Successful Lisp - Contents

Table of Contents

. About the Author
. About the Book

. Dedication

. Credits

. Copyright

. Acknowledgments
. Foreword

« Introduction

12345678910111213141516171819202122232425262728293031323334

. Chapter 1 - Why Bother? Or: Objections Answered

Chapter objective: Describe the most common objections to Lisp, and answer each with advice
on state-of-the-art implementations and previews of what this book will explain.

o | looked at Lisp before, and didn't understand it.
o | can't see the program for the parentheses.

o Lispisvery slow compared to my favorite language.

o No one else writes programsin Lisp.

o Lisp doesn't let me use graphical interfaces.

o | can't call other people's code from Lisp.

o Lisp's garbage collector causes unpredictable pauses when my program runs.
o Lispisahuge language.

o Lispisonly for artificial intelligence research.

o Lisp doesn't have any good programming tools.

o Lisp usestoo much memory.

o Lisp usestoo much disk space.

o | can't find agood Lisp compiler.

. Chapter 2 - Isthis Book for Me?

Chapter objective: Describe how this book will benefit the reader, with specific examples and
references to chapter contents.

o The Professional Programmer

http://psg.com/~dlamkins/sl/contents.html (1 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

o The Student

o The Hobbyist

o The Former Lisp Acguaintance
o The Curious

« Chapter 3 - Essentia Lisp in Twelve Lessons

Chapter objective: Explain Lisp inits simplest form, without worrying about the special cases
that can confuse beginners.

Lesson 1 - Essential Syntax
« Listsare surrounded by parentheses
= Atoms are separated by whitespace or parentheses
o Lesson 2 - Essential Evaluation
= A formismeant to be evaluated
= A function is applied to its arguments
= A function can return any number of values
= Arguments are usually not modified by afunction
= Arguments are usually evaluated before function application
= Arguments are evaluated in left-to-right order
= Special forms and macros change argument evaluation
o Lesson 3 - Some Examples of Special Forms and Macros
« SETQ
-« LET
« COND
= QUOTE
o Lesson 4 - Putting things together, and taking them apart
= CONS
- LIST
= FIRST and REST
o Lesson 5 - Naming and Identity
= A symbol isjust aname
= A symbol isaways unique
= A symbol can name avalue
= A value can have more than one name
o Lesson 6 - Binding versus Assignment
= Binding creates a new place to hold avalue
= Bindings have names
= A binding can have different values at the same time
= Onebinding isinnermost
= The program can only access bindings it creates
= Assignment gives an old place anew value

O

http://psg.com/~dlamkins/sl/contents.html (2 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

o Lesson 7 - Essential Function Definition

«» DEFUN defines named functions
= LAMBDA defines anonymous functions
n Lesson 8 - Essential Macro Definition

« DEFMACRO defines named macros
» Macros return aform, not values
o Lesson 9 - Essential Multiple Values
= Most forms create only one value
= VALUES creates multiple (or no) values
= A few special forms receive multiple values
= Some forms pass along multiple values
o Lesson 10 - A Preview of Other Data Types

= Lisp amost always does the right thing with numbers
= Characters give Lisp something to read and write
= Arraysorganize datainto tables
= Vectors are one-dimensional arrays
= Strings are vectors that contain only characters
= Symbols are unique, but they have many values
= Structureslet you store related data
= Typeinformation is apparent at runtime
= Hash Tables provide quick data access from alookup key
« Packages keep names from colliding
o Lesson 11 - Essential Input and Output
» READ acceptsLisp data
= PRINT writes Lisp data for you and for READ
» OPEN and CLOSE let you work with files
« Variationson aPRINT theme
o Lesson 12 - Essential Reader Macros
= Thereader turns charactersinto data
» Standard reader macros handle built-in data types
» User programs can define reader macros

. Chapter 4 - Mastering the Essentials

Chapter objective: Reinforce the concepts of Chapter 3 with hands-on exercises.

Hands-on! The "toploop"

Spotting and avoiding common mistakes
Defining simple functions

Using global variables and constants
Defining recursive functions

Tail recursion

O O O O O O

http://psg.com/~dlamking/sl/contents.html (3 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

o Exercisesin naming

o Lexical binding and multiple name spaces
o Reading, writing, and arithmetic

o Other datatypes

o Simple macros

o Reader macros

. Chapter 5 - Introducing lteration

Chapter objective: Introduce the most common looping constructs.

"There's no such thing as an infinite loop. Eventually, the computer will break." --
John D. Sullivan

o Simple LOOP loops forever...

o But there'saway out!

o Use DOTIMES for a counted |loop

o Use DOLIST to process elements of alist
o DOistricky, but powerful

. Chapter 6 - Deegper into Structures

Chapter objective: Show the most useful optional features of structures.

o Default values let you omit some initializers, sometimes

o Change the way Lisp prints your structures

o Alter the way structures are stored in memory

o Shorten slot accessor names

o Allocate new structures without using keyword arguments
o Define one structure as an extension of another

. Chapter 7 - A First Look at Objects as Fancy Structures

Chapter objective: Introduce CLOS objects as tools for structuring data. Object behaviors will be
covered in alater chapter.

Hierarchies: Classification vs. containment

Use DEFCLASS to define new objects

Objects have dots, with more options than structures
Controlling access to a slot helps keep clients honest
Override a slot accessor to do things that the client can't
Define classes with single inheritance for specialization

O O O O O O

http://psg.com/~dlamkins/sl/contents.html (4 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

o Multiple inheritance allows mix-and-match definition
o Options control initialization and provide documentation
o Thisisonly the beginning...

. Chapter 8 - Lifetime and Visbility

Chapter objective: Show how lifetime and visibility affect the values of Lisp variables during
execution. Thisis pretty much like local and global variablesin other languages, but Lisp's
special variables change things. This chapter also sets the stage for understanding that lifetime
and visibility isn't just for variables.

Everything in Lisp has both lifetime and visibility
Lifetime: Creation, existence, then destruction
Visibility: To see and to be seen by

The technical names: Extent and Scope

Really easy cases: top-level defining forms

Scope and extent of parametersand LET variables
Slightly trickier: specia variables

O O O O O O O

. Chapter 9 - Introducing Error Handling and Non-L ocal Exits

Chapter objective: Show three new ways of transferring control between parts of a program.

UNWIND-PROTECT: When it absolutely, positively hasto run
Gracious exits with BLOCK and RETURN-FROM

Escape from anywhere (but not at any time) with CATCH and THROW
Making sure files only stay open as long as needed

O O O O

. Chapter 10 - How to Find Y our Way Around, Part 1

Chapter objective: Show how to find thingsin Lisp without resorting to the manual.

o APROPOS: | don't remember the name, but | recognize the face
o DESCRIBE: Tell me more about yourself

o INSPECT: Open wide and say "Ah..."

1 DOCUMENTATION: | know | wrote that down somewhere

. Chapter 11 - Destructive Modification

Chapter objective: Illustrate the difference between assignment and binding, and show why
assignment is harder to understand. Then explore reasons for preferring the more difficult
concept, and introduce functions that use destructive modification.

http://psg.com/~dlamking/sl/contents.html (5 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

O O O O O O O O

Simple assignment is destructive modification

Therisk of assignment

Changing vs. copying: an issue of efficiency

Modifying lists with destructive functions

RPLACA, RPLACD, SETF ...; circularity

Places vs. values: destructive functions don't always have the desired side-effect
Contrast e.g. PUSH and DELETE

Shared and constant data: Dangers of destructive changes

. Chapter 12 - Mapping Instead of Iteration

Chapter objective: Categorize and demonstrate the mapping functions. Show appropriate and
Inappropriate uses. Introduce the concept of sequences.

O O O O O O O O

MAPCAR, MAPC, and MAPCAN process successive list elements
MAPLIST, MAPL, and MAPCON process successive sublists
MAP and MAP-INTO work on sequences, not just lists

Mapping functions are good for filtering

It's better to avoid mapping if you care about efficiency

Predicate mapping functions test sequences

SOME, EVERY, NOTANY, NOTEVERY

REDUCE combines sequence elements

. Chapter 13 - Still More Things Y ou Can Do with Sequences

Chapter objective: Introduce the most useful sequence functions, and show how to use them.
Show how destructive sequence functions must be used to have the intended effect.

O O O O O O O O O O

CONCATENATE: new sequences from old

ELT and SUBSEQ get what you want from any sequence (also, COPY -SEQ)

REV ERSE turns a sequence end-for-end (also, NREVERSE)

LENGTH: size counts after all

COUNT: when it'swhat's inside that matters

REMOVE, SUBSTITUTE, and other sequence changers

DELETE, REMOVE-DUPLICATES, DELETE-DUPLICATES, and NSUBSTITUTE
FILL and REPLACE

L ocating things in sequences: POSITION, FIND, SEARCH, and MISMATCH

SORT and MERGE round out the sequence toolkit

. Chapter 14 - Can Objects Really Behave Themselves?

http://psg.com/~dlamking/sl/contents.html (6 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

Chapter objective: Show how generic functions work. Describe multiple dispatch, inheritance,
and method combination. Preview the metaobject protocol.

Generic functions give objects their behaviors

The line between methods and objects blurs for multimethods

M ethods on non-objects? So where does the method live?
Generic functions work by dispatching on argument specializers
Object inheritance matters after all; finding the applicable method
Method combinations offer further choices

Nothing is cast in stone; a peek at the metaobject protocol

O O O O O O O

. Chapter 15 - Closures

Chapter objective: Show how closures capture free variables for use in other execution contexts.
Demonstrate with some practical applications.

o Isitafunction of the lifetime, or the lifetime of afunction?

o How to spot afree variable, and what to do about it.

o Using closures to keep private, secure information.

o Functions that return functions, and how they differ from macros.

. Chapter 16 - How to Find Y our Way Around, Part 2

Chapter objective: Learn what the Lisp compiler does to your code, and how to watch what your
code does as it runs.

"DISASSEMBLE isyour friend." -- Bill St. Clair

o DISASSEMBLE: | alwayswondered what they put inside those things...
o BREAK and backtrace: How did | end up here?
o TRACE and STEP: I'm watching you!

. Chapter 17 - Not All Comparisons are Equal

Chapter objective: Tell how and why Lisp has so many different comparison functions. Give
guidelines for proper choice.

The longer the test, the more it tells you

EQ istruefor identical symbols

EQL isaso true for identical numbers and characters
EQUAL isusualy true for things that print the same
EQUALP ignores number type and character case

O O O O O

http://psg.com/~dlamkins/sl/contents.html (7 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

o Longer tests are slower; know what you're comparing
o Specialized tests run faster on more restricted data types

. Chapter 18 - Very Loqgical, Indeed...

Chapter objective: Describe common logical functions, and conditional evaluation. Introduce bit
manipul ation functions, bit vectors, and generalized byte manipulation.

o AND and OR evaluate only as much as they need
o Bits, bytes, and Boole

o Bit vectors can go on forever

o Chunks of bits make bytes

. Chapter 19 - Streams

Chapter objective: Introduce streams as generalized /O facilities. Emphasize interchangeability
of streams attached to different devices.

o Streams provide a pipe to supply or accept data
o Creating streams on files

o Creating streams on strings

o Binary I/O

. Chapter 20 - Macro Etiquette

Chapter objective: Go beyond the simple examples of chapters 3 and 4 to show how to properly
construct macros to solve awide variety of problems.

Macros are programs that generate programs

Close up: how macros work

Backquote looks like a substitution template

Beyond the obvious, part 1. compute, then generate
Beyond the obvious, part 2: macros that define macros
Tricks of the trade: elude capture using GENSYM
Macrosvs. inlining

O O O O O O O

. Chapter 21 - Fancy Tricks with Function and Macro Arguments

Chapter objective: Describe lambda-list options. Show how they can be used to clarify programs.

o Keywordslet you name your parameters
o Default values for when you'd rather not say

http://psg.com/~dlamkins/sl/contents.html (8 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

o Add some structure to your macros by taking apart arguments

. Chapter 22 - How to Find Y our Way Around, Part 3

Chapter objective: Learn how to find out about objects and methods. L earn specialized
techniques to alter or monitor program behavior without changing the source code.

o Class and method browsers help you find your way in a sea of objects
o ADVISE lets you modify afunction's behavior without changing the function
o WATCH lets you open awindow on interesting variables

. Chapter 23 - To Err is Expected; To Recover, Divine

Chapter objective: Show how to create your own error detection and recovery mechanisms.

o Signal your own errors and impress your users
o Categorize errors using Conditions
o Recover from Conditions using Restarts

. Chapter 24 - FORMAT Speaks a Different L anquage

Chapter objective: Describe the most useful functions of the FORMAT function.

FORMAT rhymes with FORTRAN, sort of...
Formatting

[teration

Conditionals

Floobydust

O O O O O

. Chapter 25 - Connecting Lisp to the Real World

Chapter objective: Describe FFl in general, and give examples from actual implementations.
Show how to use wrappers to call C++ functions. Show how callbacks allow C programsto call
Lisp functions. Give an example using TCP/IP access.

Foreign Function Interfaces let you talk to programs written in "foreign languages'
Would you wrap this, please?

I'll call you back...

Network Interfaces. beyond these four walls

m]
m]
m]
m]

. Chapter 26 - Put on a Happy Face: Interface Builders

http://psg.com/~dlamkins/sl/contents.html (9 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

Chapter objective: Discuss event-driven interfaces and GUI buildersin general, then show
examples from major desktop Common Lisp platforms. Conclude with a discussion of platform-
independent Lisp GUIs such as Garnet and CLIM.

o Event-driven interfaces

o Graphical programming

o Example: MCL's Interface Toolkit
o Platform-independent interfaces

. Chapter 27 - A Good Editor is Worth a Thousand K eystrokes

Chapter objective: Show how Lisp's ssmple syntax combines with an integrated editor to ease
many of the common tasks of writing a Lisp program.

Simple syntax; smart editors
Matching and flashing
Automatic indentation

Symbol completion

Finding definitions

On-line documentation

Access to debugging tools
Extending the editor using Lisp

O O O O O O O O

. Chapter 28 - Practical Techniques for Programming

Chapter objective: Provide useful guidelinesfor Lisp style. Give practical advice on tradeoffs
among debugging, performance, and readability.

Elements of Lisp style

Property lists are handy for small (very small) ad-hoc databases
Declarations help the compiler, sometimes

DEFVAR versus DEFPARAMETER

Define constants with DEFCONSTANT

Know when (not) to use the compiler

Speed vs. ahility to debug

Efficiency: spotting it, testing it

Recognizing inefficiency, profiling; performance vs. readability

O O O O O O O O O

. Chapter 29 - | Thought it was Y our Turn to Take Out the Garbage

Chapter objective: Describe the benefits and costs of garbage collection. Show how to improve
program performance by reducing the amount of garbage it generates.

http://psg.com/~dlamkins/sl/contents.html (10 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

What is garbage?

Why is garbage collection important?

How does garbage collection work?

What effect does garbage have on my program?

How can | reduce garbage collection pauses in my program?

O O O O O

. Chapter 30 - Helpful Hints for Debugging and Bug-Proofing

Chapter objective: Describe use of Lisp's debugging tools.

Finding the cause of an error

Reading backtraces, compiler settings for debugging
Simple debugging tools

BREAK, PRINT

Power tools for tough problems

TRACE, STEP, ADVISE, WATCH

Into the belly of the beast

INSPECT, DESCRIBE

Continuing from an error

Problems with unwanted definitions

Package problems; method definitions

The problem with macros

Runtime tests catch "can't happen cases' when they do...
Use method dispatch rather than case dispatch

O O O O O O O O O O O O O O

. Chapter 31 - Handling Large Projectsin Lisp

Chapter objective: Describe strategies and tools used to organize Lisp programs for large projects
and team efforts.

Packages keep your names separate from my names
System builders let you describe dependencies

Source control systems keep track of multiple revisions
Modules: another way to describe file dependencies
PROVIDE and REQUIRE

O O O O O

. Chapter 32 - Dark Corners and Curiosities

Chapter objective: Describe some Lisp features that are newer, unstandardized, experimental, or
controversial.

http://psg.com/~dlamkins/sl/contents.html (11 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

o Extended LOOP: Another little language

o TAGBODY: GO if you must

o Processes & Stack Groups: Juggling multiple tasks
o Series: Another approach to iteration and filtering

. Chapter 33 - Where to Go Next

Chapter objective: Provide pointers to other sources of information and products.

o Suggestions for further reading
o On-line sources
- Commercia vendors

. Chapter 34 - Lisp History, or: Origins of Misunderstandings

Chapter objective: Give a short history of Lisp's development, providing insights to some
lingering misconceptions.

John McCarthy's Notation

Earliest implementations

Specia hardware

Diverging dialects

The DARPA directive

East vs. West, and European competition

The emergence of compilersfor stock hardware
The long road to standardization

State of the Art?

O O O O O O O O O

. Appendix A - Successful Lisp Applications

Chapter objective: Describe large successful applications built in Lisp.

Emacs

G2

AutoCad

Igor Engraver
Y ahoo Store

O O O O O O

Cover
About the Author

http://psg.com/~dlamkins/sl/contents.html (12 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Contents

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/contents.html (13 of 13)11/3/2006 5:46:04 PM

Successful Lisp - Author

About the Author

David Lamkins was born in Watervliet, New York. Very little is known about his childhood except that
he started taking things apart as soon as he could hold a screwdriver. It wasn't until David reached the
age of twelve that he started putting things back together.

This fascination with the inner workings of things carried David forward through along period of his
life (euphemistically dubbed "The Quiet Years"), during which he masterfully combined the roles of
computer geek and responsible adult. Of course, this resulted in arather mundane existence and bored
the hell out of everyone around him...

David has recently rediscovered that people are more fun to play with than symbols, and has decided to
-- in the grand tradition of reformed geeks everywhere -- get alife.

After thirty years of half-heartedly messing around on the guitar (including some stintsin very short-
lived bands during his teen years) David has finally decided that he'd like to be amusician and play in a
band that performs dark, langorous, fluid music; an alchemic transmutation of psychedelia and metal.

David's favorite movies are "The Fifth Element” and "The Matrix".

Contents | Cover
About the Author | About the Book

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/author.html| 11/3/2006 5:47:00 PM

Successful Lisp - About

About this Book

This book was produced on Apple Macintosh computers.

| used Digitool's Macintosh Common Lisp to edit and test the book's sample code. Bill St. Clair's HTML-
Editor.lisp extended MCL's editor to handle the HTML markup language used in the construction of this
book. Thisway, | was able to edit and test the Lisp code directly in the book's source files and avoid
errors | might have otherwise made by cutting and pasting sample code.

| used various Web browsers to view the book.
| used Excalibur by Robert Gottshall and Rick Zaccone to spell check the book, and the computer
version of The American Heritage Dictionary Deluxe Edition by Wordstar International for my

dictionary and thesaurus.

All software and hardware used in the production of this book was purchased at my own expense. |
support shareware products by purchasing those | use.

Contents | Cover
About the Author | About the Book | Dedication

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/about.html 11/3/2006 5:47:11 PM

Successful Lisp - Dedication

Dedication

This book is dedicated to my sons Nick and lan. I'm very proud of you guys. Follow your dreams!

Contents | Cover
About the Book | Dedication | Credits

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/dedication.html 11/3/2006 5:47:15 PM

Successful Lisp - Credits

Credits

Trademarks mentioned in this book are the property of their respective owners.

Ray Scanlon generously donated his proofreading services for the entire book. All errors that remain are
probably due to my ignoring Ray's advice or have been introduced since his reading.

Mary-Suzanne donated the good-looking graphics used in the book. The graphics that |ook amateurish
are mine. Never let an engineer attempt to do graphic arts.

Contents | Cover
Dedication | Credits | Copyright

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/credits.html 11/3/2006 5:47:18 PM

http://www.naisp.net/~rscanlon/

Successful Lisp - Copyright

Copyright

This book is copyright © 1995-2001 David B. Lamkins. All rights are reserved worldwide.

Contents | Cover
Credits | Copyright | Acknowledgments

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/copyright.html11/3/2006 5:47:27 PM

Successful Lisp - Acknowledgments

Acknowledgments

Thanksto all of the people in the Lisp community who have made it possible for me to produce this, my
first book. Over the years, members of the Usenet newsgroup comp.lang.lisp have provided sage advice,
patient tutorials, historical insight, food for thought, and (perhaps unintentionally) amusement. Thanks
especially to Barry Margolin, Kent Pitman, Erik Naggum for their contributions to the ongoing dialog,
and to Howard Stearns and Mark Kantrowitz for their stewardship of community resources.

Contents | Cover
Copyright | Acknowledgments | Foreword

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/acknowledgments.html 11/3/2006 5:47:30 PM

news:comp.lang.lisp

Successful Lisp - Foreword

Foreword

| started writing this book six years ago in response to a publisher's inquiry about Lisp books. Part of
their submission process involved my filling out what amounted to a market research form that disclosed
all of the Lisp books | knew about, their publication dates, and a brief synopsis of the strengths and
weaknesses of each.

On the basis of my market research, the publisher decided that their marketplace didn't need another
Lisp book. So | kept going, because | knew otherwise. | wrote in fits and starts over the first two years,
and published an early draft of the book on the web. Readers of "Successful Lisp" from all over the
world have sent me positive feedback, thanking me for making the book available as a resource for their
use in classes and personal studies of Common Lisp.

A few of the more enthusiastic readers even compared "Successful Lisp" to a couple of my favorite Lisp
texts. While I'll admit to having my spirits buoyed by such unabashed enthusiam, I'll also be the first to
point out that " Successful Lisp" attempts to cover the subject in a somewhat different manner, and at
different levels of detail, than the other available texts. By all means, enjoy this book. But when you
need more information than I've been able to fit in this limited space, please turn to some of the other
fine books listed in Chapter 33.

Common Lisp s, at its core, avery ssimple language. Its apparent size is due not to complexity (asisthe
case with certain more recent languages) but rather to the breadth of functionality implemented viathe
functions and data types that are provided in every copy of Common Lisp.

The other encouraging feature of Common Lisp isits stability. The language became an ANSI standard
in 1994 after four years of intensive work by vendors and designers alike, during which time several
subtle problems and inconsistencies were removed from the language and the corrections implemented
in production compilers and tested against real-world applications. This time consuming process of
review and refinement was quite successful, in that the language has not required correction, change or
clarification since its standardization. That's good news for me, since | haven't had to revise my book to
keep up. Good news, too, for the people who write large, complex programs in Common Lisp; their code
just keeps on working even when they change hardware or compilers.

The one criticism that has arisen over the yearsis that Common Lisp hasn't adopted enough cool new
functionality to give it more of a mass appeal. Vendors provide their own extensions for networking,
graphics, multiprocessing and other features, but the lack of standardization makesit difficult to employ
these features in a portable manner. While | share some of that concern, I'll also observe that these very
features have changed significantly over the years since the ANSI standardization of Common Lisp.
Over the same period, newer languages have borrowed from Common Lisp's toolbox for ideas regarding
expression of algorithms, symbolic manipulation of data, and automatic storage management. Someday

http://psg.com/~dlamkins/sl/foreword.html (1 of 2)11/3/2006 5:47:35 PM

Successful Lisp - Foreword

networking and graphics will be as well defined, and I'm sure we'll see these aspects of computing
incorporated into Common Lisp. For now, be glad that you can tell the difference between what's stable
and what's the flavor of the month.

Thiswill probably be my last update to " Successful Lisp", as my personal goals and interests have taken
me away from the deep involvement | had with computing through the 80s and 90s. | suspect that
"Successful Lisp", if it has alasting value within the Common Lisp community, will do so because of
the stability and longevity of the language itself.

| wish you well. Enjoy the book.

David Lamkins
February 2001

Contents | Cover
Acknowledgments | Foreword | Introduction

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/foreword.html (2 of 2)11/3/2006 5:47:35 PM

Successful Lisp - Introduction

Introduction

Lisp hasalong, rich history dating back more than forty years. It has survived all of the programming
"revolutions’ that have rendered lesser langauges obsolete. Despite its being taught as a curiosity, if at
all, by college and university staff who themselves have a poor understanding of the continuing growth
and evolution of Lisp, new generations of programmers continue to seek out Lisp as atool to solve some
of the most difficult problemsin the world of computing.

This book is my attempt to help the current generation of Lisp programmers, and to give something back
to those who have paved the way for the rest of us.

The first two chapters lay out the book's background and intent. Then chapters 3 through 24 introduce a
core subset of Common Lisp. Chapters 25 through 32 introduce useful features that may not be found in
al Lisp implementations, or their details may differ among implementations; these chapters should be
read in conjunction with your Lisp vendor's documentation. Chapters 33 and 34 offer, respectively, an
annotated list of additional resources and an overview of Lisp's historical timeline.

Contents | Cover
Foreword | Introduction | Chapter 1

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/introduction.html 11/3/2006 5:47:48 PM

Successful Lisp - Chapter 1

Chapter 1 - Why Bother? Or: Objections
Answered

Everyone knows Lisp, right? Many of us took a course that introduced us to Lisp along with three or
four or more other languages. Thisis how | was introduced to Lisp around 1975, and | thought it was a
pretty useless language. It didn't do anything in the usual way, it was slow, and those parentheses were
enough to drive anyone crazy!

If your own Lisp experience predates 1985 or so, you probably share thisview. But in 1984, the year
Big Brother never really became areality (did it?), the year that the first bleeding-edge (but pathetic by
today's standards) Macintosh started volume shipments, the Lisp world started changing. Unfortunately,
most programmers never noticed; Lisp's fortune wastied to Al, which was undergoing a precipitous
decline -- The Al Winter -- just as Lisp was coming of age. Some say this was bad luck for Lisp. | look
at the resurgence of interest in other dynamic languages and the problems wrestled with by practicioners
and vendors alike, and wonder whether Lisp wasn't too far ahead of itstime.

| changed my opinion of Lisp over the years, to the point where it's not only my favorite progamming
language, but also away of structuring much of my thinking about programming. | hope that this book
will convey my enthusiasm, and perhaps change your opinion of Lisp.

Below I've listed most of the common objections to Lisp. These come from coworkers, acquaintances,
managers, and my own past experience. For each point, I'll describe how much is actually true, how
much is a matter of viewpoint, and how much is a holdover from the dark days of early Lisp
implementations. As much as possible, I'll avoid drawing comparisons to other languages. Lisp has its
own way, and you'll be able to make your own comparisons once you understand Lisp as well as your
usual language. If you eventually understand Lisp enough to know when its use is appropriate, or find a
place for Lisp in your personal toolkit, then I've done my job.

Without further introduction, here are a baker's dozen reasons why you might be avoiding Lisp:

| looked at Lisp before, and didn't understand it.

Thisisareally tough one. Most programming languages are more similar to each other than they are to
Lisp. If you look at afamily tree of computer languages, you'll see that the most common languagesin
use today are descendants of the Algol family. Features common to languages in the Algol family
include algebraic notation for expressions, a block structure to control visibility of variables, and away
to call subroutines for value or effect. Once you understand these concepts, you can get started with

http://psg.com/~dlamkins/sl/chapter01.html (1 of 7)11/3/2006 5:48:03 PM

Successful Lisp - Chapter 1

another language in the family by studying the surface differences. the names of keywords and the style
of punctuation.

Lisp redlly isdifferent. If you've only read code in Algol family languages, you'll find no familiar
punctuation or block structure to aid your understanding of Lisp code -- just unfamiliar names appearing
in seemingly pointless nests of parentheses. In Lisp, the parenthesis is the punctuation. Fortunately, its
use is quite ssimple; simpler than, for example, remembering the operator precedence rules of C or
Pascal. Lisp development environments even provide editors that help with matching opening and
closing parentheses.

Once you understand how Lisp expressions are put together, you still have to learn what they mean. This
is harder because Lisp provides alot of facilities that aren't found elsewhere, or gives unfamiliar names
to familiar concepts. To really understand Lisp, you need to know how it works inside. Like most good
programmers, you probably have a mental model of how a computer works, and how your favorite
compiler trandlates statements from your favorite language into machine code. Y ou'll drive yourself
crazy if you try this with Lisp, which seemsto go to great lengths to isolate you from the details of
machine organization. Y es, you sacrifice some control. Perhaps not surprisingly, you gain quite alot in
program correctness once you give up worrying about how your program is mapped by the compiler
onto bits in the machine. Is the tradeoff worthwhile? We'll explore that issuein alater chapter.

This book will teach you how to read and write Lisp, how to recognize and understand new words like
DEFUN, CONS, and FLET, and -- ultimately -- how to think in Lisp aswell as you think in your favorite
programming language.

| can't see the program for the parentheses.

Part of this problem is a matter of dealing with the unfamiliar. | talked about that in the previous section.
Another part of this problem isreal: you have to deal with alot of parentheses. Fortunately, Lisp
programming environments have editors that mechanize the process of counting parentheses by flashing
or highlighting matching pairs or by manipulating entire balanced expressions. Finally, there's a matter
of style. Judicious indentation improves the readability of Lisp programs, asit doesin other languages.
But vertical whitespace often hinders readability in Lisp.

I'll cover both the mechanical and stylistic aspects of Lisp code in this book. By the time you're done,
you'll have an opinion on what constitues readable code, and you'll be able to defend your position.
When you reach that level of confidence, you'll be able to write aesthetic Lisp code, and to read anyone
else's code. Parentheses won't be a concern any longer.

http://psg.com/~dlamkins/sl/chapter01.html (2 of 7)11/3/2006 5:48:03 PM

Successful Lisp - Chapter 1

Lisp is very slow compared to my favorite language.

Possibly... But the difference may not be as large as you'd expect. First, let's clear the table of an old
misconception: that Lisp is an interpreted language. As arule, most modern Lisp systems compile to
machine code. A few compile to byte code that typically runs five times slower than machine code. And
one or two freeware Lisp systems only run interpreted code, but they're the exception. So there's part one
of the answer: if you're not running aLisp compiler, you should get one.

Y our Lisp coding style affects execution speed. Unfortunately, you won't recognize inefficient Lisp code
until you've had some experience with the language. Y ou'll need to think about how Lisp works in order
to understand what makes Lisp code run slowly. Thisis not hard to do, but the issues are different from
those for languages which expose more of the underlying machine to you.

Lisp gives you incremental compilation. This means that you can compile one function at atime and be
ready to run your program instantly -- there is no linkage step. This means that you can make lots of
changes quickly and evaluate them for their effect on the program. Lisp aso has built-in instrumentation
to help you tune the performance of your program.

You'll experience al of these things as you work your way through this book. By the time you're done,
you'll know how to avoid writing inefficient code in the first place, and how to use al of the available
tools to identify and fine tune the really critical code in your programes.

No one else writes programs in Lisp.
What? I'm the only one left? | don't think so...

Serioudly, though, there are quite afew people who write Lisp code every day. They write programs that
solve tough problems, and give their employers a strategic advantage. It's hard to find good Lisp
programmers who are willing to move to a new employer; those companies who are using Lisp guard
their strategic advantage, and their Lisp programmers, quite jealously.

Now, it's mostly true that you won't find Lisp in consumer products like spreadsheets, databases, word
processors, and games. But then, that's not the kind of work that Lisp does best. Y ou will find Lispin
products that must reason about and control complex systems and processes, where the ability to reliably
arrive at useful conclusions based upon complex relationships among multiple sources and kinds of data
Is more important than lightning-fast numerical calculations or spiffy graphics (although modern Lisp
systems come pretty close to the leaders even in the latter two categories).

Lisp isalso used as an extension language because of its simple, consistent syntax and the ability for

http://psg.com/~dlamkins/sl/chapter01.html (3 of 7)11/3/2006 5:48:03 PM

Successful Lisp - Chapter 1

system designers to add new functions to Lisp without writing an entire new language. The Emacs editor
and the AutoCAD drafting program are two of the best examples of this use of Lisp.

And of course Lispisstill the language most often used for research in artificia intelligence and
advanced computer language design, but we won't touch on either of those subjectsin this book. When
you've finished this book, you'll have the knowledge needed to recognize what problems you should
solve using Lisp, and how to approach the solution's design.

Oh, and one more thing: It's not quite true that no mass market product uses Lisp. Microsoft's "Bob"
environment for naive computer users was developed (and delivered) in Lisp.

Lisp doesn't let me use graphical interfaces.

Thisisironic. Some of the first graphical user interfaces appeared on Lisp machinesin the early 1970s.
In fact, in 1995 you can still buy a DOS adaptation of one of these early Lisp environments -- with the
same GUI it had twenty years ago.

The leading Lisp development environments for Windows and Macintosh support only a subset of their
host platform's GUI. It's possible to add support for the missing features, but easier to do it using
Microsoft's and Appl€e's preferred language: C++.

If you want to have the same graphical user interface on your Lisp program when it runs on Windows or
Macintosh hosts, you can find at least two Lisp windowing environments that let you do this. The
problem isthat the Lisp GUI will be familiar to neither Macintosh nor Windows users.

If all you want isaquick, platform-specific graphical interface for your Lisp program, any of the
commercial Lisp environments will deliver what you need. They al have graphical interface builders
that let you build windows and dialogs with point and click or drag and drop techniques. Just don't
expect much in the way of bellsand whistles.

| can't call other people's code from Lisp.

Thisis mostly untrue. Most Lisp environments give you away to call external routines using either C or
Pascal calling conventions. Y ou can also call back into Lisp from the external program. But if you want
to call C++ from Lisp, you'll probably have to write a C wrapper around the C++ code.

http://psg.com/~dlamkins/sl/chapter01.html (4 of 7)11/3/2006 5:48:03 PM

Successful Lisp - Chapter 1

Lisp's garbage collector causes unpredictable pauses when my
program runs.

This should probably be covered inthe "Lisp isslow" discussion, but there are enough interesting
digressions for thisto warrant its own topic. Lisp programs create garbage by destroying all references
to some object in memory. In a program written in some other language, the programmer must arrange
to release the memory occupied by the object at the same time when the last reference is destroyed. If
the program failsto do thisreliably, the program has a memory leak -- eventually the program's memory
space could fill up with these unreachable objects and not leave enough free memory for the program to
continue. If you've ever written a complex program that allocates and manually recycles alot of dynamic
memory, you know how difficult a problem this can be.

Lisp finesses the memory leakage problem by never allowing the programmer to release unused
memory. The idea here is that the computer can determine when a block of memory is unreachable with
complete accuracy. This unreachable block is said to be garbage because it is no longer useful to any
part of the program. The garbage collector runs automatically to gather all these unused blocks of
memory and prepare them for reuse. The algorithms that do this are very tricky, but they come built into
your Lisp system.

Historically, garbage collection has been slow. The earliest garbage collectors could literally lock up a
system for hours. Performance was so poor that early Lisp programmers would run with garbage
collection turned off until they completely ran out of memory, then start the garbage collection manually
and go home for the rest of the day.

Over the past twenty years, alot of good software engineering techniques have been applied to
improving the performance of garbage collectors. Modern Lisp systems collect garbage almost
continuously, alittle bit at atime, rather than waiting and doing it al at once. The result isthat even on a
very slow desktop machine a pause for garbage collection will rarely exceed a second or two in duration.

Later in thisbook I'll discuss garbage collection in greater detail and show you techniques to avoid
generating garbage; the less garbage your program creates, the less work the garbage collector will have
to do.

Lisp is a huge language.

If you look at the book Common Lisp: The Language, weighing in at about a thousand pages, or the
recent (and bulkier) ANS Standard X3.226: Programming Language Common Lisp, it's easy to form
that opinion. When you consider that the Lisp language has almost no syntax, and only a couple of

http://psg.com/~dlamkins/sl/chapter01.html (5 of 7)11/3/2006 5:48:03 PM

Successful Lisp - Chapter 1

dozen primitive language elements (called special forms), then Lisp startsto look like a very small
language.

In fact, the manuals cited above are mostly concerned with descriptions of what most other languages
would call library functions and, to a lesser degree, development tools. Take the language manual for
your favorite language. Add the manuals for three or four third-party libraries -- development utilities,
fancy data structures, generalized 1/0, etc. Take al the manuals for your development tools -- browsers,
inspectors, debuggers, etc. and toss them onto the growing pile. Now count the pages. Does a thousand
pages still seem like alot?

By the time you've finished this book, you'll know how to find what you need in Lisp, with or without a
manual .

Lisp is only for artificial intelligence research.

Just not true. Lisp gets used for big projects that have to be tackled by one or afew programmers. Lispis
also good for tasks that are not well defined, or that require some experimentation to find the proper
solution. Asit turns out, artificial intelligence meets all of these criteria. So do alot of other

applications: shop job scheduling, transportation routing, military logistics, sonar and seismological

echo feature extraction, currency trading, computer and computer network configuration, industrial
process diagnosis, and more. These aren't mass market applications, but they still make lots of money
(often by avoiding cost) for the organizations that develop them.

Lisp doesn't have any good programming tools.

| hope to convince you otherwise. Several chapters of this book are devoted to introducing you to the
many useful tools provided by a Lisp development environment.

Lisp uses too much memory.

The Lisp development systems on both my Mac and my PC run comfortably in anywhere from 4 to 8
megabytes of RAM. Lessin apinch. The integrated C++ development environments take anywhere
from 12 to 20 megabytes. Both have comparable tools and facilities.

http://psg.com/~dlamkins/sl/chapter01.html (6 of 7)11/3/2006 5:48:03 PM

Successful Lisp - Chapter 1

Lisp uses too much disk space.

The Lisp development systems on both my Mac and my PC use considerably less disk space than the C+
+ environments. Lisp space on my hard disk runs from alow of about 5 megabytes for one system to a
high of about 30 megabytes for another system that isatotal programming environment, including a
built in file manager, WY SIWY G word processor, graphics program, appointment calendar, and (almost
forgot) Lisp development environment. The C++ systems run from alow of about 20 megabytesto a
high of about 150 megabytes.

| can't find a good Lisp compiler.

Depending on what kind of computer you use, this was a problem as recently as ayear or two ago. And
it'strue that there isn't alot of competition for the Lisp marketplace -- you can count vendors on the
fingers of one hand. The vendors who support the Lisp marketplace tend to have been around for along
time and have good reputations. As desktop computers increase in speed and storage capacity, Lisp
vendors are increasingly turning their attention to these platforms.

Contents | Cover
Introduction | Chapter 1 | Chapter 2

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter01.html (7 of 7)11/3/2006 5:48:03 PM

Successful Lisp - Chapter 2

Chapter 2 - Is this Book for Me?

Depending upon your background, interest, and experience, your need for the information offered in this
book is best met by following the material in a certain way. | think that most readers will place
themselves in one of the following categories. professional programmer, student, hobbyist, former Lisp

user, or merely curious. No matter which category you fit, I've described what | think you can gain by

reading this book. As you read through this book, you may decide that you no longer fit your original
category. Thisisfine -- there are no strong dependencies between chapters. If you get stuck on a
particular concept, the detailed Table of Contents will help you locate the information you need.

The Professional Programmer

This book tells you what you need to know about Lisp in order to write good programs, and to read Lisp
code in journals, magazines, or other people's programs. Beyond that, | will introduce you to some
important concepts that you may not have encountered in your use of other languages, or you may find
that the Lisp approach to afamiliar concept gives you a new perspective on an old idea. Even if you
never have occasion to use Lisp on the job, the concepts you'll learn in this book may give you afresh
insight to help solve atough problem in your favorite language. Y ou'll probably want to skim up through
Chapter 6 to make sure you've covered the basics. Then slow down and take a closer ook at what
interests you in Chapter 7 through Chapter 9, Chapter 11 through Chapter 15, Chapter 17 through

Chapter 21, Chapter 23, and Chapter 24; these chapters cover concepts that are either unique to, or best
expressed in, the Lisp language.

Beyond all else, | hope to impress upon you the dynamic nature of Lisp program development. Lisp
usually is a pleasant surprise to someone accustomed (or resigned) to the usual edit, compile, link, and
debug cycle. The biggest change is compilation of functions rather than files. Y ou can change and
recompile just one function at atime, even from within the debugger. Thisis really handy if you've spent
hours of testing to find a problem that can be easily fixed with one small change to your program. Thisis
just one example of how the Lisp programming environment supports your programming efforts. Y ou'll
find additional examples throughout this book. Chapter 10, Chapter 16, Chapter 22, and Chapter 26

through Chapter 28 will give you an appreciation of how Lisp supports dynamic program devel opment.

Professional Track

The Student

http://psg.com/~dlamkins/sl/chapter02.html (1 of 4)11/3/2006 5:48:38 PM

Successful Lisp - Chapter 2

If you've learned Lisp in atypical classroom setting, you may have come to believe that the language is
nothing but lists and recursion. This book will show you that Lisp has arich assortment of data types
and control structures. Lists and recursion are only the tip of the iceberg. Chapter 3 through Chapter 24
should fill in the details on the rest of Lisp. Skim the remaining chapters so you know where to look
when you have access to a commercial Lisp development environment, for when you begin your first
Lisp project outside of an academic setting.

Depending upon whether you're currently taking a Lisp course, or have already finished a course and
want to learn what the instructor didn't have time for, this book will help your studies by teaching you an
appreciation for the language and the skills you'll need for its most effective use. Appendix A lists

sources of Lisp development environments. Y ou can use the freeware versions while you're still a poor,
starving student, and refer to the list again when you're gainfully employed and want to either
recommend a commercial implementation of Lisp to your employer or buy one for personal use.

Student Track

The Hobbyist

To me, ahobbyist is someone who pursues programming for the challenge, for the learning experience,
or as a pastime. The hobbyist islargely self taught. If you fit that mold, I'll warn you now that Lisp can
be very challenging, and can teach you alot about programming.

Y ou can go quite along way toward learning Lisp with one of the freeware systems available for
Macintosh and DOS computers. But if you have aspirations to turn your hobby into a money making
venture, you need to ask yourself whether Lisp is appropriate for your anticipated product or service. If
you think in terms of databases or scripts or multimedia, you'll probably be happier with atool that
directly addresses your area of interest. If you have dreams of writing the next great videogame, you've
probably already discovered that you need a language that lets you program "close to the machine" -- If
so, Lisp will disappoint you. But if you want to give your game characters complex interactions, or even
the appearance of intelligent behavior, Lisp is awonderful vehicle in which to design and test prototypes
of these behaviors.

No matter what your interest in programming as a hobby, this book will give you the understanding you
need to explore Lisp without getting bogged down in the parentheses. Read through all of the chapters,
spending more time on those which interest you the most. If you have access to a Lisp development
system, spend time on Chapter 10, Chapter 16, Chapter 22, and Chapter 28 through Chapter 30; these
chapters will give you the background you need in order to find your way when you get lost -- you'll
find this more helpful than trying to develop an encyclopedic knowledge of the language.

http://psg.com/~dlamkins/sl/chapter02.html (2 of 4)11/3/2006 5:48:38 PM

Successful Lisp - Chapter 2

Hobbyist Track

The Former Lisp Acquaintance

If you've had a prior experience with Lisp, perhapsin a college or university programming class, this
book will update your knowledge. This book will teach you things that a one semester class could never
cover due to time constraints. You'll also see how commercial Lisp development systems provide tools
and features missing from the freeware Lisp system that your educational institution probably used.

If you've worked on (or have attempted) a Lisp project before, you may not have had the benefit of a
mentor to show you how to use Lisp effectively. This book will introduce you to the skills that you need
to become a successful Lisp programmer. It isimportant that you understand what the language does;
this book, like others before it, coversthat ground. But this book goes beyond other Lisp programming
booksto tell you why Lisp works as it does, the best way to do thingsin Lisp, and (perhaps most
importantly) how to approach the Lisp development environment to accomplish your goals in the most
effective way.

| suggest that you use this book as areference. The detailed Table of Contents will help you find subject
areas that appeal to your interests or needs.

Former User Track

The Curious

If you have no immediate intentions of writing a Lisp program (perhaps you're a student of
programming languages), this book is still a good choice. Y ou can learn alot about Lisp, its
development environment, and its use by reading through the chapters in order and working out an
occasional bit of code on paper, to check your understanding. I've tried hard to introduce the
fundamentals of Lisp in away that doesn't belabor the details of internal representation.

Curious Reader Track

Contents | Cover
Chapter 1 | Chapter 2 | Chapter 3

http://psg.com/~dlamkins/sl/chapter02.html (3 of 4)11/3/2006 5:48:38 PM

Successful Lisp - Chapter 2

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter02.html (4 of 4)11/3/2006 5:48:38 PM

Successful Lisp - Chapter 3

Chapter 3 - Essential Lisp in Twelve Lessons

This chapter will teach you everything you need to know to get started with Lisp. I'll cover all of the
core features of the language. | encourage you to think of this core as the Lisp language itself, and
everything else as avery large standard library. With this background, you'll be much better equipped to
learn the rest of Lisp, either by reading the rest of the book or via a reference manual such as Common
Lisp: The Language, 2nd Edition.

Y ou should read this chapter al the way through. At times, | mention other chapters and later sections of
this chapter, but you shouldn't have to follow these references to understand this chapter. When you
finish this chapter, you should work through Chapter 4 while sitting at the keyboard of your Lisp system.

« Lesson 1 - Essential Syntax

« Lesson 2 - Essential Evaluation

. Lesson 3 - Some Examples of Special Forms and Macros
. Lesson 4 - Putting things together, and taking them apart
« Lesson 5 - Naming and Identity

. Lesson 6 - Binding versus Assignment

. Lesson 7 - Essential Function Definition

« Lesson 8 - Essential Macro Definition

« Lesson 9 - Essential Multiple Vaues

« Lesson 10 - A Preview of Other Data Type

« Lesson 11 - Essentia Input and Output

. Lesson 12 - Essential Reader Macros

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 4

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter03.html 11/3/2006 5:48:46 PM

Successful Lisp - Chapter 3, Lesson 1

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 1 - Essential Syntax

. Listsare surrounded by parentheses

Thisisthefirst thing you need to know about Lisp: anything surrounded by parenthesesisalist.
Here are some examples of things that are lists:

(123 4Y5)
(a b c)
(cat 77 dog 89)

As| said, anything surrounded by parenthesesis alist. When you hear a statement like that, you
probably want to ask two questions:

1. What if | put parentheses around nothing?
2. What if | put parentheses around another list?

In both cases the answer isthe same. You still have alist. So the following are also lists:

AN AN AN NN

2) 3 4)
nmouse (nonitor 512 342) (keyboard US))
(defun factorial (x) (if (eql x 0) 1 (* x (factorial (- x 1)))))

The only time you don't have alist is when you have aright parenthesis without a matching left
parenthesis or vice versa, asin the following four examples:

b c(
59 34
)

)

(
(
(C0))
(0)))

~

2
(
)

Thisis nothing to lose sleep over -- Lisp will tell you when there's a mismatch. Also, the editor
that you use for writing Lisp programs will amost certainly give you away to automatically find

http://psg.com/~dlamkins/sl/chapter03-01.html (1 of 3)11/3/2006 5:48:51 PM

Successful Lisp - Chapter 3, Lesson 1

matching parentheses. We'll ook at editorsin Chapter 27.

A list can be alot of thingsin Lisp. In the most general sense, alist can be either a program or
data. And because lists can themselves be made of other lists, you can have arbitrary
combinations of data and programs mixed at different levels of list structure -- thisis what makes
Lisp so flexible for those who understand it, and so confusing for those who don't. We'll work
hard to remove that confusion as this chapter continues.

Atoms are separated by whitespace or parentheses Now that you can recognize alist, you'd like
to have a name for the things that appear between the parentheses -- the things that are not
themselves lists, but rather (in our examples so far) words and numbers. These things are called
atoms.

Accordingly, these words and numbers are all atoms:

1

25

342

nouse
factori al
X

Lisp lets us use just about any characters to make up an atom. For now, we'll say that any
sequence of letters, digits, and punctuation charactersis an atomif it is preceded and followed by
ablank space (this includes the beginning or end of aline) or a parenthesis. The following are all
atoms:

*

@onpor t
funny%st uf f
9/\

case-2

One thing you should remember, if you're experienced in another programming language, is that
characters traditionally reserved as operators have no special meaning when they appear within a
Lisp atom. For example, case- 2 isan atom, and not an arithmetic expression.

Since an atom can be marked off by either whitespace or a parenthesis, we could eliminate any
whitespace between an atom and a parenthesis, or between two parentheses. Thus, the following
two lists are identical:

http://psg.com/~dlamkins/sl/chapter03-01.html (2 of 3)11/3/2006 5:48:51 PM

Successful Lisp - Chapter 3, Lesson 1

(defun factorial (x) (if (eql x 0) 1 (* x (factorial (- x 1)))))
(defun factorial (x)(if(eql x 0)1(* x(factorial(- x 1)))))

In practice, we'd never write the second list. In fact, we'd probably split the list across multiple
lines and indent each line to improve readability; thislist isin fact a small program, and
formatting it as follows makes it easier to read for a Lisp programmer:

(defun factorial (x)
(if (eqgl x 0)
1
(* x (factorial (- x 1)))))

For now, you don't need to worry about what this means or how you'd know to do this kind of
indentation. Aswe get further into this chapter, you'll see more examples of indentation.
Subsequent chapters will show additional examples, and I'll point out how to use indentation to
improve readability of many new constructs. Chapter 28 will address elements of Lisp style,

including the proper use of indentation.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 1 | Chapter 3, Lesson 2 | Chapter 4

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamking/sl/chapter03-01.html (3 of 3)11/3/2006 5:48:51 PM

Successful Lisp - Professional Track

Professional Track Suggested Chapter List

Skim for basics:

« Chapter 3 - Essentia Lisp in Twelve Lessons
. Chapter 4 - Mastering the Essentias

. Chapter 5 - Introducing Iteration

. Chapter 6 - Deeper into Structures

Read for new concepts:

. Chapter 7 - A First Look at Objects as Fancy Structures

. Chapter 8 - Lifetime and Visibility

« Chapter 9 - Introducing Error Handling and Non-L ocal Exits
. Chapter 11 - Destructive Modification

« Chapter 12 - Mapping Instead of Iteration

« Chapter 13 - Still More Things Y ou Can Do with Sequences
. Chapter 14 - Can Objects Really Behave Themselves?

« Chapter 15 - Closures

« Chapter 17 - Not All Comparisons are Equal

. Chapter 18 - Very Logical, IndeedS

« Chapter 19 - Streams

. Chapter 20 - Macro Etiquette

. Chapter 21 - Fancy Tricks with Function and Macro Arguments
. Chapter 23 - To Err is Expected; To Recover, Divine

. Chapter 24 - FORMAT Speaks a Different Language

Learn the environment and tools:

« Chapter 10 - How to Find Y our Way Around, Part 1

« Chapter 16 - How to Find Y our Way Around, Part 2

. Chapter 22 - How to Find Y our Way Around, Part 3

. Chapter 26 - Put on aHappy Face: Interface Builders

« Chapter 27 - A Good Editor is Worth a Thousand Keystrokes
. Chapter 28 - Practical Techniques for Programming

http://psg.com/~dlamkins/sl/track1.html (1 of 2)11/3/2006 5:48:58 PM

Successful Lisp - Professional Track

Additional topics:

« Chapter 25 - Connecting Lisp to the Real World

« Chapter 29 - | Thought it was Y our Turn to Take Out the Garbage
. Chapter 30 - Helpful Hints for Debugging and Bug-Proofing

« Chapter 31 - Handling Large Projectsin Lisp

« Chapter 32 - Dark Corners and Curiosities

. Chapter 33 - Whereto Go Next

. Chapter 34 - Lisp History, or: Origins of Misunderstandings

. Appendix A - Successful Lisp Applications

Contents | Cover
Chapter 2

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/track1.html (2 of 2)11/3/2006 5:48:58 PM

Successful Lisp - Student Track

Student Track Suggested Chapter List

Learn the whole language:

« Chapter 3 - Essentia Lisp in Twelve Lessons

. Chapter 4 - Mastering the Essentias

« Chapter 5 - Introducing Iteration

. Chapter 6 - Deeper into Structures

. Chapter 7 - A First Look at Objects as Fancy Structures

. Chapter 8 - Lifetime and Vighbility

« Chapter 9 - Introducing Error Handling and Non-L ocal Exits
« Chapter 10 - How to Find Y our Way Around, Part 1

. Chapter 11 - Destructive Modification

« Chapter 12 - Mapping Instead of Iteration

« Chapter 13 - Still More Things Y ou Can Do with Sequences
. Chapter 14 - Can Objects Really Behave Themselves?

« Chapter 15 - Closures

« Chapter 16 - How to Find Y our Way Around, Part 2

. Chapter 17 - Not All Comparisons are Equal

. Chapter 18 - Very Logical, IndeedS

. Chapter 19 - Streams

. Chapter 20 - Macro Etiquette

« Chapter 21 - Fancy Tricks with Function and Macro Arguments
« Chapter 22 - How to Find Y our Way Around, Part 3

. Chapter 23 - To Err is Expected; To Recover, Divine

« Chapter 24 - FORMAT Speaks a Different Language

Read as interested:;:

« Chapter 25 - Connecting Lisp to the Real World

. Chapter 26 - Put on aHappy Face: Interface Builders

« Chapter 27 - A Good Editor is Worth a Thousand Keystrokes

. Chapter 28 - Practical Techniques for Programming

« Chapter 29 - | Thought it was Y our Turn to Take Out the Garbage
« Chapter 30 - Helpful Hints for Debugging and Bug-Proofing

. Chapter 31 - Handling Large Projectsin Lisp

http://psg.com/~dlamkins/sl/track2.html (1 of 2)11/3/2006 5:49:23 PM

Successful Lisp - Student Track

. Chapter 32 - Dark Corners and Curiosities

« Chapter 33 - Whereto Go Next

. Chapter 34 - Lisp History, or: Origins of Misunderstandings
. Appendix A - Successful Lisp Applications

Contents | Cover
Chapter 2

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/track2.html (2 of 2)11/3/2006 5:49:23 PM

Successful Lisp - Hobbyist Track

Hobbyist Track Suggested Chapter List

Learn how to find your way:

« Chapter 10 - How to Find Y our Way Around, Part 1

« Chapter 16 - How to Find Y our Way Around, Part 2

. Chapter 22 - How to Find Y our Way Around, Part 3

« Chapter 28 - Practical Techniques for Programming

. Chapter 29 - | Thought it was Y our Turn to Take Out the Garbage
. Chapter 30 - Helpful Hints for Debugging and Bug-Proofing

Read as interested:

« Chapter 3 - Essential Lisp in Twelve Lessons

. Chapter 4 - Mastering the Essentials

« Chapter 5 - Introducing Iteration

. Chapter 6 - Deeper into Structures

. Chapter 7 - A First Look at Objects as Fancy Structures

. Chapter 8 - Lifetime and Visibility

« Chapter 9 - Introducing Error Handling and Non-L ocal Exits
. Chapter 11 - Destructive Modification

« Chapter 12 - Mapping Instead of Iteration

« Chapter 13 - Still More Things Y ou Can Do with Sequences
. Chapter 14 - Can Objects Really Behave Themselves?

« Chapter 15 - Closures

« Chapter 17 - Not All Comparisons are Equal

. Chapter 18 - Very Logical, IndeedS

« Chapter 19 - Streams

. Chapter 20 - Macro Etiquette

. Chapter 21 - Fancy Tricks with Function and Macro Arguments
. Chapter 23 - To Err is Expected; To Recover, Divine

. Chapter 24 - FORMAT Speaks a Different Language

« Chapter 25 - Connecting Lisp to the Real World

. Chapter 26 - Put on aHappy Face: Interface Builders

« Chapter 27 - A Good Editor is Worth a Thousand Keystrokes
. Chapter 31 - Handling Large Projectsin Lisp

http://psg.com/~dlamkins/sl/track3.html (1 of 2)11/3/2006 5:49:37 PM

Successful Lisp - Hobbyist Track

. Chapter 32 - Dark Corners and Curiosities

« Chapter 33 - Whereto Go Next

. Chapter 34 - Lisp History, or: Origins of Misunderstandings
. Appendix A - Successful Lisp Applications

Contents | Cover
Chapter 2

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/track3.html (2 of 2)11/3/2006 5:49:37 PM

Successful Lisp - Former User Track

Former User Track Suggested Chapter List

Read as needed:

« Chapter 3 - Essentia Lisp in Twelve Lessons

. Chapter 4 - Mastering the Essentias

« Chapter 5 - Introducing Iteration

. Chapter 6 - Deeper into Structures

. Chapter 7 - A First Look at Objects as Fancy Structures

. Chapter 8 - Lifetime and Vighbility

« Chapter 9 - Introducing Error Handling and Non-L ocal Exits
« Chapter 10 - How to Find Y our Way Around, Part 1

. Chapter 11 - Destructive Modification

« Chapter 12 - Mapping Instead of Iteration

« Chapter 13 - Still More Things Y ou Can Do with Sequences
. Chapter 14 - Can Objects Really Behave Themselves?

« Chapter 15 - Closures

« Chapter 16 - How to Find Y our Way Around, Part 2

. Chapter 17 - Not All Comparisons are Equal

. Chapter 18 - Very Logical, IndeedS

. Chapter 19 - Streams

. Chapter 20 - Macro Etiquette

« Chapter 21 - Fancy Tricks with Function and Macro Arguments
« Chapter 22 - How to Find Y our Way Around, Part 3

. Chapter 23 - To Err is Expected; To Recover, Divine

« Chapter 24 - FORMAT Speaks a Different Language

« Chapter 25 - Connecting Lisp to the Real World

. Chapter 26 - Put on aHappy Face: Interface Builders

. Chapter 27 - A Good Editor is Worth a Thousand Keystrokes
. Chapter 28 - Practical Techniques for Programming

. Chapter 29 - | Thought it was Y our Turn to Take Out the Garbage
« Chapter 30 - Helpful Hints for Debugging and Bug-Proofing
. Chapter 31 - Handling Large Projectsin Lisp

. Chapter 32 - Dark Corners and Curiosities

« Chapter 33 - Whereto Go Next

. Chapter 34 - Lisp History, or: Origins of Misunderstandings
. Appendix A - Successful Lisp Applications

http://psg.com/~dlamkins/sl/track4.html (1 of 2)11/3/2006 5:49:45 PM

Successful Lisp - Former User Track

Also see detailed Table of Contents.

Contents | Cover
Chapter 2

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/track4.html (2 of 2)11/3/2006 5:49:45 PM

Successful Lisp - Curious Reader Track

Curious Reader Track Suggested Chapter List

Read in order, skimming as desired.:

« Chapter 3 - Essentia Lisp in Twelve Lessons

. Chapter 4 - Mastering the Essentias

« Chapter 5 - Introducing Iteration

. Chapter 6 - Deeper into Structures

. Chapter 7 - A First Look at Objects as Fancy Structures

. Chapter 8 - Lifetime and Vighbility

« Chapter 9 - Introducing Error Handling and Non-L ocal Exits
« Chapter 10 - How to Find Y our Way Around, Part 1

. Chapter 11 - Destructive Modification

« Chapter 12 - Mapping Instead of Iteration

« Chapter 13 - Still More Things Y ou Can Do with Sequences
. Chapter 14 - Can Objects Really Behave Themselves?

« Chapter 15 - Closures

« Chapter 16 - How to Find Y our Way Around, Part 2

. Chapter 17 - Not All Comparisons are Equal

. Chapter 18 - Very Logical, IndeedS

. Chapter 19 - Streams

. Chapter 20 - Macro Etiquette

« Chapter 21 - Fancy Tricks with Function and Macro Arguments
« Chapter 22 - How to Find Y our Way Around, Part 3

. Chapter 23 - To Err is Expected; To Recover, Divine

« Chapter 24 - FORMAT Speaks a Different Language

« Chapter 25 - Connecting Lisp to the Real World

. Chapter 26 - Put on aHappy Face: Interface Builders

. Chapter 27 - A Good Editor is Worth a Thousand Keystrokes
. Chapter 28 - Practical Techniques for Programming

. Chapter 29 - | Thought it was Y our Turn to Take Out the Garbage
« Chapter 30 - Helpful Hints for Debugging and Bug-Proofing
. Chapter 31 - Handling Large Projectsin Lisp

. Chapter 32 - Dark Corners and Curiosities

« Chapter 33 - Whereto Go Next

. Chapter 34 - Lisp History, or: Origins of Misunderstandings
. Appendix A - Successful Lisp Applications

http://psg.com/~dlamkins/sl/track5.html (1 of 2)11/3/2006 5:49:52 PM

Successful Lisp - Curious Reader Track

Contents | Cover
Chapter 2

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/track5.html (2 of 2)11/3/2006 5:49:52 PM

Successful Lisp - Chapter 3, Lesson 2

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 2 - Essential Evaluation

A form is meant to be evaluated

A form can be either an atom or alist. The important thing is that the form is meant to be evaluated.
Evaluation has afairly technical definition that we'll gradually expose in this section.

Evaluation issimpleif the form is an atom. Lisp treats the atom as a name, and retrieves the value for
the name (if avalue exists). Y ou probably wonder why I'm avoiding the more direct explanation of
calling the atom a variable. The reason is that the atom can have either a variable value or a constant
value. And the atom's value can be constant for a couple of reasons.

A number is an atom. (Its value is constant for obvious reasons.) Lisp does not store avalue for a
number -- the number is said to be self-evaluating.

We're going to introduce a new term without a complete definition. For now, think of a
symbol as an atom that can have avalue. We'll look at symbolsin greater detail when we
get to Lesson 5.

A symbol defined inadef const ant form has a constant value. Lisp will store the value as if the
atom had avariable value, and add a note to the effect that the value is not allowed to change.

A symbol in the KEYWORD package is self-evaluating. We'll ook at packagesin detail in Chapter 31.

For now, all you need to know is that a symbol beginning with the : character (called the package
prefix) is akeyword symbol. Keyword symbols have themselves as their values.

A symbol can get avariable value in many different ways. Lisp actually keeps severa different values
for asymbol. One has the traditional meaning as the value of the symbol taken as a variable. Another
has meaning as the symbol's function. Still others keep track of the symbol's documentation, its printed
representation, and properties that the programmer chooses to associate with the symbol. We'll explore
some of these in more detail in Lesson 5, Lesson 6, and Lesson 7.

If aformisalist, then the first element must be either a symbol or a special form called alambda
expression. (We won't look at lambda expressions for awhile.) The symbol must name a function. In
Lisp, the symbols +, - , *, and/ name the four common arithmetic operations: addition, subtraction,
multiplication, and division. Each of these symbols has an associated function that performs the
arithmetic operation.

http://psg.com/~dlamkins/sl/chapter03-02.html (1 of 5)11/3/2006 5:50:03 PM

Successful Lisp - Chapter 3, Lesson 2

So when Lisp evaluatestheform (+ 2 3), it appliesthe function for addition to the arguments 2 and
3, giving the expected result 5. Notice how the function symbol, +, precedes its arguments. Thisis
prefix notation. Any time you see alist, look to itsfirst element to find out what Lisp will do to evaluate
thelist asaform.

A function is applied to its arguments

Lisp, when given alist to evaluate, treats the form as afunction call. We'll be looking alot at Lisp
evaluation from now on, so we'll use some visua aids to identify the input to Lisp and its responses:

@ the Lisp pronpt precedes input to Lisp
- result of Lisp evaluation

For example:

@ (+ 4 9)

= 13

@ (- 5 7)

- -2

@ (* 3 9)

- 27

@ (/ 15.0 2)
-+ 7.5

In each case above, the evaluated formisalist. Itsfirst element is a symbol, which names a function.
The remaining elements are arguments of the function. Here, the arguments are all numbers, and we
know that numbers are self-evaluating.

Here are afew more examples:

@ (atom 123)
=

@ (nunberp 123)
=

@ (atom : foo0)
=

@ (nunberp :foo)
= NIL

ATOMand NUMBERRP are predicates. Predicates return atrue or false value. NI L isthe only false valuein
Lisp -- everything else istrue. Unless a predicate has a more useful value to return, it conventionally

http://psg.com/~dlamkins/sl/chapter03-02.html (2 of 5)11/3/2006 5:50:03 PM

Successful Lisp - Chapter 3, Lesson 2

returns T to mean true. ATOMreturns T if its one argument is a Lisp atom. NUVBERP returns T if its
argument is a number.

To evaluate each of the above forms, Lisp first evaluates the arguments (from left to right), then
evaluates the first element to get its function, then applies the function to the arguments. With only a
handful of exceptions, which we'll learn about at the end of this lesson, Lisp always does the same thing
to evaluate alist form:

1. Evaluate the arguments, from left to right.
2. Get the function associated with the first element.
3. Apply the function to the arguments.

Remember that an atom can also be a Lisp form. When given an atom to evaluate, Lisp simply returns
itsvalue:

@ 17.95

- 17. 95

& A- KEYWORD

- . A- KEYWORD

& * FEATURES*

= (: ANSI-CL : CLCS : COVMON- LI SP)
& "Hello, world!"

- "Hello, world!"

& WHAT-| S-THI S?

- Error: Unbound vari abl e

Numbers and keywords are self-evaluating. So are strings. The * FEATURES* variable is predefined by
Lisp -- your system will probably return a different value.

The symbol WHAT- | S- THI S? doesn't have a value, because it's not predefined by Lisp, and | haven't
given it avaue. The system responds with an error message, rather than a value. We mark the message
with - rather than the — marker we use for successful evaluations. Y our system will probably print a
different message.

A function can return any number of values

Sometimes you'd like to have afunction return several values. For example, afunction which looks up a
database entry might return both the desired result and a completion status code. One way to do thisisto
pass to the function alocation for one of the results; thisis possible, but very uncommon for aLisp
program.

Another approach creates a single return value to combine both the result and the status code. Lisp gives

http://psg.com/~dlamkins/sl/chapter03-02.html (3 of 5)11/3/2006 5:50:03 PM

Successful Lisp - Chapter 3, Lesson 2

you severa different ways to do this, including structures. Experienced Lisp programmers don't do this

when the created value will just be taken apart into its components and then forgotten, since the
composite value then becomes garbage (see Chapter 29) that eventually slows down the operation of the

program.

The right way to return multiple values from afunction is to use the VALUES form. We'll see VALUES
used in the context of afunction in alittle while. For now, let's see what happens when Lisp evaluates a
VAL UES form:

@ (values 1 2 3 :hi "Hello")
= 1

= 2

= 3

- o H

= "Hello

Notice how Lisp returned a value (following the — indicator) for each argument to the VALUES form.
My Lisp system represents this by printing each value on anew line; yours may separate the values
some other way.

Arguments are usually not modified by a function

| mentioned earlier that you can pass a location to a function, and have the function change the location's
value. Thisisavery uncommon practice for a Lisp program, even though other languages make it part
of their standard repertoire.

Y ou could specify the location to be modified as either a non-keyword symbol or a composite value --
obviously, you can't modify a constant. If you provide a symbol, then your function must execute code
to give the symbol anew value. If you provide a composite data structure, your function must execute
code to change the correct piece of the composite value. It's harder to write Lisp code to do this, and it's
harder to understand programs written thisway. So Lisp programmers usually write functions that get
their inputs from parameters, and produce their outputs as the function result.

Arguments are usually evaluated before function application

When Lisp evaluates afunction, it always evaluates all the arguments first, as we saw earlier.

Unfortunately, every rule has exceptions, and this rule is no exception (as we'll soon see)... The problem
is not that Lisp doesn't aways evaluate a function's arguments, but that not every list form isafunction
call.

Arguments are evaluated in left-to-right order

http://psg.com/~dlamkins/sl/chapter03-02.html (4 of 5)11/3/2006 5:50:03 PM

Successful Lisp - Chapter 3, Lesson 2

When alist form isafunction call, its arguments are always evaluated in order, from left to right. Asin
other programming languages, it'sin poor taste to rely on this, but if you absolutely have to rely on the
order, it's good to know that Lisp definesit for you.

Special forms and macros change argument evaluation

So if alist form isn't always a function call, what else can it be? There are two cases, but the result is the
same: some arguments are evaluated, and some aren't. Which is which depends upon the form and
nothing else. You'll just have to learn the exceptions. Fortunately, most Lisp systems will show you the
online documentation for any form with just a keystroke or two.

There are two kinds of forms that don't evaluate all of their arguments: special forms and macros. Lisp
predefines a small number of special forms. Y ou can't add your own special forms -- they're primitive
features of the language itself. Lisp also defines quite afew macros. Y ou can also define your own
macros. Macros in Lisp let you use the full power of the language to add your own features. Later in this
chapter we'll ook briefly at how to define simple macros. In Chapter 20 we'll cover topics surrounding

the creation of more complex macros.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 1 | Chapter 3, Lesson 2 | Chapter 3, Lesson 3 |
Chapter 4

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter03-02.html (5 of 5)11/3/2006 5:50:03 PM

Successful Lisp - Chapter 3, Lesson 3

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 3 - Some Examples of Special Forms and Macros

Now well ook at several special forms and macros. Over the next four lessons, we'll build up a
repertoire that will let you write simple functions using the most elementary Lisp data type, the list.
Later chapters will cover more complex program structures and data types.

SETQ

Earlier, | told you that Lisp evaluates a symbol form by retrieving its variable value. SETQgivesyou a
way to set that value:

@ (setq ny-nane "David")

- "Davi d"

@ nmy- name

- "Davi d"

@ (setq a-variable 57)

- 57

@ a-variabl e

- 57

@ (setq a-variable :a-keyword)
= A- KEYWORD

SETQsfirst argument isasymbol. Thisis not evaluated. The second argument is assigned as the
variable's value. SETQreturns the value of its last argument.

SETQdoesn't evaluate its first argument because you want to assign a value to the symbol
itself. If SETQevauated its first argument, the value of that argument would haveto be a
symbol. The SET form does this. Pay particular attention to the difference between the
SET and SETQforms in the following example, and make sure you understand what's
happening withthe (set var-1 99) form:

@ (setq var-1 'var-2)

= VAR- 2

@ var-1

= VAR- 2

@ var-2

- Error: Unbound vari abl e
@ (set var-1 99)

http://psg.com/~dlamkins/sl/chapter03-03.html (1 of 6)11/3/2006 5:50:23 PM

Successful Lisp - Chapter 3, Lesson 3

- 99
@ var-1
-+ VAR- 2
& VAR- 2
- 99

Did you noticethe' inthefirst form? This keeps the following form, var - 2, from being
evaluated. Later in thislesson, when we look at QUOTE, I'll explain thisin greater detail.

In the example, we first make the value of VAR- 1 be the symbol VAR- 2. Checking the
value of VAR- 2, we find that it has none. Next, we use SET (not SETQ) to assign the
value 99 to the symbol, VAR- 2, which is the value of VAR- 1.

The SETQform can actually take any even number of arguments, which should be alternating symbols
and values:

@ (setq nonth "June" day 8 year 1954)
- 1954

@ nont h

- "June"

& day

- 8

@ year

- 1954

SETQ performs the assignments from left to right, and returns the rightmost value.
LET

The LET form looks a little more complicated than what we've seen so far. The LET form uses nested
lists, but because it's a special form, only certain elements get eval uated.

@ (let ((a 3)
(b 4)
(c 5))
(* (+ab) c))
35

a
Error: Unbound vari abl e
b
Error: Unbound vari abl e
C

R

http://psg.com/~dlamkins/sl/chapter03-03.html (2 of 6)11/3/2006 5:50:23 PM

Successful Lisp - Chapter 3, Lesson 3

- Error: Unbound vari abl e

The above LET form defines values for the symbols A, B, and C, then uses these as variablesin an
arithmetic calculation. The calculation's result is also the result of the LET form. Note that none of the
variables defined in the LET have avalue after Lisp has finished evaluating the form.

In general, LET looks like this:
(let (bindings) fornmns)

where bindings is any number of two-element lists -- each list containing a symbol and avalue -- and
formsisany number of Lisp forms. The forms are evaluated, in order, using the values established by
the bindings. LET returns the value(s) returned by the last form.

Indentation doesn't affect the operation of LET, but proper indentation does improve readability.
Consider these equivaent forms:

(let ((p 52.8)
(g 35.9)
(r (f 12.07)))
(g 18.3)
(f p)
(f a)
(grt))

(let ((p 52.8) (g 35.9) (r (f 12.07))) (g9 18.3) (f p) (f g) (gr t))

In the first case, indentation makes clear which are the bindings and which are the forms. Even if the
reader doesn't know about the different roles played by the two parts of the LET form, the indentation
suggests a difference.

In the second case, you'll have to count parentheses to know where the bindings end and the forms
begin. Even worse, the absence of indentation destroys visual cues about the different roles played by
the two parts of the LET form.

If you define avariable using SETQ and then name the same variable in aLET form, the value defined
by LET supersedes the other value during evaluation of the LET:

@ (setq a 89)
- 89

@ a

- 89

http://psg.com/~dlamkins/sl/chapter03-03.html (3 of 6)11/3/2006 5:50:23 PM

Successful Lisp - Chapter 3, Lesson 3

@ (let ((a 3))
(+a 2))

- 5

@ a

- 89

Unlike SETQ which assigns values in | eft-to-right order, LET binds variables all at the same time:

@ (setq w 77)

= 77

@ (let ((w 8)
(x W)

(+ wx))
-+ 85

LET bound Wto 8 and X to W Because these bindings happened at the same time, Wstill had its value of
77.

Lisp hasavariation of LET, called LET*, that does perform bindingsin order:

@ (setq u 37)

= 37
@ (let* ((v 4)
(uv))
(+uv))
- 8
COND

The COND macro lets you evaluate Lisp forms conditionally. Like LET, COND uses parentheses to
delimit different parts of the form. Consider these examples:

@ (let ((a 1)
(b 2)
(c 1)
(d 1))
(cond ((eql a b) 1)
((eql ac) "First form' 2)
((eql a d) 3)))
- 2

In the above COND form we defined three clauses. Each clauseis alist beginning with atest form and

http://psg.com/~dlamkins/sl/chapter03-03.html (4 of 6)11/3/2006 5:50:23 PM

Successful Lisp - Chapter 3, Lesson 3

followed by as many body forms as desired. The body forms are ssmply code that you want to execute if
the test succeeds. The clauses are selected in order -- as soon as one test succeeds, the corresponding
body forms are evaluated and the value of the last body form becomes the value of the COND form.

COND is more general than the special form, | F, which only alows one test and one form
each for the then and else parts.

Let'slook at what happened in the example. EQL returns T if its two arguments are identical, or the same
number (there's a subtle difference that we'll cover in Chapter 17). Only two of the three tests executed.

Thefirst, (EQL A B), returned NIL. Therefore, the rest of that clause (containing the number 1 asits
only form) was skipped. The second clausetested (EQL A C) , which was true. Because this test
returned anon-NlI L value, the remainder of the clause (the two atomic forms, " Fi r st f or ni' and 2)
was evaluated, and the value of the last form was returned as the value of the COND, which was then
returned as the value of the enclosing LET. The third clause was never tested, since an earlier clause had
already been chosen -- clauses are tested in order.

Conventional use of COND uses T as the test form in the final clause. This guarantees that the body
forms of the final clause get evaluated if thetestsfail in all of the other clauses. Y ou can use the last
clause to return a default value or perform some appropriate operation. Here's an example:

@ (let ((a 32))
(cond ((eql a 13) "An unlucky nunber")
((eql a 99) "A lucky nunber™)
(t "Not hing special about this nunber")))
- "Not hi ng speci al about this nunber”

QUOTE

Sometimes we'd like to suppress Lisp's normal evaluation rules. One such caseis when we'd like a
symbol to stand for itself, rather than its value, when it appears as an argument of afunction call:

@ (setq a 97)
- 97

@ a

- 97

@ (setq b 23)
- 23

@ (setq a b)
- 23

@ a

- 23

@ (setq a (quote b))

http://psg.com/~dlamkins/sl/chapter03-03.html (5 of 6)11/3/2006 5:50:23 PM

Successful Lisp - Chapter 3, Lesson 3

= B
=oa
= B

The differenceisthat B'svalueisused in (SETQ A B), whereas B stands for itself in (SETQ A
(QUOTE B)).

The QUOTE form is so commonly used that Lisp provides a shorthand notation:

(QUOTE form = 'form

The = symbol means that the two Lisp forms are equivalent. Lisp arranges the equivalence of ' and
QUOTE through areader macro. We'll take abrief ook at how you can define your own reader macrosin
Lesson 12.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 2 | Chapter 3, Lesson 3 | Chapter 3, Lesson 4 |
Chapter 4

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter03-03.html (6 of 6)11/3/2006 5:50:23 PM

Successful Lisp - Chapter 3, Lesson 4

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 4 - Putting things together, and taking them apart

CONS

CONS isthe most basic constructor of lists. It isafunction, so it evaluates both of its arguments. The
second argument must be alist or NI L.

@ (cons 1 nil)

- (1)

@ (cons 2 (cons 1 nil))

= (2 1)

@ (cons 3 (cons 2 (cons 1 nil)))
= (3 2 1)

CONS adds a new item to the beginning of alist. The empty list isequivalent to NI L,
() = NL
so we could also have written:

@ (cons 1 ())

- (1)

@ (cons 2 (cons 1 ()))

= (2 1)

@ (cons 3 (cons 2 (cons 1 ())))
= (3 2 1)

In case you're wondering, yes, there's something special about NI L. NI L is one of two
symbolsin Lisp that isn't a keyword but still hasitself asits constant value. T isthe other
symbol that works like this.

Thefact that NI L evaluatesto itself, combined with () =Nl L, means that you can write

() rather than (QUOTE ()) . Otherwise, Lisp would have to make an exception to its
evaluation rule to handle the empty list.

LIST

http://psg.com/~dlamkins/sl/chapter03-04.html (1 of 3)11/3/2006 5:51:02 PM

Successful Lisp - Chapter 3, Lesson 4

Asyou may have noticed, building alist out of nested CONS forms can be a bit tedious. The LI ST form
does the same thing in a more perspicuous manner:

@ (list 1 2 3)
= (1 2 3)

LI ST can take any number of arguments. Because LI ST isafunction, it evaluates its arguments:

@ (list 1 2 :hello "there" 3)
- (1 2 :HELLO "there" 3)
@ (let ((a :this)
(b :and)
(c :that))
(list albc 2))
- (:TH'S 1 : AND : THAT 2)

FIRST and REST

If you think of alist as being made up of two parts -- the first element and everything else -- then you
can retrieve any individual element of alist using the two operations, FI RST and REST.

@ (setqg ny-list (quote (1 2 3 4 5)))
=+ (1 2 3 45)
@ (first ny-1ist)

= 1

@ (rest ny-1list)

=+ (2 3 45)

@ (first (rest nmy-list))

- 2

@ (rest (rest ny-list))

=+ (3 4 5)

@ (first (rest (rest ny-list)))
- 3

@ (rest (rest (rest ny-list)))
-+ (4 5)

@ (first (rest (rest (rest ny-list))))
= 4

Clearly, chaining together FI RST and REST functions could become tedious. Also, the approach can't
work when you need to select a particular element when the program runs, or when thelist is of
indeterminate length. We'll ook at how to solve these problems in Chapter 4 by defining recursive

functions. Later, in Chapter 13, we'll see the functions that Lisp provides to perform selection on the

http://psg.com/~dlamkins/sl/chapter03-04.html (2 of 3)11/3/2006 5:51:02 PM

Successful Lisp - Chapter 3, Lesson 4

elements of lists and other sequences.

FI RST and REST are fairly recent additions to Lisp, renaming the equivalent functions
CAR and CDR, respectively. CAR and CDR got their names from an implementation detail
of one of the earliest Lisp implementations, and the names persisted for decades despite
the fact that the underlying implementation had long since changed.

Contents | Cover
Chapter 2 | Chapter 3, Introduction |Chapter 3, Lesson 3 | Chapter 3, Lesson 4 | Chapter 3, Lesson 5 |

Chapter 4 |

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamking/sl/chapter03-04.html (3 of 3)11/3/2006 5:51:02 PM

Successful Lisp - Chapter 3, Lesson 5

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 5 - Naming and Identity

A symbol is just a name

A symbol isjust aname. It can stand for itself. This makesit easy to write certain kinds of programsin
Lisp. For example, if you want your program to represent relationships in your family tree, you can
make a database that keeps relationships like this:

(father John Barry)
(son John Har ol d)

(father John Susan)
(nmother Edith Barry)
(not her Edith Susan)

Each relationshipisalist. (f at her John Barry) meansthat JohnisBarry'sfather. Every element
of every list in our database is a symbol. Your Lisp program can compare symbolsin this database to
determine, for example, that Harold is Barry's grandfather. If you tried to write a program like thisin
another language -- alanguage without symbols -- you'd have to decide how to represent the names of
family members and relationships, and then create code to perform all the needed operations -- reading,
printing, comparison, assignment, etc. Thisisall built into Lisp, because symbols are a data type distinct
from the objects they might be used to name.

A symbol is always unique

Every time your program uses a symbol, that symbol isidentical to every other symbol with the same
name. Y ou can use the EQtest to compare symbols:

@ (eq '"a 'a)

= T

@ (eq 'david 'a)

= NI L

@ (eq 'David ' DAVI D)
= T

@ (setq zzz 'sl eeper)
- SLEEPER

@ (eq zzz 'sleeper)

http://psg.com/~dlamkins/sl/chapter03-05.html (1 of 3)11/3/2006 5:51:27 PM

Successful Lisp - Chapter 3, Lesson 5

=

Notice that it doesn't matter whether you use uppercase or lowercase letters in your symbol names.
Internally, Lisp translates every alphabetic character in a symbol name to a common case -- usually
upper, but you can control this by setting aflag in the Lisp reader.

When you learn about packagesin Lesson 10 (also see Chapter 31), you can create

symbol names that are not identical given the same spelling. For now, all you need to
know isthat any symbol spelled with a: gets special treatment.

A symbol can name a value

Although the ability for a Lisp symbol to stand for itself is sometimes useful, amore common use is for
the symbol to name avalue. Thisistherole played by variable and function names in other
programming languages. A Lisp symbol most commonly names avalue or -- when used as the first
element of afunction call form -- afunction.

What's unusual about Lisp isthat a symbol can have avalue as afunction and avariable at the same
time:

@ (setq first 'nunber-one)
- NUMBER- ONE

@ (first (list 3 2 1))

= 3

@ first

- NUMBER- ONE

Note how FI RST isused as avariablein thefirst and last case, and as afunction (predefined by Lisp, in
this example) in the second case. Lisp decides which of these values to use based on where the symbol
appears. When the evaluation rule requires avalue, Lisp looks for the variable value of the symbol.
When afunction is called for, Lisp looks for the symbol's function.

A symbol can have other values besides those it has as a variable or function. A symbol can aso have
values for its documentation, property list, and print name. A symbol's documentation is text that you
create to describe a symbol. Y ou can create this using the DOCUVENTATI ONform or as part of certain
forms which define a symbol's value. Because a symbol can have multiple meanings, you can assign
documentation to each of several meanings, for example as afunction and as a variable.

A property list islike a small database with asingle key per entry. We'll ook at this use of symbolsin
Lesson 10.

http://psg.com/~dlamkins/sl/chapter03-05.html (2 of 3)11/3/2006 5:51:27 PM

Successful Lisp - Chapter 3, Lesson 5

The print name iswhat Lisp usesto print the symbol. Y ou normally don't want to change this; if you do,
Lisp will print the symbol with a different name than it originally used to read the symbol, which will
create a different symbol when later read by Lisp.

A value can have more than one name

A value can have more than one name. That is, more than one symbol can share avalue. Other
languages have pointers that work thisway. Lisp does not expose pointers to the programmer, but does
have shared objects. An object is considered identical when it passes the EQtest. Consider the following:

@ (setg L1 (list "a 'b 'c))
- (A B O

@ (setq L2 L1)

=+ (A B O

@ (eq L1 L2)

=

@ (setg L3 (list "a'b 'c))
- (A B O

@ (eq L3 L1)

= NL

Here, L1 isEQto L2 because L1 names the same value asL2. In other words, the value created by the
(LIST "A "B ' C) formhastwonames, L1 andL2. The(SETQ L2 L1) form says, "Makethe
value of L2 bethevalue of L1." Not acopy of the the value, but the value. So L1 and L2 sharethe
samevalue -- thelist (A B C) which wasfirst assigned asthe valueof L1.

L3 dsohasalist (A B C) asitsvalue, but it isadifferent list than the one shared by L1 and L2. Even
though the value of L3 looks the same asthevalue of L1 and L2, it isadifferent list because it was
created by adifferent LI ST form. So (EQ L3 L1) —=NI L because their values are different lists, each
made of the symbols A, B, and C.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 4 | Chapter 3, Lesson 5 | Chapter 3, Lesson 6 |
Chapter 4 |

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamking/sl/chapter03-05.html (3 of 3)11/3/2006 5:51:27 PM

Successful Lisp - Chapter 3, Lesson 6

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 6 - Binding versus Assignment

Binding creates a new place to hold a value

Lisp often "creates a binding” for avariable by allocating a piece of storage to hold the variable's value
and putting the value into the newly allocated memory. Binding is a very general mechanism for
implementing lexical scope for variables, but it has other uses depending upon the lifetime of the
binding. We'l revisit thisin Chapter 8 when we study lifetime and visibility.

Yes, Lisp alocates storage for new bindings. While this sounds like it could be horribly
inefficient, we've said nothing yet about where Lisp alocated the storage. For example,
Lisp binds function parameters to actual values, but allocates the storage on the stack just
like any other programming language. Lisp creates bindingsin the heap if it can't
determine that the binding has a lifetime which ends when the binding form finishes
executing.

Bindings have names

Lisp gives each binding a name. Otherwise, how would your program refer to the binding? Simple, eh?
Hold on...

A binding can have different values at the same time

It is quite common for multiple bindings to share the same name. For example:

(let ((a 1))
(let ((a 2))
(let ((a 3))
cea)))

Here, A hasthree distinct bindings by the time the body (marked by . . .) executesin the innermost LET.

Thisis not to say that the above example is representative of typical Lisp code, however.

One binding is innermost

http://psg.com/~dlamking/sl/chapter03-06.html (1 of 4)11/3/2006 5:51:37 PM

Successful Lisp - Chapter 3, Lesson 6

,; Here, A has no binding.
(let ((a 1))

;; Here, the innernost binding of A has the value 1.

(let ((a 2))

;; Here, the innernost binding of A has the val ue 2.

(let ((a 3))

;; Here, the innernost binding of A has the val ue 3.

)

Asyou can see, the notion of innermost binding depends on the relative position of your program's code
to the form that established a particular binding. If you look at how binding forms are nested (easy to do
if you indent your code as shown above) then the program has access to bindings created around, or
enclosing, your program code.

One more thing you should know isthat an outer binding is till visible through inner binding forms, as
long as the inner binding form does not bind the same symbol:

;; Here, A and B have no bi ndi ng.
(let ((a 1)
(b 9))
;; Here, the innernost binding of A has the value 1,
;; and the binding of B has the value 9.

(let ((a 2))
;; Here, the innernost binding of A has the value 2.
;7 The binding of B still has the value 9.
(let ((a 3))
;; Here, the innernost binding of A has the value 3.
;7 Bstill has the value 9 fromthe outernost LET form
.2)))

The program can only access bindings it creates

When a binding form binds a new value to an existing symbol, the previous value becomes shadowed.
The value of the outer binding is hidden (but not forgotten) while your program code executes inside the
inner binding form. But as soon as your program leaves the inner binding form, the value of the outer
binding is restored. For example:

(let ((z 1))
;; Here, the innernost binding of Z has the val ue 1.
(let ((z 2))
;; Here, the innernost binding of Z has the val ue 2.
-)

http://psg.com/~dlamking/sl/chapter03-06.html (2 of 4)11/3/2006 5:51:37 PM

Successful Lisp - Chapter 3, Lesson 6

;7 Now we're outside the inner binding form
;; and we again see the binding wwth the val ue 1.

)
Assignment gives an old place a new value

The SETQform changes the value of an existing binding:

(let ((z 1))

;; Here, the innernost binding of Z has the value 1.
(setg z 9)
;; Now the value of Zis 9.
(let ((z 2))
;; Here, the innernost binding of Z has the val ue 2.
ca)
;; Now we're outside the inner binding form
;; and we again see the outer binding of Z wth the value 9.

)

The SETQform above changed the value of the outer binding of Z for the remainder of the outer LET
form. Thisis often the wrong thing to do. The problem is that you now have to look in two placesto
discover the value of Z -- first at the binding forms, then in the program code for assignments such as
SETQ While the binding forms are indented by convention (many Lisp editors do this as you type), the
assignment form, as part of the body code of the program, gets no special indentation; this makes it
harder to spot when you read the program.

We can quite easily avoid the assignment in the previous example by introducing a new binding:

(let ((z 1))
;; Here, the innernost binding of Z has the val ue 1.
(let ((z 9))
;; Now the value of Zis 9.
(let ((z 2))
;; Here, the innernost binding of Z has the val ue 2.
-)

;7 Now we're outside the innernost binding form
;; and we again see the mddle binding of Z wth the value 9.

)

;; Here, we see the outernost binding of Z wth the value 1.

-)

Now all of the bindings of Z are apparent from the relative indentation of the LET forms. While reading

http://psg.com/~dlamking/sl/chapter03-06.html (3 of 4)11/3/2006 5:51:37 PM

Successful Lisp - Chapter 3, Lesson 6

the program, all we have to do to find the right binding for Z at any point in our program code (the. . .
In the example) isto scan vertically looking for aLET form at an outer level of indentation.

When a SETQform refers to avariable that is not bound by an enclosing LET form, it assigns avalue to
the global or special value of the symbol. A global value is accessible anywhere it's not shadowed, and
stays available for as long as the Lisp system runs. We'll look at special variablesin Chapter 8.

(setq a 987)
;; Here, A has the gl obal val ue 987.

(let ((a 1))

;; Here, the binding of Ato the value 1 shadows the gl obal val ue.

)

;; Now the global value of Ais again visible.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 5 | Chapter 3, Lesson 6 | Chapter 3, Lesson 7 |

Chapter 4 |

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamking/sl/chapter03-06.html (4 of 4)11/3/2006 5:51:37 PM

Successful Lisp - Chapter 3, Lesson 7

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 7 - Essential Function Definition

DEFUN defines named functions
Y ou can define a named function using the DEFUN form:

@ (defun secret-nunber (the-nunber)
(let ((the-secret 37))
(cond ((= the-nunber the-secret) 'that-is-the-secret-nunber)
((< the-nunber the-secret) 'too-Iow
((> the-nunber the-secret) 'too-high))))
- SECRET- NUMBER

We described LET, COND, and ' (a.k.a. QUOTE) in Lesson 3. The numeric comparison
functions have the obvious meaning.

The DEFUN form has three arguments:

1. the name of the function: SECRET- NUMBER,

2. alist of argument names: (THE- NUVMBER) , which will be bound to the function's parameters
when it is called, and

3. the body of the function: (LET ...).

Since al three of these should stand for themselves, DEFUN does not evaluate any of its arguments. (If it
did, you'd face the inconvenience of having to quote each argument.)

DEFUN returns the name of the defined function, and installs a global definition using the name,
parameter list, and body that you supplied. Once you create a function using DEFUN, you can use it right

away:

@ (secret-nunber 11)

= TOO LOW

@ (secret-nunber 99)

- TOO- H GH

@ (secret-nunber 37)

— THAT- | S- THE- SECRET- NUVBER

http://psg.com/~dlamkins/sl/chapter03-07.html (1 of 3)11/3/2006 5:51:48 PM

Successful Lisp - Chapter 3, Lesson 7

When you call the function, its parameter (e.g. 99 in the second example) is bound to the argument
name (i.e. THE- NUMBER) you supplied in the definition. Then, the body of the function (i.e.

(LET ...))isevauated within the context of the parameter binding. In other words, evaluating

(SECRET- NUVMBER 99) causes the body of the SECRET- NUMBER function definition to be executed
with the variable THE- NUMBER bound to 99.

Of course, you can define a function of more than one argument:

@ (defun ny-calculation (a b ¢ x)
(+ (* a(* xx)) (* bx) c))

- MY- CALCULATI ON

@ (my-calculation 3 2 7 5)

- 92

When calling a function, parameters are bound to argument namesin order. Lisp has several optional
variations on the list of argument names. Formally, thislist is called alambda list -- we'll examine some
of its other featuresin Chapter 21.

LAMBDA defines anonymous functions

At timesyou'll need afunction in only one place in your program. Y ou could create a function with
DEFUN and call it just once. Sometimes, thisis the best thing to do, because you can give the function a
descriptive name that will help you read the program at some later date. But sometimes the function you
need is so trivial or so obvious that you don't want to have to invent a name or worry about whether the
name might be in use somewhere else. For situations like this, Lisp lets you create an unnamed, or
anonymous, function using the LAMBDA form. A LAMBDA form looks like a DEFUN form without the
name:

(lanbda (a b ¢ x)
(+ (xa(* xx)) (* bx)c))

Y ou can't evaluate a LAMBDA form; it must appear only where Lisp expectsto find afunction --
normally as the first element of aform:

@ (lanbda (a b ¢ x)
(+ (*a(* xx)) (* bx) c))
- Error
@ ((lanbda (a b ¢ x)
(+ (* a(* xx)) (* bx) c))
32705)
- 92

http://psg.com/~dlamkins/sl/chapter03-07.html (2 of 3)11/3/2006 5:51:48 PM

Successful Lisp - Chapter 3, Lesson 7

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 6 | Chapter 3, Lesson 7 | Chapter 3, Lesson 8 |
Chapter 4 |

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter03-07.html (3 of 3)11/3/2006 5:51:48 PM

Successful Lisp - Chapter 3, Lesson 8

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 8 - Essential Macro Definition

DEFMACRO defines named macros

A DEFMACROform looks alot like a DEFUN form (see Lesson 7) -- it hasaname, alist of argument
names, and a body:

(def macro nane (argunent ...)
body)

Macros return a form, not values

The macro body returns aform to be evaluated. In other words, you need to write the body of the macro
such that it returns aform, not a value. When Lisp evaluates a call to your macro, it first evaluates the
body of your macro definition, then evaluates the result of the first evaluation. (By way of comparison, a
function's body is evaluated to return avalue.)

Here are a couple of ssimple macrosto illustrate most of what you need to know:

@ (defmacro setqg-literal (place literal)
"(setqg ,place '",literal))

- SETQ LI TERAL

@ (setqg-literal a b)

= B

@ a

= B

@ (defmacro reverse-cons (rest first)
“(cons ,first ,rest))

- REVERSE- CONS

@ (reverse-cons nil A)

- (B)

SETQ LI TERAL works like SETQ except that neither argument is evaluated. (Remember that SETQ
evaluates its second argument.) The body of SETQ- LI TERAL has aform that beginswith a"
(pronounced "backquote"). Backquote behaves like quote -- suppressing evaluation of all the enclosed
forms -- except where a comma appears within the backquoted form. A symbol following the commais
evaluated.

http://psg.com/~dlamkins/sl/chapter03-08.html (1 of 3)11/3/2006 5:52:00 PM

Successful Lisp - Chapter 3, Lesson 8

Soinourcal to(SETQ LI TERAL A B) above, here's what happens:

1. bind PLACE to the symbol A.

2. bind L1 TERAL to the symbol B.

3. evaluatethebody * (SETQ , PLACE ', LI TERAL) , following these steps.
1. evaluate PLACE to get the symboal A.
2. evaluate L1 TERAL to get the symbol B.
3. returntheform (SETQ A ' B).

4. evaluatetheform (SETQ A ' B).

Neither the backquote nor the commas appear in the returned form. Neither A nor B isevaluated in a call
to SETQ LI TERAL, but for different reasons. A is unevaluated because it appears as the first argument
of SETQ. B isunevaluated because it appears after a quote in the form returned by the macro.

The operation of (REVERSE- CONS NI L A) issimilar:

1. bind REST
to the symbol NI L.

2. bind FI RST to the symbol A.

3. evaluatethebody * (CONS , FI RST , REST) , following these steps:
1. evauate FI RST to get the symbol A.
2. evaluate REST to get the symbol NI L.
3. returntheform (CONS A NI L).

4. evaluatetheform (CONS A NI L).

Both arguments of REVERSE- CONS are evaluated because CONS evaluates its arguments, and our
macro body doesn't quote either argument. A evaluates to the symbol B, and NI L evaluates to itself.

If you want to see how your macro body appears before evaluation, you can use the MACROEXPAND
function:

@ (macroexpand '(setqg-literal a b))
- (SETQ A ' B)

@ (macroexpand ' (reverse-cons nil a))
- (CONS A NIL)

Since MACROEXPAND is afunction, it evaluates its arguments. Thisiswhy you have to quote the form
you want expanded.

The examplesin this lesson are deliberately very simple, so you can understand the basic mechanism. In
general, macros are trickier to write than functions -- in Chapter 20 we'll look at the reasons and the

http://psg.com/~dlamkins/sl/chapter03-08.html (2 of 3)11/3/2006 5:52:00 PM

Successful Lisp - Chapter 3, Lesson 8

correct techniques for dealing with more complex situations.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 7 | Chapter 3, Lesson 8 | Chapter 3, Lesson 9 |
Chapter 4 |

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter03-08.html (3 of 3)11/3/2006 5:52:00 PM

Successful Lisp - Chapter 3, Lesson 9

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 9 - Essential Multiple Values

Most forms create only one value

A form typically returns only one value. Lisp has only a small number of forms which create or receive
multiple values.

VALUES creates multiple (or no) values
The VALUES form creates zero or more values:

@ (val ues)

@ (val ues :this)

= :TH'S

@ (values :this :that)
= :TH'S

- © THAT

We show how many values are returned by the number of — lines produced by the evaluation of the
form. The three VALUES forms in the exampl e above produced zero, one, and two values, respectively.

VALUES is afunction, and so evaluates its arguments.

A few special forms receive multiple values
What might you want to do with multiple valuesin a program? The most basic operations are to:

1. bind each value to a separate symbol, or
2. collect thevauesinto alist.

Use MULTI PLE- VALUE- Bl ND to bind each value to a separate symbol:
@ (multiple-value-bind (a b c) (values 2 3 5)

(+ aboc))
- 10

If you provide more values than symbols, the excess values are ignored:

http://psg.com/~dlamking/sl/chapter03-09.html (1 of 3)11/3/2006 5:52:07 PM

Successful Lisp - Chapter 3, Lesson 9

@ (multiple-value-bind (a b c) (values 2 3 5 'x 'y)
(+ aboc))
- 10

If you provide fewer values than symbols, the excess symbols are bound to NI L:

@ (rmultiple-value-bind (wx y z) (values :left :right)
(list wx vy z))
- (:LEFT : RIGHT NIL NL)

Some forms pass along multiple values

Some forms pass along the last value in their body, rather than creating a new value. Examplesinclude
the bodies of LET, COND, DEFUN, and LAVBDA.

@ (let ((a 1)
(b 2))

(values a b))
=1
- 2
@ (cond (nil 97)

(t (values 3 4)))

- 3
= 4
@ (defun foo (p q)

(values (list :p p) (list :q q)))
- FOO
@ (foo 5 6)
= (: P 5)
- (:Q 6)
@ ((lanbda (r s)

(values r s))

7 8)
-/
- 8

In the case of the function and lambda bodies, the multiple values are actually returned by
something called an "implicit PROGN." Thisisafancy way of saying that the bodies can
contain multiple forms, and only the value of the last form is returned.

Y ou can use the PROGN special form when you want this behavior. (PROGN f or mlL

http://psg.com/~dlamking/sl/chapter03-09.html (2 of 3)11/3/2006 5:52:07 PM

Successful Lisp - Chapter 3, Lesson 9

fornm2 ... formN) evaluatesf or ml through f or mNin order, and returns the value
of f or m\.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 8 | Chapter 3, Lesson 9 | Chapter 3, Lesson 10 |

Chapter 4 |

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamking/sl/chapter03-09.html (3 of 3)11/3/2006 5:52:07 PM

Successful Lisp - Chapter 3, Lesson 10

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 10 - A Preview of Other Data Types

Lisp almost always does the right thing with numbers

This sounds like a strange thing to say. Don't computers always do the right thing with numbers? Well,
no... Not usually.

Numeric calculations can break in lots of different ways. One of the biggest trouble spotsisin
calculations with floating point numbers (your language may call them real numbers, but that's alie).
There are probably half as many books written on proper use of floating point calculations as there are
on visual- or object-oriented-anything -- and that's alot.

The problem with floating point numbersis that they're not mathematically accurate real numbers, but
are often (mis)used as if they are. The main problem is that floating point numbers have alimited
accuracy -- only so many digitsto the right of the decimal point. Now, if al of the numbersin a
calculation are of approximately the same magnitude, then the cal culation won't lose accuracy. But if the
numbers are of very different magnitude, then afloating point calculation sacrifices accuracy.

Suppose that afloating point number on your computer can accurately represent 7 decimal
digits. Then you can add 1897482.0 to 2973225.0 and get a completely accurate answer.
But if you try to add 1897482.0 to 0.2973225, the accurate answer has fourteen digits,
while your computer will answer with 1897482.0.

The other problem with floating point numbersis more subtle. When you write a program, you write
numbersin base 10. But the computer does all arithmetic in base 2. The conversion from base 10 to base
2 does funny thingsto certain "obviously exact" numbers. For example, the decimal number 0.1 isa
repeating fraction when translated into binary. Because the computer can't store the infinite number of
digitsrequired by arepeating fraction, it can't store the number 0.1 accurately.

Integer (whole number) arithmetic poses another problem in most computer languages -- they tend to
Impose alimit on the maximum positive or negative value that an integer can hold. So, if you try to add
the number one to the largest integer your language lets the computer handle, one of two things will

happen:
1. your program will terminate with an error, or

2. you'll get awildly incorrect answer (the largest positive number plus one yields the largest
negative integer in at least one computer language).

http://psg.com/~dlamkins/sl/chapter03-10.html (1 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

So how does Lisp manage to do the right thing with numbers? After all, it seems like these problems are
inherent in computer arithmetic. The answer isthat Lisp doesn't do use just the built-in computer
arithmetic operations -- it adds certain mathematically accurate numeric data types:

. bignums are integers with an unlimited number of digits (subject only to limitations of computer
memory)

. rational numbers are the exact quotient of two integers, not a floating point number resulting
from an approximate machine division algorithm

Of course, Lisp aso has machine-based integers and floating point numbers. Machine integers are called
fixnumsin Lisp. So long as awhole number falls within the numeric range of afixnum, Lisp will storeit
asamachineinteger. But if it getstoo big, Lisp automatically promotesit to a bignum.

When | said that Lisp aimost always does the right thing with numbers, | meant that it almost always
chooses the numeric representation that is mathematically correct:

@ (/ 1 3)
- 1/ 3
@ (+ (/ 7 11) (/ 13 31))
- 360/ 341
@ (defun factorial (n)
(cond ((=n 0) 1)
(t (* n(factorial (- n 1))))))
- FACTORI AL
@ (factorial 100)
- 933262154439441526816992388562667004907159682643816214685
929638952175999932299156089414639761565182862536979208272
23758251185210916864000000000000000000000000

Y ou can write calculations to use floating point numbers, but Lisp won't automatically turn an exact
numeric result into an inexact floating point number -- you have to ask for it. Floating point numbers are
contagious -- once you introduce one into a calculation, the result of the entire calculation stays a
floating point number:

@ (float (/ 1 3))

- 0. 3333333333333333

@ (* (float (/ 1 10)) (float (/ 1 10)))

- 0.010000000000000002

@ (+ 1/100 (* (float (/ 1 10)) (float (/ 1 10))))

- 0. 020000000000000004

@ (+ 1/100 1/100) ; conpare to previous calculation
- 1/ 50

http://psg.com/~dlamkins/sl/chapter03-10.html (2 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

@ (* 3 7 10.0)

- 210.0

@ (- 1.0 1)

= 0.0

@ (+ 1/3 2/3 0.0)

= 1.0

@ (+ 1/ 3 2/3)

- 1 ; conpare to previous cal cul ation

Lisp prints floating point numbers with adecimal point, and integers without.

Characters give Lisp something to read and write

Basic Lisp I/O uses characters. The READ and WRI TE functions turn charactersinto Lisp objects and
vice versa. READ- CHAR and WRI TE- CHAR read and write single characters.

@ (read)

:a-.J

= A

@ (read)

« #\ ad

- a

@ (read-char)

ta

- #\a

@ (Wwite 'a)

= A

= A

@ (Wwite #\a)

= #\a

- #\a

@ (wite-char #\a)
= a

- #\a

@ (wite-char 'a)
-1 Error: Not a character

We've introduced some new notation in the above examples. The = symbol means that Lisp expects input
In response to an input function such as READ. Thisis different from @, which accepts input to be
evaluated and printed. The 4 symbol indicates a newline character, generated by ther et ur n or ent er

key.

http://psg.com/~dlamkins/sl/chapter03-10.html (3 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

The = indicates output that is printed rather than returned as a value.

Y ou should notice that newline terminates READ input. This is because READ collects characters trying
to form a complete Lisp expression. We'll see more of thisin Lesson 11. In the example, READ collects

asymbol, which is terminated by the newline. The symbol could also have been terminated by a space, a
parenthesis, or any other character that can't be part of a symbol.

In contrast, READ- CHAR reads exactly one character from the input. As soon as that character is
consumed, READ- CHAR compl etes executing and returns the character.

Some Lisp systems systems may require you to pressther et ur n key before any input is
recognized. Thisis unusual, and can often be fixed by a configuration parameter -- consult
your Lisp vendor.

V\RI TE and V\RI TE- CHAR both return the value they're given. The way in which they print the valueis
different. WRI TE prints the value so that it could be presented to READ to create the same value.

VARl TE- CHAR prints just the readable character, without the extra Lisp syntax (the #\) that would
identify it to READ as a character.

Lisp represents a single character using the notation #\ char , where char isaliteral character or the
name of a character that does not have a printable glyph.

Char act er Hex Val ue Li sp St andar d?
space 20 #\ Space yes
new i ne - - #\ New i ne yes
backspace 08 #\ Backspace sem
tab 09 #\ Tab sem
| i nef eed O0A #\ Li nef eed sem
fornfeed 0oC #\ Page sem
carriage return oD #\ Return sem
rubout or DEL 7F #\ Rubout sem

Only #\ Space and #\ New i ne arerequired on all Lisp systems. Systems that use the ASCI|
character set will probably implement the rest of the character codes shown above.

The#\ New i ne character stands for whatever convention represents the end of a printed line on the
host system, e.g.:

System New i ne Hex Val ue

Maci nt osh CR oD

http://psg.com/~dlamkins/sl/chapter03-10.html (4 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

Ms- DOS CR LF 0D OA
Uni x LF O0A

The 94 printable standard characters are represented by #\char:

' " #8$%&' () *+, - .|/
0123456789 : ; <=>7?
@ABCDEFGHI JKLMNDO
PQRSTUVWXYZ[\] ™ _
"abcdefghij kl mno
pgrstuvwxyz{]|} -~

Arrays organize data into tables
If you need to organize datain tables of two, three, or more dimensions, you can create an array:

@ (setq al (nmake-array '(3 4)))

= #2A((NIL NIL NIL NL)
(NIL NIL NIL NL)
(NIL NIL NIL NL))

@ (setf (aref al 0 0) (list "element 0 0))

-~ (ELEMENT 0 0)

@ (setf (aref al 1 0) (list "element 1 0))

-~ (ELEMENT 1 0)

@ (setf (aref al 2 0) (list "element 2 0))

-~ (ELEMENT 2 0)

@ al

- #2A(((ELEMENT O O0) NIL NIL NL)
((ELEMENT 1 0) NIL NIL NIL)
((ELEMENT 2 0) NIL NIL NIL))

@ (aref al 0 0)

-~ (ELEMENT 0 0)

@ (setf (aref al 0 1) pi)

- 3. 141592653589793

@ (setf (aref al 0 2) "hello")

- "hel | 0"

@ (aref al 0 2)

- "hel | 0"

Y ou create an array using MAKE- ARRAY, which takes alist of dimensions and returns an array. By

default, an array can contain any kind of data; optional arguments let you restrict the element data types
for the sake of efficiency.

http://psg.com/~dlamkins/sl/chapter03-10.html (5 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

An array'srank is the same as its number of dimensions. We created a rank-2 array in the above
example. Lisp prints an array using the notation #r ankA(. . .) . The contents of the array appear as
nested lists, with the first dimension appearing as the outermost grouping, and the last dimension
appearing as the elements of the innermost grouping.

Y our Lisp system will probably not print an array with line breaks as I've shown here. |
added these breaks to emphasize the structure of the array.

To retrieve an element of an array, use AREF. AREF's first argument is the array; the remaining
arguments specify the index along each dimension. The number of indices must match the rank of the

array.

To set an element of an array, use AREF inside a SETF form as shown in the example. SETF is similar
to SETQ except where SETQassigns avalue to a symbol, SETF assigns avalue to a place. In the
examples, the AREF form specifies the place as an element in the array.

Vectors are one-dimensional arrays

Vectors are one-dimensional arrays. Y ou can create a vector using MAKE- ARRAY, and access its
elements using AREF.

@ (setq vl (nmake-array '(3)))
= #(NIL NIL NIL)

@ (make-array 3)

= #(NIL NIL NIL)

@ (setf (aref v1 0) :zero)
= ZERO

@ (setf (aref vl 1) :one)
= ONE

@ (aref v1 0)

= ZERO

@ vl

- #(:ZERO : ONE NI L)

Lisp prints vectors using the dlightly abbreviated form #(. . .) , rather than #1A(. . .) .

Y ou can use either asingle-element list or a number to specify the vector dimensions to MAKE- ARRAY
-- the effect is the same.

Y ou can create a vector from alist of values, using the VECTOR form:

http://psg.com/~dlamkins/sl/chapter03-10.html (6 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

@ (vector 34 22 30)
- #(34 22 30)

Thisissimilar tothe LI ST form, except that the result is a vector instead of alist. There are other
similarities between lists and vectors. both are sequences. Sequences are manipulated by the functions
we'll seein Chapter 13.

Y ou can use AREF to access the elements of a vector, or you can use the sequence-specific function,
ELT:

@ (setf v2 (vector 34 22 30 99 66 77))
- #(34 22 30 99 66 77)

@ (setf (elt v2 3) :radio)

- :RADI O

@ V2

- #(34 22 30 : RADIO 66 77)

Strings are vectors that contain only characters

Y ou aready know how to writeastring usingthe™ . . . " syntax. Since a string is a vector, you can
apply the array and vector functions to access elements of a string. Y ou can also create strings using the
MAKE- STRI NGfunction or change characters or symbols to strings using the STRI NG function.

@ (setqg s1 "hello, there.")
-+ "hello, there.™

@ (setf (elt s1 0) #\ H))

= #\H

@ (setf (elt sl1 12) #\!)

= #\

@ sl

-+ "Hello, there!"

@ (string 'a-synbol)

- " A- SYMBOL"
@ (string #\ QG
= "G

Symbols are unique, but they have many values

We saw in Lesson 5 that a symbol has a unigue identity, but this bears repeating: A symbol isidentical

to any other symbol spelled the same way (including its package designation, which we'll learn more
about at the end of this lesson). This means that you can have Lisp read a program or data, and every
occurrence of a symbol with the same spelling is the same symbol. Since Lisp supplies the mechanism

http://psg.com/~dlamkins/sl/chapter03-10.html (7 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

to do this, it's one less thing you have to worry about when you write a program that manipul ates
symbolic information.

We aso learned in Lesson 5 that a symbol can have values as a variable and a function, and for
documentation, print name, and properties. A symbol's property list is like a miniature database which
associates a number of key/value pairs with the symbol. For example, if your program represented and
mani pulated objects, you could store information about an object on its property list:

@ (setf (get 'object-1 'color) 'red)

- RED

@ (setf (get 'object-1 'size) 'large)

- LARGE

@ (setf (get 'object-1 'shape) 'round)

-~ ROUND

@ (setf (get 'object-1 'position) '(on table))

- (ON TABLE)

@ (setf (get 'object-1 'weight) 15)

- 15

@ (synbol -plist 'object-1)

- (VI GHT 15 POSI TION (ON TABLE) SHAPE ROUND S| ZE LARGE
COLOR RED)

@ (get 'object-1 'color)

- RED

@ object-1

-~ Error: no val ue

Note that OBJECT- 1 doesn't have avalue -- all of the useful information isin two places: the identity of
the symbol, and the symbol's properties.

This use of properties predates modern object programming by afew decades. It provides
two of the three essential mechanisms of an object: identity and encapsulation (remember
that property values could just as well be afunction). The third mechanism, inheritance,
was sometimes simulated by links to other "objects."

Properties are less often used in modern Lisp programs. Hash tables (see below), structures (described in
the next section), and CL OS objects (see Chapter 7 and Chapter 14) provide al of the capabilities of
property listsin ways that are easier to use and more efficient. Modern Lisp development systems often
use properties to annotate a program by keeping track of certain information such asthefile and file
position of the defining form for a symbol, and the definition of afunction's argument list (for use by
informational tools in the programming environment).

Structures let you store related data

http://psg.com/~dlamkins/sl/chapter03-10.html (8 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

A Lisp structure gives you away to create an object which stores related data in named sots.

@ (defstruct struct-1 color size shape position weight)
- STRUCT- 1
© (setq object-2 (make-struct-1

:size 'small
. color 'green
-wei ght 10

: shape 'square))
- #S(STRUCT-1 : COLOR GREEN : SI ZE SMALL : SHAPE SQUARE
:POSI TION NI L : VEI GHT 10)
@ (struct-1-shape object-2)
- SQUARE
@ (struct-1-position object-2)
- NI L
@ (setf (struct-1-position object-2) '(under table))
- (UNDER TABLE)
@ (struct-1-position object-2)
- (UNDER- TABLE)

In the example, we defined a structure type named STRUCT- 1 with slots named COLOR, SHAPE,

S| ZE, PCSI Tl ON, and VEEI GHT. Then we created an instance of a STRUCT- 1 type, and assigned the
instance to the variable OBJECT- 2. Therest of the example shows how to access sots of a struct
instance using accessor functions named for the structure type and the slot name. Lisp generates the
make-structname and structname-slotname functions when you define a structure using DEFSTRUCT.

Well look at DEFSTRUCT's optional features in Chapter 6.

Type information is apparent at runtime

A symbol can be associated with any type of value at runtime. For cases where it matters, Lisp lets you
query the type of avalue.

@ (type-of 123)

= FI XNUM

@ (type-of 123456789000)
= Bl GNUM

@ (type-of "hello, world")
- (SI MPLE- BASE- STRI NG 12)
@ (type-of 'fubar)

- SYMBOL

http://psg.com/~dlamkins/sl/chapter03-10.html (9 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

@ (type-of '(a b c))
- CONS

TYPE- OF returns asymbol or alist indicating the type of its argument. This information can then be
used to guide a program's behavior based upon the type of its arguments. The TYPECASE function
combines the type inquiry with a COND-like dispatch.

With the introduction of generic functionsin CLOS (see Chapter 14), TYPE- OF isnot as
Important as it once was.

Hash Tables provide quick data access from a lookup key

A hash table associates a value with aunique key. Unlike a property list, a hash table iswell suited to a
large number of key/value pairs, but suffers from excessive overhead for smaller sets of associations.

@ (setg htl (make-hash-table))

- #<HASH TABLE>

@ (gethash 'quux htl)

= N L

= N L

@ (setf (gethash 'baz htl) 'baz-val ue)
- BAZ- VALUE

@ (gethash 'baz ht1l)

- BAZ- VALUE

= T

@ (setf (gethash 'gronk htl) nil)
= N L

@ (gethash 'gronk htl)

= N L

= T

Y ou create a hash table using MAKE- HASH- TABLE, and access values using GETHASH. GETHASH
returns two values. Thefirst isthe value associated with the key. The second is T if the key was found,
and NI L otherwise. Notice the difference between the first and last GETHASH form in the examples
above.

By default, ahash table is created so that its keys are compared using EQ -- this works for symbols, but
not numbers or lists. We'll learn more about equality predicatesin Chapter 17. For now, just remember

that if you want to use numbers for keys, you must create a hash table using the form:

(make- hash-table :test # eql)

http://psg.com/~dlamkins/sl/chapter03-10.html (10 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

If you want to use lists for keys, create your hash table with:
(make- hash-table :test # equal)

If you want to remove akey, use the form (REMHASH key hash-t abl e). Andif you want to
change the value for akey, use GETHASH with SETF, just asif you were adding a new key/value pair.

Packages keep names from colliding

One of the things that's hard about writing programs is naming parts of your program. On one hand, you
want to use names that are easy to remember and evocative of the role or purpose of the named object.
On the other hand, you don't want to use a name that someone else has aready used (or islikely to use)
in adifferent program that you may someday have to make work with your program.

One way to avoid naming conflictsisto give every name in your program a unique prefix that no one
elseislikely to use. You see this done all the time with libraries -- the prefix is typically one to three
characters. Unfortunately, this still leaves alot of room for two software devel opers to choose the same
prefix; especially since some prefixes are more evocative than others. If you have control over all the
software that will be developed for your product, you can choose all of the prefixes and avoid problems.
If you're going to buy third-party software that uses a prefix naming scheme, you'll have to work around
the names chosen by your vendors and hope that two different vendors don't stumble upon the same
prefix.

Libraryl Library2 Library3

frRead pkOpen trlnitialize
frWrite pkClase fCreate
fxReport pkMNew fxDispose
frCalculate pkDelete trTerminate
frSearch pkuery frKead
fxOpen pkGetResult fxWrite

fxClose fuittach

E%/f_xﬂetach
Different P"EI':';?HES”‘:’ Same prefix, 5o
naming conric MAFMES May cohiflick

Another way to avoid naming conflictsis to use qualified names. To do this, the language must provide
support for separate namespaces defined and controlled by the programmer. To understand how this
works, imagine that al the names you create for your program get written on a sheet of paper with your
name written at the top as atitle -- thisis the qualifier for all of your names. To see whether anameis
safe to use, you only have to check the list of names you've written on this page. When someone else's
software needs the services of your program, they refer to your names by using both your qualifier and
name. Because the other person's software has a different qualifier, and their qualifier isimplicit (that is,

http://psg.com/~dlamkins/sl/chapter03-10.html (11 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

it doesn't need to be written) for their own names, there's no chance of a name conflict.

Y ou might think that a qualifier is no more than a complicated way to add a prefix to a name. However,
there's a subtle but important difference. A prefix is part of the name; it cannot be changed once written.
A qualifier is separate from the names it qualifies, and is "written down" in exactly one place.
Furthermore, you can point to the "sheet of paper" upon which names are written and refer to it as "those
names." If you happen to choose the same qualifier as another programmer, you can still refer to "those
names' by a qualifier of your own choosing -- In other words, you can change the qualifier after the
softwar e has been delivered for your use.

File: lib1 File: lib2
Package: util Package: ulil
initialize initialize

do-something-coal do-something-useful
do-sarnething-else do-something-else

File: my-file

Package: my-package

(load "lib1")

(rename-package "UTIL" "UTIL-1")
(load "1ik2")

(rename-package "UTIL" "UTIL-2")
{util-1:initialize)

(util-2:initialize)

(initialize)

In the above example, two libraries are delivered in filesLI B1 and LI B2. Both library designers used
the name UTI L for the name of their namespace, known in Lisp as a package name. Each library lists
the names exposed to a client. The programmer who uses the two libraries writes code in the package
name MY- PACKAGE. After loading each library, the programmer renames its package so the names are
distinct. Then, namesin the library are referenced using their renamed qualifiers, aswe seein the calls
toUTI L-1: I NI TI ALI ZEand UTI L- 2: I NI TI ALI ZE. Notice how thel NI Tl ALI ZE nameis still
available to the programmer in its unqualified form -- thisis equivalent to MY- PACKAGE:

| NI TI ALI ZE.

Lisp provides this functionality through a set of functions and macros collective known as the package
facility. The DEFPACKAGE macro conveniently provides most package operations, while the | N-
PACKAGE macro sets the current package:

;yy, ---- File 1 ----

(def package util 1
(:export init funcl func2)
(:use comon-1lisp))

(i n-package util 1)

http://psg.com/~dlamkins/sl/chapter03-10.html (12 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

(defun init () 'utill-init)
(defun funcl () 'utill-funcl)
(defun func2 () 'utill-func2)

i ---- File 2 ----

(def package util 2
(:export init funcl func2)
(:use comon-1lisp))

(i n-package util 2)

(defun init () 'util2-init)
(defun funcl () 'util2-funcl)
(defun func2 () 'util2-func2)

iy, ---- File 3 ----

(def package cli ent
(:use comon-1isp)
(:inport-fromutill funcl)
(:inport-fromutil2 func2))

(i n-package client)

(defun init () 'client-init)
(utill:init)

(util2:init)

(init)

(funcl)

(func2)

The example lists the contents of threefiles. File 1 and File 2 both define three functions using identical
names. File 1 puts namesin the UTI L1 package, while File 2 usesthe UTI L2 package. The
DEFPACKAGE form names the package. The : USE option specifies that nhames from another package
may be used without qualification, while the : EXPORT option specifies the names that are exposed to
clients of the package.

The DEFPACKAGE form only creates a package. The USE- PACKAGE form makes a package current --
al unqualified names are in whatever package is current. The COVMON- LI SP: * PACKAGE* variable
aways contains the current package.

File 3 creates the CLI ENT package. The : | MPORT- FROMoptions bring in specific names from the
UTI L1 and UTI L2 packages -- these names may be used without qualification in the CL1 ENT package.
Names that are exported from UTI L1 or UTI L2 but not imported by CLI ENT may still be referenced
within CLI ENT by using an explicit qualifier of the form package: nane.

http://psg.com/~dlamkins/sl/chapter03-10.html (13 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 10

This section covered only very basic package operations. We'll cover additional detailsin Chapter 31,
when we [ook again at packages within the context of constructing large software systems.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 9 | Chapter 3, Lesson 10 | Chapter 3, Lesson 11 |
Chapter 4 |

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter03-10.html (14 of 14)11/3/2006 5:52:14 PM

Successful Lisp - Chapter 3, Lesson 11

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 11 - Essential Input and Output

READ accepts Lisp data

Aswe saw in Lesson 10, READ turns charactersinto Lisp data. So far, you've seen a printed representation
of several kinds of Lisp data:

. symbols and numbers,
. strings, characters, lists, arrays, vectors, and structures,
. and hash tables,

The Lisp reader doesits job according to a classification of characters. The standard classifications are
shown below. Aswelll seein Lesson 12, you can alter these classifications for your own needs.

St andard Constituent Characters

~ o — —

St andard Wit espace Characters

http://psg.com/~dlamkins/sl/chapter03-11.html (1 of 5)11/3/2006 5:52:19 PM

Successful Lisp - Chapter 3, Lesson 11

<t ab> <space> <page> <new i ne> <return> <l inefeed>

If READ starts with a constituent character, it begins accumulating a symbol or number. When READ
encounters a terminating macro character or a whitespace character, it tries to interpret the collected
constituent charactersfirst as a number, then as asymbol. If anumeric interpretation is possible, READ
returns the number. Otherwise, READ changes the alphabetical characters to a standard case (normally upper
case), interns the name as a symbol, and returns the symbol.

Escape characters play a specia role. A single escape character forces the following character to be treated
exactly as a constituent character. In thisway characters that are normally treated as whitespace or
terminating macro characters can be part of a symbol. If READ encounters an escape character, it never
attempts to interpret the resulting constituents as a number, even if only digits were escaped.

If READ starts with a macro character, the character determines the next step:

Read a string.

Read aform.

Read alist.

|gnore everything up to newline.

Decide what to do based on the next character.

Finally, some Lisp datais not meant to be read. For example, the printed representation of a hash table looks
something like #<HASH- TABLE>. It is an error for READ to attempt to read anything beginning with the
characters #<.

PRINT writes Lisp data for you and for READ

The PRI NT function changes a Lisp object into the sequence of characters that READ would need to
reconstruct it:

@ (print 'abc)

= JABC.L

- ABC

@ (print (list 1 2 3))
= J1 2 3)_

= (1 2 3)

@ (print "A String")

http://psg.com/~dlamkins/sl/chapter03-11.html (2 of 5)11/3/2006 5:52:19 PM

Successful Lisp - Chapter 3, Lesson 11

= J"A string"_

- "A string"

@ (print 387.9532)

= .1387.9532._

- 387.9532

@ (print (make-hash-table))
= J#<HASH TABLE>_

- #<HASH TABLE>

PRI NT always begins its output with a newline character (), and follows its output with a space (). This
ensures that the PRI NT output stands apart from any surrounding output, since newline and space are both
treated as whitespace, and cannot be part of the printed representation of a Lisp object (unless escaped).

Other variations of PRI NT have different uses. PRI N1 behaves as PRI NT, but does not surround its output
with whitespace. This might be useful if you are building up a name from successive pieces, for example.
PRI NC behaves as PRI N1, but generates output intended for display, rather than READ; for example,

PRI NC omits the quotes around a string, and does not print escape characters.

@ (print '"a\ bc)
= J A BC| -

- | A BC|

@ (prinl '"a\ bc)
= | A B{|

- | A BC|

@ (princ '|A B(Q)
= JA BCL

- | A BC|

OPEN and CLOSE let you work with files

Normally, READ reads from the keyboard and PRI NT prints to the screen. Both of these functions take an
optional argument; the argument specifies an input stream for READ, and an output stream for PRI NT.
What's a stream? A stream is a source or sink of data, typically -- but not necessarily -- characters. For now,
we'll ook at how text files can be the source or sink of a character stream. In Chapter 19 we'll look at some

of the other possibilities.

Y ou can attach a stream to afile using the OPEN function, which takes as parameters afile name and a
keyword argument to specify the direction (input or output) of the stream. To finish operations on the stream
and close the associated file, use the CL OSE function.

@ (setq out-stream (open "ny-tenp-file" :direction :output))

- #<OUTPUT- STREAM "ny-tenp-fil e">
@ (print 'abc out-stream

http://psg.com/~dlamkins/sl/chapter03-11.html (3 of 5)11/3/2006 5:52:19 PM

Successful Lisp - Chapter 3, Lesson 11

- ABC

@ (cl ose out-stream

= T

@ (setq in-stream (open "ny-tenp-file" :direction :input))
— #<I NPUT- STREAM "ny-tenp-file">

@ (read in-stream

- ABC

@ (close in-stream

= T

In the example, we create an output stream to the filenamed ny-t enp-f i | e, and print the symbol ABCto
that stream. Notice how PRI NT returnsits argument as usual, but doesn't print it -- the printed result has
goneto thefile, instead.

Next, we close the output stream and open an input stream on the same file. We then read the symbol that
we printed to the file, and finish by closing the input stream.

Variations on a PRINT theme

Lisp also provides aVRI TE function to give you control over more details of printing, using keyword
arguments to control these options:

Keywor d Ar gunent Def aul t Val ue Action

:stream t set output stream

. escape *print-escape* I ncl ude escape characters

s radi x *print-radi x* I ncl ude radi x (base) prefix

: base *print - base* set nunber base (rationals)
:circle *print-circle* print circular structures
Spretty *print-pretty* add whi tespace for readability
1 evel *print-I|evel * limt nesting depth

-length *print-I|ength* limt itens per nesting |evel
. case *print-case* - upper, :lower, or :mxed

s gensym *print-gensynt prefix uninterned synbols
.array *print-array* print arrays readably

: readabl y *print-readabl y* force printing to be readabl e
cright-margin *print-right-mrgin* controls pretty-printing
:mser-wdth *print-mser-w dt h* "

:1ines *print-lines* !

cpprint-dispatch *print-pprint-dispatch* "

Coincidentally, the variables named above as the default values of the keyword arguments also control the
operation of PRI NT. Y ou can get the effect of WRI TE with non-default keyword arguments by binding
these variablesin a LET form around a PRI NL1:

http://psg.com/~dlamkins/sl/chapter03-11.html (4 of 5)11/3/2006 5:52:19 PM

Successful Lisp - Chapter 3, Lesson 11

(wite foo (let ((*print-pretty* t)
“pretty t (*print-right-margi n* 60)
:right-margin 60 (*print-case* :downcase))

- case :downcase) (prinl foo))

We used PRI N1 rather than PRI NT because we don't want the preceding newline and following blank that
PRI NT adds.

If your program changesthe* PRI NT- . . . * variables, but you need to ensure the default values at some
point in your program, you can wrap that part of the program insideaW TH STANDARD- | O- SYNTAX
form:

;Define printer control for the program
(setq *print-circle* t)

(setq *print-array* nil)

(setq *print-escape* nil)

;Print wwth the settings established above.
(print ...)

; Change back to default printer control settings
(wi t h-standard-i o-synt ax

;Print wwth the standard settings,
;overriding those established above.

(print ...)

)
. Qut si de the W TH STANDARD- | O- SYNTAX form

;We once again have the print settings established
by the SETQ forns at the top of the exanple.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 10 | Chapter 3, Lesson 11 | Chapter 3, Lesson 12 |
Chapter 4 |

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted
to the author's site.

http://psg.com/~dlamkins/sl/chapter03-11.html (5 of 5)11/3/2006 5:52:19 PM

Successful Lisp - Chapter 3, Lesson 12

Chapter 3 - Essential Lisp in Twelve Lessons

Lesson 12 - Essential Reader Macros

The reader turns characters into data

We saw in Lesson 11 that the Lisp reader gathers constituent characters into symbols and numbers, and

that macro characters control the reader to handle lists, strings, quoted forms, and comments. In all of
these cases, the reader turns characters into data. (For reasons that will become clear shortly, a comment
ISsjust "no data.")

Standard reader macros handle built-in data types

So far, we've seen just the standard syntax for Lisp. Thisisimplemented by the reader, and controlled
by the readtable. The reader works by processing characters according to information stored in the
readtable.

User programs can define reader macros

Lisp exposes the readtable through the * r eadt abl e* variable, and provides several functions to
manipulate entries in readtables. Y ou can use these to alter the behavior of the Lisp reader. In the
following example, we change the syntax so we can write quoted (i.e. unevaluated) listsusing[and] .

; This is wong:

@ (1 2 3 45 6)

-4 Error: 1 is not a function

; Shoul d have done this, instead:

@ '(1 2345 6)

=+ (123 45 6)

; Defi ne new syntax so we can wite sonething |like

; [1 2 3 45 6]

;i nstead of

; '(1 2 3 45 6)

@ (defun open-bracket-macro-character (stream char)
"' ,(read-delimted-list #\] streamt))

- OPEN- BRACKET- MACRO- CHARACTER

@ (set-nmacro-character #\[#' open-bracket-nacro-character)

=

@ (set-nmacro-character #\] (get-macro-character #\)))

http://psg.com/~dlamkins/sl/chapter03-12.html (1 of 3)11/3/2006 5:52:24 PM

Successful Lisp - Chapter 3, Lesson 12

=

;Now try it:
@[1 2 3 45 6]
-+ (12 3 45 6)

First wetriedtoevaluate(1 2 3 4 5 6) --thisiswrong because 1 isnot afunction. What we really
meant to do was to quote the list. But if we're going to do this often, we'd like a more convenient syntax.
In particular we'd like[. . .] tobehavelike' (...).

To make this work, we have to define a specialized list reader macro function that doesn't evaluate its
arguments. We'll arrange for the function to be called when the reader encountersa| character; the
function will return the list when it encountersa] character. Every reader macro function gets called
with two arguments: the input stream and the character that caused the macro to be invoked.

Our reader macro is very simple because Lisp has a function designed to read delimited lists. READ-
DELI M TED- LI ST expects one argument -- the character which will terminate the list being read. The
other two arguments are optional -- the input stream and a flag which is normally set to T when used in
reader macro functions. READ- DELI M TED- LI ST reads objects from the input stream until it
encounters the terminating character, then returns all of the objectsin alist. By itself, this does
everything we need except for suppressing evaluation.

QUOTE (or ') suppresses evaluation, as we saw in Lesson 3. But we can't use' (READ- DELI M TED-

LI ST ...);that would suppress evaluation of the form we need to evaluate to get the form we need to
guote... Instead, we use ~ (see Lesson 8) to selectively require evaluation within a quoted form.

Our definition of OPEN- BRACKET- MACRO- CHARACTER uses
', form

to evaluate form and return the result, quoted.

Lisp reserves six characters for the programmer:

[T {} ! 7

Y ou can define any or al of these as macro characters without interfering with Lisp. However, you
should watch out for conflictsif you share code with other programmers.

Contents | Cover
Chapter 2 | Chapter 3, Introduction | Chapter 3, Lesson 11 | Chapter 3, Lesson 12 | Chapter 4 |

http://psg.com/~dlamkins/sl/chapter03-12.html (2 of 3)11/3/2006 5:52:24 PM

Successful Lisp - Chapter 3, Lesson 12

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter03-12.html (3 of 3)11/3/2006 5:52:24 PM

Successful Lisp - Chapter 4

Chapter 4 - Mastering the Essentials

We've explored the fundamental concepts of Lisp through the twelve lessons of Chapter 3. If you feel that you have avery

strong grasp of these fundamentals, or if you've worked with Lisp before, you may want to skim the remainder of this
chapter.

WEe'l review some of the material from Chapter 3 using a hands-on approach. Along the way, you'll learn some new

techniques that have had to wait until all of the fundamentals had been introduced; if you're a beginner and haven't read
Chapter 3, go back and read it before you try to do the exercisesin this chapter.

Y ou should have access to a Lisp development system as you work through this chapter. As you read this chapter, please
take the time to run the examples using your Lisp system. Thiswill give you a chance to learn how your Lisp system
responds to input, including any mistakes you may make. (If you don't make any mistakes in transcribing the examples,
you should get adventurous and try to modify some of the examples.) Appendix A lists severa commercia, shareware, and
free Lisp systems for Macintosh, DOS, and Windows computers.

Hands-on! The "toploop"

Y ou interact with the Lisp system through a built-in piece of code called the toploop, which repeats three ssmple steps for
aslong asyou run the Lisp system:

1. Read an expression (you provide the expression).
2. Evaluate the expression just read.
3. Print the result(s) of the evaluation.

Thisisalso called the "read-eval-print” loop. Some Lisp systems evaluate the expression using a Lisp interpreter; modern
systems use a compiling evaluator, which first compiles the expression to machine code then executes the code. A
compiling evaluator is also an incremental compiler, so named because it can compile a program in increments of one
expression.

The toploop also provides aminimal user interface -- aprompt to indicate that it's ready to read a new expression -- and a
way to gracefully catch any errors you might make.

If you were to write the Lisp code for atoploop, it would look something like this:
(1 oop
(terpri)
(princ 'ready>)
(print (eval (read))))
NOTE 1. (terpri) prints ablank line.

NOTE 2: (loop ...) executes its formsin order, then repeats -- we'll see more of LOOP in Chapter 5.

NOTE 3: (evd ...) returns the result of evaluating aform. Thisis one of the few legitimate uses of EVAL --
you should beware of Lisp code that uses EVAL for reasons other than evaluating arbitrary Lisp expressions

http://psg.com/~dlamkins/sl/chapter04.html (1 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

provided at runtime.

In fact, you can type thisinto your Lisp system and temporarily run your own toploop on top of Lisp's toploop. Try it!
You'll see your system's prompt replaced with READY>. Every valid Lisp form you type will be read, evaluated, and
printed by your toploop. Depending upon your Lisp system, this may happen as soon as the expression is completed --
either by a space or a matching parenthesis or double quote mark -- or you may have to press the RETURN or ENTER key.

Y our Lisp session may look like the following, where ? isthe Lisp system's prompt for input:

? (1 oop
(terpri)
(princ 'ready>)
(print (eval (read))))

READY>(+ 1 2 3)

6
READY>(cons 1 (cons 2 (cons 3 nil)))

(1 2 3)
READY>

There are two ways to get out of your toploop. Oneisto abort, typically using a specia keystroke or amenu command --
consult your Lisp system's manual. The other way isto enter an erroneous expression -- suchas(+ ' A 1) -- at the
READY> prompt, which will put you into the Lisp debugger.

In Lisp, the debugger is accessed viaa "break loop." This behaves just like a toploop, but accepts additional commands to
inspect or alter the state of the "broken™ computation. Break loops vary widely among Lisp systems. The manual will
describe the break loop. Check also under the manual's index entries for "debugger.”

Spotting and avoiding common mistakes

"l entered a Lisp expression, but nothing happened.” The most common cause of this problem is missing a matching
delimiter -- typically aright parenthesis or double-quote -- somewhere in your expression. Unlike some devel opment
systems which process your input each time you enter aline of code, Lisp waits for you to enter a compl ete expression
before attempting to process anything. What happensif you enter the following code in your system?

? (defun bad-1 ()

(print "This is a bad function definition)

(print "But I'lIl try it anyway..."))
Looks good, huh? All the parentheses match, and you press the ENTER key that one last time, and... Nothing. The string
argument to the first print statement is missing a closing double-quote, turning the rest of your input into part of the string.
You'll do this more than once (trust me), so the best thing to do isto consult your Lisp system manual to find out how to
edit the pending input so you can add the missing double-quote to what you've already typed.
Here's another bit of code that will make your Lisp system appear to sleep:

? (defun factorial (n)

http://psg.com/~dlamkins/sl/chapter04.html (2 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

(cond ((<=n 0) 1)
(t (* n (factorial (- n1)))))

Again, aquick glance shows nothing amiss. But count the parentheses and you'll find that |efts outnumber rights by one.
When you press the final enter key, the read part of Lisp's read-eval-print loop still needs one more right parenthesis before
it can finish its job and pass your expression to the evaluator.

Both of these situations can be avoided if your Lisp system has an editor that matches delimiters as you type. In some
systems, this matching momentarily flashes the left delimiter as you type the matching right delimiter. Or your system
might flash or highlight the matching delimiter of whatever you have under the cursor; some systems even highlight the
entire intervening expression. Again, check your manual -- this feature is essential to comfortable Lisp programming.

"I get confused about whento use' ." Thisisarealy common problem for people just learning to program, but it manages
to puzzle the occasional experienced (non-Lisp) programmer aswell. Theruleissimple:

If you want a name to stand for avalue, don't quote it.
If you want a name to stand for its symbol, quote it.

There are afew exceptionsto the rule, all having to do with self-evaluating symbols. These symbols always represent
themselves. They are:

T
NI L

and keyword symbols. A keyword symbol is any symbol that beginswith a: character, for reasons that will become clear
when we look at packagesin Chapter 31. A keyword symbol always evaluates to itself, thus:

? :foo

: FOO

? :sone-1ong- but-nondescri pt - keywor d- synbol
: SOME- LONG- BUT- NONDESCRI PT- KEYWORD- SYMBOL

It usually doesn't hurt to quote a self-evaluating symbol. For example, NI L isidentical to' NI L. Adding the quoteisa
matter of style and preference.

Time for apop quiz! What's wrong with the following code?
? (defun factorial (n)
(cond ((<="'n 0) 1)
(t (* "n (factorial (- 'n 1))))))

Right. The' N expressions are wrong, because we want the value of the symbol (a number which varies with execution of
the function), and not the symbol itself.

Defining simple functions

We've already seen afew function definitions. the FACTORI AL function (above) and a function or two in Chapter 3,

http://psg.com/~dlamkins/sl/chapter04.html (3 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

Lesson 7. To review, afunction is defined as follows;

(defun function-nanme (argunent-nanes ...)
function-body)

The (argument-names. . .) iscaled alambda list. Namesin thislist are bound to values when the function is called.
The body of the function may refer to these names; identical names appearing elsewhere in your program (that is, outside
the function body) are irrelevant to the function. Also, if your function changes the binding of an argument inside the
function, the caller does not receive the changed value. The proper way to return values from a Lisp function isto return
them as the value of the function.

For example:

? (defun quadratic-roots (a b c)
"Returns the roots of a quadratic equation aX*2 + bX + ¢ = 0"
(let ((discrimnant (- (* b b) (* 4 ac))))
(values (/ (+ (- b) (sgrt discrimnant)) (* 2 a))
(/ (- (- b) (sgrt discrimnant)) (* 2 a)))))
QUADRATI C- ROOTS

? (quadratic-roots 1 2 4)
#c(-1.0 1.7320508075688772)
#c(-1.0 -1.7320508075688772)

? (quadratic-roots 2 -16 36)
#c(4.0 1.4142135623730951)
#c(4.0 -1.4142135623730951)

? (quadratic-roots 1 4 4)
-2
-2

? (quadratic-roots 1 -14 49)
7
7

? (quadratic-roots 1 8 4)
- 0. 5358983848622456
-7.464101615137754

? (quadratic-roots 1 4 -5)

1
-5

The QUADRATI C- ROOTS function shows how to use a documentation string. The first form in the function body isa
string. This does not affect the function result, but it is recorded by the Lisp system for later reference:

? (docunentation 'quadratic-roots 'function)

http://psg.com/~dlamkins/sl/chapter04.html (4 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

"Returns the roots of a quadratic equation aX*2 + bX + ¢ = 0"

This function also shows how we can return two values from afunction. Y ou recognize the formulafor the roots of a
guadratic equation:

Thistells you that the equation has two solutions (which may be coincident in some cases). In Lisp it's a simple matter to
return both values at once using the form (VALUES val ue- 1 val ue- 2).

If you've ever solved this problem in a computer language that doesn't support complex number arithmetic, you've had to
find away to signal the caller when the roots are imaginary (i.e. when the discriminant is less than zero). Lisp just does the
right thing: the square root of a negative number isa complex number:

? (sqrt -1)

#c(0 1)

Suppose that you wanted QUADRATI C- ROOTS to only return one value if the roots are coincident. Thinking that maybe
you can return something special as the second value of the VALUE form, youtry NI L :

? (values 2 nil)

2
NI L

But that doesn't work, because NI L isavalue like any other in Lisp, and does not get special treatment like anil pointer
would, for example, in another language.

So you think about only having one value in the VALUES form:

? (values 3)

3

Sure enough, that works. So why not (VALUES val ue-1 sone-formthat-returns-not hi ng) ?Likethis:

? (val ues)
? (val ues 4 (val ues))

4
NI L

http://psg.com/~dlamkins/sl/chapter04.html (5 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

Unfortunately, this doesn't do what you expect; the outer VALUES form expects a value from its second argument,
(VALUES) , and substitutes NI L for the missing value. Thisis one of the important rules of multiple values. The other rule
isthat forms which receive multiple values (see Chapter 3, Lesson 9) substitute NI L for amissing value.

A little reflection convinces you that you can't get VALUES to return nothing for something, so you consider having two
separate returns. Thisyields the following function:

? (defun quadratic-roots-2 (a b c)
"Returns the roots of a quadratic equation aX*2 + bX + ¢ = 0.
Returns only one value if the roots are coincident.”

(let ((discrimnant (- (* b b) (* 4 ac)))) ; zero if one root
(cond ((zerop discrimnant)
;; coincident roots -- return one val ue

(/ (+ (- b) (sgrt discrimnant)) (* 2 a)))
(t
;; two distinct roots
(values (/ (+ (- b) (sgrt discrimnant)) (* 2 a))
(/ (- (- b) (sgrt discrimnant)) (* 2 a)))))))
QUADRATI C- ROOTS- 2

? (quadratic-roots-2 1 -14 49)
7

? (quadratic-roots-2 1 4 -5)
1
-5

NOTE: ZEROP is a predicate (hence the P suffix) that is true when its numeric argument is zero. Writing
(ZEROP n) isthesameaswriting(= n 0).
Note how QUADRATI C- ROOTS- 2 has atwo-line documentation string. The newline is part of the string:

? (docunentation 'quadratic-roots-2 'function)
"Returns the roots of a quadratic equation aX*2 + bX + ¢ = 0.
Returns only one value if the roots are coincident."

Also note the use of comments to describe the two return choices. In Lisp, a comment begins with a semicolon and
continues until the end of the line. By convention, comments on aline of their own within a function body are indented to
the same level asthe rest of the code and prefixed by two semicolons. A comment on the same line as code only has one
semicolon (again, by convention).

A lambdallist can have a number of additional features. We'l look at two of these here, and the rest in Chapter 21.

If you want to make afunction that takes one or more optional arguments, use the &OPTI ONAL keyword followed by alist
of parameter names, like this:

http://psg.com/~dlamkins/sl/chapter04.html (6 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

? (defun silly-list-1 (pl p2 &optional p3 p4)

(list pl p2 p3 p4))
SILLY-LIST-1

? (silly-list-1 "foo 'bar)
(FOO BAR NIL NIL)

? (silly-list-1 '"foo 'bar 'baz)
(FOO BAR BAZ NI L)

? (silly-list-1 '"foo 'bar 'baz 'rux)
(FOO BAR BAZ RUX)

The optional parameters default to NIL when the call does not supply avalue. Peek ahead to Chapter 21 to see how to
change the default value of an optional parameter.

If you supply fewer than the number of required parameters (to the left of &OPTI ONAL in the example above), or more
than the total number of required plus optional parameters, you'll get an error:

? (silly-list-1 "'foo)
Error: Not enough argunents.

? (silly-list-1 "foo "bar 'baz 'rux 'qup)
Error: Too many argunents.

If you want to have an indefinite number of parameters, you can name one parameter to receive alist of all the "extras’
using the &REST symbol in the lambdaligt, like this:

? (defun silly-list-2 (pl p2 & est p3)
(list pl p2 p3))

? (silly-list-2 "foo 'bar)
(FOO BAR NI'L)

? (silly-list-2 '"foo 'bar 'baz)
(FOO BAR (BAZ))

? (silly-list-2 "foo '"bar 'baz 'bob 'tom' don)

(FOO BAR (BAZ BOB TOM DON))

The &REST parameter must follow all of the required parameters. Y ou can combine &REST and &OPTI ONAL parameters,
observing the following order:

? (defun silly-list-3 (pl p2 &optional p3 p4 & est pb)

(list pl p2 p3 p4 p5))
S| LLY-LI ST-3

http://psg.com/~dlamkins/sl/chapter04.html (7 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

? (silly-list-3 '"foo 'bar)
(FOO BAR NIL NIL NL)

? (silly-list-3 '"foo 'bar 'baz)
(FOO BAR BAZ NIL NIL)

? (silly-list-3 '"foo 'bar 'baz 'bob)
(FOO BAR BAZ BOB NI L)

? (silly-list-3 '"foo 'bar 'baz 'bob 'ton)
(FOO BAR BAZ BOB (TOM)

? (silly-list-3 '"foo '"bar 'baz 'bob 'tom' don)
(FOO BAR BAZ BOB (TOM DON))

Using global variables and constants

In Lesson 3, we used SETQto define global variables. Y ou can do thisusing atop-level form, asin Lesson 3, or from
within afunction, such asthis:

? (defun set-foo-globally (x)
(setq foo x))
SET- FOO- GLOBALLY

? foo
Error: unbound vari abl e FOO

? (set-foo-globally 3)
3

? foo
3

Depending upon your Lisp system, you may have seen a warning message when you defined SET- FOO- GLOBALLY:

? (defun set-foo-globally (x)

(setq foo x))
Warni ng: undecl ared free variable FOO in SET- FOO GLOBALLY.
SET- FOO GLOBALLY

Thisis not an error -- the function does what we want. But FOOis said to be free because the function does not create a
binding for FOO. Variable bindings are created by lambda lists (the function's argument list) and by LET forms (see Lesson

6), among others.

My Lisp system warns me about free variables in function definitions because they could be a symptom of atypographical

http://psg.com/~dlamkins/sl/chapter04.html (8 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4
error:

? (setq *ol ynpi c-year* 1996)
1996

? (defun set-next-ol ynpic-year ()

(setq *ol ynpic-year* (+ *ol npic-year* 2)))
Warni ng: undecl ared free variable *OLMPI C YEAR*, in SET- NEXT- OLYMPI C- YEAR
SET- NEXT- OLYMPI C- YEAR

Here, | misspelled the second instance of my global variable * OLYMPI C- YEAR*, and the compiler warned me. Notice
that | didn't get awarning for the correctly spelled * OLYMPI C- YEAR* because | had defined it globally in atop-level
SETQform.

There are two more ways to define global variablesin Lisp:

? *var 1*
Error: unbound vari abl e

? (defvar *varl* 1)
VARL

? *var 1*
1

? (defvar *varl* 2)
VARL

? *var l*
1

? (def paraneter *a-var* 3)
* A- VAR

? *a-var*
3

? (def paranmeter *a-var* 4)
* A- VAR*

? *a-var*

4

DEFVAR sets aglobal value only the first time -- in other words, the variable must not have avaluein order for DEFVARto
have an effect. Thisisuseful for avariable that needs to have an initial value, but shouldn't be reset if you re-evaluate the
DEFVAR form (as you might if you reload the file containing the DEFVAR in addition to other code).

DEFPARAMETER sets a global value each timeit is used. Although the effect is the same as a SETQform, the

http://psg.com/~dlamkins/sl/chapter04.html (9 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

DEFPARAMETER is preferable because it gives implicit documentation as a defining form (in Lisp, any form that begins
with DEF is most likely a defining form), and because it allows you to add documentation to the variable:

? (def paraneter *a-var* 3 "The nunber of things | have to do today.")
* A- VAR

? (docunentation '*a-var* 'variabl e)
"The nunber of things | have to do today."

Y ou can also add a documentation string to a DEFVAR form.

In the examples above, we've started following the convention of making global variable names begin and end with an
asterisk. When you read other programmers Lisp code, you'll see that they follow this convention. They'll expect you to do
the same.

DEFCONSTANT issimilar to DEFVAR and DEFPARANMETER, except that it defines a name which is known globally and
has a constant value. This means that anywhere you read a name which was defined in a DEFCONSTANT form, you can
substitute the value given by the DEFCONSTANT form. It also means that you can't redefine the named constant, not even
by using another DEFCONSTANT form with a different value.

Some Lisp programmers give constants names which begin and end with plus signs. It's helpful to name constantsin a
distinctive way so you don't inadvertently try to use the name for another purpose. Once a name has been defined constant,
you can't even use it for a seemingly innocuous use, such as a parameter in alambdalist or LET binding.

Defining recursive functions

A function that calsitself isrecursive. The recursive call may be direct (the function callsitself) or indirect (the function
calls another function which -- perhaps after calling still more functions -- calls the original function).

Y ou need to follow two simple rules of thumb to make recursive functions work. These rules suggest the structure of a
recursive function -- it must behave appropriately according to its current inputs:

1. One case must not make arecursive call.
2. Other cases must reduce the amount of work to be donein arecursive cal.

Let'sdig up the FACTORI AL function that we've already used in several examples, and see how it follows these rules:

(defun factorial (n)
(cond ((zerop n) 1)
(t (* n(factorial (1- n))))))

This function has two cases, corresponding to the two branches of the COND. The first case says that the factorial of zerois
just one -- no recursive call is needed. The second case says that the factorial of some number is the number multiplied by
the factorial of one less than the number -- thisis arecursive call which reduces the amount of work remaining because it
brings the number closer to the terminating condition of the first COND clause. (For clarity, I've assumed that the number
initially given to FACTORI AL is hon-negative.)

Let'swork through another simple recursive definition. The length of an empty list is zero. The length of anon-empty list is

http://psg.com/~dlamkins/sl/chapter04.html (10 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

one plus the length of the list reduced by one element. These two statements state exactly what is required by our rules of
thumb, above. The first statement gives the answer for alist of known length -- the trivial case of an empty list. The second
statement gives the answer for alist of unknown length in terms of the answer for a list of reduced length. Here's how it
tranglates into code:

? (defun ny-length (list)
(cond ((null list) 0)

(t (1+ (my-length (rest list))))))
MY- LENGTH

? (ny-length '(a b c d))
4

NULL istrue for an empty list, so the first COND clause returns zero for the empty list. The second COND clause gets
evaluated (if thefirst clause if skipped) because its condition is T; it adds one to the result of the recursive call on alist
which is one element shorter (alist consists of its FI RST element and the REST of the list.)

Note the similarities between FACTORI AL and MY- LENGTH. The base case is aways the first in the COND because it
must be tested before the recursive case -- otherwise, the recursive function calls would never end.

If you want to visualize how recursive calls work, you can use you Lisp system's TRACE macro:

? (trace ny-1length)
NI L

? (nmy-length "(a b c d))

; Calling (MY-LENGTH (A B C D))
; Calling (MY-LENGTH (B C D))
: Calling (MY-LENGTH (C D))
; Calling (My-LENGTH (D))

X Calling (MY-LENGTH NI L)
: MY- LENGTH returned O

X MY- LENGTH returned 1

X MY- LENGTH returned 2

;. MY-LENGTH returned 3

: MY-LENGTH returned 4

4

Here, you can clearly see the recursive calls upon lists of decreasing length, the terminating call with the empty list (NI L),
and the returns each adding one to the length of a shorter list.

NOTE: Your Lisp compiler may internally optimize the recursive callsto MY- LENGTH so you don't see
them using TRACE. If this happens, you may be able to disable the optimization by evaluating the form
(DECLAI M (OPTI M ZE (SPEED 0) (DEBUG 3))), then re-evaluating the (DEFUN MY-

LI ST ...) form.

Tail recursion

http://psg.com/~dlamkins/sl/chapter04.html (11 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

A function that callsitself asits very last action is said to make atail-recursive call. Here are two versions of the factorial
function to illustrate the difference between atail-recursive call and an ordinary recusive call:

: Normal recursive call

(defun factorial (n)
(cond ((zerop n) 1)
(t (* ;. * is the last function called
n
(factorial (- n 1))))))

: Tail-recursive call

(defun factorial-tr (n)
(factorial-tr-helper n 1))

(defun factorial-tr-hel per (n product)
(cond ((zerop n) product)
(t
; factorial-tr-helper is the last function called
(factorial-tr-helper (- n 1) (* product n)))))

FACTORI AL- TRcallsFACTORI AL- TR- HEL PER, passing the original argument, N, plus an additional argument used as
theinitial value of an accumulator for the product which will become the value of the factorial calculation. FACTORI AL-
TR- HELPER callsitself recursively, decrementing N in the process (this moves the calculation closer to its terminating
condition, (ZEROP N)) and at the same time multiplying the product by the current value of N.

Because FACTORI AL- TR- HELPER isthe last function executed in the recursive call, thisis atail-recursive call. Compare
thisto the recursive call in the FACTORI AL function, where the result is used by * to produce the function's value. A
recursive call istail-recursive only if it isthe very last function executed in the recursive invocation.

With all that explanation out of the way, you're probably wondering "What good is tail-recursion? For the factorial
calculation, it only seemed to complicate the code.” The answer isin two parts: what Lisp can do for you, and what Lisp
can do to you in the presence of tail-recursion.

Some Lisp compilers can optimize tail-recursive calls. To understand the benefits of such an optimization, let's first look at
what a compiler must do for anormal function call: it must generate code to evaluate the arguments and push them on a
stack (where they can be found by the called function), save the address in the code to which control will return after the
recursive call, and finally call the function. One implication of this code sequence is that a function which makes alot of
recursive calls (as FACTORI AL will do for large value of N) will use alot of stack space -- normally alimited resource.

A compiler that optimizes tail-recursive calls will generate code to perform the following operations for atail-recursive
call: evaluate the arguments and replace the old argument values with those just calculated, and then jump to the beginning
of the function. Note that this code does not use any additional stack space, and it invokes the function with ajump instead
of acall instruction -- thisis a less expensive operation on all computers.

So, that's the answer to the first question, "What can Lisp do for meif | write atail-recursive function call?' Y ou get more
efficient code -- if the compiler performs that optimization; it is not required to do so, but the better ones do.

http://psg.com/~dlamkins/sl/chapter04.html (12 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

Tail recursion optimization sounds like a good thing. It must be -- it produces faster code -- but it it may confuse you
during debugging. The debugger normally displays each function call by looking at the stack frame created at entry to the
function. So if you happen to break in the middle of arecursive function, you'd expect to see a stack frame for each
recursive call:

? (defun broken-factorial (n)
(cond ((=n 0) 1)
((= n 1) (break))
(t (* n (broken-factorial (- n 1))))))
BROKEN- FACTORI AL

? (broken-factorial 6)
; Break: While executing: BROKEN- FACTORI AL

(backtrace)

: (BROKEN- FACTORI AL 1)

(BROKEN- FACTORI AL 2)

(BROKEN- FACTORI AL 3)

(BROKEN- FACTORI AL 4)

(BROKEN- FACTORI AL 5)

(BROKEN- FACTCORI AL 6)

: nore stack franes, unrel ated to BROKEN- FACTORI AL ...
(abort)

; Return to top |evel

v RBNMERY

? (defun broken-tr-factorial (n)
(broken-tr-factorial-1 n 1))
BROKEN- TR- FACTORI AL

? (defun broken-tr-factorial-1 (n v)
(cond ((=n 0) v)
((=n 1) (break))
(t (broken-tr-factorial-1 (- n 1) (* nv)))))
BROKEN- TR- FACTORI AL

? (broken-tr-factorial 6)
; Break: While executing: BROKEN- TR- FACTORI AL- 1

> (backtrace)
1: (broken-tr-factorial-1 1)
2. ... nore stack franmes, unrelated to BROKEN- TR- FACTORI AL ...

So what happened to all the recursive callsin BROKEN- TR- FACTORI AL- 17? For that matter, what happened to the call to
BROKEN- TR- FACTORI AL? The compiler did tail recursion elimination in BROKEN- TR- FACTORI AL- 1, replacing
function calls with jumps. The function only generated one stack frame, then the tail-recursive calls replaced the valuesin
that frame for subsequent calls.

The compiler also noticed that BROKEN- TR- FACTORI AL calls BROKEN- TR- FACTORI AL- 1 and immediately returns

http://psg.com/~dlamkins/sl/chapter04.html (13 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

itsvalue. Thisisjust another tail-recursive call. The compiler arranged to build the stack frame using the value provided for
the call to BROKEN- TR- FACTORI AL and the constant 1; there was no need to generate a stack frame for BROKEN- TR-
FACTORI AL.

I mention all of this because you may think that your compiler is broken the first time you encounter a backtrace with
"missing” frames. Compilers that do tail recursion usually give you away to disable that optimization; consult the manual
for details. Y ou're probably better off, however, learning to recognize tail recursion, and how to read backtraces in the
presence of this optimization. Some code which relies on tail recursion could break (by overflowing the stack) if you
disabl e the optimization.

Exercises in naming

A namein Lisp can be made of any non-whitespace characters except for certain characters reserved as reader macro
characters (see Chapter 3, Lesson 11), namely " ," ,(,),,,;, ,and#. Furthermore, the name can't be a number in the

current number base, as set by * READ- BASE* . Thus, FACE is aname when * READ- BASE* is 10, but a number when
* READ- BASE* is 16 (or higher).

Most Lisp programmers follow afew naming conventions to identify the names that certain roles. Global variables are
amost always written with aleading and trailing * , for example:

next -1 d
hone-di rect ory
sof t war e- ver si on

Other conventions vary somewhat among Lisp programmers. It isfairly common to see the name of a constant written with
aleading and trailing +, such as:

+initial-allocation-count+
+maxi mumiteration-limt+

However, Lisp itself does not follow this convention for constants defined by the language:

pi
nost - posi tive-fixnum
| east - negati ve-short-fl oat

Lisp programmers tend to set aside certain characters as prefixes for names of functions which use implementation-
dependent features of the Lisp implementation, or which which are otherwise considered "dangerous" because they violate
abstraction. The %character is most often seen in thisrole, but others are used -- you should be aware that any name which
starts with a non-al phabetic character may have some special significance to the programmer who wrote the code:

Yopen-file-id
%structure-slot-nanes
$reserve_heap

_cal |l -event -handl er

@ r ane- mar ker

Don't forget to use the proper forms (described earlier in this chapter) to declare global variables and constants. Many Lisp
compilerswill et you get away with using a SETQ form to define global variables. Although thisis convenient for

http://psg.com/~dlamkins/sl/chapter04.html (14 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

debugging purposes, you should not rely on this behavior in your final program, asit is not guaranteed to work in all
implementations.

If you don't define a constant using a DEFCONSTANT form, the compiler can not guarantee that its value will remain
constant. Even worse is the requirement that a constant name be neither assigned (through a SETQform, for example) nor
bound (in aLET form or as the name of afunction parameter, for example). If you don't define your constants using
DEFCONSTANT, the compiler has no way to enforce these requirements.

Lexical binding, and multiple name spaces

The following piece of code illustrates how you can use the same name for different purposes. Take a minute to read this,
and see how many separate uses you can count for the name FUNNY.

(defun funny (funny)
"funny..."
(i1f (zerop funny)
: funny
(list
(cons funny
(let ((funny funny))
(setq funny (1- funny))
(funny funny)))

funny)))

Here are the five roles played by this one name:

function name

function argument

aword in the documentation string
aconstant in the keyword package
anew lexical variable

grLONPE

Considering only the symbols named FUNNY, there are different values according to its use and position in the code. First,
thereisits value as afunction object -- thisis created by the DEFUN form and called recursively inside the LET form. Next,
the value of the actual parameter is passed in acall to the function and bound to this name. Then, there's the constant value
of the keyword, appearing as the consequent return value of the | F form. And finally, inside the LET form, anew binding
is created (by the LET form) and its value changed (by the SETQform).

Isthis hard to follow? Yes. Asarule of thumb, you should be shot if you write code that looks like this. I, on the other
hand, get to do this because it's instructive -- the lesson here is that there are a number of different namespacesin Lisp.

And what happens when you invoke this bizarre function? This:

? (funny 3)
((3 (2 (1. :FUNNY) 1) 2) 3)

? (funny 0)
: funny

http://psg.com/~dlamkins/sl/chapter04.html (15 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

Now consider the following Lisp session:

? (defun foo () 1)
FOO

? (defun baz ()
(flet ((foo () 2)
(bar () (fo0)))
(val ues (foo) (bar))))
BAZ

? (baz)
2
1

? (defun raz ()
(labels ((foo () 2)
(bar () (foo0)))
(val ues (foo) (bar))))
RAZ

? (raz)
2
2

Thisis pretty subtle, but it's worth understanding because thisis fairly common practice. Here's what happened:

1. define function FOOto return 1
2. define function BAZ, which

1. definesfunction FOOlocally to return 2

2. defines function BAR locally to call FOO

3. cals FOOand BAR, and returns their values
3. cal BAZ, which returns the values 2 and 1
4. define function RAZ, which

1. definesfunction FOOlocally to return 2

2. defines function BAR locally to call FOO

3. cals FOOand BAR, and returns their values
5. cal RAZ, which returns the values 2 and 2

Even though BAZ and RAZ ostensibly do the same thing, they return different values.

BAZ definesits local functionsinside an FLET form, which does not allow reference to the functions it defines. So the FOO
called by BAR inside BAZ is actually the global FOO, which returns 1. The FOO defined inside the FLET form is never
referenced by BAZ.

RAZ definesitslocal functionsinside a LABELS form, within which functions defined may refer to themselves or each
other. Thus, the FOOcalled by BAR inside RAZ is the one defined inside the LABELS form, which returns 2. The globally
defined FOOis shadowed by the FOO named in the LABELS form.

In both cases, FOOis lexically apparent at two places. globally, and within the local defining form (FLET or LABELS). For

http://psg.com/~dlamkins/sl/chapter04.html (16 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

something to be lexically apparent, or lexically scoped, means that its definition can be determined by reading the program.

In BAZ, | know that the local definition of FOOis not visible within BAR, so the global definition must be referenced. (If
there was an enclosing form within BAZ which defined alocal function FOO, that would be referenced rather than the
global definition -- again, because it's lexically apparent to the caller.)

In RAZ, | know that the local definition of FOOisvisibleto BAR, so thisis used instead of the global definition. Even if
there was an enclosing form that defined another FOOlocally within RAZ, it would -- from the viewpoint of BAR -- be
shadowed by the FOO defined in the LABELS form.

Reading, writing, and arithmetic

Y our programs usually need to get input and produce output. If you're working with a system that supports windows and
dialogs, you can certainly use these graphical devices. Relying instead on Lisp's built-in facilities for reading and writing
strings of characters will ensure that your program is useful (or at least usable) on all kinds of computers.

Most elementary programming texts include a ssmple program to demonstrate the "input, process, output" approach. Our
examplein Lisp reads a series of numbers, adds them, and prints the sum when we enter a special token instead of a
number:

(defun si npl e-addi ng-machi ne-1 ()
(let ((sum0)
next)
(1 oop
(setq next (read))
(cond ((nunberp next)
(i ncf sum next))
((eq '= next)
(print sum
(return))
(t
(format t "~&A ignored!~% next))))
(val ues)))

Our SI MPLE- ADDI NG- MACHI NE- 1 works like this;

(SI MPLE- ADDI NG MACHI NE- 1)
3

5

FOO

FOO i gnor ed!

11

19
SI MPLE- ADDI NG MACHI NE- 1 getsitsinput viathe keyboard, and writes output to the screen. This happens because

READ and PRI NT have optional arguments which specify a stream (see Chapter 19) and because using T as the second
argument to FORMAT is the same as specifying the standard output stream -- the screen.

http://psg.com/~dlamkins/sl/chapter04.html (17 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

What if we wanted to read inputs from afile, and write to another file? One way isto bind the standard input and output
streams to files, and continue to use SI MPLE- ADDI NG- MACHI NE- 1:

(let ((*standard-input* (open "infile.dat" :direction :input))
(*standard-output* (open "outfile.dat" :direction :output)))
(decl are (special *standard-input* *standard-output?*))
(si nmpl e- addi ng- machi ne- 1)
(cl ose *standard-input*)
(cl ose *standard-output))

Thisisamost, but not quite, satisfactory. We bind the standard input and output streams to newly opened files, process the
data, and close the files. We use LET to temporarily bind the standard streams to files; upon leaving the LET form,

* STANDARD- | NPUT* and * STANDARD- OQUTPUT* regain their original values. The problem lurking in this piece of
codeisthat an abnormal exit -- an error or a deliberate interrupt -- can cause one or both of the CLOSE calls to be skipped.

A better way to write thiskind of code usesW TH OPEN- FI LE:

(W th-open-file (in-stream"infile.dat" :direction :input)
(W th-open-file (out-stream"outfile.dat" :direction :output)
(let ((*standard-input* in-stream
(*standar d- out put* out-stream)
(decl are (special *standard-input* *standard-output*))
(si npl e- addi ng- machi ne-1))))

This does exactly the same thing, except that afile opened by W TH- OPEN- FI LE is guaranteed to be closed upon exiting
the form, whether the exit is normal or not. We'll take alook at how thisis possible in Chapter 9.

The technique of rebinding the standard input and output streams can be very handy if you have to redirect input and output
for aprogram you didn't write, don't want to rewrite, or can't get the source code to. If you're writing a program from
scratch, you might want to plan for it to be used either with the standard streams or streams (perhaps attached to files)
provided by the caller:

(defun si npl e-addi ng- machi ne-2 (&optional (in-stream *standard-i nput*)
(out -stream *st andar d- out put *))
(let ((sumO0)
next)
(1 oop
(setq next (read in-strean))
(cond ((nunberp next)
(i ncf sum next))
((eq '= next)
(print sum out-stream
(return))
(t
(format out-stream "~&A ignored!~% next))))
(val ues)))

If you want to use SI MPLE- ADDI NG MACHI NE- 2 with the keyboard and screen, call it without any arguments. To call it
with file streams, do this:

http://psg.com/~dlamkins/sl/chapter04.html (18 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

(W th-open-file (in-stream”infile.dat" :direction :input)
(W th-open-file (out-stream"outfile.dat" :direction :output)
(si npl e- addi ng- machi ne-2 in-stream out-stream))

We don't have to rebind the standard input and output streams as we did to redirect 1/0 for SI MPLE- ADDI NG MACHI NE-
1. Thisleaves the standard streams free other purposes -- such as reporting progress or interacting with the user.

To close out this section, let's take a brief look at arithmetic. Lisp has an extensive repertoire of mathematical functions,
consult areference book for details. Chapter 3, Lesson 10 covered numbers very briefly. Now, we're going to look at how

and when numbers get converted automatically from one type to another.

The ssimplest rule is that of floating point contagion, an ominous-sounding term which means, "If you use a floating point
number in acalculation, the result will be a floating point number."

The next rule involves floating point components of complex numbers. A complex number has area part and an imaginary
part, read (and printed) by Lisp as#C(real-part imaginary-part) , where real-part and imaginary-part are any kind of Lisp
number except for another complex number. If either part is afloating point number, then Lisp converts both parts to
floating point numbers.

If you reduce the imaginary part of a complex number to zero, you get the non-complex value of the real part.
Ratios are read and printed as numerator/ denominator, where numerator and denominator are aways integers. The
advantage of aratioisthatitisexact-- (/ 1.0 3) isafloating point number which isvery close to (but not exactly) one-

third, but 1/ 3 (or (/ 1 3)) isexactly one-third.

A ratio whose numerator is exactly divisible by its denominator will be reduced to an integer -- again, thisis an exact
number.

And finally, an integer isjust an integer. If an integer gets too large to fit the machine's representation, Lisp convertsit to a
bignum -- the number of digitsislimited only by the computer's memory.

Just to make sure you understand all of this, try adding some numbers of different types to see whether you can invoke all
of the conversions described above.

Other data types

Let's put together an extended example to show how we might use several of Lisp's built-in data types. We'll build asimple
application to keep track of bank checks as we write them. For each check, we'll track the check number, payee, date,
amount, and memo. Welll support queriesto display an individual check, to list all checks paid to a payee, to list al the
payees, to sum all of the check amounts, and to list all of the checks we've paid. Well also provide away to void a check
once written.

Here's the code:

(defvar *checks* (make-array 100 :adjustable t :fill-pointer 0)
"A vector of checks.")

(def constant +first-check-nunber+ 100

http://psg.com/~dlamkins/sl/chapter04.html (19 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

"The nunber of the first check.")

(def var *next-check-nunber* +first-check-nunber+
"The nunber of the next check.")

(def var *payees* (make-hash-table :test # equal)
"Payees with checks paid to each.")

(defstruct check
nunber date anount payee nenp)

(defun current-date-string ()
"Returns current date as a string."
(mul tiple-value-bind (sec mn hr day non yr dow dst-p tz)
(get -decoded-tine)
(declare (ignore sec min hr dow dst-p tz))
(format nil "~A-~A-~A" yr non day)))

(defun write-check (anpbunt payee nenp)
"Wites the next check in sequence.”
(let ((new check (make-check
: nunber *next - check- nunber *
:date (current-date-string)
»ampunt anount
: payee payee
:meno neno)))
(i ncf *next-check-nunber*)
(vector - push-extend new check *checks*)
(push new check (gethash payee *payees*))
new check))

(defun get-check (nunber)
"Returns a check given its nunber, or NIL if no such check."
(when (and (<= +first-check-nunber+ nunber) (< nunber *next-check-numnber*))
(aref *checks* (- nunber +first-check-nunber+))))

(defun voi d-check (nunber)
"Voids a check and returns T. Returns NIL if no such check."
(let ((check (get-check nunber)))
(when check
(setf (gethash (check-payee check) *payees*)
(del ete check (gethash (check-payee check) *payees*)))
(setf (aref *checks* (- nunber +first-check-nunber+)) nil)

t)))
(defun list-checks (payee)
"Lists all of the checks witten to payee."
(get hash payee *payees*))

(defun list-all-checks ()
"Lists all checks witten."

http://psg.com/~dlamkins/sl/chapter04.html (20 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

(coerce *checks* 'list))

(defun sum checks ()
(let ((sumQ))
(map nil # (1 anmbda (check)
(when check
(i ncf sum (check-anmount check))))
checks)

sum)

(defun 1ist-payees ()
"Lists all payees.”
(et ((payees ()))
(maphash #' (| anbda (key val ue)
(decl are (ignore value))
(push key payees))
payees)
payees))

And here's an example of how it works:

? (wite-check 100.00 "Acne" "T-1000 rocket booster")

#S(CHECK : NUMBER 100 : DATE "1996-11-3" : AMOUNT 100.0 : PAYEE " Acne"

rocket booster")

? (wite-check 50.00 "Acnme" "1 gross bungee cords")

#S(CHECK : NUMBER 101 : DATE "1996-11-3" : AMOUNT 50.0 : PAYEE "Acne"

bungee cords")

? (wite-check 300.72 "WB Infirmary" "body cast")

: MEMO " T-1000

:MEMO "1 gross

#S(CHECK : NUMBER 102 : DATE "1996-11-3" : AMOUNT 300.72 : PAYEE "WB Infirmary" : MEMO

"body cast")

? (list-checks "Acne")

(#S(CHECK : NUMBER 101 : DATE "1996-11-3" : AMOUNT 50. 0 : PAYEE " Acne"

bungee cords")

:MEMO "1 gross

#S(CHECK : NUMBER 100 : DATE "1996-11-3" : AMOUNT 100.0 : PAYEE "Acne" :MEMO "T-1000

rocket booster"))
T

? (get-check 101)

#S(CHECK : NUMBER 101 : DATE "1996-11-3" : AMOUNT 50.0 : PAYEE "Acne"

bungee cords")

? (sum checks)
450. 72

? (list-all-checks)

:MEMO "1 gross

(#S(CHECK : NUMBER 100 : DATE "1996-11-3" : AMOUNT 100.0 : PAYEE "Acne" :MEMO "T-1000

rocket booster")

#S(CHECK : NUMBER 101 : DATE "1996-11-3" : AMOUNT 50. 0 : PAYEE " Acne"

http://psg.com/~dlamkins/sl/chapter04.html (21 of 25)11/3/2006 5:53:03 PM

:MEMO "1 gross

Successful Lisp - Chapter 4

bungee cords")
#S(CHECK : NUMBER 102 : DATE "1996-11-3" : AMOUNT 300.72 : PAYEE "WB Infirmary" : MEMO
"body cast"))

? (list-payees)
("WB Infirmary" "Acne")

? (voi d-check 101)
.

? (list-checks "Acne")

(#S(CHECK : NUMBER 100 : DATE "1996-11-3" : AMOUNT 100.0 : PAYEE "Acne" :MEMO "T-1000
rocket booster"))

T

? (list-all-checks)
(#S(CHECK : NUMBER 100 : DATE "1996-11-3" : AMOUNT 100.0 : PAYEE "Acne" :MEMO "T-1000
rocket booster™)

NI L

#S(CHECK : NUMBER 102 : DATE "1996-11-3" : AMOUNT 300.72 :PAYEE "WB Infirmary" : MEMO
"body cast"))

? (sum checks)
400. 72

In about a page of code, we've built a simple check-writing application with efficient data structures to store checks and
payees. We also have basic 1/0 facilities without any additional effort on our part. And thanks to garbage collection, we
don't have to worry at all about storage deallocation or memory leaks.

Simple macros

The one important feature missing from our check writing program is the ability to save and restore its state. Since the state
is completely contained in three global variables, * CHECKS* , * NEXT- CHECK- NUMBER* , and * PAYEES*, all wereally
haveto doisto use PRI NT to write the values of these variablesto afile, and READ to reload them at alater time.

But with alittle more work we can write a macro that will write our save and restore functions. Then we can use this macro
not only for our check writing program, but also for any program which keeps its state in global variables.

First take alook at the finished macro, then we'll dissect it:

(defmacro def-i/o (witer-name reader-nanme (& est vars))
(let ((file-name (gensynm)
(var (gensym)
(stream (gensyn)))
“(progn
(defun ,witer-nane (,file-nane)
(W th-open-file (,stream,fil e-nane
cdirection :output :if-exists :supersede)
(dolist (,var (list ,@ars))
(decl are (special ,@ars))

http://psg.com/~dlamkins/sl/chapter04.html (22 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

(print ,var ,stream)))
(defun ,reader-nane (,file-namne)
(W th-open-file (,stream,file-nane
:direction :input :if-does-not-exist :error)
(dolist (,var ',vars)
(set ,var (read ,stream))))

t)))

Theinitial LET form defines symbols that will appear in the expanded macro. Each symbol is created by (GENSYM) so
that no other symbol can possibly be the same. This avoids a problem which could arise if we wrote amacro using a
particular symbol as a variable, then called the macro with an argument having the same name as one of the symbolsin the
expansion.

The expanded macro is generated by the * form. The form is returned as the macro's expansion, then eval uated.
Substitutions take place for symbolsfollowing, or, @ Everything else appears literally in the expanded macro.

The expansion of DEF- | / Ois a PROGN form containing two DEFUN forms. We wrap the DEFUNSs like this because a
macro's expansion can only be a single form, and we need to have this macro define two functions.

The macro defines awriter function which loops over the list of the VARS specified in the macro call, printing each in turn
to anamed output file. The reader function loops over the names of the VARS, reading values from an input file and
assigning the values to the named variables. Note that SET evaluates its first argument; thislets us use a variable to contain
the name of the variable to which we want to assign avalue.

Here's how the macro expands to create load and save functions for our check writer program:

? (pprint (macroexpand '(def-i/o save-checks | oad-checks (*checks* *next-check-
nunber * *payees*))))
(PROGN (DEFUN SAVE- CHECKS (#: G2655)
(WTH OPEN-FI LE (#: Q657 #: Q655 : DI RECTI ON : OQUTPUT : | F- EXI STS :
SUPERSEDE)
(DOLI ST (#: Q@656 (LIST *CHECKS* * NEXT- CHECK- NUVMBER* * PAYEES*))
(DECLARE (SPECI AL * CHECKS* * NEXT- CHECK- NUMBER* * PAYEES*))
(PRI NT #: Q2656 #: G2657))))
(DEFUN LOAD- CHECKS (#: G2655)
(WTH OPEN-FI LE (#: Q657 #: Q655 : DI RECTI ON : | NPUT : | F- DOES- NOT- EXI ST
: ERROR)
(DOLI ST (#: G2656 ' (* CHECKS* * NEXT- CHECK- NUVBER* * PAYEES*))
(SET #: Q656 (READ #: &657))))))

And here's how we would use the macro, and the functions it defines, to save and restore the state information for our
program:

? (def-i/0 save-checks | oad-checks (*checks* *next-check-nunber* *payees*))
T

? (save-checks "checks. dat")
NI L

? (makunbound ' *checks*)

http://psg.com/~dlamkins/sl/chapter04.html (23 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

* CHECKS*

? (makunbound ' *next - check- nunber *)
* NEXT- CHECK- NUVBER*

? (makunbound ' *payees*)
* PAYEES*

? * PAYEES*
Error: Unbound vari abl e.

? (l oad-checks "checks. dat")
NI L

? * PAYEES*
("WB Infirmary" "Acne")

Reader macros

Our check-writing application has one small problem. If we use floating point numbers to represent dollars and cents, our
sums could be off by a penny in some cases. What we should really do isto represent all currency in terms of whole
pennies. We can make a reader macro to help with the input of dollar and cent amounts, converting input like $10. 95 into
the corresponding number of pennies.

Here's the code:

(set-macro-character #\$
(1l anbda (stream char)
(declare (ignore char))
(round (* 100 (read stream)))))

The rounding step ensures that the amount is a whole number. Binary floating point numbers can not
precisely represent all decimal fractions. For example, (* 100 9. 95) yields994. 9999999999999
and(* 100 1.10) yields110. 00000000000001 on my Lisp system.

Thissaysto set $ to be amacro character which, when encountered by the reader, calls READ to get a number and return
the nearest whole number after multiplying by 100. It's used like this:

? $9.95
995
? $-7.10
-710

Now that you can enter dollar amounts directly, you may want to modify the check-writing application to print amountsin
whole cents as dollars and cents. To do this, you would redefine the CHECK structure with a custom print function, as
follows:

(defstruct (check

http://psg.com/~dlamkins/sl/chapter04.html (24 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 4

(:print-function
(lanbda (check stream dept h)
(declare (ignore depth))
(format stream "#S(CHECK NUMBER ~S DATE ~S AMOUNT $~, 2, - 2F PAYEE ~S
MEMO ~S) "
(check- nunber check)
(check-dat e check)
(check-anount check)
(check- payee check)
(check-nmeno check)))))
nunber date anount payee nenp)

Then, the $ reader macro and the CHECK print function for its AMOUNT slot complement each other perfectly:

? (make-check :amount $9. 95)
#S(CHECK NUMBER NI L DATE NI L AMOUNT $9. 95 PAYEE NI L MEMO NI L)

Contents | Cover
Chapter 3 | Chapter 4 | Chapter 5

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to the author's
site.

http://psg.com/~dlamkins/sl/chapter04.html (25 of 25)11/3/2006 5:53:03 PM

Successful Lisp - Chapter 5

Chapter 5 - Introducing Iteration

Lisp has severa ways to do iteration. In this section we'll ook at the most common looping constructs. Later, in Chapter
12, well look at mapping, then wel'll take a brief ook at seriesin Chapter 32; both of these are closely related to iteration.

Simple LOOP loops forever...

The simplest loop in Lispisjust a LOOP form wrapped around whatever you want to repeat. Before you try this next bit of
code, know how to interrupt execution of your Lisp system; normally thisis Command-period on a Macintosh or Control-
Break on aPC.

? (1l oop
(print "Look, I'mlooping!'"))
"Look, I'm | ooping!"
"Look, |I'm | ooping!"
"Look, I'm | ooping!"
"Look, I'm | ooping!"
"Look, I'm | ooping!"
"Look, I'm | ooping!"
"Look, I'm | ooping!"
"Look, I'm | ooping!"
... and so on, until you interrupt execution..
Abort ed
?

Thiskind of endless |oop has legitimate applications. Y ou're aready familiar with one: (LOOP (PRI NT (EVAL
(READ)))), Lisp'sread-eval-print loop.

Actually, your Lisp system does some extrathingsin its read-eval-print loop:

. it catchesall errorsto prevent you from inadvertently breaking out of the loop
. It provides a controlled way to exit the loop
. It keepstrack of the most recently entered expressions, results, and printed output

But there's a way out!

Most of the time you write a LOOP form, you'd like to have away out. Fortunately, a RETURN form anywhere inside will
cause control to leave the LOOP; any value you specify becomes the value of the LOOP form:

? (loop
(print "Here | am")
(return 17)
(print "I never got here."))
"Here I am"
17

http://psg.com/~dlamkins/sl/chapter05.html (1 of 4)11/3/2006 5:53:15 PM

Successful Lisp - Chapter 5

RETURN s normally used in aconditional form, like this:

? (let ((n 0))
(1 oop
(when (> n 10) (return))

(print n) (prinl (* n n))
(incf n)))

This example could be done better using a DOT1 VES form, see below. But the combination of LOOP and RETURN offers
the flexibility to return from the middle of aloop, or even from several places within the loop if need be.

Use DOTIMES for a counted loop

To simply loop for some fixed number of iterations, the DOTI MES form is your best choice. The previous example
simplifiesto:

? (dotines (n 11)
(print n) (prinl (* nn)))

©o© L, O

©Ooo~NoOOOoh~wWNEO
H
(o]

DOTI MES always returns NIL (or the result of evaluating its optional third argument).

Use DOLIST to process elements of a list

http://psg.com/~dlamkins/sl/chapter05.html (2 of 4)11/3/2006 5:53:15 PM

Successful Lisp - Chapter 5

Another common use for iteration isto process each element of alist. DOLI ST supports this:

? (dolist (item'(1 2 45 9 17 25))
(format t "~&Dis~:[n't~ ~] a perfect square.~% item (integerp (sqrt item)))
is a perfect square.
isn't a perfect square.
Is a perfect square.
isn't a perfect square.
is a perfect square.
17 isn't a perfect square.
25 is a perfect square.
NI L

©O© b~ DNPRF

In this example, we've done some fancy things with FORVAT. If you want to learn more about what FORMAT
can do, you should look ahead now to Chapter 24.

The preceding code used alist of numbers, but Lisp allows alist to contain any kind of object:

? (dolist (item (1 foo "Hello" 79.3 2/3 ,# abs))
(format t "~&-Sis a ~A~% item (type-of item))

1 is a FI XNUM

FOO is a SYMBOL

"Hel | 0" is a (SI MPLE- BASE- STRI NG 5)

79.3 is a DOUBLE- FLOAT

2/3 is a RATIO

#<Conpi | ed-function ABS #x1E9CC3E> i s a FUNCTI ON

NI L
?

Note how we used the backquote and commato build the list in this example. Do you understand why we did
this? All of the list elements up through the ratio 2/ 3 are self-evaluating; we could have put themin a
quoted list aswe did in the previous example. But #' abs isequivalentto (f uncti on abs) which, when
guoted, isjust alist of two symbols. To get the function itself into the quoted list, we had to force evaluation
of the#' abs form, thus the comma inside the backquoted list.

Like DOTI MES, DOLI ST alwaysreturns NI L (or the result of its optional third argument).

DO is tricky, but powerful

The DOform lets you iterate over multiple variables at the same time, using arbitrary forms to step each variable to its next
value. Here's an example which both iterates over the elements of alist and runs a counter at the same time:

? (do ((which 1 (1+ which))
(list "(foo bar baz qux) (rest list)))
((null list) '"done)
(format t "~&tem~Dis ~S. ~% which (first list)))
Iltem1l is FOO
Iltem2 is BAR
Item 3 i s BAZ

http://psg.com/~dlamkins/sl/chapter05.html (3 of 4)11/3/2006 5:53:15 PM

Successful Lisp - Chapter 5

I[tem4 is QUX
DONE
?

To understand this better, let's ook at the general syntax of DO, and relate its parts to the example:

(do ((varl initl stepl)
(var2 init2 step2)

cl)
(end-test result)
statenent 1

-)
var 1l = whi ch
initl =1
stepl = (1+ which)
var 2 = list
init2 = '(foo bar baz qux)
step2 = (rest list)
end-t est = (null Tlist)
resul t = 'done

statenent 1 (format t "~&tem~Dis ~S. ~% which (first list))

Contents | Cover
Chapter 4 | Chapter 5 | Chapter 6

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to the author's
site.

http://psg.com/~dlamkins/sl/chapter05.html (4 of 4)11/3/2006 5:53:15 PM

Successful Lisp - Chapter 6

Chapter 6 - Deeper into Structures

Structures were introduced in Chapter 3. In this chapter, we'll look at the most useful optional features of structures.

Default values let you omit some initializers, sometimes
Normally, if you create a new structure without specifying a value for some slot, that slot will default to NI L.

? (defstruct foo-struct a b c)
FOO- STRUCT

? (let ((foo-1 (nmake-foo-struct :a 1 :b "tw")))
(print (foo-struct-b foo-1))
(print (foo-struct-c foo-1))
(val ues))

"t WO

NI L

NOTE: Weusethe (val ues) form to suppress the return value from the LET form. Otherwise, we would
have seen one more NI L printed.

In caseswhere NI L is areasonable default value, this behavior is acceptable. But if the normal value of aslot is numeric, for
example, you'd redly like to start with areasonable default value rather than having to add atest in all of the code which uses
astructure. The full form of asot specification isalist of the slot name, its default value, and additional options; specifying a
bare name instead of the complete list is shorthand for "default value of NIL, and no options.”

? (defstruct ship
(nanme "unnamed")
pl ayer
(x-pos 0.0)
(y-pos 0.0)
(x-vel 0.0)
(y-vel 0.0))

SHI P

When we instantiate this structure using (MAKE- SHI P) , the NAME slot defaultsto " unnaned” , the PLAYER slot defaults to
NI L, and the position and velocity slots all default to 0. 0.

Of course, we can still specify slot values to override the defaults:

? (make-ship :nane "Excalibur" :player "Dave" :x-pos 100.0 :y-pos 221.0)

#S(SH P : NAME "Excal i bur” : PLAYER "Dave" :X-POS 100.0 :Y-PCOS 221.0 : X-VEL 0.0 :Y-VEL
0. 0)

Lisp's default printer for structures makes it easy to see the slots and their values. We've given explicit valuesto all of the slots
except the two velocity slots, which have their default values.

Change the way Lisp prints your structures

http://psg.com/~dlamkins/sl/chapter06.html (1 of 5)11/3/2006 5:53:30 PM

Successful Lisp - Chapter 6

To print a structure using other than the default printer, you may define a new print function as a structure option.

? (defstruct (ship
(:print-function
(lambda (struct stream depth)
(decl are (ignore depth))
(format stream "[ship ~A of ~A at (~D, ~D) nmoving (~D, ~D)]"'
(shi p-nane struct)
(shi p-pl ayer struct)
(shi p-x-pos struct)
(shi p-y-pos struct)
(shi p-x-vel struct)
(ship-y-vel struct)))))
(name "unnaned")
pl ayer
(x-pos 0.0)
(y-pos 0.0)
(x-vel 0.0)
(y-vel 0.0))
SH P

? (make-ship :nane "Proud Mary" :player 'CCR)
[ship Proud Mary of CCR at (0.0, 0.0) noving (0.0, 0.0)]

Actually, it's considered bad practice to print something the reader can't interpret. Our use of the brackets around the printed
ship description is not necessarily good or bad, it depends upon how the current read table is specified (we first saw reader
macros in Chapter 3, Lesson 12.

One way to ensure that the reader doesn't get confused is to deliberately print something so as to be unreadable. By
convention, Lisp prints such objects beginning with #<. Y ou could change your format stringtoread " #<shi p ~A of ~A
at (~D, ~D) noving (~D, ~D)>", sotheprior MAKE- SHI P examplewould print #<shi p Proud Mary of
CCR at (0.0, 0.0) nmoving (0.0, 0.0)>.However, since 1990 Lisp systems have had a PRI NT- UNREADABL E-
OBJECT macro which should be used for this purpose. If the printer control variable * PRI NT- READABLY* istrue, PRI NT-
UNREADABLE- OBJECT will signal an error.

;; Use PRI NT- UNREADABLE- OBJECT macro -- changes in bol df ace
? (defstruct (ship
(:print-function
(I anbda (struct stream depth)
(decl are (ignore depth))
(print-unreadabl e-object (struct stream
(format stream "ship ~A of ~A at (~D, ~D) noving (~D, ~D"
(shi p-nane struct)
(shi p-pl ayer struct)
(shi p-x-pos struct)
(shi p-y-pos struct)
(shi p-x-vel struct)
(ship-y-vel struct))))))
(nanme "unnaned")
pl ayer

http://psg.com/~dlamkins/sl/chapter06.html (2 of 5)11/3/2006 5:53:30 PM

Successful Lisp - Chapter 6

(x-pos 0.0)

(y-pos 0.0)

(x-vel 0.0)

(y-vel 0.0))
SHI P

Alter the way structures are stored in memory

Lisp stores structures in an implementati on-dependent manner unless you specify otherwise using a structure option. Y ou have
two choicesif you decide to specify structure storage: store it as a vector (possibly with a particular type for al of the
elements) or as alist. Here, we use the untyped vector option -- the list option is similar:

? (defstruct (bar
(:type vector))
abc)
BAR

? (make- bar)
#(NIL NIL NIL)

Note that the slot names are not stored when you specify the storage type. Thisis probably the biggest advantage for using this
option -- it can save storage in the amount of a machine word per slot per instance. The disadvantage is that Lisp does not
recognize such a structure as a distinct type, and does not create a<st r uct ur e- nanme>- P predicate for you.

If you are satisfied with being able to retrieve the name of the structure, but still want the storage savings associated with
specifying the structure's representation, you can do this:

? (defstruct (bar
(:type vector)
: named)
abc
BAR

? (make- bar)
#(BAR NIL NIL NIL)

Using the list representation option has the drawbacks noted above, but none of the advantages; the backbone of the list
typically adds a machine word of storage per slot when compared to the default representation, which is usually a vector. The
only time it would make sense to explicitly specify alist representation is when the default structure representation is list-
based or when the Lisp implementation imposes some artificial limit on the space reserved for storage of vectors; neither case
applies in modern implementations.

Shorten slot accessor names

Slot accessor names are constructed from the name of the structure and the dlot. If the structure and the slot both have lengthy
names, the accessor names can get unwieldy. Y ou can abbreviate names somewhat by using the : CONC- NAIVE structure
option to specify a name to use instead of the structure name.

? (defstruct (gal axy-class-cruiser-ship
(:conc-nanme gcc-ship-)) ; nanme includes trailing hyphen!

http://psg.com/~dlamkins/sl/chapter06.html (3 of 5)11/3/2006 5:53:30 PM

Successful Lisp - Chapter 6

nane player (x-pos 0.0) (y-pos 0.0) (x-vel 0.0) (y-vel 0.0))
GALAXY- CLASS- CRUI SER- SHI P

? (let ((ship (nmake-gal axy-cl ass-cruiser-ship)))
(print (gcc-ship-x-pos ship)) ; note abbreviated accessor nane
(val ues))

0.0

Allocate new structures without using keyword arguments

For certain structures, it may be more convenient to make a new instance using just alist of arguments instead of keywords
and arguments. Y ou can redefine a structure constructor's argument list using the : CONSTRUCTOR option.

? (defstruct (3d-point
(:constructor
create-3d-point (x vy z)))
XYy z)
3D- PO NT

? (create-3d-point 1 -2 3)
#S(3D-PONT : X 1 :Y -2 :Z 3)

NOTE: The dot values do not default to NI L if you use a: CONSTRUCTOR option!

Most lambda-list options are availabl e to the constructor function -- consult a Lisp reference manual for details.

Define one structure as an extension of another

We use inheritance to define one object in terms of another. Structures permit avery ssmple form of inheritance using the :
I NCL UDE option.

? (defstruct enpl oyee
nane department sal ary social -security-nunber tel ephone)
EMPLOYEE

? (make- enpl oyee)
#S(EMPLOYEE : NAME NI L : DEPARTMENT NI L : SALARY NI L : SOCI AL- SECURI TY- NUMBER NI L :
TELEPHONE NI L)

? (defstruct (nmanager
(:include enpl oyee))
bonus direct-reports)
MANAGER

? (make- manager)
#S(MANAGER : NAME NI L : DEPARTMENT NI L : SALARY NI L : SOCl AL- SECURI TY- NUVBER NI L :
TELEPHONE NI L : BONUS NI L : DI RECT- REPORTS NI L)

All accessors which apply to an EMPLOYEE aso apply to a MANAGER, and a MANAGER instance is also an EMPLOYEE
instance. Notice in the following example how the. . . - NAME accessors for both MANAGER and EMPL OYEE reference the

http://psg.com/~dlamking/sl/chapter06.html (4 of 5)11/3/2006 5:53:30 PM

Successful Lisp - Chapter 6

same dlot.

? (setq ngr (nmake-manager))
#S(MANAGER : NAME NI L : DEPARTMENT NI L : SALARY NI L : SOCI AL- SECURI TY- NUMBER NI L :
TELEPHONE NI L : BONUS NI L : DI RECT- REPORTS NI L)

? (setf (manager-nanme ngr) "Buzz")
"Buzz"

? (enpl oyee- nane nyr)
"Buzz"

A structure may have one : | NCLUDE option, at most. This limits the ability of structuresto model the real world by
describing inheritance. CLOS objects allow multiple inheritance, and have many other useful and convenient features. We will
get our first look at CLOS in Chapter 7.

Contents | Cover
Chapter 5 | Chapter 6 | Chapter 7

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to the author's site.

http://psg.com/~dlamking/sl/chapter06.html (5 of 5)11/3/2006 5:53:30 PM

Successful Lisp - Chapter 7

Chapter 7 - A First Look at Objects as Fancy
Structures

We first encountered structures in Chapter 3, then learned about some of their optional behavior in
Chapter 6. In this chapter we'll start to learn about objects in the Common Lisp Object System (CLOS).
For now, we'll ook at just the ways objects can be used to structure data. Later, in Chapter 14, welll
learn more about CLOS.

Hierarchies: Classification vs. containment

When you program with objects you will attempt, in some way, to create amodel of some portion of the
real world. When you do this, you'll probably notice that some objects are made up of smaller parts.
Each part has its own identity; the part isidentifiable by itself, separate from any object that it may be a
part of. Furthermore, a part may be made from smaller parts. If you drew a picture of the component
relationships among all the parts of some complex object, you'd find that they formed a hierarchy. The
fully-assembled object will be at the top of the hierarchy (the first level), all of its pieces will be at the
second level, all of the pieces that make up the second-level parts will be at the third level, and so on.
This hierarchy is a containment hierarchy; each level represents an object, and the next lowest level
represents the objects that are parts of the object at the higher level. An object at a higher level contains
(or has as parts) some objects at alower level in the hierarchy, and an object at alower level is contained
by (or is part of) some object at a higher level.

Containment hierarchies are important because they model "has-a" and "is-a-part-of" relationships
among objects. These relationships simplify your program's model of the real world by letting you think
in terms of relatively small component parts, rather than having to model asingle, highly complex
object. Modeling by containment also pays off when you can model a similar object in terms of a
different combination of components.

An object may have certain characteristics which can not be separated from the object. For
example, an object may have color, size, mass, velocity, and temperature. These
characteristics are not component parts of the object; they can not be separated from the
object, nor can they be combined to create new objects. These characteristics are
attributes of the object.

The other kind of hierarchy you'll work with as an object programmer is a classification hierarchy. Ina
classification hierarchy, objects are connected by "is-a-kind-of" (or more concisely, "is-a' or "a-k-0")
relationships. These relationships also have different names depending upon our point of view: if A isa
kind of B then A isaspecialization of B, while B isageneralization of A.

http://psg.com/~dlamkins/sl/chapter07.html (1 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

With the explosion of interest in object programming, many specialized lexicons have
grown up to support specific methods and languages. After you eliminate the terms that
describe special features of a particular methodology or language implementation, what's
left is usually arenaming of containment and classification hierarchies (and the
relationships supported by each) and some way to specify object attributes. In fact, the
most common renaming isto refer to aclassification hierarchy asa'class" hierarchy.

Use DEFCLASS to define new objects

A CLOS object is defined by a DEFCLASS form. DEFCLASS only describes an object. To create an
instance of an object, you can use a MAKE- | NSTANCE form.

Here's how you would define atrivial object:

? (defclass enpty-object () ())
#<STANDARD- CLASS EMPTY- OBJECT>

Thisclassis not very interesting; the () are placeholders for things to come. Also, note that this
particular Lisp system prints #<STANDARD- CLASS EMPTY- OBJECT> in response to the DEFCLASS
form. Thisis unreadable -- the reader signals an error whenever it reads aform that begins with #< --

but it lets you know that something useful happened.

Once you've defined a class, you can use it to make objects. Most forms that require a class will accept
the name of the class, or you can use FI ND- CLASS to retrieve the actual class, given its name. MAKE-
| NSTANCE creates a new object, given a class name or aclass:

? (make-instance 'enpty-object)

#<EMPTY- OBJECT #x3CA1206>

? (make-instance 'enpty-object)

#<EMPTY- OBJECT #x3CAl1DFE>

? (find-class 'enpty-object)

#<STANDARD- CLASS EMPTY- OBJECT>

? (make-instance (find-class 'enpty-object))
#<EMPTY- OBJECT #x3CB397E>

Again, the Lisp system responds with an unreadable object. This time, the response includes the storage
address of the object. Most Lisp systems have a default printer for CLOS objects that works like this,
even though the details may differ slightly. The important thing to note is that MAKE- | NSTANCE
creates a new object each timeit is called.

Even though the object printer shows a different address for each object, you should not
depend upon the printed representation to identify an object. Lisp systems can (and do)

http://psg.com/~dlamkins/sl/chapter07.html (2 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

change the address of objects at runtime. The only way to reliably compare the identity of
an object iswith an identity test such as EQ (see Chapter 17).

Objects have slots, with more options than structures

Our first DEFCLASS form defined an object that wasn't good for much of anything. Now we'll see how
to expand a class definition so that our objects will have named dlots. These serve the same purpose as
slotsin structures (Chapter 3), they simply store data. The data could be attributes of the object, or

contained objects, or references to related objects.

To define a class for an object with dlots, we start with a DEFCLASS form and add slot definitions, like
this:

? (defclass 3d-point () (x y X))
#<STANDARD- CLASS 3D- PO NT>

Here, we've defined aclass 3D- PO NT whose objects will have three dots, named X, Y, and Z. This
looks like it might be similar to a structure definition, such as

(defstruct 3d-point-struct x y z)

but the class actually has less functionality than the structure. The class does not define default accessors
for dots. To access the dots, you would have to use SLOT- VALUE asin this example:

? (let ((a-point (nmake-instance '3d-point)))
(setf (slot-value a-point 'x) 0) ; set the X slot
(slot-value a-point 'Xx)) ; get the X slot
0

If you try to get the value of a slot before setting it, Lisp will signal an error because the slot is unbound
(i.e. it has no value).

? (let ((a-point (make-instance '3d-point)))

(sl ot-value a-point 'y))
> Error: Slot Y is unbound in #<3D PO NT #x3CD3216>

Controlling access to a slot helps keep clients honest

Getting and setting slots with SLOT- VALUE forms s slightly cumbersome when compared to the
accessors created automatically for slotsin a structure. Fortunately, you can specify accessors for each

http://psg.com/~dlamkins/sl/chapter07.html (3 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

slot when you define aclass.

(defclass 3d-point ()
((x :accessor point-x)
(y :accessor point-y)
(z :accessor point-z)))

Then, object slot access |ooks just like structure slot access.

? (let ((a-point (nmake-instance '3d-point)))
(setf (point-x a-point) 0)
(poi nt-x a-point))

0

Y ou can also specify separate accessor names for reading and writing aslot.

? (defclass 3d-point ()
((x :reader get-x :witer set-x)
(y :reader get-y :witer set-y)
(z :reader get-z :witer set-z)))
#<STANDARD- CLASS 3D- PO NT>
? (let ((a-point (make-instance '3d-point)))
(set-z 3 a-point)
(get-z a-point))
3

Do you see the difference between specifying : accessor and: wri t er ? Notice that the slot writer is
not used with SETF. Also note the order of argumentsto the slot writer: first the value, then the object.

It's useful to have all of these options for slot access when you're writing a complex program. Through
various combinations of slot accessor definitions, you can give a slot read/write, read-only, write-only,
or no access. You might think that the last two cases wouldn't be useful, but they are. A write-only slot
might provide information that is only useful to establish a state within the object in responseto a
request from the object's client -- a seed for a random number generator, for example. A no-access slot
can maintain information that should be known only by the internal workings of the object; functions
that manipulate the object's internal state can still access the slot using SLOT- VALUE.

The existence of SLOT- VALUE is anathema to some object designers, who believe that the privacy of
an object's internal information should be absolutely protected against client access. Lisp requires the
exercise of programmer discipline to protect an object's private information. As arule of thumb, you
should use SLOT- VAL UE to manipulate private slots, and provide appropriate named accessors for all
other slots. Having done so, any appearance of a SLOT- VALUE form in aclient program signals a

http://psg.com/~dlamkins/sl/chapter07.html (4 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

violation of your intent to hide some object's private state.

Override a slot accessor to do things that the client can't

In this section we'll see how to define special -purpose accessors that do more than just read and write
slot values. Think of this as a sneak preview of Chapter 14.

Let's define a sphere. A sphere is defined by its position in 3-space and by itsradius. We'd like to query
the sphere for its volume. Finally, we'd like to be able to move -- or trand ate -- the sphere's position by a
specified amount without having to explicitly calculate its new coordinates. We start with this class
definition:

? (defcl ass sphere ()

((x :accessor Xx)

(y :accessor y)

(z :accessor z)

(radi us :accessor radius)

(vol unme :reader vol une)

(translate :witer translate)))
#<STANDARD- CLASS SPHERE>

The accessorsfor X, Y, Z, and RADI US need no further explanation, but the accessors for VOLUVE and
TRANSLATE aren't yet useful; the VOLUVE reader will fail because its slot is unbound and the
TRANSLATE writer won't do anything except to set its slot.

Welll finish the definition of our sphere by first having VOLUME return a value calculated from the
sphere'sradius. There are two ways to do this: have VOLUME read the sphere's radius and calculate the
corresponding volume, or have RADI US calculate the volume and set the volume slot for later use by
the VOLUME accessor. Here are both solutions -- if you try this out, pick just one:

: Vol une from Radi us
(def met hod vol une ((object sphere))
(* 4/ 3 pi (expt (radius object) 3)))

; Radius to Vol une
(def nmet hod radi us ((newradius nunber) (object sphere))
(setf (slot-value object 'radius) newradius)
(setf (slot-value object 'vol une)
(* 4/ 3 pi (expt newradius 3))))

Thisis not the best example of Lisp style. Y ou're defining a default reader or writer
method in the DEFCLASS form, then redefining the method to add special behavior. Y our

http://psg.com/~dlamkins/sl/chapter07.html (5 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

Lisp system may warn you about the attempted redefinition; it's OK to continue from the
warning and redefine the method.

One way to avoid the problem isto omit the slot option that defines the default : READER
(for VOLUME) or : WRI TER (for TRANSLATE) in the DEFCLASS form, but then you lose
the documentation provided by these declarations. We'll see some other declarationsin
Chapter 14 that can help to improve readability.

The DEFMETHOD form defines a function which applies only to certain argument types. In this case, the
VOLUME method applies only to SPHERE objects, and the RADI US method applies only to a NUVBER
(the new radius) and a SPHERE. The VOLUVE method computes the volume from the sphere's radius
each timeit is called. The RADI US method computes the sphere's volume each time the radius is set; the
values of both radius and volume are stored in the sphere's slots by the SLOT- VALUE forms.

Y ou can think of a default slot reader and writer as being defined like this (but the compiler probably
generates better code if you just use the default accessors created automatically by the : READER and :
V\RI TER slot options):

. Default slot reader (illustration only)
(def nmet hod sl ot-reader ((object object-class))
(sl ot-val ue object 'slot-nane))

; Default slot witer (illustration only)
(def method slot-witer (newvalue (object object-class))
(setf (slot-value object 'slot-nane) new val ue))

Define classes with single inheritance for specialization

Specidization is one of the most important concepts in object programming. Specialization allows you
to define an object in terms of another object by describing features that are new or different; the base
functionality of the object isinherited from the definition of the parent.

In the simplest kind of specialization, single inheritance, a child inherits traits from just one parent. As
an example, we'll define some basic two dimensional objects using a single inheritance hierarchy.

(defcl ass 2d-object () ())

(def cl ass 2d-cent ered-obj ect (2d-object)
(x :accessor Xx)
(y :accessor y)
(orientation :accessor orientation)

http://psg.com/~dlamkins/sl/chapter07.html (6 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

(def cl ass oval (2d-centered-object)
(axis-1 :accessor axis-1)
(axi s-2 :accessor axis-2))

(def cl ass regul ar-pol ygon (2d-cent ered-obj ect)
(n-sides :accessor nunber-of -si des)
(size :accessor size))

The inheritance graph for these four classes looks like this:

2d-object
I
2d-centered-object

T
oval regular-polygon

The 2D- OBJECT classis a placeholder from which we might later derive other 2D objects, e.g. lines
and points. A 2D- CENTERED- OBJECT has a central reference position specified by its X and Y
attributes, and an orientation -- the amount the object is rotated about its central position. The OVAL and
REGULAR- POLYQGON classes inherit from 2D- CENTERED- OBJ ECT, retaining the position and
orientation attributes of the parent class and adding attributes appropriate to the geometry of the derived
objects.

Multiple inheritance allows mix-and-match definition

CLOS supports multiple inheritance, which lets a class inherit traits from more than one parent. Thisis
useful for a programming style that starts with common functionality and then "mixesin" extensionsto
the basic behavior.

As an example, let's suppose that we'd like to write code to render the 2D objects we started to definein
the previous section. Let's say that we'd like to achieve two goals simultaneously: we'd like to render
Images on either a bitmapped or a Postscript display device, and we'd like to render the objects either on
aplane surface or asaprojection in a"2.5D" space, where each 2D object has aZ depth, and the system
provides a choice of view positions. These requirements are not at all interdependent; one deals with the
details of rendering objects on adisplay device, while the other deals with transformations of the objects
that must occur prior to rendering.

One way to address these requirements is by using multiple inheritance. One set of of mixins handles
transforms, while another set of mixins handles the details of rendering to a display device. With a
carefully designed protocol for sharing information, new combinations of transforms and renderers can
be added to our 2D objects without rewriting any existing code.

http://psg.com/~dlamkins/sl/chapter07.html (7 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

We saw in the previous section how single inheritance is written using DEFCLASS, by putting the
parent's class name within the first parentheses following the new class name. Classes that inherit from
multiple parents ssimply list al of the parents. Thus to define all the combinations of transform and
rendering for our REGULAR- POL YGON class, we could do something like this:

(defclass renderer-mxin () (...))

(defclass bitmap-renderer-mxin (renderer-mxin) (...))

(def net hod render (description (self bitmap-renderer-mxin)) ...)
(defcl ass postscript-renderer-mxin (renderer-mxin) (...))
(def met hod render (description (self postscript-renderer-mxin)) ...)

(defclass transformmxin () (...))
(defclass plane-transformmxin (transformmxin) (...))

(def method transform ((self plane-transformmxin)) ...)
(defclass z-transformmxin (transformmxin) (...))
(def method transform ((self z-transformmxin)) ...)

(def met hod draw ((self regul ar-pol ygon))
(render (transformself) self))

(def cl ass regul ar-pol ygon-bnr-pt (regul ar-pol ygon
bi t map-renderer-m xin
pl ane-transform m xi n)

(...))

(def cl ass regul ar- pol ygon- psr-pt (regul ar-pol ygon
post script-renderer-mxin
pl ane-transform m xi n)

(...))

(def cl ass regul ar-pol ygon-bnr-zt (regul ar-pol ygon
bi t map-renderer-m xin
z-transformm xin)

(...))

(def cl ass regul ar- pol ygon- psr-zt (regul ar-pol ygon
post script-renderer-mxin
z-transformm xin)

(...))

Now our class hierarchy looks like this:

http://psg.com/~dlamkins/sl/chapter07.html (8 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

2d-ohiject renfferer—mixin tfransfomm-mixin
I
2d-centered-object hitrmap-renderer-rmixin
. plane-fransform-mixin

oval regular-polygon postsoript-renderer-rmixin

Z-tfransfomm-mixin

regular- polygon-bmr-pt regular-polygon-psr-zt
regular-polygon-pst-pt - egyjar-polygon- bzt

I've shown a few method definitions to give you an idea for how the drawing protocol interacts with the
mixin definitions to generate the expected behavior. The DRAWmMethod specialized on the REGULAR-
POLYGON class provides the protocol: it calls TRANSFORMto apply atransform to itself, then RENDER
to draw itself, using some (as yet unspecified) description generated by TRANSFORM

Now let's assume that we've created an instance of REGULAR- POLYGON- BMR- PT and have called the
DRAWmMethod:

(let ((poly (make-instance 'regular-polygon-bnr-pt ...)))
(draw poly))

The DRAWmMethod is not specialized on the REGULAR- POLYGON- BVR- PT class, so we invoke the
more general method specialized on REGULAR- POLYGON. This DRAWmethod then attempts to invoke
methods TRANSFORMand RENDER which are specialized on the REGULAR- POLYGON- BVR- PT
class; these methods are defined, so they provide the mixin behavior we'd expect.

Asyou can see from this very simple example, mixins are a powerful tool for object programming.
Having predefined a very ssmple protocol -- the DRAWmMethod which invokes TRANSFORMand
RENDER -- we can add new behaviors to our system by defining additional mixins. The original codeis
unchanged. Because Lisp can add definitions dynamically, you don't even have to stop your software to
extend it in this manner.

Options control initialization and provide documentation

By default, an object's slots are unbound in a new object. In many cases it would be more useful to give
slots some meaningful initial value. For example, our 3D- PO NT could be initialized to the origin.

(defclass 3d-point ()
((x :accessor point-x :initformO0)
(y :accessor point-y :initformO0)
(z :accessor point-z :initform0Q)))

http://psg.com/~dlamkins/sl/chapter07.html (9 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

The: I NIl TFORMslot option provides avalue for the slot at the time the object is created. The
initialization form is evaluated every timeit isused to initialize aslot.

Y ou might also want to provide specific initialization arguments when an object is created. To do this,
usethe: | NI TARGSlot option.

(defclass 3d-point ()
((x :accessor point-x :initformO :initarg :Xx)
(y :accessor point-y :initformO :initarg :y)
(z :accessor point-z :initformO :initarg :2)))

To create a3D- PO NT object using explicit initializers, you'd do something like this:
(make-instance '3d-point :x 32 :y 17 :z -5)

Because the class definition includes both : | NI TFORMand : | NI TARG options, the slot will still get its
default value if you omit an explicit initializer.

Slot definitions also alow : DOCUVENTATI ON and : TYPE options.

(defclass 3d-point ()
((x :accessor point-x :initformO :initarg :x
- docunentation "x coordinate" :type real)
(y :accessor point-y :initformO :initarg :y
- docunentation "y coordinate" :type real)
(z :accessor point-z :initformO :initarg :z
- docunentation "z coordinate" :type real)))

The: TYPE option may be used by the compiler to assist in code optimization or to create runtime tests
when setting slots. However, this behavior may vary among Lisp compilers, and the standard does not
require any interpretation of the option. Therefore, it isbest to think of this as additional documentation
to the person reading your program.

This is only the beginning...

In Chapter 14 we'll examine methods in greater depth and see how to associate behaviors with objects.

Contents | Cover
Chapter 6 | Chapter 7 | Chapter 8

http://psg.com/~dlamkins/sl/chapter07.html (10 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 7

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter07.html (11 of 11)11/3/2006 5:53:35 PM

Successful Lisp - Chapter 8

Chapter 8 - Lifetime and Visibility

In this chapter we'll see how lifetime and visibility affect the values of Lisp variables during execution.
Thisis pretty much like local and global variablesin other languages, but Lisp's specia variables change
things. This chapter also sets the stage for understanding that lifetime and visibility aren't just for
variables,

Everything in Lisp has both lifetime and visibility

Every object in Lisp has both lifetime and visibility. We'll see why thisisimportant in the following
sections.

Lifetime: Creation, existence, then destruction

An object'slifetime is the period between its creation and destruction. Some objects have fleeting
lifetimes, limited to the form in which they appear. Other objects are created as soon as the program
begins running, and are not destroyed until the program finishes. And others enter and leave existence
according to still other rules.

Visibility: To see and to be seen by

An object is either visible or not visible at a particular point in your program. Sometimes visibility is
controlled by the execution path of the program. But for most objectsin Common Lisp, visibility is
determined by the textual arrangement of your program; thisis good, because you can reason about
visibility just by reading a program, without having to first reason about the program's control flow.

The technical names: Extent and Scope

When you read language specifications for Common Lisp, you'll see the technical terms extent and
scope used in place of lifetime and visibility. | wanted to introduce these concepts first using the non-
technical terms because | believe them to be more evocative. But you should get used to reading about
extent and scope. Remember:

lifetimeisto extent
as
visibility isto scope

Really easy cases: top-level defining forms

http://psg.com/~dlamkins/sl/chapter08.html (1 of 4)11/3/2006 5:53:44 PM

Successful Lisp - Chapter 8

Top-level defining forms are easy. The objects so defined have indefinite extent and scope. Thisisa
fancy way of saying that objects defined by top level forms "always' exist and are visible (or at |east
potentially accessible, as I'll explain shortly) everywhere in the program.

Practically, what this meansis that every object defined by atop level form exists for aslong as the
program runs. The object comes into existence when the top level form is evaluated. If the form was
compiled into afile, then the object created by the form comes into existence when the compiled fileis
loaded.

An object having indefinite scope is visible everywhere in your program. It doesn't matter whether the
object was created in adifferent source file or at adifferent time -- even if it was created after you define
afunction that references the top level object (although some Lisp compilers will issue awarning when
you do this, the code will always behave properly if you evaluate the object's defining form before
evaluating the function that references the object).

If you're familiar with the concept of lexical scope as it applies to programming
languages, you're probably confused by the notion of indefinite scope. If | introduce an
object whose name shadows the name of an object in an outer scope, then that outer object
iIs"not visible" in the inner scope. And you're right, up to a point.

Lisp makes avery clear and explicit distinction between an object and its name. We say
that an object is bound to a name, or that a (named) binding is established for an object.
And itisvery truethat abinding in an inner lexical scope may shadow abinding in an
outer scope. However, the scope of the outer object extends into the inner scope, even
though it isinaccessible via its shadowed binding. Thisis an important distinction,
because an object may have more than one binding, and the object must remain accessible
viaany binding which has not been lexically shadowed.

Scope and extent of parameters and LET variables

Objects bound by function parameters and LET forms have lexical scope. Their bindings are visible
beginning at a certain textual location in the defining form and continuing through the textual end of the
defining form. Any reference to atextually identical name from outside of the defining form must refer
to adifferent binding. A nested defining form may declare a binding that shadows an enclosing binding
to atextually identical name.

Thisisadightly more rigorous restatement of concepts introduced in Chapter 3, L esson 6.
If you need to refresh your memory, this would be a good time to go back and review the
examplesin that short passage.

http://psg.com/~dlamkins/sl/chapter08.html (2 of 4)11/3/2006 5:53:44 PM

Successful Lisp - Chapter 8

Slightly trickier: special variables

Specia variables (also known by the more technically correct term dynamic variables) have dynamic
scope. This means that a binding is created for a special variable as aresult of executing some form in
your program. The scope of the dynamic binding extends into any form called (directly or indirectly) by
the form which established the dynamic binding.

The extent of a special variable lasts indefinitely, until the form that created the dynamic binding is no
longer a site of active program execution -- in other words, until the defining form (and all of the forms
called by it) finishes executing. If the dynamic binding is created by atop level form, the extent isthe
same as described previously for top level defining forms.

? (def paraneter *ny-special -variable* 17)
* MY- SPECI AL- VARI ABLE*
? (defun show ny-special ()
(decl are (special *ny-special -vari abl e*))
(print *ny-special -vari abl e*)
nil)
SHOW MY- SPECI AL
? (defun do-sonet hi ng-el se ()
(show ny-special))
DO SOVETHI NG ELSE
? (defun dynam cal | y- shadow ny-speci al ()
(let ((*ny-special-variable* 8))
(do- sonet hi ng-el se))
(show ny-special))
DYNAM CALLY- SHADOW MY- SPECI AL
? (dynam cal | y- shadow ny- speci al)

8
17
NI L

When reading the above, pay special attention to DO- SOVMETHI NG- EL SE -- this calls SHOW MY-
SPECI AL. SHOW MY- SPECI AL would normally see the lexical value of * My- SPECI AL-

VARI ABLE* -- 17 -- except for the declaration which says that * MY- SPECI AL- VARI ABLE* isa
special variable.

DYNAM CALLY- SHADOW MY- SPECI AL binds* MY- SPECI AL- VARI ABLE* to the value 8, then
calls DO- SOVETHI NG- EL SE, which in turn calls SHOW MY- SPECI AL. At this point, the LET binding
of * My- SPECI AL- VARI ABLE* isnot lexically apparent to the code in SHOW MY- SPECI AL. Y «t,
because the binding is declared special at the point of reference, and because the binding LET form is

http://psg.com/~dlamking/sl/chapter08.html (3 of 4)11/3/2006 5:53:44 PM

Successful Lisp - Chapter 8

still active when DO- SOVETHI NG- EL SE calls SHOW MY- SPECI AL, the dynamic binding of 8 (rather
than the lexical binding of 17) is printed.

Later during execution, the second call to SHOW MY- SPECI AL happens outside of the LET form, and
the top level value of * MY- SPECI AL- VARI ABLE* -- 17 -- is printed.

Strictly speaking, the (DECLARE (SPECI AL ... formisnot necessary in SHOWM My-
SPECI AL -- the DEFPARANMETER form has the side effect of proclaiming its variable to
be special. However, the added declaration adds redundant documentation at the point of
use of the special variable. Furthermore, some Lisp compilers will issue awarning
(typicaly: "Undecl ared free vari abl e assuned speci al ") that iseasily
silenced by adding the declaration.

Contents | Cover
Chapter 7 | Chapter 8 | Chapter 9

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter08.html (4 of 4)11/3/2006 5:53:44 PM

Successful Lisp - Chapter 9

Chapter 9 - Introducing Error Handling and Non-
Local Exits

In this chapter we'll see some of the specialized control flow forms provided by Common Lisp.

UNWIND-PROTECT: When it absolutely, positively has to run

One of the challenges of writing robust programs is to make sure that important parts of your code
always run, even in the presence of errors. Usually, thisis most important when you're allocating, using
and releasing resources such as files and memory, like this:

; Setup

Al | ocate sone resources

Open sone files

; Process

Process using files and storage (may fail)
; O eanup

Close the files

Rel ease the resources

If the processing step might fail (or be interrupted by the user) you should make sure that every possible
exit path still goes through the cleanup section to close the files and rel ease the storage. Better still, your
program should be prepared to handle errors that occur during the setup phase as you all ocate storage
and open files, since any of these operations might also fail; any partially completed setup should still be
undone in the cleanup section.

Lisp's UNW ND- PROTECT form makes this especialy easy to do.

(let (resource stream
(unwi nd- pr ot ect

(progn

(setq resource (allocate-resource)
stream (open-file))

(process stream resource))

(when stream (cl ose stream)

(when resource (deal |l ocate resource))))

Here's what happens. The LET binds RESOURCE and STREAMto NI L -- we'll usethe NI L value to
mean that there has been no resource allocated or file opened. The first form in the UNW ND- PROTECT

http://psg.com/~dlamkins/sl/chapter09.html (1 of 5)11/3/2006 5:54:32 PM

Successful Lisp - Chapter 9

isa"protected” form; if control leaves the protected form via any means, then the rest of the forms -- the
"cleanup” forms -- are guaranteed to be executed.

In our example, the protected form is a PROGN that calls ALLOCATE- RESOURCE and OPEN- FI LE to
set our local variables, then PROCESS uses these resources. SETQ assigns values sequentially to our
local variables: (ALLOCATE- RESOURCE) must succeed before a value can be assigned to
RESOURCE, then OPEN- FI LE must succeed before its value can be assigned to STREAM A failure (i.e.
an interrupt or error) at any point in this sequence will transfer control out of the protected form.

If the initializations succeed and PROCESS returns normally, control continues into the cleanup forms.

If anything causes the protected form to exit -- for example, an error or an interrupt from the keyboard --
control istransferred immediately to the first cleanup form. The cleanup forms are guarded by WHEN
clauses so we won't try to close the stream or deallocate the resource if an error caused them to never be
created in the first place.

Gracious exits with BLOCK and RETURN-FROM

The BLOCK and RETURN- FROMforms give you a structured lexical exit from any nested computation.
The BLOCK form has a name followed a body composed of zero or more forms. The RETURN- FROM
form expects a block name and an optional (the default isNI L) return value.

? (defun bl ock-deno (fl ag)
(print 'before-outer)
(bl ock outer
(print 'before-inner)
(print (block inner
(if flag
(return-fromouter 7)
(return-frominner 3))
(print 'never-print-this)))
(print "after-inner)
t))
BLOCK- DEMO
? (bl ock-deno t)

BEFORE- QUTER
BEFORE- | NNER

.

? (bl ock-deno nil)

BEFORE- OQUTER

http://psg.com/~dlamkins/sl/chapter09.html (2 of 5)11/3/2006 5:54:32 PM

Successful Lisp - Chapter 9

BEFORE- | NNER
3

AFTER- | NNER
T

When we call BLOCK- DEMOwith T, the | F statement's consequent -- (ret urn-from outer 7) --
immediately returns the value 7 from the (BLOCK OUTER . . . form. Calling BLOCK- DEMOwith

NI L executes the aternate branch of thel F-- (return-from i nner 3) -- passing thevalue 3 to
the PRI NT form wrapped around the (BLOCK | NNER . . . form.

Block names have lexical scope: RETURN- FROMtransfers control to thei nner nost BLOCK with a
matching name.

Some forms implicitly create a block around their body forms. When a name is associated with the form,
such as with DEFUN, the block takes the same name.

? (defun bl ock-deno-2 (fl ag)
(when fl ag
(return-from bl ock-denp-2 nil))
t)
BLOCK- DEMO- 2
? (bl ock-denon-2 t)
NI L
? (bl ock-deno-2 nil)
T

Other forms, such as the simple LOOP and DOTI IVES, establish ablock named NI L around their body
forms. You can return from aNl L block using (RETURN- FROM NI L .. .),or just
(RETURN . ..).

? (let ((i 0))
(1 oop
(when (> i b5)
(return))
(print 1)
(incf i)))

A WNPEFO

http://psg.com/~dlamkins/sl/chapter09.html (3 of 5)11/3/2006 5:54:32 PM

Successful Lisp - Chapter 9

5
NI L
? (dotines (i 10)
(when (> i 3)
(return t))
(print 1))

— W NPFO

Escape from anywhere (but not at any time) with CATCH and
THROW

So BLOCK and RETURN- FROMare handy for tranferring control out of nested forms, but they're only
useful when the exit points (i.e. block names) are lexically visible. But what do you do if you want to
break out of achain of function calls?

; WARNING This won't work!
(defun bad-fn-a ()
(bad-fn-hb))

(defun bad-fn-b ()
(bad-fn-c))

(defun bad-fn-c ()
(return-frombad-fn-a)) ; There is no bl ock BAD FN- A visi bl e here!

Enter CATCH and THROW which let you establish control transfers using dynamic scope. Recall that
dynamic scope follows the chain of active forms, rather than the textual enclosure of one form within
another of lexical scope.

? (defun fn-a ()
(catch 'fn-a
(print 'before-fn-b-call)
(fn-Db)
(print "after-fn-b-call)))
FN- A
? (defun fn-b ()
(print 'before-fn-c-call)

http://psg.com/~dlamkins/sl/chapter09.html (4 of 5)11/3/2006 5:54:32 PM

Successful Lisp - Chapter 9

(fn-c)
(print "after-fn-c-call))
FN- B
?(defun fn-c ()
(print 'before-throw)
(throw 'fn-a 'done)
(print "after-throw))
FN-C
? (fn-a)

BEFORE- FN- B- CALL
BEFORE- FN- C- CALL
BEFORE- THROW
DONE

Making sure files only stay open as long as needed

Opening afile just long enough to process its datais a very common operation. We saw above that
UNW ND- PROTECT can be used to ensure that the file gets properly closed. As you might expect, such
acommon operation has its own form in Lisp.

(W th-open-file (stream"file.ext" :direction :input)
(do-sonet hi ng-wi t h-stream strean))

W TH OPEN- FI LE wraps an OPEN and CLOSE form around the code you provide, and makes sure
that the CLOSE gets called at the right time. All of the options available to OPEN may be used in W TH-
OPEN- FI LE -- I've shown the options you'd use to open afile for input.

Contents | Cover
Chapter 8 | Chapter 9 | Chapter 10

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter09.html (5 of 5)11/3/2006 5:54:32 PM

Successful Lisp - Chapter 10

Chapter 10 - How to Find Your Way Around, Part 1

In this chapter, you'll learn how to find your way around Common Lisp without resorting so often to the
manuals. (You do read the fine manuals, don't you?)

Oh, there's one thing you should keep in mind while you're reading this chapter: al of these tools work
equally well for the built-in functionality of your Lisp system and for all of the Lisp programs that you
write.

APROPQOS: I don't remember the name, but | recognize the face

Common Lisp defines 978 symbols. Whatever implementation you use probably defines hundreds of
additional symbols for language extensions, additional libraries, a graphical user interface, etc. Areyou
going to remember the names of all these symbols? Not likely...

What you can do isto remember part of the name. Thisis pretty easy, because the language and library
designers have alimited memory (just like you and me) and they tend to name related objects with
similar names. So, most of the mapping functions (see Chapter 12) will have MAP in their names, the

GUI library will probably have W NDOWin the names of all the functions, macros, and variables having
something to do with windows, and so on.

Once you have agood guess at a part of aname, you can find all of the matching names by using a very
handy tool named APROPCS.

? (apropos "MAP" :cl)
MAP, Def: FUNCTI ON

MAP- | NTO, Def: FUNCTI ON
MAPC, Def: FUNCTI ON
MAPCAN, Def: FUNCTI ON
MAPCAR, Def: FUNCTI ON
MAPCON, Def: FUNCTI ON
MAPHASH, Def: FUNCTI ON
MAPL, Def: FUNCTI ON
MAPLI ST, Def: FUNCTI ON

APROPQCS expects a string or a symbol -- this provides the fragment of the name that you'd like to find.
An optional second argument designates a package; use it if you'd like to limit your search to the
symbolsin aparticular package. The package designator can be a string or symbol matching the name or
nickname of a package (see Chapter 3, Lesson 10), or it can be the package object itself. If you omit the

package designator, then APROPOS will search for symbolsin all packages.

http://psg.com/~dlamkins/sl/chapter10.html (1 of 5)11/3/2006 5:54:40 PM

Successful Lisp - Chapter 10

Y our Lisp implementation may produce output that |ooks somewhat different from that shown here.
Generally, you'll see the symbol names listed with a very brief description of the global object named by
the symbol.

Here's an example of the output from APROPOS on my Lisp system when | search without a package
designator:

? (apropos " SEQUENCE")
TOOLS: : BRONSER- SEQUENCE- TABLE
CCL: : CHECK- SEQUENCE- BOUNDS, Def: FUNCTI ON
| TERATE: : CHECK- SEQUENCE- KEYWORDS, Def: FUNCTI ON
TOOLS: : CLASS- BRONSER- SEQUENCE- TABLE
| TERATE: : CLAUSE- FOR- | N SEQUENCE- 0, Def: FUNCTI ON
| TERATE: : CLAUSE- FOR- | NDEX- OF- SEQUENCE- 0, Def: FUNCTI ON
CCL: : CONSED- SEQUENCE
; many lines omtted
STREAM READ- SEQUENCE, Def: STANDARD- GENERI C- FUNCTI ON
STREAM VRl TE- SEQUENCE, Def: STANDARD- GENERI C- FUNCTI ON
DEFSYSTEM : SYSTEMS- SEQUENCE- DI ALOG- | TEM
TAB- SEQUENCE- | TEM
TABLE- SEQUENCE, Def: STANDARD- GENERI C- FUNCTI ON
: TABLE- SEQUENCE, Val ue: : TABLE- SEQUENCE
SETF: : | CCL: : TABLE- SEQUENCE| , Def: STANDARD- GENERI C- FUNCTI ON
VRI TE- SEQUENCE, Def: FUNCTI ON

Notice that most of the symbols are prefixed with a package name, since they are not imported into the
current (COMMON-LISP-USER) package. Again, your Lisp implementation may produce somewhat
different results, but it should show you alist of symbols with package prefixes, plus whatever other
information the designers of your implementation thought would be helpful yet concise.

In these examples, I've used uppercase strings as arguments to APROPCOS. Some implementations
perform a case-sensitive match, while othersignore case. Symbol names are case sensitive in Lisp, but
the Lisp reader translates symbols to uppercase by default. So if you specify an uppercase name to
APROPGCS you'll find most -- perhaps all -- of the matching names; you'll miss only those that were
intentionally interned using lower case letters. And if your APROPCS ignores case, you'll get all of the
matches, regardless of case.

Y ou could also supply a symbol to APROPCS. The only disadvantage of thisis that these partial symbols
pollute the namespace of the current package. The storage requirement istrivial, but you'll have to be
aware that APROPCS may find these partial symbolsin future matches, and you'll have to ignore these
to find the symbols you'd really like to see.

http://psg.com/~dlamkins/sl/chapter10.html (2 of 5)11/3/2006 5:54:40 PM

Successful Lisp - Chapter 10

DESCRIBE: Tell me more about yourself

Once you know the name of a symbol, you can get additional information by using the DESCRI BE
function. As with APROPCS, the output of DESCRI BE varies among Lisp implementations. Here's an
example generated using my Lisp system:

. Describe a synbol

? (describe 'l ength)

Synbol : LENGTH

Functi on

EXTERNAL i n package: #<Package " COVWON- LI SP">
Print nanme: "LENGTH'

Val ue: #<Unbound>

Function: #<Conpil ed-function LENGTH #x34C39B6>
Arglist: (SEQUENCE)

Plist: (:ANSI-CL-URL "fun_length. htm")

; Describe a string

? (describe "LENGITH")

" LENGTH"

Type: (S| MPLE- BASE- STRI NG 6)

Class: #<BUI LT-I N-CLASS S| MPLE- BASE- STRI NG>
Length: 6

C #\L

#\E

#\'N

#\ G

T

#\H

; Describe a function

? (describe #' 1ength)

#<Conpi | ed-functi on LENGITH #x34C39B6>

Nanme: LENGTH

Arglist (declaration): (SEQUENCE)

aRroNMRO

This example used three different argument types: a symbol, a string, and a function. These are all
correct, but you get what you ask for. These all have their uses, but you will generally want to supply a
symbol argument to DESCRI BE, because it tends to produce the most information.

INSPECT: Open wide and say "Ah..."

| NSPECT islike DESCRI BE, but instead of printing the information it presents the information in some

http://psg.com/~dlamkins/sl/chapter10.html (3 of 5)11/3/2006 5:54:40 PM

Successful Lisp - Chapter 10

kind of interactive display; typically either acommand loop in the current listener or a new window with
its own user interface. Y ou should experiment with | NSPECT on your own Lisp system to learn how it
behaves.

| NSPECT isvery handy for exploring complex nested data structures, since you can "drill down" to just
the information that interests you at the moment. Most | NSPECTSs offer specialized viewers for certain
types of data, such as functions and CLOS objects. Many implementations of | NSPECT also allow you
to edit the data being inspected.

DOCUMENTATION: | know | wrote that down somewhere

Sometimes, you need to know more about a variable than you can discover with | NSPECT. And for
functions, you really need the programmer's description (unless you're willing to read assembly language
code, see Chapter 16 if you have these urges). The DOCUMENTATI ON function gives you access to the

programmer's innermost thoughts (or at least what she was willing to write in a documentation string).

The DOCUMENTATI ON function expects two arguments. The first is an object for which you wish to
retrieve documentation, or a symbol naming that object. The second is a symbol designating the kind of
documentation (there are several) you wish to retrieve.

The interface described above is the one required by the ANSI Common Lisp
specification. Some implementations still support an interface which predates the ANSI
specification -- these expect a symbol for both arguments. Wel'll use that convention in our
examples, since it worksin both ANSI and pre-ANSI implementations.

Several Lisp constructs let you provide an optional documentation string. The following table shows the
second DOCUVENTATI ON argument (first line of each pair) together with the Lisp constructs for which
documentation strings are retrieved.

‘vari abl e

def var, def par anet er, def const ant
"function

def un, def nacr o, special forms
"structure

def struct
"type

deftype
‘setf

def set f

The list above worksin both ANSI and pre-ANSI Lisp implementations. The following list shows the

http://psg.com/~dlamkins/sl/chapter10.html (4 of 5)11/3/2006 5:54:40 PM

Successful Lisp - Chapter 10

documentation types which have been added for ANSI implementations.

‘conpi l er-macro
defi ne-conpi |l er-macro
" met hod- conbi nati on
def i ne- net hod- comnbi nati on

Documentation returned depends upon type of first argument.
Here are some examples:

? (docunentation 'length 'function)
"returns the nunber of elenents in sequence.”
? (defun a-function-w th-docstring ()
"This function always returns T."
t)
A- FUNCTI ON- W TH- DOCSTRI NG
? (docunentation 'a-function-with-docstring 'function)
“"This function always returns T."

If you specify a symbol for which there is no documentation, or a documentation type which does not
select documentation defined for the symbol, then DOCUMENTATI ONwill return NI L.

A Lisp implementation is permitted to discard documentation strings. If documentation strings from
your own program are not accessible viathe DOCUMENTATI ON function, consult your implementation's
manual to find out whether there's away to retain documentation strings (there usually is). If
documentation strings are missing from Common Lisp functions or from vendor supplied libraries,
consult your vendor.

Contents | Cover
Chapter 9 | Chapter 10 | Chapter 11

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter10.html (5 of 5)11/3/2006 5:54:40 PM

Successful Lisp - Chapter 11

Chapter 11 - Destructive Modification

Assignment is very different from binding, and in many cases results in programs that are harder to
understand. Despite this, there are (sometimes) reasons to prefer assignment. In this chapter, welll
explore assignment and its relationship to destructive modification of data. We'll also explore several
Lisp functions that implement destructive modification.

Simple assignment is destructive modification

Any time your program invokes SETQor SETF, it is assigning a new value to an existing storage
location, destroying the value that was previously in that location. Aswe'll see in this chapter, there are
both risks and benefits to the use of assignment; you need to understand the tradeoffs in order to write
Lisp code that is both correct and efficient.

The risk of assignment

Any time you define afunction that uses variables, the variables are either bound or f r ee. A bound
variable occurs within a binding form that occurs within the function definition. A binding formisjust a
form that creates a new association between the name of a variable and a place to store its value; the
most common binding forms are LET and the argument list of a DEFUN or L AMBDA.

There'sadight terminology clash in the use of the word bound. The clash is aways
resolved by the context of the word's use, but you need to be aware of the two meanings.
In this chapter we're talking exclusively about a variable name being bound to a place to
store its value; when we say that Lisp creates abinding for a variable, we mean that it
creates a new place to store a value under a given name.

The other sense of bound -- not otherwise discussed in this chapter -- isthe binding of a
value to a storage location; Lisp supports the notion of an unbound -- or nonexistent --
value.

A variableis free within afunction if the function provides no binding form for the variable's name. In
the following example, the variable E is free in both functions CLOSURE- 1 and CLOSURE- 2.

? (let ((e 1))
(defun closure-1 () e))
CLOSURE- 1
? (closure-1)
1

http://psg.com/~dlamkins/sl/chapter11.html (1 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 11

? e
Error: unbound vari abl e

So, what happens when afunction hasto reference afree variable? Lisp creates a closure that captures
the bindings of free variables for the function. Variables that are free within afunction really do have
bindings, but the bindings are outside of the function definition. When Lisp executes the function, it
finds free variables in the closure. (We'll examine closuresin greater detail in Chapter 15.)

Closures are important because they let afunction capt ur e and retain lexical bindings. Take another
look at the example above. When we evaluated (CLOSURE- 1) , the variable E was no longer visible at
the top level prompt. But because the function had a closure for that variable, it still has access to its
binding.

L et's extend the previous example just alittle.

? (let ((e 1))
(defun closure-1 () e)
(setg e 7)
(defun closure-2 () e))
CLOSURE- 2
? (closure-1)
7
? (cl osure-2)
7

Do you understand why (CLOSURE- 1) returned 7 rather than 1?7 We created a binding for the variable
E and gaveit aninitia value of 1. Even though CLOSURE- 1 was defined when E's value was 1, this
doesn't matter: the closure captures the binding -- the association between the name and the storage
location. When we assigned 7 as the value of E (just before defining CLOSURE- 2), we changed only the
one storage location for that binding. Since both functions free variable E is closed over the same
binding, they must retrieve the same value.

This behavior can be used to good effect.

? (let ((counter 0))
(defun counter-next ()
(i ncf counter))
(defun counter-reset ()
(setq counter 0)))
COUNTER- RESET
? (counter-next)
1

http://psg.com/~dlamkins/sl/chapter11.html (2 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 11

? (counter-next)
2

? (counter-next)
3

? (counter-next)
4

? (counter-reset)
0

? (counter-next)
1

However, some Lisp iteration forms bind their iteration variables just once, then assign new values on
subsequent iterations. DOand DO* assign to their iteration variables. DOLI ST and DOT| MES are
allowed to assign to their iteration variables (and probably will in any implementation, becauseit is
more efficient). Y ou need to keep thisin mind if you write code that creates a closure for an iteration
variable. This example illustrates the point (see Chapter 12 if you want to read about MAPCAR):

; Closure captures assigned variable -- probably wong
? (let ((fns ()))
(dotinmes (i 3)
(push # (lanbda () i) fns))
(mapcar # funcall fns))
(3 33
; New bindind created for each captured vari abl e
? (let ((fns ()))
(dotinmes (i 3)
(let ((i 1))
(push # (lanbda () 1) fns)))
(mapcar # funcall fns))
(2 10

We've seen that assignment can cause unexpected behavior in the presence of closures. Assignment can
also cause problems when shared datais involved.

? (defun nil-nth (n 1)
“"Set nth element of list to nil and return nodified list."
(setf (nthnl) nil)
1)

NI L- NTH

? (defparaneter *ny-list* (list 1 2 3 4))

* MY- LI ST*

?2 (nil-nth 1 *ny-1list*)

http://psg.com/~dlamkins/sl/chapter11.html (3 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 11

(1 NIL 3 4)
? *MY- LI ST*
(1 NIL 3 4)

WARNING: If you're accustomed to programming in alanguage that allows by-reference
modification of function parameters, the previous code snippet may seem very tantalizing
to you. My adviceisto put aside all thoughts of using thisto emulate by-reference
parameters, and use multiple values (Chapter 3, Lesson 9) to safely and efficiently return

multiple results from a function.

The above example is not wrong, but it is dangerous. Except in very specia situations, we'd like our
functions to accept arguments and return values. The problem with NI L- NTHis that it assigns a new
value within the list passed as a parameter. In our example, thislist is global, and may be shared by other
parts of the program. If all we really wanted to do wasto get a copy of the argument list with the Nth
element set to NI L, then we shouldn't have altered the passed argument. Here's a better way to
implement NI L- NTH:

? (defun nil-nth (n 1)
"Return list with nth elenent set to nil."
(if (zerop n)
(cons nil (rest I|))
(cons (car I) (nil-nth (1- n) (rest 1)))))
NI L- NTH
? (defparaneter *ny-list* (list 1 2 3 4))
MY- LI ST
? (nil-nth 1 *my-list*)
(1 NIL 3 4)
? *IMY- LI ST*
(1 2 3 4)

Changing vs. copying: an issue of efficiency

If assignment is so fraught with peril, why not just omit it from the language? There are two reasons:
expressiveness and efficiency. Assignment is the clearest way to alter shared data. And assignment is
more efficient than binding. Binding creates a new storage location, which allocates storage, which
consumes additional memory (if the binding never goes out of scope) or taxes the garbage collector (if
the binding eventually does go out of scope).

Modifying lists with destructive functions

Some operations on lists (and sequences -- see Chapter 12) have both destructive and nondestructive

http://psg.com/~dlamkins/sl/chapter11.html (4 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 11

counterparts.

Nondestructi ve Destructive
SUBLI S NSUBLI S

SUBST NSUBST

SUBST- | F NSUBST- | F
SUBST- | F- NOT NSUBST- | F- NOT
APPEND NCONC
REVAPPEND NRECONC
BUTLAST NBUTLAST

| NTERSECTI ON NI NTERSECTI ON

SET- DI FFERENCE NSET- DI FFERENCE
SET- EXCLUSI VE- OR NSET- EXCLUSI VE- OR

UNI ON NUNI ON

REVERSE NREVERSE
REMOVE DELETE

REMOVE- | F DELETE- | F
REMOVE- | F- NOT DELETE- | F- NOT
SUBSTI TUTE NSUBSTI TUTE
SUBSTI TUTE- | F NSUBSTI TUTE- | F

SUBSTI TUTE- | F- NOT NSUBSTI TUTE- | F- NOT
REMOVE- DUPLI CATES DELETE- DUPLI CATES

All of these pairings have the same relationship: the destructive version may be faster, but may also alter
shared structure. Consider, for example, APPEND and NCONC. Both append the lists supplied as their
arguments.

? (append (list 1 2 3) (list 45 6))
(12345 6)
? (nconc (list 1 2 3) (list 45 6))
(12345 6)

But NCONC may destructively modify all but the final list; it may change the tail of each list to point to
the head of the next list.

? (defparaneter listl (list 1 2 3))
LI ST1

? (defparaneter list2 (list 4 5 6))
LI ST2

? (append listl |ist2)

http://psg.com/~dlamkins/sl/chapter11.html (5 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 11

(12345 6)

? listl

(1 2 3)

? list2

(4 5 6)

? (nconc listl list2)
(12345 6)

? listl

(123 4586) ; Oops - conpare to previous result!
? list2

(4 5 6)

RPLACA, RPLACD, SETF ...; circularity

A list is constructed of CONS cells. Each CONS has two parts, a CAR and a CDR (review Chapter 3,
Lesson 4). The CAR holds the data for one element of the list, and the CDR holds the CONS that makes
up the head of the rest of the list.

CAR CDR

y
L= |
Y Y Y Y

1 2 3 4

flist1 23 4)

By using RPLACA and RPLACD to change the two fields of a CONS, we can (destructively) ater the
normal structure of alist. For example, we could splice out the second element of alist like this:

? (defparaneter *ny-list* (list 1 2 3 4))
MY- LI ST

? (rplacd *ny-list* (cdr (cdr *ny-list*)))
(1 3 4)

? *ny-list*

(1 3 4)

We can also use these "list surgery operators' to create circular lists.

? (let ((I (list 1)))

(rplacd I 1)
1)
(11111111... ; Continues until interrupt or stack overfl ow

http://psg.com/~dlamkins/sl/chapter11.html (6 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 11

2 (let ((1 (list 2)))

(rplaca | 1)
1)
(COCCOCEeCee((e(C ... ; Continues until interrupt or stack overflow
I I
| |
) D
(rplacd | 1) (rplaca [1)

We can get the same effect using (SETF CAR) in place of RPLACA and (SETF CDR) in place of
RPLACD.

(rplaca cons object) is (setf (car cons) object)
(rplacd cons object) is (setf (cdr cons) object)

The nice thing about the SETF notation isthat it readily generalizes to other list accessors, such as NTH,
LAST, NTHCDR, and FOURTH.

Places vs. values: destructive functions don't always have the
desired side-effect

A nondestructive function such as REVERSE always returns a freshly constructed result, so there's never
any question but that you need to pay attention to the result. But a destructive function such as
NREVERSE sometimes modifies its argument in such away that the changed argument isidentical to the
function result. This leads some programmers to assume that destructive functions always modify the
argument to match the result. Unfortunately, thisis not true; leading to the second important point about
the use of destructive functions: you should use the result of a destructive function the same way that
you would use the result of its nondestructive counterpart.

This aso appliesto SORT and STABLE- SORT, which are destructive and do not have a
nondestructive counterpart.

Contrast e.g. PUSH and DELETE

Here's an example showing why you should not depend upon DELETE's side-effects.

? (def paraneter *ny-list (list 1 2 3 4))

http://psg.com/~dlamkins/sl/chapter11.html (7 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 11

MY- LI ST

? (delete 3 *ny-list?*)

(1 2 4)

? *my-list*

(1 2 4)

? (delete 1 *ny-list?*)

(2 4)

? *my-list*

(1 2 4) ; Not the sanme as function result

But some macros, for example PUSH and POP, take a place as an argument and arrange to update the
place with the correct value.

? (def paraneter *stack* ())
* STACK*

? (push 3 *stack*)
(3)

? (push 2 *stack*)
(2 3)

? (push 1 *stack*)
(1 2 3)

? *stack*

(1 2 3)

? (pop *stack*)

1

? *stack*

(2 3)

Shared and constant data: Dangers of destructive changes

When you use destructive functions you should be sure to only modify data that your program has
constructed at runtime. Here's an example of what can happen if you destructively modify a constant list.

? (defun stonp-a-constant ()
(let ((I "(1 2 3))) ; conpile-tinme constant data

(print 1)
(setf (second I) nil) ; destructive nodification
1))

STOWP- A- CONSTANT

? (stonp-a-constant)
(1 2 3)

(1 NIL 3)

http://psg.com/~dlamkins/sl/chapter11.html (8 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 11

? (stonp-a-constant)
(1 NIL 3)
(1 NIL 3)

Thisfunction is effectively modifying itself, asit changes the constant data which is bound to the
variable L. The effects of this change show up in the first line of output on the second run (and all
subsequent runs).

If youreplace' (1 2 3) (which may be compiled into constant data) with (11 st 1 2 3) (which
always creates afresh list at run time) then the function's behavior will be identical on the first and all
subsequent runs.

Contents | Cover
Chapter 10 | Chapter 11 | Chapter 12

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter11.html (9 of 9)11/3/2006 5:54:45 PM

Successful Lisp - Chapter 12

Chapter 12 - Mapping Instead of Iteration

In this chapter we'll survey of a group of functions collectively known as mapping functions. Y ou can think of
amapping function as akind of specia purpose iterator. Every mapping function expects you to supply a
function. A typical mapping function applies your function to every element of the supplied list(s). One
variation on this theme applies your function to successive sublists.

A sequenceis ageneralization of the list datatype. Vectors (one-dimensional arrays) and lists are
specializations of the sequence data type. Some mapping functions work only with lists as inputs, while
others accept sequences.

MAPCAR, MAPC, and MAPCAN process successive list elements

The first group of mapping functions processes successive el ements of lists. The mapping functionsin this
group differ in how they construct a return value.

MAPCAR processes successive elements of one or more supplied lists. Y ou must supply afunction that
accepts as many arguments as the number of lists you supply to MAPCAR, which applies your function to
successive elements and combines the function's results into a freshly constructed list. The mapping stops
upon reaching the end of the shortest list; MAPCAR's result has as many elements as the shortest input list.

MAPC does not combine the results of applying your function to successive elements of the input list(s).
Instead, it processes the inputs just for effect, and returns the first input list as the result of MAPC.

MAPCAN combines results using the destructive function NCONC. Since NCONC -- like its nondestructive
counterpart APPEND -- expects its arguments to be lists, the function you supply to MAPCAN must always
return alist.

? (mapcar # atom (list 1 '(2) "foo" nil))

(TNIL T T)

? (mapcar # + (list 1 2 3) (list 45 6))

(579

? (mapc #' (lanbda (x y) (print (* xy))) (list 1 0 2) (list 3 405))

3

0

10

(1 0 2)

? (mapcan #'list (list 1 2 3) (list 45 6))

(1425 3 6)

? (mapcan #' (lanbda (a b) (list (cons a b))) (list 1 2 3) (list 45 6))
((1. 4 (2. 5) (3. 6))

http://psg.com/~dlamkins/sl/chapter12.html (1 of 6)11/3/2006 5:54:52 PM

Successful Lisp - Chapter 12

MAPLIST, MAPL, and MAPCON process successive sublists

MAPLI ST processes successive sublists of one or more supplied lists. Y ou must supply afunction that
accepts as many arguments as the number of lists you supply to MAPLI ST, which applies your function to
successive sublists and combines the function's results into a freshly constructed list. The mapping stops upon
reaching the end of the shortest list; MAPLI ST's result has as many elements as the shortest input list.

MAPL does not combine the results of applying your function to successive sublists of the input list(s).
Instead, it processes the inputs just for effect, and returns the first input list as the result of MAPL.

MAPCON combines results using the destructive function NCONC. Since NCONC -- like its nondestructive
counterpart APPEND -- expects its arguments to be lists, the function you supply to MAPCON must always
return alist.

? (maplist #list (list 1 2 3) (list 45 6))

(((123) (456)) ((23) (56)) ((3) (6)))
? (mapl # (lanbda (x y) (print (append x y))) (list 1 0 2) (list 3 405))

(102 34Y5)

(0 2 45)

(2 5)

(10 2

? (mapcon # list (list 1 2 3) (list 45 6))
((123) (456) (23) (56) (3) (6))

MAP and MAP-INTO work on sequences, not just lists

A sequenceis either alist or avector (aone-dimensional array). The previous group of mapping functions
(MAPCAR et al) processes successive CARs or CDRs of thelir input lists. MAP and MAP- | NTO process
successive elements of their input sequences.

MAP requires that you specify the type of its result using one of the following designators:

Desi gnat or Resul t

NI L NI L
"LI ST alist
" VECTOR a vector

Note that you can also specify subtypes of LI ST or VECTOR -- your Lisp implementation may be able to
optimize the storage of the result based on the type you specify.

http://psg.com/~dlamkins/sl/chapter12.html (2 of 6)11/3/2006 5:54:52 PM

Successful Lisp - Chapter 12

? (map nil #+ (list 1 2 3) (list 45 6))

NI L

? (map "list # + (list 1 2 3) (list 45 6))
(579)

? (map 'vector # + (list 1 2 3) (list 45 6))
#(5 7 9)

? (map ' (vector nunber 3) # + (list 1 2 3) (list 45 6))
#(5 7 9)

MAP- | NTOis adestructive version of MAP. The first argument is a sequence that receives the results of the
mapping. Mapping stops upon reaching the end of the result sequence or any of the input sequences.
(Therefore, if you specify NI L as the result sequence, no mapping is performed since NI L isalist of length
zero.) The input sequences are not modified. The modified result sequence is returned as the value of MAP-
| NTO.

? (let ((a (nmake-sequence 'list 3)))
(print a)
(map-into a # + (list 1 2 3) (list 45 6))
a)

(NF'L NIL NIL)

(579

? (let ((a (nmake-sequence 'vector 3)))
(print a)
(map-into a # + (list 1 2 3) (list 45 6))
a)

#(0 0 0)

#(5 7 9)

Your Lisp implementation may print different initial values for the unmodified sequencesin the above
examples. If you need to specify acertain initial value for MAKE- SEQUENCE, usethe: | NI Tl AL-
ELEMENT keyword argument:

? (let ((a (make-sequence 'list 3 :initial-element 0)))
(print a)
(map-into a # + (list 1 2 3) (list 45 6))
a)

(0 0 0)

(57 9)

Mapping functions are good for filtering

http://psg.com/~dlamkins/sl/chapter12.html (3 of 6)11/3/2006 5:54.52 PM

Successful Lisp - Chapter 12

A filter passes some of its inputs through to its output, and drops others. We can use mapping functions to
implement filters by taking note of the behavior of APPEND:

? (append ' (1) nil '(3) '(4))
(1 3 4)

The NI L argument (which is equivalent to the empty list) smply "disappears’ from the result. Thisisthe key
observation that we need to construct afilter. We'll use MAPCAN to map over our input list(s) and supply a
mapping function that:

. makesalist of each result we wish to retain in the output, or
. returns NI L in place of each input we wish to exclude from the output.

? (defun filter-even-nunbers (nunbers)
(mapcan #' (1l anbda (n) (when (evenp n) (list n))) nunbers))
FI LTER- EVEN- NUMBERS
? (filter-even-nunbers (list 1 2 3456 7 8))
(2 4 6 8)

WHEN returns NI L if the conditionisNI L. We could havewritten (i f (evenp n) (i st
n) nil) instead.

Here's adlightly more complex filter that returns alist of evenly divisible pairs of numerators and
denominators:

? (defun filter-evenly-divisible (nunmerators denom nators)
(mapcan #' (1 anbda (n d)
(if (zerop (nod n d))
(list (list nd))
nil))
nurrer at ors denom nat ors))
? (filter-evenly-divisible (list 7 8 9 10 11 12)
(list 1245 5 2 3))
((7 1) (8 4) (10 5) (12 3))

The functions REMOVE- | F and REMOVE- | F- NOT (and their destructive counterparts, DELETE- | F and
DELETE- | F- NOT) filter a single sequence, but can't be used for multiple sequences (as in the example
above). Use REMOVE- | F and thelikeif it will make your code clearer. See Chapter 13 for further details.

It's better to avoid mapping if you care about efficiency

Most Lisp systems will generate more efficient code to call afunction that is known during compilation than
afunction that can change at run time. Mapping functions accept a functional argument, and most compilers

http://psg.com/~dlamkins/sl/chapter12.html (4 of 6)11/3/2006 5:54:52 PM

Successful Lisp - Chapter 12

will generate code that supports run time function binding -- even if you specify a"constant" function, such as
#' +. Also, the run time call may incur extra overhead to generate alist of arguments for the function's
application.

Therefore, if you are concerned about efficiency you should write map-like functions using iteration instead
of mapping functions. But do this only when you are sure that efficiency is an issue for the portion of the
program you intend to rewrite. See Chapter 28 for a discussion of profiling, which can help you find your

program'’s performance bottlenecks.

Predicate mapping functions test sequences

Sometimes you may need to apply atest to some input sequences and return a truth value based upon what
the test returned for all of the inputs. For example, you might want to know whether any number in a
sequence is outside of a specified range, or whether every word is at |east five letterslong. Y ou could
construct these tests from the mapping functions described above, but that would be more verbose (and less
efficient) than using the predicate mapping functions provided by Lisp.

SOME, EVERY, NOTANY, NOTEVERY

The built in predicate mapping functions expect you to supply atest function (a.k.a. predicate) and one or
more input sequences. The predicate is applied to successive elements of the input sequences until the the
result of the mapping function can be determined.

Functi on Condi ti on

SOVE user-supplied predicate succeeds on at |east one i nput
EVERY user-supplied predicate succeeds on every i nput
NOTANY conpl emrent of SOME

NOTEVERY conpl enent of EVERY

For example, SOVE examines inputs so long as the predicate is false; the tests stop -- and SOVE returns atrue
value -- as soon as the predicate is true for some input(s). If the predicate isfalse for every input, SOVE
returns afalse value.

Similarly, EVERY examines inputs so long as the predicate is true; the tests stop -- and EVERY returns afalse
value -- as soon as the predicate is false for some input(s). If the predicate is true for every input, EVERY
returns atrue value.

? (sonme #' (lanbda (n) (or (< n 0) (> n 100))) (list 0 1 99 100))

NI L

? (sone #' (lanmbda (n) (or (< n 0) (>n 100))) (list -1 0 1 99 100))

T

? (every # (lanbda (w) (>= (length w) 5)) (list "bears" "bulls" "racoon"))

http://psg.com/~dlamkins/sl/chapter12.html (5 of 6)11/3/2006 5:54:52 PM

Successful Lisp - Chapter 12

T
? (every #' (lanbda (w) (>= (length w) 5)) (list "bears" "cat" "racoon"))
NI L

And of course, the predicate mapping functions handle multiple sequences as you'd expect.

? (some # > (list 0123 45) (list 003 26))
T

REDUCE combines sequence elements

While we're on the subject of mapping, wouldn't it be nice to be able to combine all of the elements of a
sequence using some function? REDUCE does just that, accepting a function (of two or zero arguments) and a
sequence. If the sequence islonger than one element, REDUCE combines the results of applying the function
to successive elements of the sequence. For example:

? (reduce # * (list 123 45)) (* (* (* (*12) 3 4) 5)
120

? (reduce # - (list 102 3 1)) ; (- (- (- 10 2 3) 1)

4

If the sequenceis of length one, REDUCE returns the sequence and the function is not applied. If the sequence
is of length zero, REDUCE applies the function with no arguments and returns the value returned by the
function. (In the case of arithmetic functions, thisisthe identity value for the operation.)

Various keyword arguments let you specify a subsequence for REDUCE, or that REDUCE should combine
elements in aright-associative manner (i.e. from the end of the sequence, rather than from the beginning).

Contents | Cover
Chapter 11 | Chapter 12 | Chapter 13

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to
the author's site.

http://psg.com/~dlamkins/sl/chapter12.html (6 of 6)11/3/2006 5:54:52 PM

Successful Lisp - Chapter 13

Chapter 13 - Still More Things You Can Do with Sequences

In this chapter we'll meet the most useful sequence functions, and see how to use them. We'll aso reprise earlier admonitions
about proper use of destructive functions.

CONCATENATE: new sequences from old

CONCATENATE aways creates a new sequence from (of course) the concatenation of zero or more argument sequences.
Y ou must specify the type of the result, and the argument types must be proper subtypes of the sequence type.

? (concatenate 'list) ; no argunent sequences
NI L

? (concatenate 'vector) ; no argunent sequences
#()

? (concatenate 'list '(1 2 3) '(4 5))

(12 3 405)

? (concatenate 'vector #(1 2 3) #(4 5))

#(1 2 3 45)

? (concatenate 'list #(1 2 4) '(4 5))
(12345

? (concatenate 'vector '(1 2 3) #(4 5))

#(1 2 3 4 5)

? (concatenate 'list "hello") ; string is a subtype of sequence

(#\h #\e A\ #1 # o)

ELT and SUBSEQ get what you want from any sequence (also, COPY-SEQ)

If you need to pick out one element (or arange of elements) from a sequence, you can use ELT (to pick out one element) or
SUBSEQ (to pick out arange of elements). But don't use these unless you're really sure you can't narrow down the sequence
typeto avector or list; there are more specific (hence more efficient) accessors for the less general types.

SUBSEQmakes a copy of a specified portion of a sequence. COPY- SEQis closely related to SUBSEQ), except that it copies
all of the elements of a sequence.

? (elt "(1 23 45) 1) ; zero-based indexing

2
? (subseq '(1 2 3 45) 2) ; 3rd elenent through end
(3 45)

? (let ((I "(1234Y5)))
(subseq | 2 (length 1))) ; same effect as previous
? (subseq '(1 2 3 45) 03) ; elenent at ending index is not copied

(12 3)

? (subseq #(#\a #\b #\c #\d #\e) 2 4)
#(#\c #\d)

? (copy-seq '(a b c))

(ABOQO

http://psg.com/~dlamkins/sl/chapter13.html (1 of 7)11/3/2006 5:54:57 PM

Successful Lisp - Chapter 13

REVERSE turns a sequence end-for-end (also, NREVERSE)

REVERSE makes a copy of a sequence, with the order of elements reversed. NREVERSE is the destructive counterpart of
REVERSE; it is more efficient, but it modifiesits input argument.

REVERSE is commonly used in code similar to the following.

(defun col |l ect-even-nunbers (nunber-1Iist)

(let ((result ()))
(doli st (nunber nunber-Iist)

(when (evenp nunber)
(push nunber result)))
(nreverse result)))

The DOLI ST and PUSH collect even numbers on the result list, but they are in the reverse order of their original positions on

the input list. The final NREVERSE puts them back into their original order. Thisis a safe use of the destructive function
NREVERSE because the RESULT variable can not be shared; it is forgotten as soon as control leaves the LET form.

LENGTH: size counts after all

There's not much to say about LENGTH. Just remember that for lists, LENGTH counts only the elements of the top-level list,
and not those of any nested lists.

2 (length ' ((1 2 3) (45) (6) 7 () 89))
7

COUNT: when it's what's inside that matters

If you find your program filters a sequence only to get the length of the result, use COUNT (and related functions COUNT- | F
and COUNT- | F- NOT) instead.

(count 3 '(13342598319)) ; count occurrences
(count-if # oddp '(1 334 25983189)) : count matches to predicate

(count-if-not # evenp '(1 334259831 9)) ; count mismatches using

?
3
?
8
?
predi cate
8

These functions accept keyword arguments:

Keywor d Val ue Def aul t
: START starting index (inclusive) 0

- END endi ng i ndex (exclusive) NI L

: FROMt END non-NIL to work backwards from end el enent NI L

. KEY function to select match data from el enent NI L

A NI L valuefor the : END keyword designates a position just past the end of the sequence; since thisis an exclusive limit,

http://psg.com/~dlamkins/sl/chapter13.html (2 of 7)11/3/2006 5:54:57 PM

Successful Lisp - Chapter 13

the last element will be processed. (If you specified the index of the last element, the last element would not be processed.)

The : FROW END keyword is useful in the case that the test function has side-effects, and the order of the side-effectsis
important.

When the : KEY argument isnot NI L, it should be a function of one argument that extracts data from the sequence element.
For example:

2 (count 3 '((123) (231) (312 (213) (132 (321)) :key # second)
2

COUNT accepts the additional keyword arguments: TEST and : TEST- NOT. These give you a compact way to write atest
that involves a second value. Compare the following equivalent forms:

: Using COUNT-1F and LAVBDA
(count-if # (lanbda (n) (<3 n)) '(1 23456 7))

; Using COUNT and : TEST
(count 3 '(1 2 3 456 7) :test # <)

The keyword arguments for comparison predicates also let you define the precise meaning of equality. The default predicate
iIsEQL, which istruefor identical numbers and symbols. See Chapter 17 for more information on comparison predicates.

REMOVE, SUBSTITUTE, and other sequence changers

REMOVE removes all occurrences of a specified element from a sequence.

? (remove 7 '(1 23 abctnil 707T7))
(123 ABCTNLO)

Keyword arguments are handled in the same way as for COUNT. REMOVE- | F and REMOVE- | F- NOT are also available;
their keyword arguments are handled in the same way as for COUNT- | F and COUNT- | F- NOT.

A : COUNT keyword argument lets you limit the number of matching elements to remove.
SUBSTI TUTE changes all occurrences of a specified element in a sequence to another value.

? (substitute "(q) 7 '(1 23 abctnl 707T7))
(123 ABCTNL((Q 0(Q (9Q)

Keyword arguments are handled in the same way as for COUNT. SUBSTI TUTE- | F and SUBSTI TUTE- | F- NOT areaso
available; their keyword arguments are handled in the same way as for COUNT- | F and COUNT- | F- NOT.

A : COUNT keyword argument lets you limit the number of matching elements to substitute.
REMOVE- DUPLI CATES returns a copy of a sequence, modified so that every element is different.

? (renove-duplicates '"(1 23 abc (123 fcgchbiaj baka))
(123(123) FGCHI JBKA)

http://psg.com/~dlamkins/sl/chapter13.html (3 of 7)11/3/2006 5:54:57 PM

Successful Lisp - Chapter 13

Thelast copy of each identical element is retained in the result, unless you specify the keyword argument : FROV END T,
which causes the first copy of each identical element to be retained.

REMOVE- DUPLI CATES also accepts the same keyword arguments as COUNT. The: TEST and : TEST- NOT keyword
arguments let you specify the comparison predicate used to determine whether elements are identical. The default predicate
iIsEQL, which istrue for identical numbers and symbols. See Chapter 17 for more information on comparison predicates.

DELETE, REMOVE-DUPLICATES, DELETE-DUPLICATES, and
NSUBSTITUTE.

Many of the functions in the preceeding section have destructive counterparts. The result of the destructive functionsis
identical, but the input sequence may be destructively modified.

Nondestructi ve Destructive
REMOVE DELETE

REMOVE- | F DELETE-I| F
REMOVE- | F- NOT DELETE- | F- NOT
SUBSTI TUTE NSUBSTI TUTE
SUBSTI TUTE- | F NSUBSTI TUTE-| F

SUBSTI TUTE- | F- NOT NSUBSTI TUTE- | F- NOT
REMOVE- DUPLI CATES DELETE- DUPLI CATES

Remember that you must not depend upon the modification of the input sequences. The only result guaranteed
to be correct is the return value of the function.

FILL and REPLACE

FI LL destructively modifies a sequence, replacing every element with a new value. It accepts keyword arguments for :
START and : END positions; these have the same meaning as described earlier in this chapter. The modified sequenceis
returned asthe value of FI LL.

2 (fill (list 11235 8) 7)

(777777

2 (fill (list 112 358) '(ab))

((AB) (AB) (AB) (AB (AB (AB))

2 (fill (list 112 358) 7 :start 2 :end 4)
(11775 8)

REPL ACE copies elements from one sequence into another, destructively modifying the target sequence. Y ou can specify the
range of elements to use in both sequences; the shorter of the two ranges determines the number of elements that is actually
copied.

? (let ((a (list 1 2
(b (list 9 8
(replace a b))

3456 7))
7654 3)))

(987654 3)

http://psg.com/~dlamkins/sl/chapter13.html (4 of 7)11/3/2006 5:54:57 PM

Successful Lisp - Chapter 13

? (let ((a(list 123456 7))
(b (list 987 654 3)))
(replace a b :startl 2))

(12987 65)
? (let ((a (list 12345617))
(b (list 987654 3)))
(replace a b :startl 2 :endl 5))
(1298767
? (let ((a (list 12345617))
(b (list 987654 3)))
(replace a b :startl 2 :endl 5 :start2 3))
(1265467)
? (let ((a(list 1 234567))
(b (list 987654 3)))
(replace a b :startl 2 :endl 5 :start2 3 :end2 4))
(126456 7)

Locating things in sequences: POSITION, FIND, SEARCH, and MISMATCH

POSI TI ON searches a sequence for a matching element, and returns the index of the first match or NI L if no matching
element isin the sequence.

? (position #\a "This is all about you, isn't it?")
8

? (position #\! "This is all about you, isn't it?")
NI L

POSI Tl ON accepts the same keyword arguments as COUNT (described earlier in this chapter) and has (the by now familar)
variants POSI TI ON- | F and POSI Tl ON- | F- NOT.

FI NDissimilar to POSI TI ON except that the matching element -- rather than its index in the sequence -- is returned if there
isamatch. Aswith POSI TI ON, you'll find the usual keyword arguments (: FROW END, : START, : END, : KEY -- and for
the "base" function, : TEST and : TEST- NOT) and function variants (i.e. FI ND- | F and FI ND- | F- NOT).

? (find #\a "This is all about you, isn't it?")
#\ a
? (find #\! "This is all about you, isn't it?")
NI L

SEARCH returns the starting position of one sequence within another sequence, or NI L if no match isfound.

? (search "ab" "This is all about you, isn't it?")

12

? (search "not so" "This is all about you, isn't it?")
NI L

SEARCH accepts : FROM END, : KEY, : TEST and : TEST- NOT keyword arguments with the usual interpretations. Y ou can
specify arange in the substring (the first argument) using : START1 and : END1 keywords, and in the target string using
the: START2 and : END2 keywords.

http://psg.com/~dlamkins/sl/chapter13.html (5 of 7)11/3/2006 5:54:57 PM

Successful Lisp - Chapter 13

M SMATCH isthe functional complement to SEARCH -- it returns the first position at which the substring fails to match a
portion of the target string.

? (m smatch "banana" "bananananono")

6

? (msmatch "." "...hello")

1

? (msmatch "............. " "...hello")
3

SORT and MERGE round out the sequence toolkit
SORT destructively sorts a sequence; the order is determined by a predicate which you supply.

? (sort (list 935487120 6) #>)
(9876543210
? (sort (list 935487 120 6) #<)
(01 23456718D9)

The input sequence is destructively modified -- you must use the function result.
STABLE- SORT preserves the original order of identical elements;, SORT may not.

Y ou can sort structured elements (e.g. lists, structures) by using the : KEY keyword argment to specify akey extraction
function.

VERGE combines two input sequences into a single result. Elements are interleaved according to the predicate. Either input
sequence may be destructively modified. Y ou must designate the type of the result.

? (merge 'vector (list 1 359 8) (vector 2 6 47 0) # >)
#(26 47135980

? (merge "list (list 1 359 8) (vector 2 6 47 0) # <)
(1235647009 28)

? (merge 'vector (list 1 358 9) (vector 02 46 7) # >)
#(1 358902467

? (nmerge "list (list 1 358 9) (vector 02 46 7) # <)
(01 23456718)9)

Note that -- in the general case -- MERGE does not sort the catenation of its arguments. The predicate is used to select from
one or the other of the input sequences; input from the selected sequence continues until the sense of the predicate changes.
Look at the examples until you understand this.

VERGE acceptsa: KEY keyword argument having the conventional meaning.

Contents | Cover
Chapter 12 | Chapter 13 | Chapter 14

http://psg.com/~dlamkins/sl/chapter13.html (6 of 7)11/3/2006 5:54:57 PM

Successful Lisp - Chapter 13

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to the author's
Site.

http://psg.com/~dlamkins/sl/chapter13.html (7 of 7)11/3/2006 5:54:57 PM

Successful Lisp - Chapter 14

Chapter 14 - Can Objects Really Behave
Themselves?

This chapter continues the treatment of CLOS (the Common Lisp Object System) that we began in Chapter 7,
in which we saw how objects store data. In this chapter we'll learn about how objects get their behaviors.

Generic functions give objects their behaviors

A generic function provides behavior based upon the type of an object. The behavior is selected according to
the types of the arguments to the generic function. The generic function dispatches control to a particular
method that provides the best match to the argument types that you use to invoke the generic function.

Genernc Function

Methods

(defmethod gf-foo ((self dass1)arg2 ...}
body1)

(clefmethod gf-foo ((self dass2) arg? ...
body2) g o

(defmethod gi-foo ((selftass3} arg2 ...)
;,__'-_-E_-:":ld }'3\' T

...........

Y ou define a method using Lisp's DEFMETHOD macro. In its simplest form, DEFMETHOD expects a name and
aspecialized lambda list. The specialized lambdallist is similar to the list of formal parameters you supply for a
LAMBDA or DEFUN form; the difference is that you can specify the type of each parameter. The method will
only be invoked when the generic function call (which looks exactly like afunction call) specifies parameters
that are of matching types. To specialize a parameter in a DEFMETHOD form, simply name the parameter and
itstypein alist. For example:

(def net hod net hodl ((paranil nunber) (paran string)) ...)
(def met hod net hod2 ((paran® float) (paranR sequence)) ...)

Y ou can also leave the type of a parameter unspecified by just giving its name; this kind of parameter will
match any data type. In this example, the first parameter is not specialized:

(def net hod met hod3 (paraml (paranm? vector)) ...)

Note that the parameter types do not have to be CLOS class types. If you want to specialize a method to one

http://psg.com/~dlamking/sl/chapter14.html (1 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 14

particular CLOS class, you can specialize one of the arguments to that class, as we saw in thefirst figurein this
chapter. If you have specialized one parameter to a CLOS class, and |leave the other parameters unspecialized,
then you've emulated the single-dispatch method common to certain "classic" object-based programming
languages. In thislimited case you can think of a method as being associated with a class. Well see in the next
section that this association breaks down when we associate a method with multiple classes.

Y ou're probably wondering how generic functions get created, when all you do isto define methods. When you
define a method, Lisp creates ageneric function if one does not already exist. When Lisp creates this generic
function for you, it makes note of the name, the number of required and optional arguments, and the presence
and names of keyword parameters. When you create another method of the same name, it must agree with the
generic function on the details of the parameters which were recorded in the generic function. This agreement
Is called lambda list congruence -- Lisp will signal an error if you attempt to create a new method with a non-
congruent lambda list.

The line between methods and objects blurs for multimethods

A multimethod is amethod that is selected based upon the types of two or more of its arguments. When you
have a method that is selected for two or more classes, then we can't really say that a class (or an object, which
Isan instance of that class) "has" a particular method.

Methods on non-objects? So where does the method live?

The association of methods to classes gets even more tenuous when we consider that one or more of a method's
arguments may specialize on an object that is not a class. If we expect to find some convenient way to say that
amethod "belongs to" a particular class, we're simply not going to find it.

Simpler (and less capable) object systems than CLOS do associate a method with a particular class. CLOS does
not. Thisis an important point, so let me rephrase it: CLOS methods are not a part of any class for which they
may provide services.

A method is apart of ageneric function. The generic function analyzes the actual parameters and selects a
method to invoke based upon a match between actual parameters and specialized lambda lists in the method
definitions. And, to reiterate the point made in the previous paragraph, generic functions are not a part of of
any classes upon which the generic function's methods operate.

Generic functions work by dispatching on argument specializers

When you define a method, the types of its parameters (in the specialized lambda list) declare that the method
may be invoked only by parameters of the same, or more specific, types. For example, if aparameter is
specialized on the type NUVBER, it can match | NTEGER, FI XNUM FLQOAT, Bl GNUM RATI ONAL,
COVPLEX, or any other proper subtype of NUVBER.

But what if you define two methods that could match the same types? Consider the following definitions.

http://psg.com/~dlamking/sl/chapter14.html (2 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 14

(def net hod op2 ((x nunber) (y nunber)) ..) ; nmethod 1
(def net hod op2 ((x fl oat) (y float)) ..) ; nmethod 2
(def met hod op2 ((x integer) (y integer)) ...) ; nethod 3
(def met hod op2 ((x fl oat) (y nunber)) ..) ; method 4
(def met hod op2 ((x nunber) (y float)) .) ; nmethod 5

A call of theform (OP2 11 23) potentially matches methods 1 and 3, because the arguments are both of
type INTEGER, which is a subtype of NUMBER. CLOS resolves ambiguity by choosing the more specific
match, thus method 3 is selected for acall of (OP2 11 23).

The same resolution strategy chooses method 5 for (OP2 13 2. 9), method 4 for (OP2 8.3 4/5), and
method 1 for (OP2 5/ 8 11/ 3) . Thegenera ruleisthat CLOS selects a method based upon the most
specific matching types, and an argument is always more specific than the argumentsto its right. The second
part of this rule means that arguments on the | eft serve as tiebreakers for those futher to the right. Consider
these methods:

(def met hod Xop2 ((x nunber) (y nunber)) ...) ; nmethod 1
(def met hod Xop2 ((x float) (y nunber)) ...) ; nmethod 2
(def met hod Xop2 ((x nunber) (y float)) ...) ; method 3

A call of (XOP2 5.3 4. 1) will invoke method 2. Both method 2 and method 3 are more specific than
method 1. Method 2 has a more specialized type in the first argument position when compared to method 3, so
method 2 is the one that isinvoked.

In addition to dispatching based upon argment types, CLOS can dispatch based upon specific objects.

? (defnmethod idiv ((numerator integer) (denom nator integer))
(values (floor nunerator denom nator)))
#<STANDARD- METHOD | DIV (I NTEGER | NTEGER) >
? (defnmethod idiv ((nunerator integer) (denom nator (egl 0)))
nil)
#<STANDARD- METHOD 1 DIV (I NTEGER (EQ. 0)) >
(idiv 4 3)

?
1
? (idiv 6 2)
3
?

(idiv 4 0)
NI L

Here we've specialized on the integer 0. Y ou can specialize on any object that can be distinguished using the
EQL predicate. Numbers, symbols and object instances can all be tested in thisway. See Chapter 17 for more

information on the EQL predicate.
Object inheritance matters after all; finding the applicable method

http://psg.com/~dlamking/sl/chapter14.html (3 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 14

A classisatype, and asubclassis a subtype. So when you define these classes:

(defclass cl1 () ...)
(defclass c2 (cl) ...)

then C2 isasubclass of C1. If you then use the types C1 and C2 as specializers in a method definition, C2 will
be a more specific type (see the previous section) than C1.

But what if you define classes that inherit from more than one class? How do you decide which classis more
specific than another? Consider the following class definitions:

(defclass cl1 () ...)
(defclass c2 () ...
(defclass ¢c3 (cl1) ...)
(defclass c4 (c2) ...)

(defclass ¢c5 (c3 c2) ...)
(defclass ¢c6 (c5 cl1) ...)
(defclass c7 (c4 c3))

These definitions give us an inheritance hierarchy that looks like this; bold lines link a subclass to the first
parent class, while lighter lines link to the second parent class:

c1 c2
3 C4
\
Ch
c7
\.
CB

Now consider the following method definitions, which specialize on this class hierarchy:

(defrmethod nmL ((x cl1)) ...) ; nethod 1
(defnmethod mL ((x c2)) ...) ; method 2

It's clear that calling ML's generic function with an object of type C1 or C3 will invoke method 1, and that
calling the generic function with an object of type C2 or C4 will invoke method 2. But what happens if we call
ML's generic function with an object of type C5, C6, or C7? These classes all inherit -- directly or indirectly --
from both C1 and C2.

If we invoke the generic function ML with an object of type C5, C6, or C7, CLOS must decide whether to

http://psg.com/~dlamking/sl/chapter14.html (4 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 14

invoke method 1 or method 2. (It can't do both.) This decision is based upon some measure of whether C1 or
C2 isamore specific parent class. The measure is based upon the position of the parent class in the class
precedence list of the subclass. Here are the class precedence lists (CPLs) for C5, C6, and C7:

Cl ass CPL

C5 (C5 C3 C1)
C6 (C6 C5 C3 C1 C2)
C7 (C7T &4 2 G Q)

Classes near the beginning of the CPL are more specific, so C5 and C6 are more specific to C1 and C7 is more
specific to C2. Therefore, calling the ML generic function with an object of type C5 or C6 will invoke method
1. Cdling ML with an object of type C7 will invoke method 2.

The next question you should ask is"how does CLOS determine the CPL?" Thereis, of course, an algorithm
for computing the CPL -- you can find this described in a Lisp reference manual. Or you can define some
classes and ask Lisp to tell you the CPL; most implementations include a function named CLASS-
PRECEDENCE- LI ST that expects a class object asits only argument (use FI ND- CLASS to get the class
object from its name) and returns a CPL.

? (class-precedence-list (find-class 'c6))
(C6 C5 C3 C1L @)

Design conservatively with multiple inheritance, and you shouldn't have to depend upon knowledge of the
algorithm by which CLOS computes the CPL.

Method combinations offer further choices

If you define methods as we've seen throughout this chapter, the generic function that gets created will offer a
capability called standard method combination. The methods that we've so far used have all been primary
methods. Under standard method combination, we can also define before, after, and around methods which get
combined with the primary method.

To define a before, after, or around method we add a corresponding keyword (a method qualifier) to our
DEFVETHOD form, like this:

(def net hod madness :before (...) ...)
(def net hod madness :after (...) ...)
(def net hod madness :around (...) ...)

Let'stake alook at standard method combination in action. We'll begin with the : BEFORE and : AFTER
methods.

; Define a primry nethod

http://psg.com/~dlamking/sl/chapter14.html (5 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 14

? (defnmet hod conbol ((x nunber)) (print "primary) 1)
#<STANDARD- METHOD COMVBOL (NUMBER) >
; Define before nethods
? (defnet hod conbol :before ((x integer)) (print 'before-integer) 2)
#<STANDARD- METHOD COMBOL : BEFORE (| NTEGER) >
? (defnmet hod conbol :before ((x rational)) (print 'before-rational) 3)
#<STANDARD- METHOD COVBOL : BEFORE (RATI ONAL) >

Define after methods
? (defnethod conbol :after ((x integer)) (print "after-integer) 4)
#<STANDARD- METHOD COVBOL : AFTER (| NTECER) >
? (defnet hod conbol :after ((x rational)) (print '"after-rational) 5)
#<STANDARD- METHOD COMBOL : AFTER (RATI ONAL) >
;o Try it
? (conbol 17)

BEFORE- | NTEGER
BEFORE- RATI ONAL
PRI MARY

AFTER- RATI ONAL
AFTER- | NTEGER

1

? (conbo 4/5)

BEFORE- RATI ONAL
PRI MARY

AFTER- RATI ONAL
1

When we call COMBOL, CLOS determines which methods are applicable. Aswe learned earlier, only one
primary method is applicable. But, aswe saw in the call to (COVBOL 17) , we can have multiple applicable :
BEFORE and : AFTER methods. Because integer is a subtype of rational, an integer argument to COVBOL, the :
BEFORE and : AFTER methods that specialize on | NTEGER and RATI ONAL arguments are applicable.

So CLOS has now determined a set of applicable methods: a primary method and some before and after
methods. The standard method combination determines the order in which these methods get invoked. First, all
of the applicable : BEFORE methods are invoked, with the more specific methods invoked first. Then the
applicable primary method isinvoked. Next, all of the applicable : AFTER methods are invoked, with the more
specific methods invoked last. Finally, the value of the primary method is returned as the value of the generic
function.

: BEFORE and : AFTER methods are often used to add extra behaviors to a method. They typically introduce
some kind of side effect -- by doing I/O, by changing global state, or by altering slots of one or more of the
objects passed as parameters. There are three actions not available to : BEFORE and : AFTER methods:

1. They can't dter the parameters seen by other applicable methods.

http://psg.com/~dlamking/sl/chapter14.html (6 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 14

2. They can't alter which of the applicable methods are actually invoked.
3. They can't alter the value returned from the generic function.

But the standard method combination offers athird kind of qualified method, the : AROUND method, that can
perform all of these actions. An : AROUND method is defined using a method qualifier, just as you might
expect:

(def met hod madness :around (...) ...)

When a generic function has one or more : AROUND methods defined, the most specific applicable : AROUND
method is invoked first, even if there are applicable : BEFORE methods. At this point, the : AROUND method
has complete control -- if it simply returns, then none of the other applicable methods will be invoked.
Normally an : AROUND method calls CALL- NEXT- METHOD which allows control to proceed through other
applicable methods.

CALL- NEXT- METHCD calls the next most specific : AROUND method; if there are no less specific applicable :
AROUND methods, then CALL- NEXT- METHOD invokes all of the applicable before, primary, and after
methods exactly as detailed above. The value returned by the most specific : AROUND method is returned by
the generic function; typically you'll use the value -- or some modification thereof -- returned by CALL- NEXT-
VETHOD.

If you call CALL- NEXT- METHOD without arguments, it uses the arguments of the current method. But you
can call CALL- NEXT- METHOD with arguments, and change the parameters seen by the called method(s).

; Define a primry nethod
? (defnet hod conbo2 ((x nunber)) (print "primary) 1)
#<STANDARD- METHOD COMBO2 (NUMBER) >
Def i ne bef ore net hods
? (defnet hod conbo2 :before ((x integer)) (print 'before-integer) 2)
#<STANDARD- METHOD COMB2 : BEFORE (| NTEGER) >
? (defnmet hod conbo2 :before ((x rational)) (print 'before-rational) 3)
#<STANDARD- METHOD COVB(O2 : BEFORE (RATI ONAL) >
; Define after nethods
? (defnet hod conbo2 :after ((x integer)) (print '"after-integer) 4)
#<STANDARD- METHOD COVMB2 : AFTER (| NTEGER) >
? (defnet hod conbo2 :after ((x rational)) (print '"after-rational) 5)
#<STANDARD- METHOD COVMB2 : AFTER (RATI ONAL) >
; Define around net hods
? (defnmet hod conbo2 :around ((x float))
(print '"around-fl oat-before-call -next-nethod)
(let ((result (call-next-method (float (truncate x)))))
(print '"around-float-after-call-next-nethod)
result))
#<STANDARD- METHOD COVBQ2 : AROUND (FLOAT) >
? (defnmet hod conbo2 :around ((x conmplex)) (print 'sorry) nil)

http://psg.com/~dlamking/sl/chapter14.html (7 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 14

#<STANDARD- METHOD COVB2 : AROUND (COVPLEX) >

? (defnmet hod conbo2 :around ((x nunber))
(print 'around-nunber-before-call-next-nmethod)
(print (call-next-nethod))
(print "around-nunber-after-call-next-nethod)
99)

;o Try it

? (conbo2 17)

AROUND- NUVMBER- BEFORE- CALL- NEXT- METHOD
BEFORE- | NTEGER

BEFORE- RATI ONAL

PRI MARY

AFTER- RATI ONAL

AFTER- | NTEGER

1

AROUND- NUMBER- AFTER- CALL- NEXT- METHOD
99

? (conbo2 4/5)

AROUND- NUMBER- BEFORE- CALL- NEXT- METHOD
BEFORE- RATI ONAL

PRI MARY

AFTER- RATI ONAL

1

AROUND- NUMBER- AFTER- CALL- NEXT- METHOD
99

? (conmbo2 82. 3)

AROUND- FLOAT- BEFORE- CALL- NEXT- METHOD
AROUND- NUVBER- BEFORE- CALL- NEXT- METHCD
PRI MARY

1

AROUND- NUMBER- AFTER- CALL- NEXT- METHOD
AROUND- FLOAT- AFTER- CALL- NEXT- METHOD
99

? (conbo2 #c(1.0 -1.0))

SORRY
NI L

One thing you can't do is to provide arguments to CALL- NEXT- METHOD that would change the applicable
methods. In other words, you need to preserve the type of methods even as you change their values. For

example, the following redefinition of one of the COMBO2 example methods won't work:

? (defnet hod conbo2 :around ((x float))

http://psg.com/~dlamking/sl/chapter14.html (8 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 14

(call-next-nethod (floor x))) ; FLOOR returns an integer
#<STANDARD- METHOD COVMBO2 : AROUND (FLOAT) >
? (conbo2 45.9)
Error: applicabl e nmethods changed

Nothing is cast in stone; a peek at the metaobject protocol

The metaobject protocol (MOP) is a collection of functions that expose much of the underlying workings of
CLOS. We've aready seen one function that belongs to the MOP: CLASS- PRECEDENCE- LI ST. Some MOP
functions, like CLASS- PRECEDENCE- LI ST, give you visibility into the inner workings of CLOS. Here are
some examples:

Functi on Ar gunent Ret ur ns

CLASS- DI RECT- SUBCLASSES a cl ass alist of the i Mmedi ate subcl asses
CLASS- DI RECT- SUPERCLASSES a cl ass a list of the imedi ate supercl asses
CLASS- DI RECT- SLOTS a cl ass a list of non-inherited slots

CLASS- DI RECT- METHODS a cl ass a list of non-inherited nethods

Other MOP functions let you change the underlying behavior of CLOS. Y ou can use this capability to extend
CLOS -- perhaps to implement a persistent object store -- or to alter the behavior to more closely correspond to
adifferent kind of object system. Such changes are far beyond the scope of this book. Also, you should be
aware that the MOP is not (yet, as of early 1999) a standard part of CLOS, and there is no definition of the
MOP recognized by any national or international standards body.

So far, the defining document for the MOP is The Art of the Metaobject Protocol. Most Lisp vendors provide at

least a partial M OP implementation; you should probably start with the vendor's documentation if you're
interested in the MOP.

Contents | Cover
Chapter 13 | Chapter 14 | Chapter 15

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to
the author's site.

http://psg.com/~dlamking/sl/chapter14.html (9 of 9)11/3/2006 5:55:06 PM

Successful Lisp - Chapter 15

Chapter 15 - Closures

In this chapter we'll expand upon the discussion of closures that we started in Chapter 11. We'll see

again how (and why) closures capture free variables for use in other execution contexts, then we'll see
some practical applications. We'll close this chapter with alook at functions that return functions.

Is it a function of the lifetime, or the lifetime of a function?

Common Lisp does not expose closures per se. Recall from Chapter 11 that a closure is a collection of
closed-over variables retained by afunction. (A closed-over variable isavariable found "free" in the
function; this gets "captured” by the closure. We saw some examples of thisin Chapter 11; wel'll review
the details in the next section, in case you've forgotten.) For this reason, Lisp programmers tend to refer
to "afunction having closed-over variables' as ssmply "aclosure." Or maybe they call it that because it
saves them nine syllables.

A closure has to be associated with a function, so it must have the same lifetime -- or extent -- asthe
function. But all of the closed-over variables come along for the ride -- a closed-over variable has the
same extent as the closure. This means that you can close over alexical variable, which would normally
have lexical extent, and give that variable indefinite extent. Thisisavery useful technique, aswe'll see
shortly.

How to spot a free variable, and what to do about it.

A variableis free within afunction (or within any form, for that matter) if there is no binding occurrence
of its name within the lexical scope -- the textual bounds, more or less -- of the function. A binding
occurrence is an occurrence of the name that (according to the definition of the form that includes the
name) associates storage with the name.

A free variable must be found in one of two places. Either the function is textually wrapped within a
form that provides a binding occurrence of the variable, or the variableisspeci al (review Chapter 8)

and contained in the global environment. If afree variable is not found in one of these two places, it is
unbound (i.e. has no storage associated with the name) and will cause an error when referenced at
runtime.

Using closures to keep private, secure information.

If you close over alexical variable, that variable is accessible only from within the closure. Y ou can use
this to your advantage to store information that is truly private, accessible only to functions that have a

http://psg.com/~dlamkins/sl/chapter15.html (1 of 5)11/3/2006 5:55:11 PM

Successful Lisp - Chapter 15

closure containing your private variable(s).

? (let ((password nil)
(secret nil))
(defun set-password (new passwd)
(i1 f password
‘| Can't - already set]
(setq password new passwd)))
(defun change-password (ol d-passwd new passwd)
(if (eq ol d-passwd password)
(setqg password new passwd)
"| Not changed|))
(defun set-secret (passwd new secret)
(i1f (eq passwd password)
(setqg secret new secret)
'| Wong password|))
(defun get-secret (passwd)
(i1f (eq passwd password)
secr et
"|Sorryl)))
GET- SECRET
? (get-secret 'sesane)
| Sorry|
? (set-password 'val entine)
SECRET
? (set-secret 'sesane 'ny-secret)
| Wong passwor d|
? (set-secret 'valentine 'ny-secret)

MY- SECRET

? (get-secret 'fubar)

| Sorry|

? (get-secret 'val entine)
MY- SECRET

? (change- password ' fubar ' new password)

| Not changed|

? (change-password 'val entine ' new password)
NEW PASSWORD

? (get-secret 'valentine)

| Sorry|

; The cl osed-over |exical variables aren't in the gl obal

? password
Error: unbound vari abl e
? secret

http://psg.com/~dlamkins/sl/chapter15.html (2 of 5)11/3/2006 5:55:11 PM

envi r onment

Successful Lisp - Chapter 15

Error: unbound vari abl e
The gl obal environnment doesn't affect the cl osed-over vari abl es
? (setqg password 'cheat)
CHEAT
? (get-secret 'cheat)
| Sorry|

Functions that return functions, and how they differ from
macros.

The preceding example is only good for keeping one secret, because every time we eval uate the outer
LET form we redefine all of the functions that close over our "private" variables. If we want to eliminate
our dependence upon the global namespace for functions to manipulate our closed-over variables, we're
going to have to find away to create new closed-over variables and return a function that we can save
and later use to manipulate the variables. Something like this will work:

? (defun nmake-secret-keeper ()
(let ((password nil)
(secret nil))
(lanbda (operation & est argunents)
(ecase operation
(set - password
(let ((new passwd (first argunents)))
(if password
‘| Can't - already set]
(setq password new passwd))))
(change- password
(let ((old-passwd (first argunents))
(new passwd (second argunents)))
(if (eq ol d-passwd password)
(setq password new passwd)
‘| Not changed|)))
(set-secret
(let ((passwd (first argunents))
(new secret (second argunents)))
(if (eq passwd password)
(setq secret new secret)
| Wong password|)))
(get-secret
(let ((passwd (first argunents)))
(if (eq passwd password)
secr et

http://psg.com/~dlamkins/sl/chapter15.html (3 of 5)11/3/2006 5:55:11 PM

Successful Lisp - Chapter 15

| Sorry[)))))))
MAKE- SECRET- KEEPER

? (defparaneter secret-1 (nmake-secret-keeper))
SECRET- 1

? secret-1

#<LEXI CAL- CLOSURE #x36AE056>

? (funcall secret-1 'set-password 'val entine)
VALENTI NE

? (funcall secret-1 'set-secret 'val entine 'deep-dark)
DEEP- DARK

? (defparaneter secret-2 (nmake-secret-keeper))
SECRET- 2

? (funcall secret-2 'set-password ' bl oody)

BLOODY

? (funcall secret-2 'set-secret 'bloody 'nysterious)
MYSTERI QUS

? (funcall secret-2 'get-secret 'valentine)

| Wong passwor d|

? (funcall secret-1 'get-secret 'valentine)

DEEP- DARK

The ECASE form is an exhaustive case statement. In our program, the OPERATI ON must be found in
one of the ECASE clauses, or Lisp will signal an error.

The#' (LAMBDA ... form createsaclosure over the free variables PASSWORD and SECRET. Each
time we evaluate MAKE- SECRET- KEEPER, the outermost LET form creates new bindings for these
variables; the closure is then created and returned as the result of the MAKE- SECRET- KEEPER
function.

In pre:ANSI Common Lisp, LAMBDA is merely a symbol that is recognized as a marker to
define alambda expression. By itself, LAVMBDA does not create a closure; that is the
function of the#' reader macro (which expandsinto a(FUNCTI ON . .. form).

ANSI Common Lisp defines a LAMBDA macro that expandsinto (FUNCTI ON

(LAMBDA . .. ,whichyoucanusein place of #' (LAMBDA wherever it appearsin this
example. For backward compatibility with pre-ANSI Common Lisp implementations, you
should alwayswrite#' (LAMBDA . .. --theredundant (FUNCTI ON ... inthe
expansion will do no harm.

Within each ECASE clause we extract arguments from the &REST variable ARGUVENTS and then do
exactly the same processing as in our earlier example.

http://psg.com/~dlamkins/sl/chapter15.html (4 of 5)11/3/2006 5:55:11 PM

Successful Lisp - Chapter 15

Once we have invoked MAKE- SECRET- KEEPER and saved the resultant closure, we can FUNCALL the
closure, passing the operation symbol and any additional arguments. Note that each closure created by
MAKE- SECRET- KEEPER is completely independent; we've therefore achieved the goal of being able to
keep multiple secrets.

Functions that return closures are different from macros. A macro is a function that produces aform; the
form is then evaluated to produce aresult. A function that returns a closure simply returns an object: the
closure. The returned closure is not automatically evaluated by the Lisp evaluator.

Contents | Cover
Chapter 14 | Chapter 15 | Chapter 16

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter15.html (5 of 5)11/3/2006 5:55:11 PM

Successful Lisp - Chapter 16

Chapter 16 - How to Find Your Way Around, Part 2

It's once again time to take a break and |earn about some more of the tools you can use to grok [1] the

inner workings of Lisp and your programs. In this chapter, we'll learn what the Lisp compiler doesto
your code, and how to watch what your code does as it runs.

DISASSEMBLE: | always wondered what they put inside those
things...

If you understand alittle about compilers and assembly language -- or if you're just interminably curious
-- you can find out exactly how the Lisp compiler translates your Lisp code. DI SASSEMBLE takes a
function name or object and lists the assembly-language instructions that would have been emitted by
the Lisp compiler if it actually emitted assembly-language code -- most compilers directly generate
machine instructions without invoking an assembler.

The output of DI SASSEMBLE is dependent both upon the instruction set architecture of the machine
you're using to run Lisp and upon the Lisp implementation itself. Here's an example of using

DI SASSEMBLE on avery simple function; this was done using Macintosh Common Lisp on a PowerPC
processor.

? (defun addl (n) (1+ n))
ADD1
? (di sassenbl e 'addl)
(TWNEI NARGS 4)
(MFLR LOC- PC)
(BLA . SPSAVECONTEXTVSP)
(VPUSH ARG 2)
(LWZ NARGS 331 RNIL)
(TWGTI NARGS 0)
(LI ARGY '1)
(LWZ ARG Z 0 VSP)
(BLA . SPRESTORECONTEXT)
(MILR LOC- PC)
(BA . SPBUI LTI N- PLUS)

Thefirst thing you'll note about thislisting isthat it looks "Lisp-ish" with the parentheses. The second
thing you'll notice -- if you are familiar with the PowerPC instruction set -- is that most of these forms
are familiar; it's asif someone took part of area PowerPC assembly language program and bracketed
each line of text in parentheses. Y ou may also notice that there are no comments in the assembly code,
that there are some pseudo-instructions such as VPUSH, and that thisis not a complete program that you

http://psg.com/~dlamkins/sl/chapter16.html (1 of 6)11/3/2006 5:55:14 PM

Successful Lisp - Chapter 16

could feed into an assembler (even after you stripped off the parentheses). I'll explain all of these points.

Many Lisp systemsinclude an assembler that accepts statements in the form generated by

DI SASSEMBLE. These statements are often named LAP, for Lisp Assembly Program. With the proper
documentation, you can write LAP code and have it invoked by your own functions. But you do need
the vendor's documentation for this; you can't just find the LAP assembler and feed it alist of LAP
instructions. Y ou need to know how to use reserved registers, what subroutines to call, what stack
protocol to follow, and many other low-level details. Y ou also need to associate the code with a function
name so you can call it later; thisis one of the pieces that is missing from the output of DI SASSENMBLE.

Some Lisp systems provide additional information (beyond raw assembler instructions) in their

DI SASSEMBLE output. In the code above, you'll see that certain reserved registers or memory locations
are identified by a distinguishing name, such as NARGS, LOC- PC, ARG Y, ARG Z, VSP and RNI L.
Sometimes certain instructions (or even short instruction sequences) will be given a mnemonic name
that reflects their use by the Lisp compiler; VPUSH is one such mnemonic used by this Lisp system.

Some Lisp systems are better than others at including explanatory comments with the disassembled
code. Systems that do include comments typically synthesize comments to explain the code, or save
information that allows DI SASSEMBLE to intersperse source program fragments within the disassembly
listing.

One useful thing you can do with DI SASSEMBLE is to see whether declarations have any effect on
your compiler. Declarations are forms that provide advice to the compiler. With the one exception of the
SPECI AL declaration, which alters the meaning of code that uses it (see Chapter 8) a compiler may or
may not use the information that you provide in adeclaration. Y our Lisp vendor's documentation may
provide some guidance as to the effect of declarations, but the best (and most accurate) assessment is
made by reading the listing that DI SASSENMBLE generates.

The previous disassembly of ADD1 showsthat it calls several subroutines: . SPSAVECONTEXTVSP, .
SPRESTORECONTEXT, and . SPBUI LTI N- PLUS. If that seems like an awful ot of work just to add
one to a number, consider that (1) the number can be of any type (including bignum, which is an
"Infinite" precision integer type), (2) non-numeric arguments are handled gracefully -- you'll get a break
into the Lisp debugger rather than a crash or a core dump, and (3) the function probably makes an extra
effort to make its presence known to the Lisp debugger.

So, what if we want to play fast and loose, assume that ADD1 will only be called for small integer
arguments, and stoically suffer the ungraceful consequences if we screw up and pass the wrong type of
data? We can add declarations to express our intent, and then use DI SASSEMBL E again to see whether
the compiler paid any attention to our wishes.

? (defun int-addl (n)
(declare (fixnum n)

http://psg.com/~dlamkins/sl/chapter16.html (2 of 6)11/3/2006 5:55:14 PM

Successful Lisp - Chapter 16

(optimze (speed 3) (safety 0) (debug 0)))
(the fixnum (1+ n)))
| NT- ADD1
? (di sassenble '"int-addl)
(MFLR LOC- PC)
(STWJ SP -16 SP)
(STWFN 4 SP)
(STWLOC-PC 8 SP)
(STWVSP 12 SP)
(MR FN TEMP2)
(LWZ I MWD -117 RNIL)
(TWLLT SP | MVD)
(VPUSH ARG 2)
(LWZ ARG Z 0 VSP)
(ADDI ARG Z ARG Z 4)
(LWZ LOC-PC 8 SP)
(MILR LOC- PC)
(LWZ VSP 12 SP)
(LWZ FN 4 SP)
(LA SP 16 SP)
(BLR)

The DECLARE formin | NT- ADD1 includes two kinds of advice. (FI XNUM N) declares that the
function parameter N is a small integer. (The range depends upon your Lisp implementation, but you'll
typically get 29-bit fixnums on a 32-bit processor; the remaining three bits are often used by the Lisp
system to encode type information.) The (OPTI M ZE . .. declaration is advice to the compiler that
you'd like it to emphasi ze certain properties of the compiled code. Here, I've said that speed is of
ultimate importance, and that | could care less about runtime safety or debuggability. If the compiler
pays attention to all of this, | should get code that is optimized for fixnums, runs fast, and falls over if |
pass it anything other than afixnum or cause it to generate aresult that isn't a fixnum.

Looking at the generated code, it appears that the compiler has paid attention to my declarations. The
compiled code for | NT- ADD1 is abit longer than the code for ADDL1, but there are no subroutine calls.
Every instruction generated for | NT- ADD1 is a simple PowerPC instruction (even the VPUSH
instruction, which isjust an alias for a single PowerPC instruction). The addition is performed by
PowerPC instructions instead of a subroutine. In fact, most of the codein | NT- ADD1 has to do with
entering and leaving the function.

By the way, some optimization setting is alwaysin effect if you don't usean (OPTI M ZE . . .
declaration. To find out what are the global optimization settings, do this:

? (declaration-information 'optim ze)
((SPEED 1) (SAFETY 1) (COWPILATI ON-SPEED 1) (SPACE 1) (DEBUG 1))

http://psg.com/~dlamkins/sl/chapter16.html (3 of 6)11/3/2006 5:55:14 PM

Successful Lisp - Chapter 16

DECLARATI ON- | NFORMATI ON'may not exist in apre-ANSI Common Lisp
implementation, but there may be an alternative way to access this information. Consult
the vendor's documentation. If that fails, see whether APROPCS (see Chapter 10) turns up

anything that might be useful.

BREAK and backtrace: How did | end up here?

If you ever need to figure out exactly what's going on at a particular point in your program, you can
insert a BREAK form at the point of interest; when your program evaluates the BREAK, the Lisp system
will immediately stop your program (without losing any information), and transfer control to the Lisp
debugger. Once in the debugger, you can do things like examine the call stack (sometimes named a
backtrace, since the stack frames are atrace of your program's current call history, backward in time)
and look at local variables at any level in the stack. And, of course, you can execute any Lisp code that
you like. But wait, there's more! Y ou can exit the debugger, and your program will continue from where
the BREAK interrupted it. Or you can change the values of some variables before you continue. If you
want, you can provide a value to be returned by the interrupted function. Y ou can even redefine and
restart functions anywhere in the call stack.

The fact that BREAK isjust a Lisp form hasits advantages. Y ou can wrap it in a conditional expression
of arbitrary complexity, so that your program will trigger the break exactly when it's needed; thisis
especially useful in debugging loops or recursive functions.

If you have more than one BREAK statement in your code, you may find it useful to identify the
particular BREAK that invokes the debugger. Y ou can provide aformat control string and arguments that
BREAK will use to print a message upon entry to the debugger. The control string and arguments are the
same as you'd use for FORMAT. (We've seen examples of FORMAT in Chapters 4, 5, and 6. Chapter 24

give aamore complete treatment of FORMAT.)

The downside? Most Lisp IDE's don't give you a point-and-click interface to set BREAKS,
(That is adownside, right?)

Lisp defines BREAK, the interface for your program to gain entry into the debugger. Once there, the
commands that you'll use to navigate are entirely implementation-specific. If you're lucky, you'll get a
window-and-menus interface to at least the most common actions. If, instead of a GUI, the debugger
presents you with just get a message and a prompt, you may have to crack open the manual. But before
you get so desperate, try to get the debugger to print a help text or menu: one of the commandsH, ?, : H,
or : HELP may work for your Lisp system.

TRACE and STEP: I'm watching you!

http://psg.com/~dlamkins/sl/chapter16.html (4 of 6)11/3/2006 5:55:14 PM

Successful Lisp - Chapter 16

When you need to know exactly how a function isworking at a particular point in your code, BREAK
and the Lisp debugger are indispensable tools. But they are labor intensive and slow (at least relative to
the program's normal execution) -- nothing happens except when you issue commands to the debugger.

Sometimes, it's enough to know that a particular function has been called and returned a value. TRACE
givesyou this ability. Y ou ssmply invoke trace with one or more function names, and the Lisp
environment arranges to print the name of the function and its arguments upon entry, and the name of
the function and its values upon exit. All this happens without changing the source code for the function.

? (defun factorial (n)
(if (plusp n)
(* n (factorial (1- n)))
1))
FACTORI AL
? (factorial 6)
720
? (trace factorial)
NI L
? (factorial 6)
Cal ling (FACTORI AL 6)
Cal ling (FACTORI AL 5)
Cal ling (FACTORI AL 4)
Cal ling (FACTORI AL 3)
Cal ling (FACTORI AL 2)
Cal ling (FACTORI AL 1)
Cal ling (FACTORI AL 0)
FACTORI AL returned 1
FACTORI AL returned 1
FACTORI AL returned 2
FACTORI AL returned 6
FACTORI AL returned 24
FACTORI AL returned 120
FACTORI AL returned 720
720

Some Lisp systems may print only the first and last lines of this trace, because of compiler
optimizations. If you want to see recursive calls, it may help to evaluate (DECLAI M
(OPTIM ZE (DEBUG 3))) before defining any functionsto be traced.

Notice how indentation is used to represent call stack depth. This, and other details of the TRACE
presentation, are implementation dependent.

http://psg.com/~dlamkins/sl/chapter16.html (5 of 6)11/3/2006 5:55:14 PM

Successful Lisp - Chapter 16

When you no longer want to trace a function, evaluate UNTRACE, passing the function name (or names).
UNTRACE without any arguments will stop tracing of al currently traced functions.

Sometimes, despite your best efforts, you're just not sure what parts of afunction are being executed. If
you're this confused, and you'd rather forge ahead than try to simplify the function, Lisp gives you the
STEP form. STEP takes acomplete Lisp form as an argument; it evaluates the form and returns what
the form returns. Along the way, though, it lets you see all of the evaluations that happen -- step by step,
asit were. Like BREAK, STEP only has a standard program interface; the user interfaceis
implementation dependent.

The quality of information available through STEP varies widely among implementations.
The most common shortcoming is that you see some transformed version of the program
source, rather than the original source code. Generally, you'll be able to spot enough clues
(variable names, functions, etc.) so that you can keep your bearings as you execute the
stepped code one form at atime.

Footnotes:

[1] :grok: /grok/, var. /grohk/ /vt./ [from the novel "Stranger in a Strange Land", by Robert A. Heinlein,
where it is a Martian word meaning literaly "to drink' and metaphorically "to be one with'] The emphatic
formis ‘grok in fullness. 1. To understand, usually in a global sense. Connotes intimate and exhaustive
knowledge. Contrast { zen}, which is similar supernal understanding experienced as asingle brief flash.
2. Used of programs, may connote merely sufficient understanding.

Contents | Cover
Chapter 15 | Chapter 16 | Chapter 17

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter16.html (6 of 6)11/3/2006 5:55:14 PM

Successful Lisp - Chapter 17

Chapter 17 - Not All Comparisons are Equal

Up to this point, I've shown you various comparison functions without really saying much about the
differences between them. In this chapter, I'll (finally) tell you about how and why the comparison
functions differ and offer some guidelines for their proper use.

The longer the test, the more it tells you
Lisp has a core set of comparison functions that work on virtually any kind of object. These are:

. EQ
. EQL

. EQUAL
. EQUALP

The tests with the shorter names support stricter definitions of equality. The tests with the longer
implement less restrictive, perhaps more intuitive, definitions of equality. Welll learn about each of the
four definitionsin the following sections.

EQ is true for identical symbols

EQistruefor identical symbols. In fact, it'strue for any identical object. In other words, an object is EQ
to itself. Even a composite object, such asalist, is EQto itself. (But two lists are not EQjust because
they ook the same when printed; they must truly be the same list to be EQ.) Under the covers, EQjust
compares the memory addresses of objects.

The reason that symbols are EQ when they have the same name (and are in the same package) is that the
Lisp reader interns symbols asit reads them. The first time the reader sees a symboal, it createsit. On
subsequent appearances, the reader simply uses the existing symbol.

EQis not guaranteed to be true for identical characters or numbers. This is because most Lisp systems
don't assign a unique memory address to a particular number or character; numbers and characters are
generally created as needed and stored temporarily in the hardware registers of the processor.

EQL is also true for identical numbers and characters

EQL retains EQs notion of equality, and extends it to identical numbers and characters. Numbers must
agree in value and type; thus 0.0 is not EQL to 0. Characters must be truly identical; EQL is case
sensitive.

http://psg.com/~dlamkins/sl/chapter17.html (1 of 3)11/3/2006 5:55:18 PM

Successful Lisp - Chapter 17

EQUAL is usually true for things that print the same

EQand EQL are not generally true for lists that print the same. Lists that are not EQbut have the same
structure will be indistinguishable when printed; they will also be EQUAL.

Strings are al'so considered EQUAL if they print the same. Like EQL, the comparison of characters within
strings is case-sensitive.

EQUALP ignores number type and character case

EQUALP isthe most permissive of the core comparison functions. Everything that is EQUAL isalso
EQUALP. But EQUALP ignores case distinctions between characters, and applies the (typel ess)
mathematical concept of equality to numbers; thus 0.0 is EQUALP to O.

Furthermore, EQUALP istrueif corresponding elements are EQUALP in the following composite data
types:

. Arrays

. Structures
. Hash Tables

Longer tests are slower; know what you're comparing

The generality of the above longer-named tests comes with a price. They must test the types of their
arguments to decide what kind of equality is applicable; this takes time.

EQisblind to type of an object; either the objects are the same object, or they're not. This kind of test
typically compilesinto one or two machine instructions and is very fast.

Y ou can avoid unnecessary runtime overhead by using the most restrictive (shortest-named) test that
meets your needs.

Specialized tests run faster on more restricted data types

If you know the type of your data in advance, you can use comparisons that are specialized to test that
particular type of data. Tests are available for characters, strings, lists, and numbers. And, of course,
there are also comparisons for other relationships besides equality.

. Characters

http://psg.com/~dlamkins/sl/chapter17.html (2 of 3)11/3/2006 5:55:18 PM

Successful Lisp - Chapter 17

CHAR=
CHAR/ =
CHAR<
CHAR<=
CHAR>
CHAR>=
CHAR- EQUAL
CHAR- NOT- EQUAL
. Strings
o STRI NG=
STRI NG =
STRI NG<
STRI NG<=
STRI NG
STRI NG>=
STRI NG EQUAL
STRI NG NOT- EQUAL

O O O O O O O O

O O O O O O O

. Lists
o TREE- EQUAL
. Numbers

/=

O O O O O O

Contents | Cover
Chapter 16 | Chapter 17 | Chapter 18

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter17.html (3 of 3)11/3/2006 5:55:18 PM

Successful Lisp - Chapter 18

Chapter 18 - Very Logical, Indeed...

Now it'stimeto look at things having to do with boolean (true and false) logic. We'll learn about
common logical functions, and conditional evaluation. If you're a bit twiddler, this chapter should warm
your heart: we'll introduce bit manipulation functions, bit vectors, and generalized byte manipulation.

AND and OR evaluate only as much as they need

AND and OR are macros in Common Lisp. This means that they have control over when (and if) their
arguments get evaluated. AND and OR take advantage of this ability: they stop evaluating their
arguments as soon as they determine an answer.

Consider AND: it evaluates its arguments, starting with the leftmost, only as long as each argument
evaluatesto atrue (i.e. not NI L) value. As soon as AND evaluates the leftmost false (NI L) argument, its
work is done -- the result will be NI L no matter how many more true arguments it evaluates, so AND just
returns NI L without evaluating any more of its arguments. (Think of this as a"one strike and you're out"
policy.) AND returns true only if all of its arguments evaluate to atrue value.

In fact, AND returns either NI L (if one of its arguments evaluatesto NI L) or the non-NI L value of its
rightmost argument. Some Lisp programmers take advantage of thisto treat AND as asimple
conditional.

? (defun safe-elt (sequence i ndex)
(and (< -1 index (length sequence)) ; guard condition
(values (elt sequence index) t)))
SAFE- ELT
? (safe-elt #(1 2 3) 3)
NI L
? (elt #(1 2 3) 3)
Error: index out of bounds
? (safe-elt #(1 2 3) 2)
3
T

OR also evaluates only enough arguments to determine its result: it evaluates arguments, starting with
the leftmost, so long asthey evaluateto NI L. Thefirst non-NI L result is returned as OR's value;
arguments further to the right are not evaluated.

One caution isin order about AND and OR. Because they are macros, and not functions, they can not be
used for mapping (see Chapter 12). Use the predicate mapping functions (SOVE, EVERY, etc.) instead.

http://psg.com/~dlamkins/sl/chapter18.html (1 of 7)11/3/2006 5:55:22 PM

Successful Lisp - Chapter 18

Bits, bytes, and Boole

Machine languages and low-level programming languages always provide the ability to perform bitwise
boolean operations: groups of bits are logically combined on a bit-by-bit basis; adjacent bits have no
effect on their neighbors in determining the result. The same languages also let you treat adjacent
groupings of bits as a unit; thisis commonly called a byte or abit field. Usually bitwise and bit field
operations are constrained by the size of hardware registers.

Lisp makes these same facilities available, but removes the constraints that might otherwise be imposed
by the underlying hardware.

Sixteen bitwise boolean operations are available in Lisp through the BOOLE function. BOCOLE is athree-
argument functions expecting an operation designator plus two integer arguments and producing an
integer result. Remember that Lisp has infinite precision integers (bignums), so these bitwise boolean
operations are exempt from machine limitations (except for available memory).

The operation designator is a constant value having a name from the following list. The actual values of
these constants is specific to the Lisp implementation.

BOOLE- 1 ; returnsargl

BOOLE- 2 ; returnsarg?2

BOOLE- ANDC1 ; and complement of argl with arg2
BOOLE- ANDC2 ; and argl with complement of arg2
BOOLE- AND; and argl with arg2

BOOLE- C1 ; complement of argl

BOOLE- C2 ; complement of arg2

BOOLE- CLR; always all zeroes

BOOLE- EQV ; exclusive-nor of argl with arg2 (equivalence)
BOOLE- | OR; inclusive-or of argl with arg2

. BOOLE- NAND ; not-and of argl with arg2

BOOLE- NOR ; not-or of argl with arg2

BOOLE- ORC1 ; or complement of argl with arg2
BOOLE- ORC2 ; or argl with complement of arg2
BOOLE- SET ; always all ones

BOOLE- XOR; exclusive-or of argl with arg2

CO~NoOUOMWDNE

PR R LR PR
oSOk wbdpE

? (bool e bool e-and 15 7)
7

? (bool e boole-ior 2 3)

3

? (bool e bool e-set 99 55)

http://psg.com/~dlamkins/sl/chapter18.html (2 of 7)11/3/2006 5:55:22 PM

Successful Lisp - Chapter 18

-1
? (bool e bool e-andc2 7 4)
3

There are also eleven bitwise logical functions; these are similiar to the BOOLE operations, except that
the constant and identity operations are not present in this group, and the complement function takes
only one argument. (Except for LOGNOT, al of the following functions expect two arguments.)

L OGAND
L OGANDCL
L OGANDC2
L OGEQV
LOG OR

L OGNAND
L OGNOR

L OGNOT

L OGORCL
L OGORC2

. LOGXOR

CONoOUOMWDNE

ol
l_\

LOGTEST returnstrueif any of the corresponding bitsin its two arguments are both ones.

? (logtest 7 16)
NI L

? (logtest 15 5)
T

LOGBI TP tests one bit in the two's complement representation of an integer, returning T if the bitis 1
and NI L if the bitis 0. The least significant (rightmost) bit is bit O.

? (logbitp 0 16)
NI L

? (logbitp 4 16)
T

? (logbitp 0 -2)
NI L

? (logbitp 77 -2)
T

LOGCOUNT counts 1 bitsin the binary representation of a positive integer, and O bitsin the two's
complement binary representation of a negative number.

http://psg.com/~dlamkins/sl/chapter18.html (3 of 7)11/3/2006 5:55:22 PM

Successful Lisp - Chapter 18

? (1 ogcount 35)
3
? (l ogcount -2)
1

Bit vectors can go on forever

A vector composed of only 1s and Os has a compact representation as a bit vector, a special
representation for printing and reading, and a set of logical operations. Like all vectors (and arrays) in
Common Lisp, the size of abit vector islimited by the constant ARRAY- TOTAL- SI ZE- LI M T; this
can be as small as 1,024, but is typically large enough that the size of memory sets a practical limit on
the size of bit-vectors.

The printed representation of a bit vector begins with the #* reader macro, followed by 1sand Os. The
bit vector's length is determined by the 1s and Os that make up its elements. (The printed representation
of an empty bit vector is#*.)

? #+0010101
#*0010101

? (length #0010101)
.

There are eleven bitwise logical operations available for bit vectors. With the exception of Bl T- NOT,
these are all functions of two arguments. Unlike the corresponding bitwise logical operations on
integers, the bit vector logical operations expect their arguments to be of the same size.

Bl T- AND
Bl T- ANDCL
Bl T- ANDC2
Bl T- EQV
Bl T-1 OR
Bl T- NAND
Bl T- NOR
Bl T- NOT

Bl T- ORC1
Bl T- ORC2

. BI T- XOR

CONOORMWDNE

ol
H

These functions will destructively update a result bit vector if you provide an optional third (second in
the case of Bl T- NOT) argument. If the optional argument is T, then the first argument will be updated
with the result bits. If the optional argument is a bit vector, it will be updated with the result bits and the
input arguments will be unchanged. (Thisin-place update is not available for bitwise operations on

http://psg.com/~dlamkins/sl/chapter18.html (4 of 7)11/3/2006 5:55:22 PM

Successful Lisp - Chapter 18

integers, destructive bit vector operations may be more efficient once the number of bits exceeds the size
of afixnum.)

2 (bit-and #+00110100 #*10101010)
#*00100000

2 (bit-ior #+00110100 #*10101010)
#*10111110

2 (bit-not #*+00110100)

#11001011

Y ou can access an individual element of a bit vector using Bl T. Thisis avector accessor, and not a
boolean test, soit returnsO or 1. Bl T can also be used in a SETF form to alter an element of abit vector.

? (bit #*01001 1)

1

? (let ((bv (copy-seq #*00000)))
(setf (bit bv 3) 1)
bv)

#* 00010

Chunks of bits make bytes

Getting back to integer manipulation as we wrap up this chapter, we'll see how to manipulate fields of
adjacent bits within an integer value.

The first thing we need when manipulating afield of bits (called a byte in Common Lisp) isaway of
specifying its bounds. The BYTE function constructs a byte specifier from a size (number of bits) and a
position (the number of the rightmost bit of the byte within the containing integer, where the LSB is bit
0). The representation of a byte specifier depends upon the Lisp implementation.

The functions BYTE- SI ZE and BYTE- POSI Tl ON extract the size and position values from a byte
specifier.

? (setq bs (byte 5 3)) ; 5 bits, rightnost has weight 223 in source
248 ; inpl enentati on-dependent

? (byte-size bs)

5

? (byte-position bs)

3

Y ou can extract and replace bytes from an integer using the functions LDB (load byte) and DPB (deposit
byte).

http://psg.com/~dlamkins/sl/chapter18.html (5 of 7)11/3/2006 5:55:22 PM

Successful Lisp - Chapter 18

2 (1db (byte 8 8) 258)
1
2 (1db (byte 8 0) 258)
2
2

(dpb 3 (byte 8 8) 0)
768
? (dpb 1 (byte 1 5) 1)
33

LDB- TEST returnstrue if any of the bitsare 1 in a specified byte.

? (1db-test (byte 3 2) 3)
NI L

? (1db-test (byte 3 2) 9)
T

? (Idb-test (byte 3 2) 34)
NI L

| NTEGER- LENGTH tells you how many bits are necessary to represent an integer in two's complement
form. A positive integer will always have an unsigned representation using the number of bits
determined by | NTEGER- LENGTH. A negative integer has a signed binary representation that requires
one bit more than the number of bits determined by | NTEGER- LENGTH.

(integer-length 69) ; 1000101
(integer-length 4) ; 100
(integer-length -1) ; 1

(integer-length 0)

(integer-length -5) ; 1011

?
7
2
3
?
0
?
0
?
3
Y ou can shift the bitsin an integer using the ASH function. Thisis an arithmetic shift; it treats the

integer as atwo's complement binary number and preserves the sign (leftmost) bit as the rest of the bits

are shifted. A left shift shifts bits to the left, replacing them with zeroes (and preserving the sign bit). A
right shift shifts bits to the right, replacing them with zeroes (and preserving the sign bit).

ASH expects two arguments, an integer to be shifted, and a shift count. A shift count of O returnsthe
integer unchanged. A positive count shifts bitsto the left by the specified number of positions. A

http://psg.com/~dlamkins/sl/chapter18.html (6 of 7)11/3/2006 5:55:22 PM

Successful Lisp - Chapter 18

negative count shifts bits to the right.

? (ash 75 0)
75

? (ash 31 1)
62

? (ash -7 1)
-14

? (ash 32 8)
8192

? (ash -1 8)
- 256

(ash 16 -1)

(ash 11 -1)

(ash 32 -8)

:all one bits shifted out
(ash -99 -2)

-25

NN O)01 00

Contents | Cover
Chapter 17 | Chapter 18 | Chapter 19

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter18.html (7 of 7)11/3/2006 5:55:22 PM

Successful Lisp - Chapter 19

Chapter 19 - Streams

All of the I/0O functionsin Lisp accept a stream argument. In some cases (e.g. READ and PRI NT) the stream
argument is optional; by default, input comes from the * STANDARD- | NPUT* stream (normally connected to the
keyboard) and output goes to the * STANDARD- QUTPUT* stream (normally connected to the display). Y ou can
redirect 1/0O by either providing optional stream arguments to READ and PRI NT (aswell as other 1/0 functions), or
by binding * STANDARD- | NPUT* and * STANDARD- QUTPUT* to different streams. (We€'ll see both of these
approaches used in the following examples.)

Streams provide a pipe to supply or accept data

Throughout the preceding chapters of this book, streams have been involved whenever we've seen an example that
does input or output -- and all of the examples do 1/0O, if you count our interactions with the listener. A Lisp stream
can provide (source) or consume (sink) a sequence of bytes or characters. (Remember the Lisp definition of byte: a
byte can contain any number of bits.)

Some /O functions accept T or NI L as a stream designator. T isasynonym for * TERM NAL- | O, abidirectional
(input and output) stream which conventionally reads from * STANDARD- | NPUT* and writesto * STANDARD-
OUTPUT* . NI L isasynonym for * STANDARD- | NPUT* when used in a context which expects an input stream, or
for * STANDARD- OQUTPUT* when used in a context which expects an output stream.

FORVAT (which we've aready seen in several examples, and will examine in depth in Chapter 24)
expects asitsfirst argument astream, aT, aNl L, or astring with afill pointer. In this case, however,
the NI L designator causes FORMAT to return a string, rather than write to * STANDARD- OUTPUT*
asisthe case for other I/O functions.

The power of streams comes from the ability to associate a stream with afile, a device (such as keyboard, display,
or network), or amemory buffer. Program |/O can be directed at will by simply creating the appropriate type of
stream for your program to use. The I/O implementation is abstracted away by the stream so your program won't
have to be concerned with low-level details.

Lisp also provides a number of special-purpose streams which serve to combine or manipulate other streamsin
novel ways. A TWO- WAY- STREAMcombines a separate input stream and output stream into an 1/0O stream. A
BROADCAST- STREAMsends output to zero or more output streams; think of this as a bit-bucket when used with
zero streams, and a broadcaster when used with multiple streams. A CONCATENATED- STREAMaccepts input
requests on behalf of zero or more input streams; when one stream’s input is exhausted, the CONCATENATED-
STREAMbegins reading from its next input stream. An ECHO- STREAM s like a TWO- WAY- STREAM with the
added feature that anything your program reads from the TWO- WAY- STREAMSs input stream automatically gets
echoed to the corresponding output stream. Finally, a SYNONYM STREAMis an dlias for another stream; the alias
can be changed at runtime without creating a new SYNONYM STREAM

Quite afew /0 functions operate directly on streams:

READ- BYTE stream & optional eof-error-p eof-value and READ- CHAR & optional stream eof-error-p eof-value

http://psg.com/~dlamkins/sl/chapter19.html (1 of 5)11/3/2006 5:55:26 PM

Successful Lisp - Chapter 19

recursive-p
Reads a byte or a character from an input stream.
V\RI TE- BYTE byte stream and WRI TE- CHAR char & optional stream
Writes a byte or a character to an output stream.
READ- LI NE & optional stream eof-error-p eof-value recursive-p and WRI TE- LI NE string & optional stream & key
start end
Read or write aline of text, terminated by anewline. (The newline is consumed and discarded on input, and
added to output.) The : START and : END keyword arguments let you limit the portion of the string written
by WRI TE- LI NE.
WRI TE- STRI NGstring & optional stream & key start end
Like WRI TE- LI NE, but does not append a newline to output.
PEEK- CHAR & optional peek-type stream eof-error-p eof-value recursive-p
Reads a character from an input stream without consuming the character. (The character remains available
for the next input operation.) Optional argument peek-type aters PEEK- CHAR's behavior to first skip
whitespace (peek-type T) or to first skip forward to some specified character (peek-type a character).
UNREAD- CHAR character & optional stream
Pushes a character (which must be the character most recently read) back onto the front of an input stream,
where it remains until read again.
L1 STEN &optional stream
Returnstrueif datais available (e.g. ayet-to-be-read keystroke or unconsumed file data) on an input stream.
READ- CHAR- NO- HANG & optional stream eof-error-p eof-value recursive-p
If acharacter is available on the input stream, return the character. Otherwise, return NI L.
TERPRI &optional stream and FRESH- L1 NE & optional stream
TERPRI unconditionally writes a newline to an output stream. FRESH- LI NE writes a newline unlessit can
determine that the output stream is already at the beginning of anew line; FRESH- LI NE returns T if it
actually wrote anewline, and NI L otherwise.
CLEAR- | NPUT & optional stream
Flushes unread data from an input stream, if it makes sense to do so.
FI NI SH OQUTPUT & optional stream, FORCE- QUTPUT & optional stream, and CLEAR- OQUTPUT & optional
stream
These functions flush output buffersif it makes senseto do so. FI NI SH- OUTPUT tries to make sure that
buffered output reaches its destination, then returns. FORCE- OUTPUT attempts to initiate output from the
buffer, but does not wait for completion like FI NI SH- OQUTPUT. CLEAR- OQUTPUT attempts to discard
buffered data and abort any output still in progress.

In the read functions listed above, optional arguments EOF- ERROR- P and EOF- VAL UE specify what happens
when your program makes an attempt to read from an exhausted stream. If EOF- ERROR- P is true (the default),
then Lisp will signal an error upon an attempt to read an exhausted stream. If EOF- ERROR- PisNI L, then Lisp
returns EOF- VALUE (default NI L) instead of signalling an error.

Optional argument RECURSI VE- P isreserved for use by functions called by the Lisp reader.

Creating streams on files

The OPEN function creates a FI LE- STREAM Keyword arguments determine attributes of the stream (:
DI RECTI ON, : ELEMENT- TYPE, and : EXTERNAL- FORMAT) and how to handle exceptional conditions (: | F-
EXI STSand: | F- DOES- NOT- EXI ST). If OPENis successful it returns a stream, otherwiseit returns NI L or

http://psg.com/~dlamkins/sl/chapter19.html (2 of 5)11/3/2006 5:55:26 PM

Successful Lisp - Chapter 19

signals an error.

Keywor d Val ue Stream Direction

: DI RECTI ON | NPUT I nput (default)

- DI RECTI ON : QUTPUT out put

DIRECTION 10 I nput & out put

: DI RECTI ON : PROBE none, returns a closed stream

Keywor d Val ue Action if File Exists

-1 F- EXI STS NI L return NI L

I F-EXISTS : ERROR signal an error

-1 F- EXI STS : NEW VERSI ON next version (or error)

.1 F- EXI STS - RENAMVE renane existing, create new

I F- EXI STS : SUPERSEDE replace file upon CLOSE

-1 F- EXI STS : RENAME- AND- DELETE renane and del ete existing, create new
I F-EXISTS : OVERWRI TE reuse existing file (position at start)
-1 F- EXI STS - APPEND reuse existing file (position at end)
Keywor d Val ue Action if File Does Not Exi st

| F- DOES- NOT- EXI ST NI L return N L

. | F- DOES- NOT- EXI ST - ERROR signal an error
| F- DOES- NOT- EXI ST : CREATE create the file

Keywor d Val ue El emrent Type

: ELEMENT- TYPE . DEFAULT character (default)

- ELEMENT- TYPE " CHARACTER character

: ELEMENT- TYPE ' SI GNED- BYTE si gned byte

- ELEMENT- TYPE ' UNSI GNED- BYTE unsi gned byte

: ELEMENT- TYPE character subtype character subtype

: ELEMENT-TYPE integer subtype I nt eger subtype

: ELEMENT- TYPE ot her i npl erent at i on- dependent
Keywor d Val ue Fil e Format

: EXTERNAL- FORVAT : DEFAULT default (default)
: EXTERNAL- FORVAT ot her I npl enent ati on- dependent

Once you've opened a stream, you can use it with appropriate input or output functions, or with queries that return
attributes of either the stream or the file. The following queries can be applied to all kinds of streams. All of these
accept a stream argument:

Functi on Ret ur ns

http://psg.com/~dlamkins/sl/chapter19.html (3 of 5)11/3/2006 5:55:26 PM

Successful Lisp - Chapter 19

| NPUT- STREAM P true if stream can provide input
OUTPUT- STREAM P true if stream can accept out put
OPEN- STREAM P true if streamis open

STREAM ELEMENT- TYPE the type specifier for streamelenents
| NTERACTI VE- STREAMP true if streamis interactive (e.g. keyboard/displ ay)

These queries can be applied to file streams. These also accept a stream argument:

Functi on Ret ur ns

STREAM EXTERNAL- FORVAT I npl enent ati on- dependent

FI LE- POSI TI ON current file offset for read or wite, or NL
FI LE- LENGTH l ength of stream or NL

FI LE- POSI Tl ON returns a byte offset within the stream. Thisis an exact count for streams of integer subtypes
(see below for further description of binary 1/O). For streams of character subtypes, the position is guaranteed only
to increase during reading or writing; this alows for variations in text record formats and line terminators.

FI LE- POSI Tl ON can also be called with a second argument to change the file offset for the next read or write.
When used for this purpose, FI LE- POSI Tl ON returns true when it succeeds.

Y ou should always close a stream when you're done using it (except for the interactive streams provided for you use
by Lisp, such as* STANDARD- | NPUT* , * STANDARD- OUTPUT* , and * TERM NAL- | O*). The "open, process,
close" pattern is very common, so Lisp provides macros to make the pattern both easy to code and error-free.

W TH- OPEN- FI LE istailored for file streams. Its arguments are a variable to be bound to the stream, a pathname,
and (optionally) keyword arguments suitable for OPEN. The stream is always closed when control leavesthe W TH-
OPEN- FI LE form.

(with-open-file (stream"ny-file.dat" :direction :input)
do sonething using stream...)

W TH- OPEN- STREAMexpects a variable name and aform to be evaluated; the form should produce a stream
value or NI L. This macro is commonly used with constructors for specialty streams, such as MAKE- BROADCAST -
STREAM MAKE- ECHO STREAM MAKE- TWO- WAY- STREAM MAKE- CONCATENATED- STREAM and MAKE-
SYNONYM STREAM

Creating streams on strings

The data read or written by a stream doesn't have to be associated with a device -- the data can just aswell bein
memory. String streams let you read and write at memory speeds, but they can't provide either file or interactive
capabilities. Lisp provides constructors (MAKE- STRI NG- | NPUT- STREAMand MAKE- STRI NG- QUTPUT-
STREAM), plus macros to support the "open, process, close" pattern.

? (Wth-input-fromstring (stream"This is ny input via stream")
(read stream)

http://psg.com/~dlamkins/sl/chapter19.html (4 of 5)11/3/2006 5:55:26 PM

Successful Lisp - Chapter 19

TH S
? (Wth-output-to-string (stream

(princ "I"mwiting to nenory!" streanj)
"I"'mwiting to nenory!"

These macros accept keyword and optional arguments. W TH- | NPUT- FROM STRI NGallows: BEA Nand : END
keyword arguments to establish bounds on the portion of the string read viathe stream. A : | NDEX keyword
argument lets you name a variable to receive the offset of the next string element to be read -- thisis set only upon
leaving the W TH- | NPUT- FROMt STRI NG form.

W TH- QUTPUT- TO- STRI NG allows an optional form, which is evaluated to produce the output string; if this
formismissing or NI L, the macro creates a string for you using the : ELEMENT- TYPE keyword argument.

Binary 1/0O

Lisp supports binary 1/0 via streams whose element types are finite (i.e. bounded) subtypes of | NTEGER. Some
examples of appropriate types are:

. Implementation-dependent
o SI GNED- BYTE
5 UNSI GNED- BYTE
. Range of values
o (I NTEGER 0 31)
o (I NTEGER - 16 15)
« Specific number of bits
o (SI GNED- BYTE 8)
o (UNSI GNED- BYTE 6)
o BIT

ANSI Common Lisp implementations should support any of these types for binary I/0. However, the
implementation is not required to directly map the specified : ELEMENT- TYPE onto the underlying file system; an
implementation is permitted to alter the external format so long as data read from a binary file is the same as that
written using the same : ELEMENT- TYPE.

Contents | Cover
Chapter 18 | Chapter 19 | Chapter 20

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to the
author's site.

http://psg.com/~dlamkins/sl/chapter19.html (5 of 5)11/3/2006 5:55:26 PM

Successful Lisp - Chapter 20

Chapter 20 - Macro Etiquette

Macrosin Lisp are much more capable than macros in other programming languages. Rather than just
providing a simple shorthand notation, Lisp macros give you the capability to truly extend the language.
In this chapter we'll learn about the program transforming capabilities of macros as we see how to
properly construct macros to solve awide variety of problems.

Macros are programs that generate programs

Mention macros to most programmers, perhaps even you, and the first image that comesto mind is
string substitution -- you use a macro to glue together afew parametersin a new way, maybe with a bit
of compile-time decision making thrown in. And because of the typical (in languages other than Lisp)
disparity between the macro language and the programming language, the difficulty of writing a macro
Increases much faster than its complexity.

Lisp macros are Lisp programs that generate other Lisp programs. The generated Lisp code has afully-
parenthesi zed notation, as does the macro that generates the code. In the simplest case, a macro
substitutes forms within atemplate, clearly establishing avisual correspondence between the generating
code and the generated code. Complex macros can use the full power of the Lisp language to generate
code according to the macro parameters; often atemplate form is wrapped in code that constructs
appropriate subforms, but even this approach is just atypical use pattern and not a requirement (or
restriction) of the Lisp macro facility.

In the following sections, we'll examine the mechanism by which the Lisp system translates code
generated by a macro, then we'll see several increasingly sophisticated examples of macros. We'l finish
this chapter with a comparison of macros versus the use of inline function declarations.

Close up: how macros work

Y ou define a macro with a DEFMACROform, like this:;

(defmacro nanme (argunents ...)
body)

DEFMACROis like DEFUN, but instead of returning values, the body of the DEFMACROreturnsaLisp
form. (Aswe'll see shortly, there's avery simple way to generate this form with selected subforms
replaced by parameters from the macro call or computed by the macro's program.)

Y our program "calls" amacro the same way it calls afunction, but the behavior is quite different. First,

http://psg.com/~dlamkins/sl/chapter20.html (1 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

none of the macro's parameters are evaluated. Ever. Macro parameters are bound literally to the
corresponding arguments in the macro definition. If youpass(* 7 (+ 3 2)) toamacro, the
argument in the body of the macro definition is bound to theliteral list (* 7 (+ 3 2)), and not the
value 35.

Next, the macro expander isinvoked, receiving al of the actual parameters bound to their corresponding
arguments as named by the DEFMACRO form. The macro expander is just the body of the DEFMACRO
form, which isjust Lisp code; the only catch is that the Lisp system expects the macro expander to
return aLisp form.

The Lisp system then evaluates whatever form the macro expander returns. If the returned formisa
macro, it gets expanded. Otherwise, the form is evaluated by the rules we first learned in Chapter 3,

Lesson 2.

The preceding paragraph is conceptually correct. However, a Lisp implementation may
expand macros at different times. A macro could be expanded just once, when your
program is compiled. Or it could be expanded on first use as your program runs, and the
expansion could be cached for subsequent reuse. Or the macro could be expanded every
timeit'sused. A properly written macro will behave the same under all of these
implementations.

In Chapter 21 we'll expand upon some of the things you can express with argument lists.

Backquote looks like a substitution template

The simplest way to generate aform in the body of your macro expander is to use the backquote (")
reader macro. This behaves like the quote (') reader macro, except for when acomma (,) appearsin the
backquoted form.

A commais only permitted in a backquoted form. If you use acommain a quoted form,
Lisp will signal an error when it reads the form.

Like quote, backquote suppresses evaluation. But a comma within a backquoted form "unsuppresses’
evaluation for just the following subform.

? "(The sumof 17 and 83 is ,(+ 17 83))
(THE SUM OF 17 AND 83 IS 100)

Compare the preceding example, which used backquote, with the similar form using quote (and omitting
the comma).

http://psg.com/~dlamkins/sl/chapter20.html (2 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

? '"(The sumof 17 and 83 is (+ 17 83))
(THE SUM OF 17 AND 83 IS (+ 17 83))

Y ou can probably imagine how backquote and comma provide atemplate with substitution capabilities.
Thisisjust what we need for our macro expander. Here are a couple of ssmple examples.

; Define the macro
? (defrmacro swap (a b) ; NOTE: This is a restricted version of
ROTATEF
“(let ((tenp ,a))
(setf ,a ,b)

(setf ,b tenp)))
SWAP

: First invocation
? (let ((x 3)

(y 7))
(swap x y) ; macro call
(list x vy))

(7 3)
; Let's see the form generated by SWAP:
? (pprint (macroexpand-1 '(swap X y)))

(LET ((TEMP X))
(SETF X)
(SETF Y TEMP))

; Second invocation
? (let ((c (cons 29))) ; (2. 9)
(swap (car c) (cdr c))
c)
(9. 2
; And the expansion of its macro call
? (pprint (macroexpand-1 '(swap (car c) (cdr c))))

(LET ((TEMP (CAR Q)))
(SETF (CAR C) (CDR Q)
(SETF (CDR C) TEMP))

; Here's the second invocation again, "macroexpanded"” by hand.
? (let ((c (cons 2 9)))
(LET ((TEMP (CAR Q)))
(SETF (CAR C) (CDR Q)

http://psg.com/~dlamkins/sl/chapter20.html (3 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

(SETF (CDR C) TEWP))

c)
(9. 2)

(PPRI NT (MACRCEXPAND- 1 ' macro-cal |)) isavery handy tool to see what form your macro
expander generates. (Don't worry if the output from your Lisp system looks exactly as shown here; there
may be some differencesin layout.)

Asyou look at these examples, the important things to note are that:

1. the macro arguments receive the literal representation of their actual parameters from the macro
call, and

2. macro arguments that are preceded by a comma within a backquoted form are substituted with
the literal representation of the parameter from the macro call.

Here are some more macro definitions. Experiment with these in your Lisp system to see what they do.

(def macro sortf (place)
“(setf ,place (sort ,place)))

(def macro toggl ef (place)
“(setf ,place (not ,place)))

(def macro either (fornml fornR)
; (random 2) returns O or 1
“(if (zerop (random 2)) ,fornml ,fornR))

Beyond the obvious, part 1. compute, then generate

Macros start to get interesting when they do more than a simple textual substitution. In this section, we'll
explore areal-world example of using a macro to extend Lisp into the problem domain. In addition to
providing a macro expander, our new macro will automatically generate an environment that will be
referenced by the expander. Our example will show how to move computations from run-time to
compile-time, and how to share information computed at compile-time.

Let's say you're working on an interactive game that makes heavy use of the trigonometric function sine
r in computing player motion and interaction. Y ou've already determined that calling the Lisp function
SI Nistoo time-consuming; you also know that your program will work just fine with approximate
results for the computation of siner. You'd like to define a LOOKUP- SI N macro to do the table lookup
at runtime; you'd also like to hide the details of table generation, an implementation detail with which
you'd rather not clutter your program's source code.

http://psg.com/~dlamkins/sl/chapter20.html (4 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

Y our macro will be invoked as (LOOKUP- SI Nradians divisions) , where radiansis alwaysin the
range of zero to one-quarter pi, and divisionsis the number of discrete values available as the result of
LOOKUP- SI N. At runtime, the macro expander will just compute the index into alookup table, and
return the value from the table. The table will be generated at compile-time (on most Lisp systems).
Furthermore, only one table will ever be generated for a given value of divisionsin the macro call.

Here's the code. The comments and documentation strings should help you to understand the code as
you read it. I'll provide further explanation below.

;7 This is where we cache all of the sine tables generated
;; during conpilation. The tables stay around at runtine
;; so they can be used for | ookups.
(defvar *sin-tabl es* (nmake-hash-tabl e)

“A hash table of tables of sine values. The hash is keyed
by the nunber of entries in each sine table.")

;; This is a helper function for the LOOKUP-SI N nacr o.
;; It is used only at conpile tine.
(defun get-sin-tabl e-and-increnent (divisions)
"Returns a sine | ookup table and the nunber of radians quanti zed
by each entry in the table. Tables of a given size are reused.
A table covers angles fromzero to pi/4 radians.”
(let ((table (gethash divisions *sin-tabl es* :none))
(increment (/ pi 2 divisions)))
(when (eqg tabl e :none)
;7 Uncomment the next line to see when a table gets created.
;;(print ' | Maki ng new tabl e|)
(setqg table
(setf (gethash divisions *sin-tabl es*)
(make-array (1+ divisions) :initial-elenment 1.0)))
(dotines (i divisions)
(setf (aref table i)
(sin (* increnent i)))))
(values table increnent)))

;; Macro calls the helper at conpile tine, and returns an
;7 AREF formto do the |ookup at runtine.
(def macro | ookup-sin (radi ans divi sions)
"Return a sine value via table | ookup."”
(mul tiple-value-bind (table increnent)
(get-sin-tabl e-and-i ncrenent divisions)
“(aref ,table (round ,radians ,increnent))))

http://psg.com/~dlamkins/sl/chapter20.html (5 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

If you still don't see the point of al this code after having read the introduction to this section and the
comments in the code, hereit is: when your program runs, it executes just AREF (and associated
ROUND) to look up the sin r value.

? (pprint (macroexpand-1 ' (Il ookup-sin (/ pi 4) 50)))

(AREF #(0.0 0.0314107590781283 0.06279051952931337

[additional entries not shown]

0. 9980267284282716 0.9995065603657316 1. 0)

(ROUND (/ PI 4) 0.031415926535897934))

;; Note that the macro call nmakes no nention of a | ookup table.
;; Tables are generated as-needed by (and for) the conpiler.
? (1l ookup-sin (/ pi 4) 50)
0. 7071067811865476

In the macroexpansion, the#(. . .) isthe printed representation of the lookup table for 50 divisions of
the quarter circle. Thistableis stored inthe* SI N- TABLES* hash table, whereit is shared by every
macro call to (LOOKUP- SI N angle 50) . We don't even have to do a hash lookup at runtime, because
the macro expander has captured the free variable TABLE from the MULTI PLE- VALUE- Bl NDformin
LOOKUP- SI N.

Beyond the obvious, part 2: macros that define macros

Macros that define macros are used infrequently, partly because it's hard to think of agood use for this
technique and partly because it's difficult to get right. The following macro, based upon an examplein
Paul Graham's"On Lisp" book, can be used to define synonyms for the names of Lisp functions,

macros, and special forms.

? (defmacro def synonym (ol d- nanme new nane)

"Define OLD-NAME to be equival ent to NEW NAME when used in
the first position of a Lisp form™"

“(defmacro , new nane (& est args)

“(,',old-name , @rgs)))

DEFSYNONYM

? (def synonym make- pair cons)
MAKE- PAI R

? (make-pair 'a 'b)

(A . B)

Macros are always alittle bit dangerous because code containing a macro call does not automatically get
updated if you change the definition of the macro. Y ou can always establish your own convention to
help you remember that you need to recompile certain code after you change a macro definition. But

http://psg.com/~dlamkins/sl/chapter20.html (6 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

there's always the possibility that you'll forget, or make a mistake.

Ultimately, the likelihood that you'll inadvertently end up with code that was compiled with an old
version of amacro is directly proportional to how often you're likely to change the macro. I'll probably
never need to change the LOOKUP- SI N macro from the previous section once it's defined and working.
On the other hand, a macro like DEFSYNONYMpractically begs to be used again and again as you
generate new code. If you change your mind about the old name to associate with a given new name, all
of your previously compiled code will still refer to theol d nane that you had decided upon
previously.

;7 WARNING This exanple illustrates a practice to avoid!

., Here's sone core algorithm
? (defun process-bl ah-using-algorithmzark (...) ...)
PROCESS- BLAH- USI NG ALGORI THM ZARK

;; And here's where | use the algorithm perhaps calling it
;7 from many other places in DO STUFF besi des the one |'ve shown.
? (defun do-stuff (...)

(process-bl ah-using-al gorithmzark ...)
cel)

DO STUFF
;; Try it out...

? (do-stuff ...)

[results based upon process- bl ah-using-al gorithm zarKk]
;; OK, this |looks good. But | think I'lIl clean up the
;; appearance of DO STUFF by defining an abbreviation
;; for that really long core al gorithm nane.

? (defsynonym process- bl ah-usi ng-al gorithm zark proc)
PROC

;7 Now I'lIl rewite DO STUFF to use the abbreviation.
? (defun do-stuff (...)

(proc ...)
cl)
DO STUFF
- And nake sure it still works.

? (do-stuff ...)
[results based upon process- bl ah-using-al gorithm zarKk]

Sonme tine | ater

http://psg.com/~dlamkins/sl/chapter20.html (7 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

;7 Oh, here's a better core algorithm

? (defun process-bl ah-using-algorithmglonkfarkle (...) ...)
PROCESS- BLAH USI NG ALGORI THM GLONKFARKLE

., 1"l change the synonymfor PROC to 'be' the new al gorithm
? (def synonym process- bl ah-usi ng-al gorithm gl onkfarkl e proc)
PROC

Sonme tinme | ater

;; Time to use DO STUFF again. ..

? (do-stuff ...)

[resul ts based upon process- bl ah-using-al gorithm zarKk]

;; Hey!! These results don't seemto use the new al gorithm
;; What could be wong? The code LOOKS right. ..

The problem, of course, isthat the second use of DEFSYNONYMredefined the PROC macro, and | didn't
notice that DO- STUFF needed to be recompiled to pick up the changed definition.

My advice: Don't try to be clever by using macros like DEFSYNONYM Stick with
descriptive names that are as long as necessary, and use an editor that supports symbol
completion (see Chapter 27). Remember, there's only one way to not abbreviate a name;

using abbreviations increases the chance that you'll use the wrong one.,

Tricks of the trade: elude capture using GENSYM

Y ou have to be be careful when you define a macro that introduces new variablesin its expansion. The
REPEAT macro, below, offers us a shorthand way of repeating a body of code a certain number of times.

? (defmacro repeat (tines &body body)
“(dotines (x ,tinmes)
, @ody))
REPEAT
? (repeat 3 (print '"hi))

HI
HI
HI
NI L

This seems to do the right thing, but the variable X is going to cause problems. The following example
should give us the same results as the last example.

http://psg.com/~dlamkins/sl/chapter20.html (8 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

? (setg x 'hi)

HI

? X

HI

? (repeat 3 (print x))

N - O

NI L

The variable X in the macro expander shadowed the global X that we tried to reference in the body.
Another way to say thisisthat X isfreein the body of the REPEAT form, but it was captured by the
definition of X in the macro expander; this prevents the body form from reaching the intended variable
X.

The obvious solution isto use a different variable name in the macro expander -- one that won't conflict
with any name we'll ever use in our code that calls the REPEAT macro. Y ou might think that some kind
of naming convention would work, but there's always the chance that some programmer will come along
later and violate the convention. We need a fool proof approach.

Lisp provides a GENSYMfunction to generate symbols that are guaranteed to be unique. No programmer
can ever write a symbol name that conflicts with a symbol created by GENSYM Here is how we use
GENSYMto create a name for the variable needed in the macro expander for the REPEAT macro.

? (defrmacro repeat (tines &body body)
(let ((x (gensym))
“(dotinmes (,x ,tines)
, @ody)))
REPEAT
? X
HI
? (repeat 3 (print x))

HI
HI
HI
NI L

With this new REPEAT macro, we compute a new symbol in the LET form, and substitute this symbol
in the macro expander form. To see why thisworks, let's ook at an expansion:

http://psg.com/~dlamkins/sl/chapter20.html (9 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

? (macroexpand-1 '(repeat 5 (print x))
(DOTI MES (#: 8524 5) (PRINT X))

#. 38524 isaunique uninterned symbol. You can seethat it's uninterned by the #: prefix. But how
does Lisp guarantee the uniqueness of this symbol? The Lisp reader guarantees that any symbol it reads
withthe#: prefix isunigue. Compare the following:

? (eq "a 'a)

T

? (eq "#:a '#:a)
NI L

Even though the #: A symbols print the same, they are different.

Generating variable names to be used in macro expanders has another application. This next macro
definition has a subtle problem:

? (defmacro cube (n)
(*,n,n,n))
CUBE
? (cube 3)
27
? (let ((n 2))
(cube (incf n)))
60

In the second case, (| NCF N) should have provided the value 3 to CUBE and the result should have
been identical to thefirst test. Let'stake alook at the expansion again, to see what happened.

? (macroexpand-1 '(cube (incf n)))
(* (INCF N (INCF N) (INCF N))

The problem is obvious: CUBE's argument, (| NCF N) isbeing evaluated multiple times. Asarule, this
Isabad thing to do, because it violates our assumptions about the way Lisp evaluates forms. We fix this
problem by arranging for the macro expander to evaluate CUBE's argument just once.

? (defmacro cube (n)

(let ((x (gensym))
“(let ((,x ,n))
(" x,x,%))))
CUBE

2 (let ((n 2))

http://psg.com/~dlamkins/sl/chapter20.html (10 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20

(cube (incf n)))
27

We created a unique symbol outside of the macro expander, then used this symbol in the expander as the
name of avariable to hold the result of evaluating CUBE's argument. The LET form in the macro
expander is the only place where CUBE's argument is referenced, so it gets evaluated exactly once for
each call to CUBE.

Macros vs. inlining

Lisp allows functions to be inlined by the compiler. In other words, rather than compiling acall to the
function, the compiler may substitute the function's body, thus saving the overhead of a function call.
Substituting the function's body is generally expensive in terms of space, since afunction body's codeis
usually longer than the code of its calling sequence.

It's important to understand that Lisp allows functionsto beinlined. Like al other declarations -- save
the SPECI AL declaration -- an | NLI NE declaration may be treated as advisory or ignored entirely by
the compiler.

Here are some examples of how to inline afunction. In the first case, function F isinlined everywhere it
Is used (assuming that the compiler supports inlining). In the second case, function P is compiled with
information to support inlining, but is only inlined in the presence of a declaration, asin function Q.

; Case 1 -- F may al ways be inlined
(declaim (inline f))
(defun f (...) ...)

(defun g (...)

(f ...)
)

(defun h (...)
(f))

; Case 2 - Pmay be inlined only follow ng a declaration
(declaim (inline p))

(defun p (...) ...)
(declaim (notinline p))

(defun g (...)
(declare (inline p))

http://psg.com/~dlamkins/sl/chapter20.html (11 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 20
(p ...) ; inlined
)

(defun r (...)
(p ...) ; not inlined

)

Macros may be used in place of | NLI NE declarations for cases where code absolutely must be inlined
despite the presence (or absence) of compiler support for inlining.

In general, though, you should use macros for language extension, and not for efficiency hacks. The risk
of forgetting to recompile after having changed a macro definition can cause hard-to-find bugs that will
waste a lot of your development effort.

My advice: Don't use macros as a substitute for inlining unless you can find no other way
to achieve desired performance; of course, such efforts should be guided by the results of
profiling your code (see Chapter 28) and preferably only when your code is already stable
and debugged. Y ou should also reexamine your decision with each new release of your
Lisp compiler, and whenever you port your program to another Lisp platform.

Contents | Cover
Chapter 19 | Chapter 20 | Chapter 21

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter20.html (12 of 12)11/3/2006 5:55:32 PM

Successful Lisp - Chapter 21

Chapter 21 - Fancy Tricks with Function and
Macro Arguments

We've already seen (in Chapter 4) how &OPTI ONAL parameters can reduce the number of arguments

that you have to supply for the most common calls of afunction. In this chapter we'll look at additional
language features that let you declare named (keyword) parameters and provide default values for
unspecified parameters. We'll also take alook at structured argument lists, which let you group related
parameters for clarity.

Keywords let you name your parameters

Sometimes you'll want to define afunction (or macro) that works just fine with asmall list of arguments,
but can be extended in useful -- and obvious, | hope -- ways through the addition of extra arguments. But
you'd rather not specify all of the arguments all of the time. We've already seen keyword arguments
used in Chapter 13 with the sequence functions, and in Chapter 19 with the stream functions.

Y ou can use keyword arguments for your own functions or macros by adding a &k ey marker to the
lambda list. The general form (also used for DEFMACRO) is:

(defun nane (reqg-arg ... &key key-arq)
)

All of the required arguments (reg-arg) must precede the &KEY marker. The key-args name the variable
that you'll reference from within your function's definition; the same key-arg name in the keyword
package (i.e. preceded with a colon) is used in the call as a prefix for the keyword value.

? (defun keyword-sanple-1 (a b ¢ & ey d e f)
(list abcdef))

KEYWORD- SAMPLE- 1

? (keyword-sanple-1 1 2 3)

(1 23 NNL NIL NI'L)

? (keyword-sanple-1 1 2 3 :d 4)

(1234 NL NL)

? (keyword-sanple-1 1 2 3 :e 5)

(1 23 NNL 5 NI'L)

? (keyword-sanple-1 12 3 :f 6 :d 4 :e 5)

(12345 6)

Y ou'll notice from the last sample that keyword parameters may be listed in any order. However, asin

http://psg.com/~dlamkins/sl/chapter21.html (1 of 6)11/3/2006 5:55:38 PM

Successful Lisp - Chapter 21

their lambda list declaration, all keyword parameters must follow all required parameters.

Default values for when you'd rather not say

Any keyword parameter that you don't specify inacall receivesa Nl L default value. Y ou can change
the default using a variation of the keyword argument declaration: instead of just the argument name,
specify (name default) , like this:

? (defun keyword-sanple-2 (a &ey (b 77) (c 88))
(list ab c))

KEYWORD- SAMPLE- 2

? (keyword-sanple-2 1)

(1 77 88)

? (keyword-sanple-2 1 :c 3)

(1 77 3)

Y ou can also find out whether a keyword parameter was specified in the call, even if it was specified
using the default value. The keyword argument declaration looks like this: (name default arg-supplied-
p) , where arg-supplied-p is the name of avariable that your function's definition readsas NI L only if
no argument is supplied in the call.

? (defun keyword-sanple-3 (a &ey (b nil b-p) (c 53 c-p))
(list a b b-pc c-p))

KEYWORD- SAMPLE- 2

? (keyword-sanple-3 1)

(1 NIL NIL 53 NIL)

? (keyword-sanple-3 1 :b 74)

(1 74 T 53 NL)

? (keyword-sanple-3 1 :b nil)

(1 NNL T 53 NIL)

? (keyword-sanple-3 1 :c 9)

(1 NNL NIL 9 T)

Default values and supplied-p variable can also be used with &OPTI ONAL parameters.

? (defun optional -sanple-1 (a &optional (b nil b-p))
(list a b b-p))

OPTI ONAL- SAMPLE- 1

? (optional -sanple-1 1)

(1 NIL NL)

? (optional -sanple-1 1 nil)

(1 NIL T)

http://psg.com/~dlamkins/sl/chapter21.html (2 of 6)11/3/2006 5:55:38 PM

Successful Lisp - Chapter 21

? (optional -sanple-1 1 2)
(127

If you use both &OPTI ONAL and &KEY parameters, all of the optional parameters must precede all of
the keyword parameters, both in the declaration and the call. Of course, the required parameters must
aways appear before all other parameters.

? (defun optional -keyword-sanple-1 (a &optional b ¢ &ey d e)
(list abcde))

OPTI ONAL- KEYWORD- SAMPLE- 1

? (optional - keyword-sanple-1 1)

(1 NIL NIL NIL NL)

? (optional -keyword-sanple-1 1 2)

(1 2 NIL NIL NI'L)

? (optional -keyword-sanple-1 1 2 3)

(1 23 NNL NI'L)

? (optional -keyword-sanple-1 1 2 3 :e 5)

(1 2 3 NL 5

When you define both &OPTI ONAL and &KEY arguments, the call must include values for all of the
optional parametersif it specifies any keyword parameters, asin the last sample, above. Look at what
can happen if you omit some optional parameters:

? (defun optional -keyword-sanple-2 (a &optional b ¢ d & ey e f)
(list abcdef))

OPTI ONAL- KEYWORD- SAMPLE- 2

? (optional -keyword-sanple-2 1 2 :e 3)

(12 :E3 NL NL)

Even though a Common Lisp function (READ- FROM STRI NG) uses both optional and
keyword arguments, you should not do the same when you define your own functions or
Macros.

Add some structure to your macros by taking apart arguments

Y ou can use destructuring to create groups of parameters for macros.

? (defmacro destructuring-sanple-1 ((a b) (c d))
“(list ",a',b',c ',d))

DESTRUCTURI NG SAMPLE- 1

? (destructuring-sanple-1 (1 2) (3 4))

(1 2 3 4)

http://psg.com/~dlamkins/sl/chapter21.html (3 of 6)11/3/2006 5:55:38 PM

Successful Lisp - Chapter 21

Y ou can use all the usual techniques within each group.

? (defrmacro destructuring-sanple-2 ((a & ey b) (c &optional d))
“(list ",a',b',c ',d))

DESTRUCTURI NG SAMPLE- 2

? (destructuring-sanple-2 (1) (3))

(1 NNL 3 NIL)

? (destructuring-sanple-2 (1 :b 2) (3))

(1 2 3 NL)

? (destructuring-sanple-2 (1) (3 4))

(1 NIL 3 4)

And the groupings can even be nested.

? (defmacro destructuring-sanple-3 ((a &ey b) (c (d e) &optional f))
“(list ",a',b',c',d"'",e ', f))

DESTRUCTURI NG SAMPLE- 3

? (destructuring-sanple-3 (1) (3 (4 5)))

(1 NNL 3 4 5 NL)

Destructuring is commonly used to set off a group of arguments or declarations from the body formsin a
macro. Here's an extended example, W TH- PROCESSES, that expects a name, alist of a variable name
(pid) and a process count (num-processes), and alist of another variable name (work-item) and alist of
elements to process (work-queue). All of these arguments are grouped before the body forms.

? (defmacro w th-processes ((nane
(pid num processes)
(wor k-item wor k-queue)) &body body)
(let ((process-fn (gensyn))
(itenms (gensym)
(itenms-1ock (gensyn)))
“(let ((,itenms (copy-list ,work-queue))
(,itenms-1ock (make-1ock)))
(flet ((,process-fn (,pid)
(let ((,work-itemnil))
(1 oop
(wi th-1ock-grabbed (,itens-I ock)
(setq ,work-item (pop ,itens)))
(when (null ,work-item
(return))
;;(format t "~&unning id ~D~% , pid)

http://psg.com/~dlamkins/sl/chapter21.html (4 of 6)11/3/2006 5:55:38 PM

Successful Lisp - Chapter 21

, @ody))))

(dotinmes (i , num processes)
;;(format t "~&creating id ~D~% ,id)
(process-run-function
(format nil "~A-~D' ,nane i)
#' ,process-fn

1))))))
W TH PROCESSES

Processes are not part of the ANSI Common Lisp standard, but are present in amost every
implementation. (Well revisit processes in Chapter 32, along with some other common language

extensions.) The code shown above works with Macintosh Common Lisp, whose process interfaceis
very similar to that found on the Symbolics Lisp Machines of days past.

I'll describe afew key portions of the macro expander in case you want to figure out what's going on; if
you'd rather just see how the macro gets called, you can skip the rest of this paragraph. The FLET form
defines afunction. In this case, the function defined by FLET will be used to do the actual work within a
Lisp process -- grab alock on the work queue, remove an item, release the lock, then process the item
using the body forms. The PROCESS- RUN- FUNCTI ON creates a Lisp process with a given name
(generated by the FORVAT form) and a function to execute. The W TH PROCESSES macro creates
NUM PROCESSES Lisp processes (named name-#) and within each process executes the BODY forms
with Pl D bound to the process number and WORK- | TEMbound to some element of WORK- QUEUE. The
processes terminate themsel ves once the work queue has been consumed.

Here's an example of how we call W TH PROCESSES. The parametersare ™ Test " (used for the
process names), (i d 3) (the variable bound to the process ID within a process, and the number of
processesto create), and (item ' (1 2 ... 15 16) (thevariable bound to anindividua work
item within a process, and the list of items to be consumed by the processes). The FORVAT and SLEEP
forms comprise the body of the processes, and the final argument to the W TH- PROCESSES macro call.

? (Wth-processes ("Test"
(id 3)
(item' (1 23456 789 10 11 12 13 14 15 16)))
(format t "~& d ~-Ditem~A~% id itemnm
(sleep (random 1.0)))

NI L

Id O item1
Id 1 item2
Id 2 item3
Id 1 itemi4
Id 1 item5
Id Oitem®6

http://psg.com/~dlamkins/sl/chapter21.html (5 of 6)11/3/2006 5:55:38 PM

Successful Lisp - Chapter 21

id 2 item?7
id O item8
id 2 item?9
id 1 item10
id 2 item 11
id O item 12
id O item 13
id 1 item14
id 2 item 15
id O item 16

The form returns NIL almost immediately, but the created processes run for awhile to produce the
output that follows. The "item" numbers follow an orderly progression as they are consumed from the
work queue, but the "id" numbers vary according to which process actually consumed a particular item.

Destructuring is a useful tool for macros, but you can't useit in the lambda list of afunction. However,
you can destructure alist from within afunction via DESTRUCTURI NG- Bl ND.

? (destructuring-bind ((a &ey b) (c (d e) &optional f))
"((1:b2) (3(45) 6))
(list abcdef))
(12345 6)

Contents | Cover
Chapter 20 | Chapter 21 | Chapter 22

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter21.html (6 of 6)11/3/2006 5:55:38 PM

Successful Lisp - Chapter 22

Chapter 22 - How to Find Your Way Around, Part 3

In Chapter 10 we learned about two functions you can use to examine Lisp objects: DESCRI BE and

| NSPECT. These are available in every implementation, so you should learn how to use them just in
case you find yourself sitting at a console in front of a new and unknown Lisp system someday.

Some Lisp systems offer additional tools that aren't part of ANSI Common Lisp. Sometimes the extra
tools are built in, and other times they're provided by the vendor but not installed by default. In this
chapter I'll tell you a bit about these tools, so you'll know what to look for.

In addition to exploring the structure and relationships of objects, it's sometimes useful to "hook in" to
the behavior of certain functions. Y ou might just want to know when -- or whether -- afunctionis called
with certain arguments. TRACE is aways at your disposal (see Chapter 16), but you may only be
interested in one particular call out of thousands; generating the trace output (never mind sifting through
it later) can be very time consuming. For cases like this, some Lisp implementations let you advise an
existing function without changing its source code.

Class and method browsers help you find your way in a sea of
objects

When you program alarge system using CLOS, especialy if the system evolves over time as so many
do, you'll need atool to help you examine the rel ationships between classes. Some Lisp systems provide
a browser that displays these relationships graphically. Here's an example of what my system'’s browser
displays as the subclasses of ARRAY:

A=imple-b it—vect-:-r'jl

5irr|ﬁ:nle =tring 5imp|e—base—5tring:|

Another useful tool, the method browser, lets you explore all of the specializations of a particular
method. The browser may let you filter on particular qualifiers (we learned about qualifiers in Chapter

14), and will amost certainly give you navigational accessto selected method definitions. Here's alist

from the method browser in my Lisp system; | asked for alist of all INITIALIZE-INSTANCE methods
having the : ARCUND qualifier:

http://psg.com/~dlamkins/sl/chapter22.html (1 of 3)11/3/2006 5:55:43 PM

Successful Lisp - Chapter 22

SAROUMD ¢ INTERFACE-TOOLS : : COLOR-PART-FOP-UF > "ift-utils.lizp {ccl:ift;}”
(AROUMD CFRED-HIMDOW > "mark-menu-saver. lisp {ccl:hacks; "

CAROUMD CLAYOUT LANVOUT-MIXIMI> "layout-mixin. lisp {layout:}"

tAROUMD (SPEECH-RECOGHITION: :LM-0BJECT) "speech—recoghnition. lisp {ccl:Con
CAROUMD (OT-0BJECTS:MOUVIE-VIEM?r "gqt-objectz—-40.lizp {ccl:Contribs;)"
SAROUNHD CHIMDOM 2> “dialog—editor. lisp focl:ift; "

Fa LS LS L U

Remember that methods do not belong to classes; that's why we have separate browsers. (Some
browsers give you the ability to navigate the coincidental connections between classes and methods,
such as by examining the classes used to specialize arguments to a method.)

ADVISE lets you modify a function's behavior without changing
the function

Some Lisp systems include an ADVI SE capability. Thislets you intercept calls to existing functions.

Y ou can provide code that examines (and perhaps alters) the function's arguments and results. ADVI SE
has many uses, most of them invented on the spur of the moment. However, one common use of

ADVI SE istoimplement a TRACE or BREAK that is conditioned upon particular arguments or results.

The syntax and options for ADVI SE vary from system to system. Here's an example of defining advice
in one particular implementation:

(advi se fibonacci
(when (zerop (first arglist)) (break))
:when : before
- nanme : break-on-zero)

This example shows how to advise a FI BONACCI function by adding code that breaks into the
debugger when FI BONACCI 'sfirst argument is zero. Note that we do not need any knowledge of or
access to the source code of FI BONACCI in order to add this advice.

This particular implementation of ADVI SE binds alist of all of the advised function's argumentsinto a
variable named ARGLI ST. The keyword arguments declare that the advice form, (WHEN (ZEROP

(FI RST ARGLI ST)) (BREAK)), isto beexecuted before each call to FI BONACCI . The advice has
the name : BREAK- ON- ZERQ, this name is used when removing advice (typically viaan UNADVI SE
form) or when redefining the behavior of a particular advice.

WATCH lets you open a window on interesting variables

A watch tool, found less commonly on Lisp systems, allows you to display the current state of avariable
as your program runs. The details vary widely. Implementations may give you sampled real-time
display, or may slow the program down in order to give you an accurate display of each change.

http://psg.com/~dlamkins/sl/chapter22.html (2 of 3)11/3/2006 5:55:43 PM

Successful Lisp - Chapter 22

Sometimes the watcher isintegrated with a debugger or stepper, and other timesit is an independent
tool. Consult your vendor's documentation to learn whether your Lisp system has a watch tool.

Contents | Cover
Chapter 21 | Chapter 22 | Chapter 23

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter22.html (3 of 3)11/3/2006 5:55:43 PM

Successful Lisp - Chapter 23

Chapter 23 - To Err is Expected; To Recover, Divine

In this chapter you'll learn how to create your own error detection, reporting and recovery mechanisms. A good error
handling strategy can give your program the ability to gracefully handle both expected and unexpected errors without failing
or losing critical data.

Signal your own errors and impress your users

One of the most common failings of computer programs is the failure to report failures in a meaningful way. If someinput is
out of the expected range, or if a calculation exceeds the capabilities of the program, or if communication does not succeed
with some external device, a poorly-written program will smply "roll over and die" with a cryptic error message related to
hidden details of the program’s implementation. In theory, it's nice to be able to construct programs without limits; the
dynamic nature of Lisp certainly enables this practice.

But in almost every non-trivial program there will always arise some fatal situation that can be anticipated by the
programmer but not addressed by the program. It is precisely for these situations that Lisp provides the ERROR function.
ERROR expects aformat string and arguments. (We've seen FORMAT briefly in Chapter 4, and will examineit in detail in
Chapter 24.) ERROR gives your program a standard way to announce afatal error. Y ou simply compose an appropriate
message using the format string and (optional) arguments, and ERROR takes care of the rest.

? (defun divide (nunerator denoni nator)
(when (zerop denom nator)
(error "Sorry, you can't divide by zero."))
(/ nunerator denom nator))

DI VI DE
? (divide 4 3)
4/ 3

? (divide 1 0)
Error: Sorry, you can't divide by zero.

Y our program never returns from the call to ERROR. Instead, the Lisp debugger will be entered. Y ou'll have an opportunity
to examine the cause of the error while in the debugger, but you will not be able to resume your program's execution. This
makes ERRCOR arather extreme response to a problem detected by your program. Later, we'll see how to report problems and
give the user an opportunity to correct the problem. We'll even see how errors can be handled automatically.

Categorize errors using Conditions

Note: If you have areally old Lisp system, it may not include an implementation of conditions. If so, this
section and the following one may not be of much use to you, except to point out what your Lisp system lacks
as compared to the current standard.

An error isjust a condition that requires some kind of correction before your program may continue. The error may be
corrected by having the program's user interact with the debugger, or through the intervention of a handler (as wel'll see later
in this chapter).

A condition is just some exceptional event that happensin your program. The event may be due to an error, or it could be
something of interest that happens while your program runs. For example, a program that writes entriesto alog file on disk

http://psg.com/~dlamkins/sl/chapter23.html (1 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

might call aroutine that handles the record formatting and writing. The logging routine might periodically check the amount
of space available on disk and signal a condition when the disk becomes ninety percent full. Thisis not an error, because the
logger won't fail under this condition. If your program ignores the "almost-full" message from the logger, nothing bad will
happen. However, your program may wish to do something useful with the information about the available disk space, such
as archiving the log to a different device or informing the user that some corrective action may be needed soon.

Now we know the distinction between conditions and errors. For now, we're going to focus our attention on the tools Lisp
provides for handling errors. Later, we'll look at how your program can signal and handle conditions.

Y ou could report errors using format strings as described above. But for the sake of consistency and maintainability, you'll
probably want to create different classifications of errors. That way, you can change the presentation of an entire class of
errors without searching your program code to change all of the similar format strings.

A condi t i on represents some exceptional situation which occurs during the execution of your program. An error isakind
of condition, but not all conditions are errors. The next section will cover this distinction in greater detail.

Y ou can use DEFI NE- CONDI T1 ONto create type hierarchies for conditions in much the same way that you use
DEFCLASS to create type hierarchies for your program's data.

? (define-condition whats-wong (error)
((what :initarg :what :initform"sonething" :reader what))
(:report (lanbda (condition stream
(format stream "Foo! ~@~A~) is wong."
(what condition))))
(:docunentation "Tell the user that something is wong."))
VHATS- VRONG
? (define-condition whats-w ong-and-why (whats-w ong)
((why :initarg :why :initform"no clue" :reader why))
(:report (lanmbda (condition stream
(format stream "Uh oh! ~@~A~) is wong. Wy? ~@~A~)."
(what condition)
(why condition)))))
VHATS- WVRONG- AND- VVHY
? (error 'whats-w ong-and-why)
Error: Unh oh! Sonething is wong. Wiy? No cl ue.
? (error 'whats-w ong-and-why
:what "the phase variance"
:why "insufficient tachyon fl ux")
Error: Unh oh! The phase variance is wong. Wiy? Insufficient tachyon fl ux.
? (define-condition whats-wong-is-unfathomabl e (whats-w ong-and-why)
()
(:report (lanbda (condition stream
(format stream "Gack! ~@~A~) is wong for sone inexplicable reason.”
(what condition)))))
VWHATS- WVRONG- | S- UNFATHOVABLE
? (error 'whats-wong-is-unfathomabl e)
Error: Gack! Sonmething is wong for sonme inexplicable reason.

Asyou can see, conditions have parents, slots and optionsjust like classes. The : REPORT option is used to generate the
textual presentation of a condition. The : DOCUVMENTATI ON option is for the benefit of the programmer; you can retrieve a
condition's documentation using (DOCUMENTATI ON ' condi ti on-nanme 'type).

http://psg.com/~dlamkins/sl/chapter23.html (2 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

ANSI Common Lisp also adlowsa: DEFAULT- | NI TARGS option. Some Lisp systems still base their
implementation of conditions on the description found in Guy Steele's "Common Lisp: The Language, 2nd
Edition" (CLtL2); these implementations do not have a: DEFAULT- | NI TARGS option.

If you've compared the ERROR calls in this section to those of the previous section, you're probably wondering how both a
string and a symbol can designate a condition. If you pass a symbol to ERRCR, it constructs a condition using MAKE-
CONDI TI ON (analogous to MAKE- | NSTANCE for CLOS objects); the symbol designates the type of the condition, and the
arguments are used to initialize the condition. If you pass aformat string to ERROR, the format string and its arguments
become initialization options for the construction of a condition of type SI MPLE- ERROR.

Of course, you can also pass an instantiated condition object to ERROR:

? (let ((my-condition (nmake-condition 'sinple-error
:format-control "Can't do ~A."
:format-argunents ' (undefined-operation))))
(error my-condition))
Error: Can't do UNDEFI NED- OPERATI ON.

Lisp systems designed according to CLtL2 will use: FORVAT- STRI NGin place of : FORMAT- CONTROL.

Recover from Conditions using Restarts
In this final section, we'll see how to recover from errors. The simplest formsinvolve the use of CERROR or ASSERT.

? (progn (cerror "Go ahead, nake ny day."
"Do you feel lucky?")
"Just ki ddi ng")
Error: Do you feel |ucky?
Restart options:
1: Go ahead, nmke ny day.
2. Top Il evel

The "Restart options' list shown in this and the following examplesistypical, but not standard. Different Lisp
systems will present restart information in their own ways, and may add other built in options.

CERRCR has two required arguments. The first argument is aformat control string that you'll use to tell the program's user
what will happen upon cont i nui ng from the error. The second argument is a condition designator (aformat control
string, a symbol that names a condition, or a condition object -- see above) used to tell the program's user about the error.

Therest of CERROR's arguments, when present, are used by the the format control strings and -- when the second argument
isasymbol that names a condition type -- as keyword arguments to MAKE- CONDI T1 ON for that type. In either case, you
have to construct the format control strings so that they address the proper arguments. The FORMAT directive ~n* can be
used to skip n arguments (nis 1 if omitted).

? (defun expect-type (object type default-val ue)

(if (typep object type)
obj ect

(progn

http://psg.com/~dlamkins/sl/chapter23.html (3 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

(cerror "Substitute the default value ~2*~S."
"~S is not of the expected type ~S."
obj ect type default-val ue)
defaul t-val ue)))
EXPECT- TYPE
? (expect-type "Nifty" "string "Bear")
"N fty"
? (expect-type 7 'string "Bear")
Error: 7 is not of the expected type STRI NG
Restart options:
1: Substitute the default val ue "Bear".
2. Top Il evel
?1
"Bear"

Notice how the first format control string uses only the third format argument: DEFAUL T- VAL UE. It skips the first two
format arguments with the ~2* directive. Y ou do similar thingsif the arguments are keyword initializer arguments when
you provide a symbol as the second argument to CERROR,; the only difference is that you have to count the keywords and
the values when deciding how many arguments to skip. Here's the previous example, written with a designator for a
condition of type EXPECT- TYPE- ERROR instead of aformat control string. Note how we skip five arguments to get to the
DEFAULT- VALUE. Note also theuse of : ALLOW OTHER- KEYS T, which permitsusto add the: | GNORE DEFAULT-
VAL UE keyword argument which is not expected as an initialization argument for the EXPECT- TYPE- ERROR condition;
without this, we'd get an error for the unexpected keyword argument.

? (define-condition expect-type-error (error)
((object :initarg :object :reader object)
(type :initarg :type :reader type))
(:report (lanbda (condition stream
(format stream"~S is not of the expected type ~S."
(obj ect condition)
(type condition)))))
EXPECT- TYPE- ERROR
? (defun expect-type (object type default-val ue)
(if (typep object type)
obj ect
(progn
(cerror "Substitute the default value ~5*~S."
' expect-type-error
: obj ect obj ect
‘type type
;i gnore default-val ue
:al | ow ot her-keys t)
defaul t-val ue)))
EXPECT- TYPE
? (expect-type "Nifty" "string "Bear")
"N fty"
? (expect-type 7 'string "Bear")
Error: 7 is not of the expected type STRI NG
Restart options:
1: Substitute the default val ue "Bear".
2. Top |evel

http://psg.com/~dlamkins/sl/chapter23.html (4 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

?1
" Bear"

ASSERT isideal for those situations where your program's state must pass some test -- an assertion. In its simplest form,
ASSERT does only that.

? (defun ny-divide (nunerator denom nator)
(assert (not (zerop denom nator)))
(/ nunerator denom nator))
MY- DI VI DE
? (nmy-divide 3 0)
Error: Failed assertion (NOT (ZEROP DENOM NATOR))
Restart options:
1. Retry the assertion
2. Top |l evel

Thisreport is correct, but nor particularly useful; your program would have signalled aDl VI SI ON- BY- ZERO error without
the ASSERT. What would be helpful isthe ability to correct the offending value -- the zero denominator, in this case -- and
continue from the error. ASSERT's optional second argument lets you list places whose values you might want to change to
correct the problem.

? (defun ny-divide (nunmerator denom nator)
(assert (not (zerop denom nator)) (nunerator denom nator))
(/ nunerator denom nator))
MY- DI VI DE
? (nmy-divide 3 0)
Error: Failed assertion (NOT (ZEROP DENOM NATOR))
Restart options:
1. Change the val ues of sone places, then retry the assertion
2. Top | evel
?1
Val ue for NUVERATOR 3
Val ue for DENOM NATCR 0.5
6.0

Of course, the choice of valuesto set is up to you. | used both NUVERATOR and DENOM NATOR in the exampleto
emphasize the fact that the list of places does not have to be just the variables tested in the assertion. (However, at least one
of the places must affect the result of the assertion.)

One last refinement to ASSERT lets you specify your own message to use when an assertion fails. By default, ASSERT may
display the test form, but it is not required to do so. By specifying a condition designator and arguments following the list of
places, you can be assured that you know what message will be printed upon an assertion failure.

? (defun ny-divide (nunerator denom nator)

(assert (not (zerop denom nator)) (nunerator denom nator)
"You can't divide ~D by ~D." nunerator denom nator)

(/ nunerator denom nator))

MY- DI VI DE

? (nmy-divide 3 0)

Error: You can't divide 3 by O.

Restart options:

http://psg.com/~dlamkins/sl/chapter23.html (5 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

1. Change the val ues of sone places, then retry the assertion
2. Top |l evel
?1
Val ue for NUMERATOR: 3
Val ue for DENOM NATOR 2
3/2

Y ou can use HANDLER- Bl ND and SI GNAL to process exceptions in your program. Here's an extended exampl e based upon
this chapter's earlier description of how a program might use conditions to report on disk space availability.

? (define-condition high-disk-utilization ()
((disk-name :initarg :disk-nane :reader disk-nane)
(current :initarg :current :reader current-utilization)
(threshold :initarg :threshold :reader threshold))
(:report (lanbda (condition stream
(format stream"Disk ~Ais ~D%full; threshold is ~D%"
(di sk-nanme condi tion)
(current-utilization condition)
(threshold condition)))))
HI GH DI SK- UTI LI ZATI ON
? (defun get-disk-utilization (disk-nane)
;; for this exanple, we'll just return a fixed val ue
93)
GET- DI SK- UTI LI ZATI ON
? (defun check-disk-utilization (nane threshold)
(let ((utilization (disk-utilization nane)))
(when (>= utilization threshold)
(signal 'high-disk-utilization
: di sk-name name
ccurrent utilization
:threshold threshold))))
CHECK- DI SK- UTI LI ZATI ON
? (defun |l og-to-disk (record nane)
(handl er-bind ((high-disk-utilization
#' (1 ambda (c)
(when (y-or-n-p "~&A Pani c?" c)
(return-fromlog-to-disk nil)))))
(check-di sk-utilization name 90)
(print record))
t)
LOG TO DI SK
? (log-to-disk "Hello" '"diskl)
Disk DISKL is 93% full; threshold is 90% Panic? (y or n) n
"Hel | o"
T
? (log-to-di sk "Goodbye" 'diskl)
Disk DISKL is 93% full; threshold is 90% Panic? (y or n) vy
NI L
? (check-disk-utilization 'diskl 90)
NI L

http://psg.com/~dlamkins/sl/chapter23.html (6 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

Notice that the condition signalled by CHECK- DI SK- UTI LI ZATI ON has an effect only when a handler is established for
the Hl GH DI SK- UTI LI ZATI ON condition. Because of this, you can write exception signalling code without
foreknowledge that the client will provide a handler. Thisis most useful when the exception provides information about the
running program, but is not an error if left unhandled.

In the next example, we'll extend the restart options available to CERROR. RESTART- Bl ND defines, for each new restart,
the message to be printed by the restart user interface and afunction to be executed when the user chooses the restart.

? (define-condition device-unresponsive ()
((device :initarg :device :reader device))
(:report (lanmbda (condition stream
(format stream "Device ~A is unresponsive."
(device condition)))))
DEVI CE- UNRESPONSI VE
? (defun send-query (device query)
(format t "~&Sending ~S ~S~% device query))
SEND- QUERY
? (defun accept-response (device)
;; For the exanple, the device always fails.
nil)
ACCEPT- RESPONSE
? (defun reset-device (device)
(format t "~&Resetting ~S~% device))
RESET- DEVI CE
? (defun query-device (device)
(restart-bind ((nil # (lanbda () (reset-device device))
:report-function
(1 anbda (stream
(format stream "Reset device.")))
(nil # (lanmbda ()
(format t "~&New device: ")
(finish-output)
(setqg device (read)))
:report-function
(1 anbda (stream
(format stream"Try a different device.")))
(nil # (lanbda ()
(return-from query-devi ce :gave-up))
:report-function
(1 anbda (stream
(format stream "G ve up."))))
(1 oop
(send-query device 'query)
(let ((answer (accept-response device)))
(i f answer
(return answer)
(cerror "Try again.”
" devi ce-unresponsi ve :device device))))))
QUERY- DEVI CE
? (query-device 'fo0o0)
Sendi ng FOO QUERY

http://psg.com/~dlamkins/sl/chapter23.html (7 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

Error: Device FOO is unresponsive.
Restart options:
1. Try again.

2. Reset devi ce.

3. Try a different device.
4. G ve up.

5. Top | evel

?1

Sendi ng FOO QUERY
Error: Device FOO is unresponsive.
Restart options:

1. Try again.

2. Reset devi ce.

3. Try a different device.
4. G ve up.

5. Top | evel

? 2

Resetti ng FOO
Restart options:
1. Try again.

2. Reset device.

3. Try a different device.
4. Gve up.

5. Top | evel

?1

Sendi ng FOO QUERY
Error: Device FOO is unresponsive.
Restart options:

1. Try again.

2. Reset devi ce.

3. Try a different device.
4. G ve up.

5. Top | evel

? 3

New devi ce: bar
Restart options:
1. Try again.

2. Reset devi ce.

3. Try a different device.
4. G ve up.

5. Top | evel

?1

Error: Device BAR is unresponsive.
Restart options:

Try again.

2. Reset devi ce.

3. Try a different device.
4. G ve up.
5
2

=

Top | evel

http://psg.com/~dlamkins/sl/chapter23.html (8 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

The"Try again” restart is established by the CERROR form; selecting this restart lets the program continue from the CERROR
form. The "Reset device", "Try adifferent device', and "Give up" restarts are created within the RESTART- Bl ND form;
choosing one of these executes the associated function. Of the restarts defined within the RESTART- Bl ND, only the "Give
up" restart transfers control out of the CERROR form -- the others return control to CERROR to again display the menu of
restart choices.

Now you've seen the basics of condition handlers and restarts. Lisp has additional built-in abstractions that extend these
concepts. If you're interested, you should consult a Common Lisp reference.

There's one last thing you should know about handling conditions. As we saw earlier, ERROR causes your program to stop in
the Lisp debugger. Y ou can't continue past the call to ERROR, but most Lisp systems will et you back up, correct the
problem that caused the error, and rerun that portion of the program. If you do the right thing, your program won't call
ERROR again. Thisis an amazingly powerful tool to use during program development. But you don't want to expose your
users to that kind of experience -- they won't be as impressed by the Lisp debugger as you are.

To protect your users from the debugger, you can wrap portions of your program in an | GNORE- ERRORS form.

? (ignore-errors
(error "Sonething bad has happened.")
(print "Didn't get here."))

NI L

#<SI MPLE- ERROR #x42B26B6>

? (ignore-errors
(* 79))

63

If an error occurs within an | GNORE- ERRORS form, program execution ends at that point, and | GNORE- ERRORS returns
two values: NI L and the condition signalled by ERROR.

Y ou should use | GNORE- ERRORS judiciously. Useit only to wrap forms for which you can't otherwise provide handlers.
Note, too, that the values returned by | GNORE- ERRCORS are not very informative. But you can decode the second return
value to print the actual error message.

? (defmacro report-error (&ody body)
(let ((results (gensym)
(condition (gensym))
“(let ((,results (multiple-value-list
(ignore-errors
, @ody))))
(if (and (null (first ,results))
(typep (second ,results) 'condition)
(null (nthcdr 2 ,results)))
(let ((,condition (second ,results)))
(typecase ,condition
(sinple-condition
(apply # format t
(sinple-condition-format-control ,condition)
(sinpl e-condition-format-argunments ,condition)))
(ot herw se
(format t "~A error." (type-of ,condition))))

http://psg.com/~dlamkins/sl/chapter23.html (9 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 23

(val ues))

(values-list ,results)))))
REPORT- ERROR
? (report-error (error "I feel like I"'mlosing ny mnd, Dave."))
| feel like I'"mlosing ny mnd, Dave.
? (report-error (+ 1 no-variabl e-by-this-nane))
UNBOUND- VARI ABLE error.
? (report-error (* 7 'f))
TYPE- ERROR error.
? (report-error (let ((n 1)) (/ 8 (decf n))))
Dl VI SI ON- BY- ZERO error.
? (report-error (* 2 pi)) ; not an error
6. 283185307179586
? (report-error (values 1 2 3 4)) ; not an error

Contents | Cover
Chapter 22 | Chapter 23 | Chapter 24

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to the author's
site.

http://psg.com/~dlamkins/sl/chapter23.html (10 of 10)11/3/2006 5:55:47 PM

Successful Lisp - Chapter 24

Chapter 24 - FORMAT Speaks a Different Language

Throughout this book, we've shown some simple uses of FORMAT without explanation. In this chapter, we'll
inventory and describe FORMAT's most useful capabilities, and a few of its more esoteric features.

FORMAT rhymes with FORTRAN, sort of...

FORMAT appears to have been inspired by FORTRAN's varied and capable function of the same name. But
Lisp's FORMAT implements a programming language in its own right, designed expressly for the purposes of
formatting textual output. FORMAT can print data of many types, using various decorations and
embellishments. It can print numbers as words or -- for you movie buffs -- as Roman numerals. Columnar
output is a breeze with FORMAT's facilities for iterating over lists and advancing to specific positions on an
output line. Y ou can even make portions of the output appear differently depending upon the formatted
variables. This chapter covers a representative portion of what FORMAT can do; you should consult aLisp
reference to get the full story.

Formatting

FORMAT expects a destination argument, aformat control string, and alist of zero or more argumentsto be
used by the control string to produce formatted output.

Output goesto alocation determined by the destination argument. If the destination is T, output goes to
* STANDARD- QUTPUT™ . The destination can aso be a specific output stream.

There are two ways FORMAT can send output to a string. One isto specify NI L for the destination: FORVAT
will return a string containing the formatted output. The other way is to specify a string for the destination;
the string must have afill pointer.

? (def paraneter *s*
(make-array O
el ement-type 'character
-adjustable t
fill-pointer 0))

? (format *s* "Hell o~%)
NI L

? *s*

"Hel | o

? (format *s* "(Goodbye")
NI L

? *s*

http://psg.com/~dlamkins/sl/chapter24.html (1 of 6)11/3/2006 5:55:51 PM

Successful Lisp - Chapter 24

"Hell o

Goodbye"

? (setf (fill-pointer *s*) 0)

0

? *gs*

? (format *s* "A new begi nni ng")
NI L

? *s*

"A new begi nni ng"

The call to MAKE- ARRAY with options as shown above creates an empty string that can expand to
accommodate new output. As you can see, formatting additional output to this string appends the new output
to whatever is already there. To empty the string, you can either reset itsfill pointer (as shown) or create a
new emtpy string.

FORMAT returns NI L except when the destinationisNI L.

The format control string contains literal text and formatting directives. Directives are always introduced with
a~ character.

Directive I nterpretation
~% new | i ne
~& fresh line
~| page break
~T tab stop
~< justification
~> term nate ~<
~C char act er
~(case conversion
~) termnate ~(
~D deci mal i nteger
~B bi nary i nteger
~0 octal integer
~X hexadeci mal i nteger
~bR base-b i nteger
~R spell an integer
~P pl ur al
~F fl oati ng point
~E scientific notation
~G ~F or ~E, dependi ng upon nagnitude
~$ nonet ary
~A | egi bly, w thout escapes
~S READabl y, with escapes

http://psg.com/~dlamkins/sl/chapter24.html (2 of 6)11/3/2006 5:55:51 PM

Successful Lisp - Chapter 24

Thefirst few directivesin the table above are for generating whitespace. A ~%directive inserts a newline
character. ~& inserts anewline only if FORMAT output is not already at the beginning of a new line. ~|
generates a page break character; not all devices are capable of responding to this character. Y ou can cause
FORMAT to emit multiple line or page breaks by using an optional argument, as in ~5%which generates five
newlines.

To advance output to column n by inserting spaces, use ~nT.

Y ou can justify output using ~< and ~> to enclose the output to be justified. ~w<text~> right-justifiestext in
afield of width n. If you segment text using ~; as a separator, the segments will be evenly distributed across
the field of width w.

~Cformats a character. Normally, the character formats as itself. However, if you modify the directive to ~:
C, then non-printable characters are spelled out.

? (format nil "~:C" 7) ;; 7 is ASCII BEL
“Bel | "

Y ou can change the alphabetic case by enclosing output in ~(and ~) . Different forms of the directive
produce different results. ~(text~) convertstext to lower case. ~: @ text~) converts text to upper case. ~:
(text~) capitalizes each word in text. ~@ text~) capitalizesthe first word in text and converts the rest to
lower case.

The ~Ddirective formats an integer as decimal digits with aleading minus sign if the number is negative.
~wD right-justifies the output in a field of width w, padding on the left with spaces. ~w, ' cD pads on the | eft
with the character c. Adding the @modifier immediately after the ~ causes aleading plus sign to be emitted
for positive numbers as well as the leading minus sign that is always emitted for negative numbers. A :
modifier causes commas to be inserted between each group of three digits.

Y ou can format numbersin binary (base 2), octal (base 8) or hexadecimal (base 16) radix using the directives
~B, ~O, and ~X, respectively. Except for the radix, these behave exactly as ~D.

The ~R directive has two forms. ~bR prints an integer in base b. The directive ~10Risidentical to ~D.
Optional values should be specified following the radix. For example, ~3,8R prints a base-3 number in afield
of width 8.

Without the radix specifier, ~R spells out an integer as a cardinal (counting) number in English.

? (format nil "~R" 7)
"seven"”
? (format nil "~R' 376)

"t hree hundred seventy-six"

http://psg.com/~dlamkins/sl/chapter24.html (3 of 6)11/3/2006 5:55:51 PM

Successful Lisp - Chapter 24

~: Rspellsout an ordina (positional) number.

? (format nil "~:R'" 7)
"sevent h"

Y ou can even print Roman numerals using ~@R.

? (format nil "~@' 1999)
" MCMXCI X"

One of the hallmarks of professional-looking output is getting plurals right. Lisp makes this easy with the ~P
format directive. Unlessitsargument is 1, ~P formatsan "s'. ~@ formatsa"y" if itsargument is 1, or an
"ies" if the argument is not 1. Since these operations so commonly follow the printing of a number, ~: P and
~: @ reuse the previously consumed argument.

? (format nil "~D time~:P, ~Dfl~@" 1 1)
"1 time, 1 fly"
? (format nil "~Dtinme~.P, ~Dfl~ @" 3 4)

"3 tines, 4 flies”

Y ou can print floating-point numbers in four different ways:

~F
As anumber with adecimal point, e.g. 723.0059
~E
In scientific notation, e.g. 7.230059E+2
~G
Asthe shorter of the above two representations, followed by atab to align columns
~$

Asamonetary value, e.g. 723.01

There are many options for printing floating point numbers. The most common is the field-width specifier,
which behaves asit does in the ~D directive.

Non-numeric Lisp datais printed using the ~A and ~S directives. Use ~A when you want to print datain its
most visually attractive form; that is, without the escape characters that would let the data be read correctly by
READ. Using ~A, strings are formatted without quotes, symbols are formatted without package prefixes or
escapes for mixed-case or blank characters, and characters are printed as themselves. Using ~S, every Lisp
object is printed in such away that READ can reconstruct the object (unless, of course, the object does not
have a readabl e representation).

lteration

http://psg.com/~dlamkins/sl/chapter24.html (4 of 6)11/3/2006 5:55:51 PM

Successful Lisp - Chapter 24

List elements can be formatted using the directive ~{ format-control~} . The argument must be a list; format-
control consumes elements of the list. Iteration terminates when the list is empty before the next pass over
format-control. Here's a simple example:

? (format t "~&Nane~20TExt ensi on~{ ~&-A~20T~A~}"
"("Joe" 3215 "Mary" 3246 "Fred" 3222 "Dave" 3232 "Joseph" 3212))
Name Ext ensi on

Joe 3215
Mary 3246
Fred 3222
Dave 3232
Joseph 3212
NI L

If your list might end in the middle of the iteration's format-control, you can insert a~” directive at that
point. If the argument list is empty when interpreting the ~* directive, the iteration ~{ format-control~}
terminates at that point.

Additional options let you limit the number of iterations and specify different requirements for the arguments.
Consult aLisp reference for details.

Conditionals

Conditional format directives are introduced by ~[and delimited by ~] . There are severa forms, which I'll
call ordinal, binary, and conditional. The ordinal form is ~[format-O~; format-1~; ...~; format-N~] , which
selects the format-1th clause for an argument value of 1.

? (format t "~[Lisp 1.5~; MACLI SP~; PSL~; Conmon Lisp~]" 2)
PSL
NI L

Within ~[and ~] you can specify afinal default clause as ~: ; format-default; thisis selected if the argument
isoutside therange O to N.

The binary form iswritten ~: [format-false~; format-true~] . The format-false clause isinterpreted if the
argument is NI L; otherwise, the format-true clause is interpreted.

? (format t "My conputer ~:[doesn't~;does~] like Lisp." t)
My conputer does |ike Lisp.

NI L

? (format t "My conputer ~:[doesn't~;does~] like Lisp." nil)
My computer doesn't |ike Lisp.

NI L

http://psg.com/~dlamkins/sl/chapter24.html (5 of 6)11/3/2006 5:55:51 PM

Successful Lisp - Chapter 24

The conditional form, written as ~@ format~] , first tests its argument. If the argument isnot NI L, it is not
consumed; rather, it isleft for format to consume. If the argument isNI L, then it is consumed and format is
not interpreted.

? (format nil "~{~@~A ~]~}" '"(1 2 nil 3t nil 4 nil))
"1 23 T4"

Floobydust

Asyou've seen, many of the format directives accept optional parameters, such as the field width parameter of
the justification, tabbing, and numeric directives. Our examples have encoded these parameters into the
format control string. Sometimes it is useful to have a parameter vary during the program's operation. Y ou
can do this by specifying V where the parameter would appear; the parameter's value is then taken from the
next argument in the argument list.

2 (format t "~{~&VD~}" ' (5 37 10 253 15 9847 10 559 5 12))
37
253
9847
559
12
NI L

In this example, the arguments are consumed in pairs, with the first of each pair specifying afield width and
the second being the number to print.

Contents | Cover
Chapter 23 | Chapter 24 | Chapter 25

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to
the author's site.

http://psg.com/~dlamkins/sl/chapter24.html (6 of 6)11/3/2006 5:55:51 PM

Successful Lisp - Chapter 25

Chapter 25 - Connecting Lisp to the Real World

Lisp provides a wonderful development environment, as we'll see in the next few chapters. But Lisp
would be of little value for some applications without a way to access external programs written in other
languages. Fortunately, modern Lisp implementations have a Foreign Function Interface, or FFI for
short.

In this chapter I'll describe FFI in general terms. Implementations differ in the details since FFI has not
(yet) been standardized. Despite the lack of standardization, current implementations seem to have
converged on asimilar set of features.

Foreign Function Interfaces let you talk to programs written in
"foreign languages"

An FFI letsyour Lisp program interact with code that is "foreign” -- i.e. not Lisp.

This Lisp-centric view of the world is probably motivated by the Lisp machines, where
everything -- even the low-level portions of the OS -- was written in Lisp. A good many
of the people involved with Lisp during that time are responsible as well for the
development of modern Lisp implementations; hence, the not-so-subtle nod toward the
notion of Lisp asthe center of the programmer's universe.

A typical FFI providesfor both callsfrom Lisp to separately-compiled code, and from separately
compiled codeto Lisp. (In the latter case, it is almost always true that the external code must have been
called from Lisp; it can then call back into Lisp.) Most often, an FFI supports a C calling convention.

Would you wrap this, please?

Why is an FFI even necessary? Why can't you link-in separately compiled code as in any other
language? The main reason is that Lisp datatypes don't generally have equivalentsin conventional
languages. For example, C integerstypically fill (depending upon declaration) one-half, one, or two
machine words and produce mathematically incorrect results when aresult exceeds the representational
capacity of the integer's storage. A Lisp integer can fit in amachine word, saving afew bitsfor atype
tag. These are called fixnums. Lisp integers having magnitudes exceeding the capacity of the single
word representation are converted to a representation that has an unlimited number of bits -- these are
bignums. And with a good compiler, you can define subtypes of integers that, when packed into an
array, have just enough bitsin their representation to handle the declared range of values.

So, one purpose of an FFI isto trandate Lisp datatypes to (and from) "foreign" datatypes. Not all

http://psg.com/~dlamkins/sl/chapter25.html (1 of 3)11/3/2006 5:55:55 PM

Successful Lisp - Chapter 25

conversions are possible -- agood FFI will signal an error when a conversion is not possible at runtime.

When a non-Lisp function accepts or returns values in arecord datatype, the FFI must provide a means
of constructing appropriate records. Typically, the FFI gives you away to construct records that are bit-
for-bit identical to those that would have been produced by another language. Fields within arecord are
set and retrieved using specialized Lisp accessors.

An FFl must also support the proper function calling protocol for non-Lisp functions. Protocols differ by
platform and by language. Lisp function calling conventions normally differ from those used by other
languages. Lisp supports optional, keyword, default, and rest parameters, multiple return values,
closures, and (sometimes, depending upon the compiler) tail call elimination; a conventional language
might implement tail call elimination.

What else must an FFI do? It loads object files produced by other languages, providing linker
functionality within Lisp for these object files. A linker resolves named entries to code in the object file,
and fills in machine addresses in the object code depending upon where the code loads into memory.

Finally, an FFI must resolve differences in memory allocation between Lisp and other languages. Most
Lisp implementations allow objects to move during operation; this improves the long-term efficiency of
memory management and can improve the performance of the program under virtual memory
implementations by reducing the size of the working set. Unfortunately, most other languages expect
objectsto remain at afixed memory address during program execution. So the FFI must arrange for a
foreign function to see Lisp objects that don't move.

All of the above functionality is encapsulated by an FFI wrapper function. All you have to do is define
the name, calling sequence and object code file of some foreign function, and the FFI will generate a
wrapper that does all of the necessary trandations. Once you've done this, the foreign function can be
called just like any other Lisp function.

I'll call you back...

Usually aforeign function is called for its results or to have some effect on the external environment,
and asimple call/return sequenceis al that's needed. But some foreign functions, particularly those that
deal with user interface or device |/O, require access to callback functions during their operation. A
callback function is called from the foreign function.

To define a callback function in Lisp, the FFI basically hasto solve al of the foreign function problems
in the reverse direction. Y ou use the FFI to define a Lisp function that is callable from another language.
The result istypically afunction object or pointer that can be passed (as a parameter) to acall of a
foreign function. When the foreign function is called, it references the callback parameter in the normal
manner to invoke the Lisp callback function. The FFI wrapper around the callback trandlates the foreign
calling sequence and parameter values to the corresponding Lisp format, invokes the Lisp callback

http://psg.com/~dlamkins/sl/chapter25.html (2 of 3)11/3/2006 5:55:55 PM

Successful Lisp - Chapter 25

function, and returns the callback's results after suitable translation from Lisp to foreign formats.

Network Interfaces: beyond these four walls

Although network protocols are hightly standardized and interoperable, networking APIs are not.
Common Lisp vendors usually provide their own interface to the target platform's networking software.
Franz's Allegro Common Lisp provides a simple sockets library for |P networking. Digitool's Macintosh
Common Lisp comes with a complete set of interfaces to the low-level networking APIs (1P, AppleTak
and PPC) of the Mac OS, plus a collection of sample code that uses the low-level callsto perform
common networking tasks; you can use the samples as-is or customize them to your requirements.

Contents | Cover
Chapter 24 | Chapter 25 | Chapter 26

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter25.html (3 of 3)11/3/2006 5:55:55 PM

Successful Lisp - Chapter 26

Chapter 26 - Put on a Happy Face: Interface
Builders

Graphical user interfaces (GUIs) have changed the way that people use computers. High-end Lisp
systems had sophisticated GUIs as far back as the late 1970s, with low-cost consumer computers
adopting GUIsin 1984. Modern Lisp systems include tools to build GUIs using both platform-specific
and platform-independent techniques. The former can take advantage of proprietary features of the
platform's user interface, while the latter provide an abstraction that is portable across multiple
platforms.

Event-driven interfaces

Events are key to the operation of all GUIs. An event isagesture initiated by the user: typically a
keystroke, mouse movement or click, menu selection, pen stroke, or speech utterance. An event can
occur at any time. This means that the program must be prepared to handle any event at any time in
some meaningful way. The interpretation of an event will depend upon the current state of the program,
e.g. what windows are visible on the screen and what each window is displaying. An event may change
the state of the program and therefore affect the interpretation of later events. But in all cases, the
program must be prepared to handle receipt of any event at any time.

Event-driven programs have a control structure known as an event loop. The event loop receives events
and dispatches them to some part of the program, normally the portion of the program that is in control
of the current focus, or site of user interest, among all of the information currently displayed by the
program.

Graphical programming

The next, and more obvious, characteristic of graphical user interfacesisthat they rely entirely upon
graphics. Even text is displayed as a graphical image. Of course, it would be incredibly painful (and
silly) for every programmer to write programs to render text, lines, circles, boxes, menus, controls, etc.
The operating system provides a collection of library routines to draw graphical objects, windows, and
controls; the Lisp environment typically provides wrappers (often by use of the Lisp foreign function

interface) around the graphics routines so that they may be called from within Lisp.

The availability and implementation details of graphics routines vary widely from platform to platform.
Y ou should consult the documentation for your Lisp implementation to learn about how it supports

graphics.

http://psg.com/~dlamkins/sl/chapter26.html (1 of 6)11/3/2006 5:55:59 PM

Successful Lisp - Chapter 26

Example: MCL's Interface Toolkit

Macintosh Common Lisp (MCL) provides access to the underlying graphical toolkit of the Macintosh
OSin two ways. MCL provides a high-level interface for presenting windows, menus, controls, text, and
graphics. Thisinterface is at ahigher level of abstraction than the underlying OS primitives; it separates
the programmer from concerns about memory allocation, record layout, and pointers. MCL also
provides alow-level interface that lets you program with the underlying OS routines (not just for
graphics, but for the entire OS). When you use the low-level interface, you are faced with al the
concerns that dog a C or Pascal programmer -- only the syntax is different.

In addition to the programmer’s interfaces to the Macintosh OS, MCL also provides atool for visual
construction of user interface elements. The Interface Toolkit lets you design windows and dialogs by
simply specifying a particular type of new window, then dropping user interface elementsinto the
window. The Interface Toolkit also provides an editor for menus. When you are satisfied with the
appearance of your new window or menu, the Interface Toolkit will emit the Lisp code needed to
reconstruct it from scratch.

Creating a simple dialog

MCL's Interface Toolkit alows you to create dialogs and menus. To create adiaog, you first select a
window style.

5elect Dialog Window Options:

{® Document {_» Single Edge Box
3 Document with Grow i_) Double Edge Box
3 Document with Zoom {_) Shadow Edge Box
1 Tool _) Movable Dialog

(<] Include Close Box

] Color Window [ok]

Here, I've chosen to create a simple document window.

http://psg.com/~dlamkins/sl/chapter26.html (2 of 6)11/3/2006 5:55:59 PM

Successful Lisp - Chapter 26

=[[lI=-———= Untitled Dialog |

A palette of controls appears near the new window. From this palette you can drag and drop controls to
create the desired window layout.

:
3

® Radio

Pop Up w

[]Check Box

scrolling
editagble
text

<ag:::
Edit Text

I |

Static Text

Each control dragged onto the window can be moved and resized. Y ou can also edit attributes of the
control, as shown here for a button control.

http://psg.com/~dlamkins/sl/chapter26.html (3 of 6)11/3/2006 5:55:59 PM

Successful Lisp - Chapter 26

S[=—— Editor for "Untitled" a0 ——|
Dialog-item-text:
Untitled []Default Button

(@ Enabled ¢ Disabled
[Set Item Action |
[Set ltem Font |
[Set ltem Name |

Set Color v

[Print Item Source |

Less than a minute later, I've finished this simple dialog. | can now use a menu command to dump the
Lisp source text which will recreate this dialog.

S=————— Uh Oh... e
ﬁ Something really strange has
happened... You may want to

take a look.
[ok]

Editing a menu

The Interface Toolkit also lets you create and edit menubars, menus, and menu items. Y ou begin with
the menubar editor.

http://psg.com/~dlamkins/sl/chapter26.html (4 of 6)11/3/2006 5:55:59 PM

Successful Lisp - Chapter 26

=0 Menubar Editor ="Fcc———
% o] | Add Menu |
File =] | |
Edit rMenubar Operations —
Lisp [Rotate Menubars |
Tools
Windows | Add New Menubar |
Marks | Delete Menubar |
Design s
T Menubar Colors
[Print Menubar Source |

Here, I've chosen to edit MCL's Edit menu.

Em Edit Menu

Menu Items:
Undo #®L Add Menu ltem -
Undo more
Cut 3y Loamrmand Key
Copy #C [] Disabled
Paste # [J] Check Mark
Clear
select Al wA| || J
- Colors
Search... #F | Menu Colors -
Search Again #0b

[Print Menu Source

While you're editing menus, you may not have access to an Edit menu and its Cut, Copy, Paste, and
Clear commands. MCL provides a palette with these controls during menu editing.

Platform-independent interfaces

http://psg.com/~dlamkins/sl/chapter26.html (5 of 6)11/3/2006 5:55:59 PM

Successful Lisp - Chapter 26

A platform-independent interface abstracts away details of the underlying operating system's GUI,
providing its own event loop, windows, menus, and controls. When you write a GUI using these
abstractions, the code can be moved to any other Lisp platform (assuming availability of the platform-
independent interface) through recompilation.

CLIM isacommercially-supported platform-independent user interface available on al Lisp platforms.
CLIM 2.0 even preserves the native look and feel of each platform by mapping platform-independent
requests for windows, menus, and controls onto calls to the native OS graphics services.

Garnet is afree, unsupported platform-independent user interface that is available for most Lisp
platforms. Source code is freely available, so you could port Garnet to a new platform if you are so
inclined. Unlike CLIM 2.0, Garnet uses its own definitions for windows, menus, and controls; this
means that a Garnet GUI will ook the same regardless of platform.

Contents | Cover
Chapter 25 | Chapter 26 | Chapter 27

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter26.html (6 of 6)11/3/2006 5:55:59 PM

Successful Lisp - Chapter 27

Chapter 27 - A Good Editor is Worth a Thousand
Keystrokes

Lisp's ssimple syntax combines with an integrated editor to ease many of the common tasks of writing a
Lisp program. Anyone who triesto tell you that "it's hard to balance parentheses in aLisp program” is
using the wrong editor.

Simple syntax; smart editors

Lisp hasavery simple syntax; it's just a bunch of tokens bracketed by a pair of parentheses, recursively.
This ssimple syntax, combined with the fact that the first token following aleft parenthesis usually says
something about the meaning of the following tokens, lets editors do relatively smart things with
program text given only local information.

Virtually every Lisp environment comes with its own Lisp-aware editor. The rare (usually free and
minimalist) Lisp environment that doesn't provide its own editor can use Emacs, which has a mode for
editing Lisp source code.

Matching and flashing

Asyou typealLisp program for the first time, it's handy to see the matching parentheses at a glance.
Most Lisp editors facilitate this by briefly highlighting the opening parenthesis for each close
parenthesis that you type. Highlighting can take different forms, depending upon the implementation.
Sometimes, the text insertion cursor jumps back to the opening parenthesis for a fraction of a second
(and then returns to its proper position before inserting the next typed character.) Another common
technique is to briefly display the opening parenthesisin abold font or a different color. And some
editors even draw an outline around the entire list. No matter how it's done, you can see at a glance how
your closing parentheses match their opening counterparts, with not so much as a pause in your typing
of the program.

Once you've entered the program, you can find matching parentheses by positioning the cursor to either
the beginning or ending parenthesis, then typing a keystroke that will either flash or move the cursor to
the matching parenthesis.

Automatic indentation

Parenthesis matching is important when you're entering or editing a program. When you're reading a
Lisp program, proper indentation isimportant to give you visual cues asto the program structure. In

http://psg.com/~dlamkins/sl/chapter27.html (1 of 3)11/3/2006 5:56:02 PM

Successful Lisp - Chapter 27

fact, you should be able to hide the parentheses in a properly indented Lisp program and still understand
the program.

Lisp editorstypically supply proper indentation as you type a new program; with some editorsthisis
done automatically, while others require that you use a different keystroke in place of the return key to
end aline. Together with parenthesis matching, automatic indentation lets you type a properly
parenthesized and indented Lisp program without ever having to count parentheses or spaces.

When you edit an existing Lisp program, you'll often add or remove portions such that the proper
indentation of the rest of the program must change. If you had to readjust everything by hand, you'd
become quickly disenchanted with Lisp. That's why Lisp editors give you away to reindent a program
either aline at atime, or for an entire Lisp form. Lisp programmers tend to develop a habit of finishing
small changes with the keystroke to reindent the portion of the program being edited; this gives the
programmer immediate visual feedback on the updated structure of the program, as expressed by its
indentation.

Symbol completion

Lisp programmers tend not to abbreviate names. The short, mnemonic names in Common Lisp are there
for historical reasons; the newer additions to Lisp have fully spelled out, descriptive names. Fortunately,
agood Lisp program editor can save you alot of typing by providing a symbol completion facility.

Symbol completion works like this. As you type your program, you're using names that are both built
into the Lisp system and defined anew by your program. As you type a name, you can press a symbol-
completions keystroke anytime after having typed the first few characters. If the typed prefix uniquely
matches some symbol already known to the Lisp environment (either because it's built in, or because
you've previously typed the whole name), the editor will type the rest of the symbol for you. If the typed
prefix matches more than one completion, the editor may either pick the first and let you cycle through
the rest by repeating the completion keystroke, or it may present alist of possible completions from
which you can choose. In any casg, it's important to note that symbol completion does not depend upon
having compiled your program; completion works even during initial program entry.

Finding definitions

Asyou develop your program, you'll often find that it's helpful to refer to afunction that you've defined
earlier; perhaps you need to see the source code to confirm that it will respond appropriately to
unexpected inputs, or maybe you need to see how some vendor-supplied function isimplemented. Lisp
editors support this kind of exploration with yet another keystroke; just position the cursor somewherein
aname, press akey, and (if the definition is accessible in source form) you're instantly shown aview of
the defining source code.

http://psg.com/~dlamkins/sl/chapter27.html (2 of 3)11/3/2006 5:56:02 PM

Successful Lisp - Chapter 27

On-line documentation

Despite its underlying ssimplicity, Lisp isalarge language. The formal ANSI specification fills some
1,500 pages of paper describing the language and 978 predefined symbols. On top of that, your vendor's
development environment will define hundreds of thousands of additional symbols. And, of course, your
program will only add to the roster of symbol names.

Most Lisp editors will let you access documentation in various forms. For built-in and user-defined
code, the editor should give you quick access to the documentation string and argument list. In fact,
many Lisp editors automatically find and inobtrusively display the argument list whenever you type a
space following afunction or macro name. A quick glance at the argument list helps you avoid usage
mistakes.

Hypertext access to online manuals is becoming increasingly popular. Some Lisp editors will support
lookups in one or more manuals (including the Lisp reference) in amanner similar to the way they
support access to documentation strings.

Access to debugging tools

The editor (or the Lisp environment in general if the environment is not editor-centric) should support
easy access to debugging tools such as browsers, trace and step facilities, backtraces, inspectors, and
program databases such as apropos, who-calls, and callers-of (see Chapters 10, 16, and 22).

Extending the editor using Lisp

The editor in many Lisp development environmentsisitself written in Lisp. The vendor should
document the external APIs of the editor and supply source code; then you can add your own extensions
to the editor and customize your Lisp environment to fit the way that you work.

Contents | Cover
Chapter 26 | Chapter 27 | Chapter 28

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter27.html (3 of 3)11/3/2006 5:56:02 PM

Successful Lisp - Chapter 28

Chapter 28 - Practical Techniques for Programming

In this chapter, we'll learn some brief yet useful guidelines for Lisp style, followed by practical advice on tradeoffs among
debugging, performance, and readability.

Elements of Lisp style

The art of Lisp styleis simpler and more fruitful than in most other languages. Lisp's simple, consistent syntax eliminates the
need for the rules of style that plague more complicated languages. And the direct, standardized availability of complex
functionality within Lisp helps to drive down the size of programs, thereby providing improved readability through brevity.
(In my experience, aLisp program may range in size from 5 percent to 20 percent of an equivalent C++ program.)

Furthermore, the universal availability of Lisp-aware program editing tools -- such as Emacs or its equivalent built into many
Lisp IDEs -- means that you can let the computer handle the details of indentation that are so important to the ability of a
person to comprehend the structure of a Lisp program. I've said this before, but it bears repeating: you should not be
programming in Lisp without the aid of a Lisp-aware editor.

So, if we don't have to worry about conventions for spelling, capitalization, indentation, and other such mundane details, then
what remains for us to discuss as elements of Lisp style? How about things that are truly important? Lisp programming styleis
about the choice of proper abstractions, and about communicating not just with the compiler, but with other people who will
eventually read your program. (For that matter, good style will help you read your own program some months or yearsin the
future)

Property lists are handy for small (very small) ad-hoc databases

A long, long time ago the capabilities of atypical Lisp implementation were very much less than what you'll find in any
Common Lisp system today. After all, Lisp has been around for over forty years since John McCarthy first invented the
notations (see Chapter 34). Strangely, when Lisp istaught at all in computer science curricula, it istaught using a circa-1965
view of the state of Lisp implementations: interpreted execution, limited data structures, and no real application beyond the
manipulation of symbols.

Unfortunately, authors and publishers of Lisp textbooks did little to help correct these misperceptions, ignoring Common Lisp
(and indeed, many of its recent forebears) in highly-recommened Lisp textbooks published as recently as 1989.

In the bad old days -- when Lisp didn't have arrays, vectors, hash tables, structures, or CLOS -- programmers learned to rely
heavily on property lists as an important mechanism for structuring data. You'll still find -- in bookstores and on the shelves of
college libraries -- Lisp and Al books that recommend the use of property lists as the underlying basis for looking up values
identified by a symbolic key.

A property list isalist of alternating keys and values. For example: thelist (SEX MALE PARENTS (BOB JANE)
OCCUPATI ON MUSI CI AN) establishes these relations:

relati on val ue

sex mal e
parents (bob jane)
occupation nusici an

http://psg.com/~dlamking/sl/chapter28.html (1 of 7)11/3/2006 5:56:07 PM

Successful Lisp - Chapter 28

When you attach these relations to a symbol, say JAMES, then you have away to get information related to the symbol
JAMES, namely the properties having the names SEX, PARENTS, and OCCUPATI ON.

In Common Lisp you can retrieve a symbol's property using (GET symbol property-name) , and set a property using (SETF
(GET symbol pr oper t y- name) property-value) .

While property lists were useful substitutes for more capable data structures in ancient Lisp implementations, they find few
uses in modern Lisp programs. One problem is efficiency. Every time you ask Lisp to retrieve a property value, it must locate
the symbol's property list and then search the list for amatching key. If you have five or six properties on a symbol, the search
may or may not be faster than using a hash table; the exact crossover point will depend upon your particular Lisp
implementation. The other problem is that properties are shared among all parts of your program. It's not too difficult to
imagine two programmers using a property named COLOR in two different ways in two parts of the same program. Imagine
their surprise when they discover the conflict...

At any rate, you should become familiar with all of the capabilities of Common Lisp, and learn to recognize that information
about older Lisp implementation which still haunts us through the mists of history.

Declarations help the compiler, sometimes
Common Lisp defines the following declarations:

special
declares a variable to have dynamic (not lexical) scope
optimize
instructs the compiler how to weight the relative importance of
o Speed
o saf ety
0 space
al debug
o compilation-speed
dynamic-extent
declares that the programmer expects the lifetime of afunction or variable to end when control leaves the enclosing

form
type
declares that a variable will always have values of a given type
ftype
declares that a function should expect arguments of specified types, and that the function will return values or given
types
ignore
declares that avariable is not referenced
ignorable
declares that a variable may not be referenced
inline
declares that the programmer would like afunction to be compiled asinline code
notinline

declares that the programmer does not want afunction to be compiled asinline code

Of these, only the first and last must be implemented. The rest are advisory; depending upon the implementation, the compiler
may or may not honor the given advice. If you've programmed in other languages, you may find it strange that most of Lisp's
declarations are advisory rather than mandatory. So let's dig a bit deeper and see what this really means to you.

http://psg.com/~dlamking/sl/chapter28.html (2 of 7)11/3/2006 5:56:07 PM

Successful Lisp - Chapter 28

Lisp by default must have the capability to determine the type of every variable at runtime. Thisisnot to say that a
sufficiently smart compiler can't infer at compile time that a variable will always be of a particular type and generate code that
does not need to check types at run time. However, an actual "sufficiently smart compiler” remains an elusive creature, much
like the Yeti, Bigfoot and the Loch Ness Monster.

Declarations allow the programmer to pass metainformation to the compiler. Thisis not part of the program, but rather
information about the program. Declarations can help the compiler to generate better code by providing information about the
programmer’'s intent.

For example, if you declare that a variable will always be a FI XNUM(an integer value that fits in a single machine word) then
the compiler can emit code to load that variable directly into aregister in preparation for the next operation. If you declare the
result of the operation to also be a FI XNUM then the compiler can generate code to perform the operation and store the result
using simple machine instructions without first checking the act ual type of the value. Given such declarations, agood Lisp
compiler can generate code comparable to alow-level language in which operations and types in the language map directly
onto the underlying machine.

But there'sarisk. If you declare certain types, and the compiler emits code that optimizes the program according to your
declarations, and the program then contradicts those declarations by providing a value of a different type at runtime, then bad
things will happen. Tell the compiler to expect two numbers to add, then pass it a number and a symbol, and al bets are off.

Fortunately, the declarations that guide the compiler are themselves moderated by the OPTI M ZE declaration. The

OPTI M ZE declaration lets you instruct the compiler about the relative importance of certain properties of the program. Y ou
can specify the relative importance of the SPEED, SPACE, and Sl ZE of the generated code. Y ou can specify whether you'd
like to allow the compiler to spend extratime doing a better job, or to emphasize COVPI LATI ON- SPEED. Y ou can specify
the importance of being able to DEBUG your program, which may cause the compiler to produce code that is simpler or
interacts well with the debugger.

Vaues range from 0 to 3 for the OPTI M ZE declarations, with 0 meaning "totally unimportant” and 3 meaning
"most important”. The default value is 1, meaning "of normal importance". Bear in mind that for something to
be relatively more important, something else must be less important; it won't give the compiler any useful
guidance to specify values of 3 for all of the OPTI M ZE declarations.

Of all the OPTI M ZE declarations, the most important is SAFETY, since this affects the amount of trust the compiler is
willing to extend to your type declarations. A high value of SAFETY generally compels the compiler to check the type of
every value that it can't absolutely determine at compile time. Lower SAFETY values put increasing weight upon your abilities
as a programmer to guarantee that type declarations are correct, array bounds are always in range, etc.

The exact effect of declarations (with the exception of SPECI AL and NOTI NLI NE) varies among Lisp implementations;
consult your reference manual for details.

DEFVAR versus DEFPARAMETER

Although not required by the Common Lisp standard, ailmost all implementations require that you load code from afile. (The
one exception that 1 know of isthe Venue Medley environment, which normally saves the entire Lisp world when you end a
session. Medley also keeps track of new definitions created in the listener and allows you to save just those definitionsto a
file.)

In afile-based Lisp environment, you'll normally add definitionsto afile of source code. One reason for so doing is to
periodically save your work; unless you're debugging FFI code or running buggy Lisp code with alow optimization value for
safety, your Lisp environment will almost never crash. However, other disasters can happen -- another application could crash

http://psg.com/~dlamking/sl/chapter28.html (3 of 7)11/3/2006 5:56:07 PM

Successful Lisp - Chapter 28

and bring down the system in an unprotected OS such as the Mac OS or Windows, the power could fail, or your cat could
walk across the keyboard when you leave to refill your coffee.

Asyour program gets larger, you may find that it's useful to reload an entire source file after making a series of changes. Most
Lisp environments also et you evaluate one definition at atime in any open window. Thisis quite useful because you can
edit, then recompile, one definition at atime. But sometimes you'll forget, and then it's easier to just reload the entire file than
to spend time figuring out which definition you might have forgotten to recompile after last changing its definition.

But you may also be in the midst of debugging your program when you'd like to reload its source code. If your program uses
any global variables to keep track of its state, you really don't want to reinitialize these in the midst of your debugging session.
So, how do you handle this? Y ou could put definitions of your program's state variablesin a separate file, but that increases
your mental workload and increases debugging time by splitting clearly interrelated parts of your program into two separate
files. (I know that thisis an accepted practice in many programming languages, but it really does increase the amount of work
you do as a programmer. Imagine how much less pleasurable reading a novel would be if the novel was delivered as a set of
pamphlets, one per character, and you had to follow page references to get to the next part of the dialog.)

Fortunately, Lisp has grown through decades of real-world programming experience, and has avery simple mechanism to
handle whether variables get reinitialized or not when you load afile. Y ou use DEFVAR to declare variables with values that
need to be initialized only once. To declare avariable with an initial value that gets set every timeits defining formis
evaluated, use DEFPARAVETER.

Onefina note: as a matter of form, you should name global variables with aleading and trailing asterisk, asin * My-
ADDRESS* . Think of this convention as a courtesy to those who will maintain your code at some future date.

Define constants with DEFCONSTANT

Y ou should define global constants using DEFCONSTANT. From the viewpoint of reading a Lisp program, the distinction
between DEFPARANMETER and DEFCONSTANT isthat the value defined by DEFPARANMETER could concievably be atered
by the user after the program is compiled, but a DEFCONSTANT vaue will never change. A good Lisp compiler will take
advantage of DEFCONSTANT declarations to perform classical optimizations such as constant folding or compiling immediate
load instructions.

Fewer Lisp programmers follow a naming convention for constants. The one | use puts aleading and trailing plus sign on the
name of the constant, asin +RTS- OPCODE+.

Know when (not) to use the compiler

Most Lisp systems include both an interpreter and a compiler; when both are available, you'll normally find that it's easier to
debug interpreted code. Consult your vendor's documentation to learn how to switch between the interpreter and the compiler.

Of course, when performance isimportant, you'll want to run your code compiled once it's debugged. But see the earlier
cautions about running buggy code with low safety settings.

When you're writing Lisp code to run on multiple platforms, it's safest to assume that code will run interpreted unless you call
COWVPI LE or COVPI LE- FI LE. For this reason, you should develop the practice of writing (or using) a system definition
procedure that first loads all of your Lisp source files, then compiles them, then loads the compiled files. Thisis usually
overkill, but it's avery safe, conservative approach. With suitable source code organization and proper use of EVAL- WHEN
you can reduce the number of source files that must first be loaded; the main ideais to ensure that all macros are defined
before compiling code that uses the macros, but there are other possible situations that can depend upon the current state of the
Lisp world.

http://psg.com/~dlamking/sl/chapter28.html (4 of 7)11/3/2006 5:56:07 PM

Successful Lisp - Chapter 28

Speed vs. ability to debug

Interpreted programs are easier to debug because it's easier for the debugger to access the actual source code at the point of an
error. Once you've compiled your program, the debugger typically has less source information available; you may find
yourself puzzling over atransformed version of the source code or grovelling through assembly-language instructions to find
the source of the error. Fortunately, the need for such low-level debugging will be rare if you follow some simple advice:

1. Keep high SAFETY optimizations on untested code.
2. If aninterpreter is available to you, useit until your code is working well.
3. If you have a compile-only environment, use lower optimization settings for SPEED and higher settings for DEBUG.

Once your code is running well, then you should compile it and adjust the optimization declarations for performance. If you
find that simply compiling your program provides adequate performance, leave it alone. If the performance of the compiled
program falls far below your expectations, first improve the algorithm; optimization declarations typically have afractiona

impact upon performance.

Efficiency: spotting it, testing it

Thefirst rule of efficiency in any programming language is to start with an efficient algorithm. It's alittle harder to spot
inefficienciesin a Lisp program because the underlying operations don't usually map directly onto a hardware instruction. But
with a certain amount of knowledge and practice, you should be able to tell why the following four programs have radically
different resource requirements.

These four programs return the sum of alist of numbers, but do it in different ways. In each case, we test the program with the
TI ME form, which reports run time and memory allocation. Each program is tested twice, once with alist of ten thousand
elements, then again with one hundred thousand.

;7 Runtinme increases as the square of the nunber of elenents
? (defun sumlist-bad-1 (list)

(let ((result 0))

(dotinmes (i (length list))
(incf result (elt list i)))
result))

SUM LI ST- BAD- 1
? (let ((list (rmake-list 10000 :initial-element 1)))

(time (sumlist-bad-1 list)))
(SUM LI ST-BAD-1 LIST) took 2,199 mlliseconds (2.199 seconds) to run.
O that, 102 mlliseconds (0.102 seconds) were spent in The Cooperative Miltitasking
Experi ence.
16 bytes of nenory all ocated.
10000
? (let ((list (rmake-list 100000 :initial-elenment 1)))

(time (sumlist-bad-1 list)))
(SUM LI ST-BAD-1 LI ST) took 336,650 m|liseconds (336.650 seconds) to run.
O that, 15,680 mlliseconds (15.680 seconds) were spent in The Cooperative
Mul titasking Experience.
2,704 bytes of nenory all ocated.
100000

http://psg.com/~dlamking/sl/chapter28.html (5 of 7)11/3/2006 5:56:07 PM

Successful Lisp - Chapter 28

;; Recursive version works when conpiler does tail-call optimzation
? (defun sumlist-bad-2 (list)
(label's ((do-sum (rest-list sum
(if (null rest-list)
sum
(do-sum (rest rest-list) (+ sum (first rest-list))))))
(do-sumlist 0)))
SUM LI ST- BAD- 2
? (let ((list (rmake-list 10000 :initial-element 1)))
(time (sumlist-bad-2 list)))
(SUM LI ST-BAD-2 LIST) took 2 mlIliseconds (0.002 seconds) to run.
10000
? (let ((list (rmake-list 100000 :initial-element 1)))
(time (sumlist-bad-2 list)))
(SUM LI ST-BAD-2 LIST) took 21 mlliseconds (0.021 seconds) to run.
100000

;7 The recursive version can fail wo tail-call optimzation
? (defun sumlist-bad-3 (list)
(declare (optimze (debug 3))) ; disable tail-call optimzation
(l abel's ((do-sum (rest-list sum
(if (null rest-list)
sum
(do-sum (rest rest-list) (+ sum (first rest-list))))))
(do-sumlist 0)))
SUM LI ST- BAD- 3
? (let ((list (rmake-list 10000 :initial-element 1)))
(time (sumlist-bad-3 list)))
> Error: Stack overflow on control stack.

;; The iterative version is not as elegant, but it's fast!
? (defun sumlist-good (list)
(let ((sumO0))
(do ((list list (rest list)))
((endp list) sum
(incf sum (first list)))))
SUM LI ST- GOOD
? (let ((list (rmake-list 10000 :initial-element 1)))
(time (sumlist-good list)))
(SUM LI ST-GOOD LIST) took 1 mlliseconds (0.001 seconds) to run.
10000
? (let ((list (rmake-list 100000 :initial-element 1)))
(time (sumlist-good list)))
(SUM LI ST-GOOD LI ST) took 10 mIliseconds (0.010 seconds) to run.
100000

Thefirst version, SUM LI ST- BAD- 1, harbors a hidden inefficiency: (ELT LI ST 1) must search LI ST from the
beginning for each value of | . In other words, ELT must examine one element when | is 1, two elementswhen | is2, and so
on. For alist of length N, ELT will examine almost N-squared elements. Have alook at the runtimes for 1,000 and 10,000
elements.

The second version is coded using an awareness of how lists are accessed; the helper function DO- SUMcallsitself recursively

http://psg.com/~dlamking/sl/chapter28.html (6 of 7)11/3/2006 5:56:07 PM

Successful Lisp - Chapter 28

with the tail of thelistitisgiven. In SUM LI ST- BAD- 2, the runtime increases linearly with the length of theinput list. So
why isthisabad example?

DO SUMcallsitself asthe last form it executes; thisis known astail recursion. Some compilers can compile tail recursion as
ajump instruction instead of afunction call; this eliminates the growth of the control (function return) stack that would
otherwise occur in arecursive call. However, the Common Lisp standard does not require that tail calls be optimized.

The third version shows what can happen when the compiler does not optimize tail recursion. The compiler in my Lisp system
disablestail recursion optimizations when the DEBUG optimization is set to 3. Without tail recursion optimization, SUM

LI ST- BAD- 3 consumes afunction call frame for each recursive call, and the program fails -- exhausting stack space --
before reaching the end of the test list.

Thefina version, SUM LI ST- GOOD, usesiteration instead of recursion for its control loop, and walks down the input list
element by element. It runs slightly faster than SUM LI ST- BAD- 2 and doesn't fail if the compiler doesn't support tail
recursion optimization.

Recognizing inefficiency, profiling; performance vs. readability

Avoidance is the best defense against inefficiency. Use appropriate data structures and control techniques. When you're not
sure, put together a small test program and time it with avariety of inputs.

Every Common Lisp implementation will have the Tl IVE macro that we used to show the differencesin the SUM LI ST- xxx
functions. Y ou can use this to examine and tune small portions of a program.

Once you have assembled alarger program, you may need to find the bottleneck that causes unexpectedly low performance.
For this, you'll need a profiler. A profiler watches the execution of your whole program and generates a report to show where
the program spends its time. Some profilers also report on memory allocation. A profiler is not a standard part of Lisp, but
most vendors provide one. Consult your vendor's documentation.

Lisp provides abstractions that help you solve problems. You'll find that you don't have to make a tradeoff between readability
and performance; an efficient Lisp program is usually one that is written using the most appropriate abstractions and
operations to solve a given problem.

Contents | Cover
Chapter 27 | Chapter 28 | Chapter 29

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to the author's site.

http://psg.com/~dlamking/sl/chapter28.html (7 of 7)11/3/2006 5:56:07 PM

Successful Lisp - Chapter 29

Chapter 29 - | Thought it was Your Turn to Take
Out the Garbage

Chapter objective: Describe the benefits and costs of garbage collection. Show how to improve program
performance by reducing the amount of garbage it generates.

What is garbage?

In ssimplest terms, garbage is any storage that your program once used, but uses no longer. Here'sa
simple example:

(let ((x (list 1 2 3 405)))
(print x))

When you evaluate thisform, thelist’ (1 2 3 4 5 6) isfirst bound to X and then printed. Once
control leavesthe LET form, the list bound to X is no longer accessible; its storage can be reclaimed by
the garbage collector.

Actually, there's aminor complication that you should know about. When you evaluate a
forminthe Lisp listener, the form itself is assigned to the symbol +, and the valueis
assigned to the symbol * . The previous form and value are assigned to ++ and * * ,
respectively, and the form and value before that are assigned to +++ and * * * . Because
these three pairs of variables give you away to access the forms and results, aform and its
result can't really become garbage until you've evaluated additional formsto flush these
Six variables,

Y ou won't normally have to worry about this unless you've done something in the listener
to exhaust all available memory in Lisp; if you can evaluate a ssimple expression (like T)
three times, you'll release any storage held by +, *, and friends.

Why is garbage collection important?

Lisp allocates storage as needed for your program's data. Y ou don't have direct control over how or
when storage is allocated; the compiler is free to do the best job it can to satisfy the meaning of your
program.

Lisp does not provide away for your program to explicitly deallocate storage. Thisis an important
feature, because you can never write a program to mistakenly deallocate storage that is still needed

http://psg.com/~dlamkins/sl/chapter29.html (1 of 3)11/3/2006 5:56:13 PM

Successful Lisp - Chapter 29

elsewhere in the program. This eliminates an entire class of errors, sometimes referred to as "dead
pointer bugs" in languages that support explicit storage allocation and deallocation.

On the other hand, your program may eventually run out of memory if your program never deallocates
storage. So alanguage (like Lisp) that doesn't support explicit deallocation must still provide a
mechanism to automatically deallocate storage when the storage is no longer needed. The garbage
collector's job is to figure out which storage can no longer be accessed by your program, and then
recycle those inaccessible storage blocks for later use.

How does garbage collection work?

Lisp compiles your program in such away that all of its allocated storage can be found by following
pointers from a small number of known root pointers. The compiler and runtime system arrange for your
program to retain type information at runtime; thisis combined with compile-time knowledge of storage
layouts to encode knowledge of the locations of pointers within data structures.

The garbage collector follows every pointer in every reachable data structure, starting with the root set.
As it does so, it marks the reachable data structures. Once every pointer has been followed, and its
referenced data structure marked, any block of memory that is unmarked is unreachable by your
program. The garbage collector then reclaims these unmarked blocks for future use by the storage
allocator.

The actual marking algorithm used by the garbage collector must account for cyclesin the
reachable data structures, and must perform in limited space and time; these details
complicate the implementation of a garbage collector. Also, most collectors will relocate
the marked data (and adjust references accordingly). [Jones96] provides an excellent

survey and analysis of various garbage collection techniques.

What effect does garbage have on my program?

Garbage causes your program to run slower. The more garbage your program creates, the more time the
garbage collector will need to spend recycling the garbage. Modern garbage collectors are very efficient;
it'sunlikely that you'll see a noticeable pause in your program's execution as the garbage collector runs.
However, the cumulative effect of many small pauses will cause a detectable degradation in overall
performance.

The good news is that garbage collection ensures that your program will never suffer from memory
leaks or dead pointers.

Also, because many garbage collector implementations rearrange storage as your program runs, heap
fragmentation is minimized; thus, alarge Lisp program's performance will not degrade over timelike a

http://psg.com/~dlamkins/sl/chapter29.html (2 of 3)11/3/2006 5:56:13 PM

Successful Lisp - Chapter 29

C or C++ program that performs comparable storage allocation (typically 25 to 50 percent degradation
for aC or C++ program, depending upon heap size, malloc/free implementation, and allocation/
deallocation patterns).

Y ou should note that explicit storage allocation and deall ocation has overheads which are
not strictly predictable. In typical malloc and free implementations, block allocation
involves a search and deallocation involves extra work to coalesce free blocks; both of
these activities are of effectively indeterminate duration, affected by the size and
fragmentation of the heap.

How can | reduce garbage collection pauses in my program?

Y ou can reduce garbage collection overhead by reducing garbage generation. Use appropriate data
structures; list manipulation is the most common cause of garbage creation in poorly-written Lisp
programs. Pay attention to whether an operation returns a fresh copy or a (possibly modified) existing
copy of data.

If you have aprofiler available in your Lisp system, useit to find your program's hot spots for storage
alocation.

Use destructive operations carefully; they can reduce garbage generation, but will cause subtle bugs if
the destructively-modified data is shared by another part of your program.

Contents | Cover
Chapter 28 | Chapter 29 | Chapter 30

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter29.html (3 of 3)11/3/2006 5:56:13 PM

Successful Lisp - Chapter 30

Chapter 30 - Helpful Hints for Debugging and Bug-
Proofing

Aswith any programming language, error avoidance is the best debugging strategy. Take advantage of the
online documentation (available with most systems) and test functions, or even parts of functions, as you
write them.

Still, you'll inevitably face the unexpected error, and you should know how to use the debugger. More often
than not, a quick look at the error location as shown by the debugger will point out an obvious problem.

Some problems, though, are not obvious; your program will run without error, but produce incorrect results.
When examination of the code does not reveal an error, you can rely upon built in Lisp tools to expose the
details of your program's operation and find the error during execution.

Finding the cause of an error

There are two ways to notice an error. The intrusion of the Lisp debugger is the most obvious. The debugger
will appear whenever your program causes Lisp to signal an error. Thisis often the result of something
obvious, like trying to perform arithmetic on NI L or trying to FUNCALL an object that is not a function.

Y our program's failure to produce expected resultsis also an error, even though the debugger never appears.
In this case, your program doesn't make any mistakes in its use of Lisp, but the successful sequence of Lisp
operations doesn't do what you had intended. Another possibility is that your program will fail to terminate
at all.

The best defense against al of these problemsisto write short, clear function definitions and test each one
as soon as you've written it. | find it helpful to write one or more test cases and include them as comments
(bracketed by #| and |#) in the samefile.

Reading backtraces, compiler settings for debugging

Every Lisp debugger will provide at least two important pieces of information: an error message and a stack
backtrace.

The error message describes how the program failed. Normally, thisis a description of an error encountered
while executing some built in Lisp function. If your program calls ERROR, the debugger will display the

message you specify.

The stack backtrace describes where your program failed by displaying the call stack at the point of the
error. The function which signalled the error will be at the "top" of the stack. Below that is the function that

http://psg.com/~dlamkins/sl/chapter30.html (1 of 7)11/3/2006 5:56:17 PM

Successful Lisp - Chapter 30

called the function which signalled the error, and so on all the way to (and sometimes beyond) the listener's
read-eval-print loop.

The debugger relies upon certain information provided by the compiler or interpreter. Although the details
vary among implementations, it's safe to say that compiler optimizations that improve speed or reduce space
tend to reduce the amount of information available to the debugger. Y ou can change these optimizations
while debugging your program:

(declaim (optimze (speed 0) (space 0) (debug 3)))

If you execute this before compiling your program, the debugger should be able to give you more useful
information. Y ou should consult your vendor's documentation to learn about additional implementation-
specific controls. If your Lisp system gives you a choice between using a compiler and using an interpreter,
you'll probably find that the interpreter causes the debugger to give you better information.

Simple debugging tools

If your program runs to completion but produces incorrect results, or if it runs but fails to terminate, then
you'll need some additional tools. The first of these tools should be familiar to al programnmers: insert a call
to the debugger or (more commonly) insert a print statement.

BREAK, PRINT

BREAK causes your program to call the debugger. Once inside the debugger you can examine the call stack.
Most debuggers also allow you to examine values local to each active function on the call stack; by looking
at these values at a critical point during your program's execution, you may find an important clue asto why
your program malfunctions.

The debugger will allow you to continue from a break. Y ou may find it helpful -- if you don't yet understand
the cause of a problem -- to correct one or more wrong values before continuing; with other BREAK forms
inserted at key pointsin your program, this strategy may lead you to a place where the error is apparent.

Of course, you can alwaysinsert PRI NT forms at key locations in your program and examine the resulting
output. In Lisp, thisis most useful when you need to get afeel for what's happening deep inside some
function. For example, you might have a complex calculation to determine whether a sequence of codeis
executed or not. A PRI NT can tell you as the program runs.

Don't forget that you can use FORMAT to print the values of several variables together with explanatory text.
And with either PRI NT or FORMAT, be careful that you do not change the meaning of the code by inserting
the debugging statement. Remember that some flow-control forms (e.g. | F and UNW ND- PROTECT)
expect asingle form at certain places. Also beware of wrapping PRI NT around a value-returning form; this
won't work if the value-receiving form expects multiple values.

http://psg.com/~dlamkins/sl/chapter30.html (2 of 7)11/3/2006 5:56:17 PM

Successful Lisp - Chapter 30

Power tools for tough problems

Lisp provides additional debugging tools to help you observe the dynamic behavior of your program.

TRACE, STEP, ADVISE, WATCH

TRACE allows you to observe each call and return from a specific function, no matter where the function
appearsin your program. To trace afunction, invoke TRACE with the name of the function. Y ou can do this
for as many functions as needed. Y ou can also pass several function namesto TRACE.

When your program runs atraced function, it will print the name of the function on entry and exit. Most
TRACE implementations will aso print the function arguments on entry and returned values on exit.

To discontinue tracing of afunction, pass its name to UNTRACE. To discontinue tracing of all traced
functions, evaluate (UNTRACE) .

See Chapter 16 for an example of TRACE.

STEP alowsyou to interactively control evaluation of an expression. If you step afunction invocation, you
should be able to examine each subform of the function's definition just beforeit is evaluated. STEP
implementations vary widely, so you should consult your vendor's documentation for further details. In
general, the same optimizations and controls that aid the debugger will also aid the stepper.

STEP isavery labor-intensive way to debug a program, since you must tell its user interface to evaluate
each subform. Thisis reasonable for straight-line code, but quickly becomes tedious in the presence of
looping or recursion.

Some Lisp implementations provide two additional tools, ADVI SE and WATCH, that can be of use during
debugging.

ADVI SE modifies a function without changing its source code. ADVI SE can usually examine the advised
function's arguments, execute its own code, execute the advised function, examine the advised function's
return values, and modify the returned values. For debugging purposes, ADVI SE can be used to implement
conditional BREAKs and TRACEsS, or to temporarily patch incorrect behavior in one part of a program while
you're debugging another part.

WATCH lets you specify variables to be displayed as your program executes. Thisis normally available only
in Lisp implementations that provide awindowed user interface. Because of issues of variable scope and

display update timing and overhead, WATCH is of limited value. Most Lisp implementations do not provide
thistool.

Into the belly of the beast

http://psg.com/~dlamking/sl/chapter30.html (3 of 7)11/3/2006 5:56:17 PM

Successful Lisp - Chapter 30

Asyou debug your program, you may need to see the internal details of composite objects such aslists,
structures, arrays, streams and CLOS instances. Lisp lets you do this whether the data has been defined by
your program or by the Lisp runtime system.

INSPECT, DESCRIBE

DESCRI BE is afunction that accepts any object as an argument and prints a description of that object. The
form and content of the description may vary among Lisp implementations. DESCRI BE accepts an output
stream as an optiona second argument.

I NSPECT is an interactive version of DESCRI BE. Thisis most useful for examining complex objects by
"drilling down" into the implementation details of enclosed data elements.

Continuing from an error

When faced with the debugger, you will have a choice of restart actions depending upon how the error was
signalled. ERROR requires that you abandon your program's executions. However, many internal Lisp
functions use CERROR, which gives you a chance to continue from an error.

In most debuggers, you can do quite afew useful things before continuing from an error:

. dlter variable values

. redefine the function that caused the error and run it again

. Skip therest of the function that caused the error and specify values to be returned

. restart any function further down the call stack

. skip therest of any function further down the call stack and specify values to be returned

Problems with unwanted definitions

Unwanted definitions are not usually a problem in aLisp program. Y ou can get rid of function definitions
using FMAKUNBQOUND, variable values with MAKUNBOUND, and even symbols with UNI NTERN. In
practice, there's usually no need to use any of these; available memory is commonly large compared to the
size of afew misdefined variables or functions, and they will be eliminated anyway the next time you restart
your Lisp image and load your program.

Method definitions are an entirely different matter. Remember that methods must have congruent argument
lists; if you change your mind during program devel opment about a method's argument list -- perhaps you
thought that it needed two arguments at first but then realized three arguments are really needed -- then
you'll have to remove the old method definition before adding the new one. Some Lisp environments
facilitate this redefinition:

http://psg.com/~dlamkins/sl/chapter30.html (4 of 7)11/3/2006 5:56:17 PM

Successful Lisp - Chapter 30

? (defnmethod baz (a b))
#<STANDARD- METHOD BAZ (T T) >
? (defnmethod baz (a b ¢))
Error: Inconpatible |anbda |ist in #<STANDARD- METHOD BAZ (T T T)>
f or #<STANDARD- GENERI C- FUNCTI ON BAZ #x3D2CB66>.
Restart options:
1. Renmove 1 nethod fromthe generic-function and change its | anbda |i st

2. Top levl
?

If you simply add a method that you later decide is no longer wanted, you'll need away to remove the
method. The least desirable technique is to restart your Lisp system and reload your program without the
unwanted definition. Another approach, provided by some vendors, is to interactively remove the definition
using a special editor command or a method browser. Failing all else, you can remove the method manually
using REMOVE- METHQD:

(let* ((generic-function (synbol-function 'gf-nane))
(met hod (find-nmethod generic-function
" (met hod- speci al i zers)
(list (find-class paraneter-class-nane)
; one per argunent

.-2))))

(renove- et hod generic-function nethod))

where gf-name is the name of the generic function (i.e. the name of the method), method-specializersis
either empty or a method combination specifier, such as: BEFORE, : AFTER, or : AROUND, and parameter -
class-name is the name of the class on which a particular method parameter is specialized.

Package problems; method definitions

Symbol conflicts across packages can be frustrating during development. If you have defined multiple
packages for your program, you'll need to be careful to set the proper package (using | N- PACKAGE) before
defining an object intended for that package. If you inadvertently create an object in the wrong package and
then attempt to define it in the correct package, Lisp will signal an error if thereisa'uses' relationship
between the two packages. The proper responseisto first remove the erroneous definition using

UNI NTERN.

Y ou can also get into trouble with packages by having unexported classes defined in two packages and
specializing a method based on the wrong class.

The problem with macros
Macros must always be defined before use. Thisis especialy important when you redefine a macro during

http://psg.com/~dlamking/sl/chapter30.html (5 of 7)11/3/2006 5:56:17 PM

Successful Lisp - Chapter 30

development: every piece of code that uses the redefined macro must be recompiled. Y ou can help yourself
avoid macro redefinition problems by reloading your source code after redefining any macro(s).

Runtime tests catch "can't happen cases" when they do...

When | read code, finding the phrase "can't happen" in acomment always raises ared flag. Usually, this
statement is made after the programmer has examined the code's execution environment and intended use.
Unfortunately, things change and "can't happen" cases do happen.

Lisp provides avery handy facility for checking "can't happen” statements at runtime. The ASSERT macro
expects aform that will evaluate to true at runtime. If the form evaluatesto NI L instead, ASSERT signals a
continuable error, transferring control to the debugger. At the very least, thiswill help you to learn which
assertion was violated so you can correct your program.

ASSERT accepts an optional list of value places that the user can interactively change to satisfy the
assertion.

? (defun add-2 (n)
(assert (nunberp n) (n))
(+2n))
? (add-2 3)
5
? (add-2 'foo)
Error: Failed assertion (NUVBERP N)
Restart options:
1. Change the val ues of sone places, then retry the assertion
2. Top |evel
? 1
Value for N 4
6

See Chapter 23 for additional information about ASSERT and other error detection and recovery techniques.

Use method dispatch rather than case dispatch

When your program needs to make a decision based on the type of an object, you have two choices. You can
use TYPECASE or DEFMETHQOD. Unless you have a circumstance that particularly warrants the use of
TYPECASE (or its variants CTYPECASE and ETYPECASE) -- and especially if the set of typeswill change
during normal program evolution or maintenance -- you should probably construct your program to operate
on the individual types viageneric functions. This more clearly exposes the intent of the program and
eliminates the likelihood that you will forget to update a TYPECASE form during maintenance.

http://psg.com/~dlamking/sl/chapter30.html (6 of 7)11/3/2006 5:56:17 PM

Successful Lisp - Chapter 30

Contents | Cover
Chapter 29 | Chapter 30 | Chapter 31

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted
to the author's site.

http://psg.com/~dlamkins/sl/chapter30.html (7 of 7)11/3/2006 5:56:17 PM

Successful Lisp - Chapter 31

Chapter 31 - Handling Large Projects in Lisp

This book is primarily atutorial, designed to give you enough of an understanding of Lisp to get started
writing your own programs. Eventually, you'll find yourself in a situation where you need to collaborate
with other programmers to implement alarger system. The strategies and tools used to organize Lisp
programs for large projects and team efforts are similar to those used for other languages. The main
difference is that the coordination tools are part of the same environment in which you develop your
program.

Packages keep your names separate from my names

One of the first concernsin group development isto avoid namespace collisions. Y ou don't want to have
to poll all the other programmers to make sure that no one has already used the name you're planning to
give the routine you're about to write. That would interrupt not only your train of thought, but al the
programmers aswell. The aternative -- to ignore the namespace problem and resolve collisions during
integration -- is even more unappealing.

Onetried and true approach, used in many organizations, is to give every subsystem a unique prefix for
its exported names. Y our job as a programmer is to tack the proper prefix onto the name of each routine
you write for a given subsystem. Like other approaches, thisis both annoying and fragile. Prefixes tend
to be abbreviations (to save typing); system designers tend to be particularly bad at anticipating future
developments -- eventually, you'll have to make exceptions to the prefix naming rule to accommodate
new development, and with the exceptions comes the extra mental effort of keeping track of another
piece of information which has nothing to do with solving a problem.

Object-based languages at least give you a class scope for naming, but this only pushes the conflict-
avoidance strategy somewhere else.

Lisp's package system (see Chapter 3, Lesson 10) lets you partition namespaces independent of other
language constructs. If you really want to give each programmer the freedom to create without the
overhead of coordinating on matters unrelated to problem-solving, you can give each programmer her
own package. As the subsystems are completed, you can integrate by referring to the qualified names of
the public APIs of each subsystem. Using this approach, there's no cognitive overhead during subsystem
construction, no rework needed during integration, and no runtime overhead in the delivered product.

The keyword package (remember that keywords are symbols with the empty package name, such as::
FOO) is useful for symbols that are used only for their identity. Without associated code or data, a
symbol can readily be shared across all subsystems.

http://psg.com/~dlamkins/sl/chapter31.html (1 of 4)11/3/2006 5:56:21 PM

Successful Lisp - Chapter 31

System builders let you describe dependencies

Lisp does not yet have a standard declarative way to describe the process of building a system from its
source files. Most projects use one of two approaches:

1. create asystem loader based upon LOAD (and sometimes, COMPI LE- FI LE) forms
2. use a homegrown or borrowed declarative system builder

Both approaches have their merits. For smaller systems, a naive LOAD-based approach is quite
workable. As systems get larger, you'll find increasing pressure to reload the minimum set of files
necessary to update your working Lisp image from changed sources. And the introduction of macro
definitions means that files which use the macros will have to be reloaded whenever the source code for
amacro definition changes. Eventually, the complexity of keeping track of these dependencies via ad-
hoc loader code will outweigh the pain of constructing, learning, or adapting a declarative system
builder.

There are several such programs, collectively referred to as DEFSYSTEMs. Some Lisp vendorsinclude a
DEFSYSTEMwith their product. Others are available as source code from Lisp archive sites.
Customization or adaptation is usually required for the DEFSYSTEMs that are not vendor-supplied; you
would be wise to see whether someone has already adapted a DEFSYSTEMto your particular
environment.

Later in this chapter, we'll see one more way to keep track of file dependencies.

Source control systems keep track of multiple revisions

Did you ever change afile, saveit, and then discover that you had broken something so badly that you
wanted to go back to the previous version of the file and start over? A source code control system can
help you do this.

There is no standard for source code control in Lisp, nor isthere likely to be any time soon. Source code
control systems are typically provided as an essential programming tool independent of the Lisp
environment. Some Lisp vendors offer away to operate the source code control system from the Lisp
environment.

For projects involving more than one programmer, a source code control system offers additional
benefits; most such systems allow a programmer to reserve afile which she intendsto edit. A reserved
file can't be edited by any other programmer. Furthermore, the process of reserving afile usually creates
alocal editable copy for the programmer making the changes; the other programmers see the previous,
unedited copy of the file. When the programmer completes (and, of course, tests) the changes, she
returns the completed file to the source code control system, which makes the file's new contents

http://psg.com/~dlamkins/sl/chapter31.html (2 of 4)11/3/2006 5:56:21 PM

Successful Lisp - Chapter 31

availableto all the programmers and allows anyone to reserve the file for a new round of updates.

I highly recommend that you take the time to locate and use a source code control system. The effort
will pay dividends in the time you don't spend recovering from lost source code changes.

Modules: another way to describe file dependencies

Lisp actually does have arudimentary system of maintaining file dependencies. | didn't mention the
module system earlier because it is deprecated; it might be removed, replaced, or augmented in some
future revision of the Lisp specification. | also didn't mention the module system because it has quite
limited expressive power. The module system is best suited for finished, stable systems; it does not have
enough functionality to support incremental program development in a useful manner. Given all these
caveats, let'stake abrief look at ...

PROVIDE and REQUIRE

PROVI DE and REQUI RE are the sole standardized interface to Lisp's module system. A (REQUI RE
name) form tells Lisp to see whether the file associated with name has aready been loaded; if so,
REQUI RE does nothing, otherwise it loads the file. The loaded file must at some point include atop
level form (PROVI DE name) ; this informs the module system that the modul e associated with name
has been |oaded.

The means by which the Lisp system locates the file according to name is implementation-dependent;
usually the name maps onto a source or object file in the current directory.

The biggest problem with this module system isthat it is not designed to handle incremental program
changes,; it is better suited for loading a completed, stable system. Once a REQUI REd fileisloaded, it
will never be reloaded. (Y our vendor may give you enough information to override this behavior, but
you can't depend on it.)

Of course, if you use an ad-hoc loader or a DEFSYSTEMduring program development, thereislittle
reason to not to deliver the system using the same approach to loading. Better yet, some Lisp
environments let you dump an image of your Lisp world, which lets you load the system without having
source or object files at all. Either way, there is no good reason to use PROVI DE and REQUI RE.

Contents | Cover
Chapter 30 | Chapter 31 | Chapter 32

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

http://psg.com/~dlamkins/sl/chapter31.html (3 of 4)11/3/2006 5:56:21 PM

Successful Lisp - Chapter 31

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter31.html (4 of 4)11/3/2006 5:56:21 PM

Successful Lisp - Chapter 32

Chapter 32 - Dark Corners and Curiosities

This chapter isamost at the end of our survey of Lisp. Here, we'll examine some Lisp features that are newer, unstandardized,
experimental, or controversial.

Extended LOOP: Another little language

Chapter 5 described several iterative control forms: DO, DOTI MES, DOLI ST, and asimple LOOP. We aso saw that FORVAT
(Chapter 24) has its own control constructs for iteration.

Recursion is a useful tool for describing (and implementing) some algorithms. But in many cases it's easier to write efficient
iterative code than it isto write efficient recursive code. In chapters 4 and 28 we saw how to write tail-recursive code, and
learned that Lisp is not required to optimize tail calls. Ironically, iteration is very important in this implementation of a
language originally conceived as a notation for recursive functions.

An extended loop facility was introduced late in the specification of Common Lisp. Extended loop, like FORMAT control
strings, breaks away from the Lisp tradition of asimple, consistent syntax. Extended loop uses keywords to specify
initialization, actions and termination conditions. Here are afew examples:

;7 Sumthe integers from1l to 100
? (loop for n from1 to 100

sum n)
5050

;; Compute factorial 10 iteratively
? (loop for n from1l to 10

with result =1

do (setq result (* result n))

finally return result)
3628800

;; Gather the even nunbers froma I|ist
? (loop for itemin '(158 9 7 2 3)
when (evenp iten)
collect item
(8 2)

Extended loop inspires heated disagreements among Lisp users. Its detractors point out that the behavior is underspecified for
complex combinations of options, while its supporters point out that extended loop forms are easier to read than most DO
forms for simple operations. Y ou should heed the advice of both camps: use extended loop to improve readability of ssimple
looping operations.

TAGBODY: GO if you must

Ever since the structured programming revolution of the 1970's, programmers and language designers aike have been
apologetic about the GOTO construct. Y et there are rare cases where awell-placed GOTO, used with careful consideration, is
the clearest way to structure the control flow of an algorithm.

http://psg.com/~dlamking/sl/chapter32.html (1 of 5)11/3/2006 5:56:26 PM

Successful Lisp - Chapter 32

Lisp retainsa GOTO as a GOform, but it must be used within the lexical scope of a TAGBODY form. A TAGBODY may
contain Lisp forms and symbols. The forms are evaluated, while the symbols (which in other forms might be evaluated for
their lexical binding or SYMBOL- VALUE) are simply used as labels to which a GOform may transfer control.

Processes & Stack Groups: Juggling multiple tasks

L eading-edge Lisp systems on dedicated hardware, and more recently on the Unix platform, have implemented a feature
called "lightweight processes.” In the C world these are known as "threads.”

Lightweight processes allow you to write pieces of code which share the CPU's time along with all of the global variablesin
your LISP environment. Although thisisalimited form of multitasking, lacking protection between processes, it is very useful
for handling computations which must run "in the background" or in response to asynchronous events.

In the last few years, low-cost Lisp systems have started to include a process facility. Of al the vendors of low-cost Lisp
system, Digitool was the first to include processesin its product. Starting with its 4.0/3.1 release, MCL includes a complete
implementation of lightweight processes including afull range of control, synchronization, and communication abstractions.
MCL's process API isvery closeto the API used on the Lisp machines. I'll use MCL's AP to illustrate the rest of this section.

The MCL processes are fully preemptive -- you can set both priority and time slice (the "quantum") for each process. Each
process can have private variables simply by using local variablesin the process run function (i.e., Lisp "closures’). Asyou'l
probably have a need to access shared data as well, the MCL process facility provides locks ("mutexes') to ensure access to
critical data by only one process at atime; thisis especially useful when multiple fields of a complex structure must be
updated in asingle operation ("atomically").

The following code implements a solution to Dijkstra's "dining philosophers’ problem using MCL processes and locks. In
case you're not familiar with this, imagine a group of philosophers seated around a round table. Each philosopher has a plate
of food. The food can only be eaten if a philosopher holds afork in each hand. Thereis afork between each pair of
philosophers, so there are exactly as many forks as there are philosophers. The objective is to make the philosophers behave
so that they all get afair chance to eat. The classic solution imposes a protocol on how resources (forks) are acquired, in order
to prevent deadlock (starvation).

(defstruct phil osopher
(anount - eat en 0)
(task nil))

(def macro acquire-lock-or-skip (lock post-acquire pre-rel ease &ody body)
“(progn
;7 Random sl eep makes the output nore interesting
;; by introducing variability into the order of
;; execution. This is a sinple way of sinulating
;; the nondeterm nacy that would result from having
;; additional processes conpete for CPU cycles.
(sl eep (random 5))
(unl ess (I ock-owner ,I ock)
(process-1ock , I ock)
, post -acquire
(unwi nd- pr ot ect
(progn , @ody)
, pre-rel ease
(process-unl ock ,1ock)))))

http://psg.com/~dlamking/sl/chapter32.html (2 of 5)11/3/2006 5:56:26 PM

Successful Lisp - Chapter 32

(let ((philosophers #())
(phi | osophers-output t))

(defun dini ng-phil osophers (nunber-of -phil osophers &optional (streamt))
(unl ess (equal p phil osophers #())
(st op- phi | osophers))
(assert (> nunber-of - phil osophers 1) (nunber-of-philosophers))
(setq phil osophers-out put strean)
(format phil osophers-out put
"~2&Seati ng ~D phil osophers for dinner.~%
nunber - of - phi | osophers)
(force-output philosophers-output)
(flet ((announce-acquire-fork (who fork)
(format phil osophers-out put
" ~&Phi | osopher ~A has picked up ~A ~%
who (I ock-nane fork)))
(announce-rel ease-fork (who fork)
(format phil osopher s- out put
"~&Phi | osopher ~A is putting down ~A ~%
who (I ock-nane fork)))
(eat (who)
(format phil osophers-out put
"~&Phi | osopher ~A is EATING bite ~D. ~%
who (incf (philosopher-anmount-eaten (aref philosophers who))))))
(flet ((philosopher-task (who left-fork right-fork)
(1 oop
(acquire-lock-or-skip left-fork
(announce-acqui re-fork who | eft-fork)
(announce-rel ease-fork who |eft-fork)
(acquire-lock-or-skip right-fork
(announce-acqui re-fork who right-fork)
(announce-rel ease-fork who right-fork)
(eat who)))
(force-output stream
(process-all ow schedul €))))
(let ((forks (nake-sequence 'vector nunber-of-phil osophers)))
(dotinmes (i nunber-of-phil osophers)
(setf (aref forks i) (make-lock (format nil "fork ~D' i))))
(flet ((left-fork (who)
(aref forks who))
(right-fork (who)
(aref forks (nmod (1+ who) nunber-of - phil osophers))))
(setq phil osophers (nmake-sequence 'vector nunber-of-phil osophers))
(dotinmes (i nunber-of-phil osophers)
(setf (aref philosophers i)
(make- phi | osopher
:task (process-run-function (format nil "Phil osopher-~D" i)
#' phi | osopher -t ask
[
(left-fork i)
(right-fork i)))))))))

(val ues))

http://psg.com/~dlamking/sl/chapter32.html (3 of 5)11/3/2006 5:56:26 PM

Successful Lisp - Chapter 32

(defun st op-phil osophers ()
(dotinmes (i (length philosophers))
(process-kill (philosopher-task (aref philosophers i))))

(format phil osophers-out put
"~&Di nner is finished. Anpbunts eaten: {~{~-D-*, ~}}-2%
(map 'list # phil osopher-anount-eaten phil osophers))

(force-output philosophers-output)

(setq phil osophers #())

(val ues))

)

If you evaluate (di ni ng- phi | osophers 5) and look through the actions of any one philosopher, you'll see her
repeatedly do one of two things:

1. pick up afork (the left one) and put it down again because the other (right) fork wasin use, or
2. pick up each fork (left, then right), eat, then put down the forks.

When you evaluate (st op- phi | osopher s) you'll seealist of how many times each philosopher has eaten. These
numbers will be fairly close to each other, illustrating the fairness of the algorithm.

MCL also exposes a ™ stack group" abstraction, which is useful for implementing coroutines:
;;; Main routine F-FQOO

(defun f-foo ()
(print 'foo-1)

(funcall sg-bar nil) ; call 1 to coroutine
(print 'foo-2)

(funcall sg-bar nil) ; call 2 to coroutine
(print 'foo-3)

(funcall sg-bar nil) ; call 3 to coroutine
nil)

;;; Create a stack group for the coroutine.
(defvar sg-bar (make-stack-group "bar"))

;;; Coroutine F-BAR
(defun f-bar ()

(print '"bar-1) ; do this for call 1
(stack-group-return nil) ; return fromecall 1
(print 'bar-2) ; do this for call 2
(stack-group-return nil) ; return fromcall 2
(print 'bar-3) ; do this for call 3
(stack-group-return nil) ; return fromcall 3
nil)

;7 Initialization and startup
(defun run-coroutines ()
;; Initialize the coroutine
(stack-group-preset sg-bar # f-bar)
;; Start mmin coroutine

http://psg.com/~dlamking/sl/chapter32.html (4 of 5)11/3/2006 5:56:26 PM

Successful Lisp - Chapter 32

(f-foo))
When you run the main routine, its execution is interleaved with the coroutine:

? (run-coroutines)
FOO 1

BAR- 1

FOO 2

BAR- 2

FOO 3

BAR- 3

NI L

Y ou can easily run any function within a separate lightweight process, allowing other computation, compilation, editing, etc.
to happen concurrently:

(process-run-function "Annoy ne"
(I anbda (del ay)
(1 oop
(sl eep del ay)
(ed-beep)))
5)

Series: Another approach to iteration and filtering

Series were formally introduced with the printing of Common Lisp: The Language (2nd ed) (also known as CLtL 2), but were

not adopted as part of the ANSI Common Lisp standard. Still, some Lisp vendors include seriesin their product because
customers came to depend upon it during the time between the publication of CLtL2 and the ANSI Specification.

Series combine the behaviors of sequences, streams and loops. Using series, you can write iterative code using a functional
notation. Control is achieved by selecting or filtering elements as they pass through a series of filters and operators.

The best place to find information and examplesisin Appendix A of CLtL2.

Contents | Cover
Chapter 31 | Chapter 32 | Chapter 33

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is restricted to the author's site.

http://psg.com/~dlamking/sl/chapter32.html (5 of 5)11/3/2006 5:56:26 PM

Successful Lisp - Chapter 33

Chapter 33 - Where to Go Next

| hope that this book has whetted your appetite for Lisp. If so, you'll want to explore further; this chapter
provides pointers to other sources of information and products.

Suggestions for further reading

The Art of the Metaobject Protocol, Kiczaleset a, MIT Press, 1991, ISBN 0-262-61074-4
Thisisthe definitive text on the metaobject protocol, referred to in Lisp circlesas"AMOP." This
iIsnot light reading; save it for when you feel quite confident in your Lisp abilities.
ANSI Common Lisp, Graham, 1996, Prentice-Hall, ISBN 0-13-370875-6
Thisisagood refresher for an experienced Lisp programmer, as well as being an excellent
second text for the beginner. (I think it'sabit too terse to use as afirst text for a beginner, but you
may want to look at it and see whether you think it's approachable.)
On Lisp: Advanced Techniques for Common Lisp, Graham, Prentice Hall, 1994, ISBN 0-13-030552-9
This has become the canonical reference for macro techniques.
Object-Oriented Programming in Common Lisp: A Programmer's Guide to CLOS, Keene, 1989,
Addison-Wesley, ISBN 0-201-17589-4
Keene's book is quite simply the book to read when you want to understand CLOS. It's short, and
it covers all of the essentials. Its best feature isits profuse application of real-world examples.
Understanding CLOS: The Common Lisp Object System, Lawless & Miller, 1991, Digital Press, ISBN
1-55558-064-5
Lawless and Miller's book covers more of CLOS than Keene's book, but the treatment is closer to
areference than atutorial.
Common Lisp: The Language, 2nd Ed., Steele, 1990, Digital Press, ISBN 1-55558-041-6
Dubbed "CLtL2," thiswas an interim interpretation of the work of the ANSI standardization
committee. It has no standing as part of the standards process, but was used by many Lisp
vendors to anticipate the final outcome of the committee's work. Some Lisp systems still
implement portions of both the CLtL2 description and the ANSI standard.
Garbage Collection: Algorithms for Automatic Dynamic Memory Management, Jones et al, 1996,
Wiley, ISBN 0-471-94184-4
Thisis an excellent reference covering al aspects of dynamic storage allocation techniques.
Object-Oriented Common Lisp, Slade, 1998, Prentice-Hall, ISBN 0-13-605940-6
Slade's book is probably the best book available on actually using a Common Lisp environment
for something other than Al programming. | think it's suitable for a beginner, but should probably
be supplemented by another title that provides better insight into the Lisp language.
Common LISPcraft, Wilensky, 1986, W.W. Norton & Co., ISBN 0-393-95544-3
When | wasfirst learning Common Lisp, | found Wilensky's book the most helpful at exposing
some of Lisp's unique concepts, such as closures. This book is easy to read (without being
patronizing) and includes alot of very clear examples. There's aso abrief Common Lisp

http://psg.com/~dlamkins/sl/chapter33.html (1 of 3)11/3/2006 5:56:30 PM

Successful Lisp - Chapter 33

reference in the appendix. | still recommend this as afirst book for beginners.

Historical References

Cooperating Sequential Processes, Dijkstra, pp. 43-112 in Programming Languages, Genuys (ed.),
Academic Press, 1968.
Dijkstra described the techniques used for process coordination. The dining philosophers problem

iIsone of Dijkstra's examples of process coordination when resources must be shared.
Recursive Functions of Symbolic Expressions, J. McCarthy, CACM, 3, 4, 1960, ppg. 184-195.
Thisis McCarthy's seminal Lisp paper. (Available online in various formats at his web site: http://

www-formal .stanford.edu/jmc/index.html)

On-line sources

The Association of Lisp Users
Information on conferences, jobs, implementations, etc.

Common Lisp HyperSpec (TM)
A hypertext version of the ANSI Common Lisp standard , constructed by Kent Pittman and
hosted by XANALY S (formerly Harlequin, Inc.).

M etaObject Protocol
Not a part of the Common Lisp standard, the MetaObject Protocol iswidely supported as a
interface to the mechanism underlying CLOS.

Commercial vendors

Digitoal, Inc. Home Page
Digitool provides both 68K and PPC versions of Macintosh Common Lisp, aworld-class Lisp
development system.

The Franz Inc. Home Page
Franz makes Common Lisp compilers for Unix and Windows. They have tria versions for
Windows and Linux.

XANALYS
XANALY S (formerly Harlequin) ofers afree Lisp interpreter based upon their LispWorks
environment.

Contents | Cover
Chapter 32 | Chapter 33 | Chapter 34

Copyright © 1995-2001, David B. Lamkins

http://psg.com/~dlamkins/sl/chapter33.html (2 of 3)11/3/2006 5:56:30 PM

http://www-formal.stanford.edu/jmc/index.html
http://www-formal.stanford.edu/jmc/index.html
http://www.lisp.org/
http://www.xanalys.com/software_tools/reference/HyperSpec/
ftp://parcftp.xerox.com/pub/cl/dpANS3/
http://www.lisp.org/mop/index.html
http://www.digitool.com/
http://www.franz.com/
http://www.harlequin.com/

Successful Lisp - Chapter 33

All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter33.html (3 of 3)11/3/2006 5:56:30 PM

Successful Lisp - Chapter 34

Chapter 34 - Lisp History, or: Origins of
Misunderstandings

I'd like to conclude this book with a short history of Lisp's development, providing insights to some
lingering misconceptions about Lisp.

John McCarthy's Notation

In the late 1950s, John McCarthy had proposed a mathematical notation to describe recursive functions
of symbolic expressions. At this point, McCarthy clearly envisioned a notation rather than a
programming language.

Earliest implementations

A couple years later Steve Russell, one of McCarthy's students at MIT, noticed that M cCarthy's notation
would be easy to interpret on a computer, and LISP was born. While working on an international
standards committee to define Algol-60, McCarthy proposed numerous innovations which were not
adopted. Perhaps these rejections prompted McCarthy to gather hisideas into what would become Lisp.
By late 1959, the first complete Lisp interpreter wasin useat MIT.

Special hardware

In the early days, Lisp consistently outstripped the resources of its host machines -- mainframes and
minicomputers having memory spaces measured in tens of kilobytes and instruction cycle times
measured in microseconds. This prompted Lisp researchers to develop specialized hardware for Lisp
program execution. These machines, called "Lisp Machines' (or LispMs) spawned an entire industry
that rose in the 1970s and fell during the 1980s. Thisindustry, and not the personal computer industry,
was the first to sell personal interactive computers having windowed user interfaces.

Diverging dialects

Concurrent with the rise of the LispM industry, many researchers -- put off by the high costs of the
specialized hardware -- engaged in the development of Lisp implementations for stock hardware. This
was atime of great diversity and innovation. However, the profusion of dialects prevented researchers
from readily sharing their work.

The DARPA directive

http://psg.com/~dlamkins/sl/chapter34.html (1 of 3)11/3/2006 5:56:35 PM

Successful Lisp - Chapter 34

DARPA, the Defense Advanced Research Projects Agency, was (and still is) the funding source for
much of the Lisp and Al research community. Seeing the problems caused by the explosion in the
number of distinct Lisp dialects, DARPA sponsored a project to develop a unified Common Lisp
specification.

East vs. West, and European competition

Despite the large number of competing dialects at this time, two were clearly dominant. On the West
coast, Interlisp became the standard, with its emphasis on programming aids and tools, such as the aptly
named "Do What | Mean." On the East coast, MACLISP was de rigueur, with its focus on low-level
system programming access and an efficient compiler.

The Common Lisp effort raised animosities between the two camps, causing most of the Interlisp
advocates to withdraw. Also, political forces in Europe prompted the formation of additional
standardization efforts, leading to the development of at |east one competing (although quite
unsuccessfully) standard.

The emergence of compilers for stock hardware

Aswork began in earnest on the Common Lisp standard, vendors -- most of whom had employees on
the standardization committee -- were quick to implement the recommendations under discussion. One
of the biggest benefits was the definition of the interface to and behavior of the Lisp compiler; this,
together with advances in compiler and garbage collector technology, was afirst step toward making
Lisp competitive in the arena of general-purpose programming languages.

The long road to standardization

The committee produced the first public edition of the Common LISP specification in 1984. In a shining
example of computer mediated cooperative work, hundreds of LISP users and implementers exchanged
thousands of email messages to propose, debate, and vote upon each feature of the new language. Each
topic and issue was carefully categorized, indexed, and cross-referenced. Very few areas were
ambiguous or inadequately specified. Because of the extensive electronic record of the committee's
discussions, these remaining areas were clearly identified and served as a basis for continuing work by
the committee. An interim report of the committee's work was published in late 1990, and a draft
proposed ANSI standard was published in 1992. The X3.226 ANSI Common Lisp standard was
finalized in December 1994, and formally published about a year later.

State of the Art?
Lisp has been around in various forms for over forty years. Fortunately, many improvements have been

http://psg.com/~dlamkins/sl/chapter34.html (2 of 3)11/3/2006 5:56:35 PM

Successful Lisp - Chapter 34

made during that time. Unfortunately, quite afew people in education and industry still think of Lisp as
it was twenty or more yearsin the past.

Today, commercia Lisp implementations have compilers that compete successfully against compilers
for lower-level languages such as C and C++. At the same time, C++ has failed to increase its expressive
power in away that competes successfully with Common Lisp.

Java, a newcomer, makes some interesting (yet unfulfilled) promises about portability and security. Java
has strengths in the areas of system integration, but struggles with performance and reliability. | believe
that Javawill carve out a niche for itself only by sacrificing some of its stated goals -- which ones
remain to be seen.

Garbage collection, long a favorite whipping post for Lisp detractors, has advanced to the point where
collection delays are virtually unnoticeable in awell-written Lisp program. The increasing trend toward
server-based applications actually favors Lisp, since garbage collection is more efficient and reliable
than manual storage allocation (as with malloc/free) when run for extended periods.

Lispisstill weak on standardized user interfaces, but then so is every other language and platform. Lisp
vendors now sell CORBA packages for interoperability and a portable (across Lisp implementations)
user interface environment (CLIM). Furthermore, it is easy to write asimple web server in Lisp,
allowing the development of user interfaces that run in standard web browsers. A full-featured web
server (CL-HTTP) isunder continual development at MIT -- the source code is portable to most Lisp
platforms and is freely available.

Contents | Cover
Chapter 33 | Chapter 34 | Appendix A

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/chapter34.html (3 of 3)11/3/2006 5:56:35 PM

Successful Lisp - Appendix A

Appendix A - Successful Lisp Applications

Lisp is used to build applications in which the underlying data is complex and highly dynamic, and
where symbolic manipulation is a key feature of the application. Lisp is aso used in situations where an
application must be readily updated and customized.

Y ou should be aware that Common Lisp is unlikely to become a key component of any commercial
operating system in the forseeable future. It is very difficult to merge Lisp storage management
techniques with code compiled for traditional pointer-centric languages. Therefore, Lisp must continue
to provide its own operating environment. As a Lisp programmer, you should set your expectations
accordingly. Once you become facile with Lisp, you'll tend to use Lisp as a workbench and proving
ground for algorithmic ideas and programming utilities both large and small. Just don't expect to write
and sell asmall, smple program in Lisp; the size and cost of the runtime system that you must distribute
with your program may be prohibitive.

On the other hand, Lisp excels as a framework for developing large, complex applications. Once past a
certain size threshold (for program or data), the fixed overhead of a Lisp environment becomes
inconsequential. Also, that rich development environment makes it possible to develop large
applications with fewer programmers since much of the algorithmic framework is already provided by
Common Lisp's built-in data types and functions. Knowledgeable Lisp programmers achieve even
greater productivity by using Common Lisp to write application specific programming tools and
language constructs.

The message | want you to take away isthat learning and using Lisp is a process. Unless the computer
software industry undergoes an unexpected (and unlikely) change, having read this book won't get you a
job. However, I'm hoping that what you've learned here will forever color your perceptions asto what is
possible, and suggest both techniques and ways of thinking that will be helpful to you in building those
"small" applications like word processors, spreadsheets, and OL TP systems.

Meanwhile, I'd like to show you some of the more visible applications that people have devel oped using
Lisp.

- Emacs

. G2

. AutoCAD

. lgor Engraver
. Yahoo Store

http://psg.com/~dlamkins/sl/appendix-ahtml (1 of 3)11/3/2006 5:56:39 PM

Successful Lisp - Appendix A

Emacs

More programmers are familiar with Emacs than with any other Lisp application. Richard Stallman
conceived Emacs as an extensible editor. He wrote his own Lisp interpreter (not a compiler) specifically
for the tasks used in editing text - the low-level text manipulation functions are built-in functions of
Emacs Lisp. Over the decades, Emacs has grown to accomodate windowing systems and has
accumulated avast library of code to support programming, writing and personal communications.

G2

Gensym wrote their G2 real-time expert system in Lisp, and later (at greater cost and effort) ported it to
C to meet customer expectations. Gensym was able to create a real-time system in Lisp through careful

attention to memory allocation; they eliminated unpredictable garbage-collection pauses by simply not

generating garbage. (See Chapter 29.)

AutoCAD

AutoCAD isalarge-scale Computer Aided Design application. A complex design can contain thousands
or millions of parts having complex hierarchical and semantic relationships. Like many application
developers who face similar problems, the AutoCAD developers leaned heavily on Lisp for their tools
and techniques.

lgor Engraver

Igor Engraver, written by a small team of programmers at Noteheads.com, is an editing and publishing
system for musical scores. They've integrated a direct-manipulation graphical interface with arule-based
system that automatically adjusts the layout to conform to complicated rules to meet the expectations of
musicians and publishers alike. If that's not enough, Engraver can also play your scores using MIDI
instruments. Engraver is targeted to professional composers and musicians, who are encouraged to
upload their scores to Noteheads' online e-commerce system for purchase by other musicians. Still want
more? Engraver has the slickest software update mechanism you'll find anywhere: select the Check For
Patches menu item and Engraver will connect to the Noteheads server, download any patches it needs,
and upgrade itself all in afew tens of seconds, without interrupting work in progress.

Yahoo Store

Y ahoo Store is one of the best high-profile Lisp success stories of the past few years. Paul Graham and
his team, working out of an attic loft, built and operated a server-side e-commerce site builder for
hundreds of customers using Common Lisp and generic Linux servers. Paul's venture was so successful
that it drew the attention of Y ahoo, who saw it as a better tool for their online stores. Paul sold his

http://psg.com/~dlamkins/sl/appendix-ahtml (2 of 3)11/3/2006 5:56:39 PM

Successful Lisp - Appendix A

company to Y ahoo for $49 million. An interesting aside is that Paul hired a couple dozen extra
programmers during Y ahoo's due diligence investigations, since "no one would believe that three guys
inaloft" could have done what Paul's team accomplished with the help of Lisp. Perceptionis
everything...

Each vendor hasits own list of success stories. See Chapter 33 for some starting points.

Contents | Cover
Chapter 34 | Appendix A

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/s/appendix-ahtml (3 of 3)11/3/2006 5:56:39 PM

Successful Lisp - Cover

Successful Lisp:
How to Understand and Use Common Lisp

David B. Lamkins
david@lamkins.net

Printed edition now This book:
availablel

. Provides an overview of Common Lisp for the working
programmer.

. Introduces key concepts in an easy-to-read format.

. Describes format, typical use, and possible drawbacks of all
important Lisp constructs.

. Provides practical advice for the construction of Common
Lisp programs.

. Shows examples of how Common Lisp is best used.

. lllustrates and compares features of the most popul ar
Common Lisp systems on desktop computers.

. Includes discussion and examples of advanced constructs
for iteration, error handling, object oriented programming,
graphical user interfaces, and threading.

. Supplements Common Lisp reference books and manuals
with useful hands-on techniques.

« Shows how to find what you need among the thousands of
documented and undocumented functions and variablesin a
typical Common Lisp system.

Frequently asked questions:
1. May | make a copy of the online version of Successful Lisp for my own use?

Y es, you may make a copy thisHTML version so long as your copy is offline. Y ou may not
publish Successful Lisp on any network accessible to the public, nor may you distribute offline
copiesin any form.

2. Is Successful Lisp available in Postscript, PDF, or an archive format such astar, zip or sit?

No. | maintain the content in the web form that you see here. Making an archival version would
be contrary to my preference of having readers link directly to my site so as to always have

http://psg.com/~dlamkins/sl/cover.html (1 of 2)11/3/2006 5:56:57 PM

mailto:david@lamkins.net
http://www.amazon.com/gp/redirect.html?link_code=ur2&tag=daviblamkwebs-20&camp=1789&creative=9325&location=http%3A%2F%2Fwww.amazon.com%2Fgp%2Fproduct%2F3937526005%2Fsr%3D8-1%2Fqid%3D1151988531%2Fref%3Dpd_bbs_1%3Fie%3DUTF8
http://www.amazon.com/gp/redirect.html?link_code=ur2&tag=daviblamkwebs-20&camp=1789&creative=9325&location=http%3A%2F%2Fwww.amazon.com%2Fgp%2Fproduct%2F3937526005%2Fsr%3D8-1%2Fqid%3D1151988531%2Fref%3Dpd_bbs_1%3Fie%3DUTF8

Successful Lisp - Cover

access to the latest version of the text.
3. Is Successful Lisp availablein a printed or printable format?

Yes! A print edition is available as of December 2004 (ISBN 3-937526-00-5). The book contains
numerous corrections and improved typography and layout. Y ou can order Successful Lisp from

Amazon.com, or check with your local bookstore or other major online booksellers.
4. 1'm having difficulty running my Lisp systemor writing a Lisp program. Can you help?

No. | don't have enough free time to engage in conversations of this nature. | suggest that you talk
to your Lisp vendor or solicit the help of the fine people who frequent theconp. | ang. | i sp
newsgroup. Be aware that these people take a dim view of students who ask for homework
solutions unless the student has made (and documented) an attempt to solve the problem.
Students will find that they receive awarmer welcomeinconp. | ang. | i sp if they ask a
specific question related to understanding a particular aspect of Lisp.

Contents

Copyright © 1995-2001, David B. Lamkins
All Rights Reserved Worldwide

This book may not be reproduced without the written consent of its author. Online distribution is
restricted to the author's site.

http://psg.com/~dlamkins/sl/cover.html (2 of 2)11/3/2006 5:56:57 PM

	psg.com
	Successful Lisp - Contents
	Successful Lisp - Author
	Successful Lisp - About
	Successful Lisp - Dedication
	Successful Lisp - Credits
	Successful Lisp - Copyright
	Successful Lisp - Acknowledgments
	Successful Lisp - Foreword
	Successful Lisp - Introduction
	Successful Lisp - Chapter 1
	Successful Lisp - Chapter 2
	Successful Lisp - Chapter 3
	Successful Lisp - Chapter 3, Lesson 1
	Successful Lisp - Professional Track
	Successful Lisp - Student Track
	Successful Lisp - Hobbyist Track
	Successful Lisp - Former User Track
	Successful Lisp - Curious Reader Track
	Successful Lisp - Chapter 3, Lesson 2
	Successful Lisp - Chapter 3, Lesson 3
	Successful Lisp - Chapter 3, Lesson 4
	Successful Lisp - Chapter 3, Lesson 5
	Successful Lisp - Chapter 3, Lesson 6
	Successful Lisp - Chapter 3, Lesson 7
	Successful Lisp - Chapter 3, Lesson 8
	Successful Lisp - Chapter 3, Lesson 9
	Successful Lisp - Chapter 3, Lesson 10
	Successful Lisp - Chapter 3, Lesson 11
	Successful Lisp - Chapter 3, Lesson 12
	Successful Lisp - Chapter 4
	Successful Lisp - Chapter 5
	Successful Lisp - Chapter 6
	Successful Lisp - Chapter 7
	Successful Lisp - Chapter 8
	Successful Lisp - Cover
	Successful Lisp - Chapter 9
	Successful Lisp - Chapter 10
	Successful Lisp - Chapter 11
	Successful Lisp - Chapter 12
	Successful Lisp - Chapter 13
	Successful Lisp - Chapter 14
	Successful Lisp - Chapter 15
	Successful Lisp - Chapter 16
	Successful Lisp - Chapter 17
	Successful Lisp - Chapter 18
	Successful Lisp - Chapter 19
	Successful Lisp - Chapter 20
	Successful Lisp - Chapter 21
	Successful Lisp - Chapter 22
	Successful Lisp - Chapter 23
	Successful Lisp - Chapter 24
	Successful Lisp - Chapter 25
	Successful Lisp - Chapter 26
	Successful Lisp - Chapter 27
	Successful Lisp - Chapter 28
	Successful Lisp - Chapter 29
	Successful Lisp - Chapter 30
	Successful Lisp - Chapter 31
	Successful Lisp - Chapter 32
	Successful Lisp - Chapter 33
	Successful Lisp - Chapter 34
	Successful Lisp - Appendix A
	Successful Lisp - Cover

