Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents; index]

Teach Yourself Scheme in Fixnum Days

© Doral Sitaram, 1998-2004

All Rights Reserved
ds26 atgte. com
[Download archive containing all the pages of this document]

[Download TeX source for this document]
Cover art by Margaret Wong

Contents

Preface

1 Enter Scheme

2 Datatypes
2.1 Simple datatypes
2.1.1 Booleans
2.1.2 Numbers
2.1.3 Characters
2.1.4 Symbols
2.2 Compound data types
2.2.1 Strings
2.2.2 Vectors
2.2.3 Dotted pairs and lists
2.2.4 Conversions between data types
2.3 Other data types
2.4 S-expressions

3 Forms
3.1 Procedures

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-1.html (1 of 4)11/3/2006 8:41:52 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html
http://www.ccs.neu.edu/~dorai
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-html.tar.gz
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.tar.gz

Teach Yourself Scheme in Fixnum Days

3.1.1 Procedure parameters
3.1.2 Variable number of arguments

3.2 apply
3.3 Seguencing

4 Conditionals
4.1 when andunl ess
4.2 cond
4.3 case
4.4 and and or

5 Lexical variables
51 l et and| et *
52 fluid-Iet

6 Recursion
6.1 | etrec
6.2 Named| et
6.3 lteration
6.4 Mapping a procedure across alist

7 1/0

7.1 Reading

7.2 Writing
7.3 File ports

7.3.1 Automatic opening and closing of file ports
7.4 String ports
7.5 Loading files

8 Macros
8.1 Specifying the expansion as atemplate
8.2 Avoiding variable capture inside macros
83 fluid-let

9 Structures
9.1 Default initializations
9.2 def st ruct defined

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-1.html (2 of 4)11/3/2006 8:41:52 PM

Teach Yourself Scheme in Fixnum Days

10 Alistsand tables

11 System interface
11.1 Checking for and deleting files
11.2 Calling operating-system commands
11.3 Environment variables

12 Objectsand classes
12.1 A simple object system
12.2 Classes are instances too
12.3 Multiple inheritance

13 Jumps
13.1 call -with-current-conti nuati on

13.2 Escaping continuations
13.3 Tree matching
13.4 Coroutines
13.4.1 Tree-matching with coroutines

14 Nondeter minism
14.1 Description of anb
14.2 Implementing anb in Scheme
14.3 Using anb in Scheme
14.4 Logic puzzles
14.4.1 The Kalotan puzzle
14.4.2 Map coloring

15 Engines
15.1 The clock

15.2 Flat engines
15.3 Nestable engines

16 Shell scripts
16.1 Hello, World!, again
16.2 Scripts with arguments
16.3 Example

17 CGl scripts

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-1.html (3 of 4)11/3/2006 8:41:52 PM

Teach Yourself Scheme in Fixnum Days

17.1 Example: Displaying environment variables

17.2 Example: Displaying selected environment variable
17.3 CGl script utilities

17.4 A cdculator via CGl

A Schemedialects
A.l Invocation and init files
A.2 Shell scripts
A.3 define-nacro
A4 | oad-rel ative

B DOSbatch filesin Scheme

C Numerical techniques
C.1 Simpson'srule
C.2 Adaptiveinterval sizes
C.3 Improper integrals

D A clock for infinity

E References

F Index

[Gotofirst, previous, next page; contents;, index]

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-1.html (4 of 4)11/3/2006 8:41:52 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Preface

Thisis an introduction to the Scheme programming language. It isintended as a quick-
start guide, something a novice can use to get a non-trivial working knowledge of the
language, before moving on to more comprehensive and in-depth texts.

The text describes an approach to writing a crisp and utilitarian Scheme. Although we will
not cover Scheme from abs to zer 0?, we will not shy away from those aspects of the
language that are difficult, messy, nonstandard, or unusual, but nevertheless useful and
usable. Such aspectsincludecal | -wi t h-current - conti nuati on, system
interface, and dialect diversity. Our discussions will be informed by our focus on problem-
solving, not by a quest for metalinguistic insight. | have therefore left out many of the
staples of traditional Scheme tutorials. There will be no in-depth pedagogy; no dwelling on
the semantic appeal of Scheme; no metacircular interpreters; no discussion of the
underlying implementation; and no evangelizing about Scheme's virtues. Thisis not to
suggest that these things are unimportant. However, they are arguably not immediately
relevant to someone seeking a quick introduction.

How quick though? | do not know if one can teach oneself Schemein 21 daysl, although |
have heard it said that the rudiments of Scheme should be a matter of an afternoon's study.
The Scheme standard [23] itself, for all its exacting comprehensiveness, is a mere fifty
pages long. It may well be that the insight, when it comes, will arrive in its entirety in one
afternoon, though there is no telling how many afternoons of mistries must precede it.
Until that zen moment, here is my gentle introduction.

Acknowledgment. | thank Matthias Felleisen for introducing me to Scheme and higher-
order programming; and Matthew Flatt for creating the robust and pleasant MzScheme
implementation used throughout this book.

- d

1 A fixnumisamachinesideaof a*“small" integer. Every machine has its own idea of

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-2.html (1 of 2)11/3/2006 8:46:25 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days
how big afixnum can be.

[Gotofirdt, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-2.html (2 of 2)11/3/2006 8:46:25 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Chapter 1

Enter Scheme

The canonical first programisthe onethat says" Hel | o, Wor | d! " on the console.
Using your favorite editor, create afile called hel | 0. scmwith the following contents:

; The first program

(begin
(display "Hello, World!")
(new i ne))

Thefirst line is a comment. When Scheme sees a semicolon, it ignoresit and al the
following text on the line.

Thebegi n-formis Scheme's way of introducing a sequence of subforms. In this case
there are two subforms. Thefirstisacall tothedi spl ay procedure that outputsits
argument (thestring " Hel | o, Wor | d!' ") to the console (or ““standard output™). It is
followed by anew i ne procedure call, which outputs a carriage return.

To run this program, first start your Scheme. Thisis usually done by typing the name of
your Scheme executable at the operating-system command line. Eg, in the case of
MzScheme [9], you type

neschene
at the operating-system prompt.

Thisinvokes the Scheme listener, which reads your input, evaluates it, prints the result (if
any), and then waits for more input from you. For thisreason, it is often called the read-
eval-print loop. Note that thisis not much different from your operating-system command
line, which also reads your commands, executes them, and then waits for more. Like the
operating system, the Scheme listener hasits own prompt -- usually thisis >, but could be
something else.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-3.html (1 of 3)11/3/2006 8:46:31 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days
At the listener prompt, load thefile hel | 0. scm Thisis done by typing
(load "hell o.scnt)

Scheme will now execute the contents of hel | 0. scm outputtingHel | o, Wor | d!
followed by a carriage return. After this, you will get the listener prompt again, waiting for
more input from you.

Since you have such an eager listener, you need not always write your programsin afile
and load them. Sometimes, it is easier, especially when you are in an exploring mood, to

simply type expressions directly at the listener prompt and see what happens. For example,
typing the form

(begin (display "Hello, World!'")
(new i ne))

at the Scheme prompt produces
Hel | o, Worl d!

Actually, you could simply havetyped theform " Hel | o, Wor | d! " at thelistener, and
you would have obtained as result the string

"Hel l o, World!"
because that is the result of the listener evaluating " Hel | o, Wor |l d!'".

Other than the fact that the second approach produces a result with double-quotes around
it, there is one other significant difference between the last two programs. Thefirst (ie, the
one with the begi n) does not evaluate to anything -- theHel | o, Wor | d! it emitsisa
side-effect produced by thedi spl ay and new i ne procedures writing to the standard
output. In the second program, theform " Hel | o, Wor | d!'" evaluates to the resullt,
which in this case is the same string as the form.

Henceforth, we will use the notation => to denote evaluation. Thus
E=> v

indicates that the form E evaluatesto aresult value of v. Eg,
(begin

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-3.html (2 of 3)11/3/2006 8:46:31 PM

Teach Yourself Scheme in Fixnum Days

(display "Hello, World!")
(newine))
=>

(ie, nothing or void), although it has the side-effect of writing
Hel | o, Worl d!
to the standard output. On the other hand,

"Hel l o, World!"
=> "Hello, Wrld"

In either case, we are till at the listener. To exit, type
(exit)

and thiswill land you back at the operating-system command-line (which, as we've seen,
isalso akind of listener).

The listener is convenient for interactive testing of programs and program fragments.
However it is by no means necessary. Y ou may certainly stick to the tradition of creating
programsin their entirety in files, and having Scheme execute them without any explicit
“listening”. In MzScheme, for instance, you could say (at the operating-system prompt)
neschene -r hello.scm
and this will produce the greeting without making you deal with the listener. After the
greeting, nzscheme will return you to the operating-system prompt. Thisisamost asif
you said

echo Hell o, Worl d!

Y ou could even make hel | 0. scmseem like an operating-system command (a shell
script or abatch file), but that will have to wait till chapter 16.

[Go tofirst, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-3.html (3 of 3)11/3/2006 8:46:31 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Gotofirst, previous, next page; contents; index]

Chapter 2

Data types

A data typeisacollection of related values. These collections need not be digoint, and they
are often hierarchical. Scheme has arich set of datatypes. some are ssmple (indivisible)
data types and others are compound data types made by combining other data types.

2.1 Simple data types

The simple data types of Scheme include booleans, numbers, characters, and symbols.

2.1.1 Booleans

Scheme's booleans are #t for true and #f for false. Scheme has a predicate procedure
called bool ean? that checksif its argument is boolean.

(bool ean? #t) => #t
(bool ean? "Hello, World!'") => #f

The procedure not negates its argument, considered as a bool ean.
(not #f) => #t
(not #t) = #f
(not "Hello, World!'") => #f

The last expression illustrates a Scheme convenience: In a context that requires a boolean,
Scheme will treat any value that is not #f asatrue value.

2.1.2 Numbers

Scheme numbers can be integers (eg, 42), rationals (22/ 7), reals (3. 1416), or complex (2
+3i). Aninteger isarational isareal isacomplex number is a number. Predicates exist for
testing the various kinds of numberness:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (1 of 12)11/3/2006 8:46:36 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

(nunber ? 42) => #t
(nunber ? #t) => #f
(compl ex? 2+3i) => #t
(real ? 2+3i) = #f
(real ? 3.1416) => #t
(real? 22/7) = #t
(real? 42) => #t
(rational? 2+3i) => #f
(rational ? 3.1416) => #t
(rational ? 22/7) => #t
(integer? 22/ 7) = #f
(integer? 42) => #t

Scheme integers need not be specified in decimal (base 10) format. They can be specified in
binary by prefixing the numeral with #b. Thus#b1100 isthe number twelve. The octal
prefix is#0 and the hex prefix is#x. (The optional decimal prefix is#d.)

Numbers can tested for equality using the general-purpose equality predicate eqv?.

(eqv? 42 42) => #t
(eqv? 42 #f) => #f
(eqv? 42 42.0) => #f

However, if you know that the arguments to be compared are numbers, the special number-
equality predicate = is more apt.

42 42) => #t
42 #f) -->ERROR!!!
42 42.0) => #t

—~ A~~~
i1

Other number comparisons allowed are <, <=, >, >=,

(< 3 2) => #f
(>= 4.5 3) => #t

Arithmetic procedures +, - , *, / , expt have the expected behavior:

(+1 2 3) -> 6
(- 5.3 2) => 3.3
(- 52 1) => 2
(* 12 3) => 6
(/ 6 3) => 2

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (2 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days

(/I 22 °7) => 22/7
(expt 2 3) = 8
(expt 4 1/2) => 2.0

For asingle argument, - and/ return the negation and the reciprocal respectively:

(- 4) => -4
(/ 4) => 1/4

The procedures max and nmi n return the maximum and minimum respectively of the
number arguments supplied to them. Any number of arguments can be so supplied.

(max 1 3 4 2 3) => 4
(minil3423) => 1

The procedure abs returns the absolute value of its argument.

(abs 3) => 3
(abs -4) => 4

Thisisjust the tip of the iceberg. Scheme provides a large and comprehensive suite of
arithmetic and trigonometric procedures. For instance, at an, exp, and sqrt respectively
return the arctangent, natural antilogarithm, and square root of their argument. Consult
R5RS [23] for more details.

2.1.3 Characters

Scheme character data are represented by prefixing the character with #\ . Thus, #\ c isthe
character c. Some non-graphic characters have more descriptive names, eg, #\ newl | ne, #
\ t ab. The character for space can be written #\ , or more readably, #\ space.
The character predicateischar ?:

(char? #\c) => #t

(char? 1) => #f

(char? #\;) => #t

Note that a semicolon character datum does not trigger a comment.

The character datatype hasits set of comparison predicates. char =?, char <?, char <=7,
char >?, char >=?.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (3 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days

(char=? #\a #\a) => #t
(char<? #\a #\b) => #t
(char>=? #\a #\b) => #f

To make the comparisons case-insensitive, use char - ci instead of char in the procedure
name;

(char-ci=? #\a #\A) => #t
(char-ci<? #\a #\B) => #t

The case conversion procedures are char - downcase and char - upcase:

(char-downcase #\A) => #\a
(char-upcase #\ a) => #\A

2.1.4 Symbols

The ssimple data types we saw above are self-evaluating. le, if you typed any object from
these data types to the listener, the evaluated result returned by the listener will be the same
as what you typed in.

#t => #t
42 => 42
#\c => #\c

Symbols don't behave the same way. Thisis because symbols are used by Scheme programs
asidentifiersfor variables, and thus will evaluate to the value that the variable holds.
Nevertheless, symbols are a simple data type, and symbols are legitimate values that
Scheme can traffic in, dong with characters, numbers, and the rest.

To specify a symbol without making Scheme think it isavariable, you should quote the
symbol:

(quote xyz)
=> Xyz

Since this type of quoting isvery common in Scheme, a convenient abbreviation is
provided. The expression

'E

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (4 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days

will be treated by Scheme as equivalent to
(quote E)

Scheme symbols are named by a sequence of characters. About the only limitation on a
symbol's nameisthat it shouldn't be mistakable for some other data, eg, characters or
booleans or numbers or compound data. Thus, t hi s-i s-a-synbol ,i 18n, <=>,and $!
#* areall symbols; 16, -1 (acomplex number!), #t ,"t hi s-i s-a-string", and
(barf) (alist) are not. The predicate for checking symbolnessis called synbol ?:

(synbol ? 'xyz) => #t
(synmbol ? 42) => #f

Scheme symbols are normally case-insensitive. Thusthe symbolsCal ori e andcal ori e
areidentical:

(eqv? "Calorie 'calorie)
=> #t

We can use the symbol xyz asaglobal variable by using the form def i ne:
(define xyz 9)

This saysthe variable xyz holds the value 9. If we feed xyz to the listener, the result will
be the value held by xyz:

Xyz
=> 9

We can usetheformset ! to change the value held by avariable:
(set! xyz #\c)
Now

Xyz
=> #\c

2.2 Compound data types

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (5 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days

Compound data types are built by combining values from other data types in structured
ways.

2.2.1 Strings

Strings are sequences of characters (not to be confused with symbols, which are simple data
that have a sequence of characters as their name). Y ou can specify strings by enclosing the
constituent characters in double-quotes. Strings evaluate to themselves.

"Hell o, World!"
=> "Hello, Wrld"

The procedure st r i ng takes abunch of characters and returns the string made from them:

(string #\h #\e #\ | # | #\ o)
=> "hell 0"

Let us now define aglobal variable gr eet i ng.
(define greeting "Hello; Hello!")
Note that a semicolon inside a string datum does not trigger a comment.

The charactersin agiven string can be individually accessed and modified. The procedure
string-ref takesastring and a (0-based) index, and returns the character at that index:

(string-ref greeting O)
=> #\H

New strings can be created by appending other strings:
(string-append "E "
“"Pluribus "

" Ununi')
=> "E Pluribus Ununt

Y ou can make a string of a specified length, and fill it with the desired characters later.
(define a-3-char-long-string (make-string 3))
The predicate for checking stringnessisst ri ng?.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (6 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days

Strings obtained as aresult of callstostri ng, make-string,andstri ng- append
are mutable. The procedurest ri ng- set ! replacesthe character at a given index:

(define hello (string #\H #\e # 1| # | #\0))
hel | o
=> "Hello"

(string-set! hello 1 #\a)

hel | o
=> "Hall o"

2.2.2 Vectors

Vectors are sequences like strings, but their elements can be anything, not just characters.
Indeed, the elements can be vectors themselves, which is a good way to generate
multidimensional vectors.

Here's away to create a vector of the first five integers:

(vector 0 1 2 3 4)
=> #(0 12 3 4

Note Scheme's representation of avector value: a# character followed by the vector's
contents enclosed in parentheses.

In analogy with make- st ri ng, the procedure make- vect or makes avector of a
specific length:

(define v (nmake-vector 5))

The proceduresvect or - ref andvect or - set ! access and modify vector elements.
The predicate for checking if something isavector isvect or ?.

2.2.3 Dotted pairs and lists

A dotted pair is a compound value made by combining any two arbitrary valuesinto an
ordered couple. Thefirst element is called the car, the second element is called the cdr, and
the combining procedureiscons.

(cons 1 #t)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (7 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days
=> (1 . #t)

Dotted pairs are not self-evaluating, and so to specify them directly as data (ie, without
producing them viaa cons-call), one must explicitly quote them:

(1. #t) => (1 . #t)
(1. #t) -->ERROR!!!

The accessor proceduresarecar and cdr :
(define x (cons 1 #t))

(car x)
=> 1

(cdr x)
=> #t

The elements of a dotted pair can be replaced by the mutator proceduresset - car! and
set-cdr!:

(set-car! x 2)
(set-cdr! x #f)

X
= (2 . #f)

Dotted pairs can contain other dotted pairs.
(define y (cons (cons 1 2) 3))

y
=> ((1. 2) . 3)

Thecar of thecar of thislistis1l. Thecdr of thecar of thislistis?2. le,

(car (car vy))
=> 1

(cdr (car vy))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (8 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days
=> 2

Scheme provides procedure abbreviations for cascaded compositions of thecar and cdr
procedures. Thus, caar standsfor “car of car of”, and cdar standsfor "cdr of car
of", etc.

(caar vy)
=> 1

(cdar vy)
=> 2

c. .. r-styleabbreviations for upto four cascades are guaranteed to exist. Thus, cadr ,
cdadr and cdaddr areall valid. cdadadr might be pushingit.

When nested dotting occurs along the second element, Scheme uses a specia notation to
represent the resulting expression:

(cons 1 (cons 2 (cons 3 (cons 4 5))))

le,(1 2 3 4 . 5) isanabbreviationfor (1 . (2 . (3 . (4 . 5)))).Thelast
cdr of thisexpressionisb.

Scheme provides a further abbreviation if the last cdr is a special object called the empty
list, which is represented by the expression () . The empty list is not considered self-
evaluating, and so one should quote it when supplying it as avalue in a program:

0 = 0
The abbreviation for adotted pair of thefoom (1 . (2 . (3 . (4 . ())))) is
(1 2 3 4)

This special kind of nested dotted pair is called alist. This particular list isfour elements
long. It could have been created by saying

(cons 1 (cons 2 (cons 3 (cons 4 '"()))))

but Scheme provides a procedure called | i st that makeslist creation more convenient.
| i st takesany number of arguments and returns the list containing them:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (9 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days

(list 1 2 3 4)
=> (12 3 4)

Indeed, if we know all the elements of alist, we can use quot e to specify thelist:

'(1 2 3 4)
=> (12 3 4)

List elements can be accessed by index.

(definey (list 1 2 3 4))

(list-ref y 0) == 1
(list-ref vy 3) == 4

(list-tail y 1) == (2 3 4)
(list-tail y 3) == (4)

i st-tail returnsthetail of thelist starting from the given index.

Thepredicatespai r ?,1 i st ?, and nul | ? check if their argument is a dotted pair, list, or
the empty list, respectively:

(pair? ' (1 2)) => #t
(pair? ' (1 2)) = #t
(pair? '()) => #f
(list? "()) => #t
(nul'l? " ()) => #t
(list? "(1 2)) => #t
(list? "(1 . 2)) => #f
(null? " (1 2)) => #f
(null? " (1 2)) => #f

2.2.4 Conversions between data types

Scheme offers many procedures for converting among the data types. We aready know
how to convert between the character cases using char - downcase and char - upcase.
Characters can be converted into integersusing char - >i nt eger , and integers can be
converted into charactersusing i nt eger - >char . (Theinteger corresponding to a
character isusually its ascii code.)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (10 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days

(char->integer #.d) => 100
(i nteger->char 50) => #\2

Strings can be converted into the corresponding list of characters.
(string->list "hello") => (#\'h #\e #I| #I| #\ o)

Other conversion proceduresinthe sameveinarel i st - >stri ng,vector->list,and
l'ist->vector.

Numbers can be converted to strings:
(nunber->string 16) => "16"
Strings can be converted to numbers. If the string corresponds to no number, #f is returned.

(string->nunber "16")
=> 16

(string->nunber "Am | a hot nunber?")
=> #f

st ri ng- >nunber takes an optional second argument, the radix.
(string->nunber "16" 8) => 14

because 16 in base 8 is the number fourteen.

Symbols can be converted to strings, and vice versa:

(synbol ->string 'synbol)
=> "synbol "

(string->synbol "string")
=> string

2.3 Other data types

Scheme contains some other data types. One is the procedure. We have already seen many
procedures, eg, di spl ay, +, cons. Inreality, these are variables holding the procedure
values, which are themselves not visible as are numbers or characters:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (11 of 12)11/3/2006 8:46:36 PM

Teach Yourself Scheme in Fixnum Days

cons
=> <procedure>

The procedures we have seen thus far are primitive procedures, with standard global
variables holding them. Users can create additional procedure values.

Y et another datatypeisthe port. A port isthe conduit through which input and output is
performed. Ports are usually associated with files and consoles.

In our “"Hello, World!" program, we used the procedure di spl ay to write astring to the
console. di spl ay can take two arguments, one the value to be displayed, and the other the
output port it should be displayed on.

In our program, di spl ay's second argument was implicit. The default output port used is
the standard output port. We can get the current standard output port via the procedure-call
(current -out put - port).We could have been more explicit and written

(display "Hello, World!" (current-output-port))

2.4 S-expressions

All the data types discussed here can be lumped together into a single all-encompassing data
type called the s-expression (s for symbolic). Thus42,#\c,(1 . 2),#(a b c),

"Hel | 0", (quote xyz),(string->nunber "16"),and(begi n (display
"Hel l o, World!") (newine)) areall s-expressions.

[Gotofirst, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-4.html (12 of 12)11/3/2006 8:46:36 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Chapter 3

Forms

The reader will have noted that the Scheme example programs provided thus far arealso s-
expressions. Thisistrue of all Scheme programs. Programs are data.

Thus, the character datum #\ ¢ isaprogram, or aform. We will use the more general term
forminstead of program, so that we can deal with program fragments too.

Scheme evaluates the form #\ ¢ to the value #\ ¢, because #\ ¢ is self-evaluating. Not all
s-expressions are self-evaluating. For instance the symbol s-expression xyz evaluates to
the value held by the variable xyz. Thelist s-expression (st ri ng- >nunber " 16")
evaluates to the number 16.

Not all s-expressions are valid programs. If you typed the dotted-pair s-expression (1 .
2) at the Scheme listener, you will get an error.

Scheme evaluates a list form by examining the first element, or head, of the form. If the
head evaluates to a procedure, the rest of the form is evaluated to get the procedure's
arguments, and the procedure is applied to the arguments.

If the head of the form is a special form, the evaluation proceeds in a manner idiosyncratic
to that form. Some special forms we have already seen are begi n, def i ne,andset ! .
begi n causesits subformsto be evaluated in order, the result of the entire form being the
result of the last subform. def i ne introduces and initializesavariable. set ! changesthe
binding of avariable.

3.1 Procedures

We have seen quite afew primitive Scheme procedures, eg, cons, stri ng->li st,and
the like. Users can create their own procedures using the special form | antbda. For
example, the following defines a procedure that adds 2 to its argument:

(lambda (x) (+ x 2))

http://www.ccs.neu.edu/home/dorai/t-y-schemelt-y-scheme-Z-H-5.html (1 of 4)11/3/2006 8:46:44 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

Thefirst subform, (x) , isthelist of parameters. The remaining subform(s) constitute the
procedure's body. This procedure can be called on an argument, just like a primitive
procedure:

((lanbda (x) (+ x 2)) 5)
=> 7

If we wanted to call this same procedure many times, we could create a replica using

| ambda each time, but we can do better. We can use a variable to hold the procedure
value:

(define add2
(lambda (x) (+ x 2)))

We can then use the variable add?2 each time we need a procedure for adding 2 to its
argument:

(add2 4) => 6
(add2 9) => 11

3.1.1 Procedure parameters

The parameters of al anbda-procedure are specified by its first subform (the form
immediately following the head, the symbol | anbda). add2 isasingle-argument -- or
unary -- procedure, and so its parameter list isthe singleton list (x) . The symbol x acts as
avariable holding the procedure's argument. Each occurrence of x in the procedure's body
refers to the procedure's argument. The variable x is said to be local to the procedure's
body.

We can use 2-element lists for 2-argument procedures, and in general, n-element lists for n-
argument procedures. The following is a 2-argument procedure that calculates the area of a
rectangle. Its two arguments are the length and breadth of the rectangle.

(define area
(lanbda (| ength breadth)
(* length breadth)))

Notice that ar ea multipliesits arguments, and so does the primitive procedure * . We
could have simply said:

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-5.html (2 of 4)11/3/2006 8:46:44 PM

Teach Yourself Scheme in Fixnum Days

(define area *)

3.1.2 Variable number of arguments

Some procedures can be called at different times with different numbers of arguments. To
do this, thel anbda parameter list is replaced by a single symbol. This symbol actsas a
variable that is bound to the list of the arguments that the procedure is called on.

In generdl, thel anbda parameter list can bealist of theform (x ...),asymbol, or a
dotted pair of theform (x z).Inthedotted-pair case, all the variables before the

dot are bound to the corresponding arguments in the procedure call, with the single
variable after the dot picking up al the remaining arguments as one list.

3.2 apply
The Scheme procedure appl y lets us call aprocedure on alist of its arguments.
(define x '(1 2 3))

(apply + x)
=> 6

In general, appl y takes a procedure, followed by a variable number of other arguments,
the last of which must be alist. It constructs the argument list by prefixing the last
argument with all the other (intervening) arguments. It then returns the result of calling the
procedure on this argument list. Eg,

(apply + 1 2 3 x)
= 12

3.3 Sequencing

We used the begi n special form to bunch together a group of subforms that need to be
evaluated in sequence. Many Scheme forms have implicit begi ns. For example, let's
define a 3-argument procedure that displays its three arguments, with spaces between
them. A possible definition is:

(define display3
(lanbda (argl arg2 arg3)
(begin

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-5.html (3 of 4)11/3/2006 8:46:44 PM

Teach Yourself Scheme in Fixnum Days

(di splay argl)
(display " ")
(di splay arg2)
(display " ")
(di spl ay arg3)
(newline))))

In Scheme, | anbda-bodies areimplicit begi ns. Thus, thebegi n indi spl ay3's body
isn't needed, although it doesn't hurt. di spl ay3, moresimply, is:

(define display3
(l anbda (argl arg2 arg3)

(di splay argl)
(display " ")
(di splay arg2)
(display " ")
(di spl ay arg3)
(newine)))

[Go tofirst, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-5.html (4 of 4)11/3/2006 8:46:44 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Chapter 4

Conditionals

Like al languages, Scheme provides conditionals. The basic formisthei f :

(if test-expression
t hen- branch
el se-branch)

If t est - expr essi on evaluatesto true (ie, any value other than #f), the “then" branch
is evaluated. If not, the “else” branch is evaluated. The ““else” branch is optional.

(define p 80)

(if (> p 70)
"safe
‘unsafe)

=> safe

(if (< p 90)
"l ow pressure) ;no else'' branch
=> | oW pressure

Scheme provides some other conditional formsfor convenience. They can all be defined
as macros (chap 8) that expand into i f -expressions.

.1 when and unl ess

when and unl ess are convenient conditionals to use when only one branch (the "then"
or the ““else" branch) of the basic conditional is needed.

(when (< (pressure tube) 60)
(open-val ve tube)
(attach fl oor-punp tube)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-6.html (1 of 4)11/3/2006 8:46:55 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

(depress floor-punp 5)
(detach fl oor-punp tube)
(cl ose-val ve tube))

Assuming pr essur e of t ube islessthan 60, this conditional will attach f | oor - punp
tot ube anddepr ess it5times. (att ach and depr ess are some suitable procedures.)

The same program using i f would be:

(if (< (pressure tube) 60)
(begin
(open-val ve tube)
(attach fl oor-punp tube)
(depress floor-punp 5)
(detach fl oor-punp tube)
(cl ose-val ve tube)))

Note that when'sbranch isan implicit begi n, whereasi f requires an explicit begi n if
either of its branches has more than one form.

The same behavior can be written using unl ess asfollows:

(unl ess (>= (pressure tube) 60)
(open-val ve tube)
(attach fl oor-punp tube)
(depress floor-punp 5)
(detach fl oor-punp tube)
(cl ose-val ve tube))

Not all Schemes providewhen and unl ess. If your Scheme does not have them, you can
define them as macros (see chap 8).

4.2 cond

The cond formis convenient for expressing nested i f -expressions, where each ~"else”
branch but the last introducesanew i f . Thus, the form

(if (char<? ¢ #\c) -1

(if (char=? ¢ #\c) O
1))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-6.html (2 of 4)11/3/2006 8:46:55 PM

Teach Yourself Scheme in Fixnum Days

can be rewritten using cond as:
(cond ((char<? ¢ #\c) -1)
((char=? ¢ #\c) 0)
(else 1))

The cond isthus a multi-branch conditional. Each clause has a test and an associated
action. The first test that succeeds triggersits associated action. Thefinal el se clauseis
chosen if no other test succeeded.

The cond actionsareimplicit begi ns.

4.3 case

A special case of the cond can be compressed into acase expression. Thisiswhen
every test isamembership test.

(case ¢
((#\a) 1)
((#\b) 2)
((#\c) 3)
(else 4))

=> 3

The clause whose head contains the value of ¢ is chosen.

4.4 and and or

Scheme provides special forms for boolean conjunction (""and") and disunction (" “or").
(We have already seen (sec 2.1.1) Scheme's boolean negation not , which is a procedure.)

The special form and returns atrue value if al its subforms are true. The actual value
returned is the value of the final subform. If any of the subforms are false, and returns #f .

(and 1 2) => 2
(and #f 1) => #f

The specia form or returnsthe value of itsfirst true subform. If all the subforms are false,
or returns #f .

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-6.html (3 of 4)11/3/2006 8:46:55 PM

Teach Yourself Scheme in Fixnum Days

(or 1 2) => 1
(or #f 1) => 1

Both and and or evauate their subforms left-to-right. As soon as the result can be
determined, and and or will ignore the remaining subforms.

(and 1 #f expression-guaranteed-to-cause-error)
=> #f

(or 1 #f expression-guaranteed-to-cause-error)
=> 1

[Go tofirst, previous, next page; contents;

index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-6.html (4 of 4)11/3/2006 8:46:55 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Chapter 5

L exical variables

Scheme's variables have lexical scope, ie, they are visible only to forms within a certain
contiguous stretch of program text. The global variables we have seen thus far are no
exception: Their scopeisall program text, which is certainly contiguous.

We have also seen some examples of local variables. These werethe | anbda parameters,
which get bound each time the procedure is called, and whose scope is that procedure's

body. Eg,

(define x 9)
(define add2 (lanmbda (x) (+ x 2)))

X = 9

(add2 3) => 5
(add2 x) => 11

X = 9
Here, thereisaglobal x, and thereisalso alocal x, the latter introduced by procedure
add2. Theglobal x isaways9. Thelocal x getsboundto 3 inthefirst call toadd2 and
to the value of the global x, ie, 9, in the second call to add2. When the procedure calls
return, the global x continuesto be 9.
Theformset ! modifiesthelexical binding of avariable.

(set! x 20)

modifies the global binding of x from 9 to 20, because that is the binding of x that is
visbletoset ! . If theset ! wasinsideadd2's body, it would have modified the local x:

(define add2
(1 anmbda (x)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-7.html (1 of 5)11/3/2006 8:49:34 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

(set! x (+ x 2))
X))

Theset! hereadds 2 to theloca variable x, and the procedure returns this new value of
thelocal x. (Interms of effect, this procedure is indistinguishable from the previous
add2.) Wecan cal add2 on the global x, as before:

(add2 x) => 22
(Remember global x isnow 20, not 9!)

Theset ! insdeadd?2 affectsonly the local variable used by add2. Although the local
variable x got its binding from the global x, the latter is unaffected by theset ! tothe
local x.

X => 20

Note that we had all this discussion because we used the same identifier for alocal
variable and aglobal variable. In any text, an identifier named x refersto the lexically
closest variable named x. Thiswill shadow any outer or global x's. Eg, inadd?2, the
parameter X shadows the global x.

A procedure's body can access and modify variablesin its surrounding scope provided the
procedure's parameters don't shadow them. This can give some interesting programs. Eg,

(define counter 0)

(define bunp-counter
(1 anmbda ()
(set! counter (+ counter 1))
counter))

The procedure bunp- count er isazero-argument procedure (also called athunk). It
introduces no local variables, and thus cannot shadow anything. Each timeit iscalled, it
modifies the global variable count er --itincrementsit by 1 -- and returnsiits current
value. Here are some successive callsto bunp- count er :

(bunp-counter) => 1

(bunp-counter) => 2
(bunp-counter) => 3

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-7.html (2 of 5)11/3/2006 8:49:34 PM

Teach Yourself Scheme in Fixnum Days

51 let andl et*

Local variables can be introduced without explicitly creating a procedure. The special
form| et introducesalist of local variables for use within its body:

(let ((x 1)

(y 2)

(z 3))
(list xy z))

=> (1 2 3)

Aswith | anbda, withinthe| et -body, the local x (bound to 1) shadows the global x
(which isbound to 20).

Thelocal variableinitializations-- x to 1; y to 2; z to 3 -- are not considered part of the
| et body. Therefore, areferenceto x in the initialization will refer to the global, not the
local x:

(let ((x 1)
(y x))

(+ xy))
=> 21

Thisisbecause x isboundto 1, and y isbound to the global x, whichis 20.

Sometimes, it is convenient to have |l et 'slist of lexical variables be introduced in
sequence, so that theinitialization of alater variable occurs in the lexical scope of earlier
variables. Theform | et * doesthis:

(let* ((x 1)
(y x))

(+ xy))
=> 2

Thex iny'sinitialization refersto the x just above. The exampleis entirely equivalent to
-- and isin fact intended to be a convenient abbreviation for -- the following program with
nested | et s

(let ((x 1))
(et ((y x))
(+xY)))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-7.html (3 of 5)11/3/2006 8:49:34 PM

Teach Yourself Scheme in Fixnum Days
=> 2
The values bound to lexical variables can be procedures:

(let ((cons (lanbda (x y) (+ xvVy))))
(cons 1 2))
=> 3

Insidethis| et body, the lexical variable cons addsits arguments. Outside, cons
continues to create dotted pairs.

5.2 fluid-1et

A lexical variableis visible throughout its scope, provided it isn't shadowed. Sometimes, it
is helpful to temporarily set alexical variable to a certain value. For this, we use the form

fluid-Iet.?2

(fluid-let ((counter 99))
(di splay (bunp-counter)) (newine)
(di splay (bunp-counter)) (newine)
(di splay (bunp-counter)) (newline))

Thislookssimilar toal et , but instead of shadowing the global variable count er , it
temporarily setsit to 99 before continuing with thef | ui d- | et body. Thusthe
di spl aysin the body produce

100

101

102

After thef | ui d- | et expression has evaluated, the global count er revertsto the value
it had beforethef | ui d- I et .

counter => 3

Notethat f | ui d- | et hasan entirely different effect from| et .f | ui d- | et doesnot
introduce new lexical variableslike| et does. It modifies the bindings of existing lexical
variables, and the modification ceases as soon asthef | ui d- | et does.

To drive home this point, consider the program

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-7.html (4 of 5)11/3/2006 8:49:34 PM

Teach Yourself Scheme in Fixnum Days

(let ((counter 99))
(di splay (bunp-counter)) (newine)
(di splay (bunp-counter)) (newine)
(di splay (bunp-counter)) (newine))

which substitutes| et for f | ui d-1 et inthe previous example. The output is now

4
5
6

le, the global count er , whichisinitially 3, is updated by each call to bunp- count er .
The new lexical variable count er , with itsinitialization of 99, has no impact on the
callsto bunp- count er , because athough the callsto bunp- count er arewithin the
scope of thislocal count er , the body of bunp- count er isn't. The latter continues to
refer to the global count er , whose final valueis6.

counter => 6

2f| ui d- | et isanonstandard special form. See sec 8.3 for adefinition of f | ui d- | et
in Scheme.

[Go to first, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-7.html (5 of 5)11/3/2006 8:49:34 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

[Gotofirst, previous, next page; contents; index|

Chapter 6

Recursion

A procedure body can contain calls to other procedures, not least itself:

(define factorial
(lI'anbda (n)
(if (=n0) 1
(* n (factorial (- n 1))))))

This recursive procedure calcul ates the factorial of a number. If the number is0, the answer is 1.
For any other number n, the procedure uses itself to calculate the factorial of n - 1, multiplies
that subresult by n, and returns the product.

Mutually recursive procedures are also possible. The following predicates for evenness and
oddness use each other:

(define is-even?
(lanbda (n)
(if (= n 0) #t
(is-0dd? (- n 1)))))

(define is-o0dd?
(I ambda (n)
(if (= n 0) #f
(is-even? (- n 1)))))

These definitions are offered here only as simple illustrations of mutual recursion. Scheme already
provides the primitive predicateseven? and odd?.

6.1 letrec

If we wanted the above procedures as local variables, we could try to useal et form:

(let ((local-even? (lanbda (n)
(if (=n 0) #t
(local-0dd? (- n 1)))))
(l ocal -odd? (Il anbda (n)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-8.html (1 of 4)11/3/2006 8:49:43 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

(if (= n 0) #f
(local-even? (- n 1))))))
(list (local-even? 23) (local-odd? 23)))

Thiswon't quite work, because the occurrences of | ocal - even? and| ocal - odd? inthe
initializations don't refer to the lexical variables themselves. Changing thel et toal et * won't
work either, for whilethel ocal - even? insidel| ocal - odd?'sbody refers to the correct
procedure value, thel ocal - odd? inl ocal - even?'sbody still points elsewhere.

To solve problems like this, Scheme providestheform | et r ec:

(letrec ((local-even? (lanmbda (n)
(if (= n0) #t
(local-0dd? (- n 1)))))
(local -odd? (| anmbda (n)
(if (= n0) #f
(local-even? (- n 1))))))
(list (local-even? 23) (local-odd? 23)))

Thelexical variablesintroduced by al et r ec arevisible not only inthel et r ec-body but also

within all theinitiaizations. | et r ec isthustailor-made for defining recursive and mutually
recursive local procedures.

6.2 Named | et

A recursive procedure defined using | et r ec can describe loops. Let's say we want to display a
countdown from 10:

(letrec ((countdown (Il anbda (1)
(if (=1 0) "liftoff
(begin
(display i)
(new i ne)
(countdown (- i 1)))))))
(countdown 10))

This outputs on the console the numbers 10 down to 1, and returnstheresult | i ft of f .
Scheme allows avariant of | et called named | et to write thiskind of loop more compactly:
(let countdown ((i 10))
(if (=1 0) "liftoff

(begin
(display i)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-8.html (2 of 4)11/3/2006 8:49:43 PM

Teach Yourself Schemein Fixnum Days

(new i ne)
(countdown (- i 1)))))

Note the presence of avariable identifying the loop immediately after thel et . This programis
equivalent to the one written with | et r ec. You may consider the named | et to be a macro (chap
8) expandingtothel et r ec form.

6.3 lteration

count down defined above isreadly arecursive procedure. Scheme can define loops only through
recursion. There are no special looping or iteration constructs.

Nevertheless, the loop as defined above is a genuine loop, in exactly the same way that other
languages bill their loops. e, Scheme takes special care to ensure that recursion of the type used
above will not generate the procedure call/return overhead.

Scheme does this by a process called tail-call elimination. If you look closely at the count down
procedure, you will note that when the recursive call occursin count down'sbody, it isthetail
call, or the very last thing done -- each invocation of count down either does not call itself, or
when it does, it does so asits very last act. To a Scheme implementation, this makes the recursion
indistinguishable from iteration. So go ahead, use recursion to write loops. It's safe.

Here's another example of auseful tail-recursive procedure:

(define list-position
(lanmbda (o I)
(let lToop ((i 0) (I 1))
(if (null?2 1) #f
(if (eqv? (car) o) i

(loop (+ i 1) (cdr 1)))))))

| i st-position findstheindex of thefirst occurrence of the object o inthelist| . If the object
isnot found in the list, the procedure returns #f .

Here's yet another tail-recursive procedure, one that reversesits argument list “"in place”, ie, by
mutating the contents of the existing list, and without allocating a new one:

(define reversel!
(I ambda (s)
(let Toop ((s s) (r "()))
(if (null? s) r
(let ((d (cdr s)))
(set-cdr! s r)

(loop d s))))))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-8.html (3 of 4)11/3/2006 8:49:43 PM

Teach Yourself Schemein Fixnum Days

(rever se! isauseful enough procedurethat it is provided primitively in many Scheme dialects,
eg, MzScheme and Guile.)

For some numerical examples of recursion (including iteration), see Appendix C.

6.4 Mapping a procedure across a list

A specia kind of iteration involves repeating the same action for each element of alist. Scheme
offers two procedures for this situation: map and f or - each.

The map procedure applies a given procedure to every element of agiven list, and returns the list
of the results. Eg,

(map add2 '(1 2 3))
=> (3 45

Thef or - each procedure also applies a procedure to each element in alist, but returns void. The
procedure application is done purely for any side-effects it may cause. Eg,

(for-each display
(list "one " "two " "buckle ny shoe"))

has the side-effect of displaying the strings (in the order they appear) on the console.

The procedures applied by map and f or - each need not be one-argument procedures. For
example, given an n-argument procedure, map takes n lists and applies the procedure to every set
of n of arguments selected from across the lists. Eg,

(map cons '(1 2 3) '(10 20 30))
=> ((1 . 10) (2 . 20) (3 . 30))

(map + ' (1 2 3) '(10 20 30))
=> (11 22 33)

[Gotofirst, previous, next page; contents; index|

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-8.html (4 of 4)11/3/2006 8:49:43 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Chapter 7

/0

Scheme has input/output (1/0) procedures that will let you read from an input port or write
to an output port. Ports can be associated with the console, files or strings.

7.1 Reading

Scheme's reader procedures take an optional input port argument. If the port is not
specified, the current input port (usually the console) is assumed.

Reading can be character-, line- or s-expression-based. Each time aread is performed, the
port's state changes so that the next read will read material following what was already
read. If the port has no more material to be read, the reader procedure returns a specific
datum called the end-of-file or eof object. This datum isthe only value that satisfies the
eof - obj ect ? predicate.

The procedurer ead- char reads the next character from the port. r ead- | i ne readsthe

next line, returning it as a string (the final newline is not included). The procedurer ead
reads the next s-expression.

7.2 Writing

Scheme's writer procedures take the object that is to be written and an optional output port
argument. If the port is not specified, the current output port (usually the console) is
assumed.

Writing can be character- or s-expression-based.

The procedurewr i t e- char writesthe given character (without the #\) to the output
port.

The procedureswr i t e and di spl ay both write the given s-expression to the port, with
one difference: wr i t e attempts to use a machine-readable format and di spl ay doesn't.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-9.html (1 of 5)11/3/2006 8:49:49 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

Eg, wr i t e uses double quotes for strings and the #\ syntax for characters. di spl ay
doesn't.

The procedure newl i ne starts a new line on the output port.

7.3 File ports

Scheme's 1/O procedures do not need a port argument if the port happens to be standard
input or standard output. However, if you need these ports explicitly, the zero-argument
procedurescur r ent - i nput - port andcurrent - out put - port furnish them.
Thus,

(display 9)
(display 9 (current-output-port))

have the same behavior.

A port is associated with afile by opening the file. The procedure open-i nput -fil e
takes a filename argument and returns a new input port associated with it. The procedure
open- out put - fi | e takes afilename argument and returns a new output port
associated with it. It isan error to open an input file that doesn't exist, or to open an output
filethat already exists.

After you have performed 1/O on a port, you should close it with cl ose- i nput - port
or cl ose-out put - port.

In the following, assumethefilehel | 0. t xt containsthe singleword hel | o.
(define i (open-input-file "hello.txt"))

(read-char 1)
=> #\h

(define j (read i))

j
=> &ello

Assumethefilegr eeti ng. t xt does not exist before the following programs are fed to
the listener:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-9.html (2 of 5)11/3/2006 8:49:49 PM

Teach Yourself Schemein Fixnum Days
(define o (open-output-file "greeting.txt"))
(display "hello" o)
(wite-char #\ space o)
(display "world o)

(new i ne o)

(cl ose-out put-port o)
Thefilegr eeti ng. t xt will now contain the line:

hello world

7.3.1 Automatic opening and closing of file ports

Scheme suppliesthe procedurescal | -wi t h-i nput-fileandcal | -w t h-
out put - fi | e that will take care of opening a port and closing it after you're done with
it.

Theprocedurecal | -wi t h-i nput - fi | e takes afilename argument and a procedure.
The procedure is applied to an input port opened on the file. When the procedure
completes, itsresult is returned after ensuring that the port is closed.

(call-with-input-file "hello.txt"
(lambda (i)
(let* ((a (read-char 1))
(b (read-char 1))
(c (read-char 1))
(list abec))))
=> (#\h #\e #\1)

)

Theprocedurecal | -w t h- out put - fi | e doesthe analogous services for an output
file.

7.4 String ports

It is often convenient to associate ports with strings. Thus, the procedure open- i nput -
st r i ng associates a port with a given string. Reader procedures on this port will read off
the string:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-9.html (3 of 5)11/3/2006 8:49:49 PM

Teach Yourself Scheme in Fixnum Days
(define i (open-input-string "hello world"))

(read-char 1)
=> #\h

(read i)
=> ello

(read i)
=> world

The procedure open- out put - st ri ng creates an output port that will eventually be
used to create a string:

(define o (open-output-string))
(wite "hello o)

(wite-char #\, o)

(display " " 0)

(display "worl d" o)

Y ou can now use the procedure get - out put - st ri ng to get the accumulated string in
the string port o:

(get-output-string o)
=> "hello, world"

String ports need not be explicitly closed.

7.5 Loading files

We have aready seen the procedure | oad that |oads files containing Scheme code.
Loading afile consistsin evaluating in sequence every Scheme formin thefile. The
pathname argument givento | oad isreckoned relative to the current working directory of
Scheme, which is normally the directory in which the Scheme executable was called.

Files can load other files, and thisis useful in alarge program spanning many files.
Unfortunately, unless full pathnames are used, the argument file of al oad is dependent
on Scheme's current directory. Supplying full pathnamesis not always convenient,
because we would like to move the program files as a unit (preserving their relative
pathnames), perhaps to many different machines.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-9.html (4 of 5)11/3/2006 8:49:49 PM

Teach Yourself Scheme in Fixnum Days

MzScheme providesthel oad- r el at i ve procedure that greatly helpsin fixing the files
tobeloaded. | oad-rel ati ve, likel oad, takes a pathname argument. When al oad-
rel ative cal occursinafilef 00. scm the path of its argument is reckoned from the
directory of the calling filef oo. scm In particular, this pathname is reckoned
independent of Scheme's current directory, and thus allows convenient multifile program
development.

[Go tofirst, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-9.html (5 of 5)11/3/2006 8:49:49 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

[Gotofirst, previous, next page; contents; index|

Chapter 8

Macros

Users can create their own special forms by defining macros. A macro isa symbol that has a
transformer procedure associated with it. When Scheme encounters a macro-expression -- ie, a
form whose head isamacro -- , it applies the macro's transformer to the subformsin the macro-
expression, and evaluates the result of the transformation.

Ideally, a macro specifies a purely textual transformation from code text to other code text. This
kind of transformation is useful for abbreviating an involved and perhaps frequently occurring
textual pattern.

A macro is defined using the special form def i ne- macr o (but see sec A.3).2 For example, if
your Scheme lacks the conditional special form when, you could define when as the following
macro:

(defi ne-macro when
(lanbda (test . branch)
(list "if test
(cons 'begin branch))))

This defines awhen-transformer that would convert awhen-expression into the equivalent i f -
expression. With this macro definition in place, the when-expression

(when (< (pressure tube) 60)
(open-val ve tube)
(attach floor-punp tube)
(depress floor-punp 5)
(detach floor-punp tube)
(cl ose-val ve tube))

will be converted to another expression, the result of applying the when-transformer to the when-
expression's subforms:

(apply
(lanbda (test . branch)
(list "if test
(cons 'begin branch)))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-10.html (1 of 7)11/3/2006 8:50:00 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

"((< (pressure tube) 60)
(open-val ve tube)
(attach floor-punp tube)
(depress floor-punp 5)
(detach floor-punp tube)
(cl ose-val ve tube)))

The transformation yields the list

(if (< (pressure tube) 60)
(begin
(open-val ve tube)
(attach floor-punp tube)
(depress floor-punp 5)
(detach floor-punp tube)
(cl ose-val ve tube)))

Scheme will then evaluate this expression, as it would any other.
As an additional example, here is the macro-definition for when's counterpart unl ess:

(define-nmacro unl ess
(lanbda (test . branch)
(list "if
(list '"not test)
(cons 'begin branch))))

Alternatively, we could invoke when inside unl ess's definition:

(defi ne-macro unl ess
(lanbda (test . branch)
(cons 'when
(cons (list '"not test) branch))))

Macro expansions can refer to other macros.

8.1 Specifying the expansion as a template

A macro transformer takes some s-expressions and produces an s-expression that will be used asa
form. Typically this output isalist. In our when example, the output list is created using

(list "if test
(cons ' begin branch))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-10.html (2 of 7)11/3/2006 8:50:00 PM

Teach Yourself Scheme in Fixnum Days
wheret est isbound to the macro's first subform, ie,
(< (pressure tube) 60)
and br anch to the rest of the macro's subforms, ie,

((open-val ve tube)
(attach floor-punp tube)
(depress floor-punmp 5)
(detach floor-punp tube)
(cl ose-val ve tube))

Output lists can be quite complicated. It is easy to see that a more ambitious macro than when
could lead to quite an elaborate construction process for the output list. In such cases, it ismore
convenient to specify the macro's output form as a template, with the macro arguments inserted at
appropriate places to fill out the template for each particular use of the macro. Scheme provides the
backquote syntax to specify such templates. Thus the expression

(list "IF test
(cons '"BEA N branch))

IS more conveniently written as

“(IF ,test
(BEG N , @r anch))

We can refashion the when macro-definition as:

(defi ne-nmacro when
(lanbda (test . branch)
“(IF ,test
(BEG N , @ranch))))

Note that the template format, unlike the earlier list construction, gives immediate visual indication
of the shape of the output list. The backquote (") introduces atemplate for alist. The elements of
the template appear verbatimin the resulting list, except when they are prefixed by acomma (°, ')
or acomma-splice (", @). (For the purpose of illustration, we have written the verbatim elements of
the template in UPPER-CASE.)

The comma and the comma-splice are used to insert the macro arguments into the template. The
comma inserts the result of evaluating its following expression. The comma-splice inserts the result
of evaluating its following expression after splicing it, ie, it removes the outermost set of
parentheses. (Thisimplies that an expression introduced by comma-splice must be alist.)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-10.html (3 of 7)11/3/2006 8:50:00 PM

Teach Yourself Schemein Fixnum Days

In our example, giventhevaluesthat t est and br anch are bound to, it is easy to see that the
template will expand to the required

(I'F (< (pressure tube) 60)
(BEG N
(open-val ve tube)
(attach floor-punp tube)
(depress floor-punp 5)
(detach floor-punp tube)
(cl ose-val ve tube)))

8.2 Avoiding variable capture inside macros

A two-argument digunction form, my - or , could be defined as follows:

(defi ne-macro ny-or
(lanmbda (x vy)
(i x L x . y)))

ny - or takestwo arguments and returns the value of the first of them that istrue (ie, non-#f). In
particular, the second argument is evaluated only if the first turns out to be false.

(ny-or 1 2)
=> 1
(ny-or #f 2)
=> 2

Thereisaproblem with the my- or macro asit iswritten. It re-evaluates the first argument if it is
true: onceinthei f -test, and once again in the *“then" branch. This can cause undesired behavior if

the first argument were to contain side-effects, eg,

(my-or
(begin
(display "doing first argunent")
(new i ne)
#1)
2)

displays" doi ng first argunent"” twice
This can be avoided by storing thei f -test result in alocal variable:

(define-macro ny-or

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-10.html (4 of 7)11/3/2006 8:50:00 PM

Teach Yourself Schemein Fixnum Days

(I ambda (x y)
“(let ((tenp ,x))
(if temp temp ,y))))

Thisisamost OK, except in the case where the second argument happens to contain the same
identifier t enp as used in the macro definition. Eg,

(define tenp 3)

(nmy-or #f tenmp)
=> #f

Surely it should be 3! The fiasco happens because the macro uses alocal variablet enp to store
the value of the first argument (#f) and the variable t enp in the second argument got captured by
thet enp introduced by the macro.

To avoid this, we need to be careful in choosing local variables inside macro definitions. We could
choose outlandish names for such variables and hope fervently that nobody else comes up with
them. Eg,

(defi ne-macro ny-or
(lambda (x vy)
“(let ((+tenp , X))
(if +tenp +tenp ,y))))

Thiswill work given the tacit understanding that +t enp will not be used by code outside the
macro. Thisis of course an understanding waiting to be disillusioned.

A more reliable, if verbose, approach is to use generated symbols that are guaranteed not to be
obtainable by other means. The procedure gensy mgenerates unique symbols each timeit is
called. Hereisa safe definition for my- or using gensym

(define-macro ny-or
(lanbda (x vy)
(let ((tenp (gensym))
“(let ((,temp ,x))
(if ,tenp ,tenp ,y)))))

In the macros defined in this document, in order to be concise, we will not usethegensym
approach. Instead, we will consider the point about variable capture as having been made, and go
ahead with the less cluttered +-as-prefix approach. We will leave it to the astute reader to
remember to convert these +-identifiers into gensyms in the manner outlined above.

8.3 fluid-Iet

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-10.html (5 of 7)11/3/2006 8:50:00 PM

Teach Yourself Schemein Fixnum Days

Here is adefinition of arather more complicated macro, f | ui d- | et (sec5.2).f 1 ui d-1| et

specifies temporary bindings for a set of already existing lexical variables. Given af | ui d- | et
expression such as

(fluid-let ((x 9) (y (+vy 1))
(+xy))

we want the expansion to be

(let ((OLD-X x) (OLD-Y v))
(set! x 9)
(set! y (+y 1))
(let ((RESULT (begin (+ xvy))))
(set! x QLD X)
(set! y QDY)
RESULT))

where we want the identifiers OLD- X, OLD- Y, and RESULT to be symbols that will not capture
variablesin the expressionsinthef | ui d- | et form.

Hereis how we go about fashioning af | ui d- | et macro that implements what we want:

(define-macro fluid-Iet
(I anbda (xexe . body)
(let ((xx (map car xexe))
(ee (map cadr xexe))
(old-xx (rmap (lanbda (ig) (gensym) xexe))
(result (gensym))
“(let ,(map (lanbda (old-x x) " (,old-x ,Xx))
ol d- xx xx)
, @map (lanbda (x e)
“(set! ,x ,e))
XX ee)
(let ((,result (begin ,@ody)))
, @map (lanbda (x ol d-x)
“(set! ,x ,old-x))
xX ol d- xx)

,result)))))

The macro's arguments are: xexe, the list of variable/expression pairs introduced by thef | ui d-
| et ; and body, thelist of expressionsin the body of thef | ui d-1 et . In our example, these are
((x9) (y (+y 1))) and((+ x y)) respectively.

The macro body introduces a bunch of local variables: xx isthelist of the variables extracted from

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-10.html (6 of 7)11/3/2006 8:50:00 PM

Teach Yourself Schemein Fixnum Days

the variable/expression pairs. ee isthe corresponding list of expressions. ol d- xx isalist of fresh
identifiers, one for each variable in xx. These are used to store the incoming values of the xx, so
we can revert the xx back to them oncethef | ui d- | et body has been evaluated. r esul t is
another fresh identifier, used to store the value of thef | ui d- | et body. In our example, xx is
(x y) andeeis(9 (+ y 1)).Depending on how your system implementsgensym ol d-
xX might bethelist (GEN- 63 CGEN- 64) ,andr esul t might be GEN- 65.

The output list is created by the macro for our given example looks like

(let ((GEN-63 x) (GEN-64 vy))
(set! x 9)
(set! y (+y 1))
(let ((GEN-65 (begin (+ xvy))))
(set! x GEN-63)
(set! y GEN-64)
CGEN- 65))

which matches our requirement.

3 MzScheme providesdef i ne- macr o viathedef macr o library. Use(require (lib
“def macro. ss")) toloadthislibrary.

[Gotofirst, previous, next page; contents; index|

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-10.html (7 of 7)11/3/2006 8:50:00 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

[Go tofirst, previous, next page; contents; index]

Chapter 9

Structures

Datathat are naturally grouped are called structures. One can use Scheme's compound data types, eg, vectors or lists, to
represent structures. Eg, let's say we are dealing with grouped data relevant to a (botanical) tree. The individual elements
of the data, or fields, could be: height, girth, age, leaf-shape, and |eaf-color, making atotal of 5 fields. Such data could
be represented as a 5-element vector. The fields could be accessed using vect or - r ef and modified using vect or -
set ! . Nevertheless, we wouldn't want to be saddled with the burden of remembering which vector index correspondsto
which field. That would be athankless and error-prone activity, especialy if fields get excluded or included over the
course of time.

We will therefore use a Scheme macro def st ruct to define a structure data type, which is basically avector, but
which comes with an appropriate suite of procedures for creating instances of the structure, and for accessing and
modifying itsfields. Thus, our t r ee structure could be defined as:

(defstruct tree height girth age |eaf-shape |eaf-color)
This gives us a constructor procedure named nake- t r ee; accessor procedures for each field, namedt r ee. hei ght
tree. girth, etc; and modifier procedures for each field, named set ! t r ee. hei ght ,set!tree. girth, etc.

The constructor is used as follows:

(define coconut
(make-tree ' height 30
'| eaf -shape 'frond
'age 5))

The constructor's arguments are in the form of twosomes, a field name followed by itsinitialization. The fields can occur
in any order, and may even be missing, in which case their value is undefined.

The accessor procedures are invoked as follows:

(tree. height coconut) => 30
(tree. | eaf-shape coconut) => frond
(tree.girth coconut) => <undefined>

Thet ree. gi rt h accessor returns an undefined value, because we did not specify gi r t h for thecoconut tr ee.
The modifier procedures are invoked as follows:

(set!tree. height coconut 40)
(set!tree.girth coconut 10)

If we now access these fields using the corresponding accessors, we will get the new values:

(tree. height coconut) => 40
(tree.girth coconut) => 10

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-11.html (1 of 3)11/3/2006 8:50:08 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

9.1 Default initializations

We can have some initializations done during the definition of the structure itself, instead of per instance. Thus, we
could postulate that | eaf - shape and| eaf - col or areby default f r ond and gr een respectively. We can always
override these defaults by providing explicit initialization in the make- t r ee cal, or by using afield modifier after the
structure instance has been created:

(defstruct tree height girth age
(1 eaf -shape 'frond)
(l eaf-col or 'green))

(define pal m (make-tree 'height 60))

(tree. height palm
=> 60

(tree.l eaf-shape palm
=> frond

(define plantain
(make-tree 'height 7
'| eaf -shape 'sheet))

(tree. hei ght plantain)
= 7

(tree. | eaf-shape pl antain)
=> sheet

(tree.leaf-color plantain)
=> green

9.2 def struct defined

Thedef st r uct macro definition follows:

(define-macro defstruct
(lambda (s . ff)
(let ((s-s (synbol->string s)) (n (length ff)))
(let* ((n+l (+ n 1))
(vv (make-vector n+1)))
(let loop ((i 1) (ff ff))
(if (<=1 n)
(let ((f (car ff)))
(vector-set! vv
(if (pair? f) (cadr f) " (if #f #f)))
(loop (+ i 1) (cdr ff)))))
(let ((ff (map (lanmbda (f) (if (pair? f) (car f) f))
ff)))
“(begin
(define , (string->synbol
(string-append "nmake-" s-s))
(lambda fvfv

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-11.html (2 of 3)11/3/2006 8:50:08 PM

Teach Yourself Schemein Fixnum Days

(let ((st (make-vector ,n+l)) (ff ',ff))
(vector-set! st 0 ',s)
,@let loop ((i 1) (r "()))
(if (>=1 n+l) r
(loop (+1i 1)
(cons " (vector-set! st ,i
, (vector-ref vv i))
r))))
(let loop ((fvfv fvfv))
(if (not (null? fvfv))
(begin
(vector-set! st
(+ (list-position (car fvfv) ff)
1)
(cadr fvfv))
(loop (cddr fvfv)))))

st)))
,@let loop ((i 1) (procs '()))
(if (>=1 n+l) procs

(loop (+ i 1)
(let ((f (synbol->string
(list-ref ff (-1 1)))))

(cons

“(define , (string->synbol
(string-append
s-s "." f))

(lanbda (x) (vector-ref x ,i)))
(cons
“(define , (string->synbol

(string-append

"set!" s-s "." f))
(lambda (x v)
(vector-set! x ,i v)))
procs))))))
(define , (string->synbol (string-append s-s "?"))

(1 anbda (x)
(and (vector? x)
(eqv? (vector-ref x 0) ',s))))))))))

[Gotofirst, previous, next page; contents;

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-11.html (3 of 3)11/3/2006 8:50:08 PM

index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Gotofirst, previous, next page; contents; index]

Chapter 10

Alists and tables

An association list, or alist, isa Scheme list of a special format. Each element of the list isa cons cell, the car
of which is called a key, the cdr being the value associated with the key. Eg,

((a. 1) (b. 2) (c. 3))

Theprocedurecall (assv k al) findsthe cons cell associated with key k in alist al . The keys of the alist
are compared against the given k using the equality predicate eqv?. In general, though we may want a
different predicate for key comparison. For instance, if the keys were case-insensitive strings, the predicate
eqv? isnot very useful.

We now define a structure called t abl e, which is a souped-up alist that allows user-defined predicates on its
keys. Itsfieldsareequ and al i st .

(defstruct table (equ eqv?) (alist "()))
(The default predicateiseqv? -- asfor an ordinary alist -- and the dlist isinitially empty.)

We will use the proceduret abl e- get to get the value (as opposed to the cons cell) associated with a given
key.t abl e- get takesatable and key arguments, followed by an optional default value that isreturned if the
key was not found in the table:

(define tabl e-get
(lambda (tbl k . d)
(let ((c (lassoc k (table.alist tbl) (table.equ tbl))))
(cond (c (cdr c))

((pair? d) (car d))))))

The procedurel assoc, usedint abl e- get , isdefined as.

(define |l assoc
(lanbda (k al equ?)
(let loop ((al al))
(if (null? al) #f
(let ((c (car al)))
(if (equ? (car c) k) c
(l'oop (cdr al))))))))

The proceduret abl e- put ! isused to update a key's value in the given table:

(define table-put!

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-12.html (1 of 2)11/3/2006 8:50:17 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

(lanbda (tbl k v)
(let ((al (table.alist tbl)))
(let ((c (lassoc k al (table.equ thl))))
(if c (set-cdr! c v)
(set!table.alist tbl (cons (cons k v) al)))))))

The proceduret abl e- f or - each callsthe given procedure on every key/value pair in the table

(define tabl e-for-each
(lanbda (tbl p)
(for-each
(lambda (c)
(p (car c) (cdr c)))
(table.alist tbhl))))

[Gotofirgt, previous, next page; contents, index|

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-12.html (2 of 2)11/3/2006 8:50:17 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Chapter 11

System interface

Useful Scheme programs often need to interact with the underlying operating system.

11.1 Checking for and deleting files

fil e-exists? checksifitsargument string namesafile. del et e-fi | e deletesits
argument file. These procedures are not part of the Scheme standard, but are available in
most implementations. These procedures work reliably only for files that are not
directories. (Their behavior on directoriesis dialect-specific.)

file-or-directory-nodify-seconds returnsthe timewhen its argument file or
directory was last modified. Timeis reckoned in seconds from 12 AM GMT, 1 January
1970. Eg,

(file-or-directory-nodi fy-seconds "hello.scni)
=> 893189629

assuming that thefile hel | 0. scmwaslast messed with sometime on 21 April 1998.

11.2 Calling operating-system commands

The sy st emprocedure executes its argument string as an operating-system command.? It
returns true if the command executed successfully with an exit status 0, and false if it
failed to execute or exited with a non-zero status. Any output generated by the command
goes to standard output.

(system "l s")
;lists current directory

(define fnanme "spot")
(system (string-append "test -f " fnane))

http://www.ccs.neu.edu/home/dorai/t-y-schemeft-y-scheme-Z-H-13.html (1 of 2)11/3/2006 8:50:21 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

ctests if file ~spot' exists

(system (string-append "rm-f " fnane))
; renoves spot'

The last two forms are equivalent to
(file-exists? fnane)

(delete-file fname)

11.3 Environment variables

The get env procedure returns the setting of an operating-system environment variable.
Eg,

(getenv "HOVE")
=> "/hone/ dorai"

(getenv "SHELL")
=> "/bin/bash"

4 MzScheme providesthe syst emprocedure viathe pr ocess library. Use(requi re
(l'ib "process. ss")) toloadthislibrary.

[Gotofirst, previous, next page; contents, index|

http://www.ccs.neu.edu/home/dorai/t-y-schemeft-y-scheme-Z-H-13.html (2 of 2)11/3/2006 8:50:21 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Chapter 12

Objects and classes

A class describes a collection of objects that share behavior. The objects described by a class are called the instances of the class. The
class specifies the names of the dlots that the instance has, although it is up to the instance to popul ate these slots with particular values.
The class also specifies the methods that can be applied to its instances. Slot values can be anything, but method values must be
procedures.

Classes are hierarchical. Thus, a class can be a subclass of another class, which is called its superclass. A subclass not only hasits own

direct slots and methods, but also inherits al the slots and methods of its superclass. If aclass has a slot or method that has the same name
asits superclass's, then the subclass's slot or method is the one that is retained.

12.1 A simple object system

Let us now implement a basic object system in Scheme. We will allow only one superclass per class (single inheritance). If we don't want
to specify asuperclass, we will use#t asa zero" superclass, one that has neither slots nor methods. The superclass of #t isdeemed to
beitself.

Asafirst approximation, it is useful to define classes using a struct called st andar d- cl ass, with fields for the slot names, the
superclass, and the methods. The first two fieldswe will call sl ot s and super cl ass respectively. We will use two fields for methods,
amet hod- nanes field that will hold the list of names of the class's methods, and anet hod- vect or field that will hold the vector of

the values of the class's methods. Here is the definition of the st andar d- ¢l ass:

(def struct standard-cl ass
sl ots supercl ass net hod- nanes net hod-vector)

We can use make- st andar d- cl ass, the maker procedure of st andar d- cl ass, to create anew class. Eg,

(define trivial-bike-class

(make- st andar d- cl ass
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (1 of 11)11/3/2006 8:50:27 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

super cl ass #t

slots '(franme parts size)
nmet hod- nanes ' ()

' met hod-vector #()))

Thisisavery simple class. More complex classes will have non-trivial superclasses and methods, which will require alot of standard
initialization that we would like to hide within the class creation process. We will therefore define amacro called cr eat e- cl ass that
will make the appropriate call to make- st andar d- cl ass.

(define-macro create-class
(lanbda (superclass slots . nethods)
“(create-class-proc
, super cl ass
(list ,@map (lanbda (slot) "' ,slot) slots))
(list ,@map (lanmbda (nmethod) "', (car method)) mnethods))
(vector ,@nmap (lanbda (nethod) *,(cadr nethod)) nmethods)))))

We will defer the definition of thecr eat e- cl ass- pr oc procedureto later.

The procedure make- i nst ance creates an instance of aclass by generating a fresh vector based on information enshrined in the class.
The format of the instance vector isvery smple: Itsfirst element will refer to the class, and its remaining elements will be slot values.
make- i nst ance's arguments are the class followed by a sequence of twosomes, where each twosome is a slot name and the value it
assumes in the instance.

(define make-instance
(lanbda (class . slot-val ue-twosones)

;Find "n', the nunber of slots in "class'.

;Create an instance vector of length "n + 1',

: because we need one extra elenent in the instance
:to contain the class.

(let* ((slotlist (standard-class.slots class))
(n (length slotlist))
(instance (make-vector (+ n 1))))
(vector-set! instance 0 class)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (2 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days

Fill each of the slots in the instance
;Wi th the value as specified in the call to
; “make-i nstance' .

(let loop ((slot-value-twosones sl ot-val ue-twosones))
(i1f (null? slot-val ue-twosones) instance
(let ((k (list-position (car slot-val ue-twosones)
slotlist)))
(vector-set! instance (+ k 1)
(cadr sl ot-val ue-twosones))
(loop (cddr slot-value-twosones))))))))

Here is an example of instantiating a class:
(define my-bike
(make-instance trivial-bike-cl ass
‘frame 'cronoly
'size '18.5
"parts "alivio))
Thisbinds ny- bi ke to the instance
#(<trivial-bike-class> cronoly 18.5 alivio)
where<t ri vi al - bi ke- cl ass> isa Scheme datum (another vector) that isthevalueof t ri vi al - bi ke- cl ass, asdefined above.

The procedure cl ass- of returnsthe class of an instance:

(define cl ass-of
(lambda (i nstance)
(vector-ref instance 0)))

Thisassumesthat cl ass- of 'sargument will be a class instance, ie, a vector whose first element points to some instantiation of the
st andar d- cl ass. We probably want to make cl ass- of return an appropriate value for any kind of Scheme object we feed to it.

(define cl ass- of
(lanbda (x)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (3 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days

(1f (vector? x)
(let ((n (vector-length x)))
(if (>=n 1)
(let ((c (vector-ref x 0)))
(i1f (standard-class? c) c #t))
#t))

#)))

The class of a Scheme object that isn't created using st andar d- cl ass isdeemed to be #t , the zero class.

The procedures sl ot - val ue andset ! sl ot - val ue access and mutate the values of a class instance:

(define slot-val ue
(lanbda (instance slot)
(let* ((class (class-of instance))
(sl ot-index

(list-position slot (standard-class.slots class))))
(vector-ref instance (+ slot-index 1)))))

(define set!slot-val ue
(lanbda (instance slot newval)
(let* ((class (class-of instance))
(sl ot-index
(list-position slot (standard-class.slots class))))
(vector-set! instance (+ slot-index 1) newval))))

We are now ready to tackle the definition of cr eat e- cl ass- pr oc. This procedure takes a superclass, alist of slots, alist of method
names, and a vector of methods and makes the appropriate call to make- st andar d- cl ass. Theonly tricky part is the value to be
giventothesl ot s field. It can't be just the slots argument supplied viacr eat e- cl ass, for aclass must include the slots of its
superclass as well. We must append the supplied slots to the superclass's slots, making sure that we don't have duplicate slots.

(define create-class-proc
(l anbda (superclass sl ots net hod-nanes net hod-vector)
(make- st andar d- cl ass
' supercl ass supercl ass
"slots
(let ((superclass-slots

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (4 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days

(i1f (not (eqv? superclass #t))
(standard-cl ass. sl ots supercl ass)
“())))
(if (null? superclass-slots) slots
(del ete-duplicates
(append sl ots superclass-slots))))
" met hod- nanes net hod- nanes
" met hod- vect or net hod-vector)))

The procedure del et e- dupl i cat es caledonalist s, returnsanew list that only includes the last occurrence of each element of s.

(define del ete-duplicates
(1 ambda (s)
(if (null? s) s
(let ((a (car s)) (d (cdr s)))
(if (menv a d) (del ete-duplicates d)
(cons a (delete-duplicates d)))))))

Now to the application of methods. We invoke the method on an instance by using the procedure send. send's arguments are the method
name, followed by the instance, followed by any arguments the method has in addition to the instance itself. Since methods are stored in
the instance's class instead of the instance itself, send will search the instance's class for the method. If the method is not found there, it is
looked for in the class's superclass, and so on further up the superclass chain:

(define send
(I anbda (nethod instance . args)
(let ((proc
(let loop ((class (class-of instance)))
(if (eqv? class #t) (error 'send)
(let ((k (list-position
met hod
(st andar d- cl ass. et hod- nanmes cl ass))))
(if k
(vector-ref (standard-cl ass. nethod-vector class) k)
(l oop (standard-cl ass. superclass class))))))))
(apply proc instance args))))

We can now define some more interesting classes:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (5 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days

(define bike-class
(create-cl ass
#t
(frame size parts chain tires)
(check-fit (lanmbda (nme i nseam
(let ((bike-size (slot-value ne 'size))
(ideal -size (* inseam 3/5)))
(let ((diff (- bike-size ideal-size)))
(cond ((<= -1 diff 1) "perfect-fit)
((<= -2 diff 2) "fits-well)
((<diff -2) "too-small)
((>diff 2) "too-big))))))))

Here, bi ke- cl ass includesamethod check- f i t, that takes a bike and an inseam measurement and reports on the fit of the bike for a
person of that inseam.

Let'sredefine ny- bi ke:

(define my-bike
(make-instance bike-cl ass
"frane '"titanium; | w sh
'size 21
"parts 'ultegra
‘chain 'sachs
"tires 'continental))

To check if thiswill fit someone with inseam 32;
(send 'check-fit mny-bi ke 32)
We can subclass bi ke- cl ass.

(define ntn-bike-cl ass
(create-cl ass
bi ke-cl ass
(suspensi on)
(check-fit (lanmbda (ne inseam

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (6 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days

(let ((bike-size (slot-value ne 'size))
(ideal -size (- (* inseam 3/5) 2)))
(let ((diff (- bike-size ideal-size)))
(cond ((<= -2 diff 2) '"perfect-fit)
((<= -4 diff 4) "fits-well)
((< diff -4) "too-small)
((>diff 4) "too-big))))))))

nt n- bi ke- cl ass addsasdlot called suspensi on and uses adlightly different definition for the method check-fit.

12.2 Classes are instances too

It cannot have escaped the astute reader that classes themselves ook like they could be the instances of some class (a metaclass, if you
will). Note that all classes have some common behavior: each of them has dlots, a superclass, alist of method names, and a method vector.
make- i nst ance lookslike it could be their shared method. This suggests that we could specify this common behavior by another class
(which itself should, of course, be a class instance too).

In concrete terms, we could rewrite our class implementation to itself make use of the object-oriented approach, provided we make sure
we don't run into chicken-and-egg problems. In effect, we will be getting rid of the cl ass struct and its attendant procedures and rely on
the rest of the machinery to define classes as objects.

Let usidentify st andar d- cl ass asthe class of which other classes are instances of. In particular, st andar d- cl ass must be an
instance of itself. What should st andar d- cl ass look like?

We know st andar d- cl ass isan instance, and we are representing instances by vectors. So it is a vector whose first element holdsits
class, ig, itself, and whose remaining elements are slot values. We have identified four slots that all classes must have, so st andar d-
cl ass isa5-element vector.

(define standard-cl ass
(vector 'val ue-of-standard-cl ass-goes-here

(list "slots
" supercl ass
' met hod- nanes
" met hod- vector)

#t

" (make-i nstance)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (7 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days
(vector make-instance)))

Note that the st andar d- cl ass vector isincompletely filled in: the symbol val ue- of - st andar d- cl ass- goes- her e functions
as aplaceholder. Now that we have defined ast andar d- cl ass value, we can useit to identify its own class, which is itself:

(vector-set! standard-class 0 standard-class)
Note that we cannot rely on procedures based onthe cl ass struct anymore. We should replace al calls of the form

(standard-cl ass? x)

(standard-cl ass.slots c)
(standard-cl ass. supercl ass c)
(st andar d- cl ass. net hod- nanes c)
(standar d-cl ass. nmet hod-vect or c)
(make-standard-class ...)

by

(and (vector? x) (eqv? (vector-ref x 0) standard-class))
(vector-ref c 1)

(vector-ref c 2)

(vector-ref c 3)

(vector-ref c 4)

(send 'make-instance standard-class ...)

12.3 Multiple inheritance

It is easy to modify the object system to allow classes to have more than one superclass. We redefinethe st andar d- cl ass to havea
dot called cl ass- precedence- i st instead of super cl ass. Thecl ass- precedence-1i st of aclassisthelist of all its
superclasses, not just the direct superclasses specified during the creation of the classwith cr eat e- cl ass. The nameimplies that the
superclasses are listed in a particular order, where superclasses occurring toward the front of the list have precedence over the ones in the
back of thelist.

(define standard-cl ass
(vector 'val ue-of-standard-cl ass-goes-here
(list "slots 'class-precedence-list 'nethod-nanes 'nethod-vector)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (8 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days

()
" (make-i nstance)
(vector make-instance)))

Not only has the list of slots changed to include the new dlot, but the erstwhile super cl ass slotisnow () instead of #t . Thisis
becausethecl ass- precedence-1i st of st andar d- cl ass must be alist. We could have had its value be (#t) , but we will not
mention the zero class sinceit isin every classscl ass- precedence- | i st.

Thecr eat e- cl ass macro has to modified to accept alist of direct superclassesinstead of a solitary superclass:

(define-macro create-class
(lanmbda (direct-superclasses slots . nethods)
“(create-class-proc
(list ,@map (lanmbda (su) “,su) direct-superclasses))
(list ,@map (lanbda (slot) ',slot) slots))
(list ,@map (lanmbda (nethod) "', (car nethod)) methods))
(vector ,@nmap (lanbda (nethod) °,(cadr nethod)) nethods))

)))

Thecr eat e- cl ass- pr oc must calculate the class precedence list from the supplied direct superclasses, and the slot list from the class
precedence list:

(define create-class-proc
(lanbda (direct-superclasses slots nethod-nanes net hod-vect or)
(let ((class-precedence-Ii st
(del ete-duplicates
(append- map
(lanmbda (c) (vector-ref c 2))
di rect-supercl asses))))
(send ' make-i nstance standard-cl ass
'cl ass-precedence-|list class-precedence-1i st
"slots
(del ete-duplicates
(append sl ots (append-nmap
(lanbda (c) (vector-ref c 1))
cl ass-precedence-list)))
' met hod- names net hod- nanes

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (9 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days
" met hod- vect or net hod-vector))))
The procedure append- map isacomposition of append and nap:

(define append- map
(lanmbda (f s)
(let loop ((s s))
(if (null? s) '()
(append (f (car s))
(loop (cdr s)))))))

The procedure send has to search through the class precedence list left to right when it hunts for a method.

(define send
(1 anbda (nethod-nane instance . args)
(let ((proc
(let ((class (class-of instance)))
(if (eqv? class #t) (error 'send)
(let loop ((class class)
(supercl asses (vector-ref class 2)))
(let ((k (list-position
met hod- nane
(vector-ref class 3))))
(cond (k (vector-ref
(vector-ref class 4) k))
((nul'l? superclasses) (error 'send))
(el se (loop (car superclasses)
(cdr supercl asses))))

))))))

(apply proc instance args))))

> We could in theory define methods also as slots (whose values happen to be procedures), but there is a good reason not to. The instances
of aclass share methods but in general differ in their slot values. In other words, methods can be included in the class definition and don't
have to be allocated per instance as slots have to be.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (10 of 11)11/3/2006 8:50:27 PM

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-14.html (11 of 11)11/3/2006 8:50:27 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Gotofirst, previous, next page; contents;, index|

Chapter 13

Jumps

One of the signal features of Scheme is its support for jJumps or nonlocal control. Specifically, Scheme
allows program control to jump to arbitrary locations in the program, in contrast to the more
restrained forms of program control flow allowed by conditionals and procedure calls. Scheme's
nonlocal control operator isaprocedurenamed cal | -wi t h- current - conti nuati on. Wewill
see how this operator can be used to create a breathtaking variety of control idioms.

13.1 call -wth-current-conti nuati on

Theoperator cal | -wi t h- current - conti nuat i on callsits argument, which must be a unary
procedure, with avalue called the " “current continuation”. If nothing else, this explains the name of the

operator. But it isalong name, and is often abbreviated cal | / cct

The current continuation at any point in the execution of a program is an abstraction of the rest of the
program. Thusin the program

(+ 1 (call/cc
(lanbda (k)
(+2(k 3)))))

the rest of the program, from the point of view of thecal | / cc-application, is the following program-
with-a-hole (with [] representing the hole):

(+11])
In other words, this continuation is a program that will add 1 to whatever is used to fill its hole.

Thisiswhat the argument of cal | / cc iscalled with. Remember that the argument of cal | / cc is

the procedure
(lanmbda (k)
(+ 2 (k 3)))

This procedure's body applies the continuation (bound now to the parameter k) to the argument 3. This
is when the unusual aspect of the continuation springs to the fore. The continuation call abruptly
abandons its own computation and replaces it with the rest of the program saved in k! In other words,
the part of the procedure involving the addition of 2 isjettisoned, and k's argument 3 is sent directly to

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-15.html (1 of 8)11/3/2006 8:50:34 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days
the program-with-the-hole:

(+11[])

The program now running is simply
(+ 1 3)

which returns 4. In sum,

(+ 1 (call/cc
(1 anmbda (k)

(+ 2 (k 3)))))
= 4

The above illustrates what is called an escaping continuation, one used to exit out of a computation
(here:the(+ 2 []) computation). Thisisauseful property, but Scheme's continuations can also be
used to return to previously abandoned contexts, and indeed to invoke them many times. The " rest of
the program" enshrined in a continuation is available whenever and how many ever times we choose to
recall it, and thisis what contributes to the great and sometimes confusing versatility of cal | / cc. As
aquick example, type the following at the listener:

(define r #f)
(+ 1 (call/cc
(lambda (k)
(set! r k)
(+ 2 (k 3)))))
= 4

The latter expression returns 4 as before. The difference between thisuse of cal | / cc and the
previous example is that here we also store the continuation k in aglobal variabler .

Now we have a permanent record of the continuationinr . If we call it on anumber, it will return that
number incremented by 1:

(r 5)
=> 6

Note that r will abandon its own continuation, which is better illustrated by embedding the call tor
inside some context:

(+ 3 (r 95))
=> 6

The continuations provided by cal | / cc are thus abortive continuations.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-15.html (2 of 8)11/3/2006 8:50:34 PM

Teach Yourself Scheme in Fixnum Days

13.2 Escaping continuations

Escaping continuations are the ssimplest use of cal | / cc and are very useful for programming
procedure or loop exits. Consider aprocedurel i st - pr oduct that takesalist of numbers and
multiplies them. A straightforward recursive definition for | i st - pr oduct is:

(define Iist-product
(lanbda (s)
(let recur ((s s))
(if (null?s) 1
(* (car s) (recur (cdr s)))))))

Thereis aproblem with this solution. If one of the elementsin thelist is0, and if there are many
elements after O inthe list, then the answer is aforegone conclusion. Y et, the code will have us go
through many fruitless recursive callsto r ecur before producing the answer. Thisis where an escape
continuation comesin handy. Using cal | / cc, we can rewrite the procedure as:

(define Iist-product
(lanbda (s)
(call/cc
(lanbda (exit)
(let recur ((s s))
(if (null?s) 1
(if (= (car s) 0) (exit 0)
(* (car s) (recur (cdr s))))))))))

If a0 element is encountered, the continuation exi t is called with O, thereby avoiding further calls to
recur.

13.3 Tree matching

A moreinvolved example of continuation usage is the problem of determining if two trees (arbitrarily
nested dotted pairs) have the same fringe, ie, the same elements (or leaves) in the same sequence. Eg,

(same-fringe? '"(1 (2 3)) '"((1 2) 3))
=> #t

(sanme-fringe? '(1 2 3) '"(1 (3 2)))
=> #f

The purely functional approach isto flatten both trees and check if the results match.

(define same-fringe?
(lanbda (treel tree2)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-15.html (3 of 8)11/3/2006 8:50:34 PM

Teach Yourself Scheme in Fixnum Days

(let lToop ((ftreel (flatten treel))
(ftree2 (flatten tree2)))
(cond ((and (null? ftreel) (null? ftree2)) #t)
((or (null? ftreel) (null? ftree2)) #f)
((eqv? (car ftreel) (car ftree2))
(loop (cdr ftreel) (cdr ftree2)))
(el'se #)))))

(define flatten
(I anbda (tree)
(cond ((null? tree) "())
((pair? (car tree))
(append (flatten (car tree))
(flatten (cdr tree))))
(el se
(cons (car tree)
(flatten (cdr tree)))))))

However, this traverses the trees completely to flatten them, and then again till it finds non-matching
elements. Furthermore, even the best flattening algorithms will require conses equal to the total
number of leaves. (Destructively modifying the input trees is not an option.)

We canusecal | / cc to solve the problem without needless traversal and without any consing. Each
tree is mapped to a generator, a procedure with internal state that successively produces the leaves of

the tree in the left-to-right order that they occur in the tree.

(define tree->generator
(lanbda (tree)
(let ((caller "*))
(letrec
((generat e-1 eaves
(lambda ()
(let loop ((tree tree))
(cond ((null? tree) 'skip)
((pair? tree)
(loop (car tree))
(loop (cdr tree)))
(el se
(call/cc
(lanbda (rest-of-tree)
(set! generate-| eaves
(lambda ()
(rest-of-tree 'resune)))
(caller tree))))))
(caller "()))))
(lanbda ()
(call/cc

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-15.html (4 of 8)11/3/2006 8:50:34 PM

Teach Yourself Scheme in Fixnum Days

(1 anmbda (k)
(set! caller k)
(generate-leaves))))))))

When a generator created by t r ee- >gener at or iscalled, it will store the continuation of itscall in
cal | er, sothat it can know who to send the leaf to when it findsit. It then calls an internal procedure
called gener at e- | eaves which runs aloop traversing the tree from left to right. When the loop
encounters aleaf, it will usecal | er toreturn the leaf as the generator's result, but it will remember
to store the rest of the loop (captured asacal | / cc continuation) inthe gener at e- | eaves
variable. The next time the generator is called, the loop is resumed where it left off so it can hunt for
the next leaf.

Note that the last thing gener at e- | eaves does, after the loop is done, isto return the empty list to
thecal | er. Sincethe empty list isnot avalid leaf value, we can useit to tell that the generator has
no more leaves to generate.

The procedure sane- f r i nge? maps each of its tree arguments to a generator, and then calls these
two generators aternately. It announces failure as soon as two non-matching leaves are found:

(define same-fringe?
(lanmbda (treel tree2)
(let ((genl (tree->generator treel))
(gen2 (tree->generator tree2)))
(let loop ()
(let ((leafl (genl))
(leaf2 (gen2)))
(if (eqv? leafl |eaf?2)
(if (null? leafl) #t (| oop))

#))))))

It is easy to see that the trees are traversed at most once, and in case of mismatch, the traversals extend
only upto the leftmost mismatch. cons is not used.

13.4 Coroutines

The generators used above are interesting generalizations of the procedure concept. Each time the
generator is caled, it resumesits computation, and when it has aresult for its caller returnsit, but only
after storing its continuation in an internal variable so the generator can be resumed again. We can
generalize generators further, so that they can mutually resume each other, sending results back and
forth amongst themselves. Such procedures are called coroutines [18].

We will view a coroutine as a unary procedure, whose body can containr esurne calls.r esune isa
two-argument procedure used by a coroutine to resume another coroutine with atransfer value. The
macro cor out i ne defines such a coroutine procedure, given a variable name for the coroutine's
initial argument, and the body of the coroutine.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-15.html (5 of 8)11/3/2006 8:50:34 PM

Teach Yourself Scheme in Fixnum Days

(define-macro coroutine
(lambda (x . body)
“(letrec ((+local-control-state
(lanmbda (, x) , @ody))
(resune
(lanmbda (c v)
(call/cc
(1 anbda (k)
(set! +local-control -state k)
(cv))))))
(lanmbda (v)
(+l ocal -control -state v)))))

A call of this macro creates a coroutine procedure (let's call it A) that can be called with one argument.
A hasaninternal variable called +| ocal - cont r ol - st at e that stores, at any point, the remaining
computation of the coroutine. Initially thisisthe entire coroutine computation. Whenr esune is
called -- ie, invoking another coroutine B -- the current coroutine will updateits+l ocal - contr ol -
st at e valueto therest of itself, stop itself, and then jump to the r esuned coroutine B. When
coroutine Aisitself r esuned at some later point, its computation will proceed from the continuation
stored inits+| ocal - control -state.

13.4.1 Tree-matching with coroutines

Tree-matching is further simplified using coroutines. The matching process is coded as a coroutine
that depends on two other coroutines to supply the leaves of the respective trees:

(define make-mat cher-coroutine
(lanbda (tree-cor-1 tree-cor-2)
(coroutine dont-need-an-init-arg
(let loop ()

(let ((leafl (resunme tree-cor-1 'get-a-leaf))

(leaf2 (resume tree-cor-2 'get-a-leaf)))
(if (eqv? leafl |eaf?2)

(if (null? leafl) #t (1 oop))
#t))))))

The leaf-generator coroutines remember who to send their leavesto:

(define nmake-1eaf-gen-coroutine
(lanbda (tree matcher-cor)
(coroutine dont-need-an-init-arg
(let loop ((tree tree))
(cond ((null? tree) 'skip)
((pair? tree)
(loop (car tree))
(loop (cdr tree)))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-15.html (6 of 8)11/3/2006 8:50:34 PM

Teach Yourself Scheme in Fixnum Days

(el se
(resume matcher-cor tree))))
(resume matcher-cor '()))))

Thesane-fri nge? procedure can now almost be written as

(define same-fringe?
(lanbda (treel tree2)
(letrec ((tree-cor-1
(make-| eaf - gen-corouti ne
treel
mat cher-cor))
(tree-cor-2
(make-| eaf - gen-corouti ne
tree2
mat cher-cor))
(mat cher-cor
(make- mat cher - corouti ne
tree-cor-1
tree-cor-2)))
(matcher-cor '"start-ball-rolling))))

Unfortunately, Scheme's| et r ec can resolve mutually recursive references amongst the lexical
variables it introduces only if such variable references are wrapped inside al anbda. And so we write:

(define sanme-fringe?
(lanbda (treel tree2)
(letrec ((tree-cor-1
(make-| eaf - gen-corouti ne
treel
(lanmbda (v) (matcher-cor v))))
(tree-cor-2
(make-| eaf - gen-corouti ne
tree2
(lambda (v) (matcher-cor v))))
(mat cher-cor
(make- mat cher-coroutine
(lanbda (v) (tree-cor-1 v))
(lambda (v) (tree-cor-2v)))))
(matcher-cor 'start-ball-rolling))))

Notethat cal | / cc isnot called directly at al in thisrewrite of sane- f ri nge?. All the
continuation manipulation is handled for us by the cor out i ne macro.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-15.html (7 of 8)11/3/2006 8:50:34 PM

Teach Yourself Scheme in Fixnum Days

§I1“your Scheme does not aready have this abbreviation, include (defi ne call/cc call -
wi t h-current-continuation) inyour initialization code and protect yourself from RSI.

[Gotofirst, previous, next page; contents;, index|

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-15.html (8 of 8)11/3/2006 8:50:34 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

[Gotofirst, previous, next page; contents, index|

Chapter 14

Nondeterminism

McCarthy's nondeterministic operator anb [25, 4, 33] isasold as Lisp itself, although it is present in no
Lisp. anmb takes zero or more expressions, and makes a nondeterministic (or " ambiguous”) choice among
them, preferring those choices that cause the program to converge meaningfully. Here we will explore an
embedding of anb in Scheme that makes a depth-first selection of the ambiguous choices, and uses
Scheme's control operator cal | / cc to backtrack for alternate choices. The result is an elegant
backtracking strategy that can be used for searching problem spaces directly in Scheme without recourse to
an extended language. The embedding recalls the continuation strategies used to implement Prolog-style
logic programming [16, 7], but is sparer because the operator provided is much like a Scheme boolean
operator, does not require special contexts for its use, and does not rely on linguistic infrastructure such as
logic variables and unification.

14.1 Description of anb

An accessible description of ant and many example uses are found in the premier Scheme textbook SICP
[1]. Informally, anmb takes zero or more expressions and nondeterministically returns the value of one of
them. Thus,

(anb 1 2)
may evaluateto 1 or 2.

anb called with no expressions has no value to return, and is considered to fail. Thus,

(anb)
-->ERROR!!! anmb tree exhausted

(We will examine the wording of the error message later.)

In particular, anb isrequired to return avalue if at least one its subexpressions converges, ie, doesn't fail.
Thus,

(amb 1 (anb))
and
(amb (anb) 1)

both return 1.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (1 of 9)11/3/2006 8:50:43 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

Clearly, anb cannot simply be equated to its first subexpression, since it has to return a non-failing value, if
thisisat al possible. However, thisis not all: The bias for convergence is more stringent than a merely local
choice of anb's subexpressions. anb should furthermore return that convergent value that makes the entire
program converge. In denotational parlance, anb isan angelic operator.

For example,
(amb #f #t)
may return either #f or #t , but in the program
(if (amb #f #t)
1

(anb))

the first anb-expression must return #t . If it returned #f , thei f 's else" branch would be chosen, which
causes the entire program to fail.

14.2 Implementing anb in Scheme

In our implementation of ant, we will favor anb's subexpressions from left to right. le, the first
subexpression is chosen, and if it leads to overall failure, the second is picked, and so on. anbs occurring
later in the control flow of the program are searched for alternates before backtracking to previous anbs. In
other words, we perform a depth-first search of the ant choice tree, and whenever we brush against failure,
we backtrack to the most recent node of the tree that offers a further choice. (Thisis called chronological
backtracking.)

We first define a mechanism for setting the base failure continuation:
(define anmb-fail '*)
(define initialize-anb-fail
(lambda ()
(set! anb-fail
(lanbda ()
(error "anb tree exhausted")))))

(initialize-anb-fail)

When anb fails, it invokes the continuation bound at thetimeto anb- f ai | . Thisisthe continuation
invoked when all the alternates in the anmb choice tree have been tried and were found to fail.

We define anb as a macro that accepts an indefinite number of subexpressions.

(defi ne-macro anb
(lanbda alts...

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (2 of 9)11/3/2006 8:50:43 PM

Teach Yourself Schemein Fixnum Days

“(let ((+prev-anb-fail anmb-fail))
(call/cc
(I anbda (+sk)

, @map (lanbda (alt)
“(call/cc
(1 anbda (+f k)
(set! anb-fail
(lanbda ()
(set! anb-fail +prev-anb-fail)
(+fk "fail)))
(+sk ,alt))))
alts...)

(+prev-anb-fail))))))

A cal to anb first storesaway, in +pr ev- anb-f ai | ,theanb-f ai | valuethat was current at the time
of entry. Thisisbecause the anb- f ai | variable will be set to different failure continuations as the various
alternates aretried.

We then capture the anb's entry continuation +sk, so that when one of the alternates evaluates to a non-
failing value, it can immediately exit the anb.

Each alternate al t istried in sequence (the implicit-begi n sequence of Scheme).

First, we capture the current continuation +f k, wrap it in a procedure and set anb- f ai | to that procedure.
The alternateisthen evaluated as (+sk al t) . If al t evaluates without failure, its return valueisfed to
the continuation +sk, which immediately exitsthe anb call. If al t fails, it callsanb-f ai | . The first duty
of anb-fail istoresetanb-f ai | tothevaueit had at the time of entry. It then invokes the failure
continuation +f k, which causes the next alternate, if any, to be tried.

If all alternatesfail, theanb- f ai | at anb entry, which we had stored in +pr ev- anb-f ai | , iscalled.

14.3 Using anb in Scheme

To choose a number between 1 and 10, one could say
(amb 1 2 34567 89 10)

To be sure, as a program, thiswill give 1, but depending on the context, it could return any of the mentioned
numbers.

The procedure nunber - bet ween isamore abstract way to generate numbersfrom agiven| o to agiven
hi (inclusive):

(defi ne nunber-bet ween
(lambda (1o hi)
(let loop ((i 10))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (3 of 9)11/3/2006 8:50:43 PM

Teach Yourself Schemein Fixnum Days

(if (>i hi) (anb)
(amb i (loop (+1i 1)))))))

Thus (nunber - bet ween 1 6) will first generate 1. Should that fail, the |l oop iterates, producing 2.
Should that fail, we get 3, and so on, until 6. After 6, | oop is called with the number 7, which being more
than 6, invokes (anb) , which causesfinal failure. (Recall that (anb) by itself guaranteesfailure.) At this
point, the program containing the call to (nunber - bet ween 1 6) will backtrack to the chronologically
previous anb-call, and try to satisfy that call in another fashion.

The guaranteed failure of (anmb) can be used to program assertions.

(define assert
(lanbda (pred)
(if (not pred) (anb))))

Thecal (assert pred) insststhat pr ed betrue. Otherwiseit will cause the current anb choice point
to fail £

Hereisaprocedure using assert that generates a prime less than or equal to its argument hi :

(define gen-prine
(lambda (hi)
(let ((i (nunber-between 2 hi)))
(assert (prinme? i))

1)))

This seems devilishly simple, except that when called as a program with any number (say 20), it will
produce the uninteresting first solution, ie, 2.

We would certainly like to get all the solutions, not just the first. In this case, we may want all the primes
below 20. One way isto explicitly call the failure continuation left after the program has produced its first
solution. Thus,

(amb)
=> 3

This leaves yet another failure continuation, which can be called again for yet another solution:

(anb)
=> 5

The problem with this method is that the program isinitially called at the Scheme prompt, and successive
solutions are also obtained by calling anb at the Scheme prompt. In effect, we are using different programs
(we cannot predict how many!), carrying over information from a previous program to the next. Instead, we
would like to be able to get these solutions as the return value of aform that we can call in any context. To
this end, we define the bag- of macro, which returns all the successful instantiations of its argument. (If
the argument never succeeds, bag- of returnsthe empty list.) Thus, we could say,

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (4 of 9)11/3/2006 8:50:43 PM

Teach Yourself Schemein Fixnum Days

(bag- of
(gen-prine 20))

and it would return
(2 357 11 13 17 19
Thebag- of macroisdefined asfollows:

(defi ne-macro bag- of
(I anbda (e)
“(let ((+prev-anb-fail anb-fail)
(+results "()))
(if (calll/cc
(lambda (+k)
(set! amb-fail (lambda () (+k #f)))
(Fet ((+v ,e))
(set! +results (cons +v +results))
(+k #t))))
(amb-fail))
(set! anmb-fail +prev-anb-fail)
(reverse! +results))))

bag- of first savesaway itsentry anb- f ai | . It redefinesanb- f ai | toalocal continuation +k created
withinani f -test. Inside the test, thebag- of argument e is evaluated. If e succeeds, itsresult is collected
into alist called +r esul t s, and the local continuation is called with the value #t . This causesthei f -test
to succeed, causing e to beretried at its next backtrack point. More results for e are obtained this way, and
they are all collected into +r esul t s.

Finally, when e fails, it will call the base anb- f ai | , whichissimply acall to the local continuation with

the value #f . This pushes control past thei f . Werestoreanb- f ai | to its pre-entry value, and return the
+resul ts.(Therever se! issimply to produce the results in the order in which they were generated.)

14.4 Logic puzzles

The power of depth-first search coupled with backtracking becomes obvious when applied to solving logic
puzzles. These problems are extraordinarily difficult to solve procedurally, but can be solved concisely and
declaratively with anb, without taking anything away from the charm of solving the puzzle.

14.4.1 The Kalotan puzzle

The Kalotans are atribe with a peculiar qui rk.2 Their males awaystell the truth. Their females never make
two consecutive true statements, or two consecutive untrue statements.

An anthropologist (let's call him Worf) has begun to study them. Worf does not yet know the Kalotan
language. One day, he meets a Kalotan (heterosexual) couple and their child Kibi. Worf asks Kibi: “"Are
you aboy?" Kibi answersin Kalotan, which of course Worf doesn't understand.

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (5 of 9)11/3/2006 8:50:43 PM

Teach Yourself Schemein Fixnum Days

Worf turns to the parents (who know English) for explanation. One of them says. " Kibi said: '| am aboy.""

The other adds: “"Kibi isagirl. Kibi lied."

Solve for the sex of the parents and Kibi.

The solution consists in introducing a bunch of variables, alowing them to take a choice of values, and
enumerating the conditions on them as a sequence of assert expressions.

Thevariables: par ent 1, par ent 2, and ki bi are the sexes of the parents (in order of appearance) and
Kibi; ki bi - sel f - desc isthe sex Kibi claimed to be (in Kalotan); ki bi - | i ed? isthe boolean on
whether Kibi'sclamwasalie.

(define sol ve-kal ot an-puzzl e
(lanmbda ()
(let ((parentl (anb "'m'f))
(parent2 (amb "m"'f))
(kibi (amb "m"'f))
(ki bi-self-desc (amb "m"'f))
(kibi-lied? (amb #t #f)))
(assert
(distinct? (list parentl parent2)))
(assert
(if (eqv? kibi 'm
(not kibi-lied?)))
(assert
(if Kibi-1ied?
(xor
(and (eqv? kibi-self-desc 'm
(eqv? kibi "f))
(and (eqv? kibi-self-desc 'f)
(eqv? kibi "m))))
(assert

(if (not kibi-lied?)
(xor
(and (eqv? kibi-self-desc 'm
(egqv? kibi '"m)
(and (eqv? kibi-self-desc 'f)
(eqv? kibi "f)))))

(assert

(if (eqv? parentl 'm
(and
(eqv? Kkibi-self-desc 'm
(xor

(and (eqv? kibi 'f)

(eqv? kibi-lied? #f))
(and (eqv? kibi 'm

(eqv? Kibi-lied? #t))))))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (6 of 9)11/3/2006 8:50:43 PM

Teach Yourself Schemein Fixnum Days

(assert
(if (eqv? parentl 'f)
(and

(eqv? kibi 'f)

(eqv? kibi-lied? #t))))
(list parentl parent2 kibi))))
A note on the helper procedures: The procedure di st i nct ? returnstrueif all the elementsin its argument
list are distinct, and false otherwise. The procedure xor returnstrue if only one of itstwo argumentsistrue,
and false otherwise.

Typing (sol ve- kal ot an- puzzl e) will solvethe puzzle.

14.4.2 Map coloring

It has been known for some time (but not proven until 1976 [29]) that four colors suffice to color a

terrestrial map -- ie, to color the countries so that neighbors are distinguished. To actually assign the colors
is still an undertaking, and the following program shows how nondeterministic programming can help.

The following program solves the problem of coloring a map of Western Europe. The problem and a Prolog
solution are given in The Art of Prolog [31]. (It isinstructive to compare our solution with the book's.)

The procedure choose- col or nondeterministically returns one of four colors:

(define choose-col or
(lambda ()
(amb 'red "yellow 'blue "white)))

In our solution, we create for each country a data structure. The data structure is a 3-element list: The first
element of thelist isthe country's name; the second element is its assigned color; and the third element is

the colors of its neighbors. Note we use the initial of the country for its color variabl el Eg, thelist for
Belgiumis(list "belgiumb (list f h | g)), because-- perthe problem statement -- the
neighbors of Belgium are France, Holland, Luxembourg, and Germany.

Once we create the lists for each country, we state the (single!) condition they should satisfy, viz, no
country should have the color of its neighbors. In other words, for every country list, the second element
should not be a member of the third element.

(define col or-europe
(lanbda ()

; choose colors for each country
(let ((p (choose-color)) ;Portugal
(e (choose-color)) ; Spain
(f (choose-color)) ;France
(b (choose-color)) ;Belgium
(h (choose-color)) ;Holland
(g (choose-color)) ; Gernany

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (7 of 9)11/3/2006 8:50:43 PM

Teach Yourself Schemein Fixnum Days

(I (choose-color)) ;Luxenb
(i (choose-color)) ;ltaly
(s (choose-color)) ;Switz
(a (choose-color)) ;Austria

)

;construct the adjacency list for
;each country: the 1st elenent is
;the nane of the country; the 2nd
;element is its color; the 3rd
;element is the list of its
: nei ghbors' col ors
(let ((portugal

(l'ist '"portugal p

(list e)))
(spain
(list '"spain e
(list f p)))
(france

(list "france f

(list ei sbgl)))
(bel gi um
(list "belgiumb

(list f h1l g)))

(hol I and

(l'ist "holland h
(list bg)))

(ger many

(list "germany g

(list f ashbl)))
(luxenbourg
(l'ist '"luxenmbourg |

(list f b g)))
(italy
(list "italy i
(list f as)))
(switzerl and
(list "swtzerland s
(list i ag)))
(austria
(list "austria a
(list i s9))))
(let ((countries
(l'ist portugal spain
france bel gi um
hol | and ger many
| uxembour g
italy switzerland
austria)))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (8 of 9)11/3/2006 8:50:43 PM

Teach Yourself Schemein Fixnum Days

;the color of a country
; shoul d not be the col or of
;any of its neighbors
(for-each
(lanbda (c)

(assert

(not (menmg (cadr c)

(caddr c)))))
countries)

;output the col or
; assi gnnent

(for-each

(lanmbda (c)
(display (car c))
(display " ")
(display (cadr c))
(new i ne))

countries))))))

Type(col or - eur ope) to get acolor assignment.

7 SICP names this procedurer equi r e. We use theidentifier assert inorder to avoid confusion with the

popular if informal use of theidentifier r equi r e for something else, viz, an operator that |oads code
modules on a per-need basis.

8 This puzzle is dueto Hunter [19].
9 Spain (Espaia) has e so as not to clash with Switzerland.

[Go tofirst, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-16.html (9 of 9)11/3/2006 8:50:43 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

[Go tofirst, previous, next page; contents; index]

Chapter 15

Engines

An engine [17] represents computation that is subject to timed preemption. In other words, an engine's underlying
computation is an ordinary thunk that runs as a timer-preemptable process.

An engineis called with three arguments: (1) a number of time units or ticks, (2) a success procedure, and (3) afailure
procedure. If the engine computation finishes within the allotted ticks, the success procedure is applied to the
computation result and the remaining ticks. If the engine computation could not finish within the allotted ticks, the
failure procedure is applied to a new engine representing the unfinished portion of the engine computation.

For example, consider an engine whose underlying computation is aloop that printed the nonnegative integersin
sequence. It is created as follows, with the soon-to-be-defined make- engi ne procedure. make- engi ne iscalled on
an argument thunk representing the underlying computation, and it returns the corresponding engine:

(define printn-engine
(make- engi ne

(lambda ()
(let lToop ((i 0))
(display i)
(display " ")

(loop (+1i 1))))))

Hereisacal topri nt n- engi ne:

(define *nore* #f)
(printn-engine 50 list (lanbda (ne) (set! *nore* ne)))
=> 01234567829

le, the loop gets to print upto a certain number (here 9) and then fails because of the clock interrupt. However, our
failure procedure sets aglobal variable called * nor e* to the failed engine, which we can use to resume the loop where
the previous engine left off:

(*more* 50 list (lanbda (ne) (set! *nore* ne)))
=> 10 11 12 13 14 15 16 17 18 19

We will now construct enginesusing cal | / cc to capture the unfinished computation of afailing engine. First we will
construct flat engines, or engines whose computation cannot include the running of other engines. We will later
generalize the code to the more general nestable engines or nesters, which can call other engines. But in both cases, we
need a timer mechanism, or a clock.

15.1 The clock

Our engines assume the presence of aglobal clock or interruptable timer that marks the passage of ticks as a program
executes. We will assume the following clock interface -- if your Scheme provides any kind of alarm mechanism, it
should be an easy matter to rig up aclock of the following type. (Appendix D defines aclock for the Guile [13] dialect

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-17.html (1 of 5)11/3/2006 8:50:48 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

of Scheme.)

Theinternal state of our cl ock procedure consists of two items:

(2) the number of remaining ticks; and

(2) an interrupt handler to be invoked when the clock runs out of ticks.

cl ock alowsthe following operations.

(1) (cl ock ' set-handl er h) setstheinterrupt handler to h.

(2) (cl ock " set n) resetsthe clock's remaining ticksto n, returning the previous value.

The number of ticks ranges over the non-negative integers and an atom called *i nf i ni t y*. A clock with
i nfinity tickscannot run out of time and so will not set off the interrupt handler. Such aclock is quiescent or
“aready stopped”. To stop aclock, setitsticksto*i nfini ty*.

The clock handler is set to athunk. For example,

(clock 'set-handl er
(lambda ()
(error "Say goodnight, cat!")))

(clock "set 9)

Thiswill cause an error to be signaled after 9 ticks have passed, and the message displayed by the signal will be " Say
goadnight, cat!"

15.2 Flat engines

We will first set the clock interrupt handler. Note that the handler isinvoked only if a non-quiescent clock runs out of
ticks. This happens only during engine computations that are on the brink of failure, for only engines set the clock.

The handler captures the current continuation, which is the rest of the computation of the currently failing engine. This
continuation is sent to another continuation stored in the global * engi ne- escape*. The*engi ne- escape*
variable stores the exit continuation of the current engine. Thus the clock handler captures the rest of the failing engine
and sendsiit to an exit point in the engine code, so the requisite failure action can be taken.

(defi ne *engi ne-escape* #f)
(define *engi ne-entrance* #f)

(clock 'set-handler
(I anbda ()
(call/cc *engi ne-escape*)))

Let us now look into the innards of the engine code itself. As said, make- engi ne takes athunk and fashions an engine
out of it:

(define make-engi ne

(lambda (th)
(lambda (ticks success failure)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-17.html (2 of 5)11/3/2006 8:50:48 PM

Teach Yourself Schemein Fixnum Days

(let* ((ticks-left 0)
(engi ne- succeeded? #f)
(result
(call/cc
(1 anbda (k)
(set! *engi ne-escape* k)
(let ((result
(call/cc
(I anbda (k)
(set! *engine-entrance* k)
(clock '"set ticks)
(let ((v (th)))
(*engi ne-entrance* v))))))
(set! ticks-left (clock "set *infinity*))
(set! engi ne-succeeded? #t)
result)))))
(i f engi ne-succeeded?
(success result ticks-left)

(failure
(make- engi ne
(lanbda ()

(result 'resune)))))))))

First weintroduce the variablest i cks-1 eft and engi ne- succeeded?. Thefirst will hold the ticks left over
should the engine thunk finish in time. The second is aflag that will be used in the engine code to signal if the engine
suceeded.

We then run the engine thunk within two nested callstocal | / cc. Thefirstcal | / cc captures the continuation to be
used by afailing engine to abort out of its engine computation. This continuation is stored in the global * engi ne-
escape*. Thesecond cal | / cc captures an inner continuation that will be used by the return value of the thunk t h if
it runs to completion. This continuation is stored in the global * engi ne- ent r ance*.

Running through the code, we find that after capturing the continuations * engi ne- escape* and * engi ne-

ent r ance*, we set the clock's ticks to the time allotted this engine and run the thunk t h. If t h succeeds, itsvaluev is
sent to the continuation * engi ne- ent r ance*, after which the clock is stopped, the remaining ticks ascertained, and
theflag engi ne- succeeded? isset to true. We now go past the * engi ne- escape* continuation, and run the
final dispatcher in the code: Since we know the engine succeeded, we apply the success procedure to the result and
the ticks left.

If thethunk t h didn't finish in time though, it will suffer an interrupt. This invokes the clock interrupt handler, which
captures the current continuation of the running and now failing thunk and sendsit to the continuation * engi ne-
escape*. This puts the failed-thunk continuation in the outer r esul t variable, and we are now in the final dispatcher
in the code: Sinceengi ne- succeeded? isstill false, we apply thef ai | ur e procedure to new engine fashioned out
ofresul t.

Notice that when afailed engine isremoved, it will traverse the control path charted by the first run of the original
engine. Nevertheless, because we have explicitly use the continuations stored in the global variables* engi ne-
entrance* and*engi ne- escape*, and we always set them anew before executing an engine computation, we are
assured that the jumps will always come back to the currently executing engine code.

15.3 Nestable engines

In order to generalize the code above to accommodate the nestable type of engine, we need to incorporate into it some

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-17.html (3 of 5)11/3/2006 8:50:48 PM

Teach Yourself Schemein Fixnum Days

tick management that will take care of the apportioning of the right amounts of ticks all the enginesin a nested run.

To run anew engine (the child), we need to stop the currently engine (the parent). We then need to assign an appropriate
number of ticks to the child. This may not be the same as the ticks assigned by the program text, because it would be
unfair for achild to consume more ticks than its parent has |eft. After the child completes, we need to update the parent's
ticks. If the child finished in time, any leftover ticks it has revert to the parent. If ticks were denied from the child
because the parent couldn't afford it, then if the child fails, the parent will fail too, but must remember to restart the child
with its promised ticks when it (the parent) restarts.

Wealsoneedtof | ui d- | et theglobas*engi ne- escape* and *engi ne- ent r ance*, because each nested
engine must have its own pair of these sentinel continuations. As an engine exits (whether through success or failure),
thef | ui d- | et will ensure that the next enclosing engine's sentinels take over.

Combining all this, the code for nestable engines looks as follows:

(define make-engi ne
(lambda (th)
(lambda (ticks s f)
(let* ((parent-ticks
(clock "set *infinity*))

;A child can't have nore ticks than its parent's
; remai ning ticks

(chil d-avail abl e-ticks

(clock-min parent-ticks ticks))

;A child s ticks nust be counted agai nst the parent
;too
(parent-ticks-left

(cl ock-m nus parent-ticks child-avail abl e-ticks))

;1 f child was prom sed nore ticks than parent could
;afford, remenber how nuch it was short-changed by
(child-ticks-1left

(clock-mnus ticks child-available-ticks))

:Used below to store ticks left in clock
;1f child conpletes in tine
(ticks-left 0)

(engi ne- succeeded? #f)

(result
(fluid-let ((*engine-escape* #f)
(*engi ne-entrance* #f))
(call/cc
(lambda (k)
(set! *engi ne-escape* k)
(let ((result
(call/cc
(lambda (k)
(set! *engi ne-entrance* k)
(clock '"set child-avail able-ticks)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-17.html (4 of 5)11/3/2006 8:50:48 PM

Teach Yourself Schemein Fixnum Days

(et ((v (th)))

(*engi ne-entrance* v))))))
(set! ticks-left
(let ((n (clock "set *infinity*)))
(if (eqv? n *infinity*) 0 n)))
(set! engi ne-succeeded? #t)

result))))))

:Parent can reclaimticks that child didn't need
(set! parent-ticks-left
(cl ock-plus parent-ticks-left ticks-left))

;This is the true ticks that child has left --
;we include the ticks it was short-changed by
(set! ticks-left

(clock-plus child-ticks-left ticks-left))

;Restart parent with its remaining ticks
(clock '"set parent-ticks-left)
; The rest is now parent conputation

(cond
:Child finished in time -- celebrate its success
(engi ne-succeeded? (s result ticks-left))

;Child fail ed because it ran out of promised tine --
;call failure procedure

((= ticks-left 0)

(f (make-engine (lanbda () (result 'resune)))))

;Child fail ed because parent didn't have enough tine,

;1e, parent failed too. |If so, when parent is

;resuned, its first order of duty is to resune the

;child with its fair anmount of ticks

(el se

((make-engine (lanbda () (result 'resune)))
ticks-left s f)))))))

Note that we have used the arithmetic operatorscl ock- ni n, cl ock- m nus, and cl ock- pl us instead of mi n, -,
and +. Thisis because the values used by the clock arithmetic includes* i nf i ni t y* in addition to the integers. Some

Scheme dialects providean *i nfi ni t y* valuein their arithmeticl® -- if so, you can use the regular arithmetic
operators. If not, it is an easy exercise to define the enhanced operators.

@Eg,inGuiIe,youcan(define *infinity* (/ 1 0)).

[Gotofirst, previous, next page; contents; index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-17.html (5 of 5)11/3/2006 8:50:48 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

[Gotofirst, previous, next page; contents, index]

Chapter 16

Shell scripts

It is often convenient to simply write what one wants done into afile or script, and execute the script as though it were
any other operating-system shell command. The interface to more weighty programsis often provided in the form of a
script, and users frequently build their own scripts or customize existing ones to suit particular needs. Scripting is

arguably the most frequent programming task performed. For many users, it is the only programming they will ever do.

Operating systems such as Unix and DOS (the command-line interface provided in Windows) provide such a scripting
mechanism, but the scripting language in both casesis very rudimentary. Often a script isjust a sequence or batch of
commands that one would type to the shell prompt. It saves the user from having to type every one of the shell
commands individually each time they require the same or similar sequence to be performed. Some scripting
languages throw in a small amount of programmability in the form of a conditional and aloop, but that is about all.
Thisis enough for smallish tasks, but as one's scripts become bigger and more demanding, as scripts invariably seem
to do, one often feels the need for afuller fledged programming language. A Scheme with an adequate operating-
system interface makes scripting easy and maintainable.

This section will describe how to write scripts in Scheme. Since there is wide variation in the various Scheme dial ects
on how to accomplish this, we will concentrate on the MzScheme dialect, and document in appendix A the

maodifications needed for other dialects. We will also concentrate on the Unix operating system for the moment;
appendix B will deal with the DOS counterpart.

16.1 Hello, World!, again

We will now create a Scheme script that says hello to the world. Saying hello is of course not a demanding scripting
problem for traditional scripting languages. However, understanding how to transcribe it into Scheme will launch us
on the path to more ambitious scripts. First, a conventional Unix hello script is afile, with contents that look like:

echo Hell o, World!
It uses the shell command echo. The script can be named hel | 0, made into an executable by doing
chnod +x hello
and placed in one of the directories named in the PATH environment variable. Thereafter, anytime one types
hel | o
at the shell prompt, one promptly gets the insufferable greeting.
A Scheme hello script will perform the same output using Scheme (using the program in sec 1), but we need
something in the file to inform the operating system that it needs to construe the commands in the file as Scheme, and

not asits default script language. The Scheme script file, also called hel | o, lookslike:

exec neschene -r $0 "$@

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-18.html (1 of 4)11/3/2006 8:50:56 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

(display "Hello, World!'")

(new i ne))
Everything following the first line is straight Scheme. However, thefirst line is the magic that makes this into a script.
When the user types hel | o at the Unix prompt, Unix will read the file as aregular script. Thefirst thing it seesisthe
": ", whichisashell no-op. The; isthe shell command separator. The next shell command istheexec. exec tells
Unix to abandon the current script and runneschene -r $0 " $@ instead, where the parameter $0 will be
replaced by the name of the script, and the parameter " $@ will be replaced by the list of arguments given by the user
to the script. (In this case, there are no such arguments.)
We have now, in effect, transformed the hel | o shell command into a different shell command, viz,

nescheme -r /whereveritis/hello
where/ wher everi ti s/ hel | o isthe pathname of hel | o.
neschene callsthe MzScheme executable. The - r option tellsit to load the immediately following argument as a
Scheme file after collecting any succeeding argumentsinto avector called ar gv. (In this example, ar gv will be the

null vector.)

Thus, the Scheme script will be run as a Scheme file, and the Scheme formsin the file will have access to the script's
original arguments viathe vector ar gv.

Now, Scheme has to tackle the first line in the script, which as we've already seen, was really awell-formed,
traditional shell script. The" : " isaself-evaluating string in Scheme and thus harmless. The *; ' marks a Scheme
comment, and so theexec ... issafely ignored. Therest of thefileis of course straight Scheme, and the
expressions therein are evaluated in sequence. After all of them have been evaluated, Scheme will exit.

In sum, typing hel | o at the shell prompt will produce
Hel l o, Worl d!

and return you to the shell prompt.

16.2 Scripts with arguments

A Scheme script uses the variable ar gv to refer to its arguments. For example, the following script echoes all its
arguments, each on aline:

exec nezschene -r $0 "$@
; Put in argv-count the nunmber of argunents supplied
(define argv-count (vector-length argv))

(let Toop ((i 0))

(unless (>= i argv-count)
(display (vector-ref argv i))
(new ine)

(loop (+ i 1))))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-18.html (2 of 4)11/3/2006 8:50:56 PM

Teach Yourself Schemein Fixnum Days

Let'scal thisscript echoal | . Callingechoal | 1 2 3 will display

1
2
3

Note that the script name (" echoal | ") is not included in the argument vector.

16.3 Example

Let's now tackle amore substantial problem. We need to transfer files from one computer to another and the only
method we have isto use a3.5" floppy asaferry. Weneed ascript spl i t 4f | oppy that will split files larger than
1.44 million bytes into floppy-sized chunks. The script filespl i t 4f | oppy isasfollows:

":":-exec nezscheme -r $0 "$@

; Tl oppy-size = nunber of bytes that will confortably fit on a
; 3.5" floppy

(define floppy-size 1440000)

;split splits the bigfile f into the smaller, floppy-sized
;subfiles, viz, subfile-prefix.1, subfile-prefix.2, etc.

(define split
(lanmbda (f subfile-prefix)
(call-with-input-file f
(lanbda (i)
(let loop ((n 1))
(if (copy-to-floppy-sized-subfile i subfile-prefix n)
(loop (+ n 1))))))))

; copy-to-fl oppy-sized-subfile copies the next 1.44 mllion
;bytes (if there are less than that many bytes left, it
;copies all of them) fromthe big file to the nth

s subfile. Returns true if there are bytes left over,
otherwi se returns fal se.

(define copy-to-fl oppy-sized-subfile
(lanmbda (i subfile-prefix n)
(let ((nth-subfile (string-append subfile-prefix "."
(nunber->string n))))
(if (file-exists? nth-subfile) (delete-file nth-subfile))
(call-with-output-file nth-subfile
(lambda (0)
(let Toop ((k 1))
(let ((c (read-char i)))
(cond ((eof-object? c) #f)
(el se
(wite-char ¢ 0)
(if (< k floppy-size)
(loop (+ k 1))
#t))))))))))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-18.html (3 of 4)11/3/2006 8:50:56 PM

Teach Yourself Schemein Fixnum Days

;bigfile script's first arg

= the file that needs splitting
(define bigfile (vector-ref argv 0))

;subfile-prefix = script's second arg
; = the basenane of the subfiles

(define subfile-prefix (vector-ref argv 1))

;Call split, making subfile-prefix.{1,2,3,...} from
cbigfile

(split bigfile subfile-prefix)
Script spl i t 4f | oppy iscaled asfollows:
splitafl oppy largefile chunk
Thissplits| ar gefi | e into subfileschunk. 1, chunk. 2, ..., such that each subfile fits on a floppy.

After thechunk. i have been ferried over to the target computer, thefilel ar gef i | e can be retrieved by stringing
thechunk. i together. This can be done on Unix with:

cat chunk.1 chunk.2 ... > largefile
and on DOS with:
copy /b chunk. 1+chunk. 2+... largefile

[Gotofirst, previous, next page; contents; index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-18.html (4 of 4)11/3/2006 8:50:56 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Y ourself Schemein Fixnum Days

[Gotofirst, previous, next page; contents; index

Chapter 17

CGl scripts

(Warning: CGI scripts without appropriate safeguards can compromise your site's security. The scripts presented here are ssimple
examples and are not assured to be secure for actual Web use.)

CGil scripts [27] are scripts that reside on aweb server and can be run by aclient (browser). The client accesses a CGl script by its
URL, just as they would aregular page. The server, recognizing that the URL requested isa CGl script, runsit. How the server
recognizes certain URLSs as scriptsis up to the server administrator. For the purposes of this text, we will assume that they are stored
in adistinguished directory called cgi - bi n. Thus, the scriptt est cgi . scmon the server www. f 00. or g would be accessed as
http://ww. foo.org/cgi-bin/testcgi.scm

The server runs the CGI script as the user nobody, who cannot be expected to have any PATH knowledge (which is highly
subjective anyway). Therefore the introductory magic line for a CGI script written in Scheme needs to be a bit more explicit than the
one we used for ordinary Scheme scripts. Eg, theline

":":exec neschene -r $0 "$@

implicitly assumes that thereis a particular shell (bash, say), and that thereis a PATH, and that neschene isin it. For CGlI scripts,
we will need to be more expansive:

#!/ bi n/ sh
":":exec /usr/local/bin/neschene -r $0 "$@

This gives fully qualified pathnames for the shell and the Scheme executable. The transfer of control from shell to Scheme proceeds
asfor regular scripts.

17.1 Example: Displaying environment variables

Here is an example Scheme CGI script, t est cgi . scm that outputs the settings of some commonly used CGI environment
variables. Thisinformation isreturned as a new, freshly created, page to the browser. The returned page is simply whatever the CGlI
script writesto its standard output. Thisis how CGI scripts talk back to whoever called them -- by giving them a new page.
Note that the script first outputsthe line

content-type: text/plain
followed by a blank line. Thisis standard ritual for aweb server serving up a page. These two lines aren't part of what is actually

displayed as the page. They are there to inform the browser that the page being sent is plain (ie, un-marked-up) text, so the browser
can display it appropriately. If we were producing text marked up in HTML, thecont ent - t ype would bet ext / ht m .

Thescriptt est cgi . scm

#!1/bin/sh
":";exec /usr/local/bin/nmschene -r $0 "$@

;ldentify content-type as plain text.

(display "content-type: text/plain") (newine)
(new i ne)

http://www.ccs.neu.eduw/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (1 of 9)11/3/2006 8:51:05 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Y ourself Schemein Fixnum Days

; Generate a page with the requested info. This is
;done by sinply witing to standard out put.

(for-each
(lanmbda (env-var)
(di splay env-var)

(display " =")
(display (or (getenv env-var) ""))
(new ine))

" (" AUTH_TYPE"

" CONTENT _LENGTH"

" CONTENT_TYPE"

" DOCUMENT _ROOT"

" GATEWAY_| NTERFACE"
" HTTP_ACCEPT"
"HTTP_REFERER' ; [sic]
"HTTP_USER_AGENT"

" PATH_ | NFO'

" PATH_TRANSLATED"

" QUERY_STRI NG'

" REMOTE_ADDR"

" REMOTE_HOST"

" REMOTE_| DENT"

" REMOTE_USER"

" REQUEST METHOD"

" SCRI PT_NAMVE"

" SERVER NAVE"

" SERVER_PORT"

" SERVER PROTOCOL"

" SERVER_SOFTWARE"))

t est cgi . scmcan be called directly by opening it on abrowser. The URL is:
http://ww. foo.org/cgi-bin/testcgi.scm
Alternately, t est cgi . scmcan occur asalink inan HTML file, which you can click. Eg,

To view sone common CE environnent variables, click
here.

However t est cgi . scmislaunched, it will produce a plain text page containing the settings of the environment variables. An

example output:

AUTH_TYPE =

CONTENT_LENGTH =

CONTENT_TYPE =

DOCUMENT_ROOT = / home/ htt pd/ ht m

GATEWAY_I NTERFACE = Cd /1.1

HTTP_ACCEPT = i mage/ gi f, image/ x-xbitmap, inage/jpeg, inage/pjpeg, */*
HTTP_REFERER =

HTTP_USER _AGENT = Mozilla/3.01CGold (X11; I; Linux 2.0.32 i586)
PATH_| NFO =

PATH_TRANSLATED =

QUERY_STRI NG =

REMOTE_HOST = 127.0.0.1

REMOTE_ADDR = 127.0.0.1

REMOTE_| DENT =
REMOTE_USER =

http://www.ccs.neu.eduw/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (2 of 9)11/3/2006 8:51:05 PM

Teach Y ourself Schemein Fixnum Days

REQUEST_METHOD = GET

SCRI PT_NAME = /cgi-bin/testcgi.scm
SERVER _NAME = | ocal host . | ocal donai n
SERVER_PORT = 80
SERVER_PROTOCCL

SERVER_SOFTWARE

HTTP/ 1.0
Apache/1.2.4

17.2 Example: Displaying selected environment variable

t est cgi . scmdoes not take any input from the user. A more focused script would take an argument environment variable from the
user, and output the setting of that variable and none else. For this, we need a mechanism for feeding argumentsto CGI scripts. The
f or mtag of HTML provides this capability. Hereis a sample HTML page for this purpose:

<htm >
<head>
<title>Form for checking environnent variables</title>
</ head>
<body>

<f or m nmet hod=get

action="http://ww.foo.org/cgi-bin/testcgi 2. scn>
Enter environnent variable: <input type=text nanme=envvar size=30>
<p>

<i nput type=submt>
</ forne

</ body>
</htm >

The user enters the desired environment variable (eg, GATEVWAY _| NTERFACE) in the textbox and clicks the submit button. This
causes all the information in the form -- here, the setting of the parameter envvar to the value GATEWAY _| NTERFACE -- to be
collected and sent to the CGI script identified by thef or m viz, t est cgi 2. scm The information can be sent in one of two ways:
(1) if thef or mMset hod=get (the default), the information is sent via the environment variable called QUERY_STRI NG, (2) if the
f or mMsmet hod=post , theinformation is available to the CGI script at the latter's standard input port (st di n). Our form uses
QUERY_STRI NG

Itist est cgi 2. scnisresponsibility to extract the information from QUERY_STRI NG, and output the answer page accordingly.
The information to the CGI script, whether arriving via an environment variable or through st di n, is formatted as a sequence of
parameter/argument pairs. The pairs are separated from each other by the & character. Within a pair, the parameter occurs first and is

separated from the argument by the = character. In this case, there is only one parameter/argument pair, viz,
envvar =GATEWAY | NTERFACE.

Thescriptt est cgi 2. scm

#!/ bi n/ sh
":":exec /usr/local/bin/neschene -r $0 "$@

(display "content-type: text/plain") (newine)
(new i ne)

;string-index returns the leftnost index in string s
;that has character c

(define string-index

(lambda (s c)
(let ((n (string-length s)))

http://www.ccs.neu.eduw/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (3 of 9)11/3/2006 8:51:05 PM

Teach Y ourself Schemein Fixnum Days

(let loop ((i 0))
(cond ((>=1i n) #f)
((char=? (string-ref s i) c) i)

(el'se (loop (+1i 1))))))))
;split breaks string s into substrings separated by character c

(define split
(lambda (c s)
(let loop ((s s))
(if (string=?s "") '()
(let ((i (string-index s c)))
(if i (cons (substring s 0 i)
(loop (substring s (+ i 1)
(string-length s))))
(list s)))))))

(define args
(map (|l anbda (par-arg)
(split #\= par-arg))
(split #\& (getenv "QUERY_STRING'))))

(define envvar (cadr (assoc "envvar" args)))
(di splay envvar)
(display " =")
(display (getenv envvar))
(new ine)
Note the use of a helper procedure spl i t to split the QUERY_STRI NGinto parameter/argument pairs along the & character, and

then splitting parameter and argument along the = character. (If we had used the post method rather than get , we would have
needed to extract the parameters and arguments from the standard input.)

The<i nput type=t ext>and<i nput type=subm t> arebuttwo of the many differenti nput tags possiblein an HTML
f or m Consult [27] for the full repertoire.

17.3 CGl script utilities

In the exampl e above, the parameter's name or the argument it assumed did not themselves contain any "&' or “=' characters. In
genera, they may. To accommodate such characters, and not have them be mistaken for separators, the CGl argument-passing
mechanism treats all characters other than letters, digits, and the underscore, as special, and transmits them in an encoded form. A
space isencoded asa "+'. For other special characters, the encoding is athree-character sequence, and consists of "% followed the
specia character's hexadecimal code. Thus, the character sequence '20% + 30% = 50% &c. 'will be encoded as

20925+%2b+30925+%8d+50%25%2c+%26c%R2e

(Space become "+'; "% becomes "%25"; “+' becomes "%2b"; "=' becomes "%3d"; °, ' becomes "%2c'; "& becomes %26"; and . '
becomes "%2e".)

Instead of dealing anew with the task of getting and decoding the form datain each CGI script, it is convenient to collect some
helpful proceduresinto alibrary filecgi . scmt est cgi 2. scmcan then be written more compactly as

#!/ bi n/ sh
":":exec /usr/local/bin/neschenme -r $0 "$@

;Load the cgi utilities

http://www.ccs.neu.eduw/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (4 of 9)11/3/2006 8:51:05 PM

Teach Y ourself Schemein Fixnum Days

(load-relatve "cgi.scni)

(display "content-type: text/plain") (newine)
(new i ne)

; Read the data input via the form
(parse-formdata)

; Get the envvar paraneter

(define envvar (formdata-get/1 "envvar"))
; Di splay the value of the envvar

(di splay envvar)

(display " =")
(display (getenv envvar))
(new i ne)

This shorter CGI script uses two utility procedures definedincgi . scm par se-f or m dat a to read the data supplied by the user
viathe form. The data consists of parameters and their associated values. f or m dat a- get / 1 finds the value associated with a
particular parameter.

cgi . scmdefinesaglobal tablecalled *f or m dat a- t abl e* to store form data.

; Load our table definitions

(load-relative "table.scnl)

; Define the *formdata-tabl e*

(define *formdata-table* (make-table 'equ string=?))

An advantage of using a general mechanism such asthe par se- f or m dat a procedure is that we can hide the details of what
net hod (get or post) was used.

(define parse-formdata
(lambda ()
((if (string-ci=? (or (getenv "REQUEST METHOD') "GET") "GET")
par se-f or m dat a- usi ng- query-string
par se-formdata-using-stdin))))

The environment variable REQUEST_METHOD tells which method was used to transmit the form data. If the method is GET, then the
form data was sent as the string available via another environment variable, QUERY_STRI NG. The auxiliary procedure par se-
f or m dat a- usi ng- quer y- st ri ng isusedto pick apart QUERY_STRI NG

(define parse-formdata-using-query-string
(lambda ()
(let ((query-string (or (getenv "QUERY_STRING') "")))

(for-each

(lanbda (par=arg)

(let ((parfarg (split #\= par=arg)))
(let ((par (url-decode (car par/arg)))
(arg (url-decode (cadr par/arg))))
(tabl e-put!
form dat a-t abl e par
(cons arg
(tabl e-get *formdata-table* par '()))))))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (5 of 9)11/3/2006 8:51:05 PM

Teach Y ourself Schemein Fixnum Days

(split #\ & query-string)))))

The helper procedurespl i t, anditshelper st ri ng- i ndex, aredefined asin sec 17.2. As noted, the incoming form dataisa

seguence of name-value pairs separated by &s. Within each pair, the name comes first, followed by an = character, followed by the
value. Each name-value combination is collected into a global table, the* f or m dat a- t abl e*.

Both name and value are encoded, so we need to decode them using the ur | - decode procedure to get their actual representation.

(define url-decode
(lambda (s)
(let ((s (string->list s)))
(list->string
(let loop ((s s))
(if (null?s) "()
(let ((a (car s)) (d (cdr s)))
(case a
((#\+) (cons #\ space (loop d)))
((#\% (cons (hex->char (car d) (cadr d))
(loop (cddr d))))

(el'se (cons a (loop d)))))))))))

“+'is converted into space. A triliteral of the form "%y is converted, using the procedure hex- >char into the character whose
ascii encoding is the hex number “xy".

(define hex->char
(lambda (x vy)
(i nteger->char
(string->nunber (string x y) 16))))

We till need aform-data parser for the case where the request method is POST. The auxiliary procedure par se- f or m dat a-
usi ng- st di n doesthis.

(define parse-formdata-using-stdin
(lambda ()
(let* ((content-length (getenv "CONTENT LENGTH"))
(content-length
(if content-length
(string->nunmber content-length) 0))
(i 0))
(let par-loop ((par "()))
(let ((c (read-char)))
(set! i (+1i 1))
(if (or (> i content-1ength)
(eof -object? c) (char=? ¢ #\=))
(let arg-loop ((arg "()))
(let ((c (read-char)))
(set! i (+1i 1))
(if (or (> i content-Iength)
(eof -object? c) (char=? ¢ #\&))
(let ((par (url-decode
(list->string
(reverse! par))))
(arg (url-decode
(list->string
(reverse! arg)))))
(tabl e-put! *formdata-table* par
(cons arg (table-get *formdata-table*

par " ())))

(unless (or (> i content-Iength)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (6 of 9)11/3/2006 8:51:05 PM

Teach Y ourself Schemein Fixnum Days

(eof -object? c¢))
(par-loop '())))
(arg-loop (cons ¢ arg)))))
(par-loop (cons c par))))))))

The POST method sends form data viathe script's st di n. The number of characters sent is placed in the environment variable
CONTENT_LENGTH. par se-f or m dat a- usi ng- st di n reads the required number of charactersfrom st di n, and populates
the*f or m dat a- t abl e* asbefore, making sure to decode the parameters names and values.

It remains to retrieve the values for specific parameters from the * f or m dat a- t abl e*. Note that the table associates alist with
each parameter, in order to accommodate the possibility of multiple values for a parameter. f or m dat a- get retrievesal the
values assigned to a parameter. If there is only one value, it returns a singleton containing that value.

(define formdata-get
(1 ambda (k)
(table-get *formdata-table* k '())))

f or m dat a- get / 1 returnsthefirst (or most significant) value associated with a parameter.

(define formdata-get/1
(lanbda (k . default)
(let ((vv (formdata-get k)))
(cond ((pair? vv) (car vv))
((pair? default) (car default))
(el'se "")))))

In our examples so far, the CGI script has generated plain text. Generally, though, we will want to generate an HTML page. It is not
uncommon for a combination of HTML form and CGlI script to trigger a series of HTML pages with forms. It isaso common to
code al the action corresponding to these various formsin asingle CGI script. In any case, it is helpful to have a utility procedure
that writes out stringsin HTML format, ie, with the HTML specia characters encoded appropriately:

(define display-htm
(lambda (s . 0)
(let ((o (if (null? o) (current-output-port)
(car 0))))
(let ((n (string-length s)))
(let loop ((i 0))

(unless (>=1i n)
(let ((c (string-ref si)))
(di spl ay
(case ¢

(<) "alt:")

((#\>) ">")

((#") """)
((#\ & "&anmp;")
(else c)) o)

(loop (+1i 1)))))))))
17.4 A calculator via CGil

Hereisan CGlI calculator script, cgi cal c. scm that exploits Scheme's arbitrary-precision arithmetic.

#!/ bi n/ sh
":":exec /usr/local/bin/neschene -r $0

;Load the CA wutilities
(load-relative "cgi.scnl)

http://www.ccs.neu.eduw/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (7 of 9)11/3/2006 8:51:05 PM

Teach Y ourself Scheme in Fixnum Days

(define uhoh #f)

(define cal c-eva
(lambda (e)
(if (pair? e)
(apply (ensure-operator (car e))
(map cal c-eval (cdr e)))
(ensure-nunber e))))

(define ensure-operator
(lambda (e)
(case e
((+) +)
(=) -)
((*) *)
¢y n
((**) expt)
(el se (uhoh "unpernitted operator")))))

(define ensure-nunber
(lambda (e)
(if (nunber? e) e
(uhoh "non-nunber"))))

(define print-form
(lanmbda ()
(display "<formaction=\"")
(display (getenv "SCRI PT_NAME"))
(display "\">
Enter arithnetic expression:

<i nput type=textarea name=arithexp><p>
<i nput type=submit val ue=\"Eval uate\">
<i nput type=reset value=\"Cear\">
</fornep")))

(define print-page-begin
(lambda ()
(display "content-type: text/htm

<htnl >
<head>
<title>A Schene Calculator</title>
</ head>
<body>")))

(define print-page-end
(I ambda ()
(di splay "</body>
</ htn>")))

(parse-formdata)
(print-page-begin)

(let ((e (formdata-get "arithexp")))
(unless (null? e)
(let ((el (car e)))
(display-htnm el)
(display "<p>
=> ; &bsp; ")

http://www.ccs.neu.eduw/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (8 of 9)11/3/2006 8:51:05 PM

Teach Y ourself Schemein Fixnum Days

(display-htm
(call/cc
(1 anmbda (k)
(set! uhoh
(lambda (s)
(k (string-append "Error: " s))))
(nunber->string
(calc-eval (read (open-input-string (car e))))))))

(display "<p>"))))

(print-form
(print-page-end)

[Gotofirst, previous, next page; contents; index

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-19.html (9 of 9)11/3/2006 8:51:05 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

[Go tofirst, previous, next page; contents; index]

Appendix A

Scheme dialects

All mgjor Scheme dialects implement the R5RS specification [23]. By using only the features documented in the R5RS,
one can write Scheme code that is portable across the dialects. However, the R5RS, either for want of consensus or
because of inevitable system dependencies, remains silent on several matters that non-trivial programming cannot
ignore. The various dialects have therefore had to solve these matters in a non-standard and idiosyncratic manner.

This book uses the MzScheme [9] dialect of Scheme, and thereby uses several features that are nonstandard. The
complete list of the dialect-dependent features used in this book is: the command-line (both for opening alistener
session and for shell scripts), def i ne- nacro,del ete-file,file-exists?,file-or-directory-

nmodi fy- seconds, fl ui d-1 et,gensymget env, get-out put-string,l oad-rel ati ve,open-i nput -
string,open-output-string,read-1line,reverse!,systemunl ess andwhen.

All but two of these are present in the default environment of MzScheme. The missing two, def i ne- macr o and
syst em are provided in standard MzScheme libraries, which can be explicitly loaded into MzScheme using the forms:

(require (lib "defmacro.ss")) ;provides define-nacro
(require (lib "process.ss")) ;provides system

A good place to place these forms is the MzScheme initialization file (or init file), which, on Unix, isthefile.
nzschener ¢ inthe user's home directory X

Some of the nonstandard features (eg, f i | e- exi st s?,del et e-fi | e) areinfact defacto standards and are present
in many Schemes. Some other features (eg, when, unl ess) have more or less " plug-in" definitions (given in this
book) that can be loaded into any Scheme dialect that doesn't have them primitively. The rest require a dialect-specific
definition (eg, | oad-rel ati ve).

This chapter describes how to incorporate into your Scheme dialect the nonstandard features used in this book. For
further detail about your Scheme dialect, consult the documentation provided by itsimplementor (appendix E).

A.1 Invocation and init files

Like MzScheme, many Scheme dialectsload, if available, aninit file, usually supplied in the user's home directory. The
init file is a convenient location in which to place definitions for nonstandard features. Eg, the nonstandard procedure
file-or-directory-nodify-seconds canbeadded to the Guile [13] dialect of Scheme by putting the

following code in Guil€sinit file, whichis~/ . gui | e:
(define file-or-directory-nodify-seconds
(lambda (f)
(vector-ref (stat f) 9)))

Also, the various Scheme dialects have their own distinctively named commands to invoke their respective listeners. The
following table lists the invoking commands and init files for some Scheme dialects:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-20.html (1 of 4)11/3/2006 8:51:11 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Schemein Fixnum Days

Dialect name Command Init file
Bigloo bigloo ~/.bigloorc
Chicken csi ~/.csirc
Gambit gsi ~/ ganbc. scm
Gauche gosh ~/ . gaucherc
Guile guile ~/.guile
Kawa kawa ~/ . kawar c. scm
MIT Scheme (Unix) schenme ~/.schene.init
MIT Scheme (Win) schene ~/schene.ini
MzScheme (Unix, Mac OS X) neschene ~/ . neschener c
MzScheme (Win, Mac OS ~/ neschenerc.
Classic) neschene ss
SCM scm ~/Scmnit.scm
STk snow ~/ . stkrc

A.2 Shell scripts

Theinitial line for ashell script written in Guileis:
":";exec guile -s $0 "$@

In the script, the procedure-call (contmrand- | i ne) returnsthelist of the script's name and arguments. To access just
the arguments, take the cdr of thislist.

A Gauche [21] shell script starts out as:
", exec gosh -- $0 "$@
In the script, the variable * ar gv* holds the list of the script's arguments.
A shell script written in SCM starts out as:
":";exec scm-1 $0 "$@

In the script, the variable * ar gv* contains the list of the Scheme executable name, the script's name, the option - | , and
the script's arguments. To access just the arguments, take the cdddr of thislist.

STk [14] shell scripts start out as:
":"-exec snow -f $0 "$@

In the script, the variable * ar gv* contains the list of the script's arguments.

A.3 defi ne-nacro

Thedef i ne- macr o used in the text occurs in the Scheme dialects Bigloo [30], Chicken [32], Gambit [6],
Gauche [21], Guile, MzScheme and Pocket Scheme [15]. There are minor variations in how macros are defined in the
other Scheme dialects. The rest of this section will point out how these other dialects notate the following code fragment:

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-20.html (2 of 4)11/3/2006 8:51:11 PM

Teach Yourself Schemein Fixnum Days

(define-nmacro MACRO NAME
(I anbda MACRO ARGS
MACRO BODY . ..))

In MIT Scheme [26] version 7.7.1 and later, thisis written as:

(define-syntax MACRO NAME
(rsc-macro-transforner
(let ((xfnr (Ianbda MACRO ARGS MACRO BODY ...)))
(lambda (e r)

(apply xfnr (cdr e))))))
In older versions of MIT Scheme:
(synt ax-tabl e-define systentgl obal -syntax-tabl e ' MACRO NAME
(macro MACRO ARGS
MACRO BODY .. .))
In SCM [20] and Kawa[3]:

(def macr o MACRO- NAVE MACRO- ARGS
MACRO- BODY . . .)

In STk [14]:

(define-macro (MACRO-NAME . MACRO ARGS)
MACRO- BODY . . .)

A.4 | oad-rel ati ve

The procedure| oad- r el at i ve may be defined for Guile as follows:

(define load-relative
(lambda (f)
(let* ((n (string-length f))
(full-pathnane?
(and (> n 0)
(let ((cO (string-ref f 0)))
(or (char=? c0 #\/)
(char=? c0 #\1~))))))
(basi c-1 oad
(if full-pathname? f
(let ((clp (current-1oad-port)))
(if clp
(string-append
(dirname (port-filename clp)) "/" f)

£)))))))

For SCM:

(define load-relative
(lambda (f)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-20.html (3 of 4)11/3/2006 8:51:11 PM

Teach Yourself Schemein Fixnum Days

(let* ((n (string-length f))

(full-pathnane?

(and (> n 0)

(let ((cO (string-ref f 0)))
(or (char=? c0 #\/)
(char=? c0 #~))))))
(load (if (and *I oad- pat hnane* full - pat hnane?)
(in-vicinity (programvicinity) f)

£)))))

For STk, the following definition for | oad- r el at i ve worksonly if you discipline yourself to not use| oad:

(define *I oad- pat hnanme* #f)
(define stk% oad | oad)

(define load-relative
(I anbda (f)
(fluid-let ((*Ioad-pathnane*
(if (not *|oad-pathname*) f
(let* ((n (string-length f))

(full-pathname?

(and (> n 0)
(let ((cO (string-ref f 0)))
(or (char=? c0 #\/)
(char=? c0 #\~))))))

(if full-pathname? f

(string-append
(di rnanme *| oad- pat hnane*)

"1t 1))))))
(stk% oad *| oad- pat hnane*))))

(define | oad
(lambda (f)
(error "Don't use |load. Use load-relative instead.")))

L wewill use~/ fi | ename to denote thefilecalledf i | ename in the user's home directory.

[Gotofirst, previous, next page; contents;

index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-20.html (4 of 4)11/3/2006 8:51:11 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Gotofirst, previous, next page; contents, index]

Appendix B

DOS batch files in Scheme

DOS shell scripts are known as batch files. A conventional DOS batch file that outputs “"Hello, World!" has the
following contents:

echo Hello, World!
It uses the DOS command echo. The batch fileisnamed hel | 0. bat , which identifiesit to the operating system

as an executable. It may then be placed in one of the directories on the PATH environment variable. Thereafter,
anytime one types

hel | 0. bat
or simply
hell o

at the DOS prompt, one promptly gets the insufferable greeting.

A Scheme version of the hello batch file will perform the same output using Scheme, but we need something in the
filetoinform DOS that it needs to construe the commands in the file as Scheme, and not as its default batch
language. The Scheme batch file, also called hel | 0. bat , looks like:

; @cho of f

;goto :start

#|

:start

echo. > c:\ _tenp.scm

echo (load (find-executable-path "hello.bat” >> c:\ _tenp.scm
echo "hello.bat")) >> c:_tenp.scm

neschene -r c:\ _tenp.scm% %R %8 % 9% % % 98 9®

got o : eof

| #

(display "Hello, Wrld!")
(new i ne)

o eof

Thelines upto | # are standard DOS batch. Then follows the Scheme code for the greeting. Finaly, thereis one
more standard DOS batch line, viz, ; : eof .

When the user types hel | o at the DOS prompt, DOS reads and runsthefile hel | 0. bat asaregular batch file.
Thefirstling, ; @cho of f, turns off the echoing of the commands run -- as we don't want excessive verbiage

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-21.html (1 of 2)11/3/2006 8:51:16 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

clouding the effect of our script. The second line, ; got 0 : st ar t, causes execution to jump forward to the line
labeled : st art, ie, the fourth line. The three ensuing echo lines create atemporary Schemefile called c:
\ _tenp. t np with the following contents:

(load (find-executable-path "hello.bat” "hello.bat"))
The next batch command isa call to MzScheme. The - r option loads the Schemefilec: \ _t enp. scm All the
arguments (in this example, none) will be available to Schemein the vector ar gv. This call to Scheme will
evaluate our Scheme script, as we will see below. After Scheme returns, we still need to ensure that the batch file
winds up cleanly. The next batch command isgot o : eof , which causes control to skirt all the Scheme code and
go to the very end of the file, which containsthe label ; : eof . The script thus ends.
Now we can see how the call to Scheme doesiits part, viz, to run the Scheme expressions embedded in the batch
file. Loading c: \ _t enp. scmwill cause Scheme to deduce the full pathname of thefilehel | 0. bat (using
fi nd- execut abl e- pat h), andtothenload hel | 0. bat .

Thus, the Scheme script file will now be run as a Scheme file, and the Scheme formsin the file will have accessto
the script's original arguments viathe vector ar gv.

Now, Scheme has to skirt the batch commands in the script. Thisis easily done because these batch commands are
either prefixed with asemicolon or areenclosed in#| ... | #, making them Scheme comments.

Therest of thefileis of course straight Scheme, and the expressions therein are evaluated in sequence. (The final
expression, ; : eof , isa Scheme comment, and causes no harm.) After all the expressions have been evaluated,
Scheme will exit.

In sum, typing hel | o at the DOS prompt will produce
Hel 1 o, Worl d!
and return you to the DOS prompt.

[Gotofirst, previous, next page; contents, index|

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-21.html (2 of 2)11/3/2006 8:51:16 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Gotofirgt, previous, next page; contents, index|

Appendix C

Numerical techniques

Recursion (including iteration) combines well with Scheme's mathematical primitive procedures to
implement various numerical techniques. As an example, let'simplement Simpson's rule, a procedure for
finding an approximation for a definite integral.

C.1 Simpson's rule

The definite integral of afunction f(x) within an interval of integration [a,b] can be viewed as the area under
the curve representing f(x) from the lower limit x = a to the upper limit x = b. In other words, we consider
the graph of the curve for f(x) on the x,y-plane, and find the area enclosed between that curve, the x-axis, and
the ordinates of f(x) at x=aand x = h.

¥
L“‘—_ﬁ——-——ﬁ
]
I Hit+1 U
Fi]
F
Iy =d ry Tl Ea =1 il

According to Simpson's rule, we divide the interval of integration [a,b] into n evenly spaced intervals, where
niseven. (Thelarger nis, the better the approximation.) The interval boundaries constitute n + 1 points on
the x-axis, viz, Xg, X, . . . , Xo Xt oo o0 X, where X =aand X = b. The length of each interval ish = (b -

a)/n, so each x =a+ ih. We then calculate the ordinates of f(x) at the interval boundaries. Therearen + 1

such ordinates, viz, yg, . . . Y0 Yo where Y, = f(xi) =f(a + ih). Simpson's rule approximates the

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-22.html (1 of 8)11/3/2006 8:51:23 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

definite integral of f(x) between a and b with the val uet%

h
5[(90 fga) +4lp Fyz o Fya1) F 2z o F gz

We define the procedure i nt egr at e- si npson to take four arguments: the integrand f ; the x-values at
the limitsa and b; and the number of intervalsn.

(define integrate-sinpson
(lanbda (f a b n)

Thefirstthingwedoini nt egr at e- si npson'sbody isensurethat n iseven -- if it isn't, we Simply
bump itsvalue by 1.

(unI ess (even? n) (set! n (+ n 1)))

Next, we put in the local variable h the length of the interval. We introduce two more local variables h* 2
and n/ 2 to store the values of twice h and half n respectively, as we expect to use these values often in the
ensuing calculations.

(let* ((h (/ (- b a) n))
(h*2 (* h 2))
(nf2 (/I n 2))

Wenotethat thesumsy; +yz+- - - + Y. 1 andy,+y,+--- + Yy, 2 both involve adding every other

ordinate. So let's define alocal proceduresum ever y- ot her - or di nat e- st arti ng-f r omthat
captures this common iteration. By abstracting this iteration into a procedure, we avoid having to repeat the
iteration textually. This not only reduces clutter, but reduces the chance of error, since we have only one
textual occurrence of the iteration to debug.

sum every-ot her-ordi nat e- starti ng-fr omtakestwo arguments: the starting ordinate and the
number of ordinates to be summed.

(sumevery-other-ordinate-starting-from
(lanbda (x0 num ordi nates)
(let loop ((x x0) (i 0) (r 0))

(if (>=1 numordinates) r
(loop (+ x h*2)
(+1i 1)

(+r (f x)))))))

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-22.html (2 of 8)11/3/2006 8:51:23 PM

Teach Yourself Scheme in Fixnum Days

We can now calculate the three ordinate sums, and combine them to produce the final answer. Note that
therearen/2termsiny; +yz+ - - - Y1 and (N/2) - 1termsiny, +y,+ - - - Y 2

(yO+yn (+ (f a) (f b)))
(yl+y3+...+y.n-1
(sum every-other-ordinate-starting-from
(+ ah) n/l2))
(y2+y4+...+y.n-2
(sum every-other-ordinate-starting-from
(+ah*2) (- nf21))))
(* 1/3 h
(+ yO+yn
(* 4.0 yl+y3+...+y.n-1)
(* 2.0 y2+y4+...+4y.n-2))))))

Let'susei nt egr at e- si npson to find the definite integral of the function

#a) = e

Wefirst define # in Scheme's prefix notati on
(define *pi* (* 4 (atan 1)))
(define phi

(lanbda (x)

(* (/1 (sqgrt (* 2 *pi*)))
(exp (- (* /2 (* x x)))))))

Note that we exploit the fact that tan” 1 1 = /4 in order to define * pi * R

The following calls calculate the definite integrals of phi from 0to 1, 2, and 3 respectively. They all use 10

intervals.
(integrate-sinpson phi 0 1 10)
(integrate-sinpson phi 0 2 10)
(i ntegrate-sinpson phi 0 3 10)

To four decimal places, these values should be 0.3413, 0.4772, and 0.4987 respectively [2, Table 26.1].
Check to see that our implementation of Simpson's rule does indeed produce comparable val ues!®

C.2 Adaptive interval sizes

It is not always convenient to specify the number n of intervals. A number that is good enough for one
integrand may be woefully inadequate for another. In such cases, it is better to specify the amount of

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-22.html (3 of 8)11/3/2006 8:51:23 PM

Teach Yourself Scheme in Fixnum Days

tolerance e we are willing to grant the final answer, and |et the program figure out how many intervals are
needed. A typical way to accomplish thisisto have the program try increasingly better answers by steadily
increasing n, and stop when two successive sums differ within e. Thus:

(define integrate-adaptive-sinpson-first-try
(lanbda (f a b e)
(let loop ((n 4)
(iprev (integrate-sinpson f a b 2)))
(let ((icurr (integrate-sinpson f a b n)))
(i1f (<= (abs (- icurr iprev)) e)
icurr

(loop (+n 2)))))))

Here we cal cul ate successive Simpson integrals (using our original procedurei nt egr at e- si npson) for
n=24,....(Rememberthat n must be even.) When theintegral i cur r for the current n differswithin e
from theintegral i pr ev for the immediately preceding n, wereturni curr .

One problem with this approach is that we don't take into account that only some segments of the function
benefit from the addition of intervals. For the other segments, the addition of intervals merely increases the
computation without contributing to a better overall answer. For an improved adaptation, we could split the
integral into adjacent segments, and improve each segment separately.

(define integrate-adaptive-sinpson-second-try
(lanrbda (f a b e)
(let integrate-segnment ((a a) (b b) (e e))
(let ((i2 (integrate-sinpson f a b 2))
(14 (integrate-sinpson f a b 4)))
(if (<= (abs (- i21i4)) e)
i 4
(let ((c (/I (+ab) 2))
(e (/ e 2)))
(+ (integrate-segnent a c e)
(integrate-segnment ¢ b e))))))))

Theinitial segmentisfrom a to b. To find the integral for a segment, we calculate the Simpson integralsi 2
and i 4 with the two smallest interval numbers 2 and 4. If these are within e of each other, wereturni 4. If
not we split the segment in half, recursively calculate the integral separately for each segment, and add. In
general, different segments at the same level converge at their own pace. Note that when we integrate a half
of a segment, we take care to also halve the tolerance, so that the precision of the eventual sum does not
decay.

There are still some inefficienciesin this procedure: Theintegral i 4 recalculates three ordinates already
determined by i 2, and the integral of each half-segment recal culates three ordinates already determined by
I 2 andi 4. We avoid these inefficiencies by making explicit the sumsused for i 2 andi 4, and by
transmitting more parameters in the named-| et i nt egr at e- segnent . This makes for more sharing,
both within the body of i nt egr at e- segnment and across successive callstoi nt egr at e- segnent :

(define integrate-adaptive-sinpson
(lanrbda (f a b e)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-22.html (4 of 8)11/3/2006 8:51:23 PM

Teach Yourself Scheme in Fixnum Days

(let* ((h (/ (- b a) 4))
(md.a.b (+a (* 2 h))))
(let integrate-segnent ((x0 a)

(x2 mid.a.b)

(x4 b)

(yo (f a))

(y2 (f md. a b))
(y4 (f b))

(h h)

(e e))

(let* ((x1 (+ x0 h))
(x3 (+ x2 h))
(y1 (f x1))
(y3 (f x3))
(i2 (* 2/3 h (+y0 y4 (* 4.0y2))))
(i4 (* 1/3 h (+y0 y4 (* 4.0 (+ yl y3))
(* 2.0y2)))))
(if (<= (abs (- i2i4)) e)
i 4
(let ((h (/ h2)) (e (/ e 2)))
(+ (integrate-segnent
x0 x1 x2 y0 y1 y2 h e)
(i ntegrate-segnent
x2 x3 x4 y2 y3yd he)))))))))

i nt egr at e- segment now explicitly setsfour intervals of size h, giving five ordinatesy0, y1,y2,y3,
andy4. Theintegral i 4 usesall of these ordinates, while theintegral i 2 usesjusty0,y2, and y4, with an
interval size of twice h. It is easy to verify that the explicit sums used fori 2 and i 4 do correspond to
Simpson sums.

Compare the following approximations of f 020 € dx:

(i ntegrate-sinpson exp 0 20 10)
(i ntegrate-sinpson exp 0 20 20)
(i ntegrate-sinpson exp 0 20 40)

(i ntegrate-adaptive-sinpson exp 0 20 .001)
(- (exp 20) 1)

Thelast oneisthe analytically correct answer. See if you can figure out the smallest n (overshooting is
expensive!) such that (i nt egr at e- si npson exp 0 20 n) yieldsaresult comparable to that
returned by thei nt egr at e- adapt i ve- si npson call.

C.3 Improper integrals

Simpson's rule cannot be directly applied to improper integrals (integrals such that either the value of the
integrand is unbounded somewhere within the interval of integration, or the interval of integration isitself
unbounded). However, the rule can still be applied for a part of the integral, with the remaining being
approximated by other means. For example, consider the I" function. For n > 0, I"(n) is defined as the

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-22.html (5 of 8)11/3/2006 8:51:23 PM

Teach Yourself Scheme in Fixnum Days

following integral with unbounded upper limit:

T‘(n:] = j@mﬂ_le_ﬂdm
1]

From this, it followsthat (a) I'(1) = 1, and (b) for n > 0, I'(n + 1) = nI*(n). Thisimpliesthat if we know the
value of T" inthe interval (1, 2), we can find I'(n) for any real n > 0. Indeed, if we relax the condition n > 0,
we can use result (b) to extend the domain of T°(n) to include n < 0, with the understanding that the function

will diverge for integer n < (e

We first implement a Scheme procedure gamra- 1- t 0- 2 that requiresits argument n to be within the
interval (1, 2). gamma- 1-t 0- 2 takes a second argument e for the tolerance.

(define ganma-1-to-2
(lanbda (n e)
(unless (< 1 n 2)
(error 'gamma-1l-to-2 "argunent outside (1, 2)"))

We introduce alocal variable gamma- i nt egr and to hold the T-integrand g(x) = X" 1&*

(let ((gama-integrand
(let ((n-1 (- n1)))
(I anbda (x)
(* (expt x n-1)
(exp (- x))))))

We now need to integrate g(x) from 0 to oc. Clearly we cannot deal with an infinite number of intervals; we
therefore use Simpson's rule for only a portion of the interval [0, o), say [0, xC] (cfor ““cut-off"). For the

remaining, " tail", interval [xC, o), we use atail-integrand t(x) that reasonably approximates g(x), but has the

advantage of being more tractable to analytic solution. Indeed, it is easy to see that for sufficiently large X

we can replace g(x) by an exponential decay function t(x) = A e %), where y. = g(xc). Thus:

f g(z)dz = [s+ | :”f(mjax

Thefirst integral can be solved using Simpson's rule, and the second integral is just Y, Tofind X, we start
with alow-ball value (say 4), and then refine it by successively doubling it until the ordinate at 2xC (ie g
(2xc)) iswithin a certain tolerance of the ordinate predicted by the tail-integrand (ie, t(2xc)). For both the

Simpson integral and the tail-integrand calculation, we will require atolerance of e/ 100, an order of 2 less

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-22.html (6 of 8)11/3/2006 8:51:23 PM

Teach Yourself Scheme in Fixnum Days

than the given tolerance e, so the overall tolerance is not affected:

(e/ 100 (/ e 100)))
(let loop ((xc 4) (yc (gamma-integrand 4)))
(let* ((tail-integrand
(lanmbda (x)
(* yc (exp (- (- x xc))))))
(x1 (* 2 xc))
(yl (gamma-integrand x1))
(yl-estimated (tail-integrand x1)))
(if (<= (abs (- yl yl-estimated)) e/ 100)
(+ (integrate-adaptive-sinpson
gamre- i nt egr and
0 xc e/ 100)
yc)
(loop x1 y1)))))))

We can now write amore general procedure ganma that returns I'(n) for any real n:

(defi ne gamma
(lanmbda (n e)
(cond ((<n 11 (/ (gamma (+ n 1) e) n))
((=n1) 1)
((<1n2 (ganm-1-to-2 n e))
(else (let ((n-2 (- n1)))
(* n-1 (gamma n-1¢€)))))))

Let us now calculate I'(3/2).

(gamma 3/ 2 .001)
(* 1/2 (sqrt *pi*))

The second value is the analytically correct answer. (Thisis because I'(3/2) = (U/2)I'(1/2), and I(1/2) is
known to be #1/2) Y ou can modify ganma's second argument (the tolerance) to get as close an
approximation as you desire.

12 Consult any elementary text on the calculus for an explanation of why this approximation is reasonable.

13 diis the probability density of arandom variable with anormal or Gaussian distribution, with mean = 0
and standard deviation = 1. The definite integral J OZ #(x) dx is the probability that the random variable
assumes a value between 0 and z. However, you don't need to know all thisin order to understand the

example!

141f Scheme didn't have the at an procedure, we could use our numerical-integration procedure to get an

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-22.html (7 of 8)11/3/2006 8:51:23 PM

Teach Yourself Scheme in Fixnum Days

approximation for f ot (1 +x2)" 1dx, whichis/4.

g’By pulling constant factors-- suchas(/ 1 (sqrt (* 2 *pi*))) inphi --out of theintegrand,
we could speed up the ordinate calculations withini nt egr at e- si npson.

B 1(n) for real n> Oisitself an extension of the **decrement-then-factorial” function that maps integer n >
Oto(n- 1)

[Gotofirst, previous, next page; contents; index|

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-22.html (8 of 8)11/3/2006 8:51:23 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Y ourself Scheme in Fixnum Days

[Gotofirdt, previous, next page; contents, index]

Appendix D

A clock for infinity

The Guile [13] procedure al ar mprovides an interruptable timer mechanism. The user can set or reset the alarm for some

time units, or stop it. When the alarm'stimer runs out of thistime, it will set off an alarm, whose consequences are user-
settable. Guile'sal ar mis not quite the clock of sec 15.1, but we can modify it easily enough.

The alarm'stimer isinitialy stopped or quiescent, ie, it will not set off an alarm even astime goes by. To set theaarm's
time-to-alarm to be n seconds, wheren isnot O, run (al ar m n) . If the timer was aready set (but has not yet set off an
aarm), the (al ar m n) procedure call will return the number of seconds remaining from the previous alarm setting. If
there is no previous alarm setting, (al ar m n) returnsO.

The procedurecall (al ar m 0) stopsthe alarm'stimer, ie, the countdown of time is stopped, the timer becomes
quiescent and no alarm will go off. (al ar m 0) aso returns the seconds remaining from a previous alarm setting, if any.

By default, when the alarm's countdown reaches 0, Guile will display a message on the console and exit. More useful
behavior can be obtained by using the procedure si gact i on, asfollows:

(sigaction SI GALRM
(lanbda (sig)
(display "Signal ")
(display sig)
(display " raised. Continuing...")
(newine)))

The first argument SI GALRM (which happensto be 14) identifiesto si gact i on that it isthe alarm handler that needs

setti ng.g The second argument is a unary alarm-handling procedure of the user's choice. In this example, when the alarm
goes off, the handler displays" Si gnal 14 rai sed. Continuing..." onthe consolewithout exiting Scheme.
(The 14 isthe SI GALRMvalue that the alarm will passto its handler. Don't worry about it now.)

From our point of view, this simple timer mechanism poses one problem. A return value of 0 from acall to the procedure
al ar misambiguous: It could either mean that the alarm was quiescent, or that it was just about to run out of time. We
could resolve this ambiguity if we could include “*i nf i ni t y*" inthe alarm arithmetic. In other words, we would like a
clock that works almost like al ar my except that a quiescent clock isonewith *i nf i ni t y* seconds. Thiswill make
many things natural, viz,

(1) (cl ock n) onaquiescent clock returns*i nfini ty*, notO.

(2) Tostoptheclock, cal (cl ock *infinity*),not(clock 0).

(3) (cl ock 0) isequivaent to setting the clock to an infinitesimally small amount of time, viz, to cause it to raise an
alarm instantaneously.

In Guile, we can define*i nf i ni t y* asthefollowing " number":

(define *infinity* (/ 1 0))

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-23.html (1 of 3)11/3/2006 8:51:29 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Y ourself Scheme in Fixnum Days

We can definecl ock intermsof al ar m

(define clock
(let ((stopped? #t)
(cl ock-interrupt-handl er
(lanbda () (error "Clock interrupt!"))))
(let ((generate-clock-interrupt
(lambda ()
(set! stopped? #t)
(clock-interrupt-handler))))
(sigaction SI GALRM
(lambda (sig) (generate-clock-interrupt)))
(lambda (nsg val)
(case msg
((set-handl er)
(set! clock-interrupt-handler val))
((set)
(cond ((= val *infinity*)

; This is equivalent to stopping the clock.
; This is alnbst equivalent to (alarm 0), except
;that if the clock is already stopped,
;return *infinity*.

(let ((time-remaining (alarmQ)))
(if stopped? *infinity*
(begin (set! stopped? #t)
tinme-remaining))))

((=val 0)
; This is equivalent to setting the alarmto
;go off imediately. This is alnbst equival ent
;to (alarm 0), except you force the alarm
:handl er to run.

(let ((tinme-remaining (alarmQ)))
(if stopped?
(begi n (generate-clock-interrupt)
Iinfinity)
(begin (generate-clock-interrupt)
time-remaining))))

(el se
; This is equivalent to (alarmn) for n != 0.
;Just renenber to return *infinity* if the
; cl ock was previously quiescent.

(let ((time-remaining (alarmval)))
(if stopped?
(begin (set! stopped? #f) *infinity*)
tine-remaining))))))))))

Thecl ock procedure uses three internal state variables:

(1) st opped?, to describe if the clock is stopped;

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-23.html (2 of 3)11/3/2006 8:51:29 PM

Teach Y ourself Scheme in Fixnum Days

(2) cl ock-i nterrupt-handl er, whichisathunk describing the user-specified part of the alarm-handling action;
and

(3) gener at e- cl ock-i nt er rupt, another thunk which will set st opped? to false before running the user-
specified alarm handler.

Thecl ock procedure takes two arguments. If the first argument isset - handl er, it uses the second argument as the
alarm handler.

If thefirst argument isset , it sets the time-to-alarm to the second argument, returning the time remaining from a previous
setting. The codetreats 0, *i nf i ni t y* and other values for time differently so that the user gets a mathematically
transparent interfaceto al ar m

Y There are other signals with their corresponding handlers, and si gact i on can be used to set these as well.

[Gotofirdt, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-schemel/t-y-scheme-Z-H-23.html (3 of 3)11/3/2006 8:51:29 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Go tofirst, previous, next page; contents, index]

Appendix E

References

[1]

[2]

[3]

[4]

3]

[6]

[7]

[8]

[9]

Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and
| nter pretation of Computer Programs (("SICP"). MIT Press, 2nd edition, 1996.

Milton Abramowitz and Irene A Stegun, editors. Handbook of Mathematical
Functions: with Formulas, Graphs, and Mathematical Tables. Dover Publications,
1965.

Per Bothner. The Kawa Scheme system.

William Clinger. Nondeterministic call by need is neither lazy nor by name. In
Proc ACM Symp Lisp and Functional Programming, pages 226-234, 1982.

R Kent Dybvig. The Scheme Programming Language. Prentice Hall PTR, 2nd
edition, 1996.

Marc Feeley. Gambit Scheme System.

Matthias Felleisen. Tranditerating Prolog into Scheme. Technical Report 182,
Indiana U Comp Sci Dept, 1985.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. How to Design Programs: An Introduction to Programming and

Computing. MIT Press, 2001.

Matthew Flatt. MzScheme.

http://www.ccs.neu.edu/home/dorai/t-y-schemeft-y-scheme-Z-H-24.html (1 of 3)11/3/2006 8:51:34 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://store.yahoo.com/doverpublications/0486612724.html
http://store.yahoo.com/doverpublications/0486612724.html
http://www.gnu.org/software/kawa
http://www.scheme.com/tspl2d
http://www.iro.umontreal.ca/~gambit
http://www.htdp.org/
http://www.htdp.org/
http://www.plt-scheme.org/software/mzscheme

Teach Yourself Scheme in Fixnum Days

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Daniel P Friedman and Matthias Felleisen. The Little Schemer. MIT Press, 4th
edition, 1996.

Daniel P Friedman and Matthias Felleisen. The Seasoned Schemer. MIT Press,
1996.

Daniel P Friedman, Mitchell Wand, and Christopher T Haynes. Essentials of
Programming Languages. MIT Press, McGraw-Hill, 1992.

FSF. Guile: Project GNU's Extension L anquage.

Erick Gallesio. STK.

Ben Goetter. Pocket Scheme for the H/PC and P/PC.

Christopher T Haynes. Logic continuations. In J Logic Program, pages 157-176,
1987. val 4.

Christopher T Haynes and Daniel P Friedman. Engines Build Process Abstractions.
In Conf ACM Symp Lisp and Functional Programming, pages 18-24, 1984.

Christopher T Haynes, Daniel P Friedman, and Mitchell Wand. Continuations and
Coroutines. In Conf ACM Symp Lisp and Functional Programming, pages 293-298,
1984.

JA H Hunter. Mathematical Brain-Teasers. Dover Publications, 1976.

Aubrey Jaffer. SCM.

Shiro Kawai. Gauche: A Scheme |mplementation.

Sonya E Keene. Object-oriented Programming in Common Lisp: A Programmer's
Guideto CLOS Addison-Wesley, 19809.

http://www.ccs.neu.edu/home/dorai/t-y-schemeft-y-scheme-Z-H-24.html (2 of 3)11/3/2006 8:51:34 PM

http://www.ccs.neu.edu/~matthias/BTLS
http://www.ccs.neu.edu/~matthias/BTSS
http://mitpress.mit.edu/book-home.tcl?isbn=0262061457
http://mitpress.mit.edu/book-home.tcl?isbn=0262061457
http://www.gnu.org/software/guile/guile.html
http://kaolin.unice.fr/STk/STk.html
http://www.angrygraycat.com/scheme/pscheme.htm
http://store.yahoo.com/doverpublications/0486233472.html
http://swissnet.ai.mit.edu/~jaffer/SCM.html
http://www.shiro.dreamhost.com/scheme/gauche/

Teach Yourself Scheme in Fixnum Days

[23] Richard Kelsey, William Clinger, and Jonathan Rees (eds). Revised"5 Report on
the Algorithmic Language Scheme (("R5RS"), 1998.

[24] Gregor Kiczales, Jim des Riviéres, and Daniel G Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[25] John McCarthy. A Basisfor a Mathematical Theory of Computation. In P Braffort

and D Hirschberg, editors, Computer Programming and Formal Systems. North-
Holland, 1967.

[26] MIT Scheme Team. MIT Scheme.

[27] NCSA. The Common Gateway Interface.

[28] Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, 1996.

[29] Thomas L Saaty and Paul C Kainen. The Four-Color Problem: Assaults and
Conquest. Dover Publications, 1986.

[30] Manuel Serrano. Bigloo.

[31] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 2nd edition, 1994.

[32] Felix L Winkelmann. Chicken: A practical and portable Scheme system.

[33] Ramin Zabih, David McAllester, and David Chapman. Non-deterministic Lisp with
dependency-directed backtracking. In AAAI-87, pages 59-64, 1987.

[Go tofirst, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-24.html (3 of 3)11/3/2006 8:51:34 PM

http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs.html
http://www-formal.stanford.edu/jmc/basis1/basis1.html
http://www.swiss.ai.mit.edu/projects/scheme
http://hoohoo.ncsa.uiuc.edu/cgi
http://youpou.lip6.fr/queinnec/WWW/LiSP.html
http://www-sop.inria.fr/mimosa/fp/Bigloo
http://mitpress.mit.edu/book-home.tcl?isbn=0262193388
http://www.call-with-current-continuation.org/chicken.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

[Gotofirst, previous, next page; contents, index]

Appendix F

Index

' (quot e)

-

comma
. @(comma-splice)

\VARAVARTI m IN [~ |!

 (backquote)

spEp
Q.g'mm

|

association list, see alist
assv
at an

#b (binary number)
begi n,[2]

implicit, [2]
Bigloo

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (1 of 9)11/3/2006 8:51:40 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

Teach Yourself Scheme in Fixnum Days

boolean
bool ean?

C...r
call-with-current-continuation,seecall/cc
call-with-input-file
call-wth-output-file
call/cc
and coroutine
and engine
car
case
cdr
char - >i nt eger
char-ci <=?
char-ci <?
char-ci =?
char-ci >=?
char-ci >?
char - downcase
char - upcase
char <=?
char <?
char =?
char >=?
char >?
char?
character
#\ notation for
Chicken
class
clock
Guile
cl ose-i nput - port
cl ose- out put - port
command line
comment

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (2 of 9)11/3/2006 8:51:40 PM

Teach Yourself Scheme in Fixnum Days

conpl ex?
cond

conditiona

cons

console

continuation

coroutine
current-input-port
current - out put - port

#d (decimal number)

datatype
compound
conversion to and fro
simple
define
defi ne-macro
in various dialects
def struct
del et e-dupli cates
delete-file
dialects of Scheme
di spl ay, [2]
dotted pair

empty list
engine

flat

nestable
eof - obj ect ?

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (3 of 9)11/3/2006 8:51:40 PM

Teach Yourself Scheme in Fixnum Days

#f

falsity
file
checking existence of
deleting
loading
port for
time of last modification of

file-exists?
file-or-directory-nodify-seconds,[2]
fixnum
fluid-|et

macro for
for-each
form

Gambit
Gauche
gensym
get - out put -string
get env
Guile
clock

identifier
if
inheritance
multiple
single
init file
Instance, see object
| nt eger - >char
| nt eger ?
iteration

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (4 of 9)11/3/2006 8:51:40 PM

Teach Yourself Scheme in Fixnum Days

Kawa

| anbda
| et
named
let*
| etrec
list
| i st (procedure)
list->string
| i st->vector
| i st-position
list-ref
list-tail
list?
listener
load, [2]
| oad-rel ative
in various dialects
logic programming
loop

macro

avoiding variable capture inside
make-string
nmake- vect or
map
nmax
metaclass
method, see object
nn
MIT Scheme
multiple inheritance
MzScheme, [2]

named | et

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (5 of 9)11/3/2006 8:51:40 PM

Teach Yourself Scheme in Fixnum Days

new i ne, [2]
nondeterminism
not

nul | ?

number
nunber - >string
nunber ?

numerical integration

#0 (octal number)

object

obj ect-oriented programming
odd?
open-input-file
open-input-string
open-out put-file
open-out put -string
or

pair?
Pocket Scheme
port, [2]

for file

for string
procedure, [2]

parameters
recursive

tail-recursive
puzzles

quot e

R5RS, [2]
rati onal ?
read

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (6 of 9)11/3/2006 8:51:40 PM

Teach Yourself Scheme in Fixnum Days

r ead- char
read-eval-print loop
read-1ine
real ?
recursion

iteration as

| etrec

tail
reverse!

S-expression
SCM
script, [2]

CGl

DOS
self-evaluation
set!
set -car!
set - cdr!
Simpson'srule
slot, see object

sgrt
standard input

standard output, [2]
STk
string

port for
st ri ng_(procedure)
string->list
string->nunber
string-append
string-ref
string-set!
string?
structure

def struct
subclass

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (7 of 9)11/3/2006 8:51:40 PM

Teach Yourself Scheme in Fixnum Days

subform

superclass

symbol
case-insensitivity
generated

synbol ?

system

#t

table

tall cal
elimination of

tail recursion

truth

unl ess
macro for

variable
global, [2]
lexical
local

vector

vect or (procedure)

vector->|i st

when

macro for
wite
wite-char

#x (hexadecimal number)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (8 of 9)11/3/2006 8:51:40 PM

Teach Yourself Scheme in Fixnum Days

[Gotofirst, previous, next page; contents, index]

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-25.html (9 of 9)11/3/2006 8:51:40 PM

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

	neu.edu
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days
	Teach Yourself Scheme in Fixnum Days

