 THE EXPERT'S VGICE® IN WINBOWS

o e s T TSI STI SIS SIS TSI
Beginning e
Windows 8
Data Development

Using C# and JavaScript

Vinodh Kumar

' f//f//fﬂif/.dfm//f/!//’iil - |
Apresse

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AULNOKcccviiemmmssnnmmsnnmssssnmsssssmsssssmssssnnssssnssssannesssnsessansssssnnesssnnssssnsssssnnnsssnnnsss Xiii
About the Technical REVIEWETcsveesssessssssssssssssssssssssssmsssssssssssssssssssssssssssnssssssnsssnssnsnsnnas XV
Acknowledgments........cccccuiiisnnmmmnnmmmmmmssssssssssnnnmmesssssssssssnnnneesssssssssnnnnnnnesssssssssnnnnnnnnnsssssnnn XVii
Chapter 1: Introduction to Windows 8 Development............cccusmmmmmnssnnmmmmsssssnmmssssssssnsssnans 1
Chapter 2: HTML5 and JavaScript Apps with MVVM and Knockoutccuuceemmmmsssnnnnnnans 13
Chapter 3: Windows 8 Modern App Data Access 0ptionsccccummmmmmssnnnnmmmmmsssssssssnnns 29
Chapter 4: Local Data Access: I: IndexedDB.........c..ccccmmnssummmmmmsssssnmmssssssnmmssssssssssssssssssnsns 35
Chapter 5: Local Data Access I: JET APl and Application Datac..cccnsmmrnsnnnnsssnnnnanns 61
Chapter 6: Local Data Access IlI: SQLIte.........ccccmmmmmmmmmmmsssnnnmmmsssssnmmsssssssssssssssssssssssssssssss 89
Chapter 7: ASP.NET Web API.........cccoumsmmmmssnnmsssnnssssassssssnssssanssssansssssnssssansssssnsssssnsssssnnass 123
Chapter 8: WCF SeIViCEeScucusssrrssnmssssnsssssnssssssssssssnsssssnssssansssssnsesssnsessansessnnsesssnsesssnnesss 147
Chapter 9: Windows Azure Mobile ServiCes.......cccvummmmmmmmmmmmmmmmmmssssssssssmssssssssssssssssnnns 179
Chapter 10: Windows Phone 8 Data ACCESS.....ccuussemmmmssssssnmsssssnnnssssssnsnssssssnnnssssssnnnnssans 209
L1 . 229

CHAPTER 1

Introduction to Windows 8
Development

With Windows 8, Microsoft introduced significant changes to the underlying platform and user interface.
These new features include a new start screen experience, Windows stores to purchase apps from a single repository,
and a new platform known as Windows Runtime (WinRT).

WinRT provides a new set of APIs and tools to create a new style of touch-first apps that are fast and fluid.
These apps are generally called Windows Store Apps.

For the purposes of this book, some of the key things to know about WinRT and Windows Store apps include

Windows 8 Apps runs in Windows X86, x64, and ARM processors.
Windows 8 Apps can either run in full-screen mode or be docked to the side of the screen.

WinRT supports programming languages such ac C, C++, VB.NET, and C#, along with HTML5
and JavaScript.

WinRT APIs are designed to be asynchronous. APIs that take more than 50 ms to run are made
asynchronous.

The WPF/Silverlight XAML Ul model is exposed to developers.

To ensure stability and security, the Windows Store Apps run within a sandboxed
environment.

Finally, the most important thing to know is that there is no direct way to connect to the
database servers using data providers in Windows RT.

As this book is more about data access in Windows 8, this chapter provides an overview of the Windows 8 app
framework and briefly looks into the development choices, UI data controls, MVVM patterns, and other necessary
concepts that will be used in various examples throughout this book. In the later part of this chapter we’ll write our
first data-driven Windows 8 App that displays the New York Times Best Sellers list.

Windows App Framework

In Figure 1-1, we see the Windows 8 modern-style app framework compared to that of desktop applications, where
both share the same Windows core OS services. If we look at the desktop application section, JavaScript and HTML
are used to target Internet Explorer, C and C++ are used for Win32 apps, and C# and Visual Basic for .NET and
Silverlight. Each of these will have a separate set of APIs. But with Windows 8 Apps, we have one set of APIs that for
WinRT whether we use XAML, C#, C/C++, Visual Basic, HTML/CSS, or JavaScript.

CHAPTER 1~ INTRODUCTION TO WINDOWS 8 DEVELOPMENT

Metro style Apps Desktop Apps

XAML HTML / CSS

JavaScript
C/C++ C#,VB G
4 (Chakra) ~ HTML C

Windows Runtime APIs
Communication Graphics & Devices &
& Data Media Printing
Application Model Internet A
itermet Win32

Windows Kernel Services

SystemServices

Figure 1-1. Windows App framework

Development Choices

For developing Windows 8 Apps, we can choose either of the two development paths shown in Figure 1-2.

[HTML5/CSS] XAML

Presentation

JavaScript] | CH#/VB/C++ |

Coding

WinRT

A S

Figure 1-2. Development choices

In the HTML path we will be able to use the traditional Web technologies like HTML5, CSS, and JavaScript.
For presentation, you use HTML tags such as div, table, spans, and input, and CSS for styling. For coding, JavaScript
can be used. Apart from the HTML controls, Windows Library for JavaScript provides a set of new controls designed
for Windows Store Apps. This WinJS library is our path for the WinRT.

If you are a WPE, Silverlight, or Windows Phone developer, then designing the UI and presentation layer using
XAML is an ideal fit. Here we will be using C#, Visual Basic, or C++ for coding.

2

CHAPTER 1 * INTRODUCTION TO WINDOWS 8 DEVELOPMENT

Creating the New York Times Best Sellers App

The New York Times Best Sellers app is a simple Windows 8 App that uses the MVVM pattern to display the New York
Times Best Sellers list. Building this app is a starting point to learn to use Visual Studio 2012, the MVVM framework,
data binding, data controls, and other necessary concepts to create a data-driven Windows 8 Modern Ul app.

Introducing the MVVM Application Framework

Model-View-ViewModel (MVVM) is the most widely used framework in WPF/Silverlight/Windows Phone XAML-based
development. Considering MVVM as the central concept of Windows 8, it supports XAML-based development and is
ideologically similar to the technologies that use MVVM as the application framework, so it is an ideal choice.

This chapter introduces you to the MVVM framework. In later chapters you will learn about some of the most
commonly used MVVM frameworks like MVVM Light and Prism.

What Is MVVM?

The MVVM pattern splits the user interface code into three conceptual parts: Model, View, and ViewModel
(see Figure 1-3). The concept of the ViewModel is the new, and it controls the View’s interactions with the rest of
the app.

Designer Programmer

Collections/Properties

/Commands <::>

View ViewModel Model

Figure 1-3. The basic relationships of the MVVM framework

e Model represents actual data or information and holds only the data and not the behavior or
service that manipulates the data.

e Viewvisually represents the data in the ViewModel by holding a reference to the ViewModel.

e ViewModel serves as the glue between the View and the Model by exposing commands,
notifiable properties, and observable collections to the View.

CHAPTER 1

INTRODUCTION TO WINDOWS 8 DEVELOPMENT

Advantages in Using MVVM

These are the some of the advantages of using MVVM over other patterns:

The MVVM pattern is designed specifically for the data binding capabilities that are available
in XAML applications, allowing views to be simple presentations that are abstracted from the
business logic process, which should not happen at the user interface layer.

Another primary benefit of the MVVM pattern is the unit testability of codebase. The lack
of connection between the View and ViewModel helps in writing the unit test against the
ViewModel.

MVVM allows developers and Ul designers to more easily collaborate when developing
their respective parts of the application.

The MVVM pattern is widely used and there are several mature MVVM frameworks like
Caliburn Micro and MVVMLight that provide all the base template code out of the way, of
course, but they also can add advanced binding, behaviors, actions, and composition features.

Setting Up the Development Environment

Download the developer tools from http://dev.windows.com. The developer tool includes the Windows 8 Software
Development Kit, a blend of Visual Studio and project templates. Microsoft Visual Studio for Windows 8 is our
integrated development environment (IDE) to build Windows 8 Apps and this version runs only on Windows 8.

Optionally, Microsoft Visual Studio 2012 can also be used. The full version has advanced debugging tool support,
multi-unit testing framework and refactoring support, code analysis, profiling, and support for connecting to Team
Foundation Server.

Note Windows 8 Apps cannot be developed with Windows 7, Windows Vista, or Windows XP.

Visual Studio project templates give a great jump-start to building HTML and XAML applications. We create
anew Visual C# Windows Store Blank App (XAML) project and name it NYTimesBestSeller (see Figure 1-4).

http://dev.windows.com/

CHAPTER 1 * INTRODUCTION TO WINDOWS 8 DEVELOPMENT

P Recent .NET Framework 4.5 ~ Sortby: Default ~| 55 Search Installed Templa P ~
4 |nstalled
\ MwvvmLight (Wing) Visual C# Type: Visual C#
4 Templates - A single-page project for a Windows Store
4 Visual C2 D':-I Blank App (XAML) Visual C2 app that has no predefined controls or
layout.
Windows Store
c
Windows L. | Grid App (XAML) Visual C#
Web -
c#
Cloud FS1 selitApp xamD) Visual C#
Reporting =5
- . cs
Silverlight g‘sﬁ! Class Library (Windows Store apps) Visual C#
Test =
c
WCF E{a! Windows Runtime Component Visual C#
Windows Phone e
vorlow “ﬁc! Unit Test Library (Windows Store a... Visual C#
XNA Game Studio 40 v %
P Online
Name: [NYTimesBestSelle] |
Location: Ci\Users\vinodh\SkyDrive\Book8\Code\Chapter1\ v Browse...
Solution name: NYTimesBestSeller Create directory for solution
[] Add to source control
| ok || Ccancel

Figure 1-4. Visual Studio templates for XAML

The New York Times Best Sellers app displays the details of the New York Times fiction best sellers in a grid view.
Before we go further let’s see the project structure in Figure 1-5.

CHAPTER 1~ INTRODUCTION TO WINDOWS 8 DEVELOPMENT

2] Solution 'NYTimesBestSeller' (1 project)
4 NYTimesBestSeller
A Properties
=B References
B Assets
i Common
W Models
4 c* BestSellersModel.cs
4 %z Book
& Title: string
& Description : string
& Author: string
& Publisher: string
& Price: double
4 %3 BestSeller
@_ current : BestSeller
& Current : BestSeller
@, BestSeller()
@ LoadData() : void
4 @ ViewModel
4 ¢ MainViewModel.cs
4 %3 MainViewModel
@ MainViewModel()
& FictionBestSellers : BestSeller
4 @ Views
4 Iy MainPagexaml
b) MainPagexaml.cs
b I Appxaml
£ NYTimesBestSeller_TemporaryKey.pfx
Package.appxmanifest
¢ packages.config

A VY VvV

Figure 1-5. NYTimesBestSeller project structure

In the default project structure, we have created three new folders via Models, Views, and ViewModel.
These folders are used for the Models, Views, and ViewModel. Also we moved the MainPage.xaml to the Views folder.

Creating the Model

Now, we create the application's data model. This class are created in the Model folders in the C# file

BookSellersModel.cs.
The BookSellersModel.cs file implements two classes:

e Book

e BestSellersModel

The Book class shown in Listing 1-1 represents details of one of the books on the best sellers list. The details include
book title, description, author, and price.

CHAPTER 1 * INTRODUCTION TO WINDOWS 8 DEVELOPMENT

Listing 1-1. Adding Book Class to the Project

public class Book

{
public string Title { get; set; }
public string Description { get; set; }
public string Author { get; set; }
public string Publisher { get; set; }
public double Price { get; set; }

}

The BestSellersModel class shown in Listing 1-2 is an ObservableCollection of Book object. This class loads
the New York Times best seller books into the observable class.

Listing 1-2. BestSeller Class to Store the Best Seller Information

public class BestSeller : ObservableCollection<Book>

{

private static BestSeller current = null;
public static BestSeller Current
{

get

{

if (current == null)
current = new BestSeller();
return current;

}
}
private BestSeller()
{

LoadData();
}
public async void LoadData()
{

//Code here to get New York Times best seller
}

}

The New York Times best seller API is called by the LoadData method to get the book details (see Listing 1-3).
This API returns a JSON object that will be parsed using the WinRT APIs residing in the Windows.Data.Json namespace.

Listing 1-3. LoadData Method Fetch Data Using the New York Times API

public async void LoadData()

{
string url = "http://api.nytimes.com/svc/books/v2/1lists//hardcover-fiction.json?8offset=
&sortby=8&sortorder=8api-key=76038659ae9258d87cfb6dc8d6f02d35:11:66739421";
HttpResponseMessage response = await client.GetAsync(url);
string jsonData = await response.Content.ReadAsStringAsync();

http://api.nytimes.com/svc/books/v2/lists/hardcover-fiction.json?&offset=&sortby=&sortorder=&api-key=76038659ae9258d87cfb6dc8d6f02d35:11:66739421
http://api.nytimes.com/svc/books/v2/lists/hardcover-fiction.json?&offset=&sortby=&sortorder=&api-key=76038659ae9258d87cfb6dc8d6f02d35:11:66739421

CHAPTER 1 © INTRODUCTION TO WINDOWS 8 DEVELOPMENT

JsonObject jsonObject = JsonObject.Parse(jsonData);
var resultObject = jsonObject.GetObject();

var result = resultObject["results"].GetArray();
foreach (var item in result)

{

JsonObject bookdetails =
item.GetObject().GetNamedValue("book details").GetArray()[0].CetObject();

Book book = new Book();

book.Title = bookdetails.GetNamedString("title");

book.Description = bookdetails.GetNamedString("description");

book.Author = bookdetails.GetNamedString("author");

book.Price = bookdetails.GetNamedNumber("price");

book.Publisher = bookdetails.GetNamedString("publisher");

Add(book) ;

}

We have used await and the async keyword that was introduced with .NET 4.5 to asynchronously process
the network request to avoid GUI locking and freezing. Here the async keyword flags a method as containing
asynchronous components, and the await keyword triggers an asynchronous process and resumes execution when it
completes without blocking the main thread. We use await and async a lot throughout this book as the entire WinRT
framework is built with performance in mind and in WinRT any potential task that takes longer than 50 ms is defined
asynchronously. Responsiveness of the app is one of the minimum requirements of the Windows 8 App certification.

Creating the ViewModel

The ViewModel is designed to list the best sellers, and we use the FictionBestSellers property to hold the list
(see Listing 1-4). Here we create the instance of the Model. Apart from this, ViewModel can also be used to expose
various commands by implementing ICommand.

Listing 1-4. MainViewModel works a DataContext for view MainPage.xaml

public class MainViewModel

{ public MainViewModel()
{
}
public BestSeller FictionBestSellers
{
get
{
return BestSeller.Current;
}
}
}

Command objects are derived from the ICommand interface, which has two important methods: The CanExecute
method controls whether the corresponding control that is bound to this command is enabled or disabled, and the
Execute method specifies the action to be taken once the control is clicked. We see the use of the command object later
in this book.

CHAPTER 1 * INTRODUCTION TO WINDOWS 8 DEVELOPMENT

Creating the View

Now that the Model and ViewModel are ready, let’s focus on the View. Let’s use the default page, which is MainPage . xaml.
Here we move the page from the root to the Views folder so that we will have a manageable project structure. The page
template comes with a Grid where TextBlock is added to showcase the application title and GridView to display data
(see Listing 1-5).

Listing 1-5. MainPage.xaml View Defined in the XAML

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>
<RowDefinition Height="9*"/>
<RowDefinition Height="55*"/>
</Grid.RowDefinitions>
<TextBlock
TextWrapping="Wrap"
Text="New York Times Best Sellers"
Margin="60,20,0,20"
FontSize="64"/>

<GridView Grid.Row="1"
Margin="60,0,0,0"
ItemsSource="{Binding FictionBestSellers}"
ItemTemplate="{StaticResource BookDataTemplate}"/>

</Grid>

Visual Studio generates code for us at the OnLaunched event in app.xaml.cs so that MainPage.xaml will be used
as the start page of the app (see Listing 1-6).

Listing 1-6. Configuring Application’s Startup Page

protected override void OnLaunched(LaunchActivatedEventArgs args)

{

Frame rootFrame = Window.Current.Content as Frame;
if (rootFrame == null)

{
/* Create a Frame to act as the navigation context and navigate to the first page*/
rootFrame = new Frame();
if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
//T0D0: Load state from previously suspended application
}
// Place the frame in the current Window
Window.Current.Content = rootFrame;
}
if (rootFrame.Content == null)
{

// When the navigation stack isn't restored navigate to the first page,

// configuring the new page by passing required information as a navigation
// parameter

if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))

CHAPTER 1 © INTRODUCTION TO WINDOWS 8 DEVELOPMENT

{
}

throw new Exception("Failed to create initial page");

}

// Ensure the current window is active
Window.Current.Activate();

}

The next step is to create the connection between the View and ViewModel, which is done by creating the
instance of the ViewModel in the View’s constructor and setting it to the data context of the page (see Listing 1-7).

Listing 1-7. Connecting View and ViewModel

public MainPage()
{

this.InitializeComponent();
MainViewModel vm = new MainViewModel();
this.DataContext = vm;

Windows 8 Data Binding

Data binding is a useful tool in putting an application together and WinRT relies heavily on the usage of data binding.
WPE Silverlight, or Windows Phone developers are mostly familiar with data binding, but for someone who is new to
this, we show an example of data binding in The New York Times Best Sellers app.

A data binding consists of a target and a source. The target is usually a property of a control, and the source is
usually a property of a data object. In Listing 1-5 we bound the source BestSeller collection to the target control’s
ItemsSource property. Also in Listing 1-8 we bind the Book class Title property to the Control Text property.

Before we go further, let’s see how the application looks when it runs for the first time.

If we have a close look at Listing 1-5, we'll see that the ViewModel FictionBestSellers property is bound to the
GridView. GridView along with ListView are two powerful data controls in WinRT that are designed for touch input.
Both these controls are derived from ListViewBase and neither adds any properties, methods, or events other than
ListView used for vertical scrolling, and GridView for horizontal scroll.

By seeing the app one would notice that the book title, author, and description are formatted nicely and for that
to happen GridView needs to know how to display each object in the list, the properties of the object that need to be
displayed, and how they should appear. We do this more often with a DataTemplate. Here we create a DataTemplate
named BookDataTemplate, which is assigned to the GridView ItemTemplate property as shown in Listing 1-5.

The ItemTemplate gets or sets the template for each item and the DataTemplate customizes the appearance of the data.
In this case, we created a layout with Border and StackPanel and three TextBlock instances that we bind to the various
Book object properties like Title, Author, and Description (see Listing 1-8). The result is shown in Figure 1-6.

Listing 1-8. The BookDataTemplate Is Defined Inside the MainPage.xaml

<DataTemplate x:Key="BookDataTemplate">
<Grid

HorizontalAlignment="Left"

Width="250"

Height="150">

<Border
Background="{StaticResource ListViewItemPlaceholderBackgroundThemeBrush}">
<TextBlock

Text="{Binding Description}"

10

CHAPTER 1 * INTRODUCTION TO WINDOWS 8 DEVELOPMENT

Foreground="{StaticResource ListViewItemOverlayForegroundThemeBrush}"
Style="{StaticResource TitleTextStyle}"
FontWeight="Normal"
FontSize="13.333"
Margin="10,0"/>
</Border>
<StackPanel
VerticalAlignment="Bottom"
Background="{StaticResource ListViewItemOverlayBackgroundThemeBrush}">
<TextBlock
Text="{Binding Title}"
Foreground="{StaticResource ListViewItemOverlayForegroundThemeBrush}"
Style="{StaticResource TitleTextStyle}"

Height="20"
Margin="15,0,15,0"/>
<TextBlock

Text="{Binding Author}"
Foreground="{StaticResource ListViewItemOverlaySecondaryForegroundThemeBrush}"
Style="{StaticResource CaptionTextStyle}"
TextWrapping="NoWrap"
Margin="15,0,15,5"/>
</StackPanel>
</Grid>
</DataTemplate>

The NewYork Times Best Sellers

d f3 3 t k up a plan to reunite 3
grapple with the

THE RACKETEER THE CASUAL VACANCY ANGELS AT THE TABLE THE TWELVE

Dirk Pitt and ofist Las! ol 2 and his bout the inventor of the he destructios
truth about a 2 k. - 3 A 4 end) WO rst clock. offers the shoy
submarine.

POSEIDON'S ARROW NYPD RED THE TIME KEEPER

An Appalachian woman be An e When Jose; o : A British 25 fior secrets in
n an effort to save I over hi e ness, his her o past.
brothers cast him o g of ice and Fire.”
grown.

THE SINS OF THE MOTHER A WINTER DREAM A DANCE WITH DRAGONS

hitcl er, Child
Reacher.

GONE GIRL THE BONE BED BACK TO BLOOD CAPTAIN VORPATRIL'S... A WANTED MAN

Figure 1-6. Windows 8 Application displaying the New York Times Best Sellers List

11

CHAPTER 1 © INTRODUCTION TO WINDOWS 8 DEVELOPMENT

Conclusion

This chapter introduced Windows 8 App development and various concepts that are needed to build an XAML-based
data-driven Windows 8 App by building our first Windows 8 App. As you can see, this was just a brief introduction

to the concepts and frameworks. As you look to move beyond the basics of Windows 8 development, there are

many more advanced scenarios that are available, and among them are user-updated data, two-way binding, value
converters, and advanced MVVM techniques like passing data between pages, dialog UI, and so forth. In the next
chapter we use the MVVM pattern and data binding that we learned in this chapter and will them in building an
HTMLS5 and JavaScript-based Windows 8 application using JavaScript patterns, MVVM, and Knockout]S.

12

CHAPTER 2

HTMLS and JavaScript Apps
with MVVM and Knockout

In Chapter 1 we built an XAML-based app using MVVM and in this chapter we build a JavaScript-based data-driven
app using HTMLS5, CSS, and Knockout JS.

Knockout JS is a popular open source MVVM JavaScript framework. This framework helps us to adpot some
of the principles like BaseModel, inheritance, and data binding in a way that helps us write code that remains
manageable, testable, and maintainable.

This chapter begins by helping you get started with Knockout, going through the resources and tools needed to
start with Knockout and use it with Visual Studio. We then provide a demonstration using MVVM with Knockout,
data binding, and jQuery to develop a Pocket (Read it later) client Windows 8 App.

What Is Knockout?

Every web application developer either has used or at least heard of jQuery, which is designed to greatly simplify
JavaScript programming. jQuery is not a solution for every problem, as when developing a complex web application
it becomes tricky to make the UI and data communicate with each other dynamically. Also jQuery doesn’t have a
concept of an underlying data model, so for data manipulation jQuery always infers with DOM. Hence there is a need
for a library that provides a more sophisticated means of communication between the Ul and the underlying data
model; that solution is Knockout.

Understanding Knockout

Knockout is a JavaScript library that helps create rich, desktop-like web UIs. It simplifies user interactions and is fully
amenable to any data source changes. Using observations, Knockout helps the UI stay in sync with the underlying
data model.

e Knockout is a free, open source JavaScript library.
e Knockout implements the MVVM pattern for JavaScript that we discussed in Chapter 1.
e Knockout is a small and lightweight library.

e Knockout is compatible with Internet Explorer 6+, Firefox 2+, and the latest versions of
Chrome, Safari, and Opera.

e Knockout provides a complementary, high-level way to link a data model to a UI.

e Knockout itself doesn’t depend on jQuery, but can certainly use jQuery at the same time.

13

CHAPTER 2 HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

Knockout is entirely built on three core concepts (see Figure 2-1):

Dependency
Tracking with

Declarative Templating

bindings Support
Observables E RE

Figure 2-1. Knockout core concepts

¢ Dependency tracking with observables: If one is familiar with XAML technologies, then this
concept can be related to the INotifyPropertyChanged interface. For instance, if a property
isloaded or changed, it will automatically notify the UI to bond to it in one or more places
whereas the changes have been made. The UI will reflect the changes and will also have an
option for whether the UI can change the value to automatically update the source object again.

¢ Declarative bindings: This concept helps in connecting parts of the UI to the data model in
a simple and convenient way. This is where source objects are bonded to the target elements
through the HTML itself. Instead of using JavaScript code to find an element by ID, or by some
other means embedded in the value by a JavaScript object with JSON data and then pushing it
in and pulling it out of the UI, it can be accomplished through declarative bindings.
This is done within the HTML binding by setting the element’s ID to fetch particular
attributes, properties, or values from the source object.

e Templating: Repetitive structures in a web page, like rows or list boxes, can created using
templates. This is similar to item templates or data templates in WPF/Silverlight and XAML-
based Windows 8 Apps. jQuery templates can also be used as a template with Knockout along
with the native templates with Knockout or some other templating engine.

Creating the Pocket (Read It Later) App

Pocket is a very popular bookmark service that allows users to catalog articles and create a personal archive of items
they are interested in. In this chapter, we create a Windows 8 App for Pocket bookmark services named Read It Later
using HTMLS5, JavaScript, CSS, and Knockout JS.

Read It Later is a very basic app that displays bookmarked articles (see Figure 2-2). In building this app, we will be
learning about some of the following Windows 8 concepts and practices.

e Learn to allow apps to use Internet authentication and authorization protocols like
OpenlID or OAuth to connect to online identity providers like Facebook, Twitter, Google,
and Microsoft Account.

e Learn to use the WinJS.xhr JavaScript function to make cross-domain requests and intranet
requests. Some of the common scenarios are uploading and downloading files and connecting
to aweb service to GET and POST to REST APL

e Learn JavaScript data binding by data-binding data from JavaScript objects to HTML elements.

14

Implementing MVVM Pattern in
Web Applications Using Knockout
Dt drivan wak tited rtly heavily on lavaSeript aed lavaSeript
bated ibeacies nach a3 jQuery. The diemt gide programming
tends 50 Deccme complex &5 the user interiace Becomes mare
and maee rich. 1 guch situations festures fach a3 dita binding
and dependency tracking are highly desirable.

Devhammer's Den - Building
Back-end Data and Services for
Windows 8 Apps: O

In part 1 of this poat, | ihowed how 1 Crealy @ S0L dmatase
in Windowi Azure, créate & schema for adding lesderbourd
functionality 1o 3 game, creats an Frtity Framewnsi modsl for
the cdatabase, and then create 8od tert 8 WOF Data Service on
tap af the madel that provider & rich REST-1tyle isteracti

Knockout 2.2.0 released - Steve
Sanderson’s blog - As seen on
YouTube™

1t's boen frve months snce the last sgnificant Knockowt
reieate, 39 it's 850Ut time Sor anather! The core team and
ey CoRribunon hive Been hard & work s3ding some feeet
new featured, perfarmunce upgrader, archiectorsl
improvements, ind bug fes.

Recreating the Windows 8
SkyDrive App

The SkyDrive Windowi 8 apphcation Mlow & uter 1o manige
thwir SkyDrive account. In this post | am going to show how to
recreate Foder,Fite User nterface in & Wingg HTML &
Lwvascript) project.

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

Steven Sanderson's blog

s seen on YouTube™
Sk

Home Abous me
Knockout 2.2.0 released

Pested en Detanae 29, 2012

't Bean fve maeths Sz the 1193 sgnificint Knockout selease, 16 T3 About time fir ancther The cone 188 Ind mbny SEmbULar have Been hird 4t work Idding 10me st nbw featuret, parforn
upgrades, architectural mprovements, and bug foes. Afier a1 Bz, the final code fil s smaler tran the previcus versan &

e can downiced Kncchiout 220 s from Gt where we s hace the souice, and see the updated dotumentation and test sste

What's improved?

The theme for K3 2.2.0 was *al the small things". We processed and ciosed nany, many, many wark ibems tracked on GitHua, fixed a bunch of niggly Il issues, improved our code structure, and pu
Arhancements we've been winting for 8 whilk.

My Favarrite ennancermen it Thit the formach birding will rom detect whisn you Rave residensd slemerts in o array, and wil §imply mave the correipending DOM slemests inte the rrm coder (pies
"ot wat handied 51 an “3d” and & "delete’], You don't Rave 1o change yeur code 1o enable T — it just work, even if you'ne moving, adding, snd deMEng mutisle it 8 & tingle tomic optra
Lample:
4 o waAt 1 amate the mevements of DOM medes ints theit new esitioss, you 2an make use of the new beforaMove sod afterMeve calkscks.
W' 345 mac forma Teatunes work mare e you might hvars Rave thought they shewid wark For eximple, the e binding can now Sitach programmantically-geserated 55 class nimes 1o tleme
{previcusty, it was imited 1o 1o9ghing predefined (55 class names). Example:
Qthar sniecvemnants irciude
= The with, i, and Ifnat bindings have been enhanced to preserve their original DOM elements on initial sinding, 5o they are ighter and won't mecessarily Stip cut any special behavicurs inse
third-party lbrarien. § know 8 1ot of people srked for shin
IR h in many places o void regiatering sabscriptions that would be Wnneessary no-cps

= Support for IEW) tweil, we basically aleady supported it But there was one edge-Case issus with autc<ompletion that we xed)

= Improved AMD support (the ko variable is now avarabie contet f all custom bindig hanslers, even if it isn't in glabat scope)
= The taxt Binding can now be ased in a virtual element (e.g. s rex
= Cibirvabie and competed propartins hive & new pesk function for sdvanced comtrel over dependency detection
- Bugfixes

=yValue--3<!--/ke--3]

£

Big thanis to Michae! Best and Ryan Miemeyer = ry fellcw KO core team members = and the many community members who contributed features, specs, and clearty-reproducibie bug reports

24 Comments « Posted in Javas

= Using [Hing nside Yisual Sud

24 Responses 1o Knockout 2.2.0 released

Figure 2-2. Read It Later Windows 8 App displays articles from Pocket bookmark services

Tools and Utilities

Using tools and extensions not only makes the developer’s life easier; it also increases productivity and reduces startup
time for new projects. Let’s take a look at some of the tools and extensions that we can use in our Read It Later app.

JsFiddle

JsFiddle is a free online shell editor that eases writing JavaScript code by creating convention environs based on
JavaScript frameworks and for snippets built from HTML, CSS, and JavaScript, hosted at http://jsFiddle.net.
This free code-sharing tool has an interface that is divided into four sections, as shown in Figure 2-3.

15

http://jsfiddle.net/

CHAPTER 2 HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

== x
/B Edit this Fiddle - jsFiddle x \ \
« C [} jsfiddle.net/QFasF/1/ Q@i N\ O =
& JSFIDDLE * Run e Update ~ Fork x Reset = TidyUp + JSLint
. documentation. % Name: <input type="text" data-bind="v {yrmi input{ 5
r U es e follow our blog name” /> border: 1px solid #6297BC;
tweets or become a fan <p> width: 23@px;
hello, <span data-bind="text: }
name" »</fspans
Choose Framework v </p> button {
<button data-bind="click: color:#050; font: bold small
onDomReady z changeName”>change name</button> ;tr‘ebuchet ms ' ,helvetica,sans-serif;
v
Knockout.js 2.2.0 ¥
. Name: knockout
Library tag attributes (?) var viewModel = { avascript ame 'k ockout
name: ko.observable('knockout ;, hello, knockout
changelﬁiame: Furjfti?n() { change name
™ Normalized CSS this.name(jsfiddle’);
}
¥
Panels »>
ko.applyBindings(viewModel);
Manage Resources >
Info >
Testing Ajax requests >
Legal stuff and credits >
7] Ke its

Figure 2-3. JsFiddle Online Editor tests the knockout dependency tracking and declarative binding

Note Visit http://jsfiddle.net/QFasF/1/ to experiment with the live sample.

Sometimes when there is a need to build a POC or ideas quickly, that’s where JsFiddle comes in handy, as you
can quickly set up and run the code without having a full-blown IDE. Out of the box, JsFiddle provides an option to
share the work, along with built-in version control, debugging, and code forking.

JsFiddle has the ability to share and save the code with a unique URL generated and one can choose a default
JavaScript framework like JQuery, Mootools, Prototype, Vanilla, and so on, and can also add new resources like the
Knockout plug-in or a JQuery UL

Visual Studio Extensions

One of the best things about development with JavaScript inside Visual Studio 2012 is using the various Visual Studio
extensions that can enhance the experience. The following are some of the recommended extensions.

16

http://jsfiddle.net/QFasF/1/

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

e NuGet: This free extension is used to manage third-party libraries and references.

e Web Essentials: This is used for code collapsing, adding vendor-specific CSS properties and

much more.

e JSLint: This linting tool for JavaScript helps to spot mistakes in the code.

e CSSCop: This makes it easy to perceive the best practices for writing stylesheets and helps
users catch common issues that affect browser compatibility.

e Resharper: This is one of the best productivity tools for Visual Studio, but it is not free.

Getting Started

To start, let’s create a new Windows Store Blank App (JavaScript) project and name it ReadItLater. Blank Application
(see Figure 2-4) is a single-page project for Windows 8 App that has no predefined controls or layouts.

MNew Project
b Recent WNET Framework 4.5 * Sort by: Default - 1=
4 |nstalled -5 =
= | &J Blank App JavaScript
4 t
em? ates s
b Visual C= ",J Grid App JavaScript
4 Other Languages b .
b Visual Basic 1 seitapp JavaScript
b Visual C++ ==
15
SQL Server r J Fixed Layout App JavaScript
b Visual F# e
- i5
4 JavaScript FJ Mavigation App JavaScript
Windows Store ag
i Other Project Types
Meodeling Projects
Samples
P Online
Name: [ReaditLater
Location: C:\Users\vinodh\SkyDrive\Book&\Code\Chapter2\, ¥
Selution: Create new solution -
Solution name: ReaditLater

h Installed Template tri+E P~

Type: JavaScript

A single-page project for a Windows Store
app that has no predefined controls or
layout.

Browse...

[¥] Create directory for solution
[[] Add to source control

0K | Cancel

Figure 2-4. Visual Studio templates for JavaScript creates a Blank App with HTML,CSS, and JavaScript files

17

CHAPTER 2 HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

Note Like Blank Application, Visual Studio also provides a few more templates, like Split Application, Fixed Layout
Application, Navigation Application, and Grid Application.

Blank App incudes files that are essential for the Windows 8 Apps using JavaScript, as shown in Figure 2-5.

fa] Solution 'ReadltLater' (1 project)
4 Readltlater
4 m References
b =B Windows Library for JavaScript 1.0
4 @ css
default.css
4 @] images
B logo.png
El smalllogo.png
Bl splashscreen.png
El storelogo.png
4 f@ljs
IT default.js
N default.html
package.appxmanifest
71 ReadltLater_TemporaryKey.pfx

Figure 2-5. Visual Studio Soution Explorer displays the default files and project structure for the Blank App template

Setting Up Knockout]S

Knockout]S can be referenced to the project in two ways: one by getting the Knockout.js file directly from
http://knockoutjs.comand other by using NuGet to add reference to Knockout and JQuery as shown in Figure 2-6.

18

http://knockoutjs.com/

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

ReadltLater - Manage NuGet Packages » IEE
4 Installed packages Sort by: Name: Ascending - Search Installed packages (Ctrl+E P~
Al . jQuery (U5 ' Created by: John Resi
) JjQuery is a new kind of JavaScript Library. M’ Idre-; D
P Online jQuery is a fast and concise JavaScript Librar... Aazined)
Version: 1.8.3

b Updates 7 View License Terms

knockoutjs Project Information

A JavaScript MVVM library to help you create rich, dynamic

user interfaces with clean maintainable code Description:

JjQuery is a new kind of JavaScript Library.
jQuery is a fast and concise JavaScript
Library that simplifies HTML document
traversing, event handling, animating, and
Ajax interactions for rapid web
development. jQuery is designed to change
the way that you write JavaScript.

NOTE: This package is maintained on
behalf of the library owners by the NuGet
Community Packages project at http://
nugetpackages.codeplex.com/

Tags: jQuery
Dependencies:

No Dependencies

Each package is licensed to you by its
owner. Microsoft is not responsible
for, nor does it grant any licenses to,

third-party packages. 1

Figure 2-6. Using NuGet to add a reference to Knockoutjs and JQuery

Designing the App Start Page

As you saw in Figure 2-4, the Visual Studio Blank App template creates default.html as our app start page. This page
contains references to the app’s code files and style sheets. We update this page layout as shown in Listing 2-1. The layout
consists of a header section that displays the app title. The right column has the necessary HTML elements for
displaying list of bookmarked articles and the left column shows the content of the selected article.

Listing 2-1. Updated default.html Page with Two-Column Layout

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8" />
<title>Read It Later</title>

<!-- WinJS references -->

<link href="//Microsoft.Win]S.1.0/css/ui-dark.css" rel="stylesheet" />
<script src="//Microsoft.WinJS.1.0/js/base.js"></script>

<script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

19

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

<!-- ReadItlater references -->
<link href="/css/default.css" rel="stylesheet" />
<script src="/js/default.js"></script>

<!--Thirdy Party Reference --»>
<script src="/scripts/jquery-1.8.3.js"></script>
<script src="/scripts/knockout-2.2.0.js"></script>

</head>
<body>
<div
class="fragment homepage">
<header
aria-label="Header content" role="banner">
<button

class="win-backbutton"
aria-label="Back"
disabled
type="button" />
<h1 class="titlearea win-type-ellipsis">
Read It Later
</h1>
</header>
<section
aria-label="Main content"
role="main">
<div class="colmask leftmenu">
<div class="colleft">
<!--left col-->
<div class="col1"
data-bind="with: selectedItem">
<!-- Main Content Start--»
<h2>

</h2>
<div id="siteloader"></div>
<!-- Main Content end -->
</div>
<!--right col-->
<div class="col2">
<!-- Articlet List start --»>
<div data-bind="foreach: model">
<div data-bind="foreach: keys"
class="1link-container">

<h2>
<span data-bind="click: $root.setItem, text
</h2>
<p></p>
</div>

20

: title" />

CHAPTER 2

</div>
<!-- Articlet List End -->
</div>
</div>
</div>
</section>
</div>
</body>
</html>

Enabling Windows 8 Web Authentication

The Pocket service implements oAuth authorization to access the data when the Pocket API is called. The calls to
the APIs are signed with encrypted details that include an expiry time. There are many services similar to Pocket,
like Facebook, Digg, and Google, that use oAuth and learning oAuth authorization will be a great help in developing
Windows 8 Apps that consume web services.
The first step is to register the app with the Pocket service. A consumer key is provided on registration as shown

in Figure 2-7.

APPS
My Apps
Create a New App

DOCUMENTATION
Overview

Add

Modify

Retrieve

Authentication
Objective-C SDK

Article View API

GETTING STARTED

10S/Mac
Android
Windows &
Web

Other Mobile
<

/ & Pocket: Developer API

x \

HTMLS5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

- o

L o C' | [I getpocket.com/developer/apps/

pocket

My Applications
In Development

Windows - Mobile

Windows - Desktop

CREATE AN APPLICATION

" %00 =

~

How to Save Blog Support My List

10921-65ff0df65a5aal6bc4f4eaal

10921-b56e1909c35740eed4661752

Figure 2-7. Pocket developer dashboard

21

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

Getting Request Token

To begin the process, one needs to pass the consumer key and redirect URL to the service to acquire a Request Token.
WinRT provides the WinJS.xhr function to send cross-domain requests and intranet requests. WinJS. xhr abstracts
all the complexity of XMLHttpRequest and provides a simple interface that uses Promises to handle the asynchronous
responses, as shown in Listing 2-2.

Listing 2-2. Win]S.xhr Function Used to Consumer Key as HTTP POST to Pocket Service

function launchPocketWebAuth() {
var pocketReqUrl = "https://getpocket.com/v3/oauth/request"”;
var callbackURL = "readitlateri23:authorizationFinished";
var dataString = "consumer_key=" + consumer_id

+ "&redirect_uri=" + callbackURL;

try {
WinJS.xhr({
type: "post"
, data: dataString
, url: pocketReqUrl
, headers: {
"Content-type": "application/x-www-form-urlencoded; charset=UTF8"
}
}) .done(
function (request) {
request_code = getParameterByName("code", request.responseText);
var pocketAuthUrl = "https://getpocket.com/auth/authorize?request_token=";
var authCallbackURL = "http://www.myweb.com";
pocketAuthUrl += request code
+ "8redirect uri=" + encodeURIComponent(authCallbackURL)
+ "8webauthenticationbroker=1";
var startURI = new Windows.Foundation.Uri(pocketAuthUrl);
var endURI = new Windows.Foundation.Uri(authCallbackURL);
Windows.Security.Authentication.Web.WebAuthenticationBroker.authenticateAsync(
Windows.Security.Authentication.Web.WebAuthenticationOptions.useTitle,
startURI,
endURI).then(callbackPocketWebAuth, callbackPocketWebAuthError);
1
function error(error) {
//handle error here
1
function progress(result) {
//Do somehting to show the progress
D;
}

catch (err) {
/*Error launching WebAuth"*/
return;

22

https://getpocket.com/v3/oauth/request
https://getpocket.com/auth/authorize?request_token=
http://www.myweb.com/

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

One of the prerequisites of the Pocket API is that we have to POST the request and set the request header
manually to application/x-www-form-urlencoded; charset=UTF8 as shown in Listing 2-2. Different services will
have different requirements, and the best way to determine what they are is to look in the developer documentation
provided by the service.

Exchanging Request Token for Access Token

The next step is to exchange a request token with an access token. WinRT has a built-in API named Web Authentication
Broker that provides the necessary infrastructure for apps to use Internet authentication and authorization protocols
such as OAuth and OpenID. When the Web Authentication Broker is invoked using the WebAuthenticationBroker.
authenticateAsync function (see Listing 2-3), the user see a dialog box like the one shown in Figure 2-8, which displays
the Pocket service authorization page for the user to sign in.

Listing 2-3. Invoking Pocket Login Windows Using Web Authentication Broker

var pocketAuthUrl = "https://getpocket.com/auth/authorize?request_token=";
var authCallbackURL = "http://www.myweb.com";
pocketAuthUrl += request_code
+ "8redirect uri=" + encodeURIComponent(authCallbackURL)
+ "8webauthenticationbroker=1";
var startURI = new Windows.Foundation.Uri(pocketAuthUrl);
var endURI = new Windows.Foundation.Uri(authCallbackURL);
Windows.Security.Authentication.Web.WebAuthenticationBroker.authenticateAsync(
Windows.Security.Authentication.Web.WebAuthenticationOptions.useTitle
, startURI
, endURI).then(callbackPocketWebAuth, callbackPocketWebAuthError);

Cancel Sign Up

o pocket

Usemame

Password

Log In

Figure 2-8. Modal dialog box opens at the start of the app to authorize the user
23

https://getpocket.com/auth/authorize?request_token=
http://www.myweb.com/

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

Receiving the Access Token

Once logged into the Pocket service, and the Read It Later app has the necessary authorization to use the service, the
dialog box closes and the Pocket service will return an access token as shown in Listing 2-4. This access token will be
stored locally for future requests.

Listing 2-4. Callback Method That Stores the Access Token

function callbackPocketWebAuth(result) {
var pocketAuthUrl = "https://getpocket.com/v3/oauth/authorize"”;
var dataString = "consumer_key=" + consumer_id
+ "&code=" + request_code;

WinJS.xhr({

type: "post"”

, data: dataString

, url: pocketAuthUrl

, headers: { "Content-type": "application/x-www-form-urlencoded; charset=UTF8" }

}) .done(

function (request) {

1

var access = request.responseText;

access_token = getParameterByName("access token", access);
var username = getParameterByName("username", access);

var localSettings = applicationData.localSettings;
localSettings.values["pocket access token"] = access token;
localSettings.values["pocket username"] = access_token;
retrivelist(access token);

function error(error) {

b

//handle error here

function progress(result) {

1

//Do something to show the progress

if (result.responseStatus == 2) {

response += "Error returned:

}

+ result.responseErrorDetail + "\r\n";

Note Pocket provides a set of Rest APIs to accomplish various actions like retrieving, adding, modifying, and deleting
bookmarks. For more details go to http://getpocket.com/developer/docs/overview.

Retrieving Bookmarks Using oAuth Credentials (Access Token)

For retrieving the bookmarks, we will post the consumer ID along with the access token to the Pocket /v3/get
endpoint using WinJS.xhr as shown in Listing 2-5. This request responds with a JSON list object that contains titles
and URLs of each item as the detailType specified in the request URL is simple.

24

https://getpocket.com/v3/oauth/authorize
http://getpocket.com/developer/docs/overview

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

Listing 2-5. Retrieving Bookmarks from the Pocket Service

function retrievelist(token) {
var pocketGetUrl = "https://getpocket.com/v3/get";
var dataString = "detailType=simple&consumer_key="
+ "&access_token=" + token;
WinJS.xhr({
type: "post"
, data: dataString
, url: pocketGetUrl
, headers: { "Content-type": "application/x-www-form-urlencoded; charset=UTF8" }

+ consumer_id

3]
.done(
function (response) {
var json = JSON.parse(response.responseText);
ko.applyBindings(new ArticleViewModel(response.responseText));
b
function error(error) {
//handle error here
1
function progress(result) {
//Do something to show the progress

};

Note Visit http://getpocket.com/developer/docs/v3/retrieve to learn more about the various types of
information that can be accessed using Pocket API.

Defining the ViewModel and Binding It to the View

Now that we have the data from the Pocket service, the next step is to bind the data to the View using the KnockoutJS
framework. For this we create a ViewModel ArticleViewModel (see Listing 2-6). ArticleViewModel will have a
selectedItemobservable to track the currently selected article and a method ShowContent that will display the article
content in the right column.

Listing 2-6. Defining ArticleViewModel with Function and Properties

function ArticleViewModel(data) {
var self = this;
self.selectedItem = ko.observable();
self.setItem = function (item) {
self.selectedItem(item);
}

self.ShowContent = function (url) {
$.get(url, function (data) {
var szStaticHTML = toStaticHTML(data);
$('#siteloader').html(szStaticHTML);

1

25

https://getpocket.com/v3/get
http://getpocket.com/developer/docs/v3/retrieve

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

};

self.model = ko.utils.arrayMap(data, function (jsonData) {
return new ListStatus(jsonData.list);

D;

Also to make the JSONODbject useful in Knockout, we need to do some computing. For that we use Knockout’s
mapping plug-in to map the value of the array of objects by using ko.utils.arrayMap (see Listing 2-6), which
executes a function for each item in an array and pushes the result of the function to a new array that is returned,
as shown in Listing 2-7.

Listing 2-7. Mapping the JavaScript Object to the ArticleViewModel

function Item(item) {
var self = this;
self.title = item.given_title;
self.url = item.given_ url;
self.excerpt = item.excerpt;

}

function ListStatus(list) {
var self = this;
self.keys = ko.observableArray(ko.utils.arrayMap(list, function (article) {
return new Item(article);

N);

Note The mapping plug-in gives us a straightforward way to map the Pocket bookmark JavaScript object into an
ArticleViewModel with the appropriate observables instead of us manually writing our own JavaScript code that creates
a view model based on the data.

To tie the view model to the view we simply need to call the KnockoutJS applyBinding function and pass it in a new
instance of the ArticleViewModel that takes the JSON object from the Pocket service as a parameter (see Listing 2-8).

Listing 2-8. ArticleViewModel Object Is Used to Bind the Data to the Page

ko.applyBindings(new ArticleViewModel(response.responseText));

The ko.applyBindings method activates Knockout and wires up the view model to the view.

Rendering Article List Using foreach Binding

Now that we have a ViewModel, we create the bindings as shown in Listing 2-9 to generate the bookmared article list
in the left column. In Knockout.js, we do this by adding data-bind attributes to HTML elements. The foreach binding
iterates through the array and creates child elements for each object (read article) in the array.

26

CHAPTER 2 © HTML5 AND JAVASCRIPT APPS WITH MVVM AND KNOCKOUT

Listing 2-9. Binding the Article List to the HTML Element

<!-- Article List start -->
<div data-bind="foreach: model">
<div data-bind="foreach: keys" class="link-container">
<h2></h2>
<p></p>
</div>
</div>
<!-- Article List End -->

Bindings on the child elements can refer to properties on the array objects; for example, the <div> element
occurs within the scope of the foreach binding. That means Knockout.js will render the element once for each article
in the articles array. All of the bindings within the <div> element refer to that article instance. We use the text binding
to set the values for article title and excerpt. The element is also bound to the click binding, where the article
instance is passed as a parameter to each function.

Now with all the codes in place, when we run the Read It Later app, it shows the Pocket service login page
(see Figure 2-8) and after authenticating the user, the bookmarked articles by the logged user will be retrieved from
the Pocket service and will be displayed in the app as shown in Figure 2-2.

Conclusion

This chapter introduced us to developing a Windows 8 App using HTML, JavaScript, and CSS, not in a traditional
approach of using WinJS UI controls, but instead using a JavaScript MVVM framework, Knockout]S. In Chapters 5 and
8 we will see the recommended approach for developing a data-driven Windows 8 App using HTML, JavaScript, and
CSS. Also in this chapter we learned to implement oAuth authorization, using JsFiddle as an online HTML editor and
various Visual Studio extensions to complement our app development experience.

In the next chapter we discuss various data storage options that can be considered while building Windows 8
Apps along with the various WinRT APIs that can be used.

27

CHAPTER 3

Windows 8 Modern App
Data Access Options

The Windows 8 platform redefines the way apps access and manipulate data, as there is no direct way to access a local
or remote database server as we do with .NET using ADO.NET, Linq2SQL, or the Entity framework. WinRT APIs do not
provide any of the following options for security and platform-related reasons.

e Built-in local databases like SQLCE

e Connection to SQL Express Instances

e Accessing databases using ODBC or OLEDB providers
e Direct access to the disk

With these limitations, managing data becomes a critical part in developing a Windows 8 app. In this chapter we
take a look at various data storage options that can be considered when building Windows Store apps, along with the
various WinRT APIs that can be used.

Data Storage Options

Most of the applications, irrespective of platform, need to store data pertaining to the application in a location within
a predefined format. Location and format of the data depend on various factors like platform, application, and
pricing. As for Windows 8 Store apps, data can be stored either locally or remotely.

Local storage is where data is stored locally within a device. In Windows 8 Store apps, data stored within an app
cannot be shared with another app, as each app is restricted to a sandbox. There are various options for storing data
locally and the following are some of the options that are discussed in detail in this chapter.

e Application data
e Using built-in File Picker contracts

IndexedDB

JET API
SQLite

29

CHAPTER 3 © WINDOWS 8 MODERN APP DATA ACCESS OPTIONS

Application Data

Every app installed in Windows 8/RT will be allocated space for storing application data. This application storage can
be used to store an app’s settings, preferences, context, app status, and files. This storage cannot be accessed by other
apps and can be only accessed using the APIs provided in WinRT.

For storing and retrieving application data, use the ApplicationData class, which is a part of the Windows.Store
namespace and this data can be stored in three different ways:

¢ Local application data: Stores the data locally. Use local storage only if you have good reason
not to roam the setting to the cloud.

¢ Roaming application data: Data will be synced across all the devices on which the user has
installed the app. If we use roaming and there is no Microsoft account, it will be stored locally.

e Temporary application data: Data is stored temporarily during an application session and
can be removed any time by a system maintenance task.

We learn more about application data in Chapter 5.

File System

Databases based on a file system in Windows 8 using WinRT provide another way to store information. There are
many open source options available and WinRT File Based Database is one of the popular file-based databases found
in www. codeplex. com.

WinRT File Based Database is a file-system-based database written using the WinRT framework. This API allows
users to create tables based on classes. Each database consists of many tables and these tables are serialized and
stored in Application Data Storage. We learn about this in detail in Chapter 5.

File Picker Contracts

File Picker contracts can be used to store and retrieve the data as files from the device hard disk in a format that
is understood by the Windows 8 Store app. File Picker is the only way for an app to gain access to files and folders
located in any part of the system. Unlike .NET APIs, WinRT doesn’t provide an option to manage files without user
intervention. That is, the app cannot gain access to a file in the system without the user explicitly acting on the files or
folder using the File Picker contract.

There are three types of File Picker contracts.

e FileOpenPicker: After calling this class, the user will be presented with a UI to pick a file.
e FileSavePicker: This class helps to save a file.
e FolderPicker: This class is used to pick a folder.

To open a file using the FileOpenPicker class, we have to add at least one file extension to the FileTypeFilter
collection, to indicate what file types are supported by the app. The FileTypeFilter will throw an Unspecified error
exception if it is empty. Apart from FileTypeFilter, all other properties are optional, including ViewMode
and SuggestedStartLocation. In Listing 3-1 we use FileOpenPicker to open a picture from the Pictures Library
as a stream.

30

http://www.codeplex.com/

CHAPTER 3 © WINDOWS 8 MODERN APP DATA ACCESS OPTIONS

Listing 3-1. Using FileOpenPicker to Open a File from the Picture Library

string selectedFileName=null;
string photoStream=null;
FileOpenPicker openPicker = new FileOpenPicker();
openPicker.ViewMode = PickerViewMode.Thumbnail;
openPicker.SuggestedStartLocation = PickerLocationId.PictureslLibrary;
openPicker.FileTypeFilter.Add(".jpg");
openPicker.FileTypeFilter.Add(".jpeg");
openPicker.FileTypeFilter.Add(".png");
StorageFile file = await openPicker.PickSingleFileAsync();
if (file != null)
{

selectedFileName = file.Name;

photoStream = await file.OpenReadAsync();

Similar to FileOpenPicker we have to add at least one file type to the FileTypeChoices collection and the rest of
the properties are optional. As shown in Listing 3-2, apart from providing the options to save the files in various types
by adding to the FileTypeChoices collection we also used the DefaultFileExtension property to define a preferred
format in which the file can be stored.

Listing 3-2. Using FileSavePicker to Save a File within a Device File System

var fileSavePicker = new FileSavePicker();

fileSavePicker.FileTypeChoices.Add("Raw Images", new List<string> { ".raw", ".dat" });
fileSavePicker.FileTypeChoices.Add(".jpg Image", new List<string> { ".jpg" });
fileSavePicker.DefaultFileExtension = ".jpg";

fileSavePicker.SuggestedFileName = "NewImagel.jpg";

var fileToSave = await fileSavePicker.PickSaveFileAsync();

The FolderPicker is very similar to the FileOpenPicker with resembling properties as shown in Listing 3-3.

Listing 3-3. Using FolderPicker to Pick a Folder from the Picture Library

var folderPicker = new FolderPicker();
folderPicker.FileTypeFilter.Add(".jpg");

folderPicker.ViewMode = PickerViewMode.Thumbnail;
folderPicker.SuggestedStartLocation = PickerlLocationId.PictureslLibrary;
folderPicker.SettingsIdentifier = "FolderPicker";

var folder = await folderPicker.PickSingleFolderAsync();

IndexedDB

IndexedDB is a nonrelational data store, designed to store structured objects in collections known as an Object Store.
The Object Store holds records as key/value pairs. Each record in the Object Store has a single key, which can be
configured to autoincrement or can be provided by the application. This key is like the primary key in a relational
database table, where no two records within an Object Store can be identified by the same key.

Internet Explorer 10 and Windows Store apps using JavaScript support the Indexed Database API defined by
the World Wide Web Consortium (W3C) Indexed Database API specification, so applications written using HTML5
and JavaScript will be able to use IndexedDB as a local storage option. The following are some of the common
IndexedDB contracts.

31

CHAPTER 3 © WINDOWS 8 MODERN APP DATA ACCESS OPTIONS

e Database: A database consists of one or more object stores that hold the data stored in the
database. It also contains indexes and is used to manage transactions. There can be multiple
databases in an application.

e Object Store: An object store is a primary storage solution used for storing data in a database.
It’s a collection of JavaScript objects where attributes have key/value pairs.

e Key: Akeyisused to uniquely identify an object within a database. It has values of type float,
date, string, and array. It’s very similar to the primary key columns in a relational database
table. It also imposes an ascending sort order on the associated objects.

e Value: A value is a JavaScript object that associated with a given key. Every record is associated
with a value. It can be a complex object that has no schematization requirements.

e Key Path: A key path is a string that defines a way to extract a key from a value. A key path
is said to be valid when it has either an empty string or a multiple JavaScript separated
by periods.

e Index: An index is an alternative method to retrieve records in an object store rather than
using a key. It’s a specialized storage solution that supports searching objects in the store by
attribute values.

¢ Transaction: This is used to read or write data into the database. Transactions are always
operated in one of three modes: read-only, readwrite, or versionchange.

e Request: A request is used to perform a read or write operation on a database. It’s analogous
to a SQL statement.

¢ KeyRange: The key range is used to retrieve records from object stores and indexes.

e Cursor: A cursor is a brief mechanism used to iterate over multiple records in a database.
They are bidirectional, and can skip duplicate records in a nonunique index.

Even though IndexedDB concepts looks similar to relational database management elements, one key difference
is that there is no relational semantics, which mean we will not be able to use joins. In Chapter 4 we will learn in detail
about using IndexedDB as a storage option for a Movie Collection and Inventory Windows Store app.

ESENT/JET API

Extensible Storage Engine (ESENT), also known as JET AP], is an Indexed Sequential Access Method (ISAM) data
storage technology from Microsoft. The ESENT runtime has been a part of Windows since Windows 2000 and has
been used in products like Microsoft Exchange, Active Directory, Windows Update, and Desktop Search. This
application stores and retrieves data from tables using indexed or sequential cursor navigation.

We can use ESENT for applications that need reliable, high-performance, low-overhead storage of structured
or semistructured data. The ESENT engine can help with data needs ranging from something as simple as a hash
table that is too large to store in memory to something more complex, such as an application with tables, columns,
and indexes.

ESENT incorporates all the benefits of the ISAM data storage technique, including the following.

e ACID transaction
e Snapshotisolation
e Concurrent access storage

e Cursor navigation

32

CHAPTER 3 © WINDOWS 8 MODERN APP DATA ACCESS OPTIONS

e Advanced indexing: Indexing over multivalued columns, sparse, and tuple
e Fixed, variable, and tagged columns

e Data integrity and consistency

e Column size ranging from 1 bit to 2 GB

We will be learning in detail about using JET API in Chapter 5. We will build a Windows Store Password Manager
app that stores data using JET API.

SQLite

SQLite is a software library that implements a self-contained, serverless, zero-configuration, transactional SQL
database engine. It’s a file-based database that can be used without any need for a database engine like SQLServer,
Oracle, and so on. SQLite is a relational database management system that is contained in a small C programming
library. SQLite is the most widely deployed SQL database engine in the world and its source code exists in the public
domain. It is free for use for both private and commercial purposes.

SQLite is very similar to the SQL Server compact in characteristics. It'’s an embedded database that should be
included explicitly with in the app and run in-process within the app unlike SQL Serve Compact, which in most
cases will be part of the OS (Windows Phone OS, Windows Mobile OS). We will learn in detail about using SQLite in
Windows 8 projects in Chapter 6.

Remote Data

Not all Windows 8 Store apps store data locally. Many line of business (LOB) apps store data in a central repository
like Windows Azure, SQL Server, Oracle, and so on. WinRT doesn 't provide the necessary APIs to directly access this
data, so we have to access it in a way that is similar to accessing data in Silverlight applications; that is, building a
service layer that exposes the entities, in a format like XML, JSON, and binary using transfer protocols like HTTP,
HTTPS, and TCP.

In the next part of this chapter we look in to some of the data transfer techniques that can be used to access
data remotely.

Windows Communication Framework

The Windows Communication Framework (WCF) is widely used as a service layer in enterprise applications.

This service can be leveraged with minimum changes when porting an existing application to WinRT or building a
companion Windows 8 Store app to an existing LOB application, as WinRT provides the necessary APIs to consume
WCEF services. WCF provides different options for consuming data.

e WCF Web Services: WCF Web Services is based on the Simple Object Access Protocol (SOAP),
which returns data in XML format. Consuming WCF Web Services is very similar to how we
do that with .NET.

e WCF Data Services: WCF Data Services is based on the oData protocol, which returns XML
or JSON data, using REST queries. We learn more about this in Chapter 8.

Apart from these two straightforward techniques, we can also use the more complex and powerful
WCF HTTP/.NET TCP. Using this technique, we can implement our own protocol, format, and query method that is
supported by WinRT, as WinRT support is not as broad as that for .NET.

33

CHAPTER 3 © WINDOWS 8 MODERN APP DATA ACCESS OPTIONS

ASP.NET Web API

The ASP.NET Web API introduced with ASP.NET MVC 4.0 and .NET Framework 4.5 is a new addition to the ASP.NET
stack that allows us to create a RESTful and AJAX API that helps to build web or HTTP-based client or server
endpoints.Why Should We Use Web API?

ASP.NET Web API is Microsoft’s answer to a modern programming landscape for building a service layer that
can be easily consumed by most clients. Web API is an ideal platform for building pure HTTP-based services that
can be useful when building multiplatform applications like apps for desktop application, HTMLS5, iOS, Android,
Windows 8, and Windows Phone, as all these clients can make GET, PUT, POST, and DELETE requests and get the
Web API response.

In Chapter 7 we learn to set up a CRUD ASP.NET Web API Rest service and consume this service from a Windows
Store JavaScript app by building a Party Planner app.

Windows Azure Mobile Web Services

WCF and ASP.NET Web APIs are ideal for enterprise apps in which the data are stored in a datacenter of that
enterprise. But if you are looking to store the data in a cloud and if you like to use Windows Azure as a scalable cloud
back end, then Windows Azure Mobile Web Services is the way to go.

Windows Azure Mobile Services allows users to quickly connect any mobile client like Windows 8, Windows
Phone, i0S, Android, or HTMLS5 apps to a cloud-based back end hosted on Windows Azure. Windows Azure Mobile
Services also offer built-in functionality to authenticate users via Microsoft, Google, Facebook, or Twitter credentials,
and send push notifications. Windows Azure Mobile Services can be easily integrated into a Windows 8 Store app
as Microsoft provides the necessary tools and SDKs to do so. In Chapter 9 we learn to uses Windows Azure Mobile
Services as a back-end storage option by building an Instagram-inspired application, Instashot.

Conclusion

This chapter gave a brief introduction to some of the data options that can be used along with Windows 8 Store apps.
In the coming chapters we will be learning about some of these in greater detail.

Apart from this, WinRT provides APIs to interact with public data applications like Facebook, Twitter, and
LinkedIn. As mentioned in Chapter 2, we can use WebAuthenticationBroker for authenticating the user against user
authentication providers like Facebook, Twitter, Google, and Microsoft. The WebAuthenticationBroker class provides
the necessary infrastructure for apps to use Internet authentication and authorization protocols such as OAuth and
OpenlD. Furthermore, WinRT provides built in APIs to query RSS, oData, and more.

34

CHAPTER 4

Local Data Access: I: IndexedDB

WinRT does not have any built-in database capabilities like SQL Server CE. It doesn’t provide any APIs to connect
directly to a SQL Server; instead we need to use a cloud storage solution or rely on third-party options like SQLite.
Cloud storage is not an ideal solution in many cases, as it requires complex data management. Also it might not

be an affordable solution, as storing data in the cloud is not free in most cases. In the next three chapters we learn
about local storage options like indexedDB, JET API, Application Storage, and SQLite. To start with, in this chapter we
learn to use IndexedDB for storing structured data locally and build a Movie collection and Inventory app that use
IndexedDB as data storage.

What Is IndexedDB?

IndexedDB or the Indexed Database API is a nonrelational data store, designed to store structured objects in collections
known as the object store. The object store holds records as key-value pairs. Each record in the object store has a single
key, which can be configured to autoincrement or can be provided by the application. This key is like the primary key in
arelational database table, where no two records with in an object store can be identified by the same key.

Note IndexedDB is supported by Firefox (since version 4), Internet Explorer 10, and Google Chrome (since version 11).
Safari and Opera support an alternate mechanism for client-side database storage called Web SQL Database. As of
November 2010, the W3C Web Applications Working Group ceased working on the Web SQL Database specification,
citing lack of independent implementations.

Using IndexedDB in Windows 8 Application

Internet Explorer 10 and Windows Store apps using JavaScript support the Indexed Database API defined by the World
Wide Web Consortium (W3C) Indexed Database API specification, so applications written using HTML5 and JavaScript
will be able to use IndexedDB as a local storage options. The following are some of the common IndexedDB contracts.

e Database: A database consists of one or more object stores that hold the data stored in the
database. It also contains indexes and is used to manage transactions. There can be multiple
databases in an application.

¢ Object store: An object store is the primary storage used for storing data in a database. It’s a
collection of JavaScript objects where attributes have key-value pairs.

35

CHAPTER 4

LOCAL DATA ACCESS: I: INDEXEDDB

Key: A key is used to uniquely identify an object within a database. It has values of type float,
date, string, and array. It’s very similar to the primary key columns in a relational database
table. It also imposes an ascending sort order on the associated objects.

Value: A value is a JavaScript object that is associated with a given key. Every record is
associated with a value. It can be a complex object that has no schematization requirements.

Key path: A key path is a string that defines a way to extract a key from a value. A key path is
said to be valid when either it is has an empty string, or multiple JavaScript elements separated
by periods.

Index: An index is an alternative method to retrieve records in an object store rather than
using a key. It’s a specialized form of storage that supports searching objects in the store by
attribute values.

Transaction: A transaction is used to read or write data into the database. Transactions are
always operated in one of the three modes: read-only, readwrite, or versionchange.

Request: A request is used to perform read or a write operation on a database. It's analogous
to a SQL statement.

Key range: The key range is used to retrieve records from object stores and indexes.

Cursor: A cursor is a brief mechanism used to iterate over multiple records in a database. It is
bidirectional, and can skip duplicate records in a nonunique index.

Even though IndexedDB concepts looks similar to relational database management elements, one key difference
is that there is no relational semantics, which means we cannot use joins. With this introduction we learn how to use
IndexedDB as data storage by creating My Collections, a movie collection and inventory Windows Store app using
HTMLS5 and JavaScript.

Creating the My Collections App

Many movie buffs have a huge collection of DVD and Blu-ray movies that they share with their friends and family.
Sometimes keeping track of all these movies becomes a tedious process. To manage and keep track of the collection,
here we build a simple app that helps to add and track movies within the collection. This app has three HTML pages.

36

Start page: This page displays the list of movies in the collection.

Search page: The Search page is invoked from the Windows 8 Search charm. This page
displays the matching results from the collections and it also searches for matching results on
one of the most popular movie review and information sites, waw.Rottentomatoes.com, and
displays the results.

Add/Edit page: This page can be accessed from the Start page or from the search result page.
It displays the movie details and provides an option to add it to one’s collection. We can also
edit the movie information and its available status (see Figure 4-1).

http://www.rottentomatoes.com/

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

My Collections!

Tinker Bell

Indiana Jones and the Last C_.

Indiana Jones and the Templ...

Figure 4-1. My Collection Windows 8 app displays the movies in the collection

Getting Started

To start with, let’s create a new Windows Store Blank App (JavaScript) project and name it MyCollections
(see Figure 4-2). We add two new pages to the project: Home.html and Details.html.

37

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

P Recent

4 Installed

4 Templates
b Visual C#
4 Other Languages
b Visual Basic
b Visual C++
SQL Server
b Visual F=
4 JavaScript
Windows Store
b Other Project Types
Modeling Projects
Samples

P Online

Name: MyCollections

Location:
Solution:

Solution name:

MyCollections

NET Framework 4.5

Create new solution

Grid App
Split App
Fixed Layout App

Navigation App

C\Users\vinodh\SkyDrive\Book8\Code\Chapterd\,

~ Sort by: Default -

? IEN

lled Templates (Ctrl+E) P~

New Project

Search Inst

Type: JavaScript

JavaScript
A single-page project for a Windows Store
JavaScript app that has no predefined controls or
layout.
JavaScript
JavaScript
JavaScript

Create directory for solution
[[] Add to source control

[ok || conce |

Figure 4-2. Visual Studio templates for JavaScript creates a Blank application with HTML, CSS, and JavaScript files

We also add a Search Contract and name it searchResults.html as shown in Figure 4-3. As mentioned before,
this is the page that will be involved when we search for movies from the Windows 8 Search charm.

38

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

Add New Item - MyCollections < |
4 Installed Sort by: Default v Search Installed Templates (Ctrl+E) P -
i IS - . :
4 JavaSc_npt L-J Dedicated Worker JavaScript Type: JavaScript
Windows Store : :
Code An app contract that supports displaying
o
Dot Ela File Open Picker Contract JavaScript search results.
b Online HTML Page JavaScript
o
sz
‘J JavaScript File JavaScript
ﬁ Page Control JavaScript
ﬁ Resources File (.resjson) JavaScript
@ Search Contract JavaScript
Eg Share Target Contract JavaScript
Style Sheet JavaScript
[e e -
Name: searchResults.html

Add || Cancel

Figure 4-3. Adding support for the Search contract by using the Visual Studio template

Finally we add a JavaScript file, Movie. js. This is the main file and it contains the functionality that drives the
entire application.

With all the files in place and after you move some files to restructure the project for better management, the final
MyCollections Windows 8 app project will look like the one shown in Figure 4-4.

39

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

Solution 'MyCollections' (1 project)

4 [3s] MyCollections
p =B References

4 @ css
default.css
b il images
b js
4 {ml pages
4 @ details

movieDetail.css
I\ movieDetail.html
LT movieDetail js

4 {ml home
home.css
M home.html
IT homejs
4 @ search

searchResults.css
M searchResults.html
IT searchResults.js
J
N\ default.html
& MyCollections_TemporaryKey.pfx
package.appxmanifest

Figure 4-4. Visual Studio Solution Explorer displaying the MyCollections project structure

Defining the Schema

The MyCollections IndexedDB database CollectionDB will have only one object store called Movies. The Movies
object store will have six key paths, as follows.

e Id: Autoincrement acts like a primary key.

e Title: Stores the title of the movie.

e Year: Stores the release year of the movie.

e Thumbnail: Stores the Rotten tomatoes.com thumbnail link.
e poster: Stores the Rotten tomatoes.com poster link.

e Status: Current status of the movie like Available, Borrowed, Lent Out.

Creating the Database

We start the coding by creating the CollectionDB database as soon as the application starts at the activated event in
default. js by calling a function createDB as shown in Listing 4-1.

40

http://tomatoes.com
http://tomatoes.com

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

Listing 4-1. createDB Function Is Called Inside the Activated Event

app.addEventListener("activated", function (args) {
if (args.detail.kind === activation.ActivationKind.launch) {

if (args.detail.previousExecutionState !== activation.ApplicationExecutionState.terminated) {
// TODO: This application has been newly launched. Initialize
// your application here.

} else {
// TODO: This application has been reactivated from suspension.
// Restore application state here.

}

if (app.sessionState.history) {
nav.history = app.sessionState.history;
}

args.setPromise(WinJS.UI.processAll().then(function () {
if (nav.location) {
nav.history.current.initialPlaceholder = true;
return nav.navigate(nav.location, nav.state);
} else {
return nav.navigate(Application.navigator.home);
}

1);
//creating the indexeddb database

createDB();
}
D;

The CreateDB function creates the request to open the databases. If it doesn’t exist, create it and it will immediately
upgrade to version 1. At any given time with in the app only a single version of a database can exist. After it’s created,

a database and its object stores can only be changed through a specialized type of transaction mode known as a
versionchange. To change a database after its creation, we must open the database with a higher version number, and
that is the reason to change it to version 1. This action causes the upgradeneeded event to fire and the code to create the
Movies object store in onupgradeneeded.

The Movies object store is created using the IndexedDB createObjectStore function. This function gets a name
for the object store and sets the key path and key generator. This object store also has indexes that hold additional
information. These indexes are created using the createIndex function. Success callback is invoked on opening the
database. Here we set the database context to an attribute, as shown in Listing 4-2.

Listing 4-2. Database and Table Are Created in the createDB Function

function createDB() {
// Create the request to open the database, named CollectionDB. If it doesn't exist,
create it and immediately
// upgrade to version 1.
var dbRequest = window.indexedDB.open("CollectionDB", 1);
dbRequest.onupgradeneeded = function (e) {
MyCollection.db = e.target.result;
var txn = e.target.transaction;
var movieTable = MyCollection.db.createObjectStore(

41

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

"Movies"
»{

keyPath: "id"

, autoIncrement: true
D;

movieTable.createIndex("title"
, "title"
, { unique: false });
movieTable.createIndex("year"
, 'year"
, { unique: false });
movieTable.createIndex("image"
, "image"
, { unique: false });
movieTable.createIndex("poster"”
, 'poster"”
, { unique: false });
movieTable.createIndex("status"
, "status"
, { unique: false });
txn.onerror = function () {
WinJS.log &8 WinJS.log("Database creation failed"
, "Log"
, "Status");
};
txn.oncomplete = function () {
WinJS.log && WinJS.log("Database table created"
, "Log"
, "Status");
b
};
dbRequest.onsuccess = function (e) {
MyCollection.db = e.target.result;

};

Creating the Movie Object in Windows 8 JavaScript

Movie.js contains a self-executing anonymous function where objects are created inside the MyCollections
namespace. This object contains a property, Movie.

The Movie object is defined as a WinJ]S.Class using the Win]S.Class.define() method. As can be seen in
Listing 4-3, this method takes various parameters that are assigned to the corresponding properties of the Movie
class. The Movie class has five properties that match the IndexedDB objectstore Movie and one other propety,
IsInCollection, thatis used to determine whether the object is already in the collection.

42

Listing 4-3. Defining Movie Object in Movie.js

WinJS.Namespace.define("MyCollection”, {

Movie: WinJS.Class.define(
function () {
this.title = "";
this.year = 0;

this.image = "";

this.isInCollection = false;

this.status = "";
this.poster = "";
this.id = 0;

getTitle: function
setTitle: function

getImage: function
setImage: function

() { return this.title;
(newValue) { this.title

() { return this.image;
(newValue) { this.image

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

1

= newValue; },

1

= newValue; },

getIsInCollection: function () { return this.isInCollection; },
setIsInCollection: function (newValue) { this.isInCollection = newValue; },

getYear: function
setYear: function

b

() { return this.year; },
(newValue) {
this.year = newValue;

getPoster: function () { return this.poster; },
setPoster: function (newValue) { this.poster = newValue; },

getStatus: function () { return this.status; },
setStatus: function (newValue) { this.status = newValue; },

getID: function () { return this.id; },
setID: function (newvalue) {
this.id = newValue;

1
b

The Movie object also has CRUD functions that we use to add, delete, and update data to IndexedDB. Let’s look

at each one of them in detail.

Saving the Movie Object

To add a movie to the movie collection, we call the saveMovie function. This function first checks to see if the movie
details already exist in the IndexedDB Movie objectStore. If this information is already present, it will update the
existing row; otherwise, it will add a new row to the IndexedDB Movie objectStore. To do this, first create a new
transaction involving the Movie objectStore as shown in the Listing 4-4 and set the mode to readWrite and will get a
handle of the Movie object store. Now that we have access to the objectstore, we can just pass a JSON object to either

add or put command depending on the value of the ID parameter.

43

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

Listing 4-4. Saving Movie Object to IndexedDB Using the saveMovie Function

saveMovie: function (id, title, year, image, poster, status) {
var txn = MyCollection.db.transaction(["Movies"],
var movieTable = txn.objectStore("Movies");
var saveRequest;
if (id > 0)
saveRequest = movieTable.put(

{

D;
else {

id: id,

title: title,
year: year,
image: image,
poster: poster,
status: status

saveRequest = movieTable.add(

{

1
}

title: title,
year: year,
image: image,
poster: poster,
status: status

saveRequest.onsuccess = function () {

WinJS.log && WinJS.log("Movie Updated: " + this + ".", "Log", "Status");

};

saveRequest.onerror = function () {
WinJS 8& WinJS.log("Failed to update Movie: " + this + ".",

};

"readwrite");

Note

In IndexedDB, objectStore.add() is used to add an object to the store and objectStore.put() is used to
update an object.

Deleting the Movie Object

The deleteMovie function deletes a row from the Movie objectStore. Just like saveMovie, we start a transaction,
reference the object store that contains the Movie object, and issue a delete command with the unique ID of our object
(see Listing 4-5).

44

"LOg", "erIOI");

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

Listing 4-5. Deleting Movie Object From IndexedDB Using the deleteMovie Function

deleteMovie: function (id) {
var txn = MyCollection.db.transaction(["Movies"], "readwrite");
var movieTable = txn.objectStore("Movies");
var deleteRequest = movieTable.delete(id)
deleteRequest.onsuccess = function () {
WinJS.log && WinJS.log("Movie Deleted: " + this + ".", "Log", "Status");
};
deleteRequest.onerror = function () {
WinJS 8& WinJS.log("Failed to delete Movie: " + this + ".", "Log", "error");
};

Retrieving Movie Details

Movie details are retrieved either from the database that is part of the user’s collection or from the Rotten Tomatoes
database using the REST API. These two actions are perfomaed within the JavaScript functions loadFromDB and
loadSearchResult. These functions in turn call the buildMovie function to build a Movie object. The buildMovie
function checks the model passed in as a parameter, creates a new Movie object, tries to set its values from the model
passed, and returns a bondable object with the help of the WinJS.Binding.as() method (see Listing 4-6).

Listing 4-6. buildMovie Function Creates a Movie Object From the Model

buildMovie: function (model) {
var newMovie = new MyCollection.Movie();
if (model.hasOwnProperty("title")) {
newMovie.setTitle(model.title);
}

if (model.hasOwnProperty("year")) {
newMovie.setYear(model.year);
}

if (model.hasOwnProperty("movieId")) {
newMovie.setID(model.id);
newMovie.setIsInCollection(true);

}

if (model.hasOwnProperty("status")) {
newMovie.setStatus(model.status);

if (model.hasOwnProperty("thumbnail)) {
newMovie.setImage(model.thumbnail);

if (model.hasOwnProperty("poster")) {
newMovie.setPoster(model.poster);
}

//only if the request from rottentomatoes

if (model.hasOwnProperty("posters")) {
newMovie.setImage(model.posters.thumbnail);
newMovie.setPoster(model.posters.detailed);

}

return new WinJS.Binding.as(newMovie);

45

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

The loadFromDB function, shown in Listing 4-7, takes string as a parameter and returns an array of Movie
objects that matches with the title of the movie stores in the IndexedDB Movie objectStore. Like the saveMovie
and deleteMovie methods, we first create a new transaction involving the Movie objectStore and set the mode to
read-only, as only the data is retrieved here. Then we open a cursor to iterate over records in the Movie object store.
The results are passed through to the success callback on the cursor, where we render the result. The callback is fired
only once per result, and will call continue to keep iterating across the data on the result object. A JSON object is
constructed out of the result and is passed to the buildMovie function to return a WinJS.Binding object that is finally
added to the array.

Listing 4-7. Searches the indexedDB and fill the results to an array

loadFromDB: function (searchText) {
var collection = new Array();
var txn = MyCollection.db.transaction(["Movies"], "readonly");
var movieCursorRequest = txn.objectStore("Movies").openCursor();
movieCursorRequest.onsuccess = function (e) {
var cursor = e.target.result;
if (cursor) {
var data = cursor.value;
if (data.title.indexOf(searchText) > -1) {

var movieData = {
movieId: data.id
, title: data.title
, year: data.year
, thumbnail: data.image
, poster: data.poster
, status: data.status

};

var newMovie = MyCollection.Movie.buildMovie(movieData);
collection.push(newMovie);
}
cursor.continue();
}
};
return collection;

}

Like loadFromDB, the loadSearchResult function shown in Listing 4-8 takes search text as a parameter and
returns an array of Movie objects. This function performs two actions. First it queries the Rotten Tomatoes movie
database using a public API and loads the result to an array. Next it calls loadFromDB and adds the matching movie
object to the existing array. Now the array has objects that match the search result from the IndexedDB Movie object
store and also from the Rotten Tomatoes search results.

Listing 4-8. Search the Rotten Tomatoes Database and Add the Results to an Array

loadSearchResult: function (searchText) {

var searchUrl =
"http://api.rottentomatoes.com/api/public/v1.0/movies.json?apikey=XXXXXXXXXXXXXf8&page limit=108q=
+ searchText;

46

http://api.rottentomatoes.com/api/public/v1.0/movies.json?apikey=XXXXXXXXXXXXXf8&page_limit=10&q=

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

return WinlS.xhr({ url: searchUrl }).then(
function (result) {

var result = window.JSON.parse(result.responseText).movies;

var collection = new Array();
if (result) {

result.forEach(function (newObject) {
var newMovie =

MyCollection.Movie.buildMovieFromRottentomatoes (newObject);

collection.push(newMovie);
}s
var txn = MyCollection.db.transaction(["Movies"], "readonly");
var movieCursorRequest = txn.objectStore("Movies").openCursor();
movieCursorRequest.onsuccess = function (e) {
var cursor = e.target.result;
if (cursor) {
var data = cursor.value;
if (data.title.indexOf(searchText) > -1) {

var movieData = {
movield: data.id
title: data.title
year: data.year
thumbnail: data.image
poster: data.poster
status: data.status

L R

};

var newMovie =

MyCollection.Movie.buildMovie(movieData);

1);

collection.push(newMovie);

}

cursor.continue();

}
};

return collection;

Designing the App Start Page

Home.html is the start page of this app (see Figure 4-1). It displays the Movies in our IndexedDB collection in a grid
layout using the WinJS.UI.ListView element by binding to a Movies Collection in Home. js. We also define an item
template that contains the markup to display the details of each movie (see Listing 4-9).

Listing 4-9. Home.html Page Includes a ListView With Item Template to Display Movie Details

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8" />
<title>homePage</title>
<!-- WinJS references -->

47

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

<link href="//Microsoft.Win]S.1.0/css/ui-dark.css" rel="stylesheet" />
<script src="//Microsoft.Winl]S.1.0/js/base.js"></script>
<script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

<link href="/css/default.css" rel="stylesheet" />
<link href="/pages/home/home.css" rel="stylesheet" />
<script src="/pages/home/home.js"></script>
</head>
<body>
<!-- The content that will be loaded and displayed. -->
<div id="dbItemtemplate"
class="itemtemplate"
data-win-control="WinJS.Binding.Template">
<div class="item">
<img
class="item-image"
src="#"
data-win-bind="src: image; alt: title" />
<div class="item-content">
<h3
class="item-title win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: title"></h3>
<h4
class="item-subtitle win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: year"></h4>
<hg
class="item-subtitle win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: status"></h4>
</div>
</div>
</div>

<div class="fragment homepage">
<header
aria-label="Header content"
role="banner">
<button
class="win-backbutton"
aria-label="Back"
disabled type="button"></button>
<h1 class="titlearea win-type-ellipsis">
My Collections!
</h1>
</header>

<section aria-label="Main content" role="main">
<div
id="listView"
class="resultslist win-selectionstylefilled"
aria-label="Movies in my collection"

48

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

data-win-control="WinJS.UI.ListView"

data-win-options="{

itemTemplate: select('#dbItemtemplate'),
}Il>

}'></div>
</section>
</div>
</body>
</html>

Home.js

Home. js is where we write additional code that provides interactivity for our home.html page. This script file only
implements the ready function. This function is called at the time of the page load. Inside this function we iterate
through the IndexedDB Movies object store and store it into an array and will bind that array to the ListView, as
shown in Listing 4-10. This page also has an itemInvoked function that is attached to the ListView and is called
when an item is selected from the ListView. Once called, this function navigates the user to the MovieDetail.html
(see Listing 4-11) using the WinJS.Navigation.navigate function. This function takes the detail page location and
selected movie object as parameters.

Listing 4-10. Movies in the Collection Are Bound to the ListView Element

(function () {
"use strict";

WinJS.UI.Pages.define("/pages/home/home.html", {
// This function is called whenever a user navigates to this page. It
// populates the page elements with the app's data.
ready: function (element, options) {
var listView = element.querySelector(".resultslist").winControl;
var tapBehavior = listView.tapBehavior;
listView.tapBehavior = tapBehavior;
listView.oniteminvoked = this._ itemInvoked;
var collection = new Array();
var txn = MyCollection.db.transaction(["Movies"], "readonly");
var movieCursorRequest = txn.objectStore("Movies").openCursor();
movieCursorRequest.onsuccess = function (e) {
var cursor = e.target.result;
if (cursor) {
var data = cursor.value;
var movieData = {
movield: data.id
, title: data.title
, year: data.year
, thumbnail: data.image
, poster: data.poster
, status: data.status

};

49

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

var newMovie = MyCollection.Movie.buildMovie(movieData);
collection.push(newMovie);
cursor.continue();

}
else {

listView.itemDataSource = new WinJS.Binding.List(collection).dataSource;
}

}
1

_itemInvoked: function (args) {
args.detail.itemPromise.done(function itemInvoked(item) {
WinJS.Navigation.navigate("/pages/details/movieDetail.html"
, { movieDetail: item.data });
D;
1

};
HO;

Designing the Movie Detail Page

The MovieDetail.html page is redirected either from the home or search result page and displays the details of the
selected movies from its previous page. MovieDetail.html also provides an option to add or edit the movie object.
The markup of this page contains an HTML element that is bound to the properties of the Movie object using the
WinJS data-win-bind property. This page also has two app bar buttons that allow us to save or delete the Movie
object, as shown in Figure 4-5.

Listing 4-11. MovieDetail.html With HTML Elements to Display Selected Movie Details

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8" />
<title>movieDetail</title>

<!-- WinJS references -->
<link href="//Microsoft.Win]S.1.0/css/ui-dark.css" rel="stylesheet" />
<script src="//Microsoft.WinJS.1.0/js/base.js"></script>
<script src="//Microsoft.WinJS.1.0/js/ui.js"></script>
<link href="/pages/details/movieDetail.css" rel="stylesheet" />
<script src="/pages/details/movieDetail.js"></script>
</head>
<body>
<div class="movieDetail fragment">
<header
aria-label="Header content"
role="banner">

50

<section

</div>

CHAPTER 4

<button

<h1

class="win-backbutton"
aria-label="Back"
disabled

type="button" />

class="titlearea win-type-ellipsis">
My Collection

</h1>
</header>

aria-label="Main content"
role="main">

<div

id="divDetail"
class="detailView">
<h3 id="title">Edit Movie</h3>

<!--Movie Image-->
<img
src="#"
data-win-bind="src: poster; alt: title" />
<!--Movie Title-->
<label>Title</label>
<input
id="txtTitle"
type="text"
data-win-bind="value: title Binding.Mode.twoway" />

<!--Movie Release Year--»
<label>Year</label>
<input
id="txtYear"
type="text"
data-win-bind="value: year Binding.Mode.twoway" />

<!--Movie Status-->
<label>Status</label>
<select
id="status"

LOCAL DATA ACCESS: I: INDEXEDDB

data-win-bind="selected: status; value: status Binding.Mode.twoway">

<option value="Avaliable">Avaliable</option>
<option value="Lend Out">Lend Out</option>
<option value="Rented">Borrowed</option>
</select>

</div>
</section>

51

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

<!--App bar-->
<div
data-win-control="WinJS.UI.AppBar"
class="appBar"
id="appBar">
<!--Save Movie Button-->
<button
data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id:'saveButton', label:'Save', icon:'save',section:'global'}"/>
<!--Delete Movie Button-->
<button
data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id: 'deleteButton’, label:'Delete', icon:'delete',section:'global'}"/>
</div>
</body>
</html>

© My Collection

Edit Movie

2009

Figure 4-5. The My Collections app displaying movie details along with the app bar for saving and deleting

52

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

MovieDetail.js

Here we bind the Movie object that is passed on to this page to the div element inside the page ready function.
This function, shown in Listing 4-12, also sets the event handler for the save and delete button which in turn calls
the saveMovie (see Listing 4-4) and deleteMovie (see Listing 4-5) functions in Movie. js.

Listing 4-12. Binds the Movie Object to the div Element for Adding or Deleting

WinJS.UI.Pages.define("/pages/details/movieDetail.html", {
// This function is called whenever a user navigates to this page. It
// populates the page elements with the app's data.

ready: function (element, options) {

// TODO: Initialize the page here.

movieDetail = options.movieDetail;

var src = WinJS.Binding.as(movieDetail);

var form = document.getElementById("divDetail");

WinJS.Binding.processAll(form, src);

document.getElementById("saveButton")
.addEventListener("click", doClickSave, false);

document.getElementById("deleteButton")
.addEventListener("click", doClickDelete, false);

if (movieDetail.fromSearch == true) {
document.getElementById("deleteButton").disabled = true;
document.getElementById("title").innerText = "Add to collection";

}
1

function doClickSave() {

MyCollection.Movie.saveMovie(movieDetail.id, movieDetail.title, movieDetail.year,
movieDetail.image, movieDetail.poster, movieDetail.status);

WinJS.Navigation.back();

}

function doClickDelete() {
MyCollection.Movie.deleteMovie(movieDetail.id);
WinJS.Navigation.back();

Even though we bound the elements to the Movie object properties, the changes we make to the element are
not reflected in the Movie object as WinJS doesn’t support two-way binding, but adding this functionality is quite
easy thanks to the WinJS.Binding.initializer function. This function gets involved when binding is created.
WinJS.Binding.initializer give access to both source and target objects and their properties, which allows them
to subscribe to the target element’s events and push data to the source object, as shown in Listing 4-13.

Listing 4-13. Defining Two-Way Binding Using Win]S.Binding.initializer

WinJS.Namespace.define("Binding.Mode", {
twoway: WinJS.Binding.initializer(function (source, sourceProps, dest, destProps) {
WinJS.Binding.defaultBind(source, sourceProps, dest, destProps);
dest.onchange = function () {

53

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

var d = dest[destProps[0]];
var s = source[sourceProps[0]];
if (s !== d) source[sourceProps[0]] = d;

}
3]
B

Once defined, we just need to apply the initializer to binding like the one shown in Listing 4-14.

Listing 4-14. Enabling Two-Way Binding in the HTML Element

<input type="text" data-win-bind="value: title Binding.Mode.twoway" />

Searching for Movies

The searchResults.html page is invoked when we do the app-level search using the Search charm. This page
displays the matching results in a ListView element (see Listing 4-15). The result is shown in Figure 4-6. Displaying
movie information in ListView is very similar to Home.html with one exception: Here we use two item templates, one
for displaying movie details from the Rotten Tomatoes database and another from the IndexedDB that is dynamically
switched using the JavaScript code in searchResult. js as shown in Listing 4-16.

Listing 4-15. Search Page Displays Results in a ListView When Invoked From Search Charm

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8" />
<meta name="ms-design-extensionType" content="Search" />
<title>Search Contract</title>

<!-- WinlS references -->

<link href="//Microsoft.Win]S.1.0/css/ui-dark.css" rel="stylesheet" />
<script src="//Microsoft.Win]S.1.0/js/base.js"></script>

<script src="//Microsoft.Win]S.1.0/js/ui.js"></script>

<link href="/css/default.css" rel="stylesheet" />
<link href="/pages/search/searchResults.css" rel="stylesheet" />
<script src="/js/data.js"></script>

</head>
<body>
<!-- This template is used to display each item in the ListView declared
below. -->
<!--TtemTemplate to display search from Rotten Tomatoes database -->
<div

id="onlineItemtemplate"
class="itemtemplate"
data-win-control="WinJS.Binding.Template">
<div class="item">
<img
class="item-image"
src="#" data-win-bind="src: image; alt: title" />

54

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

<div class="item-content">
<h3
class="item-title win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: title searchResults.title" />
<h4
class="item-subtitle win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: year searchResults.text" />
</div>
</div>
</div>
<!--TtemTemplate to display search from IndexedDB -->
<div id="dbItemtemplate"
class="itemtemplate"
data-win-control="WinJS.Binding.Template">
<div class="item">
<img
class="item-image"
src="#" data-win-bind="src: poster; alt: title" />
<div class="item-content">
<h3
class="item-title win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: title searchResults.title" />
<h4
class="item-subtitle win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: year searchResults.text" />
<hg
class="item-subtitle win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: status searchResults.text" />
</div>
</div>
</div>

<!-- The content that will be loaded and displayed. -->
<div class="searchResults fragment">
<!--Page Header-->
<header
aria-label="Header content"
role="banner">
<button
class="win-backbutton"
aria-label="Back"
disabled
type="button" />
<div class="titlearea">
<h1 class="pagetitle win-type-ellipsis" />
<h2 class="pagesubtitle win-type-ellipsis" />
</div>
</header>
<section
aria-label="Main content"
role="main">

55

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

<div
class="resultsmessage win-type-x-large">
No results match your search.
</div>
<!--Filter section-->
<div class="filterarea">
<ul class="filterbar">
<select class="filterselect" />
</div>
<!--ListView-->
<div
id="searchListView"
class="resultslist win-selectionstylefilled"
aria-label="Search results"
data-win-control="WinJS.UI.ListView" />
</section>
</div>
</body>
</html>

@ My CO||eCtiOHS! Results for “Indiana”

Indiana Jones and the Templ Indiana Jones and the Templ.. . dventures of Young In..

@ The Adventures of Young In... Raiders of the Lost Ark The Adventures of
21 &
Lo o

Indiana Jones and the Kingd... History of Indiana Basketball The Adventures of Young In...

Figure 4-6. My Collections app displaying search results

56

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

searchResult.js

The searchResult. js page does basically three things: gets the result data and binds it to the ListView, dynamically
switches the template, and finally generates filters to the page so the user can filter the result by online and in
collection.

Dynamic Template Change

Dynamic template change (see Listing 4-16) can be achieved by assigning the function itemTemplateFunction to the
ListLiew itemTemplate property. This function returns a DOM element depending on the value of the Movie object
isInCollection property.

Listing 4-16. Dynamically Switching the Template

ready: function (element, options) {

var listView = element.querySelector(".resultslist").winControl;
// listView.itemTemplate = element.querySelector(".itemtemplate");
listView.oniteminvoked = this._ itemInvoked;

listView.itemTemplate = itemTemplateFunction;

this. handleQuery(element, options);

listView.element.focus();

}

function itemTemplateFunction(itemPromise) {
return itemPromise.then(function (item) {
var itemTemplate = document.getElementById("onlineItemtemplate");
if (item.data.isInCollection) {
itemTemplate = document.getElementById("dbItemtemplate");

};

var container = document.createElement("div");
itemTemplate.winControl.render(item.data, container);
return container;

1

Getting the Data

When we add the search contract page, Visual Studio includes the necessary code to fulfill the minimum
requirements of the Search contract automatically. There are two functions in searchResults. js that are of interest
tous, handleQuery and searchData (see Listing 4-17). The handleQuery in turn calls the function _searchData. In
the _searchData function we populate a WinJS.Binding.List with the search data by calling the methods 1oadFromDB
and loadSearchResult. Apart from these two functions, we also call _generateFilters and the populateFilterBar
functions.

57

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

Listing 4-17. Handling Search Query and Loading the Result in an Array

_handleQuery: function (element, args) {
var originalResults;
this. lastSearch = args.queryText;
WinJS.Namespace.define("searchResults"

> 1
markText: WinJS.Binding.converter(this. markText.bind(this))

1;
this. initializelayout(element.querySelector(".resultslist").winControl
, Windows.UI.ViewManagement.ApplicationView.value);
this. generateFilters();
this. searchData(args.queryText, element, this);
1
// This function populates a WinJS.Binding.List with search results for the
// provided query.
_searchData: function (queryText, element, object) {
var originalResults;
originalResults = MyCollection.Movie.loadFromDB(queryText);
MyCollection.Movie.loadSearchResult(queryText).done(
function (result) {
for (var i = 0; i < result.length; i++)

{
}

originalResults = new WinJS.Binding.List(originalResults);
if (originalResults.length === 0) {
document.querySelector('.filterarea').style.display = "none";
} else {
document.querySelector('.resultsmessage').style.display = "none";
}

object. populateFilterBar(element, originalResults);
object. applyFilter(object. filters[0], originalResults);
return originalResults;

1);

originalResults.push(result[i]);

}
1

Generating Filters

The filters are created in the _generateFilters function. Depending on the value of the isInCollection property,
we add two filters for the search result, as shown in Listing 4-18: one to showcase the Rotten Tomatoes matches and
the other to show the matches from the Indexed database.

Listing 4-18. Creating Filters for the Search Result

generateFilters: function () {
this. filters = [];
this. filters.push(

58

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

{
results: null
, text: "All"
, predicate: function (item) {
return true;
}
1)
this. filters.push(
{
results: null
, text: "Online"
, predicate: function (item) {
return item.isInCollection === true;
}
1
this. filters.push(
{
results: null
, text: "In My Collection”
, predicate: function (item) {
return item.isInCollection !== true;
}
1)

}

Now with all the codes in place, when we run the My Collections app, at first it shows an empty Start screen,
but we can search for movies using the Search charm and add them to our movie collection. Once they are added,
the Start screen will look like the one shown in Figure 4-1.

Ideas for Improvement

The My Collections app can be worked on and improved to make it a fully functional inventory app. Here are some of
the features that can be added:

e You could add an option to search for books or games using third-party APIs like
http://www.thegamesdb.net/ and Google Books.

e Right now we can only add a movie to the collection by searching the Rotten Tomatoes
database. You could provide and option to add ad hoc entries.

e Abarcode scan option would allow users to enter movies by quickly scanning the barcodes on
the movie cases.

e Back up your movie collection in SkyDrive or Dropbox.
e Add the capability for advanced search features and filters.

e You could categorize the items into books, movies, games, and so on.

59

http://www.thegamesdb.net/

CHAPTER 4 © LOCAL DATA ACCESS: I: INDEXEDDB

Conclusion

In this chapter we learned to use IndexedDB as a local storage option by creating a Windows 8 JavaScript app. As we
saw, the IndexedDB API is a simple but powerful option for storing data locally, even though it is a little bit different
from the relational database.

There are also some IndexedDB wrappers like IDBWrapper (https://github.com/jensarps/IDBWrapper) that
can be used to ease the use of IndexedDB. In the next chapter, we continue to explore local storage options by learning
to use Jet API and Application Storage.

60

https://github.com/jensarps/IDBWrapper

CHAPTER 5

Local Data Access I: JET API
and Application Data

In the last chapter we learned to use IndexedDB as one of the local storage options. Continuing in this chapter, we
learn few more local storage options, namely JET API and application storage by creating a Windows 8 Password
Manager app using XAML/C#.

What Is ESENT/Jet API?

ESENT/JET API is an Indexed Sequential Access Method (ISAM) data storage technology from Microsoft. ESENT
runtime has been a part of Windows since Windows 2000 and has been used in products like Microsoft Exchange,
Active Directory, Windows Update, and Desktop Search. This application stores and retrieves data from tables using
indexed or sequential cursor navigation.

Why to Use ESENT/Jet API

We can use ESENT for applications that need reliable, high-performance, low-overhead storage of structured or

semistructured data. The ESENT engine can help with data needs ranging from something as simple as a hash table that

is too large to store in memory to something more complex, such as an application with tables, columns, and indexes.
ESENT incorporates all the benefit on the ISAM data storage technique like the following:

e ACID transaction

e Snapshot isolation

e Concurrent access storage

e Cursor navigation

e Advanced indexing: Indexing over multivalued columns, sparse, and tuple
e Fixed, variable, and tagged columns

e Data integrity and consistency

e Column size ranging from 1 bit to 2 GB

61

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Building Password Manager App

Password Manager App helps to store bank information, financial information, health information, website logins,
online subscriptions, credit cards, insurance, and everything else one needs to keep private in a single location for
easy access.

Setting Up the Development Environment

To start, we first create a new Windows Store Blank App (XAML) project and name it PasswordManager. This app
will have two XAML pages. MainPage.xaml is the start page and will list all the stored password information in the
database. PasswordDetail.xaml is used for either adding, deleting, or updating passwords.

Creating a Database

We will create a database, _PasswordDB that contains two tables via Categories and Passwords. We will add two POCO
classes, Category (see Listing 5-1) and Password, to the project’s Models folder that will represent the table and the
structure of these two classes will mimic the columns of the tables.

Category is a lookup table that we use to categorize the passwords into Bank, Insurance, Website, Subscription,
and other categories.

Listing 5-1. Category POCO Class Representing Category Table

public class Category

{
public int CategoryId { get; set; }
public string CategoryName { get; set; }

The Password table holds the password information (see Listing 5-2).

Listing 5-2. Password Class Stores the Password Details

public class Password

{
public Guid PasswordId { get; set; }
public string Title { get; set; }
public string UserName { get; set; }
public string Passcode { get; set; }
public string WebSite { get; set; }
public string Key { get; set; }
public int CategoryIld { get; set; }
public string Note { get; set; }

To make things interesting we will use both the ESENT database and application data storage as storage options
for this app. Application data storage is place where Windows 8 apps can store data into local, temp, and roaming
folders using classes under the Windows.Storage namespace.We learn more about Windows 8 application data
storage later in this chapter.

62

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

For using two different storage options within a single app we create an interface IDataRespository (see Listing 5-1)
and two separate classes, JetDataRepository and ApplicationDataRepository, that explicitly implement the methods of
the IDataRespository interface. The IDataRespository interface has various methods that allow us to create, instantiate
a database, and put, get and delete data, as shown in Listing 5-3.

Listing 5-3. Defining the Interface to Create, Modify, Read, Get, and Delete Data

public interface IDataRepository

{
void Createlnstance();
void AddCategory(Category cat);
void DeletePassword(Guid id);
void SavePassword(Password pwd, bool isnew);
List<Category> GetCategories();
List<Password> GetAllPasswords();

To create, add, modify, and delete data with in ESENT and application data, we add the references of the
following DLLs to the project under references.

e ManagedEsent
e WinRT Filebased Database

The ESENT database engine is native to Windows, so to use that within the managed enviroment we need to
create a managed ESENT interop layer. Instead of writing one, we will be using an exisitng one, ManagedEsent.
ManagedEsent provides managed access to ESENT, the embeddable database engine native to Windows.
ManagedEsent uses the esent.dl11 that is part of Microsoft Windows so there are no extra unmanaged binaries to
download and install.

Similarly, instead of building a database from scratch that serializes objects and stores them in application
storage, we will use an existing one called WinRT File Based Database available in NuGet by referencing it within
our project. WinRT File Based Database includes a simple, yet effective API that allows to create tables based on
classes. Each database consists of any number of tables. All operations are asynchronous to support Windows 8 style
operations on the file system. It also supports horizontal partitioning of tables to provide for smaller files and faster
operations.

The references of these two DLLs are added from NuGet packages as shown in Figure 5-1.

63

CHAPTER 5 LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

]

PasswordManager - Manage NuGet Packages

| gastalled packages | Sort by: Mame: Ascending - Search Installed packages (Ctrl+E) P~
m y ManagedEsent Created by: martinc
B ManagedEsent provides ged access to 1d: M bY'E .
b Online ESENT, the embeddable datab gi : ManagedEsent
Version: 1.8.3.2
b Updates View License Terms

. WinRT File Based Database
B This database is based on a file system in Windows 8 and is
using WinRT (Windows Runtime) in Windows § environme...

Project Information

Description:

ManagedEsent provides managed access to
ESENT, the embeddable database engine
native to Windows. ManagedEsent uses the
esent.dll that is part of Microsoft Windows
5o there are no extra unmanaged binaries to
download and install.

Tags: ManagedEsent NoSql ISAM
Dependencies:

No Dependencies

Each package is licensed to you by its

owner. Microsoft is not responsible

for, nor does it grant any licenses to,

third-party packages. 1

Figure 5-1. Using NuGet to add references to ManagedEsent and WinRT database

With all the files in place, our Password Manager App solution explorer will look like the one shown in Figure 5-2.
Now we will look into the classes JetDataRepository and ApplicationDataRepository that implement the
IDataRepository interface.

64

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

ta] Solution 'PasswordManager' (1 project)
4 PasswordManager
b S Properties
4 {m] References
=B NET for Windows Store apps
=B Esent.Interop.Wsa
=B Windows
=B WinRTDatabase
b Assets
p i Common
& Models
c# ApplicationDataRepository.cs
c# Category.cs
c# |DataRepository.cs
c# JetDataRepository.cs
c# Password.cs

EJVVVVV

App.xaml
b I\ MainPagexaml
Package.appxmanifest
v packages.config
P I PasswordDetail.xaml
7= PasswordManagement_TemporaryKey.pfx

Figure 5-2. Password Manager Windows 8 App project structure

Creating ESENT Data Repository

JetDataRepository implements IDataRepository and is used to store data into the ESENT database. The
CreateInstance method is used to create an instance of the ESENT database (see Listing 5-4). In this method we
build the database file path and then pass the path to the Instance class which is part of the ManagedEsent API. The
Instance class wraps a JET_INSTANCE along with JetInit and JetTerm. This class inherits from SafeHandle to make
sure that ESENT instances are always terminated.

Listing 5-4. Using Createlnstance to Create an ESENT Instance

public void CreateInstance()

{
_instancePath = Path.Combine(ApplicationData.Current.LocalFolder.Path, DatabaseName);
_databasePath = Path.Combine(_instancePath, " Password.edb");
_instance = new Instance(databasePath);
_instance.Parameters.CreatePathIfNotExist = true;
_instance.Parameters.TempDirectory = Path.Combine(_instancePath, "temp");
_instance.Parameters.SystemDirectory = Path.Combine(_instancePath, "system");
_instance.Parameters.LogFileDirectory = Path.Combine(_instancePath, "logs");
_instance.Parameters.Recovery = true;
_instance.Parameters.CircularlLog = true;
_instance.Init();
CreateDatabase();

}

65

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Note A single ESENT instance can include up to six databases and provide a shared transaction log for all attached
databases.

Next we add another method, CreateDatabase, which is called inside the CreateInstance method, as shown
in Listing 5-5.

Listing 5-5. Creating the ESENT Database and Tables

private async void CreateDatabase()
{
if (await IsFileExist(_ databasePath))
return;
using (var session = new Session(_instance))

JET_DBID database;
Api.JetCreateDatabase(session

, _databasePath

, null

, out database

, CreateDatabaseGrbit.None);

// create database schema
using (var transaction = new Transaction(session))

//Schema for Category Table
JET_TABLEID categoryTableld;
Api.JetCreateTable(session
database
"Categories" //table name
1
100

, out categoryTableld);
JET_COLUMNID categoryColumnid;

. v e .

//CategoryId column
Api.JetAddColumn(session

, categoryTableld

, "CategoryId" //column name
new JET_COLUMNDEF

e

cbMax = 16,
coltyp = JET coltyp.IEEESingle,
grbit = ColumndefGrbit.ColumnFixed | ColumndefGrbit.ColumnNotNULL

null
0
out categoryColumnid);

O w)

66

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

//CategoryName column
Api.JetAddColumn(session
, categoryTableld
, "CategoryName" //column name
, nhew JET_COLUMNDEF
{
coltyp = JET coltyp.LlongText,
cp = JET_CP.Unicode,
grbit = ColumndefGrbit.None
}, null, o0, out categoryColumnid);

//Creating Index

var categoryindexDef = "+CategoryId\o\0";
Api.JetCreateIndex(session
categoryTableld

"CategoryId _index" //index name
CreateIndexGrbit.IndexPrimary
categoryindexDef
categoryindexDef.Length

100);

L

//Schema for Password table
JET_TABLEID passwordTableid;
Api.JetCreateTable(session

, database

, "Passwords" //table name

, 1

, 100

, out passwordTableid);

//creating columns for Password tables
JET_COLUMNID passwordColumnid;
Api.JetAddColumn(session

, passwordTableid
"PasswordId" //column name

)
, new JET_COLUMNDEF
{
cbMax = 16,
coltyp = JET coltyp.Binary,
grbit = ColumndefGrbit.ColumnFixed | ColumndefGrbit.ColumnNotNULL
}
, null
, 0
, out passwordColumnid);

Api.JetAddColumn(session
, passwordTableid
, "Title" //column name
, new JET_COLUMNDEF

67

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

coltyp = JET coltyp.longText,
cp = JET_CP.Unicode,
grbit = ColumndefGrbit.None

}
)
, 0
, out passwordColumnid);
Api.JetAddColumn(session
, passwordTableid

"UserName" //column name
new JET_COLUMNDEF

P R

coltyp = JET_coltyp.longText,
cp = JET_CP.Unicode,
grbit = ColumndefGrbit.None

}
)
, 0

, out passwordColumnid);
Api.JetAddColumn(session
passwordTableid
"Passcode" //column name
new JET_COLUMNDEF

P

coltyp = JET coltyp.LlongText,
cp = JET_CP.Unicode,
grbit = ColumndefGrbit.None

}
, null

, 0

, out passwordColumnid);
Api.JetAddColumn(session
passwordTableid
"WebSite" //column name
new JET_COLUMNDEF

A e e

coltyp = JET coltyp.longText,
cp = JET_CP.Unicode,
grbit = ColumndefGrbit.None

}
)
, 0
, out passwordColumnid);
Api.JetAddColumn(session

, passwordTableid

, "Key" //column name

, new JET_COLUMNDEF

68

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

{
coltyp = JET coltyp.longText,
cp = JET_CP.Unicode,
grbit = ColumndefGrbit.None
}
, hull
Y

, out passwordColumnid);

Api.JetAddColumn(session

, passwordTableid
"CategoryId" //column name
new JET_COLUMNDEF

P R

coltyp = JET coltyp.IEEESingle,
cp = JET_CP.Unicode,
grbit = ColumndefGrbit.None

}
)
, 0

, out passwordColumnid);
Api.JetAddColumn(session
passwordTableid

"Note" //column name
new JET_COLUMNDEF

P

coltyp = JET coltyp.LlongText,
cp = JET_CP.Unicode,
grbit = ColumndefGrbit.None

}
, null

, 0

, out passwordColumnid);
//creating index for Passwords table
var indexDef = "+PasswordId\0\o0";
Api.JetCreateIndex(session
passwordTableid
"PasswordId_index" //index name
CreateIndexGrbit.IndexPrimary
indexDef

indexDef.Length

100);

L S

transaction.Commit(CommitTransactionGrbit.None);

}
Api.JetCloseDatabase(session, database, CloseDatabaseGrbit.None);
Api.JetDetachDatabase(session, databasePath);

69

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

//Add defult values to the database table
CreateDefaultData();

Once the database and the tables are created we can populate the tables with default categories and some test
password data, after which we call the CreateDefaultData method within CreateDatabase as shown in Listing 5-6.

Listing 5-6. Inserting Default Values to the Categories and Passwords Table

private void CreateDefaultData()

{

//Adding categories

AddCategory(new Category {
Categoryld = 1
, CategoryName = "Bank"

D;

AddCategory(new Category {
CategoryId = 2
, CategoryName = "Web Site"

D;

//Adding password

SavePassword(new Password {
PasswordId = Guid.NewGuid()
, Title = "Capital One"
, UserName = "vinodh-kumar"
, WebSite = "www.capitalone.com"
, Passcode = "book8data"
, Categoryld = 1

}

, true);

SavePassword(new Password {
PasswordId = Guid.NewGuid()
, Title = "Bank of America"
, UserName = "vinodh-kumar"
, Passcode = "boa8data"
, Categoryld = 1
, Key = "3121"
, WebSite = "www.bankofamerica.com"

}

, true);

}

CreateDefaultData calls the AddCategory and SavePassword methods to add new rows to the Categories and
Passwords tables. We have to carry out the following activities to interact with ESENT data (see Listing 5-7).

e Create a new session using the Instance object.
e Attach the database to the session and open it.

e Start a new transaction for this session.

70

http://www.capitalone.com/
http://www.bankofamerica.com/

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

e Within the transaction, select the active table that we want to work with.

e Data manipulations like updating or deleting rows in the table can be carried out.

Listing 5-7. Adding Data to the Categories Table

public void AddCategory(Category ev)
{

using (var session = new Session(_instance))

JET_DBID dbid;
Api.JetAttachDatabase(session
, _databasePath
, AttachDatabaseGrbit.None);
//0pening database
Api.JetOpenDatabase(session
, _databasePath
, String.Empty
, out dbid
, OpenDatabaseGrbit.None);
//within a transaction
using (var transaction = new Transaction(session))
{
//opening the table
using (var table = new Table(session
, dbid
, "Categories”
, OpenTableGrbit.None))

//inserting row
using (var updater = new Update(session, table, JET prep.Insert))

var columnId = Api.GetTableColumnid(session
, table
, "CategoryId"); //to CategoryId column
Api.SetColumn(session
, table
, columnId
, ev.Categoryld);

var columnDesc = Api.GetTableColumnid(session
, table
, "CategoryName"); //to CategoryName column
Api.SetColumn(session
table
columnDesc
ev.CategoryName

)
)
)
, Encoding.Unicode);

71

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

updater.Save();

}
}

transaction.Commit(CommitTransactionGrbit.LazyFlush);

As mentioned earlier, whenever we interact with ESENT data, we have to create a session, attach and open
the database, and start a transaction. Going forward, we encapsulate all the previously mentioned activities for the
Passwords table within the ExecuteInTransaction method and will use this method for interaction (CRUD) with the
Passwords table, as shown in Listing 5-8.

Listing 5-8. ExecuteInTransaction Encapsulates ESENT Activities

private IList<Password> ExecuteInTransaction(Func<Session, Table, IList<Password>> dataFunc)

{

IList<Password> results;
using (var session = new Session(_instance))

JET_DBID dbid;

Api.JetAttachDatabase(session, databasePath, AttachDatabaseGrbit.None);
Api.JetOpenDatabase(session, databasePath, String.Empty, out dbid, OpenDatabaseGrbit.None);
using (var transaction = new Transaction(session))

{
using (var table = new Table(session, dbid, "Passwords", OpenTableGrbit.None))
results = dataFunc(session, table);
}
transaction.Commit(CommitTransactionGrbit.None);
}

}

return results;

Adding a Password

Next, we'll add a method, SavePassword, that uses the ExecuteInTransaction (see Listing 5-8) method. This method
takes the Password object as one of the parameters and sets the values to the corresponding columns in the Passwords
table. When the Save method within the ESENT’s Update object is called, as shown in Listing 5-9, it will insert or
update a row to the Passwords table.

Listing 5-9. Add or Update a Password to the Passwords Table

public void SavePassword(Password pwd, bool isnew)

{

ExecuteInTransaction((session, table) =>

{

using (var updater = new Update(session, table, isnew ? JET prep.Insert : JET prep.Replace))

72

}

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

//set the password id depending on the isnew parameter
if (isnew)
{

var columnId = Api.GetTableColumnid(session, table, "PasswordId");

Api.SetColumn(session, table, columnId, pwd.PasswordId);
}
//Title
var columnTitle = Api.GetTableColumnid(session, table, "Title");
Api.SetColumn(session, table, columnTitle, pwd.Title, Encoding.Unicode);
//UserName
var columnUserName = Api.GetTableColumnid(session, table, "UserName");
Api.SetColumn(session, table, columnUserName, pwd.UserName, Encoding.Unicode);
//Passcode
var columnPasscode = Api.GetTableColumnid(session, table, "Passcode");
Api.SetColumn(session, table, columnPasscode, pwd.Passcode, Encoding.Unicode);
//WebSite
var columnWebSite = Api.GetTableColumnid(session, table, "WebSite");
Api.SetColumn(session, table, columnWebSite, pwd.WebSite, Encoding.Unicode);
//Key
var columnKey = Api.GetTableColumnid(session, table, "Key");
Api.SetColumn(session, table, columnKey, pwd.Key, Encoding.Unicode);
//CategoryId
var columnCategoryId = Api.GetTableColumnid(session, table, "CategoryId");
Api.SetColumn(session, table, columnCategoryId, pwd.CategoryId);
//Note
var columnNote = Api.GetTableColumnid(session, table, "Note");
Api.SetColumn(session, table, columnNote, pwd.Note, Encoding.Unicode);

updater.Save();

return null;

1

Deleting a Password

Similar to the SavePassword (see Listing 5-9) method, DeletePassword also calls the ExecuteInTransaction method
(see Listing 5-8) to set up the ESENT for deleting a row from the Passwords table. In this method we take password
ID as the parameter and seek a key that matches our password ID using JET API's MakeKey method and then use
JetDelete to delete the selected record, as shown in Listing 5-10.

Listing 5-10. Using DeletePassword to Delete Rows from Passwords Table

public void DeletePassword(Guid id)

{

ExecuteInTransaction((session, table) =>

{

Api.JetSetCurrentIndex(session, table, null);
Api.MakeKey(session, table, id, MakeKeyGrbit.NewKey);

73

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

if (Api.TrySeek(session, table, SeekGrbit.SeekEQ))

Api.JetDelete(session, table);
}

return null;

1

Retrieving Passwords

Similar to the previous two methods, first we’ll call ExecuteInTransaction and then will use JET API's TryMoveFirst
and TryMoveNext methods to loop through all the records with in the Passwords table and pass the record currently
under construction to the GetPassword method. GetPassword uses JetRetrieveColumn to get the values for all the
columns and assigns them to the corressponding Property of the Password object. Once retrieved, the Password object
is added to the collections (see Listing 5-11).

Listing 5-11. Retrieving Passwords from Passwords Table

public List<Password> GetAllPasswords()

{
List<Password> results = null;
ExecuteInTransaction((session, table) =>
{
results = new List<Password>();
if (Api.TryMoveFirst(session, table))
do
{
//Call GetPassword method to create password object
//from the table row
results.Add(GetPassword(session, table));
}
while (Api.TryMoveNext(session, table));
}
return results;
D;
return results;
}

private Password GetPassword(Session session, Table table)
{
var password = new Password();
//retrieving PasswordId column
var columnId = Api.GetTableColumnid(session, table, "PasswordId");
//assigning it to the PasswordId property
password.PasswordId = Api.RetrieveColumnAsGuid(session, table, columnId) ?? Guid.Empty;
//retrieving Title
var columnTitle = Api.GetTableColumnid(session, table, "Title");
password.Title = Api.RetrieveColumnAsString(session, table, columnTitle, Encoding.Unicode);

74

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

//retrieving UserName

var columnUsername = Api.GetTableColumnid(session, table, "UserName");

password.UserName = Api.RetrieveColumnAsString(session, table, columnUsername, Encoding.Unicode);
//retrieving Passcode

var columnPasscode = Api.GetTableColumnid(session, table, "Passcode");

password.Passcode = Api.RetrieveColumnAsString(session, table, columnPasscode, Encoding.Unicode);
//retrieving WebSite

var columnWebSite = Api.GetTableColumnid(session, table, "WebSite");

password.WebSite = Api.RetrieveColumnAsString(session, table, columnWebSite, Encoding.Unicode);
//retrieving Key

var columnKey = Api.GetTableColumnid(session, table, "Key");

password.Key = Api.RetrieveColumnAsString(session, table, columnKey, Encoding.Unicode);
//retrieving Note

var columnNote = Api.GetTableColumnid(session, table, "Note");

password.Note = Api.RetrieveColumnAsString(session, table, columnNote, Encoding.Unicode);
//retrieving Categoryld

var columnCategoryld = Api.GetTableColumnid(session, table, "CategoryId");

password.CategoryIld = Api.RetrieveColumnAsInt32(session, table, columnCategoryId) ?? -1;

return password;

As all of the IDataRepository methods are implemented in JetDataRepository, we will do the same for
ApplicationDataRepository, which is used for storing data in application storage. Before going further, a brief
introduction to application data storage is in order.

Using Application Data Storage

Every app installed in Windows 8/RT will be allocated space for storing application data. This application storage can
be used to store an app’s settings, preferences, context, app status, and files. It cannot be accessed by the other apps
and will be accessed only using the APIs provided in WinRT.

For storing and retrieving application data we should use the ApplicationData class, which is a part of the
Windows.Store namespace. This data can be stored in three different ways.

e Local application data: Stores the data locally. Use local storage only if you have good reason
not to roam the setting to the cloud.

e Roaming application data: Data will be synced across all the devices on which the user has
installed the app. If we use roaming and the user doesn’t have a Microsoft account, then it will
be stored locally.

¢ Temporary application data: Data is stored temporarily during an application session and
can be removed any time by a system maintenance task.

With this very brief introduction to application data storage, we now implement the IDataRepository methods
in the ApplicationDataRepository class. All the methods in the ApplicationDataRepository class are straight
forward and we briefly look at each one of them.

WinRT File Based Database

WinRT File Based Database is a file-system-based database written using the WinRT framework. This API allows us
to create tables based on classes. Each database consists of many tables and these tables are serialized and stored in
application data storage.

75

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Like the ESANT database, the first thing we do within the CreateInstance method, shown in Listing 5-12, is to
create the database and the tables if it doesn’t already exist. If it already exists, we open the database and retrieve and
assign the table objects to the corresponding properties in the ApplicationDataRepository class.

Listing 5-12. Creating the Application Storage Database and Tables

public async void CreateInstance()
{
var exists = await Database.DoesDatabaseExistsAsync(DatabaseName
, Storagelocation.local);
if (lexists)
{
_database = await Database.CreateDatabaseAsync(DatabaseName
, Storagelocation.local);
_database.CreateTable<Category>();
_database.CreateTable<Password>();

var categoriesTable = await _database.Table<Category>();
var passwordsTable = await _database.Table<Password>();

Categories = categoriesTable;
Passwords = passwordsTable;
CreateDefaultData();

SaveResult result = await _database.SaveAsync();
if (result.Error == null)
{
Debug.WritelLine(result.Error == null ?
"Database created with Defult data"
: result.Error.Message);

}

else
{
_database = await Database.OpenDatabaseAsync(DatabaseName
, true
, Storagelocation.local);
Categories = await database.Table<Category>();
Passwords = await database.Table<Password>();

}

public Table<Category> Categories
{ get; set; }

public Table<Password> Passwords
{ get; set; }

Next, we insert default values into the Categories tables and test data in the Passwords table using the

CreateDefaultData method, shown in Listing 5-13, which is called inside the CreateInstance method in a way that is
very similar to the one we had in JetDataRepository.

76

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Listing 5-13. Using CreateDefaultData to Insert Default Values into the Table

private void CreateDefaultData()

{
//Adding categories
Categories.Add(new Category
Categoryld = 1
, CategoryName = "Bank"
D;
Categories.Add(new Category
{
CategoryId = 2
, CategoryName = "Web Site"
D;
//Adding password
Passwords.Add(new Password
{
PasswordId = Guid.NewGuid()
, Title = "Capital One"
, UserName = "vinodh-kumar"
, WebSite = "www.capitalone.com"
, Passcode = "book8data"
, Categoryld = 1
D;
Passwords.Add(new Password
{
PasswordId = Guid.NewGuid()
, Title = "Bank of America"
, UserName = "vinodh-kumar"
, Passcode = "boa8data"
, Categoryld = 1
, Key = "3121"
, WebSite = "www.bankofamerica.com"
D;
}

The AddCategory method takes a Category object as a parameter and adds it to the Categories collection.
It then makes an async call to the Save method of the database instance of the WinRT File Based Database as shown
in Listing 5-14. This Save method serializes the Categories object and stores it in the application data storage.

Listing 5-14. Using AddCategory to Add a Row to the Category Table

public async void AddCategory(Category category)

{
Categories.Add(category);

SaveResult result = await _database.SaveAsync();

77

http://www.capitalone.com/
http://www.bankofamerica.com/

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

if (result.Error == null)

{
Debug.Writeline(result.Error == null
? "Saved Category"
: result.Error.Message);
}

Similar to the AddCategory method, the SavePassword method takes the Password object as a parameter and adds
it to the Passwords collection if it is new, and then calls the database object Save method, as shown in Listing 5-15.

Listing 5-15. Using SavePassword to Add or Update Rows in the Password Table

public async void SavePassword(Password password, bool isnew=true)

{
if (isnew)
{
Passwords.Add(password);
}
SaveResult result = await _database.SaveAsync();
if (result.Error == null)
{
Debug.Writeline(result.Error == null
? "Saved Password"
: result.Error.Message);
}
}

The DeletePassword method deletes the Password row from the Passwords table, as shown in Listing 5-16. This
method takes the password ID as a parameter and uses it to get the Password object corresponding to that password
ID. This Password object is then removed from the Passwords collection before calling the database object Save
method to remove the row permanently from the Passwords table.

Listing 5-16. Using DeletePassword to Delete a Row from Passwords Table

public async void DeletePassword(Guid id)

{
var password = Passwords.Where(p => p.PasswordId == id).FirstOrDefault();
Passwords.Remove (password);
SaveResult result = await _database.SaveAsync();
if (result.Error == null)
{
Debug.Writeline(result.Error == null
? "Delete Password"
: result.Error.Message);
}
}

The GetCategories and GetAllPasswords methods will list the Categories and Password data, as shown
in Listing 5-17.

78

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Listing 5-17. GetCategories and GetAllPasswords Are Used to Retrieve Data from Tables

public List<Category> GetCategories()

{
if (Categories == null) return null;
return Categories.Tolist();
}
public List<Password> GetAllPasswords()
{
if (Passwords == null) return null;
return Passwords.Tolist();
}

Now with all the CRUD methods in place we will integrate the database into our Password Manager app. The
first thing we do is to create an instance of both of the Repository classes in the App.xaml Launch event and call the
CreateInstance method. We also assign the instances to the PasswordDB property so that it can be used across the app.
Even though we will be integrating two different storage methods, we will be able to use only one database at a time for
the Password Manager app. The ideal place to add this database switch is in the app setting page, but for brevity, here we
instead create a Boolean property that can be changed manually before running the application. See Listing 5-19.

Listing 5-19. OnLaunched Will Create an Instance of DataRepository Class

protected override void OnLaunched(LaunchActivatedEventArgs args)
{
Frame rootFrame = Window.Current.Content as Frame;
//app defualts to application data storage
//change the UseApplicationStorage = false for Jet Datastorage
UseApplicationStorage = true;
IDataRepository dr = null;
if (UseApplicationStorage)

dr = new ApplicationDataRepository();

}

else

{
}

dr.CreateInstance();
App.PasswordDB = dr;
// omitted for brevity

dr = new JetDataRepository();

}

public static IDataRepository PasswordDB

{
get;
set;

}

public static bool UseApplicationStorage

{
get;
set;

79

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Designing App Start Page

MainPage.xaml is the start page of this app (see Figure 5-3). This page contains a GridView control that lists

all the passwords stored in the Passwords table. The layout out of each item in the GridView is driven by a
PasswordDataTemplate. This template is very similar to the BookDataTemplate that we used to display the New
York Times Best Sellers list in Chapter 1. MainPage.xaml also has three App Bar buttons (see Listing 5-20) and the
functionality of each of these buttons is listed here.

Password Manager

All Passwords

UserName: vinodh-kumar UserName: vinodh-kumar
Passcode: book8data ode: funtime432

Key: Cey:

Capital One Outlook

UserName: vinodh-kumar
Passcode: boaB8data

Key: 3121

Bank of America
UserName: vinodh.kumar

Passcode: tigerforce

Key:

Youtube

Figure 5-3. Password Manager app displaying the stored passwords

¢ Refresh: Used to refresh the items displayed in the grid.
e Add: Navigate to PasswordDetail.xaml (see Figure 5-3).

e Edit: Navigate to PasswordDetail.xaml along with the selected password from the GridView
as a page parameter.

Listing 5-20. MainPage.xaml Includes a GridView with Item Template to Display Password Details

<common: LayoutAwarePage
x:Name="pageRoot"
x:Class="PasswordManager.MainPage"
DataContext="{Binding DefaultViewModel, RelativeSource={RelativeSource Self}}"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

80

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

xmlns:local="using:PasswordManager"
xmlns:common="using:PasswordManager.Common"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<!--Reduced Markup for better readability-->
<Page.Resources>
<!--DataTemplae-->
<DataTemplate x:Key="PasswordDataTemplate">
<Grid Width="250" Height="150">
<StackPanel>
<!--UserName-->
<StackPanel Orientation="Horizontal">
<TextBlock Text="UserName:"/>
<TextBlock Text="{Binding UserName}"/>
</StackPanel>
<!--Password-->
<StackPanel Orientation="Horizontal">
<TextBlock Text="Passcode:"/>
<TextBlock Text="{Binding Passcode}"/>
</StackPanel>
<!--Key-->
<StackPanel Orientation="Horizontal">
<TextBlock Text="Key:"/>
<TextBlock Text="{Binding Key}"/>
</StackPanel>
</StackPanel>

<StackPanel VerticalAlignment="Bottom">
<!--Title-->
<TextBlock Text="{Binding Title}"/>
<!--WebSite-->
<TextBlock Text="{Binding WebSite}"/>

</StackPanel>
</Grid>
</DataTemplate>
</Page.Resources>
<!--AppBar-->

<common: LayoutAwarePage.BottomAppBar>
<AppBar IsOpen="True">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<StackPanel
Orientation="Horizontal"/>
<StackPanel
Grid.Column="1"
Orientation="Horizontal">
<!-- Refresh Button-->

81

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

<Button
Style="{StaticResource RefreshAppBarButtonStyle}"
Click="Refresh Click" />
<!--New Password Button-->
<Button
Style="{StaticResource AddAppBarButtonStyle}"
Click="Add_Click" />
<!-- Edit Password Button-->
<Button
Style="{StaticResource EditAppBarButtonStyle}"
Click="Edit_Click"/>
</StackPanel>
</Grid>
</AppBar>

</common:LayoutAwarePage.BottomAppBar>

<!--Page Layout-->
<CGrid Style="{StaticResource LayoutRootStyle}" Margin="0">
<Grid.RowDefinitions>
<RowDefinition Height="140"/>
<RowDefinition Height="48"/>
<RowDefinition Height="275*"/>
</Grid.RowDefinitions>

<!-- GridView to display Password details -->
<GridView
Grid.Row="2"
Name="gvPasswords"
ItemTemplate="{StaticResource PasswordDataTemplate}"
Grid.RowSpan="2"/>

<!-- Back button and page title -->
<Grid»
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>
<Button
x:Name="backButton"
Click="GoBack"
IsEnabled="{Binding Frame.CanGoBack, ElementName=pageRoot}"
Style="{StaticResource BackButtonStyle}"/>
<TextBlock
x:Name="pageTitle"
Text="{StaticResource AppName}"
Grid.Column="1"
IsHitTestVisible="false"
Style="{StaticResource PageHeaderTextStyle}"/>
</Grid>

82

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

<TextBlock

x:Name="pageSubTitle"
Text="All Passwords"
IsHitTestVisible="false"
Style="{StaticResource PageSubheaderTextStyle}"
Margin="120,0,30,20"
Grid.Row="1"/>

</Grid>

</common: LayoutAwarePage>

The MainPage.xaml code behind the page has one method, LoadAl11Passwords, and three click events for each

of the App Bar buttons. LoadA11Passwords is called at the start of the page and also when the Refresh button is
clicked. This method gets the Passwords collection object using the method GetAllPasswords (see Listing 5-17) from
the DataRepository class and binds it to the GridView’s ItemsSource property. Add Click and Edit_Click events
navigate the users to the PasswordDetail.xaml page (see Listing 5.21).

Listing 5-21. MainPage.xaml Code Behind Binds Passwords Collection to GridView

public sealed partial class MainPage : PasswordManager.Common.LayoutAwarePage

{

public MainPage()

{
this.InitializeComponent();
}
protected override void OnNavigatedTo(NavigationEventArgs e)
{
LoadAllPasswords();
}

private void Refresh Click(object sender, Windows.UI.Xaml.RoutedEventArgs e)

{

LoadAllPasswords();
}
private void LoadAllPasswords()
{
gvPasswords.ItemsSource = App.PasswordDB.GetAllPasswords();
}
private void Add Click(object sender, Windows.UI.Xaml.RoutedEventArgs e)
{
var rootFrame = new Frame();
rootFrame.Navigate(typeof(PasswordDetail));
Window.Current.Content = rootFrame;
Window.Current.Activate();
}

private void Edit_Click(object sender, Windows.UI.Xaml.RoutedEventArgs e)

{

var rootFrame = new Frame();
rootFrame.Navigate(typeof(PasswordDetail), gvPasswords.SelectedValue);

83

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Window.Current.Content = rootFrame;
Window.Current.Activate();

Adding and Updating a Password

PasswordDetail.xaml is a very simple page (see Figure 5-3) that is used to add a new password or update or delete an
existing password (see Listing 5-22). This page has the necessary controls to input password information. Also on this
page we have two App Bar buttons for saving and deleting the password.

Listing 5-22. PasswordDetail. xaml Has Controls to Input Password Information

<common: LayoutAwarePage

x:Name="pageRoot"
x:Class="PasswordManager.PasswordDetail"
DataContext="{Binding DefaultViewModel, RelativeSource={RelativeSource Self}}"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:PasswordManager"
xmlns:common="using:PasswordManager.Common"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<!--Reduced Markup for better readability-->
<!--App Bar buttons-->

<common: LayoutAwarePage.BottomAppBar>
<AppBar IsOpen="True">

<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<StackPanel
Orientation="Horizontal"
Grid.Column="1" HorizontalAlignment="Right">
<!--Save button-->
<Button
Style="{StaticResource SaveAppBarButtonStyle}"
Click="Save Click"/>
<!--Delete button-->
<Button
x:Name="btnDelete"
Style="{StaticResource DeleteAppBarButtonStyle}"
Click="Delete Click"
IsEnabled="False"/>
</StackPanel>
</Grid>
</AppBar>

</common: LayoutAwarePage.BottomAppBar>

84

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

<!--Page Layout-->
<Grid Style="{StaticResource LayoutRootStyle}">
<Grid.RowDefinitions>
<RowDefinition Height="140"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>

<!-- Back button and page title -->
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>
<Button
x:Name="backButton"
Click="GoBack"
IsEnabled="{Binding Frame.CanGoBack, ElementName=pageRoot}"
Style="{StaticResource BackButtonStyle}"/>
<TextBlock
x:Name="pageTitle"
Grid.Column="1"
Text="{StaticResource AppName}"
Style="{StaticResource PageHeaderTextStyle}"/>
</Grid>
<!--Password Details-->
<StackPanel Grid.Row="1">
<TextBlock Text="Add Password"/>
<!--Title-->
<StackPanel>
<TextBlock Text="Title"/>
<TextBox x:Name="txtTitle"/>
</StackPanel>
<!--User Name-->
<StackPanel>
<TextBlock Text="User Name"/>
<TextBox x:Name="txtUserName"/>
</StackPanel>
<!--Password-->
<StackPanel>
<TextBlock Text="Password"/>
<TextBox x:Name="txtPassword"/>
</StackPanel>
<!--Category-->
<StackPanel>
<TextBlock Text="Category"/>
<ComboBox x:Name="cboCategory"/>
</StackPanel>
<!--Web Site--»>
<StackPanel>
<TextBlock Text="Web Site"/>
<TextBox x:Name="txtWebSite"/>
</StackPanel>

85

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

<!--Key-->

<StackPanel>
<TextBlock Text="Key"/>
<TextBox x:Name="txtKey"/>

</StackPanel>
<!--Note-->

<StackPanel>
<TextBlock Text="Note"/>
<TextBox x:Name="txtNote"/>

</StackPanel>

</StackPanel>
</Grid>
</common: LayoutAwarePage>

The PasswordDetail.xaml code behind the page has the necessary code to save and delete a password. First,
when the page is invoked for editing an existing password object, the values will be assigned to the corresponding
controls for editing as shown in Listing 5-23.

Listing 5-23. Assigning the Password Values to the Controls

protected override void OnNavigatedTo(NavigationEventArgs e)

{
cboCategory.DisplayMemberPath = "CategoryName";
List<Category> categories = null;
categories = App.PasswordDB.GetCategories();
cboCategory.ItemsSource = categories;
if (e.Parameter != null)
{
_password = (Password)e.Parameter;
if (_password != null)
txtTitle.Text = _password.Title ?? "";
txtUserName.Text = password.UserName ?? "";
txtPassword.Text = password.Passcode ?? "";
txtKey.Text = _password.Key ?? "";
txtNote.Text = _password.Note??"";
txtWebSite.Text = _password.WebSite ?? "";
cboCategory.SelectedValue= categories.Where(c=>c.CategoryId ==
_password.CategoryId).First();
btnDelete.IsEnabled = true;
}
}
}

The Save_Click event is called when the Save button is clicked. Within this event we create a Password object
and pass it as a parameter to the SavePassword method in the DataRepository instance for saving the object to the
database (see Listing 5-24).

86

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Listing 5-24. Creating a Password Object for Saving

void Save Click(object sender, Windows.UI.Xaml.RoutedEventArgs e)

Password pwd;

private
{
pwd
pwd.
pwd.

pwd

pwd.
pwd.
pwd.
pwd.

= _password == null ? new Password() : _password;
PasswordId = password == null ? Guid.NewGuid() : _password.PasswordIld;
Title = txtTitle.Text;

.UserName = txtUserName.Text;

Passcode = txtPassword.Text;
Key = txtKey.Text;

WebSite = txtWebSite.Text;
Note = txtNote.Text;

Category category = (Category)cboCategory.SelectedValue;

pwd.
App.

Categoryld = category.Categoryld;
PasswordDB.SavePassword(pwd, _password == null ? true : false);

NagivateToMainPage();

The DeletePassword method in the DataRepository class is called on a Delete button click event. This deletes
the corresponding row in the Password table and navigates back to the MainPage.xaml, as shown in Listing 5-25.

Listing 5-25. Deleting the Password Using the DataRepository DeletePassword Method

private void Delete_Click(object sender, Windows.UI.Xaml.RoutedEventArgs e)

{

App.PasswordDB.DeletePassword(_password.PasswordId);
NagivateToMainPage();

Now with all the code in place, when we run the Password Manager app, it will display the default passwords
that we added to the Passwords table as shown in Figure 5-4. From here on we will be able to add new password and
update and delete existing passwords.

87

CHAPTER 5 © LOCAL DATA ACCESS I: JET API AND APPLICATION DATA

Password Manager

Add Password

funtime432
Category
Web Site
Web Site
www.outlook.com

EY

Figure 5-4. Password details page for adding or editing passwords

Ideas for Improvement

The Password Manager app can be worked on and improved to make it a fully functional password management
application. The following are some of the features that can be added.

e Asyou can see, the intention of developing this app is to showcase the use of the ESENT
database and application data storage, so we have not gone into writing code to encrypt the
data. That should be the first improvement that we make.

e We store the password by categories but considering the length of this chapter we have not
implemented it. This could be one enhancement we can make, along with the option to search
using the Windows Search function.

e Backup and export capabilites would be helpful.

¢ Right now we store the app in application local storage. Instead, we can use roaming storage
so that the data will syn across all the user’s computers and devices.

Conclusion

In this chapter we learned to use the ESENT database and application data storage as a local storage option by building
a Password Manager app. The goal here was to provide an intermediate introduction to ESENT and application storage
using existing libraries so that decisions in selecting a local data storage option can be made with ease.

In the next chapter we learn about yet another but more widely used local storage option, Sqlite. As always,
we will be building an app that uses Sqlite as a local storage database.

88

CHAPTER 6

Local Data Access lll: SQLite

In the last two chapters we looked at how to read and write data locally using the Jet API, application storage, and
IndexedDB. In this chapter, we discuss yet another local storage option for Windows 8 apps, SQLite. This chapter
starts with an introduction to SQLite, and then we will look into various setup procedures needed to include SQLite in
a project. We also learn to use sqlite-net, a SQLite wrapper. As always, we end this chapter by developing a Windows 8
app using SQLite as the data storage option. We use MVVM Light as our MVVM framework for this Bill Reminder app,
and by doing so we learn to integrate and use MVVM Light, one of the most popular MVVM frameworks, in

the project.

Introduction to SQLite

SQLite is a software library that implements a self-contained, serverless, zero-configuration, transactional SQL
database engine. It’s a file-based database that can be used without any need for a database engine like SQLServer,
Oracle, and so on. SQLite is a relational database management system that is contained in a small C programing
library. SQLite is the most widely deployed SQL database engine in the world and its source code exists in the public
domain. It is free for use for both private and commercial purposes.

SQLite is very similar to SQL Server Compact in its characteristics, but unlike SQL Server Compact, which in most
cases is part of the operating system (Windows Phone OS, Windows Mobile OS), SQLite is an embedded database
that should be included explicitly within the app and run in-process within the app. Any SQLite database file can be
copied from one platform to another regardless of the CPU’s byte-ordering.

Integrating SQLite

Now we will see how to integrate SQLite. The SQLite Development Team made intergrating SQLite within a Windows
8 app simple and straightforward by packaging the binaries in such a way that it pulls the right DLLs, depending on
the CPU architecture. To install SQLite from the Visual Studio Tools menu, select the Extensions and Updates menu.
This opens an Extension and Update dialog window. Search for sqlite in the search term. This displays the SQLite for
Windows Runtime package as shown in Figure 6-1.

89

CHAPTER 6~ LOCAL DATA ACCESS III: SQLITE

P Installed Sort by:
4 Online 3=

4 Visual Studio Gallery
Search Results
¢ Controls
b Templates
¢ Tools
i Samples Gallery —

b Updates (2)

Extensions and Updates
Relevance =

LingConnect - Advanced LINQ to SQL Solution for any D...
LingConnect Express is a free fast and easy to use ORM solution,

developed closely to the Microsoft LINQ to SQL technology, and support...

LingConnect - Advanced LINQ to SQL Solution for any D...
LingConnect is a fast and easy to use ORM solution, developed closely to

the Microsoft LINQ to SQL technology, and supporting SQL Server, Oracl...

LingConnect
LingConnect is a fast and easy to use ORM sclution, developed closely to

the Microsoft LINQ to SQL technology, and supporting SQL Server, Oracl...

LingConnect Express
LingConnect Express is a free fast and easy to use ORM solution,

developed closely to the Microsoft LINQ to SQL technology, and support...

dotConnect Universal
dotConnect Universal offers universal access to the data of databases for

the Microsoft NET Framework. It supports most of major database serve...

SQlite for Windows Runtime
SQLite is a software library that implements a self-

contained, serverless, zero-configuration, transactional...

SQlite for Windows Phone
SQLite is a software library that implements a self-contained, serverless,
zero-configuration, transactional SOL database engine.

Database Object Generator
Database Object Generator is a plug-in for Visual Studio that creates

1

Figure 6-1. Search result shows SQLite for Windows Runtime package

-

» Il
sqlite X -

Created by: SQLite Development Team
Version: 3.7.15

Downloads: 11077

Rating: # # % % #* (4 Votes)

More Information

Report Extension to Microsoft

Clicking the Download button installs the SQLite runtime and restarts Visual Studio. Once it is installed, you can
reference SQLite in the project using the Reference Manager. SQLite will show up in Extensions under the Windows

section as shown in Figure 6-2.

90

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

Reference Manager - SQLiteDemo 2
b Assemblies Filtered to: SDKs applicable to SQLiteDemo Search Windows (Ctrl+E) 2
P Solution Name Version Na
= me:
4 Wind P D 2 Microsoft Visual C++ Runtime
noows Microsoft Advertising SDK for Windows 8 (Xaml) 6.1 pecre
c Microsoft Visual C++ Runtime Package 11.0 N
ofe - Microsoft Visual Studio Test Core 1.0 11.0 ;
Extensions MSTest for Managed Projects 11.0 ’
Recent SQLite for Windows Runtime 3.7.15
b Browse

Browse... || 0K || Cancel

Figure 6-2. Adding project reference to SQLite for Windows Runtime

We should also reference the Microsoft Visual C++ Runtime Package because SQLite for Windows Runtime
depends on this. In fact, all native libraries require the Visual C++ Runtime package.

Now when you compile the project there will be a compile time error as we can’t build the project to target Any
CPU; hence we need to go to Project’s Configuration Manager Dialog box to change the targeted platform to X86
as shown in Figure 6-3. To target multiple architectures like X86, x64, and ARM we need to create three separate

packages—one targeting each architecture—and then upload the packages to the Windows Stores, as shown in
Figures 6-4 and 6-5.

91

CHAPTER 6~ LOCAL DATA ACCESS III: SQLITE

Configuration Manager ?
Active solution configuration: Active solution platform:
Debug ¥| Any CPU v

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform Build Deploy
BillReminder Debug v | %86 v vl

Figure 6-3. Changing the targeted platform from Visual Studio Configuration Manager

Create App Packages 2 IEEE

m Select and Configure Packages

Qutput location:

CAUsers\winodh\SkyDrive\Book8\Code\Chapter3\SQLiteDemo\SQLiteDemo\AppPackagesh E
Version:
1 .0 .10

(] Automatically increment

Select the packages to create and the solution configuration mappings:

Architecture Solution Configuration

| Neutral Release (Any CPU) -
' [+ ' x86 ' Release (x86) v
..r;"_i . x64 . Release (x64) -
9| arm || Release (ARM) v

[+ Include public symbol files, if any, to enable crash analysis for the app

Figure 6-4. Creating packages targeting all three architectures

92

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

ENE
e ®| 8% https://appdev.microsoft.com/StorePortals/en-US/Developer/C O ~ & C ”'. oz MyBudg... % | E Google] | {nr 5.7 o3

R Cigncut
== | Dev Center - Windows Store apps fol
Home Dashboard Docs Samples Downloads Support Community
App name 2
Selling details ; . . oA G
A Use the control to upload the packages (the mﬁle] that you created with Create App Packages in Visual Studio. Some parts of the
Age rating package are specific to your Windows Store developer account. To build the .appxupload package correctly in Visual Studio, sign in with the
Cryptography Microsoft account that you use with your Windows Store developer account. Learn more
Packages
Description

Motes to testers

News

MNew Windows ACK

Strong proofs set up

Avoid common certification failures
Globalize your app

Hew to submit your app

Drag your packages here or browse to files.

Up

File name

5QLiteDemo_1.0.0.0_ARM.appxupload
We uploaded the package.

SQLiteDemo_1.0.0.0_x64.appxupload
‘We uploaded the package.

SQLiteDemo_1.0.0.0_x86.appxupload
‘We uploaded the package.

Identity

48644W3Force MyBudget

48644 W3Force.MyBudget

48644W3Force MyBudget

Version

v1.0.0.0

v1.000

v1.0.0.0

Figure 6-5. Adding all three packages to the Windows Store App Submission Wizard

Architecture

arm x
x64 x
%86 x

At this point the SQLite library becomes a part of the project but we need a managed wrapper in C# for
interacting with the C++ library. Because writing something similar is not within the scope of this book, we use an
open source LINQ-based wrapper, sqlite-net, that we will be able to get from NuGet (see Figure 6-6).

93

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

SQLiteDemo - Manage NuGet Packages

b Installed packages Stable Only * Sortby: Relevance

4 Online . sqlite-net
A NET client library to access SQLite

NuGet official package source embedded database files in a LINQ manner.

Search Results

P Updates

Each package is licensed to you by its

owner. Microsoft is not responsible

for, nor does it grant any licenses to,

third-party packages. 1

Figure 6-6. Adding sqlite-net library to the project

Introduction to MVVM Light Toolkit

Install

sqlite-net 3

Created by: Frank Krueger

Id: sqlite-net

Version: 1.0.5

Last Updated: 12/15/2012

Downloads: 5997

View License Terms

Project Information

Report Abuse

Description:

sqlite-net is an open source, minimal library
to allow .NET and Mono applications to
store data in 5QLite databases. It is written
in C# 3.0 and is meant to be simply
compiled in with your projects. It was first
designed to work with MenoTouch on the
iPhone, but should work in any other CLI
environment,

Tags: sqlite sql monotouch database metro
winrt
Dependencies:

No Dependencies

Close

One of the most popular MVVM frameworks is MVVM Light Toolkit, which is a versatile framework that allows you
to construct customized applications. It provides help getting around some of the main points in building MVVM
applications. MVVM Light was developed by Laurent Bugnion initially for Silverlight and Windows Phone, and
later was ported to Windows 8 apps. MVVM Light Toolkit consists of several components that make writing MVVM

applications easier, including the following.

e ObservableObject: This class basically implements INotifyPropertyChanged and can be
used in the places where ViewModelBase is not necessary but the INotifyPropertyChanged

functionality is still required.

e ViewModelBase: This class can be used as the base class for ViewModels and it implements

INotifyPropertyChanged.

e Messenger: This class is used to communicate within the application.

e RelayCommand: This implements the ICommand interface that a button control needs to pass the

calls on to a function in the ViewModel.

e Visual Studio Project Templates.

94

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

MVVM Light Toolkit for Visual Studio 2012 can be downloaded from http://mvvmlight.codeplex.com/.
After installing the toolkit you will see that there is a new project template available in the Visual Studio 2012 New
Project dialog box, as shown in Figure 6-7.

New Project ? IEN
b Recent NET Framework4.5 ~ Sortby: Default - Search Installed Templates (Ctrl+E) @ ~
4 Installed
. Mvvmlight (Win8) Visual C# Type: Visual C=
4 Templates A "light” Windows 8 XAML/C# Model-
cn = : Lok
4 Visual G2 :] . 2 View-ViewModel application (by GalaSoft
15U Blank App (XAML) Visual C et B o)
Windows Store
. s
Windows P] Grid App (XAML) Visual C#
Web
cn
Ehoud FT1 splitApp (xamy) Visual C#
Reportin ==
S'I:ed' hgt o
wverig n“ﬁ! Class Library (Windows Store apps) Visual C#
Test -
cn
WCF n“ﬁ! Windows Runtime Component Visual C# .
Windows Phone - -
Workflow nﬁc' 2 . o
Unit Test Library (Windows Store apps) Visual C# .
XNA Game Studio 4.0 =
b Other Languages
i Other Project Types . o .
Modeling Projects llght tOO |'\|t
Samples
b Online
Name: BillReminder
Location: C:\Users\vinodh\SkyDrive\Book8\Code\Chapter6\ >
Selution name: BillReminder [¥] Create directory for solution
[[] Add to source control
[ok || conce

Figure 6-7. MVVM Light Windows Store app project template

We can also include the MVVM Light in an existing project by getting it from NuGet as shown in Figure 6-8.

95

http://mvvmlight.codeplex.com/

CHAPTER 6~ LOCAL DATA ACCESS III: SQLITE

b Installed packages

4 Online

Stable Only

SQLiteDemo.sin - Manage NuGet Packages

~ Sortby: Relevance ¥

> IEN

MVVMLight X

_lr::\m' ughlfight S Created by: Laurent Bugnion (GalaSoft)
MNuGet official package source components helping people to get started in... Id: MvwmLight
Search Results Version: 4.1.23.0
; \ MVVM Light libraries only Last Updated: 12/16/2012
Updates = The MVVM Light Toolkit is a set of components helping Downloads: 31418
people to get started in the Model-View-ViewModel pattern i... View License Terms
Project Information
_ MVVM Light [Preview] Report Mise
= The MVVM Light Toolkit is a set of components helping Description:
people to get started in the Model-View-ViewModel pattern i... The MVVM Light Toolkit is a set of
9 g
components helping people to get started
B . : in the Model-View-ViewModel pattern in
N MVVM Light libraries only [Preview] L L 2
= The MVVM Light Toolkit is a set of components helping Silverlight, WPF, Windows Phone 7 and

Each package is licensed to you by its
owner. Microsoft is not responsible
for, nor does it grant any licenses to,
third-party packages.

@
&

people to get started in the Model-View-ViewModel pattern i...

Windows 8. It is a light and pragmatic
framework that contains only the essential
components needed. This is V4 RTM!

MadProps.MvvmLight

A contrib project for MVVM Light, adding support for Tags: mvwm mvvmlight silverlight wp7

coroutines and a screen conductor. windows8 winrt wing wpf
Dependencies:

MVVMT4
T4 Templates for generating view models, and views for WPF,

Sitverlight, Windows Phone using T4 Toolbox and MVVM Lig...

AtomicMVVM
A supremely lightweight MVWM framework for WPF & Metro
projects.

Figure 6-8. Referencing MVVM Light from NuGet Packages

No Dependencies

Building a Bill Reminder Windows 8 App

Now that we understand the fundementals of SQLite and MVVM Light, we will use these skills in building a simple Bill
Reminder Windows 8 app. By building this app, you will learn to integrate SQLite and use it as a local database within
a Windows 8 app. You will also learn to apply some of the MVVM and XAML techniques like ViewModelLocator, IOC,
EventAggregator, RelayCommand, and ValueConverters. Knowing these techiniques will help you understand some
of the common MVVM implementation practices that can also be applied when using the other MVVM Frameworks
like Caliburn.Micro and Prism.

Our Bill Reminder app is a personal finance application that helps to keep track of one’s bills. Using this app,
the user can create a bill reminder. As shown in Figure 6-9, this app displays the recent bills on the start page with an
option to mark a bill as paid.

96

Bill Reminder

Recent Bills

Capital One Bank Of America

12/22/2n2 122720012

Cable Vision

CHAPTER 6

¥ ConED

35000 12/27/2012

Paid

Figure 6-9. The Bill Reminder app start page lists the recent bills

Project Structure

LOCAL DATA ACCESS ll: SQLITE

The project has three main folders corresponding to Model, ViewModel, and View. The project structure shown in
Figure 6-10 is very similar to the New York Times Best Seller MVVM sample that we created in Chapter 1.

97

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

faJ Solution 'BillReminder' (1 project)
4 BillReminder

b
b

K Properties
=B References
B Assets
B Common
@ Converters
b ©* DateTimeToStringConverter.cs
b c* DecimalToStringConverter.cs
b c* VisibilityConverter.cs
[Design
@ Helpers
b c* INavigationService.cs
b € NavigationService.cs
@ Model
c# Bill.cs
c# Billtem.cs
c# Category.cs
DataService.cs
c* |DataService.cs
c* PaidBill.cs
i Skins
& ViewModel
b c= BillViewModel.cs
b = MainViewModel.cs
b c* ViewModelLocator.cs
ml Views
b) BillView.xaml
b 1) MainPagexaml
N Appxaml
& MvwmLight.Wing_TemporaryKey.pfx
k5] Package.appxmanifest

T v v v ww
n
]

¥ packages.config
c= SQlite.cs
c# SQLiteAsync.cs

Figure 6-10. Bil [Reminder app project structure

Creating Database Tables

The main functionality of our Bill Reminder app is to help keep track of the bills. In this app we can create a new bill,
edit a bill, and mark a bill paid. We create three SQLite database tables for this purpose.

e Category: This is a lookup table for grouping bills into various categories, such as credit card,
loan, and so on.

e Bill: This table stores the bill details.
e Paid Bill: This table is used to track the paid bill details.

The sqlite-net approach is similar to other ORM-based databases like SQLCE for Windows Phone. Hence we will
create a class for every table that we need to create and will augment the properties with attributes (see Figure 6-11).
That will let sqlite-net assign matching column properties when generating the table in SQLite.

98

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

" Category A [Bil A | [PaidBill A |
Class Class Class
= Properties = Properties = Properties
CategorylD # Amount # Amount
K& Name & BilllD & BillD
4 # CategorylD & PaidBilllD
DueDate & PaidDate
& IsRecurring 2
& Name

Figure 6-11. Class diagram of the Bill Reminder SQLite tables

These classes, shown in Listing 6-1, are enhanced with attributes that are supported by the sqlite-net library. Let’s
briefly look into the funtionality of each one of these attributes.

e PrimaryKey: Used to uniquely identify each record in a table.

e Autolncrement: Used in conjection with the PrimaryKey column to create a value
automatically every time a new row is inserted.

¢ MaxLength: Used to specify the maximum number of characters that can be stored in the
column.

e Indexed: Used in a column that will most likely be the WHERE clause, ORDER BY, or JOIN in
the queries. An index on the appropriate columns can improve performance.

Listing 6-1. Category, Bill, and PaidBill Classes

public class Category

{
[PrimaryKey, AutoIncrement]
public int CategoryID { get; internal set; }
[MaxLength(50)]
public string Name { get; internal set; }
}

public class Bill
{

[PrimaryKey, AutoIncrement]
public int BillID { get; internal set; }

[MaxLength(150)]
public string Name { get; internal set; }

public DateTime DueDate { get; internal set; }

99

CHAPTER 6 = LOCAL DATA ACCESS lII: SQLITE
public bool IsRecurring { get; internal set; }
public int CategoryID{get; internal set; }

public Decimal Amount { get; internal set; }

}

public class PaidBill

{ [PrimaryKey]
public int PaidBillID { get; internal set; }
[Indexed]
public int BillID { get; internal set; }
public DateTime PaidDate { get; internal set; }
public Decimal Amount { get; internal set; }

}

Note We intentionally left out some of the code like Value Converters in this chapter to simplify the explanations
improve readability. The source code that you can download from the APress web site has the complete implementation.

As mentioned earlier, the SQLite database is a single file database. Let’s name it billreminder.sqlite and store the file
in the app’s local folder. To create the database, add the code shown in Listing 6-2 to the APP.xaml OnLaunched method.

Listing 6-2. Creating SQLite Database with Three Tables

private string dBPath = string.Empty;

public string DBPath

{
get
{
return dBPath;
}
set
{
if (dBPath == value)
{
return;
}
dBPath = value;
}
}

100

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

protected override void OnLaunched(LaunchActivatedEventArgs args)

{
Frame rootFrame = Window.Current.Content as Frame;
// Do not repeat app initialization when the window already has content,
// just ensure that the window is active
if (rootFrame == null)
{
// Create a frame to act as the navigation context and navigate to the first page
rootFrame = new Frame();
dBPath = Path.Combine(
Windows.Storage.ApplicationData.Current.LocalFolder.Path,
"billreminder.sqlite");
// Initialize the database
using (var db = new SQLite.SQLiteConnection(dBPath))
{
// Create the tables if they don't exist
db.CreateTable<Category>();
db.CreateTable<Bill>();
db.CreateTable<PaidBill>();
LoadDefaultData();
}
// Place the frame in the current window
Window.Current.Content = rootFrame;
}
if (rootFrame.Content == null)
{
if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))
{
throw new Exception("Failed to create initial page");
}
}
// Ensure the current window is active
Window.Current.Activate();
DispatcherHelper.Initialize();
}

The code in Listing 6-2 creates the database and tables if they are not yet created and will call the
LoadDefaultData method to insert default values in to the Category table. We have used the sqlite-net
SQLLiteConnection class to create the table. The CreateTable method of the SQLLiteConnection class that takes
a class as a parameter is used to create a table in the database based on the properties and attributes of the class
(see Listing 6-3).

Listing 6-3. Loading Default Data into the Category Table
private void LoadDefaultData()
{ using (var db = new SQLite.SQLiteConnection(dBPath))
if (!db.Table<Category>().Any())
db.Insert(new Category()

101

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

{
Name = "Credit Card"
D;
db.Insert(new Category()
{
Name = "Loan"
D;
db.Insert(new Category()
{
Name = "Utilities"
D;
}
}
}
Model

Apart from the ORM class files (Category, Bill, and PaidBill) that we already discussed, the Model folder also includes
the IDataService interface and DataService class. The DataService class is the central repository for all the database
interactions, like methods for Create, Read, Update, and Delete (CRUD) actions. Listing 6-4 shows three methods that
are in the DataService class to insert, update, and read bills. In each of these methods, after establishing a connection
using SQLiteConnection, we use the Insert, Update, or Get method to add, update, or read bill data.

Listing 6-4. Methods for Adding, Updating, and Retrieving Bills
public void AddBill(Bill bill)

{
using (var db = new SQLite.SQLiteConnection(DBPath))
db.Insert(bill);
}
}
public void UpdateBill(Bill bill)
{
using (var db = new SQLite.SQLiteConnection(DBPath))
db.Update(bill);
}
}
public Bill GetBillByID(int billID)
{
using (var db = new SQLite.SQLiteConnection(DBPath))
{
return db.Get<Bill>(billID);
}
}

102

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

The DataService class also includes a GetBills method that takes date as a parameter. This method gets all the
bills for a given month by executing a SQL query using the SQLiteConnection object’s Query method (see Listing 6-5).
The generic parameter to the Query method specifies the type of object to create for each row. It can be one of your
table classes, or any other class with public properties that match the column returned by the query.

Listing 6-5. The GetBills Method Gets All the Bills for a Given Month

public ObservableCollection<Billtem> GetBills(DateTime month)
{
DateTime fromDate = new DateTime(month.Year, month.Month, 1);//first day of the month
DateTime toDate = fromDate.AddMonths(1).AddDays(-1);// last day of the month
string sql = string.Format("SELECT b.BillID,b.Name, c.Name as Category, b.DueDate, p.PaidDate,
b.Amount, p.Amount as PaidAmount FROM Bill b Join Category c on b.CategoryID= c.CategoryID LEFT
JOIN PaidBill p on (p.BillID = b.BillID) WHERE (b.IsRecurring = 1 or b.DueDate BETWEEN '{0}' AND
"{1}")", fromDate.ToString("MM/dd/yyy"), toDate.ToString("MM/dd/yyy"));
var bills = new ObservableCollection<Billtem>();
using (var db = new SQLite.SQLiteConnection(DBPath))
{
var query = db.Query<Billtem>(sql);
foreach (var item in query)
{
Billtem bi = new Billtem(this);
bi.BillID = item.BillID;
bi.Name = item.Name;
bi.Category = item.Category;
bi.DueDate = item.DueDate;
bi.Amount = item.Amount;
bi.PaidAmount = item.PaidAmount;
bi.PaidDate = item.PaidDate;
if (bi.PaidAmount > 0 88 bi.PaidDate > DateTime.MinValue)
{

}
bills.Add(bi);

bi.IsPaid = true;

}

return bills;
To match the query public property, we create a new class, Billtem, as shown in Listing 6-6. This class inherits
MVVM Light ObservableObject, which in turn implements INotifyPropertyChanged.

Listing 6-6. Properties of the Billltem Class That Holds the Bill Information

public class Billtem : ObservableObject
{

private readonly IDataService _dataService;

public Billtem() { }

103

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

public Billtem(IDataService dataService)

{
}

public int BillID { get; set; }

_dataService = dataService;

private string _name = string.Empty;

public string Name

{
get
{
return _name;
}
set
{
if (_name == value)
{
return;
}
_hame = value;
RaisePropertyChanged("Name");
}
}

private string _category = string.Empty;

public string Category

{
get
{
return _category;
}
set
{
if (_category == value)
return;
}
_category = value;
RaisePropertyChanged("Category");
}
}

private DateTime _dueDate = System.DateTime.Today;

104

CHAPTER 6

public DateTime DueDate

{
get
{
return _dueDate;
}
set
{
if (_dueDate == value)
{ return; }
_dueDate = value;
RaisePropertyChanged("DueDate");
}
}

private DateTime _paidDate = System.DateTime.Today;

public DateTime PaidDate

{
get
{
return _paidDate;
}
set
{
if (_paidDate == value)
{ return; }
_paidDate = value;
RaisePropertyChanged("PaidDate");
}
}

private Decimal _amount = 0;

public Decimal Amount

{
get
{
return _amount;
}
set
{
if (_amount == value)
{ return; }
_amount = value;
RaisePropertyChanged("Amount");
}
}

private Decimal _paidAmount = 0;

LOCAL DATA ACCESS ll: SQLITE

105

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

public Decimal PaidAmount

{
get
{
return _paidAmount;
}
set
{
if (_paidAmount == value)
{ return; }
_paidAmount = value;
RaisePropertyChanged("PaidAmount");
}
}

private bool _isPaid ;

public bool IsPaid

{
get
{
return _isPaid;
}
set
{
if (_isPaid == value)
{ return; }
_isPaid = value;
RaisePropertyChanged("IsPaid");
}
}

The BillItem class also includes a RelayCommand that gets invoked when a bill is marked as paid by pressing the
Pay button as shown in Figure 6-9. RelayCommand passes the call to the ExecutePayCommand method, which in turn
calls the MarkPaid method in the DataService class, as shown in Listing 6-7.

Listing 6-7. RelayCommand Within the Billltem Class Calls the ExecutePayCommand Method

private RelayCommand _payCommand;

public RelayCommand PayCommand

{
get
{
return _payCommand
?? (_payCommand = new RelayCommand(ExecutePayCommand));
}
}

106

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

private void ExecutePayCommand()

{
PaidAmount = Amount;
_dataService.MarkPaid(BillID, PaidAmount);
IsPaid = true;

}

The MarkPaid method then inserts a row in the PaidBill table by using the SQLiteConnection object’s Execute
method, as shown in Listing 6-8.

Listing 6-8. MarkPaid Method Inserts a Row in the PaidBill Table
public void MarkPaid(int billID, decimal amount)

{
using (var db = new SQLite.SQLiteConnection(DBPath))
db.Execute("INSERT INTO PaidBill (BillID, PaidDate, Amount) values (2,?,?)"
, billID
, DateTime.Today.ToString("MM/dd/yyyy")
, amount);
}
}
ViewModel

The ViewModel folder consists of ViewModelLocator and two ViewModels: MainViewModel and BillViewModel.
ViewModelLocator is a repository of ViewModels enabled by MVVM Light that locates the ViewModel from inside
XAML and connects it to the View DataContent.

The App.xaml defines a global instance of the locator as shown in Listing 6-9, and individual views can bind their
DataContent to properties of the locator that serve up the individual ViewModels.

Listing 6-9. Global Instance of the ViewModelLocator in App.xaml

<Application.Resources>
<vm:ViewModellocator x:Key="Locator"
d:IsDataSource="True" />
</Application.Resources>

MVVM Light also made it simple to register Services and ViewModels by including a simple IOC container along
with the framework, as shown in Listing 6-10.

Listing 6-10. SimpleIOC Container Registers DataService, NavigationService, MainViewModel, and BillViewModel

public class ViewModellocator

{

static ViewModellocator()

{

Servicelocator.SetLocatorProvider(() => SimpleIoc.Default);
Simpleloc.Default.Register<IDataService, DataService>();
SimpleIoc.Default.Register<INavigationService>(() => new NavigationService());

107

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

SimpleIoc.Default.Register<MainViewModel>();
SimpleIoc.Default.Register<BillViewModel>();

}

[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance"”,
"CA1822:MarkMembersAsStatic”,
Justification = "This non-static member is needed for data binding purposes.")]
public MainViewModel Main

{
get
{
return Servicelocator.Current.GetInstance<MainViewModel>();
}
}

[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance"”,
"CA1822:MarkMembersAsStatic”,
Justification = "This non-static member is needed for data binding purposes.")]
public BillViewModel Bill

{
get
{
return Servicelocator.Current.GetInstance<BillViewModel>();
}
}

As shown in Listing 6-11, the ViewModels are exposed as properties of the ViewModellLocator and can be
databound in XAML to the View DataContext.

Listing 6-11. MainViewModel Databound to the MainPage.xaml Datacontext

<Page x:Class="BillReminder.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:ignore="http://www.ignore.com"
mc:Ignorable="d ignore"
d:DesignHeight="768"
d:DesignWidth="1366"
DataContext="{Binding Main, Source={StaticResource Locator}}">

MainViewModel

The MainViewModel constructor takes an IDataService and an INavigationService as parameters, as the SimpleIoc

container creates all the objects automatically. This ViewModel containes Bil1lItem ObservableCollection as one of
the property named Bills. This property retrieves recent bills using the DataService GetBills method and it will be

bound to the GridView control in the MainPage.xaml. MainViewModel also has two additional properties.

108

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://www.ignore.com/

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

SelectedBill: This property is to see if any bill is selected in the MainPage.xaml GridView

control and it is bound to the GridView SelectedItem element property.

ShowAppBar: The purpose of this property is to open the MainPage.xaml app bar when we
select a Bill from the GridView. The AppBar contains a Button control to edit the selected Bill.

ShowAppBar is bound to the AppBar IsOpen element property (see Listing 6-12).

Listing 6-12. ShowAppBar Property Is Bound to the MainPage.xaml AppBar IsOpen Property

<AppBar IsOpen="{Binding ShowAppBar, Mode=TwoWay}">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<StackPanel Orientation="Horizontal"/>

<StackPanel Grid.Column="1" HorizontalAlignment="Right" Orientation="Horizontal">

<Button x:Name="EditButton"
Style="{StaticResource EditAppBarButtonStyle}"
Command="{Binding EditCommand, Mode=OneWay}"
/>
<Button x:Name="AddButton"
Style="{StaticResource AddAppBarButtonStyle}"
Command="{Binding AddCommand, Mode=OneWay}"

/>
</StackPanel>
</Grid>
</AppBar>

MainViewModel also implements two RelayCommands that can be invoked by the user for adding new bill or
editing a selected bill, as shown in Listing 6-13. AddCommand passes the call to the ExecuteAddCommand method, which
in turn navigates to the Bill.xaml page. EditCommand is also used for navigating to Bi11.xaml, but it also sends the

selected Bill object using the MVVM Light Messaging event aggregator.

Listing 6-13. The MainViewModel Class

public class MainViewModel : ViewModelBase

{

private readonly IDataService _dataService;
private readonly INavigationService _navigationService;

public MainViewModel(IDataService dataService, INavigationService navigationService)

_dataService = dataService;
_navigationService = navigationService;

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

public ObservableCollection<Billtem> Bills

{
get

{

}
}

private Billtem selectedBill = null;

return _dataService.GetBills(DateTime.Now);

public Billtem SelectedBill

{
get

{

return _selectedBill;

}

set

{

_selectedBill = value;
ShowAppBar = true;
RaisePropertyChanged("SelectedBill");
}
}

private bool _showAppBar;

public bool ShowAppBar

{
get
{
return _showAppBar;
}
set
{
_showAppBar = value;
RaisePropertyChanged("ShowAppBar");
}
}

private RelayCommand _addCommand;

public RelayCommand AddCommand

{
get
{
return _addCommand
?? (_addCommand = new RelayCommand(ExecuteAddCommand));
}
}

110

}

CHAPTER 6

private RelayCommand _editCommand;

public RelayCommand EditCommand

{
get

{

return _editCommand
?? (_editCommand = new RelayCommand(ExecuteEditCommand));
}

}

private void ExecuteAddCommand()

{

_navigationService.Navigate(typeof(BillView));

}

private void ExecuteEditCommand()

{

_navigationService.Navigate(typeof(BillView));
Messenger.Default.Send<Billtem>(SelectedBill);
}

BillvViewModel

BillViewModel (see Listing 6-14) is the ViewModel for Bill.xaml. BillViewModel has properties that are bound to
the controls in Bill.xaml, which is then used to add or edit a bill.

Listing 6-14. Properties in the BillViewModel Class

public class BillViewModel : ViewModelBase

{

public int BillID { get; set; }
private string title = string.Empty;

public string Title

{
get
{
return title;
}
set
{
if (_title == value)
{
return;
}

LOCAL DATA ACCESS ll: SQLITE

111

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

_title = value;
RaisePropertyChanged("Title");

}
}

private string name = string.Empty;

public string Name

{
get
{
return _name;
}
set
{
if (_name == value)
{
return;
}
_name = value;
RaisePropertyChanged("Name");
}
}

private Category selectedCategory = null;

public Category SelectedCategory

{
get
{
return _selectedCategory;
}
set
{
_selectedCategory = value;
RaisePropertyChanged("SelectedCategory");
}
}

private DateTime _dueDate = System.DateTime.Today;

public DateTime DueDate

{
get

{
}

return _dueDate;

112

set
{
if (_dueDate == value)
{ return; }
_dueDate = value;
RaisePropertyChanged("DueDate");
}
}

private Decimal _amount = 0;

public Decimal Amount

{
get

{

return _amount;

}

set
{
if (_amount == value)
{ return; }
_amount = value;
RaisePropertyChanged("Amount");
}
}

private bool _isrecurring = true;

public bool Isrecurring

{
get

{

return _isrecurring;

}

set

{

_isrecurring = value;
RaisePropertyChanged("Isrecurring");
}
}

public IList<Category> Categories

{
get

{

return _dataService.GetCategories();

}
}

CHAPTER 6

LOCAL DATA ACCESS ll: SQLITE

113

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

In the BillViewModel Constructor we register the MVVM Light Messenger event aggregator so that the Bill
object sent from the MainViewModel EditCommand (see Listing 6-15) can be received here.

Listing 6-15. The Private Fields and the Constructor of BillViewModel

private readonly IDataService _dataService;
private readonly INavigationService navigationService;

public BillViewModel(IDataService dataService, INavigationService navigationService)
{
_dataService = dataService;
_navigationService = navigationService;
Title = "Bill Reminder";
Messenger.Default.Register<Billtem>(this, message =>
{
Bill bill = dataService.GetBillByID(message.BillID);
BillID = bill.BillID;
Name = bill.Name;
Amount = bill.Amount;
DueDate = bill.DueDate;
Isrecurring = bill.IsRecurring;
SelectedCategory = _dataService.GetCategoryByID(bill.CategoryID);
D;
}

Also we have two RelayCommands, shown in Listing 6-16. One is SaveCommand that is used to save the bill by calling
AddBill or UpdateBill from the DataService class depending on the action. BackCommand helps to navigate back to
MainPage.xaml.

Listing 6-16. The RelayCommands of the BillViewModel

private RelayCommand _saveCommand;

public RelayCommand SaveCommand

{
get
{
return _saveCommand
?? (_saveCommand = new RelayCommand(ExecuteSaveCommand));
}
}

private void ExecuteSaveCommand()

{
if (BillID > 0)

_dataService.UpdateBill(new Bill()

{
BillID = BillID,

Name = _name,
Amount = _amount,
IsRecurring = _isrecurring,

114

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

CategoryID = _selectedCategory.CategoryID,
DueDate = _dueDate
1;
}

else

{
_dataService.AddBill(new Bill()

{
Name = _name,
Amount = _amount,
IsRecurring = _isrecurring,
CategoryID = _selectedCategory.CategoryID,
DueDate = _dueDate

1;

}

_navigationService.Navigate(typeof(MainPage));

}

private RelayCommand _backCommand;

public RelayCommand BackCommand

{

get

{

return _backCommand
?? (_backCommand = new RelayCommand(ExecuteBackCommand));

}
}
private void ExecuteBackCommand()
{

_navigationService.GoBack();
}
Views

MainPage.xaml is the starting page of the Bill Reminder Windows 8 app. Its code is shown in Listing 6-17. This view has a
GridView control and two app bar buttons for navigating to the Bi1ll.xaml page. The GridView control binds to the Bi1l
property in the MainViewControl and displays the recent bills. We use a data template to customize the way we showcase
our bill information in the GridView. The displayed bill information has two modes, depending on the status of the Bill
object’s IsPaid property. If the IsPaid property is false then we display a Textbox for entering the bill amount and a Button
to mark the bill as paid. This button command is bound to the PaidCommand in the MainViewModel. But if the bill is paid
instead then this control’s Visibility property is set to Collapsed using a ValueConverter BoolToValueConverter.

Listing 6-17. The MainPage.Xaml

<Page x:Class="BillReminder.MainPage"
mc:Ignorable="d ignore"
d:DesignHeight="768"
d:Designhidth="1366"
xmlns:converters="using:BillReminder.Converters"

115

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

DataContext="{Binding Main, Source={StaticResource Locator}}">
<Page.Resources>
<ResourceDictionary>
<!--Converters declaration-->
<converters:DateTimeToStringConverter
x:Key="DateTimeToStringConverter"/>
<converters:DecimalToStringConverter
x:Key="DecimalToStringConverter"/>
<converters:VisibilityConverter
x:Key="VisibilityConverter"
TrueValue="Collapsed"
FalseValue="Visible"/>
<converters:VisibilityConverter
x:Key="InverseVisibilityConverter"
TrueValue="Visible" FalseValue="Collapsed"/>
<!--Data Template to display bill info-->
<DataTemplate x:Key="BillDataTemplate">
<Grid
Background="{StaticResource ListViewItemPlaceholderBackgroundThemeBrush}">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="195*"/>
<ColumnDefinition Width="97*"/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="34*"/>
<RowDefinition Height="42*"/>
<RowDefinition Height="51*"/>
</Grid.RowDefinitions>
<TextBlock
Text="{Binding Name}"
Grid.ColumnSpan="2"/>
<StackPanel Grid.Row="1" Grid.ColumnSpan="2">
<TextBlock
Text="{Binding DueDate, Mode= TwoWay, Converter={StaticResource DateTimeToStringConverter}}"/>
<TextBox
Visibility="{Binding IsPaid,Converter={StaticResource VisibilityConverter}}"
Text="{Binding Amount, Mode=TwoWay, Converter={StaticResource DecimalToStringConverter}}" />
<TextBlock
Visibility="{Binding IsPaid,Converter={StaticResource InverseVisibilityConverter}}"
Text="{Binding PaidAmount, Mode=TwolWay, Converter={StaticResource DecimalToStringConverter}}"/>
</StackPanel>
<StackPanel Grid.Row="2" Grid.Column="1">
<TextBlock
Visibility="{Binding IsPaid,Converter={StaticResource InverseVisibilityConverter}}"
Text="Paid" />
<Button
Content="Pay"
Visibility="{Binding IsPaid,Converter={StaticResource VisibilityConverter}}"
Command="{Binding PayCommand, Mode=OneWay}"/>
</StackPanel>
</Grid>
</DataTemplate>

116

CHAPTER 6

<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="../Skins/MainSkin.xaml" />
</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>
</Page.Resources>
<Page.BottomAppBar>
<AppBar
IsOpen="{Binding ShowAppBar, Mode=TwoWay}">
<Grid»
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<StackPanel Grid.Column="1">
<!--Edit Appbar Button-->
<Button x:Name="EditButton"
Style="{StaticResource EditAppBarButtonStyle}"
Command="{Binding EditCommand, Mode=OneWay}" />
<!--Add Appbar Button-->
<Button x:Name="AddButton"
Style="{StaticResource AddAppBarButtonStyle}"
Command="{Binding AddCommand, Mode=OneWay}"/>
</StackPanel>
</Grid>
</AppBar>
</Page.BottomAppBar>

<Grid
Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>
<RowDefinition Height="140"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>
<TextBlock x:Name="PageTitle"
Text="Bill Reminder"
Grid.Column="1"
Style="{StaticResource PageHeaderTextStyle}"/>
</Grid>
<!--GridView to display the recent bills-->
<GridView x:Name="BillGridView"
Grid.Row="1"
Margin="110,50,0,0"
Foreground="White"
SelectionMode="Single"
IsSwipeEnabled="True"
IsItemClickEnabled="True"

LOCAL DATA ACCESS ll: SQLITE

117

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

ItemsSource="{Binding Bills}"
Header="Recent Bills"
FontSize="32"
ItemTemplate="{StaticResource BillDataTemplate}"
SelectedItem ="{Binding SelectedBill, Mode=TwolWay}" >
<GridView.ItemsPanel>
<ItemsPanelTemplate>
<WrapGrid
Orientation="Horizontal" />
</ItemsPanelTemplate>
</GridView.ItemsPanel>
</GridView>
</Grid>
</Page>

Note We intentionally left out the most of the XAML code related to styling and positioning of the controls in this
chapter to simplify the explanations and for easier rediability. The source code that you can download from the APress
web site has the complete implementation.

BillView.xaml is used to create and edit a bill. This page, shown in Figure 6-12, has controls like TextBox,
ComboBox, and CheckBox that binds to the properties of the BillViewModel .

Bill Reminder

Edit Bill

Figure 6-12. BillView.xaml displays a bill’s details

118

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

Also on the page we have two buttons. The Save button is used to save the Bill object to the database and this
button command property is bound to the BillViewModel’s SaveCommand. The BackButton is used to navigate back to
MainPage.xaml. This page has a ComboBox that allows the user to pick a bill category. This ComboBox is bound to the
Categories property of the ViewModel, and the SelectedItemis bound two-way to the SelectedCategory property
(see Listing 6-18).

Listing 6-18. The Bill.xaml

<Page x:Class="BillReminder.Views.BillView"
x:Name="pageRoot"
xmlns:converters="using:BillReminder.Converters"
mc:Ignorable="d ignore"
d:DesignHeight="768"
d:DesignWidth="1366"
DataContext="{Binding Bill, Source={StaticResource Locator}}">
<Page.Resources>
<ResourceDictionary>
<converters:DateTimeToStringConverter
x:Key="DateTimeToStringConverter"/>
<converters:DecimalToStringConverter
x:Key="DecimalToStringConverter"/>
</ResourceDictionary>
</Page.Resources>
<Page.BottomAppBar>
<AppBar IsOpen="True">
<Grid»
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<StackPanel Orientation="Horizontal"/>
<StackPanel Grid.Column="1">
<!--Bill Edit button-->
<Button x:Name="EditButton"
Style="{StaticResource SaveAppBarButtonStyle}"
Command="{Binding SaveCommand, Mode=OneWay}" />
</StackPanel>
</Grid>
</AppBar>
</Page.BottomAppBar>
<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>
<RowDefinition Height="140"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>
<Grid»
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>
<Button

119

CHAPTER 6 * LOCAL DATA ACCESS III: SQLITE

x:Name="backButton"
Command="{Binding BackCommand, Mode=OneWay}"
Style="{StaticResource BackButtonStyle}"/>
<TextBlock x:Name="pageTitle"
Text="Bill Reminder"
Style="{StaticResource PageHeaderTextStyle}"
Grid.Column="1"/>
</Grid>
<!--Controls for inputting Bill details-->
<StackPanel Grid.Row="1">
<StackPanel>
<TextBlock
Text="{Binding Title}"/>
</StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock
Text="Bill Name"/>
<TextBox
Text="{Binding Name, Mode=TwoWay}"/>
</StackPanel>
<StackPanel Orientation="Horizontal">">
<TextBlock Text="Category"/>
<ComboBox
ItemsSource="{Binding Categories}"
DisplayMemberPath="Name"
SelectedItem="{Binding SelectedCategory, Mode=TwoWay}"/>
</StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock
Text="Due Date"/>
<TextBox
Text="{Binding DueDate, Converter={StaticResource
DateTimeToStringConverter}, Mode=TwoWay}"/>
</StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock
Text="Amount"/>
<TextBox
Text="{Binding Amount, Converter={StaticResource DecimalToStringConverter},
Mode=TwolWay}"/>
</StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock
Text="Recurring?"/>
<CheckBox
IsChecked="{Binding IsRecurring, Mode=TwoWay}"/>
</StackPanel>
</StackPanel>
</Grid>
</Page>

120

CHAPTER 6 © LOCAL DATA ACCESS III: SQLITE

Now with all the codes in place, when we run the Bill Reminder app the user will be able to create bills and also
mark a recent bill paid, as the one shown in Figure 6-9.

Ideas for Improvement

The Bill Reminder app can be worked on and improved to make it a fully functional financial management app.
The following are some of the features that can be added.

e Extend the app by adding support for registering income and expenses to make it a
full-fledged personal finance app.

e Localize the app by supporting different languages, currencies, and formats.
e Incude spending analysis tools with dynamic graphs and reports.

e Supportlive tiles and bill reminder notifications.

Conclusion

This chapter introduced you to SQLite, SQLite wrapper sqlite-net, and MVVM Light and discussed how this
framework is used in building a real-world Windows 8 app. Specifically, it discussed integrating SQLite into a
Windows 8 app and using it as a local database to store data, building an app that is based on the MVVM pattern.
With this chapter we conclude Part 2 of this book, which explained the various Windows 8 app local storage
options. In the next section we look at various remote data access options, including Windows Azure Mobile Services.

121

CHAPTER 7

ASP.NET Web API

In the last three chapters, we saw some of the local storage options that can be used to store data locally and have
also built apps that are best suited for storing data locally. Storing data locally will not be a best option in many cases
especially when we build line of business (LOB) applications. There are times when our app needs to interact with a
very large quantity of data stored in the database servers like SQL Server, Oracle, and so on. As of now we don’t have
the necessary APIs similar to ADO.NET in WinRT to communicate directly with the database, so we need to build
a server-side async/services infrastructure that exposes the data by connecting to the database, which can then be
consumed by the Windows 8 app.

In the next three chapters we learn about a few such service infrastructures that can be used to store or retrieve
data within Windows 8 apps. To start with, in this chapter we learn to set up a CRUD ASP.NET Web API Rest service
and consume this service from a Windows Store JavaScript app by building a Party Planner app.

Introduction to ASP.NET Web API

ASP.NET Web API introduced with ASP.NET MVC 4.0 and .NET 4.5 is a new addition to the ASP.NET stack that allows
you to create RESTful and AJAX APIs that lets you build web or HTTP-based client or server endpoints.

Why Should We Use Web API?

ASP.NET Web API is Microsoft’s answer to a modern programming landscape for building a service layer that can be
easily consumed by most clients. Web API is an ideal platform for building pure HTTP-based services that can be useful
while building a multiplatform applications like apps for desktop applications, HTML5, iOS, Android, Windows 8, and
Windows Phone, as all these clients can make GET, PUT, POST, and DELETE requests and get the Web API response.

Building the Party Planner Windows 8 App

Organizing a party is a tedious job that involves lot of planning, like creating a guest list, making a shopping list,
and so on. With our Party Planner Windows 8 app we no longer have to write these lists on a scrap of paper.

This app will help to manage and track various parties by maintaining guest lists and records of party supplies.
We create this app using HTML5 and JavaScript with SQL Server as the database. We also build a service layer for
data interaction between the HTML client and SQL Server using ASP.NET Web API. EntityFramework Code First
will be used as data access layer.

123

CHAPTER 7 © ASP.NET WEB API

Getting Started

To start with, let’s create a new Windows Store Blank App (JavaScript) project and name the project PartyPlanner.App
and the solution PartyPlanner. We add two new pages to the project: home.html and manageparty.html. Next we add
anew Visual C# ASPNET MVC 4 Web Application to the solution (see Figure 7-1) and name it PartyPlanner.Web.

Add New Project F=]
b Recent {NET Framework45 * Sortby: Default - —E| Search Installed Templates (Ctrl+E) =
4 Installed cs i
g_l ASP.NET Empty Web Application Visual C# Type: Visual C=
4 Visual C2 . A project for creating an application using
Windows Store 5‘_[ASP.NET Web Forms Application Visual C# ASP.NET MVC 4 and Web API
Windows
s
Web E_] ASP.NETMVC3 Web Application Visual C#
Cloud
; s
Reporting g_] ASP.NET MVC 4 Web Application Visual C#
Silverlight
cn
Test @ ASP.NET Dynamic Data Entities Web Application Visual C#
WCF h
: s
Windows Phone !i ASP.NET AJAX Server Control Visual C#
Workflow
s
et fiD) ASPNET AJAX Server Control Extender Visual C#
b Other Languages
y H cs
B Other I_ijgd _Types i ASP.NET Server Control Visual C#
Meodeling Projects i
b Online
Name: PartyPlanner.Web
Location: D:\SkyDrive\Book8\Code\9781430249924 _ch0T\ - Browse...
I QK J | Cancel

Figure 7-1. Visual Studio template for adding new ASPNET MVC 4 application

In the New ASP.NET MVC 4 Project dialog box (see Figure 7-2), select Web API and click OK to add the
PartyPlanner.Web project to the solution.

124

CHAPTER 7 © ASP.NET WEB API

New ASP.NET MVC 4 Project il
Project Template
Select a template: Description:
ce c* c* C An ASP.NET Web API Project.
g1 B1 &1 B
Empty Basic Internet Intranet

Application Application
7] |
ol el
Mobile Web API
Application

View engine:

Razor

[] Create a unit test project
Test project name:
PartyPlanner.Web.Tests
Test framework:

Visual Studic Unit Test Additional Info

Figure 7-2. Selecting WebAPI template as project template

This adds the necessary files and DLL references to the PartyPlanner.Web project. With this addition the
PartyPlanner solution will look like the one shown in Figure 7-3.

125

CHAPTER 7 © ASP.NET WEB API

Solution Explorer o [m |
@ o-2napd #RH
Search Solution Explorer (Ctrl+;) P~

R Solution 'PartyPlanner’ (2 projects)
4 [)s| PartyPlanner.App
b =m References
b i css
b M images
b i js
4 @ pages
4 (@ home
home.css
) home.html
IT homejs
4 {m] manageparty
manageparty.css
I\ manageparty.html
IT manageparty.js
b i Scripts
I\ default.html
package.appxmanifest
¥ packages.config
&= PartyPlanner.App_TemporaryKey.pfx
4 gpartyplanner.Web
& Properties
=B References
i App_Data
B App_Start
@ Content
i Controllers
i Images
B Models
W Scripts
Views
favicon.ico
b &) Global.asax
3 packages.config
b Web.config

vV

vV vVvvwevwvw

Figure 7-3. Party Planner project structure

Creating Database Tables

The main functionality of the Party Planner app is to help keep track of the shopping lists and guest lists for parties.
For this purpose, we create three SQL Server databases with tables using the EntityFramework Code First approach.

e Party: Stores the party details.
e Guest: Stores the guest list for the party.

e Shoppingltem: Stores the list of items that has to be purchased for the party.

126

CHAPTER 7 © ASP.NET WEB API

EntityFramework Code First

EntityFramework Code First is introduced with EntityFramework. This enables a code-centric approach in building
the model instead of working with the designer or XML mapping file. The following are some of the advantages of
using Code First.

e It defines an object model using the POCO (plain old CLR object) class with no base class or
attributes, so there is no more autogenerated code to work with.

e Itsupports data persistence without complex configuration.
e It'ssimple, as there is no edmx model to update or maintain.

e Code-First handles creation and modification of the database schema such that a database is
just storage with no logic.

To enable EntityFramework we reference the library in the project using the NuGet package as shown in
Figure 7-4 along with JSON.NET.

PartyPlanner - Manage NuGet Packages ? “
4 |nstalled packages Sort by: Name: Ascending - Search Installed packages (Ctrl+E) P~
All f Ent_ityFramework_ . “ Created by: James Newton-King
) Entity Framework is Microsoft's 1d: Newt ft)
b Online recommended data access technology for... V. : ':":g 22500
ersion: 4.5.

b Updates D = 5 View License Terms

© jaars jQuery Ul (Combined Library) Project Information

The full jQuery Ul library as a single S
combined file. Includes the base theme. Description:

Json.NET is a popular high-performance
~ jQuery Validation JSON framework for NET

B A jQuery plugin that makes simple Tags: json

clientside form validation trivial. Dependencies:

No Dependencies

S jQuery
e JQuery is a fast and concise JavaScript
Library that simplifies HTML document tr...

Json.NET
Json.NET is a popular high- m

performance JSON frame...

Each package is licensed to you by its
owner. Microsoft is not responsible
for, nor does it grant any licenses to,
third-party packages.

Figure 7-4. Adding a reference to EntityFramework using the NuGet package

Next we add the file PartyPlanner.cs to the Models folder in the PartyPlanner.Web project. This file holds three
POCO classes that represent the three database tables, Party, Guest, and Shoppingltem, as shown in Listing 7-1.

127

CHAPTER 7 © ASP.NET WEB API

Listing 7-1. The PartyPlanner EntityFrame Classes

namespace PartyPlanner.Models

{

public class Party

{
public int PartyID { get; set; }
public string PartyName { get; set; }
public string DateTime { get; set; }
public bool Completed { get; set; }
public virtual ICollection<Guest> Guests { get; set; }
public virtual ICollection<ShoppingItem> ShoppinglList { get; set; }

}

public class Guest

{
public int GuestID { get; set; }
public string FamilyName { get; set; }
public int NumberOfPeople { get; set; }
[JsonIgnore]
public Party Party { get; set; }

}

public class ShoppingItem

{
public int ShoppingItemID { get; set; }
public string ItemName { get; set; }
public int Quantity { get; set; }
[IsonIgnore]
public Party Party { get; set; }

}

}

These are Entity classes that act as model objects that represent the data; they are very simple and have no
dependency from EntityFramework. The properties of these classes represent columns of the database table and are
of two types: scalar properties like PartyName, ItemName, and navigation properties like Guests and ShoppinglList that
are used for finding the relationship between the classes.

We add the virtual keyword to the navigation properties to enable lazy loading feature of the entity framework.
Lazy loading, also called deferred loading, is a term used to load dependent objects only when we try to access
that property. Finally, we use the JsonIgnoreAttribute thatis part of JSON.NET (Newtonsoft.Json namespace) to
ignore the Party property in the ShoppingItem class from being serialized. JSON.NET has a range of built-in options
to fine-tune what gets written from a serialized object.

Note JSON.NET is a popular high-performance JSON framework for the .NET Framework that has a range of
built-in options to fine-tune what gets written from a serialized object. Please visit www. json.net to learn more
about JSON.NET

128

http://www.json.net/

CHAPTER 7 © ASP.NET WEB API

Web API Controller

With the models in place, next we add an ASP.NET Web API Controller, PartyPlannerController to the project. This
controller handles HTTP requests from the client. To add a controller, right-click the Controllers folder in Solution

Explorer and then select Add context menu and the Controller to open the Add Controller Wizard. Set the options as
shown in Figure 7-5.

Add Controller =
Controller name:
PartyPlannerController

Scaffolding options
Template:

API controller with read/write actions, using Entity Framework v

Model class:
Party (PartyPlanner.Models) ool

Data context class:

<New data context...> v

None

Add Cancel

Figure 7-5. Controller template for creating a WebAPI controller from the model

Note Build the project before adding a controller so that the PartyPlanner Models show up in the Add Controller Wizard.

After you click Add, you are prompted to enter the name of the new data context, as shown in Figure 7-6.

Once the name is entered, the Visual Studio controller template creates two classes, PartyPlannerController and
PartyPlannerContext.

New Data Context ﬂ

New data context type:

PartyPlanner.Models, ZIEE L ontext

oK || Cancel

Figure 7-6. Input window for entering the data context class name

129

CHAPTER 7 © ASP.NET WEB API

The controller template will also update the Web. config (see Listing 7-2) by adding a connectionString that
points the PartyPlannerContext to a LocalDB database called PartyPlannerContext.

Listing 7-2. Updated Web.config File with the Connection String

<connectionStrings>
<add name="PartyPlannerContext"
connectionString="Data Source=(localdb)\vi1.0; Initial
Catalog=PartyPlannerContext-20130115012310; Integrated Security=True;
MultipleActiveResultSets=True;
AttachDbFilename=|DataDirectory|PartyPlannerContext-20130115012310.mdf"
providerName="System.Data.SqlClient" />
</connectionStrings>

Add Controller

The generated PartyPlannerController is derived from the base ApiController class instead of the standard MVC
controller base. This controller has the necessary methods to do the basic CRUD operations.

The HTTP/1.1 protocol defines a set of common methods like GET, POST, PUT, and DELETE, and for each of
these methods, the ASP.NET Web API framework decides which controller receives the request by consulting the
route table. In our case, we are using the default route that is mapped as mentioned follows in the global.asax page.

e GET /api/GetParties: Get a list of all parties.

e GET /api/GetParty /id: Get party by ID.

e PUT /api/PartyPlanner/id: Update a party.

e POST /api/PartyPlanner: Create a new party.
e DELETE /api/PartyPlanner/id: Delete a party.

As this code is good enough only to store and retrieve information from the Party table, we will be including
additional methods in this controller to store and retrieve Guest and ShoppingList information along with the party
information in the later part of this chapter. As of now, though, Listing 7-3 shows the code generated by the template.

Listing 7-3. PartyPlannerController Code Generated by the Controller Template

public class PartyPlannerController : ApiController

{

private PartyPlannerContext db = new PartyPlannerContext();

// GET api/PartyPlanner
public IEnumerable<Party> GetParties()

{
}

// GET api/PartyPlanner/5
public Party GetParty(int id)
{

return db.Parties.AsEnumerable();

Party party = db.Parties.Find(id);
if (party == null)

130

CHAPTER 7 © ASP.NET WEB API

{
}

throw new HttpResponseException(Request.CreateResponse(HttpStatusCode.NotFound));

return party;

}

// PUT api/PartyPlanner/5
public HttpResponseMessage PutParty(int id, Party party)

{
if (ModelState.IsValid 8& id == party.PartyID)
{
db.Entry(party).State = EntityState.Modified;
try
{
db.SaveChanges();
catch (DbUpdateConcurrencyException)
{
return Request.CreateResponse(HttpStatusCode.NotFound);
}
return Request.CreateResponse(HttpStatusCode.OK);
}
else
{
return Request.CreateResponse(HttpStatusCode.BadRequest);
}
}

// POST api/PartyPlanner
public HttpResponseMessage PostParty(Party party)

{
if (ModelState.IsValid)
{
db.Parties.Add(party);
db.SaveChanges();
HttpResponseMessage response = Request.CreateResponse(HttpStatusCode.Created, party);
response.Headers.Location = new Uri(Url.Link("DefaultApi”, new { id = party.PartyID }));
return response;
}
else
{
return Request.CreateResponse(HttpStatusCode.BadRequest);
}
}

131

CHAPTER 7 © ASP.NET WEB API

// DELETE api/PartyPlanner/5
public HttpResponseMessage DeleteParty(int id)

{
Party party = db.Parties.Find(id);

if (party == null)
{

return Request.CreateResponse(HttpStatusCode.NotFound);

}

db.Parties.Remove(party);

try

{
db.SaveChanges();

catch (DbUpdateConcurrencyException)

return Request.CreateResponse(HttpStatusCode.NotFound);
}

return Request.CreateResponse(HttpStatusCode.OK, party);
}

protected override void Dispose(bool disposing)

db.Dispose();
base.Dispose(disposing);

Add DataContext

The template also creates a DataContext PartyPlannerContext, as shown in Listing 7-4, that is derived from the
EntityFramework base type DbContext. DbContext automatically generates the database using the Entity Class
schema and also represents a session with the database and allows it to query the database. The context contains a
property DbSet that represents the POCO type Party from our model.

Listing 7-4. PartyPlannerContext Created by the Controller Template

public class PartyPlannerContext : DbContext

{
public PartyPlannerContext() : base("name=PartyPlannerContext")
{
}
public DbSet<Party> Parties { get; set; }
}

With the service layer in place, we can integrate it with the Windows 8 app by building the Party Planner app.
As mentioned earlier, the Party Planner app has two pages: home.html and manageparty.html.

132

CHAPTER 7 © ASP.NET WEB API

Designing the App Start Page

Home . html is the start page of this app. It displays the Parties within a grid layout as shown in Figure 7-7 using the
WinJS.UI.ListView element by binding to a collection in Home. js. We also define an item template that contains the
markup to display the details of each party. This page also has an app bar button that allows us to create a new party
(see Listing 7-5).

Party Planner

BBQ Party

Spring Party

Birthday Party

Figure 7-7. The home.html shows list of Parties

Note We deleted the default.html page and made home.html the default start page by updating the start page
under the Application Ul section of the package.appmanifest.

Listing 7-5. home.html with a ListView and App Bar Button

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>homePage</title>
<!-- WinlS references -->
<link href="//Microsoft.Win]S.1.0/css/ui-dark.css" rel="stylesheet" />
<script src="//Microsoft.Win]S.1.0/js/base.js"></script>
<script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

133

CHAPTER 7 © ASP.NET WEB API

<link href="/css/default.css" rel="stylesheet" />
<link href="/pages/home/home.css" rel="stylesheet" />
<script src="/pages/home/home.js"></script>
</head>
<body>
<!--ListView Item Template-->
<div id="dbItemtemplate"
class="itemtemplate"
data-win-control="WinJS.Binding.Template">
<div class="item">
<div class="item-content">
<h2
class="item-title win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: PartyName" />
<h4
class="item-subtitle win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: DateTime"></h4>
</div>
</div>
</div>

<!-- The content that will be loaded and displayed. -->
<div class="fragment homepage">
<header
aria-label="Header content"
role="banner">
<button
class="win-backbutton"
aria-label="Back"
disabled
type="button"></button>
<h1 class="titlearea win-type-ellipsis">
Party Planner
</h1>
</header>
<section aria-label="Main content" role="main">
<div id="listView"
class="resultslist win-selectionstylefilled"
aria-label="My Party"
data-win-control="WinJS.UI.ListView"
data-win-options="{
itemTemplate: select('#dbItemtemplate'),
J 2R
}'></divy

</section>
</div>

134

CHAPTER 7 © ASP.NET WEB API

<!--App bar-->
<div
data-win-control="WinJS.UI.AppBar"
class="appBar"
id="appBar">
<button
data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id: 'newButton', label:'new party', icon:'add',section:'global'}">
</button>
</div>
</body>
</html>

Home.js

Home. js is the JavaScript file for the home . html page and most of the activities in this file happen in the page ready
function. Inside this function we call the PartyPlanner service GetParties using the WinJS.xhr function. WinJS.xhr
abstracts all the complexity of the XMLHttpRequest and provides a simple interface that uses Promises to handle

the asynchronous responses. GetParties returns an HTTP response in a JSON format that is then parsed to a JSON
object. This JSON object is then bound to the ListView. This page also has an itemInvoked function that is attached
to the ListView and is called when an item is selected from the ListView. Once called, this function navigates to
manageParty.html using the WinJS.Navigation.navigate function. This function takes the detail page location and
selected Party object as parameter (see Listing 7-6).

Listing 7-6. Home.js Gets the List of Parties by Calling the ASP.NET Web API Service

(function () {
"use strict"”;
var partiesLV;
WinJS.UI.Pages.define("/pages/home/home.html", {
ready: function (element, options) {
partiesLV = document.getElementById('listView').winControl;
partiesLV.oniteminvoked = this._itemInvoked;
partiesLV.element.focus();
document.getElementById("newButton")
.addeventListener("click", doClickNew, false);
//update the port of the below URL to the one assigned by Visual Studio
var createurl = "http://localhost:21962/api/PartyPlanner/";
WinJS.xhr({
type: "GET",
url: createurl,
headers: { "Content-type": "application/json; charset=utf-8" }
}).then(success, error);

135

http://localhost:21962/api/PartyPlanner/

CHAPTER 7 © ASP.NET WEB API

}, _itemInvoked: function (args) {
args.detail.itemPromise.done(function itemInvoked(item) {
//Navigating to the manageparty.html on ListItem click
WinJS.Navigation.navigate("/pages/manageparty/manageparty.html”,
{ partyDetail: item.data });

};
}
};

function success(arg) {
//HTTP Response binds to the ListView
var parties = [];
parties = JSON.parse(arg.responseText);
partiesLV.itemDataSource = new WinJS.Binding.List(parties).dataSource;

}

function error(arg) {
//Display Error
}

function doClickNew() {
//App bar button click
WinJS.Navigation.navigate("/pages/manageparty/manageparty.html”, null);

}
IOF

Retrieving the List of Parties

As shown in Listing 7-6, to display the list of parties in the home page, we call the GetParties method that resides
in the PartyPlannerController. When this method is called for the first time, the EntityFramework Code First
uses a set of conventions to determine the schema and creates the database and necessary tables and referential
integrity between the tables. It uses the database connection information from the Web.config file. Once this is
created, we will be able to see the database in the VS.NET SQL Server Object Explorer (click Ctrl + \, Ctrl + S), as
shown in Figure 7-8.

136

SQL Server Object Explorer *yA X
(OB I

4 ¥ SQL Server -~

b

rl

(localdb)\Projects (SQL Server 11.0.2100 - FAMILYPC\vinodh)
(localdb)\w11.0 (SQL Server 11.0.2100 - FAMILYPC\vinodh)
4 m Databases
b Ml System Databases
b @ DevelopmentStorageDb201206
4 @ PartyPlannerContext-20130115012310
4 4 Tables
b Ml System Tables
4 [dbo.Guests
4 @ Columns
o GuestlD (PK, int, not null)
B FamilyName (nvarchar(max), null)
B NumberQfPeople (int, not null)
= Party_PartylD (FK, int, null)
M Keys
M Constraints
Ml Triggers
M Indexes
M Statistics
4 [dbo.Parties
4 4 Columns
vo PartylD (PK, int, not null)
B PartyName (nvarchar(max), null)
B DateTime (nvarchar{max), null)
B Completed (bit, not null)
M Keys
M Constraints
M Triggers
M Indexes
M Statistics
b ER dbo.Shoppingltems
b Ml Views
b ml Synonyms -

v vwvwew

T v ewvww

Figure 7-8. Database created using EntityFramework Code First

CHAPTER 7 © ASP.NET WEB API

The default code generated for GetParties in PartyPlannerController (see Listing 7-3) will only return the
Party entity and will not get the related entities like Guests and ShoppingList for each party. To get that we add three

lines of code, as shown in Listing 7-7.

Listing 7-7. GetParties includes Guests and ShoppingList

public IEnumerable<Party> GetParties()

{
db.Configuration.LazyloadingEnabled = false;

return db.Parties.Include(g => g.Guests)

.Include(s => s.ShoppingList)

.AsEnumerable();

First we disable the lazy loading option and then include those entities that have to be returned along with the

Party entity using EntityFramework’s Include method.

137

CHAPTER 7 © ASP.NET WEB API

Designing the Page to Manage a Party

The manageparty.html page helps to create a new party or update an existing party. It can also be used to add a new
guest or a shopping item to an existing party. This page has two sections (see Listing 7-8): The left side is where we
have HTML elements for creating a party and these HTML elements are bound to the properties of the Party object
using WinJS data-win-bind property. On the right we have two ListView controls, one below the other, that display the
Guests and Shopping Items. At the bottom of the page, we have two app bar buttons that on click display two different
Flyout Uls: one for adding the guests and the other for adding items to the shopping list.

Listing 7-8. The manageparty.html with Left and Right Columns

<body>
<!--Ttem Templates for ShoppingItem ListView-->
<div id="shoppingTemplate" data-win-control="WinJ]S.Binding.Template">
<div class="item">
<div class="item-content">
<h2
class="item-title win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: ItemName"></h2>
<h4
class="item-subtitle-shoppingitem win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: Quantity"></h4>
</div>
</div>
</div>
<!--Ttem Templates for Guest ListView-->
<div id="guestTemplate" data-win-control="WinJS.Binding.Template">
<div class="item">
<div class="item-content">
<h2
class="item-title win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: FamilyName"></h2>
<h4
class="item-subtitle-guests win-type-x-small win-type-ellipsis"
data-win-bind="innerHTML: NumberOfPeople"></h4>
</div>
</div>
</div>

<div class="manageparty fragment">

<header aria-label="Header content" role="banner">
<button

class="win-backbutton"

aria-label="Back"

disabled

type="button"></button>
<h1 class="titlearea win-type-ellipsis">

Add/Edit Party Details

</h1>

</header>

<section aria-label="Main content" role="main">

138

CHAPTER 7

<!-Leftside - Party HTML Elements-->
<div id="divDetail" class="leftColumn">

<label for="partyName">Party Name</label>
<input
type="text"

id="partyName"
name="partyName"
data-win-bind="value: PartyName Binding.Mode.twoway">

<label for="datetime">Date Time:</label>
<input
type="text"
id="datetime"
name="datetime"
data-win-bind="value: DateTime Binding.Mode.twoway">

<label for="completed">IsCompleted?</label>
<input

type="checkbox"
id="completed"
name="completed"

class=

"boxes"

data-win-bind="checked: Completed Binding.Mode.twoway" />

<input

type="button"
name="saveParty"
id="saveParty"

value="Save Party Details" />

</div>
<!--Right Side-->
<div class="rightColumn">

<h2>Guest List</h2>

<div class="item">

<label class="labelMessage" id="1blGuestMessage"/> </div>
<div

id="guestListView"
data-win-control="WinJS.UI.ListView"
data-win-options="{itemTemplate:select('#guestTemplate')}">
</div>

<h2>Shopping List</h2>

<div class="item"> <label class="labelMessage" id="lblItemMessage"/></div>

<div

id="shoppingListView"

data-win-control="WinJS.UI.ListView"
data-win-options="{itemTemplate:select('#shoppingTemplate')}">
</div>

</div>

ASP.NET WEB API

139

CHAPTER 7 © ASP.NET WEB API

<!--Shopping Flyout UI-->
<div id="shoppingItemFlyout" data-win-control="WinJS.UI.Flyout">
<p>
<label for="Item">
Name

</label>
<input type="text" id="shopppingItem" />
</p>
<p>
<label for="Item">
Quantity

</label>

<input type="text" id="quantity" />
</p>
<button id="addToShoppinglList">
Add</button>
</div>
<!--Guest Flyout UI-->
<div id="guestFlyout" data-win-control="WinJS.UI.Flyout">
<p>
<label for="guestName">
Family Name

</label>
<input type="text" id="guestName" />
</p>
<p>
<label for="Item">
No of Guest

</label>
<input type="text" id="noofguest" />
</p>
<button id="addToGuestList">
Add</button>
</div>
</section>
</div>

<!--App bar-->
<div data-win-control="Win]S.UI.AppBar" class="appBar" id="appBar">
<button
data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id:'showGuest', label:'Add Guest', icon:'add',section:'global'}">
</button>

140

CHAPTER 7 © ASP.NET WEB API

<button
data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{id: 'showShopping', label:'Add Item', icon:'add',section:'global'}">
</button>
</div>
</body>

manageparty.js

The manageParty. js is the JavaScript page for manageparty.html. This page’s ready function has the event handler for
all the buttons in manageparty.html. This function also handles the Party object passed from home.html by assigning
the Party object to alocal variable and calling the function UpdateUI. UpdateUI binds the Guests and ShoppingItems
properties of the Party object to the corresponding ListView controls (see Listing 7-9).

Listing 7-9. Page Ready Sets the Event Handler for the Buttons and Binds the Party Object to the HTML Elements

WinJS.UI.Pages.define("/pages/manageparty/manageparty.html", {
ready: function (element, options) {

//Hide right column on page ready
$(".rightColumn').hide();
//assign the event handler for the buttons
document.getElementById("saveParty").addEventListener("click", onSaveParty, false);
document.getElementById("showShopping").addEventListener("click", onShowShopping, false);
document.getElementById("showGuest").addEventListener("click", onShowGuest, false);
document . getElementById("addToShoppinglist").addEventListener("click", onAddToShoppinglist, false);
document.getElementById("addToGuestList").addEventListener("click", onAddToGuestlList, false);

//ListView control to local variable
shoppinglV = document.getElementById('shoppinglistView').winControl;
guestLV = document.getElementById('guestListView').winControl;

//Get the Party object as parameter and update the listview
if (options != null 8&& options.partyDetail != null) {

party = options.partyDetail;

UpdateUI();

else {
party = { PartyID: 0, PartyName:

, DateTime: "", Completed: "false" };

var src = WinJS.Binding.as(party);
var form = document.getElementById("divDetail");
WinJS.Binding.processAll(form, src);

b
b

function UpdateUI() {
//Check to see if Party is already created
if (party.PartyID > 0) {
$(".rightColumn').show();
if (party.Guests == null) {
$("#1blGuestMessage").text('No guest is invited to this party!')

141

CHAPTER 7 © ASP.NET WEB API

} else {
$("#1blGuestMessage").text("'");
}

if (party.ShoppinglList == null) {
$("#1b1lItemMessage").text('No item to the shoppinglist is added.')
} else {
$("#1blItemMessage").text('");
}
}

//binding Guests and ShoppingItem to ListViews
shoppinglV.itemDataSource = new WinJS.Binding.List(party.Shoppinglist).dataSource;
guestLV.itemDataSource = new WinJS.Binding.List(party.Guests).dataSource;

Creating a New Party

To create a party, party information is entered as shown in Figure 7-7. one the information is entered and you click
Save Party Details, we invoke the onSaveParty function in the manageparty. js, which in turn calls another function
sendPartyToService, which posts the Party JavaScript object to the PartyPlanner Web API service using the
WinJS.xhr function (see Listing 7-10), which is then handled by the PartyPlannerController’s PostParty method.

Listing 7-10. onSaveParty Creates or Updates a Party

function onSaveParty() {
sendPartyToService("POST")
}

function sendPartyToService(method) {
var createurl = "http://localhost:21962/api/PartyPlanner/" + party.PartyID;
WinJS.xhr({
type: method,
url: createurl,
headers: { "Content-type": "application/json; charset=utf-8" },
data: JSON.stringify(party)
}).then(success, error);

}

function success(arg) {
party = JSON.parse(arg.responseText);
UpdateUI();

function error(arg) {
//Display error

142

http://localhost:21962/api/PartyPlanner/

CHAPTER 7 © ASP.NET WEB API

The PostParty method (see Listing 7-11) is used to add or update party details. In this method we first check to
see if the PartyID is zero; if so, we insert the Party object into the data context by calling the Add method; otherwise
we update the entity state to Modified. Once done, we call the data context SaveChanges method to permanently save
the party information in to the database. Once saved, we then return the Party object as an HTTP response.

Listing 7-11. PostParty Sets the Entity State before Saving the Changes

public HttpResponseMessage PostParty(Party party)

{
if (ModelState.IsValid)
{
if (party.PartyID == 0)
db.Parties.Add(party);
else
db.Entry(party).State = EntityState.Modified;
}
db.SaveChanges();
HttpResponseMessage response = Request.CreateResponse(HttpStatusCode.Created, party);
response.Headers.Location = new Uri(Url.Link("DefaultApi”, new { id = party.PartyID }));
return response;
}
else
{
return Request.CreateResponse(HttpStatusCode.BadRequest);
}
}

Add Guest or Shopping Item

A Guest or a Shoppingltem is added when the user clicks Add in the Flyout UI as shown in Figure 7-9. The
information entered by the user is used to construct a Guest or Shoppingltem array and is added to the Party object’s
Guests or ShoppingItems collection (see Listing 7-12). The Party JavaScript object is then PUT to the PartyPlanner
Web API service, PutParty.

143

CHAPTER 7 © ASP.NET WEB API

© Add/Edit Party Details

et
Date Time: 412203

IaCompleted?

Save Party Detalls

Figure 7-9. Party details with Flyout Ul for adding new Guest to the Party

Listing 7-12. Add Guest and Shoppingltem to the Database

function onAddToShoppinglList() {
if (party.Shoppinglist == null) {
party.Shoppinglist = [];
}

party.Shoppinglist.push(

{ShoppingItemID:"0", ItemName: $("#shopppingItem").val() , Quantity:

5
sendPartyToService("PUT");
document.getElementById("shoppingItemFlyout").winControl.hide();

}

function onAddToGuestList() {
if (party.Guests == null) {
party.Guests = [];
}

party.Guests.push(

)
sendPartyToService("PUT");
document.getElementById("guestFlyout").winControl.hide();

{GuestID:"0", FamilyName: $("#guestName").val() , NumberOfPeople:

144

$("#quantity").val()}

$("#noofguest").val()}

CHAPTER 7 © ASP.NET WEB API

The PutParty method resides in the PartyPlannerController and loops through the items in the Guests and
Shoppinglist collections to update the Entity State before calling the SaveChanges context method to permanently
update the changes in the database (see Listing 7-13).

Listing 7-13. Updating the Entity State before Saving to Database

public HttpResponseMessage PutParty(int id, Party party)

{

if (ModelState.IsValid)

{

db.Entry(party).State = EntityState.Modified;
if (party.ShoppinglList != null)

foreach (var item in party.ShoppinglList)

{
if (item.ShoppingItemID == 0)
{
item.Party = party;
db.Entry(item).State = EntityState.Added;
else
{
db.Entry(item).State = EntityState.Modified;
}
}

}

if (party.Guests != null)

foreach (var item in party.Guests)

{ if (item.GuestID == 0)
{ item.Party = party;
db.Entry(item).State = EntityState.Added;
}
else
db.Entry(item).State = EntityState.Modified;
}
}
}
try
{

db.SaveChanges();
catch (DbUpdateConcurrencyException)

return Request.CreateResponse(HttpStatusCode.NotFound);

145

CHAPTER 7 © ASP.NET WEB API

HttpResponseMessage response = Request.CreateResponse(HttpStatusCode.Created, party);
response.Headers.Location = new Uri(Url.Link("DefaultApi"”, new { id = party.PartyID }));
return response;

}

else

{
}

return Request.CreateResponse(HttpStatusCode.BadRequest);

Now with all the codes in place, when we run the Party Planner app the user will be able to create a party and
also will be able to add guests and items to the shopping list as the one shown in Figure 7-9.

Ideas for Improvement

The Party Planner app can be worked on and improved to make it a feature-rich app. The following are some of the
features that can be added.

e Importing the guest list from the People app using the Contact Picker contract.

e Integrating with social network options to add the party as a Facebook event and import
guests from Facebook.

e Supporting live tiles and sending party reminder notifications.

Conclusion

In this chapter we learned to use SQL Server as the database for storing and retrieving data from a Windows 8 app by
building a Service layer using ASP.NET Web API. ASP.NET Web API is a flexible, extendable, and straightforward way
to build an HTTP endpoint that can be consumed within Windows 8 app. Also in this chapter we learned to use the
EntityFramework Code First approach as our data access framework.

In the next chapter we learn to use WCF services with Windows 8 apps by building yet another app. Also in the
next chapter we learn to use Prism for Windows Runtime.

146

CHAPTER 8

WCF Services

In Chapter 7 we learned to build a service infrastructure using ASP.NET Web API to connect to the SQL Server using
Entity Framework Code First. Continuing, in this chapter we learn to build the service infrastructure using Windows
Communication Framework (WCF).

This chapter begins by briefly looking into building Business Apps for WinRT and then provides introduction to
Prism for Windows Runtime, which is used to implement the Model-View-ViewModel (MVVM) pattern with navigation
through a loosely coupled communication mechanism called PubSub events and app lifecycle management. We learn
these concepts by developing a Bill of Material (BOM) Windows 8 app using XAML/C#, Prism, and Entity Framework
Code First with WCF as the Service layer.

Business Apps for WinRT

Business Apps for WinRT can be broadly categorized into two different types of application: business to consumer
(B2C) and the line of business (LOB) application. B2C applications are the kind of application that allows people
outside the company, mostly consumers, to access the product and services of the company like a reservation system,
utility app, and so on, that lets us manage and pay our bills. LOB applications generally facilitate a precise customer
transaction or business need, and they could be consumer service apps, Enterprise CRM, invoicing systems, or
inventory systems.

Prism Qverview

Prism for Windows Runtime is a set of guidance principles for building business applications on WinRT using XAML
and C#. Prism is based on various architectural goals like loose coupling, separation of concerns, maintainability,
testability, and leveraging WinRT platform features with MVVM. Prism for WinRT provides a couple of downloadable,
reusable infrastructure class libraries.

Note The Prism for Windows 8 app can be downloaded from http://prismwindowsruntime.codeplex.com/.

The first library that we briefly see is Microsoft.Practices.Prism.StoreApps. This library provides the
following features:

e MVVM support by including base classes for Views and ViewModel.
e Navigation.

e Application state management.

147

http://prismwindowsruntime.codeplex.com/

CHAPTER 8 ' WCF SERVICES

e Command support as part of MVVM pattern.
e Validation.
e Support for WinRT platform features like the Search/Setting charm and flyouts.

Next we'll see Microsoft.Practices.Prism.PubSubEvents, alibrary that encapsulates PubSub functionality.
The Pubsub event in Prism is based on the EventAggregator pattern, which helps in achieving loosely coupled
communications between ViewModels and Client Services. The general idea of this pattern is that when the
components within the system want to communicate between each other, instead of coupling them by type or
lifetime, they will be loosely coupled. This is achieved by placing a middle man (i.e., EventAggregator) in between
the Publisher and Subscriber; instead of directly depending on each other, they will be dependent on the middle man.
The EventAggregator is a container for event objects and these event objects are the ones that do the lion’s share of
the work. The event objects are subscribed to by the subscribers and published to by the publisher.

Getting Started with Prism

We use Prism for Windows Runtime’s guidance from Microsoft Patterns & Practices. Microsoft Patterns & Practices is a
group that provides guidance on best practices and design patterns for Microsoft development technologies. Some of
their popular offerings are Enterprise Library and Prism 4. These guidelines help us to write business applications that
can be easily maintained, extended, and tested.

The Microsoft Patterns & Practices project web site includes numerous projects and sample applications that
showcase best practices. You can find itat http://pnp.azurewebsites.net/en-us/projects.htm.

Building a Bill of Material Windows 8 App

A bill of material (BOM) is used to list the parts or items needed to build a component, which can be industrial
equipment, software, or physical building materials, by associating each individual item with the component.
A BOM app helps to maintain a centralized and accurate record of items for manufacturing, production, and a
just-in-time environment. Using this kind of app helps to improve material management, control inventory, and
reduce manufacturing costs.

We will create the BOM app (see Figure 8-1) using XAML and C# with SQL Server as the database and display
the components and its corresponding parts. Using this app, a user can add new component and part and can also
associate one or more parts with the component.

148

http://pnp.azurewebsites.net/en-us/projects.htm

CHAPTER 8 © WCF SERVICES

My BOM

Components Parts

Heater Core Encoder 11MM ROTARY SW TOP ADJ
100
Encoder 11MM R f SW TOP ADJ
.- Diode ZENER 3V 200MW SOD-523F
Diode ZENER 0 b 70

Analog multiplexer Analog multiplexer
o 170 o

USB Connector
525

Diode ZENER 5V heztnites _
10 0 MHZ 8FF SMD

Car engine Thermostat Spartan-3A FPGA

n

Figure 8-1. Bill of Material app displaying components and parts

We also create a service layer for data interaction between the BOM app and SQL Server using WCE. Just like the
Party Planner app in Chapter 6, here also we use Entity Framework Code First as the data access layer.

Getting Started

To start, let’s create a new Windows Store Blank App (XAML) project and name it BOM. App. We add the
Microsoft.Practices.Prism.StoreApps and Microsoft.Practices.Prism.PubSubEvents projects that are part of
the Prism for Windows Runtime download and add them as project references in BOM. App.

Next we add a new WCF Service Application to the solution, as shown in Figure 8-2, and name it BOM. Services.

149

CHAPTER 8 = WCF SERVICES

P Recent

4 Installed

4 Templates
I Visual Basic
4 Visual C#
Windows
Web
b Office
Cloud
Reporting
b SharePoint
Silverlight
Test
WCF
Workflow
b Visual Ce+
b Visual F#
S0L Server
LightSwitch
I Other Project Types
Modeling Projects
Samples

¥ Online

BOM.Service
C:\Bocki\Che|
BOM.Service

Name:
Location:

Selution name:

-NET Framework 451

€=

c=

2. 2. R

~ Sortby: Default

WCF Service Library

WCF Service Application

WCF Workflow Service Application

Syndication Service Library

Visual C=

Visual C=

Visual C=

Visual C=

Search Installed Templates (Ctrl+E) P~
Type: Visual C=

A project for creating WCF Service
Application that is hosted in IS/WAS

Browse...

[#] Create directory for solution
[[] Add to source control

Figure 8-2. Visual Studio template for adding a new WCF Service Application

To enable Entity Framework, reference the library in the BOM. Services project using the NuGet package as

shown in Figure 8-3.

P Installed packages

4 Online

NuGet official package source
Search Results

P Updates

Each package is licensed to you by its
owner. Microsoft is not responsible
for, nor does it grant any licenses to,
third-party packages.

Stable Only

BOM.Service - Manage NuGet Packages

.

o)

?
?
==

~ Sortby: Relevance

EntityFramework
Entity Framework is Microsoft's
ded data access technol

gYere

WebBackgrounder.EntityF K
WebBackgrounder.EntityFramework is an
impl ion of the UobCeordinater fo...

Edmlib
Classes to represent, construct, parse,
serialize and validate entity data models. T...

EntityFramework.SqlServerCompact
Allows SOL Server Compact 4.0 to be used
with Entity Framework.

System.Spatial
Contains a number of classes and canonical
methods that facilitate geography and ge...

1 23 4 50

e;

Entity X -

Created by: Microsoft

Id: EntityFramework
Version: 5.0.0

Last Published: 8/11/2012
Downloads: 1826934
View License Terms
Project Information
Report Abuse

Description:
Entity Framework is Microsoft's

rec

Jed data access tecl

new applications.
Dependencies:

No Dependencies

Figure 8-3. Adding a reference to Entity Framework using NuGet package

150

CHAPTER 8 © WCF SERVICES

The next step is to create a folder named Models in the BOM. Services project and add a file named
BillOfMaterial.cs to it. The BOM Solution project structure will look like the one shown in Figure 8-4.

4 [c] BOM.App
b S Properties
4) References
=B NET for Windows Store apps
=8 Microsoft.Practices.Prism.PubSubEvents
=8 Microsoft.Practices.Prism.StoreApps
=8 Microsoft.Practices.Unity.NetCore
B Windows
4 fml Service References
" BOMWcfServices
b Assets
b @ Common
b B Models
4 fml Services
b BOMClientService.cs
4 i ViewModels
b = BillOfMaterialPageViewModel.cs
b ComponentViewModel.cs
4 @ Views
b D) BillOfMaterialPagexaml
b D) Appxaml
& BOM_TemporaryKey.pfx
k3 Package.appxmanifest
¥ packages.config
4[] BOMService
b J Properties
P =m References
i App_Data
4 @l Models
b = BOMcs
b BOMDataContext.cs
b @ BOMServices.sve
b [BOMServices.cs
¥ packages.config
¥ Web.config
3 Microsoft.Practices.Prism.PubSubEvents
b [Microsoft.Practices.Prism.StoreApps

Figure 8-4. BOM project structure

BillOfMaterial.cs holds three POCO classes that represents the three database tables: Component, Part,
and BillOfMaterial.

e Component: Stores the component details.
e Part: Stores the part details.
e BillOfMaterial: Stores the BOM information like ComponentID and PartID.

These classes are very simple Entity classes and have no dependency on Entity Framework. The properties of these
classes represent columns of the database table. We decorate the classes with the DataContract attribute and properties
within the classes with the DataMember (see Listing 8-1) attribute to serialize and transmit data to the WCF Client.

Listing 8-1. BOM Entity Classes

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

151

CHAPTER 8 ' WCF SERVICES

using System.Ling;
using System.Runtime.Serialization;
using System.lWeb;

namespace BOM.Service.Models
{
[DataContract(IsReference = true)]
public class Part
{
[Key]
[DataMember]
public int PartID { get; set; }

[DataMember]
public string PartName { get; set; }

[DataMember]
public int StockCount { get; set; }

[DataMember]
public virtual ICollection<BillOfMaterial> BOMParts { get; set; }

}

[DataContract(IsReference = true)]
public class Component

{

[Key]
[DataMember]
public int ComponentID { get; set; }

[DataMember]
public string ComponentName { get; set; }

[DataMember]
public virtual ICollection<BillOfMaterial> BOMComponents { get; set; }

}

[DataContract(IsReference = true)]
public class BillOfMaterial
{

[Key]

[DataMember]

public int BOMID { get; set; }

[DataMember]
public int ComponentID { get; set; }

[DataMember]
public int PartID { get; set; }

152

CHAPTER 8 © WCF SERVICES

[DataMember]
public int Quantity { get; set; }

[ForeignKey("PartID"), Column(Order = 0)]

[DataMember]
public virtual Part BOMPart { get; set; }

[ForeignKey("ComponentID"), Column(Order = 1)]
[DataMember]
public virtual Component BOMComponent { get; set; }

Adding DataContext

We create the tailored database context class BOMDataContext inside the Models folder as shown in Listing 8-2.

This class is derived from the Entity Framework base type DbContext. DbContext automatically generates the database
using the Entity Class schema and also represents a session with the database and allows it to query the database.

The context contains property DbSet, which represents the POCO type classes from our model. We also override the
OnModelCreating method to set the required fields and relationship between models.

Listing 8-2. BOMDataContext Class Has Properties That Represent the Model

using System;

using System.Collections.Generic;
using System.Configuration;

using System.Data.Entity;

using System.Lling;

using System.Web;

namespace BOM.Service.Models
{
public class BOMDataContext : DbContext

{

public BOMDataContext()

{
Configuration.AutoDetectChangesEnabled = true;
Configuration.LlazyloadingEnabled = true;
Configuration.ProxyCreationEnabled = true;
Configuration.ValidateOnSaveEnabled = true;

}
protected override void Dispose(bool disposing)
{
Configuration.LazylLoadingEnabled = false;
base.Dispose(disposing);
}

153

CHAPTER 8 ' WCF SERVICES

public DbSet<Part> Parts { get; set; }
public DbSet<Component> Components { get; set; }
public DbSet<BillOfMaterial> BillOfMaterials { get; set; }

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
modelBuilder.Entity<Part>()
.Property(s => s.PartName)
.IsRequired();

modelBuilder.Entity<Component>()
.Property(s => s.ComponentName)
.IsRequired();

modelBuilder.Entity<Part>()
.HasMany<BillOfMaterial>(e => e.BOMParts);

modelBuilder.Entity<Component>()
.HasMany<BillOfMaterial>(e => e.BOMComponents);

modelBuilder.Entity<BillOfMaterial>()
.Property(s => s.ComponentID)
.IsRequired();

modelBuilder.Entity<BillOfMaterial>()
.Property(s => s.PartID)
.IsRequired();

Adding a Web Service

With the Model and DataContext in place, we now add a WCF Web service BOMServices.svc that handles HTTP
requests from the app. This WCF Service has the necessary methods that provide basic CRUD operations as shown
in Listing 8-3.

Listing 8-3. The WCF Contract Interface That Defines a Service Contract for the BOM WCF Service

using System;

using System.Collections.Generic;
using System.ling;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.ServiceModel.Web;
using System.Text;

using BOM.Service.Models;

154

namespace BOM.Service

{

[ServiceContract]
public interface IBOMServices

{

[OperationContract]
IList<Part> GetAllParts();

[OperationContract]
IList<Component> GetAllComponents();

[OperationContract]
void AddComponent(Component component);

[OperationContract]
void DeleteComponent(Component component);

[OperationContract]
void AddPart(Part part);

[OperationContract]
void DeletePart(Part part);

[OperationContract]
void AddBOM(BillOfMaterial bom);

[OperationContract]
void RemoveBOM(BillOfMaterial bom);

CHAPTER 8 © WCF SERVICES

To begin with, we define a service contract using an interface marked with the ServiceContractAttribute and
the OperationContractAttribute attributes. Let’s look at the web methods in detail by implementing the service
contract as shown in Listing 8-4.

GetAllComponents: This method retrieves all the components from the Component table
along with corresponding navigation properties like Parts and BOM by using the Entity

Framework’s Include method.

GetAllParts: Retrieves all the parts along with the corresponding BOM.

AddComponent: Adds a row to the Component table.

DeleteComponent: Deletes a component from the table along with all the corresponding

rows for that component from the BOM table.

AddPart: Adds a row to the Part table.

DeletePart: Deletes a row from the Part table along with all the corresponding rows for that

part from BOM table.

155

CHAPTER 8 ' WCF SERVICES

e AddBOM: This method first checks to see if there is a matching BOM with a similar
ComponentID and PartID. If this exists, it then updates the Quantity for that BOM; otherwise,
it will add a new row to the BOM table.

¢ RemoveBOM: Removes a row from the BOM table.

Listing 8-4. Implementing BOMService Methods

using System;

using System.Collections.Generic;
using System.Ling;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.ServiceModel.Web;
using System.Text;

using BOM.Service.Models;

namespace BOM.Service

{

public class BOMServices : IBOMServices

{
public IList<Part> GetAllParts()

{
using (var ctx = new BOMDataContext())

ctx.Configuration.ProxyCreationEnabled = false;
var parts = ctx.Parts
.Include("BOMParts")
.Tolist();
ctx.Configuration.ProxyCreationEnabled
return parts;

true;

}

public IList<Component> GetAllComponents()
{

using (var ctx = new BOMDataContext())
ctx.Configuration.ProxyCreationEnabled = false;

var components = ctx.Components
.Include("BOMComponents")
.Include("BOMComponents.BOMPart")
.Tolist();
ctx.Configuration.ProxyCreationEnabled
return components;

true;

156

CHAPTER 8 © WCF SERVICES

public void AddComponent(Component component)

{
using (var ctx = new BOMDataContext())
{
ctx.Components.Add(component);
ctx.SaveChanges();
}
}
public void DeleteComponent(Component component)
{
using (var ctx = new BOMDataContext())
foreach (var bom in component.BOMComponents)
{
ctx.BillOfMaterials.Remove(bom);
}
ctx.Components.Remove (component);
ctx.SaveChanges();
}
}
public void AddPart(Part part)
{
using (var ctx = new BOMDataContext())
{
ctx.Parts.Add(part);
ctx.SaveChanges();
}
}
public void DeletePart(Part part)
{
using (var ctx = new BOMDataContext())
foreach (var bom in part.BOMParts)
{
ctx.BillOfMaterials.Remove(bom);
}
ctx.Parts.Remove(part);
ctx.SaveChanges();
}
}
public void AddBOM(BillOfMaterial bom)
{

using (var ctx = new BOMDataContext())

{
var bomv = ctx.BillOfMaterials.Where(b => b.ComponentID ==
bom.ComponentID &8 b.PartID == bom.PartID);

157

CHAPTER 8 ' WCF SERVICES

if (bomv.Any())
{

var oldBOM = bomv.First();
01dBOM.Quantity = 0ldBOM.Quantity + bom.Quantity;

}

else

{

}
ctx.SaveChanges();

ctx.BillOfMaterials.Add(bom);

}

public void RemoveBOM(BillOfMaterial bom)

{
using (var ctx = new BOMDataContext())

ctx.BillOfMaterials.Remove(bom);
ctx.SaveChanges();

}

When any one of the methods in Listing 8-4 is called for the first time, the Entity Framework Code First uses a
set of conventions to determine the schema and creates the database and necessary tables and referential integrity
between the tables. It uses the database connection information from the web. config file. Once this is created, we are
able to see the database in the VS.NET SQL Server Object Explorer (Ctrl + \, Ctrl + S).

Consuming the WCF Service

Consuming the BOM.Services WCF service from the BOM.App is very simple and it’s like adding a DLL reference

to the project. To consume the service, we first have to add a service reference, which can be done by right-clicking
Reference in the the BOM.App project section of the Solution Explorer and selecting Add Service Reference.

This displays the Add Service Reference page shown in Figure 8-5. Give the WCF service a logical namespace,
BOMWcfServices, and then select OK. This action generates a managed source code file of a client proxy class that we
will be using in a client service class BOMClientServices (see Listing 8-5).

158

CHAPTER 8

- 2
Add Service Reference :
To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover.
Address:

p://localhost:18017/BOMServices.svc v|l Go Discover |~

Services: Operations:
(®):® BOMServices [

Select a service contract to view its operations.

1 service(s) found at address 'http://localhost:18017/BOMServices.svc'.

MNamespace:
BOMWcfServices|
Advanced... 0K Cancel

Figure 8-5. Creating Proxy class using Visual Studio Add Service Reference page

Listing 8-5. BOMClientService Encapsulates WCF Service Methods

using System;

using System.Collections.ObjectModel;

using System.Threading.Tasks;

using BOM.BOMWcfServices;

using Microsoft.Practices.Prism.PubSubEvents;
using BOM.Models;

namespace BOM.Services

public interface IBOMClientService

{

Task<ObservableCollection<Component>> GetComponentsAsync();
Task<ObservableCollection<Part>> GetAllPartsAsync();

void AddComponentAsync(Component component);

WCF SERVICES

159

CHAPTER 8 ' WCF SERVICES

void AddPartAsync(Part part);

void AddBOMAsync(BillOfMaterial bom);

}
public class BOMClientService : IBOMClientService
{
private IEventAggregator _eventAggregator;
public BOMClientService(IEventAggregator eventAggregator)
{
_eventAggregator = eventAggregator;
public Task<ObservableCollection<Component>> GetComponentsAsync()
{
var client= new BOMServicesClient();
return client.GetAllComponentsAsync();
}
public Task<ObservableCollection<Part>> GetAllPartsAsync()
{
var client = new BOMServicesClient();
return client.GetAllPartsAsync();
}
public async void AddComponentAsync(Component component)
{
var client = new BOMServicesClient();
await client.AddComponentAsync(component);
_eventAggregator.GetEvent<ComponentSaveEvent>().Publish(null);
public async void AddPartAsync(Part part)
{
var client = new BOMServicesClient();
await client.AddPartAsync(part);
_eventAggregator.GetEvent<PartSaveEvent>().Publish(null);
public async void AddBOMAsync(BillOfMaterial bom)
{
var client = new BOMServicesClient();
await client.AddBOMAsync(bom);
_eventAggregator.GetEvent<ComponentSaveEvent>().Publish(null);
}

BOMClientServices is a client service class that is injected into the ViewModel through dependency injection.
This class encapsulates the creation and operations of BOM.Services’s WCF Service and uses EventAggregator
service to publish the events, which is handled in the ViewModel.

160

CHAPTER 8 © WCF SERVICES

Integrating Prism in the Windows 8 App

The first step in integrating Prism into the BOM.App project is to add references to the libraries Microsoft.Practices.
Prism.StoreApps and Microsoft.Practices.Prism.PubSubEvent. Next, we need to update the App.Xaml App class. The
App class is updated to derive from the MvvmAppBase class from the Microsoft.Practices.Prism.StoreApps library to
get support for MVVM and the core services required by Windows Store apps.

We then override MVVMAppBase’s OnLaunchApplication abstract method in the App class and add the start
page navigation code. As the BOM app will have only one page, Bil10fMaterialPage.xaml, we add code to navigate
to that page, as shown in Listing 8-6.

Listing 8-6. The App Class with Prism Integration

using System;

using System.Globalization;

using BOM.Services;

using Microsoft.Practices.Prism.PubSubEvents;
using Microsoft.Practices.Prism.StoreApps;
using Microsoft.Practices.Prism.StoreApps.Interfaces;
using Microsoft.Practices.Unity;

using Windows.ApplicationModel;

using Windows.ApplicationModel.Activation;
using Windows.ApplicationModel.Resources;
using Windows.UI.Notifications;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace BOM

{
sealed partial class App : MvvmAppBase

{
// Create the singleton container that will be used for type resolution in the app
private readonly IUnityContainer container = new UnityContainer();
//Bootstrap: App singleton service declarations
private IEventAggregator _eventAggregator;

public App()
{

InitializeComponent();
Suspending += OnSuspending;

}
protected override void OnLaunchApplication(LaunchActivatedEventArgs args)
{
NavigationService.Navigate("BillOfMaterial”, null);
}
protected override void OnInitialize(IActivatedEventArgs args)
{

_eventAggregator = new EventAggregator();

_container.RegisterInstance(NavigationService);

_container.RegisterInstance(_eventAggregator);

_container.RegisterType<IBOMClientService, BOMClientService>(new
ContainerControlledLifetimeManager());

161

CHAPTER 8 = WCF SERVICES

ViewModellocator.SetDefaultViewTypeToViewModelTypeResolver ((viewType) =>

{
var viewModelTypeName = string.Format(CultureInfo.InvariantCulture
, "BOM.ViewModels.{0}ViewModel"
, viewType.Name);
var viewModelType = Type.GetType(viewModelTypeName);
return viewModelType;
D;
}
private void OnSuspending(object sender, SuspendingEventArgs e)
{
SuspendingDeferral deferral = e.SuspendingOperation.GetDeferral();
deferral.Complete();
}
protected override object Resolve(Type type)
{
return _container.Resolve(type);
}

Next we add a reference to the Unity library to the project using the NuGet packages as shown in Figure 8-6. Unity
Application Block (Unity) is a lightweight extensible dependency injection container with support for constructor,
property, and method call injection. Using Unity helps us make code more maintainable, expandable, and testable.

BOM - Manage NuGet Packages » IEN
b Installed packages Stable Only ~ Sortby: Relevance ~ Unity X |v
4 Online P J— - a
: Sty . e | Install * Created by: Microsoft
. The Unity Application s -
MNuGet official package source Block (Unity) is a lightwei... Id: Unity
Search Results Version: 3.0.1304.0
Unity Interception Extension Last Published: 4/26/2013
b Updates .I;: Unity interception enables you to Down!oads: 335018
effectively capture calls to objects and ad... View License Terms
Project Information
~ Unity:Mvc3 Report Abuse
B Unity.Mvc3 is a library that allows simple Description:
Integration of Microsoft’s Unity loC contai... The Unity Application Block (Unity) is a
lightweight extensible dependency
A Unity.WebAPI injection container with support for
B Unity.WebAP! is a library that allows simple constructor, property, and method call
Integration of Microsoft's Unity loC contai... injection. It facilitates loosely-coupled
design.
. B Unity.MVC4 Tags: Unity Unity3 EntLib EntLib6 loC DI
e . Unity.Mvcd is a library that allows simple container dependency injection
: : - Integration of Microsoft's Unity loC contai... inversion control in n
Each package is licensed to you by its o ty : : | LOE WinRT Wing
owner. Microsoft is not responsible]
: : Windows8 NetCore
for, nor does it grant any licenses to, v Wi e WindowsS
third-party packages. 7 ST tofe
123 L Dependencies: e

Figure 8-6. Adding reference to Unity using NuGet package

162

CHAPTER 8 © WCF SERVICES

Now, with the Unity library in place, we create an instance of the UnityContainer class in the App class
(see Listing 8-5), and use the Unity dependency injection container to register and resolve types and instances.
Finally, we override the OnInitialize method in the App class and register types for the Unity container. Here we
register the following types.

e NavigationService: Helps to navigate between the Views by replacing one view with another
within the applications.

e IEventAggregator: The EventAggregator class is offered as a service in the container and can
be retrieved through the IEventAggregator interface. The event aggregator is responsible for
locating or building events and for keeping a collection of the events in the system.

¢ BOMClientService: As mentioned before, the BOMClientService class (see Listing 8-5) is a
client service within the container that can be retrieved through IBOMService. This service
exposes some of the BOM.Services WCF methods to the app by communicating with the BOM
WCF service using the proxy class that we generate by adding Service References to the WCF
Service as shown in Figure 8-5.

Designing the BOM App User Interface

The BOM app is a single-page (Bill0fMaterialPage.xaml) UI that is divided in to two sections. The left side of the
app will list all the components and their corresponding parts as shown in Figure 8-1. This section hosts a ListView
control that is bound to a ComponentViewModel collection. The right section lists all the parts for lookup. Apart from
these two sections, we also have an app bar at the bottom that holds two buttons for adding new components and
parts. Bil10fMaterialPage.xaml also has three pop-up controls that hold the interface for adding a Component, Part,
and BOM (see Listing 8-7).

Listing 8-7. BillOfMaterialPage.xaml with ListViews, Popup Controls, and App Bar Buttons

<Infrastructure:VisualStateAwarePage
x:Name="pageRoot"
x:Class="BOM.Views.Bill0OfMaterialPage"
DataContext="{Binding DefaultViewModel, RelativeSource={RelativeSource Self}}"
xmlns="http: //schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http: //schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:BOM.Views"
xmlns:Infrastructure="using:Microsoft.Practices.Prism.StoreApps"
xmlns:d="http: //schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
Infrastructure:ViewModelLocator.AutoWireViewModel="true"
mc:Ignorable="d">
<Page.Resources>

<x:String x:Key="AppName">Bill of Material</x:String>
<!--Bill of Material Data Template-->
<DataTemplate x:Key="BOMDataTemplate">

<StackPanel>
<TextBlock
Text="{Binding BOMPart.PartName}"/>
<StackPanel
Orientation="Horizontal">
<TextBlock

Text="Avaliable Stock: "/>

163

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 8 ' WCF SERVICES

<Border>
<TextBlock
Text="{Binding BOMPart.StockCount}"/>
</Border>
<TextBlock
Text=" Required Part: "/>
<Border>
<TextBlock
Text="{Binding Quantity}"/>
</Border>
</StackPanel>
</StackPanel>
</DataTemplate>

<!--Component Data Template-->
<DataTemplate x:Key="ComponentDataTemplate">

<StackPanel>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<StackPanel
Orientation="Horizontal">
<TextBlock
Text="{Binding ComponentName}"/>
</StackPanel>
<StackPanel

Grid.Column="1"
Orientation="Horizontal">
<Button
Content="Add Part"
Command="{Binding AddPartsCommand, Mode=OneWay}"/>
</StackPanel>
</Grid>
<!--ListBox to display Parts of the Componement-->
<ListBox
ItemsSource="{Binding BOMComponents}"
ItemTemplate="{StaticResource BOMDataTemplate}"/>
</StackPanel>
</DataTemplate>
<!--Part Data Template-->
<DataTemplate x:Key="PartDataTemplate">
<StackPanel>
<TextBlock
Text="{Binding PartName}"/>
<StackPanel
Orientation="Horizontal">
<TextBlock
Text="Avaliable Stock: "/>

164

CHAPTER 8
<Border>
<TextBlock
Text="{Binding StockCount}"/>
</Border>
</StackPanel>
</StackPanel>
</DataTemplate>

</Page.Resources>
<Infrastructure:VisualStateAwarePage.BottomAppBar>

<AppBar>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>
<StackPanel Orientation="Horizontal">
<!-- Button to add component-->
<Button x:Name="AddComponent"
Command="{Binding OpenComponentCommand, Mode=OneWay}"
Style="{StaticResource AddComponentAppBarButtonStyle}"/>
</StackPanel>
<StackPanel Grid.Column="1">
<!-- Button to add part-->
<Button x:Name="AddPart"
Command="{Binding OpenPartCommand, Mode=OneWay}"
Style="{StaticResource AddPartAppBarButtonStyle}"/>
</StackPanel>
</Grid>
</AppBar>
</Infrastructure:VisualStateAwarePage.BottomAppBar>

<Grid
Style="{StaticResource LayoutRootStyle}">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="769*"/>
<ColumnDefinition Width="597*"/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="140"/>
<RowDefinition Height="12*"/>
<RowDefinition Height="145*"/>
</Grid.RowDefinitions>
<!-- Popup control to get Component information to add -->
<Popup x:Name="AddComponentPopup"
x:Uid="AddComponentPopup"
AutomationProperties.AutomationId="AddComponentPopup"
IslLightDismissEnabled="True"
IsOpen="{Binding IsAddComponentPopupOpened, Mode=TwoWay}"
Grid.RowSpan="3"
Grid.ColumnSpan="2">

WCF SERVICES

165

CHAPTER 8 ' WCF SERVICES

<Border>
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="38"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>
<TextBlock Grid.Column="0"
Grid.Row="0"
Text="Component"
Grid.ColumnSpan="2"
Style="{StaticResource HeaderTextStyle}"/>
<TextBlock
Grid.Column="0"
Grid.Row="1"
Text="Component Name"
Style="{StaticResource ResourceKey=SubheaderTextStyle}" />
<TextBox
Grid.Column="1"
Grid.Row="1" x:Name="txtComponentName"
Text="{Binding ComponentName, Mode=TwoWay}"/>
<Button
Command="{Binding AddComponentCommand, Mode=OneWay}"
Content="Save"
Grid.Row="2"
Grid.Column="1"/>
</Grid>
</Border>
</Popup>
<!-- Popup control to get Part information to add -->
<Popup x:Name="AddPartPopup"
x:Uid="AddPartPopup"
AutomationProperties.AutomationId="AddPartPopup"
IsLightDismissEnabled="True"
IsOpen="{Binding IsAddPartPopupOpened, Mode=TwoWay}" Grid.RowSpan="3" Grid.ColumnSpan="2">
<Border>
<Grid x:Name="addPart">
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="38"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>

166

</Grid>

</Border>
</Popup>

CHAPTER 8

<TextBlock

Grid.Column="0"

Grid.Row="0"

Text="Part"

Grid.ColumnSpan="2"

Style="{StaticResource HeaderTextStyle}" />
<TextBlock

Grid.Column="0"

Grid.Row="1"

Text="Part Name"

Style="{StaticResource ResourceKey=SubheaderTextStyle}" />
<TextBox

Grid.Column="1"

Grid.Row="1"

Text="{Binding PartName, Mode=TwolWay}"/>
<TextBlock

Grid.Column="0"

Grid.Row="2"

Text="Quantity"

Style="{StaticResource ResourceKey=SubheaderTextStyle}"/>
<TextBox

Grid.Column="1"

Grid.Row="2"

Text="{Binding StockCount, Mode=TwoWay}"/>
<Button

Command="{Binding AddPartCommand, Mode=OneWay}"

Content="Save"

Grid.Row="3"

Grid.Column="1"/>

<!-- Popup control to select a Part to add it to Component as BOM -->
<Popup x:Name="AddBOMPopup"
x:Uid="AddBOMPopup"
AutomationProperties.AutomationId="AddBOMPopup"
IsLightDismissEnabled="True"
IsOpen="{Binding IsShowBOMPopupOpened, Mode=TwolWay}"
Grid.RowSpan="3"
Grid.ColumnSpan="2">

<Border>
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="38"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>

WCF SERVICES

167

CHAPTER 8 ' WCF SERVICES

<TextBlock
Grid.Column="0"
Grid.Row="0"
Text="Add to BOM"
Grid.ColumnSpan="2"
Style="{StaticResource HeaderTextStyle}" />
<ListView
Grid.Row="1"
ItemsSource="{Binding Parts}"
SelectedItem="{Binding SelectedPart, Mode=TwoWay}"
ItemTemplate="{StaticResource PartDataTemplate}"
Grid.Column="0"
Grid.ColumnSpan="2">
<TextBlock
Grid.Column="0"
Grid.Row="2"
Text="Quantity"
Style="{StaticResource ResourceKey=SubheaderTextStyle}"/>
<TextBox
Grid.Column="1"
Grid.Row="2"
Text="{Binding BOMQuantity, Mode=TwoWay}"/>
<Button
Command="{Binding AddBOMCommand, Mode=OneWay}"
Content="Save"
Grid.Row="3"
Grid.Column="1"/>
</Grid>
</Border>
</Popup>

<Grid Grid.ColumnSpan="2">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>
<TextBlock
Grid.Column="1"
Text="{Binding HeaderLabel}"
Style="{StaticResource PageHeaderTextStyle}"/>
</Grid>
<!--ListView Control to disply the Components-->
<ListView
Grid.Row="2"
ItemsSource="{Binding Components}"
ItemTemplate="{StaticResource ComponentDataTemplate}"/>
<TextBlock
Grid.Row="1"
Text="Components" />

168

CHAPTER 8 © WCF SERVICES

<TextBlock
Grid.Row="1"
Text="Parts"

Grid.Column="1"/>

<!--ListView Control to disply the Parts-->

<ListView
Grid.Row="2"
ItemsSource="{Binding Parts}"
ItemTemplate="{StaticResource PartDataTemplate}"
Grid.Column="1"/>

</Grid>

</Infrastructure:VisualStateAwarePage>

Note We intentionally left out most of the XAML code related to styling and positioning of the controls in this chapter
to simplify the explanations and promote readability. The source code that you can download from the APress web site
has the complete implementation.

ViewModel

The BOM.App has two ViewModels: Bil10fMaterialPageViewModel and ComponentViewModel, which resides
inside the ViewModel folder. The Bill0OfMaterialPageViewModel is bound to BillOfMaterialPage.xaml using the
AutoWireViewModel attached property as shown in Listing 8-7. The AutoWireViewModel attached property tells
Prism’s ViewModelLocator object to create an instance of the view model that corresponds to this view and set it
into the view’s DataContext property. The ViewModelLocator object uses a default convention where it looks in
the ViewModels namespace for a type with a name that starts with the name of the view and ends

with “ViewModel".

BillOfMaterialPageViewModel

BillOfMaterialPageViewModel (see Listing 8-8) is derived from the ViewModel class of the
Microsoft.Practices.Prism.StoreApps library to get support for MVVM. In this ViewModel NavigationService
EventAggregator, and BOMService are inserted through the constructor. Also in the constructor we add code to
subscribe to the EventAggregator events. Apart from this, the ViewModel exposes methods and commands to
accomplish various functionality like displaying components and parts, adding new components and parts to the
database, and associating a part with a component.

Listing 8-8. The BillOfMaterialPageViewModel Class

using System;

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ling;

using System.Text;

using System.Threading.Tasks;

169

CHAPTER 8 ' WCF SERVICES

using System.Windows.Input;

using BOM.BOMWcfServices;

using BOM.Services;

using Microsoft.Practices.Prism.StoreApps;

using Microsoft.Practices.Prism.StoreApps.Interfaces;
using Microsoft.Practices.Prism.PubSubEvents;

using BOM.Models;

namespace BOM.ViewModels
{
public class BillOfMaterialPageViewModel : ViewModel
{
private readonly INavigationService _navigationService;
private readonly IBOMService _bomservice;
private IEventAggregator eventAggregator;

private string _headerlabel;

private bool _isAddComponentPopupOpened;
private bool _isAddPartPopupOpened;
private bool _isShowBOMPopupOpened;

private int _selectedComponentID;
private Part _selectedPart;
private string _componentName;
private string partName;

private int _stockCount = 0;
private int _bomQuantity = 0;

private ObservableCollection<ComponentViewModel> _components;
private ReadOnlyCollection<Part> _parts;

public ICommand OpenComponentCommand { get; private set; }
public ICommand OpenPartCommand { get; private set; }
public ICommand AddComponentCommand { get; private set; }
public ICommand AddPartCommand { get; private set; }
public ICommand AddBOMCommand { get; private set; }

public BillOfMaterialPageViewModel(INavigationService navigationService
,IEventAggregator eventAggregator
, IBOMService bomservice)

_navigationService = navigationService;

_eventAggregator = eventAggregator;

_bomservice = bomservice;

OpenComponentCommand = new DelegateCommand(OpenComponentFlyout);
OpenPartCommand = new DelegateCommand(OpenPartFlyout);
AddComponentCommand = new DelegateCommand(AddComponentAsync);
AddPartCommand = new DelegateCommand(AddPartAsync);
AddBOMCommand = new DelegateCommand(AddBOMAsync);

170

if (eventAggregator != null)

CHAPTER 8 © WCF SERVICES

eventAggregator.GetEvent<ComponentSaveEvent>().Subscribe(RefreshComponentListAsync);
eventAggregator.GetEvent<PartSaveEvent>().Subscribe(RefreshPartListAsync);
eventAggregator.GetEvent<AddBOMEvent> () .Subscribe(OpenBOMFlyout);

}

//Methods that display the pop-up
private void OpenComponentFlyout()

{
ComponentName = string.Empty;
IsAddComponentPopupOpened = true;

}

private void OpenPartFlyout()

{
PartName = string.Empty;
StockCount = 0;
IsAddPartPopupOpened = true;

}

public async void OpenBOMFlyout(object componentID)
{
_selectedComponentID=(int) componentID;
IsShowBOMPopupOpened = true;
}
//Properties that are bound to the Popup IsOpen property
public bool IsAddComponentPopupOpened

{

get { return _isAddComponentPopupOpened; }

set { SetProperty(ref _isAddComponentPopupOpened, value); }
}
public bool IsAddPartPopupOpened
{

get { return _isAddPartPopupOpened; }

set { SetProperty(ref _isAddPartPopupOpened, value); }
}
public bool IsShowBOMPopupOpened
{

get { return _isShowBOMPopupOpened; }

set { SetProperty(ref _isShowBOMPopupOpened, value); }
}

//App Header
public string HeaderlLabel
{
get { return _headerLabel; }
private set { SetProperty(ref headerlLabel, value); }

171

CHAPTER 8 ' WCF SERVICES

//Properties bound to the Popup controls for capturing user input
public string ComponentName

{
get { return _componentName; }
set { SetProperty(ref componentName, value); }
}
public string PartName
{
get { return _partName; }
set { SetProperty(ref partName, value); }
}
public int StockCount
{
get { return _stockCount; }
set { SetProperty(ref _stockCount, value); }
}
public int BOMQuantity
{
get { return _bomQuantity; }
set { SetProperty(ref bomQuantity, value); }
}
public int SelectedComponentID
{
get { return _selectedComponentID; }
set { SetProperty(ref _selectedComponentID, value); }
}
public Part SelectedPart
{
get { return _selectedPart; }
set { SetProperty(ref selectedPart, value); }
}

//Properties that are bound to the ListViews
public ObservableCollection<ComponentViewModel> Components

{
get { return _components; }
private set { SetProperty(ref _components, value); }
}
public ReadOnlyCollection<Part> Parts
{
get { return parts; }
private set { SetProperty(ref parts, value); }
}

172

CHAPTER 8 © WCF SERVICES

//Fires on ViewlLoad
public override async void OnNavigatedTo(object navigationParameter,
Windows.UI.Xaml.Navigation.NavigationMode navigationMode,
System.Collections.Generic.Dictionary<string, object> viewModelState)

{
HeaderLabel = "My BOM";
GetComponentsAsync();
GetPartsAsync();
}
private async void GetComponentsAsync()
{
var components = await _bomservice.GetComponentsAsync();
var vmComponents = new ObservableCollection<ComponentViewModel>();
foreach (Component item in new ObservableCollection<Component>(components.Tolist()))
{
ComponentViewModel cvm = new ComponentViewModel(eventAggregator);
cvm.ComponentID = item.ComponentID;
cvm.ComponentName = item.ComponentName;
cvm.BOMComponents = item.BOMComponents;
vmComponents.Add(cvm);
}
Components = vmComponents;
}
private async void GetPartsAsync()
{
var items = await _bomservice.GetAllPartsAsync();
Parts = new ReadOnlyCollection<Part>(items.ToList());
}
private async void AddComponentAsync()
{
_bomservice.AddComponentAsync(new Component { ComponentName = _componentName });
IsAddComponentPopupOpened = false;
}
private async void AddPartAsync()
{
_bomservice.AddPartAsync(new Part { PartName = partName, StockCount = _stockCount });
IsAddPartPopupOpened = false;
}
private async void AddBOMAsync()
{
_bomservice.AddBOMAsync(new BillOfMaterial { ComponentID = _selectedComponentID
, PartID = selectedPart.PartID
, Quantity = bomQuantity });
IsShowBOMPopupOpened = false;
}

173

CHAPTER 8 ' WCF SERVICES

public async void RefreshComponentListAsync(object notUsed)

{
GetComponentsAsync();
}
public async void RefreshPartListAsync(object notUsed)
{
GetPartsAsync();
}

BillOfMaterialPageViewModel Commands

InBillOfMaterialPageViewModel we add commands that will be bound to the elements of the UI in
BillOfMaterialPage.xaml. These commands will be associated with methods that are called when the command
is invoked.

BillOfMaterialPageViewModel Properties

We add various properties to the Bil10fMaterialPageViewModel and these properties are responsible for holding the
components, parts, selected components and parts to add to BOM and properties to set the open status of the
pop-ups in the UL Listing 8-7 lists all the properties in Bil10fMaterialPageViewModel with comments above each
that detail the purpose of that property.

BillOfMaterialPageViewModel Events

As mentioned earlier, this ViewModel subscribes to three events (see Listing 8-9).

e ComponentSaveEvent: When fired, this event calls the RefreshComponentListAsync method,
which in turn calls GetComponentsAsync to refresh the Component list.

e PartSaveEvent: This event is called when a new part is added. This event calls the
RefreshPartListAsync method, which in turn calls the GetPartsAsync method to refresh the
Parts list.

e AddBOMEvent: This event is fired from the ComponentViewModel and upon receipt is
handled by the OpenBOMFlyout method, which sets the IsShowBOMPopupOpened property to
true to display the Pop-up to pick a part for a component.

Listing 8-9. The BillOfMaterialPageViewModel Events

using Microsoft.Practices.Prism.PubSubEvents;
using System;

using System.Collections.Generic;

using System.ling;

using System.Text;

using System.Threading.Tasks;

174

CHAPTER 8 © WCF SERVICES

namespace BOM.Models

{

public class ComponentSaveEvent : PubSubEvent<object>
{
}

public class PartSaveEvent : PubSubEvent<object>

{
}

public class AddBOMEvent : PubSubEvent<object>

{
}

BillOfMaterialPageViewModel Methods

We have already discussed the properties, events, and commands of the Bil10fMaterialPageViewModel, so that
leaves us with methods. Let’s look at some of the important methods in the ViewModel.

¢ GetComponentsAsync: This method calls the GetComponentsAsync method from
BOMService for retrieving all the Components from the database. Using this, it builds an
ObservableCollection based on ComponentViewModel (see Listing 8-8) and assigns the
collection to the Components property.

e GetPartsAsync: This method calls the GetAl1PartsAsync method from BOMService for
retrieving all the parts from the database and assigns that to the Parts property.

¢ AddComponentAsync: This method builds a component object and passes it as a parameter
to the BOMService’s AddComponentAsync method to add a component to the database table.
This method also sets the IsAddComponentPopupOpened property to false to hide the pop-up
used to add the component.

e AddPartAsync: This method creates a Part object and passes it as a parameter to the
BOMService’s AddPartAsync method to add a row to the Part table. This method also sets the
IsAddPartPopupOpenedproperty to false to hide the pop-up control used to add the part.

e AddBOMAsync: Similar to AddComponentAsync and AddBOMAsync, this method creates a BOM
object and passes it as a parameter to the BOMService’s AddBOMAsync method to add a row to
the BOM table. To hide the pop-up, this method sets the IsShowBOMPopupOpened property to
false.

Apart from these methods, we also override the OnNavigatedTo method of the ViewModel. This method
will be fired when the View loads and in this method we set the Header of the app and then call the methods
GetComponentsAsync and GetPartsAsync. As mentioned earlier, these methods, when called, set the Components,
Parts properties, which in turn bind to the ListView controls in the View to display the Components and Parts
information as shown in Figure 8-1.

175

CHAPTER 8 ' WCF SERVICES

ComponentViewModel

This ViewModel is also derived from the ViewModel class. It has three properties: ComponentID, ComponentName,
and BOMComponents. It also has a DelegateCommand AddPartsCommand as shown in Listing 8-10.

Listing 8-10. The ComponentViewModel Class

using System;

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Input;

namespace BOM.ViewModels

{

public class ComponentViewModel : ViewModel

{
private int _componentID;
private string _ComponentName;
private ObservableCollection<BillOfMaterial> _bOMComponents;

public ICommand AddPartsCommand { get; private set; }
private IEventAggregator _eventAggregator;

public ComponentViewModel(IEventAggregator eventAggregator)

{
_eventAggregator = eventAggregator;
AddPartsCommand = new DelegateCommand(RaiseAddBOM);
}
public int ComponentID
{
get { return _componentID; }
set { SetProperty(ref componentID, value); }
}
public string ComponentName
{
get { return _ComponentName; }
set { SetProperty(ref ComponentName, value); }
}
public ObservableCollection<BillOfMaterial> BOMComponents
{
get { return _bOMComponents; }
set { SetProperty(ref bOMComponents, value); }
}

176

CHAPTER 8 © WCF SERVICES

private void RaiseAddBOM()

{
}

_eventAggregator.GetEvent<AddBOMEvent> () .Publish(ComponentID);

When bound to the ListBox in Bil10fMaterialPage.xaml, this command publishes an AddBOM Event that is
subscribed in the Bill0fMaterialPageViewModel that sets a flag IsShowBOMPopupOpened to true, which is bound to
the pop-up control’s IsOpen property. Setting this property opens the pop-up control to display the list of parts to pick
as a BOM to the component as shown in Figure 8-7.

hﬂ'q I)\c". B O r‘.«1

Components Parts

Encoder 11MM
100

Figure 8-7. The Parts list to be picked to add it to BOM

Conclusion

In this chapter we learned to use SQL Server as the database for storing and retrieving data from a Windows 8 app by
building a service layer using WCF Services. WCF Services is widely used and makes it easier to expose and consume
WCEF services. Also in this chapter we learned to use Prism, as it helps to easily design and build rich, flexible, and easy
to maintain Windows 8 apps.

In the next chapter we will learn to use SQL Azure as a data storage option with Windows Azure Mobile Services
as the service layer by building an Instagram-inspired Windows 8 app.

177

CHAPTER 9

Windows Azure Mobile Services

In the last two chapters, we have seen two different approaches to consuming data from SQL Server, one using ASP.NET
Web API and the other using WCE. In this chapter we learn to use Windows Azure Mobile Services to leverage data

in a Windows 8 app. Windows Azure Mobile Services allows us to quickly connect any mobile client like Windows 8,
Windows Phone, iOS, Android, or HTMLS5 apps to a cloud-based back end hosted on Windows Azure.

This chapter begins by helping us get started with Windows Azure Mobile Services using the Windows Azure
Mobile Service setup. We learn to integrate Live SDK for user authentication, storing data in Windows Azure storage.
We learn these steps by developing an Instagram-inspired app called Instashots that allows users to edit and add
filters to the photos in a way similar to Instagram by using the Aviary SDK and storing data in Windows Azure storage.

Introduction to Windows Azure Mobile Services

Windows Azure Mobile Services is a new addition to Windows Azure. The idea behind it is to allow developers to
build a scalable services for multiple mobile platforms. Windows Azure Mobile Services currently provides support
through the client libraries that are available for Windows 8, Windows Phone, iOS, Android, and HTML5 apps. This
service provides the necessary infrastructure to quickly create back-end services by enabling some common scenarios
like storing data, authentication, app notification, monitoring and logging for services.

e Data: With Windows Azure, we are able to store data in the Windows Azure SQL database as
tables. One of the best features of Windows Azure Mobile Services is the ability to work with
a dynamic schema to automatically insert new columns for fields that it has never received
before.

e Authentication: Windows Azure Mobile Services has built-in support for various third-party
identity providers like Microsoft Account, Facebook Login, Twitter Login, and Google Login.

e Notification: Windows Azure Mobile Services supports push notification and can be
integrated with the notification services of iOS, Android, Windows 8, and Windows Phones to
deliver push notifications.

e Monitoring and logging: Windows Azure Mobile Services provides a dashboard that displays
a usage timeline, usage overview, and logging information (see Figure 9-1).

179

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES
R Windows Azure v ® Bhotmail.com

instashots s

&34 DASHBOARD DATA SCHEDULER PUSH IDENTITY ~ CONFIGURE SCALE LOGS

F

Q wricas @ CHE @ oataout RELATIVE v 7DAYS +0

s

®
=
o
o
B
gt

May 13 May 14 May 15 May 16 May 17 May 18 May 19 May 20
JS - , .
mobile service endpoint status e quick glance
% You have not configured mobile service endpoint monitoring. STATUS
CONFIGURE MOBILE SERVICE ENDPOINT MONITORING @ Ready
89 MOBILE SERVICE URL
[I usage overview https:/finstashots.azure-mobile.net/
=
;} LOCATION
B INSTASHOTS [l OTHER MOBILE SERVICES || AVAILABLE East US

m SUBSCRIPTION NAME

Windows Azure MSDN - Visual Studio

Figure 9-1. Windows Azure Mobile Services Dashboard displays API Call count, CPU usage and Data Out

Note Similar to Windows Azure Mobile Services, Amazon also provides a cloud-based solution called Amazon Web
Services (AWS) for storing structured information in the cloud. AWS has a .NET SDK that has support for both Windows 8
and Windows Phone 8 app development. You can download the SDK at http://aws.amazon.com/sdkfornet/.

Creating the Instashots App

The Instashots app is an Instagram-inspired online photo sharing service that enables its users to add filters to photos
and post them online. By building this service we learn how to do the following.

e Create and manage Windows Azure Mobile Services.
e Store data in a Windows Azure SQL database.

e Store images in the Windows Azure storage.

e Integrate Live SDK and use it to authenticate users.

e Integrate Aviary SDK for photo editing.

180

http://aws.amazon.com/sdkfornet/

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Creating Windows Azure Mobile Services in the Management Portal

To enable Windows Azure Mobile Services in our app we need to sign up for the Windows Azure services. Microsoft
provides a trial version for people who like to experiment with it beforehand. Once registered, log in to the Windows
Azure Management Portal (http://manage.windowsazure.com) and click the +New button at the bottom left of the

page to create a new Mobile Service named Instashots, as shown in Figure 9-2.

ER Windows Azure v

virtual machines

VIRTUAL MACHINE INSTANCES MAGES DISKS

VIRTUAL MACHINES No virtual machines have been created. To get sta
machine.

CREATE A VIRTUAL MACHINE (3)

WEB SITE ib‘; CREATE Create a
running
DATA SERVICES VIRTUAL MACHINE

ﬁéﬂ APP SERVICES MOBILE SERVICE

-
{202} NETWORKS CLOUD SERVICE

ﬁ STORE

Figure 9-2. Creating back end services for the Instashots app

181

http://manage.windowsazure.com/

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

On the Create a Mobile Service page shown in Figure 9-3, type Instashots as the subdomain name . The URL for
our Windows Azure Mobile Services will be http://instashots.azure-mobile.net/.

NEW MOBILE SERVICE

Create a Mobile Service

URL
instashot

.azure-mobile.net

DATABASE

Create a new SQL database instance v
REGION

East US v

Figure 9-3. Creating the Mobile Services for Instashots app
With the Mobile Service created, next the wizard takes us to the Specify Database Settings page shown in

Figure 9-4. Here we create a new database and name it instashot_db. Figure 9-5 shows the Instashots mobile service
ready for the app to use.

182

http://instashots.azure-mobile.net/

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

NEW MOBILE SERVICE

Specify database settings

NAME
I instashot_db V] |

SERVER
l New SQL database server E‘

SERVER LOGIN NAME
l wiforce ‘ @

SERVER LOGIN PASSWORD CONFIRM PASSWORD
| o | |

REGION

‘ East US E”
D CONFIGURE ADVANCED DATABASE SETTINGS @ @

Figure 9-4. Setting up the database for the Instashots Mobile Service

-

OO mobile services e

WEB SITES NAME STATUS SUBSCRIPTION

Instashots Windows Azure MSDN - Visual Studio U...

VIRTUAL MACHINES
0

MOBILE SERVICES
1

@ CLOUD SERVICES

5QL DATABASES

E S‘ITOR.AGE
Goos

NETWORKS
0

Figure 9-5. Instashots mobile service is ready for the Windows 8 app to use

183

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Creating Mobile Services Tables

With the mobile service in place, we add new tables in the SQL Database instance instashot_db that we created along
with the Mobile Services. The main functionality of the Instashots app is to allow users to log in to the app using a
Microsoft account and upload photos, add comments to a photo, and follow users. For that, we create four Mobile
Services tables.

e User: Stores the user information.

¢ Pictures: Stores the URI of the picture uploaded to the Windows Azure storage.
e Comments: Stores the comments of the pictures.

e Follow: Stores the information of those who are followed and followers.

To create tables, go to the Start page for Mobile Services Instashots by clicking the Right arrow shown in Figure 9-5.
Navigate to the DATA tab to create new tables. To do so, click the Create + button (see Figure 9-6).

== Windows Azure N @ 0 *@hotmail.com

instashots ewex

€3 DASHBOARD DATA SCHEDULER PUSH IDENTITY CONFIGURE SCALE LOGS

]

@ TABLE INDEXES RECORDS
Comments = B 3

E Follow 1 0
Pictures 1 3

@ User 1 4

B

B

&5

B

L\

o)

A

o NEW :':E DEE 2

Figure 9-6. Creating a new table interface in the Windows Azure Management Portal

184

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

The Pictures table is essential, as it stores photo data to the mobile services. When the Instashots app tries to
perform any of the CURD operations like inserting, updating, deleting, or reading, we can specify what permission the
user needs to perform this operation. In our case we will allow only authenticated users to perform insert, update, and
delete operations, but everyone can read the data (see Figure 9-7). Now the table is locked and it will not be possible
for anyone to insert, update, or delete without proper authorization. Similar to the Pictures table, we also create tables
to store user data, comments, and follower information. Once created, the DATA tab will look like the one shown
in Figure 9-6.

Create New Table

TABLE NAME

Pictures

You can set a permission level against each operation for your table.
INSERT PERMISSION
Only Authenticated Users V‘
UPDATE PERMISSION
Only Authenticated Users j
DELETE PERMISSION
Only Authenticated Users ﬂ

READ PERMISSION
Everyone j

Figure 9-7. Creating a new storage table Pictures for storing photo data

Creating Windows Azure Storage

Even though a photo’s information, like title and uploaded date, are stored in the Picture table, the image files will
be stored in the Windows Azure Storage. For this we need to create a Windows Azure storage (see Figure 9-8) and a
container within that storage to store the pictures that we upload from the Instashots app.

185

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

28 Storage - Windows Azure >) ok

@ vinod_cvk@hot; A

URL
SQL DATABASE]
instashots
*.corewindows.net

LOCATION/AFFINITY GROUP
E |

SQL REPORTING

™ Enable Geo-Replication

RECOVERY SERVICES

CREATE STORAGE ACCOUNT

Figure 9-8. New Windows Azure Storage account created with the name Instashots

Next we create a container within the storage account. This container provides a logical grouping for blobs stored
in the Windows Azure storage service. When we upload the photo to the Instshots app, we should specify the name of
the container, as shown in Figure 9-9.

186

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

e :)| Bm https://manage.windowsazure.com/s 0 ~ @& © C | 2% Storage - Windows Azure

New container

NAME

images

ACCESS

Public Blob

Figure 9-9. Container within the storage account is created to store the images

Setting Up the Development Environment

The mobile service Start screen generates a Windows 8 app that can be downloaded. This app is preconfigured to
access the Instashots back end and is ready to run. WinJS (HTML5/JavaScript) or C# (.NET/XAML) can be chosen for
download. We'll choose C# here and include the following reference from the NuGet packages.

e MVVM Light
e Windows Azure Mobile Services
e Windows Azure storage

We also add references to the Live SDK and the Aviary Photo Editing SDK as shown in Figure 9-10. The Aviary
Photo Editing SDK provides us with an intuitive photo editing tool for everything from quick fixes and one-tap
autoenhance to stylistic effects, cropping, red eye removal, and adding filters, frames, and stickers to the photos.

187

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

@ o-2d sRR &-
| P

fa] Solution 'Instashots' (1 project)
“ Instashots
b S Properties
4 @] References
u-B NET for Windows Store apps
=-8 Aviary Photo Editing SDK
=-8 GalaSoft.MvvmLight.Extras.Win8
=B GalaSoft.MvvmLight.Win8
=B Live SDK
=-B Microsoft Visual C++ Runtime Package
u-8 Microsoft.Practices.ServiceLocation
s-8 Microsoft.WindowsAzure.Storage
u-8 Microsoft.WindowsAzure.Storage. Table
s-8 Windows
=-8 Windows Azure Mobile Services Managed Client
i Service References
B Assets
B Common
i DataModel
i Helper
= lib
B ViewModel
b I\ Appxaml
7= Instashots_StoreKey.pfx
b I MainPagexaml
O MVWMLight.Nuget.Readme.txt
Package.appxmanifest
I\ Package.StoreAssociation.xml
¥ packages.config

v v U v

Figure 9-10. Instashots Windows 8 App project structure

Note Aviary SDK for Windows 8 can be downloaded from http://www.aviary.com/w8. As of now this SDK is
compatible only with C++/XAML and C#/XAML.

Drilling into the Solution Explorer we notice two files, App.xaml and MainPage.xaml, and a little bit of stub code
that is already added to App.xaml as shown in Listing 9-1. This helps the Client component of the app to talk to the
mobile services.

188

http://www.aviary.com/w8

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Listing 9-1. A Simpler Key URL That Will Map to the Instashots Mobile Services, Which Helps the App Talk to the
Mobile Services

// This MobileServiceClient has been configured to communicate with Mobile Service's url
// and application key. You're all set to start working with your Mobile Service!

public static MobileServiceClient MobileService = new MobileServiceClient(
"https://instashots.azure-mobile.net/",
"TVqTZaDDCuvOKGPMmKwrJhdAFCTECy75"

)5

We create four classes: User, Comment, Picture, and Follow (see Listing 9-2) that models the entities that we
created in Windows Azure table storage using the Management console. We add the DataTable attributes to all these
classes to specify that this class represent Mobile Services tables.

Listing 9-2. Table Classes That Model the Entities of the Windows Azure Table Storage

using Microsoft.WindowsAzure.MobileServices;
using System;
using System.Runtime.Serialization;

[DataTable(Name = "User")]
public class User

{
public int Id { get; set; }
[DataMember(Name = "username")]
public string UserName { get; set; }
[DataMember(Name = "userid")]
public string UserID { get; set; }
[DataMember (Name = "lastaccessed")]
public DateTime? LastAccessed { get; set; }
}

[DataTable(Name = "Pictures")]
public class Picture

{
public int Id { get; set; }

[DataMember (Name = "name")]
public string Name { get; set; }

[DataMember(Name = "title")]
public string Title { get; set; }

[DataMember (Name = "userid")]
public string UserId { get; set; }

[DataMember (Name = "imageurl")]
public string Imageurl { get; set; }

189

https://instashots.azure-mobile.net/

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

[DataMember (Name = "sasQueryString")]
public string sasQueryString { get; set; }

[DataMember(Name = "likes")]
public int Likes { get; set; }

[IgnoreDataMember]
public List<Comment> Comments { get; set; }

}

[DataTable(Name = "Comments")]
public class Comment

{
public int Id { get; set; }

[DataMember (Name = "text")]
public string CommentText { get; set; }

[DataMember(Name = "userid")]
public int UserId { get; set; }

[DataMember (Name = "pictureid")]
public int Pictureld { get; set; }

[DataMember(Name = "createdDate")]
public DateTime? CreatedDate { get; set; }

[IgnoreDataMember]
public User CommentedBy { get; set; }
}

[DataTable(Name = "Follow")]
public class Follow

{
public int Id { get; set; }

[DataMember (Name = "followeruserid")]
public int FollowerUserId { get; set; }

[DataMember (Name = "followinguserid")]
public int FollowingUserId { get; set; }

[DataMember (Name = "lastUpdated")]
public DateTime? LastUpdatedDate { get; set; }

190

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Designing Instashots User Interface

The Instashots app is a single-page UI (MainPage.xaml) as shown in Listing 9-3, which is divided into four sections
via Header section, which contains the App name and a sign-out button. The Feed section is at the left and will
display photos posted by the logged-in user and all of the users that the logged-in user is following. The next section
is above the Feed section and displays the selected photo from the feed list. From this section users are able to link
the picture, view comments, and add comments to the picture. On the right side we can display the Instashots users
who are following and whom the user follows, but considering the length of this chapter, we do not discussing this
implementation. Readers are encouraged to explore this as a further exercise.

Listing 9-3. MainPage.xaml View Defined in the XAML

<Grid Background="White">

<Grid Margin="50,50,10,10">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="653*" />
<ColumnDefinition Width="427*" />
<ColumnDefinition Width="226*"/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>

<!--Header Section-->

<Grid Grid.Row="0"
Grid.ColumnSpan="2"
Margin="0,0,0,20">

<StackPanel>
<TextBlock>
<Run Text="Instashots"/>
</TextBlock>
</StackPanel>
</Grid>
<StackPanel Grid.Row="1">
<StackPanel>
<local:QuickStartTask
Number="1"

Title="Photo Feed"
Description="Photos posted by you and your followers" />
<!--Selected Photo Section-->
<StackPanel
Margin="10,20,0,20"
Visibility="{Binding ShowSelectedPhoto}">
<StackPanel
Margin="2,0,0,0"
Orientation="Horizontal">
<TextBlock
Text="{Binding SelectedTitle}"/>
<TextBlock
Text="{Binding SelectedLikeCount}"
VerticalAlignment="Center"

191

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Foreground="{StaticResource
SliderTrackDecreasePressedBackgroundThemeBrush}"

/>
<Button
Command="{Binding LikeCommand, Mode=OneWay}"
Content="Like"
/>
</StackPanel>
<Border>
<Image
Source="{Binding SelectedPicture,
Converter={StaticResource UrlToBitmapImageConverter}}"
Stretch="UniformToFill"/>
</Border>
<StackPanel

Margin="22,10,0,0"
Orientation="Vertical">
<StackPanel Orientation="Horizontal">
<TextBlock/>
<Button
Command="{Binding ShowCommentCommand, Mode=OnelWay}
Content="Add Comment"/>

</StackPanel>
<!--ListView the loads the comment of the selected picture-->
<ListView
ItemsSource="{Binding PictureComments}"
SelectionMode="None"
IsSwipeEnabled="false"
IsItemClickEnabled="True"
ItemTemplate="{StaticResource CommentTemplate}" />

</StackPanel>
</StackPanel>
<!--Feed List-->
<StackPanel

Orientation="Horizontal"

Margin="10,0,0,0">

<ListView
ItemsSource="{Binding MyPictures}"
SelectedItem="{Binding SelectedItem, Mode=TwoWay}"

IsSwipeEnabled="false"
IsItemClickEnabled="True"
ItemTemplate="{StaticResource 80PxTemplate}"
SelectionMode="Single">
<ListView.ItemsPanel>

<ItemsPanelTemplate>

<WrapGrid Orientation="Horizontal" />

</ItemsPanelTemplate>

</ListView.ItemsPanel>
</ListView>
</StackPanel>

192

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

</StackPanel>
</StackPanel>

<Grid Grid.Row="1" Grid.Column="1" Grid.ColumnSpan="2">
<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition />

</Grid.RowDefinitions>

<!-- Users list to follow-->

<StackPanel>
<local:QuickStartTask
Number="2"

Title="Instashots Users"
Description="Follow or unfollow a user from the list" />
</StackPanel>

<ListView

x:Name="ListItems"
Margin="62,10,0,0" Grid.Row="1">
<ListView.ItemTemplate>

<DataTemplate>
<StackPanel Orientation="Horizontal">
<CheckBox
x:Name="CheckBoxComplete"
IsChecked="{Binding Complete, Mode=TwolWay}"
Content="{Binding Text}" Margin="10,5"
VerticalAlignment="Center"/>
</StackPanel>
</DataTemplate>
</ListView.ItemTemplate>
</ListView>
</Grid>
<StackPanel Margin="0,0,0,20" Grid.Column="2">
<TextBlock

x:Name="txtWelcome"/>

<Button Margin="72,0,0,0"
x:Name="btnSignOut"
Command="{Binding SignoutCommand}"
Content="Sign Out"/>

</StackPanel>

</Grid>

MainViewModel

We add a ViewModel class MainViewModel. MVVM Light’s ViewModelBase class is used as the base class for this
ViewModel and this ViewModel exposes methods and commands to accomplish various functionalities, like
authenticating users against a Microsoft Account, uploading photos to the Windows Azure storage services,

and getting the photos and user details from Windows Azure Mobile Services.

193

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

MainViewModel Commands

In MainViewModel(see Listing 9-4) we add commands that will be bound to the elements of the user interfaces in
MainPage.xaml. These commands will be associated with methods that are called when the command is invoked.

Listing 9-4. Commands to Bind User Interface with Logic

public RelayCommand SignoutCommand { get; private set; }
public RelayCommand EditPhotoCommand { get; private set; }
public RelayCommand UploadPhotoCommand { get; private set; }
public RelayCommand AddCommentCommand { get; private set; }
public RelayCommand ShowCommentCommand { get; private set; }
public RelayCommand LikeCommand { get; private set; }

public MainViewModel()

if (!IsInDesignMode)

{
this.SignoutCommand = new RelayCommand(this.SignOutAction, CanSignOut);
this.UploadPhotoCommand = new RelayCommand(this.UploadAction, CanUpload);
this.EditPhotoCommand = new RelayCommand(this.EditPhotoAction , CanEditPhoto);
this.AddCommentCommand = new RelayCommand(this.AddCommentAction);
this.ShowCommentCommand = new RelayCommand(this.ShowCommentAction);
this.LikeCommand = new RelayCommand(this.LikeAction);
Authenticate();

}

MainViewModel Properties

We will add various properties to the MainViewModel and these properties are responsible for holding the photo
feeds, changing the visible state of the controls, and editing the photo details. Listing 9-5 shows all the properties in
MainViewModel with comments above each that detail the purpose of that property.

Listing 9-5. MainViewModel Properties That Hold the Information

//User welcome text
public string WelcomeTitle

{

get

{
return welcomeTitle;

}

set

{
welcomeTitle = value;
RaisePropertyChanged("WelcomeTitle");

}

}string welcomeTitle;

194

CHAPTER 9

//Uploading Photo Title
public string PhotoTitle

{

get

{
return photoTitle;

}

set

{
photoTitle = value;
RaisePropertyChanged("PhotoTitle");

}

}string photoTitle;

//Photo Like count
public string SelectedLikeCount

{
get

{

return selectedLikeCount;

set

{

selectedLikeCount = value;
RaisePropertyChanged("SelectedLikeCount");

}string selectedLikeCount;

//Show popup UI to entry title and upload
public bool ShowUploadPopup

{
get

{

return showUploadPopup;

set

{
showUploadPopup = value;
RaisePropertyChanged("ShowUploadPopup");

}
}bool showUploadPopup;

//Show popup UI to add comment
public bool ShowCommentPopup

{
get

{
}

return showCommentPopup;

WINDOWS AZURE MOBILE SERVICES

195

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

set

{

showCommentPopup = value;
RaisePropertyChanged("ShowCommentPopup");
}

}bool showCommentPopup;

//Selected Photo from the Feed
public Picture SelectedItem

{

get

{
return selectedItem;

}

set

{
selectedItem = value;
SelectedTitle = selectedItem.Title;
SelectedPhoto = SelectedItem.Imageurl ;
ShowSelectedPhoto = Visibility.Visible;
SelectedLikeCount = string.Format("{o} {1}"

, SelectedItem.Likes, SelectedItem.Likes > 1 ? "Likes" :

RaisePropertyChanged("SelectedItem");
LoadComment();

}

}Picture selectedItem;

//Set visibility of the Selected Photo section
public Visibility ShowSelectedPhoto

{

get

{
return showSelectedPhoto;

}

set

{
showSelectedPhoto = value;
RaisePropertyChanged("ShowSelectedPhoto");

}

}Visibility showSelectedPhoto = Visibility.Collapsed;

//Selected Photo title from the feed
public string SelectedTitle

{
get

{
}

return selectedTitle;

196

"Like");

CHAPTER 9

set

selectedTitle = value;
RaisePropertyChanged("SelectedTitle");

}
}string selectedTitle;

//Comment to be added to the selected photo
public string CommentText

{

get

{
return commentText;

}

set

{
commentText = value;
RaisePropertyChanged("CommentText");

}

}string commentText;

//Azure storage URL of the selected photo from the feed
public string SelectedPhoto

{
get

{

return selectedPhoto;

selectedPhoto = value;
RaisePropertyChanged("SelectedPhoto");

}string selectedPhoto;

//WritableBitmap of the edited photo from Aviary UI
public WriteableBitmap EditedImage

{
get

{

return editedImage;

editedImage = value;
RaisePropertyChanged("EditedImage");

MWriteableBitmap editedImage;

WINDOWS AZURE MOBILE SERVICES

197

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Authentication with Live SDK

Windows Azure Mobile Services has bulit-in functionality to authenticate and authorize users by using a variety of
identity providers, like Microsoft Accounts, Facebook, Twitter, and Google.

To configure Instashots to use the Microsoft account for authentication, we have to update the settings on the
Mobile Services IDENTITY tab in the Windows Azure Management Portal. On this tab we can configure for Microsoft
Account, Facebook, Twitter, and Google; for the Instashots app, though, we configure only the Microsoft account.
Navigate to the Live Portal (http://manage.dev.live.com) and register the application as shown in Figure 9-11.

Get the Client ID and Client Secret key and update them in the Microsoft Account settings as shown in Figure 9-12.
Finally, set the redirect domain in Live Connect, which is essentially our Windows Azure Mobile Service URL,
https://instashots.azure-mobile.net/.

<« C' | @ nttps;//manage.dev.live.com/Applications/Summary/00000000480EE29A [Tk 1@ ()
Home Myapps Docs InteractiveSDK Downloads
My appicatans > Insmshats

Instashots

: i

dit settings View analytics Delete application

Instashots

Default language:
English

Application logo:

of service URL:

Number of Users

Client ID

00000000420EE29A

Client secret:
NQSHT24uc6QEfZdViETHAwy TqRRCYT2 Date

ts.azure-mobile.net/

Language:

English

Application name:

Instashots

Number of API Calls

Figure 9-11. Live developer portal to register an app to support Microsoft Account

198

http://manage.dev.live.com/
https://instashots.azure-mobile.net/

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

= Windows Azure ~ i Dhotmail.com

|nStaShOtS PREVIEW

&3 DASHBOARD DATA SCHEDULER PUSH IDENTITY CONFIGURE SCALE LOGS

microsoft account settings

CLIENT ID loooo00004s0EE29A

CLIENT SECRET [NQOHT24uc6Q81ZdVjs7HwyTQRRC]Y72

HaQE e @

facebook settings

~
N

APP ID/API KEY

APP SECRET

twitter settings

+ OV FD

Figure 9-12. Setting up Microsoft Account for authentication

As of now, the Mobile Services API only provides very basic information about logged in users, like username, but
we would like to get some more information, like the logged-in user’s first name, so that we can provide a customized
greeting for the user when he or she logs into the app. To achieve that, instead of using the Mobile Services API for
authenticating a user, we use Live SDK APIs to authenticate and then assign the token to the Mobile Services User
object as shown in Listing 9-6. We will have all this logic in an asyn method, Authenticate. This method resides
inside the MainViewModel and will be invoked when the user launches the app. This method authenticates the user,
and once authenticated it will check to see if the user is an existing user. If so, it then gets the User object for that user;
otherwise, it creates a new User object and saves the information to the Mobile Services storage table.

Listing 9-6. Authenticating the User Using Live SDK

LiveAuthClient liveIdClient = new LiveAuthClient("https://instashots.azure-mobile.net/");
private LiveConnectSession session;

private async System.Threading.Tasks.Task Authenticate()

{

while (session == null)

199

https://instashots.azure-mobile.net/

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

// Force a logout to make it easier to test with multiple Microsoft Accounts
if (liveIdClient.CanLogout)
liveIdClient.Logout();
LiveloginResult result = await liveIdClient.LoginAsync(new[] { "wl.basic" });
if (result.Status == LiveConnectSessionStatus.Connected)
{
session = result.Session;
LiveConnectClient client = new LiveConnectClient(result.Session);
LiveOperationResult meResult = await client.GetAsync("me");
//assigning the token generated by LiveConnectClient to the MobileServiceUser
MobileServiceUser loginResult = await
App.MobileService.LoginAsync(result.Session.AuthenticationToken);
var results = await userTable.TolListAsync();

if (results.Count == 0)
{
var user = new User { LastAccessed = DateTime.Now,
UserName = meResult.Result["first name"].ToString() };
}

else

{
}

WelcomeTitle = string.Format("Welcome {0}!", meResult.Result["first name"]);
//Get the photos uploaded by logged in user.

var getPictures = await GetMyPhotos();

foreach (var p in getPictures)

CurrentUser = results.First();

{
myPictures.Add(p);
}
RaisePropertyChanged("MyPictures");
}
else
{
session = null;
var dialog = new MessageDialog("You must log in.", "Login Required");
dialog.Commands.Add(new UICommand("OK"));
await dialog.ShowAsync();
}

Windows Azure Mobile Services enables us to define custom business logic that is run on the server. This logic
is provided as a JavaScript function that is registered to an insert, read, update, or delete operation on a given table.
In our case before inserting a row in the User table, we get the authenticated user ID from the User parameter of the
insert script and set it to the User table userid column as shown in Figure 9-13.

200

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

user

JROWSE SCRIPT COLUMNS PERMISSIONS

T

OPERATION |Insert V|

1 function insert(item, user, request) {
2 var channelTable = tables.getTable('User');

3 channelTable.where({

4 userid : user.userld

5 1) .read({

6 success: insertChannelIfNotFound

7 1)

g function insertChannelIfNotFound(existingChannels) {
9 if (existingChannels.length > @) {

10 request.respond(statusCodes.OK, existingChannels[©]);
11 } else {

12 item.userid =user.userId;

13 request.execute();

14 }

15 }

16

17

18

19

Figure 9-13. Insert script to get the UserID and update the table

Retrieving the Photo Feed

Once the user is authenticated, the Authenticate method will call the GetMyPhotos (see Listing 9-7) method to get the
Pictures and populate them into the MyPictures collection. This collection is bound to the ListView as shown earlier
in Listing 9-3.

Listing 9-7. Retrieving the PhotoFeed from the Pictures Table

private async Task<List<Picture>> GetMyPhotos()

{
}

return await pictureTable.TolListAsync();

Uploading Photos to Windows Azure Storage

As mentioned before, the Instashots app allows a logged-in user to add filters to a photo and upload it to the
Windows Azure Storage and update the Photo table with the photo title and Windows Azure Storage URI. To upload
a photo, the user will click the Upload button on the app bar, which invokes the EditPhotoAction command

201

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

that calls the EditPhotoAction method. This method calls the FileOpenPicker class for the user to pick a photo

for editing. Once picked, the photo is sent to the Aviary Photo Editor by calling the LaunchAviarySDK method as
shown in Listing 9-8 to add the filters to the photo as shown in Figure 9-14. Once the photo is edited by the user,

the PhotoEditCompleted method is invoked by the AviaryEditor. In the PhotoEditCompleted method we assign the
edited photo to EditedImage property, and display a pop-up window (see Figure 9-15) to add a title to the photo with
an option to upload by clicking the Upload button in the pop-up window.

Listing 9-8. Editing the Photo Using the Aviary SDK

public async void EditPhotoAction()
{
editedImage = null;
PhotoTitle = null;
FileOpenPicker openPicker = new FileOpenPicker();
openPicker.ViewMode = PickerViewMode.Thumbnail;
openPicker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
openPicker.FileTypeFilter.Add(".jpg");
openPicker.FileTypeFilter.Add(".jpeg");
openPicker.FileTypeFilter.Add(".png");
StorageFile file = await openPicker.PickSingleFileAsync();
if (file != null)
{
selectedFileName = file.Name;
m_aviaryPhotoStream = await file.OpenReadAsync();
await LaunchAviarySDK();

}

private async System.Threading.Tasks.Task LaunchAviarySDK()
{

if (m_aviaryPhotoStream == null)

return;
}
//Load editor with IRandomAccessStream from a picture file
AviaryEditorTask.SetAviaryEditorAccentColor(Windows.UI.Colors.LightGray, true);
AviaryEditorTask task = await AviaryEditorTask.FromRandomAccessStream(m aviaryPhotoStream, true);
task.Completed += PhotoEditCompleted;
task.Show();

}
private void PhotoEditCompleted(object sender, AviaryTaskCompletedEventArgs e)

{
//check the Result to see if editing was successfully completed before accessing the Edited
Photo
if (e.Result == AviaryTaskResult.Completed)
{
EditedImage = e.EditedPhoto.Image;
ShowUploadPopup = true;

202

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Apply
HE N S B E SN EEEEEETS HE =
Figure 9-14. Photo edited using the Aviary Editor
Welcome Vinodh!
Instashots —
Photo Feed Instashots Users

Fhatos posted by you s yours tollowers

&5

‘Waiting for breakfast

America Flag

Figure 9-15. Adding a title to the photo before uploading

Foilow oe unfoliow 3 user from the kit

Title
| Taniya @ NY Suoway| |

}B —

203

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

When the user clicks the Upload button, UploadCommand (see Listing 9-9) is invoked. This calls the UploadAction
method. The very first thing we do is save the photo temporarily in a local storage location. Next, we insert the photo
information in the Pictures table and upload the photo to the Windows Azure storage. For that we create the Picture
object and insert it into the table.

Listing 9-9. Uploading Photo to the Windows Azure Storage

public async void UploadAction()
{
string fileName = string.Format("{o} {1}"
, Guid.NewGuid()
, selectedFileName);
var picture = new Picture { Name = fileName
, Title= PhotoTitle };
await App.MobileService.GetTable<Picture>().InsertAsync(picture);
string container = "instashots";
string imageUrl = string.Format("http://{0}.blob.core.windows.net/{1}/{2}"
, "splcricket"
, container
, fileName);
StorageCredentials cred = new StorageCredentials(picture.sasQueryString);
var imageUri = new Uri(picture.Imageurl);
// Instantiate a Blob store container based on the info in the returned item.
CloudBlobContainer cloudcontainer = new CloudBlobContainex(
new Uri(string.Format("https://{0}/{1}"
, imageUri.Host
, container))
, cred);
CloudBlockBlob blobFromSASCredential =
cloudcontainer.GetBlockBlobReference(fileName);

//Save File to local folder.
await EditedImage.SaveToFile(
ApplicationData.Current.LocalFolder,
fileName,
CreationCollisionOption.GenerateUniqueName);

var localFolder = Windows.Storage.ApplicationData.Current.LocalFolder;
var savedFile = await localFolder.GetFileAsync(fileName);

using (var fileStream = await savedFile.OpenStreamForReadAsync())

{
}

MyPictures.Add(picture);

await blobFromSASCredential.UploadFromStreamAsync(fileStream.AsInputStream());

To upload photo to Windows Azure storage, we need to generate the upload URI with Shared Access Signature
(SAS). SAS is a secure URI that we can use to upload file in a Windows Azure storage account without providing the
storage credential. The upload URI will be generated within the Photo table Insert script as shown in Figure 9-16.
With the SAS URI in place, we instantiate a Blob store container (using the CloudBlockBlob class) based on SAS URI
and upload the saved file using the UploadFromStreamAsync method in the CloudBlockBlob class. Finally, we add the
photo object to the MyPhotos collection so that the uploaded photo will display in the Feed ListView.

204

http://%7b0%7d.blob.core.windows.net/%7b1%7d/%7b2%7d
https://{0}/{1}

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

pictures s

BROWSE SCRIPT COLUMNS PERMISSIONS

OPERATION

w

var accountName = 'instashots’:
var accountKey = 'tPjQ2R9sHzIuLBPxkEUxbGiuDa8BwfRpQCiGGOStkFMS5bLs7TjPmhjknGNHExv39xV13hoLpxTwOIV+xVIVy Lw=
var host = accountMame + '.blob.core.windows.net’;
var canonicalizedResource = '/instashots/' + item.name;
item.userid= user.userld ;
// If it does not already exist, create the container
10 // with public read access for blobs.
11 wvar blobService = azure.createBlobService(accountName, accountKey, host);
12 blobService.createContainerIfNotExists(instashots’, {

L= - R I = TV I -

13 publicAccessLevel: 'blob’

14 }, function(error) {

15 if (!error) {

16 // Provide write access to the container for the next 5 mins.
17 var sharedAccessPolicy = {

18 AccessPolicy: {

19 Permissions: azure.Constants.BlobConstants.SharedAccessPermissions.WRITE,
28 Expiry: new Date(new Date().getTime() + 5 * 68 * 1068)
21 }

22 b

23 /f Generate the upload URL with SAS for the new image.

24 var sasQueryUrl =

25 blobService.generateSharedAccessSignature(' instashots’,
26 item.name, sharedAccessPolicy);

27 // Set the query string.

28 item.sasQueryString = gs.stringify(sasQueryUrl.queryString);
29 // Set the full path on the new new item,

30 /f which is used for data binding on the client.

3 item.imageurl = sasQueryUrl.baseUrl + sasQueryUrl.path;

32 } else {

33 console.error(error);

34 }

35 request.execute();

36 });

37 }

38

Figure 9-16. Insert script to get the SAS URI and update it to the Picture table

Implementing Comments and Likes Functionality

Displaying comments, adding comments, and liking a selected photo is a straightforward task, as shown in

Listing 9-10. On selecting a photo from the feed, we can display a larger version of the photo along with the list of
comments entered for that photo. We also have two buttons: one to add a comment and another to like the photo.
When a user clicks the Add Comment button, a pop-up window will display (see Figure 9-17) for entering a comment.
On submission, the comment will be saved to the Comment storage table.

205

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Listing 9-10. Implementing Comments and Likes

public void ShowCommentAction()

{
showCommentPopup = true;
RaisePropertyChanged("ShowCommentPopup");
}
private async void LoadComment()
{
var comments = await commentTable
.Where(b => b.Pictureld == SelectedItem.Id)
.OrderByDescending(c => c.CreatedDate)
.ToListAsync();
pictureComments.Clear();
foreach (var c in comments)
{
c.CommentedBy = await userTable.LookupAsync(c.UserId);
pictureComments.Add(c);
}
RaisePropertyChanged("PictureComments");
}
public async void AddCommentAction()
{
var comment = new Comment { CommentText = commentText
, Pictureld = SelectedItem.Id
,UserId=CurrentUser.Id
, CreatedDate= DateTime.Now };
await App.MobileService.GetTable<Comment>().InsertAsync(comment);
pictureComments.Add(comment);
}
public async void LikeAction()
{
await App.MobileService.GetTable<Picture>().UpdateAsync(SelectedItem);
}

206

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Welcome Vinadh!
Instashots
Photo Feed Irstashats Usars
Waiting for breakfast L
Comment
Wasting|
F |
|
- J 5 '.':1 |
Eh‘ : * -
-1 . =]
Commenlts Add Comment

rm also wait for it

' « % w
Amesica flag Times Square
b & gis 59

il (L

Figure 9-17. Adding a comment to the Instashots app

Now with all the codes in place, when we run the Instashots app, the user will be now able to authenticate against

the Microsoft Account and will be able to upload photos, add comments, and like photos. The final app will be linked
the one shown in Figure 9-17.

Ideas for Improvement

The Instashots app can be worked on and improved to make it a fully functional photo-sharing social app.
The following are some of the features that can be added.

e Asmentioned before, the user section can be created by displaying the list of users that you
are following with an option to unfollow them.

e Add an option to share photos using the Share charm feature of Windows 8.
e Search for new users to follow using the Search charm.

e Enable the Windows 8 PlayTo functionality to stream photos to devices, also providing an
option to share it using NFC (Tap and Send).

e Extend the authentication to include Facebook, Google, and Twitter logins as support for this
is already in built into Windows Azure Mobile Services.

207

CHAPTER 9 © WINDOWS AZURE MOBILE SERVICES

Conclusion

In this chapter we learned about Windows Azure and how to set up and use Windows Azure Mobile Services as a
service layer, integrate Live SDK for user authentication, store data in the Windows Azure SQL database, and upload
images to the Windows Azure storage. We learned all these by creating a real-world Windows 8 app that uses some of
the Windows Azure services. This app can be further extended to make it more feature rich, as mentioned earlier, and
made available in the Windows Store. With this chapter we conclude Part 3 of this book, which overviewed the various
Windows 8 app remote storage options. In the next and final chapter we learn to create yet another data-driven app
that targets both Windows 8 and Windows Phone platforms.

208

CHAPTER 10

Windows Phone 8 Data Access

We end this book by learning the data access options available for Windows Phone apps. This chapter starts by
discussing the code sharing techniques between Windows Phone and Windows 8 apps and then introduces you to
the Windows Phone built-in database option, SQL Server Compact for Windows Phone, and walk you through the
procedure to get started with the Windows Phone app development. We then port the Bill Reminder Windows 8 app
that we built in Chapter 6 to a Windows Phone app using the SQLServer Compact database as data storage. Finally we
briefly introduce you to the other data storage options that we learned in this book that can be also used in Windows
Phone apps.

Sharing the Code

Windows Phone 8 is a major upgrade to Windows Phone 7.x. It replaces the core with the same core as Windows 8,
which means the .NET Compact Framework is replaced with the .NET CLR. Apart from this, the Windows Phone API
adds Windows Phone Runtime, which has lot in common with WinRT. With this new Windows Phone API, developers
will be able to develop apps in VB/C# and C++. Windows Phone 8 also supports native development using Direct3D,
xAudio2 Win32, COM, and MFE.

Separate Ul from App Logic

The strategy to build a successful app that targets both Windows 8 and Windows Phone 8 is to separate the UI from
app logic. Model-View-ViewModel (MVVM), which we used extensively in building the various apps in this book,
is the only neat approach to separate the UI from the app logic. Using MVVM we can encapsulate one or more
ViewModels and on top of that we can have one or more Views that represent Windows Phone Page or

Windows 8 Page.

Sharing Portable .NET Code in Portable Class Library

Portable Class Library is one of the important blocks that we can use to share code between Windows 8 and Windows
Phone apps written using XAML/VB/C#, as this shares common .NET libraries. In Visual Studio when we create a
Portable Class Library a pop-up, shown in Figure 10-1, allows us to select the targeted framework. The project will
have set of libraries that shows .NET is currently portable with the platform that we are targeting. Once compiled,
these libraries become compatible with the targeted framework and in our case Windows Phone and Windows 8.
Apart from creating our own portable libraries, we can also reference some of the common portable libraries like
MVVM Light inside our Portable Library project.

209

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

Target frameworks:
NET Framework 4.5 v
Silverlight 4 and higher v
Windows Phone 7 and higher v
Windows Store apps (Windows 8)
[7] Xbox 360

Install additional frameworks...

Figure 10-1. Selecting the targeted frameworks for the Portable Class Library

Using Common Windows Runtime API (Add as Link)

Windows 8 comes with the Common Windows Runtime API, which gives access to sensors, media, and proximity.
Along with that we also get Windows Phone 8 Runtime API, which shares a subset of APIs with Windows 8. Whenever
we use this set of APIs, we can write once and use it in both Windows 8 and Windows Phone 8 apps using the Add as
link functionality available in Visual Studio as shown in Figure 10-2. By doing this the class file will not be copied to
the project, and instead will be copied as a link from the source. If we make any changes to the code, therefore, it will
be reflected in all the linked references.

210

, Videos

™ This PC

~

Y Homegroup

|. « Code » 1 » BillReminder » BillReminder

T
Organize » New folder
. Favorites A Name
. Friends
. ; I\ Assets
. Mobile uploads i
£ .. Bin
L Music
. Converters
. Personal
¢ \. Helpers
& Pictures
A 1. Model
. Projects i
; 1. obj
. Public .
. Properties
 SPL
] J. Resources
L. Twitter uploads
&
)
| &

App
| Appxaml

[BillReminder
=5 BillReminder.csproj

o = BillView

File name:

Toolkit.Content
ViewModel

Date modified

13 12:30 AM
2013 12:22 AM

6/2013 12:56 AM

)13 12:56 AM

ra
e
WU

1:12 AM

v

Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder

File folder

Windows Markup ...

CS File

Visual C# Project f...

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

Search BillReminder

Size

Visual Studio Proj...

Windows Markup ...

W

All Files (*.%)

[Add ||

LA
1KB
TKB

-

4KB
1

KB
KB

o
O e

~

Cancel

Add
Add As Link

Figure 10-2. Adding an existing file as a link to the Visual Studio Project

Note Windows Runtime API can't be referenced into the portable libraries while creating portal libraries targeting
Windows 8 and Windows Phone 8, as the binary compatibility is not supported and the code has to be compiled for each
platform separately.

Using the technique just discussed, we are able to create a compiling app that targets both Windows Phone 8 and

Windows 8 by sharing a similar code base.

SQL Server Compact for Windows Phone

Unlike Windows 8, Windows Phone provides built-in support for SQL Server Compact as a local database. This
database resides in the Isolated Storage of the app and is an in-memory relational database. The following are the

some of the features of SQL Server Compact.

SQL Server Compact database runs within the Windows Phone application’s process. Unlike
SQL Server, the database doesn’t run continuously in the background; instead, an instance is

created only when the app is in use.

As the database is stored in the app’s Isolated Storage, this database can only be accessed by
that app and can’t be shared with any other apps.

211

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

e Transaction SQL is not supported. Instead, LINQ to SQL is used as the ORM engine.

e Because SQL Server Compact database is part of the Windows Phone Runtime, no DLLs
corresponding to the SQL Server Compact database need to be packaged as part of the app.

With this brief introduction about the built-in SQL Server compact database, we next port the Bill Reminder
Windows 8 app that we built in Chapter 6 using Windows 8 XAML/C#, SQLite, MVVM Light Framework to a Windows
Phone app using SQL Server Compact as the database instead of SQLite to store data, along with the MVVM Light
Framework.

Porting Bill Reminder Windows 8 App to Windows Phone

Porting the Bill Reminder app for Windows Phone is quite simple and straightforward. The project structure is shown
in Figure 10-3, and most parts of the code remain unchanged, apart from the layout that adapts to a smaller screen.

71| Solution 'BillReminder’ (1 project)

4 [c#] BillReminder
b S Properties
b =B References
b B Assets
4) Converters
P c* DateTimeToStringConverter.cs
b c* DecimalToStringConverter.cs
P € VisibilityConverter.cs
4 | Helpers
b € INavigationService.cs
b €* NavigationService.cs
4 @) Model
c# Bill.cs
c# BillReminderDataContext.cs
c* Billtem.cs
c* Category.cs
c# DataService.cs
c# |DataService.cs
* PaidBill.cs
b B Resources
b B Toolkit.Content
& ViewModel
b c* BillViewModel.cs
b c* MainViewModel.cs
b €* ViewModelLocator.cs
N Appxaml
N BillView.xaml

vyvVvwVvwvwvwvww

n

c* LocalizedStrings.cs

v wvw

I MainPagexaml

0O MVWMLight.Nuget.Readme.txt
¥ packages.config

D README_FIRST txt

Figure 10-3. BillReminder Windows Phone app project structure, which looks similar to the BillReminder Windows 8 app

212

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

Setting Up the Windows Phone 8 Development Environment

Windows Phone SDK 8.0 can be downloaded from http://go.microsoft.com/fwlink/?LinkId=259416. This SDK
includes all the necessary tools like Visual Studio Express 2012 for Windows Phone, project templates for creating
new Windows Phone apps, and the Windows Phone emulator for testing. After installing the SDK, we create a new
Windows Phone app as shown in Figure 10-4.

MNew Project ?
P Recent NET Framework 4.5 ~ Sortby: Default o 3 Ctri+E R -
4 |nstalled c= A i -
LJ Windows Phone App Visual C# Type: Visual C=
4 Templates A project for creating a Windows Phone
ce =
4 Visual C# EJ Windows Phone Databound App Visual C# application
Windows Store
cs
Windows :Db' Windows Phone Class Library Visual C# MY APPLICATION
Web
=
Cloud LJ Windows Phone Panorama App Visual C# page name
Reperting
S c=
Silverlight EJ Windows Phone Pivot App Visual C#
Test
WCF I] Windows Phone XAML and Direct3D App Visual C=
Windows Phone o
A - c
Worldlow D Windows Phone XAML and XNA App Visual C#
XNA Game Studio 4.0
s
; OtherLanguages rJ Windows Phone Unit Test App Visual C#
i Other Project Types a
Modeling Project ce
S a3 EJ Windows Phone HTMLS App Visual C#
4 Samples
b Visual C= o ce X -
g ! Windows Phone Audio Playback Agent Visual C=
b Online
cn
5] ! Windows Phone Audio Streaming Agent Visual C#
Name: BillReminder
Location: D:\SkyDrive\BookB8\Code\9781430249924 _ch10\Code\2 - Browse...
Solution: Create new solution >
Solution name: BillReminder [v/] Create directory for solution

[] Add to source contrel

oK Cancel
Figure 10-4. Windows Phone app project template

After creating the app, we are prompted to select the targeted Windows Phone OS version as shown in Figure 10-5.
Select the Windows Phone OS 8.0, but you can always go for Windows Phone OS 7.1 to support both versions, as
Windows Phone 8 OS provided backward compatibility of the app developed targeting Windows Phone 7.1.

213

http://go.microsoft.com/fwlink/?LinkId=259416

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

New Windows Phone Application

Select the Windows Phone Platform you want to target for this application.

Target Windows Phone OS Version:
Windows Phone OS 8.0 v

OK | [Cancel

Figure 10-5. Selecting the Windows Phone platform that we want to target, in this case Windows Phone OS 8.0

We add project references to the MVVM Light Framework and Windows Phone Toolkit using the NuGet package.
Windows Phone Toolkit provides a collection of controls, animation framework, and extension methods to make
Windows Phone development easier. We use the DatePicker and ListPicker controls from the Windows Phone Toolkit
in our project.

Creating the Database Table

As mentioned in Chapter 6, the main function of the Bill Reminder app is to help keep track of bills. For this, we create
three tables via Category, Bill, and PaidBill, similar to the ones we did for the Windows 8 app. Like the SQLite wrapper
sqlite-net, SQL Server Compact is also an ORM-based database, so we copy the class files that map to the three tables
into the Windows Phone app Model folder as shown in Figure 10-3. These classes define our object model and its
mapping to the schema of the database.

Next, to access the data stored in the database using LINQ to SQL, we have to decorate this class with the [Table]
attribute as shown in Listing 10-1. Basically we can use this attribute to designate a class as an entity class that is
associated with a database table or view.

In addition to associating classes with tables, we need to denote each field or property that we intend to associate
with a database column.

Listing 10-1. Category, Bill, and PaidBill Classes

[Table]
public class Category

{
[Column(IsPrimaryKey = true, IsDbGenerated

= true)]
public int CategoryID { get; internal set; }

[Column(CanBeNull = false)]
public string Name { get; internal set; }

}

[Table]
public class Bill

214

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

[Column(IsPrimaryKey = true

, IsDbGenerated = true

, DbType = "INT NOT NULL Identity"

, CanBeNull = false

, AutoSync = AutoSync.OnInsert)]
public int BillID { get; internal set; }

[Column(CanBeNull = false)]
public string Name { get; internal set; }

[Column(CanBeNull = false)]
public DateTime DueDate { get; internal set; }

[Column(CanBeNull = false)]
public bool IsRecurring { get; internal set; }

[Column(CanBeNull = true, UpdateCheck = UpdateCheck.Never)]
public int CategoryID{get; internal set; }

private EntityRef<Category> category;

[Association(Storage = "category"
» ThisKey = "CategoryID"
, OtherKey = "CategoryID"
, IsForeignkKey = true)]
public Category Category
{
get { return category.Entity; }
set
{
if (value != null)

{
CategoryID = value.CategoryID;

category.Entity = value;

}

[Column(CanBeNull = false)]
public Decimal Amount { get; internal set; }

}

[Table]
public class PaidBill

{
[Column(IsPrimaryKey = true, IsDbGenerated = false)]

public int PaidBillID { get; internal set; }

215

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

[Column(CanBeNull = false, UpdateCheck = UpdateCheck.Never)]
public int BillID { get; internal set; }

private EntityRef<Bill> bill;

[Association(Storage = "bill"
, ThisKey = "BillID"
, OtherKey = "BillID"
, IsForeignKey = true)]
public Bill Bill

{
get { return bill.Entity; }
set
{
if (value != null)
{
BillID = value.BillID;
}
bill.Entity = value;
}
}

[Column(CanBeNull = true)]
public DateTime PaidDate { get; internal set; }

[Column(CanBeNull = true)]
public Decimal Amount { get; internal set; }

Creating the DataContext Class

The DataContext class inherits from System.Data.Linqg.DataContext and is used to expose the database to the rest of
the code through properties of type Table<TEntity> as shown in Listing 10-2.

Listing 10-2. BillReminderDataContext Class Exposes the Database

using System.Data.ling;

namespace BillReminder.Model

{
public class BillReminderDataContext : DataContext

{

public BillReminderDataContext(string connectionString)
: base(connectionString)

{
}

216

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

public Table<Bill> Bills

{
get
{
return this.GetTable<Bills();
}
}
public Table<Category> Categories
{
get
{
return this.GetTable<Category>();
}
}
public Table<PaidBill> PaidBills
{
get
{
return this.GetTable<PaidBill>();
}
}

Next we create the database using the DataContext object at the App initialization in App.xaml.cs. The
DataContext object is initialized by passing the connection string, which basically tells the app how to connect to the
database. Once the app is initialized, we check if the database exists; if it doesn’t we create the database by calling the
CreateDatabase() method of the DataContext. We also add some default value to the Category table by adding the
Category object to the data context using the InsertOnSubmit method and calling the data context SubmitChanges
method to permanently add the data as a row in the database (see Listing 10-3).

Listing 10-3. Creating the Database in App Initialization Using DataContext

public partial class App : Application

{
public static PhoneApplicationFrame RootFrame { get; private set; }
public App()
{

UnhandledException += Application_UnhandledException;
InitializeComponent();

InitializePhoneApplication();

Initializelanguage();

if (Debugger.IsAttached)

Application.Current.Host.Settings.EnableFrameRateCounter = false;
PhoneApplicationService.Current.UserIdleDetectionMode = IdleDetectionMode.Disabled;

217

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

try

{
app = this;
DB = new BillReminderDataContext("isostore:/BillReminder.sdf");
InitializeDatabase();

}
catch(Exception ex)
{
Debug.WritelLine(ex.Message);
}

}

private static App app;
public static App CurrentApp

{
}

public BillReminderDataContext DB { get; set; }

get { return app; }

private void InitializeDatabase()

{
if (DB.DatabaseExists()) return;

DB.CreateDatabase();
if (!App.CurrentApp.DB.Categories.Any())

DB.Categories.InsertOnSubmit(new Category()

{
Name = "Credit Card"

D;
DB.Categories.InsertOnSubmit(new Category()

{
Name = "Loan"

D;
DB.Categories.InsertOnSubmit(new Category()

{
Name = "Utilities"

1)
DB. SubmitChanges();

Updating the Model

Apart from the new DataContext class Bil1ReminderDataContext all of the other classes inside the Model folder will
be carried from the Windows 8 Bill Reminder app with a few minor changes to the DataService class. Here we replace
the code that references the SQLite database to refer to the SQL Server Compact database, but all within the same
methods as shown in Listing 10-4.

218

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

Listing 10-4. Methods to Retrieve Bill Details and Add, Update, and Delete Bills

using System;

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Lling;

namespace BillReminder.Model

{

public class DataService : IDataService

{
public void AddBill(Bill bill)

{
App.CurrentApp.DB.Bills.InsertOnSubmit(bill);
App.CurrentApp.DB.SubmitChanges();

public Bill GetBillByID(int billId)

{
return App.CurrentApp.DB.Bills.First(b => b.BillID == billld);
}
public ObservableCollection<Billtem> GetBills(DateTime month)
{

var bills = new ObservableCollection<Billtem>();
var fromDate = new DateTime(month.Year, month.Month, 1); //first day of the month
var toDate = fromDate.AddMonths(1).AddDays(-1); // last day of the month
var query = from bill in App.CurrentApp.DB.Bills
join cat in App.CurrentApp.DB.Categories on bill.CategoryID equals
cat.CategoryID
join paid in App.CurrentApp.DB.PaidBills on bill.BillID equals paid.BillID into
pp
from paid in pp.DefaultIfEmpty()
where (bill.IsRecurring || (bill.DueDate >= fromDate && bill.DueDate <= toDate))
select new Billtem(this)
{
BillID = bill.BillID

ﬁame = bill.Name
Eategory = cat.Name
BueDate = bill.DueDate
Amount = bill.Amount
EaidAmount = paid.Amount

)
PaidDate = paid.PaidDate
};

219

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

foreach (var item in query)

{
item.IsPaid = (item.PaidAmount > 0 88 item.PaidDate > DateTime.MinValue);
bills.Add(item);
}
return bills;
}
public IList<Category> GetCategories()
{
return App.CurrentApp.DB.Categories.TolList();
}
public Category GetCategoryByID(int categoryld)
{
return App.CurrentApp.DB.Categories.First(c => c.CategoryID == categoryId);
}
public void MarkPaid(int billId, decimal amount)
{
PaidBill paidBill;
if (App.CurrentApp.DB.PaidBills.Count() > 0)
paidBill = App.CurrentApp.DB.PaidBills.First(b => b.BillID == billId);
}
else
{
paidBill= new PaidBill();
paidBill.BillID = billld;
App.CurrentApp.DB.PaidBills.InsertOnSubmit(paidBill);
paidBill.Amount = amount;
paidBill.PaidDate = DateTime.Now;
App.CurrentApp.DB.SubmitChanges();
}
public void UpdateBill(Bill bill)
{
App.CurrentApp.DB.SubmitChanges();
}

No Update to the ViewModel

Apart from minor framework-level changes that we have to make for navigating between pages, we have not made any
changes to the ViewModel from the one we used with the Windows 8 Bill Reminder app.

220

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

Views

Because the Phone form factor is not the same as a tablet devices on which our Windows 8 app runs, we have to make
changes to the layout of the Views as shown in Figure 10-6 to suit the smaller devices. Similar to the Windows 8 app,
MainPage.xaml (see Listing 10-5) is the starting page of the Bill Reminder Windows Phone app. This view has a
LongListSelector control and two app bar buttons for navigating to the Bill.xaml page, again similar to the
navigation of the Windows 8 app. The LongListSelector control is similar to Windows 8 GridView Xaml control,
which binds to the Bill property in the MainViewModel and displays the recent bills as a list using a DataTemplate.
The displayed bill information two modes, depending on the status of the Bill object’s IsPaid property. If the IsPaid
property is false, then we display a Textbox for entering the bill amount and a Button to mark the bill as paid. This
button command is bound to the PaidCommand in the MainViewModel. But if the bill is paid instead, then both these
controls’ Visibility property is set to Collapsed using a ValueConverter VisibilityConverter.

Bill Reminder

Recent Bills

Coned

7172013

245.50 Paid

Cabel Vision

7/3/2013
=
BOA

7/14/2013

&[]
® @

Figure 10-6. Bill Reminder app displaying recent bills

Listing 10-5. MainPage.xaml Includes a LongListSelector with Data Template to Display Recent Bills

<phone:PhoneApplicationPage
x:Class="BillReminder.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

221

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

mc:Ignorable="d"
FontFamily="{StaticResource PhoneFontFamilyNormal}"
FontSize="{StaticResource PhoneFontSizeNormal}"
Foreground="{StaticResource PhoneForegroundBrush}"
SupportedOrientations="Portrait" Orientation="Portrait"
shell:SystemTray.IsVisible="True"
xmlns:i="clr-namespace:System.Windows.Interactivity;assembly=System.Windows.Interactivity"
xmlns:ec="clr-namespace:Microsoft.Expression.Interactivity.Core;assembly=Microsoft.Expression.
Interactions”
xmlns:abu="clr-namespace:AppBarUtils;assembly=AppBarUtils"
xmlns:converters="clr-namespace:BillReminder.Converters"
DataContext="{Binding Main, Source={StaticResource Locator}}">
<phone:PhoneApplicationPage.ApplicationBar>
<shell:ApplicationBar
IsVisible="True"
IsMenuEnabled="True"
Opacity="0.99">
<shell:ApplicationBarIconButton
x:Name="addBill"
IconUri="/Assets/AppBar/new.png"
Text="new" />
<shell:ApplicationBarIconButton
x:Name="editBill"
IconUri="/Assets/AppBar/edit.png"
Text="edit" />
</shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>
<i:Interaction.Behaviors>
<abu:AppBarItemCommand Id="new" Command="{Binding AddCommand, Mode=OneWay}"/>
<abu:AppBarItemCommand Id="edit" Command="{Binding EditCommand, Mode=OneWay}"/>
</i:Interaction.Behaviors>

<!--LayoutRoot is the root grid where all page content is placed-->
<Grid x:Name="LayoutRoot" Background="Transparent">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>
<StackPanel x:Name="TitlePanel"
Grid.Row="0"
Margin="12,17,0,28">
<TextBlock Text="Bill Reminder"
Style="{StaticResource PhoneTextNormalStyle}"
Margin="12,0"/>
<TextBlock Text="Recent Bills"
Margin="9,-7,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
</StackPanel>

222

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

<!--ContentPanel - place additional content here-->
<Grid x:Name="ContentPanel"
Grid.Row="1" Margin="12,0,12,0">
<phone:LonglListSelector ItemsSource="{Binding Bills}"
SelectedItem ="{Binding SelectedBill, Mode=TwoWay}"
ItemTemplate="{StaticResource DataTemplate}">
</phone:LonglListSelector>
</Grid>
</Grid>
</phone:PhoneApplicationPage>

BillView.xaml as shown in Figure 10-7 is used to create and edit a bill. This page has controls like TextBox,
ListPicker, DatePicker, and CheckBox that bind to the properties of the BillViewModel. ListPicker and DatePicker
are not part of the Windows Phone default control set, but instead they can be included by referencing the Windows
Phone toolkit from NuGet packages. Also on the page we have two app bar buttons. The Save button is used to save
the Bill object to the database and this button’s command property is bound to the BillViewModel’s SaveCommand.
BackButton is used to navigate back to the MainPage.xaml. The ListPicker control allows the user to pick a bill
category. This ListPicker is bound to the Categories property of the ViewModel, and the SelectedItemis bound
two-way to the SelectedCategory property (see Listing 10-6).

i 12:23

Bill Reminder

New Bill

Bill Name

Category Credit Card

7/1/2013

Amount

Recurring?

Figure 10-7. Bill Detail page for adding and editing a bill

223

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

Listing 10-6. BillView.xaml Has Controls to Input Bill Information

<phone:PhoneApplicationPage
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:converters="clr-namespace:BillReminder.Converters"
xmlns:i="clr-namespace:System.Windows.Interactivity;assembly=System.Windows.Interactivity"
xmlns:abu="clr-namespace:AppBarUtils;assembly=AppBarUtils"
xmlns:toolkit="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls.Toolkit"
x:Class="BillReminder.BillView"
mc:Ignorable="d"
SupportedOrientations="Portrait" Orientation="Portrait"
shell:SystemTray.IsVisible="True"
>
<phone:PhoneApplicationPage.Resources>
<converters:DateTimeToStringConverter x:Key="DateTimeToStringConverter"/>
<converters:DecimalToStringConverter x:Key="DecimalToStringConverter"/>
</phone:PhoneApplicationPage.Resources>
<phone:PhoneApplicationPage.FontFamily>
<StaticResource ResourceKey="PhoneFontFamilyNormal"/>
</phone:PhoneApplicationPage.FontFamily>
<phone:PhoneApplicationPage.FontSize>
<StaticResource ResourceKey="PhoneFontSizeNormal"/>
</phone:PhoneApplicationPage.FontSize>
<phone:PhoneApplicationPage.Foreground>
<StaticResource ResourceKey="PhoneForegroundBrush"/>
</phone:PhoneApplicationPage.Foreground>
<phone:PhoneApplicationPage.DataContext>
<Binding Path="Bill" Source="{StaticResource Locator}"/>
</phone:PhoneApplicationPage.DataContext>
<phone:PhoneApplicationPage.ApplicationBar>
<shell:ApplicationBar IsVisible="True" IsMenuEnabled="True" Opacity="0.99">
<shell:ApplicationBarIconButton x:Name="save"
IconUri="/Assets/AppBar/save.png"
Text="save" />
</shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>
<i:Interaction.Behaviors>
<abu:AppBarItemCommand Id="save"
Command="{Binding SaveCommand, Mode=OneWay}"/>
</i:Interaction.Behaviors>
<!--LayoutRoot is the root grid where all page content is placed-->
<Grid x:Name="LayoutRoot" Background="Transparent">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>
<StackPanel x:Name="TitlePanel"

224

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

Grid.Row="0"
Margin="12,17,0,28">
<TextBlock Text="Bill Reminder"
Style="{StaticResource PhoneTextNormalStyle}"
Margin="12,0"/>
<TextBlock Text="{Binding Title}"
Margin="9,-7,0,0"
Style="{StaticResource PhoneTextTitle1Style}"/>
</StackPanel>

<!--ContentPanel - place additional content here-->
<Grid x:Name="ContentPanel”
Grid.Row="1"
Margin="12,0,12,0">
<StackPanel Grid.Row="1">
<StackPanel HorizontalAlignment="Left"
VerticalAlignment="Top"
Width="383"
Orientation="Horizontal"
Margin="5">
<TextBlock TextWrapping="Wrap"
Text="Bill Name"
Margin="10,0,30,0"
FontSize="16"
Width="100"
VerticalAlignment="Center"/>
<TextBox TextWrapping="Wrap"
Margin="0,0,0,-2"
Width="283"
Text="{Binding Name, Mode=TwoWay}"/>
</StackPanel>
<StackPanel HorizontalAlignment="Left"
VerticalAlignment="Top"
Width="383"
Orientation="Horizontal"
Margin="5">
<TextBlock TextWrapping="Wrap"
Text="Category"
Margin="10,0,30,0"
FontSize="16"
Width="100"
VerticalAlignment="Center"/>

<toolkit:ListPicker Width="229"
ItemsSource="{Binding Categories}"
DisplayMemberPath="Name"
SelectedItem="{Binding SelectedCategory, Mode=TwoWay}"
Margin="12,6,6,6"/>

</StackPanel>
<StackPanel HorizontalAlignment="Left"

225

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

VerticalAlignment="Top"
Width="383"
Orientation="Horizontal"
Margin="5">
<TextBlock TextWrapping="Wrap"
Text="Due Date"
Margin="10,0,30,0"
FontSize="16"
Width="100"
VerticalAlignment="Center"/>
<toolkit:DatePicker Value= "{Binding DueDate, Mode=TwoWay}" />
</StackPanel>
<StackPanel HorizontalAlignment="Left"
VerticalAlignment="Top"
Width="383"
Orientation="Horizontal"
Margin="5">
<TextBlock TextWrapping="Wrap"
Text="Amount"
Margin="10,0,30,0"
FontSize="16"
Width="100" VerticalAlignment="Center"/>
<TextBox TextWrapping="Wrap"
Margin="0,0,0,-2"
Width="283"
Text="{Binding Amount, Converter={StaticResource
DecimalToStringConverter}, Mode=TwoWay}"/>
</StackPanel>
<StackPanel HorizontalAlignment="Left"
VerticalAlignment="Top"
Width="383"
Orientation="Horizontal"
Margin="5">
<TextBlock TextWrapping="Wrap"
Text="Recurring?"
Margin="10,0,30,0"
FontSize="16" Width="100"
VerticalAlignment="Center"/>
<CheckBox VerticalAlignment="Stretch"
IsChecked="{Binding IsRecurring, Mode=TwoWay}"/>
</StackPanel>
</StackPanel>
</Grid>
</Grid>
</phone:PhoneApplicationPage>

Other Data Storage Options

Apart from the SQL Server Compact, we can use many different data storage options as we did for Windows 8 apps.
Let’s briefly look at some of these options.

226

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

File-Based Data Storage

Similar to Windows 8 apps, Windows Phone apps also have app-specific isolated storage. We can use this storage to
build a file-based storage solution for Windows Phone apps. Like the WinRT File Based Database we saw in Chapter 5,
there are many similar libraries like SterlingDB that we can use for Windows Phone. Sterling can be referred in a
project by using NuGet package. Sterling is a lightweight NoSQL object-oriented database that can be used in .NET 4.0,
Silverlight, and Windows Phone that works with our existing class structures. Also using Sterling DB we can quickly
sterilize objects with support for LINQ to Object.

SQLite

We can also use SQLite as a data storage option for a Windows Phone app and the steps to integrate this are very
similar those by which we integrated SQLite in a Windows 8 app, as detailed in Chapter 6.

Windows Azure Mobile Services

Another interesting option that is familiar to readers is Windows Azure Mobile Services, which we saw in detail in
Chapter 9. The Windows Azure Mobile Services SDK provides the necessary library to integrate it inside a Windows
Phone app; in fact, the Windows Azure Mobile service start screen generates a sample app for Windows Phone
(see Figure 10-8) that can be downloaded. This app is preconfigured to access the back end and is ready to run.

instashots

&3 DASHBOARD DATA API SCHEDULER prEVIEW PUSH IDENTITY CONFIGURE SCALE LOGS

Your mobile service was created.
Now let's connect it to an app.

[] Skip Quick Start the next time | visit

cioost AmATEORM Windowsphnes | 05 | niia | HTuimascio |

GET STARTED

CREATE A NEW WINDOWS PHONE 8 APP
CONMNECT AN EXISTING WINDOWS PHONE 8 APP

LEARN MORE
How to add authentication How to add push netifications

Figure 10-8. Windows Azure Mobile Services sample Windows Phone 8 project that we can download from the
Windows Azure Management portal

Similarly we can create a service layer using ASP.NET Web API or WCF to access any back end like SQL Server
from Windows Phone.

227

CHAPTER 10 © WINDOWS PHONE 8 DATA ACCESS

Conclusion

In this chapter we ported the Bill Reminder Windows 8 app to Windows Phone. By doing so we used the Windows
Phone built-in data access option SQL Server Compact database as the data strorage. The intention of this chapter is
to highlight the options available for you as a developer to build apps that can target both Windows 8 and Windows
Phone apps. We did so by detailing various techniques that we can use to share code between the two platforms. Also
at the end of the chapter, we briefly looked at the various other data storage options that can be used in developing a
Windows Phone app.

With this chapter, we have completed this book and I hope it has helped you learn various data access options for
developing Windows 8 apps. This book has provided an overview of the Windows 8 app framework, and you have also
learned to use various development tools and libraries that can be incorporated into many Windows 8 apps.

In each chapter of this book we built a Windows 8 app using different data access techniques, and we also provided
ideas for improving the app. I hope this will be a good starting point for you to add additional features to the apps to
make them fully functional. Perhaps you will even submit them to the Windows app stores, so that millions of people
can download them and appreciate your efforts. Happy app developing!

228

Index

A

AddCategory method, 77
Amazon Web Services (AWS), 180
ApplicationDataRepository class, 63
Application data storage
AddCategory method, 77
start page design
assigning values, 86
deleting password, 87
displaying password
details, 80-84
ItemsSource property, 83
LoadAllPasswords method, 83
MainPage.xaml, 80-83
password details page, 88
PasswordDetail.xaml, 84-86
password object, 87
passwords collection, 83
stored passwords, 80
types, 75
WinRT File Based Database
CreateDefaultData method, 77
Createlnstance() method, 76-77
DeletePassword method, 78
GetCategories and GetAllPasswords
methods, 78
OnLaunched method, 79
SavePassword method, 78
WinRT framework, 75
Application WinRT File Based Database
WinRT framework, 75
ASP.NET Web API
definition, 123
features, 146
party planner
App Start Page design, 133-135
controllers, 129-130

database tables, creation of, 126-128
DataContext, 132

global.asax page, 130
guest/Shoppingltem, 144-146
Home.js, 135-136

list of parties, 136-137
manageparty.html page, 138-141
manageParty.js, 141-142
onSaveParty function, 142
PartyPlannerController code, 130-132
PostParty method, 143

project template, 125

structure of, 126

visual studio template, 124

Bill Reminder app
BillView.xaml, 223-226
database table, 214-216
development environment, 213-214
file-based data storage, 227
LongListSelector control, 221
model updation, 218-220
project structure, 212
recent bills display, 221-223
SQLite, 227
ViewModel, 220
Windows Azure Mobile
Services, 227
Business to consumer (B2C) application, 147

C

CloudBlockBlob class, 204

CreateDatabase() method, 217

Create, Read, Update, and Delete (CRUD) methods, 79
CSSCop, 17

229

INDEX

D I

Database tables IDataRespository interface, 63, 65
attributes, 99 Include method, 137
class diagram of, 99 IndexedDB
create SQLite Database, 100 application, 35
load default data into category table, 101 createDB function, 40-42
purpose, 98 definition, 35
Data binding, 10-11 dynamic template change, 57
DataContext class features, 59
app initialization, 217-218 generate filters, 58
DataContext object, 217 _handleQuery and _searchData, 57
exposing database, 216 HTML pages, 36
DataRepository class, 87 Home.html page, 47-49
DataRepository DeletePassword Method, 87 home.js, 49-50
Data storage options MovieDetail.html page, 50-52
application data, 30 MovieDetail.js function, 53-54
ESENT, 32-33 searchResult.js, 57
FileOpenPicker class, 31 searchResults.html page, 54-56
FileSavePicker, 31 Movie.js, 39
file system, 30 Movie Object
FolderPicker, 31 buildMovie function, 45-47
IndexedDB, 31-32 CRUD functions, 43
local storage, 29 deleteMovie function, 45
location and format, 29 properties, 42
SQLite, 33 saveMovie function, 43-44
DeletePassword method, 87 WinJS.Class.define() method, 42
Development choices, 2 project structure, 39-40
DLL, 63 schema definition, 40
Search Contract, 37-39
E Windows Store Blank App, 37
Indexed sequential access method (ISAM), 61
EditedImage property, 202 InsertOnSubmit method, 217
EditPhotoAction method, 202 Instashots app
Extensible storage engine (ESENT), 32-33 adding filters, 180
application data storage (see Application data storage) development environment
definition, 61 Aviary Photo Editing SDK, 187
ISAM data storage technique, 61 classes, 189-190
Password Manager App (see Password Manager App) key URL, 189
Live SDK, 187
F NuGet packages, 187
project structure, 188
File-based data storage, 227 Win]JS, 187
FileOpenPicker class, 202 Management Portal
back end services, 181
G creating Mobile Services, 182
for Windows 8 app, 183
GetAllPasswords method, 79 Mobile Services IDENTITY tab, 198
GetCategories method, 79 Specify Database Settings page, 182-183
GetMyPhotos, 201 Mobile Services tables
comments, 184
H follow, 184
new storage table, 185
HTML application, 2 new table interface, 184

230

pictures, 184
user, 184
online posting, 180
user interface
authentication with Live SDK (see Live SDK,
authentication)
comments and likes functionality, 205-207
improvement ideas, 207
MainPage.xaml, 191-193
MainViewModel (see MainViewModel)
retrieving photo feed, 201
uploading photos (see Uploading photos)
Windows Azure Storage, 185-187

J

JET APL. See Extensible storage engine (ESENT)
JetDataRepository class, 63, 65
JET_INSTANCE, 65

JsFiddle, 15

JSLint, 17

JSON.NET, 128

K

Knockout. See also Pocket (Read It Later) App
core concepts, 14
description, 13
user interactions with data model, 13

L

LaunchAviarySDK method, 202
Line of business (LOB) application, 33, 147
Live SDK
authentication
developer portal, 198
JavaScript function, 200
Microsoft account, 198-199
Mobile Services API, 199
Mobile Services IDENTITY tab, 198
user, 199-201
UserID script, 201
development environment, 187
Local application data, 75

MainPage.xaml, 62, 80
MainViewModel
commands, 194
properties, 194-197
ViewModelBase class, 193
ManagedEsent, 63

INDEX

Model
Bill Reminder Windows 8 app
add, update, and retrieve bills, 102
Billltem Class, 103
ExecutePayCommand method, 106
GetBills method, 103
MarkPaid method, 107
Model-View-ViewModel (MVVM), 209. See also Setting
development environment
advantages, 4
description, 3
framework, 3
Light Toolkit
components, 94
for Visual Studio 2012, 95
referencing MVVM Light from NuGet packages, 96
Windows Store app project template, 95

N

NuGet package, 17, 227

(0

oAuth authorization, 21
OnLaunched method, 79

PQ

PartyPlanner service, 135
PasswordDB property, 79
PasswordDetail.xaml, 62, 84
Password Manager App
Category POCO class, 62
creating database, 62
Password class, 62
Windows.Storage namespace, 62
data repository
AddCategory and SavePassword methods, 70
CreateDefaultData, 70
CreateInstance method, 65
database and tables, 66-70
JET_INSTANCE, 65
features, 88
NuGet, 64
Windows 8 App project structure, 65
XAML, 62
PhotoEditCompleted method, 202
Pocket (Read It Later) App
data binding, 26
define ViewModel, 25
designing App start page, 19-21
enabling Windows 8 web authentication, 21
exchanging request token for access token, 23

231

INDEX

Pocket (Read It Later) App (cont.)
getting request token, 22
receiving the access token, 24
render article list using foreach binding, 26
retrieving bookmarks using oAuth credentials
(access token), 24
setting Knockout]S, 18
tools and utilities
JsFiddle, 15
Visual Studio extensions, 16
Visual Studio Soution Explorer, 18
Visual Studio templates, 17
Windows 8 concepts and practices, 14
PostParty method, 143
Prism, 147-148

R

Remote data

ASP.NET Web API, 34

LOB, 33

WCE, 33

Windows azure mobile services, 34
Resharper, 17
Roaming application data, 75

S

Setting development environment
create Model, 6-8
create View, 8-10
developer tool, 4
project structure, 5
Visual Studio project templates, 4
Windows 8 data binding, 10-11
Shared Access Signature (SAS), 204
SQLite, 227
add project reference to, 91
add sqlite-net library to project, 94
add three packages to Windows Store App
Submission Wizard, 93
and SQL Server Compact, 89
Bill Reminder Windows 8 app
added features, 121
BillViewModel, 111-115
BillView.xaml, 118
Bill.xaml, 119
create database tables, 98-102
MainPage.Xaml, 115
MainViewModel, 108-111
Model, 102-107
project structure, 97
recent bills on start page, 96
ViewModelLocator, 107-108
change targeted platform from Visual Studio
Configuration Manager, 92

232

create packages targeting all three architectures, 92

for Windows Runtime package, 90
SterlingDB, 227
SubmitChanges method, 217

T

Temporary application data, 75

U

UploadAction method, 204
UploadFromStreamAsync method, 204
Uploading photos
Aviary Editor, 203
editing with Aviary SDK, 202-204
EditPhotoAction command, 201
SAS URI, 204-205
to Windows Azure Storage, 204
UploadCommand, 204

\"

ViewModel
BillViewModel
private fields and the constructor, 114
properties, 111
RelayCommands, 114
MainViewModel
MainViewModel Class, 109
properties, 108
ShowAppBar Property, 109
ViewModelLocator, 107-108

w

Web Essentials, 17

Windows app framework, 1

Windows Azure Mobile Services, 227
authentication, 179
data, 179
Instashots app (see Instashots app)
monitoring and logging, 179
multiple mobile platforms, 179
notification, 179

Windows Azure Storage, 185-187

Windows Communication Framework (WCF), 33
bill of material Windows 8 App

add DataContext, 153-154

add reference to Entity Framework using NuGet

package, 150
Add Service Reference page, 158
add WCEF Service Application, 149

BillOfMaterialPageViewModel Class, 169-174
BillOfMaterialPageViewModel commands, 174

BillOfMaterialPageViewModel events, 174

INDEX

BillOfMaterialPageViewModel methods, 175 LongListSelector control, 221
BillOfMaterialPageViewModel model updation, 218-220
properties, 174 project structure, 212
BOMClientService, 159 recent bills display, 221-223
BOM Entity Classes, 151 SQLite, 227
ComponentViewModel, 176-177 ViewModel, 220
design user interface, 163-169 Windows Azure Mobile Services, 227
implement service contract, 155-156 SQL Server Compact, 211
POCO classes, 151 Windows Runtime API, 210-211
Prism integration, 161-163 Windows Phone Toolkit, 214
project structure, 151 Windows Runtime (WinRT), 1
using XAML and C#, 148 WinJS.Class.define() method, 42
WCEF Contract Interface, 154 WinJS.UIListView element, 133
Business Apps for WinRT, 147 WinRT File Based Database, 63
Prism for Windows Runtime, 147 CreateDefaultData method, 77
Windows Phone 8 data access DeletePassword method, 78
MVVM, 209 GetCategories and GetAllPasswords methods, 78
Portable Class Library, 209 OnLaunched method, 79
porting Bill Reminder app SavePassword method, 78
BillView.xaml, 223-226
database table, 214-216 X Y Z
DataContext class (see DataContext Class) L
development environment, 213-214 XAML application, 2. See also Model-View-ViewModel
file-based data storage, 227 (MVVM); Setting development environment

233

Beginning Windows 8
Data Development

Vinodh Kumar

Apress

Beginning Windows 8 Data Development: Using C# and JavaScript
Copyright © 2013 by Vinodh Kumar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4992-4
ISBN-13 (electronic): 978-1-4302-4993-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Ewan Buckingham

Technical Reviewer: Fabio Claudio Ferracchiati

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan

Copy Editor: Teresa Horton

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm. com, or visit
www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Twould like to dedicate this book to my loving wife Sudha.

Contents

About the AULNOFcceiiiiiemmiinisssnnrsssr s nnn e annn e ann R e e nnn R R R R nnRR S Xiii
About the Technical REVIEWETccccuseerrsssnsmsssnsmsssnssssssnsssssnssssansssssnssssanssssansssssnsssssnsssssnnnsss XV
AcKNOWIedgmeNntscuuuiiemmmmmisnnmmmssssnnnmmsssssnnmmssssssnnsssssnsneessssnnnesssssnnnesssssnnnessssnnnnesssnnnnnss Xvii
Chapter 1: Introduction to Windows 8 Development.........cccccccvernsssnsssssssnnnmmsssssssssssssssnnns 1
Windows AP FramEWOTK..........cocevcererririersiresserses s se s se s e sn e snssn s e s s snssnssnssnssnssnnns 1
DeVvelopMENt CNOICES.ocurrereerereersersersessessessessesaesaesaesaesassassassassaesassassaesassaesassaesassassassasssssssnssnns 2
Creating the New York Times Best Sellers Appcccoceeeeererereseese e sss s ssssssssssssssssnssssssssnsnas 3
Introducing the MVVM Application FrameworK ... e ssssessssessssessssesnes 3

WRAL IS MUVIM?.......ooeveeevarestaesssssssssssssssssssssssssss s ssses s sssses s ssssessssssssssessssssssssessssssssssessssnsssasessssssssanesssssnees 3
Advantages in USING MUVIM ... e st e s s p et p e e se s e s e e n et e 4
Setting Up the Development ENVIrONMENT ..o e e s 4
Creating the MOTEI ... e R e s R e s R e e e s e e e e nnnns 6
Creating the VIEWIMOGEL..........oeeeerrineseresnesesessssse e sssss s e s sssssesssssse s s ssnssssnns 8
Creating the VIBW ..ot s s s e s s s s a e e an e e nnans 9
Windows 8 Data BiNUiNG........cceeverererrereresrssnssesssssesessssssssesssns 10

(00] o [T 0 o RSSO 12
Chapter 2: HTML5 and JavaScript Apps with MVVM and Knockout............ccoonmmmmmnnnnnnns 13
What IS KNOCKOUL?.........coeeererer sttt sttt n e s nn s 13
Understanding KNOCKOULcccocr i se s sn e e s sn e s ne s 13
Creating the Pocket (Read It Later) APP ...ccoeeeeerere e sse s s s s s s s s e snssnssnesnnnnnns 14
TOOIS ANA ULIIITIESveueereeceecirerir et s b e e e e e AR et R e e e Re e e Re e e ae R e ns 15
GELEING STAMEM ... e e AR R e e e Renneanes 17

vii

CONTENTS

Setting UP KNOCKOULJS ...ttt et 18
Designing the APP SEArt PAGE........cccou e e 19
Enabling Windows 8 Web AUthentiCation............ooeoerreceeneeec s 21
GEING REQUEST TOKEN ...ttt e s e e e s s e e e nr e 22
Exchanging Request TOKEN fOr ACCESS TOKENcuccceererreerererrsesesesese e s s s sese s sss s e s s s s s sessssens 23
Receiving the ACCESS TOKEN ...ttt e e bbb e e e aenneaees 24
Retrieving Bookmarks Using oAuth CredentialS (ACCESS TOKEN)correrermrirsisisississisesesessesess s 24
Rendering Article List Using foreach Binding ... 26
(00] T [T 0 o SRS 27
Chapter 3: Windows 8 Modern App Data Access Optionsccccurrmssssnnsssssssnssssssssssnsnans 29
Data Storage OPLiONScccvcvcriririrce s n e n e n e nnennenan 29
FAYa o] Lo L] N D - OSSR 30
L1133 (] 1 1 TP 30
File PiCKer CONTFACES........cccvviiiririirisiiisi e 30
1010 Tc (=T |] 31
ESENT/UET APL......eoeetetetsessesses s ssssse s st s s s bbbt 32
R 0] XU 33
21T 00T (D 33
Windows Communication FrameWOIK..........c.cocoeererererenererereresenesesese e enens 33
ASPINET WED APL.....ceeeeeeeesertriee et se s sa s se s sa s s s ns s s nasas s s s s se e e s nse e e s nsnsnsnnsnsnssnsnnns 34
Windows Azure Mobile WED SEIVICES.........coceererererereererere e se e e se e e se e s sens 34
0] 1103 1] | 34
Chapter 4: Local Data Access: I: IndexedDB.........c..ccccmmmissnmnmmmsssssnmmssssssssmssssssssssssssssnsssns 35
What IS INAEXEADBYcoiiiiiiiiii e 35
Using IndexedDB in Windows 8 APPlICALIONccceeeeeereesesreseessesee e ssessssessessssssssesssssnssnssnsssnnnns 35
Creating the My CollECTIONS APP ...ecoveereererrerrerre e sse e sse e sssssessesnssnesnesrs s s s s s s srssnssnesnesnesnnnnanans 36
GEHING STAMEM ... e e R 37
Defining the SCRBMA ... e enp s 40
Creating the DALADASEccoreeeerereecrir e se e s R e r e 40
Creating the Movie Object in Windows 8 JaVaSCHiPLccoeuriencrrneicrirreeses e s 42

viii

CONTENTS

Designing the APP SEArt PAGE........ccou e 47
3 (0] T TSP 49
Designing the Movie Detail PAge..........cccocrururenerirrccirree e s 50
L0121] T NPT 53
SEANCHING fOF MIOVIES.......cceeeeeccrteieccst st e s s e A e et e s R e e e s R e et e nnans 54
SCANCHRESUILIS ... e R nn s 57
Ideas for IMPrOVEMENTccoeeeerere e a s nn e rennnnns 39
0010 11 60
Chapter 5: Local Data Access I: JET API and Application Datacccenmssnennnnssssnnnnnnans 61
What IS ESENT/JET API?Z.......eceeese et se s ss e sas s sns s sn s s nn s nan e 61
Why 10 US@ ESENT/JEL APL........oomeeeercce e sa s sn s sas s sn s sne e 61
Building Password Manager APDc.ccvcerverrersersessessessessesssssssssssssssssesssssssssssssssssssssssssssssssssssssssens 62
Setting Up the Development ENVIFONMENT............ccoiriiiinierrererern e se e sa e s as e sas e 62
Creating @ DAtaDASEcovrrririririri i —————— 62
Creating ESENT Data REPOSIOrY ..o saseses 65
Using Application Data STOrage.........c.cceeeererenserenssesssssessssesssssssesss s ssessssessessssessssssssssssessasnnens 75
WINRT File BaSed DAtADASEcoceereerereercceresesesenesese e se e se e sese e ss e s s e s e s s s s s s s s sesesens 75
DeSigning APP STAM PAQE........ccveererrireererereese s ss s e ss s ss e sss e s sn s s e e s sssse e s ssssssessssnsasenes 80
Ideas for IMProVEMENLoo o s e s r e s sn e e ne s 88
0] 3T 1 88
Chapter 6: Local Data Access llI: SQLite......cccrmeerrmmmmmmsssssnsssnsmmmsssssssssssssssssssssssssssnsssssnnnss 89
Introduction t0 SQLITE.........ccccerinirir i ————— 89
Integrating SQLITE........ccceeerererere e sa e ss e s s r e a e sa e sr e sn e n e sr e sn e sn e sn e nnenrennennannnn 89
Introduction to MVVM Light TOOIKIL.........cccoevierrrrrrrrreree e sss e e ses s ssssss s ssssessssssssssenns 94
Building a Bill Reminder Windows 8 APPccoeeerrerersessessessssssssessnns 96
o 0] [= T S (1 £ R 97
Creating Database TADIESccceeeverererirerenseresersesersesessesas e sas e ssesessesassesassesassesaesesaesesaeasaesassesassesassessesansenansens 98
100 102
VIBWMOGEL ...t 107
LT 115

CONTENTS

Ideas for IMProVEMENT ... e 121
010 T 1 0 o 121
Chapter 7: ASP.NET Web APL........cccccumismmmmmmsssnnnmmssssssnmmssssssnssssssssnsssssssssssssssnnssssssnnnnnssss 123
Introduction t0 ASP.INET WED AP ..o e 123
Why Should WE USE WED API? ...ttt serereseressessesessesessesassesssessssessssssssssssessssessssessensssssssasssssessssessssnaes 123
Building the Party Planner WindOWS 8 APPcccveerrmrsersmsses s e sessssses s sss s e ssssnssnsssssnnnes 123
GELEING STAMEM ... e R R R e e e neae s 124
Creating Database TaADIESccoceereicereriree et e s e e e n e nesn e 126
WED AP CONTIOIIEE ...ttt se s e sae e se s s s e A s Re e A s R e e e sesas s e e s nnnnnan s 129
LT (o I 00010 T 130
Add DATACONTEXLc.ceeeeeeere ettt e e s e ae e e e s e e A e R e e e s R e e e e s Re s e e s Renn e e s 132
Designing the APp STart PAQE........ccoieiirerresrer e s a e s r s s n e p e s r e ne e nn e 133
2 0711 [OOSR 135
Retrieving the List Of PALIES ... s p s s ae s sn s nn e 136
Designing the Page t0 Manage a Party...........ccovrnisccscrnerin e ss s s sn s snnnens 138
LT T LT o L TP 141
Creating @ NEW Party ... e e a s e st e bt e a e e n e e nnnae s 142
Add Guest or SHOPPING EM.......ociriececr e s b e e e e e e e p e e Rennnnas 143
Ideas for IMPrOVEMENTccvcevieerereere e see s s s s s s a e s s sn e e s sne s e e enesanennesnenne s 146
00 3T 1] 146
Chapter 8: WCF ServiCes ..uuucuuuusssssmsmmmmmmssssssssssssnssssssssssssssnsnsssssssssssssssnnsssssssssssssnnnnnnnnsss 147
Business ApPS fOr WINRT ..o s sse s sss s s ssssessssssssssssssssssssens 147
PrISIM QVEIVIBW ..o sa s sas e se e 147
Getting Started With PRSIo.coereeecere vttt ssere s e ra s sae e s s e s e sas e sas e sae e saesasaesa s e sas e saenanaeanaens 148
Building a Bill of Material WindOWS 8 APD......ccucrrrrmrrersessessessssses s sessesssssessssssssssssssssssssssssssssnes 148
GELEING STAMEM ... e AR e R R R e e Re e nae e 149
Adding DAtACONTEXLcoveeeiecircrr e e e s e AR e e R A e R e R e e Re e nn 153
AdUING @WED SEIVICEcoveeieeircririerie et b s se e e s AR e e Re e e Reneeae b e e R e e nRe e nnis 154
Consuming the WCF SEIVICEcccuiiiererseresisesisss s sss s s s s snsssssssssssssssssnsssssesns 158

Integrating Prism in the WindOWS 8 APPcovverirrrrrrrsrer s e s s ses s ssssasssssssssssasssssssses 161

CONTENTS

Designing the BOM App USer INErface ... ssssssssssesssesens 163
VIBWIMOGEL......c.eieicirinct st 169
BillOfMaterialPageVIEWIMOMELcoueeireeiecinesere e se e a s s r s s r e se s s bt s n e s ne e e nnnaean 169
BillofMaterialPageViewModel COMMANGS..........cccoeerrierirenennesire s sss s e e e s e s s ssssesssssssessnnens 174
BilloOfMaterialPageViewMOodel PrOPEILIESccceierriicrrerire e ses e se e sn e sss e sne e snssnssessnnens 174
BillOfMaterialPageViewMOodel EVENES..........ccc e sn e s sne s s e snnnens 174
BilloOfMaterialPageViewModel MEthods...........cocvirrininncrnerre s se s sasnens 175
ComMPONENIVIEWIMOUEL...... .o a e sa e s e s s a e s a e a e s e e e e e sa e e e e e e e na e e e na e e e e e nannns 176
0] T 11 0 o T 177
Chapter 9: Windows Azure Mobile ServiCes......ccoiuummmmmmmmssmmmmmmmmmssssssssssssssssssssssssssnsns 179
Introduction to Windows Azure Mobile ServiCes ... 179
Creating the INStaSNOIS APP .ecveiiicre e 180
Creating Windows Azure Mobile Services in the Management Portal............ccooveeeenncscnnnescscneseeeseneenes 181
Creating Mobile SErviCes TaDIES.........cccceererreicrerirre s ennn s 184
Creating WindOWS AZUIE STOTAGEccceererreierererrsesesessssesesessssssesessssssssessssssssessnsnes 185
Setting Up the Development ENVIFONMENL...........c.coriviirrcrnrcresere s se s sas e s s e sessesasaens 187
Designing Instashots USer INTErfacecccvvrververnnsennenses s ss e e s e 191
MaINVIEWIMOGEI ...t 193
MainViewModel COMMEANGScccvureninsiiriniiss s 194
MaiNVieWMOAE] PrOPEITIESccceeeerererererrereerereseresesessesessesessesassesasessssessesessssassessssessenssssssssessssessssesssnsssenanaens 194
Authentication With LiVe SDK ... ssssssssssssssass 198
Retrieving the PROT0 FEEMcceorerererrere st ree s e sessesessesas e saesessesesaesas e sas e sae e sassassesassesassesasnssaenanaens 201
Uploading Photos t0 WINAOWS AZUIE STOFAQEcceerereererrerererersersssersesessesssssssssessssessesssssssssessssessssssssssssssanaens 201
Implementing Comments and Likes FUNCHONAIILYccoeerererierenrereerereseresesesessessesessesessesessesassessssessssanaens 205
1deas fOr IMPIOVEMENTocoverererererterere st re s e ra s rae s s aesesseressesa e e ra e e s s e sasaerasaesae e sae e sae e nae s esesassesanenaeanaene 207
0] 3T 1o 208
Chapter 10: Windows Phone 8 Data ACCESSccusssamssssanssssanssssansssssnsssssnsssssnsssssnsssssansss 209
Sharing the COUEccvverirrr s se e sn s sr e n e sn s e n e 209
Separate Ul frOm APP LOGIC ...coveerererererererrersesersesersessssessssessssessesssssssssessssessssessssssssssssssssssssssessesessssssssssssesssaens 209
Sharing Portable .NET Code in Portable Class LiDrary..........cceccverrereriererseressersssessesessesessessssessssessssessessssesanaens 209

xi

CONTENTS

Using Common Windows Runtime APl (Add @S LiNK).........cccoereeerrneneninneescsesseesesese e sesessssenes 210
SQL Server Compact for Windows PRONE............ccocrvririernenrerrinser e e s e e e sessssnnnns 211
Porting Bill Reminder Windows 8 App to Windows PhONecccocverrersesnensessessenses e e 212

Setting Up the Windows Phone 8 Development ENVIFONMENLccccvevrievriererere e ressessssesessessesessesesaens 213

Creating the Database TADIE...........ccccverererrererre s s re s e e s e sa e ssesasae e s e sae e sae e saesassesassesas e sasesaeananns 214

Creating the DataConteXt ClaSSccivrerrererererererieressersesessesessesessessssesssssssessssssassessssessesssssssssessssessssesssssssesansens 216

Updating the MOEI ..o e s e e a e s 218

No Update t0 the VIEWMOUEI ..o sa e sa s sa e e sa s sa e sa e s st e na s sa e sa e e s 220

LT 221

Other Data STOrage OPLiONSccccverrrerrrere e s res e ras s e sse e sa e a e e ae e sae e s e sae e s e e e sae e saesassesae e sas e naeanaens 226
0] 3T 1T 228

INA@X..ceiiiisnmnnnssssnnnnnnsssnnnnnssssnnnssssssnnnssssssnnnnnssssnnssssssnnnssnsssnnnnsnsssnnnnsssssnnnnsssssnnnnnsssnnnnnnnssnns 229

xii

About the Author

Vinodh Kumar has been working with .NET technologies since prior to its

alpha release. He has been a recipient of multiple Microsoft Most Valuable
Professional (MVP) awards. He is also the author of many books and articles,
including Professional .NET Network Programming. He enjoys working with
new technologies, and has been developing mobile apps for Windows Phone, iOS,
and Windows 8. In fact, he started developing mobile apps in the iPAQ days using
Pocket PC 2000. Follow Vinodh on Twitter using Twitter handle @w3force and on
the web at www.dotnetforce.com.

xiii

http://@w3force
www.dotnetforce.com

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies. He works
for Brain Force (http://www.brainforce. com) in its Italian branch (http://www.brainforce.it). He is a Microsoft
Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified
Professional, and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

XV

http://www.brainforce.com
http://www.brainforce.it

Acknowledgments

It has been a long excursion writing this book. I would like to especially thank my loving wife, Sudha, who had
immense belief in my writing skills and persuaded me to start authoring. I would also like to thank Ewan Buckingham
from Apress, who has made the publication of this book possible. I would like to thank every person at Apress, with a
very special thanks to Katie Sullivan and Mark Powers, for their involvement with this book and for their continuous
support, without which this milestone wouldn’t have happened.

I also would like to give a special thanks to my parents for their support and best wishes, and my daughter,
Taniya, for all her support, passion, and understanding while I was missing in action for several months.

xvii

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Windows 8 Development
	Windows App Framework
	Development Choices
	Creating the New York Times Best Sellers App
	Introducing the MVVM Application Framework
	What Is MVVM ?
	Advantages in Using MVVM

	Setting Up the Development Environment
	Creating the Model
	Creating the ViewModel
	Creating the View
	Windows 8 Data Binding

	Conclusion

	Chapter 2: HTML5 and JavaScript Apps with MVVM and Knockout
	What Is Knockout ?
	Understanding Knockout
	Creating the Pocket (Read It Later) App
	Tools and Utilities
	JsFiddle
	Visual Studio Extensions

	Getting Started
	Setting Up KnockoutJS
	Designing the App Start Page
	Enabling Windows 8 Web Authentication
	Getting Request Token
	Exchanging Request Token for Access Token
	Retrieving Bookmarks Using oAuth Credentials (Access Token)
	Defining the ViewModel and Binding It to the View
	Rendering Article List Using foreach Binding

	Conclusion

	Chapter 3: Windows 8 Modern App Data Access Options
	Data Storage Options
	Application Data
	File System
	File Picker Contracts
	IndexedDB
	ESENT/JET API
	SQLite

	Remote Data
	Windows Communication Framework
	ASP.NET Web API
	Windows Azure Mobile Web Services

	Conclusion

	Chapter 4: Local Data Access: I: IndexedDB
	What Is IndexedDB ?
	Using IndexedDB in Windows 8 Application
	Creating the My Collections App
	Getting Started
	Defining the Schema
	Creating the Database
	Creating the Movie Object in Windows 8 JavaScript
	Saving the Movie Object
	Deleting the Movie Object
	Retrieving Movie Details

	Designing the App Start Page
	Home.js
	MovieDetail.js
	Searching for Movies
	searchResult.js
	Dynamic Template Change
	Getting the Data
	Generating Filters

	Ideas for Improvement
	Conclusion

	Chapter 5: Local Data Access I: JET API and Application Data
	What Is ESENT/Jet API?
	Why to Use ESENT/Jet API
	Building Password Manager App
	Setting Up the Development Environment
	Creating a Database
	Creating ESENT Data Repository
	Adding a Password
	Deleting a Password
	Retrieving Passwords

	Using Application Data Storage
	WinRT File Based Database
	Designing App Start Page
	Adding and Updating a Password

	Ideas for Improvement
	Conclusion

	Chapter 6: Local Data Access III: SQLite
	Introduction to SQLite
	Integrating SQLite
	Introduction to MVVM Light Toolkit
	Building a Bill Reminder Windows 8 App
	Project Structure
	Creating Database Tables
	Model
	ViewModel
	MainViewModel
	BillViewModel

	Views

	Ideas for Improvement
	Conclusion

	Chapter 7: ASP.NET Web API
	Introduction to ASP.NET Web API
	Why Should We Use Web API?

	Building the Party Planner Windows 8 App
	Getting Started
	Creating Database Tables
	Web API Controller
	Add Controller
	Add DataContext
	Designing the App Start Page
	Home.js
	Retrieving the List of Parties
	Designing the Page to Manage a Party
	manageparty.js
	Creating a New Party
	Add Guest or Shopping Item

	Ideas for Improvement
	Conclusion

	Chapter 8: WCF Services
	Business Apps for WinRT
	Prism Overview
	Getting Started with Prism

	Building a Bill of Material Windows 8 App
	Getting Started
	Adding DataContext
	Adding a Web Service

	Consuming the WCF Service
	Integrating Prism in the Windows 8 App
	Designing the BOM App User Interface
	ViewModel
	BillOfMaterialPageViewModel
	BillOfMaterialPageViewModel Commands
	BillOfMaterialPageViewModel Properties
	BillOfMaterialPageViewModel Events
	BillOfMaterialPageViewModel Methods
	ComponentViewModel

	Conclusion

	Chapter 9: Windows Azure Mobile Services
	Introduction to Windows Azure Mobile Services
	Creating the Instashots App
	Creating Windows Azure Mobile Services in the Management Portal
	Creating Mobile Services Tables
	Creating Windows Azure Storage
	Setting Up the Development Environment

	Designing Instashots User Interface
	MainViewModel
	MainViewModel Commands
	MainViewModel Properties
	Authentication with Live SDK
	Retrieving the Photo Feed
	Uploading Photos to Windows Azure Storage
	Implementing Comments and Likes Functionality
	Ideas for Improvement

	Conclusion

	Chapter 10: Windows Phone 8 Data Access
	Sharing the Code
	Separate UI from App Logic
	Sharing Portable .NET Code in Portable Class Library
	Using Common Windows Runtime API (Add as Link)

	SQL Server Compact for Windows Phone
	Porting Bill Reminder Windows 8 App to Windows Phone
	Setting Up the Windows Phone 8 Development Environment
	Creating the Database Table
	Creating the DataContext Class
	Updating the Model
	No Update to the ViewModel
	Views
	Other Data Storage Options
	File-Based Data Storage
	SQLite
	Windows Azure Mobile Services

	Conclusion

	Index

