a more
comprehensive understanding of what is intended.

Prototyping can be leveraged extensively in client-server web application development
because of the clear and unambiguous separation between the client and server. Pro‐
totypes of the server can be provided to the client developers (and vice versa) while
development proceeds in parallel. Or if development is not proceeding in parallel,
server-side calls can be quickly stubbed out so that client-side code can be developed.

What Has Not Changed
The fundamental nature of the Web (a client-server architecture transmitted over
HTTP) has not changed.

New technology does not change everything. High-level programming languages have
not removed the need to understand operating system specifics. Object-relational map‐
ping frameworks have not removed the need to understand relational databases and
SQL. In like manner, there have been consistent attempts to ignore the underlying ar‐
chitecture of the Web in an effort to emulate the experience of desktop applications.

What Has Not Changed | 5



Medium Specificity
Medium specificity is a term that appears in aesthetics and modern art criticism but
which can be applied to technology as well. It indicates the “appropriateness” of a given
artistic subject to be presented by a given medium. The idea has been around for cen‐
turies. Gotthold Ephraim Lessing states in his Lacoon:

[B]odies, with their visible properties, are the legitimate subjects of painting. [A]ctions
are [therefore] the legitimate subjects of poetry.

— The Limits of Poetry and Painting

Its application in modern art is usually to challenge traditional limits that appeared in
the arts. Technology is a creative activity, but our primary concern is working systems,
not abstract beauty. The idea of medium specificity is important in that, if you ignore
the underlying nature of a platform, the resulting system will never perform in an optimal
manner or will not work at all. This has become painfully obvious in many areas of
technology. The goal of this book is to promote web application design strategies that
are aligned with the way the Web itself is designed. Such applications operate well be‐
cause they work within the Web’s fundamental constraints rather than ignoring them.

The Nature of the Web
The essence of the Web has not changed. It is still made up of servers that serve HTML
documents to clients via the HTTP protocol. See Figure 1-1.

Figure 1-1. HTTP request and response

A client-server web architecture more closely maps to the underlying architecture of
the Web itself. Although not technically protocol-specific, REST was developed based
upon and in conjunction with HTTP. REST essentially defines constraints on the usage
of HTTP. It seeks to describe a well-designed web application: a reliable application that
performs well, scales, has a simple elegant design, and can be easily modified
(Figure 1-2).

6 | Chapter 1: Change Begets Change



Figure 1-2. REST request and response

In fact, to more accurately emphasize the challenges in the modern web environment,
we need to consider multiple devices and cloud deployments. See Figure 1-3.

Figure 1-3. Multiple devices and cloud deployments

The specific area of “medium specificity” that has been ignored in web development in
general (and in component frameworks in particular) is the stateless, client-server na‐
ture of the Web itself.

Server-Driven Web Development Considered Harmful
Just because a given feature is available does not mean that it should be used. In many
cases, a server-driven, component-based approach to web development should be re‐
placed with a client-server one. Server-driven approaches obscure the nature of the Web
itself, which is a client-server technology built on the HTTP protocol. Ignoring or ob‐
scuring the fundamental underlying architecture of the Web makes development, de‐
bugging, and support of software systems more difficult. The intention, to make the
Web somehow simpler or easier to understand, breaks down rather quickly in any non‐
trivial system where there needs to be a clear understanding what functionality is avail‐
able and how the system actually works.

What Has Not Changed | 7



Considered Harmful
In 1968, Edsger W. Dijkstra published a letter entitled “Go To Statement Considered
Harmful.” Besides being of interest because it made a considerable impact on reducing
the use of the goto statement in structured programming, it introduced the phrase
“considered harmful” into hacker culture. Tom Christiansen argued against program‐
ming in csh. Douglas Crawford published a blog post entitled “with Statement Consid‐
ered Harmful”. The phrase has appeared in many other settings as well, and despite the
amusingly self-referential “‘Considered Harmful’ Essays Considered Harmful” by Eric
A. Meyer, the phrase continues to appear.

Although “Considered Harmful” attention articles are not always of equal merit, the
theme arises out of a valid recognition that just because a language feature or technical
solution is available, does not mean it is a great general purpose, long-term solution.

Why Client-Server Web Applications?
There are a number of advantages to a client-server approach to web development.

Code Organization/Software Architecture
There are clear advantages to being able to decouple logical sections of code and promote
higher cohesion both in the original construction and ongoing support of any system.
The clear separation between client and server tiers makes for manageable, modular
sections of code. In addition, data and display markup can be more clearly separated.
The data can be delivered in JSON rather than inline. This is consistent with the modern
JavaScript notion of unobtrusive JavaScript where a page’s behavior, structure, and pre‐
sentation are separated.

Flexibility and code reuse are a logical outcome of good code organization. There is
flexibility at many stages in the application life cycle when sections of code can be de‐
veloped in relative isolation (APIs can be exposed, mobile device clients created, new
versions of sections of the application tested and released independently). Code reuse
is more likely when there are clear components. At minimum, the same RESTful APIs
can be used to serve data to a wide variety of browsers and mobile devices.

Component approaches tend to introduce brittle coupling and are less adaptable. There
is no way to plug in a different frontend easily.

Flexibility of Design/Use of Open Source APIs
Component-based approaches include tightly integrated server-side code that requires
specific JavaScript technology. They also generate HTML and CSS that limits the options

8 | Chapter 1: Change Begets Change

http://bit.ly/1lEk8S9
http://bit.ly/1lEk8S9
http://bit.ly/1kCBW1U
http://bit.ly/1kCBW1U
http://bit.ly/1lEk4C1


available from a design and behavior perspective. A distinct client running JavaScript
can take advantage of the latest libraries that ease browser compatibility, standardize
DOM manipulation, and provide complex widgets.

Prototyping
Prototyping works well with client-server web applications due to the clear separation
between tiers. As previously mentioned, prototypes can test and verify initial ideals.
They help clarify vague notions and facilitate clear communication regarding require‐
ments. They can inspire and generate new ideas as people interact with something more
concrete than a long text description or a series of pictures. Bad ideas and inconsistencies
can be quickly recognized and eliminated. Used correctly, prototypes can save time,
money, and resources and result in a better final product.

Developer Productivity
Besides the ability to prototype either the client portion or the server component (or
both), work can be split clearly, and development can progress in parallel. The separation
allows sections of code to be built in isolation. This prevents the problem in component
approaches where a server build is required every time a page is changed during de‐
velopment. Development tasks require less time and effort, changes are less complex,
and troubleshooting is simplified.

This is especially evident when a need arises to replace, upgrade, or relocate server-side
code. Such changes can be done independently, without affecting the client. The only
limitation is that the original interface, specifically the URL and message data structure,
must remain available.

Application Performance
User experience is greatly impacted by the perceived performance of a page in the
browser. Faster JavaScript engines allow the client to perform computationally intensive
operations so server workload can be effectively offloaded to the client. Ajax requires
relatively small amounts of data to be retrieved when needed so full page reloads can
occur infrequently and less data is sent in the intervening requests. Users perceive a
snappier, more immediate response as they interact with an application.

There are many benefits to stateless design that ease the lives of developers and support
staff. Resources dedicated to session management can be freed up. This simplifies load-
balancing and configuration that would otherwise be required. Servers can be easily
added to accommodate increased load allowing for horizontal scalability. This replaces
the unwieldy process of hardware upgrades traditionally used to increase throughput
and performance.

Why Client-Server Web Applications? | 9



The benefits even extend to the simplification of the overall architecture of a system.
For instance, problems related to maintaining state are extremely challenging in a cloud-
based environment. When using traditional stateful sessions, it is challenging to effi‐
ciently persist data so that it is readily available across multiple requests within a user’s
session. If data is stored on a backend server, subsequent requests directed to different
servers will not have access to it. Possible solutions include:

• Use an application server that supports clustering and failover. Weblogic uses the
concept of managed servers, for instance. These solutions require additional man‐
agement and vary in each application server implementation.

• Use session affinity or sticky sessions. In this scenario, all requests within a user
session are sent to the same backend server. This does not provide automatic
failover.

• Utilize a separate centralized data store. Typically this involves persisting data in a
database. This option may not provide the best performance.

• Store the data on the client side. This avoids the performance problems associated
with storing session data in a database as well as the failover issues with sticky
sessions. This is because any backend server can handle each client’s request.

The move toward avoiding server-side state management is becoming more prevalent.
Even a framework like JSF, which is designed for the traditional server-side management
of user sessions, is adding features to allow for stateless functionality.

There are a few inherent challenges with creating client-server applications. It is nec‐
essary to embrace JavaScript as a first-class development language in its own right. This
means learning the language in some depth, utilizing available libraries, and adopting
mature development techniques. Areas of application architecture that were previously
generally accepted require a different design, such as standard practices regarding ses‐
sion management. There is no carefully defined standard for client-server web appli‐
cations. Certain parts of JEE, such as JAX-RS, provide some clarification; others such
as JSF do not apply.

Beyond the initial learning (and unlearning) curve, a client-server approach for building
web applications is extremely effective and stable. The clear separation of responsibil‐
ities between client and server allow for easy modification extension to a code base. A
recognition of the essential nature of the Web reduces problems that result from at‐
tempting to obscure its design. The capacity for horizontal scalability far exceeds what
is possible using other patterns of design.

10 | Chapter 1: Change Begets Change



Conclusion
New challenges and developments afford new opportunities. A client-server web ap‐
plication design is a natural response that recognizes and accounts for the changes to
the Web and web development. And it does so in a way that recognizes what has not
changed, and so can allow for development of stable, enduring solutions that are well-
positioned for future enhancements.

Conclusion | 11





JavaScript is most despised because it isn’t SOME OTHER LANGUAGE.
If you are good in SOME OTHER LANGUAGE and you have to program

in an environment that only supports JavaScript, then you are forced to
use JavaScript, and that is annoying. Most people in that situation don’t

even bother to learn JavaScript first, and then they are surprised when
JavaScript turns out to have significant differences from the SOME

OTHER LANGUAGE they would rather be using, and that
those differences matter.

—Douglas Crockford

CHAPTER 2

JavaScript and JavaScript Tools

Thus Douglas Crockford summarizes JavaScript as the language that many use but few
learn. His book goes on to identify parts of the language that are legitimately useful and
powerful and points out others that are truly problematic and best avoided. If you are
a programmer required to extensively use JavaScript, it simply makes sense to take the
time and energy to study it thoroughly. Crockford’s approach makes the programmer’s
learning task more manageable by effectively ignoring large parts of the language and
focusing on a powerful and concise subset.

In addition to learning JavaScript itself (later standardized under the name ECMA‐
Script), you need to invest time learning about the specific programming environment.
While other languages run on underlying operating systems, relational databases, or
host applications, JavaScript was designed originally to run in a browser. The ECMA‐
Script Language Specification explicitly states this.

ECMAScript was originally designed to be a Web scripting language, providing a mech‐
anism to enliven Web pages in browsers and to perform server computation as part of a
Web-based client-server architecture.

— ECMAScript Language Specification

The core JavaScript language needs to be understood in relation to two distinct APIs:
the Browser Object Model (BOM) and the Document Object Model (DOM). The BOM

13

http://bit.ly/1m9b0IQ
http://bit.ly/1m9b0IQ


consists of a window and its child objects: navigator, history, screen, location, and
document. The document object is the root node of the DOM, a hierarchical tree rep‐
resentation of the contents of the page itself. Some of the complaints about JavaScript
are actually due to issues with BOM or DOM implementations. Development of Java‐
Script in a web browser cannot be done effectively without a thorough understanding
of these APIs.

The remainder of this chapter will introduce the main topics that need to be understood
in a browser JavaScript development. It will not be exhaustive or comprehensive, but
will highlight the necessary starting points and categories that you need to understand
in order to develop an in-depth understanding of the language.

Learning JavaScript
The Java language has been widely adopted in educational settings. Developer certifi‐
cations have been available for a number of years. There is therefore a well-understood,
standardized, general, common body of knowledge associated with Java. Java is often
learned first in the classroom, and professionals obtain certification after a fairly defined
program of self-study. The same cannot be said of JavaScript, but there are a number of
good books on JavaScript:

• JavaScript: The Good Parts (O’Reilly), by Douglas Crockford, has been mentioned
already. It has become fashionable in some circles to take issue with Crockford at
various points, but that is because he is a recognized authority who has helped shape
the thinking of many JavaScript developers. In some cases, he provides arguably
overly strict “rules of thumb,” but you will do yourself a great disservice if you don’t
understand the subset of the language he considers “the good parts” and the parts
he avoids.

• Secrets of the JavaScript Ninja (Manning Publications) is by John Resig and Bear
Bibeault. John Resig is the author of jQuery and as such has a broad understanding
of practical challenges related to browser compatibility and DOM implementations.

• Several books are closer to standard language reference texts, including JavaScript:
The Definitive Guide (O’Reilly) and Professional JavaScript for Web Development
by Nicholas C. Zakas (Wrox Press). These are more comprehensive (and less opin‐
ionated) than the previous two books. They may not be the type of book you would
read end to end, but they are invaluable for delving into specific topics.

This section will not attempt to replicate all that you can learn from these and other
books, but will provide starting points for you to evaluate your own knowledge of Java‐
Script. Additional books and resources will be referenced throughout the chapter that
you can consult if you encounter terms or concepts you want to research further.

14 | Chapter 2: JavaScript and JavaScript Tools

http://oreil.ly/javascript-tgp
http://amzn.to/1cx8vGq
http://oreil.ly/javascript-tdg-6e
http://oreil.ly/javascript-tdg-6e
http://amzn.to/1eQLcNI


Conscious Competence
A crucial step in the learning process is to be aware of what you know relative to what
can be known. There is a documented cognitive bias known as the Dunning–Kruger
effect. It describes a tendency for unskilled individuals to mistakenly rate their ability
as much higher than average. Because of the confusion related to JavaScript and the
frequency with which it is dismissed as a “toy language,” the goal of this section (related
to the “conscious competence” learning model) is to raise awareness of what there is to
learn.

JavaScript History
The history of JavaScript is well documented, originating with Brendan Eich writing
the initial version in 10 days in 1995. But it is instructive to consider JavaScript in light
of earlier computer science history, especially in relation to Lisp, the second-oldest high-
level programming language in existence. Lisp was invented by John McCarthy in 1958
(one year after Fortran) as a practical mathematical notation for computer programs.
Scheme is one of the two main dialects of Lisp. Strangely enough, Scheme plays a sig‐
nificant part in JavaScript’s history despite being a stark contrast in language design.
Figure 2-1 illustrates some of the significant programming languages that influenced
the design of JavaScript.

The simple, minimalist design philosophy of Scheme is not at all evident in JavaScript.
Its relative verbosity is based in influences from other languages cited in the JavaScript
1.1 Specification:

JavaScript borrows most of its syntax from Java, but also inherits from Awk and Perl, with
some indirect influence from Self in its object prototype system.

— JavaScript 1.1 Specification

Figure 2-1. JavaScript syntax influences

JavaScript History | 15

http://bit.ly/1aL7dbt
http://bit.ly/1aL7dbt
http://bit.ly/MLPda0
http://bit.ly/1dIR7hF
http://bit.ly/1aVTmmX
http://bit.ly/1aVTmmX


This is quite a contrast to Scheme, which does not have several different languages
informing its syntax. Perl directly influenced parts of JavaScript, such as regular ex‐
pressions support. Perhaps the Perl motto TMTOWTDI (“there’s more than one way
to do it”) influenced JavaScript in a broader way as well. At least it can be said that the
converse, “there’s only one way to do it” (popular among the Python community) does
not apply. Consider the variations available to create and initialize an array:

var colors1 = [];
colors1[0]  = "red";
colors1[1]  = "orange";

var colors2 = ["yellow", "green", "blue"];

var colors3 = new Array(2);
colors3[0]  = "indigo";
colors3[1]  = "violet";

var colors4 = new Array();
colors4[0]  = "black";
colors4[1]  = "white";

Therefore, it might appear that any connection between JavaScript (with its many in‐
fluences and syntactical variations) and Scheme (a minimalistic dialect of Lisp) seems
unlikely. As it turns out, JavaScript’s heritage does include close connections with and
direct influences from Scheme:

As I’ve often said, and as others at Netscape can confirm, I was recruited to Netscape with
the promise of “doing Scheme in the browser.”

— Brendan Eich

This is also reflected in the ECMAScript Language Specification:
Some of the facilities of ECMAScript are similar to those used in other programming
languages; in particular Java, Self, and Scheme.

— ECMAScript Language Specification

The influence has been recognized by others. Douglas Crockford wrote the “The Little
JavaScripter” based on the classic by Daniel Paul Friedman called The Little Schemer
(MIT Press), which illustrates commonalities between Scheme and JavaScript. The Lisp
community itself (as represented by the European Lisp Symposium) describes ECMA‐
Script as a “dialect of Lisp.” There are undeniable similarities between JavaScript and
Scheme that are due to the intentions of its creator.

A Functional Language
Java developers tend to approach programming problems from an object-oriented per‐
spective. Although JavaScript can support object-oriented programming of a sort, it is
generally not the most productive way to approach problems. It is far more productive

16 | Chapter 2: JavaScript and JavaScript Tools

http://bit.ly/1bNrmwX
http://bit.ly/1bNrmwX
http://brendaneich.com/tag/history
http://bit.ly/1m9b0IQ
http://bit.ly/NDmRzU
http://bit.ly/NDmRzU
http://bit.ly/1bNrxZ5
http://www.european-lisp-symposium.org


1. Functional programming has been available for some time on the JVM via scripting language support in
several languages, including the Rhino JavaScript implementation. Lambda expressions for the Java pro‐
gramming language are slated for Java 8 and will add closures and related features to the language. Java 8 will
also add support for a new JavaScript implementation known as Nashorn. So based on the features being
added to the language, JavaScript development in general and functional programming in particular will be
areas that Java developers will be expected to understand to a greater degree in coming years.

to leverage JavaScript’s functional capabilities. An understanding of what this means
and its implications clarifies the nature and power of the language.

The primary trait of JavaScript that makes it like Scheme, as it relates to both its origin
and syntax, is that is in a functional language. Functional language here is used to indicate
a language that supports functional programming and first-class functions. This fun‐
damental concept of JavaScript provides an orientation about other aspects of the lan‐
guage. Adoption of functional programming entails a significant paradigm shift for
many programmers, especially those grounded in a language like Java that does not (yet)
directly support it.1

Scope
Scope, the portion of a program in which a variable is visible and operative is a rather
slippery subject as implemented in JavaScript. Like many other languages, a function is
used to enclose a set of statements. This allows functions to be reused and limits the
visibility of information to a well-understood modular unit. There are three execution
contexts defined in the ECMAScript Language Specification: global, eval, and function.
JavaScript has function-level scope rather than block-level scope like other C-like lan‐
guages. Blocks such as those used by if statements and other language constructs do
not create a new scope.

One danger in JavaScript is that a method or variable might be hoisted or moved to top
of scope where it is defined. Since a function declaration is already available at the
moment of the scope’s execution, the function appears to be hoisted to the top of the
context. A rule of thumb to avoid the issue is to use a single var statement at the top
scope to declare all variables that will be needed within that scope:

//this is not like an instance variable in java...
var x = 'set';

var y = function () {

// WHAT YOU DON'T SEE -> var x; is effectively "hoisted" to this line!

    if (!x) {  // You might expect the variable to be
               // populated at this point...it is not
               // though, so this block executes
        var x = 'hoisted';
    }

A Functional Language | 17

http://bit.ly/1eUS2QP
http://bit.ly/1nuHp81
http://bit.ly/1m9b0IQ


    alert(x);
}

//... and this call causes an alert to display "hoisted"
y();

The hoisting example includes a few other features that do not exist in Java:

• In JavaScript, null, undefined, and a few other values evaluate to false.
• The if conditional expression is !x. The exclamation point is a NOT logical oper‐

ator. Therefore, if x is undefined (or null), this expression if (!x) evaluates to
true. If x had contained a value such as a number or a string at this point, it would
have evaluated to false, which is what a developer from another language is likely
to expect.

• The var keyword is used to define a local variable. Variables declared without it are
global. This definition results in the variable being associated with the scope of the
function.

• A function is being created and assigned to a variable named y. This is particularly
strange to Java programmers who deal with methods that only exist attached to a
class or object instance. This syntax calls attention to the functional nature of
JavaScript.

First-Class Functions
Simply having scope-limiting functions available in a language does not make it a
“functional” language in any strict sense. A functional language supports first-class
functions. According to the Structure and Interpretation of Computer Programs, first-
class functions can be named as variables, passed in and returned as results of functions,
and included in data structures. The following (contrived) example illustrates these
features as well as another characteristic that some researchers cite as a requirement for
functional languages: support for anonymous functions:

//
// The following example can be run in a
// modern browser at the JavaScript console
//

// Assigning a function to a variable
var happy = function(){
    return ':)';
}

var sad = function(){
    return ':(';

18 | Chapter 2: JavaScript and JavaScript Tools

http://bit.ly/MLQA8I


}

// A function that will be used to receive a
// function as an argument and return it as well.
var mood = function(aFunction){
        return aFunction
}

// Functions added to data structures, arrays:
list = [happy, sad]

//...JavaScript objects
response = {fine: happy, underTheWeather: sad}

// A function can be passed in as an argument,
// returned as a result of a function call
// and assigned to a variable
var iAmFeeling = mood(happy);
console.log(iAmFeeling());

// Try it again
var iAmFeeling = mood(sad);
console.log(iAmFeeling());

// A function can also be included in data structures;
// in this case, a JavaScript object.

console.log(response.fine());

// - or if you prefer an array...
console.log(list[0]());

// Finally, an immediate, anonymous function.
console.log(function(){
        return ";)";
}());

So as is apparent from this example, functions are fundamental units in JavaScript and
are in fact “first-class.” They can stand alone and are not required to be included in an
object or other construct. They can appear anywhere an expression can. The property
that distinguishes a function from other types of JavaScript objects is the fact that it can
be invoked. Terse, compact code can be written because functions are first class and
primary modular units of execution. The fact that scope is related to functions has

A Functional Language | 19



implications for JavaScript idioms that are unfamiliar to many new JavaScript
developers.

Is JavaScript Really Functional?
Some question whether JavaScript qualifies as a functional language. After all, functional
programming is supposed to mimic mathematical functions, which are free of side ef‐
fects. Anyone who worked with JavaScript has dealt with its notorious global context,
and most likely encountered side-effect-laden functions when wrangling the DOM. This
hardly qualifies as referential transparency. On the contrary, much JavaScript program‐
ming involves an acute awareness of the surrounding environment. Besides, variables
are, well, variable. Purely functional languages utilize immutable variables (which pro‐
vide various benefits such as ease in implementing concurrent operations).

In addition, JavaScript does have objects and prototypical inheritance. It could arguably
be classified as object oriented or at least multiparadigm.

What is beyond argument is that JavaScript does indeed include functional constructs
and supports first-class functions. So you can choose a definition for “functional lan‐
guage” (since there does not appear to be an authoritative definition) and make up your
mind whether JavaScript qualifies in a theoretical sense for this designation. The reason
for using it in this book is that it aligns JavaScript with languages and techniques that
highlight the features and best qualities of the language. For a much more in-depth look
at the language from this perspective, see Functional JavaScript by Michael Fogus
(O’Reilly) which introduces a wide range of functional techniques implemented in
JavaScript, many using the excellent underscore.js library.

Function Declarations and Expressions
A JavaScript function literal consists of four parts:

• The function operator
• An optional name
• Open and close parentheses (optionally containing one or more parameter names)
• Open and close brackets (optionally containing one or more statements)

A valid minimal JavaScript function declaration statement is as follows:

function(){}

A function can also be given a name, which leads to a style that looks a bit more like
traditional C-language family syntax:

function myFunctionName(){}

20 | Chapter 2: JavaScript and JavaScript Tools

http://oreil.ly/functional-javascript
http://underscorejs.org


If a function does not have a name, it is said to be anonymous. An anonymous func‐
tion can be used in an expression and assigned to a variable. Some authors prefer this
syntax to declaring a named function because it makes it clear that a variable contains
a function value:

var x = function () {}

It is also possible to assign a named function to a variable:

var x = function y() {}

The practical use of this named function expression is that while the function is available
from the outside through the variable x, it is also available from inside the function itself
(in a recursive call) as y.

Functions can be attached to objects and then are referred to as methods. A method is
implicitly passed the object that called it. It can access and manipulate data that is con‐
tained within the object. The object is referred to using the this keyword as illustrated
here:

var obj = {};  // Create a new JavaScript object
obj.myVar = 'data associated with an object'
obj.myFunc= function(){return 'I can access ' + this.myVar;}  // this: the object
console.log(obj.myFunc())

A function can be defined inside of another function, where it also can access variables
of the function that encloses it. A closure occurs when a function returns an inner func‐
tion. The returned object includes the function itself as well as its environment when it
was created:

function outer() {
  var val = "I am in outer space";
  function inner() {
    return val;
  }
  return inner;
}

var alien = outer();
console.log(alien());

An immediate function is a way to limit code to a local functions scope so as to avoid
polluting the global scope:

(function() {console.log('in an immediate function')}());

A Functional Language | 21



Function Invocations
There are four ways to call a function:

• As a function
• As a method
• As a constructor
• Using call() or apply() methods

The chosen method affects what the this keyword references. In the first option (as a
function), this references the global context when not in strict mode. In strict mode,
undefined or the value assigned in the execution context is returned. The second two
(method and constructor) are specific to an object-oriented approach. A method in‐
vocation involves a call to a function that is attached to an object. A call to a constructor
causes a new object to be created. Unlike the first three options, the call and apply
methods allow you to explicitly set the context when you invoke them on a function.

This and That
A JavaScript convention that can be a bit baffling at first glance is:

var that = this

This usage is obvious once you understand the way this works in
JavaScript. Because this can vary based on context (scope), some
developers alias it to that as a way to retain access to the original
value of this.

Function Arguments
As previously mentioned, each function can receive arguments through named param‐
eters in the function signature. There is a special variable named arguments that can
hold any and all variables passed to a function whether they are named or not. The
following examples demonstrate how to add three numbers using a standard function
call and also using a function’s apply and call methods:

function add(){
    var sum=0;
    for (i=0; i< arguments.length; i++){
        sum+=arguments[i];
    }
    return sum;
}

console.log(add(1,2,3));

22 | Chapter 2: JavaScript and JavaScript Tools



console.log(add.apply(null, [2,3,4]));
console.log(add.call(null,3,4,5));

Objects
In Java, an object is created as an instance of a defined class. In JavaScript, an object is
simply a collection of properties. JavaScript objects do inherit (from a prototype object)
and so object-oriented design principles are applicable. But the differences from Java’s
classical approach are significant. JavaScript allows for the creation of classes, but it is
not useful to think about them in the same way as you would in Java (where classes are
required and fundamental).

Classical and prototypical inheritance differentiates Java and JavaScript and results in
confusion due to their differences. Other features of JavaScript can be highlighted by
contrasting it with Java.

JavaScript for Java Developers
Most developers realize that JavaScript syntax superficially resembles that of Java or
other C-based language (for loops, conditional statements, and so on). But when full
Java applications are viewed, the differences become immediately evident. The following
are well-known basic Java programs that illustrate differences in JavaScript code and
development practices.

HelloWorld.java
/**
 * HelloWorld
 */
class HelloWorld{

        public static void main (String args[]){
                System.out.println("Hello World!");
        }

}

To see the venerable Hello World example program in action at the command line, you
need to:

1. Create a source file named HelloWorld.java.
2. Compile the Java code into a class file (using the Java Compiler via the javac

command).
3. Execute the resulting class file (using the Java interpreter via the java command).

JavaScript for Java Developers | 23

http://bit.ly/1jyuCo1


If you use an integrated development environment like Eclipse or IntelliJ, these steps
are represented by corresponding menu options. Simply enough, the program prints
out the string literal “Hello World!” when executed. But this simple program serves to
highlight a number of significant differences between Java and JavaScript.

The following is the comparable JavaScript program that produces the same output:

console.log('Hello World')

Program execution
First of all, JavaScript is an interpreted language. No compilation is necessary. The ex‐
ecution environment for JavaScript immediately comes into question. If you have node
installed, you can run this at the node prompt:

> console.log("Hello World")

Hello World

This code can be executed at a browser console. In Chrome, select View → Developer
→ JavaScript Console (see Figure 2-2).

Figure 2-2. Chrome JavaScript console

In Firefox, select Tools → Web Developer → Web Console (see Figure 2-3).

24 | Chapter 2: JavaScript and JavaScript Tools

http://nodejs.org


Figure 2-3. Firefox JavaScript console

Other modern browsers have comparable menu options that provide the same
functionality.

Host Objects
Technically, there is no built-in I/O functionality in JavaScript (although the runtime
environment—in this case, the browser—does provide it). This is in accordance with
the ECMA standard:

ECMAScript as defined here is not intended to be computationally self-sufficient; in‐
deed, there are no provisions in this specification for input of external data or output
of computed results. Instead, it is expected that the computational environment of an
ECMAScript program will provide not only the objects and other facilities described
in this specification but also certain environment-specific host objects, whose descrip‐
tion and behavior are beyond the scope of this specification except to indicate that they
may provide certain properties that can be accessed and certain functions that can be
called from an ECMAScript program.

JavaScript for Java Developers | 25

http://bit.ly/1nuHFE7


The implications of this not being defined are more than a mere curiosity, not the least
of which that console.log is not available in certain versions of Microsoft’s Internet Ex‐
plorer and consequently, unexpected errors can occur. Many of the challenges and
problems associated with the JavaScript programming language are actually the fault of
the execution environment (which is often a web browser). The DOM is a cross-
platform, language-independent means of referencing and manipulating HTML ele‐
ments. It also is not part of the JavaScript language itself.

Back to the the Hello World example itself: you might have noticed that single quotes
were used instead of double quotes and that there was no trailing semicolon. JavaScript
syntax is forgiving (or ambiguous, if you prefer). There have been a number of inno‐
vations to reduce confusion in this area. A “strict” mode was added to the language itself.
Utilities like Douglas Crockford’s JSLint were created to enforce the use of the “good
parts” of the JavaScript language. See his book on the subject for more in-depth coverage.
Suffice it to say, JavaScript has a number of leniencies that can result in an undisciplined
developer or team causing some difficult-to-debug problems. It is well worth the time
to learn the language well enough to adopt conventions and practices that avoid these
problems.

File system organization
The file and directory structure of a Java project are directly linked to the structure of
the code. A source file generally contains a single (public) class with the same name as
the file. The file exists in a directory that reflects the package name associated with the
class. (There are a few other rules and exceptions related to inner classes, access mod‐
ifiers, and other constructs, but it is clear that file and directory structures will follow
similar general structures across Java projects). At times, these restrictions can be an
inconvenience (especially in small applications). As a project grows, it provides an clear
indication of the general scope and organization of the code base. A glance at the file
system makes it immediately evident when a project is becoming disorganized without
ever opening a file.

JavaScript enforces no such restrictions. There is no necessary connection between file
or directory structures. And so, you need to give particular attention to the organization
of your code as a project grows, and will likely need to invest time in refactoring it if a
larger development team is involved. Alex MacCaw explains this well in JavaScript Web
Applications (O’Reilly):

26 | Chapter 2: JavaScript and JavaScript Tools

http://mzl.la/MLQL42
http://www.jslint.com
http://amzn.to/1kCC1Ts
http://oreil.ly/js-web-applications
http://oreil.ly/js-web-applications


The secret to making large JavaScript applications is to not make large JavaScript appli‐
cations. Instead you should decouple your application into a series of fairly independent
components. The mistake developers often make is creating applications with a lot of
interdependency, with huge linear JavaScript files generating a slew of HTML tags. These
sorts of applications are difficult to maintain and extend, and so they should be avoided
at all costs.

— Alex MacCaw

Other aspects of code organization need to be considered as well. Besides naming files
and intelligently including code in the proper file, dependencies between files require
that they be loaded in a specific order. And when JavaScript is being served from a web
server, efficiencies can be gained by loading a given file when it is actually needed (rather
than causing a browser to hang while all of the files are downloaded). Performance gains
can be accomplished utilizing the Asynchronous Module Definition (AMD) API, sup‐
ported by libraries like RequireJS. This API allows module definition that lets the mod‐
ule and its dependencies be loaded asynchronously.

HelloWorld.java (with Variables)
The typical next step in demonstrating a Hello World application is to make it greet a
specified party by the name specified in a variable:

/**
 * HelloWorld2
 */
class HelloWorld2 {

    public static void main (String args[]) {
        String name;
        System.out.println("Hello " + name);
    }

}

This code will not compile:

HelloWorld2.java:5: variable name might not have been initialized

var name;
console.log('Hello ' + name);

This code will run in JavaScript, which leads to another source of confusion: too many
bottom values that evaluate to false. The way that they are evaluated that can be con‐
fusing and difficult to remember:

// All evaluate to false
console.log(false     ? 'true' : 'false');
console.log(0         ? 'true' : 'false');
console.log(NaN       ? 'true' : 'false');
console.log(''        ? 'true' : 'false');

JavaScript for Java Developers | 27

http://bit.ly/Yp9ozD
http://bit.ly/1grnHZZ


console.log(null      ? 'true' : 'false');
console.log(undefined ? 'true' : 'false');

All other values evaluate to true:

// All Evaluate to true
console.log('0'       ? 'true' : 'false');
console.log('false'   ? 'true' : 'false');
console.log([]        ? 'true' : 'false');
console.log({}        ? 'true' : 'false');

So after we initialize the variable in Java, the program compiles and runs:

/**
 * HelloWorld2
 */
class HelloWorld2{

    public static void main (String args[]){
        String name = "Java";
        System.out.println("Hello " + name);
        }

}

Likewise, if we assign a value to our variable in JavaScript, we see the result printed out
as expected:

var name='JavaScript';
console.log('Hello ' + name)

The var keyword is not required, and if you are in the global scope, it will not produce
any difference in behavior. If called within a function, then var will create a local variable.
So in general, variables should be declared within a function and declared with the var
keyword to prevent pollution of the global namespace.

The Java example required that the type of the variable be declared. JavaScript is loosely
typed and has no such requirement. The typeof operator can be used to illustrate the
most common types. See Table 2-1 for examples.

Table 2-1. JavaScript typeof operator examples
Type Result Example

Undefined “undefined” typeof undefined

Null “object” typeof null

Boolean “boolean” typeof true

Number “number” typeof 123

String “string” typeof "hello"

Function object “function” typeof function(){}

28 | Chapter 2: JavaScript and JavaScript Tools

http://mzl.la/1m9ezPe


Development Best Practices
JavaScript has its own set of unique challenges and characteristics that demand a unique
development process. Although we can shoehorn a lot of JavaScript development into
familiar Java processes, it is much more fitting to use specialized tools and procedures
that are uniquely fitted to it.

Coding Style and Conventions
Much of the book is concerned with the loose coupling of client and server tiers. Un‐
obtrusive JavaScript is the practice that establishes loose coupling of UI layers within
the client application:

• HTML defines the data structure of the page.
• CSS applies design styles to the data structure.
• JavaScript provides interactive functionality for the page.

Otherwise stated:

• Avoid JavaScript in CSS.
• Avoid CSS in JavaScript.
• Avoid JavaScript in HTML.
• Avoid HTML in JavaScript.

Browsers for Development
The browser is a piece of software so ubiquitous that many web users don’t even know
that it is distinct from the underlying operating system. The browser is not only the
environment in which an end user views a web page, the browser is an IDE. Browsers
now include integrated debuggers, code formatters, profilers, and a plethora of other
tools (some available as plug-ins or add-ons) that can be used during the development
process.

Firefox (along with Firebug and other developer add-ons and extensions) has been
popular for development for some time. Chrome has bundled developer tools and has
gained popularity more recently.

Development Best Practices | 29

http://getfirebug.com


Chrome Tips
It is worthwhile to investigate the developer tools available on your browser and the
command-line options that can influence the behavior of the browser. These generally
bypass certain security constraints or performance optimizations for the sake of devel‐
oper access and increased productivity. For instance, in Chrome:

• There are certain settings such as clearing the browser cache that can prevent con‐
fusion when swapping out changes.

• Command-line syntax varies between browser versions and operating systems. For
example, Chrome can be run on OS X by running:

/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome

Running at the command line allows you to include flags that alter browser behavior. If
you are including files using Ajax (for example using AngularJS), --allow-file-
access-from-files allows for development outside of a web server. And if you are
using JSONP referencing your local machine (localhost) --disable-web-security is
required.

There are a number of other somewhat hidden features in Chrome. Enter chrome://
chrome-urls/ in the URL bar to get a listing of URLs that can be entered to access
screens to configure or monitor activity. To whet your appetite, try out chrome://
flags/ which reveals a list of experimental features available to the current version of
the browser.

Another implication of browsers as the JavaScript environment are the emergence of
online collaborative JavaScript development sites like JSFiddle and jsbin. These sites
allow you to create example applications that replicate bugs, and communicate in rather
exact terms with others about specific language questions. There is little reason to
struggle with snippets of out-of-context code in JavaScript. It is the norm to provide
specific examples and to code up small demonstrations when asking questions or dem‐
onstrating techniques online.

Integrated Development Environments
WebStorm is a particularly good IDE that is fast and lightweight and includes debuggers,
a great project view, powerful shortcuts, extensibility via plug-ins and a host of other
features. While not strictly necessary, WebStorm captures a lot of best practices through
the use of wizards, shortcuts, and code completion.

30 | Chapter 2: JavaScript and JavaScript Tools

http://bit.ly/1j5JW80
http://jsfiddle.net
http://jsbin.com
http://bit.ly/jb-webstorm


Unit Testing
There are a number of unit testing frameworks that have been developed for JavaScript.
Jasmine is a Behavior-Driven Development framework with no dependencies and a
simple syntax that will be used in this book.

Java unit tests can be executed each time a project is built by the build tool or script.
JavaScript can use a node module (Karma, which was formerly known as Testacular) to
execute unit tests on a variety of different browsers each time a source code file is changed
and saved! This is really worth noting. If you are disciplined about your creation of unit
tests, the ability to run them all each time a source file is saved can result in early iden‐
tification of otherwise obscure bugs. This is especially valuable when working with
languages like JavaScript that do not use a compiler to perform initial code validation.
Frequent, effective unit tests serve as a sort of pseudo-compiler. They provide immediate
feedback regarding the quality of the code and catch certain bugs as soon as they are
introduced.

Documentation
There are a few different automatic documentation generation options in JavaScript.
Jsdoc is similar to Javadoc in its markup and output. Dox is a node module for document
generation.

Literate programming (introduced by Donald Knuth in the 1970s) strives to enable
programmers to develop programs in the order demanded by the logic and flow of their
thoughts. Docco is a node module that incorporates comments presented in parallel to
source code in a form much like the text of an essay. Although Docco does not directly
validate or enforce code conventions, its presence and use can encourage thoughtful
commenting and structuring of code instead of knee-jerk copy-and-paste exercises.

Project
This project is a small object hierarchy in JavaScript and includes tests and documen‐
tation. All files can be found on GitHub.

Animal.js is at the root of our object hierarchy:

// Animal is the top of the object hierarchy
function Animal() {}

// Define a speak function that have specific implementations in subclasses
Animal.prototype.speak = function() {
    return "Animal is speaking.";
};

It has two subclasses, Cat.js:

Project | 31

http://bit.ly/1gvnROC
http://pivotal.github.io/jasmine
http://bit.ly/1dkUNKU
https://github.com/karma-runner/karma
https://github.com/jsdoc3/jsdoc
https://github.com/visionmedia/dox
http://bit.ly/1bYqPvs
http://jashkenas.github.io/docco
http://bit.ly/1cxb2R7


// Define the Cat
function Cat() {
    Animal.call(this);
}

// Set the object's prototype
Cat.prototype = new Animal();

// Name the constructor in a manner to suit the class
Cat.prototype.constructor = Cat;

// Create a class-specific implementation
Cat.prototype.speak = function(){
    return "meow";
}

and Dog.js:

// Define the Dog class
function Dog() {
    Animal.call(this); // Call the parent constructor
}

// Dog inherits from Animal
Dog.prototype = new Animal();

// Update the constructor to match the new class
Dog.prototype.constructor = Dog;

// Replace the speak method
Dog.prototype.speak = function(){
    return "woof";
}

The latest version of Jasmine is available on GitHub:

curl -L \
https://github.com/downloads/pivotal/jasmine/jasmine-standalone-1.3.1.zip \
-o jasmine.zip

A test specification that includes a test for each of the classes defined in the preceding
code is run by Jasmine:

// Animal Test using beforeEach
describe("Animal", function() {

    beforeEach(function() {
         animal = new Animal();

    });

    it("should be able to speak", function() {
        expect(animal.speak()).toEqual("Animal is speaking.");
    });

32 | Chapter 2: JavaScript and JavaScript Tools

https://github.com/pivotal/jasmine


});

// Dog inherits from Animal and overrides the speak method.
// A function scoped variable is used for testing.
describe("Dog", function() {

    it("should be able to speak", function() {
        var dog = new Dog();
        expect(dog.speak()).toEqual("woof");
    });

});

// A bit more terse: a cat that inherits from Animal.
// Object constructor called in the same line as the speak method.
describe("Cat", function() {

    it("should be able to speak", function() {
        expect((new Cat()).speak()).toEqual("meow");
    });

});

The simplest way to see this in action is to open SpecRunner.html in a browser, as shown
in Figure 2-4.

Figure 2-4. Jasmine run example

To run the tests each time a file is changed, you will need an installation of node.js. You
can verify your installation by checking the version of node installed:

Project | 33

http://nodejs.org


node --version
v0.8.15

You should also have node package manager installed:

npm --version
1.1.66

With these installed, you can install Karma:

npm install karma

Once installed, you can view the help:

karma --help

The project configuration file was initially created using the init option. This created
a file named karma.conf.js that can then be edited to reference applicable JavaScript files
and run in installed browsers. Once configured, tests can be run every time a file changes
by using the start option.

Use npm to install the docco module used to generate documentation:

npm install docco

Run the docco command to create HTML documentation in the docs directory.
Figure 2-5 shows one of the generated files. The comments are on the left, and syntax-
highlighted code is on the right. You can access documentation for other files by choos‐
ing the file in the “Jump to” drop-down on the upper-right corner:

docco app/*.js

Installing Pygments
If you see the message “Could not use Pygments to highlight the
source,” this is referring to a Python syntax highlighter called Pyg‐
ments.
On a Mac or Linux machine, you can install it by running:

sudo easy_install pygments

This gives a quick overview of the caliber of development support now available for
JavaScript. By adopting a few of these tools, the quality and maintainability of your code
will be greatly enhanced.

34 | Chapter 2: JavaScript and JavaScript Tools

http://pygments.org
http://pygments.org


Figure 2-5. Docco screenshot

This chapter really only scratched the surface of this sophisticated and ubiquitous lan‐
guage. Other books delve deeper into the subjects introduced here. For instance, Java‐
Script Web Applications by Alex McCaw (O’Reilly) demonstrates the use of certain es‐
tablished patterns (Model-View-Controller) and techniques related to building larger-
scale JavaScript applications. Maintainable JavaScript by Nicholas C. Zakas (O’Reilly)
helps deal with the undeniable challenge of establishing practices and standards that
promote a maintainable and extensible codebase. And of course many resources are
available online, through sites like the Mozilla Developer Network and StackOverflow.

JavaScript is most certainly not Java. It is a language all its own with a burgeoning eco-
system of projects to support its development. A knowledge of the language itself and
the development tools available will provide you with a good foundation as you explore
the many frameworks and libraries that will be subsequently introduced.

Project | 35

http://oreil.ly/js-web-applications
http://oreil.ly/js-web-applications
http://oreil.ly/maintainable_js
http://mzl.la/1bYrbCl
http://bit.ly/1lEqJMh




Good fences make good neighbors.
—Robert Frost

CHAPTER 3

REST and JSON

Whenever a technology is introduced, there is an instantaneous response about what it
does not do. This response can be puzzling to those who have already learned to operate
within its limits. Fences can be viewed in a negative sense, as barriers that restrict or
prevent movement. In the positive sense, in the quote by Robert Frost, they provide a
clear, visible demarcation of a boundary and indicate the purpose, use, and dangers of
a given space. In a similar manner, constraints on a software system impose limitations
in the interest of providing better functionality, efficiency, and clarity of roles. Good
constraints are specified not simply to block or restrict, but for the purpose of achieving
a positive goal. REST is an architectural style characterized by a set of constraints that
represent how the Web (or other similar construct) should work. These constraints,
though limiting, promote the design of systems that are well suited to the nature of the
Web itself.

Descriptions of REST are often articulated from a substantially different starting point:
REST as a web services protocol. It is true that REST can be understood when compared
with SOAP or other messaging services. In relation to SOAP, it is considered a mini‐
malistic protocol, lacking extensive definitions and additional constructs required in
SOAP implementations. It is characterized as relying directly upon underlying features
of HTTP, including request methods, URI addressing, and response codes. REST can
also be compared with Remote Procedure Call (RPC)-style APIs, which use URLs to
indicate actions, whereas REST uses URLs to access resources. In this regard, REST is
noun-oriented while RPC is verb-oriented.

37



Why REST over SOAP?
Involved debates have taken place over the virtues of REST over SOAP, or vice versa.
Although SOAP does provide a formal contract and is suitable as a sophisticated RPC
architecture, it introduces additional overhead and complexity without providing sub‐
stantial advantages for most web application development. SOAP remains in heavy use
as an RPC platform due to nontechnical considerations such as the fact that it is firmly
entrenched in existing large-scale legacy applications.

SOAP messages are large, require extensive processing, and are expressed in verbose
XML envelopes. This makes the protocol unattractive for client-server-style web appli‐
cations, which can so easily process JSON using JavaScript.

Many developers initially encounter REST as a web services protocol characterized by
pretty URLs and free-form, lightweight messages. While this perspective has great
practical value, it is important to understand REST as it was articulated by its author
Roy Fielding.

What Is REST?
Fielding states that the “Representational State Transfer (REST) architectural style…
[was] developed to represent the model for how the modern Web should work.” Al‐
though technically protocol-agnostic, it was developed in conjunction with HTTP. And
because of this association, a few of the salient features of HTTP should be kept in mind.

Resources
A web resource is simply something available on the Web. The definition of a web re‐
source has expanded over time. It originally referred to a static addressable document
or file. It was later given a more abstract definition and now encompasses every entity
that can be identified, named, addressed, or handled on the Web. Some examples of
resources are a traditional HTML web page, a document, an audio file, and an image
file. Resources can refer to things that you might not find in your typical digital library
as well, such as a hardware device, a person, or a collection of other resources.

REST uses web addresses (URIs) to access and manipulate resources using verbs (HTTP
request methods).

Verbs (HTTP Request Methods)
HTTP 1.1 defines a set of verbs (or request methods) that indicate an action taken on a
resource. Of those available, the ones of greatest signficance using a RESTful approach

38 | Chapter 3: REST and JSON

http://bit.ly/1iPSLU1


are GET, POST, PUT, and DELETE. One way of thinking about these verbs is by com‐
paring them with commands used to manipulate data in a database.

In a database, a data entity is typically referred to as a record. In REST, the corresponding
entity is the resource. The HTTP verbs (POST/GET/PUT/DELETE) roughly corre‐
spond to traditional CRUD (create/read/update/delete) operations in a database or
object-relational management (ORM) system. A REST architecture stipulates that re‐
sources on the Web are retrieved or changed in much the same way that SQL or similar
query language is used to access or modify records in a database. A full listing of HTTP
1.1 options related to REST can be found in Appendix B.

HTTP verb Action to take on a resource Analogous database operation

POST Create (or append) insert

GET Retrieve select

PUT Update (or create) update

DELETE Delete delete

Other HTTP Methods
Several other HTTP methods are useful but don’t correspond to traditional CRUD da‐
tabase operations. The HEAD method is identical to GET except that the response does
not include a response body. This is applicable when using REST-related technologies
that take advantage of HTTP Headers. Cross-Origin Resource Sharing (CORS) returns
JSON otherwise forbidden due to browser’s same origin security policy and manages
its negotiations with servers through HTTP headers. Certain methods of specifying
links for documents use headers as the location to store links. So at times when the
salient information resides in the response header rather than the body, it makes sense
to use a HEAD call rather than incurring additional overhead of returning the response
body through a standard GET.

The HTTP OPTIONS method can be used to retrieve a listing of HTTP request methods
available for a resource. This has implications not only for debugging and support but
also for creating systems with a uniform interface of links available through a single
entry point embodying a self-describing system. In conjunction with such links, which
represent the access points for all resources in a system, a proper implementation of
HTTP OPTIONS would return a comprehensive list of methods available for each re‐
source available through a link.

Uniform Resource Identifiers
In a networked system there needs to be some sort of handle or address that allows a
resource to be acted upon. Uniform Resource Identifier (URI) is the general term for a
string of characters used to accomplish this. A URI can be further differentiated as either

What Is REST? | 39



a Uniform Resource Name (URN) that represents the name of a resource or a Uniform
Resource Locator (URL) that represents the address of a resource.

Most URL schemes base their URL syntax on this general format:

<scheme>://<user>:<password>@<host>:<port>/<path>;<parameters>?<query

key/value pairs>#<fragment identifier>

See HTTP: The Definitive Guide (O’Reilly) for more details about URIs and HTTP in
general.

In REST, resources are specifically identified as path elements. Slashes within the URL
are used to delimit resources and express their relationship in a hierarchical manner.
REST URLs are demonstrated in examples and explained in greater detail in Chapter 8.

In web-based APIs, URL names used to identify resources and specify their relationship
to others typically adhere to some additional conventions. These are not required by
REST, but are stylistic concerns that promote readability and consistency of URLs. For
the most part, URLs should be lowercase, use hyphens but no underscores, and include
trailing slashes. An individual resource is referred to using a singular noun. A collection
of resources is identified using a plural noun. File extensions are discouraged but tend
to show up when an API supports multiple formats such as XML and JSON. A more
suitable alternative is to use “Accept” and “Content-Type” headers to control the format.
The REST API Design Rulebook by Mark Masse (O’Reilly) includes the conventions
listed above and many others, but in practice, there is a fair amount of latitude in the
structure and format of URLs.

Hyphens Instead of Underscores?
It should be emphasized that all of the URL naming conventions mentioned above are
not etched in stone. Many popular APIs, including Twitter and Dropbox, use under‐
scores. There are other considerations such as search engine optimization that had
caused this to be considered a bad practice in the past (underscored elements were
concatenated together in Google’s search indexes, while hyphenated strings were broken
into separate words). Though there are differences of opinion in these details, there is
clear agreement that URLs should be as short as possible, readable, clear, and consistent
across an API.

REST Constraints
REST is defined as a specific software architectural style characterized by a group of
selected constraints. Benefical system properties and sound engineering principles are
evident in a system designed to conform to these constraints.

40 | Chapter 3: REST and JSON

http://oreil.ly/http-tdg
http://oreil.ly/rest-api-rulebook
http://bit.ly/1a1kZ9i
http://bit.ly/1aZh2He
http://bit.ly/1hdbEmt


Client–Server
A client-server architecture provides an immediate separation of concerns. It makes the
best use of the processing power available in modern clients—once only available to
high-end computers. The server side is simplified due to the shift of many responsibil‐
ities to the client. Such a system tends to be easily scalable, and the separation between
tiers allows for independent development of each.

Stateless
REST requires a stateless design. Session data is stored client-side. Each request made
by the client must be “context-free” and self-contained. This means that a request will
include the entire client state. This requires all data needed for the server to respond
without doing additional outside retrieval of data related to application state. It is much
easier to comprehend the intent of a given interaction since all data is available in each
request. Fault tolerance and scalability are also improved because session data is not
maintained server-side. Server resources are not consumed by the storage and retrieval
processing otherwise required.

There are a number of challenges in designing systems that conform to REST’s stateless
nature. One is the additional network traffic caused by larger and more frequent re‐
quests. (These would be reduced through the use of server-side sessions in nonRESTful
client-server applications that do maintain server-side state). Because each request in‐
cludes all state-related data, there are bound to be certain data elements that are re‐
peatedly sent. The fact that the server is not maintaining sessions means that the client
has more responsibility and is therefore typically more complex (this is one reason for
the increasing sophistication of JavaScript in modern RESTful applications). Browser
storage mechanisms are of greater interest in such systems. And since REST systems
typically support multiple client versions, considerable planning and effort is required
for the client tier.

Even with these challenges, the benefits of statelessness are many, especially deploy‐
ments involving several servers that receive requests distributed by a load balancer. If a
server-based session is used, two basic options are available. One is to require the same
server to respond to all requests for a given session. The other is to create a centralized
session data store available to all servers. This centralized data store then needs to be
accessed each time a request is made. This practice (sometimes called session-affinity
or the use of sticky sessions) makes scaling much more difficult. Large-scale deploy‐
ments typically roll out changes to servers over time. If server-side sessions are in use,
there is a need to wait for old sessions to expire before migrating incoming requests to
servers with the latest changes. This is a complex and difficult operational process. The
entire situation is nonexistent if no state is stored server-side. In addition, standard
browser functions like navigating to previous history or reloading the current page
require no special handling when server-maintained sessions are eliminated.

REST Constraints | 41



The stateless design of REST is one of the most challenging aspects for many developers
to comprehend. It requires some significant adjustments to typical web development
practices. But the benefits are many, and the performance concerns due to the entire
state being contained in each request are not insurmountable, especially when REST’s
next constraint is considered.

Cacheable
The performance issues associated with REST’s stateless constraint can largely be com‐
pensated for via caching. REST requires that data be labeled to indicate whether or not
it is cacheable. This allows a client application to reuse cacheable responses rather than
making equivalent requests at a later point. Like caching in any system, this can provide
quite a performance boost to the client application but also introduces the standard
complexities associated with proper cache invalidation to avoid stale data. In the context
of the Web, caches can be maintained client-side (in the browser), server-side, or in
between (in a gateway or proxy server).

Uniform Interface
A uniform interface stipulates a common way to address resources that all RESTful
applications use. Every REST system therefore has a common structure immediately
evident to those familiar with the architecture. This severely restricts the ability to cus‐
tomize an interface for application-specific needs, but there is a great deal of flexibility
within the constraint bounds. HTTP itself has been enhanced in each version to provide
additional mechanisms available to RESTful design (the inclusion of new request meth‐
ods, for instance). This particular constraint actually includes a number of other con‐
straints that comprise it (see Table 3-1).

Table 3-1. Uniform interface constraints
Uniform interface constraint Description

Identification of resources Resources are addressable through URIs.

Manipulation of resources through
representations

The resource is the thing represented. Its representation is what is sent in the
request (e.g., the XML/JSON document).

Self-descriptive messages Stateless requests that use HTTP verbs.

Hypermedia as the engine of application state HATEOAS: Availability of links that dictate how the application state can be
changed.

Layered
A layered design allows for network components to interact with each request en route.
Each component does not have visibility beyond the layer with which it is communi‐
cating. This means that familiar network devices like firewalls and gateways can be in
use, and caching or translation can be done by proxy servers.

42 | Chapter 3: REST and JSON



Code on Demand
The ability to provide code on demand—through JavaScript or embedded browser ap‐
plications—is allowed in REST but not required. This opens up a wide range of possi‐
bilities in how an application might be extended. The downside is a reduction in visibility
otherwise inherent to RESTful systems (especially in the case of objects like Java
Applets).

HTTP Response Codes
When developing REST APIs, standard HTTP status codes (shown in Appendix B)
provide feedback to the client and report potential errors. The exact nature of a given
response can be dependent upon the HTTP method in use.

What Is Success?
There is no widespread agreement on the use of HTTP codes in web APIs. In part, this
is because the responses are not aligned with the HTTP verbs, but with five categories
of occurences: general information, a successful request, redirect, error on the client
side, or error on the server tier. In some cases, the applicable response code appropriate
to a call is evident, but in others, it is dependent on the specific API call or the discretion
or preferences of the API designer.

Take for instance a (nonspecific) success (200). This is recognized as the proper response
to a succesful GET in most cases. In fact, in HTTP 1.1, it is specifically listed in regards
to GET and POST. The response depends on the HTTP request type, as indicated in
Table 3-2.

Table 3-2. HTTP 1.1 success (200)
HTTP verb Expected response content

GET An entity corresponding to the requested resource

HEAD The entity-header fields corresponding to the requested resource without any message-body

POST An entity describing or containing the result of the action

TRACE An entity containing the request message as received by the end server

And though some would also use an HTTP 200 in response to a PUT or DELETE, other
codes might be used. A HTTP 201 (created) is used by some APIs in the case of a PUT
or POST. A 204 (no content) might be used for a DELETE that returned no other re‐
sponse, but might also apply to other verbs (even a GET) if a request is successful but
the server intentionally does not return content. If a web application is using basic
authentication, the logoff can be accomplished by returning an HTTP 401 (not author‐
ized) response code to the browser. So the definition of success depends on the context,

HTTP Response Codes | 43

http://bit.ly/1dkzBVq


and so the selection of a proper response code requires an understanding of the meaning
of the codes and the nature of the request being made.

The first digit of each code specifies the classes of response. Since the bare minimum
for a client is that it recognize the class of the response, there is expected flexibility and
variance in the use of response codes (see Table 3-3).

Table 3-3. Classes of HTTP response codes
First digit Meaning

1 Informational

2 Success

3 Redirection

4 Client Error

5 Server Error

Mozilla, Yahoo Social APIs, and the REST API Design Rulebook include thoughtful
presentations on the use of response codes. The similarities highlight the conventions
and best practices that have emerged, and the differences demonstrate variance in design
opinion and distinctions that are predicated on the particular nature of a given API.

JSON (JavaScript Object Notation)
Douglas Crockford is well known not for emphasizing every feature that JavaScript has,
but for focusing on a subset. In essence, he sets constraints on language usage. Another
application of his approach is his design of JavaScript Object Notation (JSON) as a data
interchange format derived from JavaScript.

A variety of data interchange formats have been in use since the advent of modern
computing. Besides binary and proprietary formats, some types attempted to incorpo‐
rate some degree of human as well as machine readability. Fixed-width and delimited
file formats were used initially (and still can be found in use today). The first XML
working draft was produced in 1996. XML specifically sought to be both machine-
readable and human-readable, but over time has been criticized as verbose and unnec‐
essarily complex. In reaction, smaller languages that included aspects of XML such as
hierarchical organization have been created (such as YAML). In 2002 Douglas Crock‐
ford acquired the http://www.json.org domain where he described JSON as:

• A data interchange format (a lightweight alternative to XML)
• A programming language model that is a subset of JavaScript
• A format that is is trivial to parse (in fact, in JavaScript you can simply call eval()

on a JSON string to convert it into a JavaScript object, though this not a particularly
safe option)

44 | Chapter 3: REST and JSON

http://mzl.la/1eszuTv
http://yhoo.it/MLRsKx
http://oreil.ly/rest-api-rulebook
http://www.json.org


He also emphasized JSON’s advantages over XML:

• Response sizes are smaller because begin and end tags and metadata require addi‐
tional space in XML.

• JSON interoperability is better with web pages. It is a subset of JavaScript making
client-side integration trivial.

• The previous two characteristics result in performance benefits and ease of inte‐
gration in the context of Ajax calls.

JSON does have a few quirks worth noting:

• JSON is “almost valid” JavaScript.
• There is no way to specify a comment in JSON.
• As previously mentioned, because it is a subset of JavaScript, it can be consumed

by JavaScript eval(). However, the use of eval() is dangerous. It is often said that
"eval() is evil.”

• The “same origin policy” that is in force in most modern web browsers prevents
JSON from being evaluated from a separate site. JSONP (sometimes also referred
to as JSON-P or “JSON with padding”) has been used to request data from a server
in a different domain (via HTTP GET). A call to a function already defined in the
caller’s environment is used manipulate the JSON data. This function is the cause
of the “padding” used in this approach. More recently, Cross-Origin Resource Shar‐
ing (CORS) has been developed as a more robust, secure alternative to JSONP.
CORS uses HTTP headers to allow servers from specified domains to serve re‐
sources. It also requires specific server-side configuration for the service emitting
the JSON to operate.

Comments in JSON
The fact that JSON does not allow comments is a bit surprising and
has led to various workarounds. One is to add “comment” ele‐
ments to JSON objects with comment content as a corresponding
value. One possibility that should be avoided is creating two ele‐
ments with the same name and assume that the parser will choose
the last one. For example:

({"a":"This is a comment", "a":"CONTENT"})

Although this happens to work in a number of JSON parsers, it is a
result of their implementation and not a part of the specification.

JSON (JavaScript Object Notation) | 45

http://bit.ly/1dIU8OW
http://mzl.la/1iPTa8X
http://www.w3.org/TR/cors


HATEOAS
JSON is a very simple and terse format. Unlike other formats that provide elaborate type
systems for the data they represent, only a few data types are available in JSON. These
data types—strings, numbers, booleans, objects, arrays, and null—are more than ex‐
pressive and extensible enough for most applications. Because of JSON’s popularity as
a data interchange format used by RESTful APIs, you might expect a specific data type
for hyperlinks, but no such type exists! This is especially problematic since REST in‐
cludes a constraint called Hypermedia as the Engine of Application State (HATEOAS).

This constraint restricts a client to interactions through links that are included under
the term “hypermedia.” Therefore, a web API cannot possibly be classified as “RESTful”
in a strict sense because there is no link data type in JSON or in JavaScript (upon which
it is based).

XML-based REST APIs often use Atom Syndication Format (where links consist of a
rel, href, hreflang, and type) or links in headers. Likewise, JSON extensions that provide
for standardized linking within JSON documents have been developed:

• HAL
• Siren
• JSON-LD
• JSON Reference
• Collection+JSON
• JSON API (extracted from the Ember JS REST Adapter)

The W3C has a JSON-based Serialization for Linked Data posted on its site (at the time
of this writing: W3C Recommendation 16 January 2014).

Many links conform to a similar category or relationship regardless of the entity rep‐
resented. For example, in a collection, there is a convention of referencing the first, last,
next, or previous member of the collection. A help, glossary, or about link appears and
is relevant in many different contexts. Because of these commonalities, there have been
efforts to standardize link relations as well. An established set of link relations would
make automatic generation of links much more specific and attainable.

46 | Chapter 3: REST and JSON

http://stateless.co/hal_specification.html
https://github.com/kevinswiber/siren
http://json-ld.org
http://tools.ietf.org/html/draft-pbryan-zyp-json-ref-00
http://amundsen.com/media-types/collection/format
http://jsonapi.org/about
http://emberjs.com
http://bit.ly/1hdc1gZ
http://bit.ly/MdidHJ
http://bit.ly/1bYsgKc


It is worth being aware of the debate and work related to defining HATEOAS, but it is
far from clear what the final outcome will be. The issues involved are complex, and there
is no general consensus that a full implementation is required in every API design.

Hypermedia Linkability Continuum
A range of linkability possibilities exist in resources that appear on the Web. At one end
of the spectrum are formats that require strict, well-defined links. At the other end are
formats that forbid the use of links by definition.

Format Description Examples

1 Automatically generated standard links Atom Publishing Protocol (APP)

2 Manually specified standard links XHTML

3 Extension-format links Links as an extension to an existing format (HAL)

4 Character links Links as character strings

5 No links Specified data interchange format forbids their use

REST as defined by Fielding requires proper use of a format of 1. Many web APIs that
might be REST-inspired fall somewhere else on the scale.

REST and JSON
Certain implied values became evident as REST (as expressed in Fielding’s dissertation)
was interpreted and applied to real-world projects other than the Web itself. Fielding
has expressed frustration at APIs termed RESTful that are not hypertext-driven:

REST is software design on the scale of decades: every detail is intended to promote
software longevity and independent evolution. Many of the constraints are directly op‐
posed to short-term efficiency. Unfortunately, people are fairly good at short-term design,
and usually awful at long-term design. Most don’t think they need to design past the
current release. There are more than a few software methodologies that portray any long-
term thinking as wrong-headed, ivory tower design (which it can be if it isn’t motivated
by real requirements).

Fielding’s intention for REST to be a viable long-term solution is admirable. He pro‐
motes ideas that will remain relevant as long as the Web and its underlying technologies
retain their fundamental structure. That said, HATEOAS and its relevance to JSON are
not going to be investigated, demonstrated, or critiqued in depth. After the dust settles
a bit, this book might be expanded and revised or accompanying content added to reflect
an emerging consensus or convergence of opinion on the topic.

In general, Fielding’s perspective is important because he is a seminal thinker and he
invented REST. But many systems designed today are not intended (or billed) to exist
for decades. His articulation of REST is excellent and should be understood as he has

HATEOAS | 47

http://bit.ly/hal-spec
http://bit.ly/1g7Min9


expressed it. But for better or for worse, the term REST has been adopted in a broader
context, and has become a useful shorthand for identifying the architectual style of
minimal web API design that is based largely on the underlying functionality of HTTP.

Pragmatic REST
Why have many APIs been designed in this “pragmatic” way? In part, it is because the
HATEOAS principle places such a high bar for the client-side programmer. A pro‐
grammer who, inadvertently or on purpose, hardcodes a URI path into an application
may be in for a rude shock in the future, and the server-side API team may simply tell
the client that they failed to follow the spec.
Although HATEOAS is a good theoretical approach to designing an API, it may not
apply in practice. It is important to take into account the audiences of the API and their
possible approaches to building apps against it and factor that into your design deci‐
sions. HATEOAS, in some cases, may not be the right choice.

— APIs: A Strategy Guide (O’Reilly)

It is fascinating that Fielding does recognize JavaScript in his dissertation in relation to
REST. He discusses the reasons for JavaScript’s success on the Web as opposed to em‐
bedded Java “applets,” which were not widely adopted as a client-side development
technology. He points out that JavaScript fits the deployment model of the Web, is con‐
sistent with the principle of visibility evident with HTML, includes fewer additional
security complications, involves less user-perceived latency, and does not require a sep‐
arate, independent, monolithic download.

Typical JavaScript usage is consistent with the design principles of the Web. Its extensive
use in the browser made JSON an attractive option for data interchange that could be
easily produced and consumed.

Unfortunately, the very fact that JSON was specified as a subset of JavaScript rather than
a hypermedia format means that there remains an impedance mismatch between JSON
and strictly RESTful APIs. Although a browser running JavaScript is consistent with the
design of the Web and the formal definition of REST, the use of JSON as a data inter‐
change format is not.

Not everyone is interested in using the strict definition to classify whether a web API is
RESTful or not. The fact that JSON web APIs are so popular and REST design is so
influential has led to the development of a few different measures for classifying REST
compatibility on a spectrum.

API Measures and Classification
The Richardson Maturity Model introduced by Leonard Richardson in 2008 expresses
a continuum by which services can be evaluated against the REST standard.

48 | Chapter 3: REST and JSON

http://shop.oreilly.com/product/0636920021223.do
http://bit.ly/1fZwMHA
http://bit.ly/1fh2AGt
http://bit.ly/1hdcr70


Level Service Description

Level 0 HTTP HTTP as a transport system for remote interactions (remote procedure calls).

Level 1 Resources Rather than making all requests to a singular service endpoint, reference specific individual resources.

Level 2 HTTP methods Utilize HTTP verbs.

Jan Algermissen proposed a similar classification that describes APIs based upon ad‐
herence to REST constraints (Table 3-4).

Table 3-4. Classification of HTTP-based APIs adapted from Jan Algermissen
Name Verbs Generic media types Specific media types HATEOAS  

WS-* web services (SOAP) N N N N

RPC URI-tunneling Y N N N

HTTP-based Type I Y Y N N

HTTP-based Type II Y Y Y N

REST Y Y Y Y

Both of these classification systems serve the admirable purpose of preserving Fielding’s
strict definition of REST while recognizing the compromises that have been made in
implementing web APIs.

Functional Programming and REST
Functional programming and REST share a number of common traits. Both are de‐
clarative in nature and include very little description of control flow. Both have a similar
view about controlling side effects, maintaining referential transparency, and operating
in a stateless manner. So, as in the case with JavaScript, having a clear understanding of
a functional paradigm is certainly helpful for effectively utilizing REST and recognizing
its benefits.

The Web-Calculus Web
Beyond the pragmatic comparison of REST and functional programming, Tyler Close
prevents a view of the Web as a lambda-calculus derivative. Because functional pro‐
gramming languages are also based on lambda-calculus, the connection is even closer
than mere appearances or benefits:

Recognizing the primacy of the resource web in HTTP reveals that the WWW is a
lambda-calculus derivative. A resource is a closure. The POST method is the “apply”
operation. A web of resources is a web of closures. The key innovation of the WWW is
the addition of introspection of the web of closures: the GET method…Understanding
HTTP as a lambda-calculus derivative opens the possibility of using HTTP as a basis
for distributed computation, not just distributed hypermedia.

Functional Programming and REST | 49

http://bit.ly/MdiqdW
http://bit.ly/1bpBS2Y


In their book Programming Scala (O’Reilly), Wampler and Payne pointed out that in
many cases, object-oriented systems did not deliver on the promise of widespread soft‐
ware component reuse. Instead, component models that have succeeded tend to be
relatively simple. They conclude their chapter on functional programming by reiterating
the relative simplicity of this approach:

Components should interoperate by exchanging a few immutable data structures, e.g.,
lists and maps, that carry both data and commands. Such a component model would have
the simplicity necessary for success and the richness required to perform real work. No‐
tice how that sounds a lot like HTTP and REST.

Project
The following project involves the creation of a minimal API that responds to GET,
POST, UPDATE, and DELETE requests and returns information about how the server
interpreted the request to the client. This will be used to demonstrate various tools
available when testing REST or other web APIs.

To set up the project:

1. Download the project from GitHub.
2. Navigate to the jruby-sinatra-rest directory.
3. While connected to the Internet, build the project:

$ mvn clean install

This will download any Ruby or Java resources required for the project. It should
end with:

[INFO] ---------------------------------------------------------------------
[INFO] BUILD SUCCESSFUL
[INFO] ---------------------------------------------------------------------
[INFO] Total time: 32 seconds
[INFO] Finished at: Tue Apr 30 12:59:15 EDT 2013
[INFO] Final Memory: 13M/1019M
[INFO] ---------------------------------------------------------------------

4. Start the server:
$ mvn test -Pserver

Within a few seconds, you will see that the application server is running and ready
to handle requests:

== Sinatra/1.3.1 has taken the stage on 4579 for development...
[2013-04-30 13:00:24] INFO  WEBrick::HTTPServer#start: pid=29937 port=4579

5. Navigate to the about page in a browser: http://localhost:4579/about.
You should see something like the following in response:

50 | Chapter 3: REST and JSON

http://oreil.ly/Program_Scala
http://bit.ly/1eQNr3y


{
  "ruby.platform": "java",
  "ruby.version": "1.8.7",
  "java.millis": 1367342095907
}

This indicates that JRuby is available, required RubyGems (packages) are available,
and Java (system) can be called successfully.

Now that the server is running, you can experiment with REST calls in a client of your
choice. A few examples follow using Curl. Curl is a command-line tool for transferring
data that is accessible via URLs. It works for a wide variety of protocols beyond HTTP
and is capable of performing a variety of tasks usually done in a web browser.

To get started, GET can be called with an arbitrary URL. It returns the response, which
in the case of our server, is information about the request:

$ curl http://localhost:4579/about
{
          "ruby.platform": "java",
          "ruby.version": "1.8.7",
          "java.millis": 1367342095907
}

Curl has a huge number of options available to modify the behavior of the call and the
information reported. One bit of information not readily available in a typical browser
is HTTP header information. The -i (include the HTTP header) and -I (fetch the HTTP
header only) can be used to display HTTP header information in the response:

$ curl -iI http://localhost:4579/about

The server is relatively simple. It is written in Ruby (and so runs via JRuby). It uses a
microframework called Sinatra that is described as “a DSL for quickly creating web
applications in Ruby with minimal effort.” As such, it provides a great way of creating
a server that exposes the underlying HTTP functionality without including a lot of
additional code and constructs that might obscure its functionality.

The first few lines describe packages to be imported and some configuration options.
Then, the “before” section defines what is, in essence, a before filter. In each case, the
content type is set to JSON, the response is assigned some values from the incoming
request, and the response status is set either to 200 or to the value passed in on the
httpErrorCode request parameter. To see both the response from the server as well as
the HTTP header, simply specify the -i option:

$ curl -i http://localhost:4579/?httpErrorCode=400

This example returns an HTTP 400 (Bad Request) error as specified in the parameter:

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=utf-8
Content-Length: 197

Project | 51

http://curl.haxx.se
http://bit.ly/1md4fG1


X-Content-Type-Options: nosniff
Server: WEBrick/1.3.1 (Ruby/1.8.7/2011-07-07)
Date: Tue, 30 Apr 2013 17:43:17 GMT
Connection: Keep-Alive

Examples that POST or PUT JSON are as follows:

$ curl -i -H "Accept: application/json" -X POST -d "['test',1,2]" \
http://localhost:4579

$ curl -i -H "Accept: application/json" -X PUT -d "{phone: 1-800-999-9999}" \
http://localhost:4579

And similarly, to DELETE:

$ curl -i -H "Accept: application/json" -X DELETE http://localhost:4579

The server processes arbitrary paths (matched using a wildcard), so you can pass arbi‐
trary paths and query parameters to be reported back in the response:

curl -i -H "Accept: application/json" -X POST -d "['test',1,2]" \
http://localhost:4579/customer?filter=current
HTTP/1.1 200 OK

Several browser plug-ins can be used to test REST calls as well. Rather than introduce
these, our application includes a minimal REST client using jQuery. The call just de‐
scribed using Curl appears as follows in Figure 3-1 when parameters are entered in
http://localhost:4579/testrest.html.

In the Network tab of Chrome’s Developer Tools, you can view header information and
response codes as well. Figure 3-2 shows what would appear if the previous call is
modified to return a 401.

52 | Chapter 3: REST and JSON



Figure 3-1. Testing REST

This simple application also introduces how, in just a few lines of code, you can set up
a web API with a minimal implementation to serve as a backend for client developers
working in parallel with server developers implementing the complete set of server
functionality. Here are the lines of code at a glance:

$ cd jruby-sinatra-rest/src/main
$ find scripts -name *.* | xargs cat | wc -l
141

This does not include jQuery and bootstrap being served from publicly hosted Content
Delivery Networks (CDNs), but still indicates the possibilities available in only a few
lines of code.

Project | 53



Figure 3-2. Test REST error

Other Web API Tools
Web APIs are not tied to a particular platform, so the tools used to debug them are more
of a matter of developer preference and culture. Browsers and browser plug-ins are
certainly useful, and as demonstrated, Curl is a flexible command-line option. Java-
based web clients, REST frameworks, and Eclipse IDE plug-ins appeal to the Java com‐
munity, while Fiddler is a popular choice among Microsoft aficionados.

Constraints Redux
The idea of a creative genius who throws off all external influences is largely mytho‐
logical. This approach has absolutely no application in software development and little
to do with most great work accomplished in the arts. Instead, it is far more profitable
to identify the best set of constraints to apply in a creative activity. The New York
Times described composer Igor Stravinsky as identifying constraints at the onset of
music composition geared to “obtain precision of execution”:

54 | Chapter 3: REST and JSON

https://code.google.com/p/rest-client
https://code.google.com/p/rest-client
http://restlet.org
http://www.ywebb.com
http://fiddler2.com/home
http://nyti.ms/1dIUUf0
http://nyti.ms/1dIUUf0


To Stravinsky, composing music was a process of solving musical problems: problems
that he insisted on defining before he started to work.
Before writing “Apollon Musagete,” for example, he wrote to Elizabeth Sprague Coolidge,
who had commissioned the ballet, for the exact dimensions of the hall in which it would
be performed, the number of seats in the hall, even the direction in which the orchestra
would be facing.
“The more constraints one imposes, the more one frees one’s self,” he would say. “And
the arbitrariness of the constraint serves only to obtain precision of execution.”

— New York Times

The constraints that resulted in REST and JSON are anything but arbitrary, but they do
promote precision of execution in the development of client-server web applications.

Constraints Redux | 55





The original role of programming languages is that of a communication
medium between a human and a computer. Today, the life span of software has

increased, and programming teams have grown in size. As programmers need to
communicate about software, computer code has also become an important

human communication medium.
—Gilles Dubochet

CHAPTER 4

Java Tools

In this quote, Gilles Dubochet introduces “distributed cognition” as he analyzes the role
of programming languages for human communication. Programming languages are
often studied in the abstract without considering a number of rather obvious contextual
issues:

• Programming has never been a completely isolated activity. Many recent projects
involve large, distributed teams.

• Computer languages are an important medium for human communication among
programmers themselves.

• Programmers use literary terms to describe code quality. There is a stated or implied
expectation that code be readable by peers.

• “Code comprehension” is improved with denser code for programmers who share
common ground.

• Programmers cannot hold all system requirements of large systems in their own
(human) memory.

• Human-readable documentation (when available) tends to get out of sync with the
system described.

• Documentation does not always capture every edge case handled by a piece of soft‐
ware. Knowledge resides in the code itself.

57



This chapter points out the variety of languages that can be run on the Java platform.
This allows the possibility of choosing the best language for a particular task or group
of people. This chapter also describes Maven as a tool that promotes a variety of estab‐
lished best practices related to programming with groups of people.

Java Language
Although Java is a mature, stable, and well-known language, there are challenges with
its usage in certain instances because of its design as a class-based, statically-typed,
object-oriented language. It is helpful to acknowledge areas where there might be a
mismatch between technologies and to consider alternatives up front that might alle‐
viate the disjunction altogether.

Developers are familiar with the challenge of integrating an object-oriented language
(like Java) with a relational database system in all but the most trivial of cases. Although
some of the tension can be mitigated by altering usage practices, there is always a layer
of mapping involved due to fundamental philosophical differences between the object-
oriented and relational model.

This is not unique to Java; such a tension also exists between JSON and REST. REST
requires links as defined in the HATEOAS Uniform Interface constraint. JSON, as a
subset of the JavaScript language, has no such construct. Neither implementation is
inherently wrong, but they have different origins that result in incongruities when they
are integrated.

A similar tension exists between object-oriented systems and REST. In an object-
oriented system, you take actions on an object itself. In REST, a resource is manipulated
through its representation. This additional level of abstraction allows resources to be
manipulated through a common interface not available by default in an object system.

Java developers have devised specific libraries that can be used to address most trans‐
lation or integration activities related to interfacing with other technologies. In addition,
a component of the Java platform itself that introduces the possibility of using an entirely
different language is the Java Virtual Machine (or JVM).

Java Virtual Machine (JVM)
Java is translated into bytecode, which is then executed on the JVM (see Figure 4-1).
Because Java was designed to be executable cross-platform, JVMs have been developed
and refined for a wide range of operating systems, from high-powered servers to em‐
bedded device implementations.

58 | Chapter 4: Java Tools



Figure 4-1. Java compilation process

The relative independence of the JVM from the Java language itself led to the develop‐
ment of other languages that can run on the JVM, including Ruby (JRuby, introduced
in the previous chapter), Python (Jython), Groovy, Clojure, and JavaScript. The JVM,
once seen only as the part of the language installation that enabled cross-platform de‐
velopment, now serves as an interface for other languages’ implementations (see
Figure 4-2).

JVM Scripting Interface and Static Typed Language Support
The languages shown in Figure 4-2 are used in the project later in this
chapter and elsewhere in this book. They were selected among the
many JVM languages supported because they are relatively well-
known and are available through the scripting interface defined in
JSR 223: Scripting for the Java Platform. The scripting interface pro‐
vides a common mechanism for the integration of supported lan‐
guages in a single project. Several of these languages are also affec‐
ted by later work for JSR 292: Supporting Dynamically Typed Lan‐
guages on the Java Platform and so are now driving development and
enhancements to aspects of the JVM itself.

Java Virtual Machine (JVM) | 59

http://bit.ly/1mcN6MC
http://bit.ly/1nvTPwu
http://bit.ly/1eShs38
http://bit.ly/1eShs38


Figure 4-2. JVM language compilation process

The availability of relatively terse and powerful scripting languages provides an appeal‐
ing alternative when creating APIs to run on the JVM. The project later in this chapter
will demonstrate a variety of the server-side options for manipulating JSON in JVM
languages.

Java Tools
Java is a mature language with many standard options for IDEs, including Eclipse,
NetBeans, and IntelliJ. These IDEs contain development tools and plug-ins that take
the drudgery out of writing code, debugging, profiling, and a myriad of other pro‐
gramming chores. The IDE is front and center of the individual developer’s work, and
mastering is an indispensible skill for modern Java development. IDEs provide inte‐
gration with other systems that are a significant part of team projects, version control,
and build automation.

There are many different tools available for building projects (Apache Ant is a long-
time favorite in the Java community). Maven goes significantly beyond defining a simple
build process and also coordinates a range of widely accepted software development
tasks. Gradle is a relative newcomer based on Groovy. Both Ant and Maven are XML-
based, while Gradle is a full-fledged Domain Specific Language (DSL).

Beyond a certain critical complexity, there needs to be additional infrastructure to help
guide the development process. The specifics of such an infrastructure vary somewhat

60 | Chapter 4: Java Tools

http://www.eclipse.org
http://netbeans.org
http://www.jetbrains.com/idea
https://ant.apache.org
http://maven.apache.org/index.html
http://www.gradle.org


from project to project, but by following well-understood and established programming
practices, it is possible to decrease ramp-up time and maintain control of a project with
minimal impact on programmer productivity. Simply put, such an infrastructure allows
a project team to scale in ways that would otherwise be impossible.

Build Tools
One of the most important decisions an architect or lead developer makes is what assets
to initially include in a project. This decision impacts subsequent development when
the project stabilizes but becomes more difficult to change. The choice of a build system
has immense ramifications for later activities. There are a number of factors that go into
this choice.

The flexibility provided by the syntax of a programming tool is a significant factor in
its usefulness. Martin Fowler has contrasted make (which has its own custom syntax)
with ant (which uses an XML-based syntax) and rake (which uses the Ruby program‐
ming language) to call attention to the value of having a full-fledged programming
language available to build scripts. A factor that has been of perhaps greater interest in
recent years is the availablity of dependency management in a build tool. Without de‐
pendency management of some sort, a developer is in the unhappy situation of having
to identify, locate, download, and install dependent modules and related resources
(sometimes with limited documentation). The automatic management of specified ver‐
sions of modules from online code repositories is immensely valuable to individual
developers and benefits the general stability of a project. See Table 4-1.

Table 4-1. Comparison of build tools
Custom DSL XML DSL Programming language Dependency management  

make Y N - N

ant N Y - N

rake N N Ruby N

maven N Y - Y

gradle N N Groovy Y

SBT N N Scala Y

This is a bit of a simplification because build tools are incredibly extensible. Dependency
management add-ons and support for other programming languages can be added to
expand the capabilities of those that do not provide these natively. For example, Ant
supports dependency management using Ivy, and a Groovy-based version of the project
named Gant also exists.

The list is representive of widely used build tools but is not exhaustive. Since 1977, Make
has influenced most other build tools to some degree (including Rake). Rake itself has
inspired several Java-oriented projects (including Raven and Apache buildr).

Build Tools | 61

http://bit.ly/LX9Y1U
https://www.gnu.org/software/make
http://ant.apache.org
http://rake.rubyforge.org
https://www.gnu.org/software/make
http://ant.apache.org
http://rake.rubyforge.org
http://maven.apache.org
http://www.gradle.org
http://www.scala-sbt.org
http://ant.apache.org/ivy
http://gant.codehaus.org
http://raven.rubyforge.org
http://bit.ly/1eWWluV


Dependency management is indisputably an excellent feature for practically any project
of any size. Having a full-fledged programming language provides a good deal of flex‐
ibility. Ruby has been a popular choice but has been superceded by Groovy in many
cases because of Groovy’s greater similarity to Java (as noted earlier, a valid Groovy file
is generally a valid Java file). And so Gradle is emerging as a popular choice that includes
dependency management support of a full-fledged scripting language in a syntax that
is succinct and immediately accessible to Java developers. Similarly, Scala users have
Scala Build Tool (SBT), which is roughly analogous to Gradle (build tool for Groovy)
in its design and purpose. A notable use of the tool outside of Scala is the Play Frame‐
work, which supports both Scala and Java.

Though there are many options, and flexibility is often advantageous, there are signif‐
icant benefits to using a tool that is “opinionated” and effectively makes a number of
up-front decisions based on best practices. This approach is best represented by Maven.

Is Less Flexibility Desirable?
Martin Fowler’s article highlighted the flexibility of having a full-blown programming
language available from within your build scripts. Benefits include less code duplication
and no frustration from having to drop out of the DSL to do “interesting things.” His
focus was in the context of building his site (a largely solo endeavor). However, there
are benefits to having more controls and conventions (and less flexibility) when groups
of people are involved. Standard naming and a known sequence of build steps lessen
confusion when developers join a project at various points after its inception (a common
occurence in both large-scale distributed open source projects and corporations that
shift programmers to different teams based on demand). When there is an idea to im‐
plement a somewhat unusual task in the context of a build, a system that makes it just
a little bit more difficult can slow down an otherwise rash decision. It forces a develop‐
ment team to pause and ask, “Do we really need to do this?” and, “What exactly are we
trying to accomplish?”

A system geared toward flexibility (like Gradle) is convenient for calling arbitrary tasks
(as opposed to a simple standard build). For a relatively small, static team that commu‐
nicates clearly, is not given to questionable architectural decisions, and enjoys the con‐
trol available, such a system can be a real boost to productivity. In a larger group, stan‐
dard conventions are often preferable, because you can check out and build a project
without first stopping to ask: “What is the proper command to build this system? We’ve
got tasks to compile install, build, make, package…” Maven enforces standard conven‐
tions that save the time and communication overhead that are required to keep a more
flexible system viable in a large group.

Maven (the word in Yiddish means “accumulator of knowledge”) organizes a project
and defines its software development workflow. It is described as a “software project

62 | Chapter 4: Java Tools

http://www.gradle.org
http://www.scala-sbt.org
http://maven.apache.org


management and comprehension tool.” It simplifies the build process and provides a
uniform system for setting up a project (by allowing the specification of project depen‐
dencies in a declarative fashion). Its reporting and documentation features serve to
produce and centralize all project-specific technical artifacts.

Maven has a number of notable characteristics:

• It promotes convention over configuration (while remaining extensible and
customizable).

• It presents a common interface across projects.
• It provides a well-defined build life cycle.
• It defines a common project configuration through the project object model

(pom.xml).

For more details on Maven, see Maven: The Definitive Guide (O’Reilly), which is also
available free online.

Benefits of Maven
Maven’s value is immediately evident even in minimal Java projects, as it allows JARs to
be identified declaratively. As part of the build process, Maven locates these JARs in
online repositories along with all dependencies and downloads them to their proper
location in a local repository. It takes care of specifying the required CLASSPATH entries
so all of the basic setup tasks that are needed to initially build a project are taken care
of in a single command. This is sufficient enough to consider using Maven for even the
simplest of projects, but its benefits don’t end there.

As a project expands or is formalized, assets such as unit tests, generated documentation,
and build reports can be run, assembled, and subsequently stored in standard locations.
Having standard project structures and conventions makes it far easier to onboard new
developers. This has advantages for a range of projects from those done in open source
development to others in large organizations where developers are moved from project
to project as staffing requirements change.

Well-structured projects are well-suited for sophisticated development and deployment
options. Maven-built projects can be easily integrated into a continuous integration (CI)
process. And with its references to the version control system, release management is
done in a controlled and standardized manner using tags with incremental version
numbers. In fact, if a system includes a robust set of tests run regularly on a CI server
and the production environment includes sufficent monitoring and alerts, it is possible
to shift from managing specific releases to continuous deployment of software on a much
more frequent basis. The proper initial organization of a project provides immediate
benefit to developers and saves effort all the way through to production deployment.

Build Tools | 63

http://oreil.ly/Maven-TDG
http://bit.ly/1c1FTbN
http://bit.ly/1aYPrWp
http://bit.ly/1aYPrWp
http://oreil.ly/1jBA9tX


Functionality of Maven
Maven itself is fairly simple and provides little functionality out of the box. Through
the use of plug-ins, it can execute a wide range of standard build tasks and can be
extended to incorporate any others you can imagine. A few concrete examples:

• Standard unit testing via JUnit and code coverage reports are included as standard
features when generating many new projects (from Maven project templates called
archetypes).

• A project website (mvn site) can be created to document the purpose and status of
your project. A Maven site can be created using the default wiki-like format called
Almost Plain Text (APT) or other supported option. This site provides a central
location for project information, contacts, reports, and resources.

• An embedded application server can be run with minimal configuration using a
simple command (mvn jetty:run) for use during development. This server can
also be run as part of the build itself to support unit tests. Other plug-ins are available
to deploy web applications to your application server of choice.

• Although rooted in the Java development community, Maven plug-ins have been
written to support development in other languages. JavaScript plug-ins provide
code organization and unit testing. Minification and code quality tools are also
readily available.

Maven is often described as “opinionated software.” Understood negatively, this suggests
that it is difficult to adapt to certain types of projects. However, its opiniated character
promotes a defined software development life cycle and best practices worth consider‐
ing even when using another build system. It replaces reliance on individuals to re‐
member and manually enact details of proper build processes and project management
with standardized configuration that can be heavily augmented with a wide range of
plug-ins. It promotes unified practices within a project or even across an organization.
Rather than using a wide-open system that puts the onus on the developer to remember,
Maven’s “opinions” can be leveraged so that the average developer does not even think
about peripheral issues and will simply do the right thing because many wrong options
require too much additional effort.

The assets initially included in a project profoundly impact subsequent development.
This is true not only of the components that comprise the project itself, but also the
choice of development tools and build system. The decision to include Maven or any
other built tool has immense ramifications for later activities. The purpose for including
Maven in the project presented later in this chapter is to demonstrate how simple it is
to set up an absolutely minimal configuration and show its value for declarative man‐
agement of modules. Once a project is already being built on Maven, it is relatively easy
to integrate additional plug-ins and features.

64 | Chapter 4: Java Tools

http://bit.ly/1lJ2exG
http://bit.ly/1aYPAZW
http://bit.ly/1aYPEJr
http://bit.ly/1aYPDFg
http://bit.ly/1jaB4hI
http://bit.ly/LXbReS
http://bit.ly/1mcQVRU


Version Control
If you are reading this book, you likely do not need to be convinced of the value of using
version control. Most development shops need to maintain control of their software
assets and use version control systems to this end. If treated as a mere file-system backup,
many of their greatest benefits are missed. These include viewing historic changes of
code over time, comparing various versions, establishing defined releases of code (tags),
creating branches to facilitate parallel development of integration of code, and creating
patches.

Version control systems (VCS) are fundamental for enabling groups of developers to
effectively work together on large-scale projects. They greatly ease conflict resolution
that results when several developers need to change the same file. Support for existing
projects is greatly eased through the use of VCS because there is an audit history of who
changed what, and when. If useful comments are included on commit or there is inte‐
gration with issue tracking systems, there is also an indication of why a given change
was made.

Individual developers benefit from VCS because they can confidently experiment,
knowing that they can revert to a previous “known-good” version as needed. If a project
takes an extended period to complete, VCS history can make visible progress that has
been made over time and provide helpful reminder of why changes were made.

Maven projects manage source code using Git or Subversion.

Unit Testing
It is easy to incorporate unit tests into a project using Maven/Junit (for Java), node/
Karma (for JavaScript) or other testing framework using virtually any other program‐
ming language. There are also Java frameworks that support other types of testing.
JBehave can be used for Behavior-Driven Development (BDD) and is available through
a Maven plug-in. It is also possible to test using browser automation through the Sele‐
nium plug-in.

One challenge encountered in ongoing unit testing is isolating code from dependence
on external systems. This can be overcome by creating an object to replace or mimic
real objects in a testing context. There are actually a number of different kinds of objects
that can be used. Martin Fowler highlights dummies, fakes, stubs, and mocks. Testers
vary as to how much mock objects should be used in testing, but projects like Mocki‐
to and JMock make it much easier to make tests that are otherwise difficult or impossible
to create.

The applicability of a given testing approach varies based on the project, customer,
development team, and available resources. Regardless of the choice, Maven makes the
inclusion of a unit test framework easy. And as pointed out earlier, a comprehensive set

Build Tools | 65

http://bit.ly/1dnCCEt
http://jbehave.org
http://bit.ly/1opJvcO
http://www.seleniumhq.org
http://www.seleniumhq.org
http://bit.ly/1g1teEL
http://bit.ly/1gamvHM
https://code.google.com/p/mockito
https://code.google.com/p/mockito
http://jmock.org
http://bit.ly/1eSjd0b


of tests makes possible a range of development and deployment options that are simply
not feasible without this sort of validation and coverage.

JSON Java Libraries
There are a number of Java Libraries that can process (parse or generate) JSON. Because
the fundamental structure in Java is a Java object, libraries written for JSON in Java tend
to rely on mappings between JSON and Java objects and provide methods to serialize
and deserialize objects from JSON. Jackson and Gson are two popular libraries that can
convert Java objects into their JSON representation and vice versa.

Projects
These projects provide an absolutely minimal Maven pom to show its value for declar‐
ative management of modules. Once a project is already being built on Maven, it is
relatively easy to integrate additional plug-ins and features.

Each project can be built using the following command from the root directory for the
project:

mvn clean install

An Internet connection must be available to allow Maven to locate and download the
modules required by each project. The first time you run this command for a project,
it checks your local repository (which is in <your OS user’s home directory>/.m2/repos‐
itory by default). If the project does not exist there, it will find it in a Maven repository
online and download it so that it is available for subsequent use. Running a mvn
clean command results in resources in your project being removed but does not affect
the modules have been downloaded to your local repository.

Java with JSON
The java_json project demonstrates basic usage of Maven along with the Jackson and
JSON Java APIs. The pom.xml needed to include both JSON and Jackson as dependen‐
cies in a project is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>JSON_Java</groupId>
    <artifactId>JSON_Java</artifactId>
    <packaging>jar</packaging>
    <version>1.0</version>

66 | Chapter 4: Java Tools

http://jackson.codehaus.org
https://code.google.com/p/google-gson
http://bit.ly/1lJ3voq


    <dependencies>
        <dependency>
            <groupId>com.google.code.gson</groupId>
            <artifactId>gson</artifactId>
            <version>2.2.3</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.codehaus.jackson</groupId>
            <artifactId>jackson-mapper-asl</artifactId>
            <version>1.9.12</version>
        </dependency>
    </dependencies>
    <build>
      <plugins>
              <plugin>
                <groupId>org.codehaus.mojo</groupId>
                <artifactId>exec-maven-plugin</artifactId>
                <version>1.2.1</version>
              </plugin>
            </plugins>
    </build>
</project>

This pom specifies the project’s identity (or coordinates: groupId, artifactId, and version)
and mode of packaging (JAR). Specific versions of Jackson and JSON are identified by
version, and a plug-in that facilitates the execution of main methods is included. This
is an extremely simple pom.xml that shows how easily Maven can be used to manage
JAR dependencies. This should be less intimidating if you are a Maven beginner, and
Maven pros can expand on what is provided to add unit tests, documentation, reports,
and all of your favorite bells and whistles.

The Java code included is comprised of three classes. A plain old Java object (POJO) is
defined which will be used for serializing and deserializing the JSON:

package com.saternos.json;

public class MyPojo {
  private String thing1;
  private String thing2;

  public MyPojo(){
    System.out.println("*** Constructor MyPojo() called");
  }

  public String getThing1() {
    return thing1;
  }

  public void setThing1(String thing1) {

Projects | 67



    this.thing1 = thing1;
  }

  public String getThing2() {
    return thing2;
  }

  public void setThing2(String thing2) {
    this.thing2 = thing2;
  }

  @Override
  public boolean equals(Object o) {
    if (this == o) return true;
    if (o == null || getClass() != o.getClass()) return false;

    MyPojo myPojo = (MyPojo) o;

    if (thing1 != null ? !thing1.equals(myPojo.thing1) : myPojo.thing1 != null)
        return false;
    if (thing2 != null ? !thing2.equals(myPojo.thing2) : myPojo.thing2 != null)
        return false;

    return true;
  }

  @Override
  public int hashCode() {
    int result = thing1 != null ? thing1.hashCode() : 0;
    result = 31 * result + (thing2 != null ? thing2.hashCode() : 0);
    return result;
  }
}

The code required to instantiate a POJO, export its JSON representation, and parse the
JSON to create another POJO in the DemoJSON class is as follows:

    MyPojo pojo = new MyPojo();
    //... code to populate pojo can be found in the project source code

    Gson gson = new Gson();
    String json = gson.toJson(pojo);

    MyPojo pojo2  = gson.fromJson(json, MyPojo.class);

DemoJackson follows the same pattern using object and method names particular to the
Jackson API:

    MyPojo pojo = new MyPojo();
    //... code to populate pojo can be found in the project source code

    ObjectMapper mapper = new ObjectMapper();
    String json = mapper.writeValueAsString(pojo);

68 | Chapter 4: Java Tools



    MyPojo pojo2  = mapper.readValue(json, MyPojo.class);

These Java classes can be executed using the following commands:

$ mvn exec:java -Dexec.mainClass=com.saternos.json.DemoJackson

$ mvn exec:java -Dexec.mainClass=com.saternos.json.DemoGSON

JVM Scripting Languages with JSON
The preceding Java-based examples convert JSON to Java objects, which makes sense
for Java but not for other languages. JSON is based on a few simple data structures
(JavaScript arrays and objects). These correspond to arrays (or lists) and hashes (or
dictionaries, tables, or hash maps) in other languages. Many libraries make a simple
translation between a JSON object and the appropriate native data structures.

The jvm_json project shows how a JSON document can be read and a field extracted
and outputted using Clojure, JavaScript, Jython, and Groovy. Figure 4-3 provides a
visual representation highlighting how the ScriptEngineManager class is used to call
the correct engine based on the file extension.

JVM JavaScript Engines
The examples in this book use the Rhino JavaScript engine devel‐
oped by Mozilla (which gets its name from the O’Reilly book on the
subject). A new Java JavaScript engine dubbed Nashorn is being de‐
veloped by Oracle Corporation and is scheduled for release with Java
8.

The pom.xml in this project includes the relevant dependencies for the programming
languages being used. In addition, two plug-ins are configured:

1. The Exec Maven plug-in allows Java classes and other executables to be run at the
command line.

2. The Maven Shade plug-in is one of a number of plug-ins available that can be used
to package JARs. The Shade plug-in is unique in its ability to package projects in
JARs that otherwise have issues with conflicting class names. This is a somewhat
common occurence when working with modules that implement the Java scripting
interface mentioned earlier.

The pom also includes references to repositories that contain referenced modules.

The main Java class (Jvms.java) opens a script file specified as an argument to the
program and executes it using the appropriate scripting engine (based on the file ex‐
tension).

Projects | 69

http://bit.ly/1lJ3xN7
http://oreil.ly/JavaScript-TDG-5e
http://bit.ly/MfJfyq
http://bit.ly/1kEDqZA
http://bit.ly/1kEDuZk


Figure 4-3. Script engine manager role

Jvms.java has a simple main method that iterates through the arguments passed to it
at the command line. For each argument, the program tries to verify the existence of a
file with that name. If one is not found, it appends src/main/resources/scripts as the path
to the filename. This is the directory where the script files are stored. Note that exception
handling and other details are omitted in the interest of presenting the aspects of the
program relevant to the current discussion. In this case, if a file is not found, the ex‐
ception is simply passed out of the main method (which is defined to throw Excep
tion). The extension is identified to be the portion of the file name from the first dot
to the end of the filename. Finally, a new ScriptEngineManager is instantiated, and a
script engine is retrieved by extension. The File is read from the file system and eval‐
uated by the script engine associated with the file extension:

public static void main( String[] args ) throws Exception
{
  for (String fileName: args){

    if (!fileName.trim().equals(""))
    {
      File file=new java.io.File(fileName);

      if (!file.exists())
        fileName ="src/main/resources/scripts/"+fileName;

      String ext = fileName.substring(
        fileName.indexOf(".") + 1,
        fileName.length()
      );

      new ScriptEngineManager().getEngineByExtension(ext).eval(
        new java.io.FileReader(fileName)
      );

70 | Chapter 4: Java Tools



    }
  }
}

The program can be executed from Maven, and one or more of the scripts can be passed
in as arguments:

mvn -q \
exec:java -Dexec.args="testJson.clj testJson.js testJson.groovy testJson.py"

If you prefer, you can execute the JAR file directly without using Maven by using an
included script:

jvms.sh testJson.clj testJson.js testJson.py testJson.groovy

The Python (Jython) example is terse and straightforward. The use of indentation in
lieu of blocks with begin and end tokens makes it a great example that emphasizes the
functionality in question in an almost pseudocode form without additional overhead
or distractions. Python is a very regular language and has less ambiguities due to its
consistency of design:

import json

print('*** JSON Jython ***')

for item in json.loads(open("data/test.json").read()):
    print item['title']

A library for processing JSON is imported, loaded from the file system, and the object
is iterated through so each title will print. The Groovy example follows nearly the same
pattern. Groovy is based heavily on Java (a valid Java file is usually a valid Groovy file
as well). It introduces a number of idioms that are more compact and concise than pure
Java. This makes it a popular language to introduce to Java developers who can fall back
on their Java knowledge while they learn Groovy distinctives:

import groovy.json.JsonSlurper

println "*** JSON Groovy ***"

def json = new File("data/test.json").text

new JsonSlurper().parseText(json).each { println it.title }

The Clojure example follows the same basic pattern, although you might notice a certain
plethora of parentheses. Clojure is a dialect of LISP that is a stark contrast to the C-like
syntax of the other examples:

(require '[clojure.data.json :as json])

(println "*** JSON Clojure ***")

(def recs (json/read-str (slurp "data/test.json")))

Projects | 71

http://www.jython.org
http://groovy.codehaus.org
http://clojure.org


(doseq [x recs] (println (x "title")))

The JavaScript version is a bit different. There is no need to import (we are using eval()
in this example just for illustration purposes). If you recall, JavaScript does not have
built-in I/O functionality. So this example uses a bit of a hack to make a call to a static
Java method to read in file (using Java) and convert the file contents (available from Java
as a Java string) to a JavaScript string:

println('*** JSON Javascript ***')

// Call a Java static method to read and convert the file to a JavaScript string
var str = String(com.saternos.app.Jvms.readFile("data/test.json"));

var o = eval(str);

for (var i=0; i < o.length; i++){
    println(o[i].title);
}

Although this might be considered a less pure implementation, it demonstrates the ease
of integration between languages on the JVM.

Conclusion
People learn a new programming language or supporting utility like Maven for many
reasons. The most common one is that it is needed for a specific project. Many Ruby
developers started using the language when developing Rails applications or while using
Chef or Puppet for system administration. Scientists have gravitated toward Python due
to its specialized libraries relevant to their work as well as its disciplined design and high
performance.

Studies suggest that natural languages shape thinking. This is highlighted in an article
that appeared in the Wall Street Journal. The article describes how language can have a
profound effect on how an individual sees and thinks about the world. The article states:

Some findings on how language can affect thinking.

•  Russian speakers, who have more words for light and dark blues, are better able to
visually discriminate shades of blue.

•  Some indigenous tribes say north, south, east and west, rather than left and right,
and as a consequence have great spatial orientation.

•  The Piraha, whose language eschews number words in favor of terms like few and
many, are not able to keep track of exact quantities.

•  In one study, Spanish and Japanese speakers couldn’t remember the agents of acci‐
dental events as adeptly as English speakers could. Why? In Spanish and Japanese,

72 | Chapter 4: Java Tools

http://on.wsj.com/LXcKUX


the agent of causality is dropped: “The vase broke itself,” rather than “John broke
the vase.”

Languages that are particularly expressive in a given area make an individual more
attuned to that area. The same is true of programming languages. In this view, learning
a new programming language is not an end unto itself, and is not merely done to com‐
plete a specific project. It helps you see the world differently. It improves your ability to
solve problems in general. Most programmers who learn Clojure (or other LISP dialect)
do not do so because of a specific project. Their intention is to improve their ability to
conceptualize and solve problems. LISP dialects are well known for being among the
most simple, expressive, powerful, and flexible languages available (or perhaps even
possible). But the same is true to a lesser extent when learning other programming
languages. Each one has features and a community that can differ widely from others.
But many of these differences are not absolute, and a programmer can grow by simply
learning other languages and tools, even if they are not of immediate use.

This chapter presented several JVM languages and Maven from the viewpoint of how
they affect development done in community with other developers. Certain languages
might facilitate good communication among developers. They might serve to encap‐
sulate requirements in a way that will make the system easier to reverse-engineer and
support in the future. Maven can be used to structure project resources and development
processes in a way that has been conducive to many successful projects involving teams
of developers. Although reading a book is a relatively solitary activity, it is certain that
a significant amount of your work as a programmer will be done with others. JVM
languages and Maven provide suitable features for projects that require extensive in‐
teraction with other developers over extended periods of time.

Conclusion | 73





You know also that the beginning is the most
important part of any work...for that is the time at
which the character is being formed and the desired

impression is more readily taken.
—Plato

CHAPTER 5

Client-Side Frameworks

Overview
In the early days of the Web, starting a new web page involved opening a text editor and
creating an HTML document from scratch. This approach still works for creating min‐
imal examples for educational purposes or testing isolated bits of JavaScript function‐
ality. However, this starting point is not the place from which most modern web appli‐
cations originate. Instead, a viable project template includes a well-organized directory
structure and some combination of a particular set of JavaScript libraries, CSS files,
HTML, and other assets. The selection might vary from project to project, but in general
should address concerns such as project consistency, cross-browser compatibility,
sound design principles, software development practices (such as unit testing), and
superior performance.

Historically, starter projects have been generated (by tools like Maven, utilizing arche‐
types) or specified during the creation of a new project in an IDE. Such projects were
often tied to the tool that generated them. With no standard IDE or build tool for web
development, starter projects have no such tie (though are integrated in tools and IDEs).
They vary in complexity and purpose, but successful ones have a common characteristic
of being simple to understand, set up, and deploy. They provide a basic infrastructure
that reduces tedious manual work not directly related to the main purpose of the web
application.

75



The choice of a starting point involves the fundamental building blocks of a client-side
web page: HTML, CSS, and JavaScript in the context of a web page running in a web
browser. This is shown in Figure 5-1.

Figure 5-1. Client-side web page

The widest context to consider is the client itself. There are many possible web browsers.
Each browser has many versions. Browsers are no longer specific to desktop applica‐
tions, but run on mobile devices. Each browser instance runs on specific hardware that
can have a wide range of capabilities. The hardware can vary in processor power, disk
space, memory, screen size, and display characteristics. This is perhaps obvious, but
often forgotten by a developer whose view is restricted to a few browsers running on a
developement workstation.

Starter projects can be oriented toward specific content, style, and/or behavior. HTML
defines the fundamental structure and content of the page. CSS defines style and design
presentation. JavaScript provides behavioral capabilities. Those with design skills might
opt for a starter project that is more minimal or provides more flexibility in CSS stylings,
but might want a JavaScript infrastructure that supports a wide range of plug-ins and
requires minimal programming. A developer might choose a project that provides a
passible design out of the box, but be comfortable with a bleeding-edge JavaScript library
that takes advantage of the latest browser capabilities.

The choice of a starter project is also based on your application requirements and your
audience. The goal of compatibility over the largest selection of available browsers might
suggest one starter project, while the goal a highly optimized application for specific
mobile devices would suggest another. For example, frameworks like PhoneGap include
starter projects that specifically target mobile devices. If your project is a game or other
graphically intensive project such as a simulation, starter projects that include JavaScript
libraries with graphics and physics engine capabilities are relevant.

Specific requirements can suggest a starting point that is not immediately apparent or
popular. It is easy to become enamoured with a particular framework or design trend,

76 | Chapter 5: Client-Side Frameworks

http://phonegap.com
http://bit.ly/1dKHlf9


but a project’s idiosyncracies might require a different approach. For instance, if you
need to actively target a particular browser (due to in-house browser standards, target
web demographic, and so on), you might orient development to its particular quirks
and choose a starting project that accounts for these. In addition, HTML, CSS, and
JavaScript can be used to develop a range of applications outside of a standard web page
such as browser extensions and native applications. A general-purpose approach tar‐
geting a range of browsers and devices is often optimal, but it is certainly not the only
valid one.

In general, most serious web development projects today are intended to be fully fea‐
tured applications that work on variety of devices. Most are also created with an ex‐
pectation that they will grow to be relatively large and sophisticated. This suggests the
use of a client-side JavaScript framework related to standard software patterns and code
organization. Differences in display, browser capabilities, and device functionality imply
the use of well-thought-out design that adapts to a range of devices and degrades grace‐
fully when features are not available. The range of target device features that are expected
to be leveraged over the life of the application imply the use of additional libraries and
frameworks. These did not need to be considered in traditional, limited desktop browser
applications.

The High Cost (or Value) of Early Decisions
This section might seem to belabor the obvious. Pick a starter project
and let’s roll!
The issue at stake in making well-thought-out early choices has its
roots in their huge impact down the road. The idea is expressed by
economists and social scientists using the term path dependence. The
basic idea is that early decisions are a “disproportionate cause of lat‐
er circumstances.” Problems introduced early in a project might be
impossible to reverse at a later point. For instance, a choice of an
immature JavaScript library can lead to numerous fixes and hacks
being added to address browser incompatibilities. Though not obvi‐
ous during initial development (where developers have focused at‐
tention on modern browsers), later support can become burden‐
some, and the large amount of additional code can lead to a situa‐
tion where there is no turning back. Conversely, a well-thought-out
starter project can reduce the support burden significantly far into a
project’s implementation.

Starting Point One: Responsive Web Design
On May 25, 2010, Ethan Marcotte’s article titled “Responsive Web Design” appeared on
A List Apart. Responsive Web Design (or RWD) has now become a general term used
as a shorthand to capture the ideas he expressed. Rather than designing specifically for

Starting Point One: Responsive Web Design | 77

http://bit.ly/MOg4SM
http://bit.ly/rwdarticle
http://alistapart.com


each device display, this style of design strives to provide an optimal viewing experience
across a wide range of devices. Like software design patterns (which were inspired by
Christopher Alexander’s architectural patterns), the concept finds its origin in building
architecture. Responsive architecture considers how physical spaces can adapt as people
pass through them. Responsive Web Design seeks to adapt to user experiences on a
variety of device displays with diverse methods of interaction based on device capabil‐
ities. Three components of RWD are:
Fluid grids

Adapt the typographic grid for use on the Web. They take advantage of relative
sizing available in CSS to provide display of a grid and its components in a manner
properly proportioned to its context.

Flexible images
Include using the CSS max-width to cause images and other media to render within
their containing element and related techniques to avoid fixed-point styling that
does not adapt to all device displays.

CSS3 media queries
Inspect the physical characteristics of the context where the page is rendered and
respond with a specific display fixed-unit format.

The fluid layout and flexible images (which rely on relative sizing) combined with CSS3
media queries (allowing adaptive layout targeting fixed sizing) provide the basis of
RWD. Fluid layout is proportionately scaled, and adaptive layout breaks at given points.
This prevents the skewing that occurs with a fluid approach alone or the lack of adap‐
tation to intermediate display possibilities from a purely adaptive design.

By using the three constructs of RWD, a single well-constructed set of web resources
can produce pages that can be viewed and used effectively on a variety of devices. Mar‐
cotte later developed the ideas introduced in the article in a book on the subject. A
number of projects have been developed based on these principles, among them HTML
Boilerplate and Twitter Bootstrap.

HTML5 Boilerplate
HTML5 Boilerplate provides a set of resources that satisfy the requirements of RWD.
Its features include a standard directory structure and template files related to a website
and web server configuration. It includes CSS that incorporates normalize.css (a style‐
sheet that provides consistent rendering in line with modern standards across brows‐
ers), some additional CSS defaults, common helpers, placeholder media queries, and
print styles. The jQuery and Modernizr JavaScript libraries are provided as well.

78 | Chapter 5: Client-Side Frameworks

http://oreil.ly/HF-Design-Patterns
http://bit.ly/1guxBdt
http://bit.ly/1aYRMAU
http://bit.ly/LXddpW
http://html5boilerplate.com
http://bit.ly/normalcss


Bootstrap
Twitter Bootstrap, was initially described by its creators as “a front-end toolkit for rap‐
idly developing web applications. It is a collection of CSS and HTML conventions. It
uses some of the latest browser techniques to provide you with stylish typography, forms,
buttons, tables, grids, navigation and everything else you need in a super tiny (only 6k
with gzip) resource.”

As such, it goes beyond the minimal resources provided in HTML5 Boilerplate. It was
further enhanced in the second version and continues to be refined with input from the
community that has grown around the project. Sites built with Bootstrap have been
critiqued as being monotonous and predictable, essentially carbon copies of one an‐
other. Although similarity is to be expected due to the use of standard resources and
styles, there is actually a great deal of flexibility available through manual customization
or the use of themes. The framework has also become more “componentized” over time
so that certain features can be included and excluded, and generators exist that can be
used to create an out-of-the-box set of resources to differentiate it from the default.

There are many other similar projects. Zurb Foundation has a smaller user base and
claims a primary target of mobile devices. If you are interested in a more lightweight
project that incorporates minimal responsive design and a basic grid system with some
basic styling, Skeleton might be worth checking out. But if you are working on a project
that simply requires a responsive site with professional, balanced styling, Bootstrap
(augmented with a theme and a few manual adjustments) is the best supported choice
for the moment.

Starting Point Two: JavaScript Libraries and Frameworks
As a language matures, various standard libraries are added. In JavaScript, libraries don’t
require any special structure or packaging; they are simply other JavaScript files. Libra‐
ries have been created for almost every purpose you can imagine. But there are a few
broad categories of general-purpose libraries that are applicable to client-server web
applications.

Browser Compatibility
Although JavaScript is a de facto standard, the idosyncracies of certain browsers are the
stuff of legend. The likelihood of browser vendors creating compatible implementation
is small. There is too much effort dedicated to differentiating each browser and imple‐
menting functionality geared toward driving the standards process rather than adhering
to estabilished standards or guidelines. Fortunately, a number of libraries in common
use smooth over many of the rough edges and result in JavaScript code that provides
consistent results (and less errors or disruptive results) regardless of the particular
browser version. These libraries are shown in Table 5-1.

Starting Point Two: JavaScript Libraries and Frameworks | 79

http://bit.ly/1fjDC9o
http://bit.ly/1lJ5Uzq
http://bit.ly/1eWYtmn
http://blog.getbootstrap.com
http://foundation.zurb.com
http://www.getskeleton.com


Table 5-1. Browser compatibility
Library Purpose

jQuery DOM traversal and manipulation

Modernizr Browser feature detection

Underscore Utility functions including object and array manipulation

jQuery and Modernizr are de facto standards in their particular realm. Underscore is a
bit less established. There are a number of other libraries that provide similar
functionality: consistent handling of objects and arrays in a concise, functional manner
(Lo-Dash, for example, is intended to be an optimized replacement for underscore).

Frameworks
Direct DOM manipulation (á la jQuery) is a fine approach with small- to mid-sized
JavaScript projects. With larger projects, it is much easier to manipulate JavaScript
classes that incorporate interactive data and include additional functionality, such as
data validation. These classes can then be populated and connected to the graphical
elements in a page. This type of design has the beneficial effect of avoiding direct DOM
manipulation. Instead, changes to the data are reflected on the page based on the state
of the data in the containing objects. Interaction with the page (and data changes due
to external events) result in changes to the state of the model that trickle down to all
affected view components. The first MVC frameworks were created many years ago for
this purpose, and the pattern has been adopted in modern JavaScript frameworks. There
are several variations of MVC, which include Model-View Presenter (MVP) and Model-
View ViewModel (MVVM) and so the term MV* is sometimes used as a general um‐
brella to identify these patterns as a group.

The choice of an initial framework can be rather daunting from the outside. If you do
not have a particular bias, it can take a bit of effort to make a decision about which one
to use. Some basic criteria beyond current in-house development skills are the func‐
tionality of a given framework and its popularity.

Functionality
The list of MV* frameworks is rather extensive and constantly changing. One site that
provides immediate specific comparison of the functionality of popular frameworks is
TODO MVC. TODO MVC allows you to compare the implementation of a simple fully
functional TODO list application in a variety of different MV* frameworks.

80 | Chapter 5: Client-Side Frameworks

http://jquery.com
http://modernizr.com
http://underscorejs.org
http://lodash.com
http://todomvc.com


Popularity
Although the most popular selection might not be the best, it is a reasonable proxy for
general support for a project and whether it has a viable ecosystem for education, en‐
hancements, and bug fixes. Google Trends displays the number of searches being made
for certain search terms, and the number of StackOverflow tags can also give an idea of
developer chatter on a subject. To get a better sense of what code is actually in use, view
popular GitHub repos (and statistics on new projects that have not yet catapulted to the
top of the list) or get a sense of total deployment base using statistics from a site like
BuiltWith.

If you decide to work with one of the major JavaScript MV* frameworks, you will want
to review and possibly start with whatever project the community has produced and
actively supports. Table 5-2 lists starter projects for several popular frameworks.

Table 5-2. Starter projects for JavaScript MVC Frameworks
Framework Starter project

Backbone Backbone Boilerplate

Angular Angular Seed

Ember Ember Starter Kit

Each of these frameworks is rather extensive and an exhaustive overview is not possible
here. O’Reilly’s books on Angular and Backbone go into much greater detail.

These are by no means the only options. JavaScript frameworks have dependencies and
inspire libraries that extend their core functionality. jQuery is a prerequisite to many
other projects, and underscore.js is a dependency for Backbone. Backbone developers
tend to use require.js for script loading and code organization; it also inspired the
alternative MV* framework Spine. Angular-UI provides user interface components.
jQuery has inspired an entire ecosystem of related libraries, plug-ins, and extensions,
among them large libraries such as jQuery UI that provide widgets of all kinds and small
specialized libraries like TouchPunch for touch screen event handling.

There are also starter projects, which combine a JavaScript library with another starter
project oriented toward browser compatibility and responsive design. A project that
combines Angular UI and Bootstrap is available and comparable to one created for
jQuery UI and Bootstrap.

Beyond MVC frameworks, if you are creating a jQuery plug-in, the jQuery Boiler‐
plate can be used to set up a properly structured project for that purpose. The bottom
line is that if you find yourself writing boilerplate code for a task that you are confident
others have encountered, it behooves you to check around online to find out if starter
projects exist.

Starting Point Two: JavaScript Libraries and Frameworks | 81

http://www.google.com/trends
http://stackoverflow.com/tags
https://github.com/popular/starred
http://builtwith.com
http://backbonejs.org
https://github.com/backbone-boilerplate/backbone-boilerplate
http://angularjs.org
https://github.com/angular/angular-seed
http://emberjs.com
https://github.com/emberjs/starter-kit
http://oreil.ly/angularJS
http://oreil.ly/dev_backbone_js_apps
http://spinejs.com
http://angular-ui.github.io
http://jqueryui.com
http://touchpunch.furf.com
http://bit.ly/MOgZCP
http://bit.ly/NFESxA
http://jqueryboilerplate.com
http://jqueryboilerplate.com


Obtaining Starter Projects
There are a couple of different ways to obtain a starter project to jumpstart your devel‐
opment.

Download Directly from Repositories
Most of these projects are maintained online in public source code repositories (gen‐
erally at GitHub).

GitHub Repository Hall of Fame
For that matter, starter projects, resources that promote responsive web design, and
JavaScript libraries are among the most popular repositories on GitHub.

• Responsive design resources
— Modernizr
— Normalize CSS

• Starter projects
— Bootstrap
— HTML5 Boilerplate

• JavaScript libraries
— jQuery
— Backbone
— Foundation
— Angular
— Underscore
— Ember
— jQuery UI
— Knockout

Download from Starter Sites
Sites like Initializr or HTML5 Reset ultimately rely on source code repositories, but
include commentary, comparison, and documentation related to starting web projects
and general development and design topics as well.

82 | Chapter 5: Client-Side Frameworks

https://github.com
https://github.com/popular/starred
https://github.com/Modernizr/Modernizr
https://github.com/necolas/normalize.css
https://github.com/twitter/bootstrap
https://github.com/h5bp/html5-boilerplate
https://github.com/jquery/jquery
https://github.com/documentcloud/backbone
https://github.com/zurb/foundation
https://github.com/angular/angular.js
https://github.com/documentcloud/underscore
https://github.com/emberjs/ember.js
https://github.com/jquery/jquery-ui
https://github.com/knockout/knockout
http://www.initializr.com
http://html5reset.org


IDE-Generated Starter Projects
IDEs like WebStorm (a commercial project created by JetBrains) include options to
create new projects from templates, as shown in Figure 5-2. WebStorm includes several
of the starter projects discussed in this chapter as well as Node.js (Node.js boilerplate
and Node.js express) or Dart starter projects.

Figure 5-2. Client starter projects

The Rise of the Front-End Engineer
By now, it should be clear that the degree of sophistication involved with web develop‐
ment has expanded greatly from its humble beginnings. It is unlikely that a designer
without significant developer skills and focus will be capable of keeping up with the
latest advances. Likewise, it is unlikely that most server-side developers will have mature
design abilities or an awareness of recent developments that are focused on the client
side. This has given rise to a new occupation: the front-end engineer. If the topics in‐
troduced to this point don’t convince you of the explosion of new information, consider
these additional nuances related to client-side development and processes.

The Rise of the Front-End Engineer | 83

http://bit.ly/LXec9K
http://expressjs.com
http://www.dartlang.org


Client-Side Templating
Some of the JavaScript frameworks previously discussed bundle a JavaScript templating
solution. A wide variety of others exist independently, many of which can be swapped
in at your discretion with a variety of frameworks. LinkedIn engineering considered 26
client-side templating technologies before settling on dust.js. There are some fascinating
developments in this area, including the possibility of implementing client-side Java‐
Script templates that can failover to server-side rendering if needed.

Asset Pipelines
Old-school web development involved simply editing and including relevant assets on
the web server. Resources can now be provided externally through Content Delivery
Networks (CDNs). In addition, rather than simply editing and including the resources,
they are commonly now preprocessed in a variety of ways prior to being served on the
web server. An asset pipeline can be used to precompile, concatenate, and minify ap‐
plicable web resources and take relevant actions related to managing the caching of
these resources.

Asset compilers emerged in the Ruby community in the last several years. Early exam‐
ples were Jammit and Sprockets. Later, asset pipelines were incorporated into Rails and
have been adopted by web frameworks in other languages such as Java’s Play2.

Asset pipelines are used for a number of tasks. Some are geared toward reducing network
latency when serving large files. JavaScript and CSS files can be minified (removing
whitespace and other extraneous characters), concatenated (resulting in fewer total
network calls), and compressed (using gzip or other compression algorithms). Others
relate to caching. For example, the Play framework uses ETag HTTP Headers to append
a value generated from the resource name and the file’s last modification date and also
provides the option of setting Cache-Control headers.

In addition, having a preprocessing step available opens up the possibility of compiling
other languages to JavaScript (such as CoffeeScript and Dart). This provides a range of
possibilities for those who find the JavaScript language itself distasteful.

CSS can also be preprocessed, which reduces the amount of duplicated code. Less du‐
plicated code makes the application styling more easily maintainable at the expense of
adding an additional build step. A precompiler processes an initial file at some point
prior to being referenced in an HTML page and resolves references in the code so that
a standard stylesheet is rendered. Examples of the type of preprocessing available
through a CSS compiler include:

• Definition of variables that replace values throughout a stylesheet (for example, a
color used in various CSS classes)

84 | Chapter 5: Client-Side Frameworks

http://linkd.in/1dnFOzZ
http://bit.ly/1nvWrut
http://bit.ly/1g1wEr1
http://bit.ly/1lJ99H7
http://bit.ly/1mcWjV8
http://bit.ly/1iScu5z
http://bit.ly/MOi5OZ
http://coffeescript.org
http://www.dartlang.org


• Creation of methods to assign a set of values to a class based on a variable passed
as an argument

• Implementation of inheritence of CSS classes

CSS processors originated among Ruby developers but have been gaining acceptance
in the Java community. For instance, a LESS CSS Maven plug-in has been created.

The precompiling step involved in the implementation of an asset pipeline is somewhat
controversial. Designers who have never only worked with hardcoded CSS files can find
the programming possibilities introduced by a preprocessor daunting. And though de‐
velopers are likely to be more accepting of the concept of a preprocessor (based on their
usage in other programming contexts), changing anyone’s workflow can be disconcert‐
ing. This is where a new role, that of a front-end engineer, serves a needed role in
bridging the gap between developers and designers. This role includes a unique work‐
flow and set of tools suited for the expansion of responsibility that has occurred on the
client tier.

Development Workflow
A node-based package called Yeoman provides a development workflow utilizing three
tools: yo (for scaffolding), grunt (for building), and bower (which provides package
management). Other node-based packages such as karma (for running tests) and Docco
(for documentation) also apply to development worflow and build processes.

Project
In the interest of seeing the value of the simplest possible example of a framework along
with how it relates to fully featured starter projects, consider the following examples
using Angular: 

<!doctype html>
<html ng-app>
  <head>
    <script src="http://code.angularjs.org/1.0.6/angular.min.js"></script>
  </head>
  <body>
        Angular Expression 1 + 2 evaluates to:  {{ 1 + 2 }}
  </body>
</html>

The use of the Angular framework is immediately apparent because there are a number
of XML attributes (called directives) that are not part of standard HTML included in
the document. In this example, ng-app (in the HTML tag) is required to auto-bootstrap
an app. One attribute of this type can appear per HTML page. It designates the root of
the application and (though it is empty in this case) can optionally include a module
name. The script tag indicates that Angular is in use; other Angular scripts that provide

Project | 85

http://bit.ly/1jaIEbW
http://yeoman.io
https://github.com/yeoman/yo
http://gruntjs.com
http://bower.io
http://bit.ly/1cz42D9


additional functionality might also be included. Finally, the bit of visible Angular func‐
tionality that will be demonstrated is an expression. An Angular expression is JavaScript-
like code snippets placed in bindings (double braces) that are evaluated to produce
output.

This is a very minimalistic example that only evaluates an expression. It does not even
demonstrate Angular as an MV* framework as it includes no controller or data binding.
It simply serves to illustrate the absolute minimum features required to create an An‐
gular application. The next example incorporates a model and controller:

<!doctype html>
<html ng-app>
  <head>
<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.0.6/angular.min.js">
</script>
    <script>
        function HelloCntl($scope) {
                        $scope.name = 'World';
                }
    </script>
  </head>
  <body>
    <div ng-controller="HelloCntl">
      Your name: <input type="text" ng-model="name" />
      <hr/>
      Hello {{name}}!
    </div>
  </body>
</html>

A controller in Angular is simply a function used to implement behavior in a given
scope. In this case, the controller is used to bind a model (the name variable) that can
be modified in a text field. Each time a keystroke is registered in the input text field that
references the “name” model, the change is reflected in the expression referencing the
model. A significant remaining bit of functionality is the framework’s functionality re‐
lated to Ajax calls to remote servers. The final example illustrates this:

<!doctype html>
<html ng-app="GoogleFinance">
  <head>
<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.0.6/angular.min.js">
</script>
    <script src="http://code.angularjs.org/1.0.6/angular-resource.js"></script>
    <script>
      angular.module('GoogleFinance', ['ngResource']);

      function AppCtrl($scope, $resource) {
        $scope.googleFinance = $resource('https://finance.google.com/finance/info',
                  {client:'ig', q: 'AAPL', callback:'JSON_CALLBACK'},
                  {get: {method:'JSONP', isArray: true}});

86 | Chapter 5: Client-Side Frameworks

http://bit.ly/1jBEwFh
http://bit.ly/MfMkhY
http://bit.ly/1fjFrTK


          $scope.indexResult = $scope.googleFinance.get();

          $scope.doSearch = function () {
            $scope.indexResult = $scope.googleFinance.get({q: $scope.searchTerm});
          };
      }
    </script>
  </head>
<body>
  <div ng-controller="AppCtrl">
    <form class="form-horizontal">
      <input type="text" ng-model="searchTerm">
      <button class="btn" ng-click="doSearch()">
        Search
      </button>
          </form>
       Current Price: {{indexResult[0].l_cur}}<br/>
       Change:        {{indexResult[0].c}}<br/>
  </div>
</body>
</html>

Angular resource is used to make the backend calls. The script that defines it needs to
be included, and it needs to be referenced as a parameter in the controller. Because we
are making a call to a site under a different domain, JSONP is specified as a method. The
model (searchTerm) is used to specify a stock symbol to search for using the Google
Finance API. The results are returned as a JSON array, and the current price and change
fields are displayed upon retrieval.

These three examples are helpful for educational and demonstration purposes. They
are stripped-down versions that highlight exactly what features are required and how
they relate.

With a small amount of effort, Bootstrap’s stylesheet and some basic stylings can be
added. Additional changes found in the code of this chapter add to the previous example
by linking to the bootstrap.css, creating a container class and view rows, and adding
a search icon and some other design adjustments. These all remain in a single self-
contained file; a standard starter project breaks these resources up and organizes them
in a standard directory structure.

These examples can be included in a starter project such as AngularJS seed or Bootstrap
by adding relevant portions of the preceding code to the index page (or relevant included
view). Ideally, inline JavaScript code presented in these examples is extracted into a
separate file (to start: modules into app.js and controllers into controllers.js).

Project | 87

http://bit.ly/1g1xmVg


Conclusion
In any successful development team, each member has unique strengths that she brings
to bear for the benefit of the project. The focus of one member allows others to pay
closer attention in other areas, effectively limiting the problem scope under their at‐
tention. Starter projects and JavaScript frameworks insulate developers from details of
BOM and DOM implementations, browser compatibility issues, initial concerns with
code organization, and other challenges.

Hardware improvements and JavaScript performance optimization has made it possible
to create large-scale JavaScript applications. Large-scale applications are much easier to
manage when standard design is used, and project focus is enhanced by eliminating
repetitive tasks required in every web development project. The frameworks introduced
in this chapter are specific examples of projects that can jumpstart your next develop‐
ment effort and focus your team’s attention immediately on the functional concerns of
your project.

88 | Chapter 5: Client-Side Frameworks



A man wrapped up in himself makes a very small bundle.
—Benjamin Franklin

CHAPTER 6

Java Web API Servers

Packaging makes it possible to extend the capabilities of a language by including reusable
components. The packaging available for a given language affects deployment options.
Packaging schemes include consideration for standard naming conventions, metadata
files, digital signatures, code obfuscation, arrangement of code, inclusion of related files/
resources, and compression mechanisms.

Packaging necessarily impacts deployment. The de facto deployment options available
in a language tend to suggest the structure of a project and its development workflow.
In Java, this is even more pronounced than other languages. Java source file names
reflect the name of the public class they contain. Java packages follow the directory
structure of the file system. Java utilizes several specific package types. General purpose
source code is included in Java Archives (JARs), web applications are stored in Web
Application Archives (WARs), and groups of related web applications can be packaged
together in Enterprise Application Archives (EARs). WARs can be deployed to servlet
containers, while EARs require full Java Enterprise Edition support, which is available
in application servers like JBoss.

Java’s packaging paradigm has many benefits but has resulted in a constrained view of
deployment possibilities. Standard web application development practices in place since
Java’s initial development required independently installed and configured application
servers. These are not, in fact, required to deploy Java web applications. Even if a web
container is used, it is possible to avoid the overhead of installing and configuring it
prior to beginning development.

89



Simpler Server-Side Solutions
The explosion of client-side technologies is overwhelming due to the inherent chal‐
lenges of web browsers as a platform, the JavaScript language itself, and the JavaScript
libraries created to help manage the complexity. An additional complexity is device-
specific development, which can involve either mobile web applications or native ap‐
plications that make HTTP web service calls. One pleasant surprise in the new client-
server web paradigm is a corresponding simplification of a portion of server-side code.

A web application traditionally has been a relatively large construct that ran in an ap‐
plication server, web container, or web server. At the time of this writing, the venerable
Apache web server had over two million lines of code and required hundreds of man-
years of effort to complete. J2EE development was notoriously complex (resulting in its
being vastly simplified in more recent JEE versions). Server-side Model-View-
Controller projects (Struts) and dependency injection frameworks (Spring) provided
organization and eased the configuration burden, but highlighted the size and scale of
a typical server-side implementation that appeared to be required to develop a Java-
based web application.

Client-server web applications use servers that do not maintain session state and consist
largely of simple APIs. Though such servers can certainly take advantage of middleware
and supporting services, these are often not necessary. Due to direct and indirect in‐
fluence from the scripting language world, it is now trivially easy to set up a minimal
server to provide adequate functionality for front-end developers to work without a
need for the full-scale server implementation. Java and JVM languages allow for many
possibilities that allow a developer to include server functionality in a project without
the need to install, configure, and maintain a full server implementation. This opens up
possibilities for very different workflows than were previously possible. In addition to
benefits during development, the practice of horizontal scaling in cloud-based produc‐
tion deployments is eased by having a lightweight server solution.

A “containerless” web application server can be constructed by simply using Java on the
JVM or by taking advantage of libraries. Figure 6-1 illustrates the ones used in this
chapter and their relationship to each other. Libraries located higher on the diagram
have greater infrastructure, are more opinionated, and (in theory) are a more productive
starting point for a framework suited to a domain. They are not exhaustive, but could
be extended in various directions. For example, the various JVM languages have cor‐
responding web frameworks (Sinatra or Rails for JRuby, and Django for Jython). Type‐
set is a Scala framework built on top of Play. vert.x distinguishes itself as supporting
several JVM languages.

90 | Chapter 6: Java Web API Servers

http://www.ohloh.net/p/apache
http://typesafe.com
http://typesafe.com
http://vertx.io


Figure 6-1. Server libraries

The examples in this chapter are confined to a Java-centric workflow and build process.
JVM languages vary in their workflow practices depending on their origins. Groovy
and Scala were created with their initial target being the JVM, whereas Ruby and Python
were languages that were ported to the JVM. Techniques and practices in Groovy (and
to a lesser extent Scala) tend to be traceable to problems or patterns familiar to Java
developers. JRuby and Jython, having independent origins, tend to have original ap‐
proaches that are less familar to Java developers (but are recognizable to those moving
from other implementations to the JVM). These tend to require you to use the devel‐
opment installation procedures, toolchain, and commands specific to their community.

Java-Based Servers
Servers can be written in Java alone or can use one of several higher-level libraries. The
same basic pattern is used in many cases: a server class delegates requests to a handler,
which extends an abstract class or implements an interface, which defines a handle
method. Figure 6-2 illustrates the basic relationship between the server class, which uses
a handler class. The handle method is implemented by the concrete handler. In the
examples that follow, the handler will return a JSON object.

Figure 6-2. Server-handler class diagram

Java-Based Servers | 91



Note on Examples
Like other examples in this book, the examples in this chapter are
intentionally simplified to isolate specifics relevent to the topic un‐
der discussion. For example, many of the following JSON responses
are simply text strings. In practice, it is much more common to use
Jackson or other such libraries when constructing a response. Most
developers will work using a high-level, full-featured framework, but
it is clearer to use strings to illustrate what is happening in code
displayed in a book. The use of libraries along with annotations is
very neat, efficient, and declarative in the context of a project, but
hides so much functionality that sample code is unclear at best.
The point of these examples is to demonstrate that application servers
are not always needed, and that writing functional, special-purpose
servers is a relatively straightforward task. Many developers will
choose to use higher-level frameworks, but having a knowledge of
what is going on in lower-level libraries can assist when debugging or
interpreting error stack traces and log messages.

Java HTTP Server
Java Standard Edition ships with an HTTP server API that allows the creation of simple,
functional, embedded HTTP servers. The following program requires no external de‐
pendencies. It listens on port 8000 and responds to requests by returning an HTTP
success response (200) with JSON content:

{"testResponse":"Hello World"}

A single Java source file consists of a class that defines a main method. Within the main
method, a server instance is created that delegates to a static handler class (defined here
as a static inner class) based upon the URL context:

import java.io.*;
import com.sun.net.httpserver.*;
import java.net.InetSocketAddress;

public class HttpJsonServer {

    public static void main(String[] args) throws Exception {

        HttpServer server = HttpServer.create(
           new InetSocketAddress(8000), 0
        );
        server.createContext("/", new MyHandler());
        server.setExecutor(null);
                System.out.println("Starting server on port: 8000");
        server.start();
    }

92 | Chapter 6: Java Web API Servers



    static class MyHandler implements HttpHandler {

        public void handle(HttpExchange t) throws IOException {
            String response = "{\"testResponse\":\"Hello World\"}";
                        t.getResponseHeaders().set(
                "Content-Type",
                "application/json"
            );
            t.sendResponseHeaders(200, response.length());
            OutputStream os = t.getResponseBody();
            os.write(response.getBytes());
            os.close();
        }
    }
}

This example is so simple that there are no external dependencies and no build scripts.
Just compile and run:

$ javac HttpJsonServer.java
$ java HttpJsonServer
Starting server on port: 8000

The server can be hit from a separate command-line session using Curl:

$ curl -i http://localhost:8000
HTTP/1.1 200 OK
Content-type: application/json
Content-length: 30
Date: Sun, 09 Jun 2013 01:15:15 GMT

{"testResponse":"Hello World"}

Obviously, this is not a particularly full-featured example. But it does suggest that the
development of functional HTTP servers using Java is a relatively simple attainable goal.

Embedded Jetty Server
Jetty is a Java-based HTTP server and Java Servlet container maintained by the Eclipse
Foundation. Besides being included as part of the Eclipse IDE, it is embedded in or used
by a variety of other products such as ActiveMQ, Maven, Google App Engine, and
Hadoop. It is more than merely an HTTP server because it also supports the Java Servlet
API and the SPDY and WebSocket protocols. Because of its inclusion in so many
projects, many developers are at least aware of its existence and functionality. Less are
aware of how easily it can used as a component in a custom Java-based server.

Because a Jetty-based server needs to include external modules, a build script is in order.
One challenge with describing Maven configurations in a book is that the pom.xml files
tend to be relatively large and verbose. Gradle configuration is more terse and focused.
The following Gradle configuration includes Jetty and add a task that can be used to
start the server:

Java-Based Servers | 93

http://www.eclipse.org/jetty


apply plugin:'java'

repositories{mavenCentral()}
dependencies{compile 'org.eclipse.jetty:jetty-server:8.1.0.RC5'}

task(startServer, dependsOn: 'classes', type: JavaExec) {
    main = 'com.saternos.embedded.TestJettyHttpServer'
    classpath = sourceSets.main.runtimeClasspath
    args 8000
}

The pattern followed is similar to the simple Java-based example. A handler class is
defined to return a JSON response:

package com.saternos.embedded;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.eclipse.jetty.server.Request;
import org.eclipse.jetty.server.handler.AbstractHandler;

public class JsonHandler extends AbstractHandler
{
    public void handle(
        String target,
        Request baseRequest,
        HttpServletRequest request,
        HttpServletResponse response
    )
        throws IOException, ServletException
    {
        response.setContentType("application/json;charset=utf-8");
        response.setStatus(HttpServletResponse.SC_OK);
        baseRequest.setHandled(true);
        response.getWriter().println(
            "{\"testResponse\":\"Hello World\"}"
        );
    }
}

A main method creates an instance of a server. The server object delegates requests
received to the handler:

package com.saternos.embedded;

import org.eclipse.jetty.server.Server;

public class TestJettyHttpServer
{
      public static void main(String[] args) throws Exception
      {

94 | Chapter 6: Java Web API Servers



            Server server = new Server(Integer.parseInt(args[0]));
            server.setHandler(new JsonHandler());
            System.out.println("Starting server on port: " + args[0]);
            server.start();
            server.join();
      }
}

Build and run the server using Gradle:

$ gradle build startServer

And the response via Curl is what you might expect, along with a reference to Jetty as
the server in use:

$ curl -i http://localhost:8000
HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8
Content-Length: 31
Server: Jetty(8.1.0.RC5)

{"testResponse":"Hello World"}

If you are inclined to write a custom API server from the ground up, the basic building
blocks are included in Java and expanded on in libraries like Jetty. Jetty is also used
behind the scenes by other projects relevant to authoring web APIs such as Restlet.

Restlet
The Restlet API is designed with direct references to REST concepts like resource, rep‐
resentation, connector, component, and media type. REST APIs can be implemented
naturally in this framework. While not particularly RESTful, the following example
demonstrates how little code is required to create a server that returns JSON. The class
is a ServerResource that is attached to the root context and responds to HTTP GET
requests by returning JSON:

package com.saternos.embedded;

import org.restlet.*;
import org.restlet.data.*;
import org.restlet.resource.*;
import org.restlet.ext.json.JsonConverter;

public class TestRestletHttpServer extends ServerResource {

    public static void main(String[] args) throws Exception {
        Component component = new Component();
            component.getServers().add(Protocol.HTTP, Integer.parseInt(args[0]));
            component.getDefaultHost().attach("/", TestRestletHttpServer.class);
            component.start();
        }

Java-Based Servers | 95

http://restlet.org


        @Get ("json")
        public String getGreeting() {
            return "{\"testResponse\":\"Hello World\"}";
        }

}

Roo
Roo allows you to create a project in a few minutes. The new project runs on an em‐
bedded Jetty (or Tomcat) server. An in-memory database is available (you can design
your data models and they are automatically propagated to the selected database). So
with zero time spent in server configuration, you can create a traditional web application
that includes a web application server and database backend through interaction with
a REPL.

Download the latest version of Roo, extract it, and add the path to roo.sh (or
roo.bat) to your path. Run roo.sh and you will be prompted to complete some initial
setup (agree to terms of use). At this point, you can type help or hint at various points
to be prompted with what options are available:

$ roo.sh
    ____  ____  ____
   / __ \/ __ \/ __ \
  / /_/ / / / / / / /
 / _, _/ /_/ / /_/ /
/_/ |_|\____/\____/    1.2.4.RELEASE [rev 75337cf]

Welcome to Spring Roo. For assistance press TAB or type "hint" then hit ENTER.
roo>

Roo’s CLI responds like an expert system for creating Spring-based web applications.
Type hint to find what options are available at a given point in development. You will
be directed to set up a datastore, define entities and fields, and create a web application.

Note that there are times where you will need to work outside of the interactive prompt.
For example, if you enter an entity or field incorrectly, these need to be deleted from the
generated code.

The following set of commands run within the context of Roo will create a standard JEE
web application that includes JSON services (output from each is not included):

project com.saternos.bookshop

jpa setup --provider HIBERNATE --database HYPERSONIC_IN_MEMORY

entity jpa --class ~.domain.Author --testAutomatically
field string --fieldName name --sizeMin 2 --notNull

96 | Chapter 6: Java Web API Servers

http://bit.ly/MfMxBL
http://bit.ly/1dKJ9EN


entity jpa --class ~.domain.Book --testAutomatically
field string --fieldName name --notNull --sizeMin 2
field number --fieldName price --type java.math.BigDecimal
field set --fieldName authors --type ~.domain.Author

json all --deepSerialize
web mvc json setup
web mvc json all

web mvc setup
web mvc all --package ~.web

The application provides CRUD operations related to a list of books. After initial project
creation, an in-memory datastore is configured. Two entities (and their corresponding
fields) are then configured. The next set of three commands is required to expose the
enties via a JSON web API. A JEE admin application based on the entities is generated
by the final two commands.

The application can be built and run on Jetty:

mvn clean install jetty:run

Authors can be created through the JSON API using Curl. The first example shows how
to create a single author; the second, a collection of them.

curl -i -X POST -H "Content-Type: application/json" \
-H "Accept: application/json" \
-d '{name: "Simon St. Laurent"}' \
http://localhost:8080/bookshop/authors

curl -i -X POST -H "Content-Type: application/json" \
-H "Accept: application/json" \
-d '[ {name: "Douglas Crockford"}, {name: "Michael Fogus"} ]' \
http://localhost:8080/bookshop/authors/jsonArray

The main page of the web application is available from http://localhost:8080/book‐
shop/ and rendered with a professionally styled design by default, as shown in Figure 6-3.

The same URL can be used to remove a record using an HTTP delete:

curl -i -X DELETE -H "Accept: application/json" \
http://localhost:8080/bookshop/authors/1

curl -i -X DELETE -H "Accept: application/json" \
http://localhost:8080/bookshop/authors/2

curl -i -X DELETE -H "Accept: application/json" \
http://localhost:8080/bookshop/authors/3

Java-Based Servers | 97



1. Formatting code for human consumption is challenging. This is because computers and people interpret
whitespace and linebreaks differently—and the fact that this book appears in both paper and digital formats.
In practice, the preceding curl commands are best executed at the command line using no line breaks and
minimal whitespace. Unfortunately, this results in either invalid word-wrapping or text flowing outside of
the margins of the page. Within a bash session, long commands can be broken up over multiple lines using
a backslash (\) at the end of each line. We follow that convention throughout this book, but it does not work
in every case. The preceding examples break up a JSON string into separate lines, and include backticks (`)
that cause the spaces and intervening newline to be ignored. We take advantage of this quirk of bash for the
benefit of folks who are copying the commands from digital versions of this book.

Figure 6-3. Roo web application author list

Books along with associated authors can be added by nesting the reference to the
authors. Figure 6-4 shows the changes reflected in the “List all Books” page after the
following curl calls are run:1

curl -i -X POST -H "Content-Type: application/json" \
-H "Accept: application/json" \
-d '{name:"JavaScript: The Good Parts",'`
    `'price:29.99,'`
    `'authors:[{name: "Douglas Crockford"}]}' \
http://localhost:8080/bookshop/books

curl -i -X POST -H "Content-Type: application/json" \
-H "Accept: application/json" \
-d '{name:"Functional JavaScript",'`
  `'price:29.99,'`
  `'authors:[{name: "Michael Fogus"}]}' \
http://localhost:8080/bookshop/books

curl -i -X POST -H "Content-Type: application/json" \
-H "Accept: application/json" \
-d '{name:"Introducing Elixir",'`
  `'price:19.99,'`
  `'authors:[{name: "Simon St. Laurent"}]}' \
http://localhost:8080/bookshop/books

98 | Chapter 6: Java Web API Servers



Figure 6-4. Roo web application book list

To retrieve the list of authors and books inserted:

curl http://localhost:8080/bookshop/authors
curl http://localhost:8080/bookshop/books

A single object in the array of results can be accessed by ID:

curl http://localhost:8080/bookshop/books/1

Format JSON at the Command Line
There are a number of ways to format JSON returned at the com‐
mand line. You can redirect the output to a file and open it with an
editor that supports JSON formatting. There are also special pur‐
pose utilites (like jq) that can format JSON data piped to it. If you
have Python installed, formatting is as simple as:

curl http://localhost:8080/bookshop/books | python -mjson.tool

With the web API in place, standard HTML pages can be created and used in place of
(or in addition to) the jspx page created through the Roo scaffolding command. Create
a file named /src/main/webapp/test.html and it will be available from http://localhost:
8080/bookshop/test.html. The GET book listing calls can be accessed using jQuery using
the getJSON method:

<html>
<head>
  <title>Book List</title>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.10.1/jquery.min.js">
</script>
</head>
<body>

  <h3>Books</h3>
  <ul class='booklist'></ul>

Java-Based Servers | 99

http://bit.ly/1kEGnti


<script>
  (function() {
    $.getJSON('/bookshop/books', function(books) {
      $.each(books, function(nil,book) {
        $('.booklist').append('<li>' + book['name'] + '</li>');
      });
    });
  })();
</script>
</body>
</html>

Roo is one of the most accessible tools available because of its interactive nature. If you
want more extensive coverage on working with the framework, Getting Started with
Roo (O’Reilly) is available as a free download, and Spring in Action (Manning Publica‐
tions) provides additional insight.

Embedded Netty Server
While Jetty has been associated with the Eclipse Foundation, a project with some over‐
lapping use cases emerged from the JBoss community. Netty is used to create optimized
network applications (protocol servers and clients). Optimized network applications
scale better than general purpose alternatives. The fact that Twitter leverages Netty to
address performance concerns suggests something of its maturity and capacity for scal‐
ing.

A sample application using Netty is analagous to the one just demonstrated using Jetty
in that it follows a similar basic pattern. Again, a class with a main method instantiates
and starts the server and a handler class is defined to process incoming requests:

package com.saternos.embedded;

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.socket.nio.*;

public class TestNettyHttpServer {

    public static void main(String[] args) throws Exception {

                ServerBootstrap bootstrap = new ServerBootstrap();

                bootstrap.group(new NioEventLoopGroup(), new NioEventLoopGroup())
                                .channel(NioServerSocketChannel.class)
                                .localAddress(Integer.parseInt(args[0]))
                                .childHandler(new JsonServerInitializer());

                System.out.println("Starting server on port: " + args[0]);
        bootstrap.bind().sync().channel().closeFuture().sync();
    }
}

100 | Chapter 6: Java Web API Servers

http://oreil.ly/gs-roo
http://oreil.ly/gs-roo
http://bit.ly/LXfi5j
http://bit.ly/1mcXsMF
http://netty.io
http://bit.ly/1gz2LPq


The handler class extends ChannelInboundMessageHandlerAdapter, which allows the
class to be included in the server’s pipeline. The messageReceived method has access
to the request and creates the response:

package com.saternos.embedded;

import io.netty.buffer.Unpooled;
import io.netty.util.CharsetUtil;
import java.text.SimpleDateFormat;
import io.netty.channel.*;
import java.util.*;
import io.netty.handler.codec.http.*;

public class JsonHandler extends ChannelInboundMessageHandlerAdapter<HttpRequest> {

    public void messageReceived(ChannelHandlerContext channelHandlerContext,
                                HttpRequest httpRequest) throws Exception {
        StringBuffer buf = new StringBuffer();
        buf.append("{\"testResponse\":\"Hello World\"}");

        SimpleDateFormat dateFormatter = new SimpleDateFormat(
                                              "EEE, dd MMM yyyy HH:mm:ss zzz",
                                              Locale.US
                                             );

                dateFormatter.setTimeZone(TimeZone.getTimeZone("GMT"));
                Calendar time = new GregorianCalendar();

        HttpResponse response = new DefaultHttpResponse(HttpVersion.HTTP_1_1,
                                                        HttpResponseStatus.OK);

response.setHeader(HttpHeaders.Names.CONTENT_TYPE,
                   "application/json;charset=utf-8");
response.setHeader(HttpHeaders.Names.CONTENT_LENGTH, buf.length());
response.setHeader(HttpHeaders.Names.DATE,
                   dateFormatter.format(time.getTime()));
response.setHeader(HttpHeaders.Names.SERVER,
                   TestNettyHttpServer.class.getName() +
                   ":io.netty:netty:4.0.0.Alpha8");
response.setContent(Unpooled.copiedBuffer(buf, CharsetUtil.UTF_8));
channelHandlerContext.write(response).addListener(
                    ChannelFutureListener.CLOSE);
    }
}

A class that implements ChannelInitializer is also required to set up the pipeline.

The initializer’s initChannel method has a reference to the Channel interface, which
is used to create and access a pipeline for the /SocketChannel. Pipelines transform or
manipulate the values passed to them. The HttpRequestDecoder receives the raw bytes
and uses them to construct HTTP-related objects, and the HttpChunkAggregator nor‐

Java-Based Servers | 101

http://netty.io/4.0/api
http://netty.io/4.0/api/
http://netty.io/4.0/api/
http://bit.ly/1gz3znF


malizes requests with a transfer encoding of chunked. The next two pipeline classes
encode and chunk the response, which is then passed to the sample application’s specific
handler class (where headers and the actual response are created):

package com.saternos.embedded;

import io.netty.channel.socket.SocketChannel;
import io.netty.handler.stream.ChunkedWriteHandler;
import io.netty.handler.codec.http.*;
import io.netty.channel.*;

public class JsonServerInitializer extends ChannelInitializer<SocketChannel> {

    public void initChannel(SocketChannel socketChannel) throws Exception {
        ChannelPipeline pipeline = socketChannel.pipeline();
        pipeline.addLast("decoder", new HttpRequestDecoder());
        pipeline.addLast("aggregator", new HttpChunkAggregator(65536));
        pipeline.addLast("encoder", new HttpResponseEncoder());
        pipeline.addLast("chunkedWriter", new ChunkedWriteHandler());
        pipeline.addLast("handler", new JsonHandler());
    }
}

Building and running the application results in a response similar to the preceding ones:

$ gradle build startServer
$ curl -i http://localhost:8000

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8
Content-Length: 30
Date: Fri, 14 Jun 2013 14:02:57 GMT
Server: com.saternos.embedded.TestNettyHttpServer:io.netty:netty:4.0.0.Alpha8

{"testResponse":"Hello World"}

Netty is a relatively low-level, general-purpose network library. This provides a great
deal of flexibility for creating optimized applications at the expense of the additional
overhead of setting up applicable pipelines and handlers. The example is somewhat
longer and more complex, but worth being aware of because Netty provides the foun‐
dation for several higher-level frameworks such as Play and Vert.x. Norman Maurer, a
core developer of Netty, has written Netty in Action (Manning Publications), a book
that goes into greater detail about the capabilities of this sophisticated framework.

Play Server
The Play Framework is a lightweight, stateless framework well suited for creating API
servers. A play application can be generated with a few simple commands, and a routes
file can be configured to indicate HTTP methods and paths that reference controller
methods. Code can be written in Java or Scala, and the influence of the Scala community

102 | Chapter 6: Java Web API Servers

http://www.manning.com/maurer
http://www.playframework.org


is apparent in many places such as the use of SBT and Scala-based templates. Play project
changes are reflected immediately in a browser; no separate build step is required.

With Play installed, create a new play application by running play new, naming the
application, and choosing the Java template:

$ play new play-server
       _            _
 _ __ | | __ _ _  _| |
| '_ \| |/ _' | || |_|
|  __/|_|\____|\__ (_)
|_|            |__/

play! 2.1.1 (using Java 1.7.0_21 and Scala 2.10.0), http://www.playframework.org

The new application will be created in /Users/cs/Desktop/tmp/play-server

What is the application name? [play-server]
>

Which template do you want to use for this new application?

  1             - Create a simple Scala application
  2             - Create a simple Java application

> 2
OK, application play-server is created.

Have fun!

This command generated an application structure similar to that of a Ruby on Rails
application. Subsequent command and file modifications are in the context of the newly
created directory:

cd play-server

In this example, an application will return JSON from a URL (/json). To define this
API call, modify conf/routes and add the following line:

GET     /json                       controllers.Application.json()

Finally, modify the Java controller code referenced in the routes file.

Note that this example departs from the previous practice of “Hello World” in a JSON
string. Instead, an object is created and serialized as JSON in the response (using Jackson
under the covers).

This process of creating an object and then serializing it to a target format in the server
response is also used in JAX-RS (the JEE Java API for RESTful) web services:

package controllers;

import play.*;

Java-Based Servers | 103

http://bit.ly/1jaLHkr


import play.mvc.*;

import views.html.*;

import org.codehaus.jackson.JsonNode;

import play.libs.Json;
import org.codehaus.jackson.node.ObjectNode;
import org.codehaus.jackson.node.ArrayNode;

// pretty print
import org.codehaus.jackson.map.ObjectMapper;

public class Application extends Controller {

    public static Result index() {
        return ok(index.render("Your new application is ready."));
    }

    public static Result json() {

            ObjectNode result = Json.newObject();

                // How to nest a JSON object
                ObjectNode child = Json.newObject();
                child.put("color", "blue");
                result.put("NestedObj",child);

                //  Adding Strings
                result.put("status", "OK");
                result.put("something", "else");

                // Add Integers
                result.put("int", 1);

                // Add a JSON array
            ArrayNode collection = result.putArray("coll");
                collection.add(1);
                collection.add(2);
                collection.add(3);
                collection.add(4);

//  comment out this line -VVV- and uncomment the /* */ below to format the JSON
                return ok(result);
/*
// To return json pretty-printed, need to render it as a formatted
// string and then explicitly set the response
// http://www.playframework.com/documentation/2.1.0/JavaResponse
//
//
        ObjectMapper mapper = new ObjectMapper();
        String s="";

104 | Chapter 6: Java Web API Servers



        try{
            s = mapper.defaultPrettyPrintingWriter().writeValueAsString(result);
        }catch(Exception e){}
return ok(s).as("application/json");
*/
    }

}

The application’s internal server can be started from within the application directory:

$ play ~run

In the code listing above,

return ok(result);

can be removed and the lines that follow it can be uncommented. Refresh the browser
to see the JSON change from unformatted to formatted output.

No Browser Refresh Required
With the use of a Chrome plug-in created by James Ward, even the browser refresh can
be avoided. Instead, the browser refreshes whenever a file is saved. To accomplish this,
install the Play Chrome plug-in and modify project/plugins.sbt and add the following
line:

addSbtPlugin("com.jamesward" %% "play-auto-refresh" % "0.0.3")

Other Lightweight Server Solutions
These are by no means the only options available for building APIs. Dropwizard is a
Java framework (similar in intention to Restlet) for developing HTTP/JSON web serv‐
ices. It is built on other “best of breed” technologies (Jetty for HTTP, Jackson for JSON,
and Jersey for REST). Containerless and minimally embedded server solutions are
somewhat novel to the Java community, but are taken for granted by programmers
working with other languages.

JVM-Based Servers
Besides the options available for Java itself, the JVM can serve as a compilation target
for languages other than Java itself. The support for additional languages on the JVM
has grown with each release of Java. In fact, the play framework previously introduced
supports Scala as its preferred language. If you are specifically interested in the expres‐
sive possibilities available through alternate JVM languages, Vert.x is a web server that
allows you to create applications using JavaScript, CoffeeScript, Ruby, Python, Groovy,
or Java.

JVM-Based Servers | 105

http://bit.ly/1nvXESt
http://bit.ly/1cz54iB
http://dropwizard.codahale.com
http://vertx.io


A JVM language can be invoked from within a Java application, or a project can be
assembled that invokes the Java class specified as the interpreter for the language. The
following code excerpts show basic examples of how to create simple servers that run
on the JVM.

Jython
If you have Python installed, you can launch a web server to serve files from your current
local directory by running the following command:

$ python -m SimpleHTTPServer 8000

Jython is a JVM implementation of Python that can perform a similar task with a bit
more effort. Create a build.gradle file with a task to invoke Jython and call a small Python
script that will invoke the HTTP server:

apply plugin:'java'

repositories{mavenCentral()}
dependencies{compile 'org.python:jython-standalone:2.5.3'}

// Example running a Jython Server
task(startServer, dependsOn: 'classes', type: JavaExec) {
    main = 'org.python.util.jython'
    classpath = sourceSets.main.runtimeClasspath
    args  "http_server.py"
}

The http_server.py consists of navigation to the directory where files will be served
and a bit of code to create and start the server:

import SimpleHTTPServer
import SocketServer
import os

os.chdir('root')
print "serving at port 8000"
SocketServer.TCPServer(("", 8000),
SimpleHTTPServer.SimpleHTTPRequestHandler).serve_forever()

Create a directory named root. Whatever files are placed in the root directory will be
served by the SimpleHTTPServer. Those files with a .json extension will have a content
type of application/json.

106 | Chapter 6: Java Web API Servers



Quickest Mock Server Ever
With this simple setup, client-side developers can begin work while
working server-side code is not yet available. Mock JSON responses
can be created in files within a directory structure that reflects the API
paths. These JSON response files can also be used to essentially docu‐
ment the API and even serve as validation server-side unit tests.

Web Application Servers
There are of course full-scale web application server solutions for deploying production
code developed in Java or in Python (using django-jython, for example) or Ruby (using
warbler). Tomcat is a Servlet container and (available immediately in the Roo framework
mentioned previously) and so can run any web application that can be deployed as a
WAR. A project with a group of WARs that need to be packaged together in an EAR (or
individual WARs that require certain JEE services) needs a full-fledged JEE application
server like JBoss.

Development Usage
It is clear that the clear separation of client and server tiers provides various possibilities
for client development using simple servers that are created quickly while server de‐
velopment progresses in parallel. At its most basic, an HTTP server could be created to
return hardcoded JSON. With little more effort, the JSON could be stored on the file
system in filenames that reflect the API URLs. If database access is required, Roo in‐
cludes easy database integration using technologies that are also available in other Java-
based projects. It is even possible to continually extend the server to include disparate
datasources, application caching, and other such features that will allow it to serve as
the basis of the production server. This type of development is not possible when de‐
veloping monolithic applications that do not provide a clear partitioning of client and
server applications.

Conclusion
The examples in this chapter highlight the progressive simplification of server-side de‐
velopment, which contrasts with the growing complexity of client-side code. Java de‐
velopers entrenched in a view based on traditional Java packaging methodologies and
application server deployment should be aware of the alternatives that better fit a client-
server paradigm.

Creating a lightweight, specialized API or HTTP server is possible without a deep
knowledge of network minutiae and low-level languages. Simple, lightweight server-
side code and simplified deployment options emerged out of a necessity to create highly

Web Application Servers | 107

http://bit.ly/MOjBRl
https://github.com/jruby/warbler


scalable solutions that are practical for large-scale deployments. The shift also has a
profound effect on the day-to-day workflow for programmers. These effects, which are
positive for the most part, are the subject of the next chapter.

108 | Chapter 6: Java Web API Servers



To find my home in one sentence, concise, as if
hammered in metal. Not to enchant anybody. Not
to earn a lasting name in posterity. An unnamed
need for order, for rhythm, for form, which three

words are opposed to chaos and nothingness.
—Czeslaw Milosz

CHAPTER 7

Rapid Development Practices

Developer Productivity
Conciseness, efficiency, and simplicity are highly valued in modern culture. Perhaps
this is because of the relative abundance and complexity that distinguishes our time
from previous generations. A web application built using simple, concise code and ef‐
ficient and streamlined practices will result in a final product that is easier to maintain,
easier to adapt, and will ultimately be more profitable. Likewise, a programmer’s work‐
flow and tools should be efficient and avoid unnecessary complexity. Because there are
so many options available, it is particularly important for a developer to step back from
coding and consider if the workflow in use is truly optimal and productive.

Along with a fundamental shift to a client-server web paradigm, there has been incre‐
mental changes and improvements to development workflows. These improvements
eliminate extraneous, unnecessary work by using reasonable defaults and removing
rarely used configuration options. Simplification of workflows results in smaller, tighter
feedback loops. Frequent feedback promotes quicker recognition and elimination of
problems. The early identification and remediation of bugs results in increased pro‐
ductivity—and happier programmers. Furthermore, it introduces the possibility of cre‐
ating complex, high-quality software that ironically requires less time and resources to
construct and maintain.

109



Copious Hand-Waving…
Measuring programmer productivity is notoriously difficult. Meas‐
ures such as hours worked, lines of code per day, or defects resolved
are objectively measurable, but not terribly meaningful. The unique
purpose, time frame, and intended longevity of a project make it
difficult to compare to others. A truly formal and objective measure‐
ment that fairly and accurately reflects productivity across all projects
simply does not exist. In practice, most software development
managers engage in a bit of artful spreadsheet manipulation and de‐
velop a knack for accurately assessing the degree of correlation be‐
tween the estimates given by their developers and actual outcomes.
With that understood, a general assumption that improvements to
processes can be made to the benefit of individual and group perfor‐
mance will be accepted.

Agile methodology was initially presented as a correction to waterfall methods, which
tend to be encumbered early on with a large amount of effort and activity that actually
prevent meaningful progress. Limiting this tendency toward “analysis-paralysis” and
recognizing the need to immediately begin creating a workable product was refreshing
when introduced. Unfortunately, the term has become diluted over time and now can
often simply suggest a “ready-fire-aim” approach where there is a great deal of activity
early on with no well-defined goal. In this context, though it might seem counterintui‐
tive, being truly productive requires one initially to cease working. Obviously, this is
meant as an absolute cessation of activity. It is the ability to sacrifice immediately meas‐
urable and visible progress for long-term project quality and productivity.

This is a significant challenge. Management wants to see progress on the project at hand.
Developers like coding. Users want evidence that work has commenced. But starting
prematurely can result in the wrong (or at least less than ideal) tool or approach to be
adopted. An inapplicable convention or tradition introduced to a project can be very
damaging. An early deviation can set a project on a bad trajectory and lead to problems
that compound as the project progresses. It takes a bit of vision to realize that ceasing
work to do some up-front analysis can result in far more productive work and higher-
quality results.

Up-front analysis has suffered quite a bit with the adoption of pseudo-agile methodol‐
ogies (“pseudo” is intended to indicate that what is suggested here is not opposed to an
agile approach). It is far more beneficial to measure twice and cut once. This applies on
many levels. Development team leads need to make decisions relevant to their projects.
Individual developers need to remain aware of the best practices and emerging techni‐
ques that might be applicable to the problem at hand. Having the right tool or approach
for a given job can reduce the time and effort required to complete the initial work, and
done correctly, can result in a system that is simpler and easier to maintain in the long
run. The pressure to focus all energy and attention on whatever task is deemed most

110 | Chapter 7: Rapid Development Practices



urgent must be resisted to make the fundamental adjustments required to work pro‐
ductively. An agile approach that welcomes changing business requirements throughout
the project can be used, but foundational technical decisions and related developer
workflow should generally not be significantly affected.

Productivity in Isolation
It should be apparent that a focus on productivity alone is inade‐
quate. If productivity were to be considered in absolute isolation,
then doing nothing might be considered the best option! Software
quality, reliability, clear communication, correctness of functionali‐
ty, and adherence to processes and conventions are important val‐
ues as well. All other things being equal, it is better to complete a
required task through fewer actions using less resources. So changes
to processes in the name of productivity still need to be considered
in light of this wider range of concerns. Besides, a truly productive
process will tend to promote quality, reliability, and other impor‐
tant values as well.

It is somewhat disappointing that there is no simple plan or theory that will result in
productivity gains. True software productivity improvements are discovered and enac‐
ted in practice during specific projects in an ad hoc manner. Work is done, and over
time, improvements to the process are identified and implemented, and the cycle re‐
peats. The knowledge gleaned is a source of reflection on areas that can be improved,
optimized, or even eliminated on other projects.

In the abstract, a software project requires that one or more tasks be completed, ideally
in the most effective and productive manner possible. Productivity is often most easily
comprehended and measured when isolated to a defined task. Every software develop‐
ment task involves one or more people and one or more computers. Each person and
computer can interact with other people and computers over the course of a project.
All of these are likely to be geographically dispersed. This is shown in Figure 7-1.

Figure 7-1. Interactions between people and computers

With this in mind, productivity improvements can be made to interactions between:

Developer Productivity | 111



• People (with each other)
• Computers
• People and computers

People and computers are the resources that perform the work required to complete a
task, as shown in Table 7-1. To increase productivity:

• Redefine the task.
• Increase efficiency (of a given resource or in interactions between resources).
• Increase resources.
• Increase effort (get more out of each resource through additional work).

Table 7-1. Areas for productivity improvement
Action Humans Computers

Redefine the task Identify requirements, plan, architect, manage Languages, software, programming paradigms

Increase efficiency Develop skills, minimize distractions Automate, preprocess, compress, optimize, tune

Increase resources Developers, consultants Scale, add hardware/processing power

Increase effort Time management, workload Parallelize

These areas are important to recognize on a couple of counts. A failure to take advantage
of productivity improvements in one area (such as recent technical innovations classi‐
fied under the Computers column) result in an increase in factors affecting productivity
in the Humans column (additional hours or personnel). A bit of reflection about these
areas as they relate to a project can help to suggest actions that might require relatively
minor effort and result in significantly better results.

Acknowledgement of this more holistic view can help avoid overemphasis on a single
category for solving all problems. A well-known example is the irrational hope that
increasing workload and adding developers late in a project will result in meeting an
overly ambitious deadline. Another is the sophomoric developer trap of believing that
everything can be automated through additional homegrown software development
regardless of the nature of the task. The particular emphasis of this book is in the Com‐
puters column.

Optimizing Developer and Team Workflow
Iteration involves repeating a process with the aim of approaching (and eventually
completing) an intended result. Each part of a project includes tasks that are iterated
times, as shown in Figure 7-2. This basic observation can be applied to many different
aspects of software development, including requirement-gathering, design, develop‐
ment, testing, and deployment.

112 | Chapter 7: Rapid Development Practices



Figure 7-2. Project iterations

There are a couple of key insights to keep in mind:

• An iteration should conclude with an observable result. This result can be compared
with the state prior to completing the iteration as well as with the intended result.
If the result is not observable, there is a problem. What is observable can be meas‐
ured and improved. What is not visible cannot be evaluated, fixed, or enhanced.
An iteration can also be thought of as a feedback loop, beginning with an action
and resulting in a response that must be evaluated.

• An iteration (or feedback loop) can be small or wide. A single code change made
by a developer is a small iteration, while the final delivery of an entire large-scale
system is relatively large. Feedback from a deployment can be automated or manual.
Automated feedback can provide a general indication that a deployed system is
functioning as expected but cannot replace an actual end-user response to a release.

• Shorter iterations allow for increased feedback. Increased feedback is essentially
increased visibility. Increased feedback is desirable for many reasons. It results in a
quicker identification of problems (and even opportunities), and it is easier to make
corrections to the project trajectory early in the process. The smaller the loop and
more immediate the feedback, the better.

• By its very nature, any gain to a given iteration will result in a much more significant
gain to the overall project due to the fact that it is repeated. The challenge is to
recognize that a task is being repeated and to make improvements to tasks that will
have the greatest overall impact to the entire project.

• Any optimization to a task in the project is worthwhile. An optimization to a task
that is repeated many times is generally even more beneficial. It is better to automate
a task altogether if possible. What is somewhat counterintuitive to those geared

Optimizing Developer and Team Workflow | 113



toward “doing work” is that the best option, if available, is to eliminate unneeded
tasks altogether.

These observations are rather obvious and boil down to simple common sense. But as
those who have spent any time in the software development world can attest, developers
are creatures of habit. Many get comfortable with a certain sequence in a workflow or
a given set of tools. This can result in a large amount of unnecessary work that com‐
plicates projects and produces suboptimal results, to say the least.

Faster Is Better
Boyd decided that the primary determinant to winning dogfights was not observing,
orienting, planning, or acting better. The primary determinant to winning dogfights
was observing, orienting, planning, and acting faster. In other words, how quickly one
could iterate. Speed of iteration, Boyd suggested, beats quality of iteration...
I’ll state Boyd’s discovery as Boyd’s Law of Iteration: In analyzing complexity, fast iter‐
ation almost always produces better results than in-depth analysis.

— Roger Sessions, “A Better Path to Enterprise Architectures”

Most of us are not going to create the next big thing that is going to revolutionize
software development processes. But simply stepping outside of one’s own program‐
ming culture can be an eye-opening experience. There are plenty of improvements
available that can be leveraged, and delving a bit deeper into well-established technol‐
ogies can provide significant results for individual developers let alone wider project
considerations. A few examples might help illustrate this.

Example: Web Application Fix
A change needs to be made to a Java JEE web application (an EAR comprised of several
WARs) built using Maven and deployed to a JBoss web application server. The developer
who needs to make the change will need to make several code changes (likely making
a mistake or two in the process). One way to approach the problem involves a few
different steps. First, make code changes. Next, type out commands to do a standard
full build, followed by a deployment of the application. This second step might take
several minutes to complete depending on the size of the application, the number of
unit tests being run, the build, and other factors. What improvements to the process
might be made?

• To start, there are numerous shell command options that might be of use. Com‐
mand history (and searching) immediately come to mind.

• Does every step in the build process need to be performed? For example, in Maven,
the -DskiptTests parameter might shorten the build time significantly.

114 | Chapter 7: Rapid Development Practices

http://msdn.microsoft.com/en-us/library/aa479371.aspx


• Is a full deployment even required? It might be possible to hot deploy code de‐
pending in a manner that no build is required to test a change.

• Does the change require an initial deployment at all? Initial test might be done by
testing within the browser (if they relate primarily to HTML, CSS, or JavaScript).
For server-side code, attaching the remote debugger and observing relevant objects
and variables in their immediate, populated context might allow enough discovery
to prevent a few unnecessary iterations. The Java code might be able to be evaluated
in a unit test outside of the full deployment as well (which suggests a productivity
benefit of Test-Driven Development).

Example: Testing Integration
This example is regarding the same web application project, now well underway. There
is a general recognition of the need to include testing as part of the SDLC. This can
occur at many stages and at many levels:

• A QA resource or developer peer testing might do a good job validating initial
requirements and code match-up, but people do not tend to be consistent or
exhaustive.

• Unit tests (using JUnit) are created. They provide more extensive testing but are of
little use if not run consistently.

• Unit tests are quickly integrated into the Maven build. The build is done on a con‐
tinuous integration server so developers are quickly alerted of a change that breaks
the build. Yet it is difficult to tell how extensive or valuable the tests are.

• A coverage report can be generated to provide some indication of code coverage.
One area noted is that testing is specifically server-side. This is an issue because the
browser-side code in the project is significant.

• Fortunately, our crafty front-end engineers have already begun doing unit testing
using Jasmine. These can be integrated into the Maven build using a plug-in. In
addition, JavaScript developers run unit tests on their client-side code using Karma
installed on their individual workstations.

• As the project proceeds, the project flow solidifies, and broader functional tests that
reflect user experiences can be written. These functional tests can then be run on
various browsers using Selenium.

The focus with this testing scenario has been on increasing feedback regarding project
status rather than quality itself. The value in optimization is evident, as bugs are quickly
identified and fixed. In addition, incongruities between requirements and implemen‐
tation are easily identified. New developers can be added to such a project because they
can learn about code in relative isolation by observing and running tests. A project with

Optimizing Developer and Team Workflow | 115



significant test coverage can survive sweeping refactoring changes. The confidence to
undertake such refactoring is a result of having suites of automated tests that verify a
significant subset of existing functionality.

Example: Greenfield Development
As a software architect on a new project, you need to choose the best set of tools and
set up an initial application structure. As a cloud-deployed, highly scalable web appli‐
cation, a client-server architecture described in this book is selected. It is accepted that
the team will adopt some new tools and processes, but Java is mandated as the pro‐
gramming language due to organizational practices and in-house abilities (which elim‐
inate possibilities like Rails and Grails that rely on other JVM languages):

• Maven/JEE is initially considered. Although JAX-RS is suitable for server-side de‐
velopment, JSF development does not fit due to a tendency for developers to use
sessions.

• After a bit of investigation, it turns out that the entire build/deployment to an ap‐
plication server can be mitigated by using a server-side framework like Spring Roo
or the Play framework. Play is selected, and a server-side web API is generated that
serves some sample JSON files from the filesystem. These mock services will later
be replaced with integration from a variety of other backend services.

• Yeoman can be used to generate a front-end project that uses the JavaScript frame‐
work and relevant HTML5 starter project. A quick npm search yeoman-

generator yields a few likely candidates that are used to generate not just one but
several client-side projects—each in its own directory. A few hours of evaluation
(hooking up the frontends to the existing services) provides a sense of the value
each generated project brings, and one is selected.

• Some cleanup is done, including providing example server-side and client-side tests
that run automatically when a file is saved. Automated documentation utilities are
set up for Java and JavaScript. Code is checked into SVN, and the project is registered
and configured on the continuous integration server. The server also generates
documentation when code is built and publishes it to a known central documen‐
tation server. An IDE template is set up that includes acceptable defaults for code
formatting.

With this initial work in place, many of the most significant and important decisions
have been made prior to individual developers implementing more specific business
requirements. These decisions have led to a process that allows for relatively isolated
(parallel) client and server development. It also includes immediate feedback using unit
tests and specific examples for developers to copy as they add tests for new functionality.
Published auto-generated documentation and an IDE template encourage relatively
homogeneous coding and commenting practices.

116 | Chapter 7: Rapid Development Practices



These examples are subjective and will undoubtedly be changed and improved as new
technologies emerge. The point is to provide an example of the analysis that can be done
to make incremental improvements to processes rather than blindly following previous
practices and conventions. The section that follows is intended to help you brainstorm
and identify areas of your projects that are applicable targets for improvement.

Productivity and the Software Development Life Cycle
Productivity needs to be considered at each point in the software development life cycle.
This is because a glaring inefficiency in a fundamental step in the process cannot nec‐
essarily be overcome by productivity gains in another. In general, tasks related to pro‐
ductivity can be prioritized in order of diminishing returns. Although each project and
team is unique, some general statements can be made concerning which areas will tend
to have the greatest overall effect. Generally, management and cultural decisions are
foundational, followed by overall technical architecture, specific application design, and
lower-level programming and platform concerns. Given an accurate analysis and pri‐
oritization of tasks, optimal results can be obtained by addressing productivity issues
in order.

Management and Culture
In general, the largest gains can be had when considering the overall scope of a project
involving many individuals working on a team. Although not the focus here, manage‐
ment actions, team dynamics, and work culture have a profound impact on the work
that will be accomplished. These broad environmental considerations set the stage for
the work to be done and the value proposition for the overall organization as well as
each individual. They are significant and often the primary areas that should be ad‐
dressed. One challenge that can be significant—especially in larger organizations—is to
align goals. Charlie Munger, the businessman and investor best known for his associ‐
ation with Warren Buffett, described the challenge that Federal Express once faced to
align the goals of workers with the organizational mandate to eliminate delays. The
solution to the problem involved making sure all parties involved had the proper in‐
centives:

From all business, my favorite case on incentives is Federal Express. The heart and soul
of their system—which creates the integrity of the product—is having all their airplanes
come to one place in the middle of the night and shift all the packages from plane to
plane. If there are delays, the whole operation can’t deliver a product full of integrity to
Federal Express customers.
And it was always screwed up. They could never get it done on time. They tried everything
—moral persuasion, threats, you name it. And nothing worked.
Finally, somebody got the idea to pay all these people not so much an hour, but so much
a shift—and when it’s all done, they can all go home. Well, their problems cleared up
overnight.

Productivity and the Software Development Life Cycle | 117

http://ycombinator.com/munger.html


So getting the incentives right is a very, very important lesson. It was not obvious to
Federal Express what the solution was. But maybe now, it will hereafter more often be
obvious to you.

—Charlie Munger

Other “big-picture” considerations: basic well-known organizational and management
principles hold true. Assign responsibility, centralize documentation, and use version
control. These concerns are obvious yet frequently ignored.

Technical Architecture
The overall architecture of a system dictates many facets of subsequent technology se‐
lection and implementation. A highly scalable, cloud-based application targeted for a
widespread public deployment involves a more sophisticated setup than an application
that is going to be used internally by an organization. There is far more margin for error
in the latter case. The overall productivity of a team will be severely hindered if members
are required to either code with consideration for scenarios that will never occur or
make changes late in the project to address unexpected architectural requirements. A
clear sense of project scope should be reflected in architectural choices.

A similar concern is the choice of data storage medium. Traditional relational databases
are a relatively well-understood resource that provide services like referential and trans‐
actional integrity that developers tend to take for granted. New NoSQL solutions offer
the ability to optimize write operations and store data in a manner that is far less con‐
strained. Each has its benefits, but there is no single silver bullet that will address all
concerns. A NoSQL solution might be selected because of initial scalability concerns
related to incoming data. But if reporting capabilities are not also considered up front,
data might not be stored in a way that will allow for efficient reporting. Individual
developers might be remarkably capable and productive, but will not be able to over‐
come a fundamentally incorrect data storage decision through isolated effort on a spe‐
cific reporting task.

Each programming language has dogmatic adherents who enter into epic debates on
the relative virtues of their language. What is certain is that there are characteristics of
a language that make it simpler to complete a given programming task in less time. For
instance, if a compilation step can be eliminated (through the use of automated compil‐
ing in an IDE or the use of a scripting language), a task will require less time. Languages
like Java have a huge number of available supporting libraries, while some newer lan‐
guages like Scala and Groovy boast fundamental language differences that reduce the
amount of code that needs to be written to perform an equivalent task. Scripting lan‐
guages like Ruby and Python have their own unique workflows that have been effective
on their own and influenced the development of tools and processes elsewhere.

118 | Chapter 7: Rapid Development Practices

http://ycombinator.com/munger.html


1. For the uninitiated, an asterisk is a wildcard in programmer-speak. *nix is shorthand for “Unix or Unix-like
systems such as Linux.” The term *nix also includes Apple’s OS X but excludes Windows. Windows can run
an emulation environment like Cygwin to make it look like a Unix system.

Software Tools
Selection of programming languages, development tools, and frameworks is a major
area where an architect steers project direction. The power and constraints available to
individual programmers throughout development of a project are influenced heavily
by these decisions. Technologies and their associated workflows were created with a
variety of values in mind. Productivity will inevitably be impacted this selection.

In Software Tools (Addison-Wesley Professional, 1976), Brian Kernighan famously said,
“Controlling complexity is the essence of computer programming.” The range of soft‐
ware tools that have assisted in the attempt to tame complexity touch on every part of
the software development life cycle: version control systems, automated documentation,
coverage and quality reports, testing tools, issue management systems, and continuous
integration servers, to name a few. Besides these, the simple everyday tools a developer
has mastered can be the difference that makes a developer an order of magnitude more
effective than his peers.

Each language has associated build tools. Although you can mix and match languages
and build tools, there is a close associate between Maven for Java, Gradle for Groovy,
SBT for Scala, and Rake for Ruby. Each language has associated frameworks for devel‐
oping client-server web applications. Java is known for JEE and Spring (which is also
available through a highly automated utility called Roo) as well as for newer frameworks
like Play (which also supports Scala). The same could be said for Ruby and Rails, Groovy
and Grails, and Python and Django. Most of these frameworks include embedded
servers that tend to promote developer workflow. They also tend to be coupled with
starter projects that can eliminate a significant amount of time-consuming, boilerplate
coding. The selection of a relevant framework can result in reduced build time, the
elimination of a build altogether, the benefits of preprocessing of an asset pipeline, and
easy incorporation of integrated test suites.

IDEs include features such as code completion, intelligent searching and code naviga‐
tion, refactoring functionality (encapsulating code in a new method, and renaming a
variable across files of different types), unit test integration, and background compila‐
tion. They are a mainstay in the Java community. They provide tremendous value when
working in a language like Java, so much so that some developers find it hard to believe
that every programmer does not use one for every task.

Developers using scripting languages (particularly those that were not initially created
for the JVM) tend to use lighter-weight code editors. If working at the command line in
an *nix type environment,1 vi (or vim) and Emacs along with a few of the built-in utilities
can provide analogous (or even superior) mechanisms for a variety of software devel‐

Productivity and the Software Development Life Cycle | 119



opment tasks. Even if you’re not working all the time at the command line, it is worth‐
while to be conversant at this level because so many support tasks (deployment to a
server, viewing logs, and checking server performance) take place in an environment
where only the command line is available.

Performance
Applications that perform well can be debugged more quickly. Minimizing the time
required for an iteration (the size of the feedback loop) makes for a larger number of
possible changes and validation. The optimization of a poorly performing section of
code can provide time for developers to work on other issues that would otherwise be
spent waiting for a system to respond. The initial selection of APIs, algorithms, data
storage mechanisms, and related processing has a tremendous downstream effect in
this regard. Even the choice of programming language paradigms has an effect; for
example, functional programming (which is widely publicized for its virtues of limiting
side effects), commonly utilizes highly efficient caching mechanisms. It can also be used
to efficiently traverse structures with an extremely terse, easily understood code repre‐
sentation. It simplifies processing and requires fewer lines of code that need to be sifted
through when refactoring. Both actual application performance as well as human read‐
ability can benefit with the use of the right technology (with the right team). Even in a
mature project, there are often areas that are candidates for optimization. For instance,
network performance in many web applications can benefit from simple compression
or reduction of calls. These details can be overlooked early in a project but can often be
implemented later in a nondisruptive manner. And the gains for improving perfor‐
mance always extend the specific area addressed as time is freed up for developers to
actively program and test rather than wait for the system to respond.

By way of more general application design, the benefits of RESTful application con‐
straints promote productivity. A client-server paradigm allows for parallel develop‐
ment, easier debugging and maintenance, and simplification of otherwise complex
tasks. These benefits also apply to the practice of creating discrete modules elsewhere
in a system. Proper modularization of a project can allow an initial creation of a project
using a highly productive but less scalable solution that can later be rewritten. Good
design tends to promote later productivity.

Testing
Once done in a largely haphazard and ad hoc manner, testing has become a much more
formalized discipline. Automation of testing (along with integrating tests into builds)
is required to ensure confidence in large-scale refactoring and is foundational to prac‐
tices like automated deployment. Automated tests were initially run intermittently and
infrequently. With available processing power, it is now feasible to run build suites every
time a project is built (or even every time a file is saved). The extent of testing might

120 | Chapter 7: Rapid Development Practices



vary a bit as a project matures but is a necessity in some form in most nontrivial modern
web development. Testing has become firmly established in the JavaScript community,
allowing for the development of larger projects that perform reliably across browsers
and devices. New forms of testing are being developed to address cloud-based deploy‐
ments such as Netflix’s Chaos Monkey, which assists the development of resilient serv‐
ices by actively causing failures.

Testing, when properly instituted, can fulfill a unique roll in facilitating communication
between programmers and computers as well as programs and other members of their
team. This might not be obvious at first; after all, the purpose of testing is generally
understood to validate the reliability or functionality of software. Certain types of testing
can also contribute significantly to the overall productivity of a large-scale project. This
is immediately evident when tests reduce the pain of integration and result in quality
improvements that require fewer fixes. In a somewhat more subtle manner, tests that
follow the Behavior-Driven Development paradigm can improve productivity by cre‐
ating a means of consistent communication between project team members represent‐
ing different areas. As stated in The Cucumber Book: Behaviour-Driven Development
for Testers and Developers:

Software teams work best when the developers and business stakeholders are commu‐
nicating clearly with one another. A great way to do that is to collaboratively specify the
work that’s about to be done using automated acceptance tests…When the team writes
their acceptance tests collaboratively, they can develop their own ubiquitous language for
talking about their problem domain. This helps them avoid misunderstandings.

Better communication results in less time wasted due to misunderstandings. Better
understanding results in greater productivity.

When Testing Opposes Productivity
There are times when running tests can become burdensome and
inhibit productivity. Constructing and maintaining tests takes time.
Running extensive test suites requires time and resources. Like any
other development task, effort and time are required for testing that
could be spent elsewhere. This has led to many developers and oth‐
er parties dismissing testing efforts in large part.
It has become relatively easy to integrate testing into web applica‐
tions at many levels. Many starter projects include testing config‐
ured out of the box. To get the maximum value from testing, a cul‐
ture is required that values the benefits of tests and considers their
maintenance to be real work and worth the effort. It is hard to sell
testing in terms as directly benefitting productivity. For most
projects that have any significant lifespan, its value cannot be
understated.

Productivity and the Software Development Life Cycle | 121

http://nflx.it/1dkWwjE
http://bit.ly/prag-cucumber
http://bit.ly/prag-cucumber


Underlying Platform(s)
The operating system along with installed infrastructure software comprises the un‐
derlying local deployment platform. A reasonably powerful workstation or two (along
with an extra monitor for added screen real estate) is the equivalent of a supercomputer
from a few years ago. Initial setup to allocate sufficient JVM memory or to shut off
unneeded programs from consuming resources might be of some value, but often, fun‐
damental aspects of application design play a larger factor. In some cases, having a faster
file system will make a noticeable impact on build time.

The use of centralized databases versus developer-maintained copies can be an impor‐
tant decision. In a developer-maintained scenario, migration frameworks like Fly‐
WayDB can be of assistance. If working with remote resources, networking can become
a significant concern, particularly when working with distributed teams.

Conclusion
By design, there is no sample project with this chapter. Productivity, or simply efficiency
during the development process, requires a step back to consider available options and
how they fit with the project at hand. Each stage of a project includes macro- and micro-
level tasks that might be simplified, automated, or performed more efficiently. There is
no substitute for “coming up for air” and giving the appearance of leisure that allows
sufficient reflection on the best options available.

122 | Chapter 7: Rapid Development Practices

http://flywaydb.org
http://flywaydb.org


In theory, there is no difference between theory and
practice. But, in practice, there is.

—Author Unknown

CHAPTER 8

API Design

There are two basic ways to solve problems: start with a comprehensive theory and work
out the details, or start with particular facts and develop a theory that ties them together.
“Detail people” derive solutions by studying the minutiae of a particular problem. “Big-
picture people” fit problems into categories that relate to their overarching theories.
Each approach has value, and much problem-solving involves adeptly switching be‐
tween them.

Waxing Philosophical
In philosophy, Plato describes “universals” as abstracted to the highest and most fun‐
damental “realm of ideas.” His student Aristotle instead finds them in specific, particular,
real-world things. These starting points are more than an intellectual curiosity. In design
analysis, starting points affect the ultimate outcome of the process. The best solutions
are often the result of both approaches being applied in a complementary manner. These
ancient starting points are related to modern data science techniques by the authors of
The Handbook of Statistical Analysis and Data Mining Applications (Elsevier):

Traditional statistical analysis follows the deductive method in the search for relation‐
ships in data sets. Artificial intelligence (e.g., expert systems) and machine learning
techniques (e.g., neural nets and decision trees) follow the inductive method to find
faint patterns of relationship in data sets. Deduction (or deductive reasoning) is the
Aristotelian process of analyzing detailed data, calculating a number of metrics, and
forming some conclusions based (or deduced) solely on the mathematics of those met‐
rics. Induction is the more Platonic process of using information in a data set as a “spring
board” to make general conclusions, which are not wholly contained directly in the
input data.

123

http://bit.ly/LXhpGl


REST and practical web API design are representative of these starting points as well.
REST was articulated by Roy Fielding in purely abstract terms. RESTful web APIs, while
inspired by the ideals of REST, are created to solve specific problems and accept imple‐
mentation details that don’t fit the theory in its purest form. Much of the disagreement
that occurs in discussions concerning REST can be traced to the starting points chosen
consciously or unconsciously by each party.

Obviously, REST does specify constraints that provide immediate practical value for
web API authors. The discrete division between client and server tiers, the use of HTTP
verbs, and identification of web resources have been clearly demonstrated to be useful
in the creation of a variety of real-world web APIs. The fact remains that HATEOAS,
while theoretically compelling, has proved difficult to implement consistently. It is es‐
pecially challenging to reconcile due to the widespread adoption of JSON as the de facto
data transport format for web APIs.

A Decision to Design
Although web services have existed in one form or another for years, the shift to using
them as a foundational design element did not occur immediately. The gradual adoption
of Ajax and the creation of JSON and related lightweight web APIs initially impacted
existing systems built on server-side MVC. As developers pushed the limits of these
technologies to create sophisticated single-page applications, it became clear that an
server-driven MVC approach did not adapt well to pervasive use of the new technolo‐
gies. This lead to a fundamental change to the design of web applications that broke
continuity with previous practices. See Figure 8-1 for a timeline illustrating the tech‐
nological progress that led to client-server-style web applications.

A Shift to a Client-Server Approach
The technologies used in a client-server approach to web development are not new. The
programming languages used have matured but are not fundamentally different, and
servers, browsers, and the HTTP protocol have been around since the Web was created.
However, the design methodology applied in a consistent manner is a more recent de‐
velopment and is largely a result of various technologies being developed.

The first web pages were simple, static content served by web servers and rendered in
browsers. Dynamic content was introduced in the mid-1990s as CGI programs on the
server and JavaScript in the browser. JavaScript was relatively slow, and client computers
were not powerful, so the focus was on utilizing server-side processing to create dynamic
content. The complexities involved resulted in the introduction of patterns such as
Model-View-Controller (MVC) to the server side.

124 | Chapter 8: API Design



The MVC pattern remains a staple of server-side Java development and appears in major
standards like JEE and frameworks like Spring. Further JavaScript innovations like Ajax
and JSON immediately influenced server-side MVC developers, who used these tech‐
nologies in an ad hoc, piecemeal manner. Frameworks have not disappeared, but their
design and use has been significantly affected. In terms of design, MVC frameworks like
Spring have adopted “pretty URLs” that reflect resources being acted on. In terms of
use, APIs can of course be used in conjunction with traditional MVC. Regardless of the
framework in use, many applications today are based on web APIs without MVC, which
is effectively a client-server approach.

Figure 8-1. History of technologies related to client-server web development

A client-server approach involves a specific design decision to develop RESTful web
APIs to deliver data to client-side views and to avoid generating views server-side. This
begs the question of how to best design web APIs in a consistent, supportable manner.
Design decisions of this type always elicit a range of opinions, but there is a fairly es‐
tablished consensus. The general agreement is that web APIs should be significantly
influenced by REST without being rigidly restricted by controversial or impractical
constraints.

Practical Web APIs Versus RESTful APIs
While what is practical might be subject to interpretation, there is widespread agreement
that web APIs should be easy to use. They should be easily understood by an outside
developer, consistent, predictable, and conform to many parts of REST. Implementation
of certain aspects of REST provides this kind of ease-of-use by design. This is despite
the fact that REST was not originally specified with any particular intention about short-
term productivity or developer ease-of-use as it is sometimes understood.

Practical Web APIs Versus RESTful APIs | 125



Roy Says…
REST is software design on the scale of decades: every detail is intended to promote
software longevity and independent evolution. Many of the constraints are directly
opposed to short-term efficiency.

—Roy Fielding

So which parts of REST are most easily applied in a practical manner? The consistent
identification of resources as nouns that are acted upon by HTTP verbs is fundamental
to REST, and especially clear in applications that rely on CRUD operations. “Pretty
URLs” are one result of such identification. REST makes no specific demands involving
performance but does reference cachable resources that promote systems that perform
and scale well. And of course, the clear client-server distinction is of immense value as
described in previous chapters. REST has been so influential because its very design
tends to promote development of applications in concert with the design of the Web
itself. Well-engineered applications that can be easily understood and extended result
when these parts of REST are in use.

There are qualities of practical web API design that do conflict with REST. Most notably,
the use of JSON leads to a lack of linkability defined in the media type itself. The use of
a media type that is not linkable immediately results in an API that is not self-describing,
and therefore requires documentation. What is perhaps even more challenging is de‐
termining a course of action when considering areas not directly touched upon in REST.
Securing and supporting changes to APIs are relevant topics outside of the scope of
REST.

Even though Fielding does not address all issues related to web API design, he does
make many observations that are applicable in other areas. For example, though ease-
of-reading for an API response is not a particular concern of REST itself, Fielding high‐
lights the lack of visibility incurred when using solutions like Java applets. This concern
could imply that in many situations, formatted JSON would be beneficial. The clarity
provided to a client-side developer often outweighs the few spaces saved in a compacted
message (not to mention that server compression is more effective for improving trans‐
port size and performance).

REST was conceived of as an abstract model. Abstract models stand outside of space
and time. As such, it does not directly take into account the fact that systems change
over time. The ease-of-use value suggests that changes should be made in a manner that
is backward compatible if possible. Versioning of APIs provides a great deal of flexibility
in this area.

Recall that one of the constraints of REST is a uniform interface. A uniform interface
is almost completely self-describing. Ideally, a system with such an interface needs no

126 | Chapter 8: API Design

http://bit.ly/roy-gbiv-restAPIs


documentation beyond a system entry point. This is a stark contrast to protocols like
SOAP, which often include a Web Services Description Language (WSDL) to describe a
web service’s functionality. A RESTful system would provide links to all resources and
not require any additional description. In practice, web APIs are far more usable if they
are well documented.

Guidelines
Unlike technologies whose specifications are dictated by standards committees, web
APIs can be constructed at the whim of a developer. In practice, it makes sense to create
APIs that conform to the expectations of the broader development community. The
following sections reflect the significant influence of REST on development of light‐
weight web services. They are suggested guidelines for designing easily understandable
and usable web APIs.

Nouns as Resources; Verbs as HTTP Actions
As dictated by REST, resources are nouns. Nouns in a RESTful system are represented
in the URL path and are used to manipulate the resource referenced. Actions are verbs
that correspond with functions and are used to manipulate the resources. Verbs in a
RESTful system are specifically related to HTTP operations.

Resources correspond with objects, entities, or tables in other design approaches. Nouns
are modeled as classes in UML class diagrams. They are modeled as entities, which are
often later implemented as tables in relational databases in Entity Relationship Dia‐
grams (ERDs).

UML class diagrams and ERDs are related in that they are notations
based on mathematical graphs, but include additional semantics to
indicate what nodes and edges represent.

UML and ERDs are not unique in giving special attention to nouns. REST gives them
a place of prominence as well. Table 8-1 shows the correspondence between these sys‐
tems. In REST, nouns are represented as resources; in UML class diagrams, they are
classes; and in ERDs, they are entities that are implemented as database tables. Methods
used to decompose domains for presentation on class or ERD diagrams can be used
when analyzing and modeling a system for a REST API. This is especially true in systems
that map well to CRUD operations.

Guidelines | 127



Table 8-1. Noun representation in modeling system
Architecture Entity that a noun represents

Object-oriented class hierarchy Class

Relational database Table

REST API Resource

When designing a system that includes CRUD operations, consider the applicability of
every action on every resource. This can prevent the need to later change a system to
include required functionality that was simply overlooked. For example, a blog engine
might be modeled to include users, blog posts, and comments as resources. Most blog
systems need to be able to create, read, and delete these resources. The ability to update
a user or change a comment might not be necessary. Such a system is shown in
Table 8-2, where the first column identifies the resources (nouns) and each row identifies
the actions (verbs).

Table 8-2. Sample API design grid for a blog
Create Read Update Delete

User x x x

Post x x x x

Comment x x x

But I Have No Nouns…
REST model resources are a fundamental unit of the architecture.
Analysis of REST resources using techniques similar to those used
in UML class diagrams and ERDs map well to CRUD-type applica‐
tions. An application that is not resource based might be thought of
as a group of verbs. Such an application might be better represent‐
ed as a series of remote procedure calls. This type of system cannot
easily be represented in RESTful terms.
In many cases, such a system can be redesigned to be resource based,
but this is not always possible. Abstractions might be good enough
to model certain systems but insufficient for others.

Query Parameters as Modifiers
While nouns are significant parts of the URL, and verbs relate to HTTP actions, they
do not tell the whole story. Other parts of a URL can include additional information.
As is the case in the grammar of spoken languages, additional parts of speech are used
to qualify or clarify the intent of nouns and verbs.

Query parameters can be useful when referencing a collection of resources. Parameters
can be used to filter a collection to only return a subset of the set. They might return a

128 | Chapter 8: API Design



selected number of resources, such as only the first 10. They can also be used to sort the
results.

Pagination is a special case of filtering. Parameters can be used to explicitly reference a
subset of returned results. Query parameters are better suited for limiting the set of data
included in a collection request (serving as adjectives or adverbs, if you will). Pagination
has implications beyond the use of query parameters, most notably, linking.

GitHub’s API provides a good, well-documented example of pagination parameters.
The page parameter indicates which page of those available is returned, and the
per_page parameter limits the results returned to 100:

curl https://api.github.com/user/repos?page=2&per_page=100

HTTP GETs with Request Bodies
Request parameters tend to “uglify” URLs that were otherwise pretty. In some circum‐
stances, it might be necessary to take an action that seems to map to an HTTP GET and
yet involve a request object that is more easily defined as a hierarchical data structure.
One example is the retrieval of a number of items that each require several fields for
lookup. Roy Fielding and the HTTP spec seem to allow for it, though lack of any formal
requirement for the server to parse the body suggests that while it works in many in‐
stances, this should not be used in a system as a long-term solution.

Web API Versions
REST does not demand that a web API be designed for updates and modifications, but
its constraints tend to promote a system that is more easily changed. Versioning APIs
is an important consideration not touched upon in Fielding’s thesis. Including a portion
of a URL with a version number prevents changes to an API from disrupting client
activities. Without versioning, it is necessary to coordinate a parallel upgrade to client-
side code to account for server-side modifications (which in many cases is not even
possible, let alone practical). Though a version identifier lacks theoretical simplicity and
elegance, using one can greatly improve a system. Because there is a range of opinion
on their usage and they are not self-describing, version segments in web API URLs need
to be clearly called out and documented to be effective.

There is a range of opinion on where a version might be included. Some suggest that
the version be included in the URL path. Others suggest that it be specified as a query
parameter. Still others prefer that a version not clutter the URLs and suggest that it be
communicated as an HTTP header.

Guidelines | 129

http://bit.ly/1guCZgz
http://yhoo.it/1hfR4SD


HTTP Headers
A version identifier is only one of many uses for request and response headers. Other
“out of band” information can be stored here as well. Twitter reports rate limit data in
headers to alert a developer when her application is approaching a limit. ETags can be
used to control caching, and other headers apply to security authentication and au‐
thorization. Headers are often used to communicate secondary but essential informa‐
tion. They don’t neatly fit into an abstract model, but they have many practical uses that
need to be considered.

Accept and content type headers can be used to impact how the server responds to a
request and what sort of response it provides. Besides the obvious differentiation be‐
tween XML and JSON content, these are used to return padded JSON (JSONP) rather
than straight JSON. This is part of the magic that allows JSON content to be sent to a
remote server without violating cross-domain restrictions. In essence, it allows access
to a JSON API by wrapping a JSON payload in a function call. An example of this is
provided in the project later in this chapter.

Linking
Pagination presumes the ability to link to the previous and next resources relative to
the subset being displayed. Some API designers recommend including the entire link
for the next and previous page in the results of your API, while others recommend only
the inclusion of IDs to save space and eliminate repeated text. While providing links is
often a good decision and limits the need for additional documentation, strict
HATEOAS is not practical or possible for every situation at this point.

Responses
Having an API that is self-describing is an excellent ideal. If resources are specified and
reflected in the URLs and HTTP verbs are leveraged, this can be accomplished to a
significant degree. Following convention in the use of HTTP response codes (for ex‐
ample, 400 reflects client concerns while 500 indicates server issues) will contribute to
this as well. Ideally, your system’s error messages will provide immediate, actionable
descriptions to address their triggers. But in most systems, some documentation will be
needed at least in a few basic areas. Error codes and messages are often a bit terse. They
should therefore be keyed to documentation. Ideally, errors will be described in docu‐
mentation at a level that is impractical in a system error message (for instance, identi‐
fying each field in a PUT/POST/PATCH and the errors it can cause).

Documentation
Documentation should be easy to locate, search, and understand. One convention
adopted by some web API developers is to use a Web Application Description Lan‐

130 | Chapter 8: API Design

http://bit.ly/1bs2O21
http://bit.ly/1a1l2ly
http://bit.ly/1cz6auK


guage (WADL), which is a machine-readable description of a web application, generally
in XML format. These are often easy to locate, but will not be sufficient if simply gen‐
erated by a utility. Providing examples that can be replicated by a developer using Curl
at the command line can go a long way toward clarifying the intent of your API. If an
API is directed toward third-party developers, even more attention will be required.

Documentation on RESTful web APIs will involve manual effort, but there are tools that
can ease this burden by automatically generating documentation. Some servers create
a WADL as a resource available from the web API server. For example, Jersey generates
a basic WADL at runtime that you can request using a GET to /application.wadl. Ad‐
ditional information can be included in the WADL by specifying selected directives. If
you are using a server that does not generate a WADL out of the box, a package like
Enunciate can be added and configured for your project to generate one. There are also
websites like http://apiary.io where you can design and document your API outside of
the context of any specific project.

Formatting Conventions
Finally, following simple format conventions can make an API much more approach‐
able. Developers need to actually view and read documents during initial development
as well as ongoing support. Because JSON is JavaScript, it makes sense to follow id‐
iomatic JavaScript practices like using camel case for naming fields.

Another simple practice is to pretty-print JSON responses to make it easier for people
to read. The usual argument against this is that pretty-printing JSON increases the
response side and hurts performance, but greater performance gains are possible by
configuring JSON responses to be GZipped. The few spaces added in a formatted re‐
sponse can be worth the performance hit because developers can view returned re‐
sponses without first formatting it in an IDE or using a command-line utility like jq.

Security
REST does not provide specific guidelines related to security. This is because it was
designed with the assumption that APIs would be publicly available on the Internet. It
is often also a good idea to serve APIs over HTTPS rather than HTTP. For APIs that are
not intended to be restricted to a server, a JSON API can be made public via JSONP or
CORS.

Project
The following project demonstrates how Jersey can be used to return JSON, XML, or
JSONP content. A single resource (greeting) is used in this Hello World-style applica‐
tion. The project is available on GitHub.

Project | 131

http://enunciate.codehaus.org
http://apiary.io
http://bit.ly/1kEGnti
http://bit.ly/LXhEB8


Running the Project
The project is configured to run a Java class from Maven. The class contains a main
method that starts a local HTTP Server on port 8080. A single command can be used
to build and run the application:

mvn clean install exec:java

Server Code
The server code consists of three Java classes. App.java contains a main method that
runs the server. It creates an instance of a Grizzly HTTP server and defines /api as the
context root for the web API. It then adds a static HTTP handler to serve the HTML
and JavaScript code:

package com.saternos.jsonp;

import org.glassfish.jersey.grizzly2.httpserver.GrizzlyHttpServerFactory;
import org.glassfish.jersey.server.ResourceConfig;
import org.glassfish.grizzly.http.server.*;

public class App {

  public static void main(String[] args) throws java.io.IOException{

    HttpServer server = GrizzlyHttpServerFactory.createHttpServer(
      java.net.URI.create("http://localhost:8080/api"),
      new ResourceConfig(GreetingResource.class)
    );

    StaticHttpHandler staticHttpHandler =
    new StaticHttpHandler("src/main/webapp");
    server.getServerConfiguration().addHttpHandler(staticHttpHandler, "/");

    System.in.read();
    server.stop();
  }

}

GreetingBean is a POJO with an annotation related to rendering XML responses:

package com.saternos.jsonp;
import javax.xml.bind.annotation.*;

@XmlRootElement(name = "greeting")
public class GreetingBean {

  @XmlAttribute
  public String text;

  public GreetingBean() {}

132 | Chapter 8: API Design

https://grizzly.java.net


  public GreetingBean(String text) {
    this.text = text;
  }
}

GreetingResource provides the ability to return the data contained in a Greeting
Bean through the server. Jersey is the JAX-RS reference implementation that maps web
requests to Java methods. JAX-RS applies annotations to Java objects. Annotations be‐
came available in Java in version 1.5. They are used by frameworks to apply behaviors
to classes and methods and effectively reduce the amount of code needed to complete
common tasks. These annotations effectively provide a DSL that maps pretty clearly to
underlying HTTP functionality.

The @GET annotation indicates the HTTP request verb in view. The @Path annotation
describes the URL path in context, and the @Produces annotation describes what content
type will be produced by Jersey when returning the bean from the method. The @Quer
yParam is used to assign the query parameter as a method argument to getGreeting.
Table 8-3 presents representative annotations.

Table 8-3. Selected JAX-RS annotations
Annotation Description

@GET Requests a representation of a resource

@POST Creates a resource at the URI specified

@PUT Creates or updates a resource at the URI specified

@DELETE Removes a resource

@HEAD Provides an identical response to GET, without the content body

@Path The relative path for a resource

@Produces Indicates the media types a service can return

@Consumes Indicates the media types a service can accept in a request

@PathParam Binds a method parameter to a segment of the URI path

@QueryParam Binds a method parameter to a query parameter

@FormParam Binds a method parameter to a form parameter

There are a number of other annotations available in JAX-RS. See RESTful Java with
JAX-RS (O’Reilly) for more information:

package com.saternos.jsonp;

import org.glassfish.jersey.server.JSONP;
import javax.ws.rs.*;

@Path("greeting")

public class GreetingResource {

Project | 133

https://jersey.java.net
http://oreil.ly/RestfulJava-JAX-RS
http://oreil.ly/RestfulJava-JAX-RS


  @GET
  @Produces({"application/xml", "application/json"})
  public GreetingBean getGreeting() {
    return new GreetingBean("Hello World Local");
  }

  @Path("remote")
  @GET
  @Produces({"application/x-javascript"})
  @JSONP(queryParam = JSONP.DEFAULT_QUERY)
  public GreetingBean getGreeting(
         @QueryParam(JSONP.DEFAULT_QUERY) String callback
         ) {
    return new GreetingBean("Hello World Remote");
  }
}

Curl and jQuery
The client-side code included with the project uses jQuery to call API URLs. The jQuery
library has a wide range of Ajax capabilities and hides some of the complexities and
cross-browser challenges related to the core JavaScript XMLHTTPRequest object. The calls
used in the application can also be replicated using Curl, as illustrated below. Table 8-4
shows web API URLs used in this example.

Table 8-4. Application URLs
URL Description

/ HTML and JavaScript in the web app directory

/api/greeting JSON or XML from getGreeting()

/api/greeting/remote JSONP from getGreeting (string callback)

Curl can be used to return a web page in HTML:

curl http://localhost:8080

When using Curl, the -i argument can be specified to include header information. The
HTTP response code and content type are of particular interest. For instance, if you
specify a URL path that is not recognized by the server, it will return a “Not Found”
response:

curl http://localhost:8080/api -i

The application returns XML in the response by default:

curl http://localhost:8080/api/greeting

By modifying the HTTP Accept request header, a JSON response can be returned
instead:

134 | Chapter 8: API Design

http://jquery.com


curl http://localhost:8080/api/greeting -H 'Accept: application/json'

Finally, a call to return JSONP will often include the specification of a JavaScript function
name as a query parameter. The same response returned in the JSON call results, padded
by a JavaScript function. Because JavaScript files can be downloaded from different
domains, the content is returned. They would otherwise be forbidden by the JavaScript
same-origin policy:

curl http://localhost:8080/api/greeting/remote?__callback=myCall
curl http://127.0.0.1:8080/api/greeting/remote?__callback=myCall

Theory in Practice
REST in its pure theoretical form remains an ideal standard. It serves as a measure of
projects implemented with it in view. It ought to be studied and understood. But the
value of other technologies, namely JSON, has been proven as well. JavaScript-based
clients easily consume JSON. The lack of a universally accepted mechanism for linking
in JSON has not deterred developers from adopting it as the data transport of choice.
Supplementing such APIs with documentation and other practical considerations has
made the difference between theoretically perfect systems that are never delivered and
practical solutions that meet immediate needs.

The applicability of RESTful web APIs to the practical problems faced by developers
has grown over time and resulted in the change in architectural approaches. Such APIs
can be consumed by devices with a wide array of capabilities, including those created
by third-party developers. They are lighter weight than SOAP and other web service
implementations that include complex envelopes and exchange patterns. They can be
used to create applications without problems related to stale data on the client. They
effectively distribute processing to clients that have significant computing power. They
are horizontally scalable by simply adding additional server applications when deployed
in a cloud-based platform like Amazon Web Services. These and other characteristics
have resulted in developers switching from occasionally implementing or consuming a
service to developing entire applications with a consistent approach leveraging RESTful
web APIs.

Theory in Practice | 135





Language is no longer regarded as peripheral to our grasp of the world
we live in, but as central to it. Words are not mere vocal labels or

communicational adjuncts superimposed upon an already given
order of things. They are collective products of social interaction,

essential instruments through which human beings constitute
and articulate their world. This typically twentieth-century view

of language has profoundly influenced developments
throughout the whole range of human sciences.

—Roy Harris

CHAPTER 9

jQuery and Jython

Programming languages have an immediate and tangible impact on the lives of those
who use them and on those who are not even aware of their existence. Amusingly
enough, programmers often spend precious little time working with the fundamental
features of a language. After gaining an understanding of these, they immediately look
for ways to avoid reinventing the wheel. An abstraction level or generalization can be‐
come so popular that it becomes practically conflated with the original language.

The jQuery library is such a technology related to JavaScript. It has been widely adopted,
and most JavaScript developers have used it extensively. Some consider it not just a
library, but more of a internal Domain Specific Language (DSL). Thought of this way,
jQuery is a small language with a focus on DOM manipulation, Ajax processing, and
other common JavaScript tasks. In any case, jQuery use is so prevalent that you will find
questions online of the form, “How to do X in JavaScript?” that are answered using
jQuery idioms.

The abstraction layer that has made Java so successful is at a lower level than the language
itself; it is the Java Virtual Machine (JVM) which processes the bytecode generated by
the Java compiler. Java was intentionally designed from the onset with the JVM as an
abstraction layer. Its independent existence has made it possible to create compilers for
non-Java programming language implementations that target the JVM. The JVM is a

137



well-engineered, highly optimized program and is the result of years of research and
development. Developers who have no particular interest in the Java language can still
benefit from this underlying technology.

The project created in this chapter will use jQuery and Jython (a JVM-based Python
implementation) to demonstrate how simply a client-server web application can be
prototyped.

Server Side: Jython
The Python programming language was initially released in the mid-1990’s by Guido
van Rossum (its principal author and “Benevolent Dictator For Life”). Python is known
for its clear, readable, and regular syntax. It departs from many of the idioms of C-based
languages (like curly brackets). Because of its consistency and clarity, it has been adopted
in many educational settings as the language taught in introductory programming
classes. Python generally requires fewer lines of code than Java to perform a given task.

Jython is an implementation of Python that runs on the JVM. This allows for the creation
of clear, concise Python programs that are run wherever Java is installed. Jython pro‐
grams also can interact with Java objects, which introduces a range of possibilities for
embedding Jython or using it in conjunction with native Java libraries.

Python Web Server
As a scripting language, Python also can be used in ways unfamiliar to Java developers.
For instance, to run a static web server that serves files from an arbitrary directory
without writing an original line of code, you can simply navigate to the directory in
question and invoke the following:

python -m SimpleHTTPServer

Jython Web Server
Creating a Python-based web server using the SimpleHTTPServer referenced above
requires only a few lines of code:

import SimpleHTTPServer
import SocketServer
import os

os.chdir('src/main/resources')
httpd = SocketServer.TCPServer(("", 8000),
SimpleHTTPServer.SimpleHTTPRequestHandler)
print "serving at port 8000"
httpd.serve_forever()

138 | Chapter 9: jQuery and Jython

http://www.python.org
http://www.jython.org


Jython can be invoked from the command line or embedded inside of a Java application.
For example, this script can be called from inside of a Java class:

package com.oreilly.jython;

import java.io.File;
import java.io.IOException;
import org.python.util.PythonInterpreter;
import org.apache.commons.io.FileUtils;

public class Server
{
    public static void main( String[] args ) throws IOException
    {
        new PythonInterpreter().exec(
                        FileUtils.readFileToString(
              new File("python/http_server.py")
            )
                );
    }
}

The project, including its dependencies, is available on GitHub. It can be built using
mvn clean install and run by calling mvn exec:java.

Mock APIs
A static web server has significant limitations. Most notably for a web app developer, it
cannot produce dynamic content. However, it is possible to mock out APIs by simply
creating files that contain representative data. For example, a directory named api with
a file called groups.json can be created and would be available from the http://localhost:
8000/api/groups.json URL. The content of this JSON file is an array of groups, each of
which is an object that has a name, description, and URL:

[
    {
        "name":"duckduckgo",
                "description":"Internet search engine founded by Gabriel Weinberg",
                "url":"http://duckduckgo.com/"
        },
        {
                "name":"angular",
                "description":"Open source JavaScript framework initially created" +
                      " by Adam Abrons and Miško Hevery",
                "url":"http://angularjs.org/"
        },
        {
                "name":"twitter",
                "description":"Online social networking service and microblogging" +
                      " service created by Jack Dorsey",
                "url":"http://twitter.com/"

Server Side: Jython | 139

http://bit.ly/1bPlMKG


        },
        {
                "name":"netflix",
                "description":"American provider of on-demand Internet streaming "+
                      "media Marc Randolph and Reed Hastings",
                "url":"http://netflix.com/"
        }
]

Directories relative to the root directory are reflected in the URL path, and many web
servers will respond with the desired content type if a corresponding extension is speci‐
fied. Client-side developers can work in parallel using a mock API like this while server-
side configuration and development proceeds.

Client Side: jQuery
Since its release in 2006, jQuery has simplified cross-browser development in several
different ways. It was created by John Resig with the intention of changing the way that
developers write JavaScript. Specifically, it sought to remove common repetitive tasks
and replace obscure, verbose JavaScript with a clear, succinct syntax.

When encountering jQuery for the first time, the number of dollar signs that appear in
code can be surprising. This is because $ represents the jQuery object in the namespace
for the library. So the following are equivalent:

jQuery('a')
$('a')

Running JavaScript after a page loads is accomplished in standard JavaScript using the
body onload event. The load event occurs after a page is fully rendered (including all
assets such as images). jQuery provides an event that runs slightly earlier, after the DOM
is ready. There are several different syntaxes to specify this handler. The recommended
one is the verbose version:

$(document).ready(function() {
// Handler for .ready() called.
});

which is equivalent to:

$(function() {
// Handler for .ready() called.
});

In general, the pattern of jQuery usage involves finding DOM elements and then doing
something with them. Finding DOM elements is accomplished using a string pattern
of some sort (CSS Selectors or XPath). Doing something might be as straightforward
as reading the contents of the element, or could involve its contents or style or associating

140 | Chapter 9: jQuery and Jython



a behavior with it through an event handler. jQuery also provides a consistent interface
for Ajax processing. It is also designed to be extended using plug-ins.

DOM Traversal and Manipulation
Much of the criticism leveled at JavaScript is due to difficulties in interacting with the
browser DOM. jQuery eases interaction between HTML and JavaScript by providing
an elegant interface for DOM selection, traversal, and manipulation. This is most fre‐
quently accomplished using CSS selectors from CSS 1-3, as well as some specific to
jQuery. CSS selectors are strings containing patterns that can simply refer to an element
by name or specify a complex series of matching conditions. If all conditions specified
by a pattern are true for a given element, the selector matches it. Table 9-1 gives some
jQuery examples.

Table 9-1. jQuery examples
Selector Description

$('$div') All divs

$('#myElement') Elements with an ID of myElement

$('.myClass') All elements with a class of myClass

$('div#myDiv') All divs with an ID of myDiv

$('ul.myListClass li') All list items inside of a ul with an class of myListClass

$('ul.projects li:first') The first list item in uls with a class of projects

As shown in Table 9-2, other attributes can also be accessed, even if only part of the
value searched for is known.

Table 9-2. jQuery partial values
Selector Description

$('input[name*="formInput"]') Input elements with a name with a substring of formInput

$('input[name^="formInput"]') Input elements with a name that starts with formInput

Characters with special meanings must be escaped using two backslashes. For example,
if you had an input text field with an ID of myForm:username, the following selector
could be used to identify the element:

$('input#myForm\\:username')

CSS selectors are very expressive, but at times result in an array of objects that need to
be further processed. Many jQuery methods return a jQuery object that you can then
use to call another method. So for instance, a subtree of the DOM can be searched to
find a specific element:

$('div.projects').find('.project1')

Client Side: jQuery | 141



Utility Functions
jQuery also provides a number of utility functions that can handle similar tasks on
collections of elements, as shown in Table 9-3. Libraries like underscore.js overlap
somewhat with jQuery but provide even more capabilities for manipulating lists and
objects. The JavaScript language has been augmented over time to include similar
methods. jQuery’s methods will likely continue to be used for the near future due to the
benefit of compatibility with legacy browsers.

Table 9-3. Utility functions
jQuery Underscore JavaScript 1.6

iteration each each forEach

transform map map map

filtering grep filter, where

find index inArray indexOf, lastIndexOf

After an object has been located, it is trivial to do something with it. Function chaining
makes manipulating elements especially convenient:

$('div.items').find('.item1').text('Hi World').css('background-color', 'blue')

The modification of specific elements in the DOM leads into the development of dy‐
namic interactive user interfaces that respond to a user’s actions.

The pattern of “find an element” and “do something with it” is simple, powerful, and
immediate. To appreciate this, simply pop open a browser web console on a page that
includes jQuery and begin writing some selectors that return objects. When you have
located some, try changing their text or styling. If you want to try this pattern on a page
that does not include jQuery, you can load it by running a few simple commands in
advance:

var script= document.createElement('script');
script.type= 'text/javascript';
script.src= 'http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js';
document.head.appendChild(script);

Effects
jQuery includes convenient methods for modifying CSS to show or hide elements. It
also includes methods related to animation, including fading and sliding effects:

$('form#myForm').hide()
$('form#myForm').show()
$('form#myForm').slideUp('slow')
$('form#myForm').slideDown('slow')
$('form#myForm').fadeIn('slow')
$('form#myForm').fadeOut('slow')

142 | Chapter 9: jQuery and Jython

http://bit.ly/1g1BkgF


Event Handling
jQuery selectors can be used to attach event handlers to specific elements. The actual
syntax used to this end has varied a bit over time. Methods such as bind, live, and
delegate have been superseded by on and off. One challenge introduced with increas‐
ingly dynamic interfaces is that you might want to define an event handler for an element
that could come into existence at some later point depending on user interaction. The
solution to this challenge using jQuery is to bind the event at a higher level of the DOM.
When the event is fired, even though the event is not directly associated with the element,
it will be propagated up and handled when the selector is matched:

$(document).on('click','.myClass', function(){
        console.log('Hey you clicked me.');
});

Ajax
jQuery wraps the XMLHttpRequest browser object into a more usable, simple form that
behaves in a consistent manner across browsers. jQuery.ajax is a general Ajax reques‐
ter, and more specific functions provide a shorthand for commonly used HTTP GET
or POST commands. Because of the popularity of JSON communication in Ajax ap‐
plications, it includes a getJSON method as well and also provides the ability to make
calls using JSONP.

jQuery is an amazing but relatively simple library. The concepts introduced in this
chapter cover the bulk of what it is designed for at a high level. Books like Cody Lindley’s
jQuery Cookbook (O’Reilly) are very helpful in showing how the library can be used for
specific tasks.

jQuery and Higher-Level Abstractions
jQuery greatly simplified cross-browser development and made it possible to develop
a class of web applications with significant Ajax interactions, event handling, and DOM
manipulation much more easily. Its popularity suggests that it will continue to be in‐
fluential and popular for many years. But as web apps have grown in size, new ap‐
proaches have emerged to tame the complexity. Larger-scale design patterns (MVC)
and programming paradigms (functional programming) provide alternatives and com‐
pliments to the functionality available in jQuery.

Consider, for example, the simple practice of assigning variables. This basic task be‐
comes burdensome as the number of variables in a program (with dependencies on one
another) begins to grow. Object-oriented programming was popularized with the no‐
tion that an object could encapsulate a group of variables that represent the state of an
object. The object would be given defined methods to allow access to and manipulation
of an object’s state.

jQuery and Higher-Level Abstractions | 143

http://oreil.ly/jquery-ckbk
http://bit.ly/1eSnqkn


Object orientation (in the classical sense) is not particularly influential in the JavaScript
community, but other solutions address the challenge of keeping variables in sync. These
include two-way data binding between model and view components (AngularJS) and
Functional Reactive Programming, which defines data types that represent a value over
time (rather than being concerned only about a variable’s value at a particular instant).

Functional Reactive Programming
Functional Reactive Programming (FRP) is a declarative approach to GUI design that
has been garnering recent attention. Its selling point is that many of the constructs
addressed directly by jQuery (event handlers, callbacks, and DOM manipulations) are
not done directly.

jQuery has its limitations, and separate projects have sprung up to provide niceties like
client-side templates, modularization of code, and management of callbacks. Others
seek to simplify the complexities of direct DOM manipulation. Many of these can be
used in conjunction with jQuery, and jQuery’s success in taming browser incompati‐
bilities and providing a consistent interface for DOM manipulation have made it an
established presence in JavaScript development.

Project
The Jython-based HTTP server introduced earlier in this chapter simply responds to
requests for files in the specified directory. This is sufficient to serve up HTML and
JavaScript files. Although the server itself provides little functionality, there are ways to
effectively expand the server tier by making external calls to third-party APIs. One API
that is publicly available and requires no special setup or API keys is the GitHub API.
The application described will do anything from lookups on GitHub data to listing
members of select GitHub Groups (as shown in Figure 9-1).

144 | Chapter 9: jQuery and Jython



Figure 9-1. GitHub Groups

Basic HTML
The application can be “built out” from scratch starting with a simple HTML file with
a bit of embedded CSS. Although stylesheets are better externalized for production
projects (consistent with the previous discussion related to Unobtrusive JavaScript), it
is simpler to keep all the code in view when developing in this manner:

<html>
<head>
        <title>index</title>
        <style type="text/css" media="screen">
                img {width: 50; height: 50;}
                span {padding: 7px;}
        </style>
</head>
<body>
        <select id="selected_group">
      <option>Select Group</option>
    </select>
        <div id="images"></div>
</body>
</html>

JavaScript and jQuery
Underneath the closing style element, add a reference to jQuery, which is available from
Google:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">
</script>

The options that will appear in the dropdown will be loaded in a JSON file listed earlier.

Project | 145

http://bit.ly/1guPBTM


The jQuery code to load this JSON file calls $.getJSON and iterates through each record
returned and appends the option to the select element. When an option is actually
selected, a function called getGroup is called:

<script>

$.getJSON("/api/groups.json",
        function(data) {
                        $.each(data, function(i,item){
                                $("<option>"+item.name+"</option>").
                appendTo("#selected_group");
                        });
                }).error(function(){ console.log("error");});

$(document).ready(function() {
        $('#selected_group').bind('change',
        function (){
           getGroup();
        });
});
</script>

The getGroup() function clears any previous display, then makes a call to GitHub to
retrieve the data for the selected group. The names and avatars for each group member
are then displayed:

function getGroup(){
        $("#images").empty();
                $.getJSON("https://api.github.com/orgs/"+
            $('#selected_group').val()+"/members",
                        function(data) {
                                $.each(data,
                   function(i,item){
                                        $("<span>" +
                        item.login +
                      "</span><img/>").
                        attr("src", item.avatar_url).
                        appendTo("#images");
                               });
                }).error(function(){ console.log("error"); });
        }

This example shows how straightforward it is to use jQuery to make local or remote
web API calls and display the results. The entire client side consists of fewer than 40
lines of HTML, CSS, and JavaScript. Add to this cross-browser support afforded by
jQuery and it is apparent why it was so quickly and widely adopted.

That said, the project does leave something to be desired. It’s not exactly pretty or terribly
responsive to different devices. The strings containing snippets containing HTML
might also make you cringe and wish for a templating solution of some sort. You might
also feel that the nested function calls are a bit foreign and that there might be a way of

146 | Chapter 9: jQuery and Jython



providing a more natural functional syntax to the calls. You are not alone in having this
reaction. The JavaScript world has developed projects and libraries that will be discussed
in later chapters.

Conclusion
A client-server approach to web development requires only a few minutes of initial
setup. The server project contained in this chapter simply serves static assets. Static
HTML files and mocked-out API calls stored in JSON files can be created on the file
system and require no build to update. Once in place, jQuery can be used to make local
or remote API calls and display the resulting data. A project of this nature does not
require a deep dive into Java or Python, and even simplifies the amount of JavaScript
that must be mastered. The result is a simple dynamic web application that can be viewed
in a variety of browsers.

Conclusion | 147





We live in a beautiful and orderly world,
not in a chaos without norms, even

though that is how it sometimes appears.
—M. C. Escher

CHAPTER 10

JRuby and Angular

Sorting and filtering are activities that have been used since ancient times to organize
the world. Ancient acrostics used each letter in an alphabet to start a line of a poem.
This involves both filtering (selection of first letter) and sorting (alphabetical). The Sieve
of Eratosthenes, shown in Figure 10-1, can be visualized by writing out, in order, the
integers from two to the upper bound in question, and then filtering out composites
(nonprime numbers) as the multiples of primes.

Figure 10-1. Sieve of Eratosthenes

A quick search on filtering and sorting returns many results geared toward the manip‐
ulation of data in spreadsheet programs. The project in this chapter will show how, with
a relatively small amount of code, JRuby and Angular can be used to filter and sort an
HTML table containing data from Google Finance stock market data.

149

http://bit.ly/1fjJi38
http://bit.ly/1fjJi38
http://bit.ly/1g1BULt


Server Side: JRuby and Sinatra
Simple, dynamic web APIs can be created using Ruby and a microframework called
Sinatra. Sinatra is essentially a Ruby-based wrapper of HTTP.

Ruby was developed by Yukihiro “Matz” Matsumoto, who incorporated parts of his
favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to create a new language that
balanced functional and imperative approaches. Although it was released in 1995, and
he wrote a book called Ruby in a Nutshell about it in 2001, it saw a significant spike in
popularity when Ruby on Rails (or simply Rails) became popular several years later. The
language is, in the words of its author “simple in appearance, but is very complex inside,
just like our human body.” Matz coauthored a more recent book on Ruby that goes into
the details of this fascinating language.

Rails is the Ruby MVC web framework that first brought Ruby to the attention of many
developers. David Heinemeier Hansson extracted the framework from Basecamp (a
project management tool he worked on at 37signals) and released it in 2004. In many
languages and frameworks, writing no code results in no behavior. In Ruby (as well as
Rails and other Ruby projects), default behavior is included when no code is written.
The Rails philosophy expresses this under the principle of convention over configura‐
tion. This greatly limits the amount of setup required to get a project up and running.
This principle is evident in other web frameworks written in Ruby, most notably Sina‐
tra, which is much smaller than Rails and ideal for creating streamlined applications
that don’t require all of the bells and whistles of a larger framework.

Workflow
One approach to using JRuby (or other JVM language) is incorporating them from a
Java perspective. The module containing the language implementation can be included
in a project as a dependency:

<dependency>
    <groupId>org.jruby</groupId>
        <artifactId>jruby-complete</artifactId>
        <version>1.6.3</version>
        <type>jar</type>
        <scope>compile</scope>
</dependency>

In the case of web applications, this makes sense if you have Java application servers
already installed. Warbler can be used to bundle Rack applications into WAR files, and
there are some interesting experiments like the Rack Servlet from Square Engineering
to embed a Ruby-powered servlet into an existing WAR.

A Java developer who approaches Ruby in this manner will have the benefit of focusing
on differences in syntax, but will miss the tools and workflow that have helped make

150 | Chapter 10: JRuby and Angular

http://oreil.ly/ruby-nutshell
http://oreil.ly/ruby-prog-lang
http://rubyonrails.org
https://basecamp.com
http://37signals.com
http://www.sinatrarb.com
http://www.sinatrarb.com
http://bit.ly/1aYZAm6
http://bit.ly/MfPQsr


the language so successful. These differences begin with the very tools used to initially
set up the language and associated packages.

Interactive Ruby Shell
The Interactive Ruby Shell (IRB) is a shell for executing Ruby commands. It is compa‐
rable to an OS shell in that it provides an immediate result for any expression it evaluates.
This sort of exploratory programming using a read–eval–print loop (REPL) is available
in a number of other languages. When experimenting, learning a new bit of syntax, or
when it is not clear what algorithms or data structures might be used, the usual cycle of
edit/compile/run/debug can be burdensome. Java does not have any directly compara‐
ble tool. Executing a bit of code while paused in a debugger is similar, and the Eclipse
IDE has a feature called a Scrapbook Page, which is similar. IRB is worth exploring when
learning Ruby, and when using JRuby, it can also be used to access Java classes.

For an example of how IRB can be used to explore Java JARs, see Appendix A.

Ruby Version Manager (RVM)
Rather than accessing JRuby as a dependency of a Java project, a JRuby environment
can be set up using the Ruby Version Manager (RVM). RVM is not limited to JRuby,
but can be used with many other Ruby implementations. RVM supports deployments
of multiple Ruby environments. Each one is self-contained and includes a specific ver‐
sion of Ruby, and associated set of required gems. RVM makes it easy to set up projects
with a specific set of gems dependent on a particular Ruby version and keep these
projects independent of ones using other versions of Ruby. It is interactive and gives
intelligent advice during installations regarding additional configuration or trouble‐
shooting. If you are working on multiple Ruby projects, it lets you develop in a given
environment and switch to another environment with a single command.

Ruby/JRuby/RVM/Dependency Management
JRuby can be used in several different ways, which can be the source of some confusion.

Ruby is a programming language in its own right. JRuby is a version of the Ruby pro‐
gramming language that runs on the Java Virtual Machine. RVM provides a mechanism
for managing several different versions of Ruby, including JRuby distributions. The RVM
environment includes language installs and associated Ruby packages and is maintained
locally on a machine outside of a project. RVM provides a way of working with Ruby
implementations, including JRuby, from a Ruby perspective.

JRuby can also be included as a standard module dependency in Maven or other build
tool. RVM is not used in this case, and JRuby is treated from a Java perspective.

Server Side: JRuby and Sinatra | 151

https://rvm.io


To identify which version of Ruby RVM is using:

$ which rvm-auto-ruby
/Users/cas/.rvm/bin/rvm-auto-ruby

# Generally, you don't call this directly...
$rvm-auto-ruby --version

# The version in Ruby in use will match the one in the previous command
$ruby --version

To list installed Ruby interpreters and the version currently in use:

rvm ls

To switch to an environment, call the rvm use command along with a portion of the
Ruby interpreter name:

rvm use 2.0.0

Other RVM Functions
RVM does a great deal more than simply let you interactively maintain Ruby versions.
With it, you can set up project-specific Ruby environments called gemsets that are in‐
dependent of other Ruby projects. It can be called at the command line to execute scripts
that use a specific Ruby version and gemset. It can even go beyond simple diagnostic
advice; for instance, SSL certificate issues can sometimes be resolved by simply running
the following RVM command:

rvm osx-ssl-certs update all

Packages
Ruby packages are called gems and are maintained using the gem utility. Gems can be
released with various versions, and a project can be developed that uses a rather specific
set of dependencies. A set of gems can be associated with a single RVM environment,
which allows for simultaneous development of several different Ruby projects that use
different versions of Ruby and different sets of gems. In order to deploy a given project
to other machines, the specific set of dependencies can be maintained declaratively using
the bundler gem. Bundler dependencies are listed in a Gemfile.

Using RVM, you can set up a new Ruby environment. You can then install a bunch of
gems individually and tweak the environment until all of the correct dependencies and
versions are available. When these are available, populate a bundler Gemfile with all of
the versions in use in your current environment. The following sequence of bash com‐
mands can be used to create a new Gemfile, add a comment referencing the Ruby version
in use, and include a list of gem dependencies that matches the current environment.

152 | Chapter 10: JRuby and Angular

https://rvm.io/gemsets/basics
http://bundler.io


The bulk of the work is done in the last command, which lists the gems available in the
current environment, formats the list, removes references to rvm and bundle, and uses
the list to create the corresponding gem entries in the Gemfile:

#!/bin/bash
bundle init

echo "# Ruby Version: `ruby --version`">>Gemfile

gem list --local |
grep -v '\*\*'|
sed 's/[)(,]//g' |
egrep -v 'rvm|bundle'|
awk '{print "gem \""$1"\",\""$2"\""}' >>Gemfile

The generated Gemfile can be distributed to other machines that need the same envi‐
ronment (such as other development machines or separate deployment environments).
These otherwise would have to be set up using a Ruby installation or RVM, and a tedious
manual gem installation.

Sinatra
Sinatra, as described on its website, is a DSL for “quickly creating web applications in
Ruby with minimal effort.” It essentially wraps HTTP in a Ruby-accessible interface that
runs on Rack (a common interface for Ruby web servers and web frameworks). A Sinatra
application is made up of routes (each one an HTTP method paired with a URL-
matching pattern). A route is associated with a block, which can be used to fulfill the
request (by executing Ruby code, rendering a template, and so on).

Sinatra can also serve static files from a directory named public by default (see
Figure 10-2). This makes it ideal for creating a set of web APIs in Ruby that back HTML/
CSS/JavaScript applications. It is by no means limited to this approach. A standard
server-side MVC approach involves Ruby-based templates (ERB) in the views directory
(by default).

Sinatra is minimal and thus sometimes referred to as a microframework. Like the best
of other Ruby libraries, it stays out of your way and exposes a clear interface that can be
referenced as you see fit.

Or perhaps more accurately stated, as a Domain Specific Language, it improves pro‐
grammer productivity and communication due to its close alignment with the domain
it represents: HTTP for web applications.

Sinatra lends itself to being expanded from trivial apps (designed in classic style) to a
form considered more suitable for production deployments (written modular style). So
it is feasible to begin work on a tiny Sinatra app that is gradually built out into a final
application. Because of its simple and transparent nature, it can also be used for proto‐

Server Side: JRuby and Sinatra | 153

http://www.sinatrarb.com
http://bit.ly/1md4cKg


typing, which results in an application that is essentially formal documentation that can
be used to implement a separate system.

Figure 10-2. Sinatra default directory structure

Sinatra is a relatively simple framework with great documentation online and has gar‐
nered enough attention to have a book written on it as well. It is worth learning for its
own sake, and has inspired a variety of similar frameworks in other languages.

JSON Processing
The JSON gem is rather straightforward; it converts Ruby objects to and from JSON
strings. With a straightforward mapping between JSON types and Ruby types, it makes
working with JSON data a breeze. Consider the following IRB session:

>require 'json'
 => true

> o = {:A=>[1,2,3], :B=>{:C=>:D}}
 => {:A=>[1, 2, 3], :B=>{:C=>:D}}

> o.class
 => Hash

> s=JSON.pretty_generate(o)
 => ...

> puts s
{
  "A": [
    1,
    2,
    3
  ],
  "B": {

154 | Chapter 10: JRuby and Angular

http://bit.ly/1md4fG1
http://bit.ly/1g1CpoH
http://oreil.ly/Sinatra-UR


    "C": "D"
  }
}

s.class
 => String

o2=JSON.parse(s)
 => {"A"=>[1, 2, 3], "B"=>{"C"=>"D"}}

o2.class
 => Hash

There are some subtleties that Ruby aficionados will notice (Ruby symbols and strings
are both converted to JSON strings, for example). But in general, the example shows
that it is very simple and straightforward to parse and generate JSON using this package.

Client Side: AngularJS
AngularJS (often referred to simply as Angular) is an MV* JavaScript framework de‐
veloped in 2009 by Miško Hevery and Adam Abrons. As of 2014, a team at Google that
includes Igor Minár and Vojta Jína maintain the project. Angular reads the DOM of its
associated HTML document, processes custom elements and attributes (directives), and
binds data in an associated model to the page.

Angular seeks to provide a comprehensive approach to the development of web appli‐
cations. It recognizes the declarative nature of HTML and enhances its behaviors. It is
a very sophisticated framework that has entire books dedicated to in-depth coverage.
The purpose here is not to exhaustively describe the project, but to demonstrate how
to quickly get up and running with it. There are a number of concepts related to Angular
that need to be understood in order to use it effectively.

Model
If you have done server-side MVC development, you probably think of a model as a
class that contains attributes and is associated with a relational database. Hibernate and
iBatis are used by Java developers, and ActiveRecord is included in Rails to serve in this
capacity. There are also JavaScript frameworks like Backbone that include a specific
model object that is recognized by the framework.

Angular is quite different in this regard. Unlike some other JavaScript frameworks that
have a specific model object, an Angular model is a plain JavaScript object. The model
in Angular is simply the data. Because of how little attention is given to the model in
Angular, some have seen it as more of a templating solution, as cited in the Angular
FAQs. However, the rest of the features of the framework, including bidirectional data
binding, make Angular more than simply a templating system.

Client Side: AngularJS | 155

http://angularjs.org
http://bit.ly/angularJS
http://bit.ly/NFMEYm
http://bit.ly/NFMEYm


Views
The view is a representation of the model through an HTML template. Whenever the
model changes, Angular’s two-way data binding is activated so that updates to the view
are rendered as needed. Expressions are JavaScript-like snippets of code enclosed in
bindings, such as {{ _expression_ }}.

Directives can be included to effectively extend the capabilities of HTML. During DOM
compilation, directives are executed to perform a wide range of tasks, including DOM
manipulation (showing or hiding elements, looping and creating new elements, and so
on) or a variety of other tasks. Angular comes with a set of directives, and programmers
can add additional ones that effectively serve as independent web components.

One of the most pervasive problems with JavaScript is issues related to the use of globals.
Angular mitigates this to prevent pollution of the global namespace. Scopes allows the
template, model, and controller to work together. They are nested in a hierarchical
structure corresponding to the structure of the DOM. Scopes detect model changes and
provide the execution context for expressions.

Controllers
A controller constructs the model and publishes it to the view. A JavaScript function
contains the code associated with the controller, and the ngController directive at‐
taches a controller function to the view.

The Angular Seed project provides an example of how requests can be routed to various
controllers. The $routeProvider service is associated with a function that matches the
portion of the URL after the hash with a corresponding template and controller.

Services
A variety of services are built into Angular. The $parse service processes expressions.
A single injector per Angular application is used to locate services. As is the case with
directives, programmers can encapsulate their own logic in custom services as needed.

Comparing jQuery and Angular
It is natural to compare jQuery and Angular. Both are popular, influential libraries.
jQuery is a clearly established leader, and Angular promises to address a slew of issues
encountered when using jQuery alone. A cursory look at the Angular documentation
reveals that Angular is compatible with jQuery, and viewing a few sites will establish
many examples of jQuery and Angular being used in the same page. Though both are
effective tools in developing large-scale web applications, there are some areas of con‐
sideration that influence successful design and development.

156 | Chapter 10: JRuby and Angular

http://bit.ly/1md6hpB


DOM Versus Model Manipulation
Angular does work with jQuery if it is present. If it is not present, Angular uses a built-
in subset of jQuery. In this sense, the libraries are compatible, and both manipulate the
DOM.

However, it is safer to consider Angular as primary when both libraries are present. This
is because there is a fundamental difference in how each library maintains application
state. A jQuery application directly manipulates the DOM and views it as containing
the application state. An Angular application treats the model rather than the DOM as
the “source of truth.” The model, not the DOM, is directly manipulated. Changes to the
model result in the DOM being updated. Relying on jQuery DOM manipulation in an
Angular application leads to subtle problems that are hard to address because the An‐
gular model gets out of sync and doesn’t know about changes made by jQuery.

Due to this fundamental difference in approach, it is difficult to integrate Angular into
an existing jQuery-based application. Angular DOM manipulation should be done us‐
ing Angular directives. Packaging up jQuery functionality into directives from an ex‐
isting application can be challenging. It is far easier to write an application from the
ground up using Angular.

Unobtrusiveness of Angular
There are some differences of opinion on whether Angular is in line with the principles
of unobtrusive JavaScript, but connecting presentation and behavior needs to occur at
some point in an MV* framework. The problem can be seen in the following examples.

Placing JavaScript in HTML has widely been regarded as a bad thing:

<button onclick='someFunction()'>Click Me</button>

In jQuery, an HTML element is identified using a CSS selector. A common way of
selecting an element is based on its ID:

<button id='myButton'>Click Me</button>

A connection between HTML and JavaScript can be made by binding the element using
a jQuery selector event handler:

$("#myButton").on('click', function(){someFunction();});

Angular makes the point of connection within the HTML page using directives (cus‐
tomized attributes):

<button ng-click="someFunction()">Click Me</button>

This does not really violate the goals of unobtrusive JavaScript. Angular attributes have
the distinct advantage of having a single, well-understood meaning. jQuery selectors
require the use of arbitrary HTML attributes (ID and class). Use of these standard at‐

Comparing jQuery and Angular | 157



tributes introduces ambiguity. It is not evident whether the value affects presentation,
behavior, or both. HTML5 introduced data attributes that help mitigate this problem a
bit.

HTML5 Data Attributes
A data attribute is an attribute that starts with “data-” and does not affect layout or
presentation. Such attributes are specifically used to store data instead. Multiple at‐
tributes are differentiated by the string that follows “data” in the attribute name.

<li class="pet" data-name="Katniss" data-type="Civet" >
Hi Kat
</li>

Project
There are two basic approaches to working with any JavaScript framework. You can
start with the smallest possible project and expand it, or you can start with a fully fea‐
tured starter project and fill in pieces in the set of largely empty files that comprise the
project. Both approaches are valid and suited for particular circumstances.

The smallest possible examples are excellent for troubleshooting and communication
(especially when demonstrating working examples at sites like JSFiddle). The starter
projects provide stable foundations for subsequent development of full-scale projects.
The following example starts with the smallest possible example and gradually adds
functionality.

The application can be run using JRuby 1.7.4 and the Sinatra and JSON gems. Each page
iteratively adds additional functionality.

To run the application, download the code, install RVM and a version of JRuby, install
the dependent gems, and kick off the server:

$ rvm list

rvm rubies

   jruby-1.7.4 [ x86_64 ]
=* ruby-1.9.3-p194 [ x86_64 ]
   ruby-2.0.0-p247 [ x86_64 ]

# => - current
# =* - current && default
#  * - default

$ ls
README.md    public     webapp.rb

158 | Chapter 10: JRuby and Angular

http://jsfiddle.net
http://bit.ly/1aZ1jI1


$ ruby webapp.rb
[2013-08-13 21:20:01] INFO  WEBrick 1.3.1
[2013-08-13 21:20:01] INFO  ruby 1.9.3 (2013-05-16) [java]
== Sinatra/1.4.3 has taken the stage on 4567 for development...
[2013-08-13 21:20:01] INFO  WEBrick::HTTPServer#start: pid=71632 port=4567

The root of the web app displays a list of links based on HTML files residing in the public
directory. Although a bit of a gimmick, this requirement is a fun example of how concise
and expressive Ruby can be. The API call defined in webapp.rb in the following code
is about as long as the English description of what it does:

get '/' do
  Dir.entries('public').entries.map{|f|
    "<a href='#{f}'>#{f}</a><br/>" if f=~/.*\.html/
  }.join
end

Normally, HTML is generated server side and rendered in separate templates; or JSON,
XML, or another data type is returned. Sinatra, being essentially an HTTP DSL, does
not place many restrictions on what is returned. Figure 10-3 shows the index page for
the web application, which lists links to several AngularJS examples.

Figure 10-3. Web app links

The first example, shown in Figure 10-4, will simply display two text boxes. When the
text is changed in one text box, the corresponding text will be displayed in the other as
well.

Project | 159



Figure 10-4. Web app text boxes

A minimized version of the Angular JavaScript file (referenced in the following script
tag) is available from the Google Hosted Library. After this JavaScript file is loaded, the
DOM is traversed to find Angular directives (which are represented as HTML element
attributes). The ng-app directive identifies the tag it occupies as the outer boundary for
an Angular application. The ng-model directive is used to identify a model, which can
be modified in either of two text boxes and is updated in the other due to built-in, two-
way data binding:

<!DOCTYPE html>
<html ng-app>
<head>
  <meta http-equiv="Content-type" content="text/html; charset=utf-8">
  <title>angular1</title>
<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.0.3/angular.min.js">
</script>
</head>
<body>
  <input type="text" ng-model="myModel" value="{{myModel}}" />
  <br />
  <input type="text" ng-model="myModel" value="{{myModel}}" />
</body>
</html>

The next example will show how an external service (in this case, Google Finance) can
be called and the JSON object returned displayed, as shown in Figure 10-5. The Google
Finance API has been deprecated but no shutdown date is currently scheduled. The
initial example will not be terribly pretty or fully functional, but only a small amount
of Angular functionality is required to perform all of this work.

160 | Chapter 10: JRuby and Angular

http://bit.ly/NFMLTw
http://bit.ly/1evKNdF


Figure 10-5. Google Finance data for Apple

Obtrusive JavaScript for Consolidated Examples
In these examples, JavaScript is included inline to see all of the moving parts in one
place. An unobtrusive approach dictates that such code should be externalized. In ad‐
dition, Angular controllers ideally should be small, and complex code should be ex‐
tracted into Angular services. These examples displayed in the context of a book are
kept to a single file for ease of explanation. They are intentionally obtrusive for purposes
of explanation and illustration. An unobtrusive approach is to be preferred for actual
projects.

In the previous example, the ng-app directive stood alone. In this case, the angular
module is specifically named app (the value assigned to the ng-app attribute in the
HTML element). Angular is broken up into several different JavaScript files that can be
included as needed. The Angular JavaScript library resource is included immediately
after the base library and contains the code for the ngResource module. This module
allows for RESTful interactions rather than using calls to the lower level $http service.
The app module we defined is dependent on the ngResource module.

In this and our previous example, an ng-model mapped to a JavaScript variable. The
ng-controller directive here references a JavaScript function called AppCtrl. Though
all Angular controllers are JavaScript functions, the converse is not true. The look
up() function is contained within the execution context (or $scope) of the control
ler function. The function is called whenever the button is clicked as specified by the
ng-click directive. The lookup function calls the $resource service, which is defined
in the ngResource module. The parameters passed to the service reference the Google
Finance API. An HTTP GET uses JSONP (required because the call requests data from
a server in a different domain) and an array is expected to be returned. The array re‐
turned is assigned to $scope.result, the first record of which is displayed in its raw

Project | 161



form within the pre element. The double brackets are bindings that contain Angular
expressions that are processed by the $parse service:

<!DOCTYPE html>

<html ng-app="app">
<head>
  <meta http-equiv="Content-type" content="text/html; charset=utf-8">
  <title>angular2</title>
<script src=
"http://ajax.googleapis.com/ajax/libs/angularjs/1.0.3/angular.min.js">
</script>
<script src=
"http://ajax.googleapis.com/ajax/libs/angularjs/1.0.3/angular-resource.min.js">
</script>
<script>
angular.module('app', ['ngResource']);

function AppCtrl($scope, $resource) {

    $scope.lookup = function(){

      $scope.result  = $resource(
        'https://finance.google.com/finance/info',
        {
                    client:'ig',
                    callback:'JSON_CALLBACK'
        },
            {
                    get: {
                                method:'JSONP',
                                params:{q: $scope.stockSymbol},
                isArray: true
            }
        }
                            ).get();
          }
}
</script>
</head>
<body>
        <div ng-controller="AppCtrl">
                <input type="text" ng-model="stockSymbol" />
                <pre>{{result[0]}}</pre>
                <button ng-click='lookup()'>Lookup</button>
        </div>
</body>
</html>

The display of raw JSON can be replaced with a formatted display of the data it contains.
For instance, to display the current price, use this:

{{result[0].l_cur}}

162 | Chapter 10: JRuby and Angular



It is a bit unwieldy to show all of the code examples inline; the full code is available at
GitHub.

The angular3.html example, shown in Figure 10-6, adds the ability to add a stock to a
“portfolio” displayed in a tabular form. An input text field can be used to filter data, and
columns can be sorted by clicking on the headers. Records can also be deleted from the
table. Unfortunately, there is no persistence in place, so refreshing the browser results
in all records that have been added to the portfolio being forgotten.

Figure 10-6. Portfolio listing

The angular4.html example remedies this situation by including server-side integration.
Data is simply stored in server memory that persists until the server restarts. The we
bapp.rb is a Ruby application built using the Sinatra microframework. The first two
lines import the relevant Ruby and Java resources. Strictly speaking, Java could be omit‐
ted altogether and this would run in C-based Ruby implementations. It is included to
illustrate how Java can be included, with a call to System.currentTimeMillis() in‐
cluded in a call to GET of /version, as shown in Figure 10-7.

Figure 10-7. Page showing that both Java and Ruby are available and functioning

Project | 163

http://bit.ly/1aZ1jI1


A class variable ($stocks) is defined as an array that holds the portfolio of stock records.
HTTP PUT, DELETE, and GET can be used to perform CRUD operations on individual
stock records, and the list of all stocks can be returned through the /stocks GET URL:

%w{rubygems sinatra java json}.each{|r|require r}
java_import 'java.lang.System'

$stocks = []

get '/' do
  Dir.entries('public').entries.map{|f|
    "<a href='#{f}'>#{f}</a><br/>" if f=~/.*\.html/
  }.join
end

get '/version' do
  "(Ruby Platform: #{RUBY_PLATFORM} "+
  "Ruby Version: #{RUBY_VERSION}) "  +
  "Call From Java: #{System.currentTimeMillis()}"
end

get '/stocks' do
  $stocks.to_json
end

get '/stock/:t' do
  stock = $stocks.find{|e|e['t']==params['t']}
  if stock.nil?
    status 404
  else
    status 200
    body(stock.to_json)
  end
end

delete '/stock/:t' do

  stock = $stocks.find{|e|e['t']==params['t']}
  if stock.nil?
    status 404
  else
    $stocks.delete(stock)
    status 202
    body(stock.to_json)
  end
end

put  '/stock/:t' do
  o = JSON.parse(request.body.read)['data']
  puts "---\n  #{o['name']} \n---\n"
  $stocks << o

164 | Chapter 10: JRuby and Angular



  status 200
end

The angular5.html example is our first nod toward styling. Twitter Bootstrap CSS is
included, a few styles are defined, and HTML elements that follow Bootstrap conven‐
tions are added, as shown in Figure 10-8.

Figure 10-8. Styled portfolio

At this point, it would make sense to refactor the project to extract CSS and JavaScript
in HTML into external files. The entire project might be retrofitted into a starter project
geared toward the intended audience and development tools.

Conclusion
Angular and Sinatra can be used to produce highly dynamic applications with far less
code than is possible using other popular libraries. They are worth reviewing not only
for their own value, but because of the continuing influence they are exerting on other
technologies. Sinatra has inspired a number of other HTTP DSLs. Angular anticipates
technologies like HTML5 web components with similarities such as declarative tem‐
plates and data binding. They are mature technologies that are usable on current projects
and also suggest the trajectory of future web development efforts.

Conclusion | 165





The thought occurred to me, as I waited around that day,
that it would be easier to lift my trailer up and, without

any of its contents being touched, put it on the ship.
—Malcom McLean

CHAPTER 11

Packaging and Deployment

Malcom McLean had an idea in 1937 that would lead to his legacy as the “the father of
containerization.” It came to him while waiting in Hoboken for cotton bales he had
delivered to be loaded for transport overseas. It wasn’t until 1956 that McLean developed
the metal shipping container, which greatly simplified cargo handling and revolution‐
ized the shipping industry. Innovations in packaging lead to efficiencies in shipping. In
technology, deployment and distribution of applications is analogous to shipping. Java
provides standardized packaging, which is foundational to the distribution of code and
deployment of applications.

Java and JEE Packaging
Java packaging formats are fundamental building blocks in JEE applications. They are
also used in more recent deployment processes that do not adhere strictly to the JEE
specification.

Java developers initially develop code outside of deployment packages. A Java class
corresponds with a file on the operating system. Confusingly enough, a Java package is
not really related to packaging but instead is a namespace that reflects the path from an
application root to a directory where a class resides. It is rare to encounter classes and
packages on their own outside of a programmer’s development environment. An ap‐
plication or module is compressed and packaged as a unit before it is deployed to a
production environment or end user.

The Java Archive (JAR) file is used to bundle Java class files and related resources into
a single archive. JAR files are compressed using a ZIP file format and include a manifest

167



file with path name of META-INF/MANIFEST.MF. They can be created using the jar
utility included in the JDK. At its simplest, a JAR is a .zip file with a few additional
characteristics defined in its META-INF directory.

JARs are not JEE-specific. They are part of standard JDKs and their specification is
included in the JDK documentation. JEE does describe several special usages of JAR
files. Application client modules and EJB modules are packaged as JARs. All other JEE
packaging formats are based on the JAR format as well. In fact, the remaining JEE-
specific file formats are JAR files with a file extension specific to their function and
contents. JEE archives can be constructed manually but are more often assembled using
build tools like Ant, Maven, or Gradle.

A web module is the smallest deployable unit in the JEE world. Such a module contains
web components and web resources, primarily static content. A web module can be
packaged into a web archive or WAR. A WAR includes a /WEB-INF directory that con‐
tains a file named web.xml that defines the structure of the web application and refer‐
ences other assets included in the archive. WARs are very flexible and can be deployed
to a web container which supports a relatively small subset of the JEE specification.

Popular web containers include Tomcat and Jetty. Web container development tends to
precede definition of technologies in the JEE specification, and significantly different
sets of features are available in each one.

An enterprise archive, or EAR file, contains WAR files, JAR files, and an applica‐
tion.xml that references the included modules and defined security roles. As suggested
by the name, EARs are intended for enterprise applications. EARs must be deployed to
an application server, which supports a much greater portion of the JEE specification
than a web container. They cannot be run on a web container because they require EJB
support and other services. Application servers include JBoss, IBM’s WebSphere, and
Oracle’s WebLogic Server.

A less familiar JEE archive mentioned for the sake of completeness is the resource
adapter module (RAR). This type of archive is used to allow connectivity to an Enterprise
Information System (EIS). An EIS is typically a legacy system such as an ERP, Main‐
Frame, Queue, or other such service. A RAR’s purpose is similar to that of a JDBC driver.
It provides a consistent interface to a backend system but is not limited like JDBC to
accessing relational databases. See Table 11-1 for a list with related file extensions.

168 | Chapter 11: Packaging and Deployment

http://bit.ly/1eX8yjj
http://bit.ly/1eX8yjj
http://bit.ly/1czakCX
http://tomcat.apache.org
http://www.eclipse.org/jetty
http://bit.ly/1evPmEw
http://bit.ly/ibm-websphere
http://bit.ly/1oq3cRA


Table 11-1. Java packaging formats
Extension Name Description

.jar Java archive Standard Java package format

.war Web archive Maps to a single web context root

.ear Enterprise application archive Contains multiple WARs and JARs

.rar Resource adapter module Communication with an EIS

WARs are of particular interest to web application developers, and their popularity is
reflected in their adoption by modern frameworks based on other languages. The Play
framework can create a WAR containing Scala resources, and a Ruby gem called War‐
bler can be used to make a Java JAR or WAR file out of a Ruby application.

Existing Java and JEE packaging works well for client-server web development. The
main consideration is maintaining independent server and client code in separate ar‐
chives for projects that are of any significant size. An application can be deployed as an
EAR that references a server WAR containing API code and a separate client WAR
containing HTML, CSS, and JavaScript. The same two WARs could be deployed outside
of the EAR to separate web containers. Unlike other areas that have been covered, there
are no major innovations related to packaging itself.

Sample WAR
A single WAR used in illustrations later can be built from the code associated with this
chapter using Maven. It includes both client and server code in a single WAR to provide
minimal usage examples.

An archive considered as an independent package of related Java resources does not do
much good in isolation. The archive has to be executed (if written as a self-contained
executable) or deployed to a runtime environment. While packaging practices have
remained constant, choices related to deployment have changed quite a bit.

JEE Deployment
At one time, options for deployment were severely limited. Decisions revolved primarily
around the degree of automation to use. At the time of application deployment, it was
assumed that the application server would have been previously installed and config‐
ured by a developer or systems administrator. To this day, the JEE specification itself
remains oriented toward this expectation, particularly in the description of the actors
involved in the deployment of an application. A JEE web app deployment setup is shown
in Figure 11-1.

JEE Deployment | 169

http://bit.ly/1c216lP
http://bit.ly/1c216lP
http://bit.ly/1aZ5ELm
http://bit.ly/1aZ5ELm


Figure 11-1. JEE web app deployment

JEE roles indicate functions that people fill during the development process, including
a deployer and system administrator. The person or people acting as deployers are re‐
sponsible for configuring the application for the operational environment, verifying
that modules conform to the JEE specification, and installing the application modules
on the server or servers. It is evident from this description that the target environment
for a JEE application is expected to be an already-installed application server under the
active management of the person or group. (It also suggests manual intervention at the
time of deployment as opposed to the continuous delivery common in large-scale de‐
ployments.) As was already suggested, this is not the only possible way to deploy a Java
web application, but it does appear to be the only one that conforms with the specifi‐
cation.

JEE and Cloud Deployments
JEE, like other somewhat monolithic efforts, seeks to maintain continuity with previous
releases. It is also intended to relflect a wide range of deployment environments. This
wide applicability is its strength in some cases and its weakness in others. It has been
updated in more recent versions to reflect cloud deployments, but these seem to suggest
minimal responsibilities for a deployer that are often absorbed in practice by the same
person acting as systems administrator:

For example, in the case of cloud deployments, the Deployer would be responsible for
configuring the application to run in the cloud environment. The Deployer would install
the application into the cloud environment, configure its external dependencies, and
might handle aspects of provisioning its required resources...
...in a cloud scenario, the System Administrator would be responsible for installing,
configuring, managing, and maintaining the cloud environment, including the resour‐
ces that are made available to applications running in the environment.

—JEE7

170 | Chapter 11: Packaging and Deployment

http://bit.ly/MfVk6A
http://bit.ly/1g0H4KP


Having an already-installed application server following the JEE specification limits
processes but does not dictate all deployment practices. It is possible to build a project
on the server where the deployment will reside. This requires that build tools be available
on all relevant servers and can result in performance degradation or disruption of ser‐
vice to the server. There is also the possibility of security vulnerabilities due to the
installation of additional software or the deployment of untested code to a production
server. These challenges suggest that it is better to build outside of the production server
and transfer the packaged application to the machine for deployment.

With the advent of modern deployment involving large numbers of servers, it is even
less common to build on a server that is a deployment target. In rare situations it might
make sense; but in general, it is better to build archives on a nonproduction machine
and transfer them to the target servers for installation. Even if not required in the early
stages of a project, this provides greater flexibility should application usage grow over
time and it becomes necessary to add additional servers. A variety of projects have been
developed in recent years specifically geared to distributed remote execution of shell
commands, which makes this sort of deployment much more manageable.

GUI Administration
Active application server administration involves user interaction through a graphical
user interface. This is not always the case with web containers. In the distant past, some
interfaces were old-school, native-client applications that made remote network con‐
nections to the application server. Today the GUIs are web applications in their own
right. Those available after installation require additional configuration. Steps need to
be taken to prevent the admin portal from being publicly available, which would present
a security vulnerability. Adjustments need to be made to avoid an admin server’s context
root from conflicting with other deployed web applications. These configuration con‐
cerns lead many administrators to simply disable the administrative web application
during initial installation.

One example of an application server with a web-based graphical administrative site is
Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6), as shown in
Figure 11-2. After downloading it and adding an administrative user, the standalone
server can be started where the administrative console is available by default. By clicking
a few buttons, an administrator can deploy and enable a WAR. This deploys the web
application and makes it available from the indicated context root.

JEE Deployment | 171

http://bit.ly/1mdc3rg


Figure 11-2. JBoss web admin

JBoss, being a full-featured application server, bundles many useful modules, which can
minimize the amount of code you need to include with a WAR. It can also result in some
obscure errors if similar modules exist both within JBoss and within your application.
The WAR associated with this chapter includes Jersey among its dependencies. Includ‐
ing Jersey could result in an error during deployment. The error is reported by RestEasy
(included with JBoss), which scans by default and identifies Jersey as a conflicting JAX-
RS implementation. The solution is to add context parameters to the web.xml to disable
this scan:

<context-param>
    <param-name>resteasy.scan</param-name>
    <param-value>false</param-value>
</context-param>
<context-param>
    <param-name>resteasy.scan.providers</param-name>
    <param-value>false</param-value>
</context-param>
<context-param>
    <param-name>resteasy.scan.resources</param-name>
    <param-value>false</param-value>
</context-param>

The solution is simple enough but highlights the point that although JEE specifies clearly
defined packing mechanisms, it is ambiguous about which services will be included in

172 | Chapter 11: Packaging and Deployment



a given deployment environment. These types of idiosyncracies are a major reason why
mantras like, “Write once, deploy anywhere” can only be true with significant qualifi‐
cations when applied to JEE deployment.

Command-Line Administration
Administrative GUIs are convenient for initial setup of an application. They present
available administrative options in an easy-to-understand user interface. This clarity
makes them ideal for learning an application server and reviewing available function‐
ality. Like all GUIs, they do not lend themselves to scripting and subsequent automation
as command-line alternatives. Though a mere convenience for small-scale deployment
scenarios, they are essential to complex deployment scenarios (or even simple ones with
a large number of servers).

JBoss includes a command-line interface that allows adminstrative actions to be taken
from a prompt or script. Almost any action available in a GUI is available through a
command-line equivalent. A command-line session is initiated by accessing the
command-line interface and connect to a running application server. To do so, call the
cli with the -c option (which immediately establishes a connection to the application
server):

$bash bin/jboss-cli.sh -c

Once logged in, you can type help to get a list of available commands:

[standalone@localhost:9999 /] help

Knowledge of few basic ones is enough to perform most common actions. To view a list
of contents available at the particular node path, use the ls command:

[standalone@localhost:9999 /] ls

The JBoss environment can then be navigated like an operating system file system using
cd to change directory and ls to list the content at a given node path. To view the WAR
that was deployed earlier:

[standalone@localhost:9999 /] ls deployment
rest-jersey-server.war

The syntax is not completely consistent with the corresponding operating system com‐
mands. For instance, additional information about the WAR in the deployment direc‐
tory can be obtained by using the ls command and identifying the deployment using
an equals sign:

[standalone@localhost:9999 /] ls /deployment=rest-jersey-server.war

This design does lend itself to executing JBoss CLI commands from an external script.
The following command prints out the current list of deployments straight from an OS
command prompt:

JEE Deployment | 173



$bash bin/jboss-cli.sh -c --commands='ls deployment'

The availability of a CLI opens up the possibility of creating sophisticated scripts to
interact with the application server as well as the operating system and other applica‐
tions. The examples to this point have been limited to query operations, but the CLI is
not limited to these. It can also take actions which modify the state of the application
server, such as deploying or undeploying a WAR:

[standalone@localhost:9999 /] undeploy rest-jersey-server.war
[standalone@localhost:9999 /] deploy /tmp/rest-jersey-server.war

Administrators can replace manual GUI interaction with CLI scripting for a wide range
of adminstrative tasks, but the CLI does have its own syntax and organization that takes
some time to understand and use effectively. If the only administrative concern is to
deploy the application, both the GUI and the CLI can be avoided by copying files to a
designated deployment directory. Applications copied to this directory are detected by
the JBoss deployment scanner and automatically deployed. Copying can be done inter‐
actively or via a script, so automated deployment is possible without learning the CLI
at all. Developers requiring frequent deployment can copy applications and rely on the
deployment scanner or rely on hooks integrated into their standard toolchain. Plug-
ins have been written for Maven and other build tools and IDEs that couple the de‐
ployment of the application with the build process itself.

Non-JEE Deployment
For many years, Java web development was synonymous with Java Enterprise Edition.
It can be jarring (pun intended) for Java developers to realize that the JEE model for
web application deployment is not the only one available, and in fact, might not be the
best one for a given system. Java technology encompasses far more than web application
development, and JEE is but one approach to web application development possible on
the Java platform. Figure 11-3 shows the Java web application development model.

Figure 11-3. Web development in Java

A non-JEE web application deployment does not require the existence of a previously
installed application server. From the perspective of a Java web application, the appli‐

174 | Chapter 11: Packaging and Deployment

http://bit.ly/1lJsurD
http://bit.ly/1lJsurD


cation server providing its context might be outside, inside, or alongside it. These options
are not unique to application servers but also might apply to other software that provides
an independent service (such as a database).

Server Outside
Application servers are complex, mature pieces of software that have been around for
years. At one time, due to space and processing limitations as well as configuration
complexities, the only real option was to expend a fair amount of time and effort up
front installing them. Once installed, a web application could be installed and configured
to connect to these existing services. The web app ran “on” a server, as shown in
Figure 11-4. The app server functioned as the deployment target for the web application,
outside of the web app itself.

Figure 11-4. Server outside the web application

This approach is the de facto JEE method for deployment described earlier in the chap‐
ter. It works well when your application needs to be deployed to an internal system that
is already running an application server, or when you want to host multiple web appli‐
cations and JEE packages on a single web application. In many cases, there is precious
little administration required for an application. An application server or servlet con‐
tainer might be required to run it, but no administration is expected. This led developers
to defer deployment of the application server until the web application itself was
deployed.

The Trend Toward Lightweight Containers
The trend away from large, monolithic, manually configured installations of application
servers is part of a larger trend toward virtualization and lightweight deployment of
applications. The advent of cloud-based deployments has led to a much more transient
view of servers and their contents. This view mandates an approach to deployments to
make them fast, as simple as possible, and highly automated.

Non-JEE Deployment | 175



Server Alongside
There are a few different ways to deploy a web application without first installing an
application server. One is to bundle the web application with the application server. The
application server, though separate and distinct, is installed alongside the application at
the time of deployment, as shown in Figure 11-5.

Figure 11-5. Server alongside the web application

This type of deployment was popularized with Rails, which includes a server (WE‐
Brick) with the framework itself. Play and Roo took a cue from Rails and use this type
of deployment, but rely on Java web containers. The Maven Jetty plug-in (shown in
Figure 11-6) is another example that allows an web application to be deployed and run
immediately in a servlet container that requires no external maintenance or adminis‐
tration. Using the project provided in this chapter, you can build the web module and
run the resulting WAR on Jetty with the following command:

mvn clean install jetty:run

Figure 11-6. Web app running in Maven Jetty plug-in

The application is then available on port 9090.

176 | Chapter 11: Packaging and Deployment

http://bit.ly/1guJCiT
http://bit.ly/1guJCiT


Maven is not needed to run a web application using Jetty. Jetty can also be included as
a JAR at the command line using Jetty Runner. From the build directory, the Jetty runner
can be called passing the path and WAR as arguments:

curl -O http://repo2.maven.org/maven2/org/mortbay/jetty/jetty-runn
er/8.1.9.v20130131/jetty-runner-8.1.9.v20130131.jar

java -jar jetty-runner-8.1.9.v20130131.jar \
--path /jersey-server \
target/rest-jersey-server.war

Tomcat Runner is a similar project that uses Tomcat. It takes the same arguments as the
Jetty Runner:

java -jar webapp-runner-7.0.40.0.jar \
--path /jersey-server \
target/rest-jersey-server.war

Server Inside
Rather than using an external server, a Java server library can be included inside an
application’s code base, as illustrated in Figure 11-7. The server is run from inside the
web application itself. Chapter 6 included several examples of libraries and frameworks
that can be used to this end.

Figure 11-7. Server inside the web application

With a server available inside of an application, distribution can be reduced to creating
and deploying a single executable JAR and executing it on a server. The JEE standard
does not consider JARs or application servers in this way, but as described earlier, pre‐
sumes that applications will be deployed to environments that provide services like
HTTP processing, database connections, and related configuration.

Non-JEE Deployment | 177

http://bit.ly/1eSr5ig
http://bit.ly/1iSnlMM
http://bit.ly/1eSr9i0


Consolidated Executable JARs
Although it is common for Java projects to reference multiple JARs,
a project can be packaged and deployed as a single executable unit.
Utilities to package JARs inside of JARs include one-jar and build tool
plug-ins like the Maven Shade plug-in.

Implications of Deployment Choice
The method of deployment chosen has significant implications for security, scalability,
and overall support of an application. Deployment methods vary in their flexibility for
quick changes.

It is possible in simple deployments with a single server and an exploded EAR or WAR
to hot-patch a system. A change to code or a configuration file can update the application
without the overhead of doing a full deploy. This practice itself raises a host of process
and security concerns, but is highlighted since it is not even possible to do this type of
change in more complex deployment scenarios.

Credentials and connection strings are easy to modify in an externally administered
application server. This is not the case in systems where the application server is de‐
ployed alongside or built into an application’s packaging.

Deployments that do not rely on externally administered application servers provide
tremendous flexibility in regards to horizontal scaling. By building intelligence into load
balancers, it is possible to make quick changes with little downtime by creating new
server instances with the desired configuration data rather than changing existing
servers.

The nature of the deployment can impact the development process and the choice of
modules that comprise the foundation of an application. The deployment target is best
identified early in the development process to ensure that the required resources are
available and the relevant processes enacted.

Load Balancing
Load balancing is closely related to deployment in that its implementation determines
the network and server topology required to run an application. The goal of load bal‐
ancing is to distribute incoming requests as efficiently as possible with available pro‐
cessing power. In the case of a web application, incoming HTTP requests are redirected
from a designated load-balancing server (or cluster of servers) onto multiple web
servers.

The decision of how to distribute the load varies based upon the amount of work in‐
volved to process each request, the power of the servers, and the choice of hardware
and/or software that will perform load balancing operations. Tasks can be distributed

178 | Chapter 11: Packaging and Deployment

http://one-jar.sourceforge.net
http://bit.ly/1bsaamg


evenly between the servers in a round-robin fashion, or weighted to distribute more
work to servers with greater processing power. There are more sophisticated schemes
that track the requests being processed by each server or allow each server to essentially
pull tasks when they are available, which makes better use of available processing power.
Some load balancers are able to detect node failures and will not route requests to dead
nodes. Load balancing is illustrated in Figure 11-8.

Figure 11-8. Load balancing

Not all of the functionality available in physical load balancers is replicated in software
load balancers. This includes security concerns like distributed denial of service pro‐
tection and SSL termination, as well as performance-enhancing features like compres‐
sion, connection pooling, buffering, and caching. Such features are not necessarily in‐
herent to load balancing, but in some cases are essential to use it effectively.

Loads More on Load Balancing
There are many facets to load balancing that are not really relevant in the context of
client-server web development. JBoss includes internal load balancing for JNDI, RMI,
and EJBs within a cluster. It and other Java web containers include a clustering feature
to make sessions available to multiple application servers. Load balancing schemes vary
in regard to whether multiple requests from the same client will be directed to the same
server. DNS-based load balancing provides a similar functionality to round-robin pro‐
cessing, but clients that cache the IP will return to the same server after the initial lookup.
Sticky sessions can be used to HTTP requests associated with the same session to be
sent to the same server. The range of possibilities is very large and can range from
internal management of load balancers for independent operations to cloud deploy‐

Implications of Deployment Choice | 179

http://bit.ly/1c22FjH


ments like AWS Elastic Load Balancing. Documentation from these as well as older
discussions of the basic techniques can provide information in greater depth.

Even if a developer is not involved directly with load balancing, it is important for him
to understand enough to make relevant design and deployment decisions. Stateless
processing where sessions are not used requires major adjustments. Security configu‐
ration can be affected. Ongoing support requires the interpretation of application of
logs. Without knowing something about how networking is set up, the requests and
responses recorded in the logs cannot be used effectively for troubleshooting.

Application Server Clustering
Clustering of application servers or web containers can be a viable
alternative to load balancing. It can be used to achieve the same goal
of distributing server-side application load. The implementation de‐
tails are not standard and not available for all servers. Clustering is
particularly common in commercial projects, but like other enter‐
prise solutions, it can be expensive. Load balancing might involve
expensive hardware and software but does not necessarily require it.
In its basic form, load balancing is well understood and can be im‐
plemented with common, vendor-neutral networking configuration
that does not jeopardize portability across different application
servers.

Automating Application Deployment
A number of tools have been developed in an effort to tame the complexity of possible
deployment scenarios. Ad hoc scripts gave way to cfengine as a way to automate the
management of workstations in the 1990s. It is extremely lightweight and remains ac‐
tively maintained. It supports a wide range of OS platforms (including Windows, Mac
OS X, and others), which sets it apart from more specialized tools designed for the
particular idiosyncrasies of web applications.

Capistrano is a utility for executing SSH commands in parallel on multiple remote
machines. It is Ruby-based and geared toward web application deployment due to its
origins in the Ruby on Rails ecosystem. A typical usage of Capistrano is to check out a
web application from SCM and deploy it to multiple remote servers. Fabric is a Python-
based Capistrano alternative. Because of the relatively transient server life span in
cloud-based deployments, these utilities are often considered alongside configuration
management tools like Puppet, Chef, Ansible, and Salt.

180 | Chapter 11: Packaging and Deployment

http://amzn.to/1bsahhC
http://amzn.to/1dKQPH3
http://oreil.ly/server-load-balancing


Project
Deployment of this chapter’s project was illustrated earlier. The project itself is a simple
client-server web application that provides CRUD operations to add, update, and delete
books. This example has no backend data store. An array holds books that are added,
so the data is lost when the server is restarted.

The structure of the application is reflected in the pom.xml and web.xml. The pom.xml
includes Jersey-related modules as the dependencies that are used in the implementation
of a JAX-RS-style API that produces JSON. The web.xml distinguishes the client and
server portions of the API and lists the index.html welcome page as the client entry point
to the application.

Client
The index.html contains the HTML, CSS, and JavaScript related to the application.
jQuery is served by a CDN. The JavaScript for the application is included inline between
script tags. The jQuery getJSON and ajax methods are used to make API calls. The
jQuery $( document ).ready() function calls the list function, which retrieves a list
of books in JSON format and iterates through the results, displaying each in a div (con‐
taining an anchor with the delete class) that is appended to the paragraph identified
the listing CSS class. The DELETE call is bound to the document (rather than to each
div) to ensure that all hrefs with the delete class respond to the event (if it were instead
bound directly to the delete class, it would only be bound to elements that existed at
the time the page was initially loaded). Bootstrap is also served by a separate CDN. It is
not used much in the application to keep it minimal, but is included as a starting point
for more detailed styling.

Again, this is minimal implementation, but writing an application to this point helps to
highlight the limitations of this starting point, based on DOM manipulation and no
MV* or significant use of a CSS framework.

For one thing, an inline style is included to center the page, which is a terribly un-
Bootstrappy thing to do. Instead, Bootstrap and other responsive frameworks rely on
grid-based layouts. Modifying the HTML to use a grid would make it better suited to
viewing on different device displays.

In addition, DOM manipulation can be difficult to visualize. The state of the initial
HTML does not closely resemble the state of the DOM after a few records have been
loaded, suggesting that a view-templating system might be useful. Besides the JavaScript
being a bit unwieldy inline, it is not split into distinct units that reflect the functionality
of each chunk of code. An MV* framework provides an initial structure for an appli‐
cation that suggests better arrangement of JavaScript code.

Project | 181



Server
The web API is contained in a single BookService class that is mapped in the web.xml
to the /api URL path. The @Path annotation at the top of the class indicates that the class
is referenced under /books. The GET, PUT, and DELETE methods are included to re‐
trieve, create, and destroy book resources. The @produces annotation indicates appli
cation/json as the expected format returned in each JSON call. The {book} referenced
in several @Path annotations at the method level maps to the @PathParam passed as an
argument in the corresponding methods.

Normally, a library is used to create JSON. In this case, Mention Apache IO Utils is used
in the context of string concatenation to create JSON. The API calls can be validated
and tested in the browser, or by using a tool like Curl. With the context path that is used
by the Maven plug-in, a record can be added using:

curl -X PUT http://127.0.0.1:9090/api/books/4?title=Client+Server+Web+Apps

Conclusion
In years past, deployment of Java applications followed JEE processes that were rather
well defined. While JEE style deployments remain applicable in many situations, the
Java community has also adopted new approaches to deployment that are of particular
interest to designers of client-server-style web applications. The next chapter will de‐
scribe the rise of virtualization techniques used in cloud-based environments that con‐
tribute to the argument that, in many cases, it is better to deploy an application server
inside or alongside an application rather than outside it, as has been done traditionally.

182 | Chapter 11: Packaging and Deployment



People don’t appreciate the substance of things.
Objects in space. People miss out on what’s solid.

— Jubal Early (Firefly, Objects in Space)

CHAPTER 12

Virtualization

The word “computer” immediately brings to mind some image of machinery, perhaps
a monitor and keyboard, a laptop, or a stack of servers. In each case, the image is a
tangible, solid, material object. This common impression is not particularly useful in
software development when the physical details of hardware are masked by additional
abstraction layers. Virtualization is a term used to describe a technology that hides
details and specific implementation characteristics. It applies to a range of technologies
related to hardware platforms, operating systems, storage devices, and network resour‐
ces. While it is not directly tied to client-server web development or any other paradigm,
it is interesting because many such applications are intended for large-scale deployments
built on virtualization solutions. Virtualization is a powerful concept that impacts prac‐
tices related to active development, deployment, scaling, and disaster recovery.

Full Virtualization
Without virtualization, a server is defined by and limited to physical constraints. Server
administrators build and configure servers with a specific set of options suited to their
particular hardware and purpose. Individuals on a development team each install soft‐
ware and configure their machine to conform to the target server. Hardware limitations,
performance bottlenecks, and capacity issues are often overcome by adding additional
hardware to a given machine. Automation might be used to some degree, but in many
cases, manual processes are the order of the day due to the unique details of a particular
machine’s hardware. In situations where there are a number of different servers to
maintain, complex backup and recovery practices become imperative to system avail‐
ability and reliability.

183



The type of virtualization that alleviates these challenges involves virtual machines that
take the place of physical servers. Full virtualization seeks to provide a complete sim‐
ulation of underlying hardware to the extent that a distinct unmodified operating system
can run within a virtual machine. Figure 12-1 shows the continuum of virtualization,
ranging from traditional, persistent, manually configured physical hardware to highly
transient virtual machine instances that are automatically created and might only exist
for a few seconds in a cloud.

Figure 12-1. Server types

Challenges to maintaining physical servers are often alleviated using virtual machines.
Since full virtualization involves a full simulation of physical hardware, individual de‐
velopers can be given isolated environments for testing new software without the ex‐
pense of purchasing and maintaining additional machines. Virtual machines can be
created to test software on multiple operating systems on a single physical server. Entire
software installations can be shipped in preconfigured virtual machines. The ability to
create a snapshot that captures the state of a machine at a point in time opens up many
possibilities related to managing disaster recovery. Rather than managing many physical
machines with specific hardware concerns, servers can be replaced with virtual ma‐
chines to reduce energy consumption and hardware costs.

One downside to virtual machines is that additional processing comes at a cost. Virtu‐
alization software must be purchased in some cases, and running them incurs additional
processing power. Projects that require low-level hardware access are not good candi‐
dates for virtualization, but most web applications are. The problem with virtualization
versus physical hardware is similar to the use of a high-level programming language
versus a lower-level language like C or assembly. Tasks that require high performance
can only be implemented “close to the metal” using specific, highly tailored solutions.
A myriad of other tasks do not have such stringent requirements.

One other cost to consider is additional complexity. Rather than paying attention to one
physical server, a virtual machine’s behavior must be understood not in isolation, but
also in relation to its host machine. A performance problem could be due to an issue
on the VM itself or on the host machine. Virtualization layers can be nested several
layers deep, adding additional complexity. Virtualization removes entire classes of

184 | Chapter 12: Virtualization



problems, but does require specific technical awareness and know-how to use
effectively.

The popularity of VMs in place of physical servers has resulted in a significant shift in
server management and scaling practices. So-called cloud providers host virtualized
computer resources in one form or another. In some cases, the virtualization provided
is in the form of specific machines. In this case, the need to actively manage physical
servers is eliminated altogether.

What About the “V” in JVM?
The Java Virtual Machine provides partial virtualization, allowing class files containing
bytecode to be interpreted and executed on any hardware where a virtual machine can
be run. It does not provide any sort of distinct container for isolating code and does not
result in the creation of a distinct machine that can be managed as an independent server
on a network. Any type of virtualization can be extremely effective in masking under‐
lying implementation details, but different levels are applicable to specific problems.

Virtual Machine Implementations
Virtualization dates back to an IBM research system created in the 1960s called the
CP-40. It was followed in 1967 by the CP 67, which was a virtual-machine operating
system developed for the IBM System/360-67. Other virtualization solutions were in‐
troduced in the years that followed, most specific to particular operating systems. The
applicability and popularity of virtualization grew as powerful hardware became avail‐
able at lower costs to a larger number of developers.

Among the myriad virtual machine implementations available today, VMWare, Vir‐
tualBox, and Amazon EC2 are among the most popular. They are also specific targets
of provisioned servers created with tools such as Vagrant and Packer.

VMWare
The first encounter many web developers had with virtual machines was VMWare
workstation released in 1999. VMWare now offers a range of related virtualization, cloud
management, backup, and desktop products. Open source versions of VMWare soft‐
ware are available today as well.

VirtualBox
In January 2007, an open source version of VirtualBox was released as a full virtualiza‐
tion solution that runs on Windows, Linux, and OS X. It was acquired by Sun and later
by Oracle where it was rebranded as Oracle VM VirtualBox. It is comparable to

Virtual Machine Implementations | 185

http://bit.ly/1g1Knyi
http://www.packer.io
https://www.vmware.com
http://bit.ly/LXq3EN
https://www.virtualbox.org


VMWare’s offerings in general functionality, but differs most substantially in non-
technical fine points like licensing terms, paid features, ease of use, and availability of
documentation.

Amazon EC2
An Amazon Machine Image (AMI) is a template that defines the server configuration
that can be run on Amazon Elastic Compute Cloud (Amazon EC2). An AMI is selected
when an instance is launched and afterward is available as a virtual server in the cloud.
As such, AMIs are only relevant for deployments targeted for Amazon Web Services.

Management of Virtual Machines
Management of VMs becomes a significant undertaking as their number and complex‐
ity increases. Each implementation has proprietary mechanisms for defining and main‐
taining virtual machines. Open Virtualization Format (OVF) is an open standard for
packaging and distributing VMs, and there are a number of noteworthy projects de‐
signed to assist in creating and maintaining them.

Vagrant
One challenge is that each virtualization technology has unique processes, scripts, and
utilities for creating and maintaining an environment. Vagrant provides mechanisms
to configure reproducible and portable VMs provisioned on top of VirtualBox,
VMware, AWS, or any other provider. The vagrant command is used to complete all
related operations.

A Vagrantfile contains configuration for a given machine. Once this file is configured,
a box (base image used to create VMs) must be available or added. It is an initial image
that is cloned but never actually modified. With a box added, a machine can be started
by running vagrant up, and the new machine can be accessed via ssh using vagrant
ssh. Additional commands can be used to provision a machine as well as to stop and
clean up old machines and boxes. Mitchell Hashimoto, the creator of Vagrant, has a
book on Vagrant that covers it in depth. He has also more recently authored another
project that further promotes simplified cross-VM implementation configuration called
Packer.

Packer
As useful as Vagrant is, the creation and management of images remains a tedious,
difficult, and largely manual process. Packer uses a template written in a single portable
input format to generate images for multiple platforms in parallel. Packer is used to
automate the creation of base boxes for various VM providers. Components of Packer
called builders create machine images for a given platform in a form known as artifacts.

186 | Chapter 12: Virtualization

http://www.vagrantup.com
http://mitchellh.com
http://oreil.ly/vagrant-UR
http://www.packer.io


For example, Packer’s VirtualBox builder can create VirtualBox VMs and export them
in OVF format. Artifacts are comprised of IDs or files that represent a virtual-machine
image. Packer also compliments Vagrant’s functionaity, as it can take the artifact and
turn it into a Vagrant box using post-processors.

A consistant syntax and workflow for configuring VMs for different providers does not
address provisioning and maintenance concerns. Additional automation can initially
be provided through a few shell scripts. Terminal enhancements like csshX for OS X to
run ssh commands on multiple machines or a tool like Capistrano might suffice to
manage multiple servers in a small-scale environment. These solutions are not sufficient
for general-purpose systems administration when the number of servers grows beyond
a small number.

DevOps Configuration Management
Simple Vagrant machines can be set up with individual commands or shell scripts ref‐
erenced in a file named Vagrantfile. More complex configurations can use Chef or
Puppet to automatically install and configure VMs. Both Puppet and Chef are written
in Ruby, but Puppet uses a JSON-based language to determine what to install based on
dependencies defined, while Chef requires an install script written in Ruby itself. More
recently, Ansible and Salt have emerged as alternatives (or in some cases compliments)
to these. There is a tremendous amount of overlap between what can be accomplished
with these tools, but each is particularly suited for certain projects and administrators.

Table 12-1 lists DevOps configuration management tools.

Table 12-1. DevOps configuration management tools
Tool Initial release Notes

CFEngine 1993 C-based, fast, lightweight, steep learning curve

Capistrano 2005 Focus on Rails app deployment

Puppet 2005 Inspired by CFEngine

Chef 2009 Ruby for configuration

Salt 2011 Fast, large-scale orchestration and admin

Ansible 2012 Simple, agentless administration

The year of initial release is helpful for understanding the role of each tool and its relation
to the existing ones. Puppet is inspired by CFEngine. The authors of Chef used and
learned from Puppet but took a somewhat different approach based on their admin
experiences. More recently, Ansible and Salt have been gaining traction as simplified,
streamlined tools akin to Chef or Puppet. They perform both initial configuration and
provisioning of a server as well as execution of commands to retrieve results from ar‐
bitrary nodes.

Management of Virtual Machines | 187

https://code.google.com/p/csshx
http://www.capistranorb.com
http://www.opscode.com/chef
http://docs.puppetlabs.com
http://bit.ly/1bsclWT
http://www.saltstack.com
http://cfengine.com/downloads
http://www.capistranorb.com
http://docs.puppetlabs.com
http://www.opscode.com/chef
http://www.saltstack.com
https://github.com/ansible/ansible
http://bit.ly/1bsd4Yd
http://bit.ly/1mdgJ0n
http://bit.ly/1mdgJ0n
http://bit.ly/1bsclWT
http://bit.ly/MfYtmX


DevOps
It often seems like as soon as the number of tools, techniques, and acronyms in a tech‐
nical area gains a certain critical mass, a new job title appears. DevOps is the one that
was introduced in 2009 to represent the role filled by professionals whose responsibility
spans traditional development and operations tasks. While individual developers might
not use the tools listed in this section in depth, it is beneficial to understand it and be
able to interact intelligently with the DevOps professionals who do.

Containers
While full virtualization was an early goal with many useful applications, more limited
forms have also had a great impact. Partial virtualization only attempts to emulate a
portion of an entire operating system and does not provide a full-blown virtual machine.
Instead, operating-system-specific container technology allows a limited form of virtu‐
alization.

Development of container technology was driven by the problem of obtaining process
isolation and security beyond what is possible through other operating-system mech‐
anisms. Traditional user and group management is cumbersome and incomplete for
many situations. A limited isolation available since the late 1970s is the chroot utility.
Though useful in some circumstances, it stops short of providing the capability of run‐
ning a fully functioning independent container. Containers can be considered from a
high level as partial VMs or from a low level as enhanced chroots.

Containers might be described as operating-system-level virtualization or with other
vendor-specific terms. They provide user-space instances that allocate private resources
within a container but execute commands against the host’s kernel. Rather than emu‐
lating an entire machine, container technologies are focused on virtualizing an indi‐
vidual operating-system process such that it runs in an isolated, secure environment
independent of the rest of the server.

LXC
LinuX Container (LXC) virtualization is available on Linux. It allows one or more iso‐
lated containers to run on a single server. This provides a better balance between re‐
source usage and security than is possible in a single monolithic system running stan‐
dard OS-level processes. Containers run instructions native to the core CPU without
intermediate steps required by standard virtualization techniques, and so are better
performing. Since they do not have all of the overhead included in a full operating
system, they are lighter weight and take up fewer resources than would be required in

188 | Chapter 12: Virtualization

http://linuxcontainers.org


a full-blown VM. Linux containers will run regardless of the host system’s kernel version
or distribution.

Docker
Docker extends LXC with a high-level API. Like other container technologies, Docker
is intended to simplify application packaging and deployment and the creation of in‐
dividual private environments for end users. In large part, Docker makes the function‐
ality available through LXC much easier to use. In this respect, Docker is to LXC as
Vagrant is to the underlying virtual machine implementations it supports, as shown in
Figure 12-2.

Figure 12-2. Docker and Vagrant high-level APIs

In Docker parlance, you run containers that are based on images. When exiting a con‐
tainer, its filesystem state and exit value are preserved but its memory state is not. Con‐
tainers can be started, stopped, or restarted. A container can also be promoted to an
image using the Docker commit command. The image can then be used as a parent for
new containers.

Docker images can have parent images. Base images have no parent. A collection of
images used to create containers are stored in a Docker repository. Repositories can be
referenced in a registry. The implicit top-level registry is index.docker.io, so Docker
also includes mechanisms to publish and share images.

Although it is a very new project, Docker has tremendous potential with its promise of
standard containers to distribute environments. Used properly, the time spent by indi‐
vidual developers and administrators setting up machines could be eliminated. The
popularity of Linux on a wide range of hardware suggests new possibilities for distri‐
bution of applications to anything from a fellow developer’s machine, to a cloud service,
to an embedded device.

Containers | 189

http://www.docker.io


Project
The project uses several of the virtualization technologies mentioned previously. The
project requires Git, VirtualBox, and Vagrant as prerequisites. In just a few steps, Docker
will be set up (in a Vagrant-managed VirtualBox). Figure 12-3 shows the Vagrant file
that resides on an OS X host system and defines the configuration of a VirtualBox
instance where Docker instances run. A Java SDK will be installed in a Docker container.
The container will then be used to compile and run a Java program. This simple example
includes all the steps required in larger, more extensive installations to Docker.

Figure 12-3. Java running on Docker for OS X

The directions for setting up Docker using Vagrant varies slightly by operating system.
In general:

1. Docker sources including the Vagrantfile for machine setup are fetched using Git.
2. The VM is started using Vagrant.
3. The user logs into the new VM using ssh and switches to the Docker user.
4. Docker is available to create and maintain containers.

From the host machine, you can initially download the Docker project using Git:

git clone https://github.com/dotcloud/docker.git
cd docker

Docker is under heavy development and is changing quickly. After initial installation,
you can update your version of Docker using Git as well:

git pull

The Docker project for OS X consists of a Vagrant-managed VirtualBoxVM. To start
up and log into the VM hosting Docker:

190 | Chapter 12: Virtualization

http://bit.ly/1mdhXZm
http://www.vagrantup.com
http://bit.ly/1gCvJMn


vagrant up
vagrant ssh

Once logged in, you can log out of the Vagrant VM at any time by entering exit. From
the Vagrant managed box, Docker can be called:

sudo docker

The ubuntu base image can be downloaded and installed with set of standard Linux
utilities available:

sudo docker pull ubuntu
sudo docker run ubuntu /bin/echo Docker is running!

Docker Help
You can learn a great deal about Docker by using the built-in help. Since the project is
changing so rapidly, there is a chance that documentation available online or elsewhere
is not applicable to the version you are using. To list available commands, simply type
docker. Options available for each command can be listed by adding the -help argu‐
ment:

docker
docker build -help

Image and Container Maintenance
Once you have been working with Docker for a while, you will amass a number of images
and containers. The info command can be used to view a report describing system-
wide information, including the total number of containers and images:

docker info

These comprehensive totals, exited containers, and intermediate images are the subset
that is often of immediate interest. Each container after exit remains available until
removed. Images tend to accumulate quickly as an image is created during each step
defined in a docker file. The ps command lists running Docker containers. The images
command lists images (excluding intermediate images used to build):

docker ps
docker images

To list all containers or images, include -a. A .dot diagram of images that can be viewed
using GraphViz can be created by specifying the -viz:

docker images -viz > docker1.dot

Much more detailed information is available on a given container by running docker
inspect <container name>. The rm command is used to clean up containers and im‐
ages. These can be passed as a list to the command:

Project | 191

http://www.graphviz.org


docker rm $(docker ps -a -q)
docker rmi $(docker images -q)

Java on Docker
The Docker Git repository included a Vagrantfile used by Vagrant to configure and
provision the VM. Docker uses a Dockerfile to configure and provision a container. The
FROM instruction indicates the base image for the new machine. There are public repo‐
sitories of images available, or you can use one of your own. The MAINTAINER indicates
the author of the image. The RUN instruction executes commands on the current image
and returns the results. The following steps install Oracle’s Java 7 SDK and accepts the
license as presented. The ADD instruction will copy a file named Hello.java to the con‐
tainer where it will be compiled and available for executions:

FROM ubuntu:precise
MAINTAINER Casimir Saternos

RUN echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu precise main"\
| tee -a /etc/apt/sources.list
RUN echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu precise main"\
| tee -a /etc/apt/sources.list
RUN apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886
RUN apt-get update

RUN echo oracle-java7-installer shared/accepted-oracle-license-v1-1 select true\
| /usr/bin/debconf-set-selections
RUN apt-get -y install oracle-java7-installer
RUN update-alternatives --display java
RUN echo "JAVA_HOME=/usr/lib/jvm/java-7-oracle" >> /etc/environment
ADD Hello.java Hello.java
RUN javac Hello.java

A simple Hello World needs to be created in the directory where the Dockerfile resides:

public class Hello{
  public static void main (String args[]){
    System.out.println("hey there from java");
  }
}

With the Dockerfile and Java class in place, the container can be built from the image.
The -t option specifies a repository name to be applied to the resulting image and
identifies it when listing available images:

docker build -t cs/jdk7 .

In addition, the JDK installed earlier is also installed, and the program that we copied
to the Docker container can be run:

docker run cs/jdk7 java -version
docker run cs/jdk7 java Hello

192 | Chapter 12: Virtualization



1. This URL was too long to fit, and line breaks in URLs are not supported. The actual reference is http://
repo2.maven.org/maven2/org/mortbay/jetty/jetty-runner/8.1.9.v20130131/jetty-runner-8.1.9.v20130131.jar.

To be clear, these commands ran within the docker container. Try running them on the
Vagrant VM to see a different result (indicating that Java is not installed on the VM):

java -version
java Hello

A Docker file to run a web application as a WAR on Jetty can be configured by appending
to the Dockerfile defined above. The ADD command can be used to copy a file from the
Vagrant VM to the Docker container, while the RUN command can use wget or another
utility to download a needed file from a referenced URL:1

ADD rest-jersey-server.war rest-jersey-server.war
RUN wget http://repo2.maven.org/[...see the footnote...]/jetty-runner.jar

Copying Files to Vagrant
You might be wondering how rest-jersey-server.war ended up on the Vagrant VM, or
you might have just cleverly downloaded it using Curl or wget. While downloading is
a fine option, it is possible to copy files through a file share or using scp as well.

By default, Vagrant shares the directory with the Vagrantfile to the /vagrant directory
in the VM. In addition, by default, Vagrant forwards SSH (from port 22 to 2222), so files
can be copied between the VM and the host machine using scp. For example, from the
host machine, docker.png can be copied from within the VM to the host machine by
running the following command and typing vagrant for the password when prompted:

scp -P2222 vagrant@localhost:docker.png .

The container can then be built from the image and run interactively:

docker build -t cas/restwar .

docker run -p 49005:49005 -name restwarcontainer cas/restwar \
java -jar jetty-runner-8.1.9.v20130131.jar \
--port 49005 rest-jersey-server.war

Note that with the container running interactively, other vagrant ssh sessions can be
opened to run additional commands. If you want to run the web app noninteractively,
the command to launch the app server would be included as a final RUN command in
the Dockerfile.

By default, Docker invents a name for a newly started container. The -name argument
is used above to name the container in a meaningful way, but does introduce the need
to take additional manual steps. If you decide to rerun the container with the command

Project | 193

http://repo2.maven.org/maven2/org/mortbay/jetty/jetty-runner/8.1.9.v20130131/jetty-runner-8.1.9.v20130131.jar
http://repo2.maven.org/maven2/org/mortbay/jetty/jetty-runner/8.1.9.v20130131/jetty-runner-8.1.9.v20130131.jar


listed above, you must either specify a different container name or delete the one pre‐
viously created:

ID=$(docker ps -a | grep restwar | awk '{print $1}')
docker rm $ID

Docker and Vagrant Networking
One of the confusing bits of working with Docker on OS X or Windows is that it involves
a physical machine and two levels of virtualization, as depicted in Table 12-2. The phys‐
ical machine hosts a Vagrant instance providing a fully virtualized VM on which Docker
containers are run. There are several different IP addresses visible from different loca‐
tions and a number of ports which must be open.

Table 12-2. Project servers
Server Description

Base machine Includes VirtualBox software maintained using Vagrant

Vagrant instance A VirtualBox Linux VM with Docker software installed

Docker instance Hosts a Jersey server running the web application

A port on the base machine needs to be available to Vagrant. This port is opened by
configuring the Vagrant file. It is also included in the command used to run the Docker
instance. From the outside, it appears that the base machine is simply listening and
responding on the port. The networking possibilities are extensive, but this example
can be set up in only a few steps.

To start, we will open a port in Vagrant so that your host machine will be able to see
things running on it. Port forwarding is the practice of specifying ports on the VM to
share through a port on the host machine. The specified port is permitted to be the same
or different as the one for the host machine. In this example, we will forward port 49005
on the Vagrant VM through to port 49005 on the host machine by modifying the
Vagrantfile that comes with Docker:

...
Vagrant::Config.run do |config|
  ...
  config.vm.forward_port 49005, 49005
  ...

With the single container running the WAR on Jetty as listed above, the ID and IP
address of the container can be determined by running a few commands from within
the Vagrant VM and the accessed page:

ID=$(docker ps | awk '{print $1}' | grep -v CONTAINER)
IP_ADDRESS=$(docker inspect $ID | grep IPAddress | awk -F'"' '{print $4}')
echo $ID

194 | Chapter 12: Virtualization



echo $IP_ADDRESS
curl $IP_ADDRESS

The IP address here is meaningful within the Vagrant VM itself. It is not visible to the
outside world. This is where the port forwarding specified in the Vagrantfile comes into
play. From the host machine, view http://localhost:49005/ in a browser and you will see
the main page from the WAR displayed.

Conclusion
In the 1980s, the term “virtual reality” was popularized by Jaron Lanier. Movies, video
games, and sophisticated simulations have benefitted from VR advances since then, but
the world of virtualization that has had a larger scale impact among computer profes‐
sionals is the virtualization of computer hardware itself.

Java’s success is largely due to the Java Virtual Machine, an abstraction layer that hides
underlying operating system details. Servlet containers and JEE application servers
provide an additional level of abstraction. The development of higher levels of abstrac‐
tion allows a higher degree of specialization by removing entire classes of problems from
the immediate problem space. Client-server applications easily run on highly scalable
solutions using modern virtualization and can be discretely packaged for easy deploy‐
ment due to their structured, compartmentalized architecture. There is obviously tre‐
mendous benefit to be found in technologies that are in essence the same as—yet not
formally equivalent to—some underlying layer of functionality.

It seemed fitting to open a chapter on virtualization with a quote from a fictional char‐
acter. A compelling character in a movie—no matter how engaging—is distinct from a
real person. Even so, virtualization in its many forms imitiates some underlying tech‐
nology in a way that can make it appear from certain vantage points indistinguishable
from the physical representation it emulates.

Conclusion | 195





Without language, thought is a vague, uncharted nebula.
Nothing is distinct before the appearance of language.

—Saussure

CHAPTER 13

Testing and Documentation

James Lind was an 18th-century Scottish physician. While serving in the Navy, he con‐
ducted what today might be described as the first clinical trial. By dividing a dozen sick
sailors into groups of two and providing a controlled diet and specific treatments, he
was able to determine that oranges and lemons were effective for warding off scurvy.
We know today that scurvy is a result of vitamin C deficiency, but it would take a century
of similar experiments to eventually lead Casimir Funk to coin the term “vitamin” in
1912.

Clinical trials are an application of the experimental step of the scientific method. The
Oxford Dictionary describes the scientific method as “a method of procedure that has
characterized natural science since the 17th century, consisting in systematic observa‐
tion, measurement, and experiment, and the formulation, testing, and modification of
hypotheses.” This definition, while accurate, does not capture one of the important
outcomes of repeated experimentation, the characterization of phenomena and devel‐
opment of hypotheses that are articulated in clear, unambiguous language. Testing at
its best leads to crisp, clear descriptions of the subject being tested that allow subsequent
researchers to more clearly communicate.

Software testing finds its roots in this same tradition. It essentially adopts procedures
that have been practiced in the natural sciences for the past 400 years. Testing is done
to prove or disprove hypotheses. In the case of software testing, this involves an assertion
that all or part of a system functions as specified. Software testing can also lead to insights
into how an application might be better designed, modularized, and structured. In ad‐
dition, it can help clarify requirements and identify precise language to describe the
system being scrutinized.

197

http://bit.ly/1dkWsQT


Types of Testing
Most software development projects include some claim of being tested, but what pre‐
cisely is meant by this is not necessarily evident. Testing is a broad subject and can be
subdivided based on the outcome of testing, the construction of the tests, the portion
of an overall system being tested, or the role of the people involved.

Formal Versus Informal
Ad hoc testing is used when the purpose of testing is not clear and the outcome is ex‐
pected to be informal and arbitrary. It is analogous to exploratory programming in an
REPL. It is a preliminary step to other forms of testing and is a way of kicking the tires
of an unfamiliar application. Formalized acceptance testing is on the opposite end of the
spectrum, as it is structured, organized, defined, and specifically intended to determine
whether the customers are going to accept a system. Informal testing is generally a
manual endeavor, whereas formalized methods can be highly automated.

Rather than memorizing a laundry list of testing types and methodologies, it is more
important to understand the goal of testing and choose an approach that is rigorous
enough for the project without adding unnecessary overhead. As shown in
Figure 13-1, in the case of test formality, a continuum can be visualized that comprises
the range of possible choices. Though the scientific method was cited in this chapter,
the selection of applicable test approaches for a given project is more an art than a
science.

Figure 13-1. Range of test formality

Extent of Testing
The extent of testing can vary a great deal. Simple smoke tests (or sanity tests) can be
carried out to provide minimal assurance of no obvious disruptive defects, whereas
exhaustive testing is intended to exercise every aspect of a system. The extent to which
a system has been tested can be quantifed from different perspectives. Test coverage
analysis indicates which lines of code are being unit tested. Even in a system that has

198 | Chapter 13: Testing and Documentation



100% coverage, every possible permutation of inputs is required to substantiate a claim
of exhaustive testing. Few projects can make such a claim, but those that do might only
be exercising the functional aspects of the system.

Nonfunctional attributes of a system can be tested as well, including load testing, stress
testing, and testing on diverse platforms, browsers, or devices. Cloud deployments have
led to innovations in testing that have pushed the boundaries of testing to include in‐
tentionally introducing significant system failures to ensure system resilience. For in‐
stance, Netflix’s Chaos Monkey project runs within Amazon Web Services and verifies
the ability of a system to withstand repeated server failures by seeking out and termi‐
nating VM instances in Auto Scaling Groups.

Who Tests What for Whom?
The time, manner, creator, and audience for tests are also significant concerns. Unit
tests can be created by developers before code is even written or added when it is all
completed. Black-box testing generally involves higher-level functional tests written by
testers. Unit tests are tied closely to implementation in code, while black-box tests are
created without reference to the software’s internal structure. Highly isolated tests might
evaluate a single tiny aspect of a system, whereas integration testing can ensure defects
do not exist in interfaces between related systems.

Testing can also be considered in terms of the people who create the tests and evaluate
the results. The audience for test results is initially developers, but later, QA analysts
and eventually those authorized to accept a system are viable. Tests can be authored by
different parties, including testers and developers. Since tests are created in relation to
requirements, there can be significant involvement from business analysts and stake‐
holders involved in defining requirements. In fact, the definition of tests can contribute
to the development of a common, unambiguous language for all parties involved in
testing a system.

Testing as an Indicator of Organizational Maturity
In practice, requirements for a software system can reside in many places and exist in
many forms. Although documentation is generally assumed to be a primary source, not
all projects have formal documentation. Even if a project does have formally defined
requirements and a system description, these tend to quickly become outdated in an
actively developed system if not automatically generated or intentionally maintained.
There are instances where a programmer’s memory or comments in code specifically
describe expected behavior. In the absence of these, the source code itself might be the
only remaining formal description of system functionality. The inaccessiblilty of source
code is an excellent reason why tests can serve as the most accurate final definition of
software requirements outside the system itself.

Testing as an Indicator of Organizational Maturity | 199

http://nflx.it/1dkWwjE


In fact, sets of well-defined tests can remain in use long after all original code written
for a system has been replaced. In this respsect, tests can be a more enduring and valuable
artifact than the system under construction itself! They can be an effective means of
communication throughout an organization and among stakeholders about the state
and functionality of the system.

CMM to Assess Process Uniformity
Conway’s Law suggests that “Any organization that designs a system will produce a
design whose structure is a copy of the organization’s communication structure.” It
might also be said that software process maturity (the extent to which processes are
clearly defined and controlled) is reflected by the state of an organization’s software tests.
The Capability Maturity Model (CMM) defines a hierarchy of stages describing degrees
of structure, process stability, and discipline for an organization reflected in processes
for developing and maintaining software. This is shown in Table 13-1.

Table 13-1. Capability maturity model stages
Level Name Description Testing

Level 1 Initial Inconsistent, disorganized None, ad hoc

Level 2 Repeatable Disciplined processes Some unit testing

Level 3 Defined Standard, consistent processes Uniform projects, unit tests run each build

Level 4 Managed Predictable processes Continuous integration testing

Level 5 Optimizing Continuously improving processes Coverage, code quality, reports

An organization that is highly optimized is less reliant on the heroic effort of a few
individuals. It is less prone to missed deadlines, “death marches”, and other symptoms
of a project that is out of control. With the focus on application scalability, it is possible
to lose sight of organizational scalability.

Higher CPM is essential if there is an intention to grow an organization over time.
Consistent processes and procedures ease the transition of new members to the team.
They minimize the amount of time lost having a productive member of the team cease
work to teach each new member a set of in-house, undocumented, unenforced practices.
They lessen the possibility that actions taken by new members will destabilize the ex‐
isting application. In the best case, good processes subtly teach employees approaches
that will benefit other projects that do not yet have controls in place.

Maven to Promote Uniform Processes
Directly convincing people to adopt a consistent software practice can be difficult. It is
much easier to use tools that promote or enforce practices that are in line with organ‐
izational goals. For example, Maven introduces a consistent build cycle, which allows

200 | Chapter 13: Testing and Documentation

http://bit.ly/1gvq78A
http://bit.ly/1nXVQXM
http://bit.ly/1fhtrlL


extensibility through a plug-in environment without being so flexible as to allow sig‐
nificant deviation from a number of best practices.

One of the objectives of Maven is to provide a uniform build system. Maven might be
perceived as inflexibile when compared to Gradle or other build tools. But uniformity
implies a degree of rigidity. Rigidity is not simply an evil to be avoided. Decisions must
be made to implement structures and tools that provide constraints that will encourage
positive uniform processes within an organization. Structured testing processes and
reporting are fundamental and applicable to most software projects.

Maven includes two phases for testing by default (test and integration test). These are
shown in Figure 13-2 in the midst of the other Maven build life cycle phases. Typically,
the Surefire plug-in is called during the test phase, and the Failsafe plug-in is called
during the integration test phase. Surefire reports can be presented in an HTML form
using the Surefire Report plug-in while the integration test reports can be rendered in
HTML using the Failsafe Report plug-in.

Figure 13-2. Maven life cycle phases

Maven’s build life cycle is one of several ways that it promotes project uniformity. Unit
testing and integration testing are included phases by default. They occur at a logical
point in the process, and produce reports that can be published to a known location
(the Maven site). The default phases provide a good basic framework, and Maven can
be extended to handle other testing concerns if needed.

Maven can execute an application’s unit tests periodically as part of the build process
when called by a continuous integration (CI) server. There are many such servers avail‐
able, including the open source Jenkins or commercial products like Team City or
Bamboo. A CI server also tends to promote standard software best practices. CI servers
require the use of version control, encourage Maven assets to be properly maintained,
and quickly reveal whether the build runs to completion in a reasonable amount of time.

Testing as an Indicator of Organizational Maturity | 201

http://bit.ly/1eUV2N6
http://bit.ly/1eUV1IQ
http://bit.ly/1iPUsAV
http://bit.ly/1gvqvE7
http://bit.ly/1gvqvE7
http://jenkins-ci.org
http://www.jetbrains.com/teamcity
https://www.atlassian.com/software/bamboo


Maven Reports can be published to a designated location by the CI server. These reports
provides visibility as to the structure and quality of code. They also make the results of
testing evident, including information on the number of tests written, their outcomes,
performance, and overall code coverage.

The Goal of 100% Coverage
Once coverage reports begin being used, it is easy to focus on a goal
of 100% test coverage to the exclusion of the value of the tests them‐
selves. Coverage tools simply determine which code paths are exe‐
cuted. Some code paths might never be executed in practice; others
might identify paths that do not merit testing consideration. Test
coverage therefore does not indicate test quality. Testing by defini‐
tion can prove only the presence of problems. It cannot prove that
none exist. Putting undue emphasis on coverage report percentag‐
es can result in programmers making changes that do not benefit the
software in any meaningful way.
The makers of JUnit recognize the tension of wanting comprehen‐
sive test coverage and also recognize that some code does not re‐
quire testing. They cite a maxim on their FAQ that, like many high‐
ly subjective rules of thumb, rings true:
“Test until fear turns to boredom.”

An organization can relatively quickly achieve Level 3 of the Capability Maturity Model
in a preliminary way by using Maven with JUnit tests on all projects and adding each
project to a CI server. Publishing reports indicating test results can contribute to clear
communication beyond the development team about the state of the software and re‐
lated tests. Although Maven includes capacity for handwritten documentation, it does
not include mechanisms out of the box related to requirements or their relationship
with the tests that are constructed.

An additional level of project review and process improvement can be accomplished by
tracking project statistics over time. Data related to code complexity, test coverage, total
lines of code, duplicated code, occurences of comments, and coding practice violations
are objective measures that can be calculated and stored in a database using a product
like SonarQube. This helps to identify trends indicating that a code base is improving
or deteriorating.

BDD to Promote Uniform Processes
Informal testing is often done with the intention of finding bugs or causing a malfunc‐
tion. Such tests can be retained and run regularly to ensure that problems are not re‐
introduced later. The creation of a set of unit tests that run regularly at build time can
become an extremely effective safety net in the ongoing support of an application. But

202 | Chapter 13: Testing and Documentation

http://bit.ly/1omkVJD
http://bit.ly/NDpHFb
http://www.sonarqube.org


tests should not be viewed in isolation. They are integral to other aspects of software
development. Consider this statement that appeared in Code Complete by Steve McCon‐
nell (Microsoft Press) in 1993: “As you’re writing the routine, think about how you can
test it. This is useful for you when you do unit testing and for the tester who tests your
routine independently.”

The insight to note is that testing while designing results in better, more structured code,
better naming, and other benefits. It suggests a greater appreciation of the close con‐
nection between testing and other phases of the SDLC. It also anticipates more recent
software testing practices.

Test-Driven Development (TDD) takes the idea of thinking about tests while writing
code to a logical conclusion where tests are actually written prior to writing associated
code. More specifically, TDD follows a cycle of writing an initially failed test case rep‐
resenting a new requirement followed by writing, coding, and refactoring that causes
the test to pass.

Behavior-Driven Development (BDD) was subsequently introduced by Dan North to
help developers better understand where to start in TDD, what to test, what should be
put in a given test, and how to name them. BDD provides a narrative style that bridges
the gap between code and human language. TDD is wide open about the style of tests
being created, whereas BDD follows a TDD-style workflow but provides a more formal
format for behavioral specification.

BDD requires more personal commitment across an organization to be successful but
addresses several areas related to attaining higher CMM levels. BDD requires involve‐
ment and communication across teams. Quality assurance testers, developers, and busi‐
ness analysts must coordinate efforts in order to be effective. The benefit is the con‐
struction of relevant test cases directly tied to requirements and expressed in common,
unambiguous shared language.

Maven, in conjunction with mature testing frameworks, introduces a coherent organi‐
zation and structure to developer processes. Including BDD encourages communica‐
tion and process refinement that extends beyond developers to those involved in testing
and requirement-gathering and definition.

Testing Frameworks
Testing approaches tend to be codified in testing packages. JUnit is used for unit testing
in Java, while Jasmine is used for unit testing in JavaScript. JBehave is a Behavior-Driven
Development framework for Java, while Cucumber is Ruby-based.

Testing Frameworks | 203

http://www.cc2e.com/Default.aspx
http://junit.org
http://pivotal.github.io/jasmine
http://jbehave.org
http://cukes.info


JUnit
JUnit was originally written by Erich Gamma and Kent Beck. It has grown well beyond
its humble beginnings to its rather sophisticated form in JUnit 4. In previous versions,
unit tests belonged to specific object hierarchies and followed method-naming con‐
ventions in order to be functional. Like many projects in the Java ecosystem, JUnit 4
relies heavily on annotations. For instance, rather than having to explicitly create meth‐
ods named setUp() and tearDown(), the @before and @after annotations are used to
run code before and after test execution. The @beforeClass and @afterClass are also
available to run code before and after test class instantiation. The @Test annotation
replaces the former “test” naming convention for methods, and the @ignore directive
can be used rather than the distasteful practice of commenting out tests. Since assertions
can no longer be found in the object hierarchy, the static import of assertion classes is
generally required. Assertions can also be used to specify parameterized tests or test
suites.

TestNG
Another Java unit-test framework that has gained attention in the last few years is
TestNG. It has similar functionality to JUnit at this point but included certain features,
such as parameterized tests, before they became available in JUnit. It is also better able
to manage groups of tests. This provides the flexibility required for effective integration
testing. Some developers prefer TestNG’s conventions and use of annotations over JU‐
nit’s as well.

Unit tests are generally written in the same programming language as the main appli‐
cation. There are obvious advantages to this because specific isolated methods or func‐
tions of the application can be easily exercised. As use of unit tests gained popularity,
they served as a sort of documentation of usage among developers. A common response
to the question, “How does this project work?” is, “See the unit tests.” Unfortunately,
programming languages do not help nonprogrammers clearly understand how a system
functions. In many cases, requirements cannnot be derived from tests even by pro‐
grammers who know the language.

Jasmine and Cucumber are written to provide BDD implementations that in large part
support human languages. Jasmine uses JavaScript to specify tests, while Cucumber is
basically an interpretter for a little language called Gherkin. Gherkin is a business-
readable DSL to describe the behavior of software. The actual programming language
code used to test an application is separated into external files.

204 | Chapter 13: Testing and Documentation

http://junit.org
http://testng.org/doc/index.html


Jasmine
Jasmine expresses requirements using JavaScript strings and functions. It is small and
lightweight, so it can be included easily in a project and run simply by opening a browser.
The basic structure for a test includes a description of a test suite followed by blocks
that contain expectations which are essentially assertions that return true or false. By
convention, they reside in a JavaScript file with “Spec” in the name and are called by
opening a SpecRunner.html that includes the dependent library:

describe("Suite Title Here", function() {
  it("Expectation (assertion) Title Here", function() {
    expect(true).toBe(true);
  });
});

While certainly closer to human language, the format of a test remains JavaScript, which
to the untrained eye appears as human language riddled with a menagerie of symbols.
An uninitiated individual might ask, “Why the sad winking emoticons on the last two
lines?”

Cucumber
Cucumber relies on a DSL called Gherkin that closely resembles human language. The
login.feature file, for example, is a structured text document with a few keywords and
neat indentation:

Feature: Login
  As a user,
  I want to be able to log in with correct credentials

  Scenario: Success login

    Given correct credentials
    When I load the page
    Then I should be able to log in

The code implementation corresponding with each step in the feature is maintained
separately:

...
Given(/^correct credentials$/) do
end

When(/^I load the page$/) do
  Capybara.visit(VALID_LOGIN_URL)
end

Then(/^I should be able to log in$/) do
  Capybara.page.has_content?('To NOT Do')
end

Testing Frameworks | 205

http://pivotal.github.io/jasmine


Regular expressions are used to match text in the test specification. Ruby code is used
to perform the actual tests. In this example, Capybara is used for browser automation
to open a browser, visit a URL, and determine if expected content is present.

From The Cucumber Book
Cucumber helps facilitate the discovery and use of a ubiquitous language within the
team, by giving the two sides of the linguistic divide a place where they can meet.
Cucumber tests interact directly with the developers’ code, but they’re written in a
medium and language business stakeholders can understand. By working together to
write these tests—specifying collaboratively—not only do the team members decide
what behavior they need to implement next, but they learn how to describe that behavior
in a common language that everyone understands.

Test frameworks can be invoked directly or by build tools. The project in this chapter
includes examples of tests run as part of a Maven build.

Project
The project for this chapter demonstrates how JUnit and Jasmine tests can be integrated
into a Maven project build. It also includes Cucumber tests that use Capybara to call
Selenium as an example of BDD applied to browser-automated functional testing.

Rather than implementing something so common and mundane as a “TODO list” ap‐
plication, the project will consist of a “To NOT do list” web application, as shown in
Figure 13-3. Such an application can be used to list things that one intends to cease
doing or avoid. Fascinatingly refreshing and novel, don’t you think?

The project will demonstrate how various testing frameworks can be called from Maven
throughout the course of a build. The end result is a site that includes reports on tests
that have been run, as well as related documentation.

206 | Chapter 13: Testing and Documentation

http://bit.ly/prag-cucumber
http://bit.ly/1iPUKYp


Figure 13-3. To Not Do web application

JUnit
The starting point for determining project configuration for any Maven project is the
pom.xml. The dependencies section includes an entry for JUnit that is restricted to test
scope:

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>

Jasmine
In the same way that the JUnit module is added to the pom.xml for Java testing, a de‐
pendency needs to be added to support JavaScript testing. Justin Searls maintains the
Jasmine plug-in used in the project:

<groupId>com.github.searls</groupId>
<artifactId>jasmine-maven-plugin</artifactId>
<version>1.3.1.3</version>

A sample test included in the project validates the presence and functionality of a de‐
pendent library:

Project | 207



describe("Validate moment.min.js", function() {

    it("expects moment.min.js to be functional", function() {
                expect(
                    moment("20111031", "YYYYMMDD").
                    format('MMMM Do YYYY, h:mm:ss a')
                ).toBe(
                        "October 31st 2011, 12:00:00 am"
                );
        });

});

Besides the declaration of the preceding Maven coordinates, additional configuration
is required to include the JavaScript files used. When correctly configured, the tests will
be run when mvn install is executed:

...
[INFO]

J A S M I N E   S P E C S

[INFO]
Suite Title Here
  Expectation (assertion) Title Here

Validate moment.min.js
  expects moment.min.js to be functional

Results: 2 specs, 0 failures
...

The Jasmine plug-in is a perfect solution in many cases. However, browser-specific code
cannot be exercised, which limits its applicability. Browser automation is better suited
for testing requirements involving extensive DOM manipulation. A solution like Sele‐
nium can be used to drive various browsers. Browser automation allows each browser’s
unique idiosyncrasies to be uncovered. Selenium can be used directly within Java unit
tests, but in many cases, automating a browser suggests higher-level functional or in‐
tegration testing. It is so effective for controlling browsers that higher-level libraries
such as Capybara rely on Selenium as a driver implementation. The following Cucumber
example uses Capybara in this very manner.

208 | Chapter 13: Testing and Documentation

http://docs.seleniumhq.org
http://docs.seleniumhq.org
http://jnicklas.github.io/capybara
http://cukes.info
http://cukes.info


Cucumber
The /ruby directory contains a Ruby-based version of the Cucumber login test. The
Gemfile lists the dependencies, and the webapp_steps.rb contains the code to process
the specifications defined in the feature files. Start the application in one OS session:

mvn jetty:run

In a second session, run Cucumber:

cd ruby
cucumber

The features that have been specified will be run with output that reflects the origin of
each step being executed, as shown in Figure 13-4.

Figure 13-4. Cucumber run

Maven Site Reports
The pom.xml included in this chapter is quite a bit longer than the ones associated with
other projects in this book. Numerous dependencies and plug-ins are not associated
with the core application but with testing. In addition, many of the configuration options
are used to populate information in a Maven project site.

The Maven Site plug-in is used to generate a site and run it on port 8080:

mvn site:site
...
mvn site:run

The Maven /site/ directory can contain a variety of resources to customize the site. In
Figure 13-5, a site.xml has been added to use a custom “skin” to provide a different style
to the site.

Project | 209



Figure 13-5. To Not Do Maven site

Conclusion
Scalability in software requires well-architected, predictable, performant systems. Test‐
ing provides the means of ensuring that such systems are developed. Unit tests, Maven,
and systems related to continuous integration promote the creation of such systems by
clarifying the development process and making visible the state of an application.

Scalability of an organization requires defined processes and clear communication. The
same tools listed above, along with an approach like BDD, give testing a definitive social
benefit for a team that will tend to feed back into the quality of the software itself.

Software testing provides objective support based on the scientific method and practices
that have been refined in the physical sciences. Properly conducted, it also provides
immense practical value in demonstrating the quality and performance of an application
and encouraging a common understanding of how requirements have been imple‐
mented.

210 | Chapter 13: Testing and Documentation



Life is a distributed object system. However, communication among
humans is a distributed hypermedia system where the mind’s intellect,

voice+gestures, eyes+ears, and imagination are all components.
—Roy T. Fielding

CHAPTER 14

Conclusion

It is fascinating to set out to write a book with a general plan in mind and then review
the final result. Although different than what I initially envisioned, this book does re‐
main faithful to a theme introduced early on—that of change. The introduction pointed
out that there has been tremendous change in the world due to technological innovation
and spoke to a few specific areas where this is evident. If anything, the rate of change
has been increasing in recent years. It is common for a large-scale project to be con‐
sidered a legacy application by the time the product is launched.

Extreme reactions like trying to apprehend all of the new innovations or ignoring them
altogether are obviously shortsighted and futile. A better response is to identify which
shifts are truly significant game changers. The ride through this book highlights some
of the areas of software development encountered by Java developers that require a
closer look. Two basic sources for insights as to how to react to the seismic shifts that
continue to affect web development are the wider development community and the
insights of earlier generations.

Community
Other programming communities have significantly different perspectives and can
therefore inspire innovations different than those seen among the Java development
community. On the whole, Java developers are rather well-established, entrenched, and
somewhat corporate. They have much to learn from (and much to offer to) innovative
communities that have grown up around JavaScript, Ruby, and Python, among others.

211



Many great ideas are widely applicable to areas beyond their initial implementation. A
novelty in one setting can be a revolutionary idea in another.

History
The second area is to cultivate an awareness of the past. Despite the tendency of modern
culture to uncritically adopt whatever is new, it is better to be open to innovation while
evaluating it with a broader view. Computer science and software development has a
relatively short but rich history. Alan Kay, the computer scientist who coined the phrase
“object-oriented” and led development of Smalltalk, has pointed out the tendency of
much of modern computer science and software development to be a manifestation of
pop culture, unconcerned with and unaware of what has come before. Many of the most
significant and enduring ideas have their origins years or even decades ago. Better to
stand on the shoulders of giants and learn from the mistakes of the past whenever
possible:

In the last 25 years or so, we actually got something like a pop culture, similar to what
happened when television came on the scene and some of its inventors thought it would
be a way of getting Shakespeare to the masses. But they forgot that you have to be more
sophisticated and have more perspective to understand Shakespeare. What television was
able to do was to capture people as they were.
So I think the lack of a real computer science today, and the lack of real software engi‐
neering today, is partly due to this pop culture.

— Alan Kay

Coda
I hope you have learned a thing or two from this book. This is an exciting time to be
working in software development, as times of change are times of unprecedented op‐
portunity. There is plenty of new technology and no end of problems to which it can be
applied. Reading this book and working with the projects can be a step, hopefully the
first of many for you, that will be personally rewarding and result in the creation of
systems that will make the world better. I will leave you with a thought from the great
mathematician and teacher George Pólya who, though an intellectual, recognized the
deeply human and personal dimension related to solving problems, which is also ap‐
plicable to the creative work of software development:

It would be a mistake to think that solving problems is a purely “intellectual affair”;
determination and emotions play an important role. Lukewarm determination and sleepy
consent to do a little something may be enough for a routine problem in the classroom.
But, to solve a serious scientific problem, will power is needed that can outlast years of
toil and bitter disappointment…Teaching to solve problems is education of the will.

— George Pólya

212 | Chapter 14: Conclusion

http://ubm.io/1eQNBrD
http://bit.ly/1eUUzKE
http://ubm.io/1eQNBrD


APPENDIX A

JRuby IRB and Java API

Human-machine interface styles have varied over time, based on the nature of the device
in question as well as somewhat arbitrary trends. Command-Line Interfaces (or CLIs)
were the primary means of interacting with operating systems before the 1990s. After
that time, they were overshadowed by graphical operating systems and the visually
dominated Internet. Despite their relatively humble appearance, CLIs remain popular
due to functionality they provide that is not readily available through a GUI.

The pattern of interaction provided by a CLI reflects the functionality of teleprinters
(gizmos that evolved from telegraph machines used to send typed messages). A CLI is
more reliant on a user’s typing ability than a corresponding GUI. This limitation is also
an advantage in that CLIs lend themselves to scripting. Most programmers have some
experience in a CLI through the command-line shell of whatever operating system they
are using. When tasks become more involved, it is simple to bundle a set of commands
together into a script. This capability has resulted in many scripting languages, including
their own CLIs as an execution environment.

A CLI might also be referred to as a REPL (Read-Eval-Print Loop) or a language shell.
Whatever you call them, they are invaluable for exploring language features and getting
immediate feedback on the effect of running a given expression or command.

Though Java itself does not include a CLI (Beanshell is the closest equivalent), many of
the languages supported on the JVM do include (but are not limited to) JRuby, Jython,
and Groovy. The close integration of JVM languages with Java makes it possible to
interact through CLIs for each of these languages with native Java classes and modules.
This is a significantly different style of workflow that can be very helpful when experi‐
menting and debugging. In this chapter, JRuby’s IRB (Interactive Ruby shell) is used to
execute SQL queries through JDBC connections to a number of Java-based databases.

213

http://www.beanshell.org


Why Not IRS?
You might wonder why Ruby does not call its command-line interface IRS (Interactive
Ruby Shell). The standard file extension for Ruby programs is .rb. Hence “Interactive”
plus “RB” results in IRB.

Setup Using Gradle
Gradle will be used to download the set of Java project dependencies used in the fol‐
lowing scripts. Note that this is simply a convenience; there is no necessary connection
between a build tool like Gradle and a CLI. This Gradle build file was initially generated
using gradle setupBuild. The resulting build.gradle file included comments related
to usage. The file was then modified to include the modules needed as well as relevant
plug-ins and the repository where they are hosted:

apply plugin:'java'
apply plugin:'application'

repositories{mavenCentral()}

dependencies{
    compile 'org.slf4j:slf4j-api:1.7.5'
    compile 'hsqldb:hsqldb:1.8.0.10'
    compile 'com.h2database:h2:1.3.172'
        compile 'net.sf.opencsv:opencsv:2.3'
        compile 'commons-io:commons-io:2.4'
        compile 'org.apache.derby:derby:10.10.1.1'
    testCompile "junit:junit:4.11"
}

With the build file defined, the project can be built using gradle build. The necessary
JARs will be added to your local repository. Again, Gradle is not specifically required
for this task. You could instead use Maven, or even manually locate and download each
JAR used. Gradle was selected because of its minimal syntax (compared to Maven) and
because manually downloading files is error-prone and tedious.

JRuby IRB
Because the following example uses Java classes (the database implementations and
JDBC), a Java-based version of Ruby is required. Other implementations will not func‐
tion. If you are using RVM, install JRuby (if necessary) and select it for use:

$ rvm use jruby 1.7.4

214 | Appendix A: JRuby IRB and Java API



Install the bundler gem if you have not yet done so (version 1.3.5 was used in this
example). When this is available, run bundle init to create the Gemfile used by bundle.
Add the following three lines:

gem 'jdbc-derby', '10.9.1.0'
gem 'jdbc-h2', '1.3.170.1'
gem 'jdbc-hsqldb', '2.2.9.1'

These gems wrap the JDBC drivers used by JRuby. Run bundle to install these (Ruby)
dependencies.

We have seen Java dependencies managed by Gradle, and JRuby dependencies managed
by bundler. It is also possible to reference Java JARs directly from JRuby. For conve‐
nience, copy the JAR (included in the Gradle init) in a lib directory under our current
location. The file will be inside your local Gradle repository:

$ find ~/.gradle -name opencsv-2.3.jar

$ mkdir lib

$ cp <path to jar file from find command>opencsv-2.3.jar lib

The JAR will be accessed from within JRuby using the require keyword (which is gen‐
erally used for importing Ruby files).

Intro to IRB
Logging in to IRB will bring you to a prompt. The specific prompt will vary depending
on the version of Ruby you are using:

$ irb
jruby-1.7.4 :001 >

From this prompt, you can enter an expression and see its immediate evaluation:

2.0.0-p247 :001 > 1 + 4
 => 5

You can also inspect objects and find out what functionality they offer. Reflection in
Java allows objects to be explored and manipulated but is also verbose and complex. By
contrast, Ruby provides straightforward access to dynamically interrogate and alter
objects. It is well known for its meta-programming capabilities due to its flexibility in
this regard:

2.0.0-p247 :002 > "Hello World".class
 => String

2.0.0-p247 :014 > "Hello World".methods.grep(/sp/).sort
 => [:display, :inspect, :respond_to?, :split]

2.0.0-p247 :021 > "Hello World".split
 => ["Hello", "World"]

JRuby IRB | 215



For the remaining examples, the prompt and the result will be omitted. But the feedback
provided immediately after running a command is the real value of interacting in irb
and is best experienced to be fully appreciated.

In the preceding example, Hello World is a string (but is not assigned to any particular
variable). It has a large number of methods available, so the example filters (using
grep) and orders the ones that contain sp. Finally, having found a method in this man‐
ner, we can actually call it on the object (the Hello World string) and see its effect. This
approach is not a substitute for referencing documentation, but does render many of
the lookups you do otherwise unnecessary.

Java-Based Relational Databases
Within an irb session, we can now explore the APIs available for several Java-based
relational databases. If you have ever written a Java class that uses JDBC, you will un‐
doubtedly recall that there is a fair amount of boilerplate code required. Beyond the
standard Java requirements (defining a class with a main method), you need to write a
good deal of code related to exception handling (import statements, throws clauses in
method declarations, try/catch blocks). Add in the additional syntax required for ex‐
plicitly typing, a bit of output, and a few comments, and a seemingly simple class can
become rather bloated. Fortunately, Ruby’s syntax is concise, and the interactive envi‐
ronment makes it easy to test drive the APIs.

The three databases we will look at are H2, HSQLDB, and Derby. They are similar from
the outside, differing in specific implementation and storage mechanisms, performance,
and open source licensing options. Each is accessible via JDBC, and in an irb session
we will test each type of SQL statement available, as shown in Table A-1.

Table A-1. SQL statement types
Type Example Description

Query SELECT Retrieve data

DDL CREATE, DROP Data definition language (create, alter, or replace a database object)

DML INSERT, UPDATE, DELETE Data manipulation language (modify data)

As it turns out, there are actually some slight variations between databases that are only
evident when you actually interact with them (such as SQL syntax, connection strings,
and closing of result sets).

To make these examples a bit more concise, a common code required for each can be
added to a file and loaded from within irb. This includes code to make Java available,
load up the opencsv JAR (used to quickly render a result set as comma-separated values),
and add functions to execute SQL (queries, DML, and DDL) and to display SQL result
sets:

216 | Appendix A: JRuby IRB and Java API



require 'java'
require 'lib/opencsv-2.3.jar'

TEMP_FILE="temp.csv"

def displayResultSet(r)
                writer = Java.AuComBytecodeOpencsv::CSVWriter.new(
                       java.io.FileWriter.new(TEMP_FILE),
                       java.lang.String.new("\t").charAt(0)
                )
                writer.writeAll(r, true)
                writer.close()
    File.open(TEMP_FILE).readlines.each{|line|puts line}
    `rm #{TEMP_FILE}`
end

def exec(statement, conn)
  puts statement
  conn.createStatement().execute(statement)
end

def execQuery(statement, conn)
  puts statement
  conn.createStatement().executeQuery(statement);
end

This file is actually loaded into the environment by running load 'dbutils.rb'.

H2
Thomas Mueller created H2 and was also heavily involved in the development of
HSQLDB. In the following example, a username of sa with a blank password is used to
connect to a database named test where SQL statements are then executed. Also note
that no VARCHAR length is specified for the name column when the table is created:

load 'dbutils.rb'

require 'jdbc/h2'
Jdbc::H2.load_driver

conn = java.sql.DriverManager.getConnection('jdbc:h2:test', "sa", "")
# VARCHAR does not require a length
exec("CREATE TABLE test (id int, name varchar)", conn)
exec("INSERT INTO test(id, name) VALUES (1, 'a')", conn)
displayResultSet(execQuery('select * from test', conn))
exec("DROP TABLE test", conn)
conn.close()

Java-Based Relational Databases | 217

http://h2database.com


HSQLDB
HSQLDB is known for its inclusion in open source projects like OpenOffice as well as
commercial products like Mathematica. Unlike H2, a username and password are not
required when getting the connection, and a VARCHAR length is required in the name
column:

load 'dbutils.rb'

require 'jdbc/hsqldb'
Jdbc::HSQLDB.load_driver

conn = java.sql.DriverManager.getConnection('jdbc:hsqldb:test')
exec("CREATE TABLE test (id int, name varchar(10))", conn)
exec("INSERT INTO test(id, name) VALUES (1, 'a')", conn)
displayResultSet(execQuery('select * from test', conn))
exec("DROP TABLE test", conn)
conn.close()

Derby
Derby is an Apache project whose lineage goes back to the 1990s. It has continued
through various incarnations at CloudScape, Informix, and IBM. Since Java 6, Sun (later
acquired by Oracle) included Derby in the JDK as Java DB. The create=true attribute
in the JDBC connection string indicates that a database be created if it does not exist
when the connection is requested. In addition, Derby requires a result set to be explicitly
closed prior to dropping a table that references it:

load 'dbutils.rb'

require 'jdbc/derby'
Jdbc::Derby.load_driver

conn = java.sql.DriverManager.getConnection('jdbc:derby:test;create=true')
exec("CREATE TABLE test (id int, name varchar(10))", conn)
exec("INSERT INTO test(id, name) VALUES (1, 'a')", conn)
r = execQuery('select * from test', conn)
displayResultSet(r)
r.close()
exec("DROP TABLE test", conn)
conn.close()

Although relational databases were the focus of the previous example, it should be ob‐
vious that any Java library can be accessed via a script and explored using a similar
process.

218 | Appendix A: JRuby IRB and Java API

http://hsqldb.org
http://db.apache.org/derby


Conclusion
The immediate feedback provided by CLIs makes them a particularly effective tool
despite the move toward graphical methods. Scripts can be constructed by iterative
experiments within a CLI, and this process removes not only the traditional build step
but even the need to specifically execute a source file. This type of interaction is well
understood by many developers, but those who have focused on Java might have had
limited exposure. The JavaScript console available in modern web browsers is a modern
implementation of a CLI, and as this chapter illustrates, similar server-side processing
is available to Java programmers with just a bit of initial setup.

Conclusion | 219





APPENDIX B

RESTful Web API Summary

HTTP 1.1 Request Methods
Table B-1 summarizes the HTTP 1.1 request methods.

Table B-1. HTTP 1.1. request methods
HTTP verb Action to take on a resource REST action

GET Retrieve Like SQL SELECT

HEAD Retrieve without response body LIKE SQL SELECT 1

POST Create (or append) Like SQL INSERT

PUT Update (or create) of full resource Like SQL UPDATE (or INSERT if doesn’t exist)

PATCH Partial update Like SQL UPDATE (part of a resource)

DELETE Delete Like SQL DELETE

TRACE Echo request Diagnostic to determine changes made by intermediate servers

OPTIONS Return supported methods Determine which HTTP methods are allowed for the resource

CONNECT Support for HTTP tunneling Support HTTP tunneling

HTTP 1.1 Response Codes
Tables B-2 through B-6 summarize the HTTP 1.1 status codes.

Table B-2. Informational status codes 1xx
Code Meaning Description

100 Continue Interim response indicating that part of the request has been received (and not yet rejected by the
server)

101 Switching Protocols Server switching to protocols defined by the response Upgrade header

221

http://bit.ly/1kCmS4w
http://bit.ly/1dkzBVq


Table B-3. Successful status codes 2xx
Code Meaning Description

200 OK Accepted

201 Created A new resource is being created

202 Accepted Accepted, but processing not complete

203 Non-Authoritative Information Subset or superset of metadata returned in the entity header

204 No Content No response body included

205 Reset Content Client should initiate a request to view the resource associated with the initial request

206 Partial Content Response to a request that included a range header

Table B-4. Redirection status codes 3xx
Code Meaning Description

300 Multiple Choices Resource is available in multiple representations in different locations

301 Moved Permanently Resource has been assigned a new permanent URI

302 Found Resource has been assigned a new temporary URI

303 See Other The response to the request is available under a different URI

304 Not Modified Response to a conditional GET request where the document has not been modified

305 Use Proxy Requested resource is accessible through a returned URI of the proxy

306 (Unused) Not used in current HTTP version

307 Temporary Redirect The requested resource resides temporarily under a different URI

Table B-5. Client error status codes 4xx
Code Meaning Description

400 Bad Request Request not understood

401 Unauthorized Request not authorized

402 Payment Required Reserved for future use

403 Forbidden Request not allowed (even with additional authorization)

404 Not Found Resource not found

405 Method Not Allowed Invalid HTTP method for the specified URL

406 Not Acceptable Resource can be generated using the content specified in the accept headers

407 Proxy Authentication Required Request not authorized (authentication required through a proxy)

408 Request Timeout Client did not make a request in the time specified by the server

409 Conflict Request not completed due to the current state of the resource (e.g., changing due
to a PUT)

410 Gone Resource is no longer available

411 Length Required Content-length header required

412 Precondition Failed A precondition in the request-header fields evaluated to false

222 | Appendix B: RESTful Web API Summary



Code Meaning Description

413 Request Entity Too Large Request entity is larger than the server-specified threshold

414 Request-URI Too Long Request URI is longer than the server-specified threshold

415 Unsupported Media Type Format not supported

416 Requested Range Not Satisfiable Content range specified in the header could not be processed

417 Expectation Failed An expectation in the request-header fields not met

Table B-6. Server error status codes 5xx
Code Meaning Description

500 Internal Server Error Unexpected error condition on the server

501 Not Implemented Functionality not supported

502 Bad Gateway The server acting as a proxy received an invalid response from an upstream server

503 Service Unavailable Server unavailable due to a temporary condition

504 Gateway Timeout The server acting as a proxy did not receive a timely response from an upstream server

505 HTTP Version Not Supported HTTP protocol version in the request message not supported

Curl for Web APIs
The Curl utility can transfer data to or from a server using a variety of different protocols.
A small subset of the command-line options are sufficient for most operations related
to RESTful web APIs over HTTP, as shown in Table B-7.

Table B-7. Selected HTTP-related Curl options
Option Short name Description

-H Header Specify an HTTP header

-d Data Sends the specified string data to the server

-s Silent option Don’t show progress meter or error messages

-L Location If the server responds with a location header and a 3xx response code, redo the request on the new
location (limit the redirects with --max-redirs)

-X Execute option Specify the HTTP request method

-A Agent Specify the user agent

-b Cookie Specify a cookie (easier to remember using --cookie rather than -b)

-o Output Output to a file (or -O to write to a file named the same as the remote one requested)

Sample call:

curl -s -H "Accept: application/json" \
-H "Content-Type: application/json" \
http://localhost:8080/hello/world \
-X PUT -d '{"hello": "world"}'

Curl for Web APIs | 223

http://curl.haxx.se


JSON Syntax
JSON is a simple data exchange format which is a subset of JavaScript.

JSON Types
• Array (ordered, comma-separated values enclosed in square brackets)
• Object (an unordered, comma-separated collection of key:value pairs)
• Number
• String
• Boolean
• Null

Railroad Diagrams
The following railroad diagrams give more a formal description of the subset of Java‐
Script that constitutes the JSON data exchange format.

Object
An JSON object is a set of zero or more pairs of strings with associated values enclosed
in brackets. Each string is followed by a colon, followed by its associated value. If there
is more than one string-value pair, they are separated by commas. See Figure B-1.

Figure B-1. Object

224 | Appendix B: RESTful Web API Summary

http://bottlecaps.de/rr/ui


Array
A JSON array is a comma-separated list of values enclosed in square brackets. See
Figure B-2.

Figure B-2. Array

Value
A value can be a string, number, object, array, true, false, or null. See Figure B-3.

Figure B-3. Value

Railroad Diagrams | 225





APPENDIX C

References

Barrett, Daniel J. Linux Pocket Guide, Essential Commands. Sebastopol: O’Reilly Media,
2004.

Burke, Bill. RESTful Java with JAX-RS. Sebastopol: O’Reilly Media, 2009.

Crockford, Douglas. JavaScript: The Good Parts. Sebastopol: O’Reilly Media, 2008.

Fogus, Michael, and Chris Houser. The Joy of Clojure. Stamford: Manning Publications,
2011.

Hashimoto, Mitchell. Vagrant: Up and Running. Sebastopol: O’Reilly Media, 2013.

McConnell, Steve. Code Complete: A Practical Handbook of Software Construction.
Redmond: Microsoft Press, 2004.

Pólya, George. How to Solve It: A New Aspect of Mathematical Method. Princeton:
Princeton Science Library, 2004.

Resig, John and Bear Bibeault. Secrets of the JavaScript Ninja. Stamford: Manning Pub‐
lications, 2012.

Sonatype Company. Maven: The Definitive Guide. Sebastopol: O’Reilly Media, 2008.

Thomas, Dave, with Chad Fowler and Andy Hunt. Programming Ruby. The Pragmatic
Programmers, LLC, 2004.

Wynne, Matt, and Aslak Hellesøy. The Cucumber Book: Behaviour-Driven Development
for Testers and Developers. The Pragmatic Programmers, LLC, 2010.

Zakas, Nicholas Z. Professional JavaScript for Web Developers. Indianapolis: Wrox Press,
2005.

227





We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
$ (jQuery object), 140

A
abstraction level, 137
Accept headers, 40
acceptance testing, 198
actions, 127
ad hoc testing, 198
adaptive layout, 78
agile methodology, 110
Ajax, 143
Algermissen, Jan, 49
Amazon Elastic Compute Cloud (Amazon

EC2), 186
Amazon Machine Image (AMI), 186
analysis-paralysis, 110
Angular, 85, 155
Angular Seed, 81, 156
Angular-UI, 81
annotations, 133
anonymous functions, 18, 21
Ansible, 187
Ant, 60
Apache Ant, 60
Apache web server, 90
APIs (application programming interfaces)

advantages of open-source, 9

design approaches, 123
design guidelines, 127–131
practical vs. RESTful, 125, 135
project example, 131–135
shift to client-server approach, 124

Applets, 43, 48
application client modules, 168
application requirements, 76
application scalability, 200, 210
application servers, 92, 107, 168
apply() method, 22
argument variable, 22
arrays, 225
artifacts, 186
artificial intelligence, 123
asset pipelines/compilers, 84
Asynchronous Module Definition (AMD) API,

27
Atom Syndication Format, 46
attributes, 158, 199

B
Backbone Boilerplate, 81
Bamboo, 201
Beanshell, 213
Behavior-Driven Development (BDD), 31, 65,

203
black box testing, 199
block-level scope, 17

229



BOM (Browser Object Model), 14
Bootstrap, 79
bottom values, 27
browsers

avoiding refresh, 105
clearing the cache, 30
cross-browser compatibility, 143
for JavaScript development, 29
in client-side frameworks, 76
JavaScript compatability libraries, 79
same origin policy, 45

builders, 186
BuiltWith, 81

C
cacheability, 42
caching, 84
call() method, 22
camel case, 131
Capability Maturity Model (CMM), 200
Capistrano, 180
CDNs (Content Delivery Networks), 53, 84
cfengine, 180, 187
Chaos Monkey, 121, 199
Chef, 187
Chrome, 30
Chrome plug-ins, 105
classes

JavaScript vs. Java, 23
nouns as, 127

classical inheritance, 23
CLASSPATH entries, 63
client-server web applications

advantages of
application performance, 9
code organization, 8
developer productivity, 9, 109
open-source APIs, 9
prototyping, 9
software architecture, 8

alignment with Web architecture, 5–7
challenges of, 10
drawbacks of SOAP for, 38
forces behind development

overview of, 1
software development, 4
technology, 3
web users, 2

history of shift to, 124

technologies related to, 124
vs. server-driven, 7

client-side frameworks
Angular, 155
asset pipelines, 84
client-side templating, 83
development workflow, 85, 88
JavaScript libraries/frameworks

additional options for, 81
browser compatibility, 79
GitHub resources, 82
most popular, 81
MV* frameworks, 80
simplicity of, 79

jQuery, 140
overview of, 75
project example, 85
Responsive Web Design (RWD)

components of, 78
concept of, 77
HTML5 boilerplate, 78
Twitter Bootstrap, 79

starter projects
application requirements, 76
browser considerations, 76
building blocks to consider, 75
design/flexibility considerations, 76
GitHub resources, 82
IDE-generated, 83
impact of initial choices, 77, 116
repository download, 82
starter site download, 82

Clojure, 71, 73
Close, Tyler, 49
closures, 21
cloud-based environment

JEE deployments and, 170
maintaining state in, 10
sophistication of, 118
testing in, 199

clustering, 180
code compilation, 24, 31, 58, 84
code comprehension, 57
code editors, 120
code on demand, 43
code organization

file interdependencies, 27
modular approach to, 8

coding style, in JavaScript, 29

230 | Index



command-line administration, 173
Command-Line Interfaces (CLIs), 213
comments, in JSON, 45
component-based web development, drawbacks

of, 8, 50
considered harmful essays, 8
console.log, 26
constructors, 22
container technology, 188
Content-Type headers, 40
continuous integration (CI) process, 63, 201
continuous software deployment, 63
controllers, 86, 156
conventions, 22
Crockford, Douglas, 44
cross-browser compatibility, 143
cross-origin resource sharing (CORS), 39, 45
CSS (Cascading Style Sheets)

CSS selectors, 141
CSS3 media queries, 78
modifying with jQuery, 142
normalize.css, 78
preprocessing of, 84

Cucumber, 205, 209
Curl utility

HTTP-related options, 223
project example using, 134
using, 51

D
Dart, 83
data attributes, 158
data interchange formats, 44
databases

centralized vs. developer-maintained, 122
Derby database, 218
H2 database, 217
HSQLDB, 218
REST vs. CRUD commands, 39
SQL statement types, 216

debugging, 92
(see also testing)

deductive vs. inductive reasoning, 123
DELETE, 39
dependencies, 27
dependency injection frameworks, 90
dependency management, 61, 151
deployers, 170

deployment
automation of, 180
implications of method choice, 178
JEE deployment, 169–174
non-JEE deployment, 174–177
packaging schemes for, 89
project example, 181

deployment scanners, 174
Derby database, 218
developer productivity, 109
development best practices

browsers, 29
coding style/conventions, 29
integrated development environments, 30
online collaborative sites, 30
unit testing, 31

device-specific development, 90
DevOps configuration management tools, 187
directives, 156
distributed cognition, 57
Docco, 31, 34, 85
Docker, 189, 191
documentation

automatic generation options, 31
design guidelines, 131
shortfalls of, 57

dollar sign ($), 140
DOM (Document Object Model)

basics of, 14
DOM vs. model manipulation, 157
frameworks for manipulation of, 80
language independency of, 26
manipulation with jQuery, 141

Domain Specific Language (DSL), 60, 137, 153,
165

Dox, 31
Dropwizard, 105
Dubochet, Giles, 57
Dunning–Kruger effect, 15
dust.js, 84
dynamically types languages, 59

E
EARs (Enterprise Application Archives), 89
Eclipse, 60
ECMAScript Language Specification

I/O functionality, 25
Web scripting language, 13

effects, 142

Index | 231



EIS (Enterprise Information System), 168
EJB modules, 168
Ember Starter Kit, 81
enterprise archive (EAR) files, 168
entities, 127
ERDs (Entity Relationship Diagrams), 127
ETag HTTP Headers, 84, 130
eval(), 45
event handling, 143
execution environment, 24
exhaustive testing, 199
expressions, 20, 86, 156

F
Fabric, 180
fading effects, 142
Failsafe plug-in, 201
Fiddler, 54
Fielding, Roy, 38, 47
file system

inter-file dependencies, 27
organization in JavaScript vs. Java, 26

filtering, 129, 149
Firebug, 29
Firefox, 29
first-class functions, 18
fixed-point styling, 78
flexible images, 78
fluid grids, 78
formal testing, 198
formatting, 131
Fowler, Martin, 61, 65
front-end engineers, 83
FRP (Functional Reactive Programming), 144
full virtualization, 183
function-level scope, 17
functional language, definition of, 17, 20
functional programming, similarities to REST,

49
functions

anonymous, 18, 21
arguments for, 22
first-class, 18
function declarations, 20
immediate, 21
invocation of, 22
utility, 142

G
gems, 152
GET, 39
GitHub repos, 81, 82
global scope, 28
Google Trends, 81
Gradle, 60, 214
grids, 78
Groovy, 60, 71
GUI administration, 171

H
H2 database, 217
HATEOAS (Hypermedia as the Engine of Ap‐

plication State), 42, 46, 58, 124, 130
HEAD, 39
headers

Accept, 40
Content-Type, 40
design guidelines, 130

HelloWorld.java example
creation of, 23
execution of, 24
file system organization, 26
with variables, 27

hoisting, 17
horizontal scalability, 9, 41, 178
host objects, 25
href links, 46
hreflang links, 46
HSQLDB database, 218
HTTP 1.1 request methods

corresponding database operations, 39
HEAD vs. GET, 39
OPTIONS, 39
summary of, 221

HTTP 1.1 status codes
client error (4xx), 222
design guidelines, 130
informational (1xx), 221
overview of, 43
redirection (3xx), 222
server error (5xx), 223
successful (2xx), 222

hypermedia, 42, 46
hyphens vs. underscores, 40

232 | Index



I
I/O (input/output) functionality, lack of in Java‐

Script, 25
IDEs (integrated development environments),

30
if conditional expression, 18
images, 78, 189
immediate functions, 21
inductive vs. deductive reasoning, 123
informal testing, 198
inheritance, classical vs. prototypical, 23
injectors, 156
IntelliJ, 60
Internet Explorer, 26
interpreted language, 24
IRB (Interactive Ruby Shell), 151, 213–218
iteration, 112

J
J2EE, 90, 167
Jackson, 66, 92
James Ward plug-in, 105
Jammit, 84
JARs (Java Archives)

compression of, 168
creation of, 167
declarative identification with Maven, 63
general purpose code in, 89

Jasmine, 31, 32, 205, 207
Java

build tools
choosing, 61
Maven, 63
unit testing, 65
version control systems (VCS), 65

challenges of use, 58
compilation process, 58
Java Enterprise Edition, 89, 167, 169
Java Virtual Machine (JVM), 58, 105, 138
Java-based servers

Dropwizard, 105
embedded Jetty server, 93
embedded Netty server, 100
Java HTTP server, 92
Play server, 103
Restlet API, 95
Roo, 96
server-handler class, 91

JSON Java libraries, 66
packaging formats, 168
packaging paradigm, 89, 167
project example with JSON, 66
tools overview, 60

Java API, 213–218
Java Applets, 43, 48
Java Virtual Machine (JVM)

benefits of, 138
compilation process, 59
JVM-based servers, 105
operating systems/languages supported, 58
partial virtualization by, 185
project example, 69
scripting interface, 59

Java-based relational databases
Derby, 218
H2, 217
HSQLDB, 218
SQL statement types, 216

Javadoc, 31
JavaScript/JavaScript Tools

Browser Object Model (BOM), 14
development best practices

browsers, 29
coding style/conventions, 29
documentation, 31
integrated development environments,

30
online collaborative sites, 30
unit testing, 31

Document Object Model (DOM), 14
ECMAScript Language Specification, 13
example project, 31
functional capabilities

definition of functional, 20
first-class functions, 18
function arguments, 22
function declarations and expressions, 20
function invocations, 22
objects, 23
scope, 17

history of, 15
libraries/frameworks

additional options for, 81
browser compatibility, 79
GitHub resources, 82
most popular, 81
MV* frameworks, 80

Index | 233



simplicity of, 79
resources for learning, 14, 35
vs. Java applications

HelloWorld.java illustration, 23
HelloWorld.java with variables, 27

JAX-RS annotations, 133
JBehave, 65
JBoss, 168, 171
Jenkins, 201
Jersey, 131
JetBrains, 83
Jetty, 93
JMock, 65
jQuery, 79, 134, 137, 140–144, 156
jQuery object ($), 140
jQuery UI, 81
JRuby, 51, 150–155, 150
JRuby IRB, 151, 213–218
Jsdoc, 31
JSLint, 26
JSON (JavaScript Object Notation)

and REST, 47
arrays, 225
benefits and drawbacks of, 45
command line formatting, 99
comments in, 45
Crockford’s description of, 44
Java libraries, 66
mock server responses, 107
objects, 224
pretty-print formatting, 131
processing with JRuby, 154
railroad diagrams, 224
types, 224
values, 225

JUnit, 204, 207
Jython, 71, 106, 138–140, 144

K
Karma, 31, 85

L
language-independent manipulation, 26
latency, 84
layered design, 42
LESS CSS Maven plug-in, 85
libraries

advantages of open-source, 9

JavaScript libraries/frameworks
additional options for, 81
browser compatibility, 79
GitHub resources, 82
most popular, 81
MV* frameworks, 80
simplicity of, 79

JSON Java libraries, 66
server libraries, 90

links, 39, 46, 129, 130
LinuX Container (LXC), 189
literate programming, 31
Lo-Dash, 80
load balancing, 178
logical operators, 18
loose typing, 28

M
machine learning, 123
make programming tool, 61
mapping, 58
Maven, 60–62, 66, 201, 209
media queries, 78
medium specificity, 6
messages, self-descriptive, 42
methods

basics of, 21
determining available, 39
function invocation with, 22

Microsoft’s Internet Explorer, 26
Mockito, 65
modeling system, 127
models, 155–157
Modernizr, 79
modules, 168
MV* frameworks, 80, 155
MVC (Model-Veiw-Controller) framework, 80
MVP (Model-View Presenter) framework, 80
MVVM (Model-View ViewModel) framework,

80

N
naming conventions, 131
NetBeans, 60
Netflix’s Chaos Monkey, 121, 199
Netty, 100
network latency, 84
Node.js boilerplate, 83

234 | Index



nonfunctional attributes, 199
normalize.css, 78
nouns, 127
null values, 18

O
object-oriented systems, 50, 58, 144
object-relational management (ORM), 39
objects

attached to functions, 21
basics of, 23
host objects, 25
syntax in JSON, 224

Open Virtualization Format (OVF), 186
open-source APIs, 9
operating-system-level virtualization, 188
OPTIONS, 39
organizational maturity, 199
organizational scalability, 200, 210

P
packages, 152, 167
packaging

considerations in, 89
JAVA/JEE, 167

Packer, 186
pagination, 129
parameters, 128
path dependence, 77
path elements, 40
personal cloud, 2
PhoneGap, 76
Play Framework, 103
Play2, 84
POJO (plain old Java object), 67
port forwarding, 194
POST, 39
post-processors, 186
pragmatic REST, 48
pretty-print JSON, 131
productivity

areas for improvement, 111
benefits of client-server apps, 9
developer productivity, 109
in light of wider concerns, 111
software development life cycle and, 117–

122

programming languages
abstraction levels and, 137
choosing, 58
contextual issues, 57
control vs. flexibility in, 62
expressiveness of, 72
Java, 58
Java Virtual Machine (JVM), 58
static/dynamic typing support, 59

project examples
API creation for testing, 50
client-side frameworks, 85
deployment, 181
JavaScript/JavaScript tools, 31
Jersey, 131
jRuby and Angular, 158
JVM scripting with JSON, 69
Jython-based HTTP server, 144
Maven, 66
testing, 206
virtualization, 190

project iterations, 112
prototypical inheritance, 23
prototyping, benefits of, 9
pseudo-agile methodologies, 111
Puppet, 187
PUT, 39
Pygments, 34
Python, 34, 71, 138

Q
query parameters, 128
quotes, single vs. double, 26

R
railroad diagrams, 224
rake programming tool, 61
rapid development practices

developer productivity, 109
software development life cycle, 117–122
workflow optimization, 112–117

RARs (resource adapter modules), 168
records, 39
Red Hat JBoss Enterprise Application Platform

6 (JBoss EAP 6), 171
registries, 189
rel links, 46

Index | 235



relational databases
challenges of integrating, 58
Derby, 218
H2, 217
HSQLDB, 218
SQL statement types, 216
tables in, 127

relative sizing, 78
Remote Procedure Call (RPC)-style APIs, 37
REPL (Read-Eval-Print Loop), 213
repositories, 189
representations, 42, 58, 127
request methods (verbs), 39

(see also HTTP 1.1 request methods)
request parameters, 129
RequireJS, 27
resources

identification of, 42
in Angular, 87
in REST, 40, 127
manipulation through representations, 42,

58
web resources, 38

response codes (see HTTP 1.1 status codes)
Responsive Web Design (RWD)

components of, 78
concept of, 77
GitHub resources, 82
HTML5 boilerplate, 78
Twitter Bootstrap, 79

REST (Representational State Transfer)
API classification schemes, 48
as a web services protocol, 37
author of, 38
constraints

benefits of, 54
cacheability, 42
client-server architecture, 41
code on demand, 43
layered design, 42
stateless design, 41
uniform interfaces, 42, 58

design approach of, 124
example project, 50
functional programming and, 49
goals of, 6
HATEOAS and, 46
HTTP response codes, 43

(see also HTTP 1.1 status codes)

HTTP-related features
URIs (Uniform Resource Identifiers), 40
verbs (request methods), 39
web resources, 38

JSON and, 44
pragmatic REST, 48
Richardson Maturity Model, 48
vs. RESTful APIs, 47
vs. SOAP, 38
web API tools, 54

RESTful Web API
design approach of, 124
Fielding’s frustration with term, 47
summary of, 221–225
vs. practical, 125

Restlet API, 95
Richardson Maturity Model, 48
roles, 170
Roo, 96
Ruby on Rails, 150
RubyGems, 51, 152
runtime environment, 24
RVM (Ruby Version Manager), 151

S
same origin policy, 45
sanity tests, 199
Scala Build Tool (SBT), 61
scalability, 9, 41, 200, 210
Scheme, 15
scope

function level vs. block-level, 17
global, 28
in AngularJS, 156

scripting interfaces, 59, 70
security, 131
self-descriptive messages, 42
server-driven web development, 7
server-side frameworks

code simplification in, 90
development usage, 91, 107
JRuby, 150–155
Jython, 138
packaging considerations, 89

servers
application servers, 92, 107, 168
Java-based

Dropwizard, 105
embedded Jetty server, 93

236 | Index



embedded Netty server, 100
Java HTTP server, 92
Play server, 103
Restlet API, 95
Roo, 96

server types, 184
session-affinity, 41
Sinatra, 51, 153
Skeleton, 79
sliding effects, 142
smoke tests, 199
SOAP messaging service, 37, 127
software architecture, flexibility and reuse, 8, 89
software development life cycle

management and culture, 117
performance, 120
productivity considerations, 117
software tools, 119
technical architecture, 118
testing, 120
underlying platforms, 122

SonarQube, 202
sorting, 149
special effects, 142
Spine, 81
Spring, 90
Sprockets, 84
SQL statement types, 216
StackOverflow tags, 81
starting points, 123
stateless design, 9, 41
static typed language support, 59
statistical analysis, 123
sticky sessions, 41
strict mode, 26
Struts, 90
Surefire plug-in, 201
system administrators, 170

T
tables, 127, 149
Team City, 201
templates/templating, client-side, 83
test coverage analysis, 199
Test-Driven Development (TDD), 203
Testacular, 31
testing

as indicator of organizational maturity, 199
coverage vs. quality, 202

frameworks for, 203
productivity concerns, 120
project example, 206
types of, 198
workflow integration of, 115, 203

TestNG, 204
this keyword, 21
touch screen event handling, 81
TouchPunch, 81
Twitter Bootstrap, 79
type links, 46
typeof operator, 28
typing, loose, 28

U
UML class diagrams, 127
undefined values, 18
Underscore library, 79
underscores vs. hyphens, 40
uniform interface constraints, 42, 58
uniformity, 200
unit testing

build tools and, 65
frameworks for JavaScript, 31

unobtrusive JavaScript, 29
URIs (Uniform Resource Identifiers), 40
URLs (Uniform Resource Locators), 40
URNs (Uniform Resource Names), 40
utility functions, 142

V
Vagrant, 186, 193
values

bottom values, 27
in JSON, 225

var keyword, 18, 28
variables

argument, 22
HelloWorld.java example, 27
y variable, 18

verbs (request methods), 39, 127
(see also HTTP 1.1 request methods)

version control systems (VCS), 65
versioning, 129, 151
views, 156
VirtualBox, 186
virtualization

concept of, 183

Index | 237



full virtualization, 183
implementations of, 185
management of, 186
partial virtualization with containers, 188
project example, 190
virtual machines, 184

VMWare, 185

W
WADL (Web Application Description Lan‐

guage), 131
Warbler, 169
WARs (Web Application Archives), 89, 169
waterfall development methods, 110
web addresses, 38

(see also URIs)
web components, 165
web containers, 168
web development

component-based, 8, 50
cross-browser, 143
device-specific, 90
higher- vs. lower-level frameworks, 92
impact of packaging on, 89
increased productivity in, 9, 41, 109
layered design, 42
literate programming, 31
mock JSON responses, 107, 139
rapid development practices

developer productivity, 109
software development life cycle, 117–122
workflow optimization, 112–117

server-driven vs. client-server approach, 7
starter projects, 88

(see also client-side frameworks)

stateless design, 9, 41
traditional vs. modern approaches, 75, 90
web API tools, 54

web modules, 168
web resources, 38
web users

expectations of, 2
impatience of, 2
perceived browser performance, 9

WebLogic Server, 168
WebSphere, 168
WebStorm, 30, 83
workflow optimization, 112–117
World Wide Web

as a lambda-calculus derivative, 49
fundamental nature of, 5
HTTP request/response, 6
modern web environment, 7
REST request/response, 6

WSDL (Web Services Description Language),
127

X
XML, 44

Y
y variable, 18
YAML, 44
Yeoman, 85

Z
Zurb Foundation, 79

238 | Index



About the Author
Casimir Saternos has been developing software for more than a decade. He has written
articles that have appeared in Java Magazine and the Oracle Technology Network and
has collaborated on several projects for Peepcode screencasts. He spends a good deal of
time these days creating web applications using Java, Ruby, and any other technology
that happens to apply.

Colophon
The animal on the cover of Client-Server Web Apps with JavaScript and Java is a large
Indian civet (Viverra zibetha). These mammals range throughout grasslands and dense
forested areas in southeast Asia, including Myanmar, Thailand, Cambodia, Malaysia,
and southern China.

A solitary animal, the large Indian civet is most active at night, when it hunts prey like
birds, snakes, frogs, and smaller mammals. It will also eat fruit and roots, but its diet is
mainly carnivorous. It sleeps in its burrow (often a hole that has been dug and aban‐
doned by another animal) during the day.

Large Indian civets range from 20-37 inches in length, not including their tails. Their
fur is gray-brown, with black stripes on the neck and tail. Females are slightly smaller
than males, and breed at any time—generally, they have two litters a year, and raise their
offspring alone.

Civet is also the name of the musk these animals excrete to mark their territory. Diluted
(and most often collected from the African civet), it has been used as a perfume ingre‐
dient for centuries. A synthetic version is used in many modern products, but several
species of civet are still illegally trapped for their meat and scent glands.

The cover image is from Lydekker’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.


	Copyright
	Table of Contents
	Preface
	Who Is This Book For?
	How This Book Is Organized
	Conventions Used in This Book
	Code Examples
	Long Command Formats

	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Change Begets Change
	Web Users
	Technology
	Software Development
	What Has Not Changed
	The Nature of the Web
	Server-Driven Web Development Considered Harmful

	Why Client-Server Web Applications?
	Code Organization/Software Architecture
	Flexibility of Design/Use of Open Source APIs
	Prototyping
	Developer Productivity
	Application Performance

	Conclusion

	Chapter 2. JavaScript and JavaScript Tools
	Learning JavaScript
	JavaScript History
	A Functional Language
	Scope
	First-Class Functions
	Function Declarations and Expressions
	Function Invocations
	Function Arguments
	Objects

	JavaScript for Java Developers
	HelloWorld.java
	HelloWorld.java (with Variables)

	Development Best Practices
	Coding Style and Conventions
	Browsers for Development
	Integrated Development Environments
	Unit Testing
	Documentation

	Project

	Chapter 3. REST and JSON
	What Is REST?
	Resources
	Verbs (HTTP Request Methods)
	Uniform Resource Identifiers

	REST Constraints
	Client–Server
	Stateless
	Cacheable
	Uniform Interface
	Layered
	Code on Demand

	HTTP Response Codes
	What Is Success?

	JSON (JavaScript Object Notation)
	HATEOAS
	REST and JSON

	API Measures and Classification
	Functional Programming and REST
	Project
	Other Web API Tools
	Constraints Redux

	Chapter 4. Java Tools
	Java Language
	Java Virtual Machine (JVM)
	Java Tools
	Build Tools
	Benefits of Maven
	Functionality of Maven
	Version Control
	Unit Testing

	JSON Java Libraries
	Projects
	Java with JSON
	JVM Scripting Languages with JSON

	Conclusion

	Chapter 5. Client-Side Frameworks
	Overview
	Starting Point One:  Responsive Web Design
	HTML5 Boilerplate
	Bootstrap

	Starting Point Two: JavaScript Libraries and Frameworks
	Browser Compatibility
	Frameworks
	Functionality
	Popularity

	Obtaining Starter Projects
	Download Directly from Repositories
	Download from Starter Sites
	IDE-Generated Starter Projects

	The Rise of the Front-End Engineer
	Client-Side Templating
	Asset Pipelines
	Development Workflow

	Project
	Conclusion

	Chapter 6. Java Web API Servers
	Simpler Server-Side Solutions
	Java-Based Servers
	Java HTTP Server
	Embedded Jetty Server
	Restlet
	Roo
	Embedded Netty Server
	Play Server
	Other Lightweight Server Solutions

	JVM-Based Servers
	Jython

	Web Application Servers
	Development Usage
	Conclusion

	Chapter 7. Rapid Development Practices
	Developer Productivity
	Optimizing Developer and Team Workflow
	Example: Web Application Fix
	Example: Testing Integration
	Example: Greenfield Development

	Productivity and the Software Development Life Cycle
	Management and Culture
	Technical Architecture
	Software Tools
	Performance
	Testing
	Underlying Platform(s)

	Conclusion

	Chapter 8. API Design
	A Decision to Design
	Practical Web APIs Versus RESTful APIs
	Guidelines
	Nouns as Resources; Verbs as HTTP Actions
	Query Parameters as Modifiers
	Web API Versions
	HTTP Headers
	Linking
	Responses
	Documentation
	Formatting Conventions
	Security

	Project
	Running the Project
	Server Code
	Curl and jQuery

	Theory in Practice

	Chapter 9. jQuery and Jython
	Server Side: Jython
	Python Web Server
	Jython Web Server
	Mock APIs

	Client Side:  jQuery
	DOM Traversal and Manipulation
	Utility Functions
	Effects
	Event Handling
	Ajax

	jQuery and Higher-Level Abstractions
	Project
	Basic HTML
	JavaScript and jQuery

	Conclusion

	Chapter 10. JRuby and Angular
	Server Side:  JRuby and Sinatra
	Workflow
	Interactive Ruby Shell
	Ruby Version Manager (RVM)
	Packages
	Sinatra
	JSON Processing

	Client Side: AngularJS
	Model
	Views
	Controllers
	Services

	Comparing jQuery and Angular
	DOM Versus Model Manipulation
	Unobtrusiveness of Angular

	Project
	Conclusion

	Chapter 11. Packaging and Deployment
	Java and JEE Packaging
	JEE Deployment
	GUI Administration
	Command-Line Administration

	Non-JEE Deployment
	Server Outside
	Server Alongside
	Server Inside

	Implications of Deployment Choice
	Load Balancing
	Automating Application Deployment

	Project
	Client
	Server

	Conclusion

	Chapter 12. Virtualization
	Full Virtualization
	Virtual Machine Implementations
	VMWare
	VirtualBox
	Amazon EC2

	Management of Virtual Machines
	Vagrant
	Packer
	DevOps Configuration Management

	Containers
	LXC
	Docker

	Project
	Docker Help
	Image and Container Maintenance
	Java on Docker
	Docker and Vagrant Networking

	Conclusion

	Chapter 13. Testing and Documentation
	Types of Testing
	Formal Versus Informal
	Extent of Testing
	Who Tests What for Whom?

	Testing as an Indicator of Organizational Maturity
	CMM to Assess Process Uniformity
	Maven to Promote Uniform Processes
	BDD to Promote Uniform Processes

	Testing Frameworks
	JUnit
	Jasmine
	Cucumber

	Project
	JUnit
	Jasmine
	Cucumber
	Maven Site Reports

	Conclusion

	Chapter 14. Conclusion
	Community
	History
	Coda

	Appendix A. JRuby IRB and Java API
	Setup Using Gradle
	JRuby IRB
	Intro to IRB

	Java-Based Relational Databases
	H2
	HSQLDB
	Derby

	Conclusion

	Appendix B. RESTful Web API Summary
	HTTP 1.1 Request Methods
	HTTP 1.1 Response Codes
	Curl for Web APIs
	JSON Syntax
	JSON Types

	Railroad Diagrams
	Object
	Array
	Value


	Appendix C. References
	Index
	About the Author

