SIMPLY SCHEME

Pageiii

Simply Scheme
I ntroducing Computer Science
Second Edition
Brian Harvey
Matthew Wright

Foreword by Harold Abelson

The MIT Press
Cambndge, Massachusetts
London, England

Pageiv
© 1999 by the Massachusetts Institute of Technology

The Scheme programs in this book are copyright © 1993 by Matthew Wright and Brian Harvey.

These programs are free software; you can redistribute them and/or modify them under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY: ; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License (Appendix D of this book) for more details.

This book was typeset in the Baskerville typeface, using the JOVE text editor and the TEX document formatting
system, for which we thank John Baskerville (1706—75), Jonathan Payne (1964-), and Donald Knuth (1938-),
respectively.

Library of Congress Catal oging-in-Publication Data

Harvey, Brian, 1949—

Simply scheme : introducing computer science / Brian Harvey, Matthew Wright;
foreword by Harold Abelson.—2nd ed.

p. cm.

Includes bibliographic references and index.

ISBN 0—-262-08281-0 (hc : alk. paper)

1. Scheme (Computer programming language) 2. Computer science.

I. Wright, Matthew. II. Title.

QA76.H3475 1999

005.13'3—dc21 99-10037
CIpP
CONTENTS
Foreword
Preface

One Big Idea: Symbolic Programming

Lisp and Radical Computer Science

Who Should Read This Book

How to Read This Book

Tothelnstructor

Lists and Sentences

Sentences and Words

Overloading in the Text Abstraction

Higher-Order Procedures, Lambda, and Recursion

Mutators and Environments

Acknowledgments

I
Introduction: Functions

Xxiii

XXV

XXV

XXVI

XXVII

XXViii

XXVilii

XXXI

Page v

1 S
Showing off Scheme
Talking to Scheme 5
Recovering from Typing Errors 7
Exiting Scheme 7
Page vi
More Examples 8
Example: Acronyms 8
Example: Pig Latin 10
Example: Ice Cream Choices 12
Example: Combinations from a Set 13
Example: Factoria 14
Play with the Procedures 15
2 17
Functions
Arithmetic 18
Words 19
Domain and Range 20
More Types: Sentences and Booleans 21
Our Favorite Type: Functions 21
Play with It 22
Thinking about What Y ou've Done 22
[26

Composition of Functions

3
Expressions

Little People

Result Replacement
Plumbing Diagrams
Pitfalls

4
Defining Y our Own Procedures

How to Define a Procedure

Special Forms

Functions and Procedures

Argument Names Versus Argument Values
Procedure as Generalization

Composability

The Substitution Model

Pitfalls

5
Words and Sentences

Selectors

Constructors

First-Class Words and Sentences

Pitfalls

6
True and False

N
()

&

N
o

N
o

&

(6]
=

Page vii

Predicates

Using Predicates

| f IsaSpecia Form

So Are And and Or

Everything That Isn't FalseIs True

Decisions, Decisions, Decisions

| f Is Composable

Pitfalls

7
Variables

How Little People Do Variables

Global and Local Variables

The Truth about Substitution

Let

Pitfalls

1
Functions as Data

8
Higher-Order Functions

Every

A Pause for Reflection

Keep

Accunul at e

100

103

104

106

107

108

Combining Higher-Order Functions

Choosing the Right Tool

First-Class Functions and First-Class Sentences

Repeat ed

Pitfalls

9
Lambda

Procedures That Return Procedures

The Truth about Def i ne

The Truth about Let

Name Conflicts

Named and Unnamed Functions

Pitfalls

Project: Scoring Bridge Hands

10
Example: Tic-Tac-Toe

A Warning

Technical Termsin Tic-Tac-Toe

Thinking about the Program Structure

The First Step: Triples

Finding the Triples

Using Ever y with Two-Argument Procedures

109

110

113

113

115

127

129

130

132

133

133

135

141

147

147

147

148

150

151

153

Page viii

Can the Computer Win on This Move?

If So, in Which Square?

Second Verse, Same as the First

Now the Strategy Gets Complicated

Finding the Pivots

Taking the Offensive

Leftovers

Complete Program Listing

v
Recursion

11
Introduction to Recursion

A Separate Procedure for Each Length

Use What Y ou Have to Get What Y ou Need

Notice That They're All the Same

Notice That They're Almost All the Same

Base Cases and Recursive Calls

Pig Latin

Problemsfor Youto Try.

Our Solutions

Pitfalls

155

157

158

159

160

163

166

166

170

173

175

176

17

17

178

179

181

182

185

12
The Leap of Faith

From the Combining Method to the Leap of Faith

Example: Rever se

The Leap of Faith

The Base Case

Example: Fact ori al

Likely Guesses for Smaller Subproblems

Example: Downup

Example: Evens

Simplifying Base Cases

Pitfalls

13
How Recursion Works

Little People and Recursion

Tracing

Pitfalls

14
Common Patterns in Recursive Procedures

The Every Pattern

The Keep Pattern

The Accunul at e Pattern

Combining Patterns

189

189

190

191

192

192

194

195

195

197

201

207

207

210

214

217

218

219

221

222

Page ix

Helper Procedures

How to Use Recursive Patterns

Problems That Don't Follow Patterns

Pitfalls

Project: Spelling Names of Huge Numbers

15
Advanced Recursion

Example: Sort

Example: Fr on+Bi nary

Example: Mer gesort

Example: Subset s

Pitfalls

Project: Scoring Poker Hands

Extra Work for Hotshots

16
Example: Pattern Matcher

Problem Description

Implementation: When Are Two Sentences Equal ?

When Are Two Sentences Nearly Equal?

Matching with Alternatives

Backtracking

Matching Several Words

223

224

226

227

233

235

235

237

2338

239

241

245

247

249

249

251

252

253

255

259

Page x

Combining the Placeholders

Naming the Matched Text

The Final Version

Abstract Data Types

Backtracking and Known—-Val ues

How We Wrote It

Complete Program Listing

V
Abstraction

17
Lists

Sdlectors and Constructors

Programming with Lists

The Truth about Sentences

Higher-Order Functions

Other Primitivesfor Lists

Association Lists

Functions That Take Variable Numbers of Arguments

Recursion on Arbitrary Structured Lists

Pitfalls

18
Trees

Example: The World

261

264

266

269

270

272

272

278

281

282

285

287

289

290

291

292

294

298

305

306

How Big Is My Tree?

Mutual Recursion

Searching for aDatum in the Tree

Locating a Datum in the Tree

Representing Trees as Lists

Abstract Data Types

An Advanced Example: Parsing Arithmetic Expressions

Pitfalls

19
Implementing Higher-Order Functions

Generalizing Patterns

The Every Pattern Revisited

The Difference between Map and Every

Filter

Accunul at e and Reduce

Robustness

Higher-Order Functions for Structured Lists

The Zero-Trip Do Loop

Pitfalls

VI
Sequential Programming

310

310

312

313

314

315

317

323

327

327

329

330

331

331

333

334

335

336

340

Page xi

20

Input and Output

21

Printing

Side Effects and Sequencing

The Begi n Special Form

This Isn't Functional Programming

Not Moving to the Next Line

Strings

A Higher-Order Procedure for Sequencing

Tic-Tac-Toe Revisited

Accepting User Input

Aesthetic Board Display

Reading and Writing Normal Text

Formatted Text

Sequential Programming and Order of Evaluation

Pitfalls

Example: The Funct i ons Program

The Main Loop

The Difference between a Procedure and Its Name

The Association List of Functions

Domain Checking

343

343

345

3438

3438

349

350

351

352

353

355

356

358

360

362

367

367

368

369

370

Page xii

Intentionally Confusing a Function with Its Name

More on Higher-Order Functions

More Robustness

Complete Program Listing

22
Files

Ports

Writing Files for People to Read

Using a File as a Database

Transforming the Lines of aFile

Justifying Text

Preserving Spacing of Text from Files

Merging Two Files

Writing Files for Scheme to Read

Pitfalls

23
Vectors

The Indy 500

Vectors

Using Vectorsin Programs

Non-Functional Procedures and State

Shuffling a Deck

More Vector Tools

373

374

376

378

387

387

389

390

391

394

3%

397

399

401

405

405

406

408

409

410

413

The Vector Pattern of Recursion 414

Vectors versus Lists 415
State, Sequence, and Effects 417
Pitfals 418
24 425

Example: A Spreadsheet Program

Limitations of Our Spreadsheet 428
Spreadsheet Commands 428
Moving the Selection 429
Putting Vauesin Cells 430
Page xiii
Formulas 431
Displaying Formula Vaues 433
L oading Spreadsheet Commands from aFile 433
Application Programs and Abstraction 434
25 439

Implementing the Spreadsheet Program

Cdlls, Cel Names, and Cdll IDs 440
The Command Processor 441
Cell Selection Commands 443
The Load Command 444
The Put Command 445

The Formula Trand ator 447

The Dependency Manager

The Expression Evaluator

The Screen Printer

The Cell Manager

Complete Program Listing

Project: A Database Program

A Sample Session with Our Database

How Databases Are Stored Internally

The Current Database

Implementing the Database Program Commands

Additions to the Program

Extra Work for Hotshots

VI
Conclusion: Computer Science

26
What's Next?

The Best Computer Science Book

Beyond SCP

Standard Scheme

Last Words

450

455

457

460

462

arr

ar7

481

483

483

484

497

4938

501

501

503

504

505

Page xiv

Appendices

A 507
Running Scheme

The Program Development Cycle 507
Integrated Editing 509
Getting Our Programs 510
Tuning Our Programs for Y our System 511
Loading Our Programs 513
Versions of Scheme 514
Scheme Standards 514
B 515
Common Lisp
Why Common Lisp Exists 515
Defining Procedures and Variables 516
The Naming Convention for Predicates 516
No Words or Sentences 517
True and False 517
Files 518
Arrays 519
Equivalents to Scheme Primitives 519
A Separate Name Space for Procedures 520

Lanmbda 521

More about Funct i on 522

Writing Higher-Order Procedures 523

C 525
Scheme Initialization File

D 547
GNU General Public License

Credits 551
Alphabetical Table of Scheme Primitives 553
Glossary 557
Index of Defined Procedures 567
General Index 573
Page xv
FOREWORD

One of the best waysto stifle the growth of an ideaisto enshrineit in an educational curriculum. The textbook
publishers, certification panels, professional organizations, the folks who write the college entrance exams—once
they've settled on an approach, they become frozen in a straitjacket of interlocking constraints that thwarts the ability
to evolve. So it is common that students learn the "modern” geography of countries that no longer exist and practice
using logarithm tables when calculators have made tables obsolete. And in computer science, beginning courses are
trapped in an approach that was already ten years out of date by the time it was canonized in the mid-1980s, when the
College Entrance Examination Board adopted an advanced placement exam based on Pascal.”

This book points the way out of the trap. It emphasizes programming as away to express ideas, rather than just a way
to get computers to perform tasks.

Julie and Gerry Sussman and | are flattered that Harvey and Wright characterize their revolutionary introduction to
computer science as a "prequel” to our text Structure and Interpretation of Computer Programs. When we were
writing S CP, we often drew upon the words of the great American computer scientist Alan Perlis (1922-1990). Perlis
was one of the designers of the Algol programming language, which, beginning in 1958, established the tradition of
formalism and precision that Pascal embodies. Here's what Perlis had to say about this tradition in 1975, nine years
before the start of the AP exam:

Algol isablight. You can't have fun with Algol. Algol is acode that now belongsin a plumber's union. It helps you
design correct structures that

* Since Hal wrote this Foreword, they've switched the AP exam to use C++, but the principleis the same.

Page xvi

don't collapse, but it doesn't have any fun in it. There are no pleasuresin writing Algol programs. It's alabor of
necessity, a preoccupation with the details of tedium.

Harvey and Wright's introduction to computing emerges from a different intellectual heritage, one rooted in research in
artificial intelligence and the programming language Lisp. In approaching computing through this book, you'll focus
on two essentia techniques.

First is the notion of symbolic programming. This means that you deal not only with numbers and letters, but with
structured collections of data—aword is alist of characters, a sentenceisalist of words, aparagraph isalist of
sentences, astory isalist of paragraphs, and so on. Y ou assemble things in terms of natural parts, rather than always
viewing datain terms of itstiniest pieces. It's the difference between saying "find the fifth character of the third word
in the sentence” and "scan the sentence until you pass two spaces, then scan past four more characters, and return the
next character."

The second technique is to work with higher-order functions. That means that you don't only write programs, but
rather you write programs that write programs, so you can bootstrap your methods into more powerful methods.

These two techniques belong at center stage in any beginning programming course, which is exactly where Harvey and
Wright put them. The underlying principle in both casesis that you work with general parts that you extend and
combine in flexible ways, rather than tiny fragments that you fit together into rigid structures.

Y ou should come to this introduction to computing ready to think about ideas rather than details of syntax, ready to
design your own languages rather than to memorize the rules of languages other people have designed. This kind of
activity changes your outlook not only on programming, but on any area where design plays an important role, because
you learn to appreciate the relations among parts rather than always fixating on the individual pieces. To quote Alan
Perlis again,

Y ou begin to think in terms of patterns and idioms and phrases, and no longer pick up atrowel and some cement and
lay things down brick by brick. The Great Wall, standing for centuries, isamonument. But building it must have been a
bore.

HAL ABELSON
CAMBRIDGE, MA

Page xvii

PREFACE
There are two schools of thought about teaching computer science. We might caricature the two views this way:

» The conservative view: Computer programs have become too large and complex to encompass in a human mind.
Therefore, the job of computer science education is to teach people how to discipline their work in such away that 500
mediocre programmers can join together and produce a program that correctly meets its specification.

» Theradical view: Computer programs have become too large and complex to encompass in a human mind.
Therefore, the job of computer science education is to teach people how to expand their minds so that the programs
can fit, by learning to think in avocabulary of larger, more powerful, more flexible ideas than the obvious ones. Each
unit of programming thought must have a big payoff in the capabilities of the program.

Of course nobody would admit to endorsing the first approach as we've described it. Y et many introductory
programming courses seem to spend half their time on obscure rules of the programming language (semicolons go
between the instructions in Pascal, but after each instruction in C) and the other half on stylistic commandments (thou
shalt comment each procedure with its preconditions and postconditions; thou shalt not use got 0). In an article that

was not intended as a caricature, the noted computer scientist Edsger Dijkstra argues that beginning computer science
students should not be allowed to use computers, lest they learn to debug their programs interactively instead of writing

Page xviii
programs that can be proven correct by formal methods before testing.”

If you are about to be a student in an introductory computer science course, you may aready be an experienced
programmer of your home computer, or instead you may have only a vague idea of what you're getting into. Perhaps
you suspect that programming a computer is like programming a V CR: entering endless obscure numeric codes. Even
if you're already a computer programmer, you may not yet have a clear idea of what computer science means. In either
case, what we want to do in this book is put our best foot forward—introduce you to some new ideas, get you excited,
rather than mold you into a disciplined soldier of the programming army.

In order to understand the big ideas, though, we'll also have to expend some effort on technical details; studying
computer science without writing computer programsis like trying to study German grammar without learning any of
the words in the language. But welll try to keep the ideas in view while struggling with the details, and we hope you'll
remember them too.

OneBig ldea:
Symbolic Programming

We said that our approach to teaching computer science emphasizes big ideas. Our explanation of symbolic
programming in the following paragraphsisin part just an illustration of that approach. But we chose this particular
example for another reason also. Scheme, the programming language used in this book, is an unusual choice for an
introductory computer science course. Y ou may wonder why we didn't use a more traditional language, such as Pascal,
Modula-2, or C. Our discussion of symbolic programming is the beginning of an answer to that question.

Originally computers were about numbers. Scientists used them to solve equations; businesses used them to compute
the payroll and the inventory. We were rescued from this boring state of affairs mainly by researchersin artificial
intelligence—people who wanted to get computers to think more nearly the way people do, about ideas in general
rather than just numbers.

What does it mean to represent ideas in a computer? Here's a simple example: We want to teach the computer to
answer the question, "Was so-and-so a Beatle?' We can't quite ask the question in English; in this book we interact
with the computer using Scheme. Our interactions will ook like this:

* "On the Cruelty of Really Teaching Computer Science," Communications of the ACM, vol. 32, no. 12, December,
1989.

Page xix

Youtype: (beat!| e? ' paul)
Computer replies: #t (computerese for "true")

Youtype: (beatl e? 'elvis)
Computer replies: #f ("false™")

Here's the program that does the job:

(define (beatle? person)
(menber ? person ' (john paul george ringo)))

If you examine this program with a (metaphoric) magnifying glass, you'll find that it's really still full of numbers. In
fact, each letter or punctuation character is represented in the computer by its own unique number.” But the point of the
example isthat you don't have to know that! When you see

(j ohn paul george ringo)

you don't have to worry about the numbers that represent the letters inside the computer; all you have to know is that
you're seeing a sentence made up of four words. Our programming language hides the underlying mechanism and lets
us think in terms more appropriate to the problem we're trying to solve. That hiding of detailsis called abstraction, one
of the big ideas in this book.

Programming with words and sentences is an example of symbolic programming. In 1960 John McCarthy invented the
Lisp programming language to handle symbolic computations like this one. Our programming language, Scheme, isa
modern dialect of Lisp.

Lisp and Radical Computer Science

Symbolic programming is one aspect of the reason why we like to teach computer science using Scheme instead of a
more traditional language. More generally, Lisp (and therefore Scheme) was designed to support what we've called the
radical view of computer science. In thisview, computer science is about tools for expressing ideas. Symbolic
programming allows the computer to express ideas; other aspects of Lisp's design help the programmer

* The left parenthesisis 40, for example, and the letter d is 100. If it were a capital D it would be 68.

Page xx

express ideas conveniently. Sometimes that goal comesin conflict with the conservative computer scientist's goal of
protection against errors.

Here's an example. We want to tell our computer, "To square a number, multiply it by itself." In Scheme we can say

(define (square num
(* num num)

The asterisk represents multiplication, and is followed by the two operands—in this case, both the same number. This
short program works for any number, of course, as we can see in the following dialogue. (The lines with > in front are
the ones you type.)

> (square 4)

16

> (square 3.14)
9. 8596

> (square -0.3)
0. 09

But the proponents of the 500-mediocre-programmer school™ think this straightforward approach is sinful. "What!"
they cry. "Y ou haven't said whether num is a whole number or a number with adecimal fraction!" They're afraid that
you might write the squar e program with whole numbersin mind, and then apply it to adecimal fraction by mistake.

If you're on ateam with 499 other programmers, it's easy to have failures of communication so that one programmer
uses another's program in unintended ways.

To avoid that danger, they want you to write these two separate programs:

function SquareO Whol eNuber (num integer): integer;
begi n
Squar e Whol eNunber : = num * num
end,

function SquareO Deci mal Nunber (num real): real;
begi n
Squar ef Deci mal Nunber := num* num
end;

* Their own names for their approach are structured programming and software engineering.

Page xxi

Isn't this silly? Why do they pick this particular distinction (whole numbers and decimals) to worry about? Why not
positive and negative numbers, for example? Why not odd and even numbers?

That two-separate-program example is written in the Pascal language. Pascal was designed by Niklaus Wirth, one of
the leaders of the structured programming school, specifically to force programming students to write programs that fit
conservative ideas about programming style and technique; you can't write a program in Pascal at al unless you write
it in the approved style. Naturaly, this language has been very popular with school teachers.” That's why, aswe write
thisin 1993, the overwhelming majority of introductory computer science classes are taught using Pascal, even though
no professional programmer would be caught dead using it.**

For fourteen years after the introduction of Pascal in 1970, its hegemony in computer science education was essentially
unchallenged. But in 1984, two professors at the Massachusetts I nstitute of Technology and a programmer at Bolt,
Beranek and Newman (a commercia research lab) published the Scheme-based Structure and Inter pretation of
Computer Programs (Harold Abelson and Gerald Jay Sussman with Julie Sussman, MIT PresssMcGraw-Hill). That
ground-breaking text brought the artificial intelligence approach to awide audience for the first time. We (Brian and
Matt) have been teaching their course together for severa years. Each time, we learn something new.

The only trouble with SCP isthat it was written for MIT students, all of whom love science and are quite comfortable
with forma mathematics. Also, most of the students who use SICP at MIT have aready learned to program computers
before they begin. As aresult, many other schools have found the book too challenging for a beginning course. We
believe that everyone who is serioudly interested in computer science must read SCP eventually. Our book isa
prequel; it's meant to teach you what you need to know in order to read that book successfully.** Generally speaking,
our primary goal in Parts -V has been preparation for S CP, while the focus of Part V1 isto connect the course with
the

* Of course, your teacher isn't an uptight authoritarian, or you wouldn't be using our book!

** Okay, we're exaggerating. But even Professor Wirth himself has found Pascal so restrictive that he had to design more
flexible languages—although not flexible enough—called Modula and Oberon.

*kk

Asthe ideas pioneered by SICP have spread, we are starting to see other intellectually respectable introductions to
computer science that are meant as alternativesto SCP. In particular, we should acknowledge Scheme and the Art of
Programming (George Springer and Daniel P. Friedman, MIT PressMcGraw-Hill, 1989) as arecognized classic. We
believe our book will serve as preparation for theirs, too.

Page xxii

kinds of programming used in "real world" application programs like spreadsheets and databases. (These are the last
example and the last project in the book.)

Who Should Read This Book
This book isintended as an introduction to computer programming and to computer science for two kinds of students.

For those whose main interest isin some other field, we provide a self-contained, one-semester experience with
computer programming in a language with a minimum of complicated notation, so that students can quickly comein
contact with high-level ideas about algorithms, functions, and recursion. The book ends with the implementation of a
spreadsheet program and a database program, so it complements a computer application course in which the
commercial versions of such programs are used.

For those who intend to continue the study of computer science but who have no prior programming experience, we
offer a preparatory course, lessintense than atraditional CS 1 but not limited to programming technique; we give the
flavor of computer science ideas that will be studied in more depth later in the curriculum. We also include an
extensive discussion of recursion, which is a stumbling block for many beginning students.

The course at Berkeley for which we wrote this book includes both categories of students. About 90% of the first-year
students who intend to major in computer science have already had a programming course in high school, and most of
them begin with SICP. The other 10% are advised to take this course first. But many of the studentsin this course
aren't computer science majors. A few other departments (business administration and architecture are the main ones)
have a specific computer course requirement, and all students must meet a broader " quantitative reasoning”
requirement; our course satisfies these requirements. Finally, some students come just out of curiosity about computers.

We assume that you have never programmed a computer. On the other hand, we do assume that you can use a
computer; we don't talk about how to turn it on, how to edit text, and so on, because those details are too different from
one computer model to another. If you've never used a computer before, you may wish to spend afew dayswith a
book written specifically for your machine that will introduce you to its operation. It won't take more than afew days,
because you don't have to be an expert before you read our book. Aslong as you can start up the Scheme interpreter
and correct your typing mistakes, you're ready.

Page xxiii

We assume that you're not a mathematics lover. (If you are, you might be ready to read SICP right away.) The earlier
example about squaring a number is about as advanced as we get. And of course you don't have to do any arithmetic at
al; computers are good at that. You'll learn how to tell the computer to do arithmetic, but that's no harder than using a
pocket calculator. Most of our programming examples are concerned with words and sentences rather than with
numbers. A typical exampleisto get Scheme to figure out the plural form of a noun. Usually that means putting an "'s"
on the end, but not quite always. (What's the plural of "French fry"?)

How to Read This Book

Do the exercises! Whenever we teach programming, we always get students who say, "When | read the book it all
makes sense, but on the exams, when you ask me to write a program, | never know where to start.” Computer science
istwo things: a bunch of big ideas, as we've been saying, and also a skill. You can't learn the skill by watching.

Do the exercises on acomputer! It's not good enough to solve the exercises on paper, even if you feel sure your
solution is correct. Maybe it's 99% correct but there's some little detail you've overlooked. When you run such a
program, you won't get 99% of the answer you wanted. By trying the exercise on the computer, you get unambiguous
feedback. If your program is correct, you get the response you expected. If not, not.

Don't feel bad if you don't get things right the first time. Even the most experienced programmers have to debug their
programs—that is, fix the parts that don't work. In fact, an important part of what you'll learn from the exercisesisthe
process of debugging your solutions. It would be too bad if all of your programsin this course worked the first time,
because that would let you avoid the practice in debugging that you'll certainly need when you write more complicated
programs later. Also, don't be afraid or ashamed to ask for help if you get stuck. That, too, is part of the working style
of professional programmers.

In some of the chapters, we've divided the exercises into two categories, "boring” and "real." The boring exercises ask
you to work through examples mechanically, to make sure you understand the rules. The real exercises ask you to
invent something, usually a small computer program, but sometimes an explanation of some situation that we present.
(In some chapters, the exercises are just labeled "exercises," which meansthat they're al considered "real.") We don't
intend that the boring exercises be handed in; the ideais for you to do as many of them as you need to make sure you
understand the mechanics of whatever topic you're learning.

Page xxiv

Occasionally we introduce some idea with a simplified explanation, saving the whole truth for later. We warn you
when we do this. Also, we sometimes write preliminary, partial, or incorrect example programs, and we always flag
these with a comment like

(define (sonething foo baz) ;; first version

-)

When we introduce technical terms, we sometimes mention the origin of the word, if it's not obvious, to help prevent
the terminology from seeming arbitrary.

This book starts easy but gets harder, in two different ways. One is that we spend some time teaching you the basics of
Scheme before we get to two hard big ideas, namely, function as object and recursion. The earlier chapters are short
and simple. You may get the idea that the whole book will be trivial. You'll change your mind in Parts 11l and V.

The other kind of difficulty in the book is that it includes long programming examples and projects. ("Examples’ are
programs we write and describe; "projects’ are programs we ask you to write.) Writing along program is quite
different from writing a short one. Each small piece may be easy, but fitting them together and remembering all of
them at once is a challenge. The examples and projects get longer as the book progresses, but even the first example,
tic-tac-toe, is much longer and more complex than anything that comes beforeit.

Asthe text explains more fully later, in this book we use some extensions to the standard Scheme language—features
that we implemented ourselves, as Scheme programs. If you are using this book in a course, your instructor will
provide our programs for you, and you don't have to worry about it. But if you're reading the book on your own, you'll
need to follow the instructionsin Appendix A.

There are severa reference documents at the end of the book. If you don't understand a technical term in the text, try
the Glossary for a short definition, or the General Index to find the more complete explanation in the text. If you've
forgotten how to use a particular Scheme primitive procedure, ook in the Alphabetical Table of Scheme Primitives, or
in the General Index. If you've forgotten the name of the relevant primitive, refer to the inside back cover, where all

the primitive procedures are listed by category. Some of our example programs make reference to procedures that were
defined earlier, either in another example or in an exercise. If you're reading an example program and it refers to some
procedure that's defined el sewhere, you can find that other procedure in the Index of Defined Procedures.

Page xxv

TO THE INSTRUCTOR

The language that we use in this book isn't exactly standard Scheme. We've provided severa extensions that may seem
unusual to an experienced Scheme programmer. This may make the book feel weird at first, but there's a pedagogic
reason for each extension.

Along with our dlightly strange version of Scheme, our book has a slightly unusual order of topics. Several ideas that
are introduced very early in the typical Scheme-based text are delayed in ours, most notably recursion. Quite afew
people have looked at our table of contents, noted some particular big idea of computer science, and remarked, "I can't
believe you wait so long before getting to such and such!™

In this preface for instructors, we describe and explain the unusual elements of our approach. Other teaching issues,
including the timing and ordering of topics, are discussed in the Instructor's Manual.

Lists and Sentences

The chapter named "Lists" in this book is Chapter 17, about halfway through the book. But really we use lists much
earlier than that, almost from the beginning.

Teachers of Lisp have always had trouble deciding when and how to introduce lists. The advantage of an early
introduction is that students can then write interesting symbolic programsinstead of boring numeric ones. The
disadvantage is that students must struggle with the complexity of the implementation, such as the asymmetry between
the two ends of alist, while still also struggling with the idea of composition of functions and Lisp's prefix notation.

We prefer to have it both ways. We want to spare beginning students the risk of accidentally constructing ill-formed
lists such as

Page xxvi
() - D .9 . B .A

but we also want to write natural-language programs from the beginning of the book. Our solution is to borrow from
Logo the idea of a sentence abstract datatype.” Sentences are guaranteed to be flat, proper lists, and they appear to be
symmetrical to the user of the abstraction. (That is, it's as easy to ask for the last word of a sentence asto ask for the
first word.) The sent ence constructor accepts either aword or a sentence in any argument position.

We defer structured lists until we have higher-order functions and recursion, the tools we need to be able to use the
structure effectively.”* A structured list can be understood as atree, and Lisp programmers generally use that
understanding implicitly. After introducing car - cdr recursion, we present an explicit abstract data type for trees,
without reference to its implementation. Then we make the connection between these formal trees and the name "tree
recursion” used for structured lists generally. But Chapter 18 can be omitted, if the instructor finds the tree ADT
unnecessary, and the reader of Chapter 17 will still be able to use structured lists.

Sentences and Words

We haven't said what aword is. Scheme includes separate data types for characters, symbols, strings, and numbers.
We want to be able to dissect words into letters, just as we can dissect sentences into words, so that we can write
programslike pl ur al and pi g—I at i n. Orthodox Scheme style would use strings for such purposes, but we want a
sentencetolook (1i ke this) andnot ("1ike" "this"). Wevearranged that in most contexts symbols,

strings, and numbers can be used interchangeably; our readers never see Scheme characters at all.”** Although aword
made of lettersis represented internally as a symbol, while aword made of digitsis represented as a number, above the
abstraction line they're both words. (A word that standard Scheme won't accept as a symbol nor as a number is
represented as a string.)

* Speaking of abstraction, even though that's the name of Part V, we do make an occasion in each of the earlier partsto
talk about abstraction as examples come up.

** Even then, we take lists as a primitive data type. We don't teach about pairs or improper lists, except as a potential pitfall.

* k%

Scheme's primitive I/O facility gives you the choice of expressions or characters. Instead of usingr ead—char, we
invent r ead—I i ne, whichreadsaline asasentence, andr ead—st ri ng, which returnsthe line as one long word.

Page xxvii

There is an efficiency cost to treating both words and sentences as abstract aggregates, since it's slow to disassemble a
sentence from right to left and slow to disassemble aword in either direction. Many simple procedures that seem linear
actually behave quadratically. Luckily, words aren't usually very long, and the applications we undertake in the early
chapters don't use large amounts of datain any form. We write our large projects as efficiently as we can without
making the programs unreadable, but we generally don't make afuss about it. Near the end of the book we discuss
explicitly the efficient use of data structures.

Overloading in the Text Abstraction

Even though computers represent numbers internally in many different ways (fixed point, bignum, floating point, exact
rational, complex), when people visit mathland, they expect to meet numbers there, and they expect that all the
numbers will understand how to add, subtract, multiply, and divide with each other. (The exception is dividing by zero,
but that's because of the inherent rules of mathematics, not because of the separation of numbers into categories by
representation format.)

We feel the same way about visiting textland. We expect to meet English text there. It takes the form of words and
sentences. The operations that text understandsincludefirst, |ast, butfirst, andbutl ast todividethe

text into its component parts. Y ou can't divide an empty word or sentence into parts, but it'sjust as natural to divide a
word into letters as to divide a sentence into words. (The ideas of mathland and textland, as well as the details of the
word and sentence procedures, come from Logo.)

Some people who are accustomed to Scheme's view of datatypes consider f i r st to be badly "overloaded"; they feel

that a procedure that selects an element from alist shouldn't also extract aletter from a symbol. Some of them would
prefer that we use car for lists, use subst ri ng for strings, and not disassemble symbols at all. Others want usto

definewor d—fi rst andsent ence—first.

Tous, wor d—first andsent ence—first sound nolessawkward thanf i xnum-+ and bi gnum-+. Everyone
agrees that it's reasonabl e to overload the name + because the purposes are so similar. Our students find it just as
reasonablethat f i r st worksfor words as well as for sentences; they don't get confused by this.

Asfor theinviolability of symbols—the wall between names and data—we are following an older Lisp tradition, in
which it was commonplace to expl ode symbols and to construct new names within a program. Practically speaking,

all that prevents us from representing words as strings is that Scheme requires quotation marks around them. But

Page xxviii

in any case, the abstraction we're presenting is that the data we're dissecting are neither strings nor symbols, but words.

Higher-Order Procedures, Lambda, and Recursion

Scheme relies on procedure invocation as virtually its only control mechanism. In order to write interesting programs,
a Scheme user must understand at least one of two hard ideas. recursion or procedure as object (in order to use higher-
order procedures). We believe that higher-order procedures are easier to learn, especially because we begin in Chapter
8 by applying them only to named procedures. Using a named procedure as an argument to another procedure is the
way to use procedures as objects that's least upsetting to a beginner. After the reader is comfortable with higher-order
procedures, we introduce | anbda; after that we introduce recursion. We do the tic-tac-toe example with higher-order

procedures and | anbda, but not recursion.

In this edition, however, we have made the necessary minor revisions so that an instructor who prefers to begin with
recursion can assign Part 1V before Part 111.

When we get to recursion, we begin with an example of embedded recursion. Many books begin with the simplest
possible recursive procedure, which turns out to be a smple sequential recursion, or even atail recursion. We feel that
starting with such examples allows students to invent the "go back” model of recursion as|ooping.

Mutator s and Environments

One of the most unusual characteristics of this book is that there is no assignment to variablesin it. The reason we
avoid set ! isthat the environment model of evaluation isvery hard for most students. We use a pure substitution
model throughout most of the book. (With the background they get from this book, students should be ready for the
environment model when they see arigorous presentation, as they will, for example, in Chapter 3 of SCP.)

Asthe last topic in the book, we do introduce aform of mutation, namely vect or —set ! . Mutation of vectorsisless

problematic than mutation of lists, because lists naturally share storage. Y ou really have to go out of your way to get
two

Page xxix

pointers to the same vector.” Mutation of data structures is less problematic than assignment to variables because it
separates the issue of mutation from the issues of binding and scope. Using vectors raises no new questions about the
evaluation process, so we present mutation without reference to any formal model of evaluation. We acknowledge that
we're on thin ice here, but it seemsto work for our students.

In effect, our model of mutation is the "shoebox™ model that you'd find in a mainstream programming language text.
Before we get to mutation, we use input/output programming to introduce the ideas of effect and sequence; assigning a
value to avector element introduces the important idea of state. We use the sequential model to write two more or less
practical programs, a spreadsheet and a database system. A more traditional approach to assignment in Scheme would
be to build an object-oriented language extension, but the use of local state variables would definitely force usto pay
attention to environments.

* Wedon't talk about eq? at all. We're careful to write our programs in such away that the issue of identity doesn't
arise for the reader.

Page 2

PART |—
INTRODUCTION:
FUNCTIONS

The purpose of these introductory pages before each part of the book isto call attention to a big idea that runs through
all the work of several chapters. In the chapters themselves, the big idea may sometimes be hidden from view because
of the technical details that we need to make the ideawork. If you ever feel lost in the forest, you might want to refer
back here.

In these first two chapters, our goal is to introduce the Scheme programming language and the idea of using functions
as the building blocks of a computation.

The first chapter is a collection of short Scheme programs, presented to show off what Scheme can do. Well try to
explain enough of the mechanism so that you don't feel completely mystified, but we'll defer the details until later. Our
goal is not for you to feel that you could re-create these programs, but rather that you get a sense of what kinds of
programs we'll be working with.

The second chapter explores functions in some detail. Traditionally, computer programs are built out of actions: First
do this, then do that, and finally print the results. Each step in the program does something. Functional programming is
different, in that we are less concerned with actions and more concerned with values.

For example, if you have a pocket calculator with a square root button, you could enter the number 3, push the button,
and you'll see something like 1.732050808 in the display. How does the calculator know? There are several possible
processes that the calculator could carry out. One process, for example, isto make a guess, square it, seeif theresultis
too big or too small, and use that information to make a closer guess. That's a sequence of actions. But ordinarily you
don't care what actions the calculator takes;

Page 3

what interests you is that you want to apply the square root function to the argument 3, and get back a value. We're
going to focus on this business of functions, arguments, and result values.

Don't think that functions have to involve numbers. We'll be working with functions like "first name,” "plural,” and
"acronym." These functions have words and sentences as their arguments and values.

Page 4

Scheme-Brained Hare

Page 5

1—
Showing off Scheme

We are going to use the programming language Scheme to teach you some big ideas in computer science. The ideas
are mostly about control of complexity—that is, about how to develop alarge computer program without being
swamped in details.

For example, once you've solved part of the large problem, you can give that partial solution a name and then you can
use the named subprogram as if it were an indivisible operation, just like the ones that are built into the computer.
Thereafter, you can forget about the details of that subprogram. Thisis the beginning of the idea of abstraction, which
well discuss in more depth throughout the book.

The big ideas are what this book is about, but first we're going to introduce you to Scheme. (Scheme is adialect of
Lisp, afamily of computer programming languages invented for computing with words, sentences, and ideas instead of
just numbers.)

Talking to Scheme

The incantations to get Scheme running will be different for each model of computer. Appendix A talks about these
details; you can look up the particular version of Scheme that you're using. That appendix will also tell you how to
load thefilesi npl y. scm which you need to make the examplesin this book work.

When Scheme has started up and is ready for you to interact with it, you'll see a message on the screen, something like
this:

Wel come to XYZ Brand Schene.
>

Page 6

The > isaprompt, Scheme's way of telling you that it's ready for you to type something. Scheme is an interactive

programming language. In other words, you type arequest to Scheme, then Scheme prints the answer, and then you get
another prompt. Try it out:

> 6
6

We just asked Scheme, "What is 67" and Scheme told usthat 6 is 6. Most of the time we ask harder questions:

> (+ 47
11

> (- 23 5)
18

> (+5678)
26

Whenever something you type to Scheme is enclosed in parentheses, it indicates a request to carry out a procedure.
(WEe'll define "procedure” more formally later, but for now it means something that Scheme knows how to do. A
procedure tells Scheme how to compute a particular function.) The first thing inside the parentheses indicates what
procedure to use; the others are arguments, i.e., values that are used as data by the procedure.

Scheme has non-numeric procedures, too:

> (word 'conp 'uter)
COWPUTER

(If thislast example gives an error message saying that Scheme doesn't understand the name word, it means that you
didn't load thefilesi npl y. scm Consult Appendix A.)

In these first examples, we've shown that you typein bol df ace and what the computer respondsin| i ght f ace.
Hereafter, we will rely on the prompt characters to help you figure out who's talking on which line.

For the most part, Scheme doesn't care about whether you type in UPPER CASE or lower case. For the examplesin
this book, we'll assume that you always type in lower case and that the computer printsin upper case. Y our Scheme
might print in lower case; it doesn't matter.

Page 7

Recovering from Typing Errors

Don't worry if you make a mistake typing these examplesin; you can just try again. One of the great things about
interactive programming languages is that you can experiment in them.

The parentheses and single quote marks are important; don't leave them out. If Scheme seems to be ignoring you, try
typing a bunch of right parentheses,)))))), and hitting ther et ur n or ent er key. (That's because Scheme doesn't
do anything until you've closed all the parentheses you've opened, so if you have an extra left parenthesis, you can
keep typing forever with no response.)

Another problem you might encounter is seeing along message that you don't understand and then finding yourself
with something other than a Scheme prompt. This happens when Scheme considers what you typed as an error. Here's
an example; for now, never mind exactly why thisisan error. We just want to talk about the result:

> (+ 2 a)

Unbound variable a
; Package: (user)

2 EBrror—>

The exact form of the message you get will depend on the version of Scheme that you're using. For now, the important
point is that some versions deal with errors by leaving you talking to a debugger instead of to Scheme itself. The
debugger may have a completely different language. It's meant to help you figure out what's wrong in alarge program
you've written. For a beginner, though, it's more likely to get in the way. Read the documentation for your particular
Scheme diaect to learn how to escape from the debugger. (In some versions you don't get trapped in a debugger when
you make an error, so this problem may not arise.)

Exiting Scheme
Although there's no official standard way to exit Scheme, most versions use the notation

> (exit)

Page 8

for this purpose. If you type in some of the examples that follow and then exit from Scheme, what you type won't be
remembered the next time you use Scheme. (Appendix A talks about how to use atext editor along with Scheme to
make a permanent record of your work.)

M or e Examples

We're about to show you afew examples of (we hope) interesting programs in Scheme. Play with them! Type them
into your computer and try invoking them with different data. Again, don't worry too much if something doesn't
work—it probably just means that you left out a parenthesis, or some such thing.

While you're going through these examples, see how much you can figure out for yourself about how they work. In
particular, try guessing what the names of procedures, such asfi r st and keep, mean. Some of them will probably
be obvious, some of them harder. The point isn't to see how smart you are, but to get you thinking about the kinds of
things you want to be able to do in acomputer program. Later on we'll go through these examples in excruciating
detail and tell you the official meanings of all the pieces.

Besides learning the vocabulary of Scheme, another point of this activity isto give you afeeling for the ways in which
we put these names together in a program. Every programming language has its own flavor. For example, if you've
programmed before in other languages, you may be surprised not to find anything that says pr i nt in these examples.

On the other hand, some of these examples are programs that we won't expect you to understand fully until most of the
way through this book. So don't worry if something doesn't make sense; just try to get some of the flavor of Scheme
programming.

Example:
Acronyms

Here's our first new program. So far we have just been using procedures built into Scheme: +, —, and wor d. When you

first start up Scheme, it knows 100200 procedures. These are called primitive procedures. Programming in Scheme
means defining new procedures, called compound procedures. Right now we're going to invent one that finds the
acronym for atitle:

(define (acronym phrase)
(accurmul ate word (every first phrase)))
Page 9

> (acronym ' (american civil liberties union))
ACLU

> (acronym ' (reduced instruction set conputer))
Rl SC

> (acronym' (quod erat denonstrandum)

QED
Did you have trouble figuring out what al the pieces do in the acr ony mprocedure? Try these examples:

> (first 'american)
A

> (every first '(american civil liberties union))
(ACL U

> (accunul ate word '(a c | u))
ACLU

Notice that this simple acr ony mprogram doesn't dways do exactly what you might expect:

> (acronym ' (united states of anerica))
USQOA

We can rewrite the program to leave out certain words:

(define (acronym phrase)
(accurmul ate word (every first (keep real -word? phrase))))

(define (real —word? wd)
(not (menber? wd '(a the an in of and for to with))))

> (acronym ' (united states of anerica))
USA

> (acronym ' (structure and interpretation of conputer prograns))
S| CP

> (acronym' (association for conputing machinery))
ACM

> (real -word? 'structure)
#T

Page 10

> (real -word? ' of)
#HF"

> (keep real -word? ' (united network command for | aw and enforcenent))
(UNI TED NETVWORK COMVAND LAW ENFORCEMENT)

Example: Pig Latin

Our next example translates aword into Pig Latin."*

(define (pigl wd)
(if (menmber? (first wd) 'aeiou)
(word wd ' ay)
(pigl (word (butfirst wd) (first wd)))))

(pigl 'spaghetti)

AGHETTI SPAY
> (pigl 'ok)
OKAY

(By the way, if you've used other programming languages before, don't fall into the trap of thinking that each line of
thepi gl definitionisa"statement” and that the

* In some versions of Scheme you might see () instead of #F.

** Pig Latin is anot-very-secret secret language that many little kids learn. Each word is translated by moving all theinitial
consonants to the end of the word, and adding "ay" at the end. It's usually spoken rather than written, but that's alittle
harder to do on a computer.

Page 11

statements are executed one after the other. That's not how it works in Scheme. The entire thing is a single expression,
and what counts is the grouping with parentheses. Starting a new lineis no different from a space between words as far
as Scheme is concerned. We could have defined pi gl on one humongous line and it would mean the same thing.

Also, Scheme doesn't care about how we've indented the lines so that subexpressions line up under each other. We do
that only to make the program more readable for human beings.)

The procedure follows one of two possible paths, depending on whether the first letter of the given word isavowsel. If
S0, pi gl just addsthe lettersay at the end:

> (pigl '"elephant)
ELEPHANTAY

The following examples might make it alittle more clear how the starting-consonant case works:

> (first 'spaghetti)
S

> (butfirst 'spaghetti)
PAGHETTI

> (word 'paghetti 's)
PAGHETTI S

> (define (rotate wd)
(word (butfirst wd) (first wd)))

> (rotate 'spaghetti)
PAGHETTI S

> (rotate 'paghettis)
AGHETTI SP

> (pigl "aghettisp)
AGHETTI SPAY

You'veseen every before, in theacr onymexample, but we haven't told you what it does. Try to guess what Scheme
will respond when you type this:

(every pigl '(the ballad of john and yoko))

Page 12

Example:
I ce Cream Choices

Here's a somewhat more complicated program, but still pretty short considering what it accomplishes:

(define (choices nenu)
(if (null? menu)
“(0))
(let ((smaller (choices (cdr nenu))))
(reduce append
(map (lanmbda (itenm) (prepend-every itemsnaller))

(car nenu))))))

(define (prepend—every itemlst)
(map (lanbda (choice) (se itemchoice)) Ist))

> (choices '((small mediuml arge)
(vanilla (ultra chocolate) (rumraisin) ginger)
(cone cup)))

((SMALL VAN LLA CONE)

(SMALL VANI LLA CUP)

(SMALL ULTRA CHOCOLATE CONE)
(SMALL ULTRA CHOCOLATE CUP)
(SMALL RUM RAI SI N CONE)
(SMALL RUM RAI SI N CUP)

(SMALL d NGER CONE)

(SMALL d NGER CUP)

(MEDI UM VANI LLA CONE)

(MEDI UM VANI LLA CUP)

(MEDI UM ULTRA CHOCOLATE CONE)
(MEDI UM ULTRA CHOCCLATE CUP)
(MEDI UM RUM RAI SI N CONE)
(MEDI UM RUM RAI SI N CUP)

(MEDI UM G NGER CONE)

(MEDI UM G NGER CUP)

(LARGE VAN LLA CONE)

(LARGE VAN LLA CUP)

(LARGE ULTRA CHOCOLATE CONE)
(LARGE ULTRA CHOCOLATE CUP)
(LARGE RUM RAI SI N CONE)
(LARCGE RUM RAI SI N CUP)

(LARGE d NCER CONE)

(LARGE d NCGER CUP))

Notice that in writing the program we didn't have to say how many menu categories there are, or how many choicesin
each category. This one program will work with any menu—try it out yourself.

Page 13

Example:
Combinationsfrom a Set

Here's a more mathematical example. We want to know all the possible combinations of, let's say, three things from a
list of five possibilities. For example, we want to know all the teams of three people that can be chosen from a group of
five people. "Dozy, Beaky, and Tich" counts as the same team as "Beaky, Tich, and Dozy"; the order within ateam
doesn't matter.

Although thiswill be a pretty short program, it's more complicated than it looks. We don't expect you to be able to
figure out the algorithm yet.” Instead, we just want you to marvel at Scheme's ability to express difficult techniques
succinctly.

(define (conbinations size set)
(cond ((= size 0) "(()))
((enmpty? set) " ())
(el se (append (prepend—every (first set)
(combi nations (- size 1)
(butfirst set)))
(conbi nations size (butfirst set))))))

> (conbinations 3 '"(a b c d e))
((ABCO (ABD (ABE (ACD (ACE
(ADE) (BCD (BCE) (BDE) (CDE)

> (conbinations 2 '(john paul george ringo))
((JOHN PAUL) (JOHN GEORGE) (JOHN RI NGO
(PAUL GEORCE) (PAUL RINGO) (GECRGE RINGO))

(If you're trying to figure out the algorithm despite our warning, here's ahint: All the combinations of three letters
shown above can be divided into two groups. The first group consists of the ones that start with the letter A and contain

two more letters; the second group has three letters not including A. The procedure finds these two groups separately

and combines them into one. If you want to try to understand all the pieces, try playing with them separately, aswe
encouraged you to do with the pi gl and acr ony mprocedures.)

* What's an algorithm? It's a method for solving a problem. The usual analogy is to arecipe in cooking, although you'll
see throughout this book that we want to get away from the aspect of that analogy that emphasizes the sequential nature
of arecipe—first do this, then do that, etc. There can be more than one algorithm to solve the same problem.

Page 14

If you've taken a probability course, you know that there is aformulafor the number of possible combinations. The
most traditional use of computersisto work through such formulas and compute numbers. However, not all problems
are numeric. Lisp, the programming language family of which Scheme is a member, is unusual in its emphasis on
symbolic computing. In this example, listing the actual combinations instead of just counting them is part of the flavor
of symbolic computing, along with our earlier examples about manipulating words and phrases. We'l try to avoid
numeric problems when possible, because symbolic computing is more fun for most people.

Example: Factorial

Scheme can handle numbers, too. The factorial of n (usually written in mathematical notation as n!) is the product of
all the numbersfrom 1 to n:

(define (factorial n)
(if (=n0)
1
(* n (factorial (- n 1)))))

> (factorial 4)
24

> (factorial 1000)

4023872600770937735437024339230039857193748642107146325437999104299385
1239862902059204420848696940480047998861019719605863166687299480855890
1323829669944590997424504087073759918823627727188732519779505950995276
1208749754624970436014182780946464962910563938874378864873371191810458
2578364784997701247663288983595573543251318532395846307555740911426241
7474349347553428646576611667797396668820291207379143853719588249808126
8678383745597317461360853795345242215865932019280908782973084313928444
0328123155861103697680135730421616874760967587134831202547858932076716
9132448426236131412508780208000261683151027341827977704784635868170164

3650241536913982812648102130927612448963599287051149649754199093422215
6683257208082133318611681155361583654698404670897560290095053761647584
7728421889679646244945160765353408198901385442487984959953319101723355
5566021394503997362807501378376153071277619268490343526252000158885351
4733161170210396817592151090778801939317811419454525722386554146106289
2187960223838971476088506276862967146674697562911234082439208160153780
8898939645182632436716167621791689097799119037540312746222899880051954
4441428201218736174599264295658174662830295557029902432415318161721046
5832036786906117260158783520751516284225540265170483304226143974286933
0616908979684825901254583271682264580665267699586526822728070757813918

5817888965220816434834482599326604336766017699961283186078838615027946
5955131156552036093988180612138558600301435694527224206344631797460594
6825731037900840244324384656572450144028218852524709351906209290231364
9327349756551395872055965422874977401141334696271542284586237738753823
0483865688976461927383814900140767310446640259899490222221765904339901
8860185665264850617997023561938970178600408118897299183110211712298459
0164192106888438712185564612496079872290851929681937238864261483965738
2291123125024186649353143970137428531926649875337218940694281434118520
1580141233448280150513996942901534830776445690990731524332782882698646
0278986432113908350621709500259738986355427719674282224875758676575234
4220207573630569498825087968928162753848863396909959826280956121450994
8717012445164612603790293091208890869420285106401821543994571568059418
7274899809425474217358240106367740459574178516082923013535808184009699
6372524230560855903700624271243416909004153690105933983835777939410970
027753472000
00
00
00

Page 15

If this doesn't work because your computer istoo small, try a more reasonably sized example, such as the factorial of

200.

Play with the Procedures

This chapter has introduced alot of new ideas at once, leaving out all the details. Our hope has been to convey the
flavor of Scheme programming, before we get into Chapter 2, which isfull of those missing details. But you can't

absorb the flavor just by reading; take some time out to play with these examples before you go on.

Exercises
1.1 Do 20 push-ups.

1.2 Calculate 1000 factorial by hand and seeif the computer got the right answer.

1.3 Create afile called acr onym scmecontaining our acronym program, using the text editor provided for use with
your version of Scheme. Load the file into Scheme and run the program. Produce atranscript file called acr onym

| og, showing your interaction with Scheme as you test the program several times, and print it.

Page 16

The function f (X, y) = sin xy plotted by computer

Page 17

2_
Functions

Throughout most of this book we're going to be using atechnique called functional programming. We can't give a
complete definition of thisterm yet, but in this chapter we introduce the building block of functional programming, the
function.

Basically we mean by "function™ the same thing that your high school algebra teacher meant, except that our functions
don't necessarily relate to numbers. But the essential ideaisjust like the kind of function described by f(x) = 6x—2. In
that example, f is the name of afunction; that function takes an argument called x, which is anumber, and returns
some other number.

In this chapter you are going to use the computer to explore functions, but you are not going to use the standard
Scheme notation as in the rest of the book. That's because, in this chapter, we want to separate the idea of functions
from the complexities of programming language notation. For example, real Scheme notation lets you write
expressions that involve more than one function, but in this chapter you can only use one at atime.

To get into this chapter's special computer interface, first start running Scheme as you did in the first chapter, then type

(load "functions.scnl)

to tell Scheme to read the program you'll be using. (If you have trouble loading the program, look in Appendix A for
further information about | oad.) Then, to start the program, type

(functions)

Page 18

You'll then be ableto carry out interactions like the following.” In the text below we've printed what you type in
bol df ace and what the computer typesin| i ght f ace printing:

Function: +
Argument: 3
Argunent: 5

The result is: 8

Function: sqrt
Argunent: 144

The result is: 12

Asyou can see, different functions can have different numbers of arguments. In these examples we added two
numbers, and we took the square root of one number. However, every function gives exactly one result each time we
useit.

Toleavethef unct i ons program, typeexi t when it asks for afunction.

Arithmetic

Experiment with these arithmetic functions: +, —, *, /, sqgrt, quotient, remai nder,
random round, nax, andexpt . Try different kinds of numbers, including integers and numbers with decimal
fractions. What if you try to divide by zero? Throughout this chapter we are going to let you experiment with functions

rather than just give you along, boring list of how each one works. (The boring list is available for reference on page
553.)

Try these:

Function: /
Argument: 1
Argunent: 987654321987654321

Functi on: remai nder
Argunent: 12
Argument: -5

* If you get no response at all after you type (f uncti ons), just pressthe Return or Enter key again. Tell your
instructor to read Appendix A to see how to fix this.

Page 19

Functi on: round
Argunent: 17.5

These are just afew suggestions. Be creative; don't just type in our examples.

Words

Not all Scheme functions deal with numbers. A broader category of argument is the word, including numbers but also
including English wordslikespaghet ti or xyl ophone. Even ameaningless sequence of letters and digits such as
gl 087r p isconsidered aword.” Try these functions that accept words as arguments.

first, butfirst, last, butlast, word, andcount.What happensif you use a number asthe
argument to one of these?

Function: butfirst
Argunent: a

Function: count
Argunent: 765432

So far most of our functions fall into one of two categories: the arithmetic functions, which require numbers as
arguments and return a number as the result; and the word functions, which accept words as arguments and return a
word as the result. The one exception we've seeniscount . What kind of argument does count accept? What kind of

value does it return? The technical term for "akind of data" is atype.

In principle you could think of almost anything as atype, such as "numbers that contain the digit 7." Such ad hoc types
are legitimate and sometimes useful, but there are also official types that Scheme knows about. Types can overlap; for
example, numbers are also considered words.

Functi on: word
Argunent: 3.14
Argunent: 1592654

Function: +
Argunent: 6
Argunent: seven

* Certain punctuation characters can also be used in words, but |et's defer the details until you've gotten to know the
word functions with simpler examples.

Page 20

Domain and Range

The technical term for "the things that a function accepts as an argument” is the domain of the function. The name for
"the things that a function returns' isits range. So the domain of count iswords, and the range of count isnumbers

(in fact, nonnegative integers). This example shows that the range may not be exactly one of our standard data types;
there is no "nonnegative integer" type in Scheme.

How do you talk about the domain and range of afunction? Y ou could say, for example, "The cos function has
numbers as its domain and numbers between —1 and 1 asitsrange.” Or, informally, you may also say " Cos takesa
number as its argument and returns a number between —1 and 1."*

For functions of two or more arguments, the language is alittle less straightforward. The informal version still works:
" Remai nder takestwo integers as arguments and returns an integer.” But you can't say "The domain of

r emai nder istwo integers," because the domain of afunction isthe set of all possible arguments, not just a
statement about the characteristics of legal arguments.™”

(By the way, we're making certain simplifications in this chapter. For example, Scheme's + function can actually
accept any number of arguments, not just two. But we don't want to go into all the bells and whistles at once, so welll
start with adding two numbers at atime.)

Here are examplesthat illustrate the domains of some functions:

Function: expt
Argunent: -3
Argunent: .5
Function: expt
Argument: -3
Argunent: -3
Function: renai nder
Argunment: 5
Argunment: O

* Unless your version of Scheme has complex numbers.

** Real mathematicians say, "The domain of r emai nder isthe Cartesian cross product of the integers and the integers.”
In order to avoid that mouthful, we'll just use the informal wording.

Page 21

More Types:
Sentences and Booleans

We're going to introduce more data types, and more functions that include those typesin their domain or range. The
next type is the sentence: a bunch of words enclosed in parentheses, such as

(all you need is |ove)

(Don't include any punctuation characters within the sentence.) Many of the functions that accept words in their
domain will also accept sentences. Thereisaso afunction sent ence that accepts words and sentences. Try

exampleslikebut fi r st of asentence.

Function: sentence
Argunent: (when i get)
Argunent: hone
Function: butfirst
Argunent: (yer bl ues)
Function: butl ast
Argunent: ()

Other important functions are used to ask yes-or-no questions. That is, the range of these functions contains only two
values, one meaning "true” and the other meaning "false.” Try the numeric comparisons=, <, >, <=, and>=,

and the functions equal ? and menber ? that work on words and sentences. (The question mark is part of the name
of the function.) There are also functionsand, or, and not whose domain and range are both true-false values.

The two values "true" and "false" are called Booleans, named after George Boole (1815-1864), who developed the
formal tools used for true-false values in mathematics.

What good are these true-fal se values? Often a program must choose between two options: If the number is positive,
do this; if negative, do that. Scheme has functions to make such choices based on true-false values. For now, you can
experiment with thei f function. Itsfirst argument must be true or false; the others can be anything.

Our Favorite Type:
Functions

So far our data types include numbers, words, sentences, and Booleans. Scheme has several more data types, but for
now well just consider one more. A function can be used as data. Here's an example:

Page 22

Function: nunber—of —argunent s
Argunent: equal ?

The result is: 2

The range of nunber —of —ar gunment s is nonnegative integers. But its domain is functions. For example, try using
it as an argument to itself!

If you've used other computer programming languages, it may seem strange to use a function—that is, a part of a
computer program—as data. Most languages make a sharp distinction between program and data. We'll soon see that
the ability to treat functions as data hel ps make Scheme programming very powerful and convenient.

Try these examples:

Function: every
Argunent: first
Argunent: (the | ong and wi ndi ng road)

Function: keep
Argunent: vowel ?
Argunent: constantinopl e

Think carefully about these. Y ou aren't applying the functionf i r st to the sentence
(the Iong and wi ndi ng road); you'reapplying the function every to afunction and a sentence.

Other functions that can be used with keep includeeven? and odd?, whose domains are the integers, and
nunber ?, whose domain iseverything.

Play with It

If you've been reading the book but not trying things out on the computer as you go along, get to work! Spend some
time getting used to these ideas and thinking about them. When you're done, read ahead.

Thinking about What You've Done

The idea of function is at the heart of both mathematics and computer science. For example, when mathematicians
want to think very formally about the system of numbers, they use functions to create the integers. They say, let's
suppose we have one number,

Page 23

called zero; then let's suppose we have the function given by f(x) = x + 1. By applying that function repeatedly, we can
create 1 =f (0), then 2 = (1), and so on.

Functions are important in computer science because they give us away to think about process—in ssmple English, a
way to think about something happening, something changing. A function embodies a transformation of information,
taking in something we know and returning something we didn't know. That's what computers do: They transform
information to produce new results.

A lot of the mathematics taught in school is about numbers, but we've seen that functions don't have to be about
numbers. We've used functions of words and sentences, such asf i r st , and even functions of functions, such as

keep. You can imagine functions that transform information of any kind at al, such as the function French (window)
=fenétre or the function capital (California)=Sacramento.

Y ou've done alot of thinking about the domain and range of functions. Y ou can add two numbers, but it doesn't make
sense to add two words that aren't numbers. Some two-argument functions have complicated domains because the
acceptable values for one argument depend on the specific value used for the other one. (The function expt isan

example; make sure you've tried both positive and negative numbers, and fractional as well as whole-number powers.)

Part of the definition of afunction isthat you always get the same answer whenever you call afunction with the same
argument(s). The value returned by the function, in other words, shouldn't change regardless of anything else you may
have computed meanwhile. One of the "functions" you've explored in this chapter isn't areal function according to this
rule; which one? The rule may seem too restrictive, and indeed it's often convenient to use the name "function” loosely
for processes that can give different resultsin different circumstances. But we'll see that sometimes it's important to
stick with the strict definition and refrain from using processes that aren't truly functions.

We've hinted at two different ways of thinking about functions. Thefirst is called function as process. Here, afunction
isarulethat tells us how to transform some information into some other information. The functionisjust arule, not a
thing in its own right. The actual "things" are the words or numbers or whatever the function manipulates. The second
way of thinking is called function as object. In thisview, afunction is a perfectly good "thing" in itself. We can use a
function as an argument to another function, for example. Research with college math students shows that this second
ideais hard for most people, but it's worth the effort because you'll see that higher-order functions (functions of
functions) like keep and ever y can make programs much easier to write.

Page 24

Asahomey analogy, think about a carrot peeler. If we focus our attention on the carrots—which are, after all, what we
want to eat—then the peeler just represents a process. We are peeling carrots. We are applying the function peel to

carrots. It's the carrot that counts. But we can also think about the peeler as athing in its own right, when we clean it,
or worry about whether its blade is sharp enough.

The big idea that we haven't explored in this chapter (although we used it alot in Chapter 1) is the composition of
functions: using the result from one function as an argument to another function. It'sacrucial idea; we write large
programs by defining a bunch of small functions and then composing them with each other to produce the desired
result. We'll start doing that in the next chapter, where we return to real Scheme notation.

Exer cises

Usethef uncti ons programfor all these exercises.

2.1 In each line of the following table we've left out one piece of information. Fill in the missing details.

function agl arg2 result
wor d now here
sent ence now here
first bl ackbi rd none
first (bl ackbi rd) none
3 4 7
every (thank you girl) (hank ou irl)
menber ? e aar dvark
menber ? t he #t
keep vowel ? (i will)
keep vowel ? ei ei 0"
| ast () none
| ast (honey pie) (y e)
t axman aa

2.2 What is the domain of the vowel ? function?

* Yes, thereis an English word. It has to do with astronomy.

Page 25

2.3 One of the functions you can useis called appear ances. Experiment with it, and then describe fully its domain
and range, and what it does. (Make sure to try lots of cases. Hint: Think about its name.)

2.4 One of the functionsyou can useiscalled i t em Experiment with it, and then describe fully its domain and range,
and what it does.

The following exercises ask for functions that meet certain criteria. For your convenience, here are the functionsin this
chapter:+, -, /[, <=, <, = >= > and, appearances, butfirst,

butl ast, cos, count, equal ?, every, even?, expt, first, if,

item keep, last, max, nenber?, not, nunber?, nunber-—of-argunents,

odd?, or, quotient, random renainder, round, sentence, sqrt, vowel ?, andword.

2.5 List the one-argument functions in this chapter for which the type of the return value is always different from the
type of the argument.

2.6 List the one-argument functions in this chapter for which the type of the return value is sometimes different from
the type of the argument.

2.7 Mathematicians sometimes use the term "operator” to mean a function of two arguments, both of the same type,
that returns aresult of the same type. Which of the functions you've seen in this chapter satisfy that definition?

2.8 An operator f iscommutative if f (a,b) =f (b, a) for all possible arguments a and b. For example, + is commutative,
but wor d isn't. Which of the operators from Exercise 2.7 are commutative?

2.9 An operator fisassociative if f (f(a, b), c) =f (a, f (b, ¢)) for all possible arguments a, b, and c. For example, * is
associative, but not /. Which of the operators from Exercise 2.7 are associative?

Page 26

PART I1—
COMPOSITION OF FUNCTIONS

The big ideain this part of the book is deceptively ssmple. It's that we can take the value returned by one function and
use it as an argument to another function. By "hooking up” two functionsin this way, we invent a new, third function.
For example, let's say we have afunction that adds the letter sto the end of aword:

add-s("run") = "runs"

and another function that puts two words together into a sentence:

sentence(" day", "tripper") = "day tripper"

We can combine these to create a new function that represents the third person singular form of a verb:
third-person(verb) = sentence (" she", add-s(verb))

That general formulalooks like this when applied to a particular verb:

third-person(" si ng") = "she sings"

The way we say it in Schemeis

(define (third—person verb)
(sentence 'she (add-s verb)))

(When we give an example like this at the beginning of a part, don't worry about the fact that you don't recognize the
notation. The example is meant as a preview of what you'll learn in the coming chapters.)

Page 27

We know that this idea probably doesn't look like much of abig deal to you. It seems obvious. Nevertheless, it will
turn out that we can express awide variety of computational algorithms by linking functions together in thisway. This
linking is what we mean by "functional programming.”

Page 28

In a bucket brigade, each person hands a result to the next.

Page 29

3—
Expressions

The interaction between you and Scheme is called the "read-eval-print loop." Scheme reads what you type, evaluates
it, and prints the answer, and then does the same thing over again. We're emphasizing the word "evaluates' because the
essence of understanding Scheme is knowing what it means to evaluate something.

Each question you type is called an expression.” The expression can be asingle value, such as 26, or something more
complicated in parentheses, suchas(+ 14 7). Thefirst kind of expression is called an atom (or atomic expression),

while the second kind of expression is called a compound expression, because it's made out of the smaller expressions
+, 14, and 7. The metaphor is from chemistry, where atoms of single elements are combined to form chemical

compounds. We sometimes call the expressions within a compound expression its subexpressions,

Compound expressions tell Scheme to "do" a procedure. Thisideais so important that it has alot of names. Y ou can
call aprocedure; you can invoke a procedure; or you can apply a procedure to some numbers or other values. All of
these mean the same thing.

If you've programmed before in some other language, you're probably accustomed to the idea of several different types
of statements for different purposes. For example, a"print statement” may look very different from an "assignment
statement.” In Scheme,

* In other programming languages, the name for what you type might be a"command" or an "instruction." The name
"expression” is meant to emphasize that we are talking about the notation in which you ask the question, as distinct
from the ideain your head, just asin English you express an ideain words. Also, in Scheme we are more often asking
guestions rather than telling the computer to take some action.

Page 30

everything is done by calling procedures, just as we've been doing here. Whatever you want to do, there's only one
notation: the compound expression.

Notice that we said a compound expression contains expressions. This means that you can't understand what an
expression is until you already understand what an expression is. This sort of circularity comes up again and again and
again and again® in Scheme programming. How do you ever get a handle on this self-referential idea? The secret is
that there has to be some simple kind of expression that doesn't have smaller expressions inside it—the atomic
exXpressions.

It's easy to understand an expression that just contains one number. Numbers are self-evaluating; that is, when you
evaluate a number, you just get the same number back.

Once you understand numbers, you can understand expressions that add up numbers. And once you understand those
expressions, you can use that knowledge to figure out expressions that add up expressions-that-add-up-numbers.
Then . . . and so on. In practice, you don't usually think about al these levels of complexity separately. Y ou just think,
"I know what a number is, and | know what it means to add up any expressions.”

So, for example, to understand the expression

(+(+23) (+405))

you must first understand 2 and 3 as self-evaluating numbers, then understand (+ 2 3) asan expression that adds
those numbers, then understand how the sum, 5, contributes to the overall expression.

By the way, in ordinary arithmetic you've gotten used to the idea that parentheses can be optional; 3 + 4 x 5 meansthe
same as 3 + (4 x 5). But in Scheme, parentheses are never optional. Every procedure call must be enclosed in
parentheses.

Little People

Y ou may not have realized it, but inside your computer there are thousands of little people. Each of them is a specialist
in one particular Scheme procedure. The head little person, Alonzo, isin charge of the read-eval-print loop.

When you enter an expression, such as

(- (+58) (+24)

* and again

Page 31

Alonzo readsiit, hires other little people to help him evaluate it, and finally prints 7, its value. We're going to focus on
the evaluation step.

Three little people work together to evaluate the expression: a minus person and two plus people. (To make this
account easier to read, we're using the ordinary English words "minus” and "plus’ to refer to the procedures whose
Scheme names are— and +. Don't be confused by this and try to type m nus to Scheme.)

Since the overall expression is a subtraction, Alonzo hires Alice, the first available minus specialist. Here's how the
little people evaluate the expression:

* Alice wants to be given some numbers, so before she can do any work, she complains to Alonzo that she wants to
know which numbers to subtract.

* Alonzo looks at the subexpressions that should provide Alice's arguments, namely, (+ 5 8) and(+ 2 4). Since

both of these are addition problems, Alonzo hires two plus specialists, Bernie and Cordelia, and tells them to report
their resultsto Alice.

* Thefirst plus person, Bernie, also wants some numbers, so he asks Alonzo for them.

 Alonzo looks at the subexpressionsof (+ 5 8) that should provide Berni€'s arguments, namely, 5 and 8. Since
these are both atomic, Alonzo can give them directly to Bernie.

 Bernie adds hisarguments, 5 and 8, to get 13. He does thisin his head—we don't have to worry about how he
knows how to add; that's hisjob.

* The second plus person, Cordelia, wants some arguments; Alonzo looks at the subexpressionsof (+ 2 4) and
givesthe 2 and 4 to Cordelia. She adds them, getting 6.

* Bernie and Cordelia hand their results to the waiting Alice, who can now subtract them to get 7. She hands that result
to Alonzo, who printsit.

How does Alonzo know what's the argument to what? That's what the grouping of subexpressions with parenthesesis
about. Since the plus expressions are inside the minus expression, the plus people have to give their results to the
minus person.

We've made it seem as if Bernie does his work before Cordelia does hers. In fact, the order of evaluation of the
argument subexpressions is not specified in Scheme; different implementations may do it in different orders. In
particular, Cordelia might do her work before Bernie, or they might even do their work at the same time, if we're using
aparallel processing computer. However, it isimportant that both Bernie and Cordelia finish their work before Alice
can do hers.

Page 32
Theentirecall to - isitself asingle expression; it could be a part of an even larger expression:

> (* (- (+58) (+24)
(/ 10 2))
35

This says to multiply the numbers 7 and 5, except that instead of saying 7 and 5 explicitly, we wrote expressions
whose values are 7 and 5. (By the way, we would say that the above expression has three subexpressions, the * and the
two arguments. The argument subexpressions, in turn, have their own subexpressions. However, these sub-
subexpressions, suchas(+ 5 8), don't count as subexpressions of the whole thing.)

We can express this organization of little people more formally. If an expression is atomic, Scheme just knows the
value." Otherwise, it is acompound expression, so Scheme first evaluates all the subexpressions (in some unspecified
order) and then applies the value of the first one, which had better be a procedure, to the values of the rest of them.
Those other subexpressions are the arguments.

We can use thisrule to evaluate arbitrarily complex expressions, and Scheme won't get confused. No matter how long
the expression is, it's made up of smaller subexpressions to which the same rule applies. Look at thislong, messy
example:

> (+ (* 2 (/] 14 7) 3)
(/ (* (- (* 35 3) (+11))
(- (x43) (*32))
(- 15 18))
13

Scheme understands this by looking for the subexpressions of the overall expression, like this:

(... ; One of themtakes two |lines but you can tell by
) ; matchi ng parentheses that they're one expression.

(...))

(Scheme ignores everything to the right of a semicolon, so semicolons can be used to indicate comments, as above.)

* WEell explain this part in more detail |ater.

Page 33

Notice that in the example above we asked + to add three numbers. Inthef unct i ons program of Chapter 2 we

pretended that every Scheme function accepts a fixed number of arguments, but actually, some functions can accept
any number. Theseinclude +, *, wor d, and sent ence.

Result Replacement

Since alittle person can't do his or her job until all of the necessary subexpressions have been evaluated by other little
people, we can "fast forward" this process by skipping the parts about "Alice waits for Bernie and Cordelia’ and
starting with the completion of the smaller tasks by the lesser little people.

To keep track of which result goes into which larger computation, you can write down a complicated expression and
then rewrite it repeatedly, each time replacing some small expression with asimpler expression that has the same value.

—

(+ (= [(= 10 7)) (+ 4 1)) (- 15 (/ 12 3y} 17)
(+ (* 3 [(+ 4 1))y (- 15 (/ 12 3)) 17)
(+*3 5] (=15 (/ 12 3)) 17)
(+ 15 (- 15 [(/ 12 3)) 17)
(+ 15 (- 154)/ 17)
[(+ 15 I b 17)]

43
In each line of the diagram, the boxed expression is the one that will be replaced with its value on the following line.

If you like, you can save some steps by evaluating several small expressions from one line to the next:

(+ (> [(- 10 7)J[(+ & 1)) (- 15 [(/ 12 3)) 17)
(+l=3 5 (=154) 17)
+ 15 11 _17)]

43

Plumbing Diagrams

Some people find it helpful to look at a pictorial form of the connections among subexpressions. Y ou can think of each
procedure as a machine, like the ones they drew on the chalkboard in junior high school.

Page 34

Each machine has some number of input hoppers on the top and one chute at the bottom. Y ou put something in each
hopper, turn the crank, and something else comes out the bottom. For a complicated expression, you hook up the
output chute of one machine to the input hopper of another. These combinations are called "plumbing diagrams." Let's

look at the plumbing diagramfor (- (+ 5 8) (+ 2 4)):

[

Y ou can annotate the diagram by indicating the actual information that flows through each pipe. Here's how that would

look for this expression:
A é;. C
\3;’ ~V 2 xéz \i]:f

+ +
1N/ 1

13 i)
\¢,f \\JJ, a

Page 35
Pitfalls

[0 One of the biggest problems that beginning Lisp programmers have comes from trying to read a program from left
to right, rather than thinking about it in terms of expressions and subexpressions. For example,

(square (cos 3))

doesn't mean "square three, then take the cosine of the answer you get." Instead, as you know, it means that the
argument to squar e isthereturn valuefrom (cos 3).

[0 Another big problem that people have is thinking that Scheme cares about the spaces, tabs, line breaks, and other
"white space” in their Scheme programs. We've been indenting our expressions to illustrate the way that
subexpressions line up underneath each other. But to Scheme,

(+(*2(/ 147 3) (/ (* (- (*35) 3 (+1
1)) (- (43 (*32)) (- 15 18))

means the same thing as
(+ (* 2 (/ 14 7) 3)
(/ (* (- (35 3) (+11))

(- (* 43) (* 32))
(- 15 18))

So in this expression:

(+ (* 3 (sqrt 49) ;; weirdly formatted
(/ 12 4)))

there aren't two arguments to +, even though it looks that way if you think about the indenting. What Scheme doesis
look at the parentheses, and if you examine these carefully, you'll see that there are three argumentsto * : the atom 3,
the compound expression (sqrt 49), and the compound expression(/ 12 4).(And there'sonly one argument
to+.)

[0 A consequence of Scheme's not caring about white space is that when you hit the return key, Scheme might not do
anything. If you'rein the middle of an expression, Scheme waits until you're done typing the entire thing before it
evaluates what you've typed. Thisisfineif your program is correct, but if you type thisin:

Page 36

(+ (* 3 4)
(/ 8 2) ; note missing right paren

then nothing will happen. Even if you type forever, until you close the open parenthesis next to the + sign, Scheme

will still be reading an expression. So if Scheme seems to be ignoring you, try typing azillion close parentheses.
(You'll probably get an error message about too many parentheses, but after that, Scheme should start paying attention

again.)

[0 You might get into the same sort of trouble if you have a double-quote mark () in your program. Everything inside

apair of quotation marksis treated as one single string. We'll explain more about strings later. For now, if your
program has a stray quotation mark, like this:

(+ (* 3" 4) . note extra quote mark
(/ 8 2))

then you can get into the same predicament of typing and having Scheme ignore you. (Once you type the second
guotation mark, you may still need some close parentheses, since the ones you type inside a string don't count.)

[0 One other way that Scheme might seem to be ignoring you comes from the fact that you don't get a new Scheme
prompt until you type in an expression and it's evaluated. So if you just hit ther et ur n or ent er key without typing

anything, most versions of Scheme won't print a new prompt.

Boring Exercises

3.1 Trand ate the arithmetic expressions (3+4)x5 and 3+(4x5) into Scheme expressions, and into plumbing diagrams.
3.2 How many little people does Alonzo hire in evaluating each of the following expressions:

(+ 3(* 45 (- 10 4))

(+((- (/ 82) 1) 5 2

Page 37

(" (+ (- 3(/ 42)
(sin (* 3 2))
(- 8 (sart 5)))
(- (1 23
4))

3.3 Each of the expressions in the previous exercise is compound. How many subexpressions (not including
subexpressions of subexpressions) does each one have?

For example,
(* (- 1(+34)) 8
has three subexpressions; you wouldn't count (+ 3 4).

3.4 Five little people are hired in evaluating the following expression:

(+ (" 3(-47))
(- 8(-393)))

Give each little person a name and list her specialty, the argument values she receives, her return value, and the name
of the little person to whom she tells her result.

3.5 Evaluate each of the following expressions using the result replacement technique:
(sgrt (+6 (* 5 2)))

(+ (+12) 3) 4

3.6 Draw a plumbing diagram for each of the following expression:

(+ 3456 7)

(+ (+34) (+567))

(+ (¥3 (+ 4 5) 6) 7)

3.7 What valueisreturned by (/ 1 3) inyour version of Scheme? (Some Schemes return a decimal fraction like
0. 33333, while others have exact fractional valueslike 1/ 3 builtin.)

Page 38
3.8 Which of the functions that you explored in Chapter 2 will accept variable numbers of arguments?

Real Exercises

3.9 Theexpression (+ 8 2) hasthevalue 10. It isacompound expression made up of three atoms. For this problem,
write five other Scheme expressions whose values are also the number ten:

* Anatom

» Another compound expression made up of three atoms

» A compound expression made up of four atoms

» A compound expression made up of an atom and two compound subexpressions

» Any other kind of expression

Page 40

—

i L '.'. S A e
I-'.‘,‘."-ft‘ﬂﬂivtltiiilll' KT et mmmnnnsnnsnn
Sasanee [EYTYE] |

4 ekl
3 [N
i“{;
L Py XYY
Y .

In the old days, they "defined procedures’ like this.

Page 41

4—
Defining Your Own Procedures

Until now we've been using procedures that Scheme already knows when you begin working with it. In this chapter
you'll find out how to create new procedures.

How to Define a Procedure

A Scheme program consists of one or more procedures. A procedure is a description of the process by which a
computer can work out some result that we want. Here's how to define a procedure that returns the square of its
argument:

(define (square x)

(* x x))

(The value returned by def i ne may differ depending on the version of Scheme you're using. Many versions return

the name of the procedure you're defining, but others return something else. It doesn't matter, because when you use
def i ne you aren't interested in the returned value, but rather in the fact that Scheme remembers the new definition

for later use.)

Thisisthe definition of aprocedure called squar e. Squar e takes one argument, a number, and it returns the
square of that number. Once you have defined squar e, you can use it just the same way as you use primitive
procedures:

> (square 7)
49

> (+ 10 (square 2))
14

Page 42

> (square (square 3))
81

This procedure definition has four parts. Thefirst isthe word def i ne, which indicates that you are defining

something. The second and third come together inside parentheses. the name that you want to give the procedure and
the name(s) you want to use for its argument(s). This arrangement was chosen by the designers of Scheme because it
looks like the form in which the procedure will be invoked. That is, (squar e x) lookslike(square 7). The

fourth part of the definition is the body: an expression whose value provides the function's return value.

I/{?t': }I:'t'.'{'h.llq'-th.?x\: 4 ’:TI'-:,_FTLHM_{;IE\

“.__ham E‘__f/\ ?__Eﬂilttl e
(define (sguare x)

(# x x))

h &

fﬂ}l
OOV
N o/

—— i

Special Forms

Def i ne isaspecial form, an exception to the evaluation rule we've been going on about.” Usually, an expression
represents a procedure invocation, so the general rule is that Scheme first evaluates al the subexpressions, and then
applies the resulting procedure to the resulting argument values. The specialness of special formsisthat Scheme
doesn't evaluate all the subexpressions. Instead, each special form has its own particular evaluation rule. For example,
when we defined squar e, no part of the definition was evaluated: not squar e, not x,andnot (* x Xx). It
wouldn't make sense to evaluate (squar e x) because you can't invoke the squar e procedure before you define it!

* Technically, the entire expression (def i ne (square Xx) ...) isthespecia form; theword def i ne itself is
called akeyword. But in fact Lispians are almost always |oose about this distinction and say " def i ne isaspecia

form," just aswe've done here. The word "form" is an archaic synonym for "expression,” so "special form" just means
"special expression.”

Page 43

It would be possible to describe special forms using the following model: " Certain procedures want their arguments
unevaluated, and Scheme recognizes them. After refraining from evaluating def i ne's arguments, for example,

Scheme invokes the def i ne procedure with those unevaluated arguments.” But in fact the designers of Scheme chose
to think about it differently. The entire special form that startswith def i ne isjust acompletely different kind of thing
from aprocedure call. In Scheme there is no procedure named def i ne. Infact, def i ne isnot the name of anything
at al:

> +
#<PRI M Tl VE PROCEDURE +>

> defi ne
ERROR -- | NVALI D CONTEXT FOR KEYWORD DEFI NE

Nevertheless, in this book, unlessit's really important to make the distinction, well talk asif there were a procedure
called def i ne. For example, we'll talk about " def i ne'sarguments” and "the value returned by def i ne" and

"invoking def i ne. "

Functions and Procedures

Throughout most of this book, our procedures will describe processes that compute functions. A function isa
connection between some values you aready know and a new value you want to find out. For example, the square
function takes a number, such as 8, asits input value and returns another number, 64 in this case, as its output value.
The plural function takes a noun, such as "computer,” and returns another word, "computers’ in this example. The
technical term for the function's input value isits argument. A function may take more than one argument; for
example, ther emai nder function takes two arguments, such as 12 and 5. It returns one value, the remainder on

dividing the first argument by the second (in this case, 2).

We said earlier that a procedure is "a description of the process by which a computer can work out some result that we
want." What do we mean by process? Consider these two definitions;

f(x) = 3x + 12
909 = 3(x + 4)

The two definitions call for different arithmetic operations. For example, to compute f (8) we'd multiply 8 by 3, then
add 12 to the result. To compute g(8), we'd add 4 to

Page 44

8, then multiply the result by 3. But we get the same answer, 36, either way. These two equations describe different
processes, but they compute the same function. The function is just the association between the starting value(s) and
the resulting value, no matter how that result is computed. In Scheme we could say

(define (f x)
(+ (* 3 x) 12))

(define (g x)
(* 3 (+x 4)))

and we'd say that f and g are two procedures that represent the same function.

Inred life, functions are not always represented by procedures. We could represent a function by atable showing all
its possible values, like this:

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
Arkansas Little Rock
California Sacramento

This table represents the State Capital function; we haven't shown all the lines of the complete table, but we could.
There are only afinite number of U.S. states. Numeric functions can also be represented by graphs, as you probably
learned in high school algebra. In this book our focus is on the representation of functions by procedures. The only
reason for showing you this table exampleisto clarify what we mean when we say that afunction is represented by a
procedure, rather than that a function is the procedure.

WEe'll say "the proceduref " when we want to discuss the operations we're telling Scheme to carry out. Wel'll say "the
function represented by f " when our attention is focused on the value returned, rather than on the mechanism. (But
welll often abbreviate that lengthy second phrase with "the function f " unless the context is especialy confusing.)*

* Also, we'll sometimes use the terms "domain" and "range" when we're talking about procedures, although technically,

only functions have domains and ranges.

Argument Names ver sus Argument Values

"It'slong,”" said the Knight, "but it's very, very beautiful. Everybody that
hears me sing it—either it brings the tearsinto their eyes, or else—'

"Or else what?" said Alice, for the Knight had made a sudden pause.

"Or elseit doesn't, you know. The name of the song is called '"Haddock's
Eyes."

"Oh, that's the name of the song, isit?" Alice said, trying to fedl interested.
"No, you don't understand,” the Knight said, looking a little vexed. "That's
what the name is called. The name really is 'The Aged Aged Man.™

"Then | ought to have said 'That's what the song is called'?" Alice corrected
her self.

"No, you oughtn't; that's quite another thing! The song is called "Ways And
Means': but that's only what it's called, you know!"

"Well, what is the song, then?" said Alice, who was by this time compl etely
bewildered.

"I was coming to that," the Knight said. "The song really is'A-sitting On A
Gate': and the tune's my own invention."

—L ewis Carroll, Through the Looking-Glass, and What Alice Found There

Notice that when we defined the squar e procedure we gave aname, X, for its argument. By contrast, when we

Page 45

invoked squar e we provided avalue for the argument (e.g., 7). Theword x isa"place holder" in the definition that
stands for whatever value you use when you call the procedure. So you can read the definition of squar e as saying,
"In order to squar e anumber, multiply that number by that number.” The name x holds the place of the particular

number that you mean.

Be sure you understand this distinction between defining a procedure and calling it. A procedure represents a general
technique that can be applied to many specific cases. We don't want to build any particular case into the procedure
definition; we want the definition to express the general nature of the technique. Y ou wouldn't want a procedure that
only knew how to take the square of 7. But when you actually get around to using squar e, you have to be specific

about which number you're squaring.

The name for the name of an argument (whew!) isformal parameter. In our squar e example, X isthe formal

parameter. (Y ou may hear people say either "formal™ alone or "parameter” alone when they're feeling lazy.) The
technical term for the actual value of the argument is the actual argument. In acase like

(square (+ 5 9))

you may want to distinguish the actual argument expression (+ 5 9) from the actual argument value 14. Most of

the timeit's perfectly clear what you mean, and you just say

Page 46

"argument” for all of these things, but right now when you're learning these ideas it's important to be able to talk more
precisely.

The squar e procedure takes one argument. If a procedure requires more than one argument, then the question arises,

which actual argument goes with which formal parameter? The answer is that they go in the order in which you write
them, like this:

(define (f a b)
(+ (* 3 a) b))

> (f 5 8)
23

> (f 8 5H)
29

Procedure as Generalization

What's the average of 17 and 25? To answer this question you could add the two numbers, getting 42, and divide that
by two, getting 21. Y ou could ask Scheme to do thisfor you:

> (I (+ 17 25) 2)
21

What's the average of 14 and 68?

> (I (+ 14 68) 2)
41

Once you understand the technique, you could answer any such question by typing an expression of the form

(/ (+) 2)

to Scheme.

But if you're going to be faced with more such problems, an obvious next step is to generalize the technigque by
defining a procedure:

(define (average a h)
(/ (+ab) 2))
Page 47

With this definition, you can think about the next problem that comes along in terms of the problem itself, rather than
in terms of the steps required for its solution:

> (average 27 4)
15.5

Thisis an example of what we meant when we defined "abstraction” as noticing a pattern and giving it a name. It's not
so different from the naming of such patternsin English; when someone invented the name "average" it was, probably,
after noticing that it was often useful to find the value halfway between two other values.

This naming process is more important than it sounds, because once we have a name for some idea, we can use that
idea without thinking about its pieces. For example, suppose that you want to know not only the average of some
numbers but also a measure of whether the numbers are clumped together close to the average, or widely spread out.
Statisticians have developed the "standard deviation" as a measure of this second property. You'd rather not have to
think about this mysterious formula:

but you'd be happy to use a procedure st andar d- devi at i on that you found in a collection of statistical programs.

After dl, there's no law of nature that says computers automatically know how to add or subtract. Y ou could imagine
having to instruct Scheme to compute the sum of two large numbers digit by digit, the way you did in elementary
school. But instead someone has "taught” your computer how to add before you get to it, giving this technique the
name + so that you can ask for the sum of two numbers without thinking about the steps required. By inventing

aver age or st andar d- devi at i on we are extending the repertoire of computations that you can ask for without
concerning yourself with the details.

Composability

We've suggested that a procedure you define, such asaver age, is essentially similar to one that's built into Scheme,
such as +. In particular, the rules for building expressions are the same whether the building blocks are primitive
procedures or defined procedures.

Page 48
> (average (+ 10 8) (* 3 5))
16.5
> (average (average 2 3) (average 4 5))
3.5

> (sgrt (average 143 145))
12

Any return value can be used as an end in itself, asthe return value from sqr t was used in the last of these examples,
or it can provide an argument to another procedure, as the return value from * was used in the first of these examples.

These small examples may seem arbitrary, but the same idea, composition of functions, isthe basis for all Scheme
programming. For example, the complicated formula we gave for standard deviation requires computing the sgquares of
several numbers. So if wewereto writeast andar d- devi at i on procedure, it would invoke squar e.

The Substitution M odel

We've paid alot of attention to the details of formal parameters and actual arguments, but we've been alittle
handwavy* about how a procedure actually computes a value when you invoke it.

We're going to explain what happens when you invoke a user-defined procedure. Every explanation isastory. No
story tells the entire truth, because there are aways some details left out. A model isastory that has just enough detail
to help you understand whatever it's trying to explain but not so much detail that you can't see the forest for the trees.

Today's story is about the substitution model. When a procedure is invoked, the goal isto carry out the computation
described in its body. The problem is that the body iswritten in terms of the formal parameters, while the computation
has to use the actual argument values. So what Scheme needs is away to associate actual argument values with formal
parameters. It does this by making a new copy of the body of the procedure, in

*Y ou know, that's when you wave your hands around in the air instead of explaining what you mean.

Page 49

which it substitutes the argument values for every appearance of the formal parameters, and then evaluating the
resulting expression. S0, if you've defined squar e with

(define (square x)

(* x x))

then the body of squareis(* x x).When you want to know the square of a particular number, asin (square 5),
Scheme substitutes the 5 for x everywhere in the body of square and evaluates the expression. In other words, Scheme
takes

(* x x)

then does the substitution, getting
(* 55)

and then evaluates that expression, getting 25.

If youjusttype(* x X) into Scheme, you will get an error message complaining that X doesn't mean anything. Only
after the substitution does this become a meaningful expression.

By the way, when we talk about "substituting into the body," we don't mean that the procedure's definition is changed
in any permanent way. The body of the procedure doesn't change; what happens, as we said before, is that Scheme
constructs a new expression that looks like the body, except for the substitutions.”

There are little people who specialize in squar e, just as there are little people who specializein + and * . The

difference isthat the little people who do primitive procedures can do the work "in their head,” al at once. The little
people who carry out user-defined procedures have to go through this substitution business we're talking about here.
Then they hire other little people to help evaluate the resulting expression, just as Alonzo hires people to help him
evaluate the expressions you type directly to Scheme.

Let's say Sam, alittle person who specializesin squar e, has been asked to compute (squar e 6) . Sam carries out
the substitution, and isleft with the expression (* 6 6) to

*Y ou may be thinking that thisis rather an inefficient way to do things—all this copying and replacement before you
can actually compute anything. Perhaps you're afraid that your Scheme programs will run very slowly as aresult. Don't
worry. It realy happensin a different way, but the effect is the same except for the speed.

Page 50

evaluate. Sam then hires Tessa, a multiplication specialist, to evaluate this new expression. Tessatells Sam that her
answer is 36, and, because the multiplication is the entire problem to be solved, thisis Sam's answer also.

Here's another example:

(define (hypotenuse a b)
(sgrt (+ (square a) (square b))))

> (hypot enuse 5 12)

Suppose Alonzo hires Harry to compute this expression. Harry must first substitute the actual argument values (5 and
12) into the body of hypot enuse:

(sqgrt (+ (square 5) (square 12)))

Now he evaluates that expression, just as Alonzo would evaluate it if you typed it at a Scheme prompt. That is, Harry
hiresfour little people: onesqrt expert, one + expert, and two squar e experts.” In particular, some little person has

to evaluate (squar e 5), by substituting 5 for x in the body of squar e, asin the earlier example. Similarly, we
substitute 12 for x in order to evaluate (square 12):

(hypot enuse 5 12) ; substitute into HYPOTENUSE body
(sqgrt (+ (square 5) (square 12))) ; substitute for (SQUARE 5)
(* 55)
25
(sgrt (+ 25 (square 12))) ; substitute for (SQUARE 12)
(* 12 12)
144
(sgrt (+ 25 144))
(+ 25 144) ; conmbine the results as before
169
(sqrt 169)
13

* Until we started defining our own procedures in this chapter, all of the little people were hired by Alonzo, because all
expressions were typed directly to a Scheme prompt. Now expressions can come from the bodies of procedures, and so
the little people needed to compute those expressions are hired by the little person who's computing that procedure.
Notice also that each little person reports to another little person, not necessarily the one who hired her. In this case, if
Harry hires Shari for sqr t , Paul for +, and Slim and Sydney for the two squar es, then Slim reports to Paul, not to

Harry. Only Shari reports directly to Harry.

Page 51

Don't forget, in the heady rush of Iearning about the substitution model, what you already knew from before: Each
piece of this computation is done by alittle person, and some other little person iswaiting for the result. In other
words, the substitution model tells us how each compound procedureis carried out, but doesn't change our picture of
the way in which procedure invocations are composed into larger expressions.

Pitfalls

[0 Don't forget that a function can have only one return value. For example, here's a program that's supposed to return
the sum of the squares of its two arguments:

(define (sum-of —squares x y) ;7 wrong!
(square x)
(square y))

The problem is that the body of this procedure has two expressions, instead of just one. Asit turns out, Scheme just
ignores the value of the first expression in cases like this, and returns the value of the last one. What the programmer
wantsis the sum of these two values, so the procedure should say

(define (sum-of —squares x Yy)
(+ (square x)
(square y)))

[0 Another pitfall comes from thinking that a procedure call changes the value of a parameter. Here's afaulty program
that's supposed to compute the function described by f(x) = 3x + 10:

(define (f x) ;7 wrong!

(* x 3)
(+ x 10))

Again, the first expression has no effect and Scheme will just return the value x + 10.

[0 A very common pitfall in Scheme comes from choosing the name of a procedure as a parameter. It doesn't come up
very often with procedures like the onesin this chapter

* Thisis especially problematic for people who used to program in a language like Pascal or BASIC, where you say
thingslike" X = X * 3" dl thetime.

Page 52
whose domains and ranges are both numbers, but it will be more likely later. If you have aprogram like this:

(define (square x)

(* x x))

(define (area square) i, wrong!
(square square))

then you'll get in trouble when you invoke the procedure, for example, by saying (ar ea 8). Thear ea little person
will substitute 8 for squar e everywhere in the procedure definition, leaving you with the expression (8 8) to
evaluate. That expression would mean to apply the procedure 8 to the argument 8, but 8 isn't a procedure, so an error
message results.

It isn't aproblem if the formal parameter is the name of a procedure that you don't use inside the body. The problem
arises when you try to use the same name, e.g., squar e, with two meanings within a single procedure. But special

forms are an exception; you can never use the name of a special form as a parameter.

[0 A similar problem about name conflicts comes up if you try to use a keyword (the name of a specia form, such as
def i ne) assome other kind of name—either aformal parameter or the name of a procedure you're defining. We're
listing this separately because the result islikely to be different. Instead of getting the wrong value substituted, as
above, you'll probably see a special error message along the lines of "improper use of keyword."

[0 Formal parameters must be words. Some people try to write procedures that have compound expressions as the
formal parameters, like this:

(define (f (+ 3 x) V) ;7 wrong!
(* xy))

Remember that the job of the procedure definition is only to provide a name for the argument. The actual argument
isn't pinned down until you invoke the procedure. People who write programs like the one above are trying to make the
procedure definition do some of the job of the procedure invocation.

Page 53

Boring Exercises

4.1 Consider this procedure:

(define (ho—hum x vy)
(+ x (* 2y)))

Show the substitution that occurs when you evaluate

(ho—hum 8 12)

4.2 Given the following procedure:

(define (yawn x)
(+ 3 (* x 2)))

list al the little people that are involved in evaluating
(yawn (/ 8 2))
(Give their names, their specidlties, their arguments, who hires them, and what they do with their answers.)

4.3 Here are some procedure definitions. For each one, describe the function in English, show a sample invocation, and
show the result of that invocation.

(define (f xy) (-y x))
(define (identity x) Xx)
(define (three x) 3)
(define (seven) 7)
(define (magic n)

(- (/ (+ (+(* 3n)

13)

(-n1))
4)

3))

Page 54

Real Exercises

4.4 Each of the following procedure definitions has an error of some kind. Say what's wrong and why, and fix it:

(define (sphere-volune r)
(* (/ 4 3) 3.141592654)

(*rrr))

(define (next x)
(x +1))

(define (square)

(* x x))

(define (triangle—-area triangle)
(* 0.5 base height))

(define (sum-of —squares (square X) (square y))
(+ (square x) (square y)))

4.5 Write a procedure to convert atemperature from Fahrenheit to Celsius, and another to convert in the other
direction. Thetwo formulasare # = %€+ 32 and € = J(F - 32).

4.6 Define aprocedure f our t h that computes the fourth power of its argument. Do thistwo ways, first using the
multiplication function, and then using squar e and not (directly) using multiplication.

4.7 Write a procedure that computes the absolute value of its argument by finding the square root of the square of the
argument.

4.8 "Scientific notation" is away to represent very small or very large numbers by combining a medium-sized number
with a power of 10. For example, 5 x 107 represents the number 50000000, while 3.26 x 109 represents
0.00000000326 in scientific notation. Write aproceduresci ent i f i ¢ that takes two arguments, a number and an

exponent of 10, and returns the corresponding value:
> (scientific 7 3)
7000
Page 55

> (scientific 42 -5)
0. 00042

Some versions of Scheme represent fractions in a/b form, and some use scientific notation, so you might see
21/ 50000 or 4. 2E-4 astheresult of the last example instead of 0. 00042, but these are the same value.

(A harder problem for hotshots: Can you write procedures that go in the other direction? So you'd have

> (sci—coefficient 7000)
.

> (sci—exponent 7000)
3

Y ou might find the primitive procedures| og and f | oor helpful.)

4.9 Define aprocedure di scount that takes two arguments: an item'sinitia price and a percentage discount. It
should return the new price:

> (di scount 10 5)
9.50

> (di scount 29.90 50)
14. 95

4.10 Write a procedure to compute the tip you should leave at arestaurant. It should take the total bill asits argument

and return the amount of the tip. It should tip by 15%, but it should know to round up so that the total amount of

money you leave (tip plus original bill) isawhole number of dollars. (Usethecei | i ng procedure to round up.)

>

3.

A~V

= Vv

(tip 19.98)
02

(tip 29.23)

L7

(tip 7.54)

. 46

THE FAR SIDE By GARY LARSON

What Wwe 52Y fo dogs

g I,.r“

"‘J.l.'-.-'.':mlr-'.-: "I b
/ hre cut OF The .-*«-“-“r“ n
/Yo Sty OO 2 Sty ol
r Jrders 'Ff"h"'f - "“.?:”' "]

/ =i)
'_ e = -F‘__:_:-'-“'F/‘ﬁ'r:'

e e S
.o-'-""_'fﬂ-f
P } = C_F-_-:_"_r'ﬁ
-P,‘_F" - e _:’M’
4 - :_._’l'__.H
.W’har *hﬂ}' hear k
f’r‘-"-’ giah € oJH‘E“ “ET\ 7
(,.."'Jr ,,,,', 5"“‘“‘" .ﬂw'//

\ " 4da _
S SRR

e

bl i

o F ") =N
- - --'_.-l :': kY
g { i IQW

—
i

Page 56

THE FAR SIDE By GARY LARSOM

= L. /4
what we Say o Cats... A
,,---'-_"._:_- yOu ﬂ"u TN
Al T -
W s e TRE 1 e
e RETET flenat e ""*~.)
3 |"'i"|'1 = - AT Falal= gk _.-'x
it eerecor 2 T oA
~ T T = § _:.
— I | "M\
. o u‘ \5
fiEl, e o
b - : a
{‘-.s - Wwf
; W 1
-] | A e RO SRR T
—
;’!.'."G‘l" I"'la-\.- F.E?IF
ra ’ gL
A e
. . R
¥ bt
S TE
q'_':-':':""-j“-'"_ Y A s
f-"l- . ..-"ff"’
N L5
oy, o P A
£ ", / \
b i

Page 57

5
Words and Sentences

We started out, in Part |, with examples about acronyms and so on, but since then we've been working with numbery
old numbers. That's because the discussions about evaluation and procedure definition were complicated enough
without introducing extraideas at the same time. But now we're ready to get back to symbolic programming.

Aswe mentioned in Chapter 3, everything that you type into Scheme is evaluated and the resulting value is printed
out. Let's say you want to use "square” as aword in your program. For example, you want your program to solve the
problem, "Give me an adjective that describes Barry Manilow." If you just type squar e into Scheme, you will find

out that squar e isa procedure:

> square
#<PROCEDURE>

(Different versions of Scheme will have different ways of printing out procedures.)

What you need is away to say that you want to use the word " squar e" itself, rather than the value of that word, as
an expression. The way to do thisisto use quot e:

> (quote square)
SQUARE

> (quote (tonorrow never knows))
(TOMORROW NEVER KNOW5)

> (quote (things we said today))
(THI NGS WE SAI D TODAY)

Page 58

Quot e isaspecia form, sinceits argument isn't evaluated. Instead, it just returns the argument asis.

Scheme programmers use quot e alot, so thereis an abbreviation for it:

> 'square
SQUARE

> '(old brown shoe)
(ol d brown shoe)

(Since Scheme uses the apostrophe as an abbreviation for quot e, you can't use one as an ordinary punctuation mark
in a sentence. That's why we've been avoiding titleslike(can't buy me | ove). To Scheme thiswould mean
(can (quote t) buy ne love)!)”

Thisideaof quoting, although it may seem arbitrary in the context of computer programming, is actually quite familiar
from ordinary English. What is abook? It's a bunch of pieces of paper, with printing on them, bound together. What is
"abook"? It's a noun phrase, made up of an article and anoun. See? Similarly, what's 2 + 3? It'sfive. What's "2 + 3"?
It's an arithmetic formula. When you see words inside quotation marks, you understand that you're supposed to think
about the words themselves; you don't evaluate what they mean. Scheme is the same way .

(It's no accident that kids who make jokes like
Matt: "Say your name."
Brian: "Your name."

grow up to be computer programmers. The difference between athing and its name is one of the important ideas that
programmers need to understand.)

* Actually, it is possible to put punctuation inside words as long as the entire word is enclosed in double-quote marks,
likethis:

> "'"("can't" buy ne |ove)

("can't" BUY ME LOVE)

Words like that are called strings. We're not going to use them in any examples until aimost the end of the book. Stay away
from punctuation and you won't get in trouble. However, question marks and exclamation points are okay. (Ordinary words,
the ones that are neither strings nor numbers, are officially called symbols.)

Page 59

Selectors

So far all we've done with words and sentences is quote them. To do more interesting work, we need tools for two
kinds of operations: We have to be able to take them apart, and we have to be able to put them together.” We'll start
with the take-apart tools; the technical term for them is selectors.

> (first 'something)

S

> (first '(eight days a week))
El GHT

> (first 910)

9

> (last 'sonething)

G

> (last '(eight days a week))
V\EEK

> (last 910)

0

> (butfirst 'sonething)
OVETHI NG

> (butfirst '(eight days a week))
(DAYS A W\EEK)

> (butfirst 910)
10

> (butlast 'sonething)
SOVETHI N

* The procedures we're about to show you are not part of standard, official Scheme. Scheme does provide waysto do
these things, but the regular ways are somewhat more complicated and error-prone for beginners. We've provided a
simpler way to do symbolic computing, using ideas developed as part of the Logo programming language.

Page 60

> (butlast '(eight days a week))
(El GHT DAYS A)

> (butlast 910)
91

Noticethat thef i r st of asentenceisaword, whilethef i r st of aword isaletter. (But there's no separate data type
called "letter"; aletter is the same as a one-letter word.) The but f i r st of asentenceis a sentence, and the
but first of awordisaword. The corresponding rules hold for | ast and but | ast .

Thenamesbut first andbut | ast aren't meant to describe ways to sled; they abbreviate "all but thefirst™”
and "al but thel ast . "

Y ou may be wondering why we're given ways to find the first and last elements but not the 42nd element. It turns out
that the ones we have are enough, since we can use these primitive selectors to define others:

(define (second thing)
(first (butfirst thing)))

> (second '(like dreaners do))
DREAMERS

> (second 'm chelle)
I

Thereis, however, aprimitive selector i t emthat takes two arguments, a number n and aword or sentence, and returns
the nth element of the second argument.

> (item4 '(being for the benefit of mster kite!))
BENEFI T

> (item 4 'benefit)
E

Don't forget that a sentence containing exactly one word is different from the word itself, and selectors operate on the
two differently:

> (first 'because)
B

> (first '(because))
BECAUSE

Page 61

> (butfirst 'because)
ECAUSE

> (butfirst '(because))

0)

The value of that last expression is the empty sentence. Y ou can tell it's a sentence because of the parentheses, and you
can tell it's empty because there's nothing between them.

> (butfirst 'a)

> (butfirst 1024)
" 024"

As these examples show, sometimesbut f i r st returns aword that has to have double-quote marks around it. The

first example shows the empty word, while the second shows a number that's not in its ordinary form. (Its numeric
valueis 24, but you don't usually see azero in front.)

> 024
24

> 024"
" 024"

We're going to try to avoid printing these funny words. But don't be surprised if you see one as the return value from
one of the selectors for words. (Notice that you don't have to put a single quote in front of the double quotes. Strings
are self-evaluating, just as numbers are.)

Sincebut first andbut | ast areso hard to type, there are abbreviations bf and bl . You can figure out which is
which.

Constructors

Functions for putting things together are called constructors. For now, we just have two of them: wor d and
sent ence. Wbr d takes any number of words as arguments and joins them all together into one humongous word:

> (word "ses 'qui 'pe 'da 'lian "ism
SESQUI PEDALI ANI SM

Page 62

> (word 'now ' here)
NOWHERE

> (word 35 893)
35893

Sent ence issimilar, but slightly different, since it can take both words and sentences as arguments:

> (sentence 'carry 'that 'weight)
(CARRY THAT WEI GHT)

> (sentence '(john paul) '(george ringo))
(JOHN PAUL GEORGE RI NGO

Sent ence isaso too hard to type, so there's the abbreviation se.

> (se '(one plus one) 'nakes 2)
(ONE PLUS ONE MAKES 2)

By the way, why did we have to quote makes in the last example, but not 2? It's because numbers are self-evaluating,
aswe said in Chapter 3. We have to quote nakes because otherwise Scheme would look for something named
makes instead of using the word itself. But numbers can't be the names of things; they represent themselves. (In fact,
you could quote the 2 and it wouldn't make any difference—do you see why?)

First-Class Wor ds and Sentences

If Schemeisn't your first programming language, you're probably accustomed to dealing with English text on a
computer quite differently. Many other languages treat a sentence, for example, as simply a collection (a"string") of
characters such as letters, spaces, and punctuation. Those languages don't help you maintain the two-level nature of
English text, in which a sentence is composed of words, and aword is composed of |etters.

Historically, computers just dealt with numbers. Y ou could add two numbers, move a number from one place in the
computer's memory to another place, and so on. Since each instruction in the computer's native machine language
couldn't process anything larger than a number, programmers devel oped the attitude that a single number isa"real
thing" while anything more complicated has to be considered as a collection of things, rather than as asingle thing in
itself.

Page 63

The computer represents a text character as a single number. In many programming languages, therefore, a character is
a"real thing," but aword or sentence is understood only as a collection of these character-code numbers.

But thisisn't the way in which human beings normally think about their own language. To you, aword isn't primarily a
string of characters (although it may temporarily seem like one if you're competing in a spelling bee). It's more like a
single unit of meaning. Similarly, a sentence is alinguistic structure whose parts are words, not |etters and spaces.

A programming language should let you express your ideas in terms that match your way of thinking, not the
computer'sway. Technically, we say that words and sentences should be first-class data in our language. This means
that a sentence, for example, can be an argument to a procedure; it can be the value returned by a procedure; we can
give it aname; and we can build aggregates whose el ements are sentences. So far we've seen how to do the first two of
these. We'll finish the job in Chapter 7 (on variables) and Chapter 17 (on lists).

Pitfalls

[0 We've been avoiding apostrophes in our words and sentences because they're abbreviations for the quot e specia

form. Y ou must also avoid periods, commas, semicolons, quotation marks, vertical bars, and, of course, parentheses,
since al of these have special meanings in Scheme. Y ou may, however, use question marks and exclamation points.

[0 Although we've already mentioned the need to avoid names of primitives when choosing formal parameters, we
want to remind you specifically about the nameswor d and sent ence. These are often very tempting formal

parameters, because many procedures have words or sentences as their domains. Unfortunately, if you choose these
names for parameters, you won't be able to use the corresponding procedures within your definition.

(define (plural word) ;; wrong!
(word word 's))

> (plural 'george)
ERROR CGEORCE isn't a procedure

The result of substitution was not, as you might think,

(word 'george 's)

Page 64
but rather
(' george 'george 'Ss)

We've been using wd and sent asformal parametersinstead of wor d and sent ence, and we recommend that
practice.

[0 There's adifference between aword and a single-word sentence. For example, people often fall into the trap of
thinking that thebut f i r st of atwo-word sentence such as(sexy sadi e) isthe second word, but it's not. It'sa

one-word-long sentence. For example, itscount isone, not five.*

> (bf '(sexy sadie))
(SADI E)

> (first (bf '(sexy sadie)))
SADI E

[0 We mentioned earlier that sometimes Scheme has to put double-quote marks around words. Just ignore them; don't
get upset if your procedure returns " 6—of —hear t s" instead of just 6—of —heart s.

[0 Quot e doesn't mean "print." Some people look at interactions like this:

> ' (good ni ght)
(GOOD NI GHT)

and think that the quotation mark was an instruction telling Scheme to print what comes after it. Actually, Scheme
always prints the value of each expression you type, as part of the read-eval-print loop. In this case, the value of the
entire expression is the subexpression that's being quoted, namely, the sentence (good ni ght) . That value wouldn't

be printed if the quotation were part of some larger expression:

> (bf '(good night))
(NI GHT)

*You met count in Chapter 2. It takes aword or sentence as its argument, returning either the number of lettersin the
word or the number of words in the sentence.

Page 65

[If you see an error message like

> (+ 3 (bf 1075))
ERROR | NVALI D ARGUMENT TO +: " 075"

try entering the expression

> (strings-are-nunbers #t)
OKAY

and try again. (The extension to Scheme that allows arithmetic operations to work on nonstandard numbers like
" 075" makesordinary arithmetic slower than usual. So we've provided away to turn the extension on and off.

Invoking st ri ngs- ar e- nunber s with the argument #f turns off the extension.)”
Boring Exercises

5.1 What values are printed when you type these expressions to Scheme? (Figure it out in your head before you try it
on the computer.)

(sentence 'l '(me nine))
(sentence '() '(is enpty))

(word ' 23 '45)

(se ' 23 ' 45)
(bf ' a)
(bf ' (aye))

(count (first '(naggie nmae)))
(se "™ () """ ()
(count (se ™" () "* '()))

* See Appendix A for afuller explanation.

Page 66

5.2 For each of the following examples, write a procedure of two arguments that, when applied to the sample
arguments, returns the sample result. Y our procedures may not include any quoted data.

>(fl'(abc) '(def))
(B C D E)

> (f2'(abc) '(def))
(B CD E AF)

>(f3'(abc) "(def))
(ABCABQCQ

> (f4'(abc) '(def))
BE

5.3 Explain the difference in meaning between (fi rst ' nmezzani ne) and(first '(nezzanine)).

5.4 Explain the difference between the two expressions (first (square 7)) and(first '(square 7)).
5.5 Explain the difference between (word 'a 'b 'c) and(se 'a 'b 'c).

5.6 Explain the difference between (bf ' zabadak) and (butfirst 'zabadak).

5.7 Explain the difference between (bf ' x) and (butfirst ' (x)).

5.8 Which of the following are legal Scheme sentences?
(here, there and everywhere)
(hel p!)
(all i"ve got to do)
(you know ny name (look up the nunber))
Page 67

5.9 Figure out what values each of the following will return before you try them on the computer:

(se (word (bl (bl (first '(make a))))
(bf (bf (last '(baseball mtt)))))
(word (first "with) (bl (bl (bl (bl "rigidly))))
(first "held) (first (bf 'stitches))))
(se (word (bl (bl "bring)) 'a (last 'clean))
(word (bl (last '(baseball hat))) (last 'for) (bl (bl 'very))
(last (first '(sunny days)))))

5.10 What kinds of argument can you givebut f i r st so that it returns aword? A sentence?
5.11 What kinds of argument can you give |l ast so that it returns aword? A sentence?

5.12 Which of thefunctionsfirst, last, butfirst, andbutl ast canreturn an empty word? For what
arguments? What about returning an empty sentence?

Real Exercises

5.13 What does " banana stand for?

Whatis(first "banana) andwhy?

5.14 Write aproceduret hi r d that selects the third letter of aword (or the third word of a sentence).

5.15 Writeaproceduref i r st - t wo that takes aword as its argument, returning a two-letter word containing the first
two letters of the argument.

> (first-two '"anbul atory)
AM

Page 68

5.16 Write aproceduret wo- f i r st that takes two words as arguments, returning a two-letter word containing the
first letters of the two arguments.

> (two-first 'brian 'epstein)
BE

Now write aproceduret wo- f i r st - sent that takes a two-word sentence as argument, returning a two-letter word
containing the first letters of the two words.

> (two-first-sent '(brian epstein))
BE

5.17 Write aprocedure kni ght that takes a person's name as its argument and returns the name with "Sir" in front of
it.

> (knight ' (david wessel))
(SI R DAVI D WESSEL)

5.18 Try the following and explain the resuilt:

(define (ends word)
(word (first word) (last word)))

> (ends 'john)
5.19 Write aprocedurei nser t —and that takes a sentence of items and returns a new sentence with an "and" in the
right place:
> (insert-and ' (john bill wayne fred joey))
(JOHN BI LL WAYNE FRED AND JCEY)

Page 69
5.20 Define a procedure to find somebody's middle names:

> (m ddl e-names ' (j ames paul ntcartney))
(PAUL)

> (mddl e-nanmes ' (john ronald raoul tolKkien))
(RONALD RAQUL)

> (mddl e-names ' (bugs bunny))

0)

> (mddl e-nanmes '(peter blair denis bernard noone))
(BLAI R DENI S BERNARD)

5.21 Write aprocedure quer y that turns a statement into a question by swapping the first two words and adding a
guestion mark to the last word:

> (query '(you are experienced))
(ARE YOU EXPERI ENCED?)

> (query ' (i should have known better))
(SHOULD | HAVE KNOWN BETTER?)

6—
Trueand False

L]
T ol gl | i = ‘_"--;-:1.- =7y
i A R IR

T)
L ..4;__.._5{-_'_-’-,5"1;.,-_ =

"Contrariwise," continued Tweedledee, "if it was so, it might be; and
if it were so, it would be; but asitisn't, it ain't. That'slogic.”

e ! n ’ e b i -
ety) P .-..-_.‘ - by [C oy g fr
] ol . e r;'l.-. rléwhgw%ﬁmlh:‘ i
i Cig = a4 k "

g o SR
rﬁ{%ﬂul' L

i

=

Page 70

Page 71

We till need one more thing before we can write more interesting programs: the ability to make decisions. Scheme
has away to say "if thisistrue, then do thisthing, otherwise do something else.”

Here's a procedure that greets a person:

(define (greet nane)

(if (equal? (first nane) 'professor)
(se '(i hope i amnot bothering you) 'professor (last nane))
(se '(good to see you) (first nanme))))

>

(greet

"(matt wight))

(GOOD TO SEE YOU NATT)

>

(1

(greet
HOPE |

"(professor harol d abel son))
AM NOT BOTHERI NG YOU PROFESSOR ABELSON)

The program greets a person by checking to seeif that person isaprofessor. If so, it says, "l hope | am not bothering
you" and then the professor's name. But if it's aregular person, the program just says, "Good to see you," and then the
person's first name.

| f takesthree arguments. The first hasto be either true or false. (We'll talk in a moment about exactly what true and

false look like to Scheme.) In the above example, the first word of the person's name might or might not be equal to
the word "Professor.” The second and third arguments are expressions; one or the other of them is evaluated depending
on the first argument. The value of the entirei f expression isthe value of either the second or the third argument.

You learned in Chapter 2 that Scheme includes a special data type called Booleans to represent true or false values.
There are just two of them: #t for "true” and #f for

Page 72
IIfal%."*

We said that the first argument to i f hasto be true or false. Of course, it would be silly to say

> (if #t (+45) (* 27))
9

because what's the point of using i f if we already know which branch will be followed? Instead, asin the gr eet

example, we call some procedure whose return value will be either true or false, depending on the particular arguments
wegiveit.

Predicates

A function that returns either #t or #f iscalled apredicate.”™ You've already seen the equal ? predicate. It takestwo
arguments, which can be of any type, and returns #t if the two arguments are the same value, or #f if they're

different. It's a convention in Scheme that the names of predicates end with a question mark, but that's just a
convention. Here are some other useful predicates.

> (menber? 'nmick '(dave dee dozy beaky mck and tich))

#T

> (nmenber? 'mick ' (john paul george ringo))
#F

> (menber? 'e "truly)

#F

* In some versions of Scheme, the empty sentence is considered false. That is, () and #f may be the samething. The
reason that we can't be definite about this point is that older versions of Scheme follow the traditional Lisp usage, in
which the empty sentenceis false, but since then a standardization committee has come along and insisted that the two
values should be different. In this book we'll consider them as different, but we'll try to avoid examplesin which it
matters. The main point isthat you shouldn't be surprised if you see something like this:

> (=3 4)
()

in the particular implementation of Scheme that you're using.

** Why isit called that? Think about an English sentence, such as "Ringo is adrummer." Asyou may remember from
elementary schooal, "Ringo" is the subject of that sentence, and "is a drummer" isthe predicate. That predicate could be
truthfully attached to some subjects but not others. For example, it'strue of "Neil Peart" but not of "George Harrison." So
the predicate "is a drummer" can be thought of as afunction whose value is true or false.

Page 73
> (menber? 'Y "truly)

#T

> (=3 4)

#F

> (= 67 67)

#T

> (> 98 97)

#T

> (before? 'zorn 'col eman)
#F

> (before? 'pete 'ringo)
#T

> (enmpty? ' (abbey road))
#F

> (empty? ' ())

#T

> (enmpty? 'hi)

#F

> (enmpty? (bf (bf "hi)))
#T

> (enmpty? ")

#T

Menber ? takes two arguments; it checks to seeif the first oneisamember of the second. The=, >, <, >=, and
<= functions take two numbers as arguments and do the obvious comparisons. (By the way, these are exceptions to the
convention about question marks.) Bef or e? islike <, but it compares two words aphabetically. Enpt y? checksto
seeif itsargument is either the empty word or the empty sentence.

Why do we have both equal ? and = in Scheme? The first of these works on any kind of Scheme data, while the
second is defined only for numbers. Y ou could get away with always using equal ?, but the more specific form

makes your program more self-explanatory; people reading the program know right away that you're comparing
numbers.

There are also several predicates that can be used to test the type of their argument:

> (nunber? 'three)

#F
> (nunber? 74)
#T
> (bool ean? #f)
#T

> (bool ean? ' (the beatles))
#F

Page 74
> (bool ean? 234)

#F

> (bool ean? #t)

#T

> (word? 'flying)
#T

> (word? '(digit))
#F

> (word? 87)

#T

> (sentence? 'wait)
#F

> (sentence? '(what goes on))
#T

Of course, we can aso define new predicates:

(define (vowel ? letter)
(menmber? letter 'aeiou))

(define (positive? nunber)
(> nunber 0))

Using Predicates

Here's a procedure that returns the absolute value of a number:

(define (abs num
(if (< num 0)
(= num
num)

(If you call — with just one argument, it returns the negative of that argument.) Scheme actually provides abs asa
primitive procedure, but we can redefine it.

Do you remember how to play buzz? Y ou're all sitting around the campfire and you go around the circle counting up
from one. Each person says a number. If your number is divisible by seven or if one of its digitsis a seven, then
instead of calling out your number, you say "buzz."

(define (buzz num
(if (or (divisible? num7) (nmenber? 7 nunj)
" buzz

nun)

Page 75

(define (divisible? biglittle)
(= (remainder big little) 0))

O can take any number of arguments, each of which must be true or false. It returnstrue if any of its arguments are
true, that is, if the first argument is true or the second argument istrue or . . . (Renai nder, asyou know, takes two

integers and tells you what the remainder is when you divide the first by the second. If the remainder is zero, the first
number is divisible by the second.)

O isone of three functionsin Scheme that combine true or false values to produce another true or false value. And
returnstrueif al of its arguments are true, that is, the first and second and . . . Finally, there'safunction not that takes
exactly one argument, returning true if that argument is false and vice versa.

In the last example, the procedure we really wanted to write was buz z, but we found it useful to definedi vi si bl e?

also. It's quite common that the easiest way to solve some problem isto write a helper procedure to do part of the
work. In this case the helper procedure computes a function that's meaningful in itself, but sometimes you'll want to
write procedures with names like buzz—hel per that are useful only in the context of one particular problem.

Let'swrite a program that takes aword as its argument and returns the plural of that word. Our first version will just
put an"s" on the end:

(define (plural wd)
(word wd 's))

> (plural 'beatle)
BEATLES

> (plural 'conputer)
COVPUTERS

> (plural '"fly)
FLYS

Thisworks for most words, but not those that end in "y". Here's version two:

(define (plural wd)
(if (equal? (last wd) 'Y)
(word (bl wd) '"ies)
(word wd 's)))

Page 76
Thisisn't exactly right either; it thinks that the plural of "boy" is"boies." Well ask you to add some more rulesin

Exercise 6.12.

| f Isa Special Form

There are afew subtleties that we haven't told you about yet. First of al, i f isaspecia form. Remember that we're

going to need the value of only one of itslast two arguments. It would be wasteful for Scheme to evaluate the other
one. So if you say

(if (=3 23)
"sure
(factorial 1000))

i f won't compute the factorial of 1000 before returning sur e.

Theruleisthat i f always evaluatesits first argument. If the value of that argument istrue, theni f evaluatesits
second argument and returns its value. If the value of the first argument isfalse, theni f evaluatesits third argument
and returns that value.

So AreAnd and Or

And and or are also specia forms. They evaluate their arguments in order from left to right” and stop as soon as they
can. For or , this means returning true as soon as any of the argumentsistrue. And returns false as soon as any
argument isfalse. Thisturns out to be useful in cases like the following:

(define (divisible? big small)
(= (remainder big small) 0))

(define (num-divisi bl e-by—4? x)
(and (nunber? x) (divisible? x 4)))

> (num-di vi si bl e-by—-4? 16)
#T

* Since you can start anew line in the middle of an expression, in some cases the arguments will be "top to bottom"
rather than "left to right,” but don't forget that Scheme doesn't care about line breaks. That's why Lisp programmers
awaystalk asif their programs were written on one enormously long line.

Page 77

> (num-di vi si bl e-by—4? 6)
#F

> (num-di vi si bl e-by—-4? ' aar dvar k)
#F

> (divisible? "aardvark 4)
ERROR: AARDVARK IS NOT A NUMBER

We want to see if x isanumber, and, if so, if it'sdivisible by 4. It would be an error to apply di vi si bl e? toa
nonnumber. If and were an ordinary procedure, the two tests (nunber ? and di vi si bl e?) would both be
evaluated before we would have a chance to pay attention to the result of the first one. Instead, if x turns out not to be
anumber, our procedure will return #f without trying to divideit by 4.

Everything That Isn't Falsels True
#T isn't the only true value. In fact, every value is considered true except for #f .

> (if (+ 3 4) '"yes 'no)
YES

This allows us to have semipredicates that give slightly more information than just true or false. For example, we can
write an integer quotient procedure. That isto say, our procedure will divide its first argument by the second, but only
if thefirst is evenly divisible by the second. If not, our procedure will return #f .

(define (integer—quotient big little)
(if (divisible? biglittle)
(/ biglittle)
#f))

> (integer—quotient 27 3)
9

> (integer—quotient 12 5)
#F

And and or are also semipredicates. We've already explained that or returns atrue result as soon asit evaluates atrue
argument. The particular true value that or returnsisthe value of that first true argument:

Page 78

> (or #f 3 #f 4)
3

And returns atrue value only if al of its arguments are true. In that case, it returns the value of the last argument:

>(and 1 2 3 4 5)
5

As an example in which this behavior is useful, we can rewrite i nt eger —quot i ent more tersely:
(define (integer—quotient big little) ;; alternate version

(and (divisible? big little)
(/ biglittle)))

Decisions, Decisions, Decisions
| f isgreat for an either-or choice. But sometimes there are severa possibilities to consider:

(define (roman-val ue letter)
(if (equal? letter "i)

1
(if (equal? letter 'v)
5
(if (equal? letter 'Xx)
10
(if (equal? letter 'I)
50
(if (equal? letter 'c)
100
(if (equal? letter 'd)
500
(if (equal? letter 'nm
1000
"huh?))))))))

That's pretty hideous. Scheme provides a shorthand notation for situations like this in which you have to choose from
among severa possibilities: the special form cond.

Page 79

(define (roman-val ue letter)

(cond ((equal ? letter "i) 1)
((equal ? letter 'v) 5)
((equal ? letter 'x) 10)
((equal ? letter 'I) 50)
((equal ? letter 'c) 100)
((equal ? letter 'd) 500)
((equal ? letter 'm 1000)
(el se 'huh?)))

Thetricky thing about cond isthat it doesn't use parentheses in quite the same way as the rest of Scheme. Ordinarily,
parentheses mean procedure invocation. In cond, most of the parentheses still mean that, but some of them are used to
group pairs of tests and results. We've reproduced the same cond expression below, indicating the funny onesin
boldface.

(define (roman-val ue letter)

(cond ((equal ? letter "i) 1)
((equal ? letter 'v) 5)
((equal ? letter 'x) 10)
((equal ? letter '1) 50)
((equal ? letter 'c) 100)
((equal ? letter 'd) 500)
((equal ? letter 'm 1000)
(el se 'huh?)))

Cond takes any number of arguments, each of which istwo expressionsinside apair of parentheses. Each argument is
called acond clause. In the example above, onetypical clauseis

((equal ? letter '1) 50)

The outermost parentheses on that line enclose two expressions. The first of the two expressions (the condition) is
taken astrue or false, just like the first argument to i f . The second expression of each pair (the consequent) isa

candidate for the return value of the entire cond invocation.

Cond examines its arguments from left to right. Remember that since cond is a specia form, its arguments are not
evaluated ahead of time. For each argument, cond evaluates the first of the two expressions within the argument. If
that value turns out to be true, then cond evaluates the second expression in the same argument, and returns

Page 80

that value without examining any further arguments. But if the value isfalse, then cond does not evaluate the second
expression; instead, it goes on to the next argument.

By convention, the last argument always starts with the word el se instead of an expression. Y ou can think of thisas
representing atrue value, but el se doesn't mean true in any other context; you're only allowed to useit asthe
condition of the last clause of acond.”

Don't get into bad habits of thinking about the appearance of cond clauses in terms of "two parenthesesin arow."
That's often the case, but not always. For example, here is a procedure that translates Scheme true or false values (#t

and #f) into more human-readable wordst r ue andf al se.

(define (truefal se val ue)
(cond (value 'true)
(else 'false)))

> (truefalse (= 2 (+ 1 1)))
TRUE

> (truefalse (=5 (+ 2 2)))
FALSE

When acond tests several possible conditions, they might not be mutually exclusive.”* This can be either a source of

error or an advantage in writing efficient programs. The trick is to make the most restrictive test first. For example, it
would be an error to say

(cond ((nunber? (first sent)) ...) 7, wrong
((enpty? sent) ...)
ce)

because the first test only makes sense once you've already established that there is afirst word of the sentence. On the
other hand, you don't have to say

(cond ((enpty? sent) ...)
((and (not (enpty? sent)) (nunber? (first sent))) ...)
ce)

* What if you don't use an el se clause at al? If none of the clauses has a true condition, then the return value is
unspecified. In other words, always use el se.

** Conditions are mutually exclusive if only one of them can be true at atime.

Page 81

because you've already established that the sentence is nonempty if you get as far as the second clause.

| f IsComposable

Suppose we want to write agr eet procedure that works like this:

> (greet '(brian epstein))
(PLEASED TO MEET YQU BRI AN — HOW ARE YQU?)

> (greet '(professor donald knuth))
(PLEASED TO MEET YOU PROFESSOR KNUTH — HOW ARE YOU?)

The response of the program in these two cases is ailmost the same; the only differenceisin the form of the person's
name.

This procedure could be written in two ways:

(define (greet nane)
(if (equal? (first nane) 'professor)

(se '(pleased to neet you)
' prof essor
(last nane)
'"(— how are you?))

(se '(pleased to neet you)
(first name)
'"(—— how are you?))))

(define (greet nane)
(se '(pleased to nmeet you)
(if (equal? (first nane) 'professor)
(se 'professor (last nane))
(first nane))
'"(— how are you?)))

The second version avoids repeating the common parts of the response by usingi f within alarger expression.

Some people find it counterintuitiveto usei f aswe did in the second version. Perhaps the reason is that in some other
programming languages, i f isa"command" instead of afunction like any other. A mechanism that selects one part of
aprogram to run, and leaves out another part, may seem too important to be a mere argument

Page 82
subexpression. But in Scheme, the value returned by every function can be used as part of alarger expression.”

We aren't saying anything new here. We've already explained the idea of composition of functions, and we're just
making the same point again about i f . But we've learned that many students expect i f to be an exception, so we're

taking the opportunity to emphasize the point: There are no exceptionsto thisrule.

Pitfalls

[0 The biggest pitfall in this chapter is the unusual notation of cond. Keeping track of the parentheses that mean
function invocation, as usual, and the parentheses that just group the parts of acond clause istricky until you get
accustomed to it.

[0 Many people aso have trouble with the asymmetry of the menber ? predicate. The first argument is something

small; the second is something big. (The order of argumentsis the same as the order of atypical English sentence
about membership: "Is Mick a member of the Beatles?') It seems pretty obvious when you look at an examplein
which both arguments are quoted constant values, but you can get in trouble when you define a procedure and use its
parameters as the arguments to menber ?. Compare writing a procedure that says, "does the letter E appear in this

word?' with one that says, "is this letter avowel ?"

[0 Many peopletry to useand and or with the full flexibility of the corresponding English words. Alas, Schemeis
not English. For example, suppose you want to know whether the argument to a procedure is either theword yes or
theword no. You can't say

(equal ? argunent (or 'yes 'no)) ; wrong!

This sounds promising: "Isthear gunent equal tothewordyes or theword no?" But the argumentsto or
must be true-or-false values, not things you want to check for

* Strictly speaking, since the argument expressions to a special form aren't evaluated, i f isafunction whose domainis
expressions, not their values. But many special forms, includingi f, and, andor, aredesignedto act asif they

were ordinary functions, the kind whose arguments Scheme evaluates in advance. The only differenceisthat it is
sometimes possible for Scheme to figure out the correct return value after evaluating only some of the arguments. Most
of thetime we'll just talk about the domains and ranges of these special forms asif they were ordinary functions.

Page 83
equality with something else. Y ou have to make two separate equality tests.
(or (equal ? argunent 'yes) (equal ? argunment 'no))
In this particular case, you could a so solve the problem by saying

(menber ? argunent ' (yes no))

but the question of trying to use or asif it were English comes up in other cases for which menber ? won't help.

O Thisisn't exactly apitfall, because it won't stop your program from working, but programs like

(define (odd? n)
(if (not (even? n)) #t #f))

are redundant. Instead, you could just say

(define (odd? n)
(not (even? n)))

sincethevalueof (not (even? n)) isaready #t or #f .

Boring Exercises

6.1 What values are printed when you type these expressions to Scheme? (Figure it out in your head before you try it
on the computer.)

(cond ((= 3 4) '(this boy))
((< 2 5) '"(nowhere man))
(else "(two of us)))
(cond (enpty? 3)
(square 7)
(else 9))
(define (third—person-singul ar verb)
(cond ((equal ? verb 'be) 'is)
((equal ? (last verb) 'o) (word verb 'es))
(el se (word verb 's))))

(t hi rd—person-si ngul ar ' go)

Page 84

6.2 What values are printed when you type these expressions to Scheme? (Figure it out in your head before you try it
on the computer.)

(or #f #f #f #t)
(and #f #f #f #t)
(or (=23) (=423))
(not #f)
(or (not (=2 3)) (=4 3))
(or (and (=2 3) (=33)) (and (<2 3) (<3 4)))
6.3 Rewrite the following procedure using acond instead of thei f s:
(define (sign nunber)
(if (< nunber 0)
'negative
(if (= nunber 0)
'zero
"positive)))
6.4 Rewrite the following procedureusing ani f instead of the cond:

(define (utensil neal)
(cond ((equal ? neal 'chinese) 'chopsticks)
(else "fork)))

Real Exercises

Note: Writing helper procedures may be useful in solving some of these problems.

6.5 Write aprocedure eur opean—t i me to convert atime from American AM/PM notation into European 24-hour

notation. Also writeaner i can—t i me, which does the opposite:

> (european-tine ' (8 am)
8

> (european-tinme ' (4 pm)
16

> (anerican-tinme 21)

(9 PM

> (american-tinme 12)
(12 PV

> (european-tinme ' (12 am)
24

Getting noon and midnight right is tricky.

6.6 Writeapredicatet een? that returnstrue if its argument is between 13 and 19.

6.7 Write aproceduret ype—of that takes anything as its argument and returns one of the words
wor d, sentence, nunber, orbool ean:

> (type-of '(getting better))
SENTENCE

> (type-of 'revolution)
WORD

> (type-of (= 3 3))
BOOLEAN

(Even though numbers are words, your procedure should return nunber if its argument is a number.)

Feel free to check for more specific types, such as "positive integer," if you are so inclined.
6.8 Writeaprocedurei ndef —ar ti cl e that workslike this:

> (indef-article 'beatle)
(A BEATLE)

> (indef-article "al bum
(AN ALBUM

Don't worry about silent initial consonants likethe h in hour .

Page 85

Page 86

6.9 Sometimes you must choose the singular or the plural of aword: 1 book but 2 books. Write a procedure
t hi smany that takes two arguments, a number and a singular noun, and combines them appropriately:

> (thismany 1 'partridge)
(1 PARTRI DGE)

> (thismany 3 'french-hen)
(3 FRENCH-HENS)

6.10 Write aprocedure sor t 2 that takes as its argument a sentence containing two numbers. It should return a
sentence containing the same two numbers, but in ascending order:

> (sort2 ' (5 7))
(5 7)

> (sort2 ' (7 5))
(57)

6.11 Write apredicate val i d—dat e? that takes three numbers as arguments, representing a month, a day of the
month, and ayear. Y our procedure should return #t if the numbers represent avalid date (e.g., it isn't the 31st of

September). February has 29 daysif the year isdivisible by 4, except that if the year is divisible by 100 it must also be
divisible by 400.

> (val i d—date? 10 4 1949)
#T

> (valid-date? 20 4 1776)
#F

> (valid-date? 5 0 1992)
#F

> (valid-date? 2 29 1900)
#F

> (val i d—date? 2 29 2000)
#T

Page 87

6.12 Make pl ur al handle correctly wordsthat end iny but have avowel beforethey, such asboy. Then teach it
about words that end in x (box). What other special cases can you find?

6.13 Write a better gr eet procedure that understands as many different kinds of names as you can think of:

> (greet ' (john | ennon))
(HELLO JOHN)

> (greet '(dr marie curie))
(HELLO DR CURI E)

> (greet '(dr martin luther king jr))
(HELLO DR KI NG

> (greet '(queen elizabeth))
(HELLO YOUR MAJESTY)

> (greet '(david livingstone))
(DR LI VINGSTONE | PRESUVME?)

6.14 Write aproceduredescr i be—t i ne that takes a number of seconds as its argument and returns a more useful
description of that amount of time:

> (describe-tinme 45)
(45 SECONDS)

> (describe—tinme 930)
(15.5 M NUTES)

> (describe—time 30000000000)
(9.506426344208686 CENTURI ES)

Page 88

Trombone players produce different pitches partly by varying the length of atube.

Page 89

7—
Variables

A variable is a connection between a name and avaue.” That sounds simple enough, but some complexities arisein
practice. To avoid confusion later, we'll spend some time now looking at the idea of "variable" in more detail.

The name variable comes from algebra. Many people are introduced to variables in high school algebra classes, where
the emphasisis on solving equations. "If x3 —8 = 0, what is the value of x?' In problems like these, although we call x
avariable, it'sreally anamed constant! In this particular problem, x has the value 2. In any such problem, at first we
don't know the value of x, but we understand that it does have some particular value, and that value isn't going to
change in the middle of the problem.

In functional programming, what we mean by "variable" is like a named constant in mathematics. Since avariableis
the connection between a name and avalue, aformal parameter in a procedure definition isn't avariable; it'sjust a
name. But when we invoke the procedure with a particular argument, that name is associated with avalue, and a
variableis created. If we invoke the procedure again, anew variable is created, perhaps with a different value.

There are two possible sources of confusion about this. One is that you may have programmed beforein a
programming language like BASIC or Pascal, in which avariable often does get a new value, even after it's already
had a previous value assigned to it. Programs in those languages tend to be full of thingslike" X = X + 1." Back

in Chapter 2 we told you that this book is about something called "functional programming,” but we haven't yet
explained exactly what that means. (Of course we have introduced alot

* Theterm "variable" is used by computer scientists to mean several subtly different things. For example, some people
use "variable" to mean just a holder for avalue, without aname. But what we said is what we mean by "variable."

Page 90

of functions, and that is an important part of it.) Part of what we mean by functional programming is that once a
variable exists, we aren't going to change the value of that variable.

The other possible source of confusion is that in Scheme, unlike the situation in algebra, we may have more than one
variable with the same name at the same time. That's because we may invoke one procedure, and the body of that
procedure may invoke another procedure, and each of them might use the same formal parameter name. There might
be one variable named x with the value 7, and another variable named x with the value 51, at the same time. The

pitfall to avoid isthinking "x has changed its value from 7 to 51."

As an analogy, imagine that you are at a party along with Mick Jagger, Mick Wilson, Mick Avory, and Mick Dolenz.
If you're having a conversation with one of them, the name "Mick" means a particular person to you. If you notice
someone el se talking with a different Mick, you wouldn't think "Mick has become a different person.” Instead, you'd
think "there are several people here al with the name Mick."

How Little People Do Variables

Y ou can understand variables in terms of the little-people model. A variable, in this model, is the association in the
little person's mind between aformal parameter (name) and the actual argument (value) she was given. When we want
toknow (square 5), wehire Srini and tell him his argument is 5. Srini therefore substitutes 5 for x in the body of

squar e. Later, when we want to know the square of 6, we hire Samantha and tell her that her argument is 6. Srini and
Samantha have two different variables, both named x.

Page 91

Srini and Samantha do their work separately, one after the other. But in a more complicated example, there could even
be more than one value called x at the same time:

(define (square x) (* x X))

(define (hypotenuse x y)
(sgrt (+ (square x) (square y))))

> (hypot enuse 3 4)
5

Consider the situation when we've hired Hortense to evaluate that expression. Hortense associates the name x with the
value 3 (and also the namey with the value 4, but we're going to pay attention to x). She has to compute two
squar es. She hires Solomon to compute (squar e 3) . Solomon associates the name x with the value 3. This

happens to be the same as Hortense's value, but it's still a separate variable that could have had a different value—as
we see when Hortense hires Shebato compute (squar e 4) . Now, simultaneously, Hortense thinks x is 3 and

Shebathinks x is4.

\define i (define
(bypotenuse = y) f
(sqrt (+ (square x) (square y)})

w

{ = \
LEQuare x)

(Remember that we said a variable is a connection between a name and avalue. So x isn't avariable! The association
of the name x with the value 5 isavariable. The reason we're being so fussy about this terminology isthat it helps

clarify the case in which several variables have the same name. But in practice people are generally sloppy about this
fine point; we can usually get away with saying "x isavariable" when we mean "there is some variable whose name is

X_"

Page 92

Another important point about the way little people do variablesis that they can't read each others minds. In particular,
they don't know about the values of the local variables that belong to the little people who hired them. For example,
the following attempt to compute the value 10 won't work:

(define (f x)
(g 6))

(define (g vy)
(+ xy))

> (f 4)
ERROR — VARI ABLE X |'S UNBOUND

We hire Franz to compute (f 4) . Heassociates x with 4 and evaluates (g 6) by hiring Gloria. Gloria associates y
with 6, but she doesn't have any value for x, so she'sin trouble. The solution isfor Franz to tell Gloriathat x is 4:

(define (f x)
(g x 6))

(define (g x vy)
(+ x))

> (f 4)
10

Global and Local Variables

Until now, we've been using two very different kinds of naming. We have names for procedures, which are created
permanently by def i ne and are usable throughout our programs; and we have names for procedure arguments, which

are associated with values temporarily when we call a procedure and are usable only inside that procedure.

These two kinds of naming seem to be different in every way. One isfor procedures, one for data; the one for
procedures makes a permanent, global name, while the one for data makes a temporary, local name. That picture does
reflect the way that procedures and other data are usually used, but we'll see that really there is only one kind of
naming. The boundaries can be crossed: Procedures can be arguments to other procedures, and any kind of data can
have a permanent, global name. Right now wel'll look at that last point, about global variables.

Page 93

Just as we've been using def i ne to associate names with procedures globally, we can also use it for other kinds of
data:

> (define pi 3.141592654)

> (+ pi 5)
8. 141592654

> (define song '(I amthe walrus))

> (last song)
VWALRUS

Once defined, aglobal variable can be used anywhere, just as a defined procedure can be used anywhere. (In fact,
defining a procedure creates a variable whose value is the procedure. Just as pi isthe name of avariable whose value

i$3.141592654, | ast isthe name of avariable whose value is a primitive procedure. We'll come back to this point in

Chapter 9.) When the name of a global variable appears in an expression, the corresponding value must be substituted,
just as actual argument values are substituted for formal parameters.

When alittle person is hired to carry out a compound procedure, his or her first step is to substitute actual argument
values for formal parametersin the body. The same little person substitutes values for global variable names al so.
(What if thereis aglobal variable whose name happens to be used as aformal parameter in this procedure? Scheme's
ruleisthat the formal parameter takes precedence, but even though Scheme knows what to do, conflicts like this make
your program harder to read.)

How does this little person know what values to substitute for global variable names? What makes a variable "global”
in the little-people model isthat every little person knows its value. Y ou can imagine that there's a big chalkboard, with
all the global definitions written on it, that all the little people can see. If you prefer, you could imagine that whenever
aglobal variableis defined, the def i ne specialist climbs up a huge ladder, picks up a megaphone, and yells

something like "Now hear this! Pi is3.141592654!"

The association of aformal parameter (a name) with an actual argument (avalue) iscalled alocal variable.

It's awkward to have to say "Harry associates the value 7 with the namef 00" all the time. Most of the time we just
say " f 00 hasthevalue 7," paying no attention to whether this association isin some particular little person's head or
if everybody knowsiit.

Page 94

The Truth about Substitution

We said earlier in afootnote that Scheme doesn't actually do all the copying and substituting we've been talking about.
What actually happens is more like our model of global variables, in which there is a chalkboard somewhere that
associ ates names with values—except that instead of making anew copy of every expression with values substituted
for names, Scheme works with the original expression and looks up the value for each name at the moment when that
value is needed. To make local variables work, there are several chalkboards: a global one and one for each little
person.

The fully detailed model of variables using several chalkboards is what many people find hardest about Iearning
Scheme. That's why we've chosen to use the simpler substitution model.*

Let

We're going to write a procedure that solves quadratic equations. (We know thisis the prototypical boring
programming problem, but it illustrates clearly the point we're about to make.)

WEe'll use the quadratic formulathat you learned in high school algebra class:

ax2+ bx+c=0when ,_ ~b% VB - dac
- 2a

(define (roots a b c¢)
(se (/ (+ (=Db) (sgrt (= (* b b) (* 4ac))))
(* 2 a))
(/ (= (=Db) (sart (- (* bb) (* 4ac))))
(* 2 a))))

Since there are two possible solutions, we return a sentence containing two numbers. This procedure works fine,** but
it does have the disadvantage of repeating alot of the

* The reason that all of our examples work with the substitution model is that this book uses only functional
programming, in the sense that we never change the value of avariable. If we started doingthe X = X + 1 styleof

programming, we would need the more complicated chalkboard model.

** That is, it worksiif the equation has real roots, or if your version of Scheme has complex

(footnote continued on next page)

Page 95
work. It computes the square root part of the formulatwice. We'd like to avoid that inefficiency.

One thing we can do isto compute the square root and use that as the actual argument to a helper procedure that does
the rest of the job:

(define (roots a b c¢)
(rootsl a b c (sgrt (= (* bb) (* 4ac)))))

(define (rootsl a b ¢ discrimnant)
(se (/ (+ (= b) discrinminant) (* 2 a))
(/ (= (= Db) discrimnant) (* 2 a))))

This version evaluates the square root only once. The resulting value is used as the argument named di scr i m nant
inroot sl.

We've solved the problem we posed for ourselves initially: avoiding the redundant computation of the discriminant
(the square-root part of the formula). The cost, though, is that we had to define an auxiliary procedurer oot s1 that

doesn't make much sense on itsown. (That is, you'd never invoker oot s1 for its own sake; only r oot s usesit.)

Scheme provides a notation to express a computation of this kind more conveniently. It'scalled | et :

(define (roots a b c¢)
(let ((discrimnant (sgrt (- (* bb) (* 4ac)))))
(se (/ (+ (= b) discrimnant) (* 2 a))
(/ (= (= Db) discrimnant) (* 2 a)))))

Our new program is just an abbreviation for the previous version: In effect, it creates atemporary procedure just like
r oot s1, but without a name, and invokes it with the specified argument value. But the| et notation rearranges

things so that we can say, in theright order, "let the variable di scri m nant havethevalue(sqrt...) and. using
that variable, compute the body."

Let isaspecia form that takes two arguments. The first is a sequence of name-value pairs enclosed in parentheses.
(In this example, there is only one name-value pair.) The second argument, the body of thel et , isthe expression to
evaluate.

(footnote continued from previous page)

numbers. Also, the limited precision with which computers can represent irrational numbers can make this particular
algorithm give wrong answers in practice even though it's correct in theory.

Page 96

Now that we have this notation, we can use it with more than one name-value connection to &liminate even more
redundant computation:

(define (roots a b ¢)
(let ((discrimnant (sqgrt (- (* b b) (* 4 ac))))
(mnus-b (- b))
(two-a (* 2 a)))
(se (/ (+ minus-b discrinnant) two-a)
(/ (= mnus—b discrininant) two-a))))

In this example, the first argument to | et includes three name-value pairs. It's asif we'd defined and invoked a
procedure like the following:

(define (rootsl discrimnant mnus-b two-a) . . .)

Likecond, | et usesparentheses both with the usual meaning (invoking a procedure) and to group sub-arguments

that belong together. This grouping happens in two ways. Parentheses are used to group a name and the expression that
providesits value. Also, an additional pair of parentheses surrounds the entire collection of name-value pairs.

Pitfalls

O If you've programmed before in other languages, you may be accustomed to a style of programming in which you
change the value of avariable by assigning it anew value. Y ou may be tempted to write

> (define x (+ x 3)) ;; no—no

Although some versions of Scheme do allow such redefinitions, so that you can correct errorsin your procedures,
they're not strictly legal. A definition is meant to be permanent in functional programming. (Scheme does include
other mechanisms for non-functional programming, but we're not studying them in this book because once you allow
reassignment you need a more complex model of the evaluation process.)

[0 When you create more than one temporary variable at once using | et , al of the expressions that provide the values
are computed before any of the variables are created. Therefore, you can't have one expression depend on another:

> (let ((a (+47)) ;; wrong!
(b (* a5)))

(+ ab))
Page 97

Don't think that a getsthe value 11 and therefore b getsthe value 55. That | et expression is equivalent to defining a
helper procedure

(define (helper a b)
(+ ab))

and then invoking it:
(helper (+ 4 7) (* a b))

The argument expressions, as always, are evaluated before the function isinvoked. The expression (* a 5) will be
evaluated using the global value of a, if thereisone. If not, an error will result. If you want to use a in computing b,
you must say

> (let ((a (+47)))
(let ((b (* a 5)))
(+ab)))
66

[0 Let 'snotation istricky because, like cond, it uses parentheses that don't mean procedure invocation. Don't teach
yourself magic formulas like "two open parentheses before the | et variable and three close parentheses at the end of
itsvalue." Instead, think about the overall structure:

(1 et variables body)

Let takesexactly two arguments. Thefirst argument to | et isone or more name-value groupings, all in parentheses:

((nanmel val uel) (nane2 val ue2) (nanme3 value3d) ...)

Each name isasingle word; each val ue can be any expression, usually a procedure invocation. If it's a procedure
invocation, then parentheses are used with their usual meaning.

The second argument to | et isthe expression to be evaluated using those variables.

Now put all the pieces together:

(let ((nanmel (fnl argl))
(nanme2 (fn2 arg2))
(name3 (fn3 arg3l)))

body)

Page 98

Boring Exercises

7.1 The following procedure does some redundant computation.

(define (gertrude wd)
(se (if (vowel? (first wd)) "an 'a)

wd

"is

(if (vowel? (first wd)) "an 'a)
wd

"is

(if (vowel? (first wd)) "an 'a)
wd))

> (gertrude 'rose)
(ARCSE IS A RCSE | S A ROCSE)

> (gertrude 'iguana)
(AN | GUANA |S AN | GUANA |'S AN | GUANA)

Usel et to avoid the redundant work.

7.2 Put in the missing parentheses:

> (let pi 3.14159
pie 'l enmon neringue
se 'pi is pi 'but pie is pie)
(Pl 1S 3.14159 BUT PIE IS LEMON MERI NGUE)

Real Exercises

7.3 The following program doesn't work. Why not? Fix it.

(define (superlative adjective word)
(se (word adjective '"est) word))

It's supposed to work like this:

> (superlative '"dunmb 'exercise)
(DUVBEST EXERCI SE)

Page 99
7.4 What does this procedure do? Explain how it manages to work.

(define (sumsquare a b)
(let ((+ *)
(* +))

(* (+aa) (+bb))))

Page 100

PART I11—
FUNCTIONSASDATA

By now you're accustomed to the idea of expressing a computational process in terms of the function whose value you
want to compute, rather than in terms of a sequence of actions. But you probably think of a function (or the procedure
that embodiesit) as something very different from the words, sentences, numbers, or other data that serve as arguments
to the functions. It's like the distinction between verbs and nounsin English: A verb represents something to do, while
anoun represents something that is.

In this part of the book our goal isto overturn that distinction.

Like many big ideas, this one seems smple at first. All we're saying is that afunction can have functions as its domain
or range. One artificially simple example that you've seen earlier was the nunber —of —ar gunent s functionin

Chapter 2. That function takes a function as argument and returns a number. It's not so different from count , which
takes aword or sentence as argument and returns a number.

But you'll seethat thisidealeadsto an enormous rise in the length and complexity of the processes you can expressin
a short procedure, because now a process can give rise to several other processes. A typical exampleistheacr onym

procedure that we introduced in Chapter 1 and will examine now in more detail. Instead of applying thef i r st
procedure to asingle word, weusef i r st asan argument to a procedure, every, that automatically appliesit to
every word of asentence. A singleevery process givesriseto several fi r st processes.

The same idea of function as data allows us to write procedures that create and return new procedures. At the
beginning of Part Il we showed a Scheme representation of a function that computes the third person singular of a
verb. Now, to illustrate the idea of function as data, we'll show how to represent in Scheme a function make—

conj ugat or whoserange is the whole family of verb-conjugation functions:

Page 101

(define (make—conjugator prefix ending)
(lambda (verb) (sentence prefix (word verb ending))))

Never mind the notation for now; the ideato think about is that we can use nrake—conj ugat or to create many
functions similar to thet hi r d—per son example of the Part |1 introduction:

> (define third-person (make—conjugator 'she 's))

> (third-person 'progran)
(SHE PROGRAMS)

> (define third-person—pl ural —past (make—conjugator 'they 'ed))

> (third-person-pl ural —past ' pl ay)
(THEY PLAYED)

> (define second—person-future—perfect
(make—conj ugator '(you will have) 'ed))

> (second-per son—future-perfect 'l augh)
(YOU WLL HAVE LAUGHED)

WEe'll explore only atiny fraction of the area opened up by the idea of allowing a program as data. Further down the

same road is the study of compilers and interpreters, the programs that translate your programs into instructions that
computers can carry out. A Scheme compiler is essentially a function whose domain is Scheme programs.

Page 102

Turning function machines into plowshares

Page 103

8
Higher-Order Functions

Note: If you read Part 1V before this one, pretend you didn't; we are going to develop a different technique for solving
similar problems.

You can usethefunctionf i r st tofind thefirst letter of aword. What if you want to find the first letters of several
words? You did thisin the first chapter, as part of the process of finding acronyms.

To start with asimple case, suppose you have two words (that is, a sentence of length two). Y ou could apply the
first procedureto each of them and combine the results:

(define (two—firsts sent)
(se (first (first sent))
(first (last sent))))

> (two—firsts '(john | ennon))
(J b

> (two—firsts '(george harrison))

(GH
Similarly, here's the version for three words:

(define (three-firsts sent)

(se (first (first sent))
(first (first (bf sent)))

(first (last sent))))

> (three—firsts '(janmes paul ntcartney))

(JPM

Page 104

But this approach would get tiresome if you had a sentence of five words—you'd have to write a procedure specifically
for the case of exactly five words, and that procedure would have five separate subexpressions to extract the first word,
the second word, and so on. Also, you don't want a separate procedure for every sentence length; you want one
function that works no matter how long the sentence is. Using the tools you've already learned about, the only possible
way to do that would be pretty hideous:

(define (first—letters sent)
(cond ((= (count sent) 1) (one-first sent))
((= (count sent) 2) (two-firsts sent))
((= (count sent) 3) (three—firsts sent))
...and so on...))

But even thiswon't work because there's no way to say "and so on" in Scheme. Y ou could write a version that works
for all sentences up to, let's say, length 23, but you'd be in trouble if someone tried to use your procedure on a 24-word
sentence.

Every

To write a better any-length first-letter procedure, you need to be able to say "apply the functionf i r st to every word
in the sentence, no matter how long the sentenceis." Scheme provides away to do this.

(define (first—letters sent)
(every first sent))

> (first—letters '(here conmes the sun))
(HCTY

> (first—letters '"(lucy in the sky with di anonds))
(L1 T SWD)

Ever y takes two arguments. The second argument is a sentence, but the first is something new: a procedure used as
an argument to another procedure.”™ Notice that

* Like al the proceduresiin this book that deal with words and sentences, ever y and the other proceduresin this
chapter are part of our extensions to Scheme. Later, in Chapter 17, we'll introduce the standard Scheme equivalents.

** Talking about ever y strains our resolve to distinguish functions from the procedures that implement them. Is the
argument to ever y afunction or a procedure? If we think of every itself

(footnote continued on next page)

Page 105

there are no parentheses around theword f i r st inthebody of fi r st —| et t er s! By now you've gotten

accustomed to seeing parentheses whenever you see the name of a function. But parentheses indicate an invocation of
afunction, and we aren't invoking f i r st here. We'reusingfi r st , the procedure itself, asan argument to every.

> (every last '"(while my guitar gently weeps))
(EYRYYS)

> (every — '(457 89)
(-4 -5 -7 -8 -9)

These examples use ever y with primitive procedures, but of course you can aso define procedures of your own and
apply them to ever y word of a sentence:

(define (plural noun)
(if (equal? (last noun) 'vy)
(word (bl noun) '"ies)
(word noun 's)))

> (every plural '(beatle turtle holly kink zombie))
(BEATLES TURTLES HOLLI ES KI NKS ZOWVBI ES)

Y ou can also use aword as the second argument to ever y. In this case, the first-argument procedure is applied to
every letter of the word. The results are collected in a sentence.

(define (double letter) (word letter letter))

> (every double "girl)
(GG Il RRLL)

> (every square 547)
(25 16 49)

In al these examples so far, the first argument to ever y was afunction that returned aword, and the value returned
by ever y was a sentence containing all the returned

(footnote continued from previous page)

as aprocedure—that is, if we're focusing on how it does its job—then of course we must say that it doesitsjob by
repeatedly invoking the procedure that we supply as an argument. But it's equally valid for us to focus attention on the
function that the ever y procedure implements, and that function takes functions as arguments.

Page 106

words. Thefirst argument to ever y can also be afunction that returns a sentence. In this case, ever y returns one
long sentence:

(define (sent—of—first-two wd)
(se (first wd) (first (bf wd))))

> (every sent—of —first—two '(the inner |ight))
(THI NLI)

> (every sent—-of —first—two '(tell nme what you see))
(TEMEWHY OSE)

> (define (g wd)
(se (word "with wd) 'you))

> (every g '(in out))
(WTH N YOU W THOUT YQU)

A function that takes another function as one of its arguments, asever y does, is called a higher-order function. If we
focus our attention on procedures, the mechanism through which Scheme computes functions, we think of every asa
procedure that takes another procedure as an argument—a higher-order procedure.

A Pausefor Reflection

Earlier we used the metaphor of the "function machine," with a hopper at the top into which we throw data, and a
chute at the bottom from which the result fals, like ameat grinder. Well, ever y isafunction machine into whose

hopper we throw another function machine! Instead of a meat grinder, we have a metal grinder.

Do you see what an exciting idea thisis? We are accustomed to thinking of numbers and sentences as "real things,”
while functions are less like things and more like activities. As an analogy, think about cooking. The real foods are the
meats, vegetables, ice cream, and so on. You can't eat arecipe, which is analogous to a function. A recipe has to be
applied to ingredients, and the result of carrying out the recipeis an edible meal. It

* Y ou can get in trouble mathematically by trying to define a function whose domain includes all functions, because
applying such afunction to itself can lead to a paradox. In programming, the corresponding danger is that applying a
higher-order procedure to itself might result in a program that runs forever.

Page 107

would seem weird if arecipe used other recipes as ingredients: " Preheat the oven to 350 and insert your Joy of
Cooking." But in Scheme we can do just that.”

Cooking your cookbook is unusual, but the general principleisn't. In some contexts we do treat recipes as things rather
than as algorithms. For example, people write recipes on cards and put them into a recipe file box. Then they perform
operations such as searching for a particular recipe, sorting the recipes by category (main dish, dessert, etc.), copying a
recipe for afriend, and so on. The same recipe is both a process (when we're cooking with it) and the object of a
process (when we'refiling it).

Keep

Once we have this idea, we can use functions of functionsto provide many different capabilities.

For instance, the keep function takes a predicate and a sentence as arguments. It returns a sentence containing only
the words of the argument sentence for which the predicate istrue.

> (keep even? '(1 2 3 45))
(2 4)

> (define (ends—-e? word) (equal ? (last word) 'e))

> (keep ends—-e? ' (pl ease put the salam above the bl ue el ephant))
(PLEASE THE ABOVE THE BLUE)

> (keep nunber? '(1 after 909))
(1 909)

Keep will also accept aword as its second argument. In this case, it applies the predicate to every letter of the word
and returns another word:

> (keep nunber? ' zonk23hey9)
239

> (define (vowel ? letter) (nenber? letter "(a e i 0 u)))

> (keep vowel ? ' piggies)
I1E

* Some recipes may seem to include other recipes, because they say things like "add pesto (recipe on p. 12)." But thisis
just composition of functions; the result of the pesto procedure is used as an argument to this recipe. The pesto recipe
itself is not an ingredient.

Page 108

When we used ever y to select thefirst letters of words earlier, we found the first letters even of uninteresting words

such as "the." We're working toward an acronym procedure, and for that purpose we'd like to be able to discard the
boring words.

(define (real —word? wd)
(not (menber? wd '(a the an in of and for to with))))

> (keep real -word? ' (lucy in the sky with di anonds))
(LUCY SKY DI AMONDS)

> (every first (keep real—-word? '(lucy in the sky with dianonds)))
(L S D

Accunul at e

Inevery and keep, each element of the second argument contributes independently to the overall result. That is,
every and keep apply aprocedure to asingle element at atime. The overall result is a collection of individual

results, with no interaction between elements of the argument. This doesn't et us say things like "Add up all the
numbersin a sentence," where the desired output is a function of the entire argument sentence taken as awhole. We
can do thiswith a procedure named accunul at e. Accunul at e takes a procedure and a sentence asits

arguments. It applies that procedure to two of the words of the sentence. Then it applies the procedure to the result we
got back and another element of the sentence, and so on. It ends when it's combined all the words of the sentenceinto a
single result.

> (accunulate + '(6 3 4 -5 7 8 9))
32

> (accunul ate word '(a c | u))
ACLU

> (accunul ate max ' (128 32 134 136))
136

> (define (hyphenate wordl word2)
(word wordl '— word2))

> (accunul ate hyphenate '(ob la di ob la da))
OB-LA-DI —OB-LA-DA

(In al of our examplesin this section, the second argument contains at least two elements. In the "pitfalls’ section at
the end of the chapter, we'll discuss what happens with smaller arguments.)

Page 109
Accunul at e can also take aword as its second argument, using the letters as elements:

> (accunul ate + 781)
16

> (accunul ate sentence 'colin)
(COLI N

Combining Higher-Order Functions

What if we want to add up al the numbersin a sentence but ignore the words that aren't numbers? First we keep the
numbers in the sentence, then we accunul at e theresult with +. It's easier to say in Scheme:

(define (add-nunbers sent)
(accunul ate + (keep number? sent)))

> (add—nunbers ' (4 calling birds 3 french hens 2 turtle doves))
9

> (add-nunbers ' (1 for the noney 2 for the show 3 to get ready
and 4 to go))
10

We also have enough tools to write aversion of the count procedure, which finds the number of wordsin a sentence or
the number of lettersin aword. First, we'll define a procedure al way s—one that returns 1 no matter what its

argument is. Well every al ways—one over our argument sentence,” which will result in a sentence of as many
ones as there were words in the original sentence. Then we can use accunul at e with + to add up the ones. Thisisa
dlightly roundabout approach; later we'll see amore natural way to find the count of a sentence.

(define (al ways—one arQg)
1)

* We mean, of course, "Well invoke ever y with the procedure al ways—one and our argument sentence as its two

arguments." After you've been programming computers for awhile, this sort of abuse of English will come naturally to
you.

Page 110

(define (count sent)
(accurmul ate + (every always—one sent)))

> (count '(the continuing story of bungal ow bill))
6

Y ou can now understand the acr ony mprocedure from Chapter 1:

(define (acronym phrase)
(accunul ate word (every first (keep real -word? phrase))))

> (acronym ' (reduced instruction set conputer))
Rl SC

> (acronym ' (structure and interpretation of conputer prograns))
S| CP

Choosing the Right Tool

So far you've seen three higher-order functions: every, keep, andaccunul at e. How do you decide which one
to use for a particular problem?

Every transforms each element of aword or sentence individually. The result sentence usually contains as many
elements as the argument.”

()

* What we mean by "usually" isthat every ismost often used with an argument function that returns a single word. If

the function returns a sentence whose length might not be one, then the number of wordsin the overall result could be
anything!

Page 111

Keep selects certain elements of aword or sentence and discards the others. The elements of the result are elements of
the argument, without transformation, but the result may be smaller than the original.

()
IR AN
()

Accunul at e transforms the entire word or sentence into a single result by combining all of the elementsin some

o)

O

These three pictures represent graphically the differences in the meanings of ever y, keep, and accunul at e. Inthe

pictures, we're applying these higher-order procedures to sentences, but don't forget that we could have drawn similar
pictures in which the higher-order procedures process the letters of aword.

Here's another way to compare these three higher-order functions:

function purpose first argumentisa. ..

every transform one-argument transforming function
keep select one-argument predicate function
accumul ate combine two-argument combining function

Page 112

To help you understand these differences, we'll ook at specific examples using each of them, with each example
followed by an equivalent computation done without the higher-order procedure. Here is an example for every:

> (every double "girl)
(GG Il RRLL)

> (se (double 'Q)

(double "i)
(double 'r)
(double "1))

(GG 1l RRLL)
You can, if you like, think of the first of these expressions as abbreviating the second.

An expression using keep can aso be replaced with an expression that performs the same computation without using
keep. Thistimeit'salittle messier:

> (keep even? '(1 2 3 4 5))
(2 4)

> (se (if (even? 1)
(if (even? 2)
(if (even? 3)
(if (even? 4)
(if (even? 5)
(2 4)

O~ WNPEF
—~ A~~~
— N
— N N

Here'show an accunul at e can be expressed the long way:

> (accunul ate word '(a c | u))
ACLU

> (word 'a (word 'c (word "I 'u)))
ACLU

(Of coursewor d will accept any number of arguments, so we could have computed the same result with all four
letters as arguments to the same invocation. But the version we've shown here indicates how accumnul at e actually
works; it combines the elements one by one.)

Page 113

First-Class Functions and Fir st-Class Sentences

If Scheme (or any dialect of Lisp) isyour first programming language, having procedures that operate on entire
sentences at once may not seem like abig deal. But if you used to program in some lesser language, you're probably
accustomed to writing something likef i r st —| et t er s asaloop in which you have some variable named | and you

carry out some sequence of stepsfor | =1, | =2, and soon, until you get to N, the number of elements. The use of

higher-order functions allows us to express this problem all at once, rather than as a sequence of events. Once you're
accustomed to the Lisp way of thinking, you can tell yourself "just takeevery fi rst of the sentence,” and that

feelslike asingle step, not a complicated task.

Two aspects of Scheme combine to permit this mode of expression. One, which we've mentioned earlier, is that
sentences are first-class data. Y ou can use an entire sentence as an argument to a procedure. Y ou can type a quoted
sentence in, or you can compute a sentence by putting words together.

The second point is that functions are also first-class. Thislets uswrite aprocedure like pi gl that appliesto asingle
word, and then combine that with ever y to trandate an entire sentence to Pig Latin. If Scheme didn't have first-class
functions, we couldn't have general-purpose tools like keep and ever y, because we couldn't say which function to
extend to all of asentence. You'll seelater that without ever y it would still be possible to write a specific pi gl —
sent procedure and separately writeaf i r st —| et t er s procedure. But the ability to use a procedure as argument
to another procedure lets us generalize the idea of "apply this function to every word of the sentence.”

Repeat ed

All the higher-order functions you've seen so far take functions as arguments, but none of them have functions as
return values. That is, we have machines that can take machinesin their input hoppers, but now we'd like to think
about machines that drop other machines out of their output chutes—machine factories, so to speak.

In the following example, the procedure r epeat ed returns a procedure:

> ((repeated bf 3) '(she cane in through the bat hroom w ndow))
(THROUGH THE BATHROOM W NDOW

> ((repeated plural 4) 'conmputer)
COVPUTERSSSS

Page 114

> ((repeated square 2) 3)
81

> (define (double sent)
(se sent sent))

> ((repeated double 3) '(banana))
(BANANA BANANA BANANA BANANA BANANA BANANA BANANA BANANA)

The procedurer epeat ed takes two arguments, a procedure and a number, and returns a new procedure. The returned
procedure is one that invokes the original procedure repeatedly. For example, (r epeat ed bf 3) returnsafunction
that takes the butfirst of the butfirst of the butfirst of its argument.

Notice that all our examples start with two open parentheses. If we just invoked r epeat ed at the Scheme prompt, we
would get back a procedure, like this:

> (repeated square 4)
#<PROCEDURE>

The procedure that we get back isn't very interesting by itself, so we invokeit, like this:

> ((repeated square 4) 2)
65536

To understand this expression, you must think carefully about its two subexpressions. Two subexpressions? Because
there are two open parentheses next to each other, it would be easy to ignore one of them and therefore think of the
expression as having four atomic subexpressions. But in fact it has only two. The first subexpression,

(repeated square 4), hasaprocedure asitsvalue. The second subexpression, 2, has a number asits value.

The value of the entire expression comes from applying the procedure to the number.

All aong we've been saying that you evaluate a compound expression in two steps: First, you evaluate al the
subexpressions. Then you apply the first value, which has to be a procedure, to the rest of the values. But until now the
first subexpression has always been just a single word, the name of a procedure. Now we see that the first expression
might be an invocation of a higher-order function, just as any of the argument subexpressions might be function
invocations.

We can user epeat ed to definei t em which returns a particular element of a sentence:

Page 115

(define (itemn sent)
(first ((repeated bf (- n 1)) sent)))

> (item1l '(a day inthe life))
A

> (item4 '"(a day inthe life))
THE

Pitfalls

[0 Some people seem to fall inlove with ever y and try to use it in al problems, even when keep or accumnul at e
would be more appropriate.

O If you find yourself using a predicate function as the first argument to ever y, you amost certainly mean to use
keep instead. For example, we want to write a procedure that determines whether any of the words in its argument
sentence are numbers:

(define (any—nunbers? sent) 7, wrong!
(accurul ate or (every nunber? sent)))

Thisiswrong for two reasons. First, since Boolean values aren't words, they can't be members of sentences:

> (sentence #T #F)
ERROR: ARGUVMENT TO SENTENCE NOT A WORD OR SENTENCE: #F

> (every nunber? '(a b 2 c 6))
ERROR: ARGUMENT TO SENTENCE NOT A WORD OR SENTENCE: #T

Second, even if you could have a sentence of Booleans, Scheme doesn't allow a special form, such asor , asthe
argument to a higher-order function.” Depending on your version of Scheme, the incorrect any—nunber s?
procedure might give an error message about either of these two problems.

Instead of using ever y, select the numbers from the argument and count them:

(define (any—nunbers? sent)
(not (enpty? (keep nunber? sent))))

* Aswe said in Chapter 4, special forms aren't procedures, and aren't first-class.

Page 116

[0 Thekeep function always returns aresult of the same type (i.e., word or sentence) as its second argument. This

makes sense because if you're selecting a subset of the words of a sentence, you want to end up with a sentence; but if
you're selecting a subset of the letters of aword, you want aword. Ever y, on the other hand, always returns a

sentence. Y ou might think that it would make more sense for ever y to return aword when it second argument isa
word. Sometimes that is what you want, but sometimes not. For example:
(define (spell—-digit digit)

(item(+ 1 digit)
"(zero one two three four five six seven eight nine)))

> (every spell—-digit 1971)
(ONE NI NE SEVEN ONE)

In the cases where you do want aword, you can just accunul at e wor d the sentencetheever y returns.

[0 Remember that ever y expectsitsfirst argument to be a function of just one argument. If you invoke every with
afunction such asquot i ent , which expects two arguments, you will get an error message from quot i ent ,
complaining that it only got one argument and wanted to get two.

Some people try to get around this by saying thingslike
(every (quotient 6) '(1 2 3)) ;7 wrong!

Thisisasort of wishful thinking. The intent is that Scheme should interpret the first argument to ever y asafill-in-
the-blank template, so that ever y will compute the values of

(quotient 6 1)
(quotient 6 2)
(quotient 6 3)

But of course what Scheme really does is the same thing it always does: It evaluates the argument expressions, then
invokesevery. So Scheme will try to compute (quot i ent 6) and will give an error message.

We picked quot i ent for this example because it requires exactly two arguments. Many Scheme primitives that

ordinarily take two arguments, however, will accept only one. Attempting the same wishful thinking with one of these
proceduresis still wrong,

Page 117
but the error message is different. For example, suppose you try to add 3 to each of several numbers this way:
(every (+ 3) '"(1 2 3)) ;; wrong!

Thefirst argument to ever y inthis caseisn't "the procedure that adds 3," but the result returned by invoking + with
thesingleargument 3. (+ 3) returnsthe number 3, which isn't a procedure. So you will get an error message like
" Attempt to apply non-procedure 3."

The idea behind this mistake—looking for away to "specialize" a two-argument procedure by supplying one of the
arguments in advance—is actually a good one. In the next chapter we'll introduce a new mechanism that does allow
such speciaization.

[0 If the procedure you use as the argument to ever y returns an empty sentence, then you may be surprised by the
results:

(define (beatl e—nunber n)
(if (or (< n1l) (>n4))
()

(itemn '(john paul george ringo))))

> (beat| e-nunber 3)
GECORGE

> (beat| e-nunber 5)
()

> (every beatle-nunmber '(2 8 4 0 1))
(PAUL RI NGO JOHN)

What happened to the 8 and the 0? Pretend that ever y didn't exist, and you had to do it the hard way:

(se (beatl e—nunber 2) (beatle—nunber 8) (beatle—nunber 4)
(beat | e—=nunber 0) (beatl e-nunber 1))

Using result replacement, we would get
(se "paul '"() 'ringo '() 'john)

whichisjust (PAUL RI NGO JOHN) .

Page 118
On the other hand, if ever y's argument procedure returns an empty word, it will appear in the result.

> (every bf '(i need you))

("" EED QU)

The sentence returned by ever y hasthree wordsin it: the empty word, eed, and ou.
[0 Don't confuse

(first '(one two three four))

with

(every first '(one two three four))

In thefirst case, we're applying the proceduref i r st to a sentence; in the second, we're applying f i r st four
separate times, to each of the four words separately.

[0 What happensif you use a one-word sentence or one-letter word as argument to accunul at e? It returns that
word or that letter, without even invoking the given procedure. This makes sense if you're using something like + or
max as the accumulator, but it's disconcerting that

(accurmul ate se ' (one—word))

returns the word one—wor d.

[0 What happensif you give accumnul at e an empty sentence or word? Accumnul at e accepts empty arguments for
some combiners, but not for others:

> (accunul ate + '())
0

> (accunul ate max ' ())
ERROR: CAN T ACCUMULATE EMPTY | NPUT W TH THAT COMBI NER

The combiners that can be used with an empty sentence or word are+, *, wor d, andsent ence. Accumul ate
checks specifically for one of these combiners.

Why should these four procedures, and no others, be allowed to accumnmul at e an empty sentence or word? The
difference between these and other combinersisthat you

Page 119

can invoke them with no arguments, whereas max, for example, requires at least one number:

> (+)
0

> (max)
ERROR NOT ENOUGH ARGUMENTS TO #<PROCEDURE>.

Accunul at e actualy invokes the combiner with no argumentsin order to find out what value to return for an empty
sentence or word. We would have liked to implement accumnul at e so that any procedure that can be invoked with

no arguments would be accepted as a combiner to accumulate the empty sentence or word. Unfortunately, Scheme
does not provide away for a program to ask, "How many arguments will this procedure accept?' The best we could do
was to build a particular set of zero-argument-okay combiners into the definition of accumul at e.

Don't think that the returned value for an empty argument is always zero or empty.

> (accunmulate * '())
1

The explanation for this behavior is that any function that works with no arguments returns its identity element in that
case. What's an identity element? The function + has the identity element O because (+ anything 0) returns the
anything. Similarly, the empty word is the identity element for wor d. In general, afunction'sidentity element has the
property that when you invoke the function with the identity element and something else as arguments, the return value
isthe something else. It's a Scheme convention that a procedure with an identity element returns that e ement when
invoked with no arguments.”

[0 The use of two consecutive open parentheses to invoke the procedure returned by a procedure is a strange-looking
notation:

((repeated bf 3) 987654)

* PC Scheme returns zero for an invocation of max with no arguments, but that's the wrong answer. If anything, the
answer would have to be —o.
Page 120

Don't confuse this with the similar-looking cond notation, in which the outer parentheses have a special meaning
(delimiting acond clause). Here, the parentheses have their usual meaning. The inner parentheses invoke the
procedurer epeat ed with arguments bf and 3. The value of that expression is a procedure. It doesn't have aname,
but for the purposes of this paragraph let's pretend it's called bf t hr ee. Then the outer parentheses are basically
saying (bf t hr ee 987654) ; they apply the unnamed procedure to the argument 987654.

In other words, there are two sets of parentheses because there are two functions being invoked: r epeat ed and the
function returned by r epeat ed. So don't say

(repeated bf 3 987654) 7, wrong

just because it looks more familiar. Repeat ed isn't afunction of three arguments.

Boring Exercises

8.1 What does Scheme return as the value of each of the following expressions? Figure it out for yourself before you
try it on the computer.

> (every last '(algebra purple spaghetti tomato gnu))

> (keep number? '(one two three four))

V

(accunulate * '(6 7 13 0 9 42 17))

> (menber? 'h (keep vowel? '(t hr oat)))

> (every square (keep even? '(87 4 7 12 0 5)))
> (accunul ate word (keep vowel ? (every first '(and i |ove her))))
> ((repeated square 0) 25)

> (every (repeated bl 2) '(good day sunshine))

8.2 Fill in the blanks in the following Scheme interactions:

> (.. ___vowel ? 'birthday)
I A

Page 121
> (. first '(golden slunbers))

> (.. ' (gol den sl unbers))

> "(little child))

> ((“(little child)))

> (. +'(2 3 405))

> (. +'(2 3 405))

8.3 Describe each of the following functions in English. Make sure to include a description of the domain and range of
each function. Be as precise as possible; for example, "the argument must be a function of one numeric argument” is
better than "the argument must be afunction.”

(define (f a)
(keep even? a))

(define (g b)
(every b '(blue jay way)))

(define (h ¢ d)
(c (c d)))

(define (i e)
(/ (accunulate + e) (count e)))

accunul at e
sqrt
r epeat ed

(repeated sqrt 3)

Page 122

(repeated even? 2)
(repeated first 2)

(repeated (repeated bf 3) 2)

Real Exercises

Note: Writing helper procedures may be useful in solving some of these problems. If you read Part |V before this, do
not use recursion in solving these problems; use higher order functions instead.

8.4 Write aprocedure choose—beat | es that takes a predicate function as its argument and returns a sentence of
just those Beatles (John, Paul, George, and Ringo) that satisfy the predicate. For example:

(define (ends—vowel ? wd) (vowel ? (last wd)))
(define (even—count? wd) (even? (count wd)))

> (choose-beat| es ends—vowel ?)
(GEORGE RI NGO)

> (choose-beat| es even—count ?)
(JOHN PAUL CEORCGE)

8.5 Writeaproceduret r ansf or m-beat | es that takes a procedure as an argument, appliesit to each of the Beatles,
and returns the results in a sentence:

(define (amazify nane)
(word 't he—anmazi ng—nane))

> (transform-beatl es amazify)
(THE-AMAZI NG-JOHN THE-AMAZI NG-PAUL THE-AMAZI NG-CGEORGE
THE-AMAZI NG-RI NGO)

> (transform-beatl es butfirst)
(OHN AUL EORCGE | N&O)
Page 123

8.6 When you're talking to someone over a hoisy radio connection, you sometimes have to spell out aword in order to
get the other person to understand it. But names of |etters aren't that easy to understand either, so there's a standard
code in which each letter is represented by a particular word that starts with the letter. For example, instead of "B" you
say "bravo."

Write a procedure wor ds that takes aword as its argument and returns a sentence of the names of the lettersin the
word:

> (words 'cab)
(CHARLI E ALPHA BRAVO)

(Y ou may make up your own names for the letters or look up the standard ones if you want.)
Hint: Start by writing a helper procedure that figures out the name for asingle |etter.

8.7 [14.5]" Write aprocedurel et t er —count that takes a sentence as its argument and returns the total number of
lettersin the sentence:

> (letter—count '(fixing a hole))
11

8.8[12.5] Writean exagger at e procedure which exaggerates sentences:

> (exaggerate '(i ate 3 potstickers))
(I ATE 6 POTSTI CKERS)

> (exaggerate '(the chow fun is good here))
(THE CHOW FUN | S GREAT HERE)

It should double all the numbersin the sentence, and it should replace "good" with "great," "bad" with "terrible,” and
anything else you can think of.

* Exercise 14.5 in Part 1V asks you to solve this same problem using recursion. Here we are asking you to use higher-
order functions. Whenever we pose the same problem in both parts, we'll cross-reference them in brackets as we did
here. When you see the problem for the second time, you might want to consult your first solution for ideas.

Page 124

8.9 What procedure can you use as the first argument to ever y so that for any sentence used as the second argument,
every returnsthat sentence?

What procedure can you use as the first argument to keep so that for any sentence used as the second argument,
keep returnsthat sentence?

What procedure can you use as the first argument to accumnul at e so that for any sentence used as the second
argument, accunul at e returns that sentence?

8.10 Writeapredicatet r ue—f or —al | ? that takes two arguments, a predicate procedure and a sentence. It should
return #t if the predicate argument returns true for every word in the sentence.

> (true-for-all? even? '(2 4 6 8))
#T

> (true-for-all? even? '(2 6 3 4))
#F

8.11 [12.6] Write a GPA procedure. It should take a sentence of grades as its argument and return the corresponding
grade point average:

> (gpa ' (A A+ B+ B))
3. 67

Hint: write a helper procedure base—gr ade that takes a grade as argument and returns O, 1, 2, 3, or 4, and another
helper procedure gr ade—nodi f i er that returns—.33, 0, or .33, depending on whether the grade has a minus, a plus,
or neither.

8.12 [11.2] When you teach a class, people will get distracted if you say "um™ too many times. Writeacount —umns
that counts the number of times"um" appears in a sentence:

> (count —uns
"(today umwe are going to umtal k about functional um progranm ng))
3

8.13[11.3] Write aprocedure phone—unspel | that takes a spelled version of a phone number, such as POPCORN,
and returns the real phone number, inthiscase 7672676. Y ou will need to write a helper procedure that uses an 8-
way cond expression to trandate asingle letter into a digit.

Page 125

8.14 Write the procedure subwor d that takes three arguments. aword, a starting position number, and an ending
position number. It should return the subword containing only the letters between the specified positions:

> (subword ' pol ythene 5 8)
THEN

Page 126

Alonzo Church
inventor of lambda calculus

Page 127

o—
Lambda

Let's say we want to add three to each of the numbers in a sentence. Using the tools from Chapter 8, we would do it
like this:

(define (add-three nunber)
(+ nunber 3))

(define (add-t hree-to—each sent)
(every add-three sent))

> (add-t hree-to-each '(1 9 9 2))
(4 12 12 5)

It's dlightly annoying to have to define a helper procedure add—t hr ee just so we can use it as the argument to
every. Were never going to use that procedure again, but we still have to come up with anamefor it. We'd like a

genera way to say "here's the function | want you to use" without having to give the procedure a name. In other words,
we want a general-purpose procedure-generating procedure!

Lanbda isthe name of a special form that generates procedures. It takes some information about the function you
want to create as arguments and it returns the procedure. It'll be easier to explain the details after you see an example.

(define (add-t hree-to—each sent)
(every (lanmbda (nunber) (+ nunber 3)) sent))

> (add-t hree-to-each '(1 9 9 2))
(4 12 12 5)

Page 128

Thefirst argument to every is, in effect, the same procedure as the one we called add—t hr ee earlier, but now we
can use it without giving it aname. (Don't make the mistake of thinking that | anbda isthe argument to every. The
argument is the procedure returned by | anbda.)

Perhaps you're wondering whether "lambda" spells something backward. Actually, it's the name of the Greek letter L,
which looks like this: A. 1t would probably be more sensibleif | anbda were named something like make—

pr ocedur e, but the namel anbda istraditiona.”

Creating a procedure by using | anbda isvery much like creating one with def i ne, aswe've done up to this point,
except that we don't specify a name. When we create a procedure with def i ne, we have to indicate the procedure's

name, the names of its arguments (i.e., the formal parameters), and the expression that it computes (its body). With
| anbda we still provide the last two of these three components.

Aswesaid, | anbda isaspecia form. This means, as you remember, that its arguments are not evaluated when you

invokeit. Thefirst argument is a sentence containing the formal parameters; the second argument is the body. What
| anbda returnsis an unnamed procedure. Y ou can invoke that procedure:

> ((lanbda (a b) (+ (* 2 a) b)) 5 6)
16

> ((lanmbda (wd) (word (last wd) (first wd))) 'inpish)
HI

Inreal life, though, you're not likely to create a procedure with | anmbda merely to invoke it once. More often, we use
| anbda asinthefirst examplein this chapter, to provide a procedure as argument to a higher-order function. Here are
some more examples:

> (every (lanmbda (wd) (se (first wd) wd (last wd)))
"(only a northern song))
(OONLY Y AAANNORTHERN N S SONG G

* It comes from a branch of mathematical logic called "lambda calculus' that's about the formal properties of functions.

Theinclusion of first-class functionsin Lisp was inspired by this mathematical work, so Lisp borrowed the name
| anbda.

Page 129

> (keep (lanbda (n) (nmenber? 9 n)) '(4 81 909 781 1969 1776))
(909 1969)

> (accunul ate (lanbda (this that)
(if (> (count this) (count that)) this that))
"(wild honey pie))
HONEY

> (keep (lanbda (person) (menber? person '(john paul george ringo)))
"(mck snmokey paul diana bill geddy john yoko keith reparata))
(PAUL JOHN)

> (keep (lanbda (person) (menber? 'e person))
"(m ck snmokey paul diana bill geddy john yoko keith reparata))
(SMOKEY GEDDY KEI TH REPARATA)

Procedures That Return Procedures

An even more powerful use of | anbda isto provide the value returned by some procedure that you write. Here's the
classic example:

(define (make—adder num)
(lambda (x) (+ x num))

> ((make—adder 4) 7)
11

> (every (make—adder 6) '(2 4 8))
(8 10 14)

The value of the expression (nake—adder 4) isaprocedure, not anumber. That unnamed procedure is the one
that adds 4 to its argument. We can understand this by applying the substitution model to make—adder . We
substitute 4 for numin the body of make—adder ; weend up with

(lambda (x) (+ x 4))
and then we evaluate that expression to get the desired procedure.

Here's a procedure whose argument is a procedure:

(define (same—arg-twi ce fn)
(lambda (arg) (fn arg arg)))

Page 130

> ((same—arg-twi ce word) 'hello)
HELLOHELLO

> ((sanme—-arg-tw ce *) 4)
16

When we evaluate (same—ar g—t wi ce wor d) we substitute the procedure wor d for the formal parameter f n, and
theresult is

(lambda (arg) (word arg arg))

One more example:

(define (flip fn)
(lambda (a b) (fn b a)))

> ((flip =) 5 8)
3

> ((flip se) 'goodbye 'hell o)
(HELLO GOODBYE)

The Truth about Def i ne

Remember how we said that creating a procedure with | anmbda was alot like creating a procedure with def i ne?
That's because the notation we've been using with def i ne isan abbreviation that combines two activities: creating a
procedure and giving a name to something.

Asyou saw in Chapter 7, def i ne'srea job isto give aname to some value:
> (define pi 3.141592654)

> (* pi 10)
31. 41592654

> (define drumrer '(ringo starr))
> (first drummer)
RI NGO
Page 131
When we say
(define (square x) (* x X))
it's actually an abbreviation for

(define square (lanmbda (x) (* x X)))

In this example, the job of | anbda isto create a procedure that multiplies its argument by itself; the job of def i ne is
to name that procedure squar e.

In the past, without quite saying so, we've talked as if the name of a procedure were understood differently from other
names in a program. In thinking about an expression such as

(* x x)

we've talked about substituting some actual value for the x but took the * for granted as meaning the multiplication
function.

The truth is that we have to substitute avalue for the* just aswe do for the x. It just happens that * has been
predefined to have the multiplication procedure as its value. This definition of * isglobal, like the definition of pi
above. "Globa" means that it's not aformal parameter of a procedure, like x in squar e, but has a permanent value
established by def i ne.

When an expression is evaluated, every name in the expression must have some value substituted for it. If the nameis
aformal parameter, then the corresponding actual argument value is substituted. Otherwise, the name had better have a
global definition, and that value is substituted. It just so happens that Scheme has predefined a zillion names before
you start working, and most of those are names of primitive procedures.

(By the way, this explains why when you make a typing mistake in the name of a procedure you might see an error
message that refersto variables, such as"variablef ri st not bound.” Y ou might expectittosay "fri st isnota

procedure,” but the problem is no different from that of any other name that has no associated value.)

Now that we know the whole truth about def i ne, we can use it in combination with the function-creating functions
in these past two chapters.

> (define square (sanme—-arg-twi ce *))
> (square 7)

49

Page 132

> (define fourth—power (repeated square 2))

> (fourth-power 5)
625

The Truth about Let

In Chapter 7 weintroduced | et as an abbreviation for the situation in which we would otherwise define a helper
procedure in order to give names to commonly-used values in a calculation. We started with

(define (roots a b ¢)
(rootsl a b c (sgrt (= (* bb) (* 4ac)))))

(define (rootsl a b ¢ discrimnnant)
(se (/ (+ (= b) discrimnant) (* 2 a))
(/ (= (= Db) discrimnant) (* 2 a))))

and introduced the new notation

(define (roots a b c)
(let ((discrimnant (sqrt (- (* bb) (* 4ac)))))
(se (/ (+ (- b) discrimnant) (* 2 a))
(/ (= (= Db) discrimnant) (* 2 a)))))

to avoid creating an otherwise-usel ess named procedure. But now that we know about unnamed procedures, we can
seethat | et ismerely an abbreviation for creating and invoking an anonymous procedure:

(define (roots a b c¢)
((lanrbda (discrin nant)
(se (/ (+ (- b) discrimnant) (* 2 a))
(/ (= (= Db) discrimnant) (* 2 a))))
(sart (= (* bb) (* 4ac)))))

What's shown in boldface above is the part that invokes the procedure created by the lambda, including the actual
argument expression.

Just as the notation to define a procedure with parentheses around its name is an abbreviation for adef i ne and a
| anbda, thel et notation isan abbreviation for al anmbda and an invocation.

Page 133

Name Conflicts

When aprocedure is created inside another procedure, what happensif you use the same formal parameter namein
both?

(define (f x)
(lambda (x) (+ x 3)))

Answer: Don't do it.

What actually happens is that the inner x wins; that's the one that is substituted into the body. But if you find yourself
in this situation, you are almost certainly doing something wrong, such as using nondescriptive names like x for your
variables.

Named and Unnamed Functions

Although you've been running across the idea of function since high school algebra, you've probably never seen an
unnamed function until now. The high school function notation, g(x) = 3x + 8, requires you to give the function a name
(g in this case) when you create it. Most of the functions you know, both in math and in programming, have names,
such aslogarithmor fi r st .*

When do you want to name a function, and when not? It may help to think about an analogy with numbers. Imagine if
every Scheme number had to have a name before you could useit. Y ou'd have to say

> (define three 3)
> (define four 4)

> (+ three four)
-

Thisis analogous to the way we've dealt with procedures until now, giving each one a name. Sometimes it's much
easier to use anumber directly, and it's silly to have to give it aname.

But sometimesit isn't silly. A common example that we've seen earlier is

* Professional mathematicians do have a notation for unnamed functions, by the way. They write (x s 3x + 8).

Page 134
(define pi 3.141592654)

(define (circle—area radius)
(* pi radius radius))

(define (circunference radius)
(* 2 pi radius))

(define (sphere-surface—area radius)
(* 4 pi radius radius))

(define (sphere-vol ume radi us)
(* (/ 4 3) pi radius radius radius))

If we couldn't give a name to the number 3.141592654, then we'd have to type it over and over again. Apart from the
extratyping, our programs would be harder to read and understand. Giving 1ta name makes the procedures more self-
documenting. (That is, someone el se who reads our procedures will have an easier time understanding what we meant.)

It's the same with procedures. If we're going to use a procedure more than once, and if there's a meaningful name for it
that will help clarify the program, then we define the procedure with def i ne and give it aname.

(define (square x) (* x X))

Squar e deserves a name both because we use it often and because there is a good traditional name for it that
everyone understands. More important, by giving squar e aname, we are shifting attention from the process by

which it works (invoking the multiplication procedure) to its purpose, computing the square of a number. From now
on we can think about squaring as though it were a Scheme primitive. Thisidea of naming something and forgetting
the details of its implementation is what we've been calling "abstraction.”

On the other hand, if we have an unimportant procedure that we're using only once, we might as well create it with
| anbda and without a name.

> (every (lambda (x) (last (bl x))) '(all together now))
(LEO

We could have defined this procedure with the name next —t o—Il ast, but if we're never going to useit again, why
bother?

Page 135
Here's an example in which we use an obscure unnamed function to help us define one that's worth naming:
(define (backwards wd) (accunulate (lanbda (a b) (word b a)) wd))

> (backwards 'yesterday)
YADRETSEY

> (every backwards ' (i saw her standing there))
(1 WAS REH GNI DNATS EREHT)

Pitfalls

[0 It'svery convenient that def i ne has an abbreviated form to define a procedure using ahidden | anbda, but

because there are two notations that differ only subtly—one has an extra set of parentheses—you could use the wrong
one by mistake. If you say

(define (pi) 3.141592654)

you're not defining a variable whose value is a number. Instead the value of pi will be aprocedure. It would then be
an error to say

(* 2 pi)
[0 When should the body of your procedure be al anbda expression? It's easy to go overboard and say "I'm writing a

procedure so | guess| need | anbda" even when the procedure is supposed to return aword.

The secret isto remember the ideas of domain and range that we talked about in Chapter 2. What is the range of the
function you're writing? Should it return a procedure? If so, its body might be al anbda expression. (It might instead

be an invocation of a higher-order procedure, such asr epeat ed, that returns a procedure.) If your procedure doesn't
return a procedure, its body won't beal anbda expression. (Of course your procedure might still useal anbda
expression as an argument to some other procedure, such asevery.)

For example, here is a procedure to keep the words of a sentence that contain the letter h. The domain of the function

IS sentences, and itsrange is also sentences. (That is, it takes a sentence as argument and returns a sentence as its
value.)

Page 136

(define (keep—h sent)
(keep (lanmbda (wd) (menmber? 'h wd)) sent))

By contrast, here is afunction of aletter that returns a procedure to keep words containing that |etter.

(define (keeper letter)
(1 ambda (sent)
(keep (lanmbda (wd) (nmenber? letter wd)) sent)))

The procedure keeper has letters as its domain and procedures as its range. The procedure returned by keeper has
sentences as its domain and asits range, just as keep—h does. In fact, we can use keeper to define keep-h:

(define keep—h (keeper 'h))

[0 Don't confuse the creation of a procedure with the invocation of one. Lanbda creates a procedure. The procedure

isinvoked in response to an expression whose first subexpression represents that procedure. That is, the first
subexpression could be the name of the procedure, or it could be al anbda expression if you want to create a

procedure and invoke it right away:

((lanbda (x) (+ x 3)) 6)

In particular, when you create a procedure, you specify its formal parameters—the names for its arguments. When you
invoke the procedure, you specify values for those arguments. (In this example, the | anmbda expression includes the

formal parameter x, but the invocation provides the actual argument 6.)

Boring Exercises

9.1 What will Scheme print? Figure it out yourself before you try it on the computer.
> (lanmbda (x) (+ (* x 3) 4))

> ((lambda (x) (+ (* x 3) 4)) 10)

> (every (lanbda (wd) (word (last wd) (bl wd)))
"(any time at all))

Page 137
> ((lanmbda (x) (+ x 3)) 10 15)

9.2 Rewrite the following definitions so as to make theimplicit | anmbda explicit.

(define (second stuff)
(first (bf stuff)))

(define (rmake-adder nun
(lambda (x) (+ numx)))

9.3 What does this procedure do?
(define (let-it-be sent)

(accumul ate (lanbda (x y) y) sent))

Real Exercises

9.4 The following program doesn't work. Why not? Fix it.

(define (who sent)
(every describe '(pete roger john keith)))

(define (describe person)
(se person sent))

It's supposed to work like this:

> (who '(sells out))
(pete sells out roger sells out john sells out keith sells out)

In each of the following exercises, write the procedure in terms of | ambda and higher-order functions. Do not use
named helper procedures. If you've read Part 1V, don't use recursion, either.

9.5 Writepr epend—every:

> (prepend-every 's '(he aid he aid))
(SHE SAI D SHE SAI D)

> (prepend-every 'anti '(dote pasto gone body))
(ANTI DOTE ANTI PASTO ANTI GONE ANTI BODY)

Page 138

9.6 Write aprocedure sent ence—ver si on that takes afunction F asits argument and returns afunction G. F

should take a single word as argument. G should take a sentence as argument and return the sentence formed by
applying F to each word of that argument.

> ((sentence-version first) "(if i fell))

(11 F

> ((sentence—version square) '(8 2 4 6))
(64 4 16 36)

9.7 Writeaprocedure called | et t er wor ds that takes asits arguments a letter and a sentence. It returns a sentence
containing only those words from the argument sentence that contain the argument | etter:

> (letterwords "o '(got to get you into nmy life))
(GOT TO YQU | NTO)

9.8 Suppose we're writing a program to play hangman. In this game one player has to guess a secret word chosen by
the other player, one letter at atime. Y ou're going to write just one small part of this program: a procedure that takes as
arguments the secret word and the letters guessed so far, returning the word in which the guessing progressis
displayed by including all the guessed |etters along with underscores for the not-yet-guessed ones:

> (hang 'potsticker 'etaoi)
-OT-TI —E-

Hint: You'll find it helpful to use the following procedure that determines how to display asingle letter:

(define (hang—letter letter guesses)
(if (menber? letter guesses)
letter

"))

9.9 Write a procedure conmron—wor ds that takes two sentences as arguments and returns a sentence containing only
those words that appear both in the first sentence and in the second sentence.

Page 139

9.10 In Chapter 2 we used afunction called appear ances that returns the number of timesitsfirst argument appears
as amember of its second argument. Implement appear ances.

9.11 Write aprocedure unabbr ev that takes two sentences as arguments. It should return a sentence that's the same

asthe first sentence, except that any numbersin the original sentence should be replaced with words from the second
sentence. A number 2 in the first sentence should be replaced with the second word of the second sentence, a6 with

the sixth word, and so on.

> (unabbrev '(john 1 wayne fred 4) '(bill hank kermt joey))
(JOHN BI LL WAYNE FRED JCEY)

> (unabbrev '(i 3 4 tell 2) '(do you want to know a secret?))
(I WANT TO TELL YQU)

9.12 Writeaproceduref i r st —| ast whose argument will be a sentence. It should return a sentence containing only
those words in the argument sentence whose first and last |etters are the same:

> (first—last '(california ohio nebraska al abama al aska massachusetts))
(OHI O ALABANMA ALASKA)

9.13 Write a procedure conpose that takes two functions f and g as arguments. It should return a new function, the
composition of its input functions, which computes f(g(x)) when passed the argument x.

> ((conpose sqrt abs) -25)
5

> (define second (conpose first bf))

> (second ' (higher order function))
ORDER

9.14 Write aprocedure subst i t ut e that takes three arguments, two words and a sentence. It should return aversion
of the sentence, but with every instance of the second word replaced with the first word:

> (substitute 'maybe 'yeah '(she | oves you yeah yeah yeah))
(SHE LOVES YOQU MAYBE MAYBE MAYBE)

Page 140

9.15 Many functions are applicable only to argumentsin a certain domain and result in error messages if given
arguments outside that domain. For example, sqrt may require a nonnegative argument in aversion of Scheme that

doesn't include complex numbers. (In any version of Scheme, sqrt will complain if its argument isn't anumber at
all!) Once a program gets an error message, it'simpossible for that program to continue the computation.

Write aproceduret ype—check that takes as arguments a one-argument procedure f and a one-argument predicate
procedure pr ed. Type—check should return a one-argument procedure that first applies pr ed to its argument; if
that result is true, the procedure should return the value computed by applying f to the argument; if pr ed returns
false, the new procedure should also return #f :

> (define safe-sqrt (type—-check sqrt nunber?))

> (safe-sqrt 16)
4

> (safe-sqrt 'sarsaparilla)
#F

9.16 In the language APL, most arithmetic functions can be applied either to a number, with the usual result, or to a
vector—the APL name for a sentence of numbers—in which case the result is a new vector in which each element is
the result of applying the function to the corresponding element of the argument. For example, the function sqr t

applied to 16 returns 4 asin Scheme, but sqrt can also be applied to asentencesuchas (16 49) and it returns
(4 7).

Write aprocedure apl i ze that takes as its argument a one-argument procedure whose domain is numbers or words. It
should return an APLized procedure that also accepts sentences:

\Y

(define apl—-sqrt (aplize sqrt))

V

(apl —sqgrt 36)
6

> (apl—-sgrt '(1 100 25 16))
(1 10 5 4)

9.17 Writekeep intermsof ever y andaccunul at e.

Page 141

Project:
Scoring Bridge Hands

At the beginning of agame of bridge, each player assigns avalueto hisor her hand by counting points. Bridge players
use these pointsin thefirst part of the game, the "bidding," to decide how high to bid. (A bid is a promise about how
well you'll do in the rest of the game. If you succeed in meeting your bid you win, and if you don't meet the bid, you
lose.) For example, if you have fewer than six points, you generally don't bid anything at all.

Y ou're going to write a computer program to look at a bridge hand and decide how many pointsit's worth. Y ou won't
have to know anything about the rest of the game; welll tell you the rules for counting points.

A bridge hand contains thirteen cards. Each ace in the hand is worth four points, each king isworth three points, each
gueen two points, and each jack one. The other cards, twos through tens, have no point value. So if your hand two
aces, aking, two jacks, and eight other cards, it's worth thirteen points.

A bridge hand might also have some "distribution” points, which are points having to do with the distribution of the
thirteen cards among the four suits. If your hand has only two cards of a particular suit, then it is worth an extra point.
If it hasa"singleton," only one card of a particular suit, that's worth two extra points. A "void," no cards in a particular
suit, isworth three points.

In our program, wel'll represent a card by aword like h5 (five of hearts) or dk (king of diamonds).” A hand will be a
sentence of cards, likethis:

* Why not 5h? Scheme words that begin with a digit but aren't numbers have to be surrounded with double-quote
marks. Putting the suit first avoids that.

Page 142
(sa s10 s7 s6 s2 hg hj h9 ck c4 dk d9 d3)

This hand is worth 14 points: ace of spades (4), plus queen of hearts (2), plus jack of hearts (1), plus king of clubs (3),
plus king of diamonds (3), plus one more for having only two clubs.

To find the suit of acard, wetakeitsf i r st , and to find the rank, we take the but f i r st . (Why not the |l ast ?)

We have a particular program structure in mind. We'll describe al of the procedures you need to write; if you turn each
description into aworking procedure, then you should have a complete program. In writing each procedure, take
advantage of the ones you've already written. Our descriptions are ordered bottom-up, which means that for each
procedure you will already have written the helper procedures you need. (This ordering will help you write the project,
but it means that we're beginning with small details. If we were describing a project to help you understand its
structure, we'd do it in top-down order, starting with the most general procedures. We'll do that in the next chapter, in
which we present atic-tac-toe program as alarger Scheme programming example.)

Car d—val

Write aprocedure car d—val that takesasingle card as its argument and returns the value of that card.

> (card-val 'cq)
2

> (card-val 's7)
0

> (card-val 'ha)
4

Hi gh—car d—poi nts

Write a procedure hi gh—car d—poi nt s that takes a hand as its argument and returns the total number of points
from high cards in the hand. (This procedure does not count distribution points.)

Page 143
> (hi gh—-card—points '(sa s10 hg ck c4))

9

> (hi gh—-card—points '(sa s10 s7 s6 s2 hqg hj h9 ck c4 dk d9 d3))
13

Count —sui t

Write a procedure count —sui t that takes a suit and a hand as arguments and returns the number of cardsin the hand
with the given suit.

> (count—suit 's '(sa s10 hqg ck c4))
2

> (count—suit 'c '(sa sl10 s7 s6 s2 hg hj h9 ck c4 dk d9 d3))
2

> (count—suit 'd '(h3 d7 sk s3 ¢c10 dg d8 s9 s4 dl10 c7 d4 s2))
5

Sui t —count s

Write aprocedure sui t —count s that takes a hand as its argument and returns a sentence containing the number of
spades, the number of hearts, the number of clubs, and the number of diamonds in the hand.

> (suit—-counts '(sa s10 hqg ck c4))
(2120

> (suit—-counts '(sa s10 s7 s6 s2 hg hj h9 ck c4 dk d9 d3))
(53223

> (suit—-counts '(h3 d7 sk s3 ¢c10 dg d8 s9 s4 d10 c7 d4 s2))
(51 205)

Sui t —di st —poi nts

Writesui t —di st —poi nt s that takes a number asits argument, interpreting it as the

Page 144

number of cardsin asuit. The procedure should return the number of distribution points your hand gets for having that
number of cardsin aparticular suit.

> (suit-di st—points 2)
1

> (suit-di st—points 7)
0

> (suit—di st—points 0)
3

Hand—di st —poi nt s

Write hand—di st —poi nt s, which takes a hand as its argument and returns the number of distribution points the
hand is worth.

> (hand-di st—points '(sa s10 s7 s6 s2 hqg hj h9 ck c4 dk d9 d3))

1

> (hand-di st—points ' (h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
3

Bri dge—val

Write aprocedure br i dge—val that takes a hand as its argument and returns the total number of points that the hand
isworth.

> (bridge-val '(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
14

> (bridge-val '(h3 d7 sk s3 ¢c10 dq d8 s9 s4 d10 c7 d4 s2))
8

Page 146

This computer, built of Tinker-Toy parts, plays tic-tac-toe.

Page 147

10—
Example:
Tic-Tac-Toe

Now that you've learned about higher-order functions, we're going to look at alarge example that uses them
extensively. Using the techniques you've learned so far, we're going to write a program that plays perfect tic-tac-toe.

Y ou can load our program into Scheme by typing

(load "ttt.scm')

(See Appendix A if this doesn't work for you.)

A Warning

Programs don't always come out right the first time. One of our goals in this chapter is to show you how a programis
developed, so we're presenting early versions of procedures. These include some mistakes that we made, and also
some after-the-fact simplifications to make our explanations easier. If you type in these early versions, they won't
work. We will show you how we corrected these "bugs’ and also will present a complete, correct version at the end of
the chapter.

To indicate the unfinished versions of procedures, we'll use comments like "first version” or "not really part of game.”

Technical Termsin Tic-Tac-Toe

WEe'll number the squares of the board this way:

Page 148

WEell call apartialy filled-in board a "position."”

To the computer, the same position will be represented by theword __ 0_xox_x. The nine letters of the word
correspond to squares one through nine of the board. (We're thinking ahead to the possibility of using i t emto extract
the nth square of a given position.)

Thinking about the Program Structure

Our top-level procedure, t t t , will return the computer's next move given the current position. It takes two arguments:
the current position and whether the computer is playing X or O. If the computer is Oand the board looks like the one
above, thenwe'dinvoket tt likethis:

(ttt ' __o_xox_x '0)

Hereis a sample game:

> (ttt ' x "0 ; Human goes first in square 5
1 ; Conputer noves in square 1

> (ttt 'o_xx____ "0 ; Human noves in square 4

6 ; Conputer blocks in square 6
> (ttt 'o_xxxo___ '0) ; Human noves in square 3

7 ; Comput er bl ocks again

> (ttt 'o_xxxo00x_ '0)

2

Thisis not acomplete game program! Later, when we talk about input and output, you'll see how to write an
interactive program that displays the board pictorially, asks the player where to move, and so on. For now, we'll just
write the strategy procedure that chooses the next move. As a paying customer, you wouldn't be satisfied with this
partial program, but from the programmer's point of view, thisis the more interesting part.

Page 149

Let's plan the computer's strategy in English before we start writing a computer program. How do you play tic-tac-toe?
Y ou have several strategy rulesin your head, some of which are more urgent than others. For example, if you can win
on thismove, then you just do it without thinking about anything else. But if there isn't anything that immediate, you
consider less urgent questions, such as how this move might affect what happens two moves later.

So we'll represent this set of rules by agiant cond expression:

(define (ttt position ne) ;; first version
(cond ((i—-can—-w n?)
(choose—w nni ng—nove))
((opponent —can—wi n?)
(bl ock—opponent —wi n))
((i —can—-wi n—next —ti me?)
(prepare—win))
(el se (whatever))))

We're imagining many helper procedures. | —can—wi n? will look at the board and tell if the computer has an
immediate winning move. If so, choose—wi nni ng—nove will find that particular move. Opponent —can—wi n?
returns true if the human player has an immediate winning move. Bl ock—opponent —wi n will return a move that
prevents the computer's opponent from winning, and so on.

We didn't actually start by writing this definition of t t t . The particular names of helper procedures are just guesses,
because we haven't yet planned the tic-tac-toe strategy in detail. But we did know that this would be the overall
structure of our program. This big picture doesn't automatically tell us what to do next; different programmers might
fill in the details differently. But it's a framework to keep in mind during the rest of the job.

Our first practical step wasto think about the data structures in our program. A data structure is away of organizing
severa pieces of information into a big chunk. For example, a sentence is a data structure that combines severa words
in asequence (that is, in left-to-right order).

In the first, handwavy versionof t t t , the strategy procedureslikei —can—wi n? are called with no arguments, but of

course we knew they would need some information about the board position. We began by thinking about how to
represent that information within the program.

Page 150

TheFirst Step:
Triples

A person looking at atic-tac-toe board looks at the rows, columns, and diagonals. The question "do | have awinning
move?' is equivalent to the question "are there three squares in aline such that two of them are mine and the last oneis
blank?' In fact, nothing else matters about the game besides these potential winning combinations.

There are eight potential winning combinations: three rows, three columns, and two diagonals. Consider the
combination containing the three squares 1, 5, and 9. If it contains both an x and an o then nobody can win with this

combination and there's nothing to think about. But if it contains two xs and afree square, we're very interested in the

combination. What we want to know in particular is which square is free, since we want to move in that square to win
or block.

More generally, the only squares whose numbers we care about are the ones we might want to move into, namely, the
free ones. So the only interesting information about a square is whether it hasan x or an o, and if not, what its number
iS.

The information that 1, 5, 9 isa potential winning combination and the information that square 1 contains an x, square
5 isempty, and square 9 contains another X can be combined into the single word x5x. Looking at this word we can
see immediately that there are two xsin this "triple" and that the free square is square 5. So when we want to know
about a three-square combination, we will turn it into atriple of that form.

Here's a sample board position:

X (0]

X

and hereis a sentence of al of itstriples:

(1xo0 4x6 089 140 xx8 069 1x9 oxo0)

Take a minute to convince yourself that this sentence really doestell you everything you need to know about the
corresponding board position. Once our strategy procedure finds the triples for a board position, it's never going to
look at the original position again.

This technique of converting datafrom one form to another so that it can be manipulated more easily is an important
ideain computer science. There are really three representations of the same thing. There's this picture:

Page 151

aswell astheword xo_x_o_ _ andthesentence(1xo 4x6 089 140 xx8 069 1x9 oxo). All vthreeof

these formats have the same information but are convenient in different ways. The pictorial form is convenient because
it makes sense to the person who's playing tic-tac-toe. Unfortunately, you can't type that picture into a computer, so we
need a different format, theword _xo_x_o__, which contains the contents of the nine squares in the picture, but

without the lines separating the squares and without the two-dimensional shape.

The third format, the sentence, is quite inconvenient for human beings. Y ou'd never want to think about atic-tac-toe
board that way yourself, because the sentence doesn't have the visual simplicity that lets you take in atic-tac-toe
position at a glance. But the sentence of triplesis the most convenient representation for our program. Tt t will haveto

answer questions like "can x win on the next move?' To do that, it will have to consider an equivalent but more
detailed question: "For each of the eight possible winning combinations, can x complete that combination on the next

move?" It doesn't really matter whether a combination is arow or a column; what does matter is that each of the eight
combinations be readily available for inspection by the program. The sentence-of-triples representation obscures part
of the available information (which combination is where) to emphasize another part (making the eight combinations
explicit, instead of implicit in the nine boxes of the diagram).

The representation of fractions as"mixed numerals," such as 2, and as"improper fractions,” such as Z, isanon-

programming example of thisidea about multiple representations. A mixed numeral makesit easier for a person to tell
how big the number is, but an improper fraction makes arithmetic easier.

Findingthe Triples

We said that we would combine the current board position with the numbers of the squares in the eight potential
winning combinations in order to compute the things we're calling triples. That was our first task in writing the
program.

Our program will start with this sentence of all the winning combinations:

(123 456 789 147 258 369 159 357)

Page 152
and apositionwordsuchas_xo0_x_o__; itwill return a sentence of triples such as

(1xo0 4x6 089 140 xx8 069 1x9 o0x0)

All that's necessary is to replace some of the numbers with xs and os. This kind of word-by-word trandation in a
sentenceisagood job for every.

(define (find-triples position) ;; first version
(every substitute—triple '(123 456 789 147 258 369 159 357)))

We've made up anamesubsti t ut e—t ri pl e for aprocedure we haven't written yet. Thisis perfectly OK, aslong
aswewrite it beforewetry toinvokef i nd—t ri pl es. Thesubst it ut et ri pl e function will take three digits,
such as 258, and return atriple, such as 2x8:

(define (substitute—triple conbination) ;; first version
(every substitute—letter conbination))

This procedure usesevery tocal substi t ut e—l et t er onall threeletters.

There'sasmall problem, though. Ever y always returns a sentence, and we want our triple to be aword. For example,
we want to turn the potential winning combination 258 into the word 2x8, but ever y would return the sentence
(2 x 8).Sohere'sour next versionof substitute—triple:

(define (substitute-triple conbination) ;; second version
(accurmul ate word (every substitute-letter conbination)))

Substi t ut e—l et t er knowsthat letter number 3 of the word that represents the board corresponds to the contents
of square 3 of the board. This meansthat it can just call i t emwith the given square number and the board to find out
what'sin that square. If it's empty, we return the square number itself; otherwise we return the contents of the square.

(define (substitute-letter square) ;; first version
(if (equal? '— (item square position))
squar e

(item square position)))

Whoops! Do you see the problem?

Page 153
> (substitute-letter 5)
ERROR Variable POSI TION i s unbound.

Using Ever y with Two-Argument Procedures

Our procedure only takes one argument, squar e, but it needs to know the position so it can find out what'sin the
given square. So here'sthereal substitute—l etter:

(define (substitute—letter square position)
(if (equal? ' _ (item square position))
square
(item square position)))

> (substitute-letter 5 ' _xo0 x 0)
X
> (substitute-letter 8 "' xo x 0o)
8

Now substi t ut e-l ett er candoitsjob, sinceit has access to the position. But we'll have to modify
substitute-tripl etoinvokesubstit ut e-l etter with two arguments.

Thisisalittletricky. Let'slook again at the way wereusingsubst it ut el etter insidesubstit ut e—
triple:

(define (substitute—triple conbination) ;; second version again
(accurmul ate word (every substitute-letter conbination)))

By givingsubsti t ut e-I et t er another argument, we have made this formerly correct procedure incorrect. The
first argument to ever y must be afunction of one argument, not two. Thisis exactly the kind of situation in which
| anbda can help us: We have afunction of two arguments, and we need afunction of one argument that does the
same thing, but with one of the arguments fixed.

The procedure returned by

(lambda (square) (substitute-—letter square position))

does exactly the right thing; it takes a square as its argument and returns the contents of the position at that square.

Page 154
Here'sthefinal versionof substitute-tripl e:

(define (substitute—triple conbination position)
(accumul ate word
(every (lanmbda (square)
(substitute-letter square position))
combi nation)))

> (substitute-triple 456 ' _xo0 x o)
" 4X6"

> (substitute-triple 147 ' _xo0_x_o0_)
"140'

> (substitute-triple 357 ' _xo x 0o)
(0)(0)

Asyou can see, Scheme prints some of these words with double-quote marks. The ruleisthat aword that isn't a
number but begins with adigit must be double-quoted. But in the finished program we're not going to print such words
at all; we're just showing you the working of a helper procedure. Similarly, in this chapter we'll show direct
invocations of helper proceduresin which some of the arguments are strings, but a user of the overall program won't
have to use this notation.

We'vefixedthesubstit ut e—l et t er problem by giving substi t ut et ri pl e an extraargument, so we're
going to have to go through the same processwith f i nd—t ri pl es. Here'sthe right version:

(define (find-triples position)

(every (lanbda (conb) (substitute-triple conb position))
' (123 456 789 147 258 369 159 357)))

It'sthe sametrick. Subst i t ut et ri pl e isaprocedure of two arguments. We use| anbda to transformiit into a
procedure of one argument for usewith every.

We've now finished f i nd—t r i pl es, one of the most important procedures in the game.

> (find-triples ' _xo x o)
("1XO' "4X6" B9 "140" XX8 69 "1X9" OXO

> (find-triples '"x____ 0x0)
(X23 456 OXO X40 "25X" "360" X50 "350')

Page 155

Here again are the jobs of al three procedures we've written so far:

Substitute-letter finds the letter in asingle square.
Substitute-triple finds all three letters corresponding to three squares.
Find-triples finds all the lettersin all eight winning combinations.

We've done all this because we think that the rest of the program can use the triples we've computed as data. So wel'll
just compute the triples once for all the other procedures to use:

(define (ttt position ne)
(ttt—choose (find-triples position) ne))

(define (ttt—choose triples ne) ;; first version
(cond ((i—-can—wi n? triples ne)
(choose—wi nni ng—nove triples ne))
((opponent —can—wi n? triples ne)
(bl ock—opponent—win triples ne))

)

Can the Computer Win on This Move?

The obvious next step isto writei —can—w n?, aprocedure that should return #t if the computer can win on the
current move—that is, if the computer already has two sgquares of atriple whose third square is empty. The triples x 6x
and 007 are examples.

So we need afunction that takes aword and a letter as arguments and counts how many times that letter appearsin the
word. Theappear ances primitive that we used in Chapter 2 (and that you re-implemented in Exercise 9.10) will do

the job:

> (appearances '0 '007)
2

> (appearances 'x '007)
0

The computer "owns" atriple if the computer's letter appears twice and the opponent's |etter doesn't appear at all. (The
second condition is necessary to exclude cases like xx0.)

Page 156

(define (ny—-pair? triple ne)
(and (= (appearances ne triple) 2)
(= (appearances (opponent nme) triple) 0)))

Notice that we need a function opponent that returns the opposite letter from ours.

(define (opponent |etter)
(if (equal? letter "x) "0 'X))

> (opponent ' Xx)
o

> (opponent '0)
X

> (ny—-pair? '007 'o0)
#T

> (my—pair? 'xo7 'o)
#F

> (ny—-pair? 'oox 'o0)
#F

Finally, the computer can win if it owns any of the triples:

(define (i—can—win? triples ne) ;; first version

(not (enpty?
(keep (lambda (triple) (nmy—pair? triple ne))

triples))))

> (i—can-win? '("1xo "4x6" 089 "140" xx8 069 "1x9 oxo0) 'Xx)
#T

> (i—can—wi n? ' ("1x0" "4x6" 089 "140" xx8 069 "1x9" o0xo0) 'o0)
#F

By now you're accustomed to thistrick with | ambda. My—pai r ? takes atriple and the computer's |etter as
arguments, but we want afunction of one argument for use with keep.

Page 157
If So, in Which Square?

Supposei —can—wi n? returns#t . We then have to find the particular square that will win the game for us. This will
involve arepetition of some of the same work we've already done:

(define (choose—w nni ng—nove triples mne) 7, not really part of gane
(keep nunber? (first (keep (lanbda (triple) (ny—pair? triple ne))
triples))))

We again use keep to find the triples with two of the computer's letter, but this time we extract the number from the
first such winning triple.

We'd like to avoid thisinefficiency. Asit turns out, generations of Lisp programmers have been in just thishbind in the
past, and so they've invented a kludge” to get around it.

Remember we told you that everything other than #f counts as true? We'll take advantage of that by having asingle
procedure that returns the number of awinning square if oneis available, or #f otherwise. In Chapter 6 we called such
aprocedure a"semipredicate." The kludgy part isthat cond accepts a clause containing a single expression instead of
the usual two expressions; if the expression has any true value, then cond returns that value. So we can say

(define (ttt—choose triples ne) ;; second version
(cond ((i—-can—win? triples ne))
((opponent —can—wi n? triples ne))

)
where each cond clause invokes a semipredicate. We then modify i —can—w n? to have the desired behavior:

(define (i—can—win? triples ne)
(choose—wi n
(keep (lanbda (triple) (my—pair? triple ne))
triples)))

* A kludge is a programming trick that doesn't follow the rules but works anyway somehow. It doesn't rhyme with
"dludge"; it'smore like "clue" followed by "j" asin"Jim."

Page 158

(define (choose—w n w nning-tripl es)
(if (enpty? winning-triples)
#f
(keep nunmber? (first winning-triples))))

> (i—can—wi n? ' ("1x0" "4x6" 089 "140" xx8 069 "1x9" o0xo0) 'X)
8

> (i—can—-win? ' ("1xo0" "4x6" 089 "140" xx8 069 "1x9" ox0) '0)
#F

By this point, we're starting to see the structure of the overall program. There will be several procedures, similar toi —
can—-w n?, that will try to choose the next move. | —can—W n? checks to see if the computer can win on this turn,

another procedure will check to seeif the computer should block the opponent’s win next turn, and other procedures
will check for other possibilities. Each of these procedures will be what we've been calling "semipredicates.” That isto
say, each will return the number of the square where the computer should move next, or #f if it can't decide. All that's

left isto figure out the rest of the computer's strategy and write more procedures likei —can—w n?.

Second Verse, Same asthe First

Now it's time to deal with the second possible strategy case: The computer can't win on this move, but the opponent
can win unless we block atriple right now.

(What if the computer and the opponent both have immediate winning triples? In that case, we've aready noticed the
computer's win, and by winning the game we avoid having to think about blocking the opponent.)

Once again, we have to go through the complicated business of finding triples that have two of the opponent's | etter
and none of the computer's letter—but it's already done!

(define (opponent—can—-wi n? triples mne)
(i—can—-wi n? triples (opponent ne)))

> (opponent—can-wi n? ' ("1xo0" "4x6" 089 "140" xx8 069 "1x9" ox0) 'Xx)
#F

> (opponent—can-wi n? ' ("1xo" "4x6" 089 "140" xx8 069 "1x9" ox0) 'O0)
8

Isthat amazing or what?

Page 159

Now the Strategy Gets Complicated

Since our goal hereisto teach programming, rather than tic-tac-toe strategy, we're just going to explain the strategy we
use and not give the history of how we developed it.

The third step, after we check to seeif either player can win on the next move, isto look for asituation in which a
move that we make now will give rise to two winning triples next time. Here's an example:

X (0]

X

Neither x nor o can win on this move. But if the computer is playing X, moving in square 4 or square 7 will produce a
situation with two winning triples. For example, here's what happens if we move in square 7:

From this position, X can win by moving either in square 3 or in square 4. It'so's turn, but o can block only one of
these two possibilities. By contrast, if (in the earlier position) x movesin square 3 or square 6, that would create a
single winning triple for next time, but o could block it.

In other words, we want to find two triples in which one square is taken by the computer and the other two are free,
with one free square shared between the two triples. (In this example, we might find the two triplesx47 and 3x7; that

would lead us to movein square 7, the one that these triples have in common.) Well call asituation like thisa"fork,"
and welll call the common sguare the "pivot." Thisisn't standard terminology; we just made up these terms to make it
easier to talk about the strategy.

In order to write the strategy procedurei —can—f or k? we assume that we'll need a procedure pi vot s that returnsa
sentence of all pivots of forks currently available to the computer. In thisboard, 4 and 7 are the pivots, so the pi vot s
procedure would return the sentence (4 7) . If we assume pi vot s, then writing i —can—f or k? is straightforward:

(define (i—-can—fork? triples ne)
(first—if—any (pivots triples ne)))

Page 160

(define (first—if—any sent)

(if (enmpty? sent)
#f
(first sent)))

Finding the Pivots

Pi vot s should return a sentence containing the pivot numbers. Here's the plan. We'll start with thetriples:
(x03 4x6 780 x47 ox8 360 xxo0 3x7)

We keep the ones that have an x and two numbers:

(4x6 x47 3x7)

We mash these into one huge word:

4x6X473x7

We sort the digits from this word into nine "buckets," one for each digit:

("" """ 344 """ 6 77 """ "")

We see that there are no ones or twos, one three, two fours, and so on. Now we can easily see that four and seven are
the pivot squares.

Let's write the procedures to carry out that plan. Pi vot s hasto find all the triples with one computer-owned square
and two free sguares, and then it has to extract the square numbers that appear in more than one triple.

(define (pivots triples ne)
(repeat ed—nunbers (keep (lanmbda (triple) (nmy—single? triple ne))

triples)))
(define (nmy—single? triple ne)

(and (= (appearances ne triple) 1)
(= (appearances (opponent ne) triple) 0)))

> (ny-single? "4x6" 'Xx)
#T

Page 161

> (my-single? 'xo03 'Xx)
#F

> (keep (lambda (triple) (ny-single? triple 'x))
(find—triples "xo__x___ 0))
("4X6" X47 "3X7")

My—si ngl e? isjust like my—pai r ? except that it looks for one appearance of the letter instead of two.

Repeat ed—nunber s takes a sentence of triples as its argument and has to return a sentence of all the numbers that
appear in more than onetriple.

(define (repeated—nunbers sent)
(every first
(keep (lanmbda (wd) (>= (count wd) 2))
(sort—digits (accunul ate word sent)))))

WEe're going to read this procedure inside-out, starting with theaccunul at e and working outward.

Why isit okay to accunul at e wor d the sentence? Suppose that a number appears in two triples. All we need to

know is that number, not the particular triples through which we found it. Therefore, instead of writing a program to
look through several triples separately, we can just as well combine the triples into one long word, keep only the digits
of that word, and simply look for the ones that appear more than once.

> (accunul ate word ' ("4x6" x47 "3x7"))
" 4X6X473XT7"

We now have one long word, and we're looking for repeated digits. Since thisis a hard problem, let's start with the
subproblem of finding all the copies of a particular digit.

(define (extract—-digit desired-digit wd)
(keep (lanmbda (wd—digit) (equal? wd—digit desired-digit)) wd))

> (extract—digit 7 "4x6x473x7")
77

> (extract—-digit 2 "4x6x473x7")

Page 162
Now we want a sentence where thefirst word is all the 1s, the second word is all the 2s, etc. We could do it like this:

(se (extract—digit 1 "4x6x473x7")
(extract—digit 2 "4x6x473x7")
(extract—digit 3 "4x6x473x7")

-)

but that wouldn't be taking advantage of the power of computers to do that sort of repetitious work for us. Instead,
well useevery:

(define (sort—digits number—word)
(every (lanmbda (digit) (extract—digit digit nunber—-word))
'(1234567829)))

Sort —di gi t s takesaword full of numbers and returns a sentence whose first word is all the ones, second word is
all the twos, etc.”

> (sort—-digits 123456789147258369159357)
(111 22 333 44 5555 66 777 88 999)

> (sort—digits "4x6x473x7")
(nn nn 3 44 nn 6 77 nn nn)

Let'slook at r epeat ed—nunber s again:

(define (repeated—nunbers sent)
(every first
(keep (lanmbda (wd) (>= (count wd) 2))
(sort—digits (accunulate word sent)))))

> (repeat ed—nunbers ' ("4x6" x47 "3x7"))
(47)

> (keep (lanmbda (wd) (>= (count wd) 2))
1 (mn mn 3 44 mn 6 77 mun man))
(44 77)

> (every first '(44 77))
(47)

* Brian thinks thisis akludge, but Matt thinksit's brilliant and elegant.

Page 163

This concludes the explanation of pi vot s. Remember that i —can—f or k? chooses the first pivot, if any, asthe
computer's move.

Taking the Offensive
Here'sthefina versionof t t t —choose with all the clauses shown:

(define (ttt—choose triples ne)

(cond ((i—can-w n? triples nme))
((opponent —can—wi n? triples ne))
((i—can—fork? triples ne))

((i —can—advance? triples ne))
(el se (best—-free—square triples))))

Y ou aready know about the first three possibilities.

Just as the second possibility was the "mirror image" of the first (blocking an opponent’'s move of the same sort the
computer just attempted), it would make sense for the fourth possibility to be blocking the creation of afork by the
opponent. That would be easy to do:

(define (opponent—can—fork? triples ne) ;; not really part of gane
(i —can—fork? triples (opponent ne)))

Unfortunately, although the programming works, the strategy doesn't. Maybe the opponent has two potential forks; we
can block only one of them. (Why isn't that a concern when blocking the opponent's wins? It is a concern, but if we've
allowed the situation to reach the point where there are two ways the opponent can win on the next move, it'stoo late
to do anything about it.)

Instead, our strategy isto go on the offensive. If we can get two in arow on this move, then our opponent will be
forced to block on the next move, instead of making afork. However, we want to make sure that we don't accidentally
force the opponent into making afork.

Let'slook at this board position again, but from o's point of view:

X (0]

X

Page 164

X'spivotsare 4 and 7, as we discussed earlier; o couldn't take both those squares. Instead, look at the triples 369 and
789, both of which are singles that belong to 0. So o should move in one of the squares 3, 6, 7, or 8, forcing X to
block instead of setting up the fork. But o shouldn't move in square 8, like this:

because that would force x to block in square 7, setting up afork!

X (0]
X
X (0] (0]

The structure of the algorithm is much like that of the other strategy possibilities. We use keep to find the appropriate
triples, take the first such triple if any, and then decide which of the two empty squaresin that triple to move into.

(define (i—-can—advance? triples ne)
(best—nove (keep (lanbda (triple) (nmy-single? triple ne)) triples)
triples
ne))

(define (best—nove ny—triples all—-triples ne)

(if (enmpty? nmy—triples)
#f
(best-square (first my—triples) all-triples ne)))

Best —nove doesthesamejob asfi r st —i f —any, which we saw earlier, except that it also invokesbest —
squar e onthefirst tripleif thereis one.

Since we've already chosen the relevant triples before we get to best —nove, you may be wondering why it needs all
the triples as an additional argument. The answer isthat best —squar e isgoing to look at the board position from
the opponent's point of view to look for forks.

(define (best—square ny—triple triples ne)
(best —squar e—hel per (pivots triples (opponent ne))
(keep nunber? nmy—triple)))

Page 165
(define (best-square-hel per opponent—pivots pair)
(if (nmenmber? (first pair) opponent—pivots)
(first pair)
(last pair)))

We keep the two numbers of the triple that we've already selected. We also select the opponent's possible pivots from

among all the triples. If one of our two possible movesis a potentia pivot for the opponent, that's the one we should
move into, to block the fork. Otherwise, we arbitrarily pick the second (| ast) free square.

> (best-square "780" (find-triples 'xo__x__0) 'o0)
.

> (best-square "360" (find-triples 'xo__Xx_0) 'o0)
6

> (best-nove ' ("780" "360") (find-triples '"xo__x_0) 'o0)
.

> (i—can-advance? (find-triples 'xo_ x 0) '0)
-

What if both of the candidate squares are pivots for the opponent? In that case, we've picked abad triple; moving in
either square will make uslose. Asit turns out, this can occur only in asituation like the following:

X

If we chose thetriple 307, then either move will force the opponent to set up afork, so that we lose two moves later.
Luckily, though, we can instead choose atriple like 208. We can move in either of those squares and the game will
end up atie.

In principle, we should analyze a candidate triple to see if both free squares create forks for the opponent. But since we
happen to know that this situation arises only on the diagonals, we can be lazier. We just list the diagonals last in the
proceduref i nd—t ri pl es. Since we take the first available triple, this ensures that we won't take a diagonal if there

are any other choices.”

* Matt thinks thisis akludge, but Brian thinksit's brilliant and elegant.

Page 166

L eftovers

If al elsefails, wejust pick a square. However, some squares are better than others. The center squareis part of four
triples, the corner squares are each part of three, and the edge squares each a mere two.

So we pick the center if it's free, then a corner, then an edge.

(define (best—free-square triples)
(first—choice (accurul ate word triples)
'(513792468)))

(define (first—choice possibilities preferences)
(first (keep (lanbda (square) (rmenber? square possibilities))
preferences)))

> (first—choice 123456789147258369159357 '(5 1 3 7 9 2 4 6 8))
5

> (first—choice "1x04x6089140xx80691x90x0" '(5 1 3 7 9 2 4 6 8))
1

> (best-free-square (find-triples ')

5

> (best-free-square (find-triples ' x_))

1

Complete Program Listing

7, ttt.scm
Ti c—Tac—Toe program

(define (ttt position ne)
(ttt—choose (find-triples position) ne))

(define (find-triples position)
(every (lanbda (conb) (substitute-triple conb position))
' (123 456 789 147 258 369 159 357)))

(define (substitute—triple conbination position)
(accumul ate word
(every (Il anmbda (square)
(substitute-letter square position))
conbi nation)))

Page 167

(define (substitute-letter square position)
(if (equal? ' _ (itemsquare position))
square
(item square position)))

(define (ttt—choose triples ne)

(cond ((i—can-wi n? triples nme))
((opponent —can—wi n? triples ne))
((i—can—fork? triples ne))

((i —can—-advance? triples ne))
(el se (best—free—square triples))))

(define (i—-can—win? triples ne)
(choose—wi n
(keep (lanbda (triple) (my—pair? triple ne))
triples)))

(define (my—pair? triple ne)
(and (= (appearances ne triple) 2)
(= (appearances (opponent ne) triple) 0)))

(define (opponent letter)
(if (equal? letter "x) "0 'X))

(define (choose—w n w nning-tripl es)
(if (enpty? wi nning-triples)
#f
(keep nunmber? (first winning-triples))))

(define (opponent—can—-w n? triples ne)
(i—can—wi n? triples (opponent ne)))

(define (i—-can—fork? triples ne)
(first—if—any (pivots triples ne)))

(define (first—if—-any sent)
(if (enmpty? sent)
#f
(first sent)))

(define (pivots triples ne)
(repeat ed—nunbers (keep (lanmbda (triple) (ny—single? triple ne))

triples)))

Page 168

(define (nmy—single? triple ne)
(and (= (appearances ne triple) 1)
(= (appearances (opponent nme) triple) 0)))

(define (repeated—nunbers sent)
(every first
(keep (lanmbda (wd) (>= (count wd) 2))
(sort—digits (accunul ate word sent)))))

(define (sort—digits nurmber—word)
(every (lanbda (digit) (extract—digit digit nunber—-word))
'(1234567829)))

(define (extract—digit desired-digit wd)
(keep (lanmbda (wd—digit) (equal? wd—digit desired-digit)) wd))

(define (i—-can—advance? triples ne)
(best—nove (keep (lanbda (triple) (ny-single? triple ne)) triples)
triples
ne))

(define (best—nove ny—triples all-triples ne)

(if (enpty? ny—triples)
#f
(best-square (first ny—triples) all—-triples ne)))

(define (best—square ny—triple triples ne)
(best —squar e—hel per (pivots triples (opponent ne))
(keep nunber? nmy—triple)))

(define (best—square—hel per opponent—pivots pair)
(if (menmber? (first pair) opponent—pivots)
(first pair)
(last pair)))

(define (best—free—square triples)
(first—choice (accurul ate word triples)
'(51379246 8)))

(define (first—choice possibilities preferences)
(first (keep (lanbda (square) (nmenber? square possibilities))
preferences)))

Page 169

Exercises

10.1 Thet t t procedure assumes that nobody has won the game yet. What happens if you invoket t t with aboard
position in which some player has already won? Try to figure it out by looking through the program before you run it.

A compl ete tic-tac-toe program would need to stop when one of the two playerswins. Write apredicate al r eady—
won? that takes a board position and aletter (X or 0) asits arguments and returns#t if that player has already won.

10.2 The program also doesn't notice when the game has ended in atie, that is, when all nine squares are already filled.
What happens now if you ask it to move in this situation?

Write aproceduret i e—gamne? that returns#t in this case.

10.3 A real human playing tic-tac-toe would look at a board like this:

(0] X (0]
(0] X X
X (0]

and notice that it's atie, rather than moving in square 9. Modify t i e—game? from Exercise 10.2 to notice this
situation and return #t .

(Can you improve the program's ability to recognize ties even further? What about boards with two free squares?)

10.4 Here are some possible changes to the rules of tic-tac-toe:

» What if you could win a game by having three squares forming an L shape in a corner, such as squares 1, 2, and 47?
» What if the diagonals didn't win?

» What if you could win by having four squaresin acorner, such as 1, 2, 4, and 5?

Answer the following questions for each of these modifications separately: What would happen if we tried to
implement the change merely by changing the quoted sentence of potential winning combinationsinf i nd—

tri pl es? Would the program successfully follow the rules as modified?

10.5Modify t t t to play chess.

Page 170

PART IV—
RECURSION

By now you're very familiar with the idea of implementing a function by composing other functions. In effect we are
breaking down alarge problem into smaller parts. The idea of recursion—as usual, it sounds simpler than it actually
is—isthat one of the smaller parts can be the same function we are trying to implement.

At clothes stores they have arrangements with three mirrors hinged together. If you keep the side mirrors pointing
outward, and you're standing in the right position, what you see is just three separate images of yourself, one face-on
and two with profile views. But if you turn the mirrors in toward each other, al of a sudden you see what looks like
infinitely many images of yourself. That's because each mirror reflects a scene that includes an image of the mirror
itself. This self-reference gives rise to the multiple images.

Recursion isthe idea of self-reference applied to computer programs. Here's an example:
"I'm thinking of a number between 1 and 20."
(Her number is between 1 and 20. I'll guess the halfway point.) "10."
"Too low."
(Hmm, her number is between 11 and 20. I'll guess the halfway point.) "15."
"Too high."
(That means her number is between 11 and 14. I'll guess the halfway point.) "12."
"Got it!"

We can write a procedure to do this:

Page 171

(define (gane | ow high)
(let ((guess (average |ow high)))
(cond ((too—-l ow? guess) (ganme (+ guess 1) high))
((t oo—hi gh? guess) (ganme low (— guess 1)))
(else "(1 winl)))))

Thisisn't acomplete program because we haven't writtent oo—l ow? andt oo—hi gh?. But it illustrates the idea of a
problem that contains a version of itself as a subproblem: We're asked to find a secret number within a given range.
We make a guess, and if it's not the answer, we use that guess to create another problem in which the same secret
number is known to be within a smaller range. The self-reference of the problem description is expressed in Scheme

by a procedure that invokes itself as a subprocedure.

Actually, thisisn't the first time we've seen self-reference in this book. We defined "expression” in Chapter 3 self-
referentially: An expression is either atomic or composed of smaller expressions.

The idea of self-reference also comes up in some paradoxes: Is the sentence "This sentence isfalse" true or false? (If
it'strue, then it must also be false, since it says so; if it's false, then it must also be true, since that's the opposite of
what it says.) Thisidea also appears in the self-referential shapes called fractals that are used to produce realistic-
looking waves, clouds, mountains, and coastlines in computer-generated graphics.

Page 172

Print Gallery, by M. C. Escher (lithograph, 1956)

Page 173

11—
I ntroduction to Recursion

| know an old lady who swallowed afly.
| don't know why she swallowed the fly.
Perhaps she'll die.

| know an old lady who swallowed a spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.

| don't know why she swallowed the fly.
Perhaps shelll die.

I know an old lady who swallowed a bird.

How absurd, to swallow abird!

She swallowed the bird to catch the spider

that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.

| don't know why she swallowed the fly.
Perhaps shelll die.

| know an old lady who swallowed a cat.
Imagine that, to swallow a cat.

She swallowed the cat to catch the bird.

She swallowed the bird to catch the spider

that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.

| don't know why she swallowed the fly.
Perhaps she'll die.

I know an old lady who swallowed a dog.
What a hog, to swallow adog!

She swallowed the dog to catch the cat.

She swallowed the cat to catch the bird.

She swallowed the bird to catch the spider

that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.

| don't know why she swallowed the fly.
Perhaps shelll die.

| know an old lady who swallowed a horse.
She's dead of course!

100 bottles of beer on the wall,

100 bottles of beer.

If one of those bottles should happen to fall,
99 bottles of beer on the wall.

99 bottles of beer on the wall,

99 bottles of beer.

If one of those bottles should happen to fall,
98 bottles of beer on the wall.

98 bottles of beer on thewall,

98 bottles of beer.

If one of those bottles should happen to fall,
97 bottles of beer on the wall.

97 bottles of beer on the wall,

97 bottles of beer.

If one of those bottles should happen to fall,
96 bottles of beer onthewall . . .

Page 174

In the next few chapters we're going to talk about recursion: solving abig problem by reducing it to asimilar, smaller
subproblem. Actually that's alittle backward from the old lady in the song, who turned her little problem into asimilar
but bigger problem! Asthe song warns us, this can be fatal.

Here'sthefirst problem we'll solve. We want a function that works like this:

> (downup 'ringo)
(RINGO RIRNG RIN Rl R Rl RIN RI NG RI NGO)

> (downup ' marsupial)
(MARSUPI AL

MARSUPI A

MARSUPI

MARSUP

MARSU

MARS

MAR

2555

R

MARS

MARSU
MARSUP
MARSUPI
MARSUPI A
MARSUPI AL)

None of the tools that we've used so far will handle this problem. It's not a " compute this function for each letter of the
word" problem, for which we could use ever y.* Rather, we have to think about the entire word in arather

complicated way.

We're going to solve this problem using recursion. It turns out that the idea of recursion is both very powerful—we can
solve alot of problems using it—and rather tricky to understand. That's why we're going to explain recursion several
different ways in the coming chapters. Even after you understand one of them, you'll probably find that thinking about
recursion from another point of view enriches your ability to use thisidea. The explanation in this chapter is based on
the combining method.

* If your instructor has asked you to read Part IV before Part 111, ignore that sentence.

Page 175

A Separate Procedurefor Each Length

Since we don't yet know how to solve the downup problem in general, let's start with a particular case that we can
solve. WE'll write aversion of downup that works only for one-letter words:

(define (downupl wd)
(se wd))

> (downupl 'a)
(A)

So far so good! Thisisn't avery versatile program, but it does have the advantage of being easy to write.

Now let's seeif we can do two-letter words:

(define (downup2 wd)
(se wd (first wd) wd))

> (downup2 ' be)

(BE B BE)
Moving right along . . .
(define (downup3 wd)
(se wd

(bl wd)

(first wd)

(bl wd)

wd))

> (downup3 ' fo0)
(FOO FO F FO FOO)

We could continue along these lines, writing procedures downup4 and so on. If we knew that the longest word in
English had 83 letters, we could write all of the single-length downups up to downup83, and then write one overall
downup procedure that would consist of an enormous cond with 83 clauses, one for each length.

Page 176

UseWhat You Haveto Get What You Need

But that's aterrible idea. We'd get really bored, and start making a lot of mistakes, if wetried to work up to
downup83 thisway.

The next trick isto notice that the middle part of what (downup3 ' f 00) doesisjust like (downup2 ' fo):

> ({downupd "foo)
{FOO [FO F FO| FoO)

(downup? ' fo)

So we can find the parts of downup3 that are responsible for those three words:

(define (downupld wd)
[5e Wwd
(Bl wd)
(Eirst wd]) '_'\I
(Bl wd)

wd))

W
(FOO [FO F FO| FOO)

and replace them with an invocation of downup2:

(define (downup3 wd)
(se wd (downup2 (bl wd)) wd))

How about downup4? Once we've had this great idea about using downup?2 to help with downup3, it's not hard to
continue the pattern:

(define (downup4) wd)
(se wd (downup3 (bl wd)) wd))

> (downup4 ' paul)
(PAUL PAU PA P PA PAU PAUL)

The reason we can fit the body of downup4 on one lineis that most of its work is done for it by downup3. If we
continued writing each new downup procedure independently, aswe did in our first attempt at downup3, our
procedures would be getting longer and longer. But this new way avoids that.

Page 177

(define (downup59 wd)
(se wd (downup58 (bl wd)) wd))

Also, although it may be harder to notice, we can even rewrite downup?2 aong the samelines:

(define (downup2 wd)
(se wd (downupl (bl wd)) wd))

Notice That They're All the Same

Although downup59 was easy to write, the problem is that it won't work unless we also define downup58, whichin
turn depends on downup57, and so on. Thisisalot of repetitive, duplicated, and redundant typing. Since these
procedures are all basically the same, what we'd like to do is combine them into a single procedure:

(define (downup wd) ;; first version
(se wd (downup (bl wd)) wd))

Isn't this a great idea? We've written one short procedure that serves as akind of abbreviation for 59 other ones.

Notice That They're AlImost All the Same

Unfortunately, it doesn't work.

> (downup 'toe)
ERROR Invalid argument to BUTLAST:

What's gone wrong here? Not quite every numbered downup looks like

(define (downupn wd)
(se wd (downupn-1 (bl wd)) wd))

The only numbered downup that doesn't follow the pattern isdownup1:

(define (downupl wd)
(se wd))

Page 178

So if we collapse all the numbered downups into a single procedure, we have to treat one-letter words as a special
case:
(define (downup wd)
(if (= (count wd) 1)
(se wd)
(se wd (downup (bl wd)) wd)))

> (downup 'toe)
(TCE TOT TO TOE)

> (downup ' banana)
(BANANA BANAN BANA BAN BA B BA BAN BANA BANAN BANANA)

Thisversion of downup will work for any length word, from ato pneunonoul t r a—
m croscopi csi | i covol canoconi nosi s* or beyond.

Base Cases and Recursive Calls

Downup illustrates the structure of every recursive procedure. There is a choice among expressions to evaluate: At
least oneisarecursive case, in which the procedure (e.g., downup) itself isinvoked with a smaller argument; at least
oneis abase case, that is, one that can be solved without calling the procedure recursively. For downup, the base case
isasingle-letter argument.

How can this possibly work? We're defining downup in terms of downup. In English class, if the teacher asks you to

define "around,” you'd better not say, "Y ou know, around!" But we appear to be doing just that. We're telling Scheme:
"In order to find downup of aword, find downup of another word."

The secret isthat it's not just any old other word. The new word is smaller than the word we were originally asked to
downup. So we're saying, "In order to find downup of aword, find downup of a shorter word." We are posing a

whole slew of subproblems asking for the downup of words smaller than the one we started with. So if someone asks
us the downup of happy, along the way we have to compute the downups of happ, hap, ha, andh.

* It'sadisease. Coal miners get it.

Page 179

A recursive procedure doesn't work unless every possible argument can eventually be reduced to some base case.
When we are asked for downup of h, the procedure just knows what to do without calling itself recursively.

We've just said that there has to be a base case. It's also important that each recursive call has to get us somehow closer
to the base case. For downup, "closer" means that in the recursive call we use a shorter word. If we were computing a

numeric function, the base case might be an argument of zero, and the recursive calls would use smaller numbers.

Pig Latin

L et's take another example; we'll write the Pig Latin procedure that we showed off in Chapter 1. We're trying to take a
word, move all the initial consonants to the end, and add "ay."

The simplest case is that there are no initial consonants to move:

(define (pigl 0 wd)
(word wd 'ay))

> (pigl 0 'al abaster)
ALABASTERAY

(Thiswill turn out to be the base case of our eventual recursive procedure.)

The next-simplest case is aword that starts with one consonant. The obvious way to write thisis

(define (pigl!l wd) ;; obvious version
(word (bf wd) (first wd) 'ay))

> (pigll 'salam)
ALAM SAY

but, asin the downup example, we'd like to find away to use pi gl 0 inimplementing pi gl 1. Thiscaseisn't exactly
like downup, because there isn't a piece of the return value that we can draw a box around to indicate that pi gl O
returns that piece. Instead, pi gl 0 putsthelettersay at the end of some word, and so does pi gl 1. The differenceis
that pi gl 1 putsay at the end of arearrangement of its argument word. To make this point clearer, we'll rewrite

pi gl 1 inaway that separates the rearrangement from the ay addition:

Page 180
(define (pigll wd)
(word (word (bf wd) (first wd))
‘ay))

> (pigll 'pastram)
ASTRAM PAY

Now we actually replace the pi gl O-like part with an invocation. We want to replace (wor d sonet hi ng ' ay)
with (pi gl 0 sonet hi ng) . If weusepi gl O to attach the ay at the end, our new version of pi gl 1 lookslikethis:

(define (pigl1l wd)
(pigl0 (word (bf wd) (first wd))))

How about a word starting with two consonants? By now we know that we're going to try to use pi gl 1 asahelper
procedure, so let's skip writing pi gl 2 the long way. We can just move the first consonant to the end of the word, and
handle the result, a word with only one consonant in front, with pi gl 1:

(define (pigl2 wd)
(pigll (word (bf wd) (first wd))))

> (pigl2 '"tranple)
AVPLETRAY

For athree-initial-consonant word we move one letter to the end and call pi gl 2:

(define (pigl3 wd)
(pigl2 (word (bf wd) (first wd))))

> (pigl3 'chrome)
OVECHRAY

So how about a version that will work for any word?" The recursive case will involve

* Asit happens, there are no English words that start with more than four consonants. (There are only afew even with
four; "phthalate" is one, and some others are people's names, such as "Schneider.") So we could solve the problem
without recursion by writing the specific procedures up to pi gl 4 and then writing a five-way cond to choose the

appropriate specific case. But as you will seeg, it's easier to solve the more general casel A single recursive procedure,
which can handle even nonexistent words with hundreds of initial consonants, is less effort than the conceptually
simpler four-consonant version.

Page 181

taking the pi gl of (word (bf wd) (first wd)), tomatch thepattern wefoundinpi gl 1, pigl 2, and
pi gl 3. The base case will be aword that begins with avowel, for which we'll just add ay on the end, as pi gl 0 does:

(define (pigl wd)
(if (menmber? (first wd) 'aeiou)
(word wd ' ay)
(pigl (word (bf wd) (first wd)))))

It's an unusual sensein which pi gl 'srecursive call posesa"smaller” subproblem. If we're asked for the pi gl of
schene, we construct anew word, chenes, and ask for pi gl of that. This doesn't seem like much progress. We
were asked to trandate schene, a six-letter word, into Pig Latin, and in order to do this we need to translate chenes,
another six-letter word, into Pig Latin.

But actually thisis progress, because for Pig Latin the base case isn't a one-letter word, but rather aword that starts
with avowel. Schene has three consonants before the first vowel; chenes has only two consonants before the first

vows!.

Chenes doesn't begin with avowel either, so we construct the word henesc and try to pigl that. In order to find
(pi gl 'henesc) weneedtoknow (pi gl 'enmesch). Sinceenesch doesbegin with avowel, pi gl returns
eneschay. Onceweknow (pi gl ' emesch), we'vethereby found the answer to our original question.

Problemsfor Youto Try

Y ou've now seen two examples of recursive procedures that we developed using the combining method. We started by
writing special-case procedures to handle small problems of a particular size, then simplified the larger versions by
using smaller versions as helper procedures. Finally we combined al the nearly identical individual versionsinto a
single recursive procedure, taking care to handle the base case separately.

Here are a couple of problems that can be solved with recursive procedures. Try them yourself before reading further.
Then we'll show you our solutions.

> (expl ode 'dynanite)
(DYNAMI TE

> (letter—pairs 'george)
(GE EO OR RG GE)

Page 182

Our Solutions
What's the smallest word we can expl ode? There's no reason we can't explode an empty word:

(define (expl ode0 wd)
“0)

That wasn't very interesting, though. It doesn't suggest a pattern that will apply to larger words. Let'stry afew larger
cases:

(define (explodel wd)
(se wd))

(define (explode2 wd)
(se (first wd) (last wd)))

(define (expl ode3 wd)
(se (first wd) (first (bf wd)) (last wd)))

With expl ode3 the procedure is starting to get complicated enough that we want to find away to use expl ode2 to
help. What expl ode3 doesisto pull three separate letters out of its argument word, and collect the three lettersin a
sentence. Here's a sample:

> (expl ode3 'tnt)
(TNT

Expl ode2 pullstwo letters out of aword and collects them in a sentence. So we could let expl ode?2 deal with two
of the letters of our three-letter argument, and handle the remaining letter separately:

(define (expl ode3 wd)
(se (first wd) (explode2 (bf wd))))

We can use similar reasoning to define expl ode4 interms of expl ode3:

(define (expl ode4 wd)
(se (first wd) (explode3d (bf wd))))

Now that we see the pattern, what's the base case? Our first three numbered expl odesare al different in shape from
expl ode3, but now that we know what the

Page 183

pattern should be we'll find that we can write expl ode2 intermsof expl odel, and even expl odel in terms of
expl odeO:

(define (expl ode2 wd)
(se (first wd) (explodel (bf wd))))

(define (explodel wd)
(se (first wd) (explodeO (bf wd))))

We would never have thought to write expl odel in that roundabout way, especially since expl ode0O pays no
attention to its argument, so computing the but f i r st doesn't contribute anything to the result, but by following the
pattern we can let the recursive case handle one-letter and two-letter words, so that only zero-letter words have to be
special:
(define (expl ode wd)

(if (enpty? wd)

()
(se (first wd) (explode (bf wd)))))

Now for | et t er —pai r s. What's the smallest word we can use as its argument? Empty and one-letter words have no
letter pairsin them:

(define (letter—pairs0O wd)
“0)

(define (letter—pairsl wd)
()

This pattern is not very helpful.

(define (letter—pairs2 wd)
(se wd))

(define (letter—pairs3 wd)
(se (bl wd) (bf wd)))

(define (letter—pairs4 wd)
(se (bl (bl wd))
(bl (bf wd))
(bf (bf wd))))

Page 184

Again, wewant to simplify | et t er —pai r s4 by using| et t er —pai r s3 to help. The problem issimilar to
expl ode: Thevauereturned by | et t er —pai r s4 isathree-word sentence, and we can usel et t er —pai r s3 to
generate two of those words.

> (letter—pairs4 'nens)
(ME [EM MS)])

This givesrise to the following procedure:

(define (letter—pairs4 wd)
(se (bl (bl wd))
(letter—pairs3 (bf wd))))

Does this pattern work for defining | et t er —pai r s5 intermsof | et t er —pai r s4?

(define (letter—pairs5 wd) 7, wrong
(se (bl (bl wd))
(letter—pairs4 (bf wd))))

> (letter—pairs5 'bagel)
(BAG AG GE EL)

The problemisthat (bl (bl wd)) means "the first two letters of wd" only when wd has four letters. In order to be

able to generalize the pattern, we need away to ask for the first two letters of aword that works no matter how long
theword is. Y ou wrote a procedure to solve this problem in Exercise 5.15:

(define (first—two wd)
(word (first wd) (first (bf wd))))

Now we can usethisfor | ett er —pai rs4 and| et t er —pai r s5:

(define (letter—pairsd4 wd)
(se (first—two wd) (letter—pairs3 (bf wd))))

(define (letter—pairs5 wd)
(se (first—two wd) (letter—pairs4 (bf wd))))

This pattern does generalize.

Page 185

(define (letter—pairs wd)
(if (<= (count wd) 1)
“(0)
(se (first—two wd)
(letter—pairs (bf wd)))))

Note that we treat two-letter and three-letter words as recursive cases and not as base cases. Just as in the example of
expl ode, we noticed that we could rewritel et t er —pai rs2 and | et t er —pai r s3 to follow the same pattern as

the larger cases.

(define (letter—pairs2 wd)
(se (first—two wd)
(letter—pairsl (bf wd))))

(define (letter—pairs3 wd)

(se (first—two wd)
(letter—pairs2 (bf wd))))

Pitfalls

[0 Every recursive procedure must include two parts: one or more recursive cases, in which the recursion reduces the
size of the problem, and one or more base cases, in which the result is computable without recursion. For example, our
first attempt at downup fell into this pitfall because we had no base case.

[J Don't be too eager to write the recursive procedure. Aswe showed inthel et t er —pai r s example, what looks
like a generalizable pattern may not be.

Boring Exercises

11.1 Write downup4 using only the word and sentence primitive procedures.

11.2[8.12]" When you teach a class, people will get distracted if you say "um" too many times. Writeacount —umns
that counts the number of times"um" appears in a sentence:

* Exercise 8.12 in Part 111 asks you to solve this same problem using higher-order functions. Here we are asking you to
use recursion. Whenever we pose the same problem in both parts, we'll cross-reference them in brackets as we did here.
When you see the problem for the second time, you might want to consult your first solution for ideas.

Page 186

> (count—uns
"(today umwe are going to umtal k about the conbining um net hod))
3

Here are some special-case count —uns procedures for sentences of particular lengths:

(define (count—uns0 sent)
0)

(define (count—unsl sent)
(if (equal? "um (first sent))
1
0))

(define (count—uns2 sent)
(if (equal? "um (first sent))
(+ 1 (count—unsl (bf sent)))
(count—unmsl (bf sent))))

(define (count—uns3 sent)
(if (equal? "um (first sent))
(+ 1 (count—uns2 (bf sent)))
(count—unms2 (bf sent))))

Write count —uns recursively.

11.3[8.13] Write aprocedure phone—unspel | that takes a spelled version of a phone number, such as POPCORN,
and returns the real phone number, inthiscase 7672676. Y ou will need a helper procedure that trandates asingle
letter into adigit:

(define (unspell—letter letter)

(cond ((nenber? letter 'abc) 2)
((menber? letter 'def) 3)
((menber? letter 'ghi) 4)
((menber? letter "jkl) 5)
((nmenber? letter 'nmo) 6)
((menber? letter 'prs) 7)
((menber? letter '"tuv) 8)
((menber? letter 'wxy) 9)
(else 0)))

Here are some some special-case phone—unspel | procedures:

Page 187

(define (phone—unspell 1l wd)
(unspell -l etter wd))

(define (phone—unspell 2 wd)
(word (unspell—-letter (first wd))
(unspell—letter (first (bf wd)))))

(define (phone-unspell 3 wd)
(word (unspell-letter (first wd))
(unspell—letter (first (bf wd)))
(unspell—letter (first (bf (bf wd))))))

Write phone—unspel | recursively.

Real Exercises
Userecursion to solve these problems, not higher order functions (Chapter 8)!
11.4 Who first said "use what you have to get what you need"?

11.5 Writeaprocedurei ni ti al s that takes a sentence as its argument and returns a sentence of the first lettersin
each of the sentence's words:

> (initials '"(if i needed sonmeone))
(I I N9

11.6 Write aprocedure count down that works like this:

> (countdown 10)
(10 987 654 3 2 1 BLASTOFF!)

> (countdown 3)
(3 2 1 BLASTOFF!)

11.7 Write aprocedure copi es that takes a number and a word as arguments and returns a sentence containing that
many copies of the given word:

> (copies 8 'span
(SPAM SPAM SPAM SPAM SPAM SPAM SPAM SPAM

Page 188

Drawing Hands, by M. C. Escher (lithograph, 1948)

Page 189

12—
The Leap of Faith

In the combining method, we build up to arecursive procedure by writing a number of special-case nonrecursive
procedures, starting with small arguments and working toward larger ones. We find a generalizable way to use a
smaller version in writing alarger one. Asaresult, al our procedures end up looking nearly the same, so we combine
them into one procedure.

The combining method is a good way to begin thinking about recursion because each step of asolutionis clearly
justified by earlier steps. The sequence of events by which we get from a problem statement to a Scheme procedure is
clear and straightforward. The disadvantage of the combining method, though, isthat it involves alot of drudgery, not
all of which really helpstoward the ultimate solution. In this chapter we're going to develop a new method called the
leap of faith that overcomes this difficulty.

From the Combining M ethod to the L eap of Faith

Let'slook again at the way we developed thel et t er —pai r s procedure in the last chapter. We went through several
steps:

» We wrote specific versions for zero-, one-, two-, and three-letter words.

» Wewrotel et t er —pai r s4, decided it was too complicated, and looked for away tousel et t er —pai r s3 to
help.

» Having rewritten | et t er —pai r s4, wetried to writel et t er —pai r s5 using the same pattern. Since it didn't
quite work, we revised the pattern.

» We generalized the pattern to write an unnumbered, recursivel et t er —pai r s.

Page 190
» We checked to make sure that the recursive pattern would work for two-letter and three-letter words.
* Since the pattern doesn't work for zero- or one-letter words, we made those the base cases.

Although we needed the lowest numbered procedures in order to make the entire collection of numbered procedures
work, those low-numbered ones didn't contribute to the critical step of finding a generalizable pattern. Once you
understand the idea of recursion, writing the individual proceduresiswasted effort.

In the leap of faith method, we short-circuit this process in two ways. First, we don't bother thinking about small
examples; we begin with, for example, a seven-letter word. Second, we don't use our example to write a particular
numbered procedure; we write the recursive version directly.

Example: Rever se

We're going to write, using the leap of faith method, a recursive procedure to reverse the letters of aword:

> (reverse 'beatl es)
SELTAEB

Istherear ever se of asmaller argument lurking within that return value? Y es, many of them. For example, LTAis
ther ever se of theword ATL. But it will be most helpful if we find a smaller subproblem that's only slightly smaller.
(Thisidea correspondsto writing | et t er —pai rs7 using | et t er —pai r s6 in the combining method.) The closest
smaller subproblem to our original problem isto find ther ever se of aword one letter shorter than beat | es.

> (reverse 'beatle)
ELTAEB

Thisresult is pretty close to the answer we want for r ever se of beat | es. What's the relationship between
ELTAEB, the answer to the smaller problem, and SEL TAEB, the answer to the entire problem? There's one extra letter,
S, a the beginning. Where did

Page 191

the extraletter come from? Obvioudly, it'sthe last |etter of beat | es.”

This may seem like a sequence of trivial observations leading nowhere. But as a result of this investigation, we can
trandate what we've learned directly into Scheme. In English: "ther ever se of aword consists of its last letter

followed by ther ever se of itsbut | ast ." In Scheme:

(define (reverse wd) ;; unfinished
(word (last wd)
(reverse (bl wd))))

TheLeap of Faith

If we think of this Scheme fragment merely as a statement of atrue fact about r ever se, it's not very remarkable. The

amazing part is that this fragment is runnable!™* It doesn't look runnable because it invokes itself as a helper procedure,
and—if you haven't aready been through the combining method—that looks as if it can't work. "How can you use
r ever se when you haven't written it yet?'

The leap of faith method is the assumption that the procedure we're in the middle of writing already works. That is, if
we're thinking about writing ar ever se procedure that can compute (r ever se ' paul), we assume that

(reverse "aul) will work.

Of courseit's not really aleap of faith, in the sense of something accepted as miraculous but not understood. The
assumption isjustified by our understanding of the combining method. For example, we understand that the four-letter
r ever se isrelying on the three-letter version of the problem, not really on itself, so there's no circular reasoning

involved. And we know that if we had to, we could writer ever sel throughr ever se3 "by hand.”

The reason that our technique in this chapter may seem more mysterious than the combining method is that this time
we are thinking about the problem top-down. In the combining method, we had already written what ever 3 before

we even raised the question of what ever 4. Now we start by thinking about the larger problem and assume

* There's also arelationship between (rever se ' eatl es) and(reverse ' beatl es), withtheextraletter b
at the end. We could take either of these subproblems as a starting point and end up with aworking procedure.

** Well, almost. It needs a base case.

Page 192

that we can rely on the smaller one. Again, we're entitled to that assumption because we've gone through the process
from smaller to larger so many times already.

The leap of faith method, once you understand it, is faster than the combining method for writing new recursive
procedures, because we can write the recursive solution immediately, without bothering with many individual cases.
The reason we showed you the combining method first is that the leap of faith method seems too much like magic, or
like "cheating," until you've seen several believable recursive programs. The combining method is the way to learn
about recursion; the leap of faith method is the way to write recursive procedures once you've learned.

The Base Case

Of course, our definition of r ever se isn't finished yet: As aways, we need a base case. But base cases are the easy
part. Base cases transform simple arguments into simple answers, and you can do that transformation in your head.

For example, what's the ssmplest argument tor ever se? If you answered "a one-letter word" then pick a one-letter
word and decide what the result should be:

> (reverse 'Xx)
X

r ever se of aone-letter word should just be that same word:

(define (reverse wd)
(if (= (count wd) 1)
wd
(word (last wd)
(reverse (bl wd)))))

Example: Fact ori al

WEe'll use the leap of faith method to solve another problem that we haven't already solved with the combining method.

The factorial of anumber nisdefinedas1 x 2 x ... x n. Sothefactorial of 5 (written"5!") is1x2x 3 x4 x 5,
Suppose you want Scheme to figure out the factorial of some large number, such as 843. Y ou start from the definition:
843l islx2x...x 842 x 843. Now you have to look for another factorial problem whose answer will help usfind
the answer to 843!. Y ou might noticethat 2!, that is, 1 x 2, is part of 843!, but that doesn't

Page 193

help very much because there's no simple relationship between 2! and 843!. A more fruitful observation would be that
842! islx ... x 842—that is, al but the last number in the product we're trying to compute. So 843! = 843 x 842!. In
general, n! isn x (n—1)!. We can embody thisideain a Scheme procedure:

(define (factorial n) ;; first version
(* n (factorial (- n 1))))

Asking for (n—1)! isthe leap of faith. We're expressing an answer we don't know, 843!, in terms of another answer we
don't know, 842!. But since 842! isasmaller, similar subproblem, we are confident that the same algorithm will find it.

*

Remember that inther ever se problem we mentioned that we could have chosen either the but fi r st or the
but | ast of the argument as the smaller subproblem? In the case of thef act ori al problem we don't have asimilar
choice. If we tried to subdivide the problem as

6! =1x(2x3x4x5x6)

then the part in parentheses would not be the factorial of a smaller number.”*

* What makes us confident? We imagine that we've worked on this problem using the combining method, so that we've
written procedures like these:

(define (factoriall n)
1)

(define (factorial2 n)
(* 2 (factoriall (- n 1))))

(define (factorial 3 n)
(* 3 (factorial2 (- n 1))))

(define (factorial 842 n)
(* 842 (factorial841 (- n 1))))

and therefore we're entitled to use those lower-numbered versions in finding the factorial of 843. We haven't actually
written them, but we could have, and that's what justifies using them. The reason we can take 842! on faith isthat 842 is
smaller than 843; it's the smaller values that we're pretending we've already written.

** Asit happens, the part in parentheses does equal the factorial of a number, 6 itself. But expressing the solution for 6in
terms of the solution for 6 doesn't lead to a recursive procedure; we have to express this solution in terms of a smaller one.

Page 194
Asthebasecasefor f act ori al ,well usel! = 1.

(define (factorial n)
(if (=n1)
1
(* n (factorial (- n 1)))))

Likely Guessesfor Smaller Subproblems

To make the leap of faith method work, we have to find a smaller, similar subproblem whose solution will help solve
the given problem. How do we find such a smaller subproblem?

In the examples so far, we've generally found it by finding a smaller, similar return value within the return value we're
trying to achieve. Then we worked backward from the smaller solution to figure out what smaller argument would give
us that value. For example, here's how we solved ther ever se problem:

original argument beat | es

desired return value SELTAEB

smaller return value ELTAEB

corresponding argument beatl e

relationship of arguments beatl e is (bl 'beatles)
relationship of return values SELTAEB is (word 's ' ELTAEB)
Scheme expression (word (last arg)

(reverse (bl arg)))

Similarly, we looked at the definition of 843! and noticed within it the factorial of a smaller number, 842.

But asmaller return value won't necessarily leap out at us in every case. If not, there are some likely guesses we can
try. For example, if the problem is about integers, it makes senseto try n— 1 as a smaller argument. If the problem is
about words or sentences, try thebut fi r st or thebut | ast . (Often, asinther ever se example, either will be

helpful.) Once you've guessed at a smaller argument, see what the corresponding return value should be, then compare
that with the original desired return value as we've described earlier.

In fact, these two argument-guessing techniques would have suggested the same subproblems that we ended up using
in our two examples so far. The reason we didn't teach these techniques from the beginning is that we don't want you
to think they're
Page 195

essential parts of the leap of faith method. These are just good guesses; they don't always work. When they don't, you
have to be prepared to think more flexibly.

Example: Downup

Here's how we might rewrite downup using the leap of faith method. Start by looking at the desired return value for a
medium-sized example:

> (downup ' paul)
(PAUL PAU PA P PA PAU PAUL)

Since thisis a procedure whose argument is aword, we guess that the but f i r st or thebut | ast might be helpful.

> (downup 'aul)
(AUL AU A AU AUL)

> (downup ' pau)
(PAU PA P PA PAU)

Thisisacase in which it matters which we choose; the solution for thebut f i r st of the original argument doesn't
help, but the solution for the but | ast ismost of the solution for the original word. All we haveto dois add the
original word itself at the beginning and end:

(define (downup wd) ;; no base case
(se wd (downup (bl wd)) wd))

As before, thisis missing the base case, but by now you know how to fill that in.

Example: Evens

Here's acase in which mindlessly guessing but fi r st or but | ast doesn't lead to a very good solution. We want a

procedure that takes a sentence as its argument and returns a sentence of the even-numbered words of the original
sentence:

> (evens ' (i want to hold your hand))
(WANT HOLD HAND)

Page 196
Welook at evens of thebut fi rst and but | ast of this sentence:

> (evens '(want to hold your hand))
(TO YOUR)

> (evens '(i want to hold your))
(WANT HOLD)

But fi r st isclearly not helpful; it gives all the wrong words. But | ast looks promising. The relationship between
evens of the bigger sentence and evens of the smaller sentence is that the last word of the larger sentence ismissing
from evens of the smaller sentence.

(define (losing—evens sent) ;; Nno base case
(se (losing—evens (bl sent))
(last sent)))

For abase case, we'll take the empty sentence:

(define (Il osing—evens sent)
(if (enmpty? sent)
()
(se (losing—evens (bl sent))
(last sent))))

> (l osing—evens ' (i want to hold your hand))
(I WANT TO HOLD YOUR HAND)

Thisisn't quite right.

It'struethat evens of (i want to hold your hand) isthesameasevens of

(i want to hold your) plustheword hand at the end. But what about evens of

(i want to hol d your) ? By thereasoning we've been using, we would expect that to be evens of

(i want to hol d) plusthewordyour . But sincetheword your isthe fifth word of the argument sentence, it
shouldn't be part of the result at all. Here's how evens should work:

> (evens '(i want to hold your))
(WANT HOLD)

> (evens ' (i want to hold))
(WANT HOLD)

Page 197

When the sentence has an odd number of words, itsevens isthe same asthe evens of itsbut | ast .* So here's our
new procedure:

(define (evens sent) ;; better version
(cond ((enpty? sent) '())
((odd? (count sent))
(evens (bl sent)))
(el se (se (evens (bl sent))
(last sent)))))

This version works, but it's more complicated than necessary. What makes it complicated is that on each recursive call
we switch between two kinds of problems:. even-length and odd-length sentences. If we dealt with the wordstwo at a
time, each recursive call would see the same kind of problem.

Once we've decided to go through the sentence two words at a time, we can reopen the question of whether to go right-
to-left or left-to-right. It will turn out that the latter gives us the ssmplest procedure:

(define (evens sent) ;; best version
(if (<= (count sent) 1)
“(0)
(se (first (bf sent))
(evens (bf (bf sent))))))

Since we go through the sentence two words at a time, an odd-length argument sentence always gives rise to an odd-
length recursive subproblem. Therefore, it's not good enough to check for an empty sentence as the only base case. We
need to treat both the empty sentence and one-word sentences as base cases.

Simplifying Base Cases

The leap of faith is mostly about recursive cases, not base cases. In the examplesin this chapter, we've picked base
cases without talking about them much. How do you pick a base case?

* It may feel strange that in the case of an odd-length sentence, the answer to the recursive subproblem is the same as
the answer to the original problem, rather than a smaller answer. But remember that it's the argument, not the return
value, that has to get smaller in each recursive step.

Page 198

In general, we recommend using the smallest possible base case argument, because that usually leads to the simplest
procedures. For example, consider using the empty word, empty sentence, or zero instead of one-letter words, one-
word sentences, or one.

How can you go about finding the simplest possible base case? Our first examplein this chapter wasr ever se. We
arbitrarily chose to use one-letter words as the base case:

(define (reverse wd)
(if (= (count wd) 1)
wd
(word (last wd)
(reverse (bl wd)))))

Suppose we want to consider whether a smaller base case would work. One approach is to pick an argument that
would be handled by the current base case, and see what would happen if we tried to let the recursive step handle it
instead. (To go along with this experiment, we pick asmaller base case, since the original base case should now be
handled by the recursive step.) In this example, we pick a one-letter word, let's say m and use that as the value of wd in

the expression

(word (last wd)
(reverse (bl wd)))

Theresultis

(word (last 'm
(reverse (bl 'm))

which isthe same as

(word 'm
(reverse " "))
We want thisto have asits value the word M Thiswill work out provided that (r everse " ") hasthe empty word

asitsvalue. So we could rewrite the procedure this way:

(define (reverse wd)
(if (enmpty? wd)

(word (last word)
(reverse (bl word)))))

Page 199

We were led to this empty-word base case by working downward from the needs of the one-letter case. However, it's
also important to ensure that the return value used for the empty word is the correct value, not only to make the
recursion work, but for an empty word in its own right. That is, we have to convince ourselvesthat (r everse " ")

should return an empty word. But it should; ther ever se of any word isaword containing the same letters as the
original word. If the original has no letters, ther ever se must have no letters also. This exemplifies a genera

principle: Although we choose a base case argument for the sake of the recursive step, we must choose the
corresponding return value for the sake of the argument itself, not just for the sake of the recursion.

Well try the base case reduction technique on downup:

(define (downup wd)
(if (= (count wd) 1)
(se wd)
(se wd (downup (bl wd)) wd)))

If we want to use the empty word as the base case, instead of one-letter words, then we have to ensure that the
recursive case can return a correct answer for a one-letter word. The behavior we want is

> (downup 'a)
(A)

But if we substitute' a for wd in the recursive-case expression we get
(se "a (downup " ") 'a)

which will have two copies of the word A in its value no matter what value we give to downup of the empty word.
We can't avoid treating one-letter words as a base case.

Inwriting f act ori al , weused 1 asthe base case.

(define (factorial n)
(if (=n1)
1
(* n (factorial (= n 1)))))

Our principle of base case reduction suggests that we try for 0. To do this, we substitute 1 for n in the recursive case
expression:

(* 1 (factorial 0))

Page 200
We'd like this to have the value 1; thiswill be true only if we define 0! = 1. Now we can say

(define (factorial n)
(if (=no0)
1
(* n (factorial (- n 1)))))

In this case, the new procedure is no simpler than the previous version. Its only advantage is that it handles a case, 0!,
that mathematicians find useful.

Here's another example in which we can't reduce the base case to an empty word. In Chapter 11 we used the
combining method to writel et t er —pai r s:

(define (letter—pairs wd)
(if (<= (count wd) 1)
()
(se (first—two wd)
(letter—pairs (bf wd)))))

(define (first—two wd)
(word (first wd) (first (bf wd))))

It might occur to you that one-letter words could be handled by the recursive case, and the base case could then handle
only the empty word. But if you try to evaluate the expression for the recursive case as applied to a one-letter word,
you find that

(first—two 'a)

isequivaent to

(word (first "a) (first (bf "a)))

whichisan error. There is no second letter of a one-letter word. As soon as you see the expression
(first (bf wd)) withinthisprogram, you know that one-letter words must be part of the base case. The same

kind of reasoning can be used in many problems; the base case must handle anything that's too small to fit the needs of
the recursive case.

Page 201

Pitfalls

[0 One possible pitfall isarecursive case that doesn't make progress, that is, one that doesn't reduce the size of the
problem in the recursive call. For example, let's say we're trying to write the procedure down that works this way:

> (down 'town)
(TOAN TOWTO T)

Here's an incorrect attempt:

(define (down wd) ;7 wrong!
(if (enmpty? wd)
“(0)
(se wd (down (first wd)))))

Therecursive call looks asiif it reduces the size of the problem, but try it with an actual example. What'sf i r st of the
word spl at ? What'sf i r st of that result? What'sf i r st of that result?

[0 A pitfall that sounds unlikely in the abstract but is actually surprisingly common isto try to do the second step of
the procedure "by hand" instead of trusting the recursion to do it. For example, here's another attempt at that down

procedure:

(define (down wd) 7, i ncomplete
(sewd ...))

Y ou know the first word in the result has to be the argument word. Then what? The next thing is the same word with
itslast letter missing:

(define (down wd) ;' wrong!
(se wd (bl wd) ...))

Instead of taking care of the entire rest of the problem with arecursive call, it's tempting to take only one more step,
figuring out how to include the second word of the required solution. But that approach won't get you to a general
recursive solution. Just take the first step and then trust the recursion for the rest:

(define (down wd)
(if (enpty? wd)
()
(se wd (down (bl wd)))))

Page 202

[0 The value returned in the base case of your procedure must be in the range of the function you are representing. If
your function is supposed to return a number, it must return a number all the time, even in the base case. Y ou can use
thisideato help you check the correctness of the base case expression.

For example, in downup, the base case returns (se wd) for the base case argument of a one-letter word. How did
we think to enclose the word in a sentence? We know that in the recursive cases downup aways returns a sentence, so
that suggests to us that it must return a sentence in the base case also.

O If your base case doesn't make sensein its own right, it probably means that you're trying to compensate for a
mistake in the recursive case.

For example, suppose you've fallen into the pitfall of trying to handle the second word of a sentence by hand, and
you've written the following procedure:

(define (square-sent sent) ;; wrong
(if (enmpty? sent)
()

(se (square (first sent))
(square (first (bf sent)))
(square—sent (bf sent)))))

> (square-sent '(2 3))
ERROR Invalid argunment to FIRST: ()

After some experimentation, you find that you can get this example to work by changing the base case:

(define (square-sent sent) 7, still wong
(if (= (count sent) 1)
()
(se (square (first sent))
(square (first (bf sent)))
(square-sent (bf sent)))))

> (square-sent '(2 3))
(49)

The trouble is that the base case doesn't make sense on its own:
> (square-sent ' (7))
()
Page 203

In fact, this procedure doesn't work for any sentences of length other than two. The moral isthat it doesn't work to
correct an error in the recursive case by introducing an absurd base case.

Boring Exercises

12.1 Hereisadefinition of a procedure that returns the sum of the numbersin its argument sentence:

(define (addup nurms)
(if (empty? (bf nuns))
(first numns)
(+ (first nums) (addup (bf nuns)))))

Although thisworks, it could be simplified by changing the base case. Do that.

12.2 Fix the bug in the following definition:
(define (acronym sent) ;; wrong
(if (= (count sent) 1)
(first sent)

(word (first (first sent))
(acronym (bf sent)))))

12.3 Can wereducethef act ori al base case argument from 0 to —17? If so, show the resulting procedure. If not,
why not?

12.4 Here's the definition of afunction f:

(7 { Tl il seni i.‘-l‘l'l'll]l't:
R = § R X) R . 4
/ sentence(/(butfirstisent)), firstisent)), otherwise.

Implement f as a Scheme procedure. What does f do?

Page 204

Real Exercises

Solve all of the following problems with recursive procedures. If you've read Part [11, do not use any higher-order
functionssuchasevery, keep, oraccunul at e.

12.5[8.8] Write an exagger at e procedure which exaggerates sentences.

> (exaggerate '(i ate 3 potstickers))
(I ATE 6 POTSTI CKERS)

> (exaggerate '(the chow fun is good here))
(THE CHOW FUN | S GREAT HERE)

It should double all the numbersin the sentence, and it should replace "good" with "great,” "bad" with "terrible," and
anything else you can think of.

12.6 [8.11] Write a GPA procedure. It should take a sentence of grades as its argument and return the corresponding
grade point average:

> (gpa ' (A A+ B+ B))
3.67

Hint: write a helper procedure base—gr ade that takes a grade as argument and returns 0, 1, 2, 3, or 4, and another
helper procedure gr ade—nodi f i er that returns—.33, 0, or .33, depending on whether the grade has a minus, a plus,
or neither.

12.7 Write aprocedure spel | —nunber that spells out the digits of a number:

> (spel |l —nunber 1971)
(ONE NI NE SEVEN ONE)

Use this helper procedure:

(define (spell—digit digit)
(item(+ 1 digit)
"(zero one two three four five six seven eight nine)))

12.8 Write aprocedure nunber s that takes a sentence as its argument and returns another sentence containing only
the numbersin the argument:

Page 205

> (nunbers ' (76 tronmbones and 110 cornets))
(76 110)

12.9 Write aprocedurer eal —wor ds that takes a sentence as argument and returns al the "real" words of the
sentence, using the samerule asther eal —wor d? procedure from Chapter 1.

12.10 Write aprocedure r enove that takes aword and a sentence as arguments and returns the same sentence, but
with all copies of the given word removed:

> (renove 'the '(the song I ove of the I oved by the beatles))
(SONG LOVE OF LOVED BY BEATLES)

12.11 Write the procedure count , which returns the number of words in a sentence or the number of lettersin aword.

12.12 Write aprocedure ar abi ¢ which converts Roman numeralsinto Arabic numerals:

> (arabic ' MCMLXXI)
1971

> (arabic ' MLXVI)
1066

Y ou will probably find the r oman—val ue procedure from Chapter 6 helpful. Don't forget that aletter can reduce the
overal value if the letter that comes after it has alarger value, such asthe Cin MCM

12.13 Write anew version of thedescr i be—t i me procedure from Exercise 6.14. Instead of returning a decimal
number, it should behave like this:

> (describe-tinme 22222)
(6 HOURS 10 M NUTES 22 SECONDS)

> (describe—tinme 4967189641)
(1 CENTURI ES 57 YEARS 20 WEEKS 6 DAYS 8 HOURS 54 M NUTES 1 SECONDS)

Can you make the program smart about saying 1 CENTURY instead of 1 CENTURI ES?

Page 206

What's the base case?

Page 207

13—
How Recursion Works

The last two chapters were about how to write recursive procedures. This chapter is about how to believe in recursive
procedures, and about understanding the process by which Scheme carries them out.

Little People and Recursion

The crowning achievement of the little-people model is explaining recursion. Remember that every time you call a
procedure, alittle personis hired to compute the result. If youwanttoknow (+ 2 (+ 3 4)), there are two separate

plus specialists involved.

When we used the combining method, it was probably clear that it's okay for downup3 to invoke downup?2, and for
downup?2 toinvokedownupl. But it probably felt like magic when we combined these numbered proceduresinto a
single downup procedure that calsitself. Y ou may have though, "How can downup do all the different tasks at once

without getting confused?' The little-people model answers this question by showing that tasks are done by procedure
invocations, not by procedures. Each little person handles one task, even though severa little people are carrying out
the same procedure. The procedure isjust a set of instructions; someone has to carry out the instructions.

So what happens when we want to know (downup ' smi | e) ? We hire Donna, adownup specialist, and she
substitutessm | e for wd in the body of downup, leaving her with

(if (= (count 'snile) 1)
(se 'snile)
(se "smle (downup (bl "smle)) "smle)))
Page 208

WEe'l leave out the details about hiringthei f, =, count, and bl specialistsin thisexample, so Donna ends up
with

(se '"smle (downup 'smil) 'snile)

In order to evaluate this, Donna needs to know (downup ' smi |). Shehires David, another downup specialist,
and waits for his answer.

David'swd issmi | . He substitutessm | for wd in the body of downup, and he gets
(if (= (count 'sml) 1)

(se "sml)

(se "sml (downup (bl "sml)) 'sml)))
After some uninteresting work, David has

(se "snmil (downup 'sni) 'snil)

and he hires Dennisto compute (downup ' sm). There are now three little people, all in the middle of some
downup computation, and each of them isworking on a different word.

Dennis substitutes s for wd, and ends up with

(se "sm (downup 'sm ‘sm)

He hires Derek to compute (downup ' sn) . Derek needsto compute
(se 'sm (downup 's) 'sn)

Derek hires Dexter to find downup of s. Now we have to think carefully about the substitution again. Dexter
substitutes his actual argument, s, for hisformal parameter wd, and ends up with

(if (= (count "s) 1)
(se 's)
(se '"s (downup (bl '"s)) "'s)))

Count of s is1. So Dexter hires Simi, asent ence speciaist, who returns (s) . Dexter returns the same answer to
Derek.

Derek, you will recall, istrying to compute

Page 209

(se "sm (downup 's) 'sm
and now he knows the value of (downup ' s) . So he hires Savitato compute
(se "sm'(s) 'sm

and theanswer is(sm s sn) . Derek returns this answer to Dennis. By the way, do you remember what question
Derek was hired to answer? Dennis wanted to know (downup ' snj . The answer Derek gave him was
(sms sm,whichisdownup of sm Pretty neat, huh?

Dennis hires Sigrid to compute
(se "sm '(sms sn) 'sm)
andreturns(sm sm's sm sm) to David. Hisanswer isthe correct value of (downup ' sm). David returns

(smil sm sms smsm sml)

Page 210

to Donna, who has been waiting all this time to evaluate

(se "smle (downup '"smil) 'snile)
Her waiting microseconds are over. She hiresasent ence specialist and returns

(smle sml| sm sms smsm sml smle)

If you have a group of friends whose names all start with "D," you can try this out yourselves. The rules of the game
are pretty simple. Remember that each one of you can have only one single value for wd. Also, only one of youisin

charge of the game at any point. When you hire somebody, that new person isin charge of the game until he or she
tells you the answer to his or her question. If some of you have names that don't start with "D," you can be specialists
insent enceor but | ast or something. Play hard, play fair, nobody hurt.

Tracing

The little-people model explains recursion very well, aslong as you're willing to focus your attention on the job of one
little person, taking the next little person's subtask as a "black box" that you assumeis carried out correctly. Y our
willingness to make that assumption is a necessary step in becoming truly comfortable with recursive programming.

Still, some people are very accustomed to a sequential model of computing. In that model, there's only one computer,
not alot of little people, and that one computer hasto carry out one step at atime. If you're one of those people, you
may find it hard to take the subtasks on faith. Y ou want to know exactly what happens when! There's nothing wrong
with such healthy scientific skepticism about recursion.

If you're a sequential thinker, you can trace procedures to get detailed information about the sequence of events.” But
if you're happy with the way we've been talking about recursion up to now, and if you find that this section doesn't
contribute to your understanding of recursion, don't worry about it. Our experience shows that this way of thinking
helps some people but not everybody.”* Before we get to recursive procedures,

* Unfortunately, t r ace isn't part of the Scheme standard, so it doesn't behave the same way in every version of
Scheme.

** Even if tracing doesn't help you with recursion, you'll find that it's a useful technique in debugging any procedure.

Page 211

let's just trace some nonrecursive ones:

(define (double wd) (word wd wd))

> (trace doubl e)
> (doubl e 'frozen)
(doubl e frozen)
frozenfrozen
FROZENFROZEN

Theargument tot r ace specifies a procedure. When you invoket r ace, that procedure becomes "traced"; this means
that every time you invoke the procedure, Scheme will print out the name of the procedure and the actual arguments.
When the procedure returns a value, Scheme will print that value.”

Tracing isn't very interesting if we're just invoking atraced procedure once. But ook what happens when we trace a
procedure that we're using more than once:

> (doubl e (doubl e (double 'yunm))
(doubl e yum

yunyum

(doubl e yunyum

yunyunyumum

(doubl e yunyumyunyum

yunyuny umyumyunmyunyunyum

YUMY UMY UMY UMY UMY UMYUMY UM

Thistime, there were three separate invocations of doubl e, and we saw each one as it happened. First we
doubl ed yum and the answer wasyumyum Thenwedoubl ed yumyum and so on. Finally, after we invoked
doubl e for the last time, its result was printed by the read-eval-print loop.

When you're finished investigating a procedure, you can turn off tracing by invoking unt r ace with the procedure as
argument:

> (untrace doubl e)

* In this example the return value was printed twice, because the procedure we traced was invoked directly at the
Scheme prompt. Its return value would have been printed once anyway, just because that's what Scheme always does. It
was printed another time because of the tracing. In this book we've printed the trace-specific output in smaller type and
lower-case to help you understand which is what, but of course on the actual computer you're on your own.

Page 212

Let'stry tracing arecursive procedure:

(define (downup wd)
(if (= (count wd) 1)
(se wd)
(se wd (downup (bl wd)) wd)))

> (trace downup)

> (downup 'trace)

(downup trace)

| (downup trac)

| (downup tra)

| | (downup tr)

| | | (downup t)

11 (t)

| | (tr t tr)

| (tratr t tr tra)

(trac tra tr t tr tra trac)

(trace trac tra tr t tr tra trac trace)
(TRACE TRAC TRA TR T TR TRA TRAC TRACE)

When a procedure callsitself recursively, depending on the phase of the moon,” Scheme may indent the trace display
to show the levels of procedure calling, and draw aline of vertical bars ("[*) from a procedure's invocation to its return
value below. Thisis so you can look at a procedure invocation and see what value it returned, or vice versa.

How does the trace help us understand what is going on in the recursion? First, by reading the trace results from top to
bottom, you can see the actual sequence of events when the computer is carrying out your Scheme program. For
example, you can see that we start trying to figure out (downup ' t r ace) ; thefirst thing printed is the line that says

we're starting that computation. But, before we get a result from that, four more downup computations have to begin.
The one that begins last finishes first, returning (t) ; then another one returns a value; the one that started first isthe
last to return.

Y ou can also read the trace horizontally instead of vertically, focusing on the levels of indentation. If you do this, then
instead of a sequence of independent events (such-and-

* That's computer science slang for "depending on a number of factorsthat | consider too complicated to bother
explaining” or "depending on a number of factorsthat | don't understand myself.” Some computer systems
automatically print the phase of the moon on program listings as an aid for programmers with "POM -dependent”
programs. What we meant in this case is that it depends both on your version of Scheme and on the exact form of your
recursive procedure.

Page 213

such starts, such-and-such returns avalue) you see the inclusion of processes within other ones. The smallest downup
invocation is entirely inside the next-smallest one, and so on. Theinitial invocation of downup includes all of the
others.

Perhaps you're thinking that downup' s pattern of inclusion is the only one possible for recursive procedures. That is,

perhaps you're thinking that every invocation includes exactly one smaller invocation, and that one includes a yet-
smaller one, and so on. But actually the pattern can be more complicated. Here's an example. The Fibonacci numbers
are a sequence of numbers in which the first two numbers are 1 and each number after that is the sum of the two before
it:

1,1,2,3,58,13,21,34,55, . ..

(They're named after Leonardo Pisano. Y ou'd think they'd be called " Pisano numbers," but Leonardo had a kind of
alias, Leonardo Fibonacci, just to confuse people.) Here's a procedure to compute the nth Fibonacci number:

(define (fib n)
(if (<=n 2)
1
(+ (fib (= n 1))
(fib (= n 2)))))

Here's atrace of computing the fourth Fibonacci number:

> (fib 4)
(fib 4)

| (fib 2)

| 1

| (fib 3)

| | (fib 1)
[

| | (fib 2)
I

| 2

3

3

(By the way, this trace demonstrates that in the dialect of Scheme we used, the argument subexpressions of the +
expressioninf i b are evaluated from right to left, because the smaller f i b arguments come before the larger onesin
thetrace.)

Asyou can see, we still have invocations within other invocations, but the pattern is not as simple asin the downup

case. If you're having trouble making sense of this pattern, go back to thinking about the problem in terms of little
people; who hires whom?

Page 214

Pitfalls

[0 Whenever you catch yourself using the words "go back" or "goes back" in describing how some procedure works,
bite your tongue. A recursive invocation isn't agoing back; it's a separate process. The model behind "go back" is that
the same little person starts over again at the beginning of the procedure body. What actually happensis that a new
little person carries out the same procedure. It's an important difference because when the second little person finishes,
the first may still have more work to do.

For example, when we used little people to show the working of downup, Dennis computes the result
(sm sms sm sm) andreturnsthat value to David; at that point, David still has work to do before returning his
own result to Donna.

[0 Thet r ace mechanism doesn't work for special forms. For example, you can't say
(trace or)

although you can, and often will, trace primitive procedures that aren't special forms.

Boring Exercises
13.1 Trace the expl ode procedure from page 183 and invoke
(expl ode ' ape)

How many recursive calls were there? What were the arguments to each recursive call? Turn in a transcript showing
thet r ace listing.

13.2 How many pi gl -specialist little people are involved in evaluating the following expression?
(pigl '"throughout)
What are their arguments and return values, and to whom does each give her result?
13.3 Hereisour first version of downup from Chapter 11. It doesn't work because it has no base case.
(define (downup wd)

(se wd (downup (bl wd)) wd))

Page 215

> (downup 'toe)
ERROR Invalid argunment to BUTLAST:

Explain what goes wrong to generate that error. In particular, why does Schemetry to take the but | ast of an empty
word?

13.4 Here is a Scheme procedure that never finishesits job:

(define (forever n)
(if (=n0)
1

(+ 1 (forever n))))

Explain why it doesn't give any result. (If you try to trace it, make sure you know how to make your version of Scheme
stop what it's doing and give you another prompt.)

Real Exercises

13.5 It may seem strange that there is one little person per invocation of a procedure, instead of just one little person
per procedure. For certain problems, the person-per-procedure model would work fine.

Consider, for example, thisinvocation of pi gl :

> (pigl ' prawn)
AWNPRAY

Suppose there were only one pi gl specialist in the computer, named Patricia. Alonzo hires Patricia and gives her the
argument pr awn. She seesthat it doesn't begin with avowel, so she moves the first letter to the end, getsr awnp, and
triesto pi gl that. Again, it doesn't begin with avowel, so she moves another letter to the end and gets awnpr . That
does begin with avowel, so she adds an ay, returning awnpr ay to Alonzo.

Nevertheless, this revised little-people model doesn't always work. Show how it fails to explain what happensin the
evauation of

(downup 'snile)

13.6 As part of computing (f act ori al 6), Schemecomputes(factorial 2) andgetstheanswer 2. After
Scheme gets that answer, how does it know what to do next?

Page 216

Page 217

14—
Common Patternsin Recursive Procedures

There are two ideas about how to solve programming problems.” One ideais that programmers work mostly by
recognizing categories of problems that come up repeatedly and remembering the solution that worked last time;
therefore, programming students should learn alot of program patterns, or templates, and fill in the blanks for each
specific problem. Another ideais that there are afew powerful principlesin programming, and that if alearner
understands the principles, they can be applied to any problem, even one that doesn't fit afamiliar pattern.

Research suggests that an expert programmer, like an expert at any skill, does work mainly by recognizing patterns.
Nevertheless, we lean toward the powerful-principle idea. The expert's memory isnot full of arbitrary patterns; it's full
of meaningful patterns, because the expert has gone through the process of struggling to reason out how each
procedure works and how to write new procedures.

Still, we think it's worth pointing out afew patterns that are so common that you'll have seen several examples of each
before you finish this book. Once you learn these patterns, you can write similar procedures almost automatically. But
there's an irony in learning patterns. In Scheme, once you've identified a pattern, you can write a general-purpose
procedure that handles all such cases without writing individual procedures for each situation. Then you don't have to
use the pattern any more! Chapter 8 presents several general pattern-handling procedures, called higher-order
procedures. In this chapter we'll consider the patterns corresponding to those higher-order procedures, and we'll use the
names of those procedures to name the patterns.

* That's because there are two kinds of people: those who think there are two kinds of people, and those who don't.

Page 218

What's the point of learning patterns if you can use higher-order procedures instead? There are at |east two points. The
first, asyou'll see very soon, isthat some problems almost follow one of the patterns; in that case, you can't use the
corresponding higher-order procedure, which works only for problems that exactly follow the pattern. But you can use
your understanding of the pattern to help with these related problems. The second point is that in Chapter 19 we'll
show how the higher-order functions are themselves implemented using these recursive patterns.

This chapter isn't an official list of all important patterns; as you gain programming experience, you'll certainly add
more patterns to your repertoire.

TheEvery Pattern

Here's a procedure to square every number in a sentence of numbers:

(define (square—sent sent)
(if (enmpty? sent)
()
(se (square (first sent))
(square-sent (bf sent)))))

Here's a procedure to trandlate every word of a sentence into Pig Latin:

(define (pigl-sent sent)
(if (enmpty? sent)
“(0)
(se (pigl (first sent))
(pigl—sent (bf sent)))))

The pattern here is pretty clear. Our recursive case will do something straightforward to thef i r st of the sentence,
such assquar eingit or pi gl ingit, and we'll combine that with the result of arecursive call onthebut fir st of
the sentence.

Thel et t er —pai r s procedure that we wrote in Chapter 11 is an example of a procedure that followsthe every
pattern pretty closely, but not exactly. The differenceisthat | et t er —pai r s looks at its argument sentence two
words at atime.

(define (letter—pairs wd)
(if (= (count wd) 1)
“(0)
(se (word (first wd) (first (bf wd)))
(letter—pairs (bf wd))))))

Page 219

Compare this with the earlier definition of squar e—sent . The recursive case till uses se to combine one part of the
result with arecursive call based onthebut f i r st of the argument, but here both the first letter and the second letter

of the argument contribute to the first word of the result. That's why the base case also has to be different; the recursive
case requires at least two letters, so the base case is a one-letter word.”

Let's solve adlightly different problem. This time, we want to break the word down into non-overlapping pairs of
letters, likethis:

> (disjoint—pairs "tripoli) ;; the new probl em
(TRIP QL 1)
> (letter—pairs "tripoli) ;; conpare the old one

(TRR P POCL LI)

The main difference between these two functionsisthat indi sj oi nt —pai r s we eliminate two letters at oncein the
recursive call. A second difference isthat we have to deal with the special case of odd-length words.

(define (disjoint—pairs wd)
(cond ((enmpty? wd) " ())
((= (count wd) 1) (se wd))
(el se (se (word (first wd) (first (bf wd)))
(disjoint—pairs (bf (bf wd))))))

The Keep Pattern

Intheevery pattern, we collect the results of transforming each element of aword or sentence into something else.

Thistime we'll consider a different kind of problem: choosing some of the elements and forgetting about the others.
First, here is a procedure to select the three-letter words from a sentence:

(define (keep-three—l etter—words sent)
(cond ((enpty? sent) '())
((= (count (first sent)) 3)
(se (first sent) (keep—-three-letter—words (bf sent))))
(el se (keep-three—letter—words (bf sent)))))

* If you've read Chapter 8, you know that you could implement squar e—sent and pi gl —sent without recursion,
using the ever y higher order function. But try using ever y toimplement | et t er —pai r s; you'l find that you
can't quite make it work.

Page 220

> (keep-three-letter—words '(one two three four five six seven))
(ONE TVWO SI X)

Next, hereis a procedure to select the vowels from aword:

(define (keep—vowel s wd)
(cond ((enmpty? wd) "")
((vowel ? (first wd))
(word (first wd) (keep—vowels (bf wd))))
(el se (keep—vowels (bf wd)))))

> (keep-vowel s ' napol eon)
ACEO

Let'slook at the differences between the ever y pattern and the keep pattern. First of all, the keep procedures have
three possible outcomes, instead of just two asin most ever y- like procedures. Inthe ever y pattern, we only have to
distinguish between the base case and the recursive case. In the keep pattern, there is still a base case, but there are

two recursive, cases; we have to decide whether or not to keep the first available element in the return value. When we
do keep an element, we keep the element itself, not some function of the element.

Aswith the every pattern, there are situations that follow the keep pattern only approximately. Suppose we want to
look for doubled letters within aword:

> (doubl es ' bookkeeper)
OCKKEE

> (doubl es ' mni ssi ssippi)
SSSSPP

Thisisn't apure keep pattern example because we can't decide whether to keep the first letter by looking at that |etter
alone; we have to examine two at atime. But we can write a procedure using more or less the same pattern:

(define (doubl es wd)
(cond ((= (count wd) 1) "")
((equal ? (first wd) (first (bf wd)))
(word (first wd) (first (bf wd)) (doubles (bf (bf wd)))))
(el se (doubles (bf wd)))))

Asintheevens example of Chapter 12, the base case of doubl es isunusual, and one of the recursive calls chops
off two letters at once in forming the smaller subproblem.

Page 221

But the structure of the cond with abase case clause, a clause for keeping letters, and a clause for rejecting lettersis
maintai ned.

The Accumul at e Pattern

Here are two recursive procedures for functions that combine all of the elements of the argument into a single result:

(define (addup nuns)
(if (enmpty? nuns)
0
(+ (first nuns) (addup (bf nuns)))))

(define (scrunch—-words sent)
(if (empty? sent)

n n

(word (first sent) (scrunch-words (bf sent)))))

> (addup ' (8 3 6 1 10))
28

> (scrunch—-words ' (ack now | edge able))
ACKNOW.EDGEABLE

What's the pattern? We're using some combiner (+ or wor d) to connect the word we're up to with the result of the

recursive call. The base case tests for an empty argument, but the base case return value must be the identity element
of the combiner function.

If there is no identity element for the combiner, asin the case of max, we modify the pattern dightly:*

(define (sent—nax sent)
(if (= (count sent) 1)
(first sent)
(max (first sent)
(sent—max (bf sent)))))

* Of course, if your version of Scheme has —o, you can use it as the return value for an empty sentence, instead of
changing the pattern.

Page 222

Combining Patterns

(define (add—nunbers sent)
(cond ((enpty? sent) 0)
((nunber? (first sent))
(+ (first sent) (add—-nunmbers (bf sent))))
(el se (add-nunbers (bf sent)))))

> (add—nunbers ' (if 6 were 9))
15

This procedure combines aspects of keep with aspects of accunul at e. We want to do two things at once: get rid of
the words that aren't numbers and compute the sum of those that are numbers. (A simple keep would construct a
sentence of them.) Add—nunber s looks exactly like the keep pattern, except that there's a funny combiner and a
funny base case, which look morelikeaccumul at e.”

Here's an example that combinesever y and keep. We want a procedure that takes a sentence as its argument and
trandates every word of the sentence into Pig Latin, but leaves out words that have no vowels, because the Pig Latin
trandator doesn't work for such words. The procedure saf e—pi gl will belikeakeep pattern in that it keeps only
words that contain vowels, but like an ever y in that the result contains transformed versions of the selected words,
rather than the words themselves.

(define (safe-pigl sent)
(cond ((enpty? sent) '())
((has—vowel ? (first sent))
(se (pigl (first sent)) (safe-pigl (bf sent))))
(el se (safe—pigl (bf sent)))))

(define (has—vowel ? wd)
(not (empty? (keep-vowels wd))))

* Here's the higher-order function version, from Chapter 8:

(define (add—nunbers sent)
(accumul ate + (keep nunber? sent)))

The higher-order function version is more self-documenting and easier to write. The recursive version, however, isdightly
more efficient, because it avoids building up a sentence as an intermediate value only to discard it in the final result. If we
were writing this program for our own use, we'd probably choose the higher-order function version; but if we were dealing
with sentences of length 10,000 instead of length 10, we'd pay more attention to efficiency.

Page 223

> (safe-pigl '(ny pet fly is named xyzzy))
(ETPAY | SAY AMEDNAY)

Finally, here's an example that combines all three patterns. In Chapter 1 we wrote (using higher-order procedures) the
acr onymprocedure, which selects the "real” words of a sentence (the keep pattern), takes the first letter of each

word (the ever y pattern), and combines these initial lettersinto asingle word (theaccumul at e pattern). Ina
recursive procedure we can carry out al three steps at once:

(define (acronym sent)
(cond ((enpty? sent) " ")
((real —-word? (first sent))
(word (first (first sent))
(acronym (bf sent))))
(el se (acronym (bf sent)))))
Don't become obsessed with trying to make every recursive problem fit one of the three patterns we've shown here. As
we said at the beginning of the chapter, what's most important is that you understand the principles of recursion in
general, and understand how versatile recursion is. The patterns are just special cases that happen to come up fairly
often.

Helper Procedures

Let's say we want a procedure ever y- nt h that takes a number n and a sentence as arguments and selects every nth
word from the sentence.

> (every—nth 3 ' (with alittle help fromnmny friends))
(LI TTLE MY)

We get in trouble if wetry to write thisin the obvious way, as a sort of keep pattern.

(define (every—-nth n sent) ;; wrong!
(cond ((enmpty? sent) ' ())
((=n1)
(se (first sent) (every-nth n (bf sent))))
(el se (every—-nth (= n 1) (bf sent)))))

The problem iswith the n that's in boldface. We're thinking that it's going to be the n of the original invocation of
ever y—nt h, that is, 3. But in fact, we've already counted n down so that in thisinvocation its valueis 1. (Check out
thefirst half of the same cond clause.) This procedure will correctly skip the first two words but will keep all the

Page 224

words after that point. That's because we're trying to remember two different numbers: the number we should always
skip between kept words, and the number of words we still need to skip thistime.

If we're trying to remember two numbers, we need two names for them. The way to achieve thisisto have our officia
ever y—nt h procedure call a helper procedure that takes an extra argument and does the real work:

(define (every—-nth n sent)
(every—-nt h—hel per n n sent))

(define (every—-nth-hel per interval remaining sent)
(cond ((enpty? sent) '())
((= remaining 1)
(se (first sent)
(every—-nt h—-hel per interval interval (bf sent))))
(el se (every—-nth-hel per interval (- remaining 1) (bf sent)))))

This procedure always calls itself recursively with the same value of i nt er val , but with adifferent value of

r emai ni ng each time. Remai ni ng keeps getting smaller by one in each recursive call until it equals 1. On that call,
aword is kept for the return value, and we call ever y—nt h—hel per recursively with thevalue of i nt er val , that
is, the original value of n, asthe new r emai ni ng. If you like, you can think of this combination of an initialization
procedure and a helper procedure as another pattern for your collection.

How to Use Recur sive Patterns

One way in which recursive patterns can be useful isif you think of them as templates with empty slotsto fill in for a
particular problem. Here are template versions of theevery, keep, andaccunul at e patterns as applied to

sentences:

(define (every—sonething sent)
(if (empty? sent)
()
(se (__ ___(first sent))
(every—sonething (bf sent)))))

(define (keep—if—sonething sent)
(cond ((enpty? sent) '())
(... ? (first sent))
(se (first sent) (keep-if-sonething (bf sent))))
(el se (keep—if—sonmething (bf sent)))))

Page 225

(define (accumrul at e—sonehow sent)
(if (empty? sent)

(. (first sent)
(accumrul at e—sonehow (bf sent)))))

Suppose you're trying to write aproceduref i r st —nunber that takes a sentence as its argument and returns the first
number in that sentence, but returns the word no—nunber if there are no numbersin the argument. Thefirst step isto

make a guess about which pattern will be most useful. In this case the program should start with an entire sentence and
select aportion of that sentence, namely one word. Therefore, we start with the keep pattern.

(define (first—nunber sent) ;; first guess
(cond ((enpty? sent) '())
(O (first sent))
(se (first sent) (first—nunber (bf sent))))
(el se (first—nunber (bf sent)))))

The next step isto fill in the blank. Obviously, since we're looking for a number, nunber ? goes in the blank.

Thetroubleis that this procedure returns all the numbers in the given sentence. Now our job is to see how the pattern
must be modified to do what we want. The overall structure of the pattern isacond with three clauses; we'll consider

each clause separately.

What should the procedure return if sent isempty? In that case, thereis no first number in the sentence, so it should
return no—nurnber :

((enpty? sent) 'no—nunber)

What if the first word of the sentence is a number? The program should return just that number, ignoring the rest of the
sentence:

((nunber? (first sent)) (first sent))

What if the first word of the sentence isn't a number? The procedure must make arecursive cal for thebut fi r st ,
and whatever that recursive call returnsisthe answer. So the el se clause does not have to be changed.

Here's the whol e procedure:

(define (first—number sent)
(cond ((enpty? sent) 'no—nunber)
((nunber? (first sent)) (first sent))
(el se (first—nunber (bf sent)))))

Page 226

After filling in the blank in the keep pattern, we solved this problem by focusing on the details of the procedure

definition. We examined each piece of the definition to decide what changes were necessary. Instead, we could have
focused on the behavior of the procedure. We would have found two ways in which the program didn't do what it was
supposed to do: For an argument sentence containing numbers, it would return all of the numbersinstead of just one of
them. For a sentence without numbers, it would return the empty sentence instead of no—nunber . We would then
have finished the job by debugging the procedure to fix each of these problems. The final result would have been the
same.

Problems That Don't Follow Patterns

We want to write the procedure sent —bef or e?, which takes two sentences as arguments and returns#t if the first

comes al phabetically before the second. The general ideaisto compare the sentences word by word. If the first words
are different, then whichever is alphabetically earlier determines which sentence comes before the other. If the first
words are equal, we go on to compare the second words.”

> (sent-before? '(hold ne tight) '(sun king))
#T

> (sent-before? '(lovely rita) '(love you to))
#F

> (sent-before? '(strawberry fields forever)
"(strawberry fields usually))
#T

Does this problem follow any of the patterns we've seen? It's not an ever y, because the result isn't a sentencein
which each word is atransformed version of aword in the arguments. It's not akeep, because the result isn't a subset
of the words in the arguments. And it's not exactly an accumnul at e. We do end up with asingle true or false resullt,
rather than a sentence full of results. But in atypical accurul at e problem,

* Dictionaries use a different ordering rule, in which the sentences are treated as if they were single words, with the
spaces removed. By the dictionary rule, "ac" istreated asif it were "ac" and comes after "ab"; by our rule, "ac" comes
before "ab" because we compare the first words ("a" and "ab").

Page 227

every word of the argument contributes to the solution. In this case only one word from each sentence determines the
overall result.

On the other hand, this problem does have something in common with the keep pattern: We know that on each

invocation there will be three possibilities. We might reach a base case (an empty sentence); if not, the first words of
the argument sentences might or might not be relevant to the solution.

WEe'l have a structure similar to the usual keep pattern, except that there'sno se involved; if we find unequal words,
the problem is solved without further recursion. Also, we have two arguments, and either of them might be empty.

(define (sent—before? sentl sent?2)
(cond ((enpty? sentl) #t)
((enmpty? sent?2) #f)
((before? (first sentl) (first sent2)) #t)
((before? (first sent2) (first sentl) #f)
(el se (sent—before? (bf sentl) (bf sent2)))))

Although thinking about the keep pattern helped us to work out this solution, the result really doesn't look much like
akeep. We had to invent most of the details by thinking about this particular problem, not by thinking about the
pattern.

In the next chapter we'll look at examples of recursive procedures that are quite different from any of these patterns.
Remember, the patterns are a shortcut for many common problems, but don't learn the shortcut at the expense of the
general technique.

Pitfalls

Review the pitfalls from Chapter 12; they're still relevant.

[0 How do you test for the base case? Most of the examplesin this chapter have used enpt y?, and it's easy to fall

into the habit of using that test without thinking. But, for example, if the argument is a number, that's probably the
wrong test. Even when the argument is a sentence or a non-numeric word, it may not be empty in the base case, asin
the Pig Latin example.

Page 228

[0 A serious pitfall isfailing to recognize a situation in which you need an extra variable and therefore need a hel per
procedure. If at each step you need the entire original argument as well as the argument that's getting closer to the base
case, you probably need a helper procedure. For example, write a procedure pai r s that takes aword as argument and

returns a sentence of all possible two-letter words made of |etters from the argument word, allowing duplicates, like
this:

> (pairs 'toy)
(TT TOTY O OO OY YT YO YY)

0 A simple pitfall, when using a helper procedure, isto write arecursive call in the helper that calls the main
procedure instead of calling the helper. (For example, what would have happened if we'd had ever y—nt h—hel per

invoke ever y—nt h instead of invoking itself?)

[0 Some recursive procedures with more than one argument require more than one base case. But some don't. One
pitfall isto leave out a necessary base case; another is to include something that 1ooks like a base case but doesn't fit
the structure of the program.

For example, the reason sent —bef or e? needs two base cases is that on each recursive call, both sent 1 and
sent 2 get smaller. Either sentence might run out first, and the procedure should return different values in those two
cases.

On the other hand, Exercise 11.7 asked you to write a procedure that has two arguments but needs only one base case:

(define (copies num wd)
(if (= numO0)
()
(se wd (copies (— num 1) wd))))

In this example, the wd argument doesn't get smaller from one invocation to the next. It would be silly to test for
(enmpty? wd).

A noteworthy intermediate caseisever y—nt h—hel per . It does have two cond clauses that check for two different
arguments reaching their smallest allowable values, but ther emai ni ng clauseisn't abase case. If r emai ni ng has
the value 1, the procedure still invokes itself recursively.

The only general principle we can offer is that you have to think about what base cases are appropriate, not just
routinely copy whatever worked last time.

Page 229

Exer cises

Classify each of these problems as apattern (every, keep, oraccunul at e), if possible, and then write the

procedure recursively. In some cases we've given an example of invoking the procedure we want you to write, instead
of describing it.

14.1

> (renove-once 'nmorning '(good norning good norning))
(GOOD GOOD MORNI NG)

(It'sokay if your solution removes the other MORNI NGinstead, as long as it removes only one of them.)

14.2

> (up 'town)
(T TO TOW TOMN)

14.3

> (rendup '(ob la di ob la da)) ;; remove duplicates
(OB LA DI DA)

(It'sokay if your procedurereturns (DI OB LA DA) instead, aslong asit removes all but one instance of each
duplicated word.)

14.4

> (odds '(i lost ny little girl))
(I M GRL)

14.5[8.7] Write aprocedure| et t er —count that takes a sentence as its argument and returns the total number of
lettersin the sentence:

> (letter—count '(fixing a hole))
11

14.6 Write menber ?.

Page 230

14.7 Writedi f f er ences, which takes a sentence of numbers as its argument and returns a sentence containing the
differences between adjacent elements. (The length of the returned sentence is one less than that of the argument.)

> (differences '(4 23 9 87 6 12))
(19 -14 78 -81 6)

14.8 Write expand, which takes a sentence as its argument. It returns a sentence similar to the argument, except that
if anumber appears in the argument, then the return value contains that many copies of the following word:

> (expand ' (4 calling birds 3 french hens))
(CALLI NG CALLI NG CALLI NG CALLI NG BI RDS FRENCH FRENCH FRENCH HENS)

> (expand '(the 7 samurai))
(THE SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI)

14.9 Write aprocedure called | ocat i on that takes two arguments, aword and a sentence. It should return a number
indicating where in the sentence that word can be found. If the word isn't in the sentence, return #f . If the word
appears more than once, return the location of the first appearance.

> (location '"nme '(you never give ne your noney))
4

14.10 Write the procedure count —adj acent —dupl i cat es that takes a sentence as an argument and returns the
number of words in the sentence that are immediately followed by the same word:

> (count —adj acent—duplicates '(y ab b adabbadoo))
3

> (count —adj acent —dupl i cates ' (yeah yeah yeah))
2

14.11 Write the procedurer enove—adj acent —dupl i cat es that takes a sentence as argument and returns the
same sentence but with any word that's immediately followed by the same word removed:

Page 231

> (renove-adj acent—duplicates '(y a b badabbadoo))
(YABADABADO

> (renove-adj acent —duplicates ' (yeah yeah yeah))
(YEAH)

14.12 Write a procedure pr ogr essi ve—squar es? that takes a sentence of numbers asits argument. It should
return #t if each number (other than the first) is the square of the number beforeit:

> (progressive-squares? '(3 9 81 6561))
#T

> (progressive-squares? ' (25 36 49 64))
#F

14.13 What doesthe pi gl procedure from Chapter 11 do if you invoke it with aword like "frzzmlpt" that has no
vowels? Fix it so that it returns "frzzmlptay."

14.14 Write a predicate sanme—shape? that takes two sentences as arguments. It should return #t if two conditions

are met: The two sentences must have the same number of words, and each word of the first sentence must have the
same number of |etters as the word in the corresponding position in the second sentence.

> (sane-shape? '(the fool on the hill) '"(you like nme too nuch))
#T

> (sane-shape? '(the fool on the hill) '(and your bird can sing))
#F

14.15 Write mer ge, aprocedure that takes two sentences of numbers as arguments. Each sentence must consist of
numbersin increasing order. Mer ge should return a single sentence containing all of the numbers, in order. (We'l use
thisin the next chapter as part of a sorting algorithm.)

> (merge ‘(4 7 18 40 99) '(3 6 9 12 24 36 50))
(34679 12 18 24 36 40 50 99)

Page 232

14.16 Write aprocedure syl | abl es that takes aword as its argument and returns the number of syllablesin the

word, counted according to the following rule: the number of syllablesisthe number of vowels, except that a group of
consecutive vowels counts as one. For example, in the word "soaring," the group "oa"' represents one syllable and the
vowel "i" represents a second one.

Be sure to choose test cases that expose likely failures of your procedure. For example, what if the word ends with a
vowel? What if it ends with two vowelsin arow? What if it has more than two consecutive vowels?

(Of coursethisruleisn't good enough. It doesn't deal with things like silent "e"sthat don't create a syllable ("like"),
consecutive vowels that don't form a diphthong ("cooperate”), letterslike"y" that are vowels only sometimes, etc. If
you get bored, see whether you can teach the program to recognize some of these special cases.)

Page 233

Project:
Spelling Names of Huge Numbers

Write a procedure nunber —nane that takes a positive integer argument and returns a sentence containing that
number spelled out in words:

> (nunber—-name 5513345)
(FI'VE M LLI ON FI VE HUNDRED THI RTEEN THOUSAND THREE HUNDRED FORTY Fl VE)

> (nunber—name (factorial 20))

(TWO QUI NTI LLI ON FOUR HUNDRED THI RTY TWDO QUADRI LLI ON NI NE HUNDRED TWD
TRILLI ON EI GHT BI LLI ON ONE HUNDRED SEVENTY SI X M LLI ON SI X HUNDRED
FORTY THOUSAND)

There are some special cases you will need to consider:

* Numbers in which some particular digit is zero

* Numbers like 1,000,529 in which an entire group of three digitsis zero.
* Numbersin the teens.

Here are two hints. First, split the number into groups of three digits, going from right to left. Also, use the sentence

"(thousand mllion billion trillion quadrillion quintillion
sextillion septillion octillion nonillion decillion)

Y ou can write this bottom-up or top-down. To work bottom-up, pick a subtask and get that working before you tackle
the overall structure of the problem. For example, write a procedure that returns the word FI FTEEN given the

argument 15.

To work top-down, start by writing nunber —nane, freely assuming the existence of whatever helper procedures you

like. Y ou can begin debugging by writing stub procedures that fit into the overall program but don't really do their job
correctly. For example, as an intermediate stage you might end up with a program that works like this:

> (nunber—-name 1428425) 7, internedi ate version
(1 MLLION 428 THOUSAND 425)

Page 234

Zoom in on some parts of afractal and you'll see a miniature version of the whole thing.

Page 235

15—
Advanced Recursion

By now you've had a good deal of experience with straightforward recursive problems, and we hope you feel
comfortable with them. In this chapter, we present some more challenging problems. But the same leap of faith method
that we used for easier problemsis still our basic approach.

Example: Sort

First we'll consider the example of sorting a sentence. The argument will be any sentence; our procedure will return a
sentence with the same words in alphabetical order.

> (sort '(i wanna be your man))
(BE I MAN WANNA YOUR)

Well usethe bef or e? primitive to decide if one word comes before another word a phabetically:

> (before? 'starr 'best)
#F

How are we going to think about this problem recursively? Suppose that we're given a sentence to sort. A relatively
easy subproblem isto find the word that ought to come first in the sorted sentence; we'll writeear | 1 est —wor d later

to do this.

Once we've found that word, we just need to put it in front of the sorted version of the rest of the sentence. Thisisour
leap of faith: We're going to assume that we can already sort this smaller sentence. The agorithm we've described is
called selection sort.

Page 236

Another subproblem isto find the "rest of the sentence"—all the words except for the earliest. But in Exercise 14.1 you
wrote a function r enove—once that takes aword and a sentence and returns the sentence with that word removed.
(We don't want to use r enove, which removes all copies of the word, because our argument sentence might include
the same word twice.)

Let's say in Scheme what we've figured out so far:

(define (sort sent) ;; unfinished
(se (earliest—word sent)
(sort (renpve-once (earliest—word sent) sent))))

We need to add a base case. The smallest sentenceis () , which is already sorted.

(define (sort sent)
(if (enmpty? sent)
()
(se (earliest—word sent)
(sort (renmove—once (earliest—word sent) sent)))))

We have one unfinished task: finding the earliest word of the argument.

(define (earliest—word sent)
(earliest—helper (first sent) (bf sent)))

(define (earliest—hel per so—far rest)
(cond ((enpty? rest) so-far)
((before? so—far (first rest))
(earliest—hel per so-far (bf rest)))

(el se (earliest—helper (first rest) (bf rest)))))”

For your convenience, here'sr enove—once:

(define (renmove—once wd sent)
(cond ((enpty? sent) '())
((equal ? wd (first sent)) (bf sent))
(el se (se (first sent) (renmpve—once wd (bf sent))))))

* If you've read Part 111, you might instead want to use accunul at e for this purpose:

(define earliest—word sent)
(accumul ate (lanbda (wdl wd2) (if (before? wdl wd2) wdl wd2))
sent))

Page 237

Example: Fr om-Bi nary

We want to take aword of ones and zeros, representing a binary number, and compute the numeric value that it
represents. Each binary digit (or bit) corresponds to a power of two, just as ordinary decimal digits represent powers of
ten. So the binary number 1101 represents (1 x 8) + (1 x 4) + (0 x 2) + (1 x 1) = 13. We want to be able to say

> (from-binary 1101)
13

> (from-binary 111)
-

Where is the smaller, similar subproblem? Probably the most obvious thing to try is our usual trick of dividing the
argument into itsf i r st anditsbut f i r st . Suppose we divide the binary number 1101 that way. We make the leap

of faith by assuming that we can trandlate the butfirst, 101, into its binary value 5. What do we have to add for the
leftmost 1? It contributes 8 to the total, because it's three bits away from the right end of the number, so it must be
multiplied by 23. We could write thisidea as follows:

(define (from-binary bits) 7, i nconplete

(+ (* (first bits) (expt 2 (count (bf bits))))
(from-binary (bf bits))))

That is, we multiply thef i r st bit by a power of two depending on the number of bits remaining, then we add that to
the result of the recursive call.

As usual, we have written the algorithm for the recursive case before figuring out the base case. But it's pretty easy; a
number with no bits (an empty word) has the value zero.”

(define (from-binary bits)
(if (enmpty? bits)
0
(+ (* (first bits) (expt 2 (count (bf bits))))
(from-binary (bf bits)))))

Although this procedure is correct, it's worth noting that a more efficient version can be written by dissecting the
number from right to left. Asyou'll see, we can then avoid the callsto expt , which are expensive because we have to

do more multiplication than should be necessary.

* A more straightforward base case would be a one-bit number, but we've reduced that to this more elegant base case,
following the principle we discussed on page 197.

Page 238

Suppose we want to find the value of the binary number 1101. Thebut | ast of thisnumber, 110, has the value six.
To get the value of the entire number, we double the six (because 1100 would have the value 12, just as in ordinary
decimal numbers 430 is ten times 43) and then add the rightmost bit to get 13. Here's the new version:

(define (from-binary bits)
(if (enmpty? bits)
0
(+ (* (frombinary (bl bits)) 2)
(last bits))))

This version may look alittle unusual. We usually combine the value returned by the recursive call with some function
of the current element. Thistime, we are combining the current element itself with afunction of the recursive return
value. Y ou may want to trace this procedure to see how the intermediate return values contribute to the final result.

Example: Mer gesor t

Let's go back to the problem of sorting a sentence. It turns out that sorting one element at atime, asin selection sort,
isn't the fastest possible approach. One of the fastest sorting algorithmsiis called mergesort, and it works like this: In
order to mergesort a sentence, divide the sentence into two equal halves and recursively sort each half. Then take the
two sorted subsentences and merge them together, that is, create one long sorted sentence that contains al the words of
the two halves. The base case is that an empty sentence or a one-word sentence is already sorted.

(define (mergesort sent)
(if (<= (count sent) 1)
sent
(merge (mergesort (one—half sent))
(nmergesort (other—half sent)))))

The leap of faith here isthe ideathat we can magically mer gesort the halves of the sentence. If you try to trace this
through step by step, or wonder exactly what happens at what time, then this algorithm may be very confusing. But if
you just believe that the recursive calls will do exactly the right thing, then it's much easier to understand this program.
The key point isthat if the two smaller pieces have already been sorted, it's pretty easy to merge them while keeping
the result in order.

We still need some helper procedures. Y ou wrote ner ge in Exercise 14.15. It uses the following technique: Compare

the first words of the two sentences. Let's say the first word of the sentence on the left is smaller. Then the first word of
the return valueisthe

Page 239

first word of the sentence on the left. The rest of the return value comes from recursively merging thebut f i r st of

the left sentence with the entire right sentence. (It's precisely the opposite of thisif the first word of the other sentence
issmaller.)

(define (nmerge left right)
(cond ((enpty? left) right)
((enmpty? right) left)
((before? (first left) (first right))
(se (first left) (nerge (bf left) right)))
(else (se (first right) (merge left (bf right))))))

Now we have to writeone—hal f and ot her —hal f . One of the easiest ways to do thisisto have one—hal f return
the elements in odd-numbered positions, and have ot her —hal f return the elementsin even-numbered positions.
These are the same as the procedures odds (from Exercise 14.4) and evens (from Chapter 12).

(define (one-half sent)
(if (<= (count sent) 1)
sent
(se (first sent) (one-—half (bf (bf sent))))))

(define (other-half sent)
(if (<= (count sent) 1)
“(0)
(se (first (bf sent)) (other—half (bf (bf sent))))))

Example: Subset s

We're now going to attack a much harder problem. We want to know all the subsets of the letters of aword—that is,
words that can be formed from the original word by crossing out some (maybe zero) of the letters. For example, if we
start with ashort word liker at , thesubsetsarer, a, t, ra, rt, at, rat, andtheemptyword("").As

the word gets longer, the number of subsets gets bigger very quickly.”

As with many problems about words, we'll try assuming that we can find the subsets of the but f i r st of our word. In
other words, we're hoping to find a solution that will include an expression like

(subsets (bf wd))

* Try writing down all the subsets of afive-letter word if you don't believe us.

Page 240

Let's actually take a four-letter word and look at its subsets. We'll pick br at , because we already know the subsets of
itsbut fi r st. Hereare the subsets of br at :

""" br at br babt rart at bra brt bat rat brat

Y ou might notice that many of these subsets are also subsets of r at . In fact, if you think about it, all of the subsets of
rat arealso subsetsof br at . Sothewordsin (subsets 'rat) aresome of the words we need for
(subsets '"brat).

L et's separate those out and ook at the ones |eft over:

r at subsets: " r a t ra rt at r at

others: b br ba bt br a brt bat br at

Right about now you're probably thinking, "They've pulled arabbit out of a hat, the way my math teacher always
does." The words that aren't subsets of r at all start with b, followed by something that is a subset of r at . You may
be thinking that you never would have thought of that yourself. But we're just following the method: Look at the
smaller case and see how it fits into the original problem. It's not so different from what happened with downup.

Now all we haveto doisfigure out how to say in Scheme, "Put ab in front of every word in this sentence." Thisisa
straightforward example of theever y pattern:

(define (prepend-every letter sent)
(if (enpty? sent)
()
(se (word letter (first sent))
(prepend—every letter (bf sent)))))

Theway we'll usethisin(subsets ' brat) is

(prepend—every 'b (subsets 'rat))

Of course in the general case we won't have b and r at in our program, but instead will refer to the formal parameter:

(define (subsets wd) ;; first version
(se (subsets (bf wd))
(prepend-every (first wd) (subsets (bf wd)))))

We till need abase case. By now you're accustomed to the idea of using an empty word as the base case. It may be
strange to think of the empty word as a set in the first place, let aloneto try to find its subsets. But a set of zero
elementsis aperfectly good set, and it's the smallest one possible.

Page 241

The empty set has only one subset, the empty set itself. What should subset s of the empty word return? It's easy to
make a mistake here and return the empty word itself. But we want subset s to return a sentence, containing all the

subsets, and we should stick with returning a sentence even in the simple case.” (This mistake would come from not
thinking about the range of our function, which is sentences. Thisiswhy we put so much effort into learning about
domains and ranges in Chapter 2.) So welll return a sentence containing one (empty) word to represent the one subset.

(define (subsets wd) ;; second version
(if (enmpty? wd)
(Se n ll)

(se (subsets (bf wd))
(prepend—every (first wd) (subsets (bf wd))))))

This program is entirely correct. Because it uses two identical recursive calls, however, it'salot slower than necessary.
Wecanusel et to do the recursive subproblem only once:**

(define (subsets wd)
(if (enpty? wd)
(se " ")
(let ((smaller (subsets (bf wd))))

(se smaller
(prepend—every (first wd) smaller)))))

Pitfalls

[0 We've aready mentioned the need to be careful about the value returned in the base case. The subset s procedure

is particularly error-prone because the correct value, a sentence containing the empty word, is quite unusual. An empty
subset isn't the same as no subsets at al!

[0 Sometimes you write arecursive procedure with a correct recursive case and a reasonabl e base case, but the
program still doesn't work. The trouble may be that the base case doesn't quite catch al of the ways in which the
problem can get smaller. A

* We discussed this point in a pitfall in Chapter 12.

** How come we're worrying about efficiency all of asudden? We really did pull this out of a hat. The thing is, it'salot
slower without the | et . Adding one letter to the length of aword doubles the time required to find its subsets; adding 10
letters multiplies the time by about 1000.

Page 242
second base case may be needed. For example, in mer gesor t , why did we write the following line?

(<= (count sent) 1)

This tests for two base cases, empty sentences and one-word sentences, whereas in most other examples the base case
isjust an empty sentence. Suppose the base case test were (enpt y? sent) and suppose we invoke mer gesor t
with aone-word sentence, (t est) . We would end up trying to compute the expression

(merge (nergesort (one-half '(test)))
(nmergesort (other—half '(test))))

If you look back at the definitions of one—hal f and ot her —hal f , you'll see that thisis equivalent to

(merge (nmergesort '(test)) (mergesort '()))

The first argument to mer ge is the same expression we started with! Here is a situation in which the problem doesn't

get smaller in arecursive call. Although we've been trying to avoid complicated base cases, in this situation a
straightforward base case isn't enough. To avoid an infinite recursion, we must have two base cases.

Another exampleisthef i b procedure from Chapter 13. Suppose it were defined like this:

(define (fib n) 7, wrong!
(if (=n1)
1
(+ (fib (= n 1))
(fib (= n 2)))))

It would be easy to make this mistake, because everybody knows that in arecursion dealing with numbers, the base
case isthe smallest possible number. But inf i b, each computation depends on two smaller values, and we discover

that we need two base cases.

[0 The technique of recursion is often used to do something repetitively, but don't get the idea that the word
"recursion” means repetition. Recursion is a technique in which a procedure invokes itself. We do use recursion to
solve repetitive problems, but don't confuse the method with the ends it achieves. In particular, if you've programmed
in other languages that have special-purpose looping mechanisms (the ones with nameslikef or and whi | e), those

aren't recursive. Conversely, not every recursive procedure carries out a repetition.

Page 243

Exercises
15.1 Writeaproceduret o—bi nary:

> (to-binary 9)
1001

> (to-binary 23)
10111

15.2 A "palindrome" is a sentence that reads the same backward as forward. Write a predicate pal i ndr one? that
takes a sentence as argument and decides whether it is a palindrome. For example:

> (palindronme? '(flee to ne renpte elf))
#T

> (palindronme? '(flee to ne renote control))
#F

Do not reverse any words or sentencesin your solution.

15.3 Write aprocedure subst r i ngs that takes aword as its argument. It should return a sentence containing all of

the substrings of the argument. A substring is a subset whose |l etters come consecutively in the original word. For
example, the word bat isasubset, but not a substring, of br at .

15.4 Write a predicate procedure subst r i ng? that takes two words as arguments and returns #t if and only if the
first word is a substring of the second. (See Exercise 15.3 for the definition of a substring.)

Be careful about cases in which you encounter a"false start,” like this:

> (substring? 'ssip 'm ssissippi)
#T

and also about subsets that don't appear as consecutive lettersin the second word:

> (substring? '"msip 'mssissippi)
#F

Page 244

15.5 Suppose you have a phone number, such as 223-5766, and you'd like to figure out a clever way to spell itin
letters for your friends to remember. Each digit corresponds to three possible letters. For example, the digit 2
corresponds to the letters A, B, and C. Write a procedure that takes a number as argument and returns a sentence of all
the possible spellings:

> (phone-spel | 2235766)
(AADJPMM AADJPWN ... CCFLSOO

(We're not showing you all 2187 words in this sentence.) Y ou may assume there are no zeros or ones in the number,
since those don't have letters.

Hint: This problem has alot in common with the subsets example.

15.6 Let's say agladiator killsaroach. If we want to talk about the roach, we say "the roach the gladiator killed." But if
we want to talk about the gladiator, we say "the gladiator that killed the roach.”

People are pretty good at understanding even rather long sentences as long as they're straightforward: "Thisis the
farmer who kept the cock that waked the priest that married the man that kissed the maiden that milked the cow that
tossed the dog that worried the cat that killed the rat that ate the malt that lay in the house that Jack built." But even a
short nested sentence is confusing: "Thisis the rat the cat the dog worried killed." Which rat was that?

Write aprocedure unscr anbl e that takes a nested sentence as argument and returns a straightforward sentence
about the same cast of characters:

> (unscranble '(this is the roach the gladiator killed))
(THIS I S THE GLADI ATOR THAT KI LLED THE ROACH)

> (unscranble '(this is the rat the cat the dog the boy the
girl saw owned chased bit))

(THHS IS THE G RL THAT SAW THE BOY THAT ONNED THE DOG THAT
CHASED THE CAT THAT BI T THE RAT)

Y ou may assume that the argument has exactly the structure of these examples, with no specia cases like "that lay in
the house" or "that Jack built."

Page 245

Project:
Scoring Poker Hands

Theideaof this project isto invent a procedure poker —val ue that works like this:

> (poker—value '(h4 s4 c6 s6 c4))
(FULL HOUSE — FOURS OVER Sl XES)

> (poker—value ' (h7 s3 ¢c5 c4 d6))
(SEVEN-HI GH STRAI GHT)

> (poker—value '(dqg di10 dj da dk))
(ROYAL FLUSH — DI AMONDS)

> (poker—value ' (da d6 d3 c9 h6))
(PAIR OF SI XES)

Asyou can see, we are representing cards and hands just as in the Bridge project, except that poker hands have only
five cards.”

Here are the various kinds of poker hands, in decreasing order of value:
 Royal flush: ten, jack, queen, king, and ace, all of the same suit

« Straight flush: five cards of sequential rank, all of the same suit

» Four of akind: four cards of the same rank

* Full house: three cards of the same rank, and two of a second rank

* Flush: five cards of the same suit, not sequential rank

« Straight: five cards of sequentia rank, not al of the same suit

» Three of akind: three cards of the same rank, no other matches

* Later on we'll think about seven-card variants of poker.

Page 246
» Two pair: two pairs of cards, of two different ranks
» Pair: two cards of the same rank, no other matches
* Nothing: none of the above

An ace can be the lowest card of a straight (ace, 2, 3, 4, 5) or the highest card of a straight (ten, jack, queen, king, ace),
but a straight can't "wrap around"; a hand with queen, king, ace, 2, 3 would be worthless (unlessit's a flush).

Notice that most of the hand categories are either entirely about the ranks of the cards (pairs, straight, full house, etc.)
or entirely about the suits (flush). It's a good idea to begin your program by separating the rank information and the
suit information. To check for a straight flush or royal flush, you'll have to consider both kinds of information.

In what form do you want the suit information? Really, al you need is atrue or false value indicating whether or not
the hand is a flush, because there aren't any poker categories like "three of one suit and two of another."

What about ranks? There are two kinds of hand categories involving ranks: the ones about equal ranks (pairs, full
house) and the ones about sequential ranks (straight). Y ou might therefore want the rank information in two forms. A
sentence containing all of the ranksin the hand, in sorted order, will make it easier to find a straight. (You still have to
be careful about aces.)

For the equal-rank categories, what you want is some data structure that will let you ask questions like "are there three
cards of the same rank in this hand?' We ended up using a representation like this:

> (conpute-ranks '(q 3 4 3 4))
(ONE Q TWD 3 TWO 4)

One dightly tricky aspect of this solution is that we spelled out the numbers of cards, one tof our , instead of using
themoreobvious(1 Q 2 3 2 4).Thereason, asyou can probably tell just by looking at the latter version, is that

it would lead to confusion between the names of the ranks, most of which are digits, and the numbers of occurrences,
which are aso digits. More specifically, by spelling out the numbers of occurrences, we can use nenber ? to ask

easily if thereis athree-of-a-kind rank in the hand.

You may find it easier to begin by writing aversion that returns only the name of a category, such as
three of a ki nd, andonly after you get that to work, revise it to give more specific results such as

t hr ee si xes.

Page 247

ExtraWork for Hotshots

In some versions of poker, each player gets seven cards and can choose any five of the seven to make a hand. How
would it change your program if the argument were a sentence of seven cards? (For example, in five-card poker there
isonly one possible category for a hand, but in seven-card you have to pick the best category that can be made from
your cards.) Fix your program so that it works for both five-card and seven-card hands.

Another possible modification to the program isto allow for playing with "wild" cards. If you play with "threes wild,"
it meansthat if thereisathreein your hand you're allowed to pretend it's whatever card you like. For this modification,
your program will require a second argument indicating which cards are wild. (When you play with wild cards, there's
the possibility of having five of akind. This beats a straight flush.)

Page 248

16—
Example:

Pattern Matcher

+
+
+ + |7
+ + +
+X
. +
+ |+
o |
+ + , +
+ |
i + I

+
+ ‘\"'-t‘.
¥
+
+
+ P
+ 4+ |
He |2
X 4
+
+ ++|

63

L

In each set, how do the ones on the |eft differ
from the ones on the right?

Page 249

It's time for another extended example in which we use the Scheme tools we've been learning to accomplish something

practical. We'll start by describing how the program will work before we talk about how to implement it.

Y ou can load our program into Scheme by typing

(1 oad "match. scnt)

Problem Description

A pattern matcher is a commonly used procedure whose job is to compare a sentence to arange of possibilities. An
example may make this clear:

> (match ' (* me *) '(love ne do))
#T

> (match ' (* me *) '(please please ne))
#T

> (match "(* me *) '"(inny life))
#F

Thefirst argument, (* e *),isapattern. Inthe pattern, each asterisk (*) means "any number of words, including

no words at all." So the entire pattern matches any sentence that contains the word "me" anywhere within it. Y ou can
think of mat ch asamore general form of equal ? in the sense that it compares two sentences and tells us whether

they're the same, but with a broader meaning of "the same."

Page 250

Our pattern matcher will accept patterns more complicated than this first example. There are four special characters
that indicate unspecified parts of a pattern, depending on the number of words that should be allowed:

? At most one word.
I Exactly one word.
& At least one word.
* Any number of words.

These characters are meant to be somewhat mnemonic. The question mark means "maybe there'saword." The
exclamation point means "precisely oneword!" (And it'svertical, just like the digit 1, sort of.) The ampersand, which
ordinarily means "and," indicates that we're matching aword and maybe more. The asterisk doesn't have any
mnemonic value, but it's what everyone uses for a general matching indicator anyway.

We can give a name to the collection of words that match an unspecified part of a pattern by including in the pattern a
word that starts with one of the four special characters and continues with the name. If the match succeeds, mat ch

will return a sentence containing these names and the corresponding values from the sentence:

> (match '(*start nme *end) '(love ne do))
(START LOVE ! END DO !)

> (match '(*start me *end) ' (pl ease please ne))
(START PLEASE PLEASE ! END !)

> (match '(mean nr nustard) '(nmean nr nustard))

0)

> (match '(*start me *end) '(in ny life))
FAI LED

In these examples, you see that mat ch doesn't really return #t or #f ; the earlier set of examples showed a simplified
picture. In thefirst of the new examples, the special pattern word * st ar t is alowed to match any number of words,
asindicated by the asterisk. In this case it turned out to match the single word "love.” Mat ch returns aresult that tells

us which words of the sentence match the named special words in the pattern. (We'l call one of these special pattern
words a placeholder.) The exclamation points in the returned value are needed to separate one match from another. (In
the second example, the name end was matched by an empty set of words.) In the third

Page 251

example, the match was successful, but since there were no placehol ders the returned sentence was empty. If the match
is unsuccessful, mat ch returnstheword f ai | ed.”

If the same placeholder name appears more than once in the pattern, then it must be matched by the same word(s) in
the sentence each time:

> (match "(!twice !'other I'twice) '(cry baby cry))
(TWCE CRY ! OTHER BABY !)

> (match '"(!'twice !'other !twice) '(please please ne))
FAI LED

Some patterns might be matchable in more than one way. For example, the invocation

> (match ' (*front *back) '(your nother should know))

might return any of five different correct answers.

(FRONT YOUR MOTHER SHOULD KNOW! BACK !)
(FRONT YOUR MOTHER SHOULD ! BACK KNOW!)
(FRONT YOUR MOTHER ! BACK SHOULD KNOW!)
(FRONT YOUR ! BACK MOTHER SHOULD KNOW!)
(FRONT !' BACK YOUR MOTHER SHOULD KNOW!)

We arbitrarily decide that in such cases the first placeholder should match as many words as possible, so in this case
mat ch will actually return the first of these answers.

Before continuing, you might want to look at the first batch of exercises at the end of this chapter, which are about
using the pattern matcher. (The rest of the exercises are about the implementation, which we'll discuss next.)

Implementation:
When Are Two Sentences Equal?

Our approach to implementation will be to start with something we already know how

* Why not return the sentence if successful or #f otherwise? That would be fine in most versions of Scheme, but as we
mentioned earlier, the empty sentence () isthe same asthe false value #f in some dialects. In those Schemes, a

successfully matched pattern with no named placeholders, for which the program should return an empty sentence,
would be indistinguishable from an unmatched pattern.

Page 252

to write: a predicate that tests whether two sentences are exactly equal. We will add capabilities one at atime until we
reach our goal.

Suppose that Scheme's primitive equal ? function worked only for words and not for sentences. We could write an
equality tester for sentences, like this:

(define (sent—equal ? sentl sent?2)
(cond ((enpty? sentl)
(empty? sent2))
((enmpty? sent2) #f)
((equal ? (first sentl) (first sent2))
(sent—equal ? (bf sentl) (bf sent2)))
(el se #f)))

Two sentences are equal if each word in the first sentence is equal to the corresponding word in the second. They're
unequal if one sentence runs out of words before the other.

Why are we choosing to accept Scheme's primitive word comparison but rewrite the sentence comparison? In our
pattern matcher, a placeholder in the pattern corresponds to a group of words in the sentence. Thereis no kind of
placeholder that matches only part of aword. (It would be possible to implement such placeholders, but we've chosen
not to.) Therefore, we will never need to ask whether aword is"amost equal” to another word.

When Are Two Sentences Nearly Equal?

Pattern matching is just a more general form of thissent —equal ? procedure. Let's write a very simple pattern

matcher that knows only about the "!" special character and doesn't let us name the words that match the exclamation
pointsin the pattern. Well call thisone mat ch? with a question mark because it returns just true or false.

(define (match? pattern sent) ;; first version: ! only
(cond ((enpty? pattern)
(empty? sent))
((enpty? sent) #f)
((equal ? (first pattern) '!)
(match? (bf pattern) (bf sent)))
((equal ? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

Page 253

This program is exactly the same assent —equal ?, except for the highlighted cond clause. We are still comparing

each word of the pattern with the corresponding word of the sentence, but now an exclamation mark in the pattern
matches any word in the sentence. (I f i rst of patt er nisanexclamation mark, we don't evenlook at f i r st of

sent.)

Our strategy in the next several sections will be to expand the pattern matcher by implementing the remaining special
characters, then finaly adding the ability to name the placeholders. For now, when we say something like "the *

placeholder," we mean the placeholder consisting of the asterisk alone. Later, after we add named placeholders, the
same procedures will implement any placeholder that begins with an asterisk.

Matching with Alter natives

The! matching is not much harder than sent —equal ?, becauseit's still the case that one word of the pattern must
match one word of the sentence. When we introduce the ? option, the structure of the program must be more

complicated, because a question mark in the pattern might or might not be paired up with aword in the sentence. In
other words, the pattern and the sentence might match without being the same length.

(define (match? pattern sent) ;; second version: ! and ?
(cond ((enpty? pattern)
(empty? sent))
((equal ? (first pattern) '?)
(if (empty? sent)
(match? (bf pattern) '())
(or (match? (bf pattern) (bf sent))
(rmatch? (bf pattern) sent))))
((enmpty? sent) #f)
((equal ? (first pattern) '!)
(match? (bf pattern) (bf sent)))
((equal ? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(el se #f)))

Note that the new cond clause comes before the check to seeif sent isempty. That's because sent might be empty
and a pattern of (?) would still match it. But if the sentence is empty, we know that the question mark doesn't match a
word, so we just have to make sure that the but f i r st of the pattern contains nothing but question marks. (We don't
have a predicate named al | —quest i on—nar ks ?; instead, we use mat ch? recursively to make thistest.)

Page 254

In general, a question mark in the pattern has to match either one word or zero words in the sentence. How do we
decide? Our ruleisthat each placeholder should match as many words as possible, so we prefer to match one word if
we can. But allowing the question mark to match aword might prevent the rest of the pattern from matching the rest of
the sentence.

Compare these two examples:

> (match? ' (? please ne) '(pl ease please ne))
#T

> (match? ' (? please ne) '(please ne))
#T

In the first case, the first thing in the pattern is a question mark and the first thing in the sentence is "please,” and they
match. That leaves "please me" in the pattern to match "please me" in the sentence.

In the second case, we again have a question mark as the first thing in the pattern and "please” as the first thing in the
sentence. But thistime, we had better not use up the "please” in the sentence, because that will only leave "me" to
match "please me." In this case the question mark has to match no words.

To you, these examples probably ook obvious. That's because you're a human being, and you can take in the entire
pattern and the entire sentence all at once. Scheme isn't as smart as you are; it has to compare words one pair at atime.
To Scheme, the processing of both examples begins with question mark as the first word of the pattern and "please” as
the first word of the sentence. The pattern matcher has to consider both cases.

How does the procedure consider both cases? Look at the invocation of or by the mat ch? procedure. There are two

aternatives; if either turns out true, the match succeeds. One is that we try to match the question mark with the first
word of the sentence just aswe matched ! in our earlier example—by making arecursive call onthebut f i r st sof

the pattern and sentence. If that returns true, then the question mark matches the first word.

The second alternative that can make the match succeed isarecursive call to mat ch? onthebut fi r st of the
pattern and the entire sentence; this corresponds to matching

Page 255
the ? against nothing.”
Let'strace mat ch? so that you can see how these two cases are handled differently by the program.

> (trace match?)

> (match? ' (? please ne) '(please please ne))

(match? (? please ne) (please please ne))

| (match? (please nme) (please ne)) Try matching ? with pl ease.
| | (match? (nme) (ne))

| | | (match? () ())

| | | #t It works!
|| #

| #t

#t
#T
> (match? ' (? please ne) '(please ne))
(match? (? please ne) (please ne))

| (match? (please ne) (me)) Try matching ? with pl ease.
#f It doesn't work.
(match? (pl ease ne) (please ne)) This tinme, match? with not hing.

I
|
| | (match? (me) (ne))
| | | (match? () ())
|1 #

| | #t

| #t

#t
#T

Backtracking

The program structure that allows for two alternative routes to success has more profound implications than you may
think at first.

When mat ch? sees aquestion mark in the pattern, it has to decide whether or not to "use up" aword of the sentence

by matching it with the question mark. Y ou might wonder, "How does the question mark decide whether to take a
word?' The answer isthat the decision isn't made "by the question mark”; there's nothing about the particular

* Actually, since or isaspecia form, Scheme avoids the need to try the second aternative if the first one succeeds.

Page 256

word that the question mark might match that helps with the decision! Instead, the decision depends on matching what
comes to the right of the question mark.

Compare this situation with the keep recursive pattern. There, too, the procedure makes a decision about the first
word of a sentence, and each alternative leads to arecursive cal for thebut fi r st :

(cond ((enpty? sent) '())
((some—test? (first sent))
(se (first sent) (recursive—call (bf sent))))
(el se (recursive—call (bf sent))))

The differenceis that in the keep pattern the choice between alternatives can be made just by looking at the

immediate situation—the single word that might or might not be chosen; the decision doesn't depend on anything in
the rest of the problem. As aresult, the choice has already been made before any recursive call happens. Therefore,
only one of the recursive callsis actually made, to make choices about the remaining words in the sentence.

Inmat ch?, by contrast, any particular invocation can't make its choice until it knows the result of arecursive
invocation. The result from the recursive call determines the choice made by the caller.

Here'samodel that might help you think about this kind of recursion. Mat ch? sees a question mark in the pattern. It

makes a tentative decision that this question mark should match the first word of the sentence, and it uses arecursive
invocation to see whether that decision allows the rest of the problem to be solved. If so, the tentative choice was
correct. If not, mat ch? tries an alternative decision that the question mark doesn't match aword. This alternative is

till tentative; another recursive call is needed to seeif the rest of the pattern can succeed. If not, the overall match fails.
This structure is called backtracking.

What if there are two question marks in the pattern? Then there are four ways to match the overall pattern. Both
guestion marks can match aword, or only the first question mark, or only the second, or neither. A pattern with severa
placeholders |eads to even more alternatives. A pattern with three question marks will have eight alternatives. (All
three match words, the first two do but the third doesn't, and so on.) A pattern with 10 question marks will have 1024
alternatives. How can mat ch? try all these alternatives? The procedure seems to make only one two-way choice; how

can it accomplish afour-way or many-way decision?

Page 257

The secret is the same as the usual secret of recursion: Most of the work is done in recursive calls. We take a leap of
faith that recursive invocations will take care of the decisions concerning question marks later in the pattern. Think
about it using the backtracking model. Let's suppose there are 10 question marksin the pattern. When mat ch?

encounters the leftmost question mark, it makes a tentative decision to match the question mark with aword of the
sentence. To test whether this choice can work, mat ch? invokesitself recursively on a pattern with nine question

marks. By the leap of faith, the recursive invocation will examine 512 ways to match question marks with words—half
of the total number. If one of these 512 works, we're finished. If not, the original mat ch? invocation changes its

tentative choice, deciding instead not to match its question mark (the leftmost one) with aword of the sentence.
Another recursive call is made based on that decision, and that recursive call checks out the remaining 512 possibilities.

By the way, the program doesn't always have to try all of the different combinations of question marks matching or not
matching words separately. For example, if the problemis

(match? "(ab ???27?) '"(xyzwpaq))

then the very first comparison discoversthat a is different from x, so none of the 16 possible arrangements about
question marks matching or not matching words will make a difference.

Here are some traced examples involving patterns with two question marks, to show how the result of backtracking
depends on the individual problem.

> (match? '(? ? foo) '(bar foo))
(match? (? ? foo) (bar foo))
(match? (? foo) (foo))

| (match? (foo) ())

| #f

| (match? (foo) (foo))

| | (match? () ())

|| #

| #t

#t

*xHE—

t
T
In thisfirst example, the first question mark tries to match the word bar , but it can't tell whether or not that match will

succeed until the recursive call returns. In the recursive call, the second question mark tries to match the word f 00,
and fails. Then the second

Page 258

question mark tries again, this time matching nothing, and succeeds. Therefore, the first question mark can report
success, it never hasto try arecursive call in which it doesn't match aword.

In our second example, each question mark will have to try both alternatives, matching and then not matching a word,
before the overall match succeeds.

> (match? '(? ? foo bar) '(foo bar))
(match? (? ? foo bar) (foo bar))

| (match? (? foo bar) (bar))

| | (match? (foo bar) ())

| | #f

| | (match? (foo bar) (bar))

| | #f

| #f

| (match? (? foo bar) (foo bar))
| | (match? (foo bar) (bar))

| | #f

| | (match? (foo bar) (foo bar))
| | | (match? (bar) (bar))

| | | | (match? () ())

| #

| | #t

|| #t

| #t

#t
#T
The first question mark tries to match the word f 00 in the sentence, leaving the pattern (? f oo bar) to match
(‘bar) . The second question mark will try both matching and not matching a word, but neither succeeds. Therefore,
the first question mark tries again, this time not matching aword. The second question mark first tries matching f oo,

and when that fails, tries not matching anything. This last attempt is successful.

In the previous example, every question mark's first attempt failed. The following example illustrates the opposite
case, in which every question mark's first attempt succeeds.

Page 259

> (match? '(? ? baz) '(foo bar baz))
(match? (? ? baz) (foo bar baz))

| (match? (? baz) (bar baz))

| | (match? (baz) (baz))
| | | (match? () ())

| | #t

|| #

| #t

#t
#t

The first question mark matchesf 00; the second matches bar .

If the sentence is shorter than the pattern, we may end up trying to match a pattern against an empty sentence. Thisis
much easier than the general problem, because there aren't two alternatives; a question mark has no word in the
sentence to match.

> (match? ' (? ? foo) '())
(match? (? ? foo) ())

| (match? (? foo) ())

| | (match? (foo) ())
|| #

| #f

#f

#f

Each question mark knows right away that it had better not try to match aword, so we never have to backtrack.

Matching Several Words

The next placeholder we'll implement is* . The order in which we're implementing these placeholders was chosen so
that each new version increases the variability in the number of words a placeholder can match. The! placeholder was

very easy because it always matches exactly one word; it's hardly different at all from a non-placeholder in the pattern.
Implementing ? was more complicated because there were two alternatives to consider. But for * , we might match any

number of words, up to the entire rest of the sentence.

Our strategy will be a generalization of the ? strategy: Start with a"greedy" match, and then, if arecursive cal tells us
that the remaining part of the sentence can't match the rest of the pattern, try aless greedy match.

Page 260

The difference between ? and * isthat ? allows only two possible match lengths, zero and one. Therefore, these two
cases can be checked with two explicit subexpressions of an or expression. In the more general case of *, any length

is possible, so we can't check every possibility separately. Instead, asin any problem of unknown size, we use
recursion. First we try the longest possible match; if that fails because the rest of the pattern can't be matched, a
recursive call tries the next-longest match. If we get all the way down to an empty match for the* and still can't match

the rest of the pattern, then we return #f .

(define (match? pattern sent) ;; third version: !, ?, and *
(cond ((enpty? pattern)
(empty? sent))
((equal ? (first pattern) '?)
(if (enmpty? sent)
(match? (bf pattern) '())
(or (match? (bf pattern) (bf sent))
(match? (bf pattern) sent))))
((equal ? (first pattern) '*)
(*-l ongest —match (bf pattern) sent))
((enmpty? sent) #f)
((equal ? (first pattern) '!)
(match? (bf pattern) (bf sent)))
((equal ? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(el se #f)))

(define (*-longest—match pattern-rest sent)
(*—1 m-hel per pattern-rest sent '()))

(define (*-I m-hel per pattern-rest sent-matched sent—-unnat ched)
(cond ((match? pattern—rest sent—unmatched) #t)
((enmpty? sent—nmat ched) #f)
(el se (*-I m-hel per pattern-rest
(bl sent—nmat ched)
(se (last sent—matched) sent—unmatched)))))

If an asterisk isfound in the pattern, mat ch? invokes* —| ongest —mat ch, which carries out this backtracking
approach.

The real work isdone by *—| m-hel per , which has three arguments. The first argument is the still-to-be-matched
part of the pattern, following the * placeholder that we're trying to match now. Sent —mat ched isthe part of the
sentence that we're considering as a candidate to match the * placeholder. Sent —unmat ched is

Page 261

the remainder of the sentence, following the wordsin sent —mat ched; it must match pat t er n—r est .

Since we're trying to find the longest possible match, * —I ongest —mat ch chooses the entire sentence as the first
attempt for sent —mat ched. Since sent —mat ched isusing up the entire sentence, the initial value of sent —
unmat ched isempty. Theonly job of *—I ongest —mat ch isto invoke * —I m-hel per with theseinitial
arguments. On each recursive invocation, * —I m-hel per shortenssent —mat ched by one word and accordingly
lengthens sent —unmat ched.

Here's an example in which the * placeholder tries to match four words, then three words, and finally succeeds with
two words:

> (trace match? *-l ongest—mat ch *—I m-hel per)

> (match? ' (* days night) '(a hard days night))

(match? (* days night) (a hard days night))

| (*-longest—match (days night) (a hard days night))

| (*-I m-hel per (days night) (a hard days night) ())

| (match? (days night) ())

#f

(*—I m-hel per (days night) (a hard days) (night))
| (match? (days night) (night))

#f

(*—I m-hel per (days night) (a hard) (days night))
| (match? (days night) (days night))

| | (match? (night) (night))

| | | (match? () ())

| #t

|| #

| #t

#t

|
I
I
I
|
I
I
I
|
#t

I
I
I
|
I
I
I
|
I
I
I
|
I
#

I
|
I
|
I
I
I
|
I
I
I
|
I
I
| t
#

—

|
|
I
I
I
|
I
I
I
|
I
I
I
|
I
I
|
#
#

—

Combining the Placeholders

We have one remaining placeholder, &, which is much like* except that it fails unlessit can match at least one word.
We could, therefore, write a&—1 ongest —mat ch that would be identical to * —| ongest —mat ch except for the
base case of its helper procedure. If sent —mat ched isempty, theresult is#f evenif it would be possible to match
the rest of

Page 262
the pattern against the rest of the sentence. (All we have to do is exchange the first two clauses of thecond.)

(define (&l ongest—match pattern-rest sent)
(&1 m-hel per pattern-rest sent '()))

(define (&Il m-hel per pattern-rest sent—matched sent—-unnat ched)
(cond ((enpty? sent—mat ched) #f)
((mat ch? pattern-rest sent-unmatched) #t)
(el se (&I m-hel per pattern-rest
(bl sent —nmat ched)
(se (last sent—matched) sent—-unmatched)))))

When two procedures are so similar, that's a clue that perhaps they could be combined into one. We could look at the
bodies of these two procedures to find away to combine them textually. But instead, let's step back and think about the
meanings of the placeholders.

The reason that the procedures * —| ongest —nat ch and &l ongest —nat ch are so similar isthat the two
placeholders have almost identical meanings. * means "match as many words as possible"; & means "match as many
words as possible, but at least one." Once we're thinking in these terms, it's plausible to think of ? as meaning "match
as many words as possible, but at most one.” In fact, although thisis a stretch, we can aso describe! similarly:
"Match as many words as possible, but at least one, and at most one.”

Placeholder Minimum size Maximum size

no limit

1

0
1 no limit
0
1 1

WEe'll take advantage of this newly understood similarity to simplify the program by using a single algorithm for all
placeholders.

How do we generalize * —| ongest —mat ch and &1 ongest —mat ch to handle all four cases? There are two kinds
of generalization involved. We'l write aprocedure | ongest —mat ch that will have the same arguments as * —
| ongest —mat ch, plustwo others, one for for the minimum size of the matched text and one for the maximum.

Page 263

Well specify the minimum size with aformal parameter m n. (The corresponding argument will alwaysbe O or 1.)
Longest —nat ch will passthe value of m n downtol m-hel per, which will useit to reject potential matches that
are too short.

Unfortunately, we can't use a number to specify the maximum size, because for * and & there is no maximum. Instead,
| ongest —mat ch hasaformal parameter nax—one? whose valueis#t only for? and! .

Our earlier, special-case versions of | ongest —nmat ch were written for * and &, the placeholders for which max—
one? will befalse. For those placeholders, the new | ongest —mat ch will be just like the earlier versions. Our next
task isto generalize | ongest —mat ch so that it can handle the #t cases.

Think about the meaning of the sent —nat ched and sent —unmat ched parametersin thel m-hel per
procedures. Sent —mat ched means "the longest part of the sentence that this placeholdersis still allowed to match,"”
whilesent —unmat ched contains whatever portion of the sentence has already been disqualified from being
matched by the placeholder.

Consider the behavior of *—| ongest —mat ch when an asterisk is at the beginning of a pattern that we're trying to
match against a seven-word sentence. Initialy, sent —mat ched isthe entire seven-word sentence, and sent —
unmat ched is empty. Then, supposing that doesn't work, sent —mat ched isasix-word sentence, whilesent —
unmat ched contains the remaining word. This continues as long as no match succeeds until, near the end of

| ongest —mat ch'sjob, sent —mat ched isaone-word sentence and sent —unnat ched contains six words. At
this point, the longest possible match for the asterisk is a single word.

This situation is where we want to start in the case of the ? and ! placeholders. So when we're trying to match one of
these placeholders, our initialization procedure won't use the entire sentence as the initial value of sent —mat ched,;
rather, theinitial value of sent —mat ched will be a one-word sentence, and sent —unmat ched will contain the
rest of the sentence.

(define (longest—match pattern—-rest sent mn max—one?) ;; first version
(cond ((enpty? sent)
(and (= nmin 0) (match? pattern-rest sent)))
(max—one?
(I m-hel per pattern-rest (se (first sent)) (bf sent) mn))
(el se (I m-hel per pattern-rest sent '() mn))))

Page 264

(define (I nm-hel per pattern-rest sent—matched sent—-unnatched nin)
(cond ((< (length sent—matched) nin) #f)
((mat ch? pattern-rest sent—-unmatched) #t)
((enpty? sent—mat ched) #f)
(el se (I m-hel per pattern-rest
(bl sent —mat ched)
(se (last sent—matched) sent—-unmat ched)

mn))))

Now we can rewrite mat ch? to usel ongest —nat ch. Mat ch? will delegate the handling of all placeholdersto a
subprocedure mat ch—speci al that will invokel ongest —mat ch with the correct values for min and nax—one?
according to the table.

(define (match? pattern sent) ;; fourth version
(cond ((enpty? pattern)
(empty? sent))
((special? (first pattern))
(mat ch—special (first pattern) (bf pattern) sent))
((enmpty? sent) #f)
((equal ? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(el se #f)))

(define (special? wd) ;; first version
(member? wd "(* & ? 1)))

(define (match—special placehol der pattern-rest sent) ;; first version
(cond ((equal ? pl acehol der '?)
(l ongest —mat ch pattern-rest sent 0 #t))
((equal ? placehol der '!)
(l ongest —mat ch pattern-rest sent 1 #t))
((equal ? pl acehol der ' *)
(l ongest —mat ch pattern-rest sent 0 #f))
((equal ? pl acehol der ' &)
(l ongest—mat ch pattern-rest sent 1 #f))))

Naming the Matched Text

So far we've worked out how to match the four kinds of placeholders and return atrue or false value indicating
whether amatch is possible. Our program is ailmost finished; all we need to make it useful is the facility that will let us
find out which words in the sentence matched each placeholder in the pattern.

Page 265

We don't have to change the overall structure of the program in order to make this work. But most of the proceduresin
the pattern matcher will have to be given an additional argument, the database of placeholder names and values that
have been matched so far.” The formal parameter known—val ues will hold this database. Its value will be a sentence
containing placeholder names followed by the corresponding words and an exclamation point to separate the entries, as
in the examples earlier in the chapter. When we begin the search for a match, we use an empty sentence asthe initial
known-val ues:

(define (match pattern sent)
(mat ch—usi ng—known—val ues pattern sent '()))

(define (match-usi ng—known-val ues pattern sent known-val ues)

-)

Asmat ch—usi ng—known—val ues matches the beginning of a pattern with the beginning of a sentence, it invokes
itself recursively with an expanded known—val ues containing each newly matched placeholder. For example, in
evaluating

(match "(!'twice !'other !twice) '(cry baby cry))

the program will call mat ch—usi ng—known—val ues four times:

pattern sent known-val ues
('twice !other !twce) (cry baby cry))
('Tother 'twi ce) (baby cry) (twice cry !)
('twice) (cry) (twice cry ! other baby !)
() () (twice cry ! other baby !)

In thefirst invocation, wetry to match ! t wi ce against some part of the sentence.

* The word database has two possible meanings in computer science, a broad meaning and a narrow one. The broad
meaning, which we're using here, is arepository of information to which the program periodically adds new items for
later retrieval. The narrow meaning is a collection of information that's manipulated by a database program, which
provides facilities for adding new information, modifying existing entries, selecting entries that match some specified
criterion, and so on. We'll see a database program near the end of the book.

Page 266

Since! matches exactly one word, the only possibility isto match theword cr y. The recursive invocation, therefore,
is made with the first words of the pattern and sentence removed, but with the match betweent wi ce and cr y added
to the database.

Similarly, the second invocation matches! ot her with baby and causes a third invocation with shortened pattern and
sentence but alonger database.

Thethird invocation is alittle different because the pattern contains the placeholder ! t wi ce, but thenamet wi ce is

already in the database. Therefore, this placeholder can't match whatever word happens to be available; it must match
the same word that it matched before. (Our program will have to check for this situation.) Luckily, the sentence does
indeed contain theword cr y at this position.

The final invocation reaches the base case of the recursion, because the pattern is empty. The value that mat ch—
usi ng—known-val ues returnsisthe database in thisinvocation.

TheFinal Version

We're now ready to show you the final version of the program. The program structure is much like what you've seen
before; the main difference is the database of placeholder names and values. The program must add entries to this
database and must look for database entries that were added earlier. Here are the three most important procedures and
how they are changed from the earlier version to implement this capability:

* mat ch—usi ng—known-val ues, essentially the same as what was formerly named mat ch? except for
bookkeeping details.

» mat ch—speci al , similar to the old version, except that it must recognize the case of a placeholder whose name
has already been seen. In this case, the placeholder can match only the same words that it matched before.

* | ongest —nmat ch and | m-hel per, also similar to the old versions, except that they have the additional job of
adding to the database the name and value of any placeholder that they match.

Here are the modified procedures. Compare them to the previous versions.

(define (match pattern sent)
(mat ch—usi ng—known-val ues pattern sent '()))

Page 267

(define (match-usi ng—known-val ues pattern sent known-val ues)
(cond ((enpty? pattern)
(if (empty? sent) known-val ues 'failed))
((special? (first pattern))
(let ((placeholder (first pattern)))
(mat ch—speci al (first placehol der)
(bf pl acehol der)
(bf pattern)
sent
known-val ues)))
((enmpty? sent) 'failed)
((equal ? (first pattern) (first sent))
(mat ch—usi ng—known—-val ues (bf pattern) (bf sent) known-val ues))
(else 'failed))

(define (match—speci al howrany name pattern-rest sent known-val ues)
(let ((old—value (I ookup nanme known-val ues)))
(cond ((not (equal ? ol d-val ue ' no-val ue))
(if (length-ok? ol d-val ue howrany)
(al ready—known—mat ch
ol d—val ue pattern-rest sent known-val ues)
"failed))
((equal ? howrany ' ?)
(l ongest —mat ch nane pattern-rest sent 0 #t known-—val ues))
((equal ? howrany '!)
(1 ongest —mat ch nane pattern-rest sent 1 #t known-val ues))
((equal ? howrany '*)
(1 ongest —mat ch nane pattern-rest sent 0 #f known-val ues))
((equal ? howrany ' &)
(l ongest —mat ch nane pattern-rest sent 1 #f known-—values)))))

(define (longest—match name pattern-rest sent nin nax—one? known-val ues)
(cond ((enpty? sent)
(if (=mn 0)
(mat ch—usi ng—known—val ues pattern—rest
sent
(add nanme ' () known-val ues))
"failed))
(max—one?
(I m-hel per nane pattern-rest (se (first sent))
(bf sent) min known-val ues))
(el se (I m-hel per nanme pattern-rest
sent ' () mn known-val ues))))

Page 268

(define (I m-hel per nane pattern-—rest
sent —nmat ched sent —unmat ched mi n known-val ues)
(if (< (length sent—nat ched) m n)
"failed
(let ((tentative-result (match-usi ng—-known-val ues
patt er n—rest
sent —unmat ched
(add nane sent—mat ched known-val ues))))
(cond ((not (equal? tentative-result 'failed)) tentative-result)
((enpty? sent—mat ched) 'failed)
(el se (I m-hel per nane
patter n-rest
(bl sent —mat ched)
(se (last sent—matched) sent-unmat ched)
m n
known—-val ues))))))

We haven't listed all of the minor procedures that these proceduresinvoke. A complete listing is at the end of the
chapter, but we hope that you have enough confidence about the overall program structure to be able to assume these
small detailswill work. In the next few paragraphs we discuss some of the ways in which the procedures shown here
differ from the earlier versions.

In the invocation of mat ch—speci al wefound it convenient to split the placeholder into its first character, the one
that tells how many words can be matched, and the butfirst, which is the name of the placeholder.

What happensif mat ch—speci al findsthat the nameis already in the database? In this situation, we don't have to
try multiple possibilities for the number of words to match (the usual job of | ongest —nat ch); the placeholder must

match exactly the words that it matched before. In this situation, three things must be true in order for the match to
succeed: (1) Thefirst words of the sent argument must match the old value stored in the database. (2) The partial

pat t er n that remains after this placeholder must match the rest of the sent . (3) The old value must be consistent
with the number of words permitted by the howrmany part of the placeholder. For example, if the pattern is

(*stuff and !stuff)

and the database says that the placeholder * st uf f was matched by three words from the sentence, then the second
placeholder ! st uf f can't possibly be matched because it accepts only one word. Thisthird condition is actually
checked first, by | engt h—ok?, and if we pass that hurdle, the other two conditions are checked by al r eady—
known—nat ch.

Page 269
The only significant changeto | ongest —mat ch isthat it invokesadd to compute an expanded database with the

newly found match added, and it uses the resulting database as an argument to mat ch—usi ng—known-val ues.

Abstract Data Types

Asyou know, a database of known values is represented in this program as a sentence in which the entries are
separated by exclamation points. Where is this representation accomplished in the program you've seen? There's
nothing like

(sent ence ol d—-known-val ues nane value '!)

anywhere in the procedures we've shown. Instead, the program makes reference to the database of known values
through two procedure calls:

(1 ookup nanme known-val ues) ; in mat ch-speci al
(add nanme nmat ched known-val ues) ; in longest—match

Only the procedures| ookup and add manipul ate the database of known values:

(define (lookup nanme known-val ues)
(cond ((enpty? known-—val ues) ' no-val ue)
((equal ? (first known-val ues) nane)
(get —val ue (bf known-val ues)))
(el se (1 ookup nane (skip—val ue known—val ues)))))

(define (get—val ue stuff)
(if (equal? (first stuff) '1!)
“(0)
(se (first stuff) (get—value (bf stuff)))))

(define (skip-value stuff)
(if (equal? (first stuff) '1!)
(bf stuff)
(ski p—val ue (bf stuff))))

(define (add nanme val ue known-val ues)
(if (enpty? nane)
known-val ues
(se known-val ues nane value '!)))

Page 270

These procedures are full of small details. For example, it'salittle tricky to extract the part of a sentence from a name
to the next exclamation point. It's convenient that we could write the more important procedures, such as| ongest —

mat ch, without filling them with these details. Asfar as| ongest —mat ch knows, | ookup and add could be
Scheme primitive procedures. In effect we've created a new datatype, with add asits constructor and | ookup asits
selector.

Types such as theseg, that are invented by a programmer and aren't part of the Scheme language itself, are called
abstract data types. Creating an abstract data type means drawing a barrier between an idea about some kind of
information we want to model in a program and the particular mechanism that we use to represent the information. In
this case, the information is a collection of name-value associations, and the particular mechanism is a sentence with
exclamation points and so on. The pattern matcher doesn't think of the database as a sentence. For example, it would
be silly to trandate the database into Pig Latin or find its acronym.

Just as we distinguish the primitive procedures that Scheme knows all along from the compound procedures that the
Scheme programmer defines, we could use the names "primitive data type" for types such as numbers and Booleans
that are built into Scheme and "compound data type” for ones that the programmer invents by defining selectors and
constructors. But "compound data type" isabit of a pun, because it aso suggests a data type built out of smaller
pieces, just as a compound expression is built of smaller expressions. Perhaps that's why the name "abstract data type"
has become generally accepted. It's connected to the idea of abstraction that we introduced earlier, because in order to
create an abstract data type, we must specify the selectors and constructors and give names to those patterns of
computation.

Backtracking and Known—-Val ues

What happens to the database in cases that require backtracking, where a particular recursive call might be "on the
wrong track"? Let'strace mat ch—usi ng—known—val ues and see what happens. (Well use the little-people model

to discuss this example, and so we're annotating each invocation in the trace with the name of its little person.)

Page 271

> (trace mat ch—usi ng—known-val ues)
> (match '(*start nme *end) '(love ne do))

(mat ch—usi ng—known—val ues (*start nme *end) (love nme do) ()) Mar t ha
(mat ch—usi ng—known—-val ues (nme *end) () (start love nme do !)) Mercuti o
failed
(mat ch—usi ng—known—val ues (ne *end) (do) (start love ne !)) Masayuki
failed
(mat ch—usi ng—known—val ues (ne *end) (ne do) (start love !)) Mohanmmad

| | (match-usi ng—known-values () () (start love ! end do!)) Merlin
| | (start love ! end do !)
| (start love ! end do !)
(start love ! end do !)
(start love ! end do !)
(START LOVE ! END DO !)

I
I
|
I
I
| | (match-usi ng-known-val ues (*end) (do) (start |ove !)) Mae
|
|
I
I

Martha, the first little person shown, has an empty known—val ues. She makes three attempts to match * st ar t
with parts of the sentence. In each case, alittle person is hired with the provisional match in his or her known—

val ues. (Actualy, Martha does not directly hire Mercutio and the others. Martha hiresanmat ch—speci al little
person, who in turn hiresal ongest —mat ch specidlist, who hiresan | m-hel per specialist, who hires Mercutio.

But that added complexity isn't important for the point we're focusing on right now, namely, how backtracking can
work. Pretend Martha hires Mercutio.)

If you don't use the little-people model, but instead think about the program as if there were just one known-val ues
variable, then the backtracking can indeed be very mysterious. Once a provisional match is added to the database, how
isit ever removed? The answer isthat it doesn't work that way. Thereisn't a"the" database. Instead, each little person
has a separate database. If an attempted match fails, the little person who reports the failure just stops working. For
example, Martha hires Mercutio to attempt a match in which the name st art hasthevaluel ove ne do. Mercutio
is unable to complete the match, and reports failure. It is Martha, not Mercutio, who then hires Masayuki to try another
valuefor st ar t . Martha's database hasn't changed, so Martha gives Masayuki a database that reflects the new trial
value but not the old one.

Not every hiring of alittle person starts from an empty database. When amatch is partially successful, the continuation
of the same attempt must benefit from the work that's already been done. So, for example, when Mohammad hires
Mae, and when Mae hires Merlin, each of them passes on an extended database, not an empty one. Specifically, Mae
gives Merlin the new match of the name end with the value do, but also the match of st art with | ove that she was

given by Mohammad.

So as you can see, we don't have to do anything special to keep track of our database when we backtrack; the structure
of the recursion takes care of everything for free.

Page 272

How WeWrotelt

For explanatory purposes we've chosen to present the pieces of this program in adifferent order from the one in which
we actually wrote them. We did implement the easy placeholders (! and ?) before the harder ones. But our program

had provision for a database of names from the beginning.

Thereisno "right" way to approach a programming problem. Our particular approach was determined partly by our
past experience. Each of us had written similar programs before, and we had preconceived ideas about the easy and
hard parts. Y ou might well start at a different point. For example, hereis an elegant small program we'd both been
shown by friends:

(define (match? pattern sent)

(cond ((enpty? pattern) (enpty? sent))
((enmpty? sent)
(and (equal ? (first pattern) '*) (match? (bf pattern) sent)))
((equal ? (first pattern) '*)
(or (match? pattern (bf sent))

(match? (bf pattern) sent)))
(el se (and (equal ? (first pattern) (first sent))
(match? (bf pattern) (bf sent))))))

What's appealing about thisis the funny symmetry of taking the but f i r st of the pattern or of the sentence. That's

not something you'd naturally think of, probably, but once you've worked out how it can work, it affects your
preconceptions when you set out to write a pattern matcher yourself.

Based on that inspiration, we might well have started with the hard cases (such as *), with the idea that once they'rein
place, the easy cases won't change the program structure much.

Complete Program Listing

(define (match pattern sent)
(mat ch—usi ng—known—val ues pattern sent '()))

Page 273

(define (match-usi ng—known-val ues pattern sent known-val ues)
(cond ((enpty? pattern)
(if (enmpty? sent) known-values 'failed))
((special? (first pattern))
(let ((placeholder (first pattern)))
(mat ch—speci al (first placehol der)
(bf pl acehol der)
(bf pattern)
sent
known-val ues)))
((enmpty? sent) 'failed)
((equal ? (first pattern) (first sent))
(mat ch—usi ng—known-val ues (bf pattern) (bf sent) known-val ues))
(else 'failed)))

(define (special? wd)
(menmber? (first wd) "(* & ? 1)))

(define (match-special howrany name pattern-rest sent known-val ues)
(let ((old-value (I ookup nanme known-val ues)))
(cond ((not (equal ? ol d—val ue ' no—-val ue))
(if (length—ok? ol d—val ue howmany)
(al ready—known—mat ch
ol d—-val ue pattern-rest sent known-val ues)
'failed))
((equal ? howrany ' ?)
(1 ongest —mat ch nane pattern-rest sent 0 #t known-val ues))
((equal ? howrany '!)
(1 ongest —mat ch nane pattern-rest sent 1 #t known-—val ues))
((equal ? howrany '*)
(1 ongest —mat ch nane pattern-rest sent 0 #f known-—val ues))
((equal ? howrany ' &)
(l ongest —mat ch nane pattern-rest sent 1 #f known-val ues)))))

(define (length-ok? val ue howrany)

(cond ((enpty? value) (menmber? hownany '(? *)))
((not (enmpty? (bf value))) (menber? howrany '(* &)))
(else #t)))

(define (al ready—known—match val ue pattern-rest sent known-val ues)
(let ((unmatched (chop-Il eadi ng—substring val ue sent)))
(if (not (equal? unmatched 'failed))
(mat ch—usi ng—known—val ues pattern-rest unmatched known-val ues)
"failed)))

Page 274

(define (chop-I eadi ng—substring val ue sent)
(cond ((enpty? val ue) sent)
((enmpty? sent) 'failed)
((equal ? (first value) (first sent))
(chop-I eadi ng—substring (bf value) (bf sent)))
(else 'failed)))

(define (longest—match name pattern-rest sent nin nax—one? known-val ues)
(cond ((enpty? sent)
(if (= mn 0)
(mat ch—usi ng—known—val ues pattern-rest
sent
(add nanme ' () known-val ues))
‘failed))
(max—one?
(I m-hel per nane pattern-rest (se (first sent))
(bf sent) min known-val ues))
(el se (I m-hel per nane pattern-rest
sent '() mn known-val ues))))

(define (I m-hel per nane pattern-rest
sent —nat ched sent —unmat ched mi n known-val ues)
(if (< (length sent—mat ched) m n)
"failed
(let ((tentative-result (mtch-usi ng—known-val ues
patter n-rest
sent —unmat ched
(add nanme sent—-mat ched known—val ues))))
(cond ((not (equal? tentative-result 'failed)) tentative-result)
((enpty? sent—mat ched) 'failed)
(el se (I m-hel per nane
patter n—rest
(bl sent—mat ched)
(se (last sent—-matched) sent-unmat ched)
m n
known-val ues))))))

Known val ues dat abase abstract data type

(define (lookup nane known-val ues)
(cond ((enpty? known-—val ues) ' no-val ue)
((equal ? (first known—val ues) nane)
(get —val ue (bf known-val ues)))
(el se (1 ookup nane (skip-val ue known-val ues)))))

Page 275

(define (get—val ue stuff)
(if (equal? (first stuff) '1!)
()
(se (first stuff) (get—value (bf stuff)))))
(define (skip-value stuff)
(if (equal? (first stuff) '1!)
(bf stuff)
(ski p—val ue (bf stuff))))
(define (add nanme val ue known-val ues)
(if (enpty? nane)
known-val ues
(se known-val ues nane value '!)))

Exercises about Using the Pattern Matcher

16.1 Design and test a pattern that matches any sentence containing the word C three times (not necessarily next to
each other).

16.2 Design and test a pattern that matches a sentence consisting of two copies of a smaller sentence, such as
(a b ab).

16.3 Design and test a pattern that matches any sentence of no more than three words.
16.4 Design and test a pattern that matches any sentence of at least three words.

16.5 Show sentences of length 2, 3, and 4 that match the pattern

(*X *Y *Y *X)

For each length, if no sentence can match the pattern, explain why not.

16.6 Show sentences of length 2, 3, and 4 that match the pattern

(*X *Y &Y &X)

For each length, if no sentence can match the pattern, explain why not.

16.7 List all the sentences of length 6 or less, starting witha b a, that match the pattern

(*x *Y *Y *X)

Page 276

Exer cises about I mplementation

16.8 Explain how | ongest —mat ch handles an empty sentence.

16.9 Suppose the first cond clausein mat ch—usi ng—known—val ues were
((enpty? pattern) known-val ues)

Give an example of a pattern and sentence for which the modified program would give a different result from the
original.

16.10 What happensiif the sentence argument—not the pattern—contains the word * somewhere?

16.11 For each of the following examples, how many mat ch—usi ng—known—val ues little people are required?

(match ' (fromne to you) '(fromnme to you))
(match "(*X *Y *X) "(a b ¢c a b))
(match "(*X *Y *Z) "(a b ¢ a h))
(match ' (*X hey *Y bulldog *Z) '"(a h
(match "(*x abcdef) "(abcde
(match "(abcdef *x) "(abcde

e bul l dog c))

y b
f))
f))
In general, what can you say about the characteristics that make a pattern easy or hard to match?

16.12 Show a pattern with the following two properties: (1) It has at least two placeholders. (2) When you match it
against any sentence, every invocation of | ookup returnsno—val ue.

16.13 Show a pattern and a sentence that can be used as argumentsto mat ch so that | ookup returns
(the beat!| es) at some point during the match.

16.14 Our program can still match patterns with unnamed placeholders. How would it affect the operation of the
program if these unnamed placehol ders were added to the database? What part of the program keeps them from being
added?

16.15 Why don't get —val ue and ski p—val ue check for an empty argument as the base case?

Page 277
16.16 Why didn't we write thefirst cond clausein | engt h—ok? asthe following?
((and (enpty? value) (nmenber? howmany '(? *))) #t)
16.17 Where in the program is theinitial empty database of known values established?

16.18 For the case of matching a placeholder name that's already been matched in this pattern, we said on page 268
that three conditions must be checked. For each of the three, give a pattern and sentence that the program would
incorrectly match if the condition were not checked.

16.19 What will the following example do?
(match "(?x is *y Ix) '"(! is an exclamation point !))
Can you suggest away to fix this problem?

16.20 Modify the pattern matcher so that a placeholder of the form * 15x islike* x except that it can be matched only
by exactly 15 words.

> (match ' (*3front *back) ' (your nother should know))
(FRONT YOUR MOTHER SHOULD ! BACK KNOW!)

16.21 Modify the pattern matcher so that a+ placeholder (with or without a name attached) matches only a number:

> (match ' (*front +m ddl e *back) '(four score and 7 years ago))
(FRONT FOUR SCORE AND ! M DDLE 7 ! BACK YEARS AGO !)

The + placeholder is otherwise like ! —it must match exactly one word.
16.22 Does your favorite text editor or word processor have a search command that allows you to search for patterns

rather than only specific strings of characters? Look into this and compare your editor's capabilities with that of our
pattern matcher.

Page 278

PART V—
ABSTRACTION

We've really been talking about abstraction all along. Whenever you find yourself performing several similar
computations, such as

> (sentence 'she (word '"run 's))
(SHE RUNS)

> (sentence 'she (word "walk 's))
(SHE WALKS)

> (sentence 'she (word 'program's))
(SHE PROGRANMS)

and you capture the similarity in a procedure

(define (third—person verb)
(sentence 'she (word verb 's)))

you're abstracting the pattern of the computation by expressing it in aform that leaves out the particular verb in any
one instance.

In the preface we said that our approach to computer science is to teach you to think in larger chunks, so that you can
fit larger problemsin your mind at once; "abstraction" is the technical name for that chunking process.

In this part of the book we take a closer look at two specific kinds of abstraction. One is data abstraction, which means
the invention of new data types. The other is the implementation of higher—order functions, an important category of
the same process abstraction of which t hi r d—per son isatrivial example.

Page 279

Until now we've used words and sentences as though they were part of the natural order of things. Now we'll discover
that Scheme sentences exist only in our minds and take shape through the use of constructors and selectors

(sent ence, first,and soon) that we wrote. The implementation of sentencesis based on a more fundamental
datatype called lists. Then we'll see how lists can be used to invent another in-our-minds data type, trees. (The
technical term for an invented datatype is an abstract data type.)

Y ou aready know how higher-order functions can express many computational processesin avery compact form.
Now we focus our attention on the higher-order procedures that implement those functions, exploring the mechanics
by which we create these process abstractions.

Page 280

Page 281

17—
Lists

Suppose we're using Scheme to model an ice cream shop. We'l certainly need to know all the flavors that are available:

(vanilla ginger strawberry |ychee raspberry nocha)

For example, here's a procedure that models the behavior of the salesperson when you place an order:

(define (order flavor)
(if (menber? flavor
"(vanilla ginger strawberry |ychee raspberry nocha))
"(com ng right up!)
(se '(sorry we have no) flavor)))

But what happens if we want to sell aflavor like "root beer fudge ripple" or "ultra chocolate"? We can't just put those
words into a sentence of flavors, or our program will think that each word is a separate flavor. Beer ice cream doesn't
sound very appealing.

What we need is away to express a collection of items, each of which isitself acollection, like this:

(vanilla (ultra chocol ate) (heath bar crunch) ginger (cherry garcia))

Thisis meant to represent five flavors, two of which are named by single words, and the other three of which are
named by sentences.

Luckily for us, Scheme provides exactly this capability. The data structure we're using in this exampleis called alist.
The difference between a sentence and alist is that the elements of a sentence must be words, whereas the elements of
alist can be anything

Page 282

at all: words, #t , procedures, or other lists. (A list that's an element of another list is called a sublist. We'll use the
name structured list for alist that includes sublists.)

Another way to think about the difference between sentences and listsis that the definition of "list" is self-referential,
because alist can include lists as elements. The definition of "sentence” is not self-referential, because the elements of
a sentence must be words. We'll see that the self-referential nature of recursive proceduresis vitally important in
coping with lists.

Another example in which lists could be helpful is the pattern matcher. We used sentencesto hold known—val ues
databases, such as this one:

(FRONT YOUR MOTHER ! BACK SHOULD KNOW!)

Thiswould be both easier for you to read and easier for programs to manipulate if we used list structure to indicate the
grouping instead of exclamation points:

((FRONT (YOUR MOTHER)) (BACK (SHOULD KNOW))

We remarked when we introduced sentences that they're a feature we added to Scheme just for the sake of this book.
Lists, by contrast, are at the core of what Lisp has been about from its beginning. (In fact the name "Lisp" stands for
"LISt Processing.")

Selectorsand Constructors

When we introduced words and sentences we had to provide ways to take them apart, such asf i r st , and waysto put
them together, such assent ence. Now welll tell you about the selectors and constructors for lists.

The function to select the first element of alist iscalled car .* The function to select the portion of alist containing all
but the first element iscaled cdr , whichis

* Don't even try to figure out a sensible reason for this name. It's aleftover bit of history from the first computer on
which Lisp was implemented. It stands for "contents of address register” (at |east that's what all the books say, although
it'sreally the address portion of the accumulator register). Cdr , coming up in the next sentence, stands for "contents of

decrement register." The names seem silly in the Lisp context, but that's because the Lisp people used these register
components in ways the computer designers didn't intend. Anyway, thisis all very interesting to history buffs but
irrelevant to our purposes. We're just showing off that one of usis actually old enough to remember these antique
computers first-hand.

Page 283

pronounced "could-er." These are analogoustofi rst and but fi r st for words and sentences.

Of course, we can't extract pieces of alist that's empty, so we need a predicate that will check for an empty list. It's
caled nul | ? and it returns#t for the empty list, #f for anything else. Thisisthelist equivalent of enpt y? for

words and sentences.

There are two constructors for lists. Thefunction | i st takes any number of arguments and returns alist with those
arguments as its elements.

> (list (+ 2 3) '"squash (=2 2) (list 4 5) remainder 'zucchini)
(5 SQUASH #T (4 5) #<PROCEDURE> ZUCCHI NI)

The other constructor, cons, is used when you aready have alist and you want to add one new element. Cons takes
two arguments, an element and alist (in that order), and returns anew list whose car isthe first argument and whose
cdr isthe second.

> (cons 'for '(no one))
(FOR NO ONE)

> (cons "julia '())
(JuLl A)

There is aso afunction that combines the elements of two or more listsinto alarger list:

> (append '(get back) '(the word))
(GET BACK THE WORD)

It'simportant that you understand how | i st, cons, and append differ from each other:

> (list "(i am) '(the walrus))
((1 AM (THE WALRUS))

> (cons '(i am) '(the walrus))
((1 AM THE WALRUS)

> (append '(i anm) '(the walrus))
(1 AM THE WALRUS)

When | i st isinvoked with two arguments, it considers them to be two proposed elements for a new two-element list.
Li st doesn't care whether the arguments are themselves lists, words, or anything else; it just creates a new list whose
elements are the arguments. In this case, it ends up with alist of two lists.

Page 284

Cons requires that its second argument be alist.” Cons will extend that list to form a new list, one el ement longer
than the original; the first element of the resulting list comes from the first argument to cons. In other words, when
you pass cons two arguments, you get back alist whose car isthefirst argument to cons and whose cdr isthe
second argument.

Thus, in this example, the three elements of the returned list consist of the first argument as one single element,
followed by the elements of the second argument (in this case, two words). (Y ou may be wondering why anyone would
want to use such a strange constructor instead of | i st . The answer has to do with recursive procedures, but hang on

for afew paragraphs and we'll show you an example, which will help more than any explanation we could give in
English.)

Finaly, append of two arguments uses the elements of both arguments as elements of its return value.

Pictoridly, | i st createsalist whose elements are the arguments:

e O A OO
VR N A A
O A OO D

Cons creates an extension of its second argument with one new element:

cons (O ([A

O OO0 0L

* Thisis not the whole story. See the "pitfalls' section for a slightly expanded version.

Append creates a list whose elements are the elements of the arguments, which must be lists:
wpend (O O O) ([)
— . —

—

(GLOXCINININ)

Programming with Lists

(define (praise flavors)
(if (null? flavors)
()
(cons (se (car flavors) '"(is delicious))
(praise (cdr flavors)))))

> (praise '(ginger (ultra chocolate) |lychee (rumraisin)))
((G@NGER | S DELI Cl QUS) (ULTRA CHOCOLATE | S DELI Cl QUS)
(LYCHEE IS DELICIQUS) (RUM RAISIN IS DELICIQUS))

Page 285

In this example our result isalist of sentences. That is, the result isalist that includes smaller lists as elements, but
each of these smaller listsis a sentence, in which only words are allowed. That's why we used the constructor cons

for the overal list, but se for each sentence within the list.

Thisis the example worth a thousand words that we promised, to show why cons isuseful. Li st wouldn't work in
thissituation. You canusel i st only when you know exactly how many elements will be in your complete list. Here,

we are writing a procedure that works for any number of elements, so we recursively build up the list, one element at a
time.

In the following example we take advantage of structured lists to produce atransdation dictionary. The entire
dictionary isalist; each element of the dictionary, asingle trandation, is atwo-element list; and in some cases a
tranglation may involve a phrase rather than a single word, so we can get three deep in lists.

Page 286

(define (translate wd)
(1 ookup wd ' ((wi ndow fenetre) (book livre) (conputer ordinateur)
(house mai son) (closed ferne) (pate pate) (liver foie)
(faith foi) (weekend (fin de semaine))
((practical joke) attrape) (pal copain))))

(define (lookup wd dictionary)
(cond ((null? dictionary) '(parlez—vous anglais?))
((equal ? wd (car (car dictionary)))
(car (cdr (car dictionary))))
(el se (1l ookup wd (cdr dictionary)))))

> (translate 'conputer)
ORDI NATEUR

> (translate ' (practical joke))
ATTRAPE

> (translate 'recursion)
(PARLEZ-VOUS ANGLAI S?)

By the way, this example will help us explain why those ridiculous namescar and cdr haven't died out. In this not-
so-hard program we find ourselves saying

(car (cdr (car dictionary)))

to refer to the French part of the first translation in the dictionary. Let's go through that Slowly. (Car di cti onary)
gives us the first element of the dictionary, one English-French pairing. Cdr of that first element is a one-element list,

that is, all but the English word that's the first element of the pairing. What we want isn't the one-element list but rather
its only element, the French word, whichisitscar .

Thiscar of cdr of car businessis pretty lengthy and awkward. But Scheme gives us away to say it succinctly:
(cadar dictionary)

In general, we're allowed to use names like cddadr up to four deep in As and Ds. That one means

(cdr (cdr (car (cdr sonething))))

Page 287

or in other words, takethe cdr of thecdr of thecar of thecdr of itsargument. Notice that the order of letters A and
D follows the order in which you'd write the procedure names, but (as always) the procedure that's invoked first is the
one on the right. Don't make the mistake of reading cadr asmeaning "first take the car and then takethecdr ." It
means "take the car of thecdr ."

The most commonly used of these abbreviations are cadr , which selects the second element of alist; caddr , which
selects the third element; and cadddr , which selects the fourth.

The Truth about Sentences

Y ou've probably noticed that it's hard to distinguish between a sentence (which must be made up of words) and alist
that happens to have words as its elements.

Thefact is, sentences are lists. You could take car of a sentence, for example, and it'd work fine. Sentences are an
abstract datatype represented by lists. We created the sentence ADT by writing special selectors and constructors that
provide adifferent way of using the same underlying machinery—a different interface, a different metaphor, a
different point of view.

How does our sentence point of view differ from the built-in Scheme point of view using lists? There are three
differences:

* A sentence can contain only words, not sublists.
* Sentence selectors are symmetrical front-to-back.
* Sentences and words have the same selectors.

All of these differences fit a common theme: Words and sentences are meant to represent English text. The three
differences reflect three characteristics of English text: First, text is made of sequences of words, not complicated
structures with sublists. Second, in manipulating text (for example, finding the plural of a noun) we need to look at the
end of aword or sentence as often as at the beginning. Third, since words and sentences work together so closely, it
makes sense to use the same tools with both. By contrast, from Scheme's ordinary point of view, an English sentenceis
just one particular case of amuch more general data structure, whereas a symbol* is something entirely different.

* Aswe said in Chapter 5, "symbol" isthe official name for words that are neither strings nor numbers.

Page 288

The constructors and selectors for sentences reflect these three differences. For example, it so happens that Scheme
represents listsin away that makesit easy to find the first element, but harder to find the last one. That's reflected in
the fact that there are no primitive selectorsfor lists equivalent to | ast and but | ast for sentences. But we want

| ast and but | ast to be apart of the sentence package, so we have to write them in terms of the "real” Schemelist
selectors. (In the versions presented here, we are ignoring the issue of applying the selectorsto words.)

(define (first sent) ;;; just for sentences
(car sent))

(define (last sent)
(if (null? (cdr sent))
(car sent)
(last (cdr sent))))

(define (butfirst sent)
(cdr sent))

(define (butlast sent)
(if (null? (cdr sent))
()

(cons (car sent) (butlast (cdr sent)))))

If you look "behind the curtain™ at the implementation, | ast isalot more complicated thanf i r st . But from the
point of view of a sentence user, they're equally simple.

In Chapter 16 we used the pattern matcher's known-val ues database to introduce the idea of abstract data types. In that
example, the most important contribution of the ADT was to isolate the details of the implementation, so that the
higher-level procedures could invoke | ookup and add without the clutter of looking for exclamation points. We did
hint, though, that the ADT represents a shift in how the programmer thinks about the sentences that are used to
represent databases; we don't take the acronym of a database, even though the database is a sentence and so it would be
possible to apply the acr onymprocedure to it. Now, in thinking about sentences, thisidea of shift in viewpoint is
more central. Although sentences are represented as lists, they behave much like words, which are represented quite
differently.” Our sentence mechanism highlights the uses of sentences, rather than the implementation.

* We implemented words by combining three data types that are primitive in Scheme: strings, symbols, and numbers.

Page 289

Higher-Order Functions

The higher-order functions that we've used until now work only for words and sentences. But the idea of higher-order
functions applies perfectly well to structured lists. The officia list versionsof every, keep,andaccunul at e are

caledmap,filter,andreduce.

Map takes two arguments, afunction and alist, and returns alist containing the result of applying the function to each
element of thelist.

> (map square '(9 8 7 6))
(81 64 49 36)

> (map (lanmbda (x) (se x x)) '(rocky raccoon))
((ROCKY ROCKY) (RACCOON RACCOON))

> (every (lanbda (x) (se x x)) '(rocky raccoon))
(ROCKY ROCKY RACCOON RACCOON)

> (map car ' ((john | ennon) (paul ntcartney)
(george harrison) (ringo starr)))
(JOHN PAUL GEORGE RI NGO

> (map even? '(9 8 7 6))
(#F #T #F #T)

> (map (lanmbda (x) (word x x)) 'rain)
ERROR — | NVALI D ARGUVMENT TO MAP: RAI N

The word "map" may seem strange for this function, but it comes from the mathematical study of functions, in which
they talk about a mapping of the domain into the range. In this terminology, one talks about "mapping a function over
aset" (aset of argument values, that is), and Lispians have taken over the same vocabulary, except that we talk about
mapping over listsinstead of mapping over sets. In any case, map is a genuine Scheme primitive, so it's the official
grownup way to talk about an ever y-like higher-order function, and you'd better learn to likeit.

Fi | t er alsotakesafunction and alist as arguments; it returns alist containing only those elements of the argument
list for which the function returns atrue value. Thisisthe same askeep, except that the elements of the argument list
may be sublists, and their structure is preserved in the result.

Page 290

> (filter (lanbda (flavor) (menber? '"swirl flavor))
"((rumraisin) (root beer swirl) (rocky road) (fudge swirl)))
((ROOT BEER SWRL) (FUDGE SWRL))

> (filter word? '((ultra chocol ate) ginger |ychee (raspberry sherbet)))
(G NGER LYCHEE)

> (filter (lanbda (nuns) (= (car nuns) (cadr nuns)))
"((23) (44) (56) (78) (99))

((44) (99)

Fi | t er probably makes sense to you as a name; the metaphor of the air filter that allows air through but doesn't allow

dirt, and so on, evokes something that passes some data and blocks other data. The only problem with the name is that
it doesn't tell you whether the elements for which the predicate function returns#t arefiltered in or filtered out. But

you're already used to keep, andfi | t er worksthe sameway. Fi | t er isnot astandard Scheme primitive, but it'sa
universal convention; everyone defines it the same way we do.

Reduce isjust likeaccumul at e except that it works only on lists, not on words. Neither is a built-in Scheme

primitive; both names are seen in the literature. (The name "reduce” is official in the languages APL and Common
Lisp, which do include this higher-order function as a primitive.)

> (reduce * '(4 5 6))
120

> (reduce (lanbda (listl list2) (list (+ (car listl) (car list2))
(+ (cadr listl) (cadr list2))))
"((1 2) (30 40) (500 600)))
(531 642)

Other Primitivesfor Lists

Thel i st ? predicate returns#t if itsargument isalist, #f otherwise.

The predicate equal ?, which we've discussed earlier as applied to words and sentences, also works for structured
lists.

The predicate menber ?, which we used in one of the examples above, isn't atrue Scheme primitive, but part of the

word and sentence package. (Y ou can tell because it "takes apart” aword to look at its |etters separately, something
that Scheme doesn't ordinarily do.) Scheme does have anmenber primitive without the question mark that's

Page 291

like menber ? except for two differences: Its second argument must be alist (but can be a structured list); and instead
of returning #t it returns the portion of the argument list starting with the element equal to the first argument. This
will be clearer with an example:

> (nmenber 'd "(abcdef g))
(DEF Q

> (menber 'h '"(abcdef g))
#F

Thisis the main example in Scheme of the semipredicate idea that we mentioned earlier in passing. It doesn't have a
question mark in its name because it returns values other than #t and #f , but it works as a predicate because any non-

#f valueisconsidered true.

The only word-and-sentence functions that we haven't already mentioned arei t emand count . The list equivalent of
i temiscaled| i st —ref (shortfor "reference"); it'sdifferent in that it counts items from zero instead of from one
and takes its arguments in the other order:

> (list-ref '(happiness is a warm gun) 3)
WARM

Thelist equivalent of count iscaled| engt h, and it's exactly the same except that it doesn't work on words.

Association Lists

An example earlier in this chapter was about translating from English to French. This involved searching for an entry
inalist by comparing the first element of each entry with the information we were looking for. A list of names and
corresponding valuesis called an association list, or an a-list. The Scheme primitiveassoc looksup anamein an a

list:

> (assoc 'george
"((john I ennon) (paul ntcartney)
(george harrison) (ringo starr)))
(GEORGE HARRI SON)

> (assoc 'x "((i 1) (v 5 (x 10) (I 50) (c 100) (d 500) (m 1000)))
(X 10)

> (assoc 'ringo '((mck jagger) (keith richards) (brian jones)
(charlie watts) (bill wynman)))
#F

Page 292

(define dictionary
"((wi ndow fenetre) (book livre) (computer ordinateur)
(house mai son) (closed ferne) (pate pate) (liver foie)
(faith foi) (weekend (fin de semaine))
((practical joke) attrape) (pal copain)))

(define (translate wd)
(let ((record (assoc wd dictionary)))
(if record
(cadr record)
" (parl ez—vous anglais?))))

Assoc returns #f if it can't find the entry you're looking for in your association list. Our t r ansl at e procedure
checks for that possibility before using cadr to extract the French translation, which is the second element of an entry.

Functions That Take Variable Numbers of Arguments

In the beginning of this book we told you about some Scheme procedures that can take any number of arguments, but
you haven't yet learned how to write such procedures for yourself, because Scheme's mechanism for writing these
procedures requires the use of lists.

Here's a procedure that takes one or more numbers as arguments and returns true if these numbers arein increasing
order:

(define (increasing? nunber . rest-—of—nunbers)
(cond ((null? rest—of —nunbers) #t)
((> (car rest—of—nunbers) nunber)
(apply increasing? rest-of —nunbers))
(el se #f)))

> (increasing? 4 12 82)
#T

> (increasing? 12 4 82 107)
#F

The first novelty to notice in this program is the dot in the first line. In listing the formal parameters of a procedure,
you can use adot just before the last parameter to mean that that parameter (r est —of —nunber s in this case)

represents any number of

Page 293

arguments, including zero. The value that will be associated with this parameter when the procedure isinvoked will be
alist whose elements are the actual argument values.

In this example, you must invokei ncr easi ng? with at least one argument; that argument will be associated with
the parameter nunber . If there are no more arguments, r est —of —nunber s will be the empty list. But if there are
more arguments, r est —of —nunber s will be alist of their values. (In fact, these two cases are the same: Rest —of —
nunber s will bealist of all the remaining arguments, and if there are no such arguments, r est —of —nunber s isa
list with no elements.)

The other novelty in this exampleisthe procedure appl y. It takes two arguments, a procedure and alist. Appl y

invokes the given procedure with the elements of the given list asits arguments, and returns whatever value the
procedure returns. Therefore, the following two expressions are equivalent:

(+ 3 4 5)
(apply + "(3 4 5))

Weuseapply in increasi ng? because we don't know how many arguments we'll need in its recursive
invocation. We can't just say

(i ncreasi ng? rest—of —nunbers)

because that would givei ncr easi ng? alist asits single argument, and it doesn't take lists as arguments—it takes
numbers. We want the numbersin the list to be the arguments.

We've used the namer est —of —nunber s asthe formal parameter to suggest "the rest of the arguments,” but that's

not just an ideawe made up. A parameter that follows a dot and therefore represents a variable number of argumentsis
called arest parameter.

Here's atable showing the values of number and r est —of —nunber s in the recursive invocations of
i ncr easi ng? for the example

(increasing? 3 58 20 6 43 72)

nunber r est —of —nunbers

3 (5 8 20 6 43 72)
5 (8 20 6 43 72)
8 (20 6 43 72)

20 (6 43 72) (returns false at this point)

Page 294

Inthei ncr easi ng? example we've used one formal parameter before the dot, but you may use any number of such

parameters, including zero. The number of formal parameters before the dot determines the minimum number of
arguments that must be used when your procedure isinvoked. There can be only one formal parameter after the dot.

Recursion on Arbitrary Structured Lists

Let's pretend we've stored this entire book in a gigantic Scheme list structure. It'salist of chapters. Each chapter isa
list of sections. Each sectionisalist of paragraphs. Each paragraph isalist of sentences, which are themselves lists of
words.

Now we want to know how many times the word "mathematicians” appears in the book. We could do it the incredibly
boring way:

(define (appearances—i n—book wd book)
(reduce + (map (lanbda (chapter) (appearances—i n—chapter wd chapter))
book)))

(define (appearances—i n—chapter wd chapter)
(reduce + (map (Il anbda (section) (appearances—i n—section wd section))
chapter)))

(define (appearances—i n—section wd section)
(reduce + (map (|l anbda (paragraph)
(appear ances—i n—par agr aph wd par agr aph))
section)))

(define (appearances—i n—par agraph wd paragraph)
(reduce + (map (lanbda (sent) (appearances—i n—sentence wd sent))
par agr aph)))

(define (appearances—i n—sentence given—word sent)
(length (filter (lanbda (sent—word) (equal? sent—-word gi ven—word))
sent)))

but that would be incredibly boring.

What we're going to do is similar to the reasoning we used in developing the idea of recursion in Chapter 11. There,
we wrote a family of procedures named downupl, downup2, and so on; we then noticed that most of these

procedures looked almost identical, and "collapsed” them into a single recursive procedure. In the same spirit,

Page 295

notice that all theappear ances—i n— procedures are very similar. We can make them even more similar by
rewriting the last one:

(define (appearances—i n—sentence wd sent)
(reduce + (map (Il anbda (wd2) (appearances—i n—word wd wd2))
sent)))

(define (appearances—i n—word wd wd2)
(if (equal? wd wd2) 1 0))

Now, just as before, we want to write a single procedure that combines all of these.

What's the base case? Books, chapters, sections, paragraphs, and sentences are al lists of smaller units. It's only when
we get down to individual words that we have to do something different:

(define (deep—appearances wd structure)
(if (word? structure)
(if (equal? structure wd) 1 0)
(reduce +
(map (Il anbda (sublist) (deep—appearances wd sublist))
structure))))

> (deep-appear ances

"the

"(((the man) in ((the) noon)) ate (the) potstickers))
3

> (deep-appearances 'n '(lanbda (n) (if (=n 0 1 (* n(f (= n 1))))))
4

> (deep—-appearances ' nmat hemati ci ans t he-book-structure)
.

Thisis quite different from the recursive situations we've seen before. What looks like arecursive call from deep—
appear ances toitself is actually inside an anonymous procedure that will be called repeatedly by map. Deep—
appear ances doesn't just call itself once in the recursive case; it uses map to call itself for each element of

st ruct ur e. Each of those calls returns a number; map returns alist of those numbers. What we want is the sum of
those numbers, and that's what r educe will give us.

Thisexplains why deep—appear ances must accept words aswell aslistsasthe st r uct ur e argument. Consider
acaselike

Page 296

(deep—appearances 'foo '((a) b))

Since st r uct ur e hastwo elements, map will cal deep—appear ances twice. One of these callsusesthelist (a)
as the second argument, but the other call uses the word b as the second argument.

Of coursg, if st ruct ur e isaword, we can't make recursive calls for its elements; that's why words are the base case
for thisrecursion. What should deep—appear ances return for aword? If it's the word we're looking for, that
counts as one appearance. If not, it counts as no appearances.

Y ou're accustomed to seeing the empty list as the base case in arecursive list processing procedure. Also, you're
accustomed to thinking of the base case as the end of a complete problem; you've gone through all of the elements of a
list, and there are no more elements to find. In most problems, there is only one recursive invocation that turns out to
be a base case. But in using deep—appear ances, there are many invocations for base cases—one for every word in

the list structure. Reaching a base case doesn't mean that we've reached the end of the entire structure! Y ou might want
to trace a short example to help you understand the sequence of events.

Although there's no official name for a structure made of lists of listsof . . . of lists, there is a common convention for
naming procedures that deal with these structures; that's why we've called this procedure deep—appear ances. The

word "deep” indicates that this procedure isjust like a procedure to look for the number of appearances of aword in a
list, except that it looks "all the way down" into the sub-sub- - - - -sublists instead of just looking at the elements of the
top-level list.

Thisversion of deep—appear ances, in which higher-order procedures are used to deal with the sublists of alist, is

acommon programming style. But for some problems, there's another way to organize the same basic program without
higher-order procedures. This other organization leads to very compact, but rather tricky, programs. It's also awidely
used style, so we want you to be able to recognize it.

Here'stheidea. We deal with the base case—words—just as before. But for lists we do what we often do in trying to
simplify alist problem: We divide thelist into itsfirst element (itscar) and al the rest of its elements (itscdr). But

in this case, the resulting program is alittle tricky. Ordinarily, arecursive program for lists makes arecursive call for
the cdr , whichisalist of the same kind as the whole argument, both does something non-recursive for the car ,

which isjust one element of that list. Thistime, the car of the kind of structured list-of-lists we're exploring may itself
be alist-of-lists! So we make arecursive cal for it, aswell:

Page 297
(define (deep—appearances wd structure)
(cond ((equal ? wd structure) 1) ; base case: desired word
((word? structure) 0) ; base case: other word
((nul'l? structure) 0) ; base case: enpty Ilist

(el se (+ (deep—appearances wd (car structure))
(deep—appearances wd (cdr structure))))))

This procedure has two different kinds of base case. The first two cond clauses are similar to the base case in the
previous version of deep—appear ances; they deal with a"structure" consisting of a single word. If the structureis

the word we're looking for, then the word appears once in it. If the structure is some other word; then the word appears
zero times. The third clause is more like the base case of an ordinary list recursion; it deals with an empty list, in which
case the word appears zero times in it. (This still may not be the end of the entire structure used as the argument to the
top-level invocation, but may instead be merely the end of a sublist within that structure.)

If wereach the el se clause, then the structure is neither aword nor an empty list. It must, therefore, be a non-empty
list, withacar and acdr . The number of appearancesin the entire structure of the word we're looking for is equal to
the number of appearancesinthecar plusthe number inthecdr .

Indeep—appear ances the desired result is asingle number. What if we want to build a new list-of-lists structure?
Having used car and cdr to disassemble a structure, we can use cons to build a new one. For example, well
tranglate our entire book into Pig Latin:

(define (deep—pigl structure)
(cond ((word? structure) (pigl structure))
((nul'l? structure) '())
(el se (cons (deep—pigl (car structure))
(deep—pi gl (cdr structure))))))

> (deep-pigl '"((this is (a structure of (words)) with)
(a (peculiar) shape)))
((I STHAY | SAY (AAY UCTURESTRAY CFAY (ORDSVAY)) | THWAY)
(AAY (ECULI ARPAY) APESHAY))

Comparedeep—pi gl with anever y-pattern list recursion such as pr ai se on page 285. Both look like

(cons (something (car ar gunent)) (something (cdr argunent)))

Page 298

And yet these procedures are profoundly different. Pr ai se isasimple left-to-right walk through the elements of a
sequence; deep—pi gl divesinand out of sublists. The differenceis aresult of the fact that pr ai se doesone
recursive call, for thecdr , whiledeep—pi gl doestwo, for the car aswell asthe cdr . The pattern exhibited by
deep—pi gl iscaled car - cdr recursion. (Another namefor it is"tree recursion,” for areason we'll see in the next
chapter.)

Pitfalls

[0 Just as we mentioned about the nameswor d and sent ence, resist the temptation tousel i st asaformal
parameter. We use | st instead, but other alternatives are capital L or seq (for "sequence").

[0 Thelist constructor cons does not treat its two arguments equivalently. The second one must be the list you're

trying to extend. Thereis no equally easy way to extend alist on the right (although you can put the new element into a
one-element list and use append). If you get the arguments backward, you're likely to get funny-looking results that

aren't lists, such as

((3.2) . 1)

The result you get when you cons onto something that isn't alist is called a pair. It's sometimes called a "dotted pair"
because of what it looks like when printed:

> (cons '"a 'b)
(A. B

It's just the printed representation that's dotted, however; the dot isn't part of the pair any more than the parentheses
around alist are elements of the list. Lists are made of pairs; that's why cons can construct lists. But we're not going
to talk about any pairsthat aren't part of lists, so you don't have to think about them at all, except to know that if dots
appear in your results you're consing backward.

[0 Don't get confused between lists and sentences. Sentences have no interna structure; the good aspect of thisis that
it's hard to make mistakes about building the structure, but the bad aspect is that you might need such a structure. Y ou
can have lists whose elements are sentences, but it's confusing if you think of the same structure sometimes as alist
and sometimes as a sentence.

Page 299

[0 Inreading someone else's program, it's easy not to notice that a procedure is making two recursive calls instead of
just one. If you natice only the recursive call for the cdr , you might think you're looking at a sequential recursion.

[0 If you're writing a procedure whose argument is alist-of-lists, it may feel funny to let it also accept aword as the
argument value. People therefore sometimesinsist on alist as the argument, leading to an overly complicated base
case. If your base case test says

(word? (car structure))

then think about whether you'd have a better-organized program if the base case were

(word? structure)

[0 Remember that in a deep-structure recursion you may need two base cases, one for reaching an element that isn't a
sublist, and the other for an empty list, with no elements at all. (Our deep—appear ances procedure is an example.)

Don't forget the empty-list case.

Boring Exercises

17.1 What will Scheme print in response to each of the following expressions? Try to figure it out in your head before
you try it on the computer.

> (car '(Rod Chris Colin Hugh Paul))

> (cadr '(Rod Chris Colin Hugh Paul))
> (cdr '(Rod Chris Colin Hugh Paul))
> (car ' Rod)

> (cons '(Rod Argent) '(Chris Wite))

\

(append ' (Rod Argent) '(Chris Wite))

\Y

(list "(Rod Argent) '(Chris Wite))

\Y

(caadr '((Rod Argent) (Chris Wite)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

Page 300

> (assoc 'Colin '"((Rod Argent) (Chris Wite)
(Colin Blunstone) (Hugh G undy) (Paul Atkinson)))

> (assoc 'Argent '((Rod Argent) (Chris Wite)
(Colin Blunstone) (Hugh Gundy) (Paul Atkinson)))

17.2 For each of the following examples, write a procedure of two arguments that, when applied to the sample
arguments, returns the sample result. Y our procedures may not include any quoted data.

>(fl'(abc) '(def))
((BCD)

>(f2'(abc) '(def))
((BO B

>(f3'(abc) '(def))
(ABCABCQ

> (f4'(abc) '(def))
((AD) (BCEF)

17.3 Describe the value returned by this invocation of map:

> (map (lambda (x) (lambda (y) (+ xy))) "(1 23 4))

Real Exercises

17.4 Describe the result of calling the following procedure with alist asits argument. (Seeif you can figureit out
beforeyou try it.)

(define (nystery Ist)
(nmystery-helper Ist '()))

(define (mystery-hel per |st other)
(if (null? Ist)
ot her
(nystery—hel per (cdr Ist) (cons (car |Ist) other))))

Page 301

17.5 Here's a procedure that takes two numbers as arguments and returns whichever number is larger:

(define (max2 a b)
(if (>ba) ba))
Use max 2 to implement max, a procedure that takes one or more numeric arguments and returns the largest of them.

17.6 Implement append using car, cdr, and cons. (Note: The built-in append can take any number of

arguments. First write aversion that accepts only two arguments. Then, optionally, try to write aversion that takes any
number.)

17.7 Append may remind you of sent ence. They're smilar, except that append works only with lists as
arguments, whereas sent ence will accept words as well aslists. Implement sent ence using append. (Note: The
built-in sent ence can take any number of arguments. First write aversion that accepts only two arguments. Then,

optionally, try to write aversion that takes any number. Also, you don't have to worry about the error checking that the
real sent ence does.)

17.8 Write menber .
17.9 Writel i st —r ef .
17.10 Write |l engt h.

17.11 Writebef or e—i n—l i st ?, which takes alist and two elements of thelist. It should return #t if the second
argument appears in the list argument before the third argument:

> (before-in-list? '(back in the ussr) '"in 'ussr)
#T

> (before-in-list? '(back in the ussr) 'the 'back)
#F

The procedure should also return #f if either of the supposed elements doesn't appear at all.

Page 302

17.12 Write aprocedurecalled f | at t en that takes asits argument alist, possibly including sublists, but whose

ultimate building blocks are words (not Booleans or procedures). It should return a sentence containing all the words
of thelist, in the order in which they appear in the original:

> (flatten " (((a b) ¢ (de)) (f g ((((h))) (i j) k)))
(ABCDEFGHI JK)

17.13 Hereis a procedure that counts the number of words anywhere within a structured list:

(define (deep—count |st)
(cond ((null? Ist) 0)
((word? (car Ist)) (+ 1 (deep—count (cdr Ist))))
(el se (+ (deep—count (car Ist))
(deep—count (cdr Ist))))))

Although this procedure works, it's more complicated than necessary. Simplify it.

17.14 Write aprocedure br anch that takes as arguments alist of numbers and a nested list structure. It should be the
list-of-lists equivalent of i t em like this:

> (branch ' (3) "((a b) (c d) (e f) (g h)))
(EF)

> (branch '"(3 2) "((a b) (c d) (e f) (g h)))
F

> (branch ' (2 31 2) "((ab) ((cd) (ef) ((gh) (i j)) k) (I m))
H

In the last example above, the second element of thelist is
((CD (EFR ((GH (I J)) K

The third element of that smaller listis((G H) (1 J)); thefirst element of that is(G H) ; and the second element
of that isjust H.

17.15 Modify the pattern matcher to represent the known—val ues database as alist of two-element lists, aswe
suggested at the beginning of this chapter.

Page 303

17.16 Write apredicateval i d—i nf i x? that takesalist as argument and returns#t if and only if thelistisa
legitimate infix arithmetic expression (alternating operands and operators, with parentheses—that is, sublists—allowed
for grouping).

> (valid-infix? '(4 + 3 * (5 - 2)))

#T
> (valid-infix? "(4 + 3 * (5 2)))
#F
Page 304
Apple Tree in Blossom, Piet Mondrian (1912)
Page 305
18—
Trees

The big advantage of full-featured lists over sentencesistheir ability to represent structure in our data by means of
sublists. In this chapter we'll look at examples in which we use lists and sublists to represent two-dimensional
information structures. The kinds of structures we'll consider are called trees because they resemble treesin nature:

The components of atree are called nodes. At the top is the root node of the treg; in the interior of the diagram there
are branch nodes; at the bottom are the leaf nodes, from which no further branches extend.

We're going to begin by considering atree as an abstract data type, without thinking about how lists are used to
represent trees. For example, we'll construct trees using a procedure named make—node, asif that were a Scheme

primitive. About halfway through the chapter, we'll explore the relationship between trees and lists.

Page 306

Example:
TheWorld

Hereis atree that represents the world:

CHonasiors>

™
(G Qlarare) (Hwang) o
«m@ G %@

Each node in the tree represents some region of the world. Consider the node labeled "Great Britain." There are two
parts to this node: The obvious part is the label itself, the name "Great Britain." But the regions of the world that are
included within Great Britain—that is, the nodes that are attached beneath Great Britain in the figure—are a so part of
this node.

We say that every node has a datum and zero or more children. For the moment, let's just say that the datum can be
either aword or a sentence. The children, if any, are themselves trees. Notice that this definition isrecursive—atreeis
made up of trees. (What's the base case?)

This family metaphor is also part of the terminology of trees.” We say that a node is the parent of another node, or that
two nodes are siblings. In more advanced treatments, you even hear things like "grandparent” and "cousin," but we
won't get into that.

* Contrariwise, the tree metaphor is also part of the terminology of families.

Page 307

What happens when you prune an actual tree by cutting off a branch? The cut-off part is essentially atreein itself, with
asmaller trunk and fewer branches. The metaphor isn't perfect because the cut-off part doesn't have roots, but still, we
can stick the end in the ground and hope that the cut-off end will take root as a new tree.

It's the same with a country in our example; each country is abranch node of the entire world tree, but also atreein
itself. Depending on how you think about it, Great Britain can be either a component of the entire world or a collection
of smaller locations. So the branch node that represents Great Britain is the root node of a subtree of the entire tree.

" g
i - —-— — S o — - - -
¥ " I-/-I. mwilisd ™y T :] P ! ™, ~ T i
-.‘__I_r_.ll;___._. . States ! \‘._\._"'_.I.I.||I.I|_|'|_l:_'d. _hi_!_.lllnl._n___,.- ', ___'_'-211” .|_I i \._I_I_...ml..l s

"

CEdinburgh)

What is anode? It might seem natural to think of anode as being just the information in one of the circlesin the
diagram—that is, to think of a node asincluding only its datum. In that way of thinking, each node would be separate
from every other node, just as the words in a sentence are all separate elements. However, it will be more useful to
think of a node as a structure that includes everything below that circle also: the datum and the children. So when we
think of the node for Great Britain, we're thinking not only of the name "Great Britain,” but also of everything in Great

Britain. From this perspective, the root node of atree includes the entire tree. We might as well say that the node is the
tree.

The constructor for atreeis actually the constructor for one node, its root node. Our constructor for treesis therefore
called make—node. It takes two arguments:. the datum and a (possibly empty) list of children. Asthe following

example shows, constructing what we think of as one tree requires the construction of many such nodes.

(define world-tree
(make—node
"world
(l'i st (make—node
"italy
(l'ist (make-node
(make—-node
(make—-node
(make—node
(make—node
"(united states)
(l'ist (make—-node

(make—node

Page 308

;; pai nful -t o—type version

"venezia '())
"riomaggiore
"firenze '())

‘roma ' ())))

()

"california
(l'i st (make—node
(make—node
(make—node
' massachusetts
(l'i st (make—node
(make—node
(make—node

' canbri dge
" amher st
" sudbury

"berkeley '())
"(san francisco)

"gilroy "())))

()

))

" (
()
()))))))))

You'll notice that we haven't defined all of the places shown in the figure. That's because we got tired of doing all this
typing; we're going to invent some abbreviations later. For now, we'll take time out to show you the selectors for trees.

> (datum wor| d-tree)
WORLD

> (datum (car (children world-tree)))

| TALY

> (datum (car (children (cadr (children world-tree)))))

CALI FORNI A

> (datum (car (children (car

BERKELEY

(children
(cadr

(children world-tree)))))))

Datum of atree node returns the datum of that node. Chi | dr en of anode returns alist of the children of the node. (A

list of treesiscalled aforest.)

Here are some abbreviations to help us construct the world tree with less typing. Unlike make—node, dat um and
chi | dr en, which are intended to work on trees in general, these abbreviations were designed with the world tree

specifically in mind:

(define (leaf datum
(make—node datum ' ()))

(define (cities name-list)
(map | eaf name-list))

Page 309

With these abbreviations the world tree is somewhat easier to define;

(define world-tree
(make—node
"world
(l'i st (make—-node
"italy
(cities "(venezia riomggiore firenze ronm)))
(make—node
"(united states)
(l'ist (make—node
"california
(cities '(berkeley (san francisco) gilroy)))
(make—node
'massachusetts
(cities '(canbridge anmherst sudbury)))
(make—node 'ohio (cities '(kent)))))
(make—node ' zi nbabwe (cities ' (harare hwange)))
(rmake—node ' china
(cities '(beijing shanghai guangzhou suzhou)))
(make—node
"(great britain)
(list
(rmake—-node '"england (cities '(liverpool)))
(make—node ' scotl and
(cities '(edinburgh glasgow (gretna green))))
(make—node 'wal es (cities '(abergavenny)))))
(make—node
"australia
(list
(make—node 'victoria (cities '(nel bourne)))
(make—node ' (new south wal es) (cities '(sydney)))
(make—node ' queensl and
(cities "(cairns (port douglas))))))
(make—node ' honduras (cities '(tegucigalpa))))))

Page 310

How BigIsMy Tree?

Now that we have the tree, how many cities are there in our world?

(define (count-Il eaves tree)
(if (leaf? tree)
1
(reduce + (map count -l eaves (children tree)))))

(define (leaf? node)
(nul'l? (children node)))

> (count—| eaves worl d-tree)
27

At first glance, this may seem like a simple case of recursion, with count —| eaves caling count —| eaves. But

since what looks like asingle recursive call isreally acall to map, it is equivalent to several recursive calls, one for
each child of the given tree node.

Mutual Recursion

In Chapter 14 we wrote recursive procedures that were equivalent to using higher-order functions. Let's do the same
for count —| eaves.

(define (count-Il eaves tree)
(if (leaf? tree)
1
(count -l eaves—i n—forest (children tree))))

(define (count-Il eaves—i n—forest forest)
(if (null? forest)
0
(+ (count—l eaves (car forest))
(count -l eaves—i n—forest (cdr forest)))))

Note that count —| eaves callscount —| eaves—i n—f or est , and count —| eaves—i n—f or est cdls
count —| eaves. Thispattern is called mutual recursion.

Mutual recursion is often a useful technique for dealing with trees. In the typical recursion we've seen before this
chapter, we've moved sequentially through alist or sentence, with each recursive call taking us one step to theright. In
the following paragraphs we present three different models to help you think about how the shape of atree givesriseto
amutual recursion.

Page 311

Inthefirst nodel , we're going to think of count —| eaves asan initialization procedure, and count —| eaves—
i n—f or est asits helper procedure. Suppose we want to count the leaves of atree. Unless the argument isavery

shallow" tree, thiswill involve counting the leaves of al of the children of that tree. What we want is a straightforward
sequential recursion over the list of children. But we're given the wrong argument: the tree itself, not itslist of
children. So we need an initialization procedure, count —| eaves, whose job isto extract the list of children and

invoke a helper procedure, count —| eaves—i n—f or est , with that list as argument.

The helper procedure follows the usual sequential list pattern: Do something to the car of thelist, and recursively
handlethe cdr of thelist. Now, what do we have to do to the car ? In the usual sequential recursion, the car of the
list is something simple, such asaword. What's special about treesisthat herethe car isitself atree, just like the
entire data structure we started with. Therefore, we must invoke a procedure whose domain istrees: count —| eaves.

Thismodel is built on two ideas. One isthe idea of the domain of a function; the reason we need two procedures is that
we need one that takes atree asits argument and one that takes alist of trees asits argument. The other ideais the leap
of faith; we assume that the invocation of count —I eaves withincount —| eaves—i n—f or est will correctly

handle each child without tracing the exact sequence of events.

The second model is easier to state but less rigorous. Because of the two-dimensional nature of trees, in order to visit
every node we have to be able to move in two different directions. From a given node we have to be able to move
down to its children, but from each child we must be able to move across to its next sibling.

Thejob of count —I eaves—i n—f or est isto move from left to right through alist of children. (It does thisusing
the more familiar kind of recursion, in which it invokes itself directly.) The downward motion happensin count —

| eaves, which moves down one level by invoking chi | dr en. How does the program move down more than one
level? At each level, count —| eaves isinvoked recursively from count —| eaves—i n—f or est .

The third model is also based on the two-dimensional nature of trees. Imagine for amoment that each node in the tree
has at most one child. In that case, count —| eaves could move from the root down to the single leaf with a structure

very similar to the actual procedure, but carrying out a sequential recursion:

* Y ou probably think of trees as being short or tall. But since our trees are upside-down, the convention isto call them
shallow or deep.

Page 312

(define (count—leaf tree)
(if (leaf? tree)
1
(count—l eaf (child tree))))

The trouble with this, of course, isthat at each downward step there isn't asingle "next" node. Instead of a single path
from the root to the leaf, there are multiple paths from the root to many leaves. To make our idea of downward motion
through sequential recursion work in areal tree, at each level we must "clone" count —| eaves asmany times as

there are children. Count —| eaves—i n—f or est isthe factory that manufactures the clones. It hires one count —
| eaves little person for each child and accumulates their results.

The key point in recursion on treesis that each child of atreeisitself a perfectly good tree. Thisrecursivenessin the
nature of trees givesriseto avery recursive structure for programs that use trees. The reason we say "very" recursiveis
that each invocation of count —| eaves causes not just one but several recursive invocations, one for each child, by

way of count —| eaves—i n—f or est .

In fact, we use the name tree recursion for any situation in which a procedure invocation results in more than one
recursive call, even if thereisn't an argument that's a tree. The computation of Fibonacci numbers from Chapter 13 is
an example of atreerecursion with no tree. The car - cdr recursionsin Chapter 17 are also tree recursions; any

structured list-of -lists has a somewhat tree-like, two-dimensional character even though it doesn't use the formal
mechanisms we're exploring in this chapter. The cdr recursion isa"horizontal” one, moving from one element to

another within the samelist; the car recursionisa"vertica” one, exploring a sublist of the given list.

Searching for a Datum inthe Tree

Procedures that explore trees aren't dways as simple ascount —| eaves. We started with that example because we

could write it using higher-order functions, so that you'd understand the structure of the problem before we had to take
on the complexity of mutual recursion. But many tree problems don't quite fit our higher-order functions.

For example, let'swrite apredicatei n—t r ee? that takes the name of a place and atree as arguments and tells
whether or not that place isin thetree. It is possible to make it work withfi |l ter:

(define (in-tree? place tree)
(or (equal ? place (datumtree))
(not (null? (filter (lanbda (subtree) (in-tree? place subtree))
(children tree))))))

Page 313

This awkward construction, however, also performs unnecessary computation. If the place we're looking for happens
to beinthefirst child of anode, fi | t er will neverthelesslook in all the other children as well. We can do better by

replacing theuse of fi | t er with amutual recursion:

(define (in-tree? place tree)
(or (equal ? place (datumtree))
(in-forest? place (children tree))))

(define (in-forest? place forest)
(if (null? forest)
#f
(or (in-tree? place (car forest))
(in-forest? place (cdr forest)))))

> (in-tree? 'abergavenny worl d-tree)
#T

> (in-tree? 'abbenay worl d-tree)
#F

> (in-tree? 'venezia (cadr (children world-tree)))
#F

Although any mutual recursion is alittle tricky to read, the structure of this program does fit the way we'd describe the
algorithmin English. A placeisin atreeif one of two conditions holds: the place is the datum at the root of the tree, or
the place is (recursively) in one of the child trees of thistree. That'swhat i n—t r ee? says. Asfori n—f or est ?, it

saysthat aplaceisin one of agroup of treesif the placeisin thefirst tree, or if it'sin one of the remaining trees.

Locating a Datum in the Tree

Our next project is similar to the previous one, but alittle more intricate. We'd like to be able to locate a city and find
out al of the larger regions that enclose the city. For example, we want to say

> (locate 'berkeley worl d-tree)
(WORLD (UNI TED STATES) CALI FORNI A BERKELEY)

Instead of just getting a yes-or-no answer about whether acity isin the tree, we now want to find out whereit is.

Page 314

The algorithm isrecursive: To look for Berkeley within the world, we need to be able to look for Berkeley within any
subtree. Thewor | d node has several children (countries). Locat e recursively asks each of those children to find a

path to Berkeley. All but one of the children return #f , because they can't find Berkeley within their territory. But the
(united states) nodereturns

((UNI TED STATES) CALI FORNI A BERKELEY)

To make a complete path, we just prepend the name of the current node, wor | d, to this path. What happens when
| ocat e triesto look for Berkeley in Australia? Since all of Australia's children return #f , thereisno path to
Berkeley from Australia, so| ocat e returns#f .

(define (locate city tree)
(if (equal? city (datumtree))

(list city)
(let ((subpath (locate—in-forest city (children tree))))
(i f subpath
(cons (datumtree) subpath)
#))))

(define (locate—in-forest city forest)
(if (null? forest)
#f
(or (locate city (car forest))
(l ocate—in-forest city (cdr forest)))))

Compare the structure of | ocat e with that of i n—t r ee?. The helper proceduresi n—f or est ? and| ocat e—i n—
f or est areamost identical. The main procedures look different, because| ocat e has a harder job, but both of them

check for two possibilities: The city might be the datum of the argument node, or it might belong to one of the child
trees.

Representing TreesasLists

We've done alot with trees, but we haven't yet talked about the way Scheme stores trees internally. How do make—
node, dat um and chi | dr en work? It turns out to be very convenient to represent treesin terms of lists.

(define (make—node datum chil dren)
(cons datum children))

Page 315

(define (datum node)
(car node))

(define (children node)
(cdr node))

In other words, atreeisalist whose first element is the datum and whose remaining elements are subtrees.

> worl d-tree
(WORLD
(I TALY (VENEZI A) (Rl OVAGAE ORE) (FI RENZE) (ROWA))
((UNI TED STATES)
(CALI FORNI A (BERKELEY) ((SAN FRANCI SCO)) (d LROY))
(MASSACHUSETTS (CAMBRI DGE) (AVMHERST) (SUDBURY))
(OHI O (KENT)))
(ZI MBABWE (HARARE) (HWANGE))
(CHI NA (BEIJING (SHANGHAI) (GUANGSZHOU) (SUZHOW)
((GREAT BRI TAIN)
(ENGLAND (LI VERPOQOL))
(SCOTLAND (EDI NBURGH) (GLASGOW ((GRETNA GREEN)))
(WALES (ABERGAVENNY)))
(AUSTRALI A
(VI CTORI A (MELBOURNE))
((NEW SQUTH WALES) (SYDNEY))
(QUEENSLAND (CAI RNS) ((PORT DOUGLAS))))
(HONDURAS (TEGUCI GALPA)))

> (car (children world-tree))
(1 TALY (VENEZI A) (RIOVAGE ORE) (FI RENZE) (ROWA))

Ordinarily, however, we're not going to print out treesin their entirety. Asinthel ocat e example, we'll extract just
some subset of the information and put it in a more readable form.

Abstract Data Types

The procedures make—node, dat um and chi | dr en define an abstract data type for trees. Using thisADT, we

were able to write several useful procedures to manipulate trees before pinning down exactly how atreeis represented
asaSchemellist.

Although it would be possible to refer to the parts of anode by using car and cdr directly, your programs will be
more readable if you use the ADT-specific selectors and

Page 316

constructors. Consider this example:

(in-tree? 'venezia (caddr world-tree))

What does caddr mean in this context? Isthe caddr of atree adatum? A child? A forest? Of course you could work
it out by careful reasoning, but the form in which we presented this example originally was much clearer:

(in-tree? 'venezia (cadr (children world-tree)))

Even better would be

(in-tree? 'venezia (list-ref (children world-tree) 1))

Using the appropriate selectors and constructorsis called respecting the data abstraction. Failing to use the appropriate
selectors and constructors is called a data abstraction violation.

Since we wrote the selectors and constructor for trees ourselves, we could have defined them to use some different
representation:

(define (make—node datum chil dren)
(list "the '"node "with 'datumdatum'and 'children children))

(define (datum node) (list-ref node 4))
(define (children node) (list-ref node 7))

> (make—-node 'italy (cities '(venezia rionaggiore firenze rom)))
(THE NODE W TH DATUM | TALY AND CHI LDREN

((THE NODE W TH DATUM VENEZI A AND CHI LDREN ())

(THE NODE W TH DATUM RI OMAGA ORE AND CHI LDREN ())

(THE NODE W TH DATUM FI RENZE AND CHI LDREN ())

(THE NODE W TH DATUM ROVA AND CHI LDREN ())))

Y ou might expect that this change in the representation would require changes to all the procedure we wrote earlier,
such ascount —| eaves. But in fact, those procedures would continue to work perfectly because they don't see the

representation. (They respect the data abstraction.) Aslong as datum and chi | dr en find the right information, it

doesn't matter how the trees are stored. All that mattersis that the constructors and selectors have to be compatible
with each other.

On the other hand, the example in this section in which we violated the data abstraction by using caddr to find the
second child of wor | d—t r ee would fail if

Page 317

we changed the representation. Many cases like this one, in which formerly working programs failed after a change in
representation, led programmers to use such moralistic terms as "respecting” and "violating" data abstractions.”

An Advanced Example:
Parsing Arithmetic Expressions

Consider the notation for arithmetic expressions. Scheme uses prefix notation: (+ 3 4) . By contrast, people who

aren't Scheme programmers generally represent arithmetic computations using an infix notation, in which the function
symbol goes between two arguments; 3 + 4.

Our goal in this section is to trandate an infix arithmetic expression into atree representing the computation. This
trandation processis called parsing the expression. For example, we'll turn the expression

4+3x7-5/(3+4)+6

into the tree

'-..-_—_I—, f'l"'
o . _‘__.-" ‘
T b
L+ |/
P P
I | = ¥ X
- "'.) ' '\“-‘j "“-+
¢ t% —_ ;?-;.\- 1 ™,
A A I_x’l e \: .

* Another example of a data abstraction violation isin Chapter 16. When mat ch creates an empty known-values
database, we didn't use a constructor. Instead, we merely used a quoted empty sentence:

define (match pattern sent)
(mat ch—usi ng—known-val ues pattern sent '()))

Page 318

The point of using atreeisthat it's going to be very easy to perform the computation once we haveit in treeform. In
the original infix form, it's hard to know what to do first, because there are precedence rules that determine an implicit
grouping: Multiplication and division come before addition and subtraction; operations with the same precedence are
done from left to right. Our sample expression is equivalent to

(4+@BxT7)—(5/(3+4)) +6)

In the tree representation, it's easy to see that the operations nearer the leaves are done first; the root node is the last
operation, because it depends on the results of lower-level operations.

Our program will take asits argument an infix arithmetic expression in the form of alist:

> (parse '(4 +3* 7 -5/ (3 +4) +6))

Each element of the list must be one of three things: a number; one of the four symbols +, —, *, or / ; or asublist (such
asthethree-dlement list (3 + 4) inthisexample) satisfying the samerule. (Y ou can imagine that we're

implementing a pocket calculator. If we were implementing a computer programming language, then we'd also accept
variable names as operands. But we're not bothering with that complication because it doesn't really affect the part of
the problem about turning the expression into atree.)

What makes this problem tricky isthat we can't put the list elements into the tree as soon as we see them. For example,
thefirst three elements of our samplelist are 4, +, and 3. It's tempting to build a subtree of those three elements:

P

| _I._ ,I
N
"\.:/1 f"! I”x:% 4

But if you compare this picture with the earlier picture of the correct tree, you'll see that the second argument to this +
invocation isn't the number 3, but rather the subexpression3 * 7.

By this reasoning you might think that we have to examine the entire expression before we can start building the tree.
But in fact we can sometimes build a subtree with confidence. For example, when we see the minus sign in our sample
expression, we can

Page 319

tell that the subexpression 3 * 7 that comes beforeit is complete, because * has higher precedence than — does.

Here's the plan. The program will examine its argument from left to right. Since the program can't finish processing
each list element right away, it has to maintain information about the elements that have been examined but not
entirely processed. It's going to be easier to maintain that information in two parts: one list for still-pending operations
and another for still-pending operands. Here are the first steps in parsing our sample expression; the program examines
the elements of the argument, putting numbers onto the operand list and operation symbols onto the operation list:*

Remaining Expression Operations Operands
4+3*7-5/ (3+4)+6 0 ()
+3+7-5/ (3+4)+6 0 (D)
3*7-5/ (3+4)+6 (+) (@)
*7-5/ (3+4)+6 (+) Q@:‘ 'K_LJ

At this point, the program islooking at the * operator in the infix expression. If this newly seen operator had lower
precedence than the + that's already at the head of the list of operations, then it would be time to carry out the +
operation by creating atree with + at the root and the first two operandsin the list asits children. Instead, since * has
higher precedence than +, the program isn't ready to create a subtree but must instead add the * to its operation list.

7-5/ (3+4)+6 (* +) G @)

-5/ (3+4)+6 *+) [:.';) |)

Thistime, the newly seen — operation has lower precedence than the * at the head of the operation list. Therefore, it's
time for the program to handle the * operator, by

* Actually, aswelll see shortly, the elements of the operand list are trees, so what we put in the operand list is a one-
node tree whose datum is the number.

Page 320

making a subtree containing that operator and the first two elements of the operand list. This new subtree becomes the
new first element of the operand list.

-5/ (3+4)+6 (+) (: .:.--:::-'E .

Because the program decided to handle the waiting * operator, it still hasn't moved the — operator from the infix
expression to the operator list. Now the program must compare — with the + at the head of the list. These two operators
have the same precedence. Since we want to carry out same-precedence operators from left to right, it'stime to handle

the + operator.

-5/ (3+4)+6 @)

Finally the program can move the — operator onto the operator list. The next severa steps are similar to ones we've

aready seen.
5/ (3+4)+6)
/ (3+4)+6)

(3+4)+6 &

Page 321

Thisisanew situation: The first unseen element of the infix expression is neither a number nor an operator, but a
sublist. Werecursively par se this subexpression, adding the resulting tree to the operand list.

+6 (/- i rx . _r) .h. 1. ! .}-:i:.m.

Then we proceed as before, processing the/ because it has higher precedence than the +, then the — because it has the
same priority asthe +, and so on.

Cj(_)\’ (|“‘|
+6 —) 5 I-ﬁ 2

S0 &5

.-'

Y

I +

+6 () (_1\/\&’&_\

IcY

lon'edl

+ \/L“(}”\. /<(
°) @ (}
Gj S_'r-\l o J;\:I
fﬁ@m
t) ® 4 ‘<> N
Y @) *’TH-"W G 1N

(3) () U '\Z_.a"

Once the program has examined every element of the infix expression, the operators

Page 322

remaining on the operator list must be handled. In this case there is only one such operator. Once the operators have all
been handled, there should be one element remaining on the operand list; that element is the desired tree for the entire
original expression.

T Y
I . '\E_],.x'
empty 0 (£ §9,
iy e
O L = o
(4) L=) L
e P, Wil e
P e . ,\,-.{_ £

The following program implements this algorithm. 1t works only for correctly formed infix expressions; if given an
argument like (3 + *), it'll give an incorrect result or a Scheme error.

(define (parse expr)
(par se-hel per expr '() '()))

(define (parse-hel per expr operators operands)
(cond ((null? expr)
(if (null? operators)
(car operands)
(handl e—op ' () operators operands)))
((nunmber? (car expr))
(par se—hel per (cdr expr)

operators

(cons (make—-node (car expr) '()) operands)))
((list? (car expr))
(par se—hel per (cdr expr)

operators

(cons (parse (car expr)) operands)))
(else (if (or (null? operators)

(> (precedence (car expr))

(precedence (car operators))))
(par se—hel per (cdr expr)
(cons (car expr) operators)
oper ands)
(handl e—op expr operators operands)))))

Page 323

(define (handl e—op expr operators operands)
(par se—hel per expr
(cdr operators)
(cons (nmake—-node (car operators)
(l'ist (cadr operands) (car operands)))
(cddr operands))))

(define (precedence oper)
(if (menber? oper '(+ -)) 1 2))

We promised that after building the tree it would be easy to compute the value of the expression. Here is the program
to do that:

(define (conmpute tree)
(if (nunber? (datumtree))
(datumtree)
((function—-naned-by (datumtree))
(conpute (car (children tree)))
(conpute (cadr (children tree))))))

(define (function—-named-by oper)
(cond ((equal ? oper '+) +)
((equal ? oper '-=) -)
((equal ? oper '"*) *)
((equal ? oper '/) /)
(el se (error "no such operator as" oper))))

> (conpute (parse '(4 + 3 * 7 -5/ (3 +4) +6)))
30. 285714285714

Pitfalls

[0 A leaf node is a perfectly good actual argument to atree procedure, even though the picture of aleaf node doesn't
look treeish because there aren't any branches. A common mistake is to make the base case of the recursion be a node
whose children are leaves, instead of a node that's a leaf itself.

[0 Thevaluereturned by chi | dr en isnot atree, but aforest. It's therefore not a suitable actual argument to a
procedure that expects atree.

Page 324

Exercises
18.1 What does
((SAN FRANCI SCO))

mean in the printout of wor | d—t r ee? Why two sets of parentheses?

18.2 Suppose we change the definition of the tree constructor so that it uses| i st instead of cons:

(define (make—node datum chil dren)
(l'i st datum children))

How do we have to change the selectors so that everything still works?

18.3 Write dept h, aprocedure that takes a tree as argument and returns the largest number of nodes connected

through parent-child links. That is, aleaf node has depth 1; atree in which all the children of the root node are leaves
has depth 2. Our world tree has depth 4 (because the longest path from the root to aleaf is, for example, world,
country, state, city).

18.4 Write count —nodes, aprocedure that takes atree as argument and returns the total number of nodesin the tree.
(Earlier we counted the number of |eaf nodes.)

18.5 Write pr une, a procedure that takes a tree as argument and returns a copy of the tree, but with all the leaf nodes
of the original tree removed. (If the argument to pr une isaone-node tree, in which the root node has no children,
then pr une should return #f because the result of removing the root node wouldn't be atree.)

Page 325

18.6 Write aprogram par se—schene that parses a Scheme arithmetic expression into the same kind of tree that
par se produces for infix expressions. Assume that al procedure invocations in the Scheme expression have two
arguments.

The resulting tree should be avalid argument to conput e:

> (conmpute (parse-schene '(* (+ 4 3) 2)))
14

(Y ou can solve this problem without the restriction to two-argument invocations if you rewrite conput e so that it
doesn't assume every branch node has two children.)

Page 326

Page 327

19—
I mplementing Higher-Order Functions

This chapter is about writing higher-order procedures—that is, procedures that implement higher-order functions. We
are going to study the implementation of every, keep, and so on.

Really there are no new techniques involved. Y ou know how to write recursive procedures that follow theevery
pattern, the keep pattern, and so on; it's asmall additional step to generalize those patterns. The truly important point

made in this chapter is that you aren't limited to afixed set of higher-order functions. If you feel a need for a new one,
you can implement it.

Generalizing Patterns

In Chapter 14, we showed you the procedures squar e—sent and pi gl —sent , which follow the ever y pattern of
recursion. In order to write the general tool, every itself, we have to generalize the pattern that those two have in
common.

Before we get to writing higher-order procedures, let's look at a smpler case of generalizing patterns.

Suppose we want to find out the areas of several different kinds of shapes, given one linear dimension. A
straightforward way would be to do it like this:

(define pi 3.141592654)
(define (square—area r) (* r r))
(define (circle—area r) (* pi r r))

(define (sphere—area r) (* 4 pi r r))

Page 328

(define (hexagon-area r) (* (sgrt 3) 1.5 7r r))

> (square-area 6)
36

> (circle-area 5)
78.53981635

Thisworksfine, but it's somewhat tedious to define all four of these procedures, given that they're so similar. Each one
returns the square of its argument times some constant factor; the only difference is the constant factor.

We want to generalize the pattern that these four procedures exhibit. Each of these procedures has a particular constant
factor built in to its definition. What we'd like instead is one single procedure that |ets you choose a constant factor
when you invoke it. This new procedure will take a second argument besides the linear dimension r (the radius or

side): ashape argument whose value is the desired constant factor.

(define (area shape r) (* shape r r))
(define square 1)

(define circle pi)

(define sphere (* 4 pi))

(define hexagon (* sqgrt 3) 1.5))

> (area sphere 7)
615. 752160184

What's the point? We started with several procedures. Then we found that they had certain points of similarity and
certain differences. In order to write a single procedure that generalizes the points of similarity, we had to use an
additional argument for each point of difference. (In this example, there was only one point of difference.)

In fact, every procedure with argumentsis a generalization in the same way. Even squar e—ar ea, which we
presented as the special case to be generalized, is more general than these procedures:

(define (area—of —squar e—of —si de-5)
(* 55))

(define (area—of —squar e—of —si de—6)
(* 66))

Page 329

These may seem too trivial to be taken seriously. Indeed, nobody would write such procedures. But it's possible to take
the area of a particular size square without using a procedure at al, and then later discover that you need to deal with
squares of several sizes.

Thisidea of using a procedure to generalize a pattern is part of the larger idea of abstraction that we've been discussing
throughout the book. We notice an algorithm that we need to use repeatedly, and so we separate the algorithm from
any particular data values and give it a name.

The idea of generalization may seem obvious in the example about areas of squares. But when we apply the same idea
to generalizing over afunction, rather than merely generalizing over a number, we gain the enormous expressive
power of higher-order functions.

TheEvery Pattern Revisited

Hereagainistheevery template:

(define (every—sonething sent)
(if (enpty? sent)
()
(se (____ ___(first sent))
(every—sonmething (bf sent)))))

Y ou've been writing ever y-like procedures by filling in the blank with a specific function. To generalize the pattern,
well use the trick of adding an argument, as we discussed in the last section.

(define (every fn sent)
(if (enpty? sent)
()
(se (fn (first sent))
(every fn (bf sent)))))

Thisis hardly any work at all for something that seemed as mysterious asever y probably did when you first saw it.

Recall that ever y will also work if you pass it aword asits second argument. The version shown here does indeed
work for words, becausef i r st andbut fi r st work for words. So probably "st uf f " would be a better formal
parameter than "sent ." (The

Page 330

result from every isaways a sentence, because sent ence isused to construct the result.)

The Difference between Map and Every

Here's the definition of the map procedure:

(define (map fn |st)
(if (null? Ist)
()
(cons (fn (car Ist))
(map fn (cdr Ist)))))

The structure hereisidentical to that of ever y; the only differenceisthat we use cons, car , and cdr instead of
se,first,andbutfirst.

One implication of thisisthat you can't use map with aword, sinceit's an error to take the car of aword. Whenisit
advantageous to use map instead of ever y? Suppose you're using map with astructured lit, like this:

> (map (lanbda (flavor) (se flavor '(is great)))
"(ginger (ultra chocolate) punpkin (rumraisin)))

((G@ NGER IS GREAT) (ULTRA CHOCCOLATE | S GREAT)

(PUMPKI N IS GREAT) (RUM RAISIN | S GREAT))

> (every (lanmbda (flavor) (se flavor '(is great)))
"(ginger (ultra chocolate) punpkin (rumraisin)))
(G NGER | S GREAT ULTRA CHOCOLATE | S GREAT PUWPKI N |'S GREAT
RUM RAI SIN | S GREAT)

Why does map preserve the structure of the sublists while ever y doesn't? Map uses cons to combine the elements of
theresult, whereasever y usessent ence:

> (cons '(punpkin is great)
(cons '"(rumraisin is great)

'0))
((PUVPKIN |'S GREAT) (RUM RAISIN |'S GREAT))

> (se '(punpkin is great)
(se "(rumraisin is great)

“0)))
(PUVPKIN | S GREAT RUM RAI SIN |'S GREAT)

Page 331
Filter

Here'sthe implementationof fi | t er:

(define (filter pred |st)
(cond ((null? Ist) "())
((pred (car Ist))
(cons (car Ist) (filter pred (cdr Ist))))
(else (filter pred (cdr Ist)))))

Like map, thisuses cons asthe constructor so that it will work properly on structured lists. We're leaving the
definition of keep, the version for words and sentences, as an exercise.

(Aside from the difference between lists and sentences, thisisjust like the keep template on page 224.)

Accunul at e and Reduce

Here are the examples of theaccurmul at e pattern that we showed you before:

(define (addup nuns)
(if (enmpty? nums)
0

(+ (first nuns) (addup (bf nuns)))))

(define (scrunch—-words sent)
(if (enpty? sent)

(word (first sent) (scrunch—-words (bf sent)))))

What are the similarities and differences? There are two important differences between these procedures: the
combiners (+ versuswor d) and the values returned in the base cases (zero versus the empty word). According to what

we said about generalizing patterns, you might expect that we'd need two extraarguments. You'd invoket hr ee—
ar g—accurmul at e likethis:

> (three—arg—accunulate + 0 '(6 7 8))
21

> (three-arg—accunul ate word "" ' (come together))
COVETOCGETHER

Page 332

But we've actually defined accurnul at e and r educe so that only two arguments are required, the procedure and the

sentence or list. We thought it would be too much trouble to have to provide the identity element all the time. How did
we manage to avoid it?

Thetrick isthat in our r educe and accumnul at e the base case is a one-element argument, rather than an empty
argument. When we're down to one element in the argument, we just return that element:

(define (accurul ate conbi ner stuff) ;; first version
(if (empty? (bf stuff))
(first stuff)
(conbi ner (first stuff)
(accunmul ate conbi ner (bf stuff)))))

Thisversion isasimplification of the one we actually provide. What happensif st uf f isempty? This version blows
up, sinceit triestotakethebut fi rst of stuff immediately. Our final version has a specific check for empty
arguments:

(define (accurul ate conbi ner stuff)
(cond ((not (enpty? stuff)) (real-accunul ate conbi ner stuff))
((menber conbiner (list + * word se append))
(conbi ner))
(el se (error
"Can't accunul ate enpty input with that conbiner"))))

(define (real—accunul ate conbi ner stuff)
(if (enmpty? (bf stuff))
(first stuff)
(conmbiner (first stuff) (real-accunul ate conbiner (bf stuff)))))

Thisversion works just like the earlier version aslong as st uf f isn't empty. (Reduce isthe same, except that it uses
nul | ?,car,andcdr.)

Aswe mentioned in Chapter 8, many of Scheme's primitive procedures return their identity element when invoked
with no arguments. We can take advantage of this; if accunul at e isinvoked with an empty second argument and

one of the procedures +, *, wor d, sent ence, append or | i st, weinvoke the combiner with no arguments to
produce the return value.

On the other hand, if accunul at e's combiner argument is something like (| anbda (x y) (word x '— vy))
or max, then there's nothing accumnul at e can return, so we give an error message. (But it's a more descriptive error
message than

Page 333

the first version; what message do you get when you call that first version with an empty second argument?)

It's somewhat of a kludge that we have to include in our procedure alist of the functions that can be called without
arguments. What we'd like to do isinvoke the combiner and find out if that causes an error, but Scheme doesn't
provide a mechanism for causing errors on purpose and recovering from them. (Some dialects of Lisp do have that
capability.)

Robustness

Instead of providing a special error message for empty-argument cases that accumnul at e can't handle, we could have
just let it blow up:

(define (accurul ate conbi ner stuff) ;; non-robust version
(if (not (enpty? stuff))
(real —accunul ate conbi ner stuff)
(conbi ner)))

Some guestions about programming have clear right and wrong answers—if your program doesn't work, it's wrong!
But the decision about whether to include the extra check for a procedure that's usable with an empty argument isa
matter of judgment.

Here isthe reasoning in favor of this simpler version: In either version, the user who tries to evaluate an expression like

(accurmul ate max ' ())

isgoing to get an error message. In the longer version we've spent both our own programming effort and alittle of the
computer's time on every invocation just to give a different error message from the one that Scheme would have given
anyway. What's the point?

Hereisthe reasoning in favor of the longer version: In practice, the empty-argument situation isn't going to arise
because someone uses a quoted empty sentence; instead the second argument to accunul at e will be some

expression whose value happens to be empty under certain conditions. The user will then have to debug the program
that caused those conditions. Debugging is hard; we should make it easier for the user, if we can, by giving an error
message that points clearly to the problem.

Page 334

A program that behaves politely when given incorrect input is called robust. It's not always a matter of better or worse
error messages. For example, a program that reads input from a human user might offer the chance to try again if some
input value isincorrect. A robust program will also be alert for hardware problems, such as running out of space on a
disk, or getting garbled information over a telephone connection to another machine because of noise on the line.

It's possible to pay either too little or too much attention to program robustness. If you're a professional programmer,
your employer will expect your programs to survive errors that are likely to happen. On the other hand, your programs
will be hard to read and debug if the error checking swamps the real work! As a student, unless you are specifically
asked to "bulletproof" your program, don't answer exam questions by writing procedures like this one:

(define (even? num 7, silly exanple
(cond ((not (nunmber? num) (error "Not a nunber."))
((not (integer? nun)) (error "Not an integer."))
((< num Q) (error "Argunment must be positive."))
(el se (= (remai nder num2) 0))))

In the case of accunul at e, we decided to be extra robust because we were writing a procedure for usein a

beginning programming course. If we were writing this tool just for our own use, we might have chosen the non-robust
version. Deciding how robust a program will be is a matter of taste.

Higher-Order Functionsfor Structured Lists

We've given you afairly standard set of higher-order functions, but there's no law that says these are the only ones.
Any time you notice yourself writing what feels like the same procedure over again, but with different details, consider
inventing a higher-order function.

For example, here's a procedure we defined in Chapter 17.

(define (deep—pigl structure)
(cond ((word? structure) (pigl structure))
((nul'l? structure) '())
(el se (cons (deep—pigl (car structure))
(deep—pi gl (cdr structure))))))

Page 335

This procedure converts every word in a structured list to Pig Latin. Suppose we have a structure full of numbers and
we want to compute all of their squares. We could write a specific procedure deep—squar e, but instead, we'll write

a higher-order procedure:

(define (deep—nap f structure)
(cond ((word? structure) (f structure))
((nul'l? structure) '())
(el se (cons (deep—nmap f (car structure))
(deep—map f (cdr structure))))))

TheZero-Trip Do Loop

Thefirst programming language that provided alevel of abstraction over the instructions understood directly by
computer hardware was Fortran, alanguage that is still widely used today despite the advances in programming
language design since then. Fortran remains popular because of the enormous number of useful programs that have
already been written in it; if an improvement is needed, it's easier to modify the Fortran program than to start again in
some more modern language.

Fortran includes a control mechanism called do, a sort of higher-order procedure that carries out a computation
repeatedly, asever y does. But instead of carrying out the computation once for each element of a given collection of
data (like the sentence argument to ever y), do performs a computation once for each integer in arange specified by
its endpoints. "For every number between 4 and 16, do such-and-such."

What if you specify endpoints such that the starting value is greater than the ending value? In the first implementation
of Fortran, nobody thought very hard about this question, and they happened to implement do in such away that if

you specified a backward range, the computation was done once, for the given starting value, before Fortran noticed
that it was past the ending value.

Twenty years later, a bunch of computer scientists argued that this behavior was wrong—that ado loop with its
starting value greater than its ending value should not carry out its computation at all. This proposal for a"zero-trip do

loop" was strongly opposed by Fortran old-timers, not because of any principle but because of al the thousands of
Fortran programs that had been written to rely on the one-trip behavior.

The point of this story is that the Fortran users had to debate the issue so heatedly because they are stuck with only the
control mechanisms that are built into the language. Fortran doesn't have the idea of function as data, so Fortran
programmers can't write their own higher-order procedures. But you, using the techniques of this chapter, can

Page 336
create precisely the control mechanism that you need for whatever problem you happen to be working on.
Pitfalls

[0 Themost crucia point in inventing a higher-order function is to make sure that the pattern you have in mind really
does generalize. For example, if you want to write a higher-order function for structured data, what is the base case?
Will you use the tree abstract data type, or will you use car /cdr recursion?

[0 When you generalize a pattern by adding a new argument (typically a procedure), be sure you add it to the recursive
invocation(s) as well asto the formal parameter list!

Boring Exercises

19.1 What happensiif you say the following?

(every cdr ' ((john Iennon) (paul ntcartney)
(george harrison) (ringo starr)))

How isthis different from using map, and why? How about cadr instead of cdr ?

Real Exercises

19.2 Write keep. Don't forget that keep hasto return a sentence if its second argument is a sentence, and aword if its
second argument is aword.

(Hint: it might be useful to write aconbi ne procedure that uses either wor d or sent ence depending on the types
of its arguments.)

19.3 Write the three-argument version of accunul at e that we described.

> (three-arg—accunulate + 0 '(4 5 6))
15

> (three-arg—accunulate + 0 '())

0

Page 337

> (three-arg—accunul ate cons '() '"(a b c d e))
(ABCDE

19.4 Our accumul at e combines elements from right to left. That is,
(accurmulate — '(2 3 4 5))

computes 2 — (3—(4-5)). Writel ef t —accumnul at e, which will compute ((2 — 3) —4) — 5 instead. (The result will
be the same for an operation such as +, for which grouping order doesn't matter, but will be different for —.)

19.5 Rewritethet r ue—f or —al | ? procedure from Exercise 8.10. Do not useevery, keep, or accunul at e.

19.6 Write aproceduret r ue—f or —any—pai r ? that takes a predicate and a sentence as arguments. The predicate
must accept two words as its arguments. Y our procedure should return #t if the argument predicate will return true for
any two adjacent words in the sentence:

> (true-for—-any-pair? equal? '(a b c b a))

#F

> (true-for—-any-pair? equal? '(a b c c d))

#T

> (true-for—-any-pair? < '(20 16 5 8 6)) ;7 bis less than 8
#T

19.7 Write aproceduret r ue—f or —al | —pai r s? that takes a predicate and a sentence as arguments. The predicate
must accept two words as its arguments. Y our procedure should return #t if the argument predicate will return true for
every two adjacent words in the sentence:

> (true-for-all-pairs? equal '(a b c c d))
#F

> (true-for-all-pairs? equal? '(a a a a a))
#T

> (true-for-all-pairs? < '(20 16 5 8 6))
#F

Page 338

> (true-for-all-pairs? < '(3 7 19 22 43))
#T

19.8 Rewritet r ue—f or —al | —pai r s? (Exercise 19.7) using t r ue—f or —any—pai r ? (Exercise 19.6) as a helper
procedure. Don't use recursion in solving this problem (except for the recursion you've aready used to writet r ue—
f or —any—pai r ?). Hint: You'll find the not procedure helpful.

19.9 Rewrite either of the sort procedures from Chapter 15 to take two arguments, alist and a predicate. It should sort
the elements of that list according to the given predicate:

> (sort '(4 23 75 16 3) <)
(3457 16 23)

> (sort '(4 23 75 16 3) >)
(23 16 7 5 4 3)

> (sort '(john paul george ringo) before?)
(GEORGE JOHN PAUL RI NGO

19.10 Writet r ee—map, analogous to our deep—nap, but for trees, using the dat umand chi | dr en selectors.
19.11 Writer epeat ed. (Thisisahard exercise!)

19.12 Writet r ee—r educe. Y ou may assume that the combiner argument can be invoked with no arguments.

> (tree-reduce
+
(make—node 3 (list (make—-node 4 ' ())
(make—node 7 ' ())
(make-node 2 (list (make-node 3 '())
(make—node 8 '()))))))
27

19.13 Writedeep-r educe, similartot r ee—r educe, but for structured lists:

> (deep-reduce word '(r ((a (mb) (1)) (e (r)))))
RAMBLER

Page 340

PART VI—
SEQUENTIAL PROGRAMMING

Thethree big ideasin this part are effect, sequence, and state.

Until now, we've been doing functional programming, where the focus is on functions and their return values.

Invoking afunction islike asking a question: "What's two plus two?" In this part of the book we're going to talk about
giving commands to the computer as well as asking it questions. That is, we'll invoke procedures that tell Scheme to do
something, such aswash-t he—di shes. (Unfortunately, the Scheme standard leaves out this primitive.) Instead of

merely computing a value, such a procedure has an effect, an action that changes something.

Once we're thinking about actions, it's very natural to consider a sequence of actions. First cooking dinner, then eating,
and then washing the dishes is one sequence. First eating, then washing the dishes, and then cooking is a much less
sensible sequence.

Although these ideas of sequence and effect are coming near the end of our book, they're the ideas with which almost
every introduction to programming begins. Most books compare a program to a recipe or a sequence of instructions,
along the lines of

to go—t o—work
get —dr essed
eat —br eakf ast
cat ch—t he-bus

This sequential programming style is simple and natural, and it does a good job of modeling computations in which the
problem concerns a sequence of events. If you're writing an airline reservation system, a sequential program with
reserve—seat andi ssue—ti cket commands makes sense. But if you want to know the acronym of a phrase,

that's not inherently sequential, and a question-asking approach is best.

Page 341

Some actions that Scheme can take affect the "outside” world, such as printing something on the computer screen. But
Scheme can also carry out internal actions, invisible outside the computer, but changing the environment in which
Scheme itself carries out computations. Defining a new variable with def i ne is an example; before the definition,
Scheme wouldn't understand what that name means, but once the definition has been made, the name can be used in
evaluating later expressions. Scheme's knowledge about the leftover effects of past computationsis called its state. The
third big ideain this part of the book is that we can write programs that maintain state information and use it to
determine their results.

Like sequence, the notion of state contradicts functional programming. Earlier in the book, we emphasized that every
time afunction isinvoked with the same arguments, it must return the same value. But a procedure whose returned
value depends on state—on the past history of the computation—might return a different value on each invocation,
even with identical arguments.

WEe'll explore severa situationsin which effects, sequence, and state are useful:
* Interactive, question-and-answer programs that involve keyboard input while the computation isin progress,
* Programs that must read and write long-term data file storage;

» Computations that model an actual sequence of eventsin time and use the state of the program to model information
about the state of the simulated events.

After introducing Scheme's mechanisms for sequential programming, we'll use those mechanisms to implement
versions of two commonly used types of business computer applications, a spreadsheet and a database program.

Page 342

Page 343

20—
Input and Output

In the tic-tac-toe project in Chapter 10, we didn't write a complete game program. We wrote a function that took a
board position and x or 0 as arguments, returning the next move. We noted at the time that a complete game program
would also need to carry on a conver sation with the user. Instead of computing and returning one single value, a
conversational program must carry out a sequence of eventsin time, reading information from the keyboard and
displaying other information on the screen.

Before we compl ete the tic-tac-toe project, we'll start by exploring Scheme's mechanisms for interactive programming.
Printing

Up until now, we've never told Scheme to print anything. The programs we've written have computed values and
returned them; we've relied on the read-eval-print loop to print these values.”

But let's say we want to write a program to print out al of the words to "99 Bottles of Beer on the Wall." We could
implement a function to produce a humongous list of the lines of the song, like this:

(define (bottles n)
(if (=no0
()
(append (verse n)
(bottles (= n 1)))))

* The only exception isthat we've used t r ace, which prints messages about the progress of a computation.

Page 344

(define (verse n)
(list (cons n '(bottles of beer on the wall))
(cons n '(bottles of beer))
"(if one of those bottles should happen to fall)
(cons (= n 1) '(bottles of beer on the wall))

()

> (bottles 3)

((3 BOTTLES OF BEER ON THE WALL)

(3 BOTTLES OF BEER)

(I'F ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(2 BOTTLES OF BEER ON THE WALL)

()

(2 BOTTLES OF BEER ON THE WALL)

(2 BOTTLES OF BEER)

(I'F ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(1 BOTTLES OF BEER ON THE WALL)

()

(1 BOTTLES OF BEER ON THE WALL)

(1 BOTTLES OF BEER)

(I'F ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(0 BOTTLES OF BEER ON THE WALL)

()

The problem isthat we don't want alist. All we want isto print out the lines of the song; storing them in a data
structure is unnecessary and inefficient. Also, some versions of Scheme would print the above list like this:

((3 BOTTLES OF BEER ON THE WALL) (3 BOTTLES OF BEER) (IF ONE OF
THOSE BOTTLES SHOULD HAPPEN TO FALL) (2 BOTTLES OF BEER ON THE
WALL) () (2 BOTTLES OF BEER ON THE WALL) (2 BOTTLES OF BEER) (IF
ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL) (1 BOTTLES OF BEER ON
THE WALL) () (1 BOTTLES OF BEER ON THE WALL) (1 BOTTLES OF BEER)

(I F ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL) (0 BOTTLES OF BEER
ON THE WALL) ())

or even all on oneline. We can't rely on Scheme's mechanism for printing lists if we want to be sure of a particular
arrangement on the screen.

Instead we'll write a program to print averse, rather than returnitin alist:

(define (bottles n)
(if (=n0)
"burp
(begin (verse n)
(bottles (= n 1)))))

Page 345

(define (verse n)
(show (cons n '(bottles of beer on the wall)))
(show (cons n '(bottles of beer)))
(show ' (if one of those bottles should happen to fall))
(show (cons (- n 1) '(bottles of beer on the wall)))
(show " ()))

> (bottles 3)

(3 BOTTLES OF BEER ON THE WALL)

(3 BOTTLES OF BEER)

(I F ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(2 BOTTLES OF BEER ON THE WALL)

()

(2 BOTTLES OF BEER ON THE WALL)

(2 BOTTLES OF BEER)

(I F ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(1 BOTTLES OF BEER ON THE WALL)

()

(1 BOTTLES OF BEER ON THE WALL)

(1 BOTTLES OF BEER)

(I'F ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(0 BOTTLES OF BEER ON THE WALL)

0
BURP

Notice that Scheme doesn't print an outer set of parentheses. Each line was printed separately; thereisn't one big list
containing all of them.”

Why was "burp" printed at the end? Just because we're printing things explicitly doesn't mean that the read-eval-print
loop stops functioning. We typed the expression (bot t | es 3) . In the course of evaluating that expression, Scheme

printed several linesfor us. But the value of the expression was the word bur p, because that'swhat bot t | es
returned.

Side Effects and Sequencing
How does our program work? There are two new ideas here: side effects and sequencing.

Until now, whenever we've invoked a procedure, our only goal has been to get areturn value. The procedures we've
used compute and return avalue, and do nothing else. Showis different. Although every Scheme procedure returns a

value, the Scheme

* We know that it's still not as beautiful as can be, because of the capital letters and parentheses, but we'll get to that
later.

Page 346

language standard doesn't specify what value the printing procedures should return.” Instead, we are interested in their
side effects. In other words, we invoke show because we want it to do something, namely, print its argument on the

screen.

What exactly do we mean by "side effect"? The kinds of procedures that we've used before this chapter can compute
values, invoke helper procedures, provide arguments to the helper procedures, and return avalue. There may be alot
of activity going on within the procedure, but the procedure affects the world outside of itself only by returning avalue
that some other procedure might use. Show affects the world outside of itself by putting something on the screen.

After show has finished its work, someone who looks at the screen can tell that show was used.*”

Here's an example to illustrate the difference between values and effects:

(define (effect x)
(show x)
' done)

(define (val ue x)

X)

> (effect '(oh! darling))
(OH DARLI NG
DONE

> (value ' (oh! darling))
(OH' DARLI NG

> (bf (effect '(oh! darling)))
(OH' DARLI NG
ONE

* Suppose show returns#f in your version of Scheme. Then you might see

> (show 7)
7
#F

But since the return value is unspecified, we try to write programs in such away that we never use showsreturn value as
the return value from our procedures. That's why we return values like bur p.

** The term side effect is based on the idea that a procedure may have a useful return value as its main purpose and may
also have an effect "on the side.” It's amisnomer to talk about the side effect of show, since the effect isits main purpose.

But nobody ever says "side return value"!

Page 347
> (bf (value ' (oh! darling)))
(DARLI NG
> (define (Ilots—of—effect x)
(effect x)
(effect x)

(effect x))

> (define (lots—of—-val ue x)
(val ue x)
(val ue x)
(val ue x))

> (l ots—of —effect '(oh! darling))

(OH DARLI NG)
(OH DARLI NG)
(OH DARLI NG)
DONE

> (| ot s—of —val ue ' (oh! darling))
(OH DARLI NG

This example also demonstrates the second new idea, sequencing: Each of ef f ect , | ot s—of —ef f ect ,and| ot s—
of —val ue contains more than one expression in its body. When you invoke such a procedure, Scheme evaluates all
the expressions in the body, in order, and returns the value of the last one.” This also worksin the body of al et ,
which isreally the body of a procedure, and in each clause of a cond.™

* In Chapter 4, we said that the body of a procedure was always one single expression. We lied. But as long as you
don't use any procedures with side effects, it doesn't do you any good to evaluate more than one expression in a body.

** For example:
> (cond ((< 4 0)
(show ' (how i nteresting))
(show "(4 is less than zero?))
#f)
((> 4 0)
(show ' (nore reasonabl e))
(show '(4 really is nore than zero))
"val ue)
(el se
(show ' (you nean 4=07?))
#t))
(MORE REASONABLE)

(4 REALLY IS MORE THAN ZERO
VALUE

Page 348

When weinvoked | ot s—of —val ue, Schemeinvoked val ue threetimes; it discarded the values returned by the
first two invocations, and returned the value from the third invocation. Similarly, when weinvoked | ot s—of —

ef f ect, Schemeinvoked ef f ect threetimes and returned the value from the third invocation. But each invocation
of ef f ect caused its argument to be printed by invoking show.

TheBegi n Special Form

Thel ot s—of —ef f ect procedure accomplished sequencing by having more than one expression in its body. This
works fine if the sequence of events that you want to perform is the entire body of a procedure. Butinbot t | es we
wanted to include a sequence as one of the aternativesinani f construction. We couldn't just say

(define (bottles n) ;' wrong
(if (=no0)
()
(verse n)
(bottles (- n 1))))

becausei f must have exactly three arguments. Otherwise, how would i f know whether we meant (ver se n) tobe
the second expression in the true case, or the first expression in the false case?

Instead, to turn the sequence of expressions into a single expression, we use the special form begi n. It takes any
number of arguments, evaluates them from left to right, and returns the value of the last one.

(define bottles n)
(if (=no0)
"burp
(begin (verse n)
(bottles (= n 1)))))

(One way to think about sequences in procedure bodiesis that every procedure body has an invisible begi n
surrounding it.)

ThisIsn't Functional Programming

Sequencing and side effects are radical departures from the idea of functional programming. In fact, we'd like to
reserve the name function for something that computes and

Page 349

returns one value, with no side effects. "Procedure” is the general term for the thing that | ambda returns—an

embodiment of an algorithm. If the algorithm is the kind that computes and returns a single value without side effects,
then we say that the procedure implements a function.”

There is acertain kind of sequencing even in functional programming. If you say

(* (+ 3 4) (- 92 15))

it's clear that the addition has to happen before the multiplication, because the result of the addition provides one of the
arguments to the multiplication. What's new in the sequential programming style is the emphasis on sequence, and the
fact that the expressions in the sequence are independent instead of contributing values to each other. In this
multiplication problem, for example, we don't care whether the addition happens before or after the subtraction. If the
addition and subtraction were in a sequence, we'd be using them for independent purposes:

(begin
(show (+ 3 4))
(show (= 92 15)))

Thisiswhat we mean by being independent. Neither expression helpsin computing the other. And the order matters
because we can see the order in which the results are printed.

Not Moving tothe Next Line

Each invocation of show prints a separate line. What if we want a program that prints several things on the same line,
likethis:

> (begin (show-addition 3 4)
(show-addition 6 8)
' done)

3+4=7

6+8=14

DONE

* Sometimes people sloppily say that the procedure is afunction. In fact, you may hear people be really sloppy and call
anon-functional procedure a function!

Page 350
Weuse di spl ay, which doesn't move to the next line after printing its argument:

(define (show-addition x y)
(di splay x)
(display '+)
(display vy)
(display '=)
(show (+ x vy)))

(Thelast one is ashow because we do want to start a new line after it.)

What if you just want to print ablank line? You usenew i ne:

(define (verse n)
(show (cons n '(bottles of beer on the wall)))
(show (cons n '(bottles of beer)))
(show '(if one of those bottles should happen to fall))
(show (cons (- n 1) '(bottles of beer on the wall)))
(newline)) ; replaces (show '())

Infact, showisn't an official Scheme primitive; we wroteit intermsof di spl ay and newl i ne.

Strings

Throughout the book we've occasionally used strings, that is, words enclosed in doublequote marks so that Scheme
will permit the use of punctuation or other unusual characters. Strings aso preserve the case of letters, so they can be
used to beautify our song even more. Since any character can be in a string, including spaces, the easiest thingto do in
this caseisto treat all the letters, spaces, and punctuation characters of each line of the song as one long word. (If we
wanted to be able to compute functions of the individual words in each line, that wouldn't be such a good idea.)

(define (verse n)

(display n)
(show "bottles of beer on the wall,")
(di splay n)
(show "bottl es of beer.")
(show "If one of those bottles should happen to fall,")
(display (- n 1))
(show "bottles of beer on the wall.")
(newline))
Page 351
> (verse 6)
6 bottles of beer on the wall,
6 bottles of beer.
If one of those bottles should happen to fall,
5 bottles of beer on the wall.
#F ; or whatever is returned by (new ine)
It'sstrangeto think of "bottl es of beer on the wall," asasingleword. But the ruleisthat anything

inside double quotes counts as a single word. It doesn't have to be an English word.

A Higher-Order Procedurefor Sequencing

Sometimes we want to print each element of alist separately:

(define (showlist Ist)
(if (null? Ist)
' done
(begin (show (car Ist))
(show-list (cdr Ist)))))

> (show-list '((dig a pony) (doctor robert) (for you blue)))

(DG A PONY)
(DOCTOR ROBERT)

(FOR YOU BLUE)
DONE

Like other patterns of computation involving lists, this one can be abstracted into a higher-order procedure. (We can't
call it a"higher-order function” because this one is for computations with side effects.) The proceduref or —each is

part of standard Scheme:

> (for—each show ' ((nmean nr mustard) (no reply) (tell me why)))
(MEAN MR MUSTARD)
(NO REPLY)

(TELL ME VHY)

The valuereturned by f or —each is unspecified.

Why couldn't we just use map for this purpose? There are two reasons. Oneisjust an efficiency issue: Map constructs
alist containing the values returned by each of its sub-computations; in this example, it would be alist of three
instances of the unspecified value returned by show. But we aren't going to use that list for anything, so there's no

point in constructing it. The second reason is more serious. In functional programming, the order of evaluation of
subexpressions is unspecified. For example, when we evaluate the expression

Page 352
(-(+45) (*67)

we don't know whether the addition or the multiplication happensfirst. Similarly, the order in which map computes

the results for each element is unspecified. That's okay as long as the ultimately returned list of resultsisin the right
order. But when we are using side effects, we do care about the order of evaluation. In this case, we want to make sure
that the elements of the argument list are printed from left to right. For —each guarantees this ordering.

Tic-Tac-Toe Revisited

We're working up toward playing a game of tic-tac-toe against the computer. But as afirst step, let's have the computer
play against itself. What we aready haveist t t , astrategy function: one that takes a board position as argument (and
also aletter x or 0) and returns the chosen next move. In order to play a game of tic-tac-toe, we need two players; to
make it more interesting, each should have its own strategy. So we'll write another one, quickly, that just movesin the
first empty square it sees:

(define (stupid-ttt position letter)
(location '— position))

(define (location letter word)
(if (equal? letter (first word))
1
(+ 1 (location letter (bf word)))))

Now we can write a program that takes two strategies as arguments and actually plays a game between them.

(define (play-ttt x—strat o-strat)

(pl ay-ttt—-hel per x-strat o-strat ' _'x)

(define (play-ttt—hel per x—strat o-strat position whose-turn)
(cond ((al ready—won? position (opponent whose-turn))
(l'i st (opponent whose-turn) 'w ns!))
((tie—gane? position) '(tie gane))
(else (let ((square (if (equal? whose-turn 'x)
(x—strat position 'Xx)
(o—strat position '0))))
(pl ay-ttt—hel per x-—strat
o-strat
(add-nove square whose—turn position)
(opponent whose-turn))))))

Page 353

We use a hel per procedure because we need to keep track of two pieces of information besides the strategy procedures:
the current board position and whose turn it is (x or 0). The helper procedure is invoked recursively for each move.

First it checks whether the game is aready over (won or tied).” If not, the helper procedure invokes the current player's
strategy procedure, which returns the square number for the next move. For the recursive call, the arguments are the
same two strategies, the new position after the move, and the letter for the other player.

We till need add—nove, the procedure that takes a square and an old position as arguments and returns the new
position.

(define (add-nobve square letter position)
(if (= square 1)
(word letter (bf position))
(word (first position)
(add-nmove (- square 1) letter (bf position)))))

> (play-ttt ttt stupid-ttt)
(X WNS!)

> (play-ttt stupid-ttt ttt)
(O WNS!)

Accepting User Input

The work we did in the last section was purely functional. We didn't print anything (except the ultimate return value,
as always) and we didn't have to read information from a human player, because there wasn't one.

Y ou might expect that the structure of an interactive game program would be very different, with atop-level procedure
full of sequential operations. But the fact is that we hardly have to change anything to turn thisinto an interactive
game. All weneedisa

* Y ou wrote the procedures al r eady—won? andt i e—gane? in Exercises 10.1 and 10.2:

(define (already—won? position who)
(menmber? (word who who who) (find-triples position)))

(define (tie—gane? position)
(not (menber? '— position)))

Page 354

new "strategy" procedure that asks the user where to move, instead of computing a move based on built-in rules.

(define (ask—user position letter)
(print—position positiaon)
(display letter)

(display " 's nove: ")
(read))
(define (print—position position) ;; first version

(show position))

(Ultimately we're going to want a beautiful two-dimensional display of the current position, but we don't want to get
distracted by that just now. That's why we've written atrivial temporary version.)

> (play-ttt ttt ask-user)

(TIE GAME)
What the user typed isjust the single digits shown in boldface at the ends of the lines.

What's new hereisthat we invoke the procedure r ead. It waits for you to type a Scheme expression, and returns that
expression. Don't be confused: Read does not evaluate what you type. It returns exactly the same expression that you

type:

(define (echo)
(display "what? ")
(let ((expr (read)))
(if (equal ? expr 'stop)
' okay
(begin
(show expr)

(echo)))))

Page 355

> (echo)

What ? hel |l o

HELLO

What ? (+ 2 3)

(+ 2 3)

What ? (first (glass onion))
(FIRST (GLASS ONION))

VWhat ? stop

OKAY

Aesthetic Board Display

Here's our beautiful position printer:

(define (print—position position)
(print—row (subword position 1 3))
(show " —+—+-")

(print—-row (subword position 4 6))
(show " —+—+-")

(print—-row (subword position 7 9))
(newline))

(define (print—row row)
(maybe—di splay (first row))
(display "[")

(maybe—di splay (first (bf row)))
(display "|")

(maybe—di splay (last row))
(newine))

(define (maybe—di splay letter)

(if (not (equal? letter '-))
(display letter)
(display " ")))

(define (subword wd start end)
((repeated bf (- start 1))
((repeated bl (— (count wd) end))

wd))) *

* Alternate version:

(define (subword wd start end)
(cond ((> start 1) (subword (bf wd) (- start 1) (- end 1)))
((< end (count wd)) (subword (bl wd) start end))
(else wd)))

Y ou can take your choice, depending on which you think is easier, recursion or higher-order functions.

Page 356

Here's how it works:

> (print—position ' _x 00__ Xxx)
| X
———

adg

—t
| X] X

Reading and Writing Normal Text

Ther ead procedure works fine as long as what you type looks like a Lisp program. That is, it reads one expression at
atime. In the tic-tac-toe program the user types a single number, which is a Scheme expression, so r ead worksfine.
But what if we want to read more than one word?

(define (rusic—critic) ;; first version
(show "What's your favorite Beatles song?")
(let ((song (read)))
(show (se "I like" song "too."))))

> (nusic—critic)

What's your favorite Beatles song?
She Loves You

(I I'ike SHE too.)

If the user had typed the song title in parentheses, then it would have been a single Scheme expression and r ead
would have accepted it. But we don't want the users of our program to have to be typing parentheses all the time.

Scheme also lets you read one character at atime. This allows you to read any text, with no constraints on its format.
The disadvantage is that you find yourself putting alot of effort into minor details. We've provided a procedurer ead—

| i ne that reads one line of input and returns a sentence. The words in that sentence will contain any punctuation
characters that appear on the line, including parentheses, which are not interpreted as sublist delimitersby r ead—
I i ne. Read—I| i ne aso preservesthe case of |etters.

(define (rusic—critic) ;; second version
(read-line) ; See explanation on next page.
(show "What's your favorite Beatles song?")
(let ((song (read-line)))
(show (se "I like" song "too."))))

Page 357

> (nusic—critic)

What's your favorite Beatles song?
She Loves You

(I l'ike She Loves You too.)

Why do we call r ead—I i ne and ignoreitsresult at the beginning of musi c—cri ti c? It hasto do with the
interaction betweenr ead—| i ne andr ead. Read treats what you type as a sequence of Scheme expressions; each
invocation of r ead reads one of them. Read pays no attention to formatting details, such as several consecutive

spaces or line breaks. If, for example, you type several expressions on the sameline, it will take several invocations of
r ead to read them all.

By contrast, r ead—I| i ne treats what you type as a sequence of lines, reading one line per invocation, so it does pay
attention to line breaks.

Either of these waysto read input is sensible in itself, but if you mix the two, by invoking r ead sometimes and r ead—
| i ne sometimes in the same program, the results can be confusing. Suppose you type a line containing an expression
and your program invokes r ead to read it. Since there might have been another expression on theline, r ead doesn't
advance to the next line until you ask for the next expression. So if you now invoke r ead—I i ne, thinking that it will

read another line from the keyboard, it will instead return an empty list, because what it seesis an empty line—what's
left after r ead uses up the expression you typed.

Y ou may be thinking, "But nusi c—cri ti c doesn't call r ead!" That'strue, but Scheme itself used r ead to read the
expression that you used to invoke musi c—cri ti c. Sothefirst invocation of r ead—I| i ne isneeded to skip over
the spurious empty line.

Our solution worksonly if musi c—cri ti c isinvoked directly at a Scheme prompt. If musi c—criti c werea
subprocedure of some larger program that has already called r ead—I| i ne before callingnusi c—cri ti c, theextra
read-l i neinmusi c—criti c wouldrealy read and ignore a useful line of text.

If you write aprocedure using r ead—I| i ne that will sometimes be called directly and sometimes be used as a
subprocedure, you can't include an extrar ead—I| i ne cal init. Instead, when you call your procedure directly from
the Scheme prompt, you must say

> (begin (read-line) (my—procedure))

Another technical detail about r ead—I i ne isthat since it preserves the capitalization of words, its result may include
strings, which will be shown in quotation marks if you return the value rather than showing it:

Page 358

(define (rusic—critic—return)
(read-line)
(show "What's your favorite Beatles song?")
(let ((song (read-line)))
(se "I like" song "too.")))

> (nusic—critic-return)

What's your favorite Beatles song?
She Loves You

("I l'ike" "She" "Loves" "You" "too.")

We have aso provided show-I i ne, which takes a sentence as argument. It prints the sentence without surrounding

parentheses, followed by a newline. (Actually, it takes any list as argument; it prints all the parentheses except for the
outer ones.)

(define (rusic—critic)
(read-line)
(show "What's your favorite Beatles song?")
(let ((song (read-line)))
(show-line (se "I like" song "too."))))

> (nmusic—critic)

What's your favorite Beatles song?
She Loves You

| like She Loves You too.

The difference between showand show-I i ne isn't crucial. It'sjust amatter of a pair of parentheses. The point is
that r ead—I i ne and show-I i ne go together. Read—I i ne reads a bunch of disconnected words and combines
them into a sentence. Show-I i ne takes a sentence and printsit asif it were a bunch of disconnected words. L ater,
when we read and write files in Chapter 22, this ability to print in the same form in which we read will be important.

Formatted Text

We've been concentrating on the use of sequential programming with explicit printing instructions for the sake of
conversational programs. Another common application of sequential printing isto display tabular information, such as
columns of numbers. The difficulty isto get the numbers to line up so that corresponding digits are in the same
position, even when the numbers have very widely separated values. The al i gn function

Page 359

can be used to convert a number to a printable word with afixed number of positions before and after the decimal
point:

(define (square—root—table nuns)
(if (null? nuns)
" done
(begin (display (align (car nuns) 7 1))
(show (align (sqrt (car nuns)) 10 5))
(square-root—table (cdr nuns)))))

> (square-root—table '(7 8 9 10 20 98 99 100 101 1234 56789))

7.0 2.64575
8.0 2.82843
9.0 3. 00000
10.0 3.16228
20.0 4.47214
98.0 9. 89949
99.0 9. 94987
100.0 10. 00000
101.0 10. 04988

1234.0 35.12834
56789. 0 238. 30443
DONE

Al i gn takesthree arguments. Thefirst isthe value to be displayed. The second is the width of the column in which it

will be displayed; the returned value will be aword with that many charactersin it. The third argument is the number
of digits that should be displayed to the right of the decimal point. (If this number is zero, then no decimal point will be
displayed.) The width must be great enough to include all the digits, as well as the decimal point and minus sign, if any.

As the program example above indicates, al i gn does not print anything. It's afunction that returns a value suitable
for printing with di spl ay or show.

What if the number istoo big to fit in the available space?

> (align 12345679 4 0)
"123+"

Al i gn returns aword containing the first few digits, as many asfit, ending with a plus sign to indicate that part of the
valueis missing.

Al i gn can aso be used to include non-numeric text in columns. If the first argument is not a number, then only two
arguments are needed; the second is the column width.
Page 360

Inthiscase al i gn returns aword with extra spaces at the right, if necessary, so that the argument word will appear at
the left in its column:

(define (nanme—tabl e nanes)
(if (null? nanes)
" done
(begin (display (align (cadar nanes) 11))
(show (caar nanes))
(name—-t abl e (cdr nanes)))))

> (nane-table ' ((john I ennon) (paul ntcartney)
(george harrison) (ringo starr)))

LENNCN JOHN
MCCARTNEY PAUL
HARRI SON CECRCE
STARR RI NGO
DONE

Aswith numbers, if a non-numeric word won't fit in the allowed space, al i gn returns a partial word ending with a
plus sign.

Thisal i gn function is not part of standard Scheme. Most programming languages, including some versions of

Scheme, offer much more elaborate formatting capabilities with many alternate ways to represent both numbers and
general text. Our version isaminimal capability to show the flavor and to meet the needs of projectsin this book.

Sequential Programming and Order of Evaluation

Our expanded tic-tac-toe program includes both functional and sequential parts. The program computes its strategy
functionally but uses sequences of commands to control the user interface by alternately printing information to the
screen and reading information from the keyboard.

By adding sequential programming to our toolkit, we've increased our ability to write interactive programs. But there
isacost that goes along with this benefit: We now have to pay more attention to the order of eventsthan we did in
purely functional programs.

The obvious concern about order of eventsis that sequences of show expressions must come in the order in which we
want them to appear, and r ead expressions must fit into the sequence properly so that the user is asked for the right
information at the right time.

Page 361

But there is another, less obvious issue about order of events. When the evaluation of expressions can have side effects
in addition to returning values, the order of evaluation of argument subexpressions becomes important. Here's an
example to show what we mean. Suppose we type the expression

(list (+ 3 4) (- 10 2))

The answer, of course, is(7 8) . It doesn't matter whether Scheme computes the seven first (Ieft to right) or the eight
first (right to left). But here's asimilar example in which it does matter:

(define (showand-return x)
(show x)
X)

> (list (show-and-return (+ 3 4)) (showand-return (- 10 2)))
8

7

(7 8)

The value that's ultimately returned, in this example, is the same as before. But the two numeric values that go into the
list are also printed separately, so we can see which is computed first. (We've shown the case of right-to-left
computation; your Scheme might be different.)

Suppose you want to make sure that the seven prints first, regardless of which order your Scheme uses. Y ou could do
this:

> (let ((left (show-and-return (+ 3 4))))
(list left (show-and-return (- 10 2))))

7

8

(7 8)

The expression in the body of al et can't be evaluated until thel et variables (such as| ef t) have had their values
computed.

It's hard to imagine a practical use for the artificial show—and—r et ur n procedure, but a similar situation arises
whenever we use r ead. Suppose we want to write a procedure to ask a person for his or her full name, returning a two-
element list containing the first and last name. A natural mistake to make would be to write this procedure:

Page 362

(define (ask—for-namne) ;;Wrong
(show "Pl ease type your first name, then your |ast nanme:")
(list (read) (read)))

>(ask—f or —nane)

Pl ease type your first name, then your |ast nane:
John

Lennon

(LENNON JOHN)

What went wrong? We happen to be using a version of Scheme that evaluates argument subexpressions from right to
left. Therefore, the word John was read by the rightmost call to r ead, which provided the second argumentto | i st .

The best solutionisto usel et aswe did above:

(define (ask—for—nane)
(show "Pl ease type your first name, then your |ast nane:")
(let ((first—nanme (read)))
(list first—name (read))))

Even this example looks artificially simple, because of the two invocations of r ead that are visibly right next to each
other in the erroneous version. But look at pl ay—t t t —hel per. Theword r ead doesn't appear in its body at all.
But when weinvokeit using ask—user asthe strategy procedure for X, the expression

(x—strat position 'Xx)

hides an invocation of r ead. The structure of pl ay—t t t —hel per includesal et that controlsthe timing of that

r ead. (Asit turnsout, in this particular case we could have gotten away with writing the program without | et . The
hidden invocation of r ead isthe only subexpression with a side effect, so there aren't two effects that might get out of
order. But we had to think carefully about the program to be sure of that.)

Pitfalls

[It's easy to get confused about what is printed explicitly by your program and what is printed by Scheme's read-eval-
print loop. Until now, all printing was of the second kind. Here's an example that doesn't do anything very interesting
but will help make the point clear:

Page 363

(define (nane)
(display "MATT ")
"wright)

> (nane)
MATT WARI GHT

At first glanceit looks as if putting the word "Maitt" inside acall to di spl ay isunnecessary. After all, the word
wr i ght isprinted even without using di spl ay. But watch this:

> (bf (nane))
MATT RI GHT

Every time you invoke nane, whether or not as the entire expression used at a Scheme prompt, the word MATT is
printed. But the word wr i ght isreturned, and may or may not be printed depending on the context in which nane is
invoked.

[0 A sequence of expressions returns the value of the last expression. If that isn't what you want, you must remember
the value you want to return using | et :

(let ((result (conmpute-this—first)))
(begin
(conput e—t hi s—second)
(conput e—t hi s—t hi rd)
result))

[0 Don't forget that the first call tor ead—I i ne, or any call tor ead—I i ne after acall tor ead, will probably read
the empty line that r ead left behind.

[J Sometimes you want to use what the user typed more than once in your program. But don't forget that r ead has an
effect aswell asareturn value. Don't try to read the same expression twice:

(define (ask—question question) 7 wrong
(show questi on)
(cond ((equal ? (read) 'yes) #t)
((equal ? (read) 'no) #f)
(el se (show "Pl ease answer yes or no.")
(ask—questi on question))))

If the answer isyes, this procedure will work fine. But if not, the second invocation of r ead will read a second
expression, not test the same expression again as intended. To

Page 364
avoid this problem, invoke r ead only once for each expression you want to read, and use| et to remember the result:

(define (ask—question question)
(show questi on)
(let ((answer (read)))
(cond ((equal ? answer 'yes) #t)
((equal ? answer 'no) #f)
(el se (show "Pl ease answer yes or no.")
(ask—question question)))))

Boring Exercises

20.1 What happens when we evaluate the following expression? What is printed, and what is the return value? Try to
figureit out in your head before you try it on the computer.

(cond ((= 2 3) (show ' (lady nmadonna)) '(i call your nane))
((< 2 3) (show '(the night before)) '"(hello little girl))
(else "(p.s. i love you)))

20.2 What doesnew i ne returnin your version of Scheme?

20.3 Defineshowintermsof newl i ne anddi spl ay.

Real Exercises

20.4 Write a program that carries on a conversation like the following example. What the user typesisin boldface.

> (converse)

Hello, I'mthe conputer. What's your nane? Brian Harvey
Hi, Brian. How are you? |'mfine.

G ad to hear it.

20.5 Our nanme—t abl e procedure uses a fixed width for the column containing the last names of the people in the
argument list. Suppose that instead of liking British-invasion music you are into late romantic Russian composers:

Page 365

> (nane-table ' ((piotr tchai kovsky) (nicolay rinmsky—korsakov)
(sergei rachmani nov) (nodest nusorgsky)))

Alternatively, perhapsyou like jazz:

> (nane-table '((bill evans) (paul notian) (scott lefaro)))

Modify name—t abl e so that it figures out the longest last name in its argument list, adds two for spaces, and uses
that number as the width of the first column.

20.6 The procedure ask—user isn't robust. What happens if you type something that isn't a number, or isn't between

1 and 9? Modify it to check that what the user types is a number between 1 and 9. If not, it should print a message and
ask the user to try again.

20.7 Another problem with ask—user isthat it allows a user to request a square that isn't free. If the user does this,
what happens? Fix ask—user to ensure that this can't happen.

20.8 At the end of the game, if the computer wins or ties, you never find out which square it chose for its final move.
Modify the program to correct this. (Notice that this exercise requires you to make pl ay—t t t —hel per non-

functional.)

20.9 The way we invoke the game program isn't very user-friendly. Write a procedure gane that asks you whether
you wish to play x or 0, then starts agame. (By definition, x playsfirst.) Then write a procedure ganes that allows

you to keep playing repeatedly. It can ask "do you want to play again?' after each game. (Make sure that the outcome
of each gameis still reported, and that the user can choose whether to play x or o before each game.)

Page 366

Once you see how it works, it's not so mysterious.

Page 367

21—
Example:
TheFuncti ons Program

In Chapter 2 you used aprogram called f unct i ons to explore some of Scheme's primitive functions. Now we're

going to go back to that program from the other point of view: instead of using the program to learn about functions,
we're going to look at how the program works as an example of programming with input and outpuit.

TheMain Loop

Thef unct i ons programisan infinite loop similar to Scheme's read-eval-print loop. It reads in a function name and
some arguments, prints the result of applying that function to those arguments, and then does the whol e thing over
again.

There are some complexities, though. Thef unct i ons program keeps asking you for arguments until it has enough.
This meansthat the r ead portion of the loop has to read a function name, figure out how many arguments that
procedure takes, and then ask for the right number of arguments. On the other hand, each argument is an implicitly
guoted datum rather than an expression to be evaluated; thef unct i ons evaluator avoids the recursive complexity of
arbitrary subexpressions within expressions. (That's why we wrote it: to focus attention on one function invocation at a
time, rather than on the composition of functions.) Here's the main loop:

(define (functions-I oop)
(let ((fn-nanme (get-fn)))
(if (equal? fn—nane 'exit)
"Thanks for using FUNCTI ONS!"
(let ((args (get—args (arg—count fn-nane))))
(if (not (in-domain? args fn-nane))
(show "Argument (s) not in domain.")
(show-answer (apply (schenme—procedure fn—nane) args)))
(functions—loop)))))

Page 368

Thisinvokes alot of helper procedures. Ar g—count takes the name of a procedure as its argument and returns the
number of arguments that the given procedure takes. | n—domai n? takes alist and the name of a procedure as
arguments; it returns #t if the elements of the list are valid arguments to the given procedure. Schenme—pr ocedur e

takes aname as its argument and returns the Scheme procedure with the given name. We'll get back to these helpers
later.

The other helper procedures are the ones that do the input and output. The actual versions are more complicated
because of error checking; we'll show them to you later.

(define (get—fn) ;; first version
(di splay "Function: ")
(read))

(define (get—args n)
(if (=n0)
()
(let ((first (get-arg)))
(cons first (get—-args (- n 1))))))

(define (get-arg) ;; first version
(di splay "Argunent: ")
(read))

(define (showanswer answer)
(new ine)
(display "The result is: ")
(if (not answer)
(show "#F")
(show answer))
(newline))

(That weird i f expressionin show-answer isneeded because in some old versions of Scheme the empty list means
the same as#F. We wanted to avoid raising thisissue in Chapter 2, so we just made sure that false values always
printed as #F.)

The Difference between a Procedure and | ts Name

Y ou may be wondering why we didn't just say

(showanswer (apply fn—-name args))

Page 369

in the definition of f unct i ons—| oop. Remember that the value of the variable f n—name comes from get —f n,
which invokesr ead. Suppose you said

(define x (read))

and then typed

(+ 2 3)

The value of x would be the three element list (+ 2 3), not the number five.

Similarly, if you type "butfirst,” then read will return theword but f i r st , not the procedure of that name. So we
need away to turn the name of afunction into the procedure itself.

The Association List of Functions

We accomplish this by creating a huge association list that contains al of the functions the program knows about.
Given aword, suchasbut fi r st , we need to know three things:

» The Scheme procedure with that name (in this case, the but f i r st procedure).

» The number of arguments required by the given procedure (one).”
» Thetypes of arguments required by the given procedure (one word or sentence, which must not be empty).

We need to know the number of arguments the procedure requires because the program prompts the user individually
for each argument; it has to know how many to ask for. Also, it needs to know the domain of each function so it can
complain if the arguments you give it are not in the domain.**

This means that each entry in the association list isalist of four elements:

* Some Scheme procedures can accept any number of arguments, but for the purposes of the f unct i ons program we
restrict these procedures to their most usual case, such as two arguments for +.

** Scheme would complain al by itself, of course, but would then stop running the f unct i ons program. We want to
catch the error before Scheme does, so that after seeing the error message you're still inf unct i ons. Aswe mentioned in
Chapter 19, a program meant for beginners, such as the readers of Chapter 2, should be especially robust.

Page 370

(define *the—functions* 7, partial listing
(list (list "* * 2 (lanbda (x y) (and (nunmber? x) (nunber? y))))
(list "+ + 2 (lanbda (x y) (and (nunmber? x) (nunber? y))))
(list "and (lanbda (x y) (and x y)) 2
(lambda (x y) (and (bool ean? x) (boolean? y))))

(list "equal? equal? 2 (lanbda (x y) #t))
(list 'even? even? 1 integer?)
(list "word word 2 (lanbda (x y) (and (word? x) (word? y))))))

Thereal list is much longer, of course, but you get theidea.” It's a convention in Scheme programming that names of
global variables used throughout a program are surrounded by * asterisks* to distinguish them from parameters of
procedures.

Here are the selector procedures for looking up information in this a-list:

(define (scheme—procedure fn—nane)
(cadr (assoc fn—nane *the-functions*)))

(define (arg—count fn—nane)
(caddr (assoc fn-nanme *the—functions*)))

(define (type—predicate fn—nane)
(cadddr (assoc fn—-nanme *the-functions*)))

Domain Checking

Note that we represent the domain of a procedure by another procedure.”* Each

* Since and is a special form, we can't just say
(list "and and 2 (lanbda (x y) (and (bool ean? x) (boolean? y))))

That's because special forms can't be e ements of lists. Instead, we have to create a normal procedure that can be put in alist
but computes the same function as and:

(lambda (x y) (and x y))

We can get away with this becauseinthef unct i ons program we don't care about argument evaluation, so it doesn't
matter that and is a special form. We do the same thing for i f and or .

** The domain of a procedure is a set, and sets are generally represented in programs as lists. Y ou might think that we'd
have to store, for example, alist of all the legal argumentsto but fi r st . But that would be impossible, since that list

would have to beinfinitely large. Instead, we can take advantage of the fact that the only use we make of thisset is
membership testing, that is, finding out whether a particular argument isin afunction's domain.

Page 371

domain-checking procedure, or type predicate, takes the same arguments as the procedure whose domain it checks. For
example, the type predicate for + is

(lambda (x y) (and (nunber? x) (number? y)))

The type predicate returns #t if its arguments are valid and #f otherwise. So in the case of +, any two numbers are
valid inputs, but any other types of arguments arent't.

Heresthei n—donmai n? predicate:

(define (in-domain? args fn-nane)
(apply (type—predi cate fn—-nane) args))

Of course, certain type predicates are applicable to more than one procedure. It would be silly to type

(lambda (x y) (and (nunber? x) (nunber? y)))

for +, —, =, and so on. Instead, we give this function a name:

(define (two—nunbers? x y)
(and (nunber? x) (nunber? vy)))

We then refer to the type predicate by namein the a-list:

(define *the—functions* ;; partial listing, revised
(list (list "* * 2 two—nunbers?)
(list "+ + 2 two—nunbers?)
(list "and (lanmbda (x y) (and x y)) 2
(lambda (x y) (and (bool ean? x) (boolean? y))))
(list "equal? equal? 2 (lanbda (x y) #t))
(list 'even? even? 1 integer?)
(list "word word 2 (lanbda (x y) (and (word? x) (word? y))))))

Some of the type predicates are more complicated. For example, here's the one for the menber ? and appear ances
functions:

(define (menber—types—ok? small big)
(and (word? small)
(or (sentence? big) (and (word? big) (= (count small) 1)))))
Page 372
| t emalso has a complicated domain:
(lambda (n stuff)

(and (integer? n) (> n 0)
(word—or—-sent? stuff) (<= n (count stuff))))

Thisinvokeswor d—or —sent ?, which isitself the type predicate for the count procedure:

(define (word-or—-sent? Xx)
(or (word? x) (sentence? x)))

On the other hand, some are less complicated. Equal ? will accept any two arguments, so itstype predicateis just

(lanbda (x y) #t)

The complete listing at the end of the chapter shows the details of al these procedures. Note that thef unct i ons
program has a more restricted idea of domain than Scheme does. For example, in Scheme
(and 6 #t)

returns#t and does not generate an error. But inthef unct i ons program the argument 6 is considered out of the
domain.”

If you don't like math, just ignore the domain predicates for the mathematical primitives; they involve facts about the
domains of math functions that we don't expect you to know.™*

* Why did we choose to restrict the domain? We were trying to make the point that invoking a procedure makes sense
only with appropriate arguments; that point is obscured by the complicating fact that Scheme interprets any non-#f

value astrue. Inthef unct i ons program, where composition of functionsis not allowed, there's no benefit to
Scheme's more permissive rule.

** A reason that we restricted the domains of some mathematical functionsisto protect ourselves from the fact that some
version of Scheme support complex numbers while others do not. We wanted to write one version of f unct i ons that

would work in either case; sometimes the easiest way to avoid possible problems was to restrict some function's domain.

Page 373

Intentionally Confusing a Function with Its Name

Earlier we made a big deal about the difference between a procedure and its name, to make sure you wouldn't think
you can apply theword but f i r st to arguments. But thef unct i ons program completely hides this distinction

from the user:

Function: count
Argunent: butl ast

The result is: 7

Function: every
Argunment: butl ast
Argunent: (helter skelter)

The result is: (HELTE SKELTE)

Whenwegivebut | ast asan argument to count , it'sasif we'd said

(count ' butlast)

In other words, it's taken as aword. But when we give but | ast asan argumenttoevery, it'sasif we'd said

(every butlast '(helter skelter))

How can we treat some arguments as quoted and others not? The way thisworks is that everything is considered a
word or asentence by thef unct i ons program. The higher-order functionsever y and keep are actually

represented inthe f unct i ons implementation by Scheme procedures that take the name of afunction asan
argument, instead of a procedure itself asthe ordinary versions do:

(define (named-every fn—nane |ist)
(every (scheme—procedure fn—nanme) list))

(define (named-keep fn—name |ist)
(keep (scheme—procedure fn-nanme) list))

> (every first '(another girl))

(AQ

> (naned-every 'first '(another girl))

(AQ

> (every 'first '(another girl))

ERROR: ATTEMPT TO APPLY NON-PROCEDURE FI RST

Page 374

Thisillustration hides a subtle point. When we invoked naned—ever y at a Scheme prompt, we had to quote the
word f i r st that we used as its argument. But when you run thef unct i ons program, you don't quote anything.
The pointisthat f unct i ons provides an evaluator that uses a different notation from Scheme's notation. It may be
clearer if we show an interaction with an imaginary version of f unct i ons that does use Scheme notation:

Function: first
Non—Aut onat i cal | y—Quot ed—Ar gunrent : ' dat um

The result is: D

Function: first
Non—Aut onmat i cal | y—Quot ed—Ar gunent : dat um

ERROR: THE VARI ABLE DATUM IS UNBOUND

We didn't want to raise the issue of quoting at that early point in the book, so we wrotef unct i ons so that every
argument is automatically quoted. Well, if that's the case, it's true even when we're invoking ever y. If you say

Function: every
Argunent: first

then by therules of thef unct i ons program, that argument is the quoted word f i r st . So naned—every, the
procedure that pretendsto beevery inthef unct i ons world, hasto "un-quote" that argument by looking up the
corresponding procedure.

Moreon Higher-Order Functions

One of the higher-order functions that you can useinthef unct i ons program iscalled nunber —of —
ar gunment s. It takes aprocedure (actually the name of a procedure, as we've just been saying) as argument and

returns the number of arguments that that procedure accepts. This example is unusual because there's no such function
in Scheme. (It would be complicated to define, for one thing, because some Scheme procedures can accept a variable
number of arguments. What should nunber —of —ar gunent s return for such a procedure?)

The implementation of nunber —of —ar gunment s makes use of the same a-list of functionsthat thef unct i ons
evaluator itself uses. Sincethef unct i ons program

Page 375

needs to know the number of arguments for every procedure anyway, it's hardly any extra effort to make that
information available to the user. We just add an entry to the a-list:

(l'ist '"nunber—of —argunents arg—count 1 valid—fn—nane?)

The type predicate merely has to check that the argument is found in the a-list of functions:

(define (valid-fn—-nane? nane)
(assoc nanme *the—functions*))

The type checking for the argumentsto ever y and keep is unusualy complicated because what's allowed as the

second argument (the collection of data) depends on which function is used as the first argument. For example, it's
illegal to compute

(every square '(think for yourself))

even though either of those two arguments would be allowable if we changed the other one:

> (every square '(3 4 5))
(9 16 25)

> (every first '(think for yourself))

(TFY)

The type-checking procedures for ever y and keep use acommon subprocedure. The onefor every is

(lambda (fn stuff)
(hof -t ypes—ok? fn stuff word—or—-sent?))

and the onefor keep is

(lambda (fn stuff)
(hof -t ypes—ok? fn stuff bool ean?))

The third argument specifies what types of resultsf n must return when applied to the elements of st uf f .

(define (hof-types—ok? fn—nanme stuff range-predicate)
(and (valid-fn-nanme? fn-nane)
(= 1 (arg—-count fn-nane))
(wor d-or—sent ? stuff)
(empty? (keep (Il anbda (el enent)
(not ((type—predicate fn-nane) elenent)))
stuff))
(nul'l? (filter (lanbda (el ement)
(not (range-predicate el enent)))
(map (scheme—procedure fn-nane)
(every (lambda (x) x) stuff))))))

Page 376

This says that the function being used as the first argument must be a one-argument function (so you can't say, for
example, ever y of wor d and something); also, each element of the second argument must be an acceptable argument

to that function. (If you keep the unacceptable arguments, you get nothing.) Finally, each invocation of the given
function on an element of st uf f must return an object of the appropriate type: words or sentencesfor every, true or

fasefor keep.”

M or e Robustness

The program we've shown you so far works fine, aslong as the user never makes a mistake. Because this program was
written for absolute novices, we wanted to bend over backward to catch any kind of strange input they might give us.

Using r ead to accept user input has a number of disadvantages:
* If the user enters an empty line, r ead continues waiting silently for input.
* If the user types an unmatched open parenthesis, r ead continues reading forever.

* If the user types two expressions on aline, the second one will be taken as a response to the question the
functi ons program hasn't asked yet.

* That last argument to and is complicated. The reason we use map instead of ever y isthat the results of the

invocations of f n might not be words or sentences, so ever y wouldn't accept them. But nap hasits own limitation: It
won't accept aword asthe st uf f argument. Sowe useevery toturn st uf f into a sentence—which, as you know,
isrealy alist—and that's guaranteed to be acceptable to map. (Thisis an example of asituation in which respecting a

data abstraction would be too horrible to contemplate.)

Page 377

We solve all these problems by using r ead—I i ne to read exactly one line, even if it'sempty or ill-formed, and then
checking explicitly for possible errors.

Read-I i ne treats parentheses no differently from any other character. That's an advantage if the user enters

mismatched or inappropriately nested parentheses. However, if the user correctly enters a sentence as an argument to
some function, r ead—I i ne will include the initial open parenthesis as the first character of the first word, and the

final close parenthesis as the last character of the last word. Get —ar g must correct for these extra characters.

Similarly, r ead—I i ne treats number signs (#) like any other character, so it doesn't recognize (#t and #f as special
values. Instead it readsthem asthe strings" #t " and " #f " . Get —ar g callsbool eani ze to convert those strings
into Boolean values.

(define (get-arg)
(di splay "Argunent: ")
(let ((line (read-line)))
(cond ((enpty? line)
(show "Pl ease type an argunent!")
(get-arg))
((and (equal ? "(" (first (first line)))
(equal? ")" (last (last line))))
(let ((sent (renove-first—paren (renove-last—paren line))))
(if (any-parens? sent)
(begi n (show "Sentences can't have parentheses inside.")
(get-arg))
(rmap bool eani ze sent))))
((any—parens? line)
(show "Bad parent heses")
(get-arg))
((empty? (bf line)) (booleanize (first line)))
(el se (show "You typed nore than one argunent! Try again.")

(get-arg)))))

Cet —ar g invokesany—par ens?,renove—fi r st —par en, r enove-| ast —par en, and bool eani ze, whose

meanings should be obvious from their names. Y ou can look up their definitions in the complete listing at the end of
this chapter.

Get —f n issimpler than get —ar g, because there's no issue about parentheses, but it's still much more complicated
than the original version, because of error checking.

Page 378

(define (get—fn)
(di splay "Function: ")
(let ((line (read-line)))
(cond ((enpty? line)

(show "Pl ease type a function!™")
(get-fn))
((not (= (count line) 1))
(show "You typed nore than one thing! Try again.")
(get-fn))
((not (valid-fn-nanme? (first line)))
(show "Sorry, that's not a function.")
(get-fn))
(else (first line)))))

Thisversion of get —f n usesval i d—f n—nane? (which you've already seen) to ensure that what the user typesis
the name of afunction we know about.

There's aproblem with using r ead—I i ne. Aswe mentioned in a pitfall in Chapter 20, reading some input with r ead
and then reading the next input with r ead—I i ne resultsinr ead-I i ne returning an empty line left over by r ead.
Although thef unct i ons program doesn't user ead, Schemeitself used r ead to read the (f unct i ons)
expression that started the program. Therefore, get —f n'sfirst attempt to read a function name will see an empty line.
To fix this problem, thef unct i ons procedure has an extrainvocation of r ead—I i ne:

(define (functions)
(read-line)
(show "Wl conme to the FUNCTI ONS program ™)
(functions-I oop))

Complete Program Listing
The functions program

(define (functions)
7, (read-line)
(show "Wl come to the FUNCTI ONS program ™)
(functions-I oop))

Page 379

(define (functions—I oop)
(let ((fn-nanme (get-fn)))
(if (equal? fn—nane 'exit)
"Thanks for using FUNCTI ONS!"
(let ((args (get—args (arg—count fn—-nane))))
(if (not (in-domain? args fn-nane))
(show "Argunent (s) not in donmain.")
(showanswer (apply (scheme-function fn-nane) args)))
(functions-loop)))))

(define (get—fn)
(di splay "Function: ")
(let ((line (read-line)))
(cond ((enpty? line)

(show "Pl ease type a function!™")
(get—fn))
((not (= (count line) 1))
(show "You typed nore than one thing! Try again.")
(get—fn))
((not (valid-fn—-nanme? (first line)))
(show "Sorry, that's not a function.")
(get-fn))
(else (first line)))))

(define (get-arg)
(di splay "Argunent: ")
(let ((line (read-line)))
(cond ((enpty? line)
(show "Pl ease type an argunent!™)
(get-arg))
((and (equal ? "(" (first (first line)))
(equal? ")" (last (last line))))
(let ((sent (renove-first—paren (renove-last—paren line))))

(if (any—parens? sent)

(begin
(show " Sentences can't have parentheses inside.")
(get-arg))
(map bool eani ze sent))))

((any—parens? line)

(show "Bad parent heses")

(get-arg))

((enmpty? (bf line)) (booleanize (first line)))

(el se (show "You typed nore than one argunent! Try again.")

(get-arg)))))

Page 380

(define (get—-args n)
(if (=no0)
()
(let ((first (get-arg)))
(cons first (get-args (— n 1))))))

(define (any—parens? |ine)
(let ((letters (accunulate word line)))
(or (menber? "(" letters)
(menmber? ")" letters))))

(define (renmove-first—paren |line)
(if (equal? (first line) "(")
(bf Iine)
(se (bf (first line)) (bf line))))

(define (renove—| ast—paren |ine)
(if (equal? (last line) ")")
(bl 1ine)
(se (bl line) (bl (last line)))))

(define (bool eani ze x)
(cond ((equal ? x "#t") #t)
((equal ? x "#f") #f)
(el se x)))

(define (showanswer answer)
(new i ne)
(display "The result is: ")
(if (not answer)
(show "#F")
(show answer))
(newine))

(define (scheme—function fn—nane)
(cadr (assoc fn—nane *the-functions*)))

(define (arg—count fn—nane)
(caddr (assoc fn-nanme *the—functions*)))

(define (type—predicate fn—nane)
(cadddr (assoc fn—-nanme *the-functions*)))

(define (in-domain? args fn-nane)
(apply (type—predi cate fn—-nane) args))

i, Type predicates

(define (word-or-sent? Xx)
(or (word? x) (sentence? x)))

(define (not—enpty? Xx)
(and (word-or—sent? x) (not (enpty? x))))

(define (two—numbers? x y)
(and (nunber? x) (nunber? vy)))

(define (two—real s? x vy)
(and (real? x) (real? vy)))

(define (two—integers? x y)
(and (integer? x) (integer?y)))

(define (can—divide? x vy)
(and (nunber? x) (nunmber? y) (not (=vy 0))))

(define (dividable-integers? x y)
(and (two—integers? x y) (not (=vy 0))))

(define (trig-range? Xx)
(and (nunber? x) (<= (abs x) 1)))

(define (hof-types—ok? fn—nanme stuff range—predicate)
(and (valid—fn—nanme? fn—nane)
(= 1 (arg—count fn-nane))
(wor d—or—sent ? stuff)
(enpty? (keep (lanbda (el enent)
(not ((type—predicate fn—nane) elenent)))
stuff))
(null? (filter (lanbda (el ement)
(not (range-predicate el enent)))
(map (scheme—function fn—nane)
(every (lambda (x) x) stuff))))))

(define (menber—types—ok? small big)
(and (word? small)
(or (sentence? big) (and (word? big) (= (count small) 1)))))

:: Nanmes of functions as functions

(define (nanmed-every fn—nanme |ist)
(every (scheme—function fn—nanme) list))

(define (named-keep fn-name |ist)
(keep (scheme—function fn-nane) |ist))

(define (valid-fn—nane? nane)
(assoc nanme *the—functions*))

The list itself
(define *the-functions*

(list (list "* * 2 two—nunbers?)
(list "+ + 2 two—nunbers?)

Page 381

Page 382

AN AN AN AN AN AN AN AN AN

NN AN AN AN AN AN AN AN AN AN N

—~ o~

~—~

e N R R N R N W N NP NV N

st
st
st
st
st
st
st
st
st
st

st
st
st
st
st
st
st
st
st
st
st

st

i st

i st

i st

i st
i st
i st
i st

i st

i st

st
st
st
st
st
st
st
st
st

st

2 two—nunber s?)
2 can-di vi de?)
2 two-real s?)
'<= <= 2 two-real s?)
"= = 2 two—nunbers?)
"> > 2 two-real s?)
'>= >= 2 two-real s?)
"abs abs 1 real ?)
‘acos acos 1 trig-range?)
"and (lanmbda (x y) (and x y)) 2
(Ianbda (x y) (and (bool ean? x) (boolean? y))))
' appear ances appear ances 2 nmenber—t ypes—ok?)
"asin asin 1 trig-range?)
"atan atan 1 nunber?)
"bf bf 1 not-enpty?)
"bl bl 1 not-enpty?)
"butfirst butfirst 1 not-enpty?)
"butlast butlast 1 not—enpty?)
"ceiling ceiling 1 real)
'cos cos 1 nunber?)
"count count 1 word-or-sent?)
"equal ? equal ? 2 (lanmbda (x y) #t))
even? even? 1 integer?)
'every naned-every 2
(lanbda (fn stuff)
(hof -t ypes—ok? fn stuff word-or-sent?)))

rexit " () 0°())

in case user applies nunber—of—-argunments to exit

"exp exp 1 nunber?)

"expt expt 2
(lambda (x vy)

(and (nunber? x) (nunber? y)

(or (not (real? x)) (>= x 0) (integer?y)))))

"first first 1 not—enpty?)
"floor floor 1 real?)
"gcd gecd 2 two—i ntegers?)
"if (lanbda (pred yes no) (if pred yes no)) 3
(lanbda (pred yes no) (bool ean? pred)))
"itemitem2
(lanbda (n stuff)

(and (integer? n) (> n 0)

(word-or-sent? stuff) (<= n (count stuff)))))

' keep nanmed-keep 2
(lanbda (fn stuff)

(hof -t ypes—ok? fn stuff bool ean?)))
"last last 1 not—enpty?)
"lcmlcm 2 two—i ntegers?)
"log log 1 (lanmbda (x) (and (nunber? x) (not (= x 0)))))
"max max 2 two-real s?)
"menber ? nmenber? 2 menber—types—ok?)
'mn mn 2 two—real s?)
"nmodul o nmodul o 2 di vi dabl e—i nt eger s?)
"not not 1 bool ean?)
" nunber —of —ar gunent s arg—count 1 val i d—f n—nanme?)
odd? odd? 1 integer?)
"or (lanbda (x y) (or x vy)) 2

Page 383

(Ianbda (x y) (and (bool ean? x) (boolean? y))))
(list "quotient quotient 2 dividabl e-integers?)
(list "randomrandom 1l (lanbda (x) (and (integer? x) (> x 0))))
(l'ist 'remainder remai nder 2 dividabl e-i ntegers?)
(l'ist "round round 1 real ?)
(list 'se se 2
(lambda (x y) (and (word-or-sent? x) (word-or-sent? vy))))
(l'ist 'sentence sentence 2
(lanmbda (x y) (and (word-or-sent? x) (word-or-sent? y))))
(list "sentence? sentence? 1 (lanmbda (x) #t))
(list "sin sin 1 nunber?)
(list "sgrt sqrt 1 (lanbda (x) (and (real? x) (>= x 0))))
(list "tan tan 1 nunber?)
(list "truncate truncate 1 real ?)
(list "vowel ? (lanbda (x) (nmenber? x "(aei ou))) 1
(lanbda (x) #t))
(list "word word 2 (lanbda (x y) (and (word? x) (word? y))))
(list "word? word? 1 (lanbda (x) #t))))

Page 384

Exercises

21.1 Theget —ar gs procedure hasal et that createsthevariablef i r st , and then that variable is used only once
inside the body of thel et . Why doesn't it just say the following?

(define (get—args n)
(if (=n0)
()
(cons (get—-arg) (get—-args (- n 1)))))

21.2 The domain-checking function for equal ? is
(lambda (x y) #t)

This seemsssilly; it's afunction of two arguments that ignores both arguments and always returns #t . Since we know
ahead of time that the answer is#t , why won't it work to have equal ?'sentry in the a-list be

(list "equal ? equal ? 2 #t)

21.3 Every time we want to know something about a function that the user typed in, such asits number of arguments
or its domain-checking predicate, we haveto do anassoc in*t he—f uncti ons*. That'sinefficient. Instead,

rewrite the program so that get —f n returns afunction's entry from the a-list, instead of just its name. Then rename the
variablef n—nane tof n—ent ry inthef unct i ons—| oop procedure, and rewrite the selectorsschenme—
pr ocedur e, ar g—count , and so on, so that they don't invoke assoc.

21.4 Currently, the program always gives the message "argument(s) not in domain" when you try to apply afunction to
bad arguments. Modify the program so that each record in *t he—f unct i ons* also contains a specific out-of-

domain message like "both arguments must be numbers,” then modify f unct i ons to look up and print this error
message along with "argument(s) not in domain."

Page 385

21.5 Modify the program so that it prompts for the arguments this way:

Function: if

First Argument: #t

Second Argunent: paperback
Third Argunment: witer

The result is: PAPERBACK
but if there's only one argument, the program shouldn't say Fi r st :

Function: sqrt
Argunent: 36

The result is 6

21.6 Theassoc procedure might return #f instead of an a-list record. How comeit's okay for ar g—count to take
thecaddr of assoc'sreturnvaueif (caddr #f) isanerror?

21.7 Why is the domain-checking predicate for the wor d? function
(lambda (x) #t)

instead of the following procedure?
(lambda (x) (word? x))

21.8 What is the value of the following Scheme expression?

(functions)

21.9 We said in the recursion chapters that every recursive procedure has to have a base case and arecursive case, and
that the recursive case has to somehow reduce the size of the problem, getting closer to the base case. How does the
recursive call in get —f n reduce the size of the problem?

Page 386

‘“{!E“-‘:III:uh:- o (/| R

T
.__..II.|||I|,I| ||

ﬁﬁ]ﬁﬁﬁn

)L S / e

EE

Page 387

22—
Files

We learned in Chapter 20 how to read from the keyboard and write to the screen. The same procedures (r ead, r ead—
i ne,di spl ay, show, show-I i ne, and new i ne) can also be used to read and write data files on the disk.

Ports

Imagine a complicated program that reads a little bit of data at atime from alot of different files. For example, soon
we will write a program to merge two files the way we merged two sentencesin nmer gesor t in Chapter 15. In order

to make thiswork, each invocation of r ead must specify which file to read from this time. Similarly, we might want
to direct output among severd files.

Each of the input/output procedures can take an extra argument to specify afile:

(show ' (across the universe) filel)
(show-line ' (penny lane) file2)
(read file3)

What aref i | el and so on? Y ou might think that the natural thing would be for them to be words, that is, the names
of files.

It happens not to work that way. Instead, before you can use afile, you have to open it. If you want to read afile, the
system has to check that the file exists. If you want to write afile, the system has to create a new, empty file. The
Scheme procedures that open afile return a port, which is what Scheme uses to remember the file you opened. Ports
are useful only as arguments to the input/output procedures. Here's an example:

Page 388

> (let ((port (open-output—file "songs")))
(show "(all my |oving) port)
(show "(ticket to ride) port)
(show ' (martha ny dear) port)
(cl ose—out put —port port))

(Cd ose—out put —port, likedef i ne, has an unspecified return value that we're not going to include in the
examples.)

We've created afile named songs and put three expressions, each on its own line, in that file. Notice that nothing
appeared on the screen when we called show. Because we used a port argument to show, the output went into the file.
Here'swhat'sin thefile:

(ALL MY LOVI NO)
(TI CKET TO RI DE)
(MARTHA MY DEAR)

The example illustrates two more details about using files that we haven't mentioned before: First, the name of afile
must be given in double-quote marks. Second, when you're finished using afile, you have to close the port associated
with it. (Thisis very important. On some systems, if you forget to close the port, the file disappears.)

The file is now permanent. If we were to exit from Scheme, we could read the file in aword processor or any other
program. But let's read it using Scheme:

(define in (open—input—file "songs"))

> (read in)
(ALL MY LOVI NG

> (read in)
(TICKET TO RI DE)

> (read in)
(MARTHA MY DEAR)

> (cl ose—i nput—port in)

(In thisillustration, we've used a global variable to hold the port because we wanted to show the results of reading the
file step by step. In areal program, we'd generally useal et structure like the one we used to write the file. Now that

we've closed the port, the variable i n contains a port that can no longer be used.)

Page 389

Writing Filesfor Peopleto Read

A filefull of sentencesin parenthesesis a natural representation for information that will be used by a Scheme
program, but it may seem awkward if the file will be read by human beings. We could use show-I i ne instead of

showto create afile, still with one song title per line, but without the parentheses:

> (let ((port (open-output—file "songs2")))
(show-line "(all my loving) port)
(show-line '(ticket to ride) port)
(show-line '(martha my dear) port)
(cl ose—out put —port port))

Thefilesongs2 will contain

ALL MY LOVI NG
TI CKET TO RI DE
MARTHA MY DEAR

What should we do if we want to read thisfile back into Scheme? We must read the file aline at atime, withr ead—
I i ne. Ineffect, r ead—I i ne treats the breaks between lines asif they were parentheses:

(define in (open—input—file "songs2"))

> (read-line in)
(ALL MY LOVI NG

> (cl ose—i nput—port in)

(Notice that we don't have to read the entire file before closing the port. If we open the file again later, we start over
again from the beginning.)

Asfar as Scheme is concerned, the result of writing the file with show-I i ne and reading it withr ead—I i ne was
the same as that of writing it with showand reading it with r ead. The difference is that without parentheses the file
itself is more "user-friendly" for someone who reads it outside of Scheme.

* Another difference, not apparent in this example, isthat showand r ead can handle structured lists. Show-I i ne
can print a structured list, leaving off only the outermost parentheses, but r ead—I i ne will treat any parenthesesin the
file as ordinary characters; it always returns a sentence.

Page 390

Using a File as a Database

It's not very interesting merely to read the file line by line. Instead, let's use it as avery small database in which we can
look up songs by number. (For only three songs, it would be more realistic and more convenient to keep them in alist
and look them up with | i st —r ef . Pretend that this file has 3000 songs, too many for you to want to keep them all at

once in your computer's memory.)

(define (get—-song n)
(let ((port (open—input—file "songs2")))
(ski p—songs (- n 1) port)
(let ((answer (read-line port)))
(cl ose—i nput —port port)
answer)))

(define (skip-songs n port)
(if (=n0)
" done
(begin (read-line port)
(ski p-songs (- n 1) port))))

> (get-song 2)
(TICKET TO RI DE)

When weinvoker ead—I i ne inski p—songs, we pay no attention to the value it returns. Remember that the values
of all but the last expression in a sequence are discarded. Read and r ead—| i ne are thefirst procedures we've seen
that have both a useful return value and a useful side effect—moving forward in thefile.

Ski p—songs returns the word done when it's finished. We don't do anything with that return value, and there's no

particular reason why we chose that word. But every Scheme procedure has to return something, and this was as good
as anything.

What if we asked for a song number greater than three? In other words, what if we read beyond the end of thefile? In
that case, r ead will return a special value called an end-of-file object. The only useful thing to do with that valueisto

test for it. Our next sample program reads an entire file and printsit to the screen:

(define (print—file nane)
(let ((port (open—input—file nane)))
(print—fil e—hel per port)
(cl ose—i nput —port port)
' done))

Page 391

(define (print—file-hel per port) ;; first version
(let ((stuff (read-line port)))
(i f (eof —object? stuff)
' done
(begin (show-line stuff)
(print—file-hel per port)))))

> (print—file "songs")
ALL MY LOVI NG

TI CKET TO RI DE

MARTHA MY DEAR

DONE

Did you notice that each recursive call inpri nt —f i | e—hel per hasexactly the same argument as the one before?
How does the problem get smaller? (Up to now, recursive calls have involved something likethe but f i r st of an old

argument, or one less than an old number.) When we're reading afile, the sense in which the problem gets smaller at
each invocation is that we're getting closer to the end of thefile. You don't but f i r st the port; reading it makes the

unread portion of the file smaller as a side effect.

Transforming theLinesof aFile

Often we want to transform afile one line at atime. That is, we want to copy lines from an input file to an outpuit file,
but instead of copying the lines exactly, we want each output line to be a function of the corresponding input line. Here
are some examples: We have afile full of text and we want to justify the output so that every line is exactly the same
length, asin abook. We have afile of students names and grades, and we want a summary with the students' total and
average scores. We have afile with people's first and last names, and we want to rearrange them to be last-name-first.

Well write aproceduref i | e—map, analogousto map but for files. It will take three arguments: The first will be a

procedure whose domain and range are sentences; the second will be the name of the input file; the third will be the
name of the output file.

Of course, thisisn't exactly like the way map works—if it were exactly analogous, it would take only two arguments,

the procedure and the contents of afile. But one of the important features of filesisthat they let us handle amounts of
information that are too big to fit al at once in the computer's memory. Another feature is that once we write afile, it's
there permanently, until we erase it. So instead of having af i | e—map function that returns the contents of the new

file, we have a procedure that writes its result to the disk.

Page 392

(define (file-map fn innanme out nane)
(let ((inport (open—input—file innane))
(out port (open—output—file outnane)))
(fil e-map—hel per fn inport outport)
(cl ose—i nput —port inport)
(cl ose—out put —port out port)
' done))

(define (fil e—map—hel per fn inport outport)
(let ((line (read-line inport)))
(if (eof —object? line)
' done
(begin (show-line (fn Iine) outport)
(fil e—map—hel per fn inport outport)))))

Compare this program with the earlier pri nt —f i | e example. The two are amost identical. One differenceis that
now the output goesto afile instead of to the screen; the other is that we apply the function f n to each line before
doing the output. But that small change vastly increases the generality of our program. We've performed our usual
trick of generalizing a pattern by adding a procedure argument, and instead of a program that carries out one specific
task (printing the contents of afile), we have atool that can be used to create many programs.

Well start with an easy example: putting the last name first in afile full of names. That is, if we start with an input file
named dddbnt that contains

Davi d Har npn
Trevor Davi es
John Dynond

M chael W/ son
| an Aney

we want the output file to contain

Har ron, David
Davi es, Trevor

Dynond, John
W1 son, M chael
Amey, lan

Sinceweareusing f i | e—map to handle our progress through the file, al we have to write is a procedure that takes a

sentence (one name) as its argument and returns the same name but with the last word moved to the front and with a
comma added:

Page 393

(define (lastfirst nane)
(se (word (last nane) ",") (bl nane)))

Weusebut | ast ratherthanfi r st in case someonein thefile has a middle name.

To usethisprocedurewecall f i | e—map like this:

> (file-map lastfirst "dddbnt" "dddbnt-reversed")
DONE

Although you don't see the results on the screen, you can

> (print—file "dddbnt-reversed")

to see that we got the results we wanted.
Our next example is averaging grades. Suppose the filegr ades containsthis text:

John 88 92 100 75 95
Paul 90 91 85 80 91

George 85 87 90 72 96
Ri ngo 95 84 88 87 87

The output we want is:

John total: 450 average: 90

Paul total: 437 average: 87.4
George total: 430 average: 86
Ringo total: 441 average: 88.2

Here's the program:

(define (process—grades |ine)
(se (first line)
“total :"
(accumul ate + (bf line))
"average:"
(/ (accumulate + (bf line))
(count (bf line)))))

> (file—-map process—grades "grades" "results")

As before, you can

> (print—file "results")

to see that we got the results we wanted.

Page 394
Justifying Text

Many word-processing programs justify text; that is, they insert extra space between words so that every line reaches
exactly to the right margin. We can do that using f i | e—map.

Let's suppose we have afiler 5r s, written in some text editor, that looks like this:

Progranm ng | anguages shoul d be desi gned not by
piling feature on top of feature, but by
renovi ng the weaknesses and restrictions that
make additional features appear necessary.
Schene denonstrates that a very snmall nunber of
rules for form ng expressions, with no
restrictions on how they are conposed, suffice
to forma practical and efficient progranmm ng

| anguage that is flexible enough to support nost
of the major progranm ng paradi gns in use today.

(Thisisthefirst paragraph of the Revised® Report on the Algorithmic Language Scheme, edited by William Clinger
and Jonathan Rees.)

Here iswhat the result should be if we justify our r 5r s text:

Progranm ng | anguages shoul d be desi gned not by
piling feature on top of feature, but by
renovi ng the weaknesses and restrictions that
make additional features appear necessary.
Schene denonstrates that a very snmall nunber of
rules for form ng expressions, with no
restrictions on how they are conposed, suffice
to forma practical and efficient progranmm ng

| anguage that is flexible enough to support nost
of the major progranm ng paradi gns in use today.

Thetricky part isthat ordinarily we don't control the spaces that appear when a sentence is printed. We just make sure
the words are right, and we get one space between words automatically. The solution used in this program is that each
line of the output file is constructed as a single long word, including space characters that we place explicitly within it.
(Sinceshow~I i ne requires a sentence as its argument, our procedure will actually return a one-word sentence. In the

following program, pad constructs the word, and j ust i f y makes a one-word sentence containing it.)

This program, although short, is much harder to understand than most of our short examples. There is no big new idea
involved; instead, there are a number of unexciting

Page 395

but necessary details. How many spaces between words? Do some words get more space than others? The program
structure is messy because the problem itself is messy. Although it will be hard to read and understand, this program is
amore realistic example of input/output programming than the cleanly structured examples we've shown until now.

Just i fy takestwo arguments, the line of text (a sentence) and a number indicating the desired width (how many

characters). Here's the algorithm: First the program computes the total number of characters the sentence would take
up without adding extras. That's the job of char —count , which adds up the lengths of al the words, and adds to that

the n — 1 spaces between words. Ext r a—spaces subtracts that length from the desired line width to get the number
of extra spaces we need.

The hard part of the job isdone by pad. It'sinvoked with three arguments: the part of the line not yet processed, the

number of opportunities there are to insert extra spaces in that part of the line (that is, the number of words minus one),
and the number of extra spaces that the program still needsto insert. The number of extra spacesto insert thistimeis
the integer quotient of the number pad wantsto insert and the number of chancesit'll have. That is, if there are five

words on the line, there are four places where pad can insert extra space. If it needsto insert nine spaces altogether,

then it should insert 9/4 or two spaces at the first opportunity. (Are you worried about the remainder? It will turn out
that pad doesn't lose any spaces because it takes the quotient over again for each word break. The base case is that the

number of remaining word breaks (the divisor) isone, so there will be no remainder, and all the leftover extra spaces
will be inserted at the last word break.)

(define (justify line wi dth)
(if (< (count line) 2)
l'i ne
(se (pad line
(- (count line) 1)
(extra—spaces width (char—count line))))))

(define (char—count |ine)
(+ (accumul ate + (every count line)) ; letters within words
(= (count line) 1))) ; plus spaces between words

(define (extra—spaces w dth chars)
(if (> chars width)
0 ; none if already too w de
(-wi dth chars)))

Page 396

(define (pad |ine chances needed)
(if (= chances 0) ; only one word in |ine
(first line)
(let ((extra (quotient needed chances)))
(word (first line)
(spaces (+ extra 1))
(pad (bf line) (- chances 1) (— needed extra))))))

(define (spaces n)
(if (=n0)

(word " " (spaces (— n 1)))))

Becausej ust i f y takestwo arguments, we have to decide what line width we want to give it. Here's how to make
each line take 50 characters:

> (file-map (lanbda (sent) (justify sent 50)) "r5rs" "rbrs—just")

Preserving Spacing of Text from Files

If wetry to print thefiler 5r s—j ust from the previous sectionusing pri nt —f i | e, it'll look exactly liker 5r s.
That's becauser ead—| i ne doesn't preserve consecutive spacesin the lines that it reads. Read—| i ne cares only

where each word (consisting of non-space characters) begins and ends; it pays no attention to how many spaces come
between any two words. The lines

All My Lovi ng

and

Al My Loving
arethe same, asfar asr ead—| i ne tellsyou.

For situations in which we do care about spacing, we have another way to read aline from afile. The procedure r ead—
st ri ng readsall of the characters on aline, returning a single word that contains all of them, spaces included:*

* Like al the input and output primitives, r ead—st r i ng can be invoked with or without a port argument.

Page 397
> (define inport (open—input—file "r5rs—just"))

> (read-string inport)
"Progranm ng | anguages shoul d be desi gned not by"

> (read-string inport)
"piling feature on top of feature, but by"

> (cl ose—i nput—port inport)
Wecanuser ead—st ri ng torewritepri nt —f i | e sothat it makes an exact copy of theinput file:

(define (print—file—hel per port)
(let ((stuff (read-string port)))
(i f (eof —object? stuff)
" done
(begin (show stuff)
(print—fil e-hel per port)))))

(We only had to change the helper procedure.)

Merging Two Files

Suppose you have two files of people's names. Each file has been sorted in alphabetical order. Y ou want to combine
them to form asinglefile, still in order. (If this sounds unrealistic, it isn't. Programs that sort very large amounts of
information can't alwaysfit it all in memory at once, so they read in as much asfits, sort it, and write afile. Then they
read and sort another chunk. At the end of this process, the program isleft with several sorted partial files, and it has to
merge those files to get the overall result.)

The algorithm for merging filesis exactly the same as the one we used for merging sentencesin the mer gesor t

program of Chapter 15. The only difference isthat the items to be sorted come from reading ports instead of from
firstingasentence.

(define (filemerge filel file2 outfile)
(let ((pl (open—input—file filel))
(p2 (open—input—file file2))
(outp (open—output—file outfile)))
(filemerge—hel per pl p2 outp (read-string pl) (read-string p2))
(cl ose—out put —port outp)
(cl ose—-i nput —port p1l)
(cl ose—i nput —port p2)
' done))

Page 398

(define (filemerge-helper pl p2 outp linel line2)

(cond ((eof —object? linel) (merge—copy |line2 p2 outp))
((eof —obj ect? line2) (nmerge—copy linel pl outp))
((before? linel |ine2)
(show l'inel outp)
(filemerge—hel per pl p2 outp (read-string pl) line2))
(el se (show |Iine2 outp)

(filemerge—hel per pl p2 outp linel (read-string p2)))))

(define (merge—copy line inp outp)
(if (eof—object? line)
#f
(begin (show |i ne outp)
(merge—copy (read-string inp) inp outp))))

Y ou might think, comparingf i | emrer ge—hel per with such earlier examplesaspri nt —f i | e-hel per and
fil e—map—hel per, that it would make more sensefor fi | emer ge—hel per totakejust the three ports as
arguments and work like this:

(define (filemerge-hel per pl p2 outp) ;. wrong
(let ((linel (read-string pl))
(line2 (read-string p2)))
(cond ((eof—-object? Iinel) (merge—copy p2 outp))
((eof —object? Iine2) (merge—copy pl outp))
((before? linel |ine2)
(show Iinel outp)
(filemerge—hel per pl p2 outp))
(el se (show Iine2 outp)
(filemerge-hel per pl p2 outp)))))

Unfortunately, this won't work. Suppose that thefirst line of f i | e2 comes beforethefirstlineof fil el. This
program correctly writesthefirst line of f i | e2 to the output file, as we expect. But what about the first line of
filel? Sincewecdledread-stringonfil el, weve"gobbled"
the output.

In each invocation of f i | ener ge—hel per, only onelineiswritten to the output file, so unless we want to lose
information, we'd better read only one line. This means that we can't r ead—st r i ng twice on each recursive call.
One of the lines has to be handed down from one invocation to the next. (That is, it hasto be an argument to the

that line, but we're not yet ready to write it to

* Computer programmers really tak this way.

Page 399

recursive call.) Since we don't know in advance which line to keep, the easiest solution is to hand down both lines.

Therefore, f i | emer ge—hel per aso takes as arguments the first line of each file that hasn't yet been written to the
output. When wefirst call fi | emer ge—hel per fromfi | emer ge, weread thefirst line of each file to provide the
initial values of these arguments. Then, on each recursivecall, f i | emer ge—hel per calsr ead—st ri ng only
once.

Writing Filesfor Schemeto Read

Y ou may be thinking that the three file-reading procedures we've shown, r ead, r ead-I i ne, andr ead—stri ng,
have been getting better and better. Read ignores case and forces you to have parentheses in your file. Read—I i ne
fixes those problems, but it loses spacing information. Read—st r i ng can read anything and always getsit right.

But there's a cost to the generality of r ead—st ri ng; it can read any file, but it loses structure information. For
example, when we processed afile of peoplesnameswithf i | e—map, we used this function:

(define (lastfirst nane)
(se (word (last nane) ",") (bl nane)))

It's easy to break a name into its components if you have the name in the form of a sentence, with the words separated
already. But if we had read each linewith r ead—st ri ng, | ast of aline would have been the last letter, not the last

name.

Thel ast first exampleillustrates why you might want to user ead—I i ne rather thanr ead—st ri ng: Read—
I i ne "understands’ spaces. Here's an example in which the even more structured r ead is appropriate. We have afile
of Beatles songs and the albums on which they appear:

| ove nme do) (please please ne))
do you want to know a secret?) (please please ne))
think for yourself) (rubber soul))

((
((
((
((your nmother should know) (nmagical nmystery tour))

Each line of thisfile contains two pieces of information: a song title and an album title. If each line contained only the
words of the two titles, asin

| ove me do pl ease pl ease ne

Page 400

how would we know where the song title stops and the album title starts? The natural way to represent this grouping
information is to use the mechanism Scheme provides for grouping, namely, list structure.

If weuser ead-I i ne toread thefile, well losethe list structure; it will return a sentence containing words like
"((l ove".Read, however, will do what we want.

How did we create thisfile in the first place? We just used one show per line of thefile, like this:
> (show ' ((love nme do) (please please ne)) port)

But what about the movie soundtracks? We're going to have to come to terms with the apostrophe in "A Hard Day's
Night."

The straightforward solution isto put day' s in astring:

(show '((and i love her) (a hard "day's" night)) port)

The corresponding line in the file will ook like this:

((AND | LOVE HER) (A HARD day's NI GHT))

Thisresult is actually even worse than it looks, because when we try to r ead the line back, the' s will be expanded
into (quot e s) inmost versions of Scheme. Using a string made it possible for us to get an apostrophe into Scheme.
If theword day' s wereinside quotation marksin the file, then r ead would understand our intentions.

Why aren't there double quotes in the file? All of the printing procedures we've seen so far assume that whatever
you're printing is intended to be read by people. Therefore, they try to minimize distracting notation such as double-
guote marks. But, as we've discovered, if you're writing afile to be read by Scheme, then you do want enough notation
so that Scheme can tell what the original object was.

W i t e isaprinting procedure just like di spl ay, except that it includes quote marks around strings:”

* There are other kinds of datathat wr i t e prints differently from di spl ay, but we don't use them in this book. The
generd ruleisthat di spl ay formats the output for human readers, whilewr i t e ensures that Scheme can reread the
information unambiguously. Showand show-I i ne are extensions that we wrote using di spl ay. We could have
written show-i n—wr i t e—f or mat, for example, but happened not to need it.

Page 401

> (wite '(a hard "day's" night))
(A HARD "day's" N GHT)

Once we're using strings, and since we're not extracting individual words from the titles, we might as well represent
each title as one string:

> (wite "("And | Love Her" "A Hard Day's N ght") port)

Pitfalls

[0 One pitfall crucial to avoid when using filesisthat if thereisan error in your program, it might blow up and return
you to the Scheme prompt without closing the open files. If you fix the program and try to run it again, you may get a
message like "file busy" because the operating system of your computer may not allow you to open the same file on
two ports at once. Even worsg, if you exit from Scheme without closing all your ports, on some computers you may
find that you have unreadable files thereafter.

To help cope with this problem, we've provided a procedure cl ose—al | —por t s that can be invoked to close every

port that you've opened since starting Scheme. This procedure works only in our modified Scheme, but it can help you
out of trouble while you're learning.

[0 Besureyou don't open or close afile within arecursive procedure, if you intend to do it only once. That's why most
of the programsin this chapter have the structure of a procedure that opensfiles, calls arecursive helper, and then
closesthefiles.

[0 Asweexplainedinthef i | emer ge example, you can't read the same line twice. Be sure your program remembers
each linein avariable aslong asit's needed.

Exercises

22.1 Writeaconcat enat e procedure that takes two arguments: alist of names of input files, and one name for an
output file. The procedure should copy all of the input files, in order, into the output file.

22.2 Write a procedure to count the number of linesin afile. It should take the filename as argument and return the
number.

Page 402

22.3 Write a procedure to count the number of wordsin afile. It should take the filename as argument and return the
number.

22.4 \Write a procedure to count the number of charactersin afile, including space characters. It should take the
filename as argument and return the number.

22.5 Write a procedure that copies an input file to an output file but eliminates multiple consecutive copies of the same
line. That is, if the input file contains the lines

John Lennon

Paul McCart ney
Paul McCart ney
George Harrison

Paul MCart ney
Ri ngo Starr

then the output file should contain

John Lennon
Paul MCart ney
George Harrison

Paul M Cart ney
Ri ngo Starr

22.6 Writeal ookup procedure that takes as arguments a filename and a word. The procedure should print (on the
screen, not into another file) only those lines from the input file that include the chosen word.

22.7 Write apage procedure that takes a filename as argument and prints the file a screenful at atime. Assumethat a

screen can fit 24 lines; your procedure should print 23 lines of the file and then a prompt message, and then wait for
the user to enter a (probably empty) line. It should then print the most recent line from the file again (so that the user
will see some overlap between screenfuls) and 22 more lines, and so on until the file ends.

22.8 A common operation in a database program is to join two databases, that is, to create a new database combining
the information from the two given ones. There has to be some piece of information in common between the two
databases. For example,

Page 403

suppose we have a class roster database in which each record includes a student's name, student D number, and
computer account name, like this:

((john alec entwi stle) 04397 john)
((kei th noon) 09382 knoon)

((peter townshend) 10428 pete)
((roger daltrey) 01025 roger)

We also have a grade database in which each student's grades are stored according to computer account name:

(john 87 90 76 68 95)
(knoon 80 88 95 77 89)
(pete 100 92 80 65 72)
(roger 85 96 83 62 74)

We want to create a combined database like this:

((john alec entw stle) 04397 john 87 90 76 68 95)
((keith noon) 09382 knoon 80 88 95 77 89)

((peter townshend) 10428 pete 100 92 80 65 72)
((roger daltrey) 01025 roger 85 96 83 62 74)

in which the information from the roster and grade databases has been combined for each account name.

Writeaprogram j oi n that takes five arguments: two input filenames, two numbers indicating the position of the item
within each record that should overlap between the files, and an output filename. For our example, we'd say

> (join "class-roster" "grades" 3 1 "conbined-file")

In our example, both files are in aphabetical order of computer account name, the account name is aword, and the
same account name never appears more than once in each file. In general, you may assume that these conditions hold
for the item that the two files have in common. Y our program should not assume that every item in one file also
appears in the other. A line should be written in the output file only for the items that do appear in both files.

Page 404

A row of boxes

Page 405

23—
Vectors

So far al the programs we've written in this book have had no memory of the past history of the computation. We
invoke a function with certain arguments, and we get back a value that depends only on those arguments. Compare this
with the operation of Scheme itself:

> (foo 3)
ERROR: FOO HAS NO VALUE

> (define (foo x)
(word x x))

> (foo 3)
33

Scheme remember s that you have defined f 00, o its response to the very same expression is different the second

time. Scheme maintains arecord of certain results of its past interaction with you; in particular, Scheme remembers the
global variablesthat you have defined. Thisrecord is called its state.

Most of the programs that people use routinely are full of state; your text editor, for example, remembers all the
charactersin your file. In this chapter you will learn how to write programs with state.

The Indy 500

The Indianapolis 500 is an annual 500-mile automobile race, famous among people who like that sort of thing. It's held
at the Indianapolis Motor Speedway, a racetrack in Indianapolis, Indiana. (Indianais better known as the home of Dan
Friedman, the

Page 406

coauthor of some good books about Scheme.) The racetrack is 2% mileslong, so, as you might imagine, the racers
have to complete 200 laps in order to finish the race. This means that someone has to keep track of how many laps
each car has completed so far.

Let'swrite a program to help this person keep count. Each car has a number, and the count person will invoke the
procedure | ap with that number as argument every time a car completes alap. The procedure will return the number

of laps that that car has completed altogether:

> (lap 87)

\Y

(lap 64)

\Y

(lap 17)

> (lap 64)
2

> (lap 64)
3

(Car 64 managed to complete three laps before the other cars completed two because the others had flat tires.) Note
that we typed the expression (| ap 64) threetimes and got three different answers. Lap isn't afunction! A function

has to return the same answer whenever it's invoked with the same arguments.

Vectors

The point of this chapter isto show how procedureslikel ap can be written. To accomplish this, we're going to use a
data structure called a vector. (Y ou may have seen something similar in other programming languages under the name
Ilarrw.ll)

A vector is, in effect, arow of boxesinto which values can be put. Each vector has a fixed number of boxes; when you
create a vector, you have to say how many boxes you want. Once a vector is created, there are two things you can do
with it: You can put a new value into a box (replacing any old value that might have been there), or you can examine
the value in abox. The boxes are numbered, starting with zero.

> (define v (make-vector 5))

Page 407

> (vector—set! v 0 'shoe)
> (vector-set! v 3 'bread)
> (vector-set! v 2 '(savoy truffle))

> (vector-ref v 3)
BREAD

There are severa details to note here. When we invoke make—vect or we give it one argument, the number of boxes

we want the vector to have. (In this example, there are five boxes, numbered O through 4. Thereis no box 5.) When we
create the vector, there is nothing in any of the boxes.

We put things in boxes using thevect or —set ! procedure. The exclamation point in its name, indicates that thisisa

mutator—a procedure that changes the value of some previously created data structure. The exclamation point is
pronounced "bang," asin "vector set bang." (Scheme actually has several such mutators, including mutators for lists,
but thisis the only one we'll usein this book. A procedure that modifies its argument is also called destructive.) The
argumentstovect or —set ! arethe vector, the number of the box (the index), and the desired new value. Like

defi ne,vect or—set! returnsan unspecified value.

We examine the contents of abox using vect or —r ef , which takes two arguments, the vector and an index.
Vect or—ref issimilartol i st —r ef , except that it operates on vectorsinstead of lists.

We can change the contents of a box that already has something init.

> (vector-set! v 3 'jewel)

> (vector-ref v 3)
JEVEL

The old value of box 3, br ead, isno longer there. It's been replaced by the new value.

> (vector—set! v 1 741)

* The Scheme standard says that theinitial contents of the boxes is"unspecified." That means that the result depends on
the particular version of Scheme you're using. It's abad ideato try to examine the contents of a box before putting
something init.

Page 408

> (vector—set! v 4 #t)

>V
#(SHOE 741 (SAVOY TRUFFLE) JEVEL #T)

Once the vector is completely full, we can print its value. Scheme prints vectors in aformat like that of lists, except
that thereisanumber sign (#) before the open parenthesis. If you ever have need for a constant vector (one that

you're not going to mutate), you can quote it using the same notation:

> (vector-ref "# (a b c d) 2)
C

Using Vectorsin Programs

To implement our | ap procedure, we'll keep its state information, the lap counts, in a vector. We'll use the car number

asthe index into the vector. It's not enough to create the vector; we have to make sure that each box has a zero asits
initial value.

(define *lap—vector* (nmake-vector 100))

(define (initialize-lap—vector index)
(if (< index 0)
' done
(begin (vector—set! *|ap-vector* index 0)
(initialize-lap—vector (- index 1)))))

> (initialize-lap—-vector 99)
DONE

We've created aglobal variable whose value is the vector. We used a recursive procedure to put a zero into each box of
the vector.” Note that the vector is of length 100, but its largest index is 99. Also, the base case of the recursion is that
theindex is less than zero, not equal to zero asin many earlier examples. That's because zero isavalid index.

* In some versions of Scheme, nake—vect or can take an optional argument specifying an initial valueto put in every
box. In those versions, we could just say
(define *l ap—vector* (make—vector 100 0))

without having to use the initialization procedure.

Page 409
Now that we have the vector, we can writel ap.

(define (lap car—nunber)
(vector—set! *|ap-vector*
car —numnber
(+ (vector-ref *lap-vector* car-nunber) 1))
(vector-ref *lap-vector* car—nunber))

Remember that a procedure body can include more than one expression. When the procedure isinvoked, the
expressions will be evaluated in order. The value returned by the procedure is the value of the last expression (in this
case, the second one).

Lap has both areturn value and a side effect. The job of the first expression isto carry out that side effect, that is, to

add 1 to the lap count for the specified car. The second expression looks at the value we just put in abox to determine
the return value.

Non-Functional Procedures and State

We remarked earlier that | ap isn't afunction because invoking it twice with the same argument doesn't return the
same value both times.”

It's not a coincidence that | ap also violates functional programming by maintaining state information. Any procedure
whose return value is not afunction of its arguments (that is, whose return value is not always the same for any
particular arguments) must depend on knowledge of what has happened in the past. After all, computers don't pull
results out of the air; if the result of a computation doesn't depend entirely on the arguments we give, then it must
depend on some other information available to the program.

Suppose somebody asks you, "Car 54 has just completed alap; how many hasit completed in al?' Y ou can't answer
that question with only the information in the question itself; you have to remember earlier eventsin the race. By
contrast, if someone asks you, "What's the plural of 'book'?" what has happened in the past doesn't matter at all.

The connection between non-functional procedures and state also applies to non-functional Scheme primitives. The
r ead procedure, for example, returns different results when you invoke it repeatedly with the same argument because

it remembers how

* That's what we mean by "non-functional," not that it doesn't work!

Page 410

far it's gotten in the file. That's why the argument is a port instead of afile name: A port is an abstract data type that
includes, among other things, this piece of state. (If you're reading from the keyboard, the state is in the person doing

the typing.)

A more surprising example is the r andomprocedure that you met in Chapter 2. Randomisn't afunction because it
doesn't aways return the same value when called with the same argument. How does r andomcompute its result?
Some versions of r andomcompute a number that's based on the current time (in tiny units like milliseconds so you

don't get the same answer from two calls in quick succession). How does your computer know the time? Every so
often some procedure (or some hardware device) adds 1 to aremembered value, the number of milliseconds since
midnight. That's state, and r andomreliesonit.

The most commonly used algorithm for random numbersis alittle trickier; each time you invoke r andom the result

isafunction of the result from the last time you invoked it. (The procedure is pretty complicated; typically the old
number is multiplied by some large, carefully chosen constant, and only the middle digits of the product are kept.)
Each time you invoke r andom the returned value is stashed away somehow so that the next invocation can remember

it. That's state too.

Just because a procedure remembers something doesn't necessarily make it stateful. Every procedure remembers the
arguments with which it was invoked, while it's running. Otherwise the arguments wouldn't be able to affect the
computation. A procedure whose result depends only on its arguments (the ones used in the current invocation) is
functional. The procedure is non-functional if it depends on something outside of its current arguments. It's that sort of
"long-term™ memory that we consider to be state.

In particular, aprocedure that uses| et isn't stateful merely because the body of thel et remembers the values of the
variables created by the |l et . Oncel et returnsavalue, the variablesthat it created no longer exist. Y ou couldn't use
| et , for example, to carry out the kind of remembering that r andomneeds. Let doesn't remember a val ue between
invocations, just during a single invocation.

Shuffling a Deck

One of the advantages of the vector data structure isthat it allows elements to be rearranged. As an example, well
create and shuffle adeck of cards.

WEe'll start with aprocedure car d—I i st that returnsalist of al the cards, in standard order:

Page 411

(define (card-list)
(reduce append
(map (lanbda (suit) (map (lanbda (rank) (word suit rank))
'(a2345678910j qk)))

"(h'sdc))))

> (card-list)

(HA H2 H3 H4 H5 H6 H7 H8 H9 H10 HJ HQ HK
SA S2 S3 S4 S5 S6 S7 S8 S9 S10 SJ SQ SK
DA D2 D3 D4 D5 D6 D7 D8 D9 D10 DJ DQ DK
CAC2 C3C4C G C7 C8 C9 C10 A CQ CK)

Inwriting car d—I i st , we need reduce append because the result from the outer invocation of map isalist of lists:
((HFAH2 . . .) (SA. . .) . . .)t

Each time we want a new deck of cards, we start with thislist of 52 cards, copy thelist into a vector, and shuffle that
vector. We'll use the Scheme primitivel i st —>vect or, which takesalist as argument and returns a vector of the

same length, with the boxes initialized to the corresponding elements of the list. (Thereis also aprocedurevect or —
>| i st that doesthereverse. The characters —> in these function names are

* We could get around this problem in a different way:
(define (card-list)
(every (lanbda (suit) (every (lanmbda (rank) (word suit rank))
'(a2345678910j qk)))
"(hs dc)))

In this version, we're taking advantage of the fact that our sentence data type was defined in away that prevents the creation
of sublists. A sentence of cardsisagood representation for the deck. However, with this approach we are mixing up the list
and sentence data types, because later we're going to invokel i st —>vect or with thisdeck of cards asits argument. If we

use sentence tools such asever y to create the deck, then the procedure car d—I i st should realy be called car d—
sent ence.

What difference doesit make? The ever y version works fine, aslong as sentences are implemented aslists, sothat | i st —
>vect or can be applied to a sentence. But the point about abstract data types such as sentences is to avoid making

assumptions about their implementation. If for some reason we decided to change the internal representation of sentences,
thenl i st —>vect or could no longer be applied to a sentence. Strictly speaking, if we're going to use thistrick, we need a

Sseparate conversion proceduresent ence—>vector.

Of course, if you don't mind alittle typing, you can avoid this whole issue by having a quoted list of all 52 cards built into
the definition of car d—I i st ..

Page 412

meant to look like an arrow (-); thisis a Scheme convention for functions that convert information from one data
type to another.)

(define (make—deck)
(shuffle! (list—>vector (card-list)) 51))

(define (shuffle! deck index)
(if (< index 0)
deck
(begin (vector—-swap! deck index (random (+ index 1)))
(shuffle! deck (- index 1)))))

(define (vector—swap! vector indexl index2)
(let ((temp (vector-ref vector indexl)))
(vector—set! vector indexl (vector-ref vector index2))
(vector-set! vector index2 tenp)))

Now, each time we call make—deck, we get arandomly shuffled vector of cards:

> (make—-deck)
#(C4 SA C7 DA S4 D9 SQ H4 C10 D5 H9 S10 D6

S9 CAC S2 Hf S5 H6 D7 HK S7 C3 C2 C6
HI SK CQ CQ D4 SJ D8 S8 HA C5 DK D3 HQ
D10 H8 DJ C8 H2 H5 H3 CK S3 DQ S6 D2 H10)

> (make—-deck)

#(CQ H7 D10 D5 S8 C7 H10 SQ H4 H3
SK DK S6 DA D4 C6 HQ D6 S2 H5 CA
CK D7 H6 HA CJ ¢4 SJ HK SA C2 D2
S5 C10 HO D9 C5 D3 DI C3 S9 S3 C8

How does the shuffling algorithm work? Conceptually it's not complicated, but there are some implementation details
that make the actual procedures alittle tricky. The general ideaisthis: We want all the cards shuffled into a random
order. So we choose any card at random, and make it the first card. We're then left with a one-card-smaller deck to
shuffle, and we do that by recursion. (This algorithm is similar to selection sort from Chapter 15, except that we select
arandom card each time instead of selecting the smallest value.)

The details that complicate this algorithm have to do with the fact that we're using a vector, in which it's easy to
change the value in one particular position, but it's not easy to do what would otherwise be the most natural thing: If
you had a handful of actual cards and wanted to move one of them to the front, you'd slide the other cards over to make

Page 413

room. There'sno "diding over" in avector. Instead we use atrick; we happen to have an empty slot, the one from
which we removed the randomly chosen card, so instead of moving several cards, we just move the one card that was
originally at the front into that slot. In other words, we exchange two cards, the randomly chosen one and the one that
used to bein front.

Second, there's nothing comparable to cdr to provide a one-card-smaller vector to the recursive invocation. Instead,
we must use the entire vector and also provide an additional i ndex argument, a number that keeps track of how many

cards remain to be shuffled. It's ssmplest if each recursive invocation is responsible for the range of cards from position
0 to position i ndex of the vector, and therefore the program actually moves each randomly selected card to the end of

the remaining portion of the deck.

More Vector Tools

If you want to make a vector with only afew boxes, and you know in advance what values you want in those boxes,
you can use the constructor vect or . Likel i st , it takes any number of arguments and returns a vector containing

those arguments as elements:
> (define beatles (vector 'john 'paul 'george 'pete))
> (vector-set! beatles 3 'ringo)

> beatl es
#(JOHN PAUL GEORGE RI NGO

The procedure vect or —| engt h takes avector as argument and returns the number of boxes in the vector.

> (vector-length beatl es)
4

The predicate equal ?, which we've used with words and lists, also accepts vectors as arguments. Two vectors are

equal if they are the same size and all their corresponding elements are equal. (A list and a vector are never equal, even
if their elements are equal.)

Finally, the predicate vect or ? takes anything as argument and returns #t if and only if its argument is a vector.

Page 414

TheVector Pattern of Recursion

Here are two procedures that you've seen earlier in this chapter, which do something to each element of a vector:

(define (initialize-lap-vector index)
(if (< index 0)
" done
(begin (vector—set! *|ap-vector* index 0)
(initialize-lap—vector (- index 1)))))

(define (shuffle! deck index)
(if (< index 0)
deck
(begin (vector—-swap! deck index (random (+ index 1)))
(shuffle! deck (- index 1)))))

These procedures have asimilar structure, like the similarities we found in other recursive patterns. Both of these
procedures take an index as an argument, and both have

(< index 0)

astheir base case. Also, both have, astheir recursive case, abegi n in which the first action does something to the

vector element selected by the current index, and the second action is arecursive call with the index decreased by one.
These procedures areinitially called with the largest possible index value.

In some cases it's more convenient to count the index upward from zero:

(define (list—>vector Ist)
(1-—>v-hel per (make-vector (length Ist)) Ist 0))

(define (1->v-hel per vec Ist index)
(if (= index (vector-length vec))
vec
(begin (vector—set! vec index (car |st))
(1->v-hel per vec (cdr Ist) (+ index 1)))))

Since lists are naturally processed from left to right (using car and cdr), this program must process the vector from
left to right also.

Page 415

VectorsversusLists

Since we introduced vectors to provide mutability, you may have the impression that mutability is the main difference
between vectors and lists. Actualy, lists are mutable too, although the issues are more complicated; that's why we
haven't used list mutation in this book.

The most important difference between lists and vectorsis that each kind of aggregate lends itself to a different style of
programming, because some operations are faster than othersin each. List programming is characterized by two
operations: dividing alist into itsfirst element and all the rest, and sticking one new element onto the front of alist.
Vector programming is characterized by selecting elements in any order, from a collection whose size is set
permanently when the vector is created.

To make these rather vague descriptions more concrete, here are two procedures, one of which sguares every number
in alist, and the other of which squares every number in a vector:

(define (list—square nunbers)
(if (null? nunbers)
()
(cons (square (car nunbers))
(l'i st—square (cdr nunbers)))))

(define (vector-square numnbers)
(vec—sqg—hel per (make-vector (vector-length nunbers))
nunber s
(- (vector-l ength nunbers) 1)))

(define (vec—sqg—hel per new ol d i ndex)
(if (< index 0)
new
(begin (vector—set! new index (square (vector—-ref old index)))
(vec—sqg-hel per new old (- index 1)))))

Inthelist version, the intermediate stages of the algorithm deal with lists that are smaller than the original argument.
Each recursive invocation "strips off" one element of its argument and "glues on" one extra element in its return value.
In the vector version, the returned vector is created, at full size, asthe first step in the algorithm; its component parts
arefilled in as the program proceeds.

This example can plausibly be done with either vectors or lists, so we've used it to compare the two techniques. But
some algorithms fit most naturally with one kind of

Page 416

aggregate and would be awkward and slow using the other kind. The swapping of pairs of elementsin the shuffling
algorithm would be much harder using lists, while mergesort would be harder using vectors.

The best way to understand these differences in style is to know the operations that are most efficient for each kind of
aggregate. In each case, there are certain operations that can be done in one small unit of time, regardless of the
number of elementsin the aggregate, while other operations take more time for more elements. The constant time
operationsfor listsarecons, car, cdr,and nul | ?; theonesfor vectorsarevect or —r ef ,vect or—set ! , and
vect or —| engt h.* And if you reread the squaring programs, you'll find that these are precisely the operations they
use.

We might haveused | i st —r ef inthelist version, but we didn't, and Scheme programmers usually don't, because we
know that it would be slower. Similarly, we could implement something like cdr for vectors, but that would be slow,
too, since it would have to make a one-smaller vector and copy the elements one at atime. There are two possible
morals to this story, and they're both true: First, programmers invent and learn the algorithms that make sense for
whatever data structure is available. Thus we have well-known programming patterns, such asthef i | t er pattern,
appropriate for lists, and different patterns appropriate for vectors. Second, programmers choose which data structure
to use depending on what algorithms they need. If you want to shuffle cards, use a vector, but if you want to split the
deck into a bunch of variable-size piles, lists might be more appropriate. In general, vectors are good at selecting
elements in arbitrary order from a fixed-size collection; lists are good only at selecting elements strictly from left to
right, but they can vary in size.

In this book, despite what we're saying here about efficiency, we've generally tried to present algorithmsin the way
that's easiest to understand, even when we know that there's a faster way. For example, we've shown several recursive
procedures in which the base case test was

(= (count sent) 1)

If we were writing the program for practical use, rather than for a book, we would have written

(enpty? (butfirst sent))

* Where did this information come from? Just take our word for it. In later courses you'll study how vectors and lists
are implemented, and then there will be reasons.

Page 417

because we know that enpt y? and but f i r st are both constant time operations (because for sentences they're
implemented asnul | ? and cdr), while count takes along time for large sentences. But the version using count
makes the intent clearer.”

State, Sequence, and Effects
Effects, sequence, and state are three sides of the same coin.”*

In Chapter 20 we explained the connection between effect (printing something on the screen) and sequence: It matters
what you print first. We also noted that there's no benefit to a sequence of expressions unless those expressions
produce an effect, since the values returned by all but the last expression are discarded.

In this chapter we've seen another connection. The way our vector programs maintain state information is by carrying
out effects, namely, vect or —set ! invocations. Actually, every effect changes some kind of state; if not in Scheme's

memory, then on the computer screen or in afile.

Thefina connection to be made is between state and sequence. Once a program maintains state, it matters whether
some computation is carried out before or after another computation that changes the state. The example at the
beginning of this chapter in which an expression had different results before and after defining avariable illustrates
this point. As another example, if weevaluate (1 ap 1) 200timesand (|1 ap 2) 200 times, the program's

determination of the winner of the race depends on whether the last evaluation of (1 ap 1) comes before or after the
last invocation of (1 ap 2) .

Because these three ideas are so closely connected, the names sequential programming (emphasizing sequence) and
imperative programming (emphasizing effect) are both used to refer to a style of programming that uses all three. This
styleisin contrast with functional programming, which, as you know, uses none of them.

Although functional and sequential programming are, in a sense, opposites, it's perfectly possible to use both styles
within one program, as we pointed out in the tic-tac-toe program of Chapter 20. We'll show more such hybrid
programs in the following chapters.

* For words, it turns out, the count version is faster, because words behave more like vectors than like lists.

** .. .tocoin aphrase.

Page 418

Pitfalls

[0 Don't forget that the first element of a vector is number zero, and there is no element whose index number is equal
to the length of the vector. (Although these points are equally true for lists, it doesn't often matter, because we rarely
select the elements of alist by number.) In particular, in avector recursion, if zero isthe base case, then there's
probably still one element left to process.

[0 Try the following experiment:

> (define dessert (vector 'chocol ate 'sundae))
> (define two—desserts (list dessert dessert))
> (vector-set! (car two—desserts) 1 'shake)

> two—-desserts

(#(CHOCOLATE SHAKE) #(CHOCOLATE SHAKE))

Y ou might have expected that after asking to change oneword int wo—dessert s, the result would be

(#(CHOCOLATE SHAKE) #(CHOCOLATE SUNDAE))

However, because of the way we created t wo—desser t s, both of its elements are the same vector. If you think of a

list as a collection of things, it's strange to imagine the very same thing in two different places, but that's the situation.
If you want to have two separate vectors that happen to have the same valuesin their elements, but are individually
mutable, you'd have to say

> (define two—desserts (list (vector 'chocol ate 'sundae)
(vector 'chocol ate 'sundae)))

> (vector-set! (car two—desserts) 1 'shake)

> two—desserts

(#(CHOCOLATE SHAKE) #(CHOCOLATE SUNDAE))

Each invocation of vect or or make—vect or creates anew, independent vector.

Exercises

Do not solve any of the following exercises by converting a vector to a list, using list procedures, and then converting
the result back to a vector.

Page 419

23.1 Write aprocedure sum-vect or that takes avector full of numbers asits argument and returns the sum of all the
numbers:

> (sum-vector '#(6 7 8))
21

23.2 Some versions of Scheme provide aprocedurevect or—fi | | ! that takes avector and anything asits two
arguments. It replaces every element of the vector with the second argument, like this:

> (define vec (vector 'one '"two "three 'four))

> vec
#(one two three four)

> (vector—fill! vec 'yeah)

> vec
#(yeah yeah yeah yeah)

Writevector—fill!. (It doesn't matter what valueit returns.)

23.3 Writeafunction vect or —append that worksjust like regular append, but for vectors:

> (vector—append '#(not a) '#(second tine))
#(not a second tine)

23.4 Writevect or—>l i st.

23.5 Write aprocedurevect or —map that takes two arguments, a function and a vector, and returns a new vector in
which each box contains the result of applying the function to the corresponding element of the argument vector.

23.6 Write aprocedurevect or —map! that takes two arguments, afunction and a vector, and modifies the argument

vector by replacing each element with the result of applying the function to that element. Y our procedure should return
the same vector.

23.7 Could you writevect or —fi | t er ? How about vect or —f i | t er ! ? Explain the issues involved.

Page 420

23.8 Modify the | ap procedure to print "Car 34 wins!" when car 34 completes its 200th lap. (A harder but more
correct modification is to print the message only if no other car has completed 200 laps.)

23.9 Write aprocedure | eader that sayswhich car isin the lead right now.

23.10 Why doesn't this solution to Exercise 23.9 work?

(define (leader)
(1 eader—hel per 0 1))

(define (Ileader—hel per |eader index)
(cond ((= index 100) | eader)
((> (lap index) (lap |eader))
(1 eader—hel per index (+ index 1)))
(el se (| eader—hel per |eader (+ index 1)))))

23.11 In some restaurants, the servers use computer terminals to keep track of what each table has ordered. Every time
you order more food, the server enters your order into the computer. When you're ready for the check, the computer
prints your bill.

Y ou're going to write two procedures, or der and bi | | . Or der takes atable number and an item as arguments and
adds the cost of that item to that table's bill. Bi | | takes atable number as its argument, returns the amount owed by
that table, and resets the table for the next customers. (Y our or der procedure can examine aglobal variable * nenu*
to find the price of each item.)

> (order 3 'potstickers)
> (order 3 'wor-won-ton)
> (order 5 'egg-rolls)

> (order 3 'shin-shi n—speci al —pr awns)

> (bill 3)
13. 85
> (bill 5)
2.75

Page 421

23.12 Rewrite selection sort (from Chapter 15) to sort a vector. This can be done in away similar to the procedure for
shuffling a deck: Find the smallest element of the vector and exchangeit (using vect or —swap!) with the valuein

the first box. Then find the smallest element not including the first box, and exchange that with the second box, and so
on. For example, suppose we have avector of numbers:

(23 4 18 7 95 60)

Y our program should transform the vector through these intermediate stages:

#(4 23 18 7 95 60) ; exchange 4 with 23

#(4 7 18 23 95 60) ; exchange 7 with 23

#(4 7 18 23 95 60) ; exchange 18 with itself
#(4 7 18 23 95 60) ; exchange 23 with itself
#(4 7 18 23 60 95) ; exchange 60 with 95
23.13 Why doesn't this work?

(define (vector—swap! vector indexl index2)
(vector—set! vector indexl (vector—-ref vector index2))
(vector—set! vector index2 (vector-ref vector indexl)))

23.14 Implement a two-dimensional version of vectors. (We'l call one of these structures amatrix.) The
implementation will use avector of vectors. For example, a three-by-five matrix will be athree-element vector, in
which each of the elementsis afive-element vector. Here's how it should work:

> (define m (make—matrix 3 5))
> (matrix—set! m2 1 '(her mgjesty))

> (matrix-ref m2 1)
(HER MAJESTY)

23.15 Generalize Exercise 23.14 by implementing an array structure that can have any number of dimensions. Instead
of taking two numbers as index arguments, as the matrix procedures do, the array procedures will take one argument, a
list of numbers. The number of numbersisthe number of dimensions, and it will be constant for any particular array.
For example, hereis athree-dimensional array (4 x 5 x 6):

Page 422
> (define al (make-array '(4 5 6)))

> (array-set! al '(3 2 3) '(the end))
23.16 We want to reimplement sentences as vectors instead of lists.

(a) Writeversionsof sent ence,enpty?,first,butfirst,last,andbutl| ast that usevectors. Your
selectors need only work for sentences, not for words.

> (sentence 'a 'b 'c)
#(A B O

> (butfirst (sentence 'a 'b 'c))
#(B O

(You don't have to make these procedures work on lists as well as vectors!)

(b) Does the following program still work with the new implementation of sentences? If not, fix the program.

(define (praise stuff)
(sentence stuff '(is good)))

(c) Doesthe following program still work with the new implementation of sentences? If not, fix the program.

(define (praise stuff)
(sentence stuff 'rules!))

(d) Does the following program still work with the new implementation of sentences? If not, fix the program. If so, is
there some optional rewriting that would improve its performance?

(define (itemn sent)
(if (=n1)
(first sent)
(item (= n 1) (butfirst sent))))

(e) Doesthe following program still work with the new implementation of sentences? If not, fix the program. If so, is
there some optional rewriting that would improve its performance?

Page 423

(define (every fn sent)
(if (enmpty? sent)
sent
(sentence (fn (first sent))
(every fn (butfirst sent)))))

() In what ways does using vectors to implement sentences affect the speed of the selectors and constructor? Why do
you think we chose to use lists?

Page 424
A B C D E F
1 NAME NUMBER PRICE GROSS DISCOUNT NET
2 Widget 40.00 1.27 50.80 0.00 50.80
3 Thingo 203.00 14.95 3034.85 15.00 2579.62
4 Computer 1.00 6500.00 6500.00 8.00 5980.00
5 Y acht 300.00 200000.00 60000000.00 0.00 60000000.00
6
7
8
9 TOTALS 60009585.7 60008610.4
Spreadsheet display from Microsoft Excel
Page 425

24—
Example:
A Spreadsheet Program

Until now, you may have felt that the programs you've been writing in Scheme don't act like other computer programs
you've used. In this chapter and the next, we're going to tie together almost everything you've learned so far to write a
spreadsheet program, just like the ones accountants use.

This chapter describes the operation of the spreadsheet program, as a user manual would. The next chapter explains
how the program is implemented in Scheme.

Y ou can load our program into Scheme by typing

(l oad "spread. scnt')

To start the program, invoke the procedure spr eadsheet with no arguments; to quit the spreadsheet program, type
exit.

A spreadsheet is a program that displays information in two dimensions on the screen. It can also compute some of the
information automatically. On the next page is an example of adisplay from our spreadsheet program. The display isa
rectangle of information with six columns and 20 rows. The intersection of arow with acolumniscalled acell; for
example, the cell c4 contains the number 6500. The column letters (a through f) and row numbers are provided by

the spreadsheet program, asis the information on the bottom few lines, which we'll talk about later. (The ?? at the

very bottom is the spreadsheet prompt; you type commands on that line.) We typed most of the entriesin the cells,
using commands such as

(put 6500 c4)

Page 426

a b c d e f
NANVE NUVBER PRI CE GRCSS DI SCOUNT NET
W dget 40. 00 1.27 50. 80 0.00 50. 80
Thi ngo 203. 00 14.95 > 3034. 85< 15. 00 2579. 62
Comput er 1.00 6500. 00 6500. 00 8. 00 5980. 00
Yacht 300. 00 200000. 00 60000000. + 0. 00 60000000. +

O©CoOoO~NOOTA~ WNPE

TOTALS 60009585. + 60008610. +

d3: 3034.85

(* b3 c3)
27

What's most useful about a spreadsheet isits ability to compute some of the cell valuesitself. For example, every
number in column d is the product of the numbersin columns b and ¢ of the same row. Instead of putting a particular

number in a particular cell, we put aformula in al the cells of the column at once.” Thisimplies that when we change
the value of one cell, other cells will be updated automatically. For example, if we put the number 5 into cell b4, the

spreadsheet will look like this:

* Wedid it by saying
(put (* (cell b) (cell ¢)) d)

but we aren't going to talk about the details of formulas for awhile longer.

Page 427

a b C d e f
NANVE NUMVBER PRI CE GRCSS DI SCOUNT NET
W dget 40. 00 1. 27 50. 80 0.00 50. 80
Thi ngo 203. 00 14.95 > 3034. 85< 15. 00 2579. 62
Comput er 5.00 6500. 00 32500. 00 8. 00 29900. 00
Yacht 300. 00 200000. 00 60000000. + 0. 00 60000000. +

O©CoOoO~NOOOTh~ WNPRF

TOTALS 60035585. + 60032530. +

d3: 3034.85

(* b3 c3)
27

In addition to cell b4, the spreadsheet program has changed the valuesind4, f 4, d9, and f 9.

One detail we haven't mentioned so far isthat at any moment there is one selected cell. Right now cell d3 is selected.
Y ou can tell that because of the arrowheads surrounding it in the display, like this:

> 3034. 85<

Also, thelines

d3: 3034.85
(* b3 c3)

at the bottom of the screen mean that cell d3 is selected, itsvalueis 3034. 85, and itsformulais(* b3 ¢3).

Page 428

Limitations of Our Spreadsheet

In commercial spreadsheet programs, you generally select a cell with arrow keys or by clicking on it with a mouse.
The highlighted cell istypically displayed in inverse video, and there might be thin lines drawn in agrid on the screen
to separate the cells.

Our program leaves all this out for two reasons. First, details like this don't add very much to what you learn from
studying the program, but they take a disproportionate effort to get exactly right. Second, the facilities needed in
Scheme to control screen graphics are specific to each model of computer. We couldn't write a single program that
would work in al versions of Scheme. (A program that worksin all versionsis called portable.)

Similarly, our program prints an entire new screenful of information after every command. A better program would
change only the parts of the screen for which the corresponding values have changed. But there is no uniform way to
ask Scheme to print at a particular position on the screen; some versions of Scheme can do that, but not using standard
procedures.

Also, of course, if you spend $500 on a spreadsheet program, it will have hundreds of bells and whistles, such as
graphing, printing your spreadsheet on paper, changing the widths of columns, and undoing the last command you
typed. But each of those is a straightforward extension. We didn't write them all because there are only two of us and
we're not getting paid enough! Y ou'll add some features as exercises.

Spreadsheet Commands
When you begin the spreadsheet program, you will see an empty grid and a prompt at the bottom of the screen.

Most spreadsheet programs are controlled using single-keystroke commands (or equivalent mouse clicks). That's
another thing we can't do entirely portably in Scheme. We've tried to compromise by including one-letter command
names in our program, but you do haveto typether et ur n or ent er key after each command. The single-letter

commands are for simple operations, such as selecting a cell one position up, down, left, or right from the previously
selected cell.

For more complicated commands, such as entering values, alonger notation is obviously required. In our program we
use a notation that looks very much like that of a Scheme program: A command consists of a name and some
arguments, all enclosed in parentheses. However, the spreadsheet commands are not Scheme expressions. In

Page 429

particular, the arguments are not evaluated as they would be in Scheme. For example, earlier we said

(put 6500 c4)
If this were a Scheme expression, we would have had to quote the second argument:

(put 6500 'c4) ;; wrong!

Moving the Selection

There are four one-letter commands to move to a new selected cell:

Command Name Meaning
f move Forward (right)
b move Back (left)
n move to Next line (down)
p move to Previous line (up)

(These command names are taken from EMACS, the industry standard text editor.)

If you want to move one step, you can just type the letter f , b, n, or p on aline by itself. If you want to move farther,
you can invoke the same commands in Scheme notation, with the distance to move as an argument:

22 (f 4)

Another way to move the selection is to choose a particular cell by name. The command for thisiscalled sel ect :

(sel ect el2)

The spreadsheet grid includes columns a through z and rows 1 through 30. Not all of it can fit on the screen at once.

If you select acell that's not shown on the screen, then the program will shift the entire screen display so that the rows
and columns shown will include the newly selected cell.

Page 430

Putting Valuesin Cells

Asweve already seen, the put command is used to put avaluein a particular cell. It can be used with either one or

two arguments. The first (or only) argument isavalue. If there is a second argument, it is the (unquoted) name of the
desired cell. If not, the currently selected cell will be used.

A value can be a number or a quoted word. (Asin Scheme programming, most words can be quoted using the single-
quote notation ' wor d, but words that include spaces, mixed-case |etters, or some punctuation characters must be

quoted using the double-quote string notation " W dget " .) However, non-numeric words are used only as labels; they
can't provide values for formulas that compute values in other cells.

The program displays numbers differently from labels. If the value in acell isanumber, it is displayed at the right
edge of itscell, and it is shown with two digits following the decimal point. (Look again at the screen samples earlier
in this chapter.) If the value is anon-numeric word, it is displayed at the left edge of its cell.

If the value istoo wide to fit in the cell (that is, more than ten characters wide), then the program prints the first nine
characters followed by aplussign (+) toindicate that there is more information than is visible. (If you want to see the

full valuein such acell, select it and look at the bottom of the screen.)

To erase the value from a cell, you can put an empty list () init. With this one exception, lists are not allowed as cell
values.

It's possible to put avalue in an entire row or column, instead of just one cell. To do this, use the row number or the
column letter as the second argument to put . Here's an example:

(put 'peter d)

This command will put the word pet er into al the cellsin column d. (Remember that not all the cells are visible at
once, but even the invisible ones are affected. Cellsd1 through d30 are given values by this command.)

What happensif you ask to fill an entire row or column at once, but some of the cells already have values? In this case,
only the vacant cells will be affected. The only exception isthat if the value you are using is the empty list, indicating
that you want to erase old values, then the entire row or column is affected. (So if you put aformulain an entire row or
column and then change your mind, you must erase the old one before you can install a new one.)

Page 431

Formulas

We mentioned earlier that the value of one cell can be made to depend on the values of other cells. This, too, is done
using the put command. The differenceisthat instead of putting a constant value into acell, you can put aformulain

the cell. Here's an example:
(put (+ b3 c5) d6)

This command says that the value in cell d6 should be the sum of the valuesin b3 and ¢5. The command may or may

not have any immediately visible effect; it depends on whether those two cells aready have values. If so, a value will
immediately appear in d6; if not, nothing happens until you put valuesinto b3 and c5.

If you erase the valuein acell, then any cells that depend on it are also erased. For example, if you erase the valuein
b3, then the valuein d6 will disappear also.

So far we've seen only one example of aformula; it asks for the sum of two cells. Formulas, like Scheme expressions,
can include invocations of functions with sub-formulas as the arguments.

(put (* d6 (+ b4 92)) a3)
The "atomic" formulas are constants (numbers or quoted words) and cell references (such asb4 in our example).

Not every Scheme function can be used in aformula. Most important, thereisno | anbda in the spreadsheet

language, so you can't invent your own functions. Also, since formulas can be based only on numbers, only the
numeric functions can be used.

Although we've presented the idea of putting aformulain acell separately from the idea of putting avalueinacell, a
valueisrealy just aparticularly simple formula. The program makes no distinction internally between these two cases.
(Since a constant formula doesn't depend on any other cells, its value is always displayed right away.)

We mentioned that a value can be put into an entire row or column at once. The same is true of formulasin general.

But this capability givesrise to aslight complication. The typical situation isthat each cell in the row or column
should be computed using the same algorithm, but based on different values. For example, in the spreadsheet at the
beginning of the chapter, every cell in column d isthe product of acell in column b and acell in column ¢, but not the

same cell for every row. If we used aformulalike

(put (* b2 c2) d)

Page 432
then every cell in column d would have the value 50. 80. Instead we want the equivalent of

(put (* b2 c2) d2)
(put (* b3 c3) d3)
(put (* b4 c4) d4)

and so on. The spreadsheet program meets this need by providing a notation for cells that indicates position relative to
the cell being computed, rather than by name. In our case we could say

(put (* (cell b) (cell ¢)) d)

Cel | cantake one or two arguments. In this example we've used the one-argument version. The argument must be

either aletter, to indicate a column, or anumber between 1 and 30, to indicate a row. Whichever dimension (row or
column) is not specified by the argument will be the same as that of the cell being computed. So, for example, if we
are computing avaluefor cell d5,then (cel | b) referstocell b5, but (cel | 12) would refer to cell d12.

The one-argument form of cel | isadequate for many situations, but not if you want a cell to depend on one that's

both in a different row and in a different column. For example, suppose you wanted to compute the change of a
number across various columns, like this:

a b c d e f
1 MONTH January February Mar ch Apri l May
2 PRICE 70. 00 74. 00 79. 00 76. 50 81. 00
3 CHANGE 4. 00 5. 00 -2.50 4.50

The value of cell d3, for example, isafunction of the values of cellsd2 and c2.

To create this spreadsheet, we said

(put (= (cell 2) (cell <1 2)) 3)

Thefirst appearance of cel | asksfor the value of the cell immediately above the one being calculated. (That is, it

asks for the cell in row 2 of the same column.) But the one-argument notation doesn't allow us to ask for the cell above
and to the | eft.

Page 433

In the two-argument version, the first argument determines the column and the second determines the row. Each
argument can take any of several forms. It can be aletter (for the column) or number (for the row), to indicate a
specific column or row. It can be an asterisk (*) to indicate the same column or row as the cell being calculated.

Finally, either argument can take the form <3 to indicate a cell three before the one being calculated (above or to the
left, depending on whether thisis the row or column argument) or >5 to indicate a cell five after this one (below or to
theright).

So any of the following formulas would have let us calculate the change in this example:
(put (- (cell 2) (cell <1 2)) 3)

(put (- (cell 2) (cell <1 <1)) 3)

(put (- (cell * 2) (cell <1 2)) 3)

(put (- (cell * <1) (cell <1 2)) 3)

(put (= (cell <0 <1) (cell <1 <1)) 3)

When aformulais put into every cell in aparticular row or column, it may not be immediately computable for all
those cells. The value for each cell will depend on the values of the cells to which the formularefers, and some of
those cells may not have values. (If a cell has a non-numeric value, that's the same as not having avalue at all for this
purpose.) New values are computed only for those cells for which the formulais computable. For example, cell b3 in

the monthly change display hasthe formula(— b2 aZ2), but the value of cell a2 isthelabel PRI CE, so no valueis
computed for b3.

Displaying Formula Values

Formulas can be used in two ways. We've seen that a formula can be associated with a cell, so that changes to one cell
can automatically recompute the value of another. Y ou can also type aformuladirectly to the spreadsheet prompt, in
which case the value of the formulawill be shown at the bottom of the screen. In aformula used in thisway, cell
references relative to "the cell being computed” refer instead to the selected cell.

L oading Spreadsheet Commandsfrom a File

Sometimes you use a series of several spreadsheet commands to set up some computation.

Page 434
For example, we had to use several commands such as

(put "Thingo" a3)
to set up the sample spreadsheet displays at the beginning of this chapter.

If you want to avoid retyping such a series of commands, you can put the commandsin afile using atext editor. Then,
in the spreadsheet program, use the command

(load "fil enane")

Thislooksjust like Scheme's| oad (on purpose), but it's not the same thing; the file that it loads must contain
spreadsheet commands, not Scheme expressions. It will list the commands from the file asit carries them out.

Application Programs and Abstraction

We've talked throughout this book about the importance of abstraction, the act of giving a name to some process or
structure. Writing an application program can be seen as the ultimate in abstraction. The user of the program is
encouraged to think in avocabulary that reflects the tasks for which the program is used, rather than the steps by which
the program does its work. Some of these names are explicitly used to control the program, either by typing commands
or by selecting named choices from a menu. Our spreadsheet program, for example, uses the name put for the task of
putting aformulainto acell. The algorithm used by the put command is quite complicated, but the user's picture of
the command is simple. Other names are not explicitly used to control the program; instead, they give the user a
metaphor with which to think about the work of the program. For example, in describing the operation of our
spreadsheet program, we've talked about rows, columns, cells, and formulas. Introducing this vocabulary in our
program documentation is just as much an abstraction as introducing new procedures in the program itself.

In the past we've used procedural abstraction to achieve generalization of an algorithm, moving from specific
instances to amore universal capability, especialy when we implemented the higher-order functions. If you've used
application programs, though, you've probably noticed that in a different sense the abstraction in the program loses
generality. For example, aformulain our spreadsheet program can operate only on datathat arein cells. The same
formula, expressed as a Scheme procedure, can get its arguments from anywhere: from reading afile, from the
keyboard, from a global variable, or from the result of invoking some other procedure.

Page 435

An application program doesn't have to be less general than a programming language. The best application programs
are extensible. Broadly speaking, this means that the programmer has made it possible for the user to add capabilities
to the program, or modify existing capabilities. This broad idea of extensibility can take many formsin practice. Some
kinds of extensibility are more flexible than others; some are easier to use than others. Here are afew examples:

Commercial spreadsheet programs have grown in extensibility. We mentioned that our spreadsheet program allows the
user to express a function only as aformula attached to a cell. Modern commercial programs allow the user to define a
procedure, similar in spirit to a Scheme procedure, that can then be used in formulas.

Our program, on the other hand, is extensible in a different sense: We provide the Scheme programs that implement
the spreadsheet in aform that users can read and modify. In the next chapter, in fact, you'll be asked to extend our
spreadsheet. Most commercial programs are provided in aform that computers can read, but people can't. The
provision of human-readable programsis an extremely flexible form of extensibility, but not necessarily an easy one,
since you have to know how to program to take advantage of it.

We have written much of this book using a home computer as aremote terminal to alarger computer at work. The
telecommunication program we're using, called Zterm, has dozens of options. We can set frivolous things like the
screen color and the sound used to attract our attention; we can set serious things like the file transfer protocol used to
"download" a chapter for printing at home. The program has a directory of telephone numbers for different computers
we use, and we can set the technical details of the connection separately for each number. It's very easy to customize
the program in al of these ways, because it uses a mouse-driven graphical interface. But the interface isinflexible. For
example, athough the screen can display thousands of colors, only eight are available in Zterm. More important, if we
think of an entirely new feature that would require a modification to the program, there's no way we can doit. This
program'’s extensibility is the opposite of that in our spreadsheet: It's very easy to use, but limited in flexibility.

We started by saying that the abstraction in an application program runs the risk of limiting the program's generality,
but that this risk can be countered by paying attention to the goal of extensibility. The ultimate form of extensibility is
to provide the full capabilities of a programming language to the user of the application program. This can be done by
inventing a special-purpose language for one particular application, such as the Hypertalk language that's used only in
the Hypercard application program. Alternatively, the application programmer can take advantage of an existing
general-purpose language

Page 436

by making it available within the program. Y ou'll see an example soon, in the database project, which the user controls
by typing expressions at a Scheme prompt. The EMACS text editor is a better-known example that includes aLisp
interpreter.

Exercises

For each of the following exercises, the information to hand in is the sequence of spreadsheet commands you used to
carry out the assignment. You will find thel oad command helpful in these exercises.

24.1 Set up a spreadsheet to keep track of the gradesin a course. Each column should be an assignment; each row
should be a student. The last column should add the grade points from the individual assignments. Y ou can make
predictions about your grades on future assignments and see what overall numeric grade each prediction gives you.

24.2 Make atable of tax and tip amounts for arange of possible costs at a restaurant. Column a should contain the pre-

tax amounts, starting at 50 cents and increasing by 50 cents per row. (Do this without entering each row separately!)
Column b should compute the tax, based on your state's tax rate. Column ¢ should compute the 15% tip. Column d

should add columns a through ¢ to get the total cost of the meal. Column e should contain the same total cost,
rounded up to the next whole dollar amount.

24.3 Make a spreadsheet containing the values from Pascal's triangle: Each element should be the sum of the number
immediately above it and the number immediately to itsleft, except that all of column a should have the value 1, and
all of row 1 should have the value 1.

Page 438

They did spreadsheets by hand in the old days.

Page 439

25—
I mplementing the Spreadsheet Program

Thisisabig program and you can't keep it al in your head at once. In this chapter, we'll discuss different parts of the
program separately. For example, while we're talking about the screen display procedures, we'll just take the rest of the
program for granted. We'll assume that we can ask for the value in a cell, and some other part of the program will
ensure that we can find it out.

Our division of the program includes these parts:
» The command processor, which reads user commands and oversees their execution.

* The specific commands: cell selection commands, | oad, and put .

» The formulatrandator, which turns aformulainto an expression by translating relative cell positions to specific cells.

 The dependency manager, which keeps track of which cells expressions depend on which other cells.

 The expression evaluator.

 The screen printer.

» The cell management procedures, which store and retrieve cell information for the rest of the program.

The diagram on the next page shows the interconnections among these seven parts of the program by showing what

information they have to provide for each other.

new formula and cell " Command N new cell or offser

ol expr I_"ﬁ‘\-illl

pyped as command

LN eSS0
e

value ol
Dependency

CX PSS]':H'J]'l'HHjHH

Manager Evaluator

cell CXPIRCSSI00, vitlipe,

anel dependencies

: Cell

Manager

cell dependencics

Processor

Cell Selecnon
Commands

CAOriee)

selecied cell

anil serecn

cell value SCreen

Printer

Page 440

(The arrows that aren't in the diagram convey as much information as the ones that are. For example, since thereis no
arrow from the evaluator to the printer, we know that when the spreadsheet program redisplays the screen, the values
printed are found directly in the data structure; no new computation of formulasis needed.)

Cdlls, Cell Names, and Cdll IDs

The spreadsheet program does its work by manipulating cells. In this section we introduce three abstract data types
having to do with cells. Before we jump into the spreadsheet procedures themselves, we must introduce these three

types, which are used throughout the program.

Each cell is adata structure that contains various pieces of information, including its value and other things that we'll
talk about later. Just as these cells are arranged in atwo-dimensional pattern on the screen, they are kept within the

program in atwo-dimensional data structure: a vector of vectors.

The elements of a vector are selected by number, using vect or —r ef . Therefore, if we're looking for a particular cell,

such as c5, what the program really wants to know is

Page 441

that this cell isin column 3, row 5." If the program refers to cells by name, then there will be several occasionsfor it to
split theword ¢5 into its pieces ¢ and 5, and to convert the letter ¢ into the number 3. These operations are fairly

slow. To avoid carrying them out repeatedly, the spreadsheet program identifies cells internally using aform that's
invisible to the person using the program, called a"cell ID."

Therefore, there are three different abstract data types in the program that have to do with cells: cell names, such as
c5; cell IDs; and cells themselves. We've chosen to represent cell 1Ds as three-element lists like this one:

(id 3 5)

but you won't see much evidence of that fact within the program because we've implemented selectors and
constructors for all of these three types. The representation includes the word i d because one facility that the program

needs is the ability to determine whether some datum isor isnot acell ID. The predicatecel | —i d? looksfor alist
whosefirst element isi d.

The selectorsfor cell IDsarei d—r owand i d—col ; both take acell ID as argument and return a number. The
constructor, make—i d, takes a column number (not a letter) and arow number as arguments.

When the program recognizes a cell name typed by the user, it callscel | —nanme—>i d to trandate the nameto an ID,
and only the ID is stored for later use.

(These application-specific ADTs are similar to the database of known values in the pattern matcher, as opposed to
more general-purpose ADTslike trees and sentences.)

The Command Pr ocessor

Here's the core of the command processor:

(define (comand-I oop)
(print—screen)
(let ((command—or—formula (read)))
(if (equal ? command—or—fornula 'exit)
"Bye!"
(begi n (process—conmmand conmand—or —f or nul a)
(command-I oop)))))

* The vector elements are numbered from zero, but we number rows and columns from one, subtracting onein the
selector that actually extracts information from the array of cells.
Page 442

This short program runs until the user types exi t , becauseit invokesitself asitslast step. During each invocation, it
prints the current spreadsheet display, usesr ead to read acommand, and carries out whatever actions that command

requires. Those actions probably change something in the spreadsheet data, so the next cycle hasto redisplay the
modified data before accepting another command.

Pri nt —scr een isalarge chunk of the program and will be discussed in its own section.

How does pr ocess—comrand work? It looks for the command name (aword such as put) initslist of known
commands. The commands are kept in an association list, like this:

((p...) (n...) (b...) (f ...) (select ...) (put ...) (load ...))

Each of these sublists contains two elements. the name and the procedure that carries out the command. We'll see
shortly how these procedures are invoked.

Looking for the command name is alittle tricky because in the spreadsheet language a command can be invoked either
by typing its name inside parentheses with arguments, as in Scheme, or by typing the name alone, without parentheses,
which Scheme wouldn't interpret as a request to invoke a procedure. For example, the argument to pr ocess—

command might bealist, suchas(f 3), orjust aword, such asf . A third caseisthat the argument might not be one

of these commands at all, but instead might be aformula, just like one that could be used to determine the valuein a
cell. Pr ocess—comrand must recognize these three cases:

(define (process—command command—or —f or mul a)
(cond ((and (list? command—or—formnul a)
(command? (car comrand—or—formula)))
(execut e—-command comrand—or —f or mul a))
((conmmand? comand-or —f or mul a)
(execut e—command (list command-or—fornmula 1)))
(el se (exhibit (ss—eval (pin-down command-—or—fornmul a
(selection—cell-id)))))))

The command? predicate tells whether its argument is one of the command namesin the list. Asyou can seg, if a
command name is used without parentheses, pr ocess—conmand pretends that it was given an argument of 1.

Execut e—command looks up the command name in the list of commands, then applies the associated procedure to
the arguments, if any:

Page 443

(define (execute—command command)
(apply (get—command (car comrand))
(cdr comrand)))

Theel se clausein pr ocess—comand, which handles the case of aformulatyped instead of a command, invokes

severa procedures that you haven't seen yet. We'll explain them when we get to the section of the program that
manipulates formulas. The only one that's used just for command processing isexhi bi t :

(define (exhibit val)
(show val)
(show "Type RETURN to redraw screen")
(read-line)
(read-line))

This prints avalue on the screen, gives the user a chance to read it, and then, when the user isready, returnsto
processing commands. (Thiswill entail redrawing the spreadsheet display; that's why we have to wait for the user to
hit return.) The reason that we invoker ead—I i ne twiceisthat the call to r eadfrom command-| oop readsthe

spreadsheet formula you typed but doesn't advance to the next line. Therefore, the first r ead—| i ne invocation
gobbles that empty line; the second call tor ead—I i ne reads the (probably empty) line that the user typed in response
to the prompting message.”

Cdll Selection Commands

Several commands have to do with selecting a cell. We'll show just one typical procedure, the one that carries out the p
(previous row) command:

(define (prev-row delta)
(let ((row (id-row (selection—cell-id))))
(if (< (- rowdelta) 1)
(error "Already at top.")
(set—sel ected—row (— row delta)))))

(define (set—sel ected—row new-row)
(select—id! (make-id (id-colum (selection—cell-id)) new-row)))

* Not every version of Scheme has this behavior. If you find that you have to hit r et ur n twice after exhibiting the
value of aformula, take out one of ther ead—| i ne invocations.

Page 444
(define (select—id! id)

(set—sel ection——cell-id! id)
(adj ust —scr een—boundari es))

Pr ev—r owmust ensure that the selected cell iswithin the legal boundaries. Since pr ev—r owonly moves upward, it
has to check only that we don't go beyond row 1. (Next —r owwill instead check that we don't go beyond row 30 in
the other direction.)

Adj ust —scr een—boundar i es checksfor the situation in which the newly selected cell, although within the

bounds of the spreadsheet, is not within the portion currently visible on the screen. In that case the visible portion is
shifted to include the selected cell. (The procedure is straightforward and uninteresting, so we're not showing it here.
Y ou can seeit in the complete listing of the spreadsheet program at the end of this chapter.)

Sel ecti on—cel | —i d isaprocedure that returnsthe cell 1D of the cell that's currently selected. Similarly, set —
sel ection—cel | —i d! setsthe current selection. There are comparable proceduresscr een—cor ner —cel | —i d
and set —scr een—cor ner —cel | —i d! to keep track of which cell should be in the upper left corner of the screen
display. Thereisavector named * speci al —cel | s* that holds these two cell IDs; you can see the details in the
complete program listing.

TheLoad Command

Loading commands from filesis easy. The command—| oop procedure, which carries out commands from the
keyboard, repeatedly reads a command with r ead and invokes pr ocess—conmand to carry it out. To load

commands from afile, we want to do exactly the same thing, except that we read from afile instead of from the
keyboard:

(define (spreadsheet-load fil enane)
(let ((port (open—input—file filenane)))
(sl —hel per port)
(cl ose—i nput —port port)))

(define (sl—hel per port)
(let ((command (read port)))
(if (eof-object? conmand)
" done
(begi n (show comand)
(process—command command)

(sl —hel per port)))))

Page 445
The Put Command

The put command takes two arguments, aformula and a place to put it. The second of these can specify either a
single cell or an entire row or column. (If there is no second argument, then asingle cell, namely the selected cell, is
implied.) Put invokes put —f or mul a—i n—cel | either once or several times, as needed. If only asinglecell is
involved, then put calls put —f or nul a—i n—cel | directly. If arow or column is specified, then put usesthe
auxiliary procedure put —al | —cel | s—i n—r owor put —al | —cel | s—i n—col asanintermediary.

(define (put fornula . where)
(cond ((null? where)

(put—formul a—i n—cell formula (selection-cell-id)))
((cell —name? (car where))
(put —formul a—i n—cell formula (cell—-nanme—>id (car where))))
((nunber? (car where))
(put-all —cell s—in-row forrmul a (car where)))
((letter? (car where))
(put-all —cel | s—in—col formula (letter—>nunber (car where))))
(el se (error "Put it where?"))))

The only tricky part of thisisthefirst line. Put can be invoked with either one or two arguments. Therefore, the dot
notation is used to alow a variable number of arguments; the parameter wher e will have asits value not the second

argument itself, but alist that either contains the second argument or is empty. Thus, if there is a second argument,
put referstoitas(car where).

(define (put—all—cells—in-row formula row)
(put—al | =hel per formula (lanmbda (col) (make-id col row)) 1 26))

(define (put—-all—cells—in-col formula col)
(put—-al | —hel per forrmula (lanbda (row) (make—id col row)) 1 30))

(define (put—all—-hel per formula id-maker this nmax)
(if (> this max)
" done
(begin (try—putting formula (id-maker this))
(put-al | =hel per formula id-maker (+ 1 this) max))))

(define (try—putting fornula id)
(if (or (null? (cell-value id)) (null? formnula))
(put —f or mul a—i n—cel | fornula id)
" do—not hi ng))

Page 446

put —al | —cel | s—i n—r owand put —al | —cel | s—i n—col invokeput —al | —hel per, which repeatedly puts
theformulainto acell.” put —al | —hel per isatypical sequential recursion: Do something for this element, and

recur for the remaining elements. The differenceisthat "this element” meansacell ID that combines one constant
index with one index that varies with each recursive call. How are those two indices combined? What differs between
filling arow and filling a column is the function used to compute each cell ID.

The substitution model explains how the |l anbda expressions used as argumentsto put —al | —hel per implement
this idea. Suppose we are putting aformulainto every cell inrow 4. Then put —al | —cel | s—i n—r owwill be
invoked with the value 4 substituted for the parameter r ow. After this substitution, the body is

(put—al | —hel per formula (lanmbda (col) (make-id col 4)) 1 26)

Thel anbda expression creates a procedure that takes a column number as argument and returns acell ID for the cell
in row 4 and that column. Thisisjust what put —al | —hel per needs. It invokes the procedure with the varying
column number as its argument to get the proper cell ID.

Put —al | —hel per doesn't directly invoke put —f or nul a—i n—cel | . Thereason isthat if aparticular cell already
has a value, then the new formulaisn't used for that

* We originally wrote two separate helper procedures for the two cases, like this:
(define (put-all—cells—in-row formnula row)
(row-hel per formula 1 26 row))

(define (row-hel per formula this—col max—col row)
(if (> this—col max—col)
' done
(begin (try—putting fornula (make—id this—col row))
(row-hel per formula (+ this—col 1) max—col row))))

(define (put—-all—cells—in-col formula col)
(col um-hel per fornmula 1 30 col))

(define (col um-hel per formula this-row max-row col)
(if (> this—row max—row)
" done
(begin (try—putting fornula (make—id col this-row))
(col um-hel per formula (+ this-row 1) max-row col))))

but the procedures were so similar that we decided to generalize the pattern.

Page 447

particular cell, unless the formulais empty. That is, you can erase an entire row or column at once, but a non-empty
formula affects only cells that were empty before thiscommand. Tr y—put t i ng decides whether or not to put the

formulainto each possible cell. (Int r y—put t i ng, the third argument toi f could be anything; we're interested only
in what happensif the condition is true.)

All that's left is, finally, to put the formulainto acell:

(define (put—fornula—in-cell fornula id)
(put —expr (pin—down formula id) id))

The two new procedures seen here, pi n—down and put —expr , are both large sections of the program and are
described in the next two sections of this chapter.

The Formula Trandgator

Suppose the user has said

(put (* (cell b) (cell c¢)) d)

The put procedure puts this formulainto each cell of column d by repeatedly calling put —f or nul a—i n—cel | ; as
an example, let's concentrate on cell d4.

The purpose of the formulais that later we're going to use it to compute avalue for d4. For that purpose, we will need
to multiply two particular numbers together: the onesin cellsb4 and c4. Although the same formula appliesto cell
d5, the particular numbers multiplied together will be found in different places. So instead of storing the same general
formulain every d cell, what we'd really like to store in d4 is something that refers specifically to b4 and c4.

WEe'll use the term "expression” for aformula whose cell references have been replaced by specific cell IDs. We started
with the idea that we wanted to put aformulainto a cell; we've refined that idea so that we now want to put an
expression into the cell. This goal has two parts: We must trandlate the formula (as given to us by the user in the put

command) to an expression, and we must store that expression in the cell data structure. These two subtasks are
handled by pi n—down, discussed in this section, and by put —expr , discussed in the next section. Pi n—down is

entirely functional; the only modification to the spreadsheet program's state in this process is carried out by put —
expr.

Page 448

WEel'll refer to the process of trandating aformulato an expression as "pinning down" the formula; the procedure pi n—
down carries out this process. It's called "pinning down" because we start with ageneral formula and end up with a
specific expression. Pi n—down takes two arguments. The first is, of course, aformula; the second isthe ID of the cell
that will be used as the reference point for relative cell positions. In the context of the put command, the reference
point isthe cell into which we'll put the expression. But pi n—down doesn't think about putting anything anywhere; its

jobisto trandate a formula (containing relative cell locations) into an expression (containing only absolute cell 1Ds).”
Pi n—down needs areference point as away to understand the notation <3, which means "three cells before the

reference point.”

Let's go back to the specific example. Put —f or nul a—i n—cel | will invoke
(pin—down ' (* (cell b) (cell c)) 'd4)

and pi n—down will return the expression

(* (id 2 4) (id 3 4))

The overall structure of this problem istree recursive. That's because aformula can be arbitrarily complicated, with
sublists of sublists, just like a Scheme expression:

(put (+ (* (cell b) (cell ¢)) (- (cell 2< 3>) 6)) f)
Here's pi n—down:

(define (pin-down formula id)
(cond ((cell—-name? formula) (cell—-name—>id formnula))
((word? forrula) fornula)
((nul'l? forrmula) '())
((equal ? (car forrmula) 'cell)
(pi n—down—cell (cdr fornula) id))
(el se (bound-check
(map (I anbda (subformula) (pin-down subformula id))
formula)))))

The base cases of the tree recursion are specific cell names, such as ¢ 3; other words, such

*Infact, pr ocess—comand aso invokes pi n—down when the user types aformulain place of acommand. In that
situation, the result doesn't go into acell but isimmediately evaluated and printed.

Page 449

as numbers and procedure names, which are unaffected by pi n—down; null formulas, which indicate that the user is
erasing the contents of a cell; and sublists that start with theword cel | . Thefirst three of these are trivial; the fourth,

which we will describe shortly, isthe important case. If aformulais not one of these four base cases, then it'sa
compound expression. In that case, we have to pin down all of the subexpressionsindividually. (We basically
map pi n—down over the formula. That's what makes this process tree recursive.)

One complication is that the pinned-down formula might refer to nonexistent cells. For example, saying

(put (+ (cell 2< 3<) 1) d)

refersto cellsin column b (two to the left of d) three rows above the current row. That works for acell such asd7,
referring to cell b4, but not for d2, which has no row that's three above it. (Thereisno row —1.) So our program must
refrain from pinning down this formulafor cellsdl1, d2, and d3. Pi n—down will instead return the word out —of —
bounds to signal this situation.

The case of anonexistent cell isdiscovered by pi n—down—cel | at the base of atreerecursion. The out —of —
bounds signal must be returned not only by the base case but by the initial invocation of pi n—down. That's why
bound-check isused to ensure that if any part of aformulais out of bounds, the entire formulawill aso be
considered out of bounds:

(define (bound-check form
(i f (nmenber ' out-of —bounds form
" out —of —bounds

form)

When aformulacontainsa(cel | . . .) sublist, the procedure pi n—down—cel | isinvoked to trandate that
notation into acell ID.

The argumentsto pi n—down—cel | arealist of the "arguments® of thecel | sublist and the reference point's cell

ID. (Theword "arguments" isin quotation marks because the word cel | doesn't represent a Scheme procedure, even
though the parenthesized notation looks like an invocation. In away, the special treatment of cel | by pi n—down is
analogous to the treatment of special forms, such ascond, by the Scheme evaluator.)

There can be one or two of these "arguments” to cel | . A single argument is either a number, indicating arow, or a
letter, indicating a column. Two arguments specify both a column and arow, in that order:

Page 450

(define (pin-down—cell args reference—id)
(cond ((null? args)
(error "Bad cell specification: (cell)"))
((null? (cdr args))
(cond ((nunber? (car args)) ; they chose a row
(make—-id (i d—colum reference-id) (car args)))
((letter? (car args)) ; they chose a colum
(rmake—id (letter—>nunber (car args))
(id-row reference—id)))
(el se (error "Bad cell specification:"
(cons 'cell args)))))
(el se
(let ((col (pin-down—col (car args) (id—columm reference-id)))
(row (pi n—-down—-row (cadr args) (id-row reference-id))))
(if (and (>= col 1) (<= col 26) (>=row 1) (<= row 30))
(make—id col row)

' out —of —bounds)))))

In the two-argument case, the job of pi n—down—col and pi n—down—r owisto understand notations like <3 for
relative rows and columns:

(define (pin—down—col new ol d)
(cond ((equal ? new '*) ol d)
((equal ? (first new) '>) (+ old (bf new)))
((equal ? (first new) '<) (- old (bf new)))
((letter? new) (letter—>nunber new))
(el se (error "Wat colum?"))))

(define (pi n—down—row new ol d)
(cond ((nunber? new) new)
((equal ? new '*) ol d)
((equal ? (first new) '>) (+ old (bf new)))
((equal ? (first new) '<) (- old (bf new)))
(el se (error "What row?"))))

The Dependency M anager

The remaining part of the put command isput —expr , which actually stores the translated expression in the cell data

structure. Y ou might imagine that putting an expression into a cell would reguire nothing more than invoking a
mutator, like this:

(define (put—expr expr cell) ;; wWrong
(set—cel |l —expr! cell expr))
Page 451

The trouble is that adding an expression to a cell might have many consequences beyond the mutation itself. For
example, suppose we say

(put (+ a3 b2) c4)

If cellsa3 and b2 already have values, we can't just put the formulainto c4; we must also compute its value and put
that valueinto c4.

Also, once c4 has avalue, that could trigger the computation of some other cell'svalue. If we've previoudy said
(put (+ a3 c4) bb)
then we're now able to compute avalue for b5 because both of the cells that it depends on have values.

All thisimplies that what's inside a cell is more than just an expression, or even an expression and avalue. Each cell
needs to know which other cellsit depends on for its value, and also which other cells depend onit.

Our program represents each cell as afour-element vector. Each cell includes avalue, an expression, alist of parents
(the cellsthat it depends on), and alist of children (the cells that depend on it). The latter two lists contain cell IDs. So
our example cell c4 might look like this:

#(12
(+ (id13) (id 2 2))
((id13) (id2 2)
((id 2 5)))

In asimpler case, suppose we put avalue into a cell that nothing depends on, by saying, for example,

(put 6 al)

Then cell al would contain
#(6 6 () ())
(Remember that avalueisjust avery smple formula.)

There are selectorscel | —val ue and so on that take acell ID as argument, and mutatorsset —cel | —val ue! and
so on that take a cell ID and a new value as arguments.

Page 452

There's also the constructor make—cel | , but it's called only at the beginning of the program, when the 780 cellsin
the spreadsheet are created at once.

When acell is given anew expression, several things change:

» The new expression becomes the cell's expression, of course.

* The cells mentioned in the expression become the parents of this cell.
* This cell becomes a child of the cells mentioned in the expression.

« If al the parents have values, the value of this cell is computed.

Some of these changes are simple, but others are complicated. For example, it's not enough to tell the cell's new
parents that the cell is now their child (the third task). First we have to tell the cell's old parents that this cell isn't their
child any more. That has to be done before we forget the cell's old parents.

Here is an example. (In the following tables, we represent the data structures asif cells were represented by their
names, even though really their IDs are used. We've done this to make the example more readable.) Suppose that we
have five cells set up like this:

cell expression value parents children
al 20 20 O (a2)

bl 5 5 O (a2 b2)
cl 8 8 () ()

a2 (+ al bl) 25 (al bl) (b2)

b2 (+ a2 bl) 30 (a2 b1) ()

If we now enter the spreadsheet command

(put (+ bl cl1l) a2)

the program must first remove a2 from the children of its old parents (changes are shown in boldface):

cell expression value parents children
al 20 20))

bl 5 5 O (b2)

cl 8 8 0) ()

a2 (+ al bl) 25 (al bl) (b2)

b2 (+ a2 bl) 30 (a2 b1) ()

Then the program can change the expression and compute a new list of parents:

Page 453

cell expression value parents children
al 20 20 O O

bl 5 5 O (b2)

cl 8 8 () ()

a2 (+ bl cl) 25 (bl cl) (b2)

b2 (+ a2 bl) 30 (a2 b1) ()

Next it can tell the new parentsto add a2 as a child, and can compute a2's new value:

cell expression value parents children
1 20 20 O @)

bl 5 5 O (a2 b2)
cl 8 8 () (a2)

a2 (+ bl c1l) 13 (bl c1) (b2)

b2 (+ a2 bl) 30 (a2 b1) ()

Changing a2's value affects the values of all of its children, and also its grandchildren and so on (except that in this
example there are no grandchildren):

cell expression value parents children
al 20 20 O @)

bl 5 5 O (a2 b2)
cl 8 8 () (a2)

a2 (+ bl c1l) 13 (bl cl) (b2)

b2 (+ a2 b1l) 18 (a2 bl) ()

Now that we've considered an example, here is the main procedure that oversees all these tasks:

(define (put—expr expr—or—out—of—-bounds id)
(let ((expr (if (equal? expr-or—-out—of—-bounds ' out-of —bounds)
")
expr —or —out —of —bounds)))
(for—each (I anbda (ol d—parent)
(set—cel | —chi | dren
ol d—par ent
(renmove id (cell—children ol d-parent))))
(cell —parents id))
(set—cel |l —expr! id expr)
(set—cell —parents! id (renmdup (extract—ids expr)))
(for—each (Il anbda (new-parent)
(set—cel | —chi | dren
new-par ent
(cons id (cell—children newparent))))
(cell —parents id))

(figure id)))

Page 454

Remember that put —expr 'sfirst argument is the return value from pi n—down, so it might be the word out —of —
bounds instead of an expression. In this case, we store an empty list as the expression, indicating that thereis no
active expression for this cell.

Within the body of thel et there are five Scheme expressions, each of which carries out one of the tasks we've listed.

Thefirst expression tells the cell's former parents that the cell is no longer their child. The second expression stores the
expression in the cell.

The third Scheme expression invokesext r act —i ds to find all the cell idsused in expr , removes any duplicates,
and establishes those identified cells as the argument cell's parents. (Y ou wroter endup in Exercise 14.3.) For
example, if theexpr is

(+ (id 42 (* (id13) (id13)))
then ext r act —i ds will return the list
((id42) (id13) (id13))

and r endup of that will be

((id 4 2) (id 1 3))

The fourth expressioninthe | et tells each of the new parents to consider the argument cell asits child. The fifth

expression may or may not compute a new value for this cell. (Aswe'll see in amoment, that processis alittle
complicated.)

Two of these steps require closer examination. Here is the procedure used in the third step:

(define (extract—ids expr)
(cond ((id? expr) (list expr))
((word? expr) '())

((null? expr) "())
(el se (append (extract—ids (car expr))
(extract—ids (cdr expr))))))

Thisisatreerecursion. Thefirst three cond clauses are base cases; cell IDs are included in the returned list, while
other words are ignored. For compound expressions, we use the trick of making recursive callson thecar and cdr of
the list. We combine the results with append because ext r act —i ds must return aflat list of cell IDs, not a cheap
tree.

Thefifth stepin put —expr iscomplicated because, as we saw in the example, changing the value of one cell may
require us to recompute the value of other cells:

Page 455

(define (figure id)
(cond ((null? (cell—expr id)) (setvalue id '"()))
((all —eval uat ed? (cell—parents id))
(setvalue id (ss—eval (cell—-expr id))))
(el se (setvalue id "()))))

(define (all—-eval uated? ids)
(cond ((null? ids) #t)
((not (number? (cell—-value (car ids)))) #f)
(el se (all—-evaluated? (cdr ids)))))

(define (setvalue id val ue)
(let ((old (cell-value id)))
(set—cell —val ue! id val ue)
(if (not (equal ? old value))
(for—each figure (cell—children id))
" do—not hi ng)))

Fi gur e isinvoked for the cell whose expression we've just changed. If there is no expression (that is, if we've
changed it to an empty expression or to an out-of-bounds one), then f i gur e will remove any old value that might be
left over from a previous expression. If thereis an expression, then f i gur e will compute and save a new value, but

only if al of this cell's parents have numeric values. If any parent doesn't have avalue, or if its value is a non-numeric
label, thenf i gur e hasto remove the value from this cell.

Set val ue actually putsthe new valuein the cell. It first looks up the old value. If the new and old values are
different, then al of the children of this cell must bere-f i gur ed. This, too, is atree recursion because there might be
severa children, and each of them might have severa children.

We haven't yet explained how ss—eval actually computes the value from the expression. That's the subject of the
next major part of the program.

The Expression Evaluator

Fi gur e invokesss—eval to convert acell'sexpression into its value. Also, we've seen earlier that pr ocess—
command usesss—eval to evauate an expression that the user types in response to a spreadsheet prompt. (That is,
ss—eval isinvoked if what the user typesisn't one of the special commands recognized by pr ocess—comand
itself.)

Thess inss—eval standsfor "spreadsheet”; it distinguishes this procedure from

Page 456

eval , aprimitive procedure that evaluates Scheme expressions. Asit turns out, ss—eval 'salgorithmissimilar in
many waysto that of Scheme'seval , athough ss—eval ismuch simpler in other ways. The experience you aready
have with Scheme's expression evaluation will help you understand the spreadshest's.

Scheme's evaluator takes an expression and computes the corresponding value. The expressions look quite different
from the values, but there are well-defined rules (the ones we studied in Chapter 3) to translate expressions to values.
In the spreadsheet language, as in Scheme, an expression can be one of three things:

* aconstant expression (a number or quoted word), whose value is itself.

» avariable (acell ID, in the case of the spreadsheet language).

* aprocedure invocation enclosed in parentheses.
The spreadsheet language is simpler than Scheme for three main reasons.

» Thereare no special formssuch asi f or def i ne.”

» Theonly variables, the cell IDs, are global; in Scheme, much of the complexity of evaluation has to do with variables
that are local to procedures (i.e., formal parameters).

» The only procedures are primitives, so there is no need to evaluate procedure bodies.

The structure of ss—eval isacond whose clauses handle the three types of expressions. Constants and variables are
easy; invocations require recursively evaluating the arguments before the procedure can be invoked.

(define (ss—eval expr)
(cond ((nunber? expr) expr)
((quot ed? expr) (quoted-val ue expr))
((id? expr) (cell-val ue expr))
((invocation? expr)
(apply (get—function (car expr))
(rmap ss—eval (cdr expr))))
(else (error "lInvalid expression:" expr))))

* You can think of thecel | notation in generalized formulas as akind of special form, but pi n—down has turned
those into specific cell 1Ds before the formulais eligible for evaluation as an expression.

Page 457

The value of a number isitself; the value of a quoted word is the word without the quotation mark. (Actually, by the
timess—eval seesaquoted word, Scheme hastrandlated the' abc notationinto (quot e abc) and that's what we

deal with here. Also, double-quoted strings ook different to the program from single-quoted words.)

(define (quoted? expr)
(or (string? expr)
(and (list? expr) (equal? (car expr) 'quote))))

(define (quoted-val ue expr)
(if (string? expr)
expr
(cadr expr)))

The third clause checks for a cell ID; the value of such an expression is the value stored in the corresponding cell.

If an expression is none of those things, it had better be afunction invocation, that is, alist. In that case, ss—eval has

to do three things: It looks up the function name in atable (as we did earlier for spreadsheet commands); it recursively
evaluates all the argument subexpressions; and then it can invoke appl y to apply the procedure to the argument

values.

Get —f unct i on looks up afunction name in the name-to-function association list and returns the corresponding
Scheme procedure. Thus, only the functionsincluded in the list can be used in spreadsheet formulas.

The entire expression evaluator, including ss—eval and its helper procedures, is functional. Like the formula
trandator, it doesn't change the state of the spreadsheet.

The Screen Printer

The procedures that print the spreadsheet on the screen are straightforward but full of details. Much of the work here
goes into those details.

Aswe mentioned earlier, a better spreadsheet program wouldn't redraw the entire screen for each command but would
change only the parts of the screen that were affected by the previous command. However, Scheme does not include a
standard way to control the positioning of text on the screen, so we're stuck with this approach.

Page 458
(define (print—screen)

(new i ne)
(new i ne)
(new i ne)
(show-col um-I abel s (i d—colum (screen—corner—cell—-id)))
(show-rows 20

(i d—col um (screen—corner—cell-id))

(i d—row (screen—corner—cell—-id)))
(di spl ay—cel | —nanme (sel ection—cell—-id)))
(show (cell —val ue (selection——cell-id)))
(di spl ay—expression (cell—expr (selection—cell-id)))
(new i ne)

(display "?? "))

Scr een—cor ner —cel | —i d returnsthe ID of the cell that should be shown in the top left corner of the display;
sel ecti on—cel | —i d returnsthe ID of the selected cell.

Show-col umm—I abel s printsthefirst row of the display, the one with the column letters. Show-r ows isa
sequential recursion that prints the actual rows of the spreadsheet, starting with the row number of thescr een—
cor ner cell and continuing for 20 rows. (There are 30 rows in the entire spreadsheet, but they don't al fit on the

screen at once.) Therest of the procedure displays the value and expression of the selected cell at the bottom of the
screen and prompts for the next command.

Why isn't di spl ay—expr essi on just di spl ay? Remember that the spreadsheet stores expressionsin aform like
(+ (id 2 5) (id 6 3))
but the user wants to see

(+ b5 f3)

Di spl ay—expr essi on isyet another tree recursion over expressions. Just as pi n—down translates cell namesinto
cell IDs, di spl ay—expr essi on trandates |Ds back into names. (But di spl ay—expr essi on printsasit goes
along, instead of reconstructing and returning alist.) The definition of di spl ay—expr essi on, along with the
remaining details of printing, can be seen in the full program listing at the end of this chapter.

Just to give the flavor of those details, here is the part that displays the rectangular array of cell values. Show-r ows is
a sequentia recursion in which each invocation prints

Page 459

an entire row. It does so by invoking show-r ow, another sequential recursion, in which each invocation prints a
single cell value.

(define (showrows to—go col row)
(cond ((= to—go 0) 'done)

(el se
(display (align row 2 0))
(display " ")
(show-row 6 col row)
(new i ne)
(show-rows (— to—-go 1) col (+ row 1)))))

(define (showrow to—go col row)
(cond ((= to—go 0) 'done)

(el se
(display (if (selected—indices? col row ">" " "))
(di spl ay—val ue (cell—-val ue—from-i ndi ces col row))
(display (if (selected-indices? col row "<" " "))

(show-row (- to—go 1) (+ 1 col) row))))
(define (sel ected—indices? col row
(and (= col (id-colum (selection-cell-id)))
(= row (id-row (selection—cell-id)))))

Why didn't we write show-r owin the following way?

(define (showrow to—go col row) ;; alternate version
(cond ((= to—go 0) 'done)
(el se
(let ((id (make-id col row)))
(display (if (equal? id (selection——cell-id)) ">" " "))
(di spl ay—val ue (cell —-value id))
(display (if (equal? id (selection-cell-id)) "<" " "))

(show-row (- to—go 1) (+ 1 col) row)))))

That would have worked fine and would have been alittle clearer. In fact, we did write show-r owthis way
originally. But it's alittle time-consuming to construct an ID, and show-r owis called 120 times whenever pri nt —
scr een isused. Since printing the screen was annoyingly slow, we sped things up as much as we could, even at the
cost of thiskludge.

Page 460

The Cell Manager

The program keeps information about the current status of the spreadsheet cellsin avector called *t he—
spreadsheet —array*. It contains all of the 780 cells that make up the spreadsheet (30 rows of 26 columns). It's
not a vector of length 780; rather, it's a vector of length 30, each of whose elementsisitself avector of length 26. In
other words, each element of the spreadsheet array is avector representing one row of the spreadsheet. (Each element
of those vectorsis one cell, which, as you recall, is represented as a vector of length four. So the spreadsheet array isa
vector of vectors of vectors!)

The selectors for the parts of a cell take the cell's ID as argument and return one of the four elements of the cell vector.
Each must therefore be implemented as two steps: We must find the cell vector, given its ID; and we must then select
an element from the cell vector. The first step is handled by the selector cel | —st r uct ur e that takesacell ID as

argument:

(define (cell—-structure id)
(gl obal —array-I ookup (i d—col umm i d)
(id-rowid)))

(define (gl obal —array—| ookup col row)
(if (and (<= row 30) (<= col 26))

(vector-ref (vector-ref *the-spreadsheet-array* (— row 1))

(= col 1))
(error "Qut of bounds")))

A obal —ar r ay—I ookup makes sure the desired cell exists. It also compensates for the fact that Scheme vectors
begin with element number zero, while our spreadsheet begins with row and column number one. Two invocations of

vect or —r ef areneeded, oneto select an entire row and the next to select a cell within that row.

Selectors and mutators for the parts of acell arewrittenusingcel | —st ruct ur e:

(define (cell—-value id)
(vector—ref (cell-structure id) 0))

(define (set—cell—-value! id val)
(vector—set! (cell-structure id) 0 val))

(define (cell—-expr id)
(vector-ref (cell-structure id) 1))

(define (set—cell—-expr! id val)
(vector—set! (cell—-structure id) 1 val))

(define (cell—-parents id)
(vector-ref (cell-structure id) 2))

(define (set—cell—-parents! id val)
(vector—set! (cell—-structure id) 2 val))

(define (cell—-children id)
(vector-ref (cell-structure id) 3))

(define (set—cell—children! id val)
(vector—set! (cell—-structure id) 3 val))

The constructor is

(define (make—cell)

(vector *() () "() "0)))

Page 461

The spreadsheet program begins by invoking i ni t —ar r ay to set up thislarge array. (Also, it setstheinitial values of

the selected cell and the screen corner.)

(define (spreadsheet)
(i nit-array)
(set—sel ection——cell—-id! (make-id 1 1))
(set —screen—corner—cell—id!' (make-id 1 1))
(command-I oop))

(define *the-spreadsheet—-array* (make-vector 30))

(define (init-array)

(fill-array—w th-rows 29))
(define (fill-array—-w th-rows n)
(if (<no0
" done
(begin (vector—set! *the-spreadsheet-array* n (nmake—vector 26))
(fill-rowwth-cells

(vector-ref *the-spreadsheet-array* n) 25)
(fill-array—-with—-rows (= n 1)))))

Page 462
(define (fill-roww th—cells vec n)
(if (<nO0
" done
(begin (vector—set! vec n (make—cell))
(fill-roww th—cells vec (- n 1)))))

That's the end of the project, apart from some straightforward procedures such as| et t er —>nunber that you can
look up in the complete listing if you're interested.

Complete Program Listing

(define (spreadsheet)
(i nit-array)
(set—sel ection——cell —-id! (make-id 1 1))
(set —screen—corner—cell—id!' (make-id 1 1))
(command-I oop))

(define (comand-I oop)
(print—screen)
(let ((command-or—formula (read)))
(if (equal ? command—or—fornula 'exit)
"Bye!"
(begi n (process—conmmand conmand—or —f or nul a)
(command-I oop)))))

(define (process—command command—or —f or mul a)
(cond ((and (list? command—or—formnul a)
(command? (car comrand—or—formula)))
(execut e—command comrand—or —f or mul a))
((conmmand? comand-or —f or mul a)
(execut e—command (list command-or—forrmula 1)))
(el se (exhibit (ss—eval (pin-down command-—or—fornul a
(selection——cell—-id)))))))

(define (execute—comand comand)
(apply (get—command (car comrand))
(cdr command)))

(define (exhibit val)

(show val)

(show "Type RETURN to redraw screen")
(read-line)

(read-line))

;. Commands
Cell selection commands: F, B, N, P, and SELECT

(define (prev-row delta)
(let ((row (id-row (selection—cell-id))))
(if (< (—rowdelta) 1)
(error "Already at top.")
(set—sel ected—row (— row delta)))))

(define (next-row delta)
(let ((row (id-row (selection—cell-id))))
(if (> (+ row delta) 30)
(error "Already at bottom™")
(set—sel ected—row (+ row delta)))))

(define (prev—col delta)
(let ((col (id-colum (selection—cell-id))))
(if (< (- col delta) 1)
(error "Already at left.")
(set—sel ect ed—col umm! (- col delta)))))

(define (next—col delta)
(let ((col (id-colum (selection——cell-id))))
(if (> (+ col delta) 26)
(error "Already at right.")
(set—sel ect ed—col umm! (+ col delta)))))

(define (set-sel ected—row new-row)

(select—id! (make-id (id-colum (selection—cell-id)) new-row)))

(define (set—sel ected—col um! new-col umm)

(sel ect—id! (make—i d new-colum (id-row (selection—cell-id)))))

(define (select—id! id)
(set—sel ection——cell =i d! id)
(adj ust —scr een—boundari es))

(define (select cell—-nane)
(select—-id! (cell—-nane—>id cell—-nane)))

Page 463

(define (adjust-screen-boundari es)
(let ((row (id-row (selection-cell-id)))

(col (id—colum (selection—cell-id))))

(if (<row (id-row (screen—corner—cell—-id)))
(set—corner—row row)
" do—not hi ng)

(if (>=row (+ (id-row (screen—corner—cell-id)) 20))
(set—corner-row (- row 19))
' do—not hi ng)

(if (< col (id-colum (screen—corner—cell-id)))
(set—corner—col um! col)
" do—not hi ng)

(if (>= col (+ (id-colum (screen—corner—cell-id)) 6))
(set—corner—col umm! (- col 5))
" do—not hi ng)))

(define (set—corner—row new-row)
(set —screen—cor ner—cel | —i d!
(make—i d (id-colum (screen—corner—cell-id)) newrow)))

(define (set—corner—col um! new-col umm)

(set —screen—cor ner—cel | —i d!
(make—i d new-col um (id-row (screen—corner—cell-id)))))
7, LOAD

(define (spreadsheet—l oad fil enane)
(let ((port (open—input—file filenane)))
(sl —hel per port)
(cl ose—i nput —port port)))

(define (sl-hel per port)
(let ((command (read port)))
(i f (eof —object? command)
" done
(begi n (show comand)
(process—command comand)

(sl —hel per port)))))

;o PUT

(define (put fornula . where)
(cond ((null? where)
(put —formul a—i n—cell formula (selection—cell-id)))

((cell —name? (car where))
(put —formul a—i n—cell formula (cell-name—>id (car where))))
((nunber? (car where))
(put-all —cell s—in-row formul a (car where)))
((letter? (car where))
(put—-all —cel I s—in—col formula (letter—>nunber (car where))))
(else (error "Put it where?"))))

(define (put—-all—cells—in-row formla row)
(put—al | —hel per forrmula (lanmbda (col) (rmake—id col row)) 1 26))

(define (put—-all—cells—in-col formula col)

Page 464

Page 465

(put—al | —hel per forrmula (lanmbda (row) (make—id col row)) 1 30))

(define (put—all—-helper forrmula id-maker this nmax)
(if (> this max)
" done
(begin (try—putting formula (id-nmaker this))
(put—al | —hel per formula id-maker (+ 1 this) nmax))))

(define (try—putting fornula id)
(if (or (null? (cell-value id)) (null? fornula))
(put —formul a—i n—cell formnula id)
" do—not hi ng))

(define (put—fornula—in-cell fornula id)
(put —expr (pin—down formula id) id))

;.. The Association List of Commands

(define (comand? nane)
(assoc nane *the—commands*))

(define (get—command nane)
(let ((result (assoc nane *the—commands*)))
(if (not result)
#f
(cadr result))))

(define *t he—commands*
(list (list '"p prev-row)

(l'ist '"n next-row)
(list "b prev—col)
(list "f next-col)
(list '"select select)
(l'ist 'put put)
(list 'load spreadsheet—I| oad)))

5, Pinning Down Fornulas |Into Expressions

(define (pin-down fornula id)
(cond ((cell—-nanme? formula) (cell-name—>id formnula))
((word? formula) fornula)
((null? formula) '"())
((equal ? (car forrmula) 'cell)
(pi n—down—-cell (cdr formula) id))
(el se (bound-check
(map (Il anmbda (subformula) (pin—down subformula id))
formula)))))

(define (bound-check form
(i f (menber 'out-of-bounds form
" out —of —bounds

form)

(define (pin-down—cell args reference-id)
(cond ((null? args)
(error "Bad cell specification: (cell)"))
((null? (cdr args))
(cond ((number? (car args)) ; they chose a row
(make—-id (id—colum reference-id) (car args)))

Page 466

((letter? (car args)) ; they chose a colum
(make-id (|l etter—>nunber (car args))
(id-row reference-id)))
(el se (error "Bad cell specification:"
(cons 'cell args)))))
(el se
(let ((col (pin-down—col (car args) (id-colum reference-id)))
(row (pi n—down—row (cadr args) (id-row reference-id))))
(if (and (>= col 1) (<= col 26) (>=row 1) (<= row 30))
(make—i d col row)
' out —of —bounds)))))

Page 467

(define (pin—down—col new ol d)
(cond ((equal ? new '*) old)
((equal ? (first new) '>) (+ old (bf new)))
((equal ? (first new) '<) (- old (bf new)))
((letter? new) (letter—>nunber new))
(el se (error "Wat colum?"))))

(define (pin—down—row new ol d)
(cond ((nunber? new) new)
((equal ? new '*) ol d)
((equal ? (first new) '>) (+ old (bf new)))
((equal ? (first new '<) (- old (bf new)))
(el se (error "Wat row?"))))

Dependency Managenent

(define (put—expr expr—or—out—-of—-bounds id)
(let ((expr (if (equal? expr-or-out—of—-bounds ' out-of -bounds)
")
expr —or —out —of —bounds)))
(for—each (Il anbda (ol d—parent)
(set—cel |l —chi | dren
ol d—par ent
(renmove id (cell—children ol d-parent))))
(cell—parents id))
(set—cel |l —expr! id expr)
(set—cell —parents! id (rendup (extract—ids expr)))
(for—each (Il anbda (new-parent)
(set—cel |l —chi | dren
new-par ent
(cons id (cell—children newparent))))
(cell—parents id))

(figure id)))

(define (extract—ids expr)
(cond ((id? expr) (list expr))
((word? expr) "())
((nul'1? expr) "())
(el se (append (extract—ids (car expr))
(extract—ids (cdr expr))))))

(define (figure id)
(cond ((null? (cell—-expr id)) (setvalue id '"()))
((al I —eval uat ed? (cell—-parents id))
(setvalue id (ss—eval (cell—expr id))))
(el se (setvalue id "()))))

Page 468

(define (all—-eval uated? ids)
(cond ((null? ids) #t)
((not (number? (cell—-value (car ids)))) #f)
(el se (all—-evaluated? (cdr ids)))))

(define (setvalue id val ue)
(let ((old (cell—-value id)))
(set—cell —val ue! id val ue)
(if (not (equal ? old value))
(for—each figure (cell—children id))
"do—-not hing)))

., Evaluating Expressions

(define (ss—eval expr)
(cond ((nunber? expr) expr)
((quot ed? expr) (quoted-val ue expr))
((id? expr) (cell-val ue expr))
((invocation? expr)
(apply (get—function (car expr))
(rmap ss—eval (cdr expr))))
(else (error "lInvalid expression:" expr))))

(define (quoted? expr)
(or (string? expr)
(and (list? expr) (equal? (car expr) 'quote))))

(define (quoted-val ue expr)
(1 f (string? expr)
expr
(cadr expr)))

(define (invocation? expr)
(list? expr))

(define (get—function nane)
(let ((result (assoc nane *the-functions*)))
(if (not result)
(error "No such function: " nane)
(cadr result))))

Page 471

(define (display-invocation expr)
(display "(")
(di spl ay—expressi on (car expr))
(for—each (Il anbda (subexpr)
(display " ")
(di spl ay—expr essi on subexpr))
(cdr expr))
(display ")"))

;) Abstract Data Types
;; Special cells: the selected cell and the screen corner

(define *special —cel |l s* (make—vector 2))

(define (selection—cell-id)
(vector-ref *special—cells* 0))

(define (set—selection—cell—id!' new-id)
(vector—set! *special —cells* 0 new-id))

(define (screen—corner—cel | —id)
(vector-ref *special—cells* 1))

(define (set—-screen—corner—cell—id!' new-id)
(vector—set! *special —cells* 1 new-id))

:: Cell nanes

(define (cell—-nanme? expr)
(and (word? expr)
(letter? (first expr))
(number? (bf expr))))

(define (cell—-name—col um cel | —nane)
(letter—>nunber (first cell-nane)))

(define (cell—-nanme-row cel | —nane)
(bf cell —-nane))

Page 472

(define (cell—-nane—>id cel | —nane)
(make—i d (cell —name—col umm cel | —nane)
(cel I —name—r ow cel | —nane)))

Cell 1Ds

(define (make—id col row
(list "id col row))

(define (id-colum id)
(cadr id))

(define (id-rowid)
(caddr id))

(define (id? x)
(and (list? x)

(not (null? x))
(equal? "id (car x))))

1 Cells

(define (make—cell)

(vector *() () "() "))

(define (cell-value id)
(vector—ref (cell-structure id) 0))

(define (cell—-val ue—from-i ndi ces col row)
(vector-ref (cell-structure—from-indices col row) 0))

(define (cell—-expr id)
(vector—ref (cell-structure id) 1))

(define (cell—-parents id)

(vector—ref (cell-structure id) 2))

(define (cell—-children id)
(vector-ref (cell-structure id) 3))

(define (set—cell—-value! id val)
(vector—set! (cell—-structure id) 0 val))

(define (set—cell—-expr! id val)
(vector—set! (cell-structure id) 1 val))

(define (set—cell—-parents! id val)
(vector—set! (cell—-structure id) 2 val))

(define (set—cell—children! id val)
(vector—set! (cell—-structure id) 3 val))

(define (cell—-structure id)
(gl obal —array-I ookup (i d—col umm i d)
(id-rowid)))

(define (cell—-structure—from-i ndi ces col row

(gl obal —array—I ookup col row))

(define *the—spreadsheet—-array* (make—vector 30))

(define (gl obal —array—| ookup col row)
(if (and (<= row 30) (<= col 26))

(vector-ref (vector-ref *the—spreadshee