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Rabbi Yose ben Kisma said:

Once I was walking on the road,

when a certain man met me. He

greeted me and I returned his

greeting. He said to me, ‘Rabbi,

from what place are you?’ I

said to him, ‘I am from a great

city of scholars and sages.’ He

said to me, ‘Rabbi, would you

be willing to live with us in

our place? I would give you

thousands upon thousands of

golden dinars, precious stones

and pearls.’ I replied, ‘Even if

you were to give me all the sil-

ver and gold, precious stones

and pearls in the world, I would

dwell nowhere but in a place of

Torah.’ (Ethics of the Fathers 6:9)

Rabbi Jose, Kismas son,

berättade: En gång gick jag ut

och vandrade, då mötte mig

en människa, som hälsade mig,

och jag besvarde hans hälsning.

Han sporde mig: Rabbi, varifrån

är du, och jag svarde honom:

Från en stor stad, full av visa

män och skriftlärda. Då sade han

till mig: Rabbi, om du vill bo hos

oss i vår stad, vill jag giva dig

tusen gånger tusen guldmynt,

ädelstenar och pärlor. Jag sva-

rade honom: Om du så gåve

mig all världens silver, guld,

ädelstenar och pärlor, skulle jag

aldrig vilja bo på ett annat ställe

än där Torahn har sin hemvist.

(Fädernas Tankespråk 6:9)
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Chapter 1

Introduction

Soon after the publication of my C++ textbook, A First Course in Computational

Science and Object-Oriented Programming with C++, in 2005, I conceived of

including a yet more compact introduction to C++ in a survey of the entire field

of scientific programming. Drawing on 20 years of experience of teaching pro-

gramming at all levels in both physics and electrical engineering departments,

I resolved to both summarize my previous treatment of C++ and incorporate

a discussion of the Octave and Java programming languages, focusing on their

conceptual foundations. Finally, I would insert many additional scientific pro-

gramming examples, emphasizing short programs that illustrate key algorithms.

By employing only free software, this would create a uniquely comprehensive

treatment of the full set of steps from compiler installation to sophisticated

scientific programming.

1.1 Objective

This textbook overviews modern scientific programming, including numerical

analysis, object-oriented programming, scientific graphics, software engineer-

ing, numerical analysis and physical system modeling. Consequently, knowl-

edge of the material will provide sufficient background to enable the reader

to analyze and solve nearly all normally encountered scientific programming

tasks.

1.2 Presentation

The text is concise, focusing on essential concepts. Examples are intention-

ally short and free of extraneous features. To promote retention, the book

repeats key topics in cycles of gradually increasing difficulty. Further, since

the process of learning computer language shares many similarities with that of

acquiring a spoken language, important code is highlighted in gray. Memoriz-

ing these features greatly decreases the time required to achieve proficiency in

programming.

1



2 Introduction

1.3 Programming languages

Computing paradigms have evolved with time from the implementation of indi-

vidual operations within a computing device to high-level structures that closely

resemble interactions of physical objects with their environment. These concepts

have simultaneously been realized through languages that have progressed from

machine language to procedural, object-oriented and visual programming.

General-purpose procedural languages. A procedural language is composed

of a structured sequence of commands, which may be further organized into

modules termed functions or subroutines. A program implements a series of

commands that are sequenced through logical statements. This strategy yields

languages that are easily learned and applied. Especially early procedural lan-

guages such as FORTRAN, however, contain numerous unsafe constructs that

invariably lead to coding errors.

Scientific procedural languages. To simplify small proof-of-principle com-

putations, specialized scientific languages such as MATLAB R© and Octave and

symbolic manipulation languages such as MAPLE R© or Mathematica R© provide

an easily learned high-level user interface to a unified built-in array of easily

called and highly optimized numerical, scientific and graphical libraries. MAT-

LAB code can be transformed into C++ through an add-on product while C++

and FORTRAN routines can be called by a MATLAB program with some effort.

Additionally, MATLAB and similar programs originate from a single commercial

source and therefore function nearly identically across all supported platforms

(running the same version number). However, the suppression of advanced fea-

tures such as classes, type-checking and user-controlled memory management

can lead to structural confusion, programming errors and runtime inefficiency

for larger problems. Further, the software is unavailable at many sites because

of its substantial cost, although this can, however, increasingly be circumvented,

through free software packages that imitate MATLAB commands. This textbook

accordingly employs the most widely employed alternative, GNU Octave.

Object-oriented languages. The fundamental high-level unit in modern pro-

gramming languages is an object. An object is a simplified model or abstraction

of a particular entity. To illustrate, consider for definiteness a voltage meter. The

meter has many attributes – in the extreme case the position and velocity of each

atom – but only a few of these are typically of interest. These relevant attributes,

which could include both user-accessible, public, data and behaviors, such as

the voltage reading and the meter’s response to depressing the power-on switch,

and inaccessible, private, characteristics, such as the currents through individual

circuit elements, compose the relevant abstraction of the object. By analogy, in

a C++ program, public properties can be accessed throughout the code while

private members are accessible only to functions that exist within the object

itself, restricting the associated code region subject to inadvertent errors.

In an object-oriented language, objects with similar properties are described

by a class. Two functions or variables with the same name that belong to different
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classes are considered to be unrelated, circumventing name collisions. A class

can incorporate the features of a second class by inheriting its non-private

properties; the new, derived, class can then employ or redefine the properties

of the original, base, class without recoding. Refinements to the original class

automatically propagate to the new class.

Since additional programming syntax is required in order to create and manip-

ulate objects and classes, object-oriented languages require more time to learn

than procedural languages. However, the structure of the resulting program

closely represents the physical objects that are being modeled. Accordingly,

object-oriented development is advisable for large programs or programs that

will be frequently revised.

The C++ language. C++, which extended the preexisting C procedural pro-

gramming language, constituted the first widespread object-oriented language.

Numerous scientific programming packages are at present available in C++,

while FORTRAN programs can be, with some effort, accessed from C++, c.f.

Appendix D of my companion textbook A First Course in Computational Science

and Object-Oriented Programming with C++. However, the additional func-

tionality of C++ enables manipulations that can introduce unexpected depen-

dences among variables. To ascertain these dependences, C++ typically runs

more slowly than FORTRAN, although advanced C++ language features can

be employed to circumvent these difficulties, as discussed in Chapter 21 of the

above reference.

Java: As a more recent object-oriented language, Java provides a far broader

standard feature set than C++. Classes that e.g. handle graphics and internet com-

munications are native to the language and in principle function identically across

all Java implementations (although, in reality, version and machine dependences

exist). Modern programming features such as multithreading and object serial-

ization are additionally included. However, since the language is oriented toward

the corporate market, many design choices are unfavorable for sophisticated sci-

entific programming. For example, C and C++ contain high-level commands

that enable direct access to hardware resources. These include addressing and

modifying the contents of individual memory locations and precisely allocating

and releasing the memory available to a program during execution. Since severe

errors result if such manipulations are improperly performed, Java handles such

operations automatically, at the cost of longer or unpredictable execution times.

Further, extensive mathematical or scientific program libraries are ported only

very slowly, if at all, to new programming languages.

1.4 Language standards

As requirements evolve, programming languages undergo periodic revision by

a standards organization. For relatively new languages such as Java, revisions

can be significant; further, existing language elements can become deprecated

(unsupported) and eventually obsolete. In contrast, revisions to mature languages
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such as C++ are relatively minor and do not affect core functionality. However,

programs employing elements of a new standard will not necessarily function on

older compilers.

1.5 Chapter summary

The organization of this book is as follows. After a short introduction to Octave

in Chapter 2, the following chapters summarize the installation of a free C++

programming environment, computer hardware and software architecture and

the basic structure and syntax of the C++ language. Chapter 7 introduces object-

oriented programming in C++, with more advanced features of C++ following in

Chapters 9–14. Chapters 15–17 discuss basic Java programming, with advanced

Java features relegated to Chapter 18. Chapters 19–24 finally discuss applied

numerical analysis in the context of numerous physical and engineering appli-

cations, including mechanics, electromagnetism, statistical mechanics, quantum

mechanics and optics.

1.6 How to use this text

The reader is encouraged to follow the steps below.

(1) Skim through the text.

(2) Reread the chapter, programming and running as many sample programs in the text

as possible. Attempt, if possible, to extend these programs.

(3) Memorize the programs or program sections marked in gray in the text. Success in

programming is largely dependent on being able to recall instantly central language

features.

1.7 Additional and alternative software packages

While comprehensive freeware and commercial C++ and Java numerical

libraries exist, such as the GNU, CERN, IMSL and NAG libraries, such rou-

tines are typically designed for a restricted set of hardware and software plat-

forms. Therefore, for smaller programs well-documented source code such as

the programs in this book will often provide a more optimal trade-off between

computational efficiency and development time.



Chapter 2

Octave programming

For small programs or rapid prototyping of ideas and methods, the commercial

MATLAB R© language, or its freeware alternatives, offers a practical alternative

to C++ or FORTRAN. In this book, the free GNU Octave implementation is

discussed from a scientific programming perspective. After becoming familiar

with the central language constructs summarized below, the built-in Octave help

facilities conveniently provide information on specialized, infrequent commands.

2.1 Obtaining octave

The Windows and Mac installation packages for GNU Octave are currently

located at octave.sourceforge.net. Linux versions are available at the main Octave

web site www.gnu.org/software/octave. When the program is installed, a variety of

additional packages and the creation of a database of C++ components accessible

by the editor can be selected. Unless space is an issue, these options should be

chosen.

2.2 Command summary

(1) Running Octave. After clicking on the Octave icon, statements are entered interac-

tively by typing into the resulting command window at the > prompt. An Octave

session is terminated by typing quit.

(2) System commands. To change from the startup directory (folder) to the direc-

tory that either contains or will contain program files, type cd X:\dir1\dir2\ . . .

\programDirectory, where X is the partition (logical drive) containing the desired

directory and \dir1\dir2 . . . \programDirectory is an ordered sequence of the

names of the directories enclosing the directory, \programDirectory, in which the

program is located. If one or more directory names contain spaces, the entire expres-

sion containing these names must be surrounded by double apostrophes ("), e.g.

cd "X:\My Documents". Representative operating-system commands that can be

issued from the Octave prompt include mkdir directoryName, which creates the

directory directoryName, rmdir directoryName, which removes this directory,

5



6 Octave programming

dir or ls, which display the contents of a directory, .., which moves to one directory

higher in the directory tree, ., which represents the current directory, rename file1.1

file2.2, which renames the file file1.1 to the name file2.2, and copy, which similarly

copies a file.

(3) MS-DOS and Unix commands. Standard DOS commands on Windows systems and

Unix commands on Unix systems are issued in Octave by typing e.g. dos 'copy file.1

file.2' or, on a Unix system, unix 'cp file.1 file.2' (single or double apostrophe). In

MATLAB such commands can also be preceded with !.

(4) Command structure and continuation lines. Octave commands end at a carriage

return, comma or semicolon; however, only a semicolon suppresses the output of

the statement from being written to the terminal. Two or more commands situated

on the same line must be separated by commas or semicolons. A statement can

span several lines but each line must normally be terminated by a three-period

continuation character, . . . .

(5) Creating and editing files. The command diary on stores subsequent commands

entered from the keyboard in a file named diary until diary off is issued. To examine

this file or to create or edit an Octave program, after navigating to the directory in

which the file resides, type edit at the command prompt, followed, where applicable,

by the name of the file to be edited or created.

(6) Comments. Any text to the right of a comment character, %, constitutes a comment

and is consequently ignored by the Octave interpreter. The beginning of a program

should contain the date, version number, title and author. Every set of statements

(a paragraph) performing a certain task should be preceeded by one or more blank

lines followed by comment lines explaining the purpose of the program unit. When

a variable is introduced, its meaning should be made clear by a comment either

above the line or on the same line to the right of the statement. Such annotations

insure the long-term readability of programs.

(7) Using help. To find and implement rarely employed commands, type first lookfor

subject to obtain a list of all commands involving the operation ‘subject’. Issuing

help commandName (or doc commandName) then provides help on the command

commandName.

(8) Octave programs. Octave program and function files must possess a .m extension;

that is, to program in Octave, first type edit from within the Octave command

window and create a file such as

S = 2;

S * . . . % Illustrates the comment and continuation symbols

S

Then, when saving the file, specify test in the "File Name" text entry field while in

the "Save File as Type" drop-down text box select MATrix LABoratory (.m). This

automatically appends the correct .m extension to the file name. If the file is saved in

a directory, e.g. X:\testDirectory, then, at the Octave prompt, type cd followed by

the directory (including, if necessary, the partition name, e.g. cd X:\testDirectory)
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where test.m resides, press enter and then type test. The program test can also be

called from within another .m file within the same directory.

(9) Variable-naming conventions. For clarity, variable names should start with a small

letter, while subsequent words in the name should be capitalized, e.g. numberOf-

Points. However, in Octave a name can represent an array of any size and number

of dimensions, which can result in subtle errors. To prevent this, quantities with a

row dimension can be indicated by a trailing R, those with a column dimension as

C and a matrix with a trailing RC, e.g, systemMatrixRC. If matrices with different

dimensions are present, the row and column sizes can be further specified as in

systemMatrixR4C8. Since Octave is not a typechecked language, the above con-

ventions can still lead to severe and difficult-to-locate errors for some compound

words such as wavefunction, which can be treated as one word in certain places

and as two words (waveFunction) in others. Typing a single character incorrectly

generates similar problems. These errors, however, can be immediately identified

by typing who at the command line, which displays a list of all the currently defined

variables. Any spelling error will then be evidenced by a variable name seemingly

appearing twice in the list.

(10) Formatting conventions. Every binary operator (+, − etc.) should be surrounded

by spaces, but not unary operators as in 3 + −4.0. Indentation should be employed

for every set of statements that are under the logical control of a control statement

such as for, if, while. Commas, semicolons, parentheses and braces should, where

appropriate, be followed by spaces.

(11) Program input. To prompt the user from within a .m file to enter a single variable

or array x from the keyboard, employ x = input( 'user prompt ' ). A variable y that

can later be employed in a logical control statement to branch into different program

units is conveniently entered with y = menu( 'Select the method', 'Method A',

'Method B', 'Method C' ); which assigns the value 1, 2 or 3 to y according to the

user selection.

(12) Output formatting. The more command pages subsequent output. To write out

subsequent floating-point output with 16 digits of precision, type in format long

e, to revert to the default 5 digits, type format short e or, equivalently, format

compact.

(13) Built-in constants and functions. Important predefined scalar quantities are e, pi,

i and j, both of which represent the unit complex number, and eps, the smallest

number which when added to 1 gives a number different from 1 (machine epsilon).

However, a major problem arises if these variables are redefined, for example, the

command i = [1, 3] overwrites the intrinsic definition of i, which is not reinstated

until a further command clear i is issued. Note that i and j are frequently employed

as loop variables, so that all loop variables should instead be labeled, for example,

loop, innerLoop, outerLoop.

(14) Complex numbers. A complex number is introduced as c = 2.0 + 4.0i and then

manipulated with functions such as real( ), imag( ), conj( ), norm( ). Complex

numbers are e.g. multiplied, divided and exponentiated in standard fashion either



8 Octave programming

by real or by other complex numbers. Functions such as cos( ), sin( ), sinh( ) yield

complex results when applied to complex quantities.

(15) Loading arrays. A variable name can represent a scalar or an array of any dimension.

A row vector is introduced as

vR = [1 2 3 4];

or

vR = [1, 2, 3, 4];

while a column vector is entered, even from the keyboard, as

vC = [1

2

3

4];

or, equivalently (since a semicolon is largely equivalent to a carriage return),

vC = [1; 2; 3; 4];

With the transpose operator .' the above column vector can also be entered as

vC = [1 2 3 4].';

A matrix

m RC =

(

1 2

3 4

)

can therefore be entered in any of the following ways:

mRC = [1 2; 3 4];

mRC = [1 2

3 4];

vR = [1 3 2 4]; mRC = reshape( vR, 2, 2 );

vC = [1

3

2

4]; mRC = reshape( vC, 2, 2 );

(The order in which a vector is reshaped indicates that matrix elements with succes-

sive values of the leftmost, column, index are stored next to each other in memory.)

The matrix element (mRC)12 is subsequently accessed by mRC(1, 2). Since scalars

and arrays are manipulated identically, arrays with multiple dimensions are con-

structed from component vectors or from subarrays in the same manner as from

scalar quantities, e.g. vR4 = [[1 2] [1 2]] yields [1 2 1 2];, while mBlockRC = [mRC

mRC; mRC mRC]; is a matrix of twice the dimension of mRC. While a vector

or matrix expands dynamically as new elements are added as in vR = [1 2]; vR(3)

= 3; this is computationally inefficient and memory should instead be preallocated

through a statement such as vR = zeros( 1, n ), which creates a row vector of n zero

elements.
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(16) Size and length. Octave maintains a record of the size of an array to prevent element

access outside this range. Hence mRC(1, 3) yields an error if mRC is a 2 × 2 matrix.

The command size( mRC ) for an M × N matrix returns the array [M, N]. For a

single-dimension array, length( vR ) returns the length of the array vR. However,

when applied to a two-dimensionsal array length( mRC ) returns the maximum

value of M and N, possibly leading to unexpected errors.

(17) Matrix operations. The n × n identity matrix is represented by eye( n ) or eye( n, n ),

while the n × n matrix with all unity elements is denoted ones( n ) or ones( n, n ).

If s = 2 and mRC = [1 2; 3 4] as in item (15) above, then

s + mRC = s ∗ ones (2,2) + mRC ⇒

(

3 4

5 6

)

while

s ∗ eye (2, 2) + mRC ⇒

(

3 2

3 6

)

Very often, errors arise because of failure to differentiate between these. Multiplica-

tion similarly possesses different meanings depending on variable type. Multiplying

or dividing a matrix mRC by a scalar s multiplies (divides) all elements of mRC

by s while mRC * mRC symbolizes normal matrix multiplication and

mRC. ∗ mRC ⇒

(

1 4

9 16

)

implements component-by-component multiplication. Similarly mRCˆ2 is mRC

* mRC, while mRC.ˆ2 instead squares the individual elements of mRC. The

dot operator functions analogously for other arithmetic operations such as mRC

./ nRC, which yields a matrix whose (i, j)th element is simply (mRC)ij/(nRC)ij.

Standard functions such as cos( mRC ) operate on the individual elements of mRC,

here returning the matrix formed by taking the cosine of each element. Two easily

confused operations are array (matrix) transpose without complex conjugation, .',

and transpose with complex conjugation, '. Note that the simpler syntax is applied to

the Hermitian conjugate operation, since this yields the standard norm of complex

(as well as real) arrays. For a vector vR = [1, 2] with elements (vR)ij, the dot or inner

product without complex conjugation is given by vR * vR.', while the (Kronecker)

outer product vR.' * vR yields the 2 × 2 matrix with (i, j)th element (vR)i (vR)j,

namely [1 2; 2 4].

(18) Matrix functions. A few functions ending in the letter m such as the matrix expo-

nential expm act on matrix arguments and are defined (although not implemented)

through power-series expansions such as

expm( aRC ) = eye( size( aRC ) ) + aRC + aRCˆ2/2!

+ aRCˆ3/3! + ...

The determinant, trace, inverse, logarithm and square root of aRC are similarly

given by det( aRC ), trace( aRC ), inv( aRC ), logm( aRC ) and sqrtm( aRC ),
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respectively. The LU decomposition of aRC is expressed as [lRC, uRC] = lu(aRC);.

The eigenvalues, arranged in ascending order, and the corresponding eigenvectors

of a matrix aRC are placed, respectively, in the columns of the matrix mVecRC

and the diagonal elements of mValRC through the call [mVecRC, mValRC] =

eig( aRC );. Simply calling eig( aRC ) returns a vector containing the eigenvalues

in ascending order.

(19) Solving linear equation systems. The quotient of two matrices in Octave written as

mRC / nRC denotes mRC * inv( nRC ), while mRC \ nRC instead represents

inv( mRC ) * nRC. Accordingly, the linear equation system xR * mRC = yR is

solved by xR = yR / mRC, while xC =mRC \ yC if mRC * xC = yC.

(20) Sparse matrices. Operations on matrices with few non-zero elements are accelerated

if the matrices are implemented as sparse matrices. The simplest procedure converts

a full matrix aRC to a sparse matrix by bRCsp = sparse( aRC ) (which is reversed

with aRC = full( bRCsp ) ). Subsequent operations such as * and / are performed

with sparse routines if all operands or arguments are sparse (except for an identity

or zero matrix). spy( mRCsp ) displays the locations of the non-zero elements of

mRCsp while speye( n ) is an n × n sparse identity matrix.

(21) Random-number generation. To compare the different versions of a program that

incorporates a random-number generator, the random sequence should be the same

in all versions. This is accomplished by introducing the statement rand( 'state', 0 )

at the beginning of each program. Uniformly distributed random numbers between

0 and 1 are generated singly with rand or as a multidimensional array with e.g.

rand( m, n ). Typing lookfor rand displays information about functions for other

random distributions.

(22) Saving variables. A variable v is stored in the text Octave file filename through

save filename v and then recovered through load filename. This file can then be

inspected or edited with any text editor. All variables present in the workspace

are simultaneously saved and loaded in through the commands save filename

and load filename. [In MATLAB the save command instead writes to a binary

file filename.mat and will only save a variable v to an ASCII file vdata if the

command save vascii v –ascii is instead employed. The variable is in this case

recovered from the .mat file with load vascii; v = vascii; where only the first

statement is employed if v is employed for the file name in place of vascii.

However, retrieval from MATLAB binary files that store more than one variable

presents difficulties since the original variable names are not stored as in .mat

files.]

(23) String manipulation. A string such as s = 'test' is stored as an array ['t' 'e' 's' 't']

of characters so that s(1) returns t and ['a ', s] yields the new string 'a test'. Inte-

gers and floating-point numbers are translated into strings through the functions

int2str( ) and num2str( ), respectively; the reverse operation is performed by

str2int( ) and str2num( ). An Octave expression, expressed as a string, is sent

to the command processor by writing eval( ); as an example, to display the files

present in the directory, the commands s = 'dir'; eval( s ); can be employed.
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(24) Cell arrays. To form an array composed of different types of variables (including

additional cell arrays) as members, write e.g. cA = {{1 2; 3 4} 's'; 3 5}. Then cA

{1,2} is the letter s while cA{1,1}{2,2} is 4. In MATLAB cellplot( cA ) additionally

yields a graphical display of the contents of cA.

(25) Iterators. In Octave, for loops are implemented far less efficiently than vectorized

expressions containing array variables. The colon operator generates a row vec-

tor, by default with unit step, that can replace iterators. For example, 1 : 3 yields

the row array [1 2 3], while vR = sin( pi: -pi / 10: -1.e-4 ); produces the array

vR = [sin( pi ) sin( 9 pi / 10 ) . . . sin( pi / 10 ) 0]. A non-vectorized for loop

possesses the form for loop = 0.9 : 0.1 : 0.3 . . . statements to be iterated over

. . . end or, equivalently, for l = [0.9 : 0.1 : 0.3] . . . . A common error here is

to write for l = .9, -.1, .3 in place of one of the statements above. This assigns

the value .9 to l and then executes the meaningless statements -1 and 3 without

an error message. Note that the common choice of i or j as iteration (or ordi-

nary) variables precludes their further interpretation as complex numbers, so that i

and j should not be employed as variable or iterator names. Iteration can also be

implemented with a while loop, as in while loop > 0.3, loop = loop - 0.1, end,

which takes the place of the for loop introduced at the beginning of this para-

graph. A break statement when encountered terminates the iteration and passes

control to the statement following the end statement of the loop in which the break

occurs.

An isolated colon, :, iterates through all the rows or columns of a matrix, so that

mR2C4( :, 1 ) = vR2( : ) (or equivalently =vR2.'( : ), which is a column vector),

places all the elements of the two-element row vector vR2 into the first column

of the matrix mR2C4. A matrix can also be mapped into a vector with the colon

operator; for a matrix mRC = [1 2; 3 4], writing V = M( : ) yields the column vector

V = [1; 3; 2; 4] (since, as noted earlier, in Octave successive column elements are

adjacent in memory). Related constructs are linspace( S1, S2, N ) (and logspace),

which generate N equally (logarithmically) spaced points between S1 and S2 that

include the endpoints.

(26) Control logic. The logical operators in Octave are given by ==, <, >, >=, <=, ∼=

(not equal) and the and, or and not operators &, | and ∼, respectively. These are

typically employed in while . . . end, if . . . elseif . . . end (note that elseif is a

single word) and switch statements. The last of these is rather complex, so the help

subsystem should be consulted when coding.

(27) Functions. A function, with a name functionName, must be placed in a separate

(and similarly capitalized) file functionName.m (this requirement can be circum-

vented somewhat in Octave). The first line of this file must further be of the form

[mOutRC, vOutR, . . . ] = functionName( mInRC, vInR, . . . ). To share internal

variables with other program units a global statement that includes the names of

the shared variables separated by spaces (not commas) is introduced as follows

(the endfunction statement is generally not required; and a helpful convention is to

capitalize global variables):
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%file functionName.m:

function [vOutR, xOut] = functionName( vInR, xIn )

global G ICONV

G = length( vInR );

vOutR = [vInR(1), vInR(2)ˆ2];

xOut = 0;

ICONV = vInR(1) * 3;

endfunction

%program file test.m.

%Only G is visible and shared from within this program unit:

global G

yInR = [1 1];

[yOutR, yOut] = functionName( yInR, 2 );

G

(28) Important functions. Some often-employed functions include rem( n, m ), the

remainder of n/m, which is positive or zero for n > 0 and negative or zero for

n < 0, ceil( ), floor( ), fix( ) and round( ), which round a real number up and down,

toward zero and toward the nearest integer, respectively. Common functions with

vector arguments encompass the discrete forward and inverse Fourier transforms,

fft( ) and ifft( ), and mean( ), sum( ), min( ), max( ), and sort( ). Interpolation of

data is performed by y1 = interp1( x, y, x1, 'method' ), where ‘method’ is 'linear'

(default), 'spline' or 'cubic', x and y are the input x- and y-coordinate vectors and

the scalar or vector x1 contains the x-coordinate(s) of the point(s) at which the

interpolated values are desired. The function roots( [1 3 5] ) returns the roots of the

polynomial x2 + 3x + 5.

(29) Function arguments. Numerous functions accept other functions as arguments.

These can be entered in different ways, e.g. fzero( 'cos', 2 ), which returns the zero

of the function cos closest to 2. The use of apostrophes, however, is here restricted

to Octave functions; a more general syntax is fzero( @cos, 2 ) or, equivalently,

aF = @cos; fzero( aF, 2 ). In these statements @ denotes a function handle with the

property that aF( 0.1 ) evaluates to cos( 0.1 ). Some important Octave functions of

this type are min( 'functionname', a, b ), which searches for a minimum between the

lower and upper endpoints a and b, and fmins( 'functionname', x ), which searches

for a root in two-dimensions closest to the vector x. As well, fzero( 'functionname',

a ) finds the zero closest to a, quad( 'functionname', a, b, tol ) integrates a function

from a to b to within an error tol, and lsode( ) (in Octave) and ode23( ) or ode45( )

(in MATLAB) solve systems of coupled first-order ordinary differential equations

(ODEs).

(30) Graphic operations. Calling plot( x1R, y1R, x2C, y2C, 'r', . . . ) with column or

row vectors as arguments plots multiple sets of (x, y) curves, the first of which is

blue by default and the second of which is here specified as 'r', red. Executing

plot( cxR, 'g∗' ), where the elements of cxR are complex, instead graphs the imagi-

nary part against the real part of these elements with green stars. Logarithmic graphs
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are similarly plotted with semilogy( ), semilogx( ) or loglog( ). Three-dimensional

grid and contour plots are created with mesh( mRC ) or mesh( xR, yR, mRC )

and contour( mRC ) or contour( xR, yR, mRC ), where xR and yR are vectors

(either row or column) that contain the x and y positions of the grid points. A

plot generated in a program (.m) file is not necessarily displayed until a drawnow,

pause( seconds ) or (normally) a subsequent plot statement is reached. The com-

mand hold on (cancelled by hold off) prevents the erasure of the graph window so

that additional curves can be overlaid.

The figure window is divided into an m × n two- dimensional array of subplots of

which the pth is selected for the next plot by the command subplot(m, n, p). Here

p = 1 corresponds to the row 1, column 1 plot position, while p = 2 refers to

the row 1, column 2 plot position and so on. The command clf clears the figure

window, while figure( n ) for integer n opens a new graphics window called Figure

n. Functions are conveniently plotted with the command fplot( 'functionname',

[a b] ), where a and b are the initial and final x-values. Axis defaults are overridden

with axis( [xMinR xMaxR yMinR yMaxR] ). By placing additional optional

arguments into the axis command the most common graphical functions can be

manipulated. Axes are also labeled with xlabel( 'xtext' ) and ylabel( 'ytext' ).

Commands such as print –deps and print –dtiff yield encapsulated postscript and

TIFF graphics files of the current plot window, respectively (help print displays all

options), while orient landscape changes the printer or graphics output to landscape

format. To access and change all the properties of the graph, first enter get( gca )

to see a list of the graphics properties and their settings. Then employ e.g. set( gca,

'linewidth', 10 ) to change a selected property.

(31) Memory management. Since user-defined variable names hide built-in variable and

function names, if a program defines a variable such as length, the built-in function

length(x) ceases to function. The user-defined variable can, however, be destroyed

through the command clear length. Each program should therefore begin with

clear all to eliminate all preexisting variables. This especially prevents subtle errors

generated by resizing variables defined during a previous run; otherwise, if for

example, an array has a size of 100 the first time the program is run, then, if 50

elements are written into it the next time the program is edited and reexecuted, the

remaining 50 elements are still allocated and contain the previous data. The inner

product of this vector with itself will therefore erroneously include contributions

from these values. After memory has been deallocated with the clear command, the

memory space assigned to the program is not decreased until garbage collection is

activated through the pack command.

(32) Structures. A structure in Octave functions as a generalized array that segregates

variables of different types under a single heading. This prevents collisions between

variables that have the same name but refer to different types of objects. In Octave

a structure can be employed simply by appending the member-of operator (.) to the

structure name, as in
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Spring1.position = 0;

Spring1.velocity = 1;

Spring1.material = 'Steel';

Spring1.position = Spring1.position + deltaTime...

k / m * Spring1.velocity

2.3 Logistic map

As a simple example of an Octave program, we implement the logistic map

defined by the recursion xn+1 = µxn(1 − xn) for 0 < x0 < 1. The xn tend to a

single value as n is increased for µ < 3 but fluctuate among multiple values

and subsequently exhibit period doubling into chaos as µ is increased from

3 to 4. That is, in the µ < 3 regime, any initial value reaches a fixed point

x∗ = (µ − 1)/µ as the number of iterations becomes large, while for µ slightly

above 3 the system instead oscillates between two fixed values. The number of

these values subsequently increases with � and eventually becomes infinite. In this

chaotic regime, infinitesimal changes in the starting value generate unpredictable

variations in the output after a large number of iterations, as can be verified by

running the program below for µ equal to e.g. 2.6, 3.3, 3.52 and 3.9:

numberOfBins = 100;

numberOfSteps = 100;

growthConstant = 3.6;

startValue = 0.5;

histogramR = zeros( 1, numberOfBins );

mapValuesR = zeros( 1, numberOfSteps );

mapValuesR( 1 ) = startValue;

histogramR( mapValuesR( 1 ) * numberOfBins + 1 ) = ...

histogramR( mapValuesR( 1 ) * numberOfBins + 1 ) + 1;

for loop = 2 : numberOfSteps

mapValuesR( loop ) = growthConstant * mapValuesR ...

( loop - 1 ) * ( 1 - mapValuesR( loop - 1 ) );

histogramR( ceil( mapValuesR( loop ) * numberOfBins ) ) = ...

histogramR( ceil ( mapValuesR( loop ) * numberOfBins ) ) + 1;

end

figure( 1 )

plot( mapValuesR );

figure( 2 )

plot( histogramR );



Chapter 3

Installing and running the Dev-C++
programming environment

We commence our discussion of C++ by describing the installation process for

the free Dev-C++ development environment and DISLIN graphics software.

Dev-C++, which can be downloaded from http://www.bloodshed.net/dev/devcpp.

html, offers a simply managed, integrated set of development tools based on the

Linux g++ compiler both on the native Linux platform and as a Windows pro-

gram. The platform contains, among other programs, a FORTRAN 77 compiler

(g77), a debugger (gdb) and a profiler (gprof). The DEV-C++ version described

here is the 4.9.9.2 version 5 beta. For instructions relevant to previous versions,

consult A First Course in Computational Science and Object-Oriented Program-

ming with C++. When DEV-C++ is installed and executed for the first time, a

window appears with language and directory preferences, followed by a second

window asking whether a class list should be built. Answer “Yes” in the second

window to increase the versatility of the editor.

3.1 Compiling and running a first program

(a) Entering a program. Two simple methods exist for creating and executing a new

program. The first of these generates a project, which implies that files that are later

placed in the project will be subsequently processed together by the environment.

To create a project, double click on the DEV-C++ icon and in the program window

depress the button marked “New” on the button bar. From the drop-down menu that

appears select Project and then in the pop-up window select Console application,

enter an appropriate name for the project, insure that the radio button labeled C++

project is selected and press OK. In the subsequent secondary window entitled Create

new project, specify the directory where the files should be placed and name the

project. An editor window appears containing the skeleton code

#include <cstdlib>
#include <iostream>
using namespace std;

int main(int argc, char *argv[])
{

system(''PAUSE'');

15
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return EXIT_SUCCESS
}

and places the cursor at the beginning position of the window. Using the tab key for

indentation, add the additional line

cout << ''Hello World'' << endl;

immediately after the first opening brace, {. The effect of cout << is to display the

quantity to the right of the insertion operator << on the terminal, while << endl

terminates the output line. Also add the following comment lines at the beginning of

the program:

// Hello world v. 1.0
// Aug. 11 2000
// (your name)
// This program tests the C++ environment

Any text on a line to the right of two forward slashes is treated as a comment and is

not processed as part of the C++ program. The lines before int main( . . . ) together

with the first two of the three last lines of the program will not be repeated in most

of the remaining programs in this textbook, although they will be present in every

console program that is created by Dev-C++. The initial statements can normally

be replaced by a single statement #include <iostream.h>, which is, however, an

antiquated programming strategy.

To compile and run a single file without first creating a project, after opening

Dev-C++ depress the third button marked “New” on the button bar in the program

window. The program above can now be entered or, alternatively,

// Hello world v. 1.0
// Apr. 18 2011
// (your name)
// This program tests the C++ environment
#include <iostream>
#include <windows.h>
using namespace std;

main ( ) {
cout << ''Hello World'' << endl;
Sleep(4000);

}

Another variant, which as in the first program of this section pauses the program

indefinitely until any key is depressed:

#include <iostream >
#include <conio.h>
using namespace std;

main ( ) {
cout << ''Hello World'' << endl;
cout << ''Press any key to continue'' << endl;
getch( );

}
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Finally, the simplest procedure, and the easiest to remember:

#include <iostream >
using namespace std;

main ( ) {
cout << ''Hello World'' << endl;
cout << ''Press any key to continue'' << endl;
int endProgram;
cin >> endProgram;

}

In entering programs names are frequently misspelled or improperly capitalized, lead-

ing to unexpected consequences, especially when similar characters are substituted

for one another. In particular 0 and O and 1 and l are difficult to distinguish at low

screen or printer resolution and can lead to errors such as when 1 < 10 (1.0 < 10)

is employed in place of l < 10 (the letter l < 10). As well, the semicolon at the end

of a statement is often omitted and two successive lines are read by the compiler as

a single statement. This often produces cryptic error messages with incorrect line

numbering. In general, fine details of the program syntax, such as double quotation

marks rather than single quotation marks and braces instead of parentheses should be

carefully noted.

(b) Saving the file and running the program. Now click on the third icon from the left on the

lower button bar with float-over text “Compile and Run” and type in a name for the file

(do not add a .cpp extension to your file name here – this is performed automatically).

A compilation progress window should appear, after which the program executes.

(c) Opening a preexisting file. To open a .cpp file in Dev-C++ click on the second icon

from the left on the upper button bar with the associated float-over text “Open Project

or File” and select the desired icon from the secondary File window. After editing the

file, selecting the compile and run icon will automatically save, process and execute

the new code.

3.2 The Dev-C++ debugger

Often the most efficient procedure for locating errors that arise when a program is

executed is to inspect the values of the variables in the program during execution.

Often this is best accomplished simply by adding additional code lines that write

these values to the terminal or to a file, but variables can also be examined during

program execution through a debugger. In this section, an error is introduced into

our Hello World program in order to demonstrate both procedures.

Return to one of the programs you created in the section entitled “Creating

and Running a First Program” and incorporate both a programming error and

debugging lines into the program as follows:

int main(int argc, char *argv[]) // or simply main( )
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{
int i = 0;
cout << ''The value of i is '' << i << endl;
i = 5;
cout << ''The value of i is '' << i << endl;
int j = 0;
cout << ''The value of j is '' << j << endl;
int k = i / j;
cout << k << endl;

}

Save this file by clicking on the fourth icon on the top button bar that resembles

a floppy disk with the float-over text “Save”.

To activate or deactivate debugging, select “Tools → Compiler Options”

from the menu bar, followed by the Settings tab (the arrow indicates that the

“Tools” menu option should be selected, followed by the “Compiler Options”

submenu item). Click on “linker” in the left windowpane; “Generate Debugging

Information” appears as a text label on the right-hand pane. Clicking on “Yes”

or “No” to the right of this text generates a drop-down text box from which the

desired behavior can be selected. Profiling, which details the amount of time spent

in different code regions, can similarly be activated by selecting “Code Profiling”

in the left-hand windowpane. Increasing the compiler optimization level through

the menu option “Optimization” often reduces the execution time of the program,

but should generally be attempted only at the end of the development process.

With debugging activated, recompile the program by selecting the first icon

in the lower toolbar. Inside the editor window, click in the gray area just to the

left of the line int i = 0;. A check symbol should appear and the line should

turn red; this is termed a breakpoint. Click again on the Debug icon. A set of

debugging menu items will appear at the bottom of the editor window. Locate

the windowpane to the left of the main editor window and right click inside this

area. A pop-up menu with the selection “Add Watch” will appear (if this fails

simply click on the “Add Watch” icon in the debugging toolbar). Click on this

icon. A secondary window requesting a variable name appears. Type in i and

depress the OK pushbutton. An icon labeled i becomes visible in the left-hand

windowpane. Depress the “Run to Cursor” icon in the debug toolbar. The active

line advances to the first breakpoint. Now identify the upper left-hand icon in

the debug toolbar labeled “Next Step” and select this icon repeatedly. The active

line, marked in blue, will move through the program synchronously as the value

of the variable i is seen to change. When the position of the error due to the

invalid division by zero is reached, the active line cannot be further updated. Of

course, in this example the error can also be identified from the data displayed

on the terminal through the cout lines. For future reference, the Step Into icon

is employed to enter a function. That is, to step through lines within a function

(change the scope to the function), the Step Into icon should be selected once the

active line has been located at the position of the function call.
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3.3 Installing DISLIN

DISLIN provides high-performance professional scientific graphics routines that

can be employed within numerous C, C++ and FORTRAN programming envi-

ronments. The DISLIN package is available free of charge for Dev-C++ and

other non-commercial compilers at http://www.linmpi.mpg.de/dislin/. The installa-

tion steps for DISLIN are as follows.

(a) Download from the DISLIN website http://www.mps.mpg.de/dislin/windows.html

the DISLIN distribution dl_**_mg.zip for GCC, where ** represents the current

version number, and then unzip and install the program. Be sure to set when prompted

for a directory name the drive letter to the same letter X: as was employed in the Dev-

C++ installation, while retaining the remainder of the default directory name. The

software will then be installed in the directory X:\dislin.

(b) From the start menu, select All Programs → Bloodshed Dev-C++ → DevC++ to

start the program. Select Tools → Compiler Options from the menu bar and select

the second check box entitled “Add these commands to the linker command line” and

then click on the checkbox so that a check appears. In the text-entry field below this

line enter

X:\dislin\dismgc.a --luser32 --lgdi32 --lopengl32

Now select the tab entitled “Directories” and then the subtab “C++ Includes”. At the

bottom of the list of directories enter

X:\dislin

Finally, depress the OK pushbutton.

3.4 A first graphics program

A sample graphics program illustrates the code lines required by all DISLIN

programs. Type the following into the editor window after depressing the “New”

pushbutton on the right-hand side of the lower toolbar:

#include <iostream> // Required by DISLIN!

#include <dislin.h> // Required by DISLIN! Includes the

// plotting package

using namespace std;

int main(int argc, char *argv[])
{

int numberOfPoints = 2;
float x[2] = {0, 1};
float y[2] = {0, 2};
qplot(x, y, numberOfPoints);

}

It is extremely important to observe that the command #include <iostream>

and using namespace std; (or, alternatively, #include <iostream.h>) must be
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present for DISLIN to function properly on a C++ file. Now select the third

“Compile and Run” icon from the left on the bottom button bar. Type in a

suitable name for the file (again do not enter the .cpp extension). A graph of the

two points should appear.

You can generate, among many other options, a TIFF, Adobe PDF or postscript

file in place of the screen plot by placing one of the lines

metafl(''TIFF'');
metafl(''PDF'');
metafl(''POST'');

respectively, into the main( ) program before the line containing qplot. A file

named dislin.xxx, where xxx is respectively tif, pdf or eps, is then placed in your

directory when the program is executed. If e.g. an .eps file dislin.eps already

exists, the new .eps file will instead be dislin_1.eps, etc.

The contents of any window can also be printed by clicking the left mouse

button anywhere inside the window to make it active and subsequently depressing

the Print Screen key while holding down the ALT key. (Using the CTRL key

instead of the ALT key instead captures the contents of the entire screen.) You can

then open an application program that accepts graphics such as Paint (Start →

Programs → Accessories → Paint) or an appropriate word processor and select

Edit->Paste from its menu bar to insert a bitmap of the captured window that can

subsequently be printed through the application program’s print function.

3.5 The help system

Dev-C++ includes an abridged help system that is accessed from the menu bar.

The first section of the help menu describes the operation of Dev-C++, including

debugging and compiling, while the second section overviews C++.

3.6 Example

The following code calculates the magnitude of the gravitational field of a point

particle both inside and outside the Earth and displays the result as a contour

plot, a color graph or a three-dimensional line plot:

#include <iostream.h>
#include “dislin.h”
const double KM = 1000;
const double GRAVITATIONALCONSTANT = 6.67e-11;
const double EARTHMASS = 5.97e24;
const double EARTHRADIUS = 6380 * KM;
const int MATSIZE = 20; // Must be a const int

double gravitationalField( double aX, double aY ) {
double radius = sqrt( aX * aX + aY * aY )
if ( radius <= EARTHRADIUS )

return GRAVITATIONALCONSTANT *
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EARTHMASS * radius /
( EARTHRADIUS * EARTHRADIUS * EARTHRADIUS );

else
return GRAVITATIONALCONSTANT * EARTHMASS /

( aX * aX + aY * aY );
}

main ( ) {
double position[matSize]; // x and y coordinate positions

float field[matSize][matSize]; // gravitational field

float offset = matSize / 2 - 0.5; // starting grid point

for ( int loop = 0; loop < matSize; loop++ ) {
position[loop] = 0.1 * earthRadius * (loop - offset);

}
float x, y;
for (int outerLoop = 0; outerLoop < matSize; outerLoop++) {

x = position[outerLoop];
for ( int innerLoop = 0; innerLoop < matSize; innerLoop++ ) {

y = position[innerLoop];
field[outerLoop][innerLoop] = gravitationalField( x, y );

}
}
metafl( “XWIN” );
disini( ); // required for 3-dimensional plots

int iPlot = 2; // set to 1 for surface plot, 2 for color plot.

if ( iPlot == 1 ) // surface plot

qplsur( (float*) field, matSize, matSize );
else if (iPlot == 2) // color plot

qplclr( (float*) field, matSize, matSize );
else { // contour plot

int numberOfContours = 30;
qplcon( (float*) field, matSize, matSize, numberOfContours );

}
}

Note that DISLIN routines require float arrays as data arguments. The syntax

(float *) casts (converts) the subsequent variable to a float array (more precisely,

pointer) type.



Chapter 4

Introduction to computer and
software architecture

Scientific programming comprises four basic elements: analyzing a physical

problem, developing a numerical algorithm for solving the problem, design-

ing a program that implements this solution within a clear and understandable

framework and, finally, determining the accuracy and the limits of validity of the

numerical solution. Before discussing these, however, we survey computational

methods and software and hardware architecture.

4.1 Computational methods

While most textbook problems possess a high degree of symmetry and/or a

limited number of variables and can therefore be solved analytically, real-world

applications typically require numerical analysis. Further, even analytic solutions

can be unstable, as in water flowing through a cylindrical tube at high velocity,

for which the motion depends critically on the initial conditions. Numerical

calculations are then performed for numerous initial conditions and statistical

properties derived from the results.

Often a numerical model of a continuous system recasts the solution to the

full, global problem as a set of simplified, coupled local problems, each of

which describes the system over a restricted spatial or temporal domain. Con-

tinuous operators such as derivatives and integrals are then approximated by

employing their definition as the limit of discrete differences and sums but

without passing to the infinitesimal limit. As an example, the response of a

building to an applied force from the ground can be obtained by noting that

the forces on each brick vary only slightly over the surface of the brick. The

response of each discrete, rigid, brick to these local applied forces can therefore

easily be evaluated. Coupling the forces and displacements on each brick to

those on neighboring bricks and to those applied at the boundary between the

house and the ground generates a large system of linear equations that is solved

numerically.

22
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4.2 Hardware architecture

The basic principles of computer architecture are evidenced by considering a

pocket calculator. In such devices, data such as numbers entered from the keypad

or the results of intermediate calculations are stored either in a series of capacitors

on the CPU chip or in an external dedicated memory chip. Subsequently, when

other calculator buttons are pressed, an integrated circuit termed the central

processing unit (CPU) retrieves the data, applies a sequence of basic instructions

and sends the output to a LCD display.

A computer differs from a calculator principally in the extent of the CPU

instruction set and the number of attached components that perform specialized

functions. For example, arithmetic functions may be processed either in a ded-

icated area of the CPU circuitry called the arithmetic logic unit (ALU) or by a

separate chip. Input or output is directed to devices such as a graphics card, printer

or hard disk, each of which may have additional processing circuitry. However, in

all cases each target memory location or device must possess a unique memory

address. The CPU transfers data to or from a specific location by preceding the

data by the corresponding address. This digital signal is placed as a packet onto

a series of wires called the system bus. Each external device is attached to the

bus wires. Dedicated circuits intercept only the packets that contain the device

address.

Computational time can be decreased by rewriting mathematical or data oper-

ations so that they directly map to the CPU instruction set or by ensuring that

the program primarily accesses rapid memory components. The fastest of these

devices include memory registers within the CPU with very small latency time

(additional clock cycles) for data storage. Cache memory inside the CPU or next

to the CPU is accessed through a dedicated memory bus (the L1, or level 1,

cache is physically closest to the memory, while other levels, labeled L2, L3, . . . ,

are larger and slower). Random-access memory (RAM) denotes rows of chips,

located in sockets on the motherboard, that access the CPU through the mem-

ory bus. Read-only memory (ROM) refers to a specialized, flash, memory chip

that retains its information when the computer is shut down. This chip contains

the initial program required to activate the basic functions of the computer upon

startup (boot) and is reprogrammed by applying voltages to the memory elements

for a certain time to introduce new functionality to the hardware. Finally, dis-

tributed memory is located on remote networked machines and typically accessed

through internet addresses.

A modern “virtual” operating system allocates memory dynamically as a

program executes such that, if all fast cache and RAM memory is allocated to

the programs running on the computer, blocks of data in memory that are not

immediately required by the operating system are reallocated to free space on the

hard disk or other physical storage devices. This operation, termed a page fault,

severely retards program execution.
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4.3 Software architecture

While the hardware of a computer defines its ultimate performance limits, soft-

ware determines the degree to which these limits are reached. Different program-

ming languages effect different trade-offs between performance and user acces-

sibility as they have evolved from direct manipulation of the CPU and memory to

high-level statements that closely resemble the physical objects to be modeled.

Modern compilers or interpreters map complex language statements onto the

underlying CPU instruction set, while routines that are frequently used or that

interact directly with external devices such as sensors or measurement instru-

ments are often still coded through low-level non-compiled instructions. The

most primitive of these are termed machine language, which describes system-

specific instructions that map directly to CPU instructions. Here a set of bits will

be, for example, divided into an op code that directs the processor to, for exam-

ple, copy the contents of one memory register to a second register, followed by

additional sets of bits that specify the source and target register for this operation.

To avoid the obvious complexity of machine-language programming, assem-

bly language instead represents a CPU instruction as a three-letter mnemonic.

These mnemonics are translated into an object file containing a binary representa-

tion of the CPU commands by the assembler. The linker combines separate object

files that may originate from different sources, including compiled high-level

languages, into a single executable program. An object file normally possesses an

.o or .obj extension, while an executable file typically is associated with an .exe

extension in Windows and an .out extension or no extension in UNIX and Linux.

Finally, the syntax of a high-level language approximates natural language.

Procedural languages initially formed a program from a logically sequenced set

of statements and procedures such as functions and subroutines that transform

input into output data. Object-oriented programming languages instead model

the interactions between the underlying physical or abstract objects so that a

program describes the object properties and their behavior as time evolves. For

example, consider entering a value such as 0.5 into a calculator, depressing the

button that calculates the sine of this value and, finally, selecting a button that

displays the new value in memory register on the calculator screen. This sequence

of events can be represented in C++ as

Calculator MyCalculator;

MyCalculator.inputValue( 0.5 );

MyCalculator.depressSineButton( );

MyCalculator.displayValue( );

While the corresponding procedural code,

double calculatorValue = 0.5;

double outputValue = sin( calculatorValue );

cout << outputValue << endl;
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is far shorter, the object construct organizes the properties and functions of

a physical object into a single self-contained unit that is easily modified and

transferred between programs. Object-oriented languages additionally provide a

foundation for still higher-level programming idioms such as graphical program-

ming, for which right-clicking on a calculator icon reveals a list of its attributes,

which in this case could be the value, calculatorValue, held in the calcula-

tor’s internal memory register and the inputValue( ), depressSineButton( ) and

displayValue( ) functions. Other icons represent objects or graphical user-

interface parts that obtain data from or display data to the user. Drawing a line

between two objects enables one object to call a function in the second object.

4.4 The operating system and application software

The operating system, such as Windows R©, Linux or UNIX, interfaces the appli-

cation programs to the computer hardware. An application therefore generally

obtains hardware resources by calling operating-system functions. A modern

multitasking operating system services these requests in a manner consistent

with the relative priorities of other currently running programs. This prevents,

for example, lockups resulting from contention between two programs for the

same resource.
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Fundamental concepts

Before discussing the C++ language in detail, we summarize its conceptual

foundations. Since C++ consistently adheres to a small number of basic prin-

ciples, acquiring a working understanding of these greatly hastens learning of

C++ syntax.

5.1 Overview of program structure

The smallest unit of a C++ program is a token, which is a letter or symbol

that the compiler can process. Appropriate groups of tokens yield words. Of

these, identifiers (variable names) form atomic (single-element) expressions.

Operators combine expressions to form new expressions. Terminating a valid

expression with a semicolon yields a statement, which is equivalent to a sentence.

A block, which is analogous to a paragraph, unifies and isolates one or more

statements from the remainder of the program. Control structures determine

the program flow according to the outcome of logical operations, while functions

and possibly subroutines modularize compound statements by associating a label

with a frequently occurring sequence of statements. Finally, classes and objects

structure related variables and functions into generalized arrays. These, like a

chapter, describe a single topic, namely the properties of a related group of

objects.

5.2 Tokens, names and keywords

The C++ compiler processes source-code lines in order of appearance and text

within a line from left to right. A program is read as a sequence of tokens

separated by non-printing whitespace characters, which include tabs, carriage

returns and spaces. Valid tokens are a–z, A–Z, 0–9 and certain punctuation

characters. Upper- and lower-case letters represent different tokens such that

myVariable and myvariable are unrelated names. A word is a sequence of tokens

terminated by whitespace. A reserved keyword is a word such as int or if for

which the complier has a special interpretation.
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5.3 Expressions and statements

A valid C++ expression terminated by a semicolon yields a statement (in contrast,

a preprocessor directive that instead begins with the symbol #, is processed before

any statements are read by the compiler, while text to the right of a comment

delimiter // or between /* and */ is ignored by the compiler). A statement is

composed of one or more valid expressions separated by operators such as +,

–, * or /. As an example, 13; and aI; represent valid statements. While these

statements would normally be optimized away by the compiler, when they are

joined by operators meaningful compound statements such as aI = aI + 13; can

be generated. Since multiple whitespace characters appearing in an expression

are compiled as a single space, a line can contain several statements, while

statements may span any number of lines or tab characters,

int j = 10; int J = 20; int

k = 30;

The exception is a string, which consists of a quantity of text that can be

entered in more than one line only if the continuation character, \, is present,

as in

char s[100] = ''This is \

a string''

A statement is a control point in that the compiler analyzes a statement only after

all previous statements have been processed.

5.4 Constants, variables and identifiers

A C++ constant, such as 2.0, is a fixed value that can be placed in one or more

memory locations only when a program is executed, since it does not have a

dedicated storage location. A variable, int j, on the other hand, corresponds to

a physical storage location, i.e. memory space, that is reserved by the operating

system at runtime. The value at this location can in general change during program

execution. The name, or identifier, of a variable is any continuous stream of valid

tokens that does not begin with a number and does not contain punctuation

marks except for the underscore character ( _ ). However, since the names of

many variables employed by the operating system start with an underscore, many

programmers avoid this practice.

5.5 Constant and variable types

To utilize a variable the compiler must be informed through a type specification

of the amount of required memory space and the interpretation of the value stored
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in this memory. To illustrate a sequence of bits in memory is interpreted as the

letter A if typed as a char and as the integer 64 if typed as an int. Thus,

int m = 1;

m = m + 1;

requires the keyword int to indicate that the storage space corresponding to m

stores integer values so that the compiler can establish that 1 can be meaningfully

inserted into this memory space. Removing the int keyword yields a compile-time

error.

The most frequently occurring variable types can be distinguished first by

the number of bytes each employs for storage. Here a byte refers to a unit

consisting of eight binary memory values or bits that are either zero or one.

Therefore, a byte can possess 28 = 256 different values. The number of bytes

reserved for variable types such as int depends on the computer and compiler.

In earlier versions of C++ created for 16-bit machines, an int occupies two

bytes, limiting the number of possible int values to 65,536. (The actual stor-

age size of a variable m in bytes can be determined at runtime by calling

sizeof( m ).) In a 32-bit machine, memory is accessed through a bus of 32

wires that simultaneously send or retrieve four bytes and therefore can (opti-

mally) address 232 = 4,294,967,296 different memory locations. An int variable

is conveniently stored in four bytes on such machines and can then acquire 232 =

4,294,967,296 possible values that are mapped to integers from −2,147,483,647

to 2,147,483,648. Although an integer between these limits is represented exactly,

incrementing the largest allowable int by one generates the smallest allowable

int, while decrementing the smallest allowable int by one similarly yields the

largest int.

Floating-point numbers are represented in scientific notation with an accuracy

of approximately 7 digits for a float and 14 digits for a double. The first bits in the

variable’s memory store the mantissa (the 7 or 14 significant digits) and the last

few bits store the exponent. Such a representation, unlike that of an int, is inexact

but spans a large range of magnitudes, up to ≈10±38
for a float and ≈10±308

for a

double (the exact values can be found by including the header file <float.h>

(or <limits>) and introducing the statement cout << FLT_MAX << '' '' <<

DBL_MAX << endl;). In most C++ compilers both float and double reserve

eight bytes of storage space. Consequently the double keyword is generally pre-

ferred because float variables are often in any case inefficiently stored as double

values after setting the least-significant bits to zero. A double constant is distin-

guished through use of the decimal point and can also be written in exponential

notation by appending the suffix e or E followed by the mantissa. That is, 3e-1

represents the same double constant as 3.0e-1 or 0.3. Twice the normal amount

of memory is allocated to an int or double variable if its definition statement is

prefixed with the long keyword.
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Table 5.1

Integer value Character constant Description

0 ‘\0’ null character

010 ‘\n’ line feed

032 ‘ ‘ space

048 ‘0’ 0

049 ‘1’ 1

. . .

057 ‘9’ 9

065 ‘A’ A

066 ‘B’ B

. . .

090 ‘Z’ Z

097 ‘a’ a

. . .

122 ‘z’ z

A char stores a single byte of data that is interpreted at runtime as the code

for a single character (letter). That is,

char aC = 'a';

yields the output a when the following line is executed:

cout << aC << endl;

Standard single-byte char variables can store 28 = 256 possible values that cor-

respond to the elements of the ASCII character set. The first 32 ASCII characters

are exclusively non-printing control characters such as backspace, bell, tab, etc.

The most important ASCII values are shown in Table 5.1. Thus

char c;

cout << (c = 65) << (c = 10) << (c = 97) << endl ;

yields the output

A

a

A character such as 'a' should not be confused with the character string "a",

which is a two-element array consisting of the single character 'a' followed by a

byte with all of its component bits equal to zero termed the null character. The

presence of a null character enables functions of string arguments to determine

when a string terminates and thus to stop processing its bit pattern. As noted
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earlier, if a string is broken across several lines, a continuation character given

by a backslash ( \ ) must be placed at the end of each line.

5.6 Block structure

In C++, related statements are generally structured and thus afforded a degree

of isolation through insertion into separate program units termed blocks. A block

is normally signified by a set of braces, { }, and can be viewed as a compound

statement or a region from which previously defined objects outside the region

can be viewed and accessed but which prohibits access, except in specialized

cases, to its contents from this outer region. Consequently, if a variable i is

defined outside the block and a second i is defined inside, the two variables are

independent and do not collide. The identifier i inside the block instead refers

to the memory space of the second i, hiding the first variable, until the block

terminates or the new variable is otherwise destroyed, as is apparent from

int M = 3;

int main( int argc, char *argv[ ] )

{ // first block

int n = 4; ’ // m is 3 and n is 4

{ // second block

M = 10;

int k = 5; // M is 10, n is 4 and k is 5

double n = 6.0; // M is 10, n is 6.0 and k is 5

}

int m = 3; // M is 10, n is 4, m is 3 and k no

// longer exists

}

Since M = 10; is not a definition, unlike double n = 6.0;, a new memory location

is not allocated for M within the innermost block.

A variable such as M in the program above that is defined outside all blocks

(and is conventionally capitalized) is termed a global variable. Global variables,

even if hidden by another variable of the same name, can be accessed throughout

the program through the syntax ::M, where :: is termed the scope-resolution

operator.

To summarize, suppose an outer region R contains an inner block B. Then the

following conditions apply.

� Variables previously defined in R can be accessed in B.

� Variables defined in B are destroyed (vanish) when B is exited.

� If a variable is defined in B with the same name as a (non-global) variable in R, the

variable in R subsequently becomes inaccessible in B. The type of the new variable

can also differ from that of the hidden variable because the two storage locations are

independent.
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5.7 Declarations, definitions and scope

Statements that exclusively indicate to the compiler the type and extent in memory

of a variable (declarations) must be distinguished from those that lead to this

space being physically allocated (definitions) at runtime. A definition cannot be

repeated twice inside the same block or a single identifier would refer to memory

storage at two locations (which could then contain different values since C++

allows variables to be addressed through their addresses). A declaration that

does not reserve memory at runtime, and therefore can be repeated arbitrarily

many times, enables the compiler to process program constructs that employ the

declared variable name in advance of a definition statement. For example, the

type of a global variable M that is defined in an external program source file

that will later be combined with a given file (through the linker) can be declared

to the compiler through the declaration extern int M;. The compiler can then

resolve subsequent statements that contain M.

The scope of a variable refers to the block (or possibly the file in a multifile

program) in which it is defined. A variable with global scope exists in the global

space outside all blocks (including the blocks enclosing function bodies) appear-

ing in the program and is therefore accessible from within any block in the pro-

gram (unless hidden by a local variable of the same name). For future reference,

namespace scope is nested in the global scope through user-declared namespace

definitions. Class scope applies to variables declared within a class body. As is

evident from the above discussion of variable hiding, however, a variable is not

necessarily visible, that is, accessible to program operations, within its scope.

5.8 rvalues and lvalues

An lvalue extends the concept of a variable by referring to any construct that

accesses memory such that it can be assigned a value. Lvalues can therefore

appear either on the left- or on the right-hand side of the assignment operator, =,

which places the value of, or the value stored in, the construct to its right into the

memory location associated with the lvalue to its left. Note that this is not the

mathematical equality operator since mathematically contradictory statements

such as int m = 3; m = 2; yield meaningful programming results. (To make

this distinction clearer, many languages reserve a special symbol such as <—

or a more abstract representation, :=, for assignment.) An rvalue, typified by a

numerical constant, does not correspond to a program-accessible memory loca-

tion and therefore must always appear on the right-hand side of the assignment

operator; e.g. the statement 3 = m; is clearly invalid.

5.9 Operators – precedence and associativity

An operator transforms or combines one or more expressions into new expres-

sions. A unary operator acts on a single expression, such as the – sign in –5,
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whereas a binary operator resembles an implied function for which one argument

is located on the left of the operator symbol and the second on the right.

Recall now that in the arithmetic expression 2 * 3 + 4 multiplication is

performed before addition unless parentheses are employed to indicate a different

order of operations, as in 2 * (3 + 4), since the unary parentheses operator,

which acts by evaluating the expression it encloses, is always applied before any

arithmetic operators. This relative ordering of operations is termed precedence.

Accordingly, the parenthesis operation possesses a higher level of precedence

than the * and / operators, which in turn occupy a level above + and –. While 13

levels of precedence exist in C++, the basic structure is summarized by

-- Unary: (( ), ++, ::, new ...) Highest

-- Arithmetic: (%, *, /, then +, −)

-- Bitwise shift/insertion, extraction: (<<, >>)

-- Relational: >, >=, <, <=

-- Logical: ==, !=, then && (and), then ‖ (or)

-- Assignment: (=, += ...) Lowest

Often an additional rule is required to evaluate uniquely a statement containing

several operators with the same precedence level. For example, in 5/4*3 the

multiplication and division operators have equal precedence but (5/4)*3 and

5/(4*3) yield different results. However, in C++, except where a meaningless

result ensues, operators of equal precedence are left-associative; that is, they are

applied from left to right. Accordingly, 5/4*3 corresponds to (5/4)*3. Operators

such as the assignment operator are right-associative since m = n = 5 is then

correctly interpreted as placing the value 5 first in the memory space associated

with n and subsequently placing the value of n into the memory space of m. Left

associativity would instead assign the value of n to m but then overwrite this

value with 5.

Whenever knowledge of associativity or precedence is required in order to

resolve an expression, unintentional errors frequently arise. Thus, in the above

example, 5/(4*3) is very often intended but the parentheses are unintentionally

omitted. Accordingly parentheses should be employed wherever possible.

5.10 The const keyword

The value of a variable that is defined by including the keyword const in its

type specifier as in const int or int const cannot be changed by assigning a new

value to the variable (although, as noted above, the variable can be hidden by a

non-const variable of the same name in an inner block). Thus the second line

below is illegal:

const int m = 3;

m = 4; // Compilation error
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A const variable must be assigned a value when defined, otherwise it would

possess a random value that could not subsequently be altered.

5.11 Formatting conventions

While the variable names and statement formatting in C++ can be chosen arbi-

trarily, subject only to the restrictions of Section 5.2, a logical set of conventions

should be followed, such as

(1) Employ descriptive names. For non-object variables and functions, capitalize all

words with the exception of the first, as in numberOfGridPoints.

(2) Place spaces to the right and left of binary operators, but not unary operators, e.g.

m = n + –1.0;.

(3) Insert spaces after commas, the opening delimiters ( and { and before the closing

delimiters } and ) as in myFunction( int aI, int aJ );, except for array indices.

(4) Indent each successive enclosed block by one further tab stop.

(5) Enclose segments of code that perform related functions with blank lines.

(6) Begin the names of function arguments with a small a.

(7) Capitalize names of classes, structures and objects.

(8) Begin names of internal class variables with a small i.

(9) Begin names of boolean variables with is and boolean functions with enable.

(10) Capitalize all letters of global constants.

5.12 Comments

A non-trivial program cannot be easily understood unless adequately commented

and accompanied by a separate program description. To enable comments, the

C++ compiler does not process text to the right of the delimiter // or between the

delimiters /* and */. However, while the second procedure facilitates the removal

of large blocks of code from compilation, if two non-adjacent segments of code

are each enclosed in such delimiters and the line containing the first end delimiter

*/ is deleted by mistake, all code from the first occurrence of /* to the single

remaining delimiter */ is ignored, yielding unexpected errors.

As a rule, a program should commence with “prolog“ lines specifying a

descriptive title, the revision number, author, revision date and program objective.

Each section of code should be preceded by comment lines that explain its

purpose. The interpretation of each significant statement should be placed either

directly above or to the right of the line. Comments can contain data values that

can be employed as test cases during debugging. To illustrate,

// comment.cpp

// Revision 1.0
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// November 23, 2011

// Illustrates the use of comments

/* A C comment

extends through

several lines here. */

// This program demonstrates a procedure for avoiding division by zero

int main( int argc, char *argv[ ] )

{

int testValue = 5; // Arbitrary non-zero value

// Uncomment this line to test division by zero

// testValue = 0;

if ( testValue != 0 ) cout << 10.0 / testValue; // Safe function

}

Superfluous comments are, however, suppressed in the remainder of this text for

space reasons.
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Procedural programming basics

The following three chapters introduce basic C++ program structure and syntax

in the context first of procedural programming and subsequently, in the two

later chapters, of object-oriented programming. The material in these chapters

addresses the significant challenges encountered by beginning programmers.

6.1 Scientific software development

Procedural programing follows a clearly defined set of steps, which are discussed

individually in this section.

Problem definition. First, a problem description that captures the main sce-

narios (possible outcomes), including possible abnormal situations, such as, for

example, those generated by erroneous input data, should be formulated.

Detailed specification. A program specification comprises a detailed solution

strategy such as the form and content of the input and output data, the equations

to be programmed, the numerical methods to be employed, the hardware and

software to be used and the manner in which the code will handle the various

scenarios. This can be facilitated by first generating the input and output screens

that the user will encounter.

Iterative coding and modular testing. Subsequently, the program tasks should

be compartmentalized into functions. Each of these should be verified indepen-

dently with a set of test data that is subsequently saved in comment lines for

possible future use. Comments should be supplied for each additional function

or block of code and the verified code modules packaged for reuse in other

projects. As a rule, only a single change or function is added to the program at

a time before retesting. In addition, before implementing any non-trivial change,

the previous version of the code (with an appropriate version number) should be

saved in case an inadvertent error is introduced. An editor that can identify the

differences between two text files can then find subtle errors such as adding an

additional (sometimes invisible) character during editing.

Equations in the program should match those in the specification document,

while the variable names should be identical for both (assuming that the

documentation will be carefully preserved) or the program should contain

35
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descriptive, compound names. In coding, clarity should generally be favored

over brevity and cleverness, since far more time is generally required to develop

and maintain a program than is required for program execution.

Initially, a program should solve only the simplest version of the problem and

should ignore non-standard outcomes. After validation against a test case, typi-

cally an analytically tractable problem, the code can be incrementally enhanced

to include additional scenarios and features. As new functionality is added, fur-

ther requirements will surface while more efficient or transparent code structures

become apparent. This favors an iterative programming methodology in which

the original program specification is frequently updated as coding proceeds.

Final testing. Upon completion, the program should be verified against a set

of test cases with known results, including those that branch into the structures

which handle exceptional conditions. Test inputs are again preferably stored as

comment lines within the program for future maintenance. If analytic results

are unavailable, a second program that solves the same problem with a different

numerical or computational approach should be written, since often the only

reliable alternative is to verify every individual code line by inspecting each

intermediate result with either a debugger or dedicated write statements.

Program maintenance. After a program has been completed, periodic updates

and revisions are facilitated by employing high-level, properly commented mod-

ules that can be easily replaced, together with documents describing the program

structure and operation.

6.2 The main( ) function

The entry point into (the first code executed by) a C++ program is the body of

the main( ) function. Accordingly, every C++ program must contain a single

occurrence of

int main( int argc, char *argv[ ] )
{
... statements ...
}

or, more simply,

main( )
{
... statements ...
}

which can appear anywhere in the source file (program) after the external con-

structs appearing in main( ) are declared. In the first of the two above implemen-

tations, return 0; or, equivalently in DEV-C++, return EXIT_SUCCESS; (the

global constant EXIT_SUCCESS equals zero) should preferably immediately

precede the closing brace.
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6.3 Namespaces

C++ can group program elements into separate namespaces such that e.g. a

function or variable in a namespace A is referred to from outside the namespace

by appending a prefix A:: before its name. The resulting ability to segregate code

into non-interacting code segments facilitates library reuse. To illustrate:

namespace A {
int M = 1;

}
namespace B {

int M = 2;
}
using namespace std;

main( ) {
int M = 3;
cout << A::M << '' '' << B::M << '' '' << M << endl; // Output : 1 2 3

}

If routines or libraries from numerous sources are employed in a program, this

facility prevents the inadvertent inclusion of two similarly named program ele-

ments. However, when the programmer is certain that no such collisions will

occur, the requirement that program elements in different namespaces be referred

to with the corresponding prefix can be circumvented through the using directive:

namespace A {
int M = 1;

}
namespace B {

int N = 2;
}
using namespace A;
using namespace std;

main( )
{

{
using namespace B;
cout << M << '' '' << N << '' '' << endl; // Output : 1 2

}
}

The using namespace B is effective only inside its containing block, while the

A and std namespaces are present from their using directives to the end of the

program. If the using namespace std; statement is omitted in the above pro-

gram, each element of the include files, such as cout, cin, exp( ), etc., must be

individually prefixed with std:: to indicate its membership in the std names-

pace. However, if #include <iostream> is replaced by the antiquated #include

<iostream.h> directive, which does not enclose definitions in a namespace, std::

must be omitted.
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6.4 Preprocessor directives and #include statements

To assemble and transform code before compilation a primitive text editor, termed

the preprocessor, is employed. Preprocessor commands, or directives, begin with

the symbol # and are not terminated with a semicolon. This facility enables

C++ to restrict the number of features available during compilation. Specialized

routines for tasks such as mathematical operations and physical device access are

then activated as required by incorporating appropriate “header” files through

#include preprocessor directives followed by the name of the appropriate library

package into a program before the features are employed. The #include statement

reads a second file into the current file at the position at which the statement

appears. It may adopt either of two forms, the first of which is

#include “includeFile”

which instructs the compiler to search for and incorporate a file named include-

File first in the directory from which the program is being run and then, for most

compilers, in the include-file subdirectory(s) of the compiler’s main directory.

Alternatively, writing

#include <includeFile>

leads to the compiler first attempting to locate includeFile in the compiler’s

include directories and then, in most cases, in other directories such as the user’s

directory. Some important include files are

#include <iostream> // activates terminal and keyboard

// input and output

#include <fstream> // activates input and output from

// the hard disk

#include <math> // activates mathematics functions

// such as sqrt, sin

The preprocessor directive #define A B sets an expression, A, to a second

expression, B, such that all instances of A are replaced by B before compila-

tion. Hence, if B is a constant, A is replaced by this constant. Similarly, #define

square( x ) x*x replaces all instances of square( m ) by m * m prior to com-

pilation. In contrast, A in the statement const typename A = B represents a

non-modifiable lvalue with an accessible storage address. Because textual sub-

stitutions circumvent type checking and scope resolution, const variables and

inline functions (c.f. Section 6.25) are strongly preferred in C++. The directive

#define A is also often employed together with #ifdef or #ifndef, #else and

#endif directives to ensure that the same code lines are not compiled twice. That

is, the block of code below starting with int m:

#ifndef_MYFLAG
#define_MYFLAG
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int m;
... additional definitions and code statements
#endif

will be compiled only once even if it is included into a given program multiple

times.

6.5 Arithmetic and logical operators

The arithmetic C++ operators include +, –, * and / together with the remainder

operator %, which is defined such that m % n is the remainder when m is

divided by n. It is important to note that the result of this operation, unlike the

modulus, is negative for negative numbers, which can give rise to unexpected

errors. Associated with each arithmetic operator is a compound assignment

operator such that, for example, the statement m += 2; is identical to m = m +
2;. Additionally, the postfix and prefix operators, m++, m−− and ++m, −−m,

increment or decrement the value of m by unity so that ++m; and m++; are

equivalent. However, after

int n = 4;
m = n++;

m = 4, and n = 5, while

int n = 4;
m = ++n;

instead yields m = 5 and n = 5. That is, if ++ precedes a variable name in

a statement (the prefix operator), the ++ operator is applied to increment the

variable before the statement is evaluated, whereas if ++ follows the variable name

(the postfix operator), the ++ operator is applied after evaluation of the statement.

Statements containing both prefix and postfix operations yield different results

for different compilers (since C++, unlike Java, does not specify the order of

evaluation of such operations) and therefore must be avoided.

The C++ logical operations comprise a == b (equals), which yields 1 if the

values of a and b are identical and 0 otherwise; a != b (not equals), which

evaluates to 0 if a and b are identical and 1 otherwise; a && b (a and b), which

evaluates to 1 only if both a and b are non-zero; and a ‖ b (a or b), which equals

0 only if both a and b are 0. Finally, the unary operator ∼a (not a) yields 0

if a is non-zero and 1 otherwise. Frequently, the second symbol is erroneously

omitted in == or &&, which invokes bitwise operators in place of the logical

operators, as discussed in Section 14.14, typically resulting in a logical value

of true. Addtionally, a space is not permitted between the two symbols in any

compound operator such as <= , == or ++.

Finally, the lowest-precedence comma operator joins two expressions and

returns the value of the expression on its right, so that the value of k in the

expression k = ( m = 0, n = 1 ); is 1.
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6.6 The bool and enum types

Logical false in C++ is represented by any value with all zero bits, otherwise the

logical value is true. Thus some representations of false are int i = 0;, double

d = 0.0;, char c = '\0'; (which has the numeric, ASCII, value 0 and is called

the null character) and the intrinsically defined global constant NULL. These

representations of false are equivalent when a variable can be legally assigned

to a variable of another type so that double d = 0.0; char c = d; yields a zero

character.

A bool type that accepts the values false and true is also often employed in

logical statements. Assigning any non-zero value to a bool variable yields a value

of 1. Sending (piping) the manipulator boolalpha to cout prints out the values of

succeeding bool variables as either false or true; that is, cout << boolalpha <<

false && true << endl; yields the output false as opposed to 0 if << boolalpha

were omitted.

The bool construct is further generalized by the enum type. An enum type

can be viewed as an integer type that additionally specifies a set of literal (i.e.

named) constants called enumerators that can be assigned to variables of the

type. Syntactically (a common convention is to capitalize enum variables), for

enum suites { HEARTS, SPADES, CLUBS = 4, DIAMONDS };
suites mySuite;

or, equivalently,

enum suites { HEARTS, SPADES, CLUBS = 4, DIAMONDS } mySuite;

mySuite can be set to any one of the four literal values HEARTS, SPADES,

CLUBS or DIAMONDS. The values HEARTS, SPADES, CLUBS and DIA-

MONDS are then numerically equivalent to 0, 1, 4 and 5, respectively, as evi-

denced when a suites variable containing one of the literal values is converted to

an int as below:

enum suites { HEARTS, SPADES, CLUBS = 4, DIAMONDS };
suites firstSuite = 3;
suites secondSuite = DIAMONDS;
cout << firstSuite << '\t' << secondSuite << endl;
// Output : 3 5

if ( secondSuite == DIAMONDS ) cout << ''Diamond'' << endl;
// Output: Diamond

6.7 Control flow, if statements and implicit blocks

Control constructs direct program flow according to the outcome of logical

operations. Viewing blocks as the equivalent of paragraphs, control statements

determine whether and in what order these paragraphs are executed at runtime.

For example, the if statement
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if ( A ) {
... statements ...
}

executes the block labeled statements when the logical expression A evaluates

to true.

Control constructs share several features that lead to programming errors.

If the block governed by any control construct contains a single statement, the

enclosing braces can be omitted, but the block structure is still implicitly present.

if ( A ) statement;

Although the above compound statement is often written on two lines, this

should be avoided where space permits, in order to avoid the following errors.

First, separating a control condition from the following statement by a semicolon,

if ( A ); statement; // WRONG!

mistakenly places a null statement under the control of A so that statement is

always executed. Next, in

if ( A ) int m = 1;

although braces do not surround int i = m; the statement is still implicitly enclosed

in a separate block. Therefore m is subsequently destroyed and is unavailable to

the remainder of the program. Conversely, braces are often mistakenly omitted in

multi-line if statements. Only the first of the statements following the if statement

is then influenced by the control condition. Finally, troublesome errors occur

when the assignment operator = is employed in place of the logical equality

operator == as in the statement if ( B = C ). As a result, the value of B is

initially set to that of C and the logical statement is then evaluated with this

unintended value as an argument. Typically, C differs from zero, so that the

logical statement evaluates to true and the subsequent block is executed.

The extent of an if statement can be extended by appending an else statement

that is executed if the assertion in the if statement is false. An abbreviated form

for if ( A ) {B} else {C} is the ternary conditional operator A ? {B} : {C}. If the

else keyword is followed by an if statement, else and if are generally placed on a

single line, as in if ( !grade ) { . . . } else if ( grade == 1 ) { . . . } else { }.

Repeated else if statements can be collected into a single switch construct.

Because of the subtleties of the syntax, the following example should be consulted

during coding:

int grade = 8;
switch ( grade / 10 ) {

case ( 7 ): cout << ''C'' << endl; break;
case ( 8 ): cout << ''B'' << endl; break;
case ( 9 ): cout << ''A'' << endl; break;
default: cout << ''F'' << endl;

}
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The break statements in the above program transfer control to the statement

immediately following the switch block. Removing these statements leaves con-

trol within the block so that the (optional) default: statement is always executed.

A switch construct can be applied to other types of variables, as in char c = 'b';

switch( c ) { case ( 'a' ): . . . }.

6.8 The for statement

A for statement executes the block under its control while incrementing one

or more variables until a certain logical condition is fulfilled according to the

following syntax:

for ( initialization (I); termination (T); statements (S) )
{ body (B);}

Here I, T and S represent any number (including zero) of statements separated

by commas and B is a code segment. The statements are executed in the order: I,

T, B, S, T, B, S, . . . , T.

The for statement is normally encountered with the following format:

for ( int loop = 0; loop < 5; loop++ ) cout << loop << ' ';
// output: 0 1 2 3 4

where loop++ and ++loop can be interchanged. Again, since employing i or j as

loop-variable names invites collisions with similarly named variables elsewhere

in the program, identifiers such as loop, loopInner and loopOuter are highly

recommended. Except in older compilers, a loop variable that is defined in the

initialization statement is considered to be defined inside the body of the loop

and is destroyed when the for block is exited for any reason. Thus, to access the

value of loop after the for block terminates, it must be defined outside the loop

body, as in

int loop;
for ( loop = 5; loop > 0; loop-- ) cout << loop << ' ';
// output: 4 3 2 1

cout << endl << loop << endl;
// output: 1

Omitting the condition statement yields an infinite (non-terminating) for loop,

as in for ( loop = 0 ; ; loop++ ) { . . . } or for ( ; ; ; ) { . . . }. The statements

enclosed within the block then should poll for a certain user or system response

to exit the loop.

6.9 while and do . . . while statements

The first for loop of the previous section can be recast through a while statement

as
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int loop = 0;
while ( loop < 5 ) {

cout << loop++ << '' '';
}

or alternatively with a do . . . while statement as

int loop = 0;
do {

cout << loop++ << '' '';
} while ( loop < 5 );

Note that a terminating semicolon is required for a do . . . while statement

but not for the while statement. However, if int loop = 6; is substituted for

int loop = 0; above, only the while statement reproduces the results of the for

loop since the logical condition in the do . . . while construct is evaluated after

rather than before the statement block is executed.

6.10 The break, continue and exit( ) statements

A break statement, which can be placed only within a control structure, trans-

fers program control to the first statement following the end of the (innermost)

structure containing the break. In contrast, a continue statement in an iteration

ends the current iteration, after which the termination condition, T, is evaluated.

If false, the subsequent iteration commences, as in

for ( int loop = 0; loop < 5; loop ++) {
if ( loop == 1 ) continue;
if ( loop == 3 ) break;
cout << loop << ' '; // output: 0 2

}

The break statement can be employed to exit manually from a control construct.

That is, placing

int r;
cout << ''Enter 0 to terminate '';
cin >> r;
if ( r == 0 ) break;

inside a control loop enables termination of the loop from the keyboard; the

variable r is then termed a sentinel. An alternative procedure is

int r = 1;
while ( r != 0 ) {

statements;
cout << ''Enter 0 to terminate '';
cin >> r;

}

A running program can be terminated with the exit( int aM ) function (here

#include <stdlib.h> may be required). While the function parameter, which is
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normally set to EXIT_SUCCESS or equivalently zero or EXIT_FAILURE or

any non-zero value for normal and abnormal program termination, respectively,

must be supplied, this does not affect the program and is largely invisible to the

user.

6.11 The typedef keyword

A typedef statement enables a new identifier to be assigned to a particular type.

The type of all variables within the scope of the typedef can then simultaneously

be altered by replacing the identifier and recompiling. For example, to change all

double variables to float in the program

typedef double myType;

main( ) {
myType d1 = 3.0;
myType d2 = 4.0;
cout << d1 << '\t' << d2 << endl;

}

the typedef statement should be replaced by typedef float myType;

6.12 Input and output streams

Following the occurrence of the #include <iostream> statement, the so-called

standard input and output streams cin and cout (pronounced see-in and see-out)

are enabled. These streams implement intelligent buffers between the program

and the standard input and output devices. The cin stream accepts character or

numeric input from the keyboard that is extracted (piped) from the stream and

placed into a program variable through the extraction operator >>. Accordingly,

int m, n;
cin >> m >> n;

reads first the value of m and then that of n from the input stream. Since C++
equates single and multiple whitespace characters, two values entered from the

keyboard separated by any combination of whitespace characters such as spaces,

tabs or carriage returns (but not commas!) are stored successively in m and n.

Similarly, values are piped from the program into the standard output stream

cout that is attached to the terminal through the insertion operator <<. For

example,

cout << m << '\t' << n << '\n' << flush;

or, equivalently,

cout << m << '\t' << n << endl;
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displays the value of m, a tab ('\t' is called a tab character) and the value of n

and terminates with a newline character '\n'. The endl statement corresponds to

'\n' followed by flush. The keyword flush insures that the contents of the stream

buffer are displayed on the terminal, while a cout statement that does not end

with flush or endl can delay displaying the output. In this case, a program that

terminates abnormally after the output statement, but before the output appears on

the terminal, will incorrectly imply that the error occurred before the statement.

Other formatting and nonprinting characters include

'\v' \\ vertical tab

'\b' \\ backspace

'\r' \\ carriage return

'\f' \\ formfeed

'\a' \\ alert (bell)

'\?' \\ question mark

'\" \\ single quote

'\"' \\ double quote

'\\' \\ the \ character.

6.13 File streams

Just as the input and output streams cin and cout interface memory buffers

to the keyboard and terminal, streams that similarly interface physical storage

locations are enabled by adding the line #include <fstream> to the beginning

of the program (in many compilers the fstream header file contains iostream).

However, unlike the unique “standard” keyboard and terminal, to access a file,

its name must first be specified as in

fstream fs( ''input.dat'' );

Here the disk file input.dat in the directory from which the program executes

is associated with a stream, fs, that can be employed for both input and output.

To limit the stream to either input or output (corresponding to cin or cout)

fstream should be replaced by ifstream or ofstream, respectively. The input file

input.dat can be created by entering the exact keystrokes including whitespace

characters into a text or program as would be entered into the program from the

keyboard through cin.

6.14 Casts

In C++, conversion of built-in variables between closely related types occurs

automatically, as in char c = 56; in which the integer 56 is converted to the

character '8' (the 56th member of the ASCII character set). If variables of different

types that can be automatically converted into each other are combined through

a binary operator as in
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char c = 'a';
int m = 10;
cout << ( c + m ) << endl; // Output: 107

then the variable that occupies less memory space (in this case the char) is

converted (promoted) to the type of the other variable (an int) before the operator

is applied.

Conversions can be forced through explicit type-conversion operators (casts)

as in cout << char( m ) << endl;. Casts have several additional forms in C++.

A C-cast is written (char) m. The syntax static_cast<char>( m ) forces the

conversion of m from an int to a char at compile time. Casts with system-

dependent behavior and those that remove the const property of variables are seg-

regated into calls to reinterpret_cast<typename> and const_cast<typename>.

Finally, dynamic_cast<typename> reserves the implementation of the cast until

runtime.

6.15 Functions

A C++ function acts on a set of input variables and returns zero or one output

variables. Variables defined within a function are normally isolated from the

remainder of the program, facilitating testing, implementation and subsequent

reuse by other programs. A modular program consists almost exclusively of

functions and control structures, thus representing a physical problem as a log-

ical flow among individual program elements. Code for a function should thus

perform a single, well-defined task.

A general function can be represented as returnType myFunction( type1

aP1, type2 aP2, . . . . , typeN aPN ). The input variables aP1 . . . aPN are termed

arguments. The convention that all argument names begin with a lower-case a

greatly enhances programming clarity. The function is called (activated) through

a statement such as returnType x = myFunction( p1, p2, . . . , pN ); in which

p1, . . . , pN, which can in general be either constants or variables, are referred

to as formal parameters or more simply as parameters. A function can possess

any number (including zero) of arguments but can only return zero or one values.

The return type of a function that lacks a return value must be specified as void,

except for constructor (and destructor) functions as noted in Section 8.5. (In

many situations C++ assumes a default type of int when no type is specified;

for example, const i; is generally interpreted as const int i; while f( ) { return

5; } is compiled as int f( ) { return 5; } and is not a void function.) A function

without arguments must still be called with parentheses as in int j = f( );.

6.16 Principles of function operation

Depending on the outcome of logical conditions, a function in a C++ program

can be invoked any number, including zero, of times during program execution.
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Since a function can contain numerous commands and allocate arbitrary amounts

of memory for its internal variables, memory space for the function is not auto-

matically assigned when a program is initialized, unlike space for global variables

or variables defined within main( ). Rather, the machine-language instructions

associated with the function body are written to memory. The function name in the

calling program is then associated with the 4-byte (for a 32-bit machine) memory

address of the start of this instruction set or function record, as is verified by

void print( ) { cout << ''test''; }

main ( ) {
cout << print << endl; // Note: print is not followed by ( )

}

This displays a hexadecimal number such as 0040115E on a 32-bit compiler as

memory addresses are by default expressed by C++ in hexadecimal format, for

which the numbers 0–15 are represented by the numbers 1–9 followed by A–F.

Each group of two hexadecimal numbers together then corresponds to 8 bits

or 1 byte; hence the eight hexidecimal numbers above represent 4 bytes or 32

bits corresponding to the address of a 32-bit storage location. Note that print in

main( ) does not contain parentheses, which would instead evaluate (here acti-

vate) the instructions at this location – since the effect of the parenthesis operator

is to evaluate the expression that it encloses.

When a function is called, the operating system reads the stored machine-

language instructions from the starting memory location onward. These com-

mands first reserve space in memory for the argument variables and then copy

the values of the function’s formal parameters into this newly allocated mem-

ory. Therefore, the sequence of statements executed when a function such as

void f( int aM ) { int b = 2; . . . } is called and its argument variables defined

and initialized can be represented by void f( %1 ) { int aM = %1; int b = 2;

. . . }, where %1 denotes the parameter value obtained from the calling routine.

The statements in the function block are executed until the end of the block

(for a void function), when control is passed back to the calling program, or a

return statement is encountered that additionally passes the return value. The

operating system then deallocates the memory occupied by the function and its

variables, returning to the initial state in which the function name refers to the

corresponding stored binary instruction set.

Since a function invocation creates new, independent memory locations for

the function arguments, and then copies the values of the function parameters

into these locations, altering the function arguments inside the function body as

for aM in the example below leaves the parameter m inside main( ) unaffected,

a feature termed call-by-value:

void change( int aM ) { aM = 2 * aM; }

main ( ) {
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int m = 3;
change ( m );
cout << m << endl; // output 3

}

6.17 Function declarations and prototypes

A statement such as void change( int aM ); or equivalently void change( int );

(the semicolon is required) is termed the function prototype or signature. While

the prototype supplies sufficient information for the compiler to typecheck state-

ments involving change, memory is not allocated, since the size of a function

in memory corresponds to that required to store the binary representations of

the commands appearing in its body (i.e. the function block). Therefore, the

prototype constitutes a function declaration. Once supplied, a single function

definition, consisting of the prototype followed by the function body, can be

located anywhere in the program or placed in a separate program that is later

compiled or linked together with the code. Thus, the previous program can be

rewritten as (this form is actually required in C)

void change( int );

main ( ) {
int m = 3;
change ( m );
cout << m << endl; // output 3

}

void change( int aM ) { aM = 2 * aM; }

6.18 Enumerators and functions

By employing enumerators as function arguments or return values the function

parameters and return values can be restricted to meaningful quantities. The

following code, for example, determines whether a voltage is sufficiently large

enough to activate a connected device:

enum isEnabled { off, on };
isEnabled lightSource ( double aVolts ) {

if ( aVolts > 0.2 ) return on;
else return off;

}

6.19 Overloading and argument conversion

Since C++ typechecking resolves both the number and the type of function

arguments, a function is uniquely specified by this information together with its

name. The compiler in fact mangles (joins) the function name with those of its

arguments to generate a new function identifier. Thus, int change( int ); and int
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change( double ); become separate entities distinguished by different mangled

names. The expression change( 2 ) invokes the first of these, while change( 2.0 )

calls the second. This function overloading represents a form of polymorphism,

which means the behavior of a function is determined by its environment here

manifested by the type and number of arguments. However, a function such

as double change( int ); with the same name and argument list as an existing

prototype but with a different return type cannot be additionally defined since

C++ cannot resolve a function by the type of the variable assigned to the return

value.

The expression void f( int aI ) with e.g. double pI = 2.5; f( pI ); implicitly

executes the statement int aI = pI;, so that pI is automatically transformed in

the function body to 2. Therefore, automatic type conversions occur between

a function parameter in the calling program and the corresponding function

argument. However, if multiple versions of an overloaded function possess the

same number of arguments, as in the two change functions above, a rule must be

present to determine which, if any, will be utilized if the function is called with

an argument of a third type such as, for example, in char c = 'a'; change( c );.

While a full discussion of this topic falls beyond the scope of this text, simple

logical considerations generally apply. Here, since the size of a char is closer to

that of an int than to that of a double, the int change(int); version is employed.

6.20 Built-in functions and header files

The C++ compiler and its include files provide extensive libraries of functions

and predefined constants. However, knowledge of their argument and return types

is essential in order to avoid errors. For example, in many C++ compilers the

built-in absolute-value function possesses a prototype

int abs( int );

Errors can therefore arise if this function is called with a double argument

expecting that a double rather than an int will be returned. Unless the absolute

value of the difference between a and b exceeds 1 below, the abs function will in

such cases return 0, and the logical condition in the if statement argument then

evaluates to true:

double a, b, eps = 1.e-5;
cin >> a >> b;
if ( abs( a - b ) < eps ) { ... statements ... }

The desired function for the above program is

double fabs( double );

in place of abs, which must be preceded by the preprocessor directive

#include <math.h>
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The math library additionally contains a number of important mathematical

functions that operate on double arguments. These include pow( x, n ), which

raises x to the (integer or non-integer) power n, sqrt( x ), fabs( x ), ceil( x ),

which rounds x upward, floor( x ), which rounds x downward, exp( x ), log( x ),

log10( x ), sin( x ), cos( x ), tan( x ), tanh( x ), asin( x ), the arcsin function, and

other inverse functions. The math.h library also defines global constants such as

pi (normally labeled M_PI).

To determine the full set of functions and constants present in an include file

for a given version of a compiler, the header file should be examined directly.

To locate the math.h header file, navigate to the X:\Dev-Cpp\include directory

through e.g. the My Computer icon on your desktop, where X: is the installation

drive letter. Double clicking on the icon for math.h opens the notepad editor.

Browsing through the file reveals the lines

_CRTIMP double __cdecl sin (double);
_CRTIMP double __cdecl sinh (double);
_CRTIMP double __cdecl atan2 (double, double);
...

as well as the following partial list of predefined constants:

#define M_E 2.7182818284590452354
#define M_PI 3.14159265358979323846
#define M_PI_2 1.57079632679489661923
...

Professional programmers frequently employ this technique to extract compre-

hensive, current information on the language implementation.

6.21 The assert statement and try and catch blocks

Design by contract is a software-engineering technique in which the programmer

specifies for each function the physically valid ranges for the input and output

values. These preconditions and postconditions (the “contract”) are checked upon

entering and exiting a function through appropriate logical statements, which are

often introduced as arguments to the assert( ) function, which terminates program

execution if its argument evaluates to logical false as in the following example:

#include <assert.h>

main ( ) {
int m = 1;
assert ( m == 2 ); // test for an error condition

}

which generates the output

Assertion failed: m == 2, file assert.cpp, line 5
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For production runs, the preprocessor directive #define NDEBUG precludes the

compiler from processing all subsequent assert statements.

Preconditions and postconditions can also be implemented through try and

catch blocks. When a throw statement is invoked within a try block, program

control passes to the catch block with the closest valid match to the arguments of

the try block. After the catch block has terminated, the program resumes unless

an exit statement is encountered inside the catch block. A variable defined within

a try block is destroyed when the block is exited. To insure in this manner that

the input to a function checkSquare( double aT ) is positive while its output is

≤100:

#include <stdio.h> // includes the exit( )

function.
double checkSquare( double aT ) {

// precondition: The input argument is > 0.

double result;
try {

if ( aT < 0 ) throw ''Input must be larger than zero'';
double mySquare = aT * aT;
// postcondition: The result is <= 100.

if ( mySquare > 100 ) throw result;
}
catch ( double aResult ) {

cout << ''Invalid result = '' << result << endl;
exit ( 0 );

}
catch ( char aMessage[80] ) {

cout << aMessage << endl;
exit( 0 );

}
return result;

}

6.22 Multiple return statements

While a function in C++ can return only a single variable, it can possess arbitrar-

ily many return statements, each of which exits the function block. For example,

get( ) below returns the character 'y' when 1 is entered from the keyboard and 'n'

otherwise:

char get( ) {
int m;
cout << ''Insert a value'' << endl;
cin >> m;
if ( m == 1 ) return 'y';
return 'n';

}
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6.23 Default parameters

Sometimes a function argument differs from a standard value only in unusual

circumstances. The argument can then be assigned default parameter values that

are changed only if a different value is explicitly specified in the function call.

Default parameters must appear at the end of the function prototype (otherwise

e.g. a call f( 3, 4 ) to a function f( int a = 2, int b, int c = 3 ) would be ambiguous

with respect to which parameter is overwritten). Further, default parameter values

can be specified once only, either in one and only one declaration statement or

in the function definition. Hence,

void myFunction( int a, int b );
void myFunction( int a, int b = 1 );

main ( ) {
myFunction( 3 ); // output: 3 1

myFunction( 3, 2 ); // output: 3 2

}

void myFunction( int a, int b ) { cout << a << '\t' << b << endl; }

constitutes a valid program, but the default parameter value cannot be additionally

introduced either into the first function declaration or into the function definition.

6.24 Functions and global variables

While a function C++ can return only zero or one variable, it can modify any

number of global variables that are defined in the global scope outside all function

blocks. Such variables can be accessed by the bodies of all subsequently defined

functions unless hidden by a second variable with the same name. Thus the

change( ) function below modifies two global variables, which are subsequently

displayed in main( ):

int GLOBALI, GLOBALJ;
void change( ) { GLOBALI = 2; GLOBALJ = 3; }

main( ) {
GLOBALI = 0;
GLOBALJ = 1;
change( );
cout << GLOBALI << '\t' << GLOBALJ << endl; // Output: 2 3

}

Such a technique, however, can lead to severe errors, since an inadvertent change

to a global variable in any section of the program propagates to all other program

units. This can yield unforeseen side effects separated by a large code distance

from the error source, impeding its identification.
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6.25 Inline functions

The body of a function that is declared inline is automatically substituted into

each function call before compilation. Hence for

inline int square( int x ) { return x * x; }

a call to square( 4 * y ) is replaced by ( 4 * y) * ( 4 * y ). The code then executes

more rapidly, since a function record does not have to be processed upon each

call to square, but at the cost of increased compile times and object file sizes.

Generally, inline declarations should be reserved for small functions (however,

functions defined as opposed to declared within a class body are automatically

inlined). An inline function does not possess a prototype, since the body of the

function must be accessible to the compiler each time the function is called to

enable the required substitutions.

6.26 Recursive functions

Since in a function definition the body is preceded by the prototype, the compiler

can already typecheck calls to the function itself from within its body. Such a

function is then termed recursive. As an example, the factorial function, defined

as n! =n(n − 1)!, with 1! =1, can be written

double factorial( const int aN ) {
double temp; // a floating-point type is required

// for large aN

if ( aN == 1 ) temp = 1;
else temp = aN * factorial ( aN - 1 );
return temp;

}

Thus, for int k = factorial( 3 );, in the first call to factorial( 3 ), temp is set to

3 * factorial( 2 ), which cannot be evaluated until factorial( 2 ) returns. How-

ever, when factorial( 2 ) executes, a new temp variable in a separate memory

space is created for 2 * factorial( 1 ). Finally factorial( 1 ) returns 1, enabling

factorial( 2 ) and then factorial( 3 ) to complete. While the overhead associated

with multiple function calls and the simultaneous allocation of memory resources

can be considerable, this is often outweighed by increased programming sim-

plicity.

As another example, the square root of 2 can be expressed by the continued

fraction
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A numerical algorithm is obtained after placing a zero at the location of the

ellipsis ( . . . ). A program that computes
√

2 for one to ten retained terms in the

continued fraction is

main ( ) {
int maxLoop = 20;
for ( int outerLoop = 1; outerLoop < maxLoop; outerLoop++ ){

double root = 0;
for ( int loop = 0; loop < outLoop; loop++ ){

root = 1. / ( 2. + root );
}
cout << 1. + root << endl;

}
}

6.27 Modular programming

A modular program is principally formed from declarations and definitions,

control logic and function calls, as in

int getInput( ) {
int r;
cin >> r;
return r;

}
int multiply( int a1, int a2 ) {

return a1* a2;
}
void print( int aI ) {

cout << aI << endl;
}

main ( ) {
int input1 = getInput( );
int input2 = getInput( );
int result = multiply( input1, input2 );
print ( result );

}

Such code is easily analyzed and corrected, since each function can be tested

separately.

6.28 Arrays

An array comprises an indexed set of variables of the same type. The array

definition int v[3]; reserves memory for an array of three int elements and

associates the type of v with that of an array of int elements. The content of the

storage location for the ith element is accessed by following the array name with

the index operator [ ], as in
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main ( ) {
int v[3];
for ( int loop = 0; loop < 3; loop++ ) v[loop] = loop;
cout << v[1] << endl; // Output: 1

}

The syntax

int v[3] = {1, 2};

which can be employed only when the array is defined, initializes the first element

of v to 1, the second element to 2 and all remaining elements to 0.

6.29 Program errors

Coding a program invariably leads to numerous errors, most of which can be

identified by analyzing the resulting, often cryptic, computer-generated mes-

sages. Beginning programmers should therefore carefully examine these, which

fall into three categories.

Compiler errors. Most frequently, the compiler cannot interpret a pro-

gram because of incorrect syntax or program structure. Some examples are

m = n / * l;, writing m = n; without first defining m through the statement

int m;, omitting the semicolon at the end of a line so that the line is joined with

the subsequent line and confusing characters such as 1 (one) and l (the letter

l) and O (the letter O) and 0 (zero). For each such instance an error message

with a corresponding line number is generated, which, however, unfortunately,

typically is unrelated to the source of the problem. For example, if a variable is

not declared, the compiler cannot process any statement in which the variable is

present. Therefore, numerous error messages with line numbers remote from the

error source result. Accordingly, compiler errors are best corrected by resolving

the first few errors in the error list and recompiling. All messages resulting from

dependences on the incorrect lines vanish and the greatly reduced number of

remaining errors can be similarly eliminated in further stages.

As an example of a compile error (in command-line Borland C++), the

program

main ( ) {
m = 2;
cout << m << endl;

}

yields the following error message in DEV-C++:

2 C:\programs\test.cpp 'm' undeclared (first use this function)

where the .cpp extension indicates that the error originates from a source-code

file.
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Link errors. Typically, link errors result when a program attempts to call a

function or use a variable that is not defined either in the program file or in the

additional files that are linked with the program, as in the program below:

int mySquare( int ); // declares but does not define the function

main ( ) {

int m = 3;
cout << mySquare( m ) << endl;

}

which yields the message

[Linker error] undefined reference to 'mySquare(int)'

The missing function definition (e.g. function body) required by the linker must

accordingly be supplied in the source code or in a second object file.

Runtime errors. The most severe mistakes arise during program execution.

For example, a program can fail because of an incorrect numerical algorithm or

improper program flow. These issues are often most easily detected by comparing

the program results with those of an analytic evaluation or of a second program

that employs a different calculational approach. Alternatively, a construct can be

syntactically correct but yield unintended results; for example, if cin >> m, n; is

employed in place of cin >> m >> n;, only the first input value is read into m.

An incorrect result or overflow or underflow condition could then be generated

with or without an accompanying error message.

Even more subtle runtime errors are associated with improper memory access.

If a program reads or writes to a memory address beyond the space allocated to the

program through, for example, an array index equal to or larger than the number

of elements allocated to the array, the operating system often intercepts the illegal

access. In this case, the program is terminated and a system error message such

as “segmentation fault” is displayed inside a pop-up window (i.e. the program

is addressing memory outside the segment permitted by the operating system).

However, if the array variable accesses a memory location of another variable in

the program, seemingly random errors occur when the program is executed with

different input values.

6.30 Numerical errors with floating-point types

Calculations performed with floating data types are further subject to round-

off errors. While each arithmetic operation maintains a high level of accuracy,

combinations of operations can substantially degrade precision under certain

conditions. This effect can be quantified in terms of the machine epsilon or

machine accuracy, which is the smallest floating point number, εm, such that

1.0 + εm �= 1.0. The machine-epsilon values for float and double precision num-

bers are given by the constants FLT_EPSILON and DBL_EPSILON defined
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in the <float.h> header file. In contrast, the overflow and underflow thresholds

correspond to the largest and smallest number that each data type can represent,

namely 10±38
for a float (FLT_MIN and FLT_MAX) and 10±308

for a double

(DBL_MIN and DBL_MAX). In this context, it should be noted that a number

that exceeds the overflow bound or is obtained by dividing zero by itself is repre-

sented by a symbolic value such as Inf or NaN, which subsequently propagates

through the calculation according to rules such as 1 / Inf = 0 and 2 * NaN =

NaN.

While the roundoff error of a single calculation is approximated by εm, the

signs of these terms fluctuate if the calculation is repeated N times. Accordingly,

the combined error describes a random walk as a function of N, yielding on

average a total error of N 1/2εm. However, the relative error in the difference of

two nearly equal quantities, such as a function computed at two closely sepa-

rated points, with different roundoff errors, C(1 + δ + εm) and C(1 + ε′
m), where

ε ≪ δ ≪ 1, is C(ε′ − ε)/(Cδ) ≈
√

2 ε/δ ≫ ε. Accordingly the number of signifi-

cant digits in the result that propagates to subsequent calculations is reduced by

≈ −log10 δ. Such cancellations, which occur, for example, in the numerical deriva-

tives of nearly constant functions and in the quadratic formula for b ≈
√

b2 − 4ac,

yield significant errors and must be carefully avoided.

A more serious issue relates to the stability of a numerical algorithm. Consider

the computation of the path of a ball starting at x =y = z =0 and rolling in the

z-direction along the line given by the maximum of the parabolic surface defined

by y = −x2 for all values of z. Any numerical error increases with time, leading to

rapidly increasing or decreasing values of x. Numerical methods that respond in a

similar fashion to rounding errors or numerical fluctuations are termed unstable

and yield intrinsically unreliable results unless the accumulated effect of the error

terms is carefully analyzed and limited.



Chapter 7

An introduction to object-oriented
analysis

The structure of object-oriented programming, which differs significantly from

that of procedural programming, must be thoroughly understood before attempt-

ing code development. The construction of an object-oriented framework for a

physical problem is termed object-oriented analysis, while the translation of the

framework into actual C++ code is the domain of object-oriented design. These

topics are discussed separately in this and the subsequent chapter.

7.1 Procedural versus object-oriented programming

Consider calculating and graphing the trajectory of one or more vibrating springs

with attached masses. A procedural approach inserts data describing the phys-

ical system into a series of functions, each of which transforms input infor-

mation into output values. Control statements sequence the functions accord-

ing to the outcome of certain logical conditions. Schematically, for a single

spring

main ( ) {

float position[50], velocity[50], springConstant, mass,

timeIncrement;

int numberOfSteps;

cin >> position[0] >> velocity[0] >> springConstant

>> mass >> numberOfSteps >> timeIncrement;

propagate( position, velocity, timeIncrement, numberOfSteps,

mass, springConstant );

plot( position, velocity, numberOfSteps );

}

where the initial position and velocity are stored in the first elements of the 50-

component arrays position[50] and velocity[50]. The propagate( ) routine cal-

culates subsequent positions and velocities by advancing time over numberOf-

Steps time steps of duration timeIncrement. Finally, the arrays are graphed by

the plot( ) routine.

While procedural programming generally proves optimal for small program-

ming projects, difficulties are encountered when applied to complex systems.

First, a program that takes into account all physically realizable situations

58



7.1 Procedural versus object-oriented 59

generally requires a description of the interaction of a physical object with

its environment. For example, in the above program the spring could be excited

by a launching device and its motion recorded by an appropriate measurement

system. Each of these objects in turn has adjustable settings and is influenced

by interactions with additional system components. While additional functions

can be introduced, their relationships become increasingly involved. Further, if

several springs with different loads and spring constants are present, numerous

sets of related variables must be present, either as separate one-dimensional

arrays and variables position1[50], velocity1[50], mass1, position2[50], . . . or

as single-dimensional and multidimensional arrays, position[40][50], mass[40],

etc. If several types of springs exist, with differing behaviors such as spring

constants that age differently, a particular function must additionally be associ-

ated with each spring. Object-oriented programming addresses the issues above

through the techniques of encapsulation, polymorphism and inheritance.

Encapsulation and information hiding are implemented through objects and

classes. In a procedural program, the highest-level self-contained program unit

is a function, which performs a specific task on a set of input data through

a series of related instructions. However, a physical object in the real world

exhibits an integrated structure. To illustrate, a car possesses a set of properties,

corresponding to internal data or member variables, such as the amount of

stored gas and battery charge, the currents in the electric circuits, the speed of

the mechanical subsystems and so on. Further, the car realizes certain behaviors

according to its principles of operation, typified by the relationship between its

acceleration and the angle of the accelerator and brake pedals. These can be

associated with methods or member functions. A description of the car should

therefore form a self-contained program unit that describes both the properties

and the behaviors of the physical device. Of course, the complete set of these is

unmanageably large, since it could include a description of every part or even

atom in the vehicle. However, only a few high-level features are of practical

relevance. Taken together, these yield a meaningful abstraction of the object.

In object-oriented programming, the representation of this abstraction as a self-

contained set of internal variables and internal functions is termed encapsulation.

Returning to the car example, numerous significant properties and behaviors

such as the voltages in the internal circuits and the angular velocities of various

components are inaccessible to the user, who interacts with the car through

a highly simplified interface consisting of the steering wheel, pedal, etc. In

object-oriented terminology, public internal variables or functions of an object

are those that can be accessed by any external user, while private variables are

available only to components of the object itself. In a programming context,

public variables or functions can be examined from anywhere in the program,

while private variables can be accessed or changed only by the internal functions

of an object. This information hiding segregates internal object properties from

the remainder of the program and therefore from undesired external interactions.
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Polymorphism refers to assigning context-specific behaviors to a single pro-

gram entity such that, for example, the behavior of a function is determined by

the context of the object within which it resides. For example, the evolution of the

spring constant with repeated use would be different for a LoadedMetalSpring

object than for a LoadedPlasticSpring object. In the same manner, the effect

of double clicking on a document icon on a computer screen depends on the

document type.

Finally, object-oriented programming incorporates the additional facility of

inheritance. This enables variables and functions associated with one class of

objects, such as LoadedSpring objects, to be automatically incorporated into a

second class, such as LoadedParallelSprings, consisting of two or more joined

springs, without copying shared code. Instead, LoadedParallelSprings objects

retain all features of LoadedSpring objects, except those that are explicitly rede-

fined or added, through a single keyword indicating that LoadedParallelSprings

inherits from LoadedSpring.

7.2 Problem definition

In principle, an object-oriented program is developed by identifying the inter-

acting objects (object discovery) and their relevant interactions. However, since

numerous objects generally affect the system behavior, a trade-off arises when

defining the boundary between the system and its exterior. Accordingly, the

problem under consideration is normally phrased as a narrative (short story) that

describes the sequence and effects of successive critical object interactions. In

the loaded-spring context, this could be

Several springs with given load masses and spring constants are extended and

released from a launcher. The trajectory is recorded and then plotted by a

detector.

The italicized nouns in the description then map to physical or abstract objects,

while the underlined nouns and verbs are, respectively, the attributes and actions

(e.g. variables or functions) associated with these objects.

The implementation of time presents significant subtleties. To model physical

time evolution, every object should in principle experience time independently

so that e.g. the spring oscillates and the detector periodically records the trajec-

tory by polling the internal computer clock. Unfortunately, code in which two or

more processes or “threads” access the CPU requires complex, “multithreading”

facilities to manage e.g. resource contention and time-sharing among decoupled

processes. Therefore generally the unique main( ) program sequences time evo-

lution. Alternatively, a “time-server” object can be responsible for sequencing

interactions or different objects can control sequencing during disparate periods

of execution.
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7.3 Requirements specification

As in procedural programming, once a problem has been defined, the necessary

resources, such as server or Internet access, mathematical libraries, etc., should

be identified and the time, expense and complexity of the project estimated. To

quantify the input and output data and identify possible error conditions, the

graphical user interfaces (GUIs) of the program should be specified, either on

paper or by employing the GUI builders contained in nearly all commercial C++

integrated development environments. Problem boundaries, which are parame-

ter regions that yield incorrect or unphysical behavior, should be isolated. The

response to each distinct error case should be elucidated, which generally requires

additional problem descriptions such as

When more than four springs are activated by the spring launcher, an error

message will be displayed and the spring launcher will cease to function.

7.4 UML diagrams

While object-oriented programs are often formulated by first assembling a list of

the properties of each class in the program on an individual card or sheet of paper,

software engineering packages can be employed to automate the development

process, c.f. A First Course in Computational Science and Object-Oriented Pro-

gramming with C++. The objects and their interactions are represented as blocks

and links from which skeleton code with empty function bodies is automatically

generated. The final program is obtained by inserting code into each function

body. The steps in this process are as follows.

(1) The problem definition and requirements specification are summarized by use cases

that depict the general manner in which the system components interact with the

external users (actors) and with each other.

(2) Sequence and/or collaboration diagrams establish the order in which functions are

called (messages are sent) by the objects that comprise the system.

(3) A class diagram incorporates the objects and functions identified in the

sequence/collaboration diagram into distinct classes.

(4) The class diagram is converted to C++ skeleton code by selecting a menu item.

7.5 Classes and objects

Following the problem specification, individual objects and their mutual interac-

tions can be generated. Formally, an object corresponds to an entity that possesses

internal variables containing data that define its particular state together with a

set of functions that describe its behavior in response to external stimuli (mes-

sages). That is, an object embodies a concrete (e.g. a spring) or abstract (e.g. a

time server, matrix or complex number) entity that has a unique name (identity),
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Figure 7.1

certain variables (properties) that characterize its state and, finally, a set of spe-

cific functions (behaviors). A class describes a group of all objects that share

common properties and behaviors and provides a form (template) for the creation

(instantiation) of these objects.

Normally the internal variables of a physical object are inaccessible except to

the object. For example, the elements of a person’s state such as his degree of

thirst remain private, that is, accessible only to himself. Other people or objects

can access these variables only by asking questions, i.e. directing messages to his

public interface. Similarly, class components are private by default and can then

be accessed or changed only by calling one of the public functions belonging to

the class. Internal (private) variables can thus be thought of abstractly as located

in an inaccessible core region, while public functions that govern the interaction

of the outside world with the variables (the object’s state) are situated in a user-

accessible shell surrounding this region. Thus, a LoadedMetalSpring class for

a spring with a certain spring constant that ages with time can be represented

schematically as in Figure 7.1, in which internal variables with get and set

functions can be externally viewed and altered, respectively.
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An object is a specific realization of a class generated by assigning values to

the variables present in the class diagram and specifying a unique object name.

The class thus resembles a “form”, “template” or “object factory”; filling in the

entries in the form and associating the result with a name yields a unique class

instance – the object. This parallels the manner in which e.g. an identification

card (the object) can be procured by completing a form (the class) and specifying

a unique name. An object can also be regarded as a generalized array variable

that reserves memory and that can be assigned values by specifying its internal

data members. From this perspective, a class corresponds to a generalized type

(data structure) that collects variables with identical or different types together

with related functions that transform these variables. This addresses the variable

proliferation encountered in the procedural spring example since the variables

of each spring are organized through their object name, as in, for example,

LoadedSpring LS1, LS2; LS1.iMass = 2, LS1.iPosition[0] = 3; . . .

7.6 Object discovery

As is evident from the above discussion, the number and type of objects in a

program depend on the narrative employed to describe the physical problem,

principally in the breadth of the narrative and in which nouns in the problem

description are associated with classes as opposed to class attributes. For example,

if the mechanism for launching the spring has a minimal number of attributes,

then the spring in our problem description, rather than being assigned to a distinct

Spring class, could be a component of a SpringSystem that combines the spring

and the launcher.

The optimal strategy for designing classes associates each class with a single

abstraction; that is, one definite and limited topic. Class members should further

be orthogonal, in that the class interface provides the smallest number of inde-

pendent public functions that enable the user to access all relevant behaviors of

the underlying object. Further, these methods should be appropriate to the user

as opposed to the programmer. As an example, a car that presents the user with

two steering wheels, one for forward and a second for backward operation would

lack desirability, although the inaccessible implementations (corresponding to

private variables and functions of the Car class) for the two modes of operation

differ substantially. Similarly, although the car design process might be simplified

by a control that directly sets the motor RPM, this facility would not constitute

a useful addition to the dashboard. Classes are sometimes additionally distin-

guished according to their functionality. Entity classes correspond to concrete

physical entities or to abstract components, such as a Vector, that manipulate

or store these entities. The interaction between external users and the system

is handled by boundary classes typified by GUIs and plotting routines. Finally,

control classes sequence the order of operations in the program.
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Individual programming styles converge in code that maps every significant

participating physical system to a separate object. However, grouping logically

related functions into a few classes in order to decrease the overall program-

ming effort instead yields a programmer-specific hybrid of object-oriented and

procedural techniques. While these classes no longer represent the properties

of individual physical objects, they still partition the independent variables and

functions into structured, logical units.

To illustrate, in our spring example, a full description according to the problem

description might be

Class LoadedSpring

Variables:

iLoadMass

iPosition

iVelocity

Class SpringLauncher

Variables: Functions:

iNumberOfSpringsToLaunch launch( )

Class Trajectory

Variables:

iPosition[ ]

iVelocity[ ]

Class Detector

Variables: Functions:

iSpringTrajectory record( )

plot( )

Class PropagationRoutines

Variables: Functions:

iSpring propagate( )

iSpringTrajectory[ ]

However, in an abridged description, a SpringSystem class could provide a

single generalized array of all data and methods that are logically related to the

spring and its environment. This structures the variables and functions in the

problem without requiring the coding of numerous classes. The SpringSystem

class thus contains all functions and variables that influence or describe the

spring, both before and after excitation, including propagate( ) and launch( )

functions and the coordinates of its trajectory. Eliminating the actual objects from

consideration creates conceptual difficulties, since a spring does not launch itself

or record its trajectory. However, the loss of clarity is often offset by decreased

code size. If a Graph object reads and plots the trajectory information stored in

a SpringSystem object, the latter class could be structured as

Class SpringSystem

Variables: Functions:
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iLoadMass launch( )

iPosition[ ] propagate( )

iVelocity[ ]

7.7 Inheritance

Inheritance enables specialized classes, termed derived classes, to be assem-

bled from preexisting, more generic base classes. A derived class acquires the

attributes and behaviors (internal variables and functions) of its base classes

except for those that are added or explicitly redefined. Semantically, a derived

class exhibits an “is-a” or a “kind-of” relationship to its base classes, as opposed to

the “has-a” relationship that exists when a class contains an object of a second

class as a member variable. Classes can inherit through several levels of derived

classes. Elements that are shared by several derived classes should then reside at

the highest applicable level of the inheritance tree.

To illustrate, consider the relationship between LoadedSpring and Load-

edMetalSpring classes. If the latter class merely adds an age( ) function to

the iPosition, iMass and iVelocity variables of the former class, it can acquire

these variables through inheritance. In public inheritance, public variables of the

base class remain public in the derived class and can be directly accessed any-

where in the program. Private inheritance, in contrast, converts all inherited

elements of the base class into private elements that cannot be accessed from

outside the derived class. Protected inheritance converts base class elements into

variables that are visible to and therefore can be inherited from the derived class

by further derived class levels but are not accessible elsewhere in the program.



Chapter 8

C++ object-oriented programming syntax

Object-oriented design is followed by object-oriented analysis, the conversion of

the design into code. This chapter summarizes central language features, since

many aspects of object-oriented syntax rely on variable types that have not yet

been introduced.

8.1 Class declaration

A class declaration informs the compiler that a certain identifier is associated

with an user-defined class:

class Trajectory;

Once a class has been declared, the class name becomes functionally equivalent

to any built-in type identifier such as int or float. Therefore, a compiler can

subsequently resolve the function declaration:

void myFunction(Trajectory aT);

but has not yet been informed of the nature of the class components. Thus the

second of the two statements below generates a compiler error:

Trajectory T;
T.plot( ); // Error: T.plot( ) not defined

8.2 Class definition and member functions

A class definition, which must be terminated with a semicolon, specifies the ele-

ments of a class and can either include or omit the code (bodies) of its member

functions. This appears to contradict the general rule that a variable is defined by

the compiler as soon as sufficient information is available to determine its storage

size in memory. However, the class definition merely leads to memory alloca-

tion for its internal variables together with the values of the beginning memory

addresses of the locations at which the binary representations of the function

bodies (the function records) are located. An example of a class definition in

66
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which the function body is not specified is (the semicolons in void plot( ); and

at the end of the class definition are both required)

class TrajectoryPlotter {
public:
float iPosition[100], iVelocity[100];
int iNumberOfPoints;
void plot( ); // This statement cannot be repeated!

};

The statement void plot( ); cannot be repeated within the class definition, since

at each occurrence the compiler reserves memory for an address of a function

record. Repeating this statement would therefore incorrectly store this address in

two locations.

The body (definition) of the plot( ) function must subsequently be supplied

once at global scope after the class declaration. The function prototype must be

preceded by the class name TrajectoryPlotter followed by the scope-resolution

operator :: which indicates that this plot( ) function belongs to the Trajectory-

Plotter class, i.e.

void TrajectoryPlotter::plot( ) {
metafl(''XWIN'');
qplot(iPosition, iVelocity, iNumberOfPoints);

}

Supplying the body of the function within the class definition instead leads to (a

semicolon is now not required after the plot( ) function body)

class TrajectoryPlotter {
public:
int iNumberOfPoints;
float iPosition[100], iVelocity[100];
void plot( ) {

metafl(''XWIN'');
qplot(iPosition, iVelocity, iNumberOfPoints);
}

};

A function whose body is supplied within a class definition is compiled

as an inline function, with certain exceptions, such as if for loops are

present.

Including function bodies in class definitions can lead to subtle problems.

For example, in the program below, the class First must know that the class

Second has a member variable iSecond before the body of its print( ) function

can be processed, while the class Second must similarly be aware that First

possesses a member variable iFirst before its print( ) function can be processed.

Accordingly, for at least one of these classes, the body of the print( ) function

must be specified after the other class has been defined:
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class Second;
class First;
// The compiler now knows Second and First are classes

class First {
public:
int iFirst;
// so it can resolve Second here

void print ( Second aSecond );
};
class Second {

public:
int iSecond;
// and it can resolve First here

void print ( First aFirst );
};
// The compiler is now aware of First’s and Second’s members

void First::print( Second aSecond ) {
// so it can resolve aSecond.iSecond here

cout << aSecond.iSecond << endl;
}
void Second::print( First aFirst ) {

// and it can resolve aFirst.iFirst here

cout << aFirst.iFirst << endl;
}

A very common error in writing code for classes occurs when one or more

internal member variables are redefined within a member function as below:

class C {
int iC;
public:
void setI (int aI ) {

int iC = aI; // Error!

}
};

The new variable iC hides the internal class member variable of the same name,

so that calls to setI( ) do not affect the internal member variable, which remains

uninitialized.

8.3 Object creation and polymorphism

As stated earlier, a class, like a built-in variable type, can be viewed as a blank

form (template) with entry fields that accept values. Each realization (instance)

of the class is a separate copy of this form with a unique identifier (name) into

which a set of (possibly random) values has been placed. A specific realization of

the class constitutes a user-defined object variable just as an instance of a built-in

type such as int is termed a built-in variable. Defining an object with the type of a

user-defined class is functionally identical to defining a variable of a built-in type

such as int; thus a class implements a user-defined data type. Accordingly, the
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syntax for the creation (instantiation) of objects coincides with that for built-in

variables, for example,

TrajectoryPlotter TP1;
TrajectoryPlotter TP2;

generates two objects of type TrajectoryPlotter. Since these statements are type

declarations and do not call functions, parentheses do not appear after TP1

and TP2 in the above statements. In the same manner as that in which int m;

assigns a random value to m, the values of all internal variables in TP1 and TP2

above are random. For public variables, to replace the random bit pattern with a

meaningful value, the member-of operator, ., which selects an element from the

class with the name specified after the period, can be employed. Thus, values are

assigned to the first two position variables, the first two velocity variables and

the iNumberOfPoints variable in TP1 through

main ( ) {
TrajectoryPlotter TP1;
TrajectoryPlotter TP2;
TP1.iNumberOfPoints = 2;
TP1.iPosition[0] = TP1.iVelocity[0] = 0;
TP1.iPosition[1] = TP1.iVelocity[1] = 1;
TP1.plot( );

}

While this code is placed inside main( ), it could equally well be located in any

other function. The first two lines can also appear in the global space outside all

function bodies after the TrajectoryPlotter class definition.

Classes implement polymorphism in a transparent manner because the behav-

ior of a function is bound to the type of the calling object. For example, suppose

the plot( ) functions in the Circle and Ellipse classes plot a circle and an ellipse,

respectively. Then, Circle C1; C1.plot( ); draws a circle, while Ellipse E1;

E1.plot( ); instead draws an ellipse. This facility parallels real-world behavior,

leading to concise and understandable code.

An object that contains only public members (and does not possess a user-

defined constructor) can be conceptualized as a generalized array in which, unlike

in a standard array, elements can belong to different types. These are accessed

through the object name followed by the element name (possibly followed by an

array index) instead of through an array index as in a standard array. Consistently

with this paradigm, internal object variables can be assigned values at the point

of definition following the same syntax as arrays. Thus the iNumberOfPoints

variable and variables iPosition[0] and iPosition[1] of TP2 are set to 2, 0 and

1, respectively, while all other variables are set to zero at the point of definition

through the statement

TrajectoryPlotter TP2 = { 2, 0, 1 }
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Regarding an object as a generalized array partially clarifies the result of assigning

(equating) one object to a second object of the same type. Although such a

manipulation is illegal for a built-in array, each member variable of the second

object, irrespective of access privilege (public, protected or private) is copied to

the corresponding element of the first object, as in

class C {
public:

int iC[2];
};

main( ) {
C C1, C2 = { 1, 2 };
C1 = C2;
cout << C1.iC[1] << endl; // Output: 2

}

A similar element-by-element copying occurs when an object is passed to or

returned from a function or when a class is initialized with a second class at the

point of definition:

C C3 = C1;

which can also be written as

C C3(C1);

8.4 Information hiding

In C++ information hiding is governed by the public, private and protected key-

words. When followed by a colon in class definitions, all subsequent class mem-

bers acquire the specified access privilege until a new access keyword is encoun-

tered. Internal variables and functions default to private until the first occurrence

of a public: or protected: keyword, since properties of a physical object are typ-

ically private. When a public or protected member of a class is accessed from

outside the class, the member-of operator is generally required, as in

class InformationHidingExample {
// private by default

int iPrivateReadWrite;
public:
// set member function

void setPrivateReadWrite( int aPrivateReadWrite ) {
iPrivateReadWrite = aPrivateReadWrite;
iPrivateReadOnly = aPrivateReadWrite *

aPrivateReadWrite;
}
// get member function

int privateReadWrite( ) { return iPrivateReadWrite; }
private:
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int iPrivateReadOnly;
public:
int privateReadOnly( ) { return iPrivateReadOnly; }

};

main( ) {
InformationHidingExample IHE1;
IHE1.setPrivateReadWrite( 4 );
cout << IHE1.privateReadWrite( ) << endl // output: 4

cout << IHE1.privateReadOnly( ) << endl; // output: 16

}

Consider first iPrivateReadWrite. No access keyword is specified before

the declaration of this variable, which therefore defaults to private. How-

ever, the internal variable can still be assigned a value as in the third line in

the main( ) function through the public setPrivateReadWrite( ) member func-

tion, which is termed a set member or writer function. Its value can be further

accessed by the public get member or reader function privateReadWrite( ), as

in the fourth line of main( ). A private internal class member with a get but not

a set member function such as iPrivateReadOnly above is termed read-only,

i.e. write-protected, from outside the class, while a write-only (read-protected)

member contains a set but not a get member function. The naming conventions

should be followed consistently. In particular, internal variables are composed of

a prefix i followed by the actual variable name, set member functions prefix the

variable name with set, while get member functions possess the name of the vari-

able (very often, however, get member function identifiers are instead prefixed

with get). As well, observe that the variable iPrivateReadOnly appears in the

setPrivateReadWrite( ) function before its definition several lines later, seem-

ingly violating the principle that, if the compiler has processed a program up to a

certain token, it cannot access information appearing after this token. However,

since functions appearing in a class definition are inlined, and calls to the class

member function must follow the class definition, this apparent violation cannot

occur in practice.

A common convention is to place the part of the class that the user can access,

namely the public: interface, first in the class definition, followed by protected:

and private: sections. The internal variables, which are normally protected or

private, then appear at the end of the class body. (Often, constructors are addi-

tionally placed first in the definition, followed, if present, by the destructor.)

8.5 Constructors

Now consider the private read-only internal variable iPrivateReadOnly in the

program of the previous section. Since this variable cannot be changed from

outside the class, when an InformationHidingExample object is created, the

variable contains a random value that can be accessed only by member functions
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of the class, such as setPrivateReadWrite( ). To set this variable instead to a

meaningful value, such as zero, during the creation of the object, one might

attempt to place an initialization statement

int iPrivateReadOnly = 0; // WRONG!

within the class body. While this procedure is valid in Java, C++ requires that

internal member variables be initialized within constructor functions. These can

possess any number of arguments, including zero, and are called at most once by

each object at the point of definition. While e.g. print statements can be included

in a constructor to facilitate debugging, in the final version of the program, a

constructor should be used only for its intended purpose, namely to allocate and

initialize class objects (or possibly for type conversion, as will be explained in

Section 14.8).

A zero-argument constructor (which can equally well be a multiple-argument

constructor for which default values are specified for all arguments) is labeled

a default constructor and is invoked by a standard definition statement

as in

InformationHidingExample I1;

Note the absence of parentheses after the object name. C++ supplies a default

constructor, which generally assigns random values to all internal class vari-

ables, only in the case that no user-defined constructors are present. A class

can contain any number of additional constructors, each of which must possess

a unique sequence of arguments, differing in number and/or type. Since con-

structors are employed only to define objects, they do not possess a return

type and are named identically to the enclosing class, which is consistent

with the syntax of a definition statement, which similarly employs the class

identifier.

Two non-equivalent options exist for initializing an internal variable in the

body of a constructor function. In a zero-argument default constructor, both

internal variables in the InformationHidingExample class can be initialized to

zero, either within the constructor body,

class InformationHidingExample {
...

InformationHidingExample( ) {
iPrivateReadOnly = iPrivateReadWrite = 0;

} // Default constructor

...
};

or prior to the execution of the code in the constructor body through an initial-

ization list:

class InformationHidingExample {
...
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InformationHidingExample( ) : iPrivateReadOnly( 0 ),
iPrivateReadWrite( 0 ) { } // Default constructor

...
};

The initialization list, which is processed before the class object is actually

constructed, must be employed to initialize e.g. const internal variables, since, if

the object were constructed prior to initialization, these variables would contain

random bit patterns that could not subsequently be changed in the constructor

body.

A two-argument constructor could take the form

InformationHidingExample( aPrivateReadOnly, aPrivateReadWrite ):
iPrivateReadOnly( aPrivateReadOnly ) {
iPrivateReadWrite = aPrivateReadWrite;

}

However, when introducing any non-default constructors, one must be extremely

attentive to the fact that if the user supplies a constructor with any number of

arguments, a default constructor is no longer automatically generated by the

system. That is, the compiler assumes that, if non-default constructors alone are

present, the internal variables represent physical quantities that do not possess

standardized values. However, features in the code that at first sight do not seem to

require a default constructor can fail if one is not present. Accordingly, a default

constructor should always be defined if a non-default constructor is introduced.

For example, c.f. Section 8.8, if a class, C, contains an object of a second class,

D, as an internal member variable, the default constructor of D will be called

when an object of type C is constructed unless a non-default D constructor is

present in the initialization list. For similar reasons, if a default constructor is

absent from a base class, user-defined constructors must be supplied in all derived

classes.

8.6 Examples

As a first object-oriented program, the following code defines a class Rectangle

with two private double precision members iLength and iWidth, public set and

get member functions for these two members, a two-argument constructor that

sets the length and width to any two user-specified values and a void function

area( ) that computes and then prints the area. Subsequently, the main function

creates a Rectangle with a length of 10 and width of 20 and displays its area:

#include <iostream.h>
class Rectangle {

public:
Rectangle( double aLength, double aWidth ) :

iLength( aLength ), iWidth( aWidth ) { }
double length( ) { return iLength; }
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double width( ) { return iWidth; }
void setLength( double aLength ) { iLength = aLength; }
void setWidth( double aWidth ) { iWidth = aWidth; }
void area( ) { cout << length( ) * width( ); }

private:
double iLength;
double iWidth;

};
main( ) {

Rectangle R1( 10, 20 );
R1.area( );

}

The second program defines a Vector class that encapsulates (wrappers) double

arrays to enable bounds checking. The private member variables of Vector are

the double array iArray[1000] and the integer iArraySize, indicating the number

of actual stored array elements. The public class functions called by main( ) are

as follows.

double getArrayElement( int aPosition ) – returns the array element at

aPosition-1 or terminates the program through a call exit( 0 ) of stdlib.h if

aPosition is either less than 0 or greater than iArraySize-1.

int getArraySize( ) – get member function for the internal variable iArraySize.

void addLastElement( double aArrayElement ) – calls exit( 0 ) if iArraySize

is 1000, otherwise adds the element aArrayElement to the end of the array and

increments iArraySize by one.

void changeArrayElement( int aPosition, double aElementValue ) – calls

exit( 0 ) if aPosition is larger than iArraySize or less than 0 and otherwise

sets iArray[aPosition] equal to aElementValue.

Vector( double aArray[1000], int aArraySize ) – a constructor that sets the first

aArraySize elements of iArray to the corresponding values in aArray and calls

exit( 0 ) if aArraySize is less than 1 or larger than 1000.

void printArray( ) – a function that sends the values of all iArraySize elements

of the array to cout.

#include <iostream.h>
#include <stdlib.h>
class Vector {

public:
Vector( double aArray[1000], int aArraySize ) {

if ( aArraySize < 1 ‖ aArraySize > 1000 ) exit( 0 );
for ( int loop = 0; loop < aArraySize; loop++ )

iArray[loop] = aArray[loop];
iArraySize = aArraySize;

}
double getArrayElement( int aPosition ) {

if ( aPosition < 0 ‖ aPosition > iArraySize - 1 )
exit( 0 );

return iArray[aPosition];
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}
int getArraySize( ) { return iArraySize; }
void addLastElement( double aArrayElement ) {

if ( iArraySize == 1000 ) exit( 0 );
iArray[iArraySize++] = aArrayElement;

}
void changeArrayElement( int aPosition, double aElementValue ){

if ( aPosition < 0 ‖ aPosition > iArraySize - 1 ) exit( 0 );
iArray[aPosition] = aElementValue;

}
void printArray( ) {

for (int loop = 0; loop < iArraySize; loop++ ) {
cout << iArray[loop] << endl;

}
}

private:
double iArray[1000];
int iArraySize;

};

main( ) {
double a[100] = { 1, 2, 4, 9 };
Vector V1( a, 4 );
V1.addLastElement( 10 );
cout << V1.getArraySize( ) << '' '' << V1.getArrayElement( 4 ) << endl;
V1.printArray( );

}

8.7 Wrappering legacy code

While many scientific programs exist only in FORTRAN or C versions, legacy

C source code can be rewritten as object-oriented code by wrappering related

routines into C++ classes, although slight differences in syntax between C

and C++ must sometimes be addressed. (Compiled FORTRAN code can also

be incorporated with some effort into C++ classes, see Appendix D of A First

Course in Computational Science and Object-Oriented Programming with C++.)

For example, to wrapper the procedural DISLIN graphics code

float x[1000], y[1000];
int numberOfPoints;
// .... Assign values to x, y, numberOfPoints

metafl( ''XWIN'' );
qplot( x, y, numberOfPoints );

into a class, functions related to plotting are packaged together with the data that

they process. That is, the arrays x and y, together with numberOfPoints, are

converted into internal class members. A constructor is supplied to transfer data



76 C++ object-oriented programming

into the internal variables and a draw( ) function introduced to plot these values

as follows:

class Graph { public:
int iNPoints;
float iX[1000], iY[1000];
Graph( float aX[ ], float aY[ ], int aN ) : iNPoints( aN ) {

for ( int loop = 0; loop < iNPoints; loop++ ) {
iX[loop] = aX[loop];
iY[loop] = aY[loop];
}

}
void draw( ) {

metafl( ''XWIN'' );
qplot( iX, iY, iNPoints );

}
};

Sets of data points can then be stored and graphed as follows:

#include <iostream>
#include <dislin.h>
using namespace std;
// insert Graph class here

main ( ) {
float x[2] = { 0, 1 }, y[2] = { 1, 2 };
Graph G1( x, y, 2 );
y[1] = 3;
Graph G2( x, y, 2 );
G1.draw( );
G2.draw( );

}

In contrast to the procedural case, two Graph objects rather than four disjoint

arrays are required in order to store two sets of position and velocity data.

8.8 Inheritance

As noted earlier, in object-oriented programming functionality in one class shared

by a second, derived, class can be automatically incorporated into the derived

class through inheritance. However, while a derived class inherits all the non-

private variables and functions of its base class that are not explicitly redefined

in the derived class, the access privileges of the class members can be altered

depending on the form of inheritance. If a class D inherits from a class C through

public inheritance, the access privileges of all public and protected elements in

the base class are preserved in the derived class unless an element is explicitly

redefined in the derived class with a different access privilege. A less commonly

employed form of inheritance is private inheritance, in which all public members

of class C become private members of class D. Public inheritance is implemented

by commencing the definition of class D with class D : public C { . . . To recall
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this syntax, observe that, since the elements of the base class C are constructed

before those of the derived class D, C forms a type of initialization list for D.

A derived class constructor constructs its base class components by calling the

default base class constructor before the derived class properties are constructed.

A user-defined base class constructor can be employed in place of the default

constructor but then must be placed in the initialization list of the derived class

constructor. If the base class lacks a default constructor, a non-default base class

constructor must be present in every derived class as illustrated below:

class D {
public:
int iD;
D( int aI ) : iD( aI ) { } // Note: default constructor absent

};
class C : public D {

public:
C( D aD ) { iD = aD.iD; } // Error: initialization list required

C( D aD ) : D( aD.iD ) { } // OK

};

main( ) {
D D1( 1 );
C C1( D1 );
cout << C1.iD << endl; // Output: 1

}

Since a derived class is a specialized form of the base class, a derived class

object is by definition also a base class object. That is, suppose a derived class

“AirFilter” is a derived class of the base class “Filter”. Clearly an AirFilter is a

particular type of Filter, therefore it can be employed anywhere in the program

where a Filter is expected. However, except as discussed in Chapter 14, the object

then behaves as a Filter, rather than an AirFilter, as illustrated by the following

generic example:

class C {
public:
void print ( ) { cout << ''C '';}

};
class D : public C {

public:
void print ( ) { cout << ''D '';}

};

main( ) {
C C1;
D D1;
C CArray[2];
CArray[0] = C1;
CArray[1] = D1; // Valid: D1 is also a C object!

D1.print( ); // Output: D

CArray[1].print( ); // Output: C

}
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The compiler reserves an amount of memory appropriate to a C object for each

element in the array CArray. Therefore, when a derived D object is placed into

the array, the additional features that extend past this memory space are discarded,

leaving only C properties. That the C properties of D are constructed first when a

D object is constructed in fact implies that these properties occupy the beginning

of the memory space assigned to the D object.

Since a private variable in the base class such as iPosition in class C below

is never accessible in the derived class, the following code generates a compiler

error:

class C {
private:
double iPosition;
public:
double iVelocity;

};
class D : public C { public:

setPosition( double aPosition, double iVelocity ) {
iVelocity = aVelocity;
iPosition = aPosition;
// Error -- iPosition is private to class C!

}
};

8.9 The “protected” keyword

There are two standard procedures for accessing base class variables such as

iPosition in the above program from within a derived class. The first is to supply

public get and set member functions for the iPosition variable within class C;

however, these will be accessible from anywhere in the program. Access to an

internal base class variable can instead be restricted to derived classes through

the protected keyword. A variable or function that is protected in a base class is

accessible and remains protected in all public derived classes, but is inaccessible

(private) to all other program units. Thus replacing private: by protected: in the

second line of the above program resolves the compilation issue, since iPosition

is then accessible from within both the base and the derived class, but not from

elsewhere in the program. Substituting protected for public in the line class

D : public C { instead implements protected inheritance in which both public and

protected members of the base class become protected members of the derived

class, while private members of the base class are by definition inaccessible from

within the derived class.

8.10 Multifile programs

An executable program can be composed of several source and object files that

are respectively compiled or linked together. Header files must, however, guard

against repeated definitions and must insure that the program can be processed
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for any order of compilation. This generally requires appropriate preprocessor

directives. If just one or a few files of a multifile program are typically changed

at each program development step, compilation time can then be minimized by

separately compiling each file into an object file. The object files are combined

by passing appropriate linking options to the linker. Only files that are altered

must subsequently be recompiled. Alternatively, compiled object files can be

inserted into a program library. The elements of a program library are stored in

an alphabetical lookup table that can be rapidly searched, decreasing link times.

Header files and program libraries can be understood through the following

example in which a file mySquare.cpp contains a main( ) program that calls two

functions, printSquare( ) and printFourthPower( ), each of which accesses a

third function square( ) in a SquareCalculator class. Accordingly, we introduce

three header files with a .h extension that include function declarations and pos-

sibly class definitions, where, as noted above, header files that contain definitions

must guard against multiple inclusion through #ifndef . . . #endif and #define

statements.

To develop this multifile program in Dev-C++, create a new console window

project and type the first program labeled square.h below into the editor (over-

write the lines that are automatically generated when the project opens). Then

select File → Save as, select from the drop-down menu in the Save as type entry

field Header files, type for the File name square (do not add a .h to the file name

here) and depress the Save button. This creates the file square.h in the project.

Select File → New → Source File from the menu and depress the Yes button in

the pop-up window labeled “Add new file to the current project?” and repeat the

above steps for the header file printsquare.h. (Alternatively, the files below can

be separately created in the program directory with a program editor and added

to the project by repeatedly selecting the third to the last “Add to Project” icon

on the upper toolbar.)

//square.h

#ifndef _square
#define _square
class SquareCalculator {

int iValue;
public:

SquareCalculator( int );
int calculate( );

};
#endif

//printsquare.h

void printSquare( int );

//printFourthPower.h

void printFourthPower( int );

Next, the function definitions corresponding to each header file and the main( )

program are each placed into three different code files with .cpp extensions by
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repeating the above steps except for saving the files as a C++ source file instead

of a header file. Each .cpp file can include any number of the above header files,

in particular

//square.cpp

#include ''square.h''
int SquareCalculator::calculate( ){ return iValue * iValue; }
SquareCalculator::SquareCalculator( int aValue ) :

iValue( aValue ) { }

//printsquare.cpp

#include <iostream>
#include ''square.h''
using namespace std;
void printSquare ( int aM ) {

SquareCalculator SC( aM );
cout << SC.calculate( ) << endl;

}

//printfourthpower.cpp

#include <iostream>
#include ''square.h''
using namespace std;
void printFourthPower ( int aM ) {

SquareCalculator SC( aM );
cout << SC.calculate( ) * SC.calculate( ) << endl;

}

The main program is

//mysquare.cpp

#include <cstdlib>
#include <iostream>
#include ''printsquare.h''
#include ''printfourthpower.h''
using namespace std;

main ( ) {
int m = 4;
printSquare( m );
printFourthPower( m );
system( ''PAUSE'' );
return EXIT_SUCCESS;

}

The double apostrophes surrounding the name of an include file direct the com-

piler to search for the header file first in the user’s current directory and afterwards

in the compiler’s include file subdirectories. Finally, depress the “Compile and

Run” button to compile and run the project. This invisibly writes compilation and

linker commands into a text makefile entitled Makefile.win that can be directly

inspected in the program directory. The makefile determines which source-code

files require recompilation so that only changed files and any new required files

are recompiled by the “Compile and Run” command.

In multifile programs, typedef, enum, const and inline definitions are local

to the file in which they reside and therefore should be placed in a header file
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that is included in each component file in which they are employed. A non-

const variable defined in one file and accessed in a second file must be declared

in the second file with matching type through the extern keyword (without an

initializer, which would convert the declaration into a definition). For example, if

we place a global variable int M = 10; in the file mysquare.cpp in the program

above, it can be accessed in square.cpp only if the declaration extern int M; is

present in this file. If the extern declaration statement appears inside a block in

a given file, the variable M acquires the scope of the block.

8.11 const member functions

A function argument that is declared const cannot be changed within its body.

Since variables passed by value to a function are isolated within the function

from the remainder of the program, a function with either a const or a non-const

argument can accept both const and non-const parameters from the calling

program.

An internal member function of a class can additionally be prevented from

modifying the class’s internal data members by placing the keyword const

between the end of the parameter list and its code body as in

class C {
public:
int iM;
void print( const aN ) const { cout << iM * aN << endl; }

};

The compiler would then generate an error message if the print( ) function alters

either its argument aN or the internal variable iM of the C class. A function

that cannot alter internal class members is termed a const member function. Get

member functions should preferably be coded as const member functions.

If a const member function is overloaded by a non-const member func-

tion with the same name, the const member function is called if the object

that invokes the function is declared const (indicating that its internal data

members cannot be changed), otherwise the non-const member function is

activated:

class C {
public:
int iI;
void print( const int aJ ) const { cout << iI * aJ << endl; }
void print( const int aJ ) { cout << ++iI * aJ << endl; }

};

main( ) {
const C C1 = { 1 };
C1.print( 1 ); // Output: 1
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C C2 = { 1 };
C2.print( 1 ); // Output: 2

}

If the first print( ) function is not present, a warning message is generated by the

Dev-C++ compiler and the output 2 2 is obtained. While the const keyword is

generally omitted below for brevity, its use can significantly reduce inadvertent

programming errors.



Chapter 9

Arrays and matrices

In this and the following chapter, arrays, references and pointers are examined.

These will prove essential to a more detailed discussion of objects and classes.

9.1 Data structures and arrays

An array constitutes a built-in (e.g. native to the compiler) data structure, which

denotes a collection of related quantities with common ordering properties. Each

object in an array must be of the same type and is accessible through an integer

index. Other commonly occurring data structures include the following.

A bag – an unordered collection of objects.

A set – a bag in which no object can appear more than once.

A list – an object sequence that enables navigation between an object and its

successor.

An ordered list – a list with the property that an object can be accessed through its

position as well as by way of the neighboring object.

A sorted list – a list with elements stored according to a given ordering operation.

A key set – an object collection that employs a key such as a word or number to

locate elements.

A stack – a container for which elements can be added or removed only at the first

(top) position; that is, only the last element to be added is accessible at any given

time.

A queue – a container constructed such that only the oldest (first) element in the

container can be removed at any given time.

9.2 Array definition and initialization

Since the C++ compiler defines a variable once it can establish the amount of

required memory, a (compiler-allocated) array is defined once the array type and

the number of array elements have been specified, so that an appropriate amount

of memory can be allocated. Since this memory allocation is fixed and cannot be
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changed at runtime, the array size must be an expression formed from positive

integers and const int variables, such as

const int m = 3;

const int n = 4;

double a[2 * m * n]; // 24-element double array

The uninitialized array elements above contain random values. Were the array

size not a const int it could be altered during program execution, as in

int m = 3;

cin >> m;

double a[m]; // compile-time error

A dynamic memory allocation procedure that enables such a procedure will be

introduced later. However, unless the array size varies substantially for successive

runs of the program, compiler allocation is more efficient and less error-prone.

As noted in Chapter 6, array elements can be initialized with the syntax, which

can be employed only when the array is defined,

int a[3] = { 1, 2 };

The number of elements in brackets above must not exceed 3, the determining

array size specified in the definition statement. If it is less than 3, the final

elements are set to zero. Hence all elements in an array can be assigned zero

values by

int a[3] = { 0 };

If an array is defined to be constant, its elements cannot subsequently be

changed and must therefore be initialized at the point of definition through a

statement such as

const int a[3] = { 1, 2, 3 };

Otherwise the array elements will contain random values that cannot subse-

quently (simply) be set to meaningful data.

9.3 Array manipulation and memory access

An array name in C++ possesses a fundamentally different interpretation than a

variable name, as can be seen from

main ( ) {

int a[2] = { 1, 2 };

cout << a << '\t' << a[0] << '\t' << a[1] << endl;

}

which yields an output such as

0012FF84 1 2
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The memory location displayed as the first value in the output indicates that the

name of the int array variable, a, constitutes an alias (that is, an alternative name)

for the address of the first array variable in the same manner as that in which a

function name evaluates to the starting location of its instruction record.

To access a value stored in the array, the index operator [ ] is employed so that

a[0] yields the int value stored at the starting location in memory, 0012FF84, in

the above example. Similarly, a[m], where m is an integer, addresses the int value

stored at a position shifted from the starting location by m times the size of the

memory occupied by a single element of the int array type. This implementation

of the index operator explains the zero-based index of the n-element array, a[0],

a[1], . . . , a[n − 1] as well as the requirement that all array elements possess the

same type. However, since the definition does not make reference to the array

size, the index operator can access memory locations located at any positive or

negative integer offset from a starting address. Consequently, an array can be

initialized without specifying its size, as in

int a[ ] = { 1, 2, 3 };

which initializes a to a variable of int array type and allocates memory for three

elements. That is, to be semantically precise, since a[ ] is interchangeable with

a[3] in the above statement, the type of a in both cases is that of an int array, to

which memory for three elements has been allocated, rather than a three-element

int array.

Except in a definition statement where the purpose of the array index is not to

address an array element but to determine the extent of memory allocation, the

index of an array can be any const or non-const integer expression such as

a[m * ( n + 1 ) * 3] = b[n + 2];

However, such expressions must not evaluate to values beyond the array bounds

(i.e. the limits of the memory allocated to the array).

A frequently occurring error is to assign an array to a second array,

a = b; // ERROR: a is a fixed address, not an lvalue.

rather than assigning the elements of a to the corresponding elements of b. Since

a equates to the starting address of the array’s memory, which is fixed during

program execution and is therefore an rvalue, the above statement is rejected by

the compiler. Instead the elements of the two arrays must be equated as in

for ( int loop = 0; loop < 10; loop++ ) a[loop] = b[loop];

When an array index equals or exceeds the array size established by the array

definition, any one of three possible consequences can result. If the addressed

memory location is located outside the memory space reserved by the operating

system for the running program, the operating system intercepts the attempted
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illegal memory access, terminates the program and issues a “segmentation fault”

message in a pop-up window, indicating that the program has violated its allotted

memory segment. Since the array index then often greatly exceeds its permissible

limits, the problem can usually be isolated either by printing out intermediate

variables and viewing these in a debugger or by directly inspecting the source

code.

In the event that the memory location accessed by the array variable instead

occupies a region reserved for program operation but that is either not initialized

or is associated with a variable of an incompatible type (e.g. a double instead

of an int), the array element acquires a large, random value. The program then

either generates unphysical results or raises an exception such as overflow or

underflow, which, however, typically appears at a different code line than the

actual error.

The third, and by far the most troublesome possibility, appears if the array

index only slightly exceeds the array size and a second initialized variable of a

compatible type is resident at the corresponding memory position, as in

main( ) {

double b[2] = { 0.02, 6.0 };

double a[2] = { 0.01, 3.0 };

cout << b[0] << endl;

cout << b[-1] << endl;

cout << a[2] << endl;

double wrongNorm = sqrt( a[0] * a[0] + a[1] * a[1] + a[2] * a[2] );

cout << wrongNorm << endl;

}

which yields

0.02

3

0.02

3.00008

This error is indicative of many scientific calculations in which localized distri-

butions such as pulses or particle wavefunctions that are small near their right

and left endpoints are stored in adjacent arrays. The resulting unpredictable but

minute changes in the program output can be misinterpreted as arising from e.g.

discretization error in the numerical algorithm. Many compilers (but not Dev-

C++) accordingly provide a switch that enables array bounds checking. Special-

ized programs can also be acquired that detect this and related memory errors.

9.4 Arrays as function parameters

Since an array is an rvalue, it cannot be returned by a function and assigned to a

second array variable in the calling program. However, somewhat incongruously,
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a function can possess an array argument (since within the function an “array

argument” is implemented as a constant pointer that can be equated to an array

variable). If one of the elements of the array argument is altered within the func-

tion, however, the corresponding array element in the calling program similarly

changes. The reason for this “pass (call) by reference“ behavior is demonstrated

by (note that the array size need not be included in the function argument, which

requires only specification of the variable type)

void zero( int aA[ ] ) {

cout << aA << endl;

aA[0] = 0;

}

main( ) {

int p[ ] = { 1, 2, 3 };

cout << p << endl;

zero( p );

cout << p[0] << endl;

}

which yields

0012FF80

0012FF80

0

This indicates that the starting memory address of the array p is passed as a

parameter to the function by the call zero( p ). Accordingly the starting memory

location associated with the array argument aA is equated in the function to that

of p in the calling program. Thus changing the value of an element of aA within

the function body generates a corresponding change in p in the calling program.

In this manner, memory for a copy of the array is not allocated in the function,

avoiding substantial overhead for large arrays. It should here be remarked that

a frequent error occurs when an array element is mistakenly employed in place

of an array name as a function parameter in the calling program, e.g. replacing

zero( p ) by zero( p[0] ) in the above program.

Call by reference semantics connects variables across two disjoint blocks,

compromising the intent of block structure. That is, if an array argument is

assigned an unintended value in the function block, the corresponding parameter

value in the calling block, which can be separated from the function by a large

code distance, will change as well, leading to a concealed error that is difficult

to detect.

9.5 Returning arrays as objects and object arrays

While a function cannot return an array, an object returned by a function and

assigned to a second object transfers the values of all its internal variables to
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the latter object. Therefore, an array can be returned from a function if first

wrappered in an object:

class Matrix {

public:

int iA[10];

};

Matrix f( ) {

Matrix M1;

M1.iA[0] = 10;

return M1;

}

main ( ){

Matrix B = f( );

cout << B.iA[0] << '' '' << f( ).iA[0] << endl;

} // Output: 10 10

The effective equivalence of user-defined and built-in types also enables arrays

of objects to be defined in exactly the same manner as arrays of built-in variables.

For example,

class Position {

public:

double iPosition;

};

main ( ) {

Position P1[2];

P1[0].iPosition = 1;

P1[1].iPosition = 2;

cout << P1[1].iPosition << endl; // Output: 2

}

9.6 const arrays

As stated earlier, a function argument that is declared const cannot be altered

within the function body. Since standard variables are passed by value, the

variable behavior is changed only within the function body; a change to

the function argument does not affect the value of the function parameter in

the calling program. For arrays and other argument types that are passed by

reference, however, the const keyword also prevents unwanted side effects from

occurring in the calling routine through an inadvertent change to the argument

from within the function. As an example, in

void print( const int aM[ ], const int aN ) {

cout << aM[0] << aN << endl;

}

attempting to assign a new value to any element of aM or to the variable aN

within the function body yields a compiler error.
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A non-const array can be passed as a parameter to a function with a const

array argument. However, a const array can be employed in a function call

only if the corresponding array argument in the function is declared const, so

that

void print( int aB[ ] ) {

cout << aB[0] << endl;

}

main ( ) {

const int b[2] = {1, 2};

print( b ); // Error: aI not a const array

}

yields a compiler error since the function argument aI is not declared const

in print( ). This results from the pass by reference semantics since otherwise

the const property of the array in the calling program would be circumvented

through changes within the function.

9.7 Multidimensional arrays

Arrays can be defined with arbitrary numbers of dimensions. As an example, a

two-dimensional array with two rows and three columns that stores int values is

defined as

int M[2][3];

The syntax, however, unfortunately reverses the significance of the array indices

and should be construed as

(int[3])[2] M

indicating that M is an array of three-element integer arrays to which memory

for two three-element arrays is allocated

The two-dimensional array M can be initialized at the point of definition in

two ways. Since M represents an array of three-element integer arrays, its first

argument (the 2) can be omitted in the initialization statement (unless memory

is to be allocated for additional matrix rows beyond the ones specified in the

initializer). Since each array in M is represented by elements enclosed in braces,

where omitted elements are automatically set to zero, the matrix

M =

(

1 2 0

4 5 6

)

can be simultaneously defined and initialized by

int M[ ][3] = { { 1, 2 }, { 4, 5, 6 } };
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where the elements in the first set of braces initialize the three-component array

M[0], while the elements in the second set initialize the components of M[1].

Alternatively, the initialization statement can be written as a single set of elements

placed in the initialization list memory in the order in which they will appear in

memory.

int M[ ][3] = { 1, 2, 0, 4, 5, 6 };

Finally, a 2 × 3 × 4 three-dimensional matrix is defined as

int N[2][3][4];

9.8 Multidimensional array storage and loop order

That the definition int M[2][3]; generates an array of three-element integer arrays

each of which occupies 12 bytes of memory space can also be verified by noting

that sizeof(M) returns 24 (6 × 4 bytes) while sizeof(M[0]) is 12 (3 × 4 bytes).

The elements of the three-element int array M[0] are (M[0])[0] = M[0][0],

(M[0])[1] = M[0][1] and (M[0])[2] = M[0][2]. These are followed in memory by

the three-element array (M[1])[0], . . . , (M[1])[2]. Accordingly, for the general

case of an n-dimensional array, rightmost indices vary most rapidly in memory. In

some other programming languages, such as FORTRAN and Octave/MATLAB,

the leftmost indices instead vary most rapidly.

Of great importance to scientific applications is that this “row-major storage

order” implies that the code

for ( int outerLoop = 0; outerLoop < n; outerLoop++ )

for ( int loop = 0, loop < m; loop++ )

M[outerLoop][loop] = N[outerLoop][loop];

requires far less execution time than

for ( int outerLoop = 0; outerLoop < n; outerLoop++ )

for ( int loop = 0, loop < m; loop++ )

M[loop][outerLoop] = N[loop][outerLoop];

In the latter case, memory is not addressed sequentially by the innermost, most

rapidly varying, for loop (although modern compilers automatically optimize

the loop order). For larger array dimensions, addressing successive elements can

accordingly require accessing high-level cache memory rather than fast low-

level cache or CPU memory registers. In the most unfavorable case, accessing

neighboring elements induces a page fault in which portions of the matrix are

exchanged (swapped) between the hard disk and fast memory, increasing exe-

cution times by orders of magnitude. Transversing array elements can therefore

require careful planning. For example, two matrices A and B are normally mul-

tiplied as follows:
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for ( int leftLoop = 0; leftLoop < leftDimension; leftLoop++ ) {

for ( int rightLoop = 0; rightLoop < rightDimension; rightLoop++ ) {

C[leftLoop][rightLoop] = 0.0;

for ( int innerLoop = 0; innerLoop < innerDimension; innerLoop++ )

C[leftLoop][rightLoop] += A[leftLoop][innerLoop] *

B[innerLoop][rightLoop];

}

}

Here the elements of A are traversed linearly (stride 1), but those of B are

accessed suboptimally (stride rightDimension). If, however, B is replaced by

its transpose, BT, the matrix product of A with B is obtained by replacing the

innermost loop by

C[leftLoop][rightLoop] += A[leftLoop][innerLoop] *

BT[rightLoop][innerLoop];

insuring stride-1 access for both A and BT.

The following error is encountered surprisingly often when coding nested

loops:

for (int outerLoop = 0; outerLoop < m; outerLoop++)

for (int innerLoop = 0, innerLoop < n; outerLoop++)

M[outerLoop][innerLoop] = N[outerLoop][innerLoop];

In the incrementation step of the second for loop innerLoop in has mistakenly

been replaced by outerLoop, yielding an infinite loop.

9.9 Multidimensional arrays as function arguments

A multidimensional array can be employed as a function argument in the same

manner as a single-dimension array. The one-dimensional array components

of the multidimensional array can additionally be passed to functions of array

arguments, as in

const int N = 2;

void f1( double aV[ ] ) {

aV[0] = 1;

}

void f2( double aM[ ][N] ) {

aM[0][0] = 2;

}

main ( ) {

double M[N][N] = { 0 };

f1( M[1] ); // M[1][0] is now 1

f2( M ); // M[0][0] is now 2

cout << M[1][0] << '\t' << M[0][0] << endl; // Output: 1 2

}
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As with array parameters, the call f2( M ) passes the multidimensional array

name, which evaluates to its starting memory location, to f2( ). Therefore, aM

in f2( ) occupies the same memory space as M in main( ), resulting in pass-by-

reference semantics.
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Input and output streams

C++ implements a device-independent approach to reading and writing data

such that nearly the same interface (the public class members) is employed to

send data to or receive data from different devices such as disk files, memory

buffers and the keyboard and terminal. This is achieved by collecting functions

and variables common to all input and output operations into an ios base class.

Operations involving the standard input device (keyboard) cin are appended in a

derived istream class, while functionality that enables data to be read from files

and memory buffers is incorporated in the ifstream and istrstream subclasses

of istream, respectively. Output operations are implemented in the same manner

by the corresponding output classes, ostream, ofstream and ostrstream. The

iostream class multiply inherits the internal functions and variables of both

the istream and ostream classes. Finally, the fstream and strstream classes

further specialize the iostream class by appending the properties required to

both read and write to files and memory buffers (alternatively e.g. fstream

can multiply inherit from ofstream and ifstream). Following the structure of the

inheritance diagram, we first discuss the iostream class. Subsequently we discuss

the interfaces to files and memory buffers associated with fstream and strstream.

10.1 The iostream class and stream manipulators

In C++, variables read into or written from a program initially reside in abstract

objects termed streams, examples of which are cin and cout. These streams

may be thought of as smart memory buffers enhanced through the inclusion of

public, user-accessible functions that can act on the data stored in the stream

buffer before its contents are processed by the program or sent to a device. The

components that interface the memory buffer with the actual system devices are

implemented as private functions and variables of the stream classes and are

invisible to the user.

Stream objects, such as cout and cin, possess internal member variables

labeled flags. Member functions of the stream access the flags, which control the

stream’s behavior. Flags relevant to cout govern in this manner, for example, the

notation, precision and number of spaces employed in printing a value. (In reality,
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the flag value is typically assigned to a specific bit or bits of one or more bytes,

which therefore can store several flags.) Flags that are common to all input and

output classes are defined through an enum (set as a bitmask with members that

evaluate to values 0, 1, 2, 4, . . . ) in the ios base class and are addressed through

the scope-resolution operator ios::. Important set member functions for flags and

other internal member variables of the cout class are

cout.precision( n ) // n figures written out

// in floating pt.

cout.setf( ios::fixed ) // retains trailing zeros, turns

// off scientific notation

cout.setf( ios::left ) // left-justifies output

cout.fill( '.' ) // replaces all blank fields with a

// period

cout.setf( ios::scientific ) // scientific (floating point)

// notation

cout.width( m ) // reserves m spaces for output

Generally, if a property of the stream object is changed, the flag values are altered

and the stream persists in the new state. The output width, set to m above, is,

however, set to revert to its default value every time a new value is written, since

data of a different type are generally extracted from the stream at the subsequent

operation. Therefore

main ( ) {
float f = .0001;
cout.setf( ios::fixed );
cout.setf( ios::left );
cout.fill( '.' );
cout.width( 20 );
cout << f << endl;
cout.precision( 20 );
cout.setf( ios::scientific );
cout << f << endl;

}

yields

0.000100............
9.999999747378751636e-05

The flags defined in iostream and its base classes can also be altered through

stream manipulators defined in the header file <iomanip>. These alter the stream

flag values when piped directly into an output stream:

#include <iomanip.h>

cout << setiosflags( ios::scientific ); // for scientific notation

cout << setiosflags( ios::showpoint ); // for decimal notation

cout << setw( n ); // set width of output

// field

cout << setf( ios::left ); // left-justify output

cout << setprecision( n ); // sets precision to n

// digits after the

// decimal point
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Output can be sent directly to the printer by replacing all instances of the

standard output stream cout by the printer stream cprn. Other standard streams

are cerr (the “standard error” stream) and clog, both of which are associated by

C++ with the terminal, and caux, which is bound to the serial communication

port.

10.2 File streams

A file is an (often non-contiguous) allocated region on a storage medium such as

a hard disk, floppy disk, memory card or CD-ROM. A file resides within a larger

group of files termed a folder or (sub)directory and is accessed through either its

absolute or its relative pathname. An example of an absolute pathname is C:\Dev-

Cpp\include\io.h, which refers to the Dev-C++ include file io.h. The relative

pathname to this file from the directory C:\Dev-Cpp\bin is ..\include\io.h,

where .. is interpreted by the operating system as the parent directory, C:\Dev-

Cpp, immediately above the current directory (a single period corresponds to the

current directory). The relative pathname from the parent directory C:\Dev-Cpp

is include\io.h (or, equivalently, .\include\io.h).

As stated earlier, by substituting #include <fstream> (not ifstream or

ofstream) for #include <iostream> in a program, streams are generally defined

that inherit the properties and behaviors of the iostream class but append the addi-

tional functionality required by file operations. In Dev-C++, however, #include

<iostream> must be additionally present to access the standard output streams

cin and cout, and ofstream and ifstream are often required in place of fstream

for output and input operations. While file operations employ the same interface

as cin and cout, they must be attached to a specific storage file location as in the

definition statement

fstream myFileStream( ''fileName'' );

If the stream is employed exclusively for input or output, then ifstream or

ofstream, respectively, can be substituted for fstream. Subsquently, data values

are read from or output to the input or output file streams in the same manner as

for cin and cout, e.g.

int r;
myInputFileStream >> r;
myOutputFileStream << setw( 8 ) << r << endl;

Assuming that file.dat containing only int values has been attached to the file

stream myFileStream, data can be read up to the end of the file with either

while ( myFileStream >> r ) { ... }

since files, like strings, are terminated by a null character, or

while( !myFileStream.eof( ) ) { myFileStream >> r; ... }
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where the eof( ) member function of fstream returns true when the null termi-

nation character is reached and false otherwise.

When a file is opened for writing, its previous contents are normally deleted.

To append data to a preexisting file, ios::app must be included in the stream

definition:

ofstream fout( ''out1.dat'', ios::app );

The stream definition can also be separated from the process of attaching the

stream to a file by introducing an open statement, as in

ofstream fout;
fout.open( ''out1.dat'', ios::out | ios::app );

After a subsequent close statement, the stream can be reassigned to another file,

fout.close( );
fout.open( ''out2.dat'' );

A file that is repeatedly opened in append mode, written to and then immediately

closed can be copied during program execution, enabling output from a long-

running program. All files are automatically closed by the operating system when

a program terminates.

Storage space and access time can be reduced by storing information in

binary as opposed to text (ASCII) format. This is accomplished by including

the ios::binary specifier in either the open or the file definition statement as in

fstream fout( ''''myFile.dat'''', ios::out | ios::binary );. However, writing e.g. a

double variable a then requires the somewhat cryptic syntax fout.write( (char *)

&a, sizeof( a ) );.

A stream such as cin, cout or a user-defined file stream such as fout above can

be passed to a function. However, the function must act on the same file stream

defined in the calling program, since a standard file stream cannot be copied.

To implement pass-by-reference semantics and thus avoid copying, a function

must employ an array, reference or pointer argument. Since only the first of these

variable types has been introduced, the procedure is illustrated by passing an

array of two file streams to a function:

#include <fstream>
void print ( ofstream aFstream[ ] ) {

aFstream[0] << ''Hello World'' << endl;
}

main ( ) {
ofstream fout[2];
fout[0].open( ''test1.dat'' );
fout[1].open( ''test2.dat'' );
fout[0] << ''Line 1 '' << endl;
print ( fout );

}
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10.3 The string class and string streams

Many programs require the manipulation of textual information. A stream that

processes strings can be connected to a region of memory termed a buffer,

which is defined through the strstream class defined in <strstream> or the

corresponding stringstream class of the updated header file <sstream>. The

underlying container into which such string streams place data is a string object.

To create and manipulate individual string objects, the string header file must

be included. A blank string object is then created either by

string S;

or by

string S = '''';

A string can be initialized by

string S = ''A string'';

The operator + is overloaded for strings; for example, S + '''' : '''' + S yields the

string “A string : A string”. Lexographic comparisons (comparison according to

dictionary order) are performed through the overloaded operators ==, !=, <, <=,

> and =.

Some important functions that act on string objects are

S.length( )

which returns the number of non-null characters in the string S such that the

length of a blank string is zero, and

S.erase( 3, 4 ); // result: A sg

which erases four characters in the string S starting at the position to the right

of the third character (writing simply S.erase( ); or S = ""; deletes the entire

contents of the string). A single element of a string can be accessed either through

S[m] or through S.at( m ), while the entire string can be converted into a standard

“C-type” character array terminated by the null character by employing S.c_str( ).

When m >> length( S ), S[m] returns the null character. Characters can be read

directly into or out of a string from a stream through the operators >>, and <<

and the getline( ) function. The find( ), replace( ) and insert( ) functions can be

respectively employed to find a sequence of characters in a given string, replace

a character or a sequence of characters in a string with other values and insert

additional characters into a stream.

To illustrate the application of string streams, suppose that data, represented

below by the string “some input data”, are to be written to a large number of

files labeled output1.dat, output2.dat, output3.dat, etc. Such names can be
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generated automatically by piping the string “output” followed an integer and

finally by “.dat” into a string stream as below:

#include <sstream> // Automatically includes

// string.h

#include <fstream>

main ( ) {
char temp[10] = ''input'';
string S;
int numberOfFile = 1;
stringstream inoutStream;
ofstream fout;
inoutStream << temp << numberOfFile << ''.dat'' << endl;
inoutStream >> S; // Reads from string stream

fout.open( S.c_str( ) ); // Converts string object to c string

fout << ''input data'' << endl; // Data are placed in input1.dat

}

In the above program, a string object containing input1.dat is composed from

two C-string variables and one integer variable by inserting the values into

the string stream inoutstream. This object is then piped into the string S and

converted through the c_str( ) member function into a character array. Such a

char array type can then be employed as the file name parameter of a call to

open( ). While it might appear that the string stream could be replaced by temp +

numberOfFile + ''''dat'''', numeric variable types can be transformed in a simple

fashion to strings only through insertion into a string buffer.

10.4 The toString( ) class member

Every class should possess a toString( ) member function that returns a string

containing properly formatted values and names of the internal class variables. If

a class contains one or more user-defined objects as internal member variables,

its toString( ) function is assembled by calling the corresponding toString( )

functions of the member objects. The example below demonstrates the applica-

tion of string streams in this context. Here ends terminates an entire string while

endl terminates a line within a string:

#include <strstream>
#include <iostream>
using namespace std;

class C {
public:
int iC;
C( int aC = 0 ) : iC( aC ) { }
string toString( ) {

strstream s;
s << ''iC = '' << iC <<ends;
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return s.str( );
}

};

class D {
public:
C iC[2];
int iD;
D( int aD, C aC[ ] ) : iD( aD ) {

iC[0] = aC[0];
iC[1] = aC[1];

}
string toString( ) {

strstream s;
for ( int loop = 0; loop < 2; loop++ )

s << iC[loop].toString( ) << '' '';
s << endl;
s << ''iD = '' << iD;
s << ends;
return s.str( );

}
};

main( ) {
C C1[2] = {1, 2};
D D1( 2, C1 );
cout << D1.toString( );

}

The output from main( ) is

iC = 1 iC = 2
iD = 2

10.5 The printf function

Since the C++ language encompasses the C language with a few minor modifica-

tions, the standard C input and output routines, which conveniently format output

into columns, can be activated by including the <stdio.h> header file. Each line

is written to the terminal through the printf( ) function whose argument con-

tains line-formatting information followed by the output variables. Floating-point

numbers are formatted through the specifier %m.nf, where m and n are the num-

bers of integers to the left and right of the decimal point, respectively. An integer

is represented by %id, where i is the number of positions to be displayed, and a

string by %ms, where m is the number of characters in the string. Thus

#include <stdio.h> // C I/O functions

main( ) {
int m = 10;
double x = 1.e2;
char a[10] = ''and '';
printf( ''x = %3.4f, %10s m = %10d'', x, a, m );

}
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sends the line

x = 100.0000, and m = 10

to the standard output device. A related function, sprintf( buf, "x = %3.4f,

%10s, m = %10d", x, a, m );, instead places the output into a memory buffer

such as char buf[100];.



Chapter 11

References

Reference and pointer variables, like arrays, store memory locations rather than

values. The memory location of a reference cannot be changed and must be

identified with that of a preexisting variable. Hence a reference can be handled

in effectively the same manner as the variable it refers to. The address stored in

a pointer can in contrast be changed at compile or run time.

11.1 Basic properties

A reference variable stores a fixed memory location of a preexisting compiler-

defined variable (since any variable allocated by the compiler occupies a preset

memory location during program execution). Because the address stored in the

reference cannot subsequently be altered, the compiler can manipulate reference

variables in the same manner as the variables they refer to. Accordingly, a refer-

ence variable on a functional level provides an alias, i.e. an alternative name or a

nickname, for an existing variable. Numerous examples of aliases can be found

in high-level computer applications; for example, a cell “A1” of a spreadsheet

can be assigned an alias such as “grade” such that grade = 5 has the same effect

as A1 = 5. In C++ reference-variable syntax

int A1 = 0;

int &grade = A1;

grade = 5;

cout << A1 << endl; // Output: 5

Since for e.g. grade above to constitute an alternative name for A1 all proper-

ties of the two must coincide, a reference cannot be reassigned to a new variable

(since A1 cannot be reassigned) and must be initialized to a variable of the same

type as in its definition. That is, declaring double &grade = A1 yields a com-

piler error. Additionally, since a reference is an alternative name for a variable it

cannot be initialized to a constant. Memorizing the above will prevent countless

programming errors.
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11.2 References as function arguments

References are often employed to prevent the allocation of new memory space

for function arguments. Recall that when it is invoked a C++ function allocates

memory for its argument variables and subsequently copies the values of the

parameters in the calling program into these newly reserved locations. Thus,

changes to the values of the argument variables in the function body do not affect

the corresponding function parameters in the calling program. However, in the

case of array arguments the array name parameter that is copied into the new

memory space for the function argument evaluates to the address of the memory

allocated to the array rather than the contents of the array. The function therefore

accesses and modifies the same memory locations through the index operator as

the array parameter in the calling block.

Similarly, if the argument of a function is a reference variable, then, when the

function is invoked, the argument is initialized to the fixed address of the calling

parameter variable and becomes an alternative name for this variable. Hence, a

change to the reference variable inside the function alters the parameter variable

value in the calling block

void zero( int &aM ) { aM = 0; }

main( ) {

int m = 4;

zero( m );

cout << m << endl;

} // Output: 0

Recall that when a function is invoked it first defines and initializes the variables in

its argument list. Thus zero( ) above implicitly initializes the reference according

to

int &aM = m;

For this reason, the parameter passed to a function reference argument cannot be

a constant or a variable of a different type, so that the following yield compile-

time errors:

double d = 4.0;

zero ( d ); // Error: an int reference cannot

// be assigned to a double.

zero ( 4 ); // Error: a reference variable cannot

// be assigned to a constant.

This feature can be leveraged to insure that a function accepts only array param-

eters of a certain size and type. In particular, if a function signature contains a

reference to an array with e.g. 20 int elements, as in

void print( int (&aI)[20] ) { cout << aI[6] << endl; }

only 20-element int arrays can be passed to print( ) from the calling routine.
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11.3 Reference member variables

If different physical objects share a common component, the object correspond-

ing to the component should be included in each object as a reference member

variable. As for const internal variables, c.f. Section 8.5, reference member vari-

ables must be contained in the initializer list of each class constructor since

otherwise they would be constructed with the class and could not subsequently

be assigned to a target variable. For example, suppose that several PositionSen-

sor objects share a single Printer subcomponent so that a change to the Printer

settings affects the behavior of all the objects identically. This can be modeled

by creating a single Printer object in e.g. the main( ) function and including this

object by reference in each PositionSensor. Schematically, we have

class Printer {

public:

int iPrinterSetting;

};

class PositionSensor {

public:

Printer &aPrinter;

PositionSensor ( Printer &aPrinter ) : iPrinter(aPrinter){ }

};

main( ) {

Printer P1 = {3};

PositionSensor PS1( P1 );

PositionSensor PS2( P1 );

P1.iPrinterSetting = 5;

cout << PS1.iPrinter.iPrinterSetting << '' '' <<

PS2.iPrinter.iPrinterSetting << endl; // Output: 5 5

}

A change to the properties of the Printer object P1 by any enclosing object or by

main( ) simultaneously propagates to all objects that contain P1 as a reference

variable.

11.4 const reference variables

If a reference variable is declared const, the value of the variable that it refers

to cannot be changed by assigning a new value to the reference variable. A

const reference to a non-const variable resembles in the spreadsheet analogy

a second name for a spreadsheet cell that permits only read access; i.e. the

cell contents can be viewed but not modified by the owner of the name. How-

ever, a non-const reference generally cannot be initialized with a const variable,

since this would contradict the intention of the original const variable defi-

nition, just as a non-const array parameter cannot be passed into a function

with a const array argument. Hence the first reference definition below yields a

compile-time error (in some compilers a warning message), whereas the second is

correct:
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const int m = 4;

int n;

int &k = m; // Compile-time error or warning

const int &l = n; // Valid

A non-const reference can always be assigned to a const variable through a

const_cast operation as in int &p = const_cast<int &> ( m );. However, p is

only assigned the value of m; subsequently changing p does not affect m, which

remains const.

Assigning a const reference to a non-const variable avoids the overhead of

copying function arguments, while still preventing changes to these arguments

from within the function body. A const reference variable in the calling block

cannot, however, normally be passed to a function with a non-const reference

argument – again since the function implicitly defines and initializes the non-

const argument with the const parameter. Thus, the second function call in

main( ) below generally yields a compile-time error:

void pr ( const int &aN ) { cout << aN << endl; }

void pr2 ( int &aN ) { cout << aN << endl; }

main ( ) {

const int n = 3;

pr( n ); // Output: 3

pr2( n ); // Error

}

11.5 Reference return values

If a function returns a reference such as int & myFunction( ), the memory

location associated with the return variable inside the function will be identical

to the memory location of the variable to which it is assigned outside the function

in the calling program. The function can then be employed as either an rvalue

or an lvalue. In the latter case the function must be assigned to a variable of the

same type as the return variable.

If a function reference argument is also returned as a reference variable, the

function can be employed either as an rvalue to return the same, possibly modified,

variable employed as its argument or as an lvalue to pass back to the program

through its argument the same variable as that to which it is assigned. This facility

is frequently employed in object-oriented programing (generally in combination

with the this pointer) to simplify program syntax. To illustrate, the following

nested chain of calls writes different messages to a single file. Since the function

returns the same ofstream object as that which enters through its argument, two

nested calls can be made to print( ) without incurring an illegal copy operation

(fstream does not provide the required operators to enable copying):
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#include <fstream.h>

ofstream& print( ofstream& aStream, char aMessage[80] ) {

aStream << aMessage << endl;

return aStream;

}

main ( ) {

ofstream myStream( ''output.dat'' );

print( print ( myStream,

''This is the first line'' ), ''This is the second line'' );

}
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Pointers and dynamic memory allocation

A pointer variable like a reference or array variable stores a memory address;

however, this address can be arbitrarily changed, enabling the contents of any

accessible memory location to be addressed and manipulated directly. While

enabling access to all available resources, new and subtle types of errors arise.

For example, when a program requests additional memory during runtime from

the operating system, the address of the starting location to the new, dynamically

allocated variable is returned. Since the value stored in a preexisting compiler-

allocated pointer variable can be altered, the running program can preserve the

address passed back by the operating system. However, if the pointer variable

was defined within an inner block, it will be destroyed when the block terminates.

The location of the dynamically allocated memory is then lost and the memory

cannot subsequently be accessed or later freed.

12.1 Introduction to pointers

A definition in C++ establishes the amount of memory space required for a

variable and the interpretation of the value stored at this memory location. The

value of a pointer variable is associated with the starting memory address of

a variable of a specified type, i.e. the value of a pointer is a memory address.

That is, a double pointer that stores a value such as 80000 interprets the 8-byte

region from physical memory location 80000 to location 80007 as the storage

location of a double variable. The amount of memory space reserved by any

pointer variable equals the number of bits required to store a hardware memory

address – on a 32-bit machine, an address requires 4 bytes so that applying the

sizeof( ) function to any pointer yields 4.

To define a pointer to a variable of e.g. type int, the notation int * is employed,

where a pointer type is designated by a star. To define multiple pointer variables

within the same statement, a star must precede each pointer. Thus the following

defines j to be an int, while pI and pK are pointers to integers:

int *pI, j, *pK;
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12.2 Initializing pointer variables

Although pI and pK are defined by the statement above, they are not initialized.

Therefore, the 4-byte memory space allocated for these variables (on a 32-bit

machine) contains a random bit pattern and the variables are therefore said to

point to random memory locations. These pointers must be reassigned to the

memory addresses of allocated int variables before they can be safely employed.

For example, recalling that C++ by default manipulates memory addresses as

hexadecimal constants, which are denoted by a preceding 0x or 0X, if the starting

memory address of an integer variable is 0x0012FF88, then, after casting this

constant value to the type of an int pointer, one can write

int *pM = (int *) 0x0012FF88; // 0x = hexadecimal

A hexadecimal value can also be read in from the keyboard (in this case not

preceded by 0x) through the following syntax (if the hex manipulator is omitted,

the integer equivalent of the hexadecimal value should instead be entered):

int m, *pM;
cin >> hex >> m; // Input: 0012FF88

pM = (int *) m;

This procedure is of limited value since, except for those associated with physical

devices such as a sound card or serial port, most memory locations in a program

are specified as offsets from a starting location determined by the operating

system at runtime.

12.3 The address-of and dereferencing operators

Address-of operator. The memory location of a variable is accessible during

program execution through the address-of operator & (the ampersand does not

possess the same meaning as the ampersand employed to define reference vari-

ables). To illustrate,

int m;
cout << &m << endl; // Output: e.g. 0012FJ4A

displays the address of the variable m on the terminal. This address can be stored

in a preallocated int pointer variable:

int *pM = &m; // pK now contains 0012FJ4A

Unlike a reference, this memory address can be later reassigned to the address

of a different variable as in the lines below:

int l;
pM = &l;
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Dereferencing and member-selection operators. Once a meaningful memory

address has been stored in a pointer, the value at this address can be altered

through the pointer variable. The value is accessed through the dereferencing

operator, *, as follows:

int m = 4;
int *pM = &m;
*pM = 5;
cout << m << ' ' << *pJ; // Output: 5 5

Thus *pM constitutes an alias for the variable m, the int variable located

at the value of pM. Further, since *(&m) yields the same variable as m, the

address-of and dereferencing operators comprise inverse operators. The variable

pM can also be dereferenced through pM[0], which possesses the same meaning

as *pM.

A special form of the dereferencing operator exists for objects. Consider

class C {
public:
int b;
void f( ) { cout << ''test'' << endl; }

};

A pointer pC to an object, C1, of type C is defined in main( ):

main( ) {
C C1 = { 1 };
C *pC = &C1;
cout << (*pC).b << endl; // Output 1: parenthesis required!

pC -> f( ); // Output: test

}

In the expression (*pC).b appearing within the third statement of main( ),

pC is deferenced to yield an alias for the object variable C1 to which pC points

and the member-of operator, ., is then applied to access the public member

variable b of C1. The parentheses are required around *pC since the precedence

of the member-of operator is higher than that of the dereferencing operator.

Since objects are often manipulated through pointers in this manner in order to

avoid the overhead associated with copying large blocks of memory, (*pC).f( ) is

abbreviated by a second member-selection operator, ->, in pC->f( ); on the fourth

line of main( ). This circumvents the frequent error of omitting the parentheses

around the dereferenced object in the former expression.

12.4 Uninitialized pointer errors

As noted in the introduction, since pointers can address any memory location

permitted by the operating system, new classes of errors arise. A particularly
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common runtime error results when a value is assigned to an uninitialized pointer,

as in

int *pI; // pI can point anywhere in memory

*pI = 20; // Typically forbidden by O/S

Here the pointer variable pI contains the address of a random memory location

that statistically is almost certain to be located outside the memory space allo-

cated to the program by the operating system. Placing a value into this location

therefore raises a general protection fault leading to an operating-system run-

time error message. Accordingly, every uninitialized pointer or pointer that is

detached from a meaningful memory location should be assigned the address 0

or equivalently NULL. A logical test then insures that each pointer is initialized

before dereferencing:

int *p = NULL;
cout << p << endl; // Output: 00000000

... additional lines such as int l; p = &l; ...

if ( p ) *p = 3; // Insures p is initialized

12.5 The const keyword and pointers

Since a pointer permits changes both to its value, which is the memory address

that it stores, and, through the dereferencing operator, to the value stored at this

address, three possible implementations of the const keyword exist for pointers.

Constant pointers. If const is placed after the * symbol in a declaration as in

int m = 1;
int * const pM = &m;

then the address that m stores (points to) is fixed, but the int value at this address

can be changed through the dereferencing operator. Indeed, reading the definition

from right to left indicates that the value of pM (the address stored in pM) is

declared const through (const pM), while dereferencing this address through

*(const pM) yields a non-constant int variable. Since the address of the pointer

cannot be changed, pM must be initialized to a sensible address when defined.

For the above definition, we have

int k = 2;
*pK = 30; // VALID, the int value can be changed.

pK = &k; // ERROR, the address in k is constant.

Note the similarity of this construct to a reference variable. Since a constant

pointer cannot be detached from the variable to which it points, the only mean-

ingful operations that can be performed on the pointer require dereferencing to

access the underlying non-constant variable value. Thus, a reference constitutes a

constant pointer that the compiler invisibly dereferences, transforming its syntax

into that of the underlying variable.
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Pointer to a const. A second use of const as applied to pointers is given by

const int *pK;

or equivalently

int const *pK;

As the declaration indicates, the value *pK located at the address held in pK is

a const int in the sense that it cannot be changed through pM, but the value of

pK (the memory location stored in the pointer) can be altered. That is,

int k = 1;
pK = &k; // OK: address held in k can be changed.

*pK = 4; // Error: k == l cannot be changed through pK

Constant pointer to a const. Analogously to a const reference variable, for

the declaration

const int * const pM = &m;

the memory location stored in the pointer variable cannot be altered, while the

value stored at this location cannot be modified through the pointer variable.

12.6 Pointer arithmetic

Suppose that the memory allocated to a variable of type variableType,

sizeof(variableType), is N bytes, where variableType can be any built-in or user-

defined type. Then, if e.g. variableType *pK = (variableType *) 00000040;,

*( pK + m ) corresponds to the value of the variable of type variableType stored

at starting address 40 + m * N, which is identical to pK[m]. Other arithmetic

operations on pointers are implemented similarly.

12.7 Pointers and arrays

Since an array variable evaluates to a constant memory address, it resembles a

constant pointer and can even can be assigned to a pointer of a non-array type.

However, an array definition differs fundamentally from a pointer definition since

int a[10]; allocates memory for 10 int variables, while int * const pA; only

allocates memory for a single pointer variable that stores the memory address of

an int variable as illustrated below:

int a[3] = { 1, 2, 3 };
cout << a << endl; // Possibly: 001H2B00

cout << a + 2 << '\t' << *( a + 2 ) << endl; // Output:001H2B08 3

int *p = a;
cout << p[2]; // Output: 3
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12.8 Pointer comparisons

When comparing two values through pointers to these values, the comparison

operator must be applied to the dereferenced pointers, not to the pointers them-

selves. That is, in

int *pA = &m, *pB = &n;
if ( pA == pB ) cout << ''same addresses'' << endl;
if ( *pA == *pB ) cout << ''same values'' << endl;

the first if statement compares the values of the pointer variables pA and pB,

which are the addresses of the integer variables that pA and pB point to, and thus

determines whether pA and pB point to the same variable. While this could be

intended, generally the objective is to compare the values of the variables which

pA and pB point to. The pointers must then be dereferenced before effecting

the comparison as in the second if statement above. A similar error occurs if the

index operator, [ ], is omitted in comparing two array variables. Since each array

occupies a unique, compiler-assigned, memory location, the logical condition

will then always evaluate to false.

12.9 Pointers to pointers and matrices

Consider a pointer variable that stores the memory address of a second pointer,

such as a pointer to an int. Just as the type of a pointer to an int is denoted int

*, a pointer to an int pointer is defined by int **ppN. Again this definition is

interpreted from right to left: applying the rightmost dereferencing operator * to

ppN yields a variable of type int *; dereferencing this variable one more time is

equivalent to dereferencing ppN twice and yields an int value, e.g.

int n = 4;
int *pN = &n;
int **ppN = &pN;
cout << **ppN << ' ' << *pN <<endl; //Output: 4 4

Hence pN[0] is equivalent to *pN or n, while ppN[0] equates to *ppN, the

pointer pN. By extension, (ppN[0])[0] or ppN[0][0] coincides with **ppN.

A two-dimensional array can thus be constructed from a two-element array of

pointers or as a pointer to a pointer:

int a[3] = { 1, 2, 4 };
int b[3] = { 3, 5, 6 };
int *pA[2];
pA[0] = a;
pA[1] = b;
int **ppP = pA;
cout << ppP[0][2] << '\t' << pA[0][2] << endl; // Output: 4 4

Note that, unlike for a matrix, the rows of ppP do not necessarily contain the

same number of elements.
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12.10 String manipulation

A C-string, often simply termed a string, is formed from a character array ter-

minated by a null character that enables C++ functions and operators to cease

processing under the control of a logical condition. C-strings can be initialized

when declared through either

char s1[6] = ''Hello'';

or

char *pS2 = ''World'';

The second procedure reserves space for the terminating, null character in the

string “World”; however, the size of the character array (6 bytes) allocated to pS2

cannot be manipulated and would prove insufficient if a longer string were later

stored in pS2.

The insertion and extraction operators can be employed to read a character

string from the keyboard, or to write a string to the terminal. However, to preserve

whitespaces in an input line, the getline( s1, i1 ) function can be employed to read

the first i1 - 1 characters of the line up to a carriage return, including whitespace

characters. The function then appends a null character and stores the result in

the array s1, which therefore must be at least i1 characters long. Alternatively,

getline( s1, i1, 'c' ), reads i1 - 1 characters from the input stream up to the

termination character, c. That is,

char s[10];
cin.getline( s, 10, '|' );
cout << s;

yields the output “A Test” for an input line

A Test|

C++ provides native (built-in) string-handling functions that act either on

character arrays or on pointers to character arrays. The following code computes

the length of s1 above, copies the first two letters of pS2 into s1 and compares

the first two letters of s1 and pS2:

cout << strlen( s1 ); // Output: 5

cout << strncpy( s1, pS2, 2 ); // Output: Wollo

cout << strncmp( s1, pS2, 2 ); // Output: 0 (s1 is now Wollo)

The output of strncmp( s1, s2, n ) is 0 if the first n characters coincide, −1 if

s1 precedes s2 in lexical (dictionary) ordering and +1 otherwise. In strncpy( ),

which copies the first n characters of s2 into s1, s2 must be the same size as

or smaller than s1 in order to prevent a runtime memory allocation error. The

functions strcpy( ) and strcmp( ) function identically but do not accept a third

argument.
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Identical operations can be performed on the corresponding string class

objects introduced in Section 10.3 as follows:

#include <string>

main( ) {
string S1 = ''Hello'';
string S2 = ''World'';
cout << S1.length( ) << endl; // Output: 5

cout << S1.replace( 0, 2, S2, 0, 2 ) << endl; // Output: Wollo

cout << S1.compare( 0, 2, S2, 0, 2 ) << endl; // Output: 0

}

The member functions begin( ) and end( ) return pointers to the initial and final

elements of a string object. This facilitates iterating over the characters in a

string, as in

string S = ''a string'';
for ( char* p = S.begin( ); p != S.end( ); p++ ) cout << *p;

which writes S to the terminal.

12.11 Static and dynamic memory allocation

Static memory allocation. Memory for variables and arrays that are allocated

when the compiler processes definitions is termed statically allocated. The com-

piler also issues instructions to deallocate memory at the point at which a variable

will no longer be used (generally when the block containing the definition is ter-

minated). Thus in

float a[10];
void fun( ) { int b[10]; }
void main( ) { int c[10]; { int d[10]; } }

the lifetime, or the period during which memory is reserved, of the global array

a extends from the beginning to the end of the program while the lifetime of the

local arrays b, c and d extends from their definition statements to the end of the

encompassing block.

Dynamic memory allocation. Despite the efficiency of compiler memory man-

agement, the amount of memory required by a program often depends on the

outcome of a user interaction or a logical condition evaluated during execu-

tion. By postponing memory allocation until runtime, a program can exploit

the resources of large computers while still executing successfully on small

machines. For example, a computer game that reserves memory for a new player

upon request should function on any system, but the maximum number of players

will necessarily be limited by the available hardware.

In C++ a running program can request memory from the operating system for

a variable of a certain type by invoking the new operator. This operator returns
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the starting memory address of the dynamically allocated space as a temporary

pointer with the type specified in the new statement. To preserve the address

so that the space can be accessed later by the program, it must be assigned to a

compatible pointer variable previously allocated by the compiler in a definition

statement. That is,

int *pM; // Compiler allocated pointer to an int

pM = new int; // Memory is allocated for an int

// and its address is stored in pM.

These two steps are often combined into the single statement

int *pM = new int;

A dynamically allocated built-in variable can be initialized when defined

double *pD = new double(100.0);

The syntax for the dynamic allocation of an array of 10 doubles is instead

double *pD = new double[10];

Clearly, parentheses for initialization should not be confused with square

brackets for array allocation. If a request exceeds the maximum amount of avail-

able memory, the new operator either throws an exception or, in older compilers,

returns a null pointer (a pointer with a value of 0). (This behavior can be forced

in modern compilers by including the <new> header file together with the state-

ment new_handler set_new_handler(0);.) Since dynamic memory is allocated

by the operating system at runtime, it can be controlled by the running program

as below:

int *pM;
cin >> n;
if ( n > 0 ) {

pM = new int [n];
if ( pM == 0 ) cout << ''out of memory'';

}

The lifetime of memory allocated through a call to new extends until the end

of the program unless it is deallocated with a delete or delete [ ] statement. The

second of these statements must be employed whenever an array is allocated as

in

int *pM = new int; // Memory allocated for int variable

delete pM; // Memory deallocated

pM = 0;
if ( !pM ) pM = new int[10]; // Memory allocated for int array

delete [ ] pM; // Memory deallocated

pM = 0;
delete pM; // No effect
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The square brackets after delete in the fifth line insure that the memory asso-

ciated with the entire array will be deleted. If the brackets are omitted, only

the memory at the position of the first array element is certain to be deleted,

possibly yielding a memory leak. In contrast, delete [ ] can be safely applied

to non-array variables. The delete or delete[ ] statements do not affect the pro-

gram when applied to null pointers. Note that the compiler-allocated pointer pM

remains allocated until the block in which it is defined terminates – the delete

statement frees the memory which pM points to but does not delete pM itself.

Accordingly, following a delete statement the value of pM can still be set to the

memory address of a different variable or to a new dynamically allocated mem-

ory address. Whenever a dynamically allocated variable is deleted, all pointers

to this variable should be set to the null pointer so that assigning a value to

the dereferenced pointers yields a runtime error instead of accessing deallocated

memory.

12.12 Memory leaks

The new operator allocates memory through an operating system call and returns

an address to this memory. As long as the program retains this value, it can

manipulate the contents of, or deallocate, the dynamically allocated memory.

While the address could be stored in any memory device, it is normally assigned

to one or more compiler-assigned pointer variables. If all these pointers are

destroyed when the blocks within which they are defined terminate or their values

are overwritten, the address to the allocated memory is irrevocably lost. The

dynamically allocated memory, while still reserved by the operating system for

program operation, is then termed “garbage” because it cannot be subsequently

accessed or deleted.

A memory leak often occurs through the unintended reassignment of a pointer

to dynamically allocated memory:

char *pGarbage = new char( 'a' );
pGarbage = 0; // address to new memory lost

While the above statement only results in the loss of a single byte, if located in

a for loop, all memory available to the running program can be exhausted, as

in

for ( ; ; ; ) int *pGarbage = new char( 'a' );

which will typically slow down and then halt the computer, forcing a reboot.

12.13 Dangling pointers

While the assignment of a value to an uninitialized pointer is trapped by the

operating system, when values are written to and read from deallocated memory
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the program will often continue to run normally. However, if this memory is

later accessed by the program for another purpose such as a function call or a

variable definition, or, in the case of dynamically allocated memory, for another

running program, then unphysical results are produced or the program terminates

unexpectedly. Such errors occur intermittently at unpredictable times widely

separated from the execution of the incorrect source line, and are therefore often

extremely difficult to identify in the absence of specialized software tools.

A dangling pointer is defined as a pointer to deallocated memory such as

int *pDangle = new int [20];
delete [ ] pDangle; // the memory pDangle points to is deleted

Subsequently

pDangle[9] = 30; // Bad error: uncertain result

places the value 30 into the unsafe memory location originally assigned to pDan-

gle[9]. Subsequently dereferencing pDangle, however, still yields 30 unless the

contents at this location were in the meantime overwritten by the program or

operating system. As mentioned above, a recommended procedure for eliminat-

ing dangling pointers is to assign the NULL or 0 address to all pointers upon

deallocation, as in

pDangle = NULL;

Attempting to read or write from the memory pointed to by pDangle

*pDangle = 30; // Good error: program crash

now yields a runtime error since the operating system prohibits access to the null

address.

A further dangling pointer error can occur if two pointers store the same

memory location. If this memory is deallocated through one of these pointers

whose address is set to NULL, the second pointer still accesses deallocated

memory, e.g.

int *p = new int[20];
int *pDangle = p;
delete [ ] p;
p = 0;
pDangle[9] = 30; //Error: deallocated memory at pDangle’s address!

A dangling pointer can also result from the deallocation of compiler allocated

memory at the end of a block, as in

double *pDangle;
{

double d = 3;
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pDangle = &d;
} // Error: d’s memory deallocated

The above problem does not, however, occur with dynamically allocated memory,

which persists until an explicit delete statement is issued:

double *pR;
{

double *pD = new double[20];
pR = pD;

}
pR[10] = 10; // OK: pointer variable pD destroyed but not its memory

The memory associated with the pointer pD in fact cannot be automatically

deallocated once pD has been destroyed, since a C++ runtime facility does not

exist to determine whether additional pointers have been reassigned to point to

pD’s memory as in the code above.

12.14 Pointers in function blocks

Since a function body also resides inside a block, dangling pointers can potentially

arise if pointers are defined within a function, as in

void test( int *(&aPN), int *(&aPM ) {
int k = 4;
*aPN = k; // OK: address stored in aPI unchanged

aPM = &k; // Error: will lead to dangling pointer

} // k’s memory deallocated

main( ) {
int n = 1, m = 2;
int *pN = &n;
int *pM = &m;
test( pN, pM );
cout << n << endl; // Output: 4

cout << *pM << endl; // Output: maybe 4 but unpredictable

}

The arguments aPN and aPM are references to pointers, and therefore correspond

to alternative names for the pointers pN and pM defined in main( ). The value

of the variable pointed to by aPN is changed inside test( ), so that pN, which

points to the address space of the variable n in the main program, remains

correctly allocated after the function call. On the other hand, the value of the

pointer reference variable (i.e. the variable to which the pointer points) aPM is

reassigned inside test to the memory address of the local int variable k. After

the function block has terminated, k is destroyed and pM subsequently points

to deallocated memory. If aPM were instead defined as a pointer argument,

call-by-value semantics would apply and it would therefore contain a copy of
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the memory address in pN. Setting aPM to the address of k within the function

block then does not affect the value of pN, which would therefore still point to

the address of n defined in the main block rather than to deallocated memory.

12.15 Dynamic memory allocation within functions

Memory can be allocated to an external pointer from within a function by extend-

ing the procedure of the preceding example, namely

void allocate( int *(&aPI) ) {
aPI = new int[10];

} // OK: memory persists

main( ) {
int *pI;
allocate( pI );
pI[5] = 3;

}

Although the compiler-allocated pointer variable aPI inside the function is

destroyed when the function terminates, the memory assigned to this variable

persists and therefore remains assigned to the parameter pointer variable, pI, in

the calling program. The function argument must, however, again as in Section

12.14 be a reference to a pointer variable, otherwise aPI inside the function

will be a copy, in a separate memory space, of the function parameter, pI, in

the calling program. Setting the value of aPI inside the function to the location

of the newly accessed memory then does not affect the value of pI, resulting

in random memory access and a runtime error at the last line of the program.

Recoding the above program but employing compiler-assigned memory yields a

dangling pointer, since the lifetime of the compiler assigned memory then only

extends to the end of the function block:

void allocateError(int *(&aPDangle) ) {
int m[10];
aPDangle = &m;

} // Error: memory destroyed

Memory can also be assigned within a function and its address transferred to

the calling program through a pointer return value:

float *pAssign( ) {
float *pA = new float [20];
return pA;

} // OK: memory persists

However, this pointer again cannot point to compiler-assigned memory that is

destroyed at the end of the function block:

float *pAssignDangle( ) {
float a[20];
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float *pDangle = a;
return pDangle;

} // Error: memory destroyed

12.16 Dynamically allocated matrices

When matrices are dynamically allocated in scientific applications substandard

procedures are often employed, degrading performance. This section accordingly

discusses efficient allocation strategies.

Standard memory allocation. A dynamically allocated matrix (two-

dimensional array) in C++ is implemented as a variable of type pointer to a

pointer (see Section 12.9) that stores the address of an array of dynamically allo-

cated pointer variables. Normally, the value of each pointer in this dynamically

allocated array is assigned to the address of a further dynamically allocated array.

That is, for an N × M matrix,

double **ppA = new double*[N];
for ( int loop = 0; loop < N; loop++ ) ppA[loop] = new double [M];

To deallocate the memory assigned to the matrix (but not ppA, the compiler-

assigned pointer variable) the dynamically allocated array pointed to by each

element of ppA must be deleted before the dynamically allocated pointer array

assigned to ppA is deleted:

for ( int loop = 0; loop < N; loop++ ) delete [ ] ppA[loop];
delete [ ] ppA;

If just the second of these lines is present, the addresses to the arrays that store the

actual matrix elements are (eventually) lost and the associated memory becomes

garbage.

Optimal memory allocation. A significant drawback with the above dynamic

allocation strategy is that memory for each matrix row is allocated through

a separate call to new. Consequently, the operating system can assign widely

separated areas in memory to successive rows. Numerous page faults can then

result when iterating through all matrix elements. To insure contiguous memory,

a one-dimensional array with N × M elements should first be allocated. The

values of the pointers of a dynamically allocated array of N pointers are then set

to the address of every Mth element of the array. For a 2 × 3 matrix of doubles,

double *pB = new double[6]; // contiguous

double **ppA = new double*[2];
for ( int loop = 0; loop < 2; loop++ ) ppA[loop] = pB + 3 * loop;

To deallocate the dynamically assigned memory, the memory associated with the

underlying array pB should be deleted after the pointer array ppA:

delete [ ] ppA;
delete [ ] pB;
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If pB is deallocated first, the matrix ppA will point to unallocated memory, poten-

tially leading to incorrect memory access if the matrix is mistakenly employed

before deletion.

12.17 Dynamically allocated matrices as function
arguments

A dynamically allocated matrix can be passed to a function through an argument

of pointer-to-pointer type:

void print ( int **aPPA, int aN, int aM ) {
for ( int outerLoop = 0; outerLoop < aN; outerLoop ++ ) {

for ( int innerLoop = 0; innerLoop < aM; innerLoop ++ )
cout << aPPA[innerLoop][outerLoop] << ' ';

cout << endl;
}

}

main ( ) {
int **ppA = new int *[2];
ppA[0] = new int[2];
ppA[1] = new int[2];
ppA[0][0] = ppA[0][1] = ppA[1][0] = ppA[1][1] = 6;
print ( ppA, 2, 2 ); // Output: 6 6

} // 6 6

However, the above print function cannot be used for a statically allocated matrix,

int B[2][2] = { 1, 2, 3, 4 };
print ( B, 2, 2 ); // Error!

since, in this case, the compiler requires that the second matrix dimension be

specified in the function parameter list (e.g. void print( double *A[2], int aN,

int aM )) because the type of B is that of an array of two-component integer

arrays.

Similarly, a dynamically but not a statically allocated two-dimensional array

can be assigned to a variable of type pointer to a pointer:

int A[2][2] = { 1, 2, 3, 4 };
int **ppB = new int*[2];
ppB[0] = new int[2];
ppB[1] = new int[2];
int **ppD = B; // OK

int (*ppAE)[2] = A; // OK

ppD = A; // Error!

The manipulation of complex types, especially in conjunction with dynamic

memory allocation, requires a detailed understanding of their underlying

structure.



12.18 Pointer data structures and linked lists 121

12.18 Pointer data structures and linked lists

Dynamic memory allocation offers a greater range of methods for manipulating

data than static allocation since the size of the structure into which the data

are placed can expand or contract as elements are added or deleted. Further,

through pointers the structure properties can reflect the relationship of different

data elements. As an example, a linked list is a collection of data such that each

element in the list contains both data and the address of the succeeding element in

the list. Consequently, data can be read sequentially from the initial data element

to the final data element. Functions that print, insert new data at a given position

in the list, or delete an element from the list accordingly process the data by

iterating through the list elements. The non-zero elements and their indices of

e.g. a sparse matrix can be efficiently stored in such a list.

A single list component is termed a node. A node that stores a single data

value together with a pointer to an address of a second node is given by

class Node {
public:

Node *iPNext;
double iValue;

};

A pointer of type Node* containing the address of the first list element constitutes

the “head” of a linked list, while iPNext in the last element or tail of the list is

set to 0 or NULL. The latter choice enables a logical test for the end of the list in

the same manner as a zero character terminates a string. Hence, a three-element

list can be generated by

Node NLast = { 0, 3 };
Node NMiddle = { &NLast, 1 };
Node NFirst = { &NMiddle, 8 };
Node *pHead = &NFirst;

Exploiting the presence of the null pointer at the tail, a for loop can iterate

through the list items as in the following printList( ) function that writes out the

data in the list:

void printList( Node * const aPHead ) {
for ( Node *pN = aPHead; pN != NULL; pN = pN -> iPNext )

cout << ( pN -> iValue ) << endl;
}

Since a Node element is reached by navigating through each intervening

element starting from the head, variations of the above construct are required

in order to achieve more complicated functionality. For example, to add a Node

element to the end of a non-empty list, the elements must be iterated over until

the NULL pointer is detected. The next pointer of this final element is then

reassigned to the new node, whose next pointer is set to 0:
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void addNodeAsLast( Node *aPHead, Node *aPNew ) {
Node *pN;
if ( aPHead == 0 ) exit( 0 );
for ( pN = aPHead; pN -> iPNext; pN = pN -> iPNext );
aPNew -> iPNext = 0;
pN -> iPNext = aPNew;

}

Our list example can then be rewritten as

main( ) {
Node NFirst = { 0, 8 };
Node NLast = { 0, 3 };
Node NMiddle = { 0, 1 };
Node *pHead = &NFirst;
addNodeAsLast( pHead, &NMiddle );
addNodeAsLast( pHead, &NLast );
printList( pHead );

}

A List class combines the Node class with functions that manipulate lists

while employing dynamic memory allocation to generate and remove nodes.

A bidirectional list that can be traversed in either the forward or the reverse

direction is generated by including a second pointer, iPPrevious, in the Node

class that points to the preceeding node. A binary tree is then obtained if each

of the pointers iPPrevious and iPNext of a given node points either to NULL

or to a separate node that is not pointed to by any other node. That is, each

node may point to zero, one or two other nodes, but is pointed to by just a single

node. Operations on tree structures are again implemented through recursion and

are initially somewhat difficult to program. In general, for dealing with physical

problems that are naturally formulated in terms of non-trival data structures one

should employ an appropriate collection class package.



Chapter 13

Memory management

The following two chapters consider advanced or infrequently used features of

C++ programming. We first examine the dynamic allocation of memory within

objects, as occurs when memory for an internal member variable of pointer

type is dynamically allocated in a class constructor. If the resulting object is

deallocated, its internal variables, including the pointer, are destroyed. However,

the dynamically assigned memory persists, generating a memory leak, unless a

special “destructor” function is introduced. Similar problems occur when such

objects are copied to or initialized by a second object.

13.1 The this pointer

Memory management requires additional C++ constructs, the first being the this

pointer which exists in all (non-static) classes and points to the calling object.

Dereferencing the this pointer generates the calling object itself so that in the

program

class A {

public:

int iA;

void print ( ) { cout << (this -> iA) << endl; }

};

this -> iA is interchangeable with iA since *this represents the object that calls

the print( ) function.

A fundamental application of the this pointer is given by

class C {

public:

int iM;

C& print ( ) {

cout << iM << '' '' '' '';

return *this;

}

C* pAdd( int aN ) {

iM += aN;

123
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return this;

}

};

main ( ) {

C C1 = { 2 };

C1.pAdd( 3 ) -> print( ).pAdd( 3 ) -> print( ); //Output: 5 8

}

Since the . and -> functions are left-associative, the last line of the main( )

program is interpreted as ( ( ( C1.pAdd( 3 ) ) -> print( ) ).pAdd( 3 ) ) -> print( );.

Consequently the pAdd( ) function of C1 is applied first, returning a pointer to

the calling object, namely C1 itself. Next, this pointer is dereferenced through

the pointer-to-member operator and the print( ) function is called, which returns

a reference to C1. Thus the combined effect of these operations is to return the

initial object C1 with modified internal data members, to which a further series

of add and print functions is applied. While the above program still functions

if C is employed in place of C& as the return type of the print( ) function, a

superfluous and potentially problematic (see Section 13.6) copy operation occurs

when the C object is returned.

13.2 The friend keyword

If a class, A, designates a particular function or class external to itself as a friend,

the named construct can access the private members of A directly without being

restricted to calling the member functions of A’s public (or possibly protected)

interface. That is, in

class A {

int iJ;

friend class B;

};

all the private data and member functions of A appear as public members in class

B (which can be a subclass of A) so that the following code is valid:

class B {

A* iPA;

public:

void printA( ) { cout << iPA -> iJ << endl; }

B( int aJ ) {

iPA = new A;

iPA -> iJ = aJ;

}

};

main ( ) {

B B1( 5 );

B1.printA( ); // Output: 5

}
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To grant a single function int bfun( int bI ) in class B access to the private

members of A, a line

friend int B::bfun( int );

should be included in the (public or private) interface of class A. Since the friend

function, bfun, is not a member of the class A, it does not have an associated

this pointer to A. Although often convenient, the friend construct violates the

object-oriented principles of encapsulation and information hiding.

13.3 Operators

C++ operators can be redefined or extended to user-defined classes through

overloading. However, although any C++ operator, with the exception of the

scope operator, ::, the dereferencing operator, *, the member-of operator, ., the

sizeof operator and the if-then-else ternary operator, ?:, can be overloaded, new

operator symbols cannot be introduced and existing precedence rules cannot be

altered. Accordingly, certain operators have illogical precedence. For example,

the C++ stream extraction and insertion operators overloaded preexisting high-

precedence C operators for bit insertion and extraction, invalidating seemingly

meaningful constructs such as cout << i = 3 << endl;. Two procedures for

overloading operators exist and are discussed individually below.

Overloading through friend functions. An operator acting on class members

can be introduced through a friend function that accesses the internal class vari-

ables. To illustrate, the class Vector below possesses two private data members,

iX and iY. The binary addition operator + is overloaded such that adding two

Vector objects Vector1 and Vector2 with internal data members iX1, iY1 and

iX2, iY2 yields a new Vector object with data members iX1 + iX2 and iY1 +

iY2. When expressed as a friend function, the + operator possesses the special

signature operator+ ( V1, V2 ), in which the first and second arguments are the

expressions to the left and to the right of the + sign, respectively. This yields the

class definition

class Vector {

public:

double iX, iY;

friend Vector operator+ ( Vector, Vector );

Vector( double aX, double aY ) : iX( aX ), iY( aY ) { }

void printVector( ) { cout << iX << ''\t'' << iY << endl; }

};

The friend function is the two-argument global function

Vector operator+ ( Vector aV1, Vector aV2 ) {

Vector Temp( 0, 0 );

Temp.iX = aV1.iX + aV2.iX;

Temp.iY = aV1.iY + aV2.iY;

return Temp;

}
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Subsequently the operator can be called, as in

main ( ) {

Vector V1( 1, 2 ), V2( 2, 3 );

Vector V3( 0, 0 );

V3 = V1 + V2;

V3.printVector( ); // Output: 3 5

}

To prevent copying of the input arguments, the operator function signature

can be replaced by friend Vector operator+ ( const Vector&, const Vector& );.

The statement V3 = V1 + V2; in main( ) can even be replaced with the equivalent

V3 = operator+ ( V1, V2 );.

Inclusion in the class definition. The second technique for operator overloading

incorporates the operator directly into the class definition. The operation Vector1

+ Vector2 is then interpreted as Vector1.operator+( Vector2 ), where + is a

member function of the Vector class and Vector2 is an argument of type Vector.

Since the member variables iX and iY of Vector1 are directly accessible, the

code takes the form

class Vector {

public:

double iX, iY;

Vector operator+ ( Vector );

Vector( double aX, double aY ) : iX( aX ), iY( aY ) { }

void printVector( ) { cout << iX << ''\t'' << iY << endl; }

};

Vector Vector::operator+ ( Vector aV ) {

Vector Temp( 0, 0 );

Temp.iX = iX + aV.iX;

Temp.iY = iY + aV.iY;

return Temp;

}

Observe that here the binary operator + possesses only a single argument and

can therefore be called either through the standard notation V3 = V1 + V2;

or the alternate notation V3 = V1.operator+ ( V2 );. However, the friend

implementation of binary operators is generally preferable, since both operator

arguments are handled symmetrically with respect to implicit or user-defined

conversions.

The extraction operator is often overloaded at global scope to output the

internal state of an object in a convenient format, as, for example,

ostream& operator<< ( ostream &out, Vector V ) {

out << ''The vector components are''

<< V.iX << '' and '' << V.iY << endl;

return out;

}
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The statement cout << V3; then yields The vector components are 3 and 5. If

the internal class variables iX and iY are private, the operator must be a friend

of the Vector class.

13.4 Destructors

Having introduced operators and friend functions, we now discuss memory man-

agement in classes that dynamically allocate memory within constructors, as

in

class A {

public:

A( int aValue = 0, int aSize = 2 ):iValue( aValue ), iSize( aSize )

{

iPArray = new int [aSize];

}

void print ( )

{

cout << iValue << endl;

}

int iSize;

int *iPArray;

int iValue;

};

This class definition will in general create memory leaks unless three auxiliary

functions, the destructor, assignment operator and copy constructor, are intro-

duced.

A destructor is called when an object of type A goes out of scope. Without a

destructor, the compiler-assigned internal variables of A1, including the pointer

iPArray, are automatically deallocated. However, the memory that the iPArray

variable points to is dynamically assigned through the new statement in the

constructor of A1 and is therefore not deallocated, yielding a memory leak. Of

course, since the internal class variables in A are public, this could be rectified

by

{

A A1( aValue );

delete [ ] A1.iPArray;

}

However, if iPArray were declared private, a separate public member function

would have to be introduced into the A class definition to enable memory deallo-

cation in the above manner. To automate this procedure a “destructor“ member

function is invisibly called whenever an object of the class type is destroyed in

the same manner as a constructor is called when an object is created. Since the

destructor cannot be called explicitly and does not return a variable, it does not

possess an independent name or return value. Instead, the destructor is denoted

in the class definition by the class name preceded by the ∼ character (the symbol
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not followed by the class name is intended as a mnemonic for object destruction).

In the above example, an appropriate destructor is

~A( ) {

delete [ ] iPArray;

}

If a pointer to a dynamically allocated vector object is destroyed, only the

compiler-allocated pointer variable is deallocated, while the dynamically allo-

cated memory resident at the value of the pointer persists. Therefore an explicit

delete statement must be supplied as in (A’s constructor is a default constructor

since default values are provided for all arguments)

{

A *pA1 = new A;

delete pA1; // Calls pA1’s destructor

}

Deleting the memory of the object assigned to the pointer pA1 calls its destruc-

tor. If memory is not always dynamically assigned to a given pointer by the

constructor, since delete or delete [ ] operators can always safely be applied

to null pointers, any pointer that will be the target of a delete statement in the

destructor should be set to the null pointer in the constructor when dynamic

memory is not allocated.

Before an object is constructed, its base classes are first constructed and

initialized in the order in which they are declared. Within each class, class

members are again initialized in order of declaration. The destructor destroys

memory in the opposite order to that in which it is allocated by the constructor.

13.5 Assignment operators

Recall that, when an object is assigned to a second non-const object of the same

type, the values of all compiler-allocated internal variables of the first object are

copied to the corresponding variables of the second object. However, memory

leaks result if memory is dynamically allocated to an internal pointer variable

through the constructor, as in

main ( ) {

A A1( 3 );

A AGarbage;

AGarbage = A1;

AGarbage.print( ); // Output: 3

}

In the line AGarbage = A1, the values of all compiler-assigned variables,

namely iPArray, iSize and iValue, are copied from A1 to AGarbage in the

main( ) function, a procedure termed a “shallow copy”. Therefore, in the main( )

program, the variable iPArray in AGarbage subsequently points to the same
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memory as iPArray in A1. While the program then functions properly (except

that a change to the array at iPArray in either A1 or AGarbage will propagate

to the other object), a memory leak has occurred. In particular, AGarbage

when created through the default constructor dynamically allocates memory for

an array of two integers and the address of this memory is stored in its iPArray

pointer. When the value of (the memory address stored in) AGarbage.iPArray is

overwritten by A1.iPArray through the assignment statement AGarbage = A1;,

the memory address of the original dynamically allocated array in AGarbage is

lost and cannot subsequently be reclaimed by the operating system until program

termination, even if a destructor function is specified.

A related but more severe error occurs in

A ADangle(2);

{

A A1(3);

ADangle = A1;

} // A1 is destroyed: ADangle.iPArray is deallocated.

ADangle.iPArray[0] = 1;//Intermittent error: illegal memory access

Since the memory locations pointed to by iPArray in both A1 and ADangle

are identical after the assignment statement, once A1 has been destroyed by

exiting the block in which it is defined, ADangle.iPArray points to deallocated

memory.

The above difficulties are resolved by overloading the assignment operator

for objects of type A to prevent the value of the pointer variable, iPArray, in A1

from being copied to the pointer variable in A2 in a statement A2 = A1;. Instead,

if the length of the dynamically allocated array, A2.iPArray, is greater than or

equal to the length of A1.iPArray, each element of A1 must be copied into the

corresponding element of A2 (a “deep copy”). If the size of the array in A2, on

the other hand, is less than the size of A1, the dynamically allocated memory in

A2 should be first deleted and a new array allocated with the same dimension

as A1.iPArray, followed by a deep element-by-element copy operation. Also,

the user-defined assignment operator must copy all compiler-assigned variables

from A1 to A2, since the default assignment operator that normally performs

this operation has been replaced. The signature of an assignment operator is

typeName& operator = ( const typeName& ), where the const keyword is

optional. Accordingly, for our sample class, the overloaded assignment operator

takes the form

class A {

// ... code for internal variables, constructor, destructor, etc.

A& operator = ( const A& aA ) {

// Ensure that the object is not copied onto itself

if ( this == &aA ) return *this;

// Copy compiler-assigned variables
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iValue = aA.iValue;

iSize = aA.iSize;

// Assign new memory to the pointer variable if the

// dimension of the preexisting array is smaller

// than that required by the new array.

if ( iSize < aA.iSize ) {

delete[ ] iPArray;

iPArray = new int[aA.iSize];

}

// Perform a deep copy of the dynamically allocated elements

// in aA to those of the calling object.

for ( int loop = 0; loop < aA.iSize; loop++ )

iPArray[loop] = aA.iPArray[loop];

return *this;

}

};

The first line of the above function prevents the object’s memory from being

released in the case that the object is copied onto itself. A simpler procedure for

transferring the elements of the array aA.iPArray to iPArray is provided by the

memcpy function (the last argument of this function is the number of bytes to

copy):

memcpy( iPArray, aA.iPArray, iSize * sizeof( int ) );

The memcopy function resembles strcpy(s2, s1), which copies a string s1 into a

second string s2, and can duplicate arrays of any dimension.

13.6 Copy constructors

Finally, when an object is defined and simultaneously initialized with a second

object of the same type, a copy constructor as opposed to the assignment operator

is invoked. This occurs in four cases. The first two of these are

A A1;

and

{

A A2Garbage( A1 );

A A3Garbage = A1;

}

which are implemented identically, although the equality sign in the declaration

of A3Garbage incorrectly implies that the assignment operator is invoked. The

last two arise when an object of type A is passed to or returned by a value from

a function, both of which occur when test( ) is called in the examples below:

A test( A aAGarbage ) {

aAGarbage.print( );
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return aAGarbage;

}

and

main( ) {

A A1( 1 );

A A2Garbage;

A2Garbage = test( A1 );

}

In each of the above cases, compiler-assigned variables are copied from one A

object to a second A object through a shallow copy and the address of the dynam-

ically assigned memory in the second object is again lost. However, these copies

do not proceed through the assignment operator but rather through the default

copy constructor, which possesses the signature classType ( const classType& ).

A copy constructor that performs a deep copy is implemented almost identically

to the overloaded assignment operator:

A ( const A& aA ) {

// Copy compiler-assigned variables.

iValue = aA.iValue;

iSize = aA.iSize;

// Assign new array memory to the pointer member variable.

iPArray = new int[aA.iSize];

// Perform a deep copy of the dynamically allocated elements in aA

// to those of the calling object.

memcpy( iPArray, aA.iPArray, iSize * sizeof(int) );

}

The reference parameter in the function signature is required since C++ does not

allow a constructor in a class to have a non-reference object of its own class type

as a parameter. A copy constructor can also be coded by invoking the overloaded

assignment operator:

A( const A& aA ) {

iPArray = new int[aA.Size];

*this = aA;

}

To prohibit copying of objects of a given class, a private copy constructor without

a body can be introduced:

A ( const A & ) { };



Chapter 14

The static keyword, multiple and virtual
inheritance, templates and the STL

This final C++ programming chapter summarizes several additional features of

the C++ language, including the static keyword, unions, bit fields, virtual and

multiple inheritance, templates and the standard template library (STL).

14.1 Static variables

Adding the static keyword to a variable’s definition statement extends its lifetime

from the beginning to the end of the program, although it is not visible outside the

block in which it is defined unless it can be accessed through the scope-resolution

operator. Thus a static variable defined within a function retains its value from

one function call to the next, but cannot be accessed outside the function block

(the body). Any static variable that is defined outside the body of a class is

automatically initialized to zero in the absence of an initializer. A static variable

that records the number of times a function is called is coded as

void f( ) {
static int iStatic = 1;
cout << iStatic++ << endl;

}

main( ) {
f( );
f( );

} // Output is 1 then 2.

The static keyword often simplifies programming but violates the principle of

encapsulation.

14.2 Static class members

If a member variable or function is declared static within a class definition, a

single instance of this class member again exists over the entire lifetime of the

program, irrespective of whether any actual objects of the class are ever instan-

tiated. However, a static variable instance can be accessed outside the class since

it has an associated scope identifier. Consequently, if a class has a static member,

132
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its value is the same for all objects of the class. Since static members are inde-

pendent of the state or even existence of the objects, they can be accessed through

their name preceded by their class name followed by the scope-resolution oper-

ator as well as through the normal member-of or pointer-to-member operators.

Class member variables, whether public, protected or private, that are declared

static must have a corresponding initialization statement at global scope (outside

the class definition) that does not include the static keyword, since these variables

exist even if no objects of the class are instantiated and therefore cannot be initial-

ized within a constructor. If a value is not specified in the initialization statement,

the variable is automatically initialized to zero as in the following example:

class C {
public:
C( ) { cout << ++iStatic << '' '';}
private:
static int iStatic;

};

int C::iStatic; // Zero by default

main ( ) {
C C1;
C C2;

} // Output: 1 2

A static member function, like a static variable, exists throughout program

execution regardless of the number or existence of the class objects. Therefore,

such a function can only change static class variables (as illustrated above, non-

static functions can change static data as well). Further, a static member function

does not have a this pointer, because it is not associated with any particular object.

An example of static member variables together with functions that employ or

change their values is given below:

class C {
public:
static int iStatic;
int iVariable;
C ( int aVariable ) : iVariable( aVariable ) { }
static void setStatic( int aStatic ) { iStatic = aStatic; }
static int calculate( C& aC ) { return iStatic * aC.iVariable; }

};

int C::iStatic = 2; // Zero by default; here 2

main( ) {
C::setStatic( 3 );
C::iStatic( 4 );
C C1( 2 );
C1.iStatic = 5;
cout << C::calculate( C1 ) << endl; // Output: 10

}
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(Note that, since calculate( ) does not depend on any particular C object, it can

be declared static.)

14.3 Virtual functions

Recall that a derived class object can be employed anywhere in a C++ program

that a base class object is expected. That is, if a class, such as Student, is derived

from a second class, e.g. Person, a Student represents a specialized form of

a Person. Therefore, any behavior of a Person should also be applicable to a

Student. However, if a derived class overrides one or more of the functions

(methods) of the base class, the programmer can in certain cases specify whether

the derived class or the base class definition should be employed when a derived

class object is substituted for a base class object. This requires, however, pointer

or reference variables, since storing the address of a derived class object in a

base class pointer does not affect the memory assigned to the object. In contrast,

assigning a derived class object to a base class object truncates the memory

of the derived class variable through a conversion operation that discards the

specialized features of the derived class.

The type of a pointer or reference is normally associated at compile time with

the type specified in its definition statement. Accordingly,

class Person{
public:
void print( ) { cout << ''Person '' << endl; }

};
class Student : public Person {

public:
void print( ) { cout << ''Student '' << endl; }

};

main( ) {
Student Student1;
Person* pPointerToStudent1 = &Student1;
Person& RefToStudent1 = Student1;
pPointerToStudent1 -> print( );
RefToStudent1.print( );
Person Person2 = Student1;
Person2.print( );

}

yields the output Person Person Person since, although the pointer and reference

variables refer to Student objects, they are declared Person* and Person&,

respectively. However, this behavior can be altered for any function that appears

both in the base class and in the derived class by including the keyword virtual in

its base class definition (including the virtual keyword also in the derived class,

while unnecessary, is still recommended for clarity). If a derived class pointer or

object is then assigned to a base class pointer or reference variable, the derived

class object properties are instead employed at runtime. Hence, if different base
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or derived class objects are stored in a base class pointer in response to e.g.

user input and subsequently accessed, different behaviors result. To illustrate,

replacing the Person class above by the code

class Person{
public:
virtual void print( ) { cout << ''Person '' << endl; }

};

yields Student Student Person when the modified program is executed.

A function that is virtual in a base class remains virtual in all derived classes,

including those that are derived through multiple layers of inheritance. If a virtual

function is not defined in a particular derived class, the definition in the parent

class that is closest in inheritance level to the derived class is employed. While

constructors cannot be virtual, destructors should be declared virtual in the base

class so that, if a derived object is deallocated through a pointer to a base type

at runtime, the destructor of the derived type is called.

14.4 Heterogeneous object collections and
runtime type identification

Virtual functions are particularly convenient for processing groups of objects that

are derived from the same base class. Since every member of the derived class

is also a member of the base class, these can be stored as a “heterogeneous”

collection (e.g. a data structure such as an array, list or queue) of pointers or

references to base class objects. If a function is declared virtual in the base

class, its behavior when accessed through the collection will be that associated

with its object type. Since the object type is resolved at runtime, the objects can

further be placed into the collection at runtime according to user selections or

logical outcomes. For example, assuming that print( ) is declared virtual in the

Person base class, a two-element heterogeneous object collection can be created

and accessed in our previous example as follows:

main( ) {
Person **ppArray = new Person*[2];
Person P1;
Student S1;
int select;
for ( int loop = 0; loop < 2; loop++ ) {

cout << ''Insert 0 to create a Person, 1 to create a Student '';
cin >> select; // Sample input: 0 1

cout << endl;
if ( !select ) ppArray[loop] = &P1;
else ppArray[loop] = &S1;

}
for ( int loop = 0; loop < 2; loop++ ) {
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ppArray[loop] -> print( ); // Sample output: Person Student

// cout << endl << typeid( *ppArray[loop] ).name( ) << endl;

// Student *pS2 = dynamic_cast<Student *> ( ppArray[loop] );

// if ( pS2 ) cout << ( typeid( pS2 ) ==

// typeid( Student * ) ) << endl;

}
}

The dynamic_cast<typename> operator above downcasts the base class pointer

to a derived class pointer. If the conversion fails, the operator returns the null

pointer of the type specified by typename. Further, the pointer type can be

established during program execution through the typeid( ) function defined

in the <typeinfo> header file. This function, which can be applied to pointers,

references and dereferenced pointers, generates an object of the type_info class.

The name( ) member function of this class returns the type of its argument as a

string. The procedure is illustrated through the commented lines in the program

above, which print out the type of the dereferenced pointers stored in ppArray,

namely Person or Student (in Dev-C++ preceded by a number) followed by 1

for each value of loop such that ppArray[loop] is a pointer to a Student.

14.5 Abstract base classes and interfaces

Since a pointer or reference to a virtual function associates its implementation

with the type of the containing object, if base class objects are never constructed,

the bodies of one or more virtual functions are superfluous and can be omitted

from the base class. Such a class is then termed an abstract (base) class. A

class that derives from an abstract base class must supply bodies for all missing

functions in order to construct objects of its type. The base class thus provides

an interface to which physical derived classes must conform by supplying all

requested function definitions. A function declaration (prototype) appearing in a

base class without a corresponding function definition (body) is termed a pure

virtual function, while a class that contains one or more pure virtual functions is

labeled an abstract class.

Abstract classes are often employed as base classes for heterogeneous object

collections since derived class elements can always be placed into arrays of

pointers to base class objects:

#include <iostream.h>

class Person{
public:
virtual void print( ) = 0;

};

class Student : public Person {
public:
void print( ) { cout << ''Student'' << endl; }

};
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class Worker : public Person {
public:
void print( ) { cout << ''Worker'' << endl; }

};

main( ) {
Student Student1;
Worker Worker1;
Person *PArray[2] = { &Student1, &Worker1 };
PArray[1] -> print( ); // Output: Worker

}

Abstract base classes provide an interface that derived classes must conform to,

as opposed to standard inheritance, which instead provides an implementation

that is adopted by the derived classes. In interface inheritance, the compiler

verifies that the derived classes provide all required behaviors.

14.6 Multiple inheritance

A derived class may inherit the attributes (internal variables and functions) of

any number of parent classes. As a simple illustration of a class C that inherits

the member variables and functions of two base classes, A and B,

class A {
protected:
int iA;
A( int aA ) : iA( aA ) { }
void print( ) { cout << iA << endl; }

};
class B {

protected:
int iB;
B( int aB ) : iB( aB ) { }
void print( ) { cout << iB << endl; }

};
class C: public A, public B {

public:
int iC;
void print( ){ B::print( ); }
C( int aA, int aB, int aC ) : A( aA ), B( aB ) { iC = aC; }

};

Since the constructor of class C passes arguments to the base class constructors of

A and B through its initialization list, these are invoked before C is constructed.

However, since iA and iB are inherited member variables of C, its constructor

can also be written as

C( aA, aB, aC ) : iA( aA ), iB( aB ), iC( aC ) { }

Note that the print( ) functions of the parent classes of C are distinguished in

class C through the scope-resolution operator.
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14.7 Virtual inheritance

An ambiguity in multiple inheritance occurs if e.g. two classes Student and

Worker both inherit from a common base class Person while a further class

StudentEmployee inherits from both Student and Worker. In this case, a data

member or function such as print( ) in the Person class is inherited in Stu-

dentEmployee through both Student and Worker. Thus, print( ) is inherited

twice (whether or not it is declared virtual in the base class or overridden in

one or both of the Student or Worker classes), once through Student and once

through Worker. As a result, calling print( ) in StudentEmployee requires a

scope-resolution operator such as Student::print( ), since the compiler cannot

resolve which of the two inherited print( ) statements is intended (even if they

are identical). Secondly, a pointer or reference to StudentEmployee cannot be

employed where a pointer or reference to a Person is required, as evidenced by

class Person{
public:
void print( ) { cout << “person” << endl; }

};

class Student : public Person {
};
class Worker : public Person {
};
class StudentEmployee : public Student, public Worker {
};

main( ) {
StudentEmployee SE1;
SE1.print( ); // Error: ambiguous member

Person *pP1 = &SE1; // Error: cannot convert to Person*

pP1 -> print( );
}

which yields the error messages shown. To insure that only a single copy of the

base class and hence print( ) is inherited by StudentEmployee, the Student and

Worker class signatures must be replaced with

class Student : virtual public Person {
};
class Worker : virtual public Person {
};

14.8 User-defined conversions

While many promotions and conversions among built-in types such as those

from int to float or double are implicit in C++, additional conversions are

programmed either as conversion operators in class definitions or as single-

argument constructors. That is, if a class A is to be automatically converted to a
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class B, a conversion operator can be introduced in the A class with the special

signature operator B( ); that implements a cast from A to B. Alternatively, a

single-argument constructor can be defined with the signature B( A ) in the B

class. To illustrate both procedures, the following converts a Fahrenheit to a

Celsius temperature according to ◦F = 9/5 ◦C + 32 through a single-argument

constructor and converts a Celsius temperature to a double:

class Celsius;

class Fahrenheit {
public:

double iDegrees;
Fahrenheit( Celsius aCelsius );
Fahrenheit( double aDegrees ) : iDegrees( aDegrees ) { }
operator double( ) { return iDegrees; }

};

class Celsius {
public:

double iDegrees;
Celsius ( double aDegrees ) { iDegrees = aDegrees; }
Celsius( Fahrenheit aFahrenheit ) {

iDegrees = ( aFahrenheit.iDegrees - 32.0 ) * 5.0 / 9.0; }
operator double( ) { return iDegrees; }

};

Fahrenheit::Fahrenheit( Celsius aCelsius ) {
iDegrees = aCelsius.iDegrees * 9 / 5 + 32.0; }

void printState( Celsius aC ) { aC <= 0. ? cout <<''Below Freezing''
<< endl : cout << ''Above Freezing'' << endl; }

main ( ) {
Fahrenheit F( 34.0 );
Celsius C = F;
cout << double( C ) << endl; // Output: 1.11111

printState( F ); // Output: above freezing

}

To prohibit single-argument constructors from automatically functioning as con-

version operators, the keyword explicit can be included in their type definitions.

14.9 Function templates

A class or function can be applied to variables or objects of several different types

without coding many nearly identical copies through the template keyword. This

keyword transforms class names in the program into metaparameters that can

be assigned different values. At compile time, a separate copy of the template

component is generated by the compiler for each distinct set of metaparameter

types. A function template (which is not universally supported) is illustrated by the

following example, which copies arrays of any specified class type after adding

32, the offset between large and small characters in the ASCII character set:
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template <class C1, class C2> void copy( C1 aOutput[ ],
C2 aInput [ ], int aN ) {
for( int loop = 0; loop < aN; loop++ )

aOutput[loop] = aInput[loop] + 32;
}

The keywords class and typename are interchangeable in the template argument

list. The above function can be called without template parameters as in the first

call to copy( ) in the program below. The class identifiers C1 and C2 are then

automatically determined from the types of the function parameters so that C1

and C2 evaluate to double and int, respectively. Alternatively, as in the next

line of the program, the template parameters can be explicitly supplied in the

parameter list. Finally, in the third call to copy( ), the template function arguments

are implemented as char arrays:

main( ){
double myDouble[10], myDoubleNew[10];
int myInt[10] = { 1 };
copy ( myDouble, myInt, 10 );
cout << myDouble[0] << endl ; //Output : 33

copy <double, double> ( myDoubleNew, myDouble, 10 );
char c1[5], c2[5] = { 'A' };
copy ( c1, c2, 5 );
cout << c1[0] << endl; //Output: a

}

Default template parameter values cannot be specified in a function template;

however, a non-template specialization of a function can overload a template

function with the same name. Hence, if a second non-template copy( ) function

were employed in the above program with specific parameter types such as

void copy( char aOutput[ ], char aInput [ ], int aN ) {
for ( int loop = 0; loop < aN; loop++ )

aOutput[loop] = aInput[loop] + 32;
}

this would be called in place of the template function whenever the copy function

is passed two character arrays, as in the third function call in main( ) above.

14.10 Templates and classes

A template class is coded analogously to a function template. An example,

which requires that the class parameters that are substituted for C1 and C2

possess appropriately overloaded stream insertion operators (<<), is given by
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#include <sstream>

template <class C1, class C2 = int, int aN = 1> class Logical {
C1 iC1;
C2 iC2;
int iN;

public:
Logical ( C1 aC1, C2 aC2, int aN ) : iN( aN )

{ iC1 = aC1, iC2 = aC2; }
void and( ) { cout << ( iC1 && iC2 ) << '' '' << iN << endl; }
string asString( );

};

template <class C1, class C2, int aN>
string Logical<C1, C2, aN>::asString( ) {

stringstream sout;
sout << iC1 << ' ' << iC2 << endl;
return sout.str( );

}

Then the output of

main( ) {
Logical<int, bool> Test( 0, 0, 3 );
Test.and( );
cout << Test.asString( );
}

is

0 3
0 0

Note the placement of the scope operator in the asString( ) function definition.

The “non-type” template parameter aN cannot be a floating-point variable, class,

pointer or array and must be assigned a compile-time constant of a compatible

type (for example, if aN is of type bool it can be set to either of the bool constant

values true or false or to a variable of type const bool). If default parameters

are omitted from the template parameter list, their default values are employed.

As in the case of functions, default parameters must appear last in the template

argument list.

A static member variable of a templated class possesses a separate realization

for each template instantiation, i.e. each time the template is called with a distinct

set of template parameters. Thus

template< class T > struct MyStatic { static int iI; };
template< class T > MyStatic < bool >::iI;
template< class T > MyStatic < char >::iI;

main( ) {
MyStatic< bool > MB1, MB2;
MyStatic< char > MC1, MC2;
MB1.iI = 2;
MyStatic< char >::iI = 'a';
cout << MB2.iI << ' ' << MyStatic<bool>::iI

<< ' ' << MC2.iI << endl;
}
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yields the output 2 2 97. Referring to static template variables through the syntax

classname<typename>::staticvariablename identifies the variable as static and

is therefore recommended.

Template arguments can encompass further template parameters, constant

expressions except for float or double types and the addresses of external objects,

which includes function names, references and pointer variables. While a full

discussion of templates far exceeds the scope of this book, the example below

illustrates some of these features:

template <class T = int> struct square {
double operator ( ) ( T aX ) { return aX * aX; }

};

int cube( int x ) { return x * x * x; }

template < typename T, int (*aF) (int) > double test( int aI ) {
cout << (*aF)( 10 ) << ' ' ;
return aF( aI );

}

main ( ) {
cout << test<square<double>, cube > ( 6.0 );

} // Output: 1000 216

Template classes can simplify program structure and hasten execution. To create

a template class, a specialized case should be first coded and verified and only

then subsequently generalized by successively introducing template parameters.

14.11 The complex class

Complex numbers are implemented as templates through the <complex> header

file. Thus a complex-number object with double real and imaginary values is

defined as

complex<double> c;

To initialize a complex object to a value such as 1 + 2i, either of the following

two statements can be employed:

complex<double> c = complex<double>( 1., 2. );
complex<double> c( 1., 2. );

The real and imaginary parts of c can be accessed through the real( ) and

imag( ) member functions, e.g. c.real( ) and c.imag( ). Standard arithmetic

operators such as +, -, *, /, += . . . as well as the stream insertion and extraction

operators << and >> are overloaded for complex objects. Additional functions

in the complex class include arg( ), conj( ), abs( ), polar( r, t ), which yields

rei t , where r and t must be floats or doubles, cos( ), cosh( ), exp( ), log( ),

log10( ), pow( ), sqrt( ), sinh( ), tan( ) and tanh( ). Hence
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#include <complex>
main( ) {

complex<double> c1 = complex<double>( 1., 2. ), c2( -1., 1. );
complex<double> c3 = ( c1 + c2 ) / 3.0;
c1 = exp( M_PI * c3 );
c2 = polar( 1., M_PI / 2. );
cout << c1 << '\n' << c3 << '\n' << c2 << endl;

}

yields

(-1,1.22461e-16)
(0,1)
(6.12303e-17,1)

14.12 The standard template library

Modern C++ compilers generally include the STL (standard template) data-

structure library. While a detailed discussion of these classes exceeds the scope

of this text, several frequently recurring features illustrate the relevant interfaces.

The fundamental data types implemented by the STL library are vector,

dequeue, list, set, multiset, map, multimap, stack, queue and priority_queue.

Each is defined through a corresponding #include statement, e.g. if a stack

appears in a program, its definition must be preceded by the statement #include

<stack>. However, queue and priority_queue, map and multimap and set and

multiset share the include files <queue>, <map> and <set>, respectively.

Although the member functions of each of the above classes differ, certain

functions are common to almost all STL classes. These include the destructor,

copy constructor and assignment operator, the empty( ) function that returns

true if the container is empty, the max_size( ) function that can be used to

set the maximum container size, the size( ) function that returns the number of

elements in the container, erase( ) and clear( ), which erase a given number and

all elements from the container, respectively, and the comparison operators <, >,

<=, >=, == and != that compare the elements of two similar classes. Another

shared concept is the iterator, which is an object that can be used to step through

the elements of a container (except for stack, queue and priority_queue). An

iterator object, defined for a vector container through the syntax

vector <object type>:: iterator it;

possesses two member functions, it.begin( ) and it.end( ), that respectively return

a pointer to the first member of the container and to a fictitious member one

element beyond the end of the container. The iterator class includes an increment

operator (++) and a decrement operator (−−) that displace the pointer by one

container element, the comparison operators == and != and the assignment
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operator, =. The iterators of the random-access vector and deque classes further

permit random access in the container through the index operator it[n], the at

member function it.at( n ) or the corresponding pointer expression *( it + n ).

We illustrate the above concepts through a simple example that stores and

then prints four values {0, 1, 2, 3} in a four-component STL vector object (note

that the elements of an STL object are initialized to zero when defined):

#include <vector>
#include <iterator>

main ( ) {
// Elements initialized to zero

vector < int > aV( 3 );
vector < int > :: iterator pItV;
// Size expanded to 4 elements; aV[3] = 3.

aV.push_back( 3 );
aV[1] = 1;
aV.at( 2 ) = 2;
for ( pItV = aV.begin( ); pItV < aV.end( ); pItV++ )

cout << *pItV << endl;
}

The output of this program is

0
1
2
3

The push_back( 3 ) statement adds an additional element aV[3] = 3 to the end

of the vector aV. The at( ) function, unlike the index operator [ ], implements

bounds checking so that attempting to address a nonexistent vector element raises

a runtime exception. Other important functions are the sort( ) function of the

vector and dequeue classes, and the insert( ), remove( ) and resize( ) functions

of the vector class that respectively insert or remove values at specified locations

and resize the vector to a user-specified value. The resize( ) function can be

employed to avoid the automatic resizing of the push_back( ) operation, which

either increases the size of a vector by one for each invocation or doubles its size.

The data types set, multiset and priority_queue sort values after insertion

according to a comparator functor, which is a class employed in the same manner

as a function. For simple built-in data types, the default comparator automatically

sorts the values in increasing order as for the set below (the constructor arguments

for S1 denote the address for the pointer S1.begin( ) and for S1.end( ), respec-

tively, where the last pointer is one element beyond the end of the construct):

#include <set>
#include <iterator>

main ( ) {
double a[3] = { 1.3, 2.5, 0.3 };
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set < double > S1( a, a + 3 );
set < double > :: iterator pItS;
S1.insert( 0 );
S1.insert( 1.3 );
for ( pItS = S1.begin( ); pItS != S1.end( ); pItS++ )

cout << *pItS << endl;
}

This yields

0
0.3
1.3
2.5

For user-defined data types, however, a comparator functor, when required, must

be specified as in

#include <set>
#include <iterator>

class C {
public:
int value1, value2;

};

class myGreater {
public:
myGreater( ) {
}
bool operator( ) ( const C &C1, const C &C2 ) {

return( C1.value1 < C2.value1 );
}

};

main ( ) {
C C1 = { 1, 2 };
C C2 = { 3, 4 };
set <C, myGreater> s;
set <C, myGreater> :: iterator pItV;
s.insert( C1 );
s.insert( C2 );
for ( pItV = s.begin( ); pItV != s.end( ); pItV++ )

cout << (*pItV).value1 << ' ';
}

which yields 1 3. The principle of operation of the functor is that, since the

constructor has no effect in the class myGreater, the function myGreater( C1,

C2 ) is invoked without first instantiating a myGreater object. The member

operator function operator( ) of myGreater is then called directly.

Finally, the STL contains mathematical functions that operate on STL data

structures as in

#include <algorithm>
#include <iterator>
#include <vector>
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// for accumulate

#include <numeric>

int tripleFunction ( int aValue ) { return 3 * aValue; }

int tripleAccumulateFunction( int aPartialSum, int aValue ){

return aPartialSum + 3 * aValue;

}

main( ) {

ostream_iterator <int> myOut( cout, ''loop element \n'' );

vector < int > myVector ( 20 );

// places 5 in all 20 positions

fill( myVector.begin( ), myVector.end( ), 5 );

// changes first three values to 3

replace( myVector.begin( ), myVector.begin( ) + 3, 5, 3 );

// three-element zero vector

vector < int > tripleResult( 3 );

// third and fourth elements copied and tripled

transform( myVector.begin( ) + 2, myVector.begin( ) + 4,

tripleResult.begin( ), tripleFunction );

// new vector sorted

sort( tripleResult.begin( ), tripleResult.end( ) );

copy( tripleResult.begin( ), tripleResult.end( ), myOut );

cout << endl;

// sums elements

cout << accumulate( tripleResult.begin( ), tripleResult.end( ), 0 );

cout << endl;

// triples and sums

cout << accumulate( tripleResult.begin( ), tripleResult.end( ), 0,

tripleAccumulateFunction );

}

which yields

0 loop element
9 loop element
15 loop element
24
72

In the program, an ostream_iterator object myOut is first created for int val-

ues. Iterators of this type are associated with cout so that the copy function

can be employed to print out the elements of the container (here a vector) by

sending these to the ostream_iterator. A 20-element and a 3-element vector

object, which store int values, that are by default initialized to zero are defined.

Subsequently, all elements of the 20-element vector, myVector, are set to 5 and

then 5 in the first three elements is replaced by 3. The third and fourth elements

in myVector are tripled through the user-defined function tripleFunction( ) that

is passed as a parameter to the STL transform( ) function, which places the

result into the first two positions of the three-element zero vector tripleResult.

The three elements are sorted and the result printed. Finally, two forms of the

accumulate( ) function process the elements of the tripleResult vector. The first

simply adds the elements while the second calls the user-supplied global function

tripleAccumulateFunction( ) to evaluate the sum of three times each element.



14.13 Structures, unions and nested classes 147

The transform( ) function accepts certain predefined functors as arguments,

such as in

transform( inputVector1.begin( ), inputVector1.end( ),
inputVector2.begin( ), outputVector.begin( ),
minus<double>( ) );

which subtracts the elements of inputVector2 from the corresponding elements

of inputVector1 and places the result into outputVector. Many other functors

can replace minus<double>( ), such as plus<double>( ) or multiplies<double>(

); and the output vector can be identical to either of the input vectors. The vector

inner product is

inner_product( inputVector1.begin( ), inputVector1.end( ),
inputVector(2).begin( ), 0., plus<double>( ),
multiplies<double>( ) );

14.13 Structures, unions and nested classes

A structure is identical to a class, except that the internal data members are public

rather than private by default, and the keyword class is replaced by struct. Thus

class MyClass {
int m;
public:
double n:

}

is functionally identical to

struct MyClass {
double n;
private:
int m;

}

A struct often groups public variables of different types into a generalized array.

A union is identical to a struct except that all data members share the same

storage:

union U{
int m;
int n;

}

main ( ) {
U U1;
U1.m = 3;
U1.n = 0;
cout << U1.n << endl; // Output: 0

}
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A union reduces the memory required by a program, but only a single variable

in the union can be accessed at a given time. Unions can also simplify access to

different memory locations in a data type, as illustrated by

union U{
int m;
char c[4];

};

main( ) {
U U1;
U1.m = 65;
cout << U1.c[0] << endl; // Output: A

}

which displays A, corresponding to ASCII code 65. If a union contains two

variables, such as an integer and a single-character variable that occupy differing

amounts of storage, the variables overlap at the least-significant memory bits.

Class (and structure) definitions can be nested as in the example below:

struct S {
int iS;
struct C {

int iS;
};
print( ) { C C1 = { 2 }; cout << iS << '\t' << C1.iS; }

};
main( ) {

S S1 = { 1 };
S1.print( ); // output: 1 2

cout << S1.C.iS; // compile error: C not visible outside S

}

However, a nested class is accessible only to the members and friends of the

class.

14.14 Bit-fields and operators

Applications such as interfacing a computer with external devices often require

manipulation of single bits or sets of bits. This process can be facilitated by

defining a bit-field of the form

struct myBitField {
unsigned firstBit: 1;
unsigned secondBit: 2;
unsigned thirdBit: 1;

};

Then e.g. myBitField MB; creates a one-bit variable labeled MB.firstBit, a

two-bit variable MB.secondBit and a second one-bit variable MB.thirdBit.

These variables are ordered in either ascending or descending memory locations
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depending on the computer hardware; however, the first bit appearing in the bit-

field is placed in the least-significant bit (bit zero) of the memory space reserved

for the field.

C++ provides operators that manipulate individual bits within a given vari-

able. These comprise the bitwise logical operators and (&), or (|), exclusive or (ˆ),

not (∼) and the right and left shift operators >> and << that shift the bit pattern

of the variable right and left by a given number of bits (specified to the right of

the operator), respectively, and introduce 0 in place of bits that are dropped. The

& and >> operators are illustrated below through two methods for printing out

the bit pattern associated with an arbitrary character variable (the union overlaps

the single-bit field with the least significant bit of the character variable):

struct aBit {
unsigned bit: 1;

};

union charBit {
char c;
aBit aB;

};

main( ) {
charBit CB;
CB.c = 'e';
for ( int loop = 0; loop < 7; loop ++ ) cout << '' '';
for ( int loop = 0; loop < 8; loop++ ) {

( CB.aB.bit ) ? cout << ''1'' : cout << ''0'';
CB.c = CB.c >> 1;

// alternative code

// ( CB.c & 1 ) ? cout << ''1'' : cout << ''0'';

// CB.c = CB.c >> 1;

}
}

14.15 Program optimization

Advanced constructs such as templates, virtual function calls, pointers and ref-

erences restrict the range of optimization techniques available to the compiler,

which must retain features that, although rarely employed, could result from

these language elements. Proper coding can, however, compensate for the result-

ing loss of efficiency. For example, often a large fraction of the computation time

is spent in a few inner loops. These time-critical code segments can be located

and often subsequently streamlined through a profiler such as that available by

setting the compiler options in Dev-C++. However, many standard procedures

for enhancing program operation are automatically performed by modern C++

compilers, as, for example
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� Replacing multiplication by addition, floating-point artithmetic by integer arithmetic

and doubles by floats (floats are often automatically converted to doubles).

� Insuring that the matrix indices furthest to the right are incremented in the innermost

loops.

� Reversing loops so that the loop index runs backward from the largest value of the

iterator to the smallest value.

� Unrolling loops so that a loop containing e.g. 20 iterations of one statement is replaced

by a loop containing five iterations of four identical statements.

� Employing the register keyword to instruct the compiler to place certain variables into

internal CPU memory registers.

� Blocking or tiling loops to fit subcalculations into main or cache memory. While

substantial performance improvements can result, such techniques require knowledge

of the computer hardware. The performance advantage also decreases as the speed of

main memory approaches that of cache memory.

Some methods that will often improve performance are

� Replacing division with multiplication and small integer powers by repeated products.

� Insuring that e.g. a product that is repeatedly evaluated in an inner loop but always

results in the same value is moved to an outer loop or outside all loops. Similarly,

if the same calculation is repeated in an inner loop, its result should be stored in an

appropriate array or matrix variable. As an example:

for ( int outerLoop = 0; outerLoop < 100; outerLoop++ ) {
for ( int innerLoop = 0; innerLoop < 100, innerLoop++ )

A[outerLoop][innerLoop] =
sin( 2.0 * M_PI * outerLoop / 100.0 ) *
sin( 2.0 * M_PI * innerLoop / 100.0 );

}

can be replaced with

double sinConstant = 2.0 * M_PI * 0.01;
double sinArray[100];
for ( int loop = 0; loop < 100; loop++ )

sinArray[loop] = sin( sinConstant * loop );

for ( int outerLoop = 0; outerLoop < 100; outerLoop++ ) {
double sA = sinArray[outerLoop];
for ( int innerLoop = 0; innerLoop < 100, innerLoop++ )

A[outerLoop][innerLoop] = sA * sinArray[innerLoop];
}

� Improving the speed of numerical algorithms. For complex tasks, this often requires a

sophisticated program library. However, for well-behaved problems, compact programs

such as those found in this text often perform more rapidly. Such code can be tailored

to the specific problem, as, for example, if certain input variables are never altered or

all elements of an array are identical.
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� Use of appropriate data structures. The efficiency of numerical methods that frequently

access data can often be improved by replacing arrays with appropriate data structures,

such as representing a sparse array by a linked list.

� Selecting the highest correctly functioning optimization flag. Compilers generally pos-

sess optimization flags that require the absence of certain programming structures if

they are to function as intended. Consequently, a program should be compiled and run

without optimization and the results compared with those obtained at higher optimiza-

tion levels.

� Inlining functions: small functions that are called frequently during execution should

be declared inline (recall, however, that functions appearing in the body of a class

definition are normally automatically inlined).



Chapter 15

Creating a Java development
environment

While scientific programs are less frequently written in Java than in C++, in

certain contexts, such as internet applications, the enhanced Java feature set sig-

nificantly shortens development time. Since many high-level constructs in Java

reflect an involved and largely hidden underlying structure that often precludes

a description in terms of a compact set of underlying principles, the subsequent

discussion focuses on compact code samples that illustrate the most significant

aspects of the language. Once a basic understanding of Java has been acquired,

specialized programming tasks can often be addressed by extending these sam-

ples while consulting a full list of the specialized functions available in the

language.

While numerous free integrated Java development environments exist, flags

can be set inadvertently, leading to anomalous behavior that often proves difficult

to correct. Additionally, the details of the Java file structure which constitutes

an important feature of the language are often obscured. This text therefore

employs a command-line compiler, the Java DISLIN graphics package and a

text editor. Downloading, installing and testing these components is described

below.

15.1 Basic setup

To being the process of installing Java, download and install the Java JDK (Java

Development Kit) from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

the Notepad++ editor from

http://sourceforge.net/projects/notepad-plus/

and finally DISLIN for Java from

http://www.mps.mpg.de/dislin/server.html

The correct DISLIN distribution is named dl_**_jv.zip for 32-bit Windows,

where ** represents the version number. Install DISLIN into a new directory

X:\dislinjava, where X, which should in most cases be substituted by C, repre-

sents the drive (local-disk) letter. Otherwise, files in the C++ DISLIN directory,

152
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X:\dislin, created at the beginning of the C++ section of this book will be

overwritten.

Next double click on Control Panel and then double click on the System icon.

Click on the Advanced System Settings pushbutton or the Advanced tab and then

the Environment Variables pushbutton near the bottom of the pop-up window.

In the System Variables listbox find the entry marked Path. Click on this entry

to highlight it and select Edit. Right click in the text-entry field labeled Variable

Value and with the right-arrow on your keyboard advance to the end of the text

string. Without introducing a space, add (after again replacing X by the letter of

the appropriate drive, C or D)

;X:\Program Files\Java\jdk1.6.0_17\bin;X:\dislinjava\win;

to the end of the string (be sure to place a semicolon between each directory

entry and the next, as above). Replace, however, 1.6.0_17 in the line above

with the corresponding number of the JDK version that you have downloaded.

This number can be found by employing e.g. Windows Explorer to navigate

to the X:\Program Files\Java directory and examining the name of the JDK

subdirectory. Finally, if DISLIN for C++ is not installed, repeat this last step with

the Variable Name DISLIN and Variable Value field X:\dislinjava and depress

OK a third time. If DISLIN for C++ has, however, already been installed, find

DISLIN in the list of system variables, highlight it, press Edit and replace the

C++ install directory, normally X:\dislin, with X:\dislinjava. Depress OK a

final time to exit the Environment Variables menu page. However, the DISLIN

environment variable now does not evaluate to the directory required for C++.

Consequently, either the preceding step should be reversed when programming

in C++ or, before compiling DISLIN C++ programs, enter the command (be

sure not to include spaces around the equality sign)

set DISLIN=X:\dislin

from within the Command Prompt window (see below). You can determine

whether the system variables have been properly set afterward by entering e.g.

echo %DISLIN%

Alternatively, retain the C++ system variable setting and enter set

DISLIN=X:\dislinjava in the command window before compiling Java DIS-

LIN programs.

15.2 Command-line operation

Since the Java implementation installed above is run from within a command

window, also termed a shell or command-line interpreter, basic command-line



154 A Java development environment

operation is reviewed in this section. The normal procedure for opening a com-

mand window is to select Start → Programs → Accessories → Command Prompt

from the Start button. Next type

cd X:

where X should again be replaced by the letter of the (logical) drive on which the

programs will be stored. To navigate into the root directory of X:, type

cd \

To create a subdirectory (folder), programs, of the root directory in which to

place programs, enter

mkdir programs

and then type cd programs or equivalently cd .\programs to enter this subdi-

rectory (. and .. represent the current and parent directory, respectively). More

generally, if a subdirectory is contained within a higher-order directory, direc-

tory1, of the currently active directory, type instead cd directory1\directory or

equivalently cd directory1/directory. The command

dir

lists the files in this subdirectory (currently none), while

del filename

deletes the file named filename, which must include the three-letter extension

when present, such as program.cpp

rename oldfilename newfilename

renames a file and

copy filename newfilename

copies a file. Typing

rmdir subdirectoryname

from the directory above an empty subdirectory with the name subdirectory-

name removes it. In specifying file names, the asterisk * can be employed to

match any sequence of numbers or letters except for the period that separates the

file name from the file extension, while a question mark matches any single valid

character. Thus del * deletes all files without three-letter extensions, del *.cpp

deletes all files with the extension .cpp, del h?.* deletes all files with names
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beginning in h and that possess a two-letter file name and del *.* deletes all files

in the directory.

15.3 A first graphical Java program

To start programming in Java, start Notepad++ and enter

import de.dislin.*;
class HelloWorldApp {

public static void main( String[ ] args ) {
float x[ ] = { 1, 2, 3 }, y[ ] = { 1, 3, 2 };
Dislin.qplot( x, y, 3 );
System.out.println( ''Hello World'' );

}
}

Save this code in the directory created in the preceeding section as the .java

source file HelloWorldApp by selecting File → Save from the menu bar at the

top of the editor or depressing the third (save) floppy-disk icon on the button bar

and navigating to the myprograms directory. Be sure to save the file as type Java

source file so that it acquires a .java extension (it will automatically be saved as

HelloWorldApp.java). The file name must be properly capitalized.

Java commands can now be entered directly into the command-line window

opened in the previous section. However, Notepad++ provides a more conve-

nient toolbar item through the Execute → Open current dir cmd menu item.

After either selecting this item or opening a command-line window, enter cd

X: followed by cd myprograms inside the resulting command window to navi-

gate to the directory containing the program above, and then issue the command

javac HelloWorldApp.java. If the program was entered correctly, a new file

HelloWorldApp.class will be created, as can be verified by typing dir or dir h*.

If error messages appear, return to Notepad++, correct and save the program

and recompile with javac. Once the .class file has successfully been created,

entering java HelloWorldApp generates the message “Hello World” together

with a graph.

15.4 DISLIN applet

To display a DISLIN graph from within an applet (a .html page), modify the

program of the previous section to read

import de.dislin.*;
class HelloWorldApp {

public static void main( String[ ] args ) {
float x[ ] = { 1, 2, 3 }, y[ ] = { 1, 3, 2 };
Dislin.metafl( ''JAVA'' );
Dislin.qplot( x, y, 3 );
System.out.println( ''Hello World'' );

}
}
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Again create the file HelloWorldApp.class by typing javac

HelloWorldApp.java and then java HelloWorldApp. However, the Dis-

lin.metafl( "JAVA" ) statement now instructs Java to create the file dislin_1.java

(if a file of this name already exists in your directory, the resulting file is labeled

dislin_2.java, as will be indicated during program execution). This file contains

a Java program for the graph displayed in the previous section. To introduce

the graph into a .html page, first create the file dislin_1.class by entering javac

dislin_1.java. Then, returning to notepad++, create the following text file:

<HTML>
<TITLE> A Dislin Example </TITLE>
<BODY>
Text to appear before the applet
<P><APPLET codebase=''.'' code=''dislin_1.class'' width=900 height=700>
Text to appear if an error prevents the applet from appearing
</APPLET><P>
Text to appear after the applet
</BODY>
</HTML>

Save this as a .html file by selecting File → Save as menu item from the menu

bar. To view the .html page select Run → Launch in (the desired browser) on the

Notepad++ menu bar. If the page is changed, the browser should be closed and

this menu item reselected.

15.5 Graphics applet

Java has an extensive set of built-in graphics routines that can be employed to

extend the following sample applet:

import java.applet.Applet;
import java.awt.*;

public class myApplet extends Applet {
private static Frame window = new Frame( ''Drawing'' );
public void paint( Graphics g ) {

g.drawString( ''A Graph'', 400, 400 );
g.drawLine( 0, 10, 500, 500 );
g.drawLine( 100, 100, 40, 600 );
g.setColor( Color.cyan );
g.fillOval( 300, 300, 80, 275 );

}
}

Saving this code as myApplet.java, compiling with javac myApplet.java and

modifying the .html file of the previous example by replacing dislin_1.class

with myApplet.class generates a drawing containing graphics components that

are apparent from the code above. The important feature of this code is that an

applet that employs the abstract window toolkit (java.awt.*) does not employ a

main( ) function. Instead, the public void paint( Graphics g ) function is



15.6 Packages 157

called and the enclosed graphics directives executed. Since such constructs,

which cannot be predicted from a set of underlying language principles, occur

frequently, the reader is advised at least initially to solve problems by modifying

preexisting programs wherever possible.

15.6 Packages

Every Java type must be encapsulated within a class or a related entity, namely an

interface, enumeration or annotation (a Java version of a template). Each Java file

must contain a single public class with the same name (including capitalization)

as the file but without a .java extension.

In order to avoid name collisions and thus facilitate dynamic loading of classes

at runtime Java replaces the C++ namespace with a package structure such that

every class belongs to a package. While a class name is a single, normally capital-

ized word, a package name normally consists of several words joined with periods,

such as java.awt. This name serves as an effective namespace for each element

in the package, so that e.g. an object (reference) of a class Printer in java.awt

can be defined by java.awt.Printer P1;. The current directory functions as an

unnamed default package such that any class file is visible to other classes in the

directory. A user-defined package labeled packageName is generated by insert-

ing package packageName; at the beginning of every file in the package. These

files must further be placed in a subdirectory of the active directory with the same

name, packageName, as the package. If the file is instead included in a subdirec-

tory, packageName1, of packageName, then packageName must be replaced

by packageName.packageName1 throughout. Suppose a class MyClass exists

inside the file MyClass.java that is in turn situated in the package packageName

that is a subdirectory of the current directory. Then, a Java program in the cur-

rent directory can create an object of type MyClass, either with the statement

packageName.MyClass1.MC1 = new packageName.MyClass( ); or by begin-

ning the program with import packageName.* to import all files in the

package followed by MyClass MC1 = new MyClass( );. A single file

in this package is imported through import packageName.MyFile. If the

class MyClass appears also in a second imported package, the full quali-

fier packageName.MyClass.MC1 is required when referring to MC1. If the

packages are located in subdirectories of different directories than the cur-

rent directory, these directories can be automatically incorporated by set-

ting the CLASSPATH environment variable. For example, if CLASSPATH

=.;C:\dir1\packageName package names are referred either to the current

directory (.) or to C:\dir1\packageName.

The basic Java library comprises 23 packages. The “java.lang” core language

classes are implictly imported; that is, the Java environment functions as if the

statement import java.lang.*; were present at the beginning of each program.

Classes belonging to java.lang include
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java.lang.Math // advanced mathematics functions

java.lang.String // string-handling functions

java.lang.StringBuffer // string buffering and

// manipulation functions

java.lang.Thread // thread manipulation and

// multithread support

java.lang.Exception // exception-handling routines

java.lang.Error // error-handling routines

as well as the Byte, Double, Float, Integer, Long and Short classes, which

contain functions that act on their respective data types. Additional Java packages

that appear in this text include

java.applet // classes for applets

java.awt // GUI classes

java.awt.event // event classes

java.io // input/output classes

java.lang.reflect // reflection API classes

Note that package or import statements must appear first in a program, which

must contain a single public class definition with the same name as the file. To

illustrate,

Program PackageExample.java in the directory X:\rootdirectory

//with this present can write Multiply.f( 2, 3 )

//import myFunction.*;
//in place of myFunction.Multiply.f( 2, 3) below

public class PackageExample {
static private class ExponentialConstants {

static private double iE = 2.7;
}

public static void main( String[ ] args ) {
myFunction.Multiply.f( 2, 3 );
System.out.println( ExponentialConstants.iE *

Multiply.MyConstant.iPi );
}

}

and

Program Multiply.java in the package directory X:\rootdirectory\myFunction

package myFunction;
public class Multiply{

static public class MyConstant {
static public double iPi = 3.14;

}
static public void f( int a1, int a2 ) {

System.out.println( MyConstant.iPi * a1 * a2 );
}

}

The access privileges of entities can be default or private, protected, package

or public. A public entity is visible from any file, while a package or default
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entity, which is defined without an access specifier, is visible only from within

its package (even if it is imported into another program). A protected entity,

which is less restrictive than default, is visible from its package as well as from

its subclasses (that can be located in other packages) and, finally, a private

entity is visible only from within its enclosing class. In the above program the

internal class ExponentialConstants within PackageExample is private and

can be accessed only by member functions of the class itself. However, the

internal members of the class Multiply are all declared public so that they

can be accessed by PackageExample from outside the myFunction package.

If, however, the keyword public is removed from public class Multiply, the

elements of Multiply, while declared public, acquire the package access of their

enclosing class and are no longer accessible to main( ) in PackageExample. The

return type of a function must immediately precede its name, thus static public

int f( ) is valid but not int public f( void ).

15.7 Static (instance) and class members

As in C++, a static variable is shared by all objects of the same class, while

class variables differ between objects. A static method can be invoked without

creating any objects of its class type and therefore can only access other static

methods and variables directly or non-static methods and variables through an

existing object. Thus, since f( ) is a public static function in Multiply above, it

can be called in PackageExample through the syntax Multiply.f( ), even though

no objects of type Multiply have been defined. Non-static instance methods, on

the other hand, can access both static and non-static member variables.

In practice this implies that, to access non-static variables from within a static

function such as main( ), an object of the class – which can also include the non-

static variables – containing the function must be created. That is, to implement

the above program with non-static in place of static variables requires

import myFunction.*;
class ExponentialConstants {

double iE = 2.7;
}

public class PackageExample {
ExponentialConstants iEC1 = new ExponentialConstants( );
public static void main( String[ ] args ) {

PackageExample PE1 = new PackageExample( );
Multiply M1 = new Multiply( );
M1.f( 2, 3 );
System.out.println( PE1.iEC1.iE * M1.iMC1.iPi );

}
}

and in the myFunction subdirectory
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package myFunction;
public class Multiply{

public class MyConstant {
public double iPi = 3.14;

}
public MyConstant iMC1 = new MyConstant( );
public void f( int a1, int a2 ) {

Multiply M1 = new Multiply( );
System.out.println( M1.iMC1.iPi * a1 * a2 );

}
}



Chapter 16

Basic Java programming constructs

While in Java all code must be contained within an encompassing class definition,

inside this class the code can closely resemble a procedural program. Accordingly,

we first examine these basic features, postponing a detailed discussion of classes

and objects until the subsequent chapter.

16.1 Comments

Text to the right of the delimiter // is ignored by the compiler, as is any text

enclosed between the starting and terminating delimiters /* and */, as in

int m = 10; // Comment 1

int n = 10; /* Comment

2 */

Additionally, text between the starting delimiter /** and ending delimiter */ is

employed by the javadoc utility included with the Java runtime library to generate

HTML documentation. Some relevant tags are

/**

@ author (author of a class)

@ version (version of a class)

@ see (link to related topic)

@ return (method return value)

@ param (method parameters)

@ exception (exception thrown by a method)

*/

The @ must be located in the first column unless a star (*) is present in this

column.

16.2 Primitive types

A variable identifier (name) is composed of any letter, number, underscore

or dollar-sign character followed by any combination of letters, digits or

underscores. Java is case-sensitive, so the variables myinteger and myInteger
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are different. Variables are either primitive (atomic) or non-primitive class

types. Primitive types, which are largely patterned on C++ built-in types, are

optimized for repeated manipulation such as loop iterations and are accordingly

defined and initialized through statements of the form int loop = 3;. If an

initializer is not supplied, any attempt to utilize the variable will be flagged by

the compiler until a meaningful value is assigned.

An int always occupies 4 bytes = 32 bits of storage (although primitive

data types can be allocated more storage than required to store their value)

and therefore represents numbers between −231 = −2,147,483,648 and 231 − 1 =

2,147,483,648. If an int overflows or underflows these bounds, only the least-

significant bits are retained, which implies that adding one to the highest positive

integer yields the lowest negative integer. A long integer instead utilizes 8 bytes.

Similarly, a byte corresponds to an 8-bit integer between −27 = −128 and 27 − 1 =

127, while a short contains 16 bits. A boolean variable can be set to either of

true or false and is not automatically converted to an integer.

Floating-point types in Java encompass a 32-bit float that represents a real

number between −3.0E38 and 3.0E38 and a 64-bit double variable ranging

from −1.8E-308 to 1.8E308. A float constant is represented as 10.F0 or 10f,

while the corresponding double constant is 10., 10.E0 or 10.e0. A number

that underflows these bounds is set to zero; one that overflows the bounds

yields POSITIVE_INFINITY or NEGATIVE_INFINITY and the result of

an undefined arithmetic operation such as division by zero is set to NaN (not a

number).

A char represents a 16-bit Unicode international character, which is written

as \uxxxx, where x is a hexadecimal digit (0–9 or A–F). The first 256 characters

0x00 (\u0000) to 0xFF (\u00FF) coincide with the 256-bit ASCII character

sequence. A character specified by \0yy, where y is an octal digit (0–7) expresses

an extended C or C++ character sequence. All such characters must be enclosed

in single quotation marks. Thus an ASCII value such as 3 (which is 51 in ASCII

or 63 in octal or 33 in hexadecimal) can be written as 0x33 (without quotation

marks) '\063', '\63' or '\u0033' or simply in character representation as '3'. As

in C or C++, important non-printing Java characters are

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

formfeed \f

question mark \?

single quote \’

double quote \”
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If the keyword final is included in the definition of a variable, it cannot be

altered when visible (throughout its scope). Such variables must be initialized

when declared, since they could otherwise not be reassigned to a meaningful

value, as in

final int m = 36;

m = 29; // Error: m cannot be changed

16.3 Conversions

Java automatically performs widening conversions from smaller to larger vari-

ables of compatible type. Since all numeric types are considered compatable,

byte n = 10;

int m = n;

initializes m to 10. However, converting a larger to a smaller length requires an

explicit cast such as (the C++ cast syntax int( m ) is not implemented in Java)

double m = 10.5;

int n = (int) m;

If the range of m is larger than that of n, the value placed in n is the remainder

when m is divided by the range of n, whereas if m is a floating-point type and n

is an integer, any fractional component of m is discarded. Hence n above equals

10. Conversions occur automatically within expressions such that, if an operation

involves variables of two types, the smaller type is automatically promoted to

the larger type. Narrowing conversions of e.g. a double to an int are, however,

precluded even in assignment statements. For example, if d is a double and m

an int,

m = 3 / 2; // automatically truncated by removing the

// decimal part to m = 1

m = -3 / 2; // rounded in a similar fashion to m = -1

d = -3 / 2; // truncated and then converted to d = -1.0

d = -3. / 2; // yields d = -1.5

m = 3. / 2; // invalid

Consequently, to avoid confusion, smaller variable types should be cast into

larger variable types before evaluating such mathematical expressions.

Despite the above rules, an int cannot be employed as an argument to

a function that requires a double parameter unless it is first explicitly cast

into a double, as in f( (double) n ). Alternatively, the primitive int variable

can be first transformed into an Integer class variable, which possesses a

doubleValue( ) member function that converts its internal data to a double

type, i.e. if m represents an int

double d = ( (Integer) m ).doubleValue( );
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byte and short variables are automatically converted to int in arithmetic expres-

sions. Hence

byte b = 1;

byte c = b * b;

yields a compiler error because the int value of b * b cannot be narrowed to a

byte. Instead,

byte c = (byte) ( b * b );

is required.

16.4 Operators

Arithmetic operations in Java include +, -, *, / and, for integer a and b, the

remainder operator, a % b, which yields the remainder of a divided by b,

such that −3 % 2 is −1. Every operator possesses a precedence level and an

associativity rule. For example, the precedence of * and / exceeds that of + and –

, so that, in an expression containing both types of operators, * and / are evaluated

first. If the expression instead contains a sequence of operators with the same

precedence, the order of operation is determined by associativity. For example, =

is right-associative, so that a = b = c; means a = ( b = c );. In general, operators

are left-associative except where this generates logical inconsistencies. Thus, 5

/ 6 * 7 is evaluated as ( 5 / 6 ) * 7, not as 5 / ( 6 * 7 ), which causes numerous

programming errors.

As in C++, the basic precedence rules are

parenthesis and index operators ( ) [ ] .

unary operators ++ − +

cast (typename)

multiplicative * /

additive + −

string concatenation +

relational < > <= >=

equality == !=

logical operators && ‖

assignment = += −= *= /=

Further, a += b; sets a to a + b while a = a – ++b; first increments b and then

subtracts this new value from a, while a = a – b++; first subtracts the initial

value of b from a and only subsequently increments b. It should be remarked

that in Java fixed rules exist for the order in which operators are evaluated within

a statement, which insures the validity of expressions such as ++m + m++ that

are ambiguous in C++.
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Logical operators return a boolean value, which can, if desired, be converted

into the integer 0 or 1, through e.g. the ternary if-then-else operator, integerValue

= (booleanValue) ? 1 : 0;. Logical operations comprise < >, <=, >=, ! (not), &&

or & (and), ‖ or | (or), == (logical comparison) and ˆ, which represents exclu-

sive or. The |, & and the ‖, && operators differ in that for the single-character

operator, the expressions on both sides of the operator are evaluated, while for the

double-character operators (as in C++) whether the right side of the operator is

evaluated depends on the logical value of the left side. Except for primitive types

and some specific non-primitive types such as Integer, for which ==compares

values as in C++, the ==operator returns true only if its two operands refer to

the same object. This does not imply, however, that the objects contain the same

values. Normally, to compare the contents of two objects, the equals( ) class

method of the object must be called. For user-defined classes this requires over-

riding the equals( ) method of the java.lang.Object class. Finally, the instanceof

operator returns true if its left argument belongs to or is derived from a class that

either possesses the same class type as or implements the interface of the right

argument.

Operators that act on the individual bits stored at a memory location and

can be applied to all integer types e.g. (long, int, short, char and byte) are the

complement ∼ that interchanges 0 and 1 bits, << and <<<, left shift with and

without sign extension, and |, & and ˆ. Integer values in Java are signed with a 1

in their highest-order bit indicating a negative sign. Shifting these values with the

>> operator preserves this highest-order bit and thus the sign of the value, while

the >>> instead places a zero in the highest-order bit. Further short, char and

byte values are promoted to 32-bit int values before these operators are applied.

16.5 Control logic

Program flow can be regulated by logical conditions. A for statement possesses

an initialization statement followed by a logical (boolean) condition and finally

an iterator:

int sum = 0, sum2 = 0;

for ( int loop = 0; loop <= 10; ++loop ) {

sum += loop;

sum2 += loop * loop;

}

In all control expressions, the subsequent braces can be omitted if they enclose

a single statement, although braces are frequently erroneously omitted when

several statements are under the control of the logical construct. The variable

loop above is defined by the first of the three statements in the for structure,

cannot be subsequently redefined within the loop and is destroyed when the body

of the loop is exited.

A for loop can be replaced by the while statement:
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int loop = 0;

while ( loop < 10 ) {

sum += loop;

loop++;

}

as well as a do . . . while loop,

int loop = 0;

do{

sum += loop;

loop++;

} while ( loop < 10 );

However, statements under the logical control of a do . . . while construct are

executed at least once, even if the while condition is initially false.

An if statement can be followed by an else statement, as in

if ( logical expression ) {

statements1

}

else {

statements2

}

which is abbreviated by the ternary operator

logical expression ? { statements1 } : { statements2 }

Control can be passed out of a running loop through the continue and break

statements. These can contain a label, permitting control to be transferred to the

end of an enclosing labeled block (which for continue must be an enclosing

loop):

label1: for ( int outerLoop = 0; outerLoop < 20; outerLoop++ ) {

for ( int loop = 0; loop < 30; loop++ ) {

if ( loop * loop < 5 ) continue;

else if ( loop * loop = 125 ) break;

else if ( loop % 25 ) continue label1:

// The first continue transfers control here,

// i continues to increment

}

// break transfers control to the first statement outside the

// loop in which it appears continue transfers control

// to the end of the block label1

}

Conditional branches can also be implemented through a switch statement:

switch ( loop ) {

case 1: { statements1 } break; // executed if loop == 1

case 2: { statements2 } break; // executed if loop == 2

default: { statements3 }

}
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The break statements pass control to the first statement following the switch

block; otherwise, if present, the optional default statement will always be exe-

cuted together with the statements following all logical conditions that are

satisfied.

16.6 Enumerations

An enum type can be assigned only specific alphanumeric values. The syntax of

this construct is illustrated by

enum enumName {a, b, c};

public class test {

static public void main(String[ ] args ) {

enumName myEnum = enumName.b;

System.out.println( myEnum );

}

}

The only valid assignments to the enumName type variable myEnum are

enumName.a, enumName.b and enumName.c.
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Java classes and objects

A class groups (encapsulates) a set of variables, termed fields in Java, together

with the functions, or methods, that manipulate these variables as well as pro-

viding access levels such as private or protected that hide information regard-

ing its components to preclude undesired changes from elsewhere in the pro-

gram. Class fields generally allow private or protected access and can then be

read or changed only through the so-called external interface of the class (and

possibly subclasses), consisting of public member functions that access these

variables and therefore regulate the permitted operations on the data from out-

side the class. A class can be viewed as establishing a new data (variable)

type that can be employed in a similar fashion to a preexisting Java (refer-

ence) type. For example, a function operates on a user-defined object variable

argument in precisely the same manner as any Java class argument such as

Integer.

17.1 Class definition

The following program illustrates the central features of Java class definitions:

class MyClass {

private int iVariable1 = 6;

public static int iVariable2;

public int getIVariable1( ) { return iVariable1; }

public void setIVariable1 ( int aVariable1 )

{ iVariable1 = aVariable1; }

MyClass ( int aVariable1 ) {

iVariable1 = aVariable1;

}

MyClass( ) { }

}

public class Test {

static public void main( String args[ ] ) {

System.out.println( MyClass.iVariable2 ); // Output: 0

MyClass MC1 = new MyClass( );

MC1.setIVariable1( 3 );

168
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System.out.println( MC1.getIVariable1( ) ); // Output: 4

}

}

Since no specifier is present in the definition of MyClass, the class acquires

package access; that is, the class and its members are at most visible to files

contained in the same package (even including the apparently public variable

iVariable2 and functions getIVariable1 and setIVariable1). Additionally, since

a package statement is absent from the beginning of the program, it executes

in an unnamed package containing the main( ) program. Two types of variables

are defined in MyClass, namely a class variable iVariable1 and a public static

variable iVariable2. Variables that are static exist in a single copy independently

of whether any class objects are ever defined, and possess a lifetime that coincides

with that of the running program. Consequently, a static variable can be accessed

through the class name MyClass before the creation of any class objects in

the first line of main( ). Unlike C++, the class variable iVariable1 can be

initialized to 6 through a so-called synthetic constructor within the definition

statement in the class body. While iVariable1 is private and thus inaccessible

outside the MyClass class definition, public get and set member functions that

enable the value of this variable to be read and written to from any external or

internal program element within the package are provided (again these functions,

while declared public, acquire the package access of MyClass). Associating the

names getIVariable1 and setIVariable1 for the get and set member functions

of a variable iVariable1 is highly recommended since these coincide with Java

conventions and therefore permit the code to be introspected (analyzed) by certain

Java toolboxes.

MyClass contains two constructor functions that provide a mechanism for

generating objects of the MyClass type. These are the single-argument con-

structor MyClass ( int aVariable ) and the default constructor MyClass( ). If

no constructors are defined, Java supplies a default constructor that initializes

all internal variables that are not assigned values in the class definition to zero

or NULL. However, if a constructor with any number of non-zero arguments is

defined, a default constructor is absent unless also one is explicitly introduced

into the program. Therefore, if any non-zero argument constructor is defined

in the class body, the statement MyClass MC1 = new MyClass( ); gener-

ates an error unless a zero argument constructor is also explicitly provided as

above.

Every class contains an implicit reference variable, this, that refers to

the enclosing object, e.g. if iFieldV is a class member variable, in the

statement

void setField( int aFieldV ) { this.iFieldV = afieldV; }

this.iFieldV = afieldV; is equivalent to iFieldV = afieldV;.
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Unlike C++, variables and functions within a Java file can be placed in any order,

since Java generates an internal list of the elements before compilation. Further,

javac checks all dependences on external files and will compile or recompile

any required external .java files that are either uncompiled or newer than their

corresponding .class files.

17.2 Inheritance

A class, DerivedClass, defined with the syntax

class DerivedClass extends BaseClass { ... }

acquires (inherits) all public and protected internal variables and functions in

the parent, base class, BaseClass, except for elements that are explicitly redefined

in the derived class. A derived class also inherits all of the variables and functions

of a parent class with default (package) access, assuming that the two classes

are located in the same package. Additional variables and functions are then

provided in the derived class. In general, the relationship of a derived class to

its parent class represents an “is-a” specialization between two physical objects

such as “a pencil is a writing instrument”. A “has-a” relationship, typified by “a

pencil has an eraser” is termed containment, and is implemented by one class

possessing an internal class member of a different class type.

A class member whose definition is preceded by the keyword final cannot be

overridden in a subclass. If the class definition is preceded by final, it cannot be

subclassed. Final class variables (internal member variables) must therefore be

assigned values either in class constructors or, more commonly, through synthetic

constructors in the member variable list.

The super keyword refers to the immediate parent in a class hierarchy. For

example, the following procedure modifies (overrides) a parent class print( )

method while still exploiting its functionality:

public void print {

super.print( );

System.out.println(“In subclass”);

}

In a similar manner, a superclass constructor can be included in a derived class

constructor. The constructor below adds an additional class variable iFieldK to

those of the superclass:

public MySubclass( int aFieldJ, int aFieldK ) {

super( aFieldJ );

iFieldK = aFieldK;

}
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17.3 Java references and functions

In the example in the previous section a MyClass object is created and initialized

through the statement MyClass MC1 = new MyClass( );, which can equivalently

be written as

MyClass MC1;

MC1 = new MyClass( );

Memory for an object is allocated during program execution through a request to

the operating system performed by the new operator. The operating system allo-

cates the appropriate amount of memory and passes the address of this memory

back to the running program. This address is then stored in the object “refer-

ence” variable MC1. Reference variables, which encompass all non-primitive

Java variables, correspond to invisibly dereferenced non-constant pointers. That

is, although MC1 in fact stores the address of a memory location, Java automati-

cally returns the value at the memory location rather than the address. Therefore,

a Java program can manipulate and inspect the properties of objects and built-in

variables but cannot access their stored memory addresses. However, since MC1

is in fact a non-constant pointer, it can be assigned subsequently to a new mem-

ory address by, for example, MC1 = new MyClass( ); or MC1 = MC2;, where

MC2 is a second MyClass object. Since Java reference variables are effectively

pointers and store memory addresses, two variables can access the same memory

address and will then behave identically, as in

MyClass MC1 = new MyClass( 2 );

MyClass MC2 = MC1;

MC2.setVariable1( 4 );

System.out.println( MC1.getVariable1( ) ); // Output: 4

Any reference variable that does not point to an object of its specified type

is assigned a null value so that attempting to access its internal members leads

to an error condition. To simultaneously avoid memory leaks, memory that is

dynamically allocated once an object has been created through a new state-

ment is deallocated after the system has determined that no references to the

object exist. This automatic reclaiming of memory – which occurs at periodic

time intervals – is termed garbage collection and can be forced through the

statements

Runtime R = Runtime.getRuntime( );

R.gc( );

The amount of free memory can similarly be obtained by calling

R.freeMemory( ). Additional actions, such as closing open files, that should
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occur when an object of a given class is no longer employed can be included in

a finalize method

void finalize( ) {

...

}

within the class definition.

When a function is called in Java, new memory space is reserved for the

variables defined in the argument list and in the function body. That is, the first

statement that is implicitly executed when a function such as f( typeName aT )

is called through a statement f( pT ) is to execute the definition and initialization

typeName aT = pT; followed by the statements contained in the function body.

Memory is allocated for all variables defined in the function block and this local

memory is deallocated when the block is exited, as with any other block in the

program. Hence a Java primitive is passed by value to a function as illustrated

below:

public static void f ( int aI ) { aI = 4; }

...

int k = 3;

f( k );

System.out.println( k ); // Output: 3

Accordingly, when a Java object “reference” is passed, the address of the object

is copied. Thus interchanging two objects or assigning a new object to a ref-

erence variable inside a function leaves the parameters in the calling program

unchanged:

public static void f ( Integer aI ) { aI = new Integer (4); }

...

Integer k = new Integer( 3 );

f( k );

System.out.println( k ); // Output: 3

For the same reason, if a value in the function reference argument is altered, it

changes in the calling program:

class Coord{ int fieldX; }

class Test {

static void newValue( Coord aC ) { aC.fieldX = 20;}

public static void main(String[ ] args) {

Coord C1 = new Coord( );

C1.fieldX = 0;

newValue( C1 );

System.out.println( C1.fieldX ); // Output: 20

}

}
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Note again that the function newValue must be declared static since the static

main( ) method cannot address a non-static function without first generating

an object of type Test. However, the static function newValue can change the

internal variables of aC since it is passed a reference to a preexisting object

through the parameter list.

The standard mathematics functions with minor modifications are accessible

by prefixing the name of the function with Math, as for example Math.exp(

doubleValue ) and Math.pow( a, b ), which is ab. Similarly, M_PI in Dev-C++

must be replaced by Math.Pi, while M_E (the value of e) is replaced by Math.E.

The prefix Math. can be made superfluous by placing the line

import static java.lang.Math.*;

at the beginning of the program.

17.4 Exceptions

Java program faults that leave the program in a state that can be further influ-

enced by additional user-provided routines are termed exceptions, while errors

(e.g. VirtualMachineError) typically cannot be handled by the program. Java

exceptions subclass the Exception type, through additional inheritance levels

of predefined exception types such as ArithmeticException, SecurityExcep-

tion, NoSuchMethodException, IOException, and NoSuchFieldException.

Any such types can be further subclassed by writing e.g.

public class myException extends ArithmeticException { ...

If an exception is thrown in a routine either by routines within the Java

virtual machine (the Java runtime) or by the program through the syntax throws

ExceptionName, the routine either catches it or passes it to the calling program.

The latter is accomplished by also including throws ExceptionName in the

signature of the routine. The calling routine then must similarly either catch the

exception or pass it further to the next higher calling level. Multiple catch clauses

in a function can perform different operations for each exception type. That is,

exceptions can be thrown and handled within a function through a procedure

such as

try { if ( i == 0 ) throw new Exception( ''i = 0 error'' );

if ( i == -1 ) throw new Exception( ''i = -1 error'' );

}

catch ( Exception e ) { System.out.println( e ); }

finally { i = 2; } // executed even if no exception

where the try block can contain any portion of a program including various

function calls. If the exception is thrown, the catch and finally blocks are executed

and the program continues with the first statement following the finally block. If

continue or break clauses are encountered in control logic constructs, the finally
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clauses are implicitly activated; thus if the following lines are encountered within

a function

import java.io.*;

try { switch ( k ){

case 0: throw new IOException( );

case 1: throw new Exception( );

case 2: break; }

System.out.println( ''End'' );

}

catch ( IOException e ) { System.out.println( ''IO'' ); }

finally { System.out.println( ''F'' ); }

then for k = 0 the code handles the exception so that output is IO and F, for

k = 1, F is printed and the exception is passed to the caller through a throws

Exception clause in the enclosing function signature, while for k = 2 only F is

printed.

17.5 Basic Java reference types

Numerical types. Every primitive data type can be converted into its corre-

sponding reference (class) type by writing e.g. Byte( b ), Double( d ), Float

( f ), . . . , where b, d and f are primitive variables of byte, double and float type,

respectively. The class types then possess methods such as doubleValue( ) and

intValue( ), methods that return the indicated primitive type. Primitives can also

be converted to class types through statements such as int n = 5; Integer M =

new Integer( n ); or simply Integer M = new Integer( 0 ); M = n; or even

Integer M; M = n;.

Strings. A String object can be created by enclosing a sequence of characters

in double quotation marks, enabling constructs such as "hel\tlo".length( ), which

evaluates to 6, which is the length of the string “hello” together with a single tab

character (no termination character is present) and String S = "hello";. To input

a string over several lines, each line should be preceded by a + sign. A + sign

appearing between a numeric type and a string also converts the numeric type

to a string. Additional String functions include String1.equals( String2 ) and

String1 == String2, both of which return true if the two strings are identical (store

the same text), String1.compareTo( String2 ), which returns zero if the two

strings are identical, and charAt( int characterPosition ). In addition, substring(

int startIndex, int endIndex ), concat( String String2 ) and replace( char

originalCharacter, char newCharacter ) return new strings that respectively

contain the substring of the original string positioned between startIndex and

endIndex, concatenate the original string with String2 and replace all instances

of originalCharacter in the original string with newCharacter.
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To modify a String object directly, as opposed to calling a function that returns

a new String object, the String object should first be placed into a StringBuffer

through

StringBuffer SB1 = new StringBuffer( String1 );

which is printed with System.out.println( SB1 );. The buffer contents are

changed through functions such as insert( int index, String String2 ), which

inserts String2 into the original string at the position of index. A string can

further be parsed, i.e. divided into a set of tokens (words), by first placing it into

a StringTokenizer class

StringTokenizer ST1 = new StringTokenizer(

String String1, String Delimiters );

where the optional argument Delimiters contains the characters that indicate

the start or end of each token. Default delimiters include the whitespace char-

acters space, tab, newline and carriage return. Subsequently, each token in the

string is obtained with ST1.nextToken( ). Strings are converted into the various

numerical types by e.g. Double.parseDouble( S ), where S is a string (a Num-

berFormatException is thrown if the string cannot be interpreted as a numeric

value).

Finally, all classes possess toString( ) functions. However, the default

toString( ) function, if not overridden by a class method, prints out the class

name followed by a (generally unique) hexadecimal code (hash code) related

to the memory address of the object. To print out meaningful information

about an object, each user-defined class should contain a public function

String toString( ) that instead prints a formatted description of all internal

class variables, calling in this process the toString( ) function of any internal

class member variables of non-primitive, object type. The toString( ) function

is called automatically if the object appears as an argument of, for example,

System.out.println( ).

Arrays. An array comprises an index-accessible sequence of variables of a similar

type that in Java can be both declared and initialized through the allocation of

storage space by either of the two equivalent statements

arrayType arrayName[ ] = new arrayType[arraySize];

arrayType[ ] arrayName = new arrayType[arraySize];

Array elements are automatically initialized to zero or to NULL according

to whether arrayType corresponds to a primitive or class type, respectively.

Arrays are initialized to non-trivial values when defined through the following

syntax:

int a[ ] = { 0, 1, 2, 3 };
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To alter the contents of the array after it has been defined, however, requires

iteration, as in

for ( int loop = 0; loop < 4; loop++ ) a[loop] = 2 * loop;

An array is generated without specifying an array name by e.g.

int k = intFunction( new int[ ] { 0, 1, 2 } );

If arrays are equated, both of them refer to the same memory. Changing an

array element through one array name then changes the corresponding element

referred to by the second array name,

Integer Array1[ ], Array2[ ] = { 1, 2, 3 };

Array1 = Array2;

Array1[0] = 4;

System.out.println( Array2[0] ); // Output: 4

Although the length of an array, which is obtained through Array1.length

rather than Array1.length( ), cannot be changed, objects of the Vector

class are automatically resized to accommodate element addition or dele-

tion through methods such as Vector1.addElement( element ); and

Vector1.removeElement( element ); which add or remove an element from

the end of the object Vector1. A Vector object cannot contain primitives and is

created and manipulated through e.g. the syntax

import java.util.Vector;

Vector <Double> Vector1 = new Vector<Double>;

Vector1.addElement ( new Double( 3.5 ) );

System.out.println( Vector1.elementAt( 0 ) ); // Output: 3.5

System.out.println( Vector1.size( ) ); // Output: 1

A two-dimensional array possesses three equivalent definitions:

arrayType matrix[ ][ ] = new arrayType[arraySizeR][arraySizeC];

arrayType[ ] matrix[ ] = new arrayType[arraySizeR][arraySizeC];

arrayType[ ][ ] matrix = new arrayType[arraySizeR][arraySizeC];

and can be initialized when created with the notation

int matrix[ ][ ]={ { 1, 2 }, { 2,3 }, ... };

Such an array can be passed to a function with e.g. a signature returnValue

myFunction( arrayType aMatrix[ ][ ] );. A non-square matrix is generated as

follows:

double [ ][ ] NonSquareMatrix = new double [2][ ];

NonSquareMatrix[0] = new double[2];

NonSquareMatrix[1] = new double[3];
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17.6 Input and ouput

To enter information into a Java program from the command line when the

program is started, further arguments can be supplied to the java command after

the program name. These are captured as String objects by the args[ ] argument

of main( ). Therefore, issuing java myProg 3.5 enters 3.5 into args[0], which is

retrieved as follows:

public static void main( String args[ ] ) {

Double x = Double.valueOf( args[0] );

...

}

To enter primitive types from the terminal (or a String or any InputStream) we

use the syntax

import java.util.Scanner; // at beginning of program

Scanner myIn = new Scanner( System.in );

String SpringType = myIn.nextLine( );

double force = myIn.nextDouble( );

myIn.close( );

which reads a String value followed by a Double value.

Normally output is displayed on the standard output device (the monitor)

through

System.out.println( ''Hello World'' );

which sends the string “Hello World” to the terminal together with a carriage

return. Replacing println with print eliminates the carriage return. Integer num-

bers are formatted by

java.text.NumberFormat NF1 = java.text.NumberFormat.getInstance( );

after which

System.out.println( NF1.format( 100000 ) );

yields the output 100,000. Calling the methods of NF1 yields alternative output

formats. Floating-point number formatting is specified by

java.text.DecimalFormat DF1 =

new java.text.DecimalFormat( ''00.####E0'' );

double d = -123.45;

System.out.println( DF1.format( d ) ); // Output: -12.345E1

which prints three digits after the decimal point, followed by an E and the

mantissa. If a 0 appears in the argument of DecimalFormat, a zero is inserted if

a number is absent in the indicated position, while a # sign instead places a blank

character is this position.
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17.7 File I/O

Reading and/or writing to a file is most simply accomplished by starting a

program with the command

java MyProgram < MyInputFile > MyOutputFile

MyProgram accepts input from MyInputFile in the same manner as from the

keyboard and sends output to MyOutputFile.



Chapter 18

Advanced Java features

To conclude the discussion of the Java language, several advanced techniques

of relevance to scientific programming are surveyed. These include dynamic

method dispatch, abstract classes and interfaces, multithreading and reflection.

18.1 Dynamic method dispatch

A derived class object implements an “is-a” relationship and therefore automat-

ically constitutes an instance of its base class. Thus a derived class object may

be employed in any context in which a base class object is required or expected.

However, if a derived class object that overrides functions of its base class is

employed in place of a base class object, the overridden subclass definitions are

resolved and applied at runtime – hence class member functions correspond to

C++ virtual functions and Java “reference” variables act in the same manner as

C++ pointers. To illustrate,

class C {

public void print( ) {

System.io.println ( ''C'' );

}

}

class D extends C {

public void print( ) {

System.io.println ( ''D'' );

}

}

public class DispatchExample{

static public void main( String [ ] args ) {

D D1 = new D( );

C C1 = new C( );

C CArray [ ] = { C1, D1 }

CArray[0].print( ); // Output: D

CArray[1].print( ); // Output: C

}

}

All objects in Java are subclasses of java.lang.Object, which insures the

presence of certain common methods such as toString( ) and equals( ).

179
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Accordingly, containers that accept this type act as templates for storing any

variety of objects, but they must subsequently be downcasted from Object to

their actual type through an explicit cast in order to access their specialized

class properties.

18.2 Abstract classes

An abstract class contains one or more abstract functions that lack definitions,

as in

abstract class C {

abstract void print( );

}

class D extends C {

void print( ) {

System.out.println ( ''D'' );

}

}

public class DispatchExample{

static public void main( String [ ] args ) {

C C1 = new D( );

C1.print( ); // Output: D

}

}

A subclass that does not supply all these definitions must also be marked abstract.

An abstract object cannot be instantiated since all its methods are not fully

defined. However, dynamic method dispatch allows a C reference variable to be

assigned an instance of D at runtime. For example, a call to the print( ) function

through this reference then calls the subclass method. The abstract function

declaration thus serves as a template, that is, specifies a generic form, for the

structure of the derived classes.

18.3 Interfaces

Interfaces provide an alternative to abstract classes. An interface specifies meth-

ods that must be implemented in all classes (often functionally unrelated) that

are derived from (conform to) the interface. An interface and its implement-

ing classes generally require default or public access. Initialized variables in an

interface are implicitly public, static and final since they cannot be changed

by these classes, while all interface methods are implicitly public and must be

declared public in implementing classes, for example,

interface PrintInterface {

void print( );

double pi = 3.14;

}
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class D implements PrintInterface {

public void print( ) { // Note: must be public!

System.out.println ( ''D'' + pi );

}

}

public class DispatchExample {

static public void main( String [ ] args ) {

PrintInterface PI1 = new D( );

PI1.print( ); // Output: D 3.14

}

}

Since interfaces are distinct from classes, two classes that are unrelated in

their class hierarchy can implement the same interface. This feature can, for

example, be employed to import long lists of constants into any implementing

class. All member functions that conform to an interface in a class, e.g. the

print( ) function above, must possess the same signature as the function in the

interface. Interfaces can extend other interfaces, as in

PrintAndPlotInterface extends PrintInterface {

void plot( );

}

Finally, a class can implement an interface without providing an implemen-

tation of every method specified in the interface. In this case, the class and any

subclasses that also do not implement all interface methods must be declared as

abstract.

An interface provides a mechanism for passing a function name at runtime as

an argument to a second function as illustrated below:

interface IArgument {

double fun( double aX );

}

class Square implements IArgument {

public double fun( double aX ) { return aX * aX; }

}

class Cube implements IArgument {

public double fun( double aX ) { return aX * aX * aX; }

}

public class myInterface {

static double evaluate( IArgument aI, double aX ) {

return aI.fun( aX );

}

public static void main( String[ ] argv ) throws Exception {

int choose = System.in.read( );

IArgument I1;

if ( (char) choose == 's' )

I1 = new Square( );

else

I1 = new Cube( );



182 Advanced Java features

System.out.println( evaluate( I1, 3.0 ) );

}

}

The interface argument of evaluate( ) “calls back” the implementing class.

18.4 Java event handling

In the Java event model, which is enabled by include java.awt.event.*;, events

are produced by an object, called the event source, which passes the resulting

event object to an event listener by calling a function in its class. The event

object is a subclass of EventObject and its fields and methods parameterize all

relevant information about the particular event. For a source to call a listener, the

listener object must conform to a required interface. Each event source main-

tains a list of registered listeners by employing the addEventNameListener( )

and removeEventNameListener( ) functions. To process, for example, mouse

events, it is necessary only to override just the method(s) to which the listener

should respond as follows:

import java.awt.event.*;

public class MyGraph extends Applet implements MouseListener {

MyGraph( ) { addMouseListener( this ); }

public void mouseClicked( MouseEvent event ) {

MyPoint = event.getPoint( );

repaint( ); }

public void mouseEntered( MouseEvent event ) { } ...

Following this method, the bodies, which may be empty, for all of the functions

in the MouseListener interface must be provided to specify the action, if any,

that occurs when a mouse is clicked, enters or leaves an active window and so

on.

As an alternative, one can employ an anonymous inner adapter class that

implicitly provides empty bodies for the functions in the interface so that only

the functions that have non-empty bodies have to be provided:

addMouseListener( new MouseAdapter( ) {

public void mouseClicked( MouseEvent event ) {

myPoint = event.getPoint( );

repaint( ); }

public void mouseExited( MouseEvent event ) {

System.exit( 0 ); }

}

);

The words implements MouseListener are then omitted from the signature of

main( ). As an example of the first procedure, the following graphics program

generates a canvas of size 600 by 800 pixels within a window frame labeled

“Drawing”. Text is placed on the canvas and the program then draws a cyan oval

and a line from a point 100 pixels down and to the right of the upper left-hand
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corner of the window to the point at which the mouse is clicked. The program

terminates when the mouse leaves the canvas area:

import java.awt.*;

import java.awt.event.*;

public class GraphExample extends Canvas implements MouseListener{

public int iX = 0;

public int iY = 0;

private static Frame window = new Frame( ''Drawing'' );

public static void main ( String[ ] args ) {

GraphExample g = new GraphExample( );

g.setSize( 600, 800 );

window.add( g );

window.pack( );

window.setVisible( true );

}

GraphExample( ) { addMouseListener( this ); }

public void paint( Graphics g ) {

g.drawString( ''A Graph'', 400, 400 );

g.setColor( Color.cyan );

g.fillOval( 300, 300, 80, 275 );

g.drawLine( 100, 100, iX, iY );

}

public void mouseClicked( MouseEvent event ) {

iX = event.getX( );

iY = event.getY( );

repaint( );

}

public void mouseExited( MouseEvent event ) {

System.exit( 0 );

}

public void mouseEntered( MouseEvent event ) { }

public void mouseReleased( MouseEvent event ) { }

public void mousePressed( MouseEvent event ) { }

}

The above code can be turned into an applet that instead applies the Mouse-

Adapter interface with the code below. This program also contains a push button

that generates an audible sound when pressed, through the code written into the

Beep class below that is registered with an ActionListener:

import java.awt.event.*;

import java.applet.Applet;

import java.awt.*;

class Beep implements ActionListener {

public void actionPerformed ( ActionEvent Event ) {

Component C1 = (Component)Event.getSource( );

C1.getToolkit( ).beep( );

GraphExample2 g = new GraphExample2( );

}

}
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public class GraphExample2 extends Applet {

Point myPoint;

public void init( ) {

Button MyButton = new Button( ''Beep'' );

add( MyButton );

MyButton.addActionListener( new Beep( ) );

}

public static Frame window = new Frame( ''Drawing'' );

public void paint( Graphics g ) {

addMouseListener( new MouseAdapter( ) {

public void mouseClicked( MouseEvent event ) {

myPoint = event.getPoint( );

repaint( );

}

public void mouseExited( MouseEvent event ) {

System.exit(0);

}

} );

g.drawString( ''A Graph'', 400, 400 );

g.setColor( Color.cyan );

g.fillOval( 300, 400, 80, 275 );

g.drawLine( 100, 100, 300, 300 );

g.drawLine( 100, 100, (int) myPoint.getX( ),

(int) myPoint.getY( ) );

}

public void stop( ) {

System.exit( 0 );

}

}

The init( ) and stop( ) methods are called when an applet is created and exited,

respectively.

18.5 Multithreading

Every Java program starts inside the main thread, which can be accessed

through

Thread T1 = Thread.currentThread( );

Subsequently, writing T1.sleep( 50 ), which can throw an Interrupted

Exception, pauses the program for 50 ms. Since, however, the sleep( ) function

is static and acts on the thread it is called from by default, Thread.sleep(50); is

equivalent to both statements above.

Additional threads can be created by extending Thread or by implement-

ing the interface. In the first procedure, the Thread class is extended and its

run( ) method overridden. A thread is then activated through its start( ) method.

If instead the Runnable interface is extended, a single additional function, pub-

lic void run( ), must be defined. This initiates a new thread by instantiating

a Thread object and calling its start( ) method, which executes a callback to

run( ). To illustrate the first procedure, for each of two threads to print a value

and then yield so that the other thread can resume,
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class Thread1 extends Thread {

public void run( ) {

for (int loop = 0; loop < 10; loop++) {

System.out.println( loop );

yield( );

}

}

}

class Thread2 extends Thread {

public void run( ) {

for (int loop = 0; loop < 10; loop++) {

System.out.println( loop );

yield( );

}

}

}

class TestThread {

public static void main( String args[ ] ) {

new Thread1( ).start( );

new Thread2( ).start( );

}

} // Output: 0 0 1 1 2 2 ...

To synchronize the threads so that each thread waits until the second thread has

completed, they must share access to an object that locks the threads:

class MyStaticObject {

static Object O = new Object( );

}

class Thread1 extends Thread {

public void run( ) {

synchronized ( MyStaticObject.O ) {

for (int loop = 0; loop < 10; loop++) {

System.out.println( loop );

yield( );

}

}

}

}

class Thread2 extends Thread {

public void run( ) {

synchronized ( MyStaticObject.O ) {

for (int loop = 0; loop < 10; loop++) {

System.out.println( loop );

yield( );

}

}

}

}

class TestThread {

public static void main( String args[ ] ) {

new Thread1( ).start( );

new Thread2( ).start( );

}

} // Output: 0 1 2 3 ... 0 1 2 3 ... 10
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18.6 Serialization

An object can be saved and reconstructed through the serializable interface.

Object serialization refers to the persistent (permanent) storage of an object,

normally by writing the object contents to a serialized file. All fields in the

object, including fields inherited from its superclasses, are saved in this manner,

except for those explicitly marked as transient. If a field refers to another object,

such as an object that contains a second object as a class member (a field), the

object that is referenced is also serialized. To serialize an instance of a class

MyClass below, a file output stream is defined to provide a file into which the

object will be written. An ObjectOutputStream is defined and is passed the

file output stream as a parameter. The object is then written by the writeObject

serialization method of ObjectOutputStream:

import java.io.*;

class MyClass implements Serializable {

private double[ ] myArray = { 0, 1, 2 };

public double getArrayElement( int aI )

{ return 2 * myArray[aI]; }

}

public class SerializableExample {

public static void main( String args[ ] ) throws IOException {

MyClass MC1 = new MyClass( );

ObjectOutputStream OOS1 = new ObjectOutputStream(

new FileOutputStream( ''myfile.ser'' ) );

OOS1.writeObject( MC1 );

OOS1.close( );

}

}

The object can later be similarly retrieved through

import java.io.*;

public class ReadSerializableExample {

public static void main( String args[ ] ) throws IOException,

ClassNotFoundException {

ObjectInputStream OI1 = new ObjectInputStream(

new FileInputStream( ''myfile.ser'' ) );

MyClass MyObject = (MyClass) OI1.readObject( );

OI1.close( );

System.out.println( MyObject.getArrayElement( 0 ) );

} // Output: 2

}

18.7 Generic types

Analogously to C++ templates, certain Java constructs can possess a formal

type (meta)parameter that must be specified when creating an object or calling a
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function. However, arrays of generic types cannot be created. A class that stores

and can assign a value to any object as an internal class member is

class MyObject<T> {

T iT;

void setT( T aT ) { iT = aT; }

}

class Generic {

<C> void ClassType ( C aC ) {

System.out.println( aC.getClass( ).getName( ) );

}

public static void main( String args[ ] ) {

MyObject<Double> MO1 = new MyObject<Double>( );

MO1.setT(20.0);

System.out.println( MO1.iT ); // Output: 20

ClassType( new Double( 1.0 ) );

} // Output: java.lang.Double

}

As illustrated above, functions can also be defined with type parameters. If such

a function is called without specifying the type parameter, the type is generally

inferred; that is, calling ClassType( D1 ), where D1 is a Double object above,

prints out the name of the class to which D1 belongs, namely java.lang.Double.
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Introductory numerical analysis

The remainder of this text surveys fundamental programs and techniques in

numerical analysis and scientific programming. In this introductory chapter,

we clarify error-analysis strategies in the context of a particularly transparent

example, namely the derivative operator.

19.1 The derivative operator

Although the derivative is often programmed as a function, it, in reality, con-

stitutes an operator. While a function transforms an argument value, x, to an

output value f (x), an operator, O maps a function argument, f (x), into an output

function O f (x). For the derivative, O f (x) corresponds to the unique function

Dx ( f (x)) = d f /dx described by the slope of the tangent to f (x) at each point x.

However, the slope cannot be determined numerically from the information at a

single point on a curve, since an infinite family of lines passes through each point.

If, however, the slope of the tangent is computed from the differences of the func-

tion values at two or more closely spaced points, an infinity of representations

for the slope of the tangent function will emerge that differ in accuracy. That is,

while the continuous derivative operator is uniquely defined, it is approximated

by an infinite family of discrete operators. A straightforward approximation is

presented in calculus textbooks, in which the derivative is defined as the limit

d f

dx
= lim

�x→0

(

f (x + �x) − f (x)

�x

)

≡ lim
�x→0

D+
�x ( f ) (19.1)

In numerical analysis, D+
�x ( f ) is termed the discrete forward finite-difference

operator, while �x , which remains finite in numerical computations, is labeled

the step size or point spacing. The continuous and discrete operators in Eq. (19.1)

differ by an error term that normally varies as a polynomial function of �x. If

the smallest power of �x appearing in this polynomial is N, the error decreases

as (�x)N when �x → 0 and the algorithmic accuracy is said to be O(�x)N . To

188
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determine N for the derivative approximation of Eq. (19.1), consider the Taylor-

series expansion of a continuous and infinitely differentiable function f about the

point x:

f (x + �x) = f (x) + �x
d f (x)

dx
+

(�x)2

2!

d2 f (x)

dx2
+ · · · (19.2)

Inserting Eq. (19.2) into Eq. (19.1) yields

f (x + �x) − f (x)

�x
=

d f (x)

dx
+

�x

2

d2 f (x)

dx
+ · · · (19.3)

which implies, if d2 f (x)/dx �= 0,

d f (x)

dx
= D+

�x ( f ) + O(�x) (19.4)

Since the forward difference expression D+
�x ( f ) is an operator acting on the

function f, code that represents this operator should possess a function with a pro-

totype such as double aF( double ); as one argument. Recall from Section 6.16

that a function name is an alias (alternative name) for and thus evaluates to the

compiler-assigned memory location of the first instruction of a binary repre-

sentation of the instructions comprising the function (the function record). This

address can be stored in a pointer to a function of a matching type at compile

time or runtime. Since the pointer evaluates to the same starting memory address

as the function name, it can subsequently be passed to a derivative function as a

parameter:

double cube( double aD ) {

return pow( aD, 3 );

}

double linear( double aD ) {

return pow( aD, 1 );

}

double derivOperator( double aF( double ),

double aXValue, double aDeltaX ) {

return ( aF( aXValue + aDeltaX ) - aF( aXValue ) ) / aDeltaX;

}

main ( ) {

double deltaX = 1.e-1;

double xValue = 1.0;

int choice;

double (*myFunction) (double); // Stores memory

// address of function

cout << ''Choose a function 1 - cube, 2 - square '' << endl;

cin >> choice;

switch ( choice ) {

case 1: myFunction = cube; break; // Output: 3.31

case 2: myFunction = linear; break; // Output: 1

default: cout << ''Incorrect Input - program exiting'';

}

cout << derivOperator( myFunction, xValue, deltaX );

}
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19.2 Error dependence

While the above program displays [(1 + 0.01)3 – 1]/0.01 = 3.31, for the

derivative of x3 at x = 1 for �x = 0.1 in accordance with an O(�x) ≈ 0.1 error

dependence, its result is exact for f (x) = x, since the slope of a straight line is

determined by any two points on the line. This demonstrates that the numerical

accuracy of a procedure cannot be reliably estimated by analyzing specialized

cases. Further, although the numerical error can be reduced by decreasing �x ,

for �x ≪ x , truncation errors in f (x + �x) − f (x) become dominant as discussed

in Section 6.30. While a fully reliable routine must therefore optimize �x, for

a wide range of �x values, the centered difference procedure discussed below

proves sufficiently accurate.

For a given numerical procedure, the step size required to achieve a desired

accuracy can be obtained through adaptive methods. Assume that the difference

between the result of an O(�x)n accurate calculation with a step length �x and

the identical calculation performed with two steps of length �x/2 is denoted by

ε, while the desired error is E . Then, to reduce the magnitude of the error term

by the ratio of the desired to the observed error, the appropriate time step, �xnew,

if ε > E is approximately

�xnew = �x

∣

∣

∣

E

ε

∣

∣

∣

1/n

(19.5)

19.3 Graphical error analysis

In most numerical programs, an analytic expression for the error does not

exist and the dependence of the error on the input parameters must instead

be determined empirically. To illustrate, the following analyzes graphically

the variation of the error with step size �x for the forward finite-difference

operator (a description of the plot routines can be obtained by navigating to

the DISGNU or DISBCC icon on the Programs submenu of the Start button

and selecting DISHLP or DISMAN or by typing DISHLP at the command

line):

main ( ) {

double deltaX = 1.0e-1;

double xValue = 1.0;

float x[10], y[10]; // array definitions

for ( int loop = 0; loop < 10; loop++ ) {

y[loop] = derivOperator( cube, xValue, deltaX );

x[loop] = deltaX;

deltaX /= 2;

}

metafl( "XWIN" ); // write to terminal

disini( ); // start plotting program
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Figure 19.1

name( "Step Length", "x" ); // x label

name( "Error", "y" ); // y label

labels( "EXP", "xy" ); // exponential format

incmrk( 1 ); // markers at every (1) point

setscl( x, 10, "X" ); // automatically scales x axis

setscl( y, 10, "Y" );

//scale( "LOG", "XY" ); // uncomment for log-log plot

float minX, maxX, minY, maxY, stepX, stepY;

graf( minX, maxX, minX, stepX,

minY, maxY, minY, stepY ); // axes

curve( x, y, 10 ); // plot curve

disfin( ); // terminate plot

}

which yields Figure 19.1, verifying the linear dependence of the error on step

length without a mathematical analysis. Similarly, the result R(�x) of an O(�x)α

numerical procedure plotted as a function of (�x)α yields a straight line for

small �x whose y-intercept is the corrected value. Alternatively, if the result

R�x→0 can be estimated or extrapolated, the associated error estimate varies as

O(�x)α = R(�x) − R�x→0 for �x → 0. Taking the logarithm of both sides yields

log(�x)α = α log(�x) = log(R(�x) − R�x→0) so that α corresponds to the slope

of the logarithm of this estimated error plotted against log(�x) (the slope of a

log–log plot).
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An Octave implementation of the previous program, which omits several

specialized features of the DISLIN graph, follows:

File: cube.m

function output = cube( aInput )

output = aInputˆ3;

File: derivOperator.m

function output = derivOperator( aF, aXValue, aDeltaX )

output = ( aF( aXValue + aDeltaX ) - aF( aXValue ) ) / aDeltaX;

File: derivplot.m

deltaX = 1.0e-1;

xValue = 1.0;

for loop = 1 : 10

y( loop ) = derivOperator( @cube, xValue, deltaX );

x( loop ) = deltaX;

deltaX = deltaX / 2;

end

plot( x, y, '-s' )

axis tight;

xlabel( 'Step Length' );

ylabel( 'Error' );

19.4 Analytic error analysis – higher-order methods

An O(�x)2 accurate finite-difference operator approximation to the continuous

derivative can be derived from the Taylor-series relationships

f (x + �x) = f (x) + �x
d f

dx
+

(�x)2

2!

d2 f

dx2
+

(�x)3

3!

d3 f

dx3
+ · · ·

(19.6)

f (x − �x) = f (x) − �x
d f

dx
+

(�x)2

2!

d2 f

dx2
−

(�x)3

3!

d3 f

dx3
+ · · ·

Subtracting the second of these formulas from the first yields the centered finite-

difference operator

f (x + �x) − f (x − �x)

2�x
=

d f

dx
+ O(�x)2 (19.7)

In a similar fashion, it can be demonstrated that a fourth-order accurate

expression for the derivative is

d f

dx
=

f (x − 2 �x) − 8 f (x − �x) + 8 f (x + �x) − f (x + 2 �x)

12 �x
+ O(�x)4 (19.8)

Accordingly, replacing the derivative function in the previous C++ program by

double derivOperator(double aF(double),

double aXValue, double aDeltaX) {

return ( aF( aXValue + aDeltaX ) - aF( aXValue - aDeltaX ) ) /

( 2 * aDeltaX ); // Centered difference approximation

}
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Figure 19.2

and repeating the calculation of Figure 19.1 with Eq. (19.7) yields Figure 19.2.

The dependence of the reduced numerical error on (�x)2 is apparent.

19.5 Extrapolation

As an alternative to graphically extrapolating results for different �x , if the order

of accuracy of an arbitrary numerical procedure is known, the results of the

method for different step sizes can be combined algebraically. For example, if

the result of a calculation with a step length �x with an error term of the form

O(�x) = a �x + O(�x)2, where a represents the �x Taylor-series coefficient in

O(�x), is added to the result for the same calculation but with a step length

−�x , the combined error is a �x + O(�x)2 + (−a �x + O(−�x)2) = Õ(�x)2. By

similarly combining results for step lengths of ±�x, ±2 �x, . . ., the accuracy of

any numerical method can generally be greatly increased if the output varies

sufficiently smoothly as a function of x .

19.6 The derivative calculator class

An object-oriented implementation of the derivative operator can be obtained

by abstracting a handheld calculator in which the user selects a function to be

differentiated, a step length and an evaluation position. The calculator, which
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stores these quantities, computes the value of the derivative when its calculate

button is depressed:

class DerivativeCalculator {

public:

void setDx( double aDx ) { iDx = aDx; }

void setX( double aX ) { iX = aX; }

double dx( ) const { return iDx; }

double calculateDerivative( ) const

{ return ( iF( iX + iDx ) - iF( iX ) ) / iDx; }

DerivativeCalculator(double aX, double aDx, double aF( double )):

iX( aX ), iDx( aDx ) {

iF = aF;

}

private:

// Store function address as an internal variable

double (*iF) ( double );

double iDx;

double iX;

};

main ( ) {

double deltaX = 1.e-1;

double xValue = 1.0;

int choice;

double (*myFunction) ( double );

cout << ''Choose a function 1 - cube, 2 - square ''<< endl;

cin >> choice;

switch ( choice ) {

case 1: myFunction = cube; break; // Output: 3.31

case 2: myFunction = linear; break; // Output: 1

default: cout << ''Incorrect Input - program

exiting'';

}

DerivativeCalculator DC1( 1.0, 0.1, myFunction );

cout << DC1.calculateDerivative( );

}

19.7 Integration

The definite integral

I L f (x) =

∫ x

L

f (x ′)dx ′ (19.9)

is again an operator that transforms the integrand function f (x) into a second

function I L f (x). This continuous operator is again implemented numerically by

referring to its underlying definition as a limit of a discrete expression,

I L f (x) = lim
n→∞

I L
n f (x) = lim

n→∞

n−1
∑

k=0

�x ak (19.10)

in which �x = (x − L)/N and the ak are suitably chosen values of f (x) within the

interval [x + k �x, x + (k + 1)�x]. The summation limits from 0 to n − 1 yield n

intervals of length �x . A common, subtle programming error is to set the upper
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limit to n, yielding an O(�x) numerical error that is often mistaken for the error

of the numerical method.

In calculus, two possible choices for the ak are commonly cited. The rectan-

gular rule,

ak = f (L + k �x) (19.11)

evaluates the function at the left endpoint of each interval, while the midpoint

rule

ak = f (L + (k + 0.5)�x) (19.12)

instead employs the interval midpoint. The midpoint rule Octave program

File myMidpoint.m:

function result = myMidpoint( aFunction, leftEndPoint, ...

rightEndPoint, numberOfIntervals )

deltaX = ( rightEndPoint - leftEndPoint ) / numberOfIntervals;

result = deltaX * sum( aFunction( leftEndPoint + 0.5 * deltaX + · · ·

deltaX * ( 0 : numberOfIntervals - 1 ) ) )

is called for a sine function argument as follows:

myMidpoint( @sin, 0., pi, 40 )

While the midpoint and rectangular rules yield identical results in the con-

tinuous limit (�x → 0), the discrete errors differ. For example, the difference

between the rectangular-rule approximation and the exact result equals

Erect =

n−1
∑

k=0

∫ xk+�x

xk

[ f (xk) − f (x)]dx (19.13)

If f (x) is continuous in the interval from L to R, it can be expanded in the kth

interval in a Taylor series in (xk − x), yielding

Erect =

n−1
∑

k=0

∫ xk+�x

xk

f ′(xk)(xk − x)dx + O(�x)2 (19.14)

However, if the magnitude of the first derivative of f (x) is bounded on the interval

x ∈ [L , R] by M1, then over the entire interval

|Erect| <
M1n(�x)2

2
=

M1(R − L)�x

2
(19.15)

since n�x is the total length of the integration interval. Therefore, unless there

occurs an exceptional cancellation between positive and negative contributions

to the total error, the error varies linearly with �x since the error in each discrete

interval is O(�x)2 but the errors add over L/�x intervals. The overall error,

however, decreases to O(�x)2 with the midpoint rule, as can be demonstrated by

extending the above methodology.
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The integration accuracy can be further increased by employing Simpson’s

rule:

∫ R

L

f (x)dx =
�x

6

n−1
∑

i=0

[

f (xi ) + 4 f

(

xi + xi+1

2

)

+ f (xi+1)

]

+ O(xi+1 − xi )
4 (19.16)

The following Octave program implements Simpson’s rule over an interval from

leftEndPoint to rightEndPoint, noting that the values of f (x1), f (x2), . . . , f (xn−1)

are evaluated twice in the above expression, yielding weights of 1, 4, 2, 4, 2, . . . ,

4, 1:

function result = mySimpson( aFunction, aLeftEndPoint, ...

aRightEndPoint, aNumberOfIntervals )

deltaX = ( aRightEndPoint - aLeftEndPoint ) / aNumberOfIntervals;

xLeft = leftEndPoint

deltaX2 = deltaX / 2;

mySum = 0;

for loop = 0 : aNumberOfIntervals - 1

mySum = mySum + 2 * aFunction( xLeft ) + ...

4 * aFunction( xLeft + deltaX2 );

xLeft = xLeft + deltaX;

end

mySum = mySum + aFunction( aRightEndPoint ) ...

- aFunction( aLeftEndPoint );

result = deltaX * mySum / 6;

19.8 Root-finding procedures

The roots of a real equation f (x) = 0 over an interval [L , R] are most reliably

obtained by the bisection method, which requires only the continuity of f (x).

First f (x) is evaluated on a sufficient number of equally spaced points over the

interval to insure that no more than one root occurs between each set of adjacent

points. Each interval within which the function changes sign is then considered

in turn. Labeling the current interval [a, b] and its bisector c, if f (b) f (c) ≤ 0

the root falls between b and c including possibly the endpoints of the interval.

Accordingly, the current interval is replaced by [b, c]; otherwise, it is set to [a, b].

The process is continued until the endpoint changes by less than a prescribed

value, the error over one iteration step:

function result = myBisect( aFunction, aLeftLimit,

aRightLimit, aError )

while ( abs( aLeftLimit - aRightLimit ) > aError )

midpoint = ( aLeftLimit + aRightLimit ) / 2;

if aFunction ( midpoint ) * aFunction( aRightLimit ) <= 0

aLeftLimit = midpoint;

else
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aRightLimit = midpoint;

end

end

result = ( aLeftLimit + aRightLimit ) / 2;

The bisection method is applicable to any continuous function, but lacks

computational efficiency, since each iteration only halves the extent of the interval

containing the root. Newton’s method, in contrast, converges rapidly but fails if

a function is not differentiable or possesses a very small slope near its root, or

for an inaccurate initial estimate, x1, of the root. The procedure locates the root

of f (x) near x1, by approximating f (x) by the first two terms in its Taylor-series

expansion,

fT(x) ≈ f (x1) +
d f (x1)

dx
(x − x1) (19.17)

The zero of the above linear approximation to f (x),

x2 = x1 −
f (x1)

(

d f (x1)

dx

) (19.18)

is generally far closer to the exact root than x1. The minus sign in the above

equation is often mistakenly omitted. The derivative of f (x) in Eq. (19.18)

is evaluated numerically or analytically and the procedure iterated until

|xi+1 − xi | < ε. The above formula can also be derived geometrically by not-

ing that, from the equal ratios of equivalent sides of similar triangles,

� f (x1)/�x≈ ( f (x1) − f (x2))/(x1 − x2) with f (x2) = 0.

A non-recursive implementation of Newton’s method in Octave is given by

function result = newton( aFunction, aEstimate, aError )

deltaX = 1.e-3;

for loop = 1 : 5

derivative = ( aFunction( aEstimate + deltaX ) - ...

aFunction( aEstimate - deltaX ) ) / ( 2. * deltaX );

deltaX = -aFunction( aEstimate ) / derivative;

aEstimate = aEstimate + deltaX;

aFunction( aEstimate )

if abs( deltaX ) < aError

break;

end

end

result = aEstimate

A recursive Java implementation of Newton’s method, in which the tech-

nique of Section 18.3 is employed to select f (x) at runtime follows, where

System.in.read( ) returns a single character extracted from the terminal as an

int:

interface MyFunction {

double myFunction( double aD );

}
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public class Newton {

static int count;

static double derivative( MyFunction aMF, double aX ) {

double deltaX = 1.e-3;

return ( aMF.myFunction( aX + deltaX )

- aMF.myFunction( aX - deltaX ) ) / ( 2. * deltaX );

}

static double newton( MyFunction aMF1, double aEstimate,

double aError ){

double deltaX = - aMF1.myFunction( aEstimate )

/ derivative( aMF1, aEstimate );

aEstimate += deltaX;

if ( Math.abs( deltaX ) < aError ‖ count++ == 40 )

return aEstimate;

else return newton( aMF1, aEstimate, aError );

}

public static void main ( String [ ] args ) throws Exception {

System.out.println( "Insert 1 for square, 2 for cube" );

char c = (char) System.in.read( );

MyFunction MF1;

switch ( c ) {

case '1': MF1 = new MyFunction( ) { public double

myFunction( double aD ) { return aD * aD - 4; } } ;

break;

case '2': MF1 = new MyFunction( ) { public double

myFunction( double aD ) { return aD * aD * aD - 27; } } ;

break;

default: System.out.println( "Error in input" ); return;

}

double estimate = 2.5;

double error = 1.e-8;

System.out.println( newton( MF1, estimate, error ) );

}

}

Newton’s method can converge slowly or even diverge unless the derivative is

evaluated analytically. Otherwise, once the numerical estimate is close to the root,

the O(�x)2 error in the central difference operator imparts an error of the same

magnitude to the root value. While this problem can be alleviated with a high-

order approximation for the derivative and a small delta, truncation errors then

increase, especially if f (x) varies slowly near the root. Further, if x1 is not suffi-

ciently near the root, the sign of d f /dx can be the opposite of its sign at the root.

Hence, x2 is positioned further from the root than x1, and successive iterations

generally diverge. An interval [a, b] containing the root can then be selected with

x1 set to a. If x2 falls within the interval, Newton’s method is applied; otherwise,

the bisection method is employed to generate an improved starting value.

19.9 Minimization

While the minimum or maximum values of a function can be obtained from

the roots of its numerical derivative, approximating the derivative operator yields
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numerical errors. Instead, to implement a highly simplified minimization routine,

the function is first evaluated at three equidistant points (l, m, r ) within an interval

[l, r ] that contains the minimum. Subsequently, if f (r ) > f (l), [m, r ] is bisected

by a point x . If f (x) < f (m), the new interval endpoints are chosen as [m, r ],

otherwise the endpoints are set to [l, x]. This yields (in Octave)

function result = myMinimum( aFunction, aLeftEndPoint, ...

aRightEndPoint, aError );

leftValue = aFunction( aLeftEndPoint );

rightValue = aFunction( aRightEndPoint );

for loop = 1 : 500

middlePoint = ( aLeftEndPoint + aRightEndPoint ) / 2;

Middlevalue = aFunction( middlePoint );

aNewPoint = ( aRightEndPoint + middlePoint ) / 2;

newValue = aFunction( aNewPoint );

if ( newValue < middleValue )

aLeftEndPoint = middlePoint;

else

aRightEndPoint = aNewPoint;

end

else

aNewPoint = ( aLeftEndPoint + middlePoint ) / 2;

newValue = aFunction( aNewPoint );

if ( newValue < middleValue )

aRightEndPoint = middlePoint;

else

aLeftEndPoint = aNewPoint;

end

if aRightEndPoint - aLeftEndPoint < aError

break;

end

end

result = middlePoint;

The minimum of the parabola passing through the function values at the three

evaluation points can also be employed to improve significantly the choice of

points in the successive iteration step.
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Linear algebra

Matrices typically describe systems of coupled components, generally subject to

external or internal constraints. This chapter considers the standard numerical

procedures for such problems, namely linear-equation and eigenvalue solvers.

Since matrix calculations are often resource-intensive and error-prone, favoring

optimized library routines, the discussion focuses on basic principles.

20.1 Matrices

A linear transformation of variables, or equivalently a linear system of equations,

can be represented by a matrix. For example, the Lorenz transformation from a

system to a second system traveling at a relative velocity v, namely

ct ′ = γ (ct − βx)

x ′ = γ (x − βct) (20.1)

y′ = y

z′ = z

with β = v/c and γ = 1/
√

1 − v2/c2 is linear since scaling all the input variables

scales the output by the same factor. The transformation is equivalently expressed

as
⎛

⎜

⎜

⎝

ct ′

x ′

y′

z′

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ct

x

y

z

⎞

⎟

⎟

⎠

(20.2)

A second transformation applied to the primed variables leads to matrix multi-

plication when referred to the unprimed variables.

20.2 Linear-equation solvers

Since the direct problem associated with Eq. (20.1) or Eq. (20.2) expresses the

transformed variables by multiplication and addition of the untransformed coor-

dinates, the inverse problem of finding the untransformed from the transformed

200
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coordinates generalizes the operation of division and is therefore more involved.

The Gaussian elimination procedure for determining the ci in the system of N

linear equations

N−1
∑

j=0

Ai j c j = bi (20.3)

or equivalently c in the matrix equation system Ac = b, where the elements of the

N × N matrix A are Aij and the elements of the vector b, bi, are given, repeatedly

scales and subtracts matrix rows from other rows to recast the original set of

equations into tridiagonal form. The final equation in this new set possesses the

form A
(N−1)

N−1,N−1 cN−1 = b
(N−1)

N−1 , yielding cN−1. Subsequently, through “back substi-

tution”, the preceding equation, which contains only cN−1, and cN−2 is solved for

cN−2 and so on.

The following simple example,

c0 + 2c1 = 1

3c0 + c1 = 2
(20.4)

illustrates the procedure. Multiplying the first equation in this set by 3 and

subtracting it from the second equation yields the tridiagonal system

c0 + 2c1 = 1

−5c1 = −1
(20.5)

In the back-substitution step, the second of these equations is solved for c1 and

the result inserted into the first equation to obtain c0.

By analogy, subtracting Ai0/A00 times the first row of Eq. (20.3) from each row

i �= 0 generates a new equation system for the cj with elements

A
(1)

i j = Ai j − A0 j

Ai0

A00

, b
(1)

i = bi − b0

Ai0

A00

(20.6)

Here the first element is absent from each row except the first (i = 0) row. This

procedure is then repeated within the submatrix formed by excluding the first

row and column from the matrix system. After N – 1 iterations, the tridiagonal

equation system

A00c0 + A01c1 + · · · + A0N−1cN−1 = b0

A
(1)

11 c1 + · · · + A
(1)

1N−1cN−1 = b
(1)

1

... (20.7)

A
(N−1)

N−1,N−1cN−1 = b
(N−1)

N−1

is obtained. To implement back substitution the last, trivial, equation is solved

and the result for cN−1 is inserted in the previous equation; subsequently the

values for both cN−1 and cN−2 are inserted in the third from the last equation and
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the process is repeated until the first equation is reached. This yields

cN−1 = b
(N−1)

N−1

/

A
(N−1)

N−1,N−1

cN−2 = (b
(N−2)

N−2 − A
(N−2)

N−2,N−1cN−1)
/

A
(N−2)

N−2,N−2 (20.8)

cN−3 = (b
(N−3)

N−3 − A
(N−3)

N−3,N−2cN−2 − A
(N−3)

N−3,N−1cN−1)
/

A
(N−3)

N−3,N−3

With the above notation, Gaussian elimination is coded in C++ as (where the

input two- and one- dimensional array parameters aA and aB are overwritten)

#include <stdio.h>

const int n = 2;

// Note: both aA and aB are overwritten

void gauss( double aA[ ][n], double aC[ ], double aB[ ] ) {

// Forward elimination

for ( int i = 0; i < n; i ++ ) {

if ( !aA[i][i] ) exit( 0 );

for ( int j = i + 1; j < n; j++ ) {

double d = aA[j][i] / aA[i][i];

for ( int k = i + 1; k < n; k++ )

aA[j][k] -= d*aA[i][k];

aB[j] -= d*aB[i];

}

}

if ( !aA[n-1][n-1] ) exit( 0 );

// Back substitution

for ( int i = n - 1; i >= 0; i-- ) {

aC[i] = aB[i];

for ( int j = i + 1; j < n; j++ )

aC[i] -= aA[i][j] * aC[j];

aC[i] /= aA[i][i];

}

}

main( ) {

double a[n][n] = { { 1, 2 }, { 3, 8 } };

double b[n] = { 2, 5 };

double c[n];

gauss( a, c, b );

cout << c[0] << '\t' << c[1] << endl;

}

Since the second derivative operator is represented by the three-point formula

of Eq. (20.8), the specialization of the above routine to tridiagonal matrices is

employed in solving, for example, diffusion and wave equations. To preserve

memory space, the diagonal and the upper and lower co-diagonals of the

matrices are typically stored as three separate arrays of dimensions N, N – 1 and

N – 1, respectively. A C++ tridiagonal equation solver that preserves the input

parameters is

void tridiagonalSolver( double aLowerCodiagonal[ ],

double aDiagonal[ ], double aUpperCodiagonal[ ],

double aInputVector[ ], double aOutputVector[ ],

double aScratch[ ], int aNumberOfPoints ) {

// Forward elimination
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double bsave = aDiagonal[0];

if ( !bsave ) exit( 0 );

aOutputVector[0] = aInputVector[0] / bsave;

for ( int loop = 1; loop < aNumberOfPoints; loop++ ) {

aScratch[loop] = aUpperCodiagonal[loop - 1] / bsave;

bsave = aDiagonal[loop] - aScratch[loop] *

aLowerCodiagonal[loop - 1];

if ( !bsave ) exit( 0 );

// Back substitution

aOutputVector[loop] = ( aInputVector[loop] -

aLowerCodiagonal[loop - 1] * aOutputVector[loop - 1] )

/ bsave;

}

for ( int loop = aNumberOfPoints - 2; loop > -1; loop-- )

aOutputVector[loop] -= aScratch[loop + 1]

* aOutputVector[loop + 1];

}

main( ) {

double diagonal[2] = { 1, 8 };

double upperCodiagonal[1] = { 2 };

double lowerCodiagonal[1] = { 3 };

double inputVector[2] = { 2, 5 };

double outputVector[2];

double scratch[2];

tridiagonalSolver( lowerCodiagonal, diagonal, upperCodiagonal,

inputVector, outputVector, scratch, 2 );

cout << outputVector[0] << '\t' << outputVector[1] << endl;

}

Often the check for non-zero components of bsave can be omitted. If Ai j remains

unchanged over multiple realizations, the above codes can be accordingly modi-

fied to improve efficiency.

In Octave, function parameters are passed by value so that additional (scratch)

space for preserving the function arguments is superfluous. A tridiagonal matrix

program for either column and row vectors that does not examine bsave can be

coded as

function outputVector = myTridigonal( aLowerCodiagonal, ...

aDiagonal, aUpperCodiagonal, aInputVector )

numberOfEquations = length( aDiagonal );

outputVector = zeros( 1, numberOfEquations );

% Forward elimination

for loop = 2 : numberOfEquations

temporary = aLowerCodiagonal(loop - 1) / aDiagonal(loop - 1);

aDiagonal(loop) = aDiagonal(loop) ...

- temporary * aUpperCodiagonal(loop - 1);

aInput(loop) = aInputVector(loop) ...

- temporary * aInput(loop - 1);

end

% Back substitution

outputVector(numberOfEquations) = aInput(numberOfEquations) ...

/ aDiagonal(numberOfEquations);

for loop = numberOfEquations - 1 : -1 : 1
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outputVector(loop) = ( aInput(loop) - aUpperCodiagonal(loop) ...

* outputVector(loop + 1) ) / aDiagonal(loop);

end

20.3 Errors and condition numbers

Numerical errors in Gaussian elimination principally arise from two sources. The

first of these occurs when, for example, |A00| ≪ |A0i| in Eq. (20.6) so that typically

A0 j Ai0/A00 ≫ Ai j . In this case, the number of significant digits retained from Ai j

is reduced after the subtraction. This error, which can appear at each forward

step of the algorithm, can be eliminated by pivoting. This refers to interchanging

the order of rows in the equation system at each forward step to minimize the

magnitude of the subtracted values.

A second, more problematic source of error results if the equation system

is nearly linearly dependent; that is, if multiplying a number of equations by

different coefficients and summing approximates a different equation in the

set. Small changes in the input vector, b, can then induce large variations in

the solution vector c. Geometrically, for N = 2, two nearly identical equations

describe almost parallel lines. A small change in the equation of one line resulting

from a minor variation in b substantially displaces their point of intersection

and therefore leads to a markedly different solution vector c. In N dimensions,

a solution occurs at the point of intersection of N hyperplanes with N − 1

dimensions, and therefore behaves similarly.

The deviation of an equation system from a linearly dependent system is quan-

tified by the condition number of the corresponding matrix, which is defined as

the ratio of the largest to the smallest of the matrix eigenvalues. A singular

matrix possesses an infinite condition number, whereas the condition number

of an “ill-conditioned” matrix exceeds 106 in single precision and 1012 in dou-

ble precision. Routines for computing condition numbers are present in most

numerical libraries since they are frequently incorporated into matrix solvers.

20.4 Application: least-squares procedure

Least-squares fitting provides an important application for equation-solution

methods. The linear least-squares procedure estimates the parameters ai of a

model of the form

y (x, a1, . . . , aM ) =
M

∑

j=1

a j Y j (x) (20.9)

in which the Yi (x) are given functions, from noisy experimental data by minimiz-

ing the deviation of the model predictions from the data.

Given a set of N measurement points (xi , yi ), if the random measurement error

at each xi is known beforehand to be σi and the actual physical value of the output
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variable is yexact (xi ) , the probability of observing the measured value yi for errors

distributed according to a Gaussian (normal) probability distribution is given by

p (yi ) =
1

σ
√

π
e

− (yi −yexact(xi ))2

2σ2
i (20.10)

If the errors at each xi are mutually uncorrelated, the probability of observing

a certain set of data points is the product of the individual probabilities for each

point:

p ({yi }) ∝
N

∏

i=1

e
− (yi −yexact(xi ))2

2σ2
i = e

−
N

∑

i=1

(Y (xi )−yi )2

σ2
i ≡ e−χ2

(20.11)

Accordingly, if yexact is approximated by y (x, a1, . . . , aN ) , the optimal param-

eters ai minimize the chi-squared function

χ 2 (a1,, a2, . . . , aN ) ≡
N

∑

i=1

(Y (xi ) − yi )
2

σ 2
i

(20.12)

which requires

∂χ 2

∂ak

=
∂

∂ak

N
∑

i=1

1

σ 2
i

{

M
∑

j=1

a j Y j (xi ) − yi

}2

= 2

N
∑

i=1

1

σ 2
i

[

∂

∂ak

{

M
∑

j=1

a j Y j (xi ) − yi

}(

M
∑

j=1

a j Y j (xi ) − yi

)]

= 0 (20.13)

for each i . This yields the M linear equations

N
∑

i=1

Yk (xi )

σi

(

M
∑

j=1

a j

Y j (xi )

σi

−
yi

σi

)

= 0 (20.14)

or, in terms of the N × M matrix A with Ai j = Y j (xi )/σi and the vector b with

bi = yi/σi ,

Ma ≡
(

A
T
A

)

a = A
T
b (20.15)

If all measurements possess the same error, Eq. (20.15) becomes M̃a = d, with

M̃k j =
N

∑

i=1

Yk(xi )Y j (xi ) , dk =
N

∑

i=1

Yk(xi )yi (20.16)

If there exist fewer xi values than parameters in the model function, so that

N < M, the equation system of Eq. (20.15) is underdetermined. The singular

value decomposition (SVD) method is then employed to obtain an approximate

solution.
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The least-squares procedure simplifies considerably when fitting a line

y = a1 + a2x to a set of data points for which the equations for a1 and a2 are

given by

∂

∂a1

N
∑

i=1

1

σ 2
i

(a1 + a2xi − yi )
2 = 2

N
∑

i=1

1

σ 2
i

(a1 + a2xi − yi ) = 0

(20.17)

∂

∂a2

N
∑

i=1

1

σ 2
i

(a1 + a2xi − yi )
2 = 2

N
∑

i=1

xi

σ 2
i

(a1 + a2xi − yi ) = 0

which yields

a1

N
∑

i=1

1

σ 2
i

+ a2

N
∑

i=1

xi

σ 2
i

−
N

∑

i=1

yi

σ 2
i

= 0

(20.18)

a1

N
∑

i=1

xi

σ 2
i

+ a2

N
∑

i=1

x2
i

σ 2
i

−
N

∑

i=1

xi yi

σ 2
i

= 0

and therefore

a1 =

N
∑

i=1

yi

σ 2
i

N
∑

i=1

x2
i

σ 2
i

−
N

∑

i=1

xi

σ 2
i

N
∑

i=1

xi yi

σ 2
i

N
∑

i=1

1

σ 2
i

N
∑

i=1

x2
i

σ 2
i

−

(

N
∑

i=1

xi

σ 2
i

)2
, a2 =

N
∑

i=1

1

σ 2
i

N
∑

i=1

xi yi

σ 2
i

−
N

∑

i=1

xi

σ 2
i

N
∑

i=1

yi

σ 2
i

N
∑

i=1

1

σ 2
i

N
∑

i=1

x2
i

σ 2
i

−

(

N
∑

i=1

xi

σ 2
i

)2

(20.19)

20.5 Eigenvalues and iterative eigenvalue solvers

An eigenvector x of A solves Ax = �ix in which the constant �i is termed an

eigenvalue. If A is an N × N Hermitian matrix, it possesses N linearly independent

eigenvectors with real eigenvalues such that any N-component vector x can be

expressed as a linear combination of these eigenvectors. To find iteratively the

eigenvector, here assumed unique, with eigenvalue closest to an initial estimate

�(0) the equation system

(A − λ(i)
I)x(i+1) = x

(i) (20.20)

must be solved repeatedly. Here I is the identity matrix and x(i) is the ith estimate

for the corresponding eigenvector, where the initial estimate, x(0) can be chosen

effectively randomly. Expressing x(i) as a linear combinations of the eigenvectors,

�k, of A,

x
(i) =

N
∑

k=1

c
(i)

k k (20.21)
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the recursion relation yields

N
∑

k=1

(λk − λ(i))c
(i+1)

k k =
N

∑

k=1

c
(i)

k k (20.22)

However, since the eigenvectors, �k, are linearly independent, the coefficients

of each eigenvector on both sides of the equation must be separately equal.

Therefore,

c
(i+1)

k =
1

λk − λ(i)
c

(i)

k (20.23)

enhancing the relative amplitude of the eigenvector in c
(i+1) closest to λ(i).

While λ(i) can remain equal to λ(0), x (i+1) yields an improved value of this

parameter. On multiplying both sides of Eq. (20.20) by the transpose of the

column vector x
(i+1), we obtain

(x(i+1))T
Ax

(i+1) − λ(i)(x(i+1))T
x

(i+1) = (x(i+1))T
x

(i) (20.24)

Since x
(i+1) approaches the eigenvector with eigenvalue nearest λ(i), an improved

eigenvalue estimate is obtained from (x(i+1))T
Ax

(i+1) ≈ λ(i+1)(x(i+1))T
x

(i+1) or

λ(i+1) = λ(i) +
(x(i+1))T

x
(i)

(x(i+1))Tx(i+1)
(20.25)

The amplitude of x(i) varies exponentially with i and must be periodically

renormalized.



Chapter 21

Fourier transforms

The frequency content of a continuous signal s(t) is uniquely determined by

its continuous Fourier transform. However, if the signal is instead sampled at

discrete times tm = t0 + m�t, m = 0, 1, . . . , N − 1, then, although its frequency

behavior can be specified in terms of N values, these depend on the assumed

behavior of the signal between the sample points and outside the interval. The

discrete Fourier transform consequently possesses more involved properties than

those of the continuous transform.

The discrete complex Fourier transform (DFT) is defined as

S(m) =

N−1
∑

l=0

s(t + l �t)e−iωm l �t
=

N−1
∑

l=0

s(t + l �t)cos(ωml �t)

− i

N−1
∑

l=0

s(t + l �t)sin(ωml �t) (21.1)

The frequencies ωm are set to the equally spaced values

ωm = 2πm/(N �t), (21.2)

with m = 0, 1, . . . , N − 1. The real part of S(m) is termed the cosine transform,

while the imaginary part is the negative sine transform. Upon introducing the

notation sl ≡ s(t + l �t),

S(m) =

N−1
∑

l=0

sle
−i 2πml

N (21.3)

for which the inverse transform is

sk =
1

N

N−1
∑

m=0

S(m)ei 2πmk
N (21.4)

as can be verified by direct substitution.

For large N, Eq. (21.3) admits rapid evaluation if N possesses many factors of

2. To demonstrate, for N = 8, if l and m are both written in binary representation

208
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as l = 4l3 + 2l2 + l1 and m = 4m3 + 2m2 + m1 then the sum in Eq. (21.3) takes the

form

S(m) =

1
∑

l3=0

1
∑

l2=0

1
∑

l1=0

s4l3+2l2+l1 e−i 2π
8

(4m3+2m2+m1)(4l3+2l2+l1) (21.5)

For m = 4, the terms become

e−i 2π
8

4(4l3+2l2+l1)
= e−i 2π

8
4l1 (21.6)

reducing the total number of addition operations to 2. In this manner, if N = 2M

the number of “fast Fourier transform” (FFT) operations decreases from O(N 2)

to O(N M).

To illustrate some features of the FFT, type into Octave

signalR = sin( 2 * pi / 64 * [0 : 63] )

fftSignalR = fft( signalR );

plot( fftSignalR );

The graph appears meaningless since the FFT yields a complex result. On the

other hand,

plot( real( fftSignalR ) );

and

plot( imag( fftSignalR ) );

display the cosine and the negative of the sine transforms. Since the signal s(m) is

a sine function, the first of these is zero to within numerical precision, while the

negative sine transform of the signal has a negative peak at the second, m = 1,

point in the computational window, indicating, as expected from Eq. (21.2), that

the lowest non-zero frequency is ω1 = 2π/(N �t) in the DFT or, equivalently,

� f = ω/(2π ) = 1/2π = 1/(N �t). Since the frequency spacing therefore varies

with the duration of the signal’s time record (the computational window width),

to increase the frequency resolution, the window must be broadened, even for

localized signals.

Further, since sin(ωt) = (exp(iωt) − exp(−iωt))/(2i) = −i(exp(iωt) −

exp(−iωt))/2, the negative frequency in the sine function yields a value

of +32i at the last, 64th point in the computational window (the sine transform

evaluated at a negative frequency is the negative of its value for the equivalent

positive frequency since the sine function is odd). Since the first point, m = 1

in Eq. (21.3), of the DFT corresponds to zero frequency, the (N/2 + 1)th point,

corresponds to m = N/2 and therefore ωm = π/�t , which is termed the Nyquist

frequency. This constitutes the highest positive frequency (or equivalently the

largest negative frequency, since the DFT is periodic in frequency as well as
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time) in the transform. The (next) largest negative frequency appears at the

subsequent point with m = N/2 + 1, since

e−i
2π(N/2+1)l

N = e
−i

(

2π(N/2+1)l
N

−2πl

)

= e−i
2π(N/2+1−N )l

N = e−i
2π(−(N/2−1))l

N (21.7)

The smallest negative frequency, � f = −1/(N �t), is situated at the last point,

m = N − 1. To recover the original signal, the inverse FFT can be applied:

resultR = ifft( fftSignalR );

plot( real ( resultR ) );

Since the FFT remains unchanged if either m or l in Eq. (21.3) is incre-

mented by N, the FFT and inverse FFT exhibit periodicity both in time and

in frequency. Effectively, the Fourier transform computes the frequency con-

tent as if s(t) were periodically extended outside the data window such that

s(t) = s(t + l N �t), where l is any integer. The value of s(t) at the first data point

(m = 0) thus equals the presumed value at the (N + 1)st data point (m = N )). The

Fourier transform can thus be construed as positioning the data points along a

circular ring of temporal extent N �t. The FFT is therefore most precise if applied

to signals that physically possess this periodicity, typified by the sine function

above that is periodic over every 65 data points, assuming that this signal is a

restricted sample of an infinite sine function. In contrast, for

signalR = sin( 10.5 * pi / 64 * [0 : 63] )

plot( signalR );

plot( imag ( fft ( signalR ) ) );

the FFT exhibits broad extrema, since the periodic extension of the signal con-

tains large discontinuities at the computational window edges. To eliminate this

discontinuity, albeit at the cost of slightly distorting low-frequency spectral com-

ponents, the signal can be multiplied by a window function prior to Fourier

transforming. An example of such a window function is the Hamming window

function,

s̃m = sm

[

1

2

(

1 − cos

(

2πm

N

))]

, m = 0, 1, . . . , N − 1 (21.8)

which is explicitly periodic with period N �t. Multiplying the signal by s̃ before

applying the FFT yields a frequency-spectrum distribution that more closely

resembles that of a signal with this periodicity:

signalR = sin( 10.5 * pi / 64 * [0 : 63] ) * hamming( 64 )';

plot( imag ( fft ( signalR ) ) );

High-frequency, noisy components are eliminated from a signal by Fourier

transforming, applying a filter in the Fourier domain and then inverse transform-

ing. To illustrate, noise can be incorporated into a sine-function signal by adding

a uniformly distributed random number in the interval [−0.6, 0.6] to each signal

value:
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signalR = sin( 10 * pi / 64 * [0 : 63] ) + ...

1.2 * ( rand(1, 64) - 0.5 );

plot( signalR );

This results in a fluctuating but, on average, frequency-independent contribution

to the FFT of the signal, as is evident from

fftSignalR = fft( signalR );

plot( abs ( fftSignalR ) );

To filter the noise, the negative and positive low-frequency components

can be first translated to the center of the computational window through the

fftshift operation and high frequencies suppressed through multiplication by the

Hamming window function. The original ordering of the frequency spectrum is

recovered by a second call to fftshift and the inverse FFT is employed to obtain

the smoothed, signal:

fftShiftR = fftshift( fftSignalR );

fftFilterShiftR = fftShiftR .* hamming( 64 )';

fftResultR = fftshift( fftFilterShiftR );

plot( real( ifft( fftResultR ) ) );
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Differential equations

A differential equation can be viewed as a rule that relates the value of a

single variable at a point in space or time to the immediately preceding values

of the variable. While analytic procedures can be employed to determine the

global solution from the local relation, discretizing the space or time variable

transforms the differential equation into a difference equation. The particle

trajectory can then be obtained by repeatedly advancing the position and

velocity numerically over small time intervals. From the values of the variable at

infinitesimally displaced initial points (the initial conditions) the rule embodied

in the difference equation can be iterated to determine the global behavior of the

variable. For example, from the second-order differential equation describing

the local relationship between the force and the acceleration on a point particle,

the particle’s location and velocity are determined for all future times once the

values of these quantities at an initial time, or equivalently the particle locations

at two infinitesimally separated initial times, are specified.

22.1 Euler’s method

Euler’s method recasts a linear Nth-order differential equation as a set of

N coupled first-order differential equations followed by application of the forward

finite-difference approximation to each equation in the set. If the initial values of

the variables are specified, a time-stepping procedure yields their values at future

times. For example, Newton’s differential equation for a single massive particle

with mass m attached to a spring with force constant k,

a =
d2x

dt2
= −

k

m
x (22.1)

is written as a coupled set of first-order differential equations by introducing the

velocity:

v =
dx

dt
(22.2)

a =
dv

dt
= −

k

m
x

212
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Analogously, the third-order differential equation

d3x

dt3
= −kv (22.3)

becomes

v =
dx

dt

a =
dv

dt
(22.4)

da

dt
= −kv

Replacing the first-order derivatives by the forward difference approximation

D+
�t in Eq. (22.2) yields

x(t + �t) − x(t)

�t
= v(t) + O(�t)

(22.5)
v(t + �t) − v(t)

�t
= −

k

m
x(t) + O(�t)

or, equivalently,

x(t + �t) = x(t) + �t v(t) + O(�t)2

(22.6)
v(t + �t) = v(t) − k �t x(t)/m + O(�t)2

where the product of the O(�t) error terms in Eq. (22.5) with �t reduces the

error order to O(�t)2. C++ code that retains the above variable names for k = m

= 1, �t = 0.06 and initial conditions x(0) = 0, v(0) = 1 is given for the DISLIN

plotting package by

const NUMBEROFTIMESTEPS = 100;

main( ) {

double x[NUMBEROFTIMESTEPS], v[NUMBEROFTIMESTEPS], k=1,

m=1, dt=0.06;

x[0] = 0;

v[0] = 1;// second-order equation → two boundary conditions

for ( int loop = 1; loop < NUMBEROFTIMESTEPS; loop++ ) {

x[loop] = x[loop - 1] + dt * v[loop - 1];

v[loop] = v[loop - 1] - k * dt * x[loop - 1] / m;

}

qplot( x, v, NUMBEROFTIMESTEPS )

}

The above program can be immediately adapted to a ball in the presence of a

drag force proportional to velocity,

d2�r

dt2
= −gêz − α�v (22.7)
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In Octave, for a ball launched from coordinate origin with x and z components

of velocity given by 10 and 100 m/s

numberOfTimeSteps = 100;

deltaTime = 0.2;

gravitationalConstant = -9.8;

dragConstant = 6.0E-2;

Ball.positionRC = zeros( 2, numberOfTimeSteps );

Ball.velocityRC = zeros( 2, numberOfTimeSteps );

% initial x and z velocities

Ball.velocityRC(:, 1) = [ 10; 100 ];

for loop = 2 : numberOfTimeSteps

force = [ 0 ; gravitationalConstant ] - ...

dragConstant * Ball.velocityRC(:, loop - 1);

Ball.positionRC(:, loop) = Ball.positionRC(:, loop - 1) + ...

deltaTime * Ball.velocityRC(:, loop - 1);

Ball.velocityRC(:, loop) = Ball.velocityRC(:, loop - 1) + ...

deltaTime * force;

end

plot( Ball.positionRC(1, :), Ball.positionRC(2, :));

If the Euler method is applied to the equation dx/dt = f (t), each evaluation

of x(t + �t) adds an increment given by f (t)�t to the previous value of x(t),

corresponding to the rectangular integration rule. Thus, the Euler procedure

effectively generalizes rectangular integration to systems of first-order differen-

tial equations.

Newton’s equations can also be programmed directly in second-derivative

form by replacing the continuous second-derivative operator by its centered

finite-difference operator (D0
�t )

2 approximation:

(
D0

�t

)2
f (t) ≡

1

�t

(
D0

�t

∣
∣

t+�t/2
− D0

�t

∣
∣

t−�t/2

)
f (t)

=
1

(�t)2
([ f (t + �t) − f (t)] − [ f (t) − f (t − �t)])

=
1

(�t)2
( f (t + �t) − 2 f (t) + f (t − �t)) (22.8)

Inserting this expression directly into Eq. (22.1) yields a solution algorithm for

x(t + �t) in terms of the initial conditions x(t) and x(t – �t).

22.2 Error analysis

While x(t + �t) in Eq. (22.6) is accurate to O(�t)2, the particle position is nor-

mally required after a fixed propagation time T, corresponding to T/�t evolution

steps. If the error per step is O(�t)2, the total error is therefore, as in numerical

integration, O(�t)2(T/�t) or O(�t). However, the Euler method yields artificial

divergences that increase with �t in non-dissipative problems, as illustrated in
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Figure 22.1

the phase-space plot, Figure 22.1, of velocity v against position x for 80 time

steps with �t = 2�/80.

The monotonic increase in spring energy occurs because, since the particle

initially propagates from x = 0 to x = 1, the position at which the restoring

force is evaluated, x(ti), is closer to the origin than the average displacement,

≈x(ti + � t/2) of the spring during the propagation interval. Similarly, the

value of the velocity variable in the first line of Eq. (22.6) that controls the

magnitude of the change in the displacement over a step is larger than its properly

averaged effective value over the time interval. Accordingly, the restoring force is

weakened while the velocity is overestimated, so the displacement after the first

quarter-cycle exceeds its correct value. In contrast, as the particle returns back

to zero displacement, the negative restoring force is instead overestimated and

the magnitude of the negative velocity term underestimated. Therefore over this

quarter-cycle a stronger restoring force operates over a longer time, amplifying

the magnitude of the negative velocity after a half-period, as again evidenced

in Figure 22.1. By extension, the numerical error supplies a fictitious numerical

driving force in resonance with the motion, which, in the absence of a physical

dissipation mechanism, induces a steady growth of the particle energy.

Consistent with the above analysis, the unphysical energy divergence can be

eliminated by balancing the error in the force in Eq. (22.6) against that of the

velocity term. The resulting Euler–Cromer procedure is obtained by replacing
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v(t) in the first line by v(t + �t):

x(t + �t) = x(t) + �t v(t + �t) + O(�t)2

(22.9)
v(t + �t) = v(t) − k �t x(t)/m + O(�t)2

The resulting cancellation in the two error contributions can be shown through

algebraic manipulations to restore energy conservation

22.3 The Runge–Kutta procedure

The Runge–Kutta methods provide another set of time-stepping procedures for

equations of the form

d �x

dt
= �f (�x(t), t) (22.10)

where for an n-dimensional system �f is a vector of n position and n velocity

coordinates. Specializing to a single dimension and a scalar function f, the

procedure is obtained from the observation that

x(t + �t) − x(t)

�t
=

dx

dt
+

�t

2!

d

dt

(
dx

dt

)

+ O(�t)2

= f (x(t), t) +
�t

2

d

dt
( f (x(t), t)) + O(�t)2

= f (x(t), t) +
�t

2

⎛

⎜
⎜
⎝

d

dt
( f (x(t), t)) +

dx(t)

dt
︸ ︷︷ ︸

f (x(t),t)

d

dx
( f (x(t), t))

⎞

⎟
⎟
⎠

+ O(�t)2 (22.11)

However, the last version can be written

(c2 + c3) f + c1c3 �t( f fx + ft ) + O(�t)2 (22.12)

if c2 + c3 = 1, c1c3 = 1/2. Rearranging the resulting expression gives

= c2 f + c3[ f + c1 �t f fx + c1 �t ft + O(�t)2]

= c2 f + c3[ f (x(t) + c1 �t f, t) + c1 �t ft (x(t) + c1 �t f, t) + Õ(�t)2] (22.13)

= c2 f (x(t), t) + c3 f (x(t) + c1 �t f (x(t), t), t + c1 �t) + Õ(�t)2

For e.g. c2 = c3 = 1/2, c1 = 1 and the right-hand side of Eq. (22.11) is replaced

by the average of the function evaluated at the left- and estimated right-hand

endpoints of the interval.

Carrying this analysis further yields the fourth-order accurate procedure

�x(t + �t) = �x(t) +
1

6
�t( �f (�x(t), t) + 2 �F2 + 2 �F3 + �F4) (22.14)



22.3 The Runge-Kutta procedure 217

where

�F2 = �f

(

�x +
�t

2
�f (�x(t), t), t +

�t

2

)

�F3 = �f

(

�x +
�t

2
�F2, t +

�t

2

)

�F4 = �f
(
�x + �t �F3, t + �t

)

Runge–Kutta techniques are present in virtually every numerical program library.



Chapter 23

Monte Carlo methods

Monte Carlo procedures provide a standardized framework for solving numerous

involved calculations in which algorithmic error is replaced by statistical error.

These methods therefore prove particularly effective when applied to stochastic

physical systems. Several illustrations of Monte Carlo techniques are presented

below.

23.1 Monte Carlo integration

To integrate a general function over an complicated integration region in N

dimensions with a Monte Carlo approach, the integration region is enclosed

within a reference region of known area. Points are generated randomly inside

the reference region and the ratio of the number of points that fall into the

integration region to the total number of sample points is computed. Multiplying

this ratio by the volume of the reference region leads to an estimate of the

integral.

We illustrate the procedure for an arbitrary one-dimensional function, f( ),

here set to a cosine function, over the interval [0, π/2]. The routine then generates

random samples, (xi , yi ) within a rectangular reference region defined by [0, π/2]

in x and by [−2, 2] in y, which encompasses both the minimum and the maximum

value of f (x). The variable numberOfPointsBelowCurve is incremented by

one for each random point that lies below f (xi ). The ratio of the final value of

this variable to the total number of sample points multiplied by the area of the

reference region is then computed and the result added to the difference in the

x-limits multiplied by the lower y-limit to yield the integral,

f = @cos;

numberOfPoints = 10000;

lowerLimit = 0;

upperLimit = pi / 2;

% Must be smaller than the minimum value of f in the interval

yLower = -2;

% Must be greater than the maximum value of f in the interval

yUpper = +2;

regionArea = abs( yUpper - yLower ) * ( upperLimit - lowerLimit );

218
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% Place numberOfPoints points randomly within the reference region

xValuesR = rand( 1, numberOfPoints ) * ...

( upperLimit - lowerLimit ) + lowerLimit;

yValuesR = rand( 1, numberOfPoints ) * ( yUpper - yLower ) + yLower;

% Count the number of points that fall below the integrand function

numberOfPointsBelowCurve = sum( yValuesR < f( xValuesR ) );

integral = numberOfPointsBelowCurve * ...

regionArea / numberOfPoints + yLower * ( upperLimit - lowerLimit )

23.2 Monte Carlo evaluation of distribution functions

As noted above, Monte Carlo techniques are particularly suited to the evaluation

of statistical quantities such as probability distribution functions. Typically, these

relate to a physical system composed of N subsystems, each of which is charac-

terized by a randomly varying local parameter, si. This local parameter could be

a spin that can only possess certain discrete values, a single flip of a coin that

is sampled multiple times, or a continuous variable such as the impedance of

an individual component of a transmission system. Since the local parameters

are generally not deterministic, but instead fluctuate among subsystems or real-

izations as a result, for example, of thermal effects, manufacturing uncertainties

or component aging, they are termed stochastic variables. For each set of local

parameter values one or more global variables, such as a pulse propagation time,

total series resistance or sample magnetization, are typically measured or numer-

ically modeled. The problem is then to predict the probability that the global

variables possess certain values when averaged over all realizations. Practically

significant properties such as the average magnetization, mean time to failure or

bit-error rate can then be determined.

A stochastic system can be modeled by assigning sets of random values to the

local variables in a manner consistent with their statistics. For each set or real-

ization the M global variables, E (1), E (2), . . . , E (M) of interest are calculated. This

result is then placed in the corresponding bin B of an M-dimensional histogram,

which records the total number of realizations for which the E (i) are located

within a certain restricted region in the global variable space. The distribution

of events in the histogram for a large number of realizations corresponds to the

desired probability distribution function. Mathematically, if IB(�si ) is one within a

histogram bin B and zero outside, then the probability distribution function after

NR realizations is given for this bin by

pB( �E) = p({E (1), E (2), . . . , E (M)} ∈ B) =
1

NR

NR
∑

i=1

IB(�si ) (23.1)

The above considerations are illustrated by a one-dimensional unbiased ran-

dom walk. The underlying system variables si are assigned either 0 and 1 with
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equal probabilities corresponding to a displacement to the left or right by a unit

distance. The global quantity of interest, E, is the total displacement after N

steps. Averaging E over many realizations of the system variables yields a dis-

crete distribution function of the probability that the walk terminates at a given

displacement from the origin, as in

clear all

numberOfSteps = 40;

numberOfRealizations = 50000;

% For 2 steps, the possible outcomes are -2, 0 and 2,

% necessitating the +1 below

histogramR = zeros( 1, numberOfSteps + 1 );

for loop = 1 : numberOfRealizations

% Simulate numberOfSteps random steps

% 0 = step to left, 1 = step to right,

% histogramIndex = number of right steps + 1

histogramIndex = sum( round( rand( 1, numberOfSteps ) ) ) + 1;

histogramR(histogramIndex) = histogramR(histogramIndex) + 1;

end

% Normalize distribution to unit sum

histogramR = histogramR / sum( histogramR );

% xScaleR = number of steps to right - number of steps to left

xScaleR = 2 * ( 0 : numberOfSteps ) - numberOfSteps;

semilogy( xScaleR, histogramR, ''o'', 'markersize', 3 );

Since the probability distribution function is approximately Gaussian (e.g.

of the form a exp(−x2/(2a2)), graphing the logarithm of the distribution function

displays an inverted parabola. Slight distortions of the parabola in highly sampled

regions indicate residual correlations within rand( ) and are eliminated by using

improved random-number algorithms.

23.3 Importance sampling

Estimating the probability of infrequent but physically important events such as,

for example, those associated with system malfunctions requires many Monte

Carlo realizations. If, however, the ranges of the local parameter values that

yield these low-probability events are known from physical or mathematical

considerations, the realizations can often be weighted to generate relevant sets

of local variables more frequently than their occurrence in random samples. The

resulting biased histogram, IB(�s), for the global variables, however, overestimates

the probability of such events and must be multiplied by a likelihood ratio

L(�s) = p(�s)/pB(�s) (23.2)

that is often determined analytically as a function of the local parameters and

expresses the quotient of the probabilities of the unbiased, p(�s), and the biased
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distributions. The physical probability density distribution is then obtained

from

p( �E) =
1

NR

NR
∑

i=1

IB(�si )L(�si ) (23.3)

For the above one-dimensional random walk, the local steps can be biased so

that the probability of moving to the right is 0.6 while that of moving to the left

is 0.4. (Note that, if the random walker does in reality favor moves to the right,

the resulting distribution would be the unbiased solution to the problem.) The

resulting histogram is then oversampled for rightward displacements. However,

the unbiased distribution can be generated by multiplying this distribution by 0.4

for each rightward step and 0.6 for each leftward step, as in the program below:

clear all

numberOfSteps = 40;

numberOfRealizations = 50000;

% For 2 steps, the possible outcomes are -2, 0 and 2,

% necessitating the +1 below

histogramR = zeros( 1, numberOfSteps + 1 );

for loop = 1 : numberOfRealizations

% Simulate numberOfSteps random steps:

% +1 = right step, 0 = left step

% Events biased so that P(1) = 0.6

histogramIndex = sum( round( rand( 1, numberOfSteps ) ) ) + 1;

histogramR(histogramIndex) = histogramR(histogramIndex) + 1;

end

% Unbias result by multiplying by 0.6 for each left move

% and 0.4 for each right move

for loop = 1 : numberOfSteps;

histogramR(loop) = histogramR(loop) * ...

0.4ˆloop * 0.6ˆ( numberOfSteps - loop );

end

% Normalize distribution to unit sum

histogramR = histogramR / sum( histogramR );

xScaleR = 2 * ( 0 : numberOfSteps ) - numberOfSteps;

semilogy( xScaleR, histogramR, 'x', 'markersize', 3 );

The results for the biased (circles) and unbiased (crosses) procedures are pre-

sented in Figure 23.1.

23.4 The Metropolis algorithm

While importance sampling can be applied only to systems for which the rela-

tionship between the local variables and global variable values has been carefully

analyzed, statistical biasing methods that maximize the entropy of the calculation

(e.g. minimize the amount of specialized information introduced or required by

the numerical method) can be universally applied. These procedures are often
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Figure 23.1

based on Markov chains, for which each new system realization slightly modifies

the previous realization. An appropriate rule governs the acceptance or rejection

of each such transition. If a transition is rejected, the histogram is incremented

according to the previous result.

The first such, Metropolis, technique increases the probability of a global

system variable, E, by a factor eβE (or, with trivial modifications, e−βE ). The

degree of bias toward large E can therefore be adjusted by varying �. In

the method, a Markov chain is first generated by assigning random values to

the local system variables. One or more of these variables is then perturbed in

such a manner that the global variables are changed by a small amount. The

rule then accepts all transitions that increase the value of E, while permitting

transitions that lower E by an amount �E < 0 with a probability eβ�E . If a tran-

sition is rejected, the previous sample is counted again. Since there always exists

a finite probability for a transition to smaller E, states in the Markov chain can

escape from local maxima, although only after an average number of transi-

tions that increases exponentially with the height of the maximum relative to its

surroundings.

To understand the origin of the transition rule, consider a system with two

equally probable global states with different E. The probability of the Markov
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chain transitioning from the state with smaller E to the state with E + �E is

then unity, while the probability of a transition in the reverse direction is e−β�E .

However, on average, the number of transitions in one direction must be equal to

the number of transitions in the other direction, otherwise the number of visits to

the state with more incoming transitions would increase until equality is estab-

lished. Accordingly, the average number of times the upper state is visited will

exceed the corresponding number for the lower state by the factor eβ�E . Since this

argument extends to any distribution of global states, the Metropolis algorithm

oversamples a state with global variable E with a probability proportional to eβE .

Therefore the physical probability distribution function (in statistical mechanics

the density-of-states function) is obtained by multiplying the resulting probability

distribution by the likelihood function L(E) = e−βE .

The following Metropolis random-walk program implements successive

realizations in a Markov chain formed from a random walk with numberOfSteps

steps by changing the direction of a single, randomly chosen step. The global

variable E is set to the absolute value of the distance of the final position of

the random walk from the origin. If a transition is rejected, the histogram bin

associated with the previous transition is incremented by unity, which is termed

a self-transition. The final histogram is multiplied by the likelihood function to

generate the unbiased probability distribution:

clear all

numberOfRealizations = 100000;

numberOfSteps = 40;

myBeta = 1.0;

histogramR = zeros( 1, numberOfSteps + 1 );

% Simulate numberOfSteps coin flips (or random steps)

stepSequenceR = round( rand( 1, numberOfSteps ) );

histogramIndex = sum( stepSequenceR ) + 1;

centralPoint = numberOfSteps / 2;

for loop = 1 : numberOfRealizations;

flipPosition = fix( rand * numberOfSteps ) + 1;

stepSequenceR(flipPosition) = 1 - stepSequenceR(flipPosition);

histogramIndexNew = sum( stepSequenceR ) + 1;

if rand < exp( myBeta *( ...

abs( histogramIndexNew - centralPoint ) - ...

abs( histogramIndex - centralPoint ) ) )

histogramIndex = histogramIndexNew;

else

stepSequenceR(flipPosition) = ...

1 - stepSequenceR(flipPosition);

end

histogramR(histogramIndex) = histogramR(histogramIndex) + 1;

end

histogramR = histogramR .* exp( - myBeta * ...

abs( [1 : numberOfSteps + 1] - centralPoint ) );

xScaleR = 2 * ( 0 : numberOfSteps ) - numberOfSteps;

semilogy( xScaleR, histogramR / sum( histogramR ) );
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Executing the above program for values of myBeta from e.g. 0.2 to 1 after

issuing the command hold on demonstrates the influence of the biasing function.

For large myBeta, the sample space becomes overbiased toward statistically

unlikely events, undersampling the high-probability region of the probability

distribution function. However, the probability distribution function can be eval-

uated for several values of myBeta and each result employed in its region of

greatest accuracy.

23.5 Multicanonical methods

As demonstrated in the previous section, while Metropolis and importance-

sampling methods bias events toward certain global variable regions, statistical

accuracy is lowered elsewhere. An improved choice for the bias function instead

populates all histogram bins with approximately equal numbers of events. This

is achieved if successive realizations of a Markov chain execute an unbiased ran-

dom walk in the space of the global variables, E. Successive realizations then can

escape even from pronounced extrema. However, in order for the biased proba-

bility distribution function not to depend on E, the likelihood ratio, Eq. (23.2),

must be proportional to the desired probability distribution function. While this

function is the result of the procedure and is therefore by definition not initially

known, it can be determined iteratively such that an unbiased Markov chain cal-

culation generates an initial Monte Carlo distribution function that is employed

to bias samples of the subsequent iteration toward regions of small probability.

To implement the procedure, two histograms, h and H, with elements that

are initialized to unity, are introduced. The first stores the iteratively updated

probability distribution function and the second the intermediate statistics for the

current iteration that are required in order to update h. The distribution function

is initially taken as a constant function, for which all elements of h0 are unity.

Next, a Markov-chain simulation is performed, with the rule that transitions that

increase the current estimate of h are accepted with a probability h0( �En)/h0( �En+1)

and those that decrease h with unit probability; in the initial step this yields a

Monte Carlo distribution function. The histogram obtained from this simulation,

is stored in H, which is designated H0 in the initial step. Subsequently,

hi+1 = hi Hi (23.4)

with i = 0 yields the first approximation, h1, to the desired probability distribution

function. H is then reinitialized to unity and the procedure is repeated with the new

approximation for the distribution function, h1, in place of h0, and subsequently

iterated.

Returning to the two-state system, suppose that the mth estimate, hm , of

the probability density function underestimates the ratio of the probabilities

of the two states by a factor of 2. In the subsequent iteration, the transition

rule suppresses transitions out of the underestimated state by this factor while

the probability of an incoming transition remains unchanged. As a result, the
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underestimated state is sampled twice as many times as the overestimated state,

resulting in an accurate estimate of the probability distribution function when H

and hm are multiplied. Additionally, as noted above, successive iterations sample

increasingly lower-probability regions of the distribution function.

A multicanonical random-walk program is given below (while the distribu-

tion function is nearly independent of the method parameters over wide ranges,

typically the size of the perturbations is adjusted so that approximately a quarter

of the transitions are rejected):

clear all

numberOfRealizations = 100000;

numberOfSteps = 40;

numberOfOuterLoops = 4;

histogramR = ones( 1, numberOfSteps + 1 );

stepSequenceOldR = round ( rand( 1, numberOfSteps ) );

stepSequenceNewR = stepSequenceOldR;

histOld = 1;

histogramIndexOld = sum( stepSequenceOldR ) + 1;

for loopOuter = 1 : numberOfOuterLoops;

histogramNewR = ones( 1, numberOfSteps + 1 );

for loop = 1 : numberOfRealizations;

stepSequenceNewR = stepSequenceOldR;

% Change one local variable (step direction)

flipPosition = ceil( numberOfSteps * rand );

stepSequenceNewR(flipPosition) = ...

1 - stepSequenceOldR(flipPosition);

% Compute global variable (total distance traveled)

histogramIndexNew = sum( stepSequenceNewR ) + 1;

histNew = histogramR(histogramIndexNew);

% Multicanonical acceptance rule

if ( rand < histOld / histNew )

stepSequenceOldR = stepSequenceNewR;

histOld = histNew;

histogramIndexOld = histogramIndexNew;

end

histogramNewR(histogramIndexOld) = ...

histogramNewR(histogramIndexOld) + 1;

end

histogramR = histogramR .* histogramNewR;

end

xScaleR = 2 * ( 0 : numberOfSteps ) - numberOfSteps;

semilogy( xScaleR, histogramR / sum( histogramR ) );

23.6 Particle simulations

Molecular dynamics evolves a randomly generated set of energetic particles

according to Newton’s laws of motion. When two particles are sufficiently close,

a scattering event is simulated by, for example, reorienting the particle motion



226 Monte Carlo methods

along random outgoing angles with new velocities and energies. Monitoring the

evolution of individual molecules or of molecules in selected regions yields the

statistical medium properties.

As a simple one-dimensional illustration, 20 equal-mass point particles with

random but successively ordered positions are generated within a region between

0 and 500 distance units terminated with reflecting boundaries. The particles are

assigned random velocities between −1.0 and +1.0. The minimum time for a

collision to occur, either of a particle with its neighbor to its immediate left or,

for the first and last particle, with a boundary, is calculated. Every particle is then

evolved over this minimum time. If the minimum is associated with a particle

collision, the velocities of the colliding particles are interchanged; otherwise, the

velocity of the particle at the boundary is reversed. This sequence of steps is

repeated for 200 collisions and the trajectory of the central particle over this time

is graphed:

clear all

numberOfParticles = 20;

numberOfCollisions = 200;

windowSize = 500;

collisionTime = 0;

% Assign random positions to the particles

% and order the positions in an array

Particle.positionR = rand( 1, numberOfParticles ) * windowSize;

% Sort particles from left to rightmost in the array

Particle.positionR( : ) = sort( Particle.positionR( : ) );

% Assign random velocities from -1.0 to +1.0 to each particle

Particle.velocityR = ( rand( 1, numberOfParticles ) - 0.5 ) * 2;

for loop = 1 : numberOfCollisions

minimumTime = 1.e20;

for loopParticle = 2 : numberOfParticles

% Check whether the particle to the left will collide

% with the current particle

if Particle.velocityR(loopParticle - 1) - ...

Particle.velocityR(loopParticle) > 0

% Compute the time until collision

deltaTime = ( Particle.positionR(loopParticle) - ...

Particle.positionR(loopParticle - 1) ) / ...

( Particle.velocityR(loopParticle - 1) - ...

Particle.velocityR(loopParticle) );

% If this is smaller than previously recorded times,

% store the time and the particle number

if deltaTime < minimumTime

minimumTime = deltaTime;

particleIndex = loopParticle;

% Set flag to indicate that this is not a wall collision

isWall = 0;

end;

end

end

% Compute similarly the time for the rightmost

% particle to collide with the right wall

if Particle.velocityR(numberOfParticles) > 0

deltaTime = ( windowSize - Particle.positionR(numberOfParticles)...

) / Particle.velocityR(numberOfParticles);
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if deltaTime < minimumTime;

minimumTime = deltaTime;

particleIndex = numberOfParticles;

% Set the wall flag to indicate a wall collision

isWall = 1;

end;

end

% Repeat this for the leftmost particle

if Particle.velocityR(1) < 0

deltaTime = -Particle.positionR(1) / Particle.velocityR(1);

if deltaTime < minimumTime;

minimumTime = deltaTime;

particleIndex = 1;

isWall = 1;

end;

end;

for loopParticle = 1 : numberOfParticles

% Advance the particle positions over the time minimumTime

Particle.positionR(loopParticle) = ...

Particle.positionR(loopParticle) + ...

Particle.velocityR(loopParticle) * minimumTime;

% If the colliding particle intersected a wall,

% change the sign of its velocity. Otherwise exchange the

% velocities of the two colliding particles

if loopParticle == particleIndex

if isWall

Particle.velocityR(loopParticle) = ...

-Particle.velocityR(loopParticle);

else

saveVelocity = Particle.velocityR(loopParticle);

Particle.velocityR(loopParticle) = ...

Particle.velocityR(loopParticle - 1);

Particle.velocityR(loopParticle - 1) = saveVelocity;

end

end

end

% Plot the time evolution of the central particle

collisionTime = collisionTime + minimumTime;

saveTimeR(loop) = collisionTime;

savePositionR(loop) = Particle.positionR(numberOfParticles / 2);

end

plot( saveTimeR, savePositionR );

23.7 The Ising model

The evaluation of thermodynamic quantities is most simply illustrated by a one-

dimensional Ising model in which successive spins in a one-dimensional system

interact according to the Hamiltonian

E = −J

N s
∑

m=1

σmσm+1 (23.5)

Periodic boundaries apply to spins arranged around the circumference of a circle,

such that σNs+1 = σ1. For a spin-1/2 system, each σm equals ±1/2 and all possible
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configurations can be obtained by converting an integer into a binary number,

the digits of which specify the state of the corresponding spin, and subsequently

incrementing the integer. Each distinct energy, El , is recorded in an array together

while an accompanying array stores the number of times, NEl
, that the energy is

observed. In the canonical ensemble (Boltzmann distribution), the probability of

occupation of a state of energy E is given by exp(−βE) with β = 1/(kBT ), where

kB is the Boltzmann constant and T is the system temperature, so that the average

energy of the system is given by

Ē =

NE
∑

l=1

El NEl
e−βEl

NE
∑

l=1

NEl
e−βEl

=

NE
∑

l=1

El NEl
e−βEl

Z
(23.6)

where

Z =

NE
∑

l=1

NEl
e−βEl (23.7)

is termed the partition function. The specific heat capacity per spin, cV , is then
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=

β2
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(23.8)

The above formula, in which Ns is the number of spins, is employed to generate

the specific heat of a periodic one-dimensional Ising system with J = 4 in the

program below:

clear all

Ising.numberOfEnergies = 1;

Ising.energy(1) = 0;

Ising.numberOfStates(1) = 0;

numberOfSpins = 8;

numberOfRealizations = 2ˆnumberOfSpins;

for loop = 1 : numberOfRealizations

% Convert each number from 0 to 2ˆN-1 into binary

% form to represent a set of spins
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spins = dec2bin( loop - 1, numberOfSpins );

energy = 0;

for innerLoop = 1 : numberOfSpins

% Compute the Ising energy (interaction constant = -1)

energy = energy - str2num( spins(innerLoop) ) * ...

str2num( spins( mod( innerLoop, ...

numberOfSpins ) + 1 ) );

end

% Increase the number of recorded energies at this

% value by 1 if the value has been obtained earlier;

% otherwise store a new energy value in Ising

energyFound = 0;

for innerLoop = 1 : Ising.numberOfEnergies

if Ising.energy(innerLoop) == energy;

Ising.numberOfStates(innerLoop) = ...

Ising.numberOfStates(innerLoop) + 1;

energyFound = 1;

end

if energyFound == 1; break; end;

end

if energyFound == 0

Ising.numberOfEnergies = Ising.numberOfEnergies + 1;

Ising.energy(Ising.numberOfEnergies) = energy;

Ising.numberOfStates(Ising.numberOfEnergies) = 1;

end

end

% Calculate statistical quantities for the

% specified value of beta = 1/kT

myBeta = 0.05;

partitionFunction = 0;

for loop = 1 : Ising.numberOfEnergies

partitionFunction = partitionFunction + ...

Ising.numberOfStates(loop) * ...

exp( -myBeta * Ising.energy(loop) );

end

averageEnergy = 0;

averageSquaredEnergy = 0;

for loop = 1 : Ising.numberOfEnergies

averageEnergy = averageEnergy + Ising.energy(loop) * ...

Ising.numberOfStates(loop) * ...

exp( -myBeta * Ising.energy(loop) );

averageSquaredEnergy = averageSquaredEnergy + ...

Ising.energy(loop)ˆ2 * Ising.numberOfStates(loop) * ...

exp( -myBeta * Ising.energy(loop) );

end

averageEnergy = averageEnergy / partitionFunction;

averageSquaredEnergy = averageSquaredEnergy / partitionFunction;

specificHeatPerSpin = myBetaˆ2 * ( averageSquaredEnergy - ...

averageEnergyˆ2 ) / numberOfSpins;
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Partial differential equations

The properties of a continuous physical system, such as its local displacement

from its equilibrium position, can in principle vary arbitrarily from one spatial

point to an adjacent point. Accordingly, one or more degrees of freedom exist

at every spatial coordinate value. However, in order for the medium to remain

connected, the properties at a given location are influenced by those at neigh-

boring locations through restoring forces. The system properties at a point thus

evolve according to an ordinary differential equation that is, however, coupled

to similarly evolving equations at neighboring points. Assuming that the form of

these equations is identical throughout the medium, the entire system of coupled

ordinary differential equations can be described by a single partial differential

equation. Since the partial differential equation regenerates the underlying cou-

pled ordinary differential equations when discretized, numerical methods for

solving coupled ordinary differential equations generalize immediately to partial

differential equations.

24.1 Scientific applications

As a concrete example, consider a non-uniformly heated one-dimensional metal

bar with a temperature distribution T(x, t) discretized on an equally spaced set of

grid points, xi = xL + (i − 1)�x, i = 1, 2, . . . , N . The temperature, T (xi , t j+1), at

xi at a time t j+1 = t j + �t , for small �t , increases from T(xi, tj) by amounts pro-

portional to (T (xi+1, t j ) − T (xi , t j )) and (T (xi−1, t j ) − T (xi , t j )) from the differing

temperatures at xi+1 and xi−1, respectively, i.e.

T (xi , t j+1) − T (xi , t j ) = c̄(T (xi+1, t j ) − 2T (xi , t j ) + T (xi−1, t j )) (24.1)

in which the constant c̄ is dimensionless but proportional to �t and 1/(�x)2 (for

example the change in T varies at first linearly with �t = t j+1 − t j ). Dividing both

sides by �t and simultaneously multiplying and dividing the right-hand side by

�x yields

T (xi , t j+1) − T (xi , t j )

�t
= c̄

(�x)2

�t

T (xi+1, t j ) − 2T (xi , t j ) + T (xi−1, t j )

(�x)2
(24.2)
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which in continuous form corresponds to the parabolic diffusion equation

∂T (x, t)

∂t
= D

∂2T (x, t)

∂x2
(24.3)

The thermal diffusion constant D possesses units of squared distance over time.

Given the previous discussion of ordinary differential equations, a unique solution

of the above equation requires initial conditions T (x, t0) at each point as well as

boundary conditions that quantify the influence of the surrounding medium on

the extremities of the material at every time.

If the average of the temperatures to the immediate right and left of a grid point

is less than the temperature at the grid point, the curvature of the temperature

field is negative and heat flows away from the grid point toward the boundaries

with a velocity proportional to the local curvature of the distribution. For the

temperature distribution T(x, t = 0) = T0 + A sin(πx/L) with 0 < x < L and

boundary temperatures T (0, t) = T (L , t) = T0 for all t > 0 the negative curvature

and hence the velocity of the temperature decay is proportional to T (x, t) − T0,

ensuring that the shape of the distribution is preserved with time, since

d

dt
(sin(πx/L)T (t)) = D

d2

dx2
(sin(πx/L)T (t))

(24.4)
dT (t)

dt
= − Dπ2

L2
T (t)

so that the diffusion equation with zero boundary conditions is satisfied by

T (x, t) = e−Dπ2 t/L2

sin(πx/L) (24.5)

For a two-dimensional uniform temperature distribution T (�x, t), over small

time intervals the temperature change at a given grid point is again proportional

to the difference between its temperature and the average of the temperatures

at the neighboring grid points. Assuming equal grid point spacing in the x- and

y-directions, �x = �y = �α, Eq. (24.2) accordingly generalizes to

T (xi,k, t j+1) − T (xi,k, t j )

�t

= c̄
(�α)2

�t

T (xi+1, j , t j ) + T (xi−1, j , t j ) + T (xi, j+1, t j ) + T (xx, j−1, t j ) − 4T (xi , t j )

(�α)2

(24.6)

yielding in the continuous limit the partial differential equation

∂T (x, y, t)

∂t
= D

(
∂2T (x, y, t)

∂x2
+ ∂2T (x, y, t)

∂y2

)

(24.7)

Substituting it for t modifies the diffusion equation so that it describes wave

motion instead of relaxation. The resulting parabolic wave equation is typified

by the time-dependent Schrödinger equation

∂ϕ

∂t
= i

�

2m

∂2ϕ

∂x2
(24.8)
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If ϕ(x, 0) = A sin(πx/L) for 0 < x < L, the negative curvature initially yields a

change in ϕ directed in the –i direction. Since the velocity is proportional to the

field magnitude, � evolves with time into a imaginary negative sine function. At

this point in time, its curvature is a positive imaginary quanitity. The wavefunction

thus experiences a negative real evolution with time, propagating along the

negative horizontal direction in the complex plane. By extension, the field rotates

in the complex plane so that both the imaginary part and the real part of the

wavefunction oscillate with a 90◦ relative phase shift between them. Alternatively,

since an eigenmode of the diffusion equation decays as e−αt , for t → i t , the field

instead varies as e−iαt .

For hyperbolic equations of the form

∂2 S(x, t)

∂t2
= D

∂2 S(x, t)

∂x2
(24.9)

the acceleration rather than the velocity of the field is proportional to its curvature.

For initial conditions S(x, 0) = A sin(πx/L) and zero boundary conditions, the

acceleration of each spatial point possesses its maximum negative value at t = 0.

A quarter of an oscillation period later S(x, T/4) = 0 and the field attains zero

acceleration but a maximum negative velocity. The acceleration then reverses

sign and becomes increasingly positive until the field distribution reaches the

maximum negative displacement A sin(πx/L) consistent with conventional wave

motion.

Finally elliptic equations are exemplified by the Poisson equation,

∂2V (x, y, z)

∂x2
+ ∂2V (x, y, z)

∂y2
+ ∂2V (x, y, z)

∂z2
= − 1

ε0

ρ(x, y, z) (24.10)

in which −ρ/ε0, where ρ represents the charge density, is a source for the curvature

of the electric potential V such that these two quantities are proportional at every

point within the problem boundary. The electric field, given by the negative

gradient of the potential, is visualized in Octave for a point charge at the origin

with that q/(4πε0) = 1 as follows:

clear all
numberOfPoints = 6; % must be even

halfWidth = 5; % halfwidth of grid

xPositionR = linspace( -halfWidth, halfWidth, numberOfPoints );
yPositionR = xPositionR;
field.xValueRC = zeros( numberOfPoints, numberOfPoints );
field.yValueRC = zeros( numberOfPoints, numberOfPoints );
for outerLoop = 1 : numberOfPoints

for innerLoop = 1 : numberOfPoints
radius = sqrt( xPositionR(outerLoop)ˆ2 + ...

yPositionR(innerLoop)ˆ2 );
unitX = xPositionR(outerLoop) / radius;
unitY = yPositionR(innerLoop) / radius;
field.xValueRC(innerLoop, outerLoop) = unitX / radiusˆ2;
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field.yValueRC(innerLoop, outerLoop) = unitY / radiusˆ2;
end

end

quiver( xPositionR, yPositionR, field.xValueRC, field.yValueRC );

Discretizing Poisson’s equation in three dimensions yields

V (ri+1, j,k) + V (ri−1, j,k) + V (ri, j+1,k) + V (ri, j−1,k) + V (ri, j,k+1) + V (ri, j,k−1) − 6V (xi )

(�α)2

= −ρ(xi, j,k)

ε0

(24.11)

For a unit point charge, ρ(x, y, z) = δ(�r ), the continuous solution for the poten-

tial is V (�r ) = 1/(4πε0r ). That the left-hand side of the above equation evalu-

ates to zero except at the origin as �α → 0 can be established with the dis-

crete formalism. Since the charge distribution and therefore the potential are

spherically symmetric, it suffices to evaluate the left-hand side of Eq. (24.11)

for a point on the x-axis. This yields (noting that displacements in the

y- and z-directions yield identical contributions by symmetry and recalling that

(1 + ε)γ ≈ 1 + γ ε + γ (γ − 1)ε/2! + · · ·),

1

(�α)2

(

1

x + �α
+ 1

x − �α
+ 4

√

x2 + (�α)2
− 6

x

)

≈ 1

(�α)2

(

1

x

(

1 − �α

x
+

(
�α

x

)2

−
(

�α

x

)3
)

+ 1

x

(

1 + �α

x
+

(
�α

x

)2

+
(

�α

x

)3
)

+ 4

x

(

1 − 1

2

(
�α

x

)2
)

+ O(�α)4 − 6

x

)

(24.12)

which approaches zero as (�α)4 for �α → 0. The function 1/r accordingly pos-

sesses a positive curvature in the radial direction but a negative curvature in both

of the orthogonal directions, such that the sum of these curvatures vanishes to

second order.

In general a partial differential equation of the form

A
∂2ξ

∂x2
+ B

∂2ξ

∂x ∂y
+ C

∂2ξ

∂y2
+ D

∂ξ

∂x
+ E

∂ξ

∂y
+ Fξ + G = 0 (24.13)

is termed elliptic, parabolic or hyperbolic depending on whether B2 − 4AC is <,

=or > zero, respectively.

To obtain a unique solution to a partial differential equation, initial conditions

must be specified at each point in space, while boundary conditions that quan-

tify the interaction of the extremities of the field with its environment must be

given at each boundary point for all times. Dirichlet boundary conditions specify
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the field value on the boundaries, while Neumann boundary conditions instead

designate the flux (normal derivative) of the field out of the boundaries. Mixed

boundary conditions impose Dirichlet conditions over part of the boundary and

Neumann conditions over the remaining regions. If the material or the numerical

implementation possesses a ring topology typified by a thin rod bent into a circle,

the field obeys periodic boundary conditions, for example, T (0, t) = T (L , t) and

dT (0, t)/dx = dT (L , t)/dx for temperature. The total number of boundary con-

ditions is identical in all cases, since these must be specified at each boundary

point in any number of dimensions.

24.2 Direct solution methods

Since a discretized partial differential equation yields a system of coupled ordi-

nary differential equations, an initial field can be evolved in time through the

Euler direct solution method that applies a forward difference approximation to

the time derivative. For the diffusion equation

T (xi , t j+1) = T (xi , t j ) + D �t

(�x)2

{
T (xi−1, t j ) − 2T (xi , t j ) + T (xi+1, t j )

}
(24.14)

The above equation with an initial field T (x, 0) = sin(πx/L) and zero-

temperature boundaries T (x0, t) = T (xN−1, t) = 0 can be implemented by advanc-

ing the field only over the points i = 1, 2, . . . N − 2, while maintaining a constant

(here zero) temperature at i = 0, N − 1. Note that the temperature field at the cur-

rent step must be saved when computing the updated field, otherwise T (xi , t j ) is

overwritten before T (xi+1, t j+1) is computed. Failure to save fields in this manner

is a common scientific programming error. The program is

const int NUMBEROFPOINTS = 100;
main( ) {

double deltaTime = 0.01;
int numberOfTimeSteps = 5000;
double deltaX = 0.1;
double diffusionConstant = 0.5;
double coefficient = diffusionConstant *

deltaTime / ( deltaX * deltaX );
float position[NUMBEROFPOINTS];
float tempLast[NUMBEROFPOINTS], temp[NUMBEROFPOINTS ] = { 0 };
for ( int loop = 0; loop < NUMBEROFPOINTS; loop++ ) {

position[ loop ] = deltaX * loop;
temp[loop] = sin( loop * M_PI /

(NUMBEROFPOINTS - 1 ) );
}
for ( int outerLoop = 0; outerLoop <

numberOfTimeSteps; outerLoop++ ) {
if ( outerLoop % 500 == 0 ) qplot( position, temp,

NUMBEROFPOINTS );
for ( int loop = 1; loop < NUMBEROFPOINTS - 1; loop++ )
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tempLast[loop] = temp[loop];
for ( int loop = 1; loop < NUMBEROFPOINTS - 1; loop++ )

temp[loop] = coefficient * ( tempLast[loop - 1] - 2 *
tempLast[loop] + tempLast[loop + 1] ) + temp[loop];

}
}

The output of the program describes an undistorted but decaying sine function.

24.3 Hyperbolic differential equations and electromagnetics

Hyperbolic differential equations are typified by the wave equation, which in one

dimension is

∂2χ

∂t2
= v2 ∂2χ

∂x2
(24.15)

Just as the equation of motion for a spring, ∂2x/∂t2 = −ω2x , can be expressed as

two coupled one-dimensional equations

d

dt

(
x

ṽ

)

=
(

0 ω

−ω 0

)(
x

ṽ

)

<! − −ṽ =
√

m/kv = v/ω − − > (24.16)

in which v̄=v

ω
= v/ω represents a modified velocity with units of distance and ω =√

k/m is the ratio between the maximum velocity and the maximum displacement,

the wave equation can be recast into the form

∂

∂t

(
χ

ξ

)

=
(

0 v

v 0

)
∂

∂x

(
χ

ξ

)

(24.17)

where, however, χ and ξ often represent fundamentally different physical quan-

tities. For example, Maxwell’s equations for the electric and magnetic fields in

free space in the absence of charge and current sources for an x-polarized electric

field that is uniform in the x–y plane and propagating in the z-direction so that
�E = Ex (z)êx become

∂ �H
∂t

= 1

μ0

�∇ × �E = 1

μ0

∣
∣
∣
∣
∣
∣
∣

êx êy êz

∂

∂x

∂

∂y

∂

∂z

Ex (z) 0 0

∣
∣
∣
∣
∣
∣
∣

= 1

μ0

êy

∂ Ex (z)

∂z

(24.18)

∂ �E
∂t

= − 1

ε0

�∇ × �H = − 1

ε0

∣
∣
∣
∣
∣
∣
∣

êx êy êz

∂

∂x

∂

∂y

∂

∂z

0 Hy(z) 0

∣
∣
∣
∣
∣
∣
∣

= 1

ε0

êx

∂ Hy(z)

∂z

Recalling that in vacuum the light velocity v = c0 = 1/
√

ε0μ0, the above equations

transform into Eq. (24.17) with the substitutions χ = √
ε0/μ0 Ex and ξ = Hy . The

free-space impedance,
√

μ0/ε0 = 377 � in MKS units, equals the ratio between

the magnitudes of the electric and magnetic fields in vacuum.
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Since ∂2/∂x ∂t = ∂2/∂t ∂x , the wave equation can be recast in the form
(

∂2

∂t2
− v2 ∂2

∂x2

)

χ =
(

∂

∂t
− v

∂

∂x

)(
∂

∂t
+ v

∂

∂x

)

χ = 0 (24.19)

In terms of

x+ = x − vt

2
, x− = x + vt

2
(24.20)

for which x = x+ + x− and t = (x− − x+)/v,

∂

∂x−
= ∂t

∂x−

∂

∂t
+ ∂x

∂x−

∂

∂x
= 1

v

∂

∂t
+ ∂

∂x
(24.21)

∂

∂x+
= ∂t

∂x+

∂

∂t
+ ∂x

∂x+

∂

∂x
= − 1

v

∂

∂t
+ ∂

∂x

Eq. (24.19) becomes

∂2

∂x+ ∂x−
χ (x+, x−) = 0 (24.22)

The forward-traveling solution accordingly solves the convection equation

∂χ

∂x−
= 1

v

(
∂

∂t
+ v

∂

∂x

)

χ = 0 (24.23)

yielding χ = χF(x+) = χF(x − vt), while the general wave-equation solution is

represented by χ = χF(x − vt) + χB(x + vt).

The operator ∂/∂t + v ∂/∂x , which corresponds to the change in a quantity

measured in a reference system that moves at a velocity v, appears in numerous

physical contexts. For example, in fluid mechanics, the mass of a fluid in a

small volume of extent �V = �x �y �z must be preserved over a small time

interval �t . Since the x-coordinate of a point in the fluid at x evolves over

this time to the point x + vx (x)�t while that of a point at x + �x evolves to

x + �x + vx (x + �x)�t ≈ x + �x + [(vx (x) + ∂vx/∂x)�x]�t , if ρ(x, y, z) denotes

the fluid density,

ρ
(

x + vx �t, y + vy �t, z + vz �t, t + �t
)

×
(

�x +
(

�vx

�x
�x

)

�t

)

. . .

(

�z +
(

�vz

�z
�z

)

�t

)

= ρ(x, y, z, t)�x �y �z (24.24)

which yields the equation of continuity after expanding ρ on the left-hand side

into a multidimensional Taylor series about (x, y, z, t) and retaining only first-

order quantities,
{

∂ρ

∂t
+ �v ·

�∇ρ + ρ �∇ · �v
}

�V �t = 0 (24.25)

In terms of the convective (hydrodynamic or substantive) derivative D/Dt ,

Dρ

Dt
= −ρ �∇ · �v (24.26)
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Hence, for example, if a liquid flows at 2.0 m/s in the z-direction and the fluid

density is described by ρ(z) = ρ0 + cz z + ct t , then in a frame moving with the fluid

the change of the density with respect to time is (∂/∂t + 2 ∂/∂z)(ρ0 + cz z + ct t) =
2cz + ct .

Similarly, the change in the velocity of a cubic fluid volume is determined by

the imbalance of forces acting on the sides of the volume. Since the pressure, P,

on the volume is defined to be positive acting inward, tracking a fluid element in

the same manner as e.g. a thrown ball by moving along its path of evolution with

its velocity �v, the velocity change of the element with time in the presence of

external forces such as the gravitational field is given by (noting that the initial

mass ρ�V of the volume is constant)

�v
(

x + vx �t, y + vy �t, z + vz �t, t + �t
)

− �v(x, y, z, t + �t)

�t

=
�F

ρ �V

= ρ �V �aexternal

ρ �V
+ 1

ρ �V

(

�x �y êz

[

Pz

(

x + �x

2
, y + �y

2
, z

)

− Pz

(

x + �x

2
, y + �y

2
, z + �z

)]

+ · · ·
)

(24.27)

Expanding in first-order quantities leads to Euler’s equation

D�v
Dt

= �aexternal −
�∇ P

ρ
(24.28)

Hence for steady-state fluid flow (∂ �v/∂t = 0) in a constant gravitational field,

�aexternal = −gêz , the velocity of an element of fluid falling in the −êz direction with

�v(t = 0) = 0 is given by (�v ·
�∇)�v = (1/2)(∂v2/∂z)êz = −gêz , yielding |v| =

√
2g(−z)

as expected.

Discretizing the one-dimensional convection equation yields the forward time

centered space (FTCS) procedure,

χ (xi , t j+1) = χ (xi , t j ) + v �t

2 �x
(χ (xi+1, t j ) − χ (xi−1, t j ))

≡ χ (xi , t j ) + b

2
(χ (xi+1, t j ) − χ (xi−1, t j )) (24.29)

The quantity b = v�t/�x is often termed the Courant number, since its value is

related to the stability of a numerical procedure. However, the FTCS method is

unstable for any �t and �x , as is apparent from the manner in which the ini-

tial field χ̃(xi , t0) = (0, 1, 0, −1, 0, 1 . . .) evolves over one propagation step. From

Eq. (24.29), χ remains invariant for even-numbered points, whereas for odd-

numbered points χ alternately increases and decreases by b, in both cases con-

tributing a term proportional to b2 to the norm of the field. A general mathematical

treatment, the Lax method, evaluates the amplification of a specific term in the
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Fourier-series expansion of the field by inserting

χ (xn, tm) = einκ�xβm (24.30)

into Eq. (24.29), resulting in

β = 1 + ib sin(κ �x) (24.31)

and a corresponding amplification factor

|β| =
√

1 + b2 sin2(κ �x) ≥ 1 (24.32)

This numerical instability is removed in the Lax method for small b by substi-

tuting the average
(
χ (xi−1, t j ) + χ (xi+1, t j )

)
/2 for χ (xi , t j ) on the right-hand side

of Eq. (24.29):

χ (xi , t j+1) = χ (xi+1, t j ) + χ (xi−1, t j )

2
+ b

2

(
χ (xi+1, t j ) − χ (xi−1, t j )

)
(24.33)

This introduces a fictitious diffusion that couples into the field at each grid point

for every time step a fraction of the field at the two neighboring grid points. Since

the solutions of the diffusion equation decay with time, as observed above, the

numerical diffusion counteracts the instability of the unmodified procedure. A

Lax analysis yields in place of Eq. (24.32)

|β| =
√

cos2(κ �x) + b2 sin2(κ �x) (24.34)

which is less than unity for b < 1, i.e. �t < �x/v. When b > 1, so that the field

travels a distance greater than the distance between adjacent grid points in a single

time step, the magnitude of the ∂/∂x convection term exceeds that of the diffusion

term. Consequently the overall field behavior is dominated by convection, leading

to amplification.

The Lax–Wendroff method introduces a diffusion term that is tailored to the

specific analytic properties of the field. In particular, inserting the convection

equation into the Taylor-series expansion

χ (x, t + �t) = χ (x, t) + �t
∂χ

∂t
+ (�t)2

2

∂2χ

∂t2
+ · · ·

= χ (x, t) − v �t
∂χ

∂x
+ v2(�t)2

2

∂2χ

∂x2
+ · · · (24.35)

yields the numerical procedure

χ (xi , t j+1) = χ (xi , t j ) + b

2

(
χ (xi+1, t j ) − χ (xi−1, t j )

)

+ b2

2

(
χ (xi+1, t j ) − 2χ (xi , t j ) + χ (xi−1, t j )

)
(24.36)

In contrast to the Lax method, the diffusive coupling varies as (�t)2, while the

numerical accuracy is enhanced.

The hopscotch method, known as the Yee method in electric-field simulation,

solves Eq. (24.17) by placing the grid points for the field ξ equidistant from the
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points at which χ is evaluated while similarly employing a centered difference

approximation to the time derivative. This results in

ξ (xi+1/2, t j+1/2) = ξ (xi+1/2, t j−1/2) + v�t

�x

(
χ (xi+1, t j ) − χ (xi , t j )

)

(24.37)

χ (xi , t j+1/2) = χ
(

xi , t j−1/2

)
+ v�t

�x

(
ξ
(

xi+1/2, t j

)
− ξ

(
xi−1/2, t j

))

Applying the same procedure to the source-free curl equation in electromagnetics,

∂ �B/∂t = −�∇ × �E , yields for the time derivative of Hz the expression μ∂ Hz/∂t =
−(∂ Ex/∂y − ∂ Ey/∂x), with a similar equation for the E field from ∂ �D/∂t = �∇ × �H .

The z-component of the H-field equation can then be discretized as (for position-

independent μ)

Hz

(

xi+ 1
2
, y j+ 1

2
, zk, tm+ 1

2

)

= Hz

(

xi+ 1
2
, y j+ 1

2
, zk, tm− 1

2

)

− �t

μ

⎛

⎝

Ey

(

xi+1, y j+ 1
2
, zk, tm

)

− Ey

(

xi , y j+ 1
2
, zk, tm

)

�x

−
Ex

(

xi+ 1
2
, y j+1, zk, tm

)

− Ex

(

xi+ 1
2
, y j , zk, tm

)

�y

⎞

⎠

(24.38)

The following Java program applies implements a one-dimensional hopscotch

technique to a rightward-propagating exponential pulse:

import de.dislin.*;
public class Hopscotch {

static public void main( String[ ] args ) {
int numberOfPoints = 200;
int numberOfSteps = 500;
float deltaX = 1.0F;
float velocity = 1.0F;
float deltaT = 1.0F;
float field1[ ] = new float[numberOfPoints];
float field2[ ] = new float[numberOfPoints];
float xValues[ ] = new float[numberOfPoints];
for ( int loop = 0; loop < numberOfPoints; loop++ ) {

xValues[loop] = ( (float) loop ) * deltaX;
}
for ( int outerLoop = 0; outerLoop < numberOfSteps - 1;

outerLoop++ ) {
% Update the H field from the adjacent E field values

for ( int loop = 0; loop < numberOfPoints - 1; loop++ )
field2[loop] += velocity * deltaT *

( field1[loop + 1] - field1[loop] ) / deltaX;
% Update the E field from the adjacent H field values

for ( int loop = 1; loop < numberOfPoints; loop++ )
field1[loop] += velocity * deltaT *

( field2[loop] - field2[loop - 1] ) / deltaX;
% Specify the incoming electric field at the left boundary.
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field1[0] = (float) Math.exp( - ( outerLoop - 50 ) *
( outerLoop - 50 ) / 80. );

if( outerLoop % 10 == 0 ) Dislin.qplot( xValues,
field1, numberOfPoints );

}
}

}

Here fractional indices are replaced by integers. The excitation (the elec-

tric field in electromagnetic contexts), field1, enters the computational window

through the first point of the grid. At the rightmost boundary, field2 (the magnetic

field), is set to zero and therefore reverses direction while the direction of field1,
�E , remains fixed. Consequently ( �E × �B) reverses sign, changing the direction of

propagation. When this reflected field reaches the left boundary, field1 of the

incoming excitation is negligible. The resulting zero boundary condition inverts

the reflected electric field so that the left- and right-propagating electric fields

cancel out at the boundary. Since the Courant number is unity in the above code,

the field is displaced by one grid-point spacing for each time step.

Stability analyses can be applied to numerical procedures written in matrix

form

�χ (t j+1) = D �χ(t j ) (24.39)

in which the matrix D is obtained by replacing operators with matrices, as in

v
∂χ

∂x
→ v

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1

−1 0 1

−1 0 1

. . .

−1 0 1

−1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

χ (x0, t j )

χ (x1, t j )

χ (x2, t j )

...

χ (xN−2, t j )

χ (xN−1, t j )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(24.40)

Denoting the eigenvalues of D by λk , Eq. (24.39) implies that, for coefficients

a
( j)
k , where the a

(0)
k are determined by the initial conditions,

�χ (t j+1) =
N∑

k=1

a
( j+1)
k ϕk = D

(
N∑

k=1

a
( j)
k ϕk

)

=
N∑

k=1

a
( j)
k λkϕk (24.41)

After many time steps, the term or terms with the largest spectral radius |λk |
dominate and λmaximum = lim j→∞ D �χ (t j )/ �χ (t j ). This ratio can be evaluated at any

spatial point xi , or can be appropriately averaged over all points. If the largest

eigenvalue is unique, the corresponding normalized eigenvector is given by

lim j→∞ �χ (t j )/| �χ (t j )|.

24.4 Elliptic equations

Elliptic equations are often solved by considering the associated diffusion prob-

lem in one additional dimension. For example, augmenting the two-dimensional
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Poisson equation through the inclusion of an additional time dimension yields

∂V (x, y, t)

∂t
= ∂2V (x, y, t)

∂x2
+ ∂2V (x, y, t)

∂y2
+ 1

ε0

ρ(x, y) (24.42)

For time-independent boundary conditions, the solution to this problem converges

to the steady-state solution for which ∂V /∂t , and hence the right-hand side of the

equation, equals zero given any initial conditions. Numerically, with �x = �y,

this corresponds to solving repeatedly

V
(n+1)

i, j =
(

1 − 4 �t

(�x)2

)

V
(n)

i, j + �t

(�x)2

(

V
(n)

i, j+1 + V
(n)

i, j−1 + V
(n)

i+1, j + V
(n)

i−1, j + ρ(x, y)

ε0

)

(24.43)

While Vi j here must be appropriately saved to avoid being overwritten before

Vi, j−1 and Vi−1, j are evaluated, a modified version of this procedure,

V
(n+1)

i, j =
(

1 − 4 �t

(�x)2

)

V
(n)

i, j + �t

(�x)2

(

V
(n+1)

i, j+1 + V
(n+1)

i, j−1 + V
(n)

i+1, j + V
(n)

i−1, j + ρ(x, y)

ε0

)

(24.44)

eliminates this step. This procedure is termed the Gauss–Seidel method if

�t/(�x)2 = 1/4 and underrelaxation for �t/(�x)2 < 1/4, and is unstable for

�t/(�x)2 > 1/2. For a rectangular grid and ρ = 0, the optimal value of �t/(�x)2 =
1/2(1 +

√

1 − γ 2), with 2γ = cos(π/Nx ) + cos(π/Ny).

For rectangular computational window boundaries, Poisson’s equation can be

solved directly by Fourier transforming. Since the FFT periodically extends its

argument so that V0 = VN , if we denote by Al+1 the vector of A values shifted

periodically by one grid position, then

[FFT(Al+1)]m =
N−1∑

l=0

Al+1e−i 2πlm
N = ei 2πm

N

N−1∑

l=0

Al+1e−i
2πm(l+1)

N

= ei 2πm
N

N∑

l=1

Ale
−i 2πlm

N = ei 2πm
N

N−1∑

l=0

Ale
−i 2πlm

N

= ei 2πm
N [FFT(Al )]m (24.45)

Accordingly, if vmn and rmn are the Fourier components of V and ρ, respectively,

fast Fourier transforming in two dimensions the discrete version of Poisson’s

equation (again for �x = �y ≡ �α)

V
(n)

i, j+1 + V
(n)

i, j−1 + V
(n)

i+1, j + V
(n)

i−1, j − 4V
(n)

i, j = −(�α)2 ρ(x, y)

ε0

(24.46)

yields for periodic or, equivalently, zero boundary conditions

(

ei 2πm
N + e−i 2πm

N + ei 2πn
N + ei 2πn

N − 4

)

vmn = −(�α)2 rmn

ε0

(24.47)
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or, equivalently,

vmn = − (�α)2rmn

2 (cos (2πm/N ) + cos (2πn/N ) − 2)
(24.48)

after which V = IFFT(v) again in two dimensions.

24.5 Split-operator methods for parabolic differential
equations

To evolve a complex quantum-mechanical wavefunction, ψ(x, t), in time numer-

ically according to the one-dimensional Schrödinger equation,

dψ

dt
= − i

�

(

− �
2

2m

∂2

∂x2
+ V (x)

)

ψ ≡ − i

�
Hψ = − i

�
(T + V )ψ (24.49)

note that the field evolution for a sufficiently small time step is described by

ψ(t + �t) ≈
(

1 − i

�
H �t

)

ψ(t) (24.50)

In a finite-difference discretization, Eq. (24.50) adopts the form

|ψ(t + �t)〉 =
(

I − i �t

�
H

)

|ψ(t)〉 ≡ U(�t)|ψ(t)〉

which represents

⎛

⎜
⎜
⎜
⎜
⎝

ψ(x1, t + �t)

ψ(x2, t + �t)

ψ(x3, t + �t)
...

ψ(xN , t + �t)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

ψ(x1, t)

ψ(x2, t)

ψ(x3, t)
...

ψ(xN , t)

⎞

⎟
⎟
⎟
⎟
⎠

− i �t

�
H

⎛

⎜
⎜
⎜
⎜
⎝

ψ(x1, t)

ψ(x2, t)

ψ(x3, t)
...

ψ(xN , t)

⎞

⎟
⎟
⎟
⎟
⎠

(24.51)

In one dimension with zero boundary conditions,

H = −�
2

2m(�x)2

⎛

⎜
⎜
⎜
⎜
⎝

−2 1

1 −2
. . .

. . .
. . . 1

1 −2

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

V (x1)

V (x2)

. . .

V (xN )

⎞

⎟
⎟
⎟
⎠

(24.52)

For a confined, non-decaying particle, the time evolution operator U(�t) must

conserve the total probability of the particle within its containing volume, [x1, xn].

This probability equals the sum of the probabilities (squared wavefunctions) of

finding the particle at each point within the volume, so that

〈ψ |ψ〉 ≡ (ψ∗(x1, t), ψ∗(x2, t), ψ∗(x3, t), . . . , ψ∗(xN , t))

⎛

⎜
⎜
⎜
⎜
⎝

ψ(x1, t)

ψ(x2, t)

ψ(x3, t)
...

ψ(xN , t)

⎞

⎟
⎟
⎟
⎟
⎠

= |ψ(x1, t)|2 + |ψ(x2, t)|2 + · · · + |ψ(xN , t)|2 (24.53)
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must be preserved under the transformation ψ(t + �t) = Uϕ(t). That is, noting

that (AB)† = B†A†, this requires

〈ψ(t + �t)|ψ(t + �t)〉 = 〈Uψ(t)|Uψ(t)〉 = 〈ψ(t)|U†U|ψ(t)〉 = 〈ψ(t)|ψ(t)〉 (24.54)

Hence U†U = I, or

U† = U−1 (24.55)

i.e. U is unitary. Since U(�t) = I − i �tH/�, this results in the condition that

U†(�t)U(�t) =
(

I + i �t

�
H†

)(

I − i �t

�
H

)

= I − i �t

�

(
H − H†

)
−

(
�t

�

)2

H†H (24.56)

approaches I to second order as �t → 0. Accordingly, H = H†, so that H must

be Hermitian or, equivalently, S = iH is skew-Hermitian with the property

S† = −S.

The evolution operator over a non-infinitesimal time interval is then, for a

time-independent potential function,

U(t) = lim
N→∞

(

1 − i t

�N
H

)N

= lim
N→∞

(

1 − N

1!

i t

�N
H + N (N − 1)

2!

(
i t

�N

)2

H2 + · · ·
)

= e−i t
�

H (24.57)

which is unitary with inverse operator

U−1(t) = U(−t) = ei t
�

H = U†(t)

as can be explicitly verified by taking the Hermitian conjugate of the individual

terms in the Taylor-series expansion of Eq. (24.57) and employing the Hermiticity

of H.

That U(t) conserves the square of the field can also be verified by first recall-

ing that all eigenvalues of a Hermitian matrix are real since, if ϕi denotes an

eigenfunction of H such that Hϕi = Eiϕi ,

E = 〈ϕi |H|ϕi 〉 = 〈ϕi |H†|ϕi 〉 = (H|ϕi 〉)†|ϕi 〉 = (E |ϕi 〉)†|ϕi 〉 = E∗〈ϕi |ϕi 〉 = E∗ (24.58)

Accordingly, since any wavefunction, ψ , can be expressed as a superposition,

|ψ〉 =
∑N

m=1
cm |ϕm〉, of the orthonomalized eigenfunctions of H,

e−i t
�

H|ϕ〉 = e−i t
�

H

(
N∑

m=1

cm |ϕm〉
)

=
N∑

m=1

cme−i t
�

Em |ϕm〉 (24.59)
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However,

(

e−i t
�

H|ϕ〉
)†

e−i t
�

H|ϕ〉 =
(

N∑

n=1

〈ϕn| c∗
nei t

�
En

)(
N∑

m=1

cme−i t
�

Em |ϕm〉
)

=
N∑

n,m=1

c∗
ncme−i t

�
(Em−En ) 〈ϕn | ϕm〉

︸ ︷︷ ︸

δnm

=
N∑

m=1

c∗
mcm = 1 (24.60)

Hence, e−i t
�

H preserves the norm of a propagating field and is therefore unitary.

Numerical procedures, which are typically derived from approximations to

ϕ(t + �t) = e− i �t
�

(T +V )ϕ(t) (24.61)

should consequently preserve this property.

The difficulty encountered in evaluating Eq. (24.61) arises from the non-

commutativity of T = T (p) = T (−i� �∇) and V = V (�r ). Generally, however, if A

and B do not commute, while α is a small quantity,

eα(A+B) ≈ 1 + α(A + B) + α2

2!

(
A2 + AB + B A + B2

)
+ O(α3)

≈
(

1 + α

2
A + α2 A2

4

)(

1 + αB + α2 B2

2

)(

1 + α

2
A + α2 A2

4

)

+ O(α3)

≈ eα A
2 eαBeα A

2 + O(α3) ≡ �3(α) + O(α3) (24.62)

while higher-order accurate product expansions can be obtained by noting e.g.

that

eα(A+B) = �3(xα)�3 ((1 − 2x)α) �3(xα)

+
(

2x3 + (1 − 2x)3
)

O(α3) + O(α4)
︸ ︷︷ ︸

O(α)5 by symmetry

(24.63)

Solving 2x3 + (1 − 2x)3 = 0 thus yields a fifth-order-accurate expression. Such

operator-splitting methods form the basis of numerous solution techniques, since

the exponentials of the individual operators T and V are much more simply

evaluated than is the exponential of their sum, Eq. (24.61). For example, one

procedure, the split-step fast Fourier transform method evaluates the operator

exp(i� �t(∂2/∂x2)/(2m)) after fast Fourier transforming according to

e
i��t

2m
∂2

∂x2 ψ = IFT

(

e− i��t
2m�

k2
m [FT(ψ)]m

)

(24.64)

as discussed in detail in Section 24.7.
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24.6 Symplectic evolution operators in classical mechanics

Analogous split-operator procedures in mechanics can be obtained from Hamil-

ton’s equations

dxm

dt
= ∂ H

∂pm
24.65)

dpm

dt
= − ∂ H

∂xm

which imply that, if the Hamiltonian H is a function of N “generalized” position

and momentum variables, then, for any function f (xm, pm, t) of these variables,

d f

dt
= ∂ f

∂t
+

N∑

m=1

(
∂ f

∂xm

dxm

dt
+ ∂ f

∂pm

dpm

dt

)

= ∂ f

∂t
+

N∑

m=1

(
∂ f

∂xm

∂ H

∂pm

− ∂ f

∂pm

∂ H

∂xm

)

≡ ∂ f

∂t
+ { f, H} ≡ ∂ f

∂t
+ DH f (24.66)

where { } is termed the Poisson bracket. If f depends only on position and momen-

tum, then ∂ f /∂t = 0 and

f (t + �t) = e�t DH f (t) (24.67)

which is termed a symplectic propagation method.

On specializing again to one dimension, assuming that H = T (p) + V (x) and,

finally, combining the position and momentum variables into a vector, the above

equation can be approximated as

(
x(t + �t)

p(t + �t)

)

= e�t DT +V

(
x(t)

p(t)

)

≈ e
�t
2

DT e�t DV e
�t
2

DT

(
x(t)

p(t)

)

+ O(�t)3 (24.68)

in which e.g.

e�t DT

(
x(t)

p(t)

)

=
( ∞∑

m=0

(�t DT )m

)(
x(t)

p(t)

)

(24.69)

However,

DT

(
x

p

)

=
{(

x

p

)

, T (p)

}

=

⎛

⎜
⎝

∂x

∂x

∂T (p)

∂p
− ∂x

∂p

∂T (p)

∂x
∂p

∂x

∂T (p)

∂p
− ∂p

∂p

∂T (p)

∂x

⎞

⎟
⎠ =

⎛

⎝

∂T (p)

∂p

0

⎞

⎠ (24.70)

while

D2
T

(
x

p

)

=

⎧

⎨

⎩

⎛

⎝

∂T (p)

∂p

0

⎞

⎠ , T (p)

⎫

⎬

⎭
= 0 (24.71)
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Hence,

e
�t
2

DT

(
x(t)

p(t)

)

=

⎛

⎝
x(t) + �t

2

∂T (p)

∂p

p(t)

⎞

⎠ (24.72)

Similarly,

e�t DV

(
x(t)

p(t)

)

=

⎛

⎝
x(t)

p − �t
∂V (x)

∂x

⎞

⎠ (24.73)

If T (p) = p2/(2m), this corresponds to first updating x(t + �t/2) = x(t) +
�tv(t)/2 and then applying p(t + �t) = p(t) + �t F(x(t + �t/2)) followed by a

subsequent displacement step. Higher-order operator product expansions eval-

uate the quantities in Eqs. (24.72) and (24.73) at non-standard distances and

times.

24.7 Fast Fourier transform methods in optics

As noted above, split-operator methods can be unified with fast Fourier trans-

form procedures that accurately represent derivative operators. However, the fast

Fourier transform implicitly implements periodic boundary conditions. Radia-

tion boundary conditions that remove the power incident on the computational

window edges are therefore often simulated by introducing an artificial absorbing

region into the potential function near the window boundaries. While this mani-

festly removes the unitarity of the procedure, since the power in the field mono-

tonically decreases, numerical divergences are suppressed rather than amplified.

To illustrate the method, consider the hyperbolic scalar wave equation that

describes the evolution of a monochromatic (single-frequency) electric field

with time when polarization effects can be neglected:

∂2 E

∂x2
+ ∂2 E

∂y2
+ ∂2 E

∂z2
+ k2

0n2(x, y, z)E = 0 (24.74)

The wavenumber k0 = 2π/λ0, where λ0 is the wavelength of the electric field in

vacuum and n denotes the refractive index. If the dominant field components

propagate close to an angle of θ0 with respect to the z-axis in a region with

average refractive index n̄, a “reference refractive index” given by n0 = n̄ cos θ0

can be introduced. Then, with

X0 = 1

n2
0k2

0

∂2

∂x2
, Y0 = 1

n2
0k2

0

∂2

∂y2
(24.75)

and

N = n2

n2
0

− 1 (24.76)

Eq. (24.74) adopts the form

∂2 E

∂z2
+ k2

0n2
0(1 + X0 + Y0 + N )E = 0 (24.77)
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This equation is of second order in the longitudinal variable z and there-

fore possesses both forward- and backward-traveling solutions. However, if N

varies sufficiently slowly in the z-direction that reflection effects are negligible,

the forward- and backward-traveling fields can again be isolated by formally

factoring Eq. (24.77),

(
∂

∂z
− δ

√

1 + X0 + Y0 + N

)(
∂

∂z
+ δ

√

1 + X0 + Y0 + N

)

E = 0 (24.78)

with δ = −ik0n0. Following the convention that the time dependence of the electric

field is given by exp(iωt), the forward-propagating field is then identified with

the solution of

(
∂

∂z
− δ

√

1 + X0 + Y0 + N

)

E = 0 (24.79)

The Fresnel equation is obtained if we assume that (X0 + Y0 + N )E ≪ E and

replace the square root by the first-order term in its Taylor-series expansion:

∂ E

∂z
− δ

[

1 + 1

2
(X0 + Y0 + N )

]

E = 0 (24.80)

After the rapidly varying component of the electric field has been removed by

introducing the modified field

E(x, y, z) = E(x, y, z)eδ = E(x, y, z)e−in0k0z (24.81)

the split-operator method yields

E(x, y, z + �z) = e
− i �z

4n0k0

(
∂2

∂x2
+ ∂2

∂y2

)

e
− ik0�z

2n0

(
n2−n2

0

)

e
− i �z

4n0k0

(
∂2

∂x2
+ ∂2

∂y2

)

E(x, y, z) + O(�z)3

(24.82)

Note that, for n = n0 + �n, so that n2 − n2
0 ≈ 2 �n n0, the exponent of the second

exponential operator is simply −ik0 �n �z, which is −i times the approximate

phase change (�φ = k �x) of light resulting from the refractive-index inhomo-

geneity.

To apply Eq. (24.82), the field and refractive index are first discretized on an

equidistant spatial grid

{

(xi , y j ) : xi = −L x

(

1 − 2(i − 1)

Nx

)

, y j = −L y

(

1 − 2( j − 1)

Ny

)

,

i = 1, . . . , Nx , j = 1, . . . , Ny

}

(24.83)
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The length Lα with α = x, y coincides with the total distance covered by N

intervals between adjacent points. The first and third operators in Eq. (24.82) are

evaluated after application of the FFT to obtain the Fourier coefficients Emn(z).

Subsequently, the inverse Fourier transform is employed according to

E(xk, yl , z) =
Nx
2∑

m=− Nx
2

+1

Ny
2∑

n=− Ny
2

+1

Emn(z) e
i �z

4n0k0

((
2πm
Lx

)2

+
(

2πn
L y

)2)

e
2π i

(
mxk
Lx

+ nyl
L y

)

(24.84)

In the normal representation of the FFT the negative m and n values in the above

expression are expressed as positive quantities m + N , n + N .

The unitarity of the above propagation algorithm insures that radiated power

remains within the computational window. Indeed, since the fast Fourier trans-

form is an expansion in functions that are periodic with respect to the window

length, the propagation method solves the problem for which the electric field and

refractive index are periodically continued outside the window boundary. Thus,

the field exiting the right side of the computational window simultaneously reap-

pears at the left side of the window transported by its periodic extension. This

effect can be suppressed only by introducing non-unitarity in the form of a

complex (absorptive) component refractive index near the window boundaries,

typically varying as

1

2

[

1 + cos

(
π |x − xα|

w

)]

|x − xα| < w

0 elsewhere

(24.85)

for each transverse direction x , where x − xα is zero at the boundary position and

the width of the absorbing region w ≪ Lα.

In the following program, a localized, Gaussian electric field distribution is

first propagated 500 �m in vacuum with the split-operator fast Fourier transform

method, then through a thin lens with a focal length of 250 �m and finally again

a further 500 �m through vacuum to the corresponding image point. The thin

lens is, for simplicity, here modeled by multiplication by a single operator that

compensates for the unequal path lengths of rays propagating at different angles

to its symmetry axis. In a more comprehensive analysis, a half propagation step

would be employed at the beginning and end of the calculation as well as just

before and just after the lens. Additionally, the exact spatially varying refractive

index of the lens can be introduced and the field advanced through the lens in

numerous small steps according to Eq. (24.82).

To simplify the lens operator, recall that for a thin lens 1/p + 1/q = 1/ f , where

p and q correspond to the object and image lengths. For p = q = 2 f , the phase

change of a light beam that travels from the object point to a point in the lens a
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distance r from the symmetry axis and back to the image point is

2k0

√

r 2 + 4 f 2 + �φ(r ) ≈ 2k0

(
2 f + r 2/(4 f )

)
+ �φ(r ) (24.86)

where �φ(r ) is the phase change in the lens. For Eq. (24.86) to be independent

of r requires

�φ(r ) = c − k0r 2

2 f
(24.87)

Since a constant phase change does not affect optical field propagation, in the

program below the central operator of Eq. (24.82) is replaced by −ik0r 2/(2 f ):

vacuumWaveLength = 1.0;
gridLength = 200;
numberOfGridPoints = 1024; % Must be even (preferably 2ˆn)

numberOfSpatialSteps = 20; % Total number of propagation steps

propagationDistance = 1000; % Total propagation distance

referenceIndex = 1.0;
propagationStepLength = propagationDistance / numberOfSpatialSteps;
pointLocationsPlus1R = linspace( -gridLength / 2, ...

gridLength / 2, numberOfGridPoints + 1 );
pointLocationsR = pointLocationsPlus1R( 1 : numberOfGridPoints );
k0 = 2 * pi / vacuumWaveLength; % Vacuum wavevector

% Gaussian initial field

fieldR = exp( -pointLocationsR.ˆ2 / ( 2. * 5.0ˆ2 ) );
% Second derivative operatior in Fourier transform representation

squaredFourierWavevectorComponentsR = ...
-( 2 * pi / gridLength )ˆ2 * [ 0 : numberOfGridPoints / 2, ...
-numberOfGridPoints / 2 + 1 : -1 ].ˆ2;

% Propagation operator for one propagation step

propagationOperatorR = exp( - i * propagationStepLength / ...
( 2 * k0 * referenceIndex ) * ...
squaredFourierWavevectorComponentsR );

% Operator for the phase change in a thin lens

lensOperatorR = exp( i * k0 * pointLocationsR.ˆ2 / 500 );
for loop = 1 : numberOfSpatialSteps
% A single propagation step is employed at the

% beginning instead of a half-step

fieldR = ifft( propagationOperatorR .* fft( fieldR ) );
% The lens operator is applied near the

% middle of the propagation distance

if loop == floor( numberOfSpatialSteps / 2 )
fieldR = lensOperatorR .* fieldR;

end
plot( pointLocationsR, abs( fieldR ) )
drawnow

end

The accuracy with which derivatives are evaluated with fast Fourier transform

methods particularly favors the analysis of non-linear equations typified by the
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non-linear Schrödinger equation

i
∂ E

∂t
+ 1

2

∂2 E

∂x2
+ |E |2 E = 0 (24.88)

which supports the stationary “soliton” solutions

E = ae−i(vx+(v−a2) t
2 ) sech(a(x + vx)) (24.89)

that balance the dispersion (broadening) induced by the coupling of the field

at adjacent spatial points through the second derivative term with the spatial

focusing toward regions of large |E |2 supplied by the non-linear term.

A program that propagates a soliton of unit amplitude is given below. The

soliton exits the right-hand side of the computational window and reenters

the left-hand side as a result of the periodic boundary conditions implicit in the

FFT. This behavior is often exploited to examine multiple soliton collisions.

gridLength = 50;
numberOfGridPoints = 512; % Must be even (preferably 2ˆn)

numberOfTimeSteps = 500;
propagationTime = 8;
propagationStepTime = propagationTime / numberOfTimeSteps;
pointLocationsPlus1R = linspace( -gridLength / 2, ...

gridLength / 2, numberOfGridPoints + 1 );
pointLocationsR = pointLocationsPlus1R( 1 : numberOfGridPoints );
% Soliton initial field

fieldR = 1.0 ./ cosh( pointLocationsR - 8. ) .* ...
exp( -i * 2 * pi * sin( 50 * pi / 180. ) * pointLocationsR );

% Free-space propagation operator for a half time step

propagationOperatorR = exp( -i * propagationStepTime * ...
( 2 * pi / gridLength )ˆ2 / 4 * ...
[ 0 : numberOfGridPoints / 2 , -numberOfGridPoints / 2 ...
+ 1 : -1 ] .ˆ2 );

for loop = 1 : numberOfTimeSteps
fieldR = ifft( propagationOperatorR .* ...
fft( exp( i * propagationStepTime * conj( fieldR ) .* ...

fieldR ) .* ifft( propagationOperatorR .* fft( fieldR ) ) ) );
if rem( loop - 1, 50 ) == 0

plot( pointLocationsR, abs( fieldR ) )
drawnow

end
end

Finally, the fast Fourier transform method is applied to the one-dimensional

time-dependent Schrödinger equation for the propagation of a Gaussian

wavepacket in a square-well potential of depth and width 5.0 a.u. (atomic units,

for which � = m = e = 1) in the presence of zero boundary conditions. The

result is compared with the analytic expression for V (x) = 0. (The negative sign
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in the propagation operator results from the product of three – signs, one in the

kinetic-energy term T = −(�2/(2m))∂/∂x2, the second from multiplication of both

sides of the Schrödinger equation by –i to remove the +i from the time derivative,

and the third from k2
m → −(2πm/L)2 in the discrete Fourier representation.

All Schrödinger-equation propagation methods below require the following

square-well potential function (normally wellWidth and wellDepth would be

passed to the function from the calling program either through a global state-

ment or as function parameters). A more accurate treatment insures that the

neighboring grid points are spaced equidistantly from the edges of the square-

well potential.

file potential.m

function y = potential( x )
wellWidth = 5;
wellDepth = 5;
y = zeros( length( x ), 1 );
for loop = 1 : length( x )

if abs( x(loop) ) < wellWidth;
y(loop) = -wellDepth;

end
end

file schfft.m

hold on;
stepLength = 0.005;
numberOfTimeSteps = 500;
fieldWidth = 2;
computationalWindowWidth = 20;
numberOfPoints = 300; % Must be even (preferably 2ˆn)

gridPointsPlus1R = linspace( -computationalWindowWidth / 2, ...
computationalWindowWidth / 2, numberOfPoints + 1 );

gridPointsC = gridPointsPlus1R( 1 : numberOfPoints ).’;
wavefunctionC = exp( -gridPointsC.ˆ2 ./ ( 2 * fieldWidthˆ2 ) );
% Kinetic-energy part of propagation operator

propagationOperatorC = exp( -i * stepLength / 2 * ...
( 2 * pi / computationalWindowWidth )ˆ2 * ...
( [ 0 : numberOfPoints / 2 , ...
-numberOfPoints / 2 + 1 : -1 ]').ˆ2 );

% Potential-energy part of propagation operator

potentialOperatorC = exp( -i * stepLength * ...
potential( gridPointsC ) );

for loop = 1 : numberOfTimeSteps
% Fourier transform method wavefunction propagation

wavefunctionC = ifft( propagationOperatorC .* ...
fft( potentialOperatorC .* wavefunctionC ) );

if ( rem(loop, 50) == 0 )
plot( gridPointsC, abs( wavefunctionC ), ’r’ );

% Analytic expression for Gaussian wavepacket

% propagation in constant potential

coefficient = ( 1 + ( stepLength * loop )ˆ2 / ...
fieldWidthˆ4 );

plot( gridPointsC, coefficientˆ-0.25 * ...
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exp( -gridPointsC.ˆ2 ./ ...
( 2 * fieldWidthˆ2 * coefficient ) ), 'k' );

end
drawnow

end

24.8 The Crank–Nicholson method in quantum mechanics

A Padé approximant to a function generally is applicable in a wider domain

than the Taylor-series expansions of equivalent order since it contains higher-

order power-series terms that approximate those of the function. For example,

comparing the Taylor-series expansion of the exponential function and its (1,1)

Padé-series approximation,

ex = 1 + x + x2

2
+ x3

6
+ x4

24
+ · · ·

(24.90)
1 + x/2

1 − x/2
= 1 + x + x2

2
+ x3

4
+ x4

8
+ · · ·

indicates that the Padé approximant approximates properties of the higher-order

terms, in contrast to a two-term Taylor-series truncation of the power series.

Applying this technique to the exponential propagation operator yields

e− i �t
�

H ≈
(

1 + i �t

2�
H

)−1 (

1 − i �t

2�
H

)

(24.91)

This operator is unitary since

(

1 + i �t

2�
H

)−1 (

1 − i �t

2�
H

)

|ψ〉 =
N∑

m=1

cm

1 − i �t

2�
Em

1 + i �t

2�
Em

|ϕm〉 (24.92)

for which the coefficient of each eigenfunction has magnitude |cm | as in

Eq. (24.60).

The Crank–Nicholson procedure is implemented as follows:

ψ(t + �t) =
(

1 + i �t

2�
H

)−1 (

1 − i �t

2�
H

)

ψ(t)

=
(

1 + i �t

2�
H

)−1 (

−
(

1 + i �t

2�
H

)

+ 2

)

ψ(t)

=
(

−1 + 2

(

1 + i �t

2�
H

)−1
)

ψ(t)

= −ψ(t) + 2χ (24.93)

where
(

1 + i �t

2�
H

)

χ = ψ(t) (24.94)
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Accordingly, each time step requires the solution of a tridiagonal equation system.

In multiple dimensions the commutativity of e.g. ∂2/∂x2 and ∂2/∂y2 further

enables the alternating directional method (ADI),

e− i �t
�

T = e
i�
2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)

= e
i�
2m

∂2

∂x2 e
i�
2m

∂2

∂y2 e
i�
2m

∂2

∂z2 (24.95)

Each exponential operator can then be separately evaluated with the Crank–

Nicholson procedure.

The following Octave program applies the Crank–Nicholson method to

the one-dimensional time-dependent Schrödinger equation for the propaga-

tion of a Gaussian wavepacket in a square-well potential of depth and width

5.0 a.u. (atomic units, for which � = m = e = 1) in the presence of zero bound-

ary conditions. The result is then compared with the analytic expression for

V (x) = 0:

hold on;
clear all;
stepLength = .005;
numberOfTimeSteps = 500;
fieldWidth = 2;
computationalWindowWidth = 20;
numberOfPoints = 300;
dx = computationalWindowWidth / ( numberOfPoints - 1 );
gridPointsC = linspace( -computationalWindowWidth / 2, ...

computationalWindowWidth / 2, numberOfPoints ).';
wavefunctionC = exp( -gridPointsC.ˆ2 ./ ( 2 * fieldWidthˆ2 ) );

% Crank-Nicolson solver based on user-supplied

% tridiagonal equation solution routine

enableMyTridiagonal = 1;
if enableMyTridiagonal

aC = stepLength/( 4 * 1i ) * ...
( ones( numberOfPoints - 1, 1 ) ) / ( 2 * dx * dx );

bC = 0.5 * ones( numberOfPoints, 1 ) - stepLength/( 4 * 1i ) *...
( potential( gridPointsC ) + ...
ones( numberOfPoints, 1 ) / ( dx * dx ) );

else
% Crank-Nicholson solver based on built-in Octave sparse-matrix

tridiagonal routine

onesVectorC = ones( numberOfPoints, 1 );
leftMatrixRCs = speye( numberOfPoints ) + i * stepLength / 2 *...

( spdiags( potentialC, 0, numberOfPoints, numberOfPoints ) -...
spdiags( [ onesVectorC, -2 * onesVectorC, onesVectorC ] /...
( 2 * dx * dx ), -1 : 1, numberOfPoints, numberOfPoints ) );

end
for loop = 1 : numberOfTimeSteps

if enableMyTridiagonal
wavefunctionC = MyTridiagonal( aC, bC, aC, wavefunctionC )...
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- wavefunctionC;
else

wavefunctionC = 2 * ( leftMatrixRCs \ wavefunctionC ) - ...
wavefunctionC;

end
if ( rem(loop,50) == 0 )

plot( gridPointsC, abs( wavefunctionC ), ’g’ );
end
drawnow

end

In the above program, either the built-in Octave sparse-matrix equation solu-

tion routines or the tridiagonal matrix solver below can be employed by changing

enableMyTridiagonal from 1 to 0 (if column vectors are passed to myTridiag-

onal( ) the return value is a column vector, whereas a row vector is returned for

row-vector parameters):

function outputVector = myTridiagonal( aLowerCodiagonal, ...
aDiagonal, aUpperCodiagonal, aInputVector )

numberOfEquations = length( aDiagonal );
rowSize = size( aLowerCodiagonal );
if rowSize == 1

outputVector = zeros( 1, numberOfEquations )
else

outputVector = zeros( numberOfEquations, 1 );
end
for loop = 2 : numberOfEquations

temporary = aLowerCodiagonal( loop - 1 ) / ...
aDiagonal( loop - 1 );

aDiagonal( loop ) = aDiagonal( loop ) - temporary * ...
aUpperCodiagonal( loop - 1 );

aInputVector( loop ) = aInputVector( loop ) - temporary * ...
aInputVector( loop - 1 );

end
outputVector( numberOfEquations ) = aInputVector( ...

numberOfEquations ) / aDiagonal( numberOfEquations );
for loop = numberOfEquations - 1 : -1 : 1

outputVector( loop ) = ( aInputVector( loop ) - ...
aUpperCodiagonal( loop ) * outputVector( loop + 1 ) ) /...
aDiagonal( loop );

end

24.9 Finite-difference and finite-element procedures

The finite-difference method also yields the complete set of eigenvectors and

eigenfunctions of differential equations such as the Schrödinger or diffusion

equation. For example, the ground-state eigenvalue and eigenfunction are

obtained, for zero boundary conditions at the points x0 and xN+1 each located
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one point beyond the computational window boundary, by solving Hϕm = Emϕm

according to

numberOfPoints = 100;
computationalWindowWidth = 20;
deltaX = computationalWindowWidth / ( numberOfPoints - 1);
leftEndPoint = -computationalWindowWidth / 2;
MRC = zeros( numberOfPoints, numberOfPoints );
xR = linspace( leftEndPoint, -leftEndPoint, numberOfPoints );
for ( loop = 1 : numberOfPoints )

MRC(loop, loop) = 1 / deltaXˆ2 + potential( xR(loop) );
if ( loop ~= numberOfPoints )

MRC(loop, loop + 1) = -1 / ( 2 * deltaXˆ2 );
end;
if ( loop ~= 1 )

MRC(loop, loop - 1) = -1 / ( 2 * deltaXˆ2 );
end;

end
[ eigenVectorsC, eigenValues ] = eigs( MRC, 1, ’sa’ );
plot( xR, eigenVectorsC * ...

sign( eigenVectorsC(numberOfPoints / 2) ) );

Closely related to the finite-difference method is the finite-element method,

in which the field is expressed as a linear superposition of localized basis func-

tions with finite spatial extent. Since these basis functions overlap, the standard

eigenvalue equation is instead replaced by a generalized eigenvalue equation of

the form H|ϕk〉 = λkM|ϕk〉, in which each eigenvalue multiplies a non-diagonal

matrix.

The Galerkin derivation of the finite-element method, here specialized to a

single dimension, follows from the observation that, if an eigensolution ψ of the

Schrödinger equation is expanded as a superposition

ψ(x) =
N∑

j=1

a j u j (x) (24.96)

of a complete set of localized but potentially overlapping functions u j (x), then

for each value of i the identity

∫ xR

xL

(

− �
2

2m
u∗

i (x)
d2ψ(x)

dx2
+ (V (x) − E)u∗

i (x)ψ(x)

)

dx = 0 (24.97)

must be satisified. Integrating this by parts,

∫ xR

xL

u∗
i (x)

(

− �
2

2m

d2ψ(x)

dx2
+ (V (x) − E)ψ(x)

)

dx

=
∫ xR

xL

(
�

2

2m

du∗
i (x)

dx

dψ(x)

dx
+ (V (x) − E)u∗

i (x)ψ(x)

)

dx − �
2

2m
u∗

i (x)
dψ(x)

dx

∣
∣
∣
∣

xR

xL

(24.98)
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For e.g. u∗
i (xR) = u∗

i (xi ) = 0, the second, surface, term vanishes on the right-hand

side of the above equation. Substituting Eq. (24.96) into Eq. (24.98) yields the

matrix eigenvalue equation

S

⎛

⎜
⎝

a1

a2

...

⎞

⎟
⎠ = E S̃

⎛

⎜
⎝

a1

a2

...

⎞

⎟
⎠ (24.99)

where the structure matrix S is given by

Si j =
∫ xR

xL

(
�

2

2m

du∗
i (x)

dx

du j (x)

dx
+ V (x)u∗

i (x)u j (x)

)

dx (24.100)

and

S̃i j =
∫ xR

xL

u∗
i (x)u j (x)dx (24.101)

Consider now the triangular basis functions,

ui (x) =

⎧

⎨

⎩

(xi+1 − x)/(xi+1 − xi ) xi < x < xi+1

(x − xi−1)/(xi − xi−1) xi−1 < x < xi

0 else

(24.102)

where for the first function, u1(x), x0 = xL coincides with the left endpoint of the

computation interval and for the last function, uN (x), xN+1 = xR coincides with

the right endpoint of the interval. Since the derivative of each basis function is

±1/(�x)2, adding the contributions, termed element matrices, of each interval

to the structure matrices yields (again noting that u0 = uN+1 = 0 from the zero

boundary conditions), for four points located at xL + �x, xL + 2 �x, . . . , xL + 4 �x

with xL + 5 �x = xR,

S =
5∑

i=1

S(i) =

⎛

⎜
⎜
⎜
⎜
⎝

�
2

2m �x
+

∫ xL+�x

xL

V (x)u1u1 dx 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�
2

2m �x
+

∫ xL+2�x

xL+�x

V (x)u1u1 dx − �
2

2m �x
+

∫ xL+2�x

xL+�x

V (x)u1u2 dx 0 0

− �
2

2m �x
+

∫ xL+2�x

xL+�x

V (x)u1u2 dx
�

2

2m �x
+

∫ xL+2�x

xL+�x

V (x)u2u2 dx 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ · · ·

(24.103)
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together with

S̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 �x

3

�x
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0 0
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⎞

⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎠

(24.104)

After the upper triangular parts of the matrices S and S̃ have been evaluated the

full matrices can be obtained through symmetrization (which doubles the diago-

nal elements). If the potential function remains constant, V0, over a finite element,

the integrals over the potential function in S equal V0 times the corresponding

elements of S̃. Approximating the potential function over each triangular element

by its value at the center of the element and employing the generalized Octave

eigenvalue solver for A�v = λB�v, eigs(A, B), yields, after summing the matrices

in Eq. (24.103),

numberOfPoints = 100;
computationalWindowWidth = 20;
deltaX = computationalWindowWidth / ( numberOfPoints - 1 );
leftEndPoint = -computationalWindowWidth / 2;
SRC = zeros( numberOfPoints, numberOfPoints );
SBarRC = zeros( numberOfPoints, numberOfPoints );
% Coordinates of the center of each finite element

xR = linspace( leftEndPoint, -leftEndPoint, numberOfPoints );
% Boundary points are 0 (at x_L = -leftEndPoint - deltaX)

% and numberOfPoints + 1

for ( loop = 1 : numberOfPoints )
SRC(loop, loop) = 1 / ( 2 * deltaX ) + ...

potential( xR(loop) ) * deltaX / 3;
SBarRC(loop, loop) = deltaX / 3;
if ( loop ~= numberOfPoints )

SRC(loop, loop + 1) = -1 / ( 2 * deltaX ) + ...
potential( xR(loop) ) * deltaX / 6;

SBarRC(loop, loop + 1) = deltaX / 6;
end

end
% Symmetrization

SRC = SRC + SRC’;
SBarRC = SBarRC + SBarRC’;
% Generalized eigenvalue routine

[ eigenVectorsC, eigenValues ] = eigs( SRC, SBarRC, 1, ’sa’ );
plot( xR, eigenVectorsC * ...

sign( eigenVectorsC(numberOfPoints / 2) ) );
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.exe, 24
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source file, 155

.m, 6

.o, 24

.obj, 24

.out, 24
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//, 33

:, 11

?:, 125

[ ], 54

ˆ, 149, 165

|, 149, 165

‖, 39, 165

∼, 39, 149

++, 164

<<, 149

=, 31

==, 39, 165

>>, 149

abs, 49, 142

absorber, 246, 248

abstract class, 136, 180, 181

abstract window toolkit, 156

abstraction, 2, 59, 63

access privilege, 70

accuracy, 188

ActionListener, 183

action, 60

adaptive step size, 190

address-of operator, 107

ADI, 253

alias, 101, 108

alternating directional method, 253

ALU, 23

annotation, 157

applet, 156

application software, 25

arg, 142

args, 177

argument, 46, 47

arithmetic logic unit, 23

ArithmeticException, 173

array, 8, 54, 83, 110

as function argument, 87

bounds checking, 85, 86

compiler-allocated, 83

const, 88

incorrect assigment, 85

initialization, 85

Java, 175

multidimensional, 89

multidimensional, as function

argument, 91

name, 84

of objects, 88

returned within object, 87

ASCII, 29, 162

asin, 50

assembly language, 24

assert.h, 50

assignment operator, 31, 39, 41, 128

associativity, 164

at, 97

atomic, 26

attributes, 2, 60

ava.awt, 158

axis, 13

back substitution, 201

bag, 83

base class, 134, 170, 179

basis functions, 255, 256

begin, 113

behaviors, 59, 62

binary, 96

binary files, 10

bisection method, 196

bit-field, 148

bitmask, 94

block, 26, 30

implicit, 41

labeled, 166

blocking, 150

Boltzmann distribution, 228

bool, 40

boolalpha, 40

boolean, 162, 165

boot, 23

boundaries

reflecting, 226

boundary conditions, 231, 233

Dirichlet, 233

mixed, 234

Neumann, 234

periodic, 234, 248, 250

radiation, 246

zero, 254, 256

259
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bounds checking, 74

break, 11, 42, 43, 166, 173

breakpoint, 18

bus, 28

byte, 28, 47, 162, 174

C, 75, 99

c_str, 97

cache memory, 23

call by reference, 87

callback, Java, 182

call-by-value, 47

canonical ensemble, 228

cast, 21, 163

catch, 50, 173

caux, 95

C-cast, 46

cd, 5

ceil, 12, 50

cell arrays, 11

cellplot, 11

central processing unit, 23

CERN, 4

cerr, 95

chaos, 14

char, 28, 29, 162

characters

non-printing, 162

charAt, 174

chi-squared function, 205

cin, 44, 93

class, 59, 61, 66, 140, 157, 180

abstract, 136

base, 65, 73

complex, 142

control, 63

derived, 65, 73

entity, 63

nested, 148

orthogonality, 63

scope, 31

template, 140

types, 162

user-defined, 68

class diagram, 61

classical mechanics, 245

CLASSPATH, 157

clear, 7, 13

clf, 13

clog, 95

close, 96

collaboration diagrams, 61

colon operator, 11

comma operator, 39

command window, 153

comments, 6, 33, 161

compare, 113

compareTo, 174

comparison

lexographic, 97

complex, 142

complex number, 7

concat, 174

condition number, 204

conditional operator

ternary, 41

conio.h, 16

conj, 142

console application, 15

const, 38, 81

internal variable

initialization, 73

member variable, 103

reference variable, 103

const_cast, 46, 104

constant pointers, 109

constants, 27

constructor, 46, 71, 133, 135, 137, 169

base class, 77

copy, 130

default, 72, 73, 77, 169

derived class, 77

for conversions, 138

synthetic, 169

container, 83

containment, 170

continuation character, 27, 30

Java string, 174

continue, 43, 166, 173

contour, 13

control constructs, 11, 26, 40

convection equation, 236

conversion, 48

automatic type, 49

Java, 163

user-defined, 138

copy, 6

cos, 50

cosine transform, 208

Courant number, 237

cout, 44, 93

cprn, 94

CPU, 23

Crank–Nicholson procedure, 252

C-string, 112

currentThread, 184

curve, 191

dangling pointer, 117, 118

data structure, 83, 143

DBL_EPSILON, 56

DBL_MAX, 28, 57

DBL_MIN, 57

deallocation

Java, 171

debugger, 15, 17, 36, 86

DecimalFormat, 177

declaration, 31

class, 66

function, 48

deep copy, 129

default, 42, 141, 158, 170, 180

define, 38

definition, 31

array, 83

pointer, 106

delete, 114

deprecated, 3

dequeue, 143

dereferencing operator, 108

derivative

Class, 193

convective or hydrodynamic, 236

second derivative operator, 202

derivative operator, 188, 192

derived class, 134, 170, 179

design by contract, 50

destructor, 46, 127

virtual, 135

det, 9

Dev-C++, 15

DFT, 208

diary, 6

diffusion equation, 231, 234, 240, 254

dir, 6

disfin, 191

DISHLP, 190

disini, 190

DISLIN, 15, 19, 152, 213

DISMAN, 190
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dispersion, 250

distributed memory, 23

divergence

numerical, 214

do, 43, 166

dos, 6

double, 28, 162

Double, 174

doubleValue, 163, 174

downcasting, 136, 180

drawnow, 13

dynamic memory allocation, 84

from within function, 118

Java, 171

dynamic method dispatch, 179,

180

dynamic_cast, 46, 136

dynamically allocated matrix

as function argument, 120

echo, 153

edit, 6

editor, 15

eig, 10

eigenfunction, 206

eigenfunction solver

finite difference, 254

eigenvalue, 206, 255

eigs, 255, 257

electric field, 246

element matrices, 256

elliptic equations, 232, 240

else, 38, 41, 166

elseif, 11

encapsulation, 59, 74

end, 113

endif, 38

endl, 44, 98

ends, 98

entropy, 221

enum, 40, 48, 94, 157

environment variable, 153

eof, 96

eps, 7

equals, 174, 179

erase, 97

error

analysis, 188, 214

compiler, 55

Java, 173

link, 56

roundoff, 56

runtime, 56

integration, 195

Euler’s method, 212, 234,

237

Euler–Cromer, 215

eval, 10

event, 182

listener, 182

object, 182

source, 182

exceptions, 173

exit, 43

EXIT_SUCCESS, 36

exp, 50

explicit, 139

expm, 9

exponent, 28

expression, 27

extends, 170, 173

extension .cpp, 79

extern, 81

extrapolation, 193

eye, 9

fabs, 49, 50

false, 40, 162

fft, 12, 209

FFT, 209, 250

fftshift, 211

figure, 13

file

append, 96

binary, 96

serialized, 186

I/O Java, 178

stream, 95

FileInputStream, 178

fill, 94

final, 163, 170, 180

finalize, 172

finally, 173

find, 97

finite-difference operator

forward, 188

finite-element method, 255

fix, 12

flag, 93

float, 28, 57, 162, 174, 191

floor, 12, 50

FLT_EPSILON, 56

FLT_MAX, 28, 57

FLT_MIN, 57

fluid mechanics, 236

flush, 44

fmins, 12

focal length, 248

for, 11, 42

format, 7, 177

formatting convention, 7, 33

FORTRAN, 2, 3, 15, 75

forward difference approximation, 213,

234

forward time centered space procedure,

237

Fourier transform, 208

discrete, 208

fast, 209, 246, 250

fplot, 13

freeMemory, 171

Fresnel equation, 247

friend, 124, 125

fstream, 38, 95

FTCS, 237

full, 10

function, 11, 46, 59

abstract, 180

arguments, 12

built-in, 49

class member, 59, 66

const member, 81

finding extrema, 199

get and set member, 71, 169

handle, 12

Java, 172

Java type parameters, 187

name, 189

passing a Java function argument,

181

prototype, 48

pure virtual, 136

record, 47, 189

recursive, 53

reference arguments, 102

signature, 48

static member, 133

templates, 139

virtual, 135

fzero, 12
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g77, 15

Galerkin, 255

garbage, 115, 119, 171

Gaussian elimination, 201

Gauss–Seidel, 241

gca, 13

gdb, 15

general protection fault, 109

generic types, 186

get, 13, 62

getline, 97, 112

getRuntime, 171

global, 11, 251

global scope, 31, 52

global variable, 30, 52, 113

GNU, 4

golden mean, 199

gprof, 15

graf, 191

graphical programming, 25, 61

graphics, 15

Hamilton’s equations, 245

Hamiltonian, 227

Hamming window function, 210

has-a, 65, 170

hash code, 175

header file, 50, 79

Hello world, 16

help, 6

Dev-C++, 20

Hermitian, 243

Hermitian matrix, 206

heterogeneous object collections, 135, 136

hex, 107

hexadecimal, 47, 162

high-level language, 24

histogram

biased, 220

hold, 13, 224

hopscotch method, 238

hyperbolic equations, 232, 235

identifier, 26, 27, 68, 161

identity, 61

if, 41, 166

ifdef, 38

ifft, 12, 210

ifndef, 38

ifstream, 93, 95
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imag, 142, 210
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implementation, 137

import, 157
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IMSL, 4

include, 38

include file, 80
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Inf, 57

information hiding, 59, 70

inheritance, 3, 60, 65, 76
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multiple, 137

private, 65, 76

protected, 65, 78

public, 65, 76

inheritance tree, 65

init, 184

initial conditions, 43, 212, 214, 231, 233

initialization

array, 83, 84

final class variables, 170

final variables, 163

Java array, 175

Java array elements, 175

Java function arguments, 172

Java interface, 180

Java primitive types, 162

Java reference, 171

list, 72, 77, 137

pointers, 107

reference, 101

static class member, 133

inline, 38, 53, 67, 151

inner adapter class, 182

inner block, 30

input, 7

insert, 97, 175

insertion operator, 16

installation, 15

DISLIN, 19

instance, 68

instantiation, 62, 69

int, 28, 46, 162

int2str, 10

Integer, 163

interface, 62, 136, 157, 180, 181

internal class member, 71

interp1, 12

interpolation, 12

introspection, 169

intValue, 174

inv, 9, 10

IOException, 173

iomanip, 94

ios, 93

ios::app, 96

iostream, 16, 19, 37, 38, 93, 94

is-a, 65, 170, 179

Ising model, 227

istream, 93

istrstream, 93

iterative coding, 35

iterator, 113, 143

Java, 3

command arguments, 177

development kit, 152

java.applet, 158

java.awt.event, 158

java.io, 158

java.lang.Error, 158

java.lang.Exception, 158

java.lang.Math, 158

java.lang.reflect, 158

java.lang.String, 158

java.lang.StringBuffer, 158

java.lang.Thread, 158

javac, 156, 170

javadoc, 161

JDK, 152

key set, 83

kind-of, 65

labels, 191

Lax–Wendroff method, 238

least squares, 204

legacy code, 75

length, 9, 97, 113

for Java arrays, 176

lens operator, 248

lifetime, 113, 132

likelihood ratio, 220

limits, 28

line feed, 29

linear equations, 10, 200

linewidth’, 13
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linked list, 121

linker, 24, 79

linspace, 11

Linux, 5, 15, 25

list, 83, 143

load, 10

log, 50

log10, 50

logical drive, 5

logical operators, 11, 39

logistic map, 14

loglog, 13

logm, 9

logspace, 11

long, 28, 162

lookfor, 6

ls, 6

lsode, 12

lu, 10

lvalue, 31

M_PI, 50

machine epsilon, 7, 56

machine language, 24

main( ), 36

makefile, 80

mangling, 48

manipulator, 40

mantissa, 28

map, 143

MAPLE, 2

Markov chains, 222

math, 38

Math (Java), 173

math.h, 49

Mathematica, 2

MATLAB, 2, 5

matrix, 111, 200

dynamically allocated, 119

functions, 9

sparse, 10

statically allocated as function

argument, 120

max, 12

Maxwell’s equations, 235

mean, 12

member-of operator, 13, 69

member selection, 108

memcpy, 130

memory, 27

access, 56, 86

buffer, 93, 100

deallocation, 47, 115

dynamically allocated, 113, 116

leak, 115, 127, 128

lifetime, 114

management, 13

registers, 23

storage order, 90

menu, 7

mesh, 13

messages, 61

metafl, 20, 190

metaparameter, 139, 186

method, 59

non-static (instance), 159

static, 159

Metropolis algorithm, 221

midpoint rule, 195

min, 12

minimization, 199

misspelling, 17

mkdir, 5

modular program, 46, 54

modular testing, 35

modulus, 39

molecular dynamics, 225

Monte Carlo procedures, 218

more, 7

multicanonical methods, 224

multidimensional array

initialization, 89

multimap, 143

multiset, 143

multithreading, 60, 184

NAG, 4

name, 27, 136, 191

mangled, 49

namespace, 31, 37

naming conventions

internal variables, 71

NaN, 57, 162

NDEBUG, 51

NEGATIVE_INFINITY, 162

nested classes, 147

new, 113, 115, 127, 157, 171

new_handler, 114

Newton’s equation, 212

Newton’s laws, 225

Newton’s method, 197

node, 121

NoSuchMethodException, 173

Notepad++, 152

null, 171

NULL, 40, 109, 116, 121, 175

null character, 29, 95, 112

null pointer, 115, 128

num2str, 10

NumberFormat, 177

object, 2, 58, 59, 61

assignment, 70

base class, 77

derived class, 77

factory, 63

file, 24

object-oriented analysis, 58, 66

object-oriented design, 58

Object, 179

ObjectOutputStream, 186

octal, 162

octave, 2, 5

ode23, 12

ode45, 12

ofstream, 93, 95, 96

ones, 9

op code, 24

open, 96

operating system, 25, 26, 56

operator, 27, 125, 188

binary, 32

bit shift, 149

bitwise, 149

centered finite difference, 192

extraction, 126

extraction and insertion, 125

inclusion in class definition, 126

index, 54, 85

insertion, 44

insertion and extraction, 112

integral, 194

logical, 165

logical comparison, 165

member of, 108

overloading, 48, 49, 125

overloading through friend functions,

125

remainder, 164

ternary, 125
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operator (cont.)

ternary, if-then-else, 165

type conversion, 46

unary, 31

operator product expansions, 246

operator-splitting methods, 244

optimization, 18, 149, 151

order, 188

ordered list, 83

orient, 13

ostream, 93

ostrstream, 93

outer product, 9

pack, 13

package, 157, 158, 169, 170

default, 157

unamed, 169

Padé approximant, 252

page fault, 23, 119

paint, 156

parabolic, 233

parabolic differential equations, 242

parameters, 46, 47

default, 52

parentheses, 32, 47

parseDouble, 175

partial differential equations, 230

particle simulations, 225

partition, 5

partition function, 228

pass by reference, 89, 96

pathname, 95

pause, 13

PDF, 20

periodic boundary conditions, 246

phase-space, 215

pi, 7

pivoting, 204

plot, 12

point spacing, 188

pointer, 106

arithmetic, 110

comparisons, 111

dangling, 115

Java, 171

this, 123

to a const, 110

to a function, 189

to a pointer, 111, 120

to pointer, 120

Poisson bracket, 245

Poisson equation, 232, 241

polar, 142

polymorphism, 49, 60, 69

POSITIVE_INFINITY, 162

postconditions, 50

postfix, 39

postscript, 20

potential, 250

pow, 50

precedence, 32, 164

precision, 94

precondition, 50

prefix, 39

preprocessor directive, 27, 38, 79

primitive types, 161, 162

print, 13, 177

print screen, 20

printf, 99

println, 177

priority_queue, 143

private, 2, 59, 62, 63, 70, 158, 169

probability distribution functions, 219

problem definition, 35, 60

procedural language, 2, 24

procedural programming, 35, 58

profiler, 15, 18, 149

program library, 79

program maintenance, 36

project, 15, 78, 79

prolog, 33

properties, 59, 62

protected, 70, 78, 158, 170

prototype, 136

function, 53

public, 2, 59, 69, 70, 158, 169, 170, 180

qplot, 19

quad, 12

quantum mechanics, 252

queue, 83, 143

quiver, 233

RAM, 23

rand, 10, 211

random access memory, 23

random number, 10

read-only member, 71

read-only memory, 23

reader function, 71

real, 142, 209

rectangular integration, 195, 214

reference, 101, 109

Java, 171

member variables, 103

return values, 104

reflection, 247

register, 150

reinterpret_cast, 46

rem, 12

remainder operator, 39

rename, 6

replace, 97, 113, 174

requirements specification, 61

reserved keyword, 26

return, 47, 51

reuse, 35

rmdir, 5

ROM, 23

roots, 12

round, 12

row-major storage order, 90

run, 184

Runge–Kutta, 216

Runtime, 171

runtime type identification, 135

rvalue, 31, 85

save, 10

scalar wave equation, 246

scale, 191

Scanner, 177

Schrödinger equation, 231, 250, 254

scientific notation, 28

scope, 18, 81

scope-resolution operator, 30, 67, 137

SecurityException, 173

segmentation fault, 56, 86

semilogx, semilogy, 13

sequence diagrams, 61

serializable, 186

set, 13, 17, 62, 83, 143, 153

setf, 94

setscl, 191

shallow copy, 128

shell, 153

short, 162

Simpson’s rule, 196

sin, 50
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sine transform, 208

singular value decomposition, 205

size, 9

sizeof, 28, 106, 125

skew-Hermitian, 243

sleep, 184

software engineering, 50

soliton, 250

sort, 12

sorted list, 83

specialization, 170

specific heat, 228

specification document, 35

spectral radius, 240

speye, 10

spin, 227

split-operator methods, 242–246

spy, 10

sqrt, 50

sqrtm, 9

square well, 251, 253

sstream, 97

stability, 57, 240

stack, 83, 143

Standard Template Library, 143

standards, 3

start, 184

statement, 26, 27

static, 132, 159, 169, 173, 180

std, 37

stdio.h, 99

stdlib.h, 43

steady-state, 237

step size, 188

stochastic physical systems, 218

stop, 184

storage location, 27

str2int, 10

str2num, 10

stream

attach to file, 96

input, 44, 93

manipulators, 94

output, 44, 93

printer, 94

string, 98

string, 10, 27, 29, 112, 174, 177

C-type, 112

class, 97

initialization, 97

Java, 174

streams, 97

StringBuffer, 175

stringstream, 97

StringTokenizer, 175

strlen, 112

strncmp, 112

strncpy, 112

strstream, 97

struct, 147

structures, 13, 147

subplot, 13

substring, 174

sum, 12

super, 170

switch, 11, 41, 174

symplectic evolution operators, 245

system bus, 23

tan, 50

tanh, 50

Taylor series, 189, 252

temperature distribution, 228, 230

template, 139, 140, 157, 186

non-type parameter, 141

testing, 36

thin lens, 248

this, 123, 169

Thread, 184

throws, 173

TIFF, 20

token, 26

toString, 98, 175, 179

trace, 9

transpose, 8

tridiagonal-equation solver, 202

true, 40, 162

try, 50, 173

type, 27, 31, 63

checking, 48

default, 46

return, 46

typedef, 44

typeid, 136

typeinfo, 136

typename, 140

UML, 61

underdetermined equation system, 205

underscore, 27

Unicode, 162

union, 147, 149

unitary, 243, 248, 252

UNIX, 6, 25

use cases, 61

using, 37

variable, 27

hiding, 30

static, 159

vector, 143

Vector, 176

virtual, 134, 135

function, 179

inheritance, 138

operating system, 23

visible, 31

void, 46

wave equation 231, 236

while, 11, 42, 166

whitespace, 26, 27, 44

who, 7

width, 94

Windows, 15, 25

wrapper, 74, 75, 88

writeObject, 186

write-only, 71

xlabel, ylabel, 13

Yee method, 238
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