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Foreword

Object-oriented programming in Lisp has a long history. Researchers
have been experimenting with object-oriented extensions to Lisp for at
least fifteen years. The ideas of SMALLTALK have been imported into
Lisp several times. In addition, many people have used Lisp to experi-
ment with entirely original ideas for how to organize object-oriented
programs.

By 1986, a "tower of Babel" situation had developed. Several object-
oriented extensions to Lisp were available, some in quite wide use. Each
of these dialects was different from all the others, sometimes in impor-
tant ways, sometimes just accidentally. The flowering of experimenta-
tion and novel ideas was certainly a good thing, but it led to practical
problems. Academics had trouble communicating because they used di-
vergent dialects and could not read each other’s programs. Software de-
velopers interested in deploying their applications on a wide variety of
platforms were inhibited, because each system had a different language
for object-oriented programming. New implementors had a difficult time
choosing which object-oriented language to implement. In short, the
Lisp community was being balkanized.

At the ACM Lisp and Functional Programming conference in the
summer of 1986, many Lisp users and implementors insisted that it was
time to standardize. The sense of the community was that experimenta-
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tion ought to continue, but that people needed something practical that
they could use until the experimenters came up with the ultimate ob-
ject-oriented language, if such a thing could exist.

There had been earlier calls for standardization, with little result, but
by 1986 the convergence of aesthetic, academic, and economic interests
in favor of a standard was unstoppable. An ad hoc standardization
group formed at the conference. Soon afterwards, the X3J13 committee
for formal standardization of CommoN Lisp was formed and the group
became part of it. The initial idea was to adopt one of the existing di-
alects as the standard, but examination of the differences among di-
alects revealed some interesting facts: Many programmers were passion-
ately committed to the particular dialect that they used and were un-
willing to switch unless the standard offered comparable features. Al-
though no existing dialect contained all the right features, several of the
dialects had an underlying unity, once one saw past the superficial syn-
tactic differences, and were aiming towards the same ideas from differ-
ent directions. At this point, the group decided to develop a new dialect
that would combine the best features of the most popular existing di-
alects, while discarding features that were ill-defined or insufficiently
useful. This dialect would be called CLOS, the ComMoN Lisp Object
System.

The two years since then have been a long, strange trip, as we de-
signed, experimented, argued, redesigned, negotiated, documented, and
evolved our understanding of what object-oriented programming ought
to be. It’s unlikely that anyone would have volunteered had they known
how much time the project would take. Still, most people would agree
that the result is a much better language than any we started with. Not
every worthwhile feature of the original dialects survives in the final
standard, but CLOS is powerful, consistent, precisely—albeit
informally—defined, and efficiently implementable.

As a member of the CLOS group almost from the beginning, Sonya
acquired a deep understanding that served her in good stead while writ-
ing this book. However, this is not really a book about CLOS. An early
decision she had to make was whether to write a reference work on
CLOS, or instead to teach the arcane art of object-oriented program-
ming, using CLOS as the language with which to exercise that art. She
chose the more courageous path, writing an introduction to an art
;'ather than a catalog of language features. I think this choice resulted
In a book that will be valuable to more people for a longer time. It was
ts;(l)lrelyda more challenging book to write, but also a more engaging book

read.

The nature of object-oriented programming is such that it is most
beneficial for large programs that are written by multiple authors and
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are expected to last a long time. The ease of implementing a small, sim-
ple program does not much depend on what programming methodology
is employed, and one who has dealt only with small programs may not
see any point to the object-oriented discipline. However, anyone who has
been through the design, development, documentation, testing, and
maintenance of a large software system in a non-object-oriented fashion,
and then has experienced the same process in an object-oriented system,
will understand why there is so much interest in object-oriented pro-
gramming. It isn’t magic, but it is a good technique for organizing large
software systems and making them comprehensible.

As an introduction to the art of object-oriented programming, this
book does not pretend to cover every nook and cranny of that art, nor
describe every feature of the CLOS language. However, a programmer
who grasps everything in this book has gained a journeyman’s under-
standing of the art of object-oriented programming. The next step is to
apply this knowledge to the construction of "real world" object-oriented
programs, starting with small programs the size of the examples in this
book and building up to programs of substantial size. Through experi-
ence, one eventually masters the art and then can easily learn the more
esoteric features of CLOS or another object-oriented language.

If you are interested in learning the art of object-oriented program-
ming, ‘this book should help you become a better software engineer, no
matter whether you are in the programming, documentation, testing, or
management branches of the profession. If you already practice object-
oriented programming in another language, this book will help you
learn both a philosophy of how programs should be organized and the
particular language features of CLOS.

Cambridge, Massachusetts David A. Moon






Preface

The CommMon Lisp Object System (CLOS) comprises a set of tools for de-
veloping object-oriented programs in ComMoN Lisp. An object-oriented
program is usually designed and constructed in a modular fashion. The
object-oriented style of programming makes it practical to organize
large programs; it helps you decompose complex problems into function-
al modules.

CLOS has been adopted as part of ComMoN Lisp by the X3J13 com-
mittee, which is working on creating the ANSI Standard ComMoN Lisp.
This book corresponds to the June 1988 version of the "Common Lisp
Object System Specification,"” and does not reflect any revisions of the
specification made after that date.

Roadmap of this Programmer’s Guide

This book is intended for CLOS users. Because CLOS is a set of tools
for software development that stands on the foundation of CoMMON
Lisp, its users are software developers who are familiar with CoMMoN
Lisp. People who have written medium-sized Lisp programs should be
able to understand all the code in the examples in this book.

On the other hand, this book teaches object-oriented techniques for
software design and development; these techniques may be of interest to

vii
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people outside the CoMMON Lisp community who want to apply these
ideas to other programming languages. People who are unfamiliar with
Lisp should be able to understand the major ideas in this book, but
should not expect to understand all the Lisp code in the examples.

The purpose of this book is to help you take the best advantage of
the power CLOS offers. Use it as a practical guide to get started writing
object-oriented programs as quickly as possible.

This book is: A tutorial
A user’s manual
A programmer’s guide

This book is not: A language specification
An implementor’s guide
A theoretical discourse

The style of this book is like a spiral. It starts by describing the central
concepts of CLOS and the basic techniques that are essential to writing
CLOS programs. Once you understand how the elements of CLOS work
together, you will be able to write object-oriented programs using only a
handful of macros and functions.

The spiral then unwinds by adding techniques and features to the
central model. You will find some of these immediately valuable for a
particular application; you will probably mark others as "something to
remember for the future." It is a rare application that requires all the
features CLOS offers.

This book is driven entirely by programming examples that demon-
strate the power of CLOS. We introduce the central concepts of CLOS
by proceeding step by step through the development of a straightfor-
ward object-oriented program that implements locks for concurrency
control. We demonstrate additional techniques by showing other sample
programs, including a remote evaluation program and a software-
installation program. Finally, we present an extended example that sug-
gests how CoMMoN Lisp streams could be implemented using CLOS.
These examples illustrate modularity and good design principles, as well
as most of the CLOS features.

A few of the examples can be typed into a CLOS implementation and
executed. You cannot execute the longer examples (locking, remote
evaluation, and streams), however, without undertaking some extra
work. The locking example assumes an environment in which there are
multiple processes that can contend for a resource at any given time.
Remote evaluation depends on a model in which two computers are con-
nec!;ed by a network. Streams need to access devices such as disks with
device-specific primitives. CommoN Lisp does not include processes, net-
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works, or device-specific primitives in its definition, although any Com-
MON Lisp implementation is free to implement such primitives. Origi-
nally, our goal was to define examples that used only portable CoMMon
Lisp functions, but this goal conflicted with a more important one: to
demonstrate how to solve large, real-world problems with object-
oriented programming. Thus, we chose more sophisticated examples
rather than smaller examples that would work in any ComMoN Lisp im-
plementation. When we use functions that are not part of CoMmMoN Lisp,
we document exactly what the functions do. You can define these func-
tions yourself if you wish to execute the examples, which is what we did
when testing them.

Along the way, the book presents information in summaries; since
the summaries repeat information given elsewhere in the book, you can
skip or skim them during the first reading, and use them for reference
later on.

About this Book

I wrote this book using CoNcorbpia, the Symbolics workbench for writ-
ers. CoNcoRDIA assumed the burden of many of the mechanical tasks as-
sociated with writing and revising, and enabled me to concentrate on
the content and organization of the book.

CoNcCoRbDIA itself is an object-oriented program. (Currently, it is writ-
ten in New Flavors, but it could be converted to CLOS.) The writer
composes a document as a collection of "records," objects that can in-
clude a title, simple textual contents, "generic markup instructions,"
graphic pictures, indexing commands, cross-references to other records,
and other attributes. A document as a whole is defined by a single top-
level record that includes links to all the records to be treated as chap-
ters. Each chapter record includes links to the records to be treated as
its sections, and so on. The writer can reorganize any portion of the
book by simply adding, deleting, or changing the order of the links to
other records. When different documents cover the same material, there
is no need to copy the text: the writer can include links from multiple
documents to the single record that contains the material. This flexible
z}’laring of records minimizes the need to maintain duplicate versions of

xt.

Records are stored in a documentation database, which can be ac-
cessed in hypertext fashion with another tool called DocUMENT ExXaMIN-
ER. Readers can explore any topic of interest with this tool, by providing
words that serve as keywords for DocUMENT EXAMINER’s search of the
documentation database. Although each record can be accessed individ-
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ually, the organization of the document is not lost for the online read-
ers; they can view the relationships among the records to see how the
document as a whole is arranged.

CoNCORDIA supports the book-design phase with the PAGE PREVIEWER
tool, which shows pages on the screen formatted as they would appear
on paper, thus making it easy to experiment with different designs. The
book designer controls the appearance of the book by giving instructions
on how the generic markup in the online manuscript should be treated.
A generic markup instruction includes directives as simple as "these
lines should appear in an itemized list" or "this is a figure." The book
designer specifies how itemized lists appear on paper, as well as desig-
nating variables such as the fonts and margins for the text, the style of
figures and tables, the appearance of chapter headings, and the format
of the index. The final step is to transfer the online manuscript to pa-
per, resulting in camera-ready copy. _

Thus, CoNcorpia offers three interfaces for dealing with records: one
for the writer, another for the readers, and yet another for the book de-
signer and producer. The object-oriented design of the program makes it
convenient to use one set of objects (the documentation records) in dif-
ferent ways for different purposes. The objects are shared freely among
the three tools.

CoNcoRp1A is one real-world example of a program that takes good
advantage of the object-oriented style and offers an invaluable service to
its users. I am grateful to Rick Bryan, Dennis Doughty, and Janet
Walker for inventing this remarkable program, and to Kelly Bradford,
V. Ellen Golden, Bob Mathews, Mark Widzinski, and Bill York for their
contributions in developing and enhancing Concorbia. The Symbolics
Graphics Editor is a related tool (also object-oriented, of course), and I
am grateful to Mike McMahon for making it possible to draw pictures
so easily and to integrate them into this book.
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1

Introduction to the
CLOS Model

Many computer programs create "objects" and manipulate them. Some-
times these objects represent real-world things. A traffic-simulation pro-
gram needs to represent vehicles, pedestrians, intersections, and traffic
lights. In other cases, programs manipulate objects that represent ab-
stractions, such as the buffers, windows, and processes that are manipu-
lated in operating-systems engineering.

The CommonN Lisp Object System (CLOS) supports the style of pro-
gramming called object-oriented programming, which makes it easy to
create and manipulate objects. CLOS encourages the software developer
to create a working model that describes the various classes of objects in
terms of their structure and behavior. Often, the working model in-
cludes classes that are related to one another; they are similar but not
identical. For example, window systems usually need to support differ-
ent kinds of windows for different purposes. One kind of window might
have a border; another might have a label; another might have both a
border and a label. The design of a window system would likely include
several classes of windows.

CLOS makes it easy to represent relationships among classes, and it
supports a flexible means of inheriting (sharing) structure and behavior.
Inheritance allows the design and implementation of an application pro-
gram to be highly modular, and obviates the need for maintaining sev-
eral bodies of nearly identical code.
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CLOS promotes modularity in another important context, by separat-
ing the implementation of a program from the interface. The clients of
a CLOS program (which are other Lisp programs) depend on only the
interface, which is a high-level description of operations that can be per-
formed on a set of objects. Clients use these operations to create and
manipulate objects; they do not depend on knowledge of the underlying
implementation. This separation frees the programmer to change or ex-
tend the implementation without interfering with clients of the pro-
gram.

CLOS makes it easier to design, develop, maintain, and extend a com-
plex program. The benefits of the object-oriented style are most striking
for large, complex programs, but medium-sized programs can also real-
ize benefits from this style.

Any CLOS program could be written using the traditional style of
Lisp programming. An important advantage of using CLOS lies in the
automatic control of the interaction among the objects. Here, we sum-
marize some of the benefits of using CLOS:

o The program more closely resembles the world it is modeling. An ob-
ject-oriented program is designed at a higher level of abstraction than
a traditional Lisp program. The programmer is encouraged to focus
on the abstract properties of objects, rather than being distracted by
the way the objects are implemented. An object-oriented design allows
for objects with meaningful names, behavior, and interaction.

o Client programs benefit from a well-defined interface. Client programs
can use a CLOS program through a well-defined interface; clients are
shielded from the internal details (implementation) of the CLOS pro-
gram. This means that clients continue to work even if modifications
are made to the underlying implementation. Even more important, if
the implementation is extended (to support additional classes, for
example), all clients immediately and automatically take advantage of
the extensions.

o The programmer benefits from a modular implementation. CLOS en-
ables the programmer to define an organization of classes that mod-
els the relationships among the various kinds of objects. The pro-
grammer can define classes that serve as building blocks; each indi-
vidual aspect of structure and behavior is abstracted and defined sep-
arately. The programmer then creates new classes that inherit the
desired combination of building blocks.

» A CLOS program is conveniently extensible. Until now we have pic-
tured the CLOS program as being a complete program, in and of it-
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self. Some CLOS programs, however, are written with the goal of be-
ing extended and customized by the users. Such a program offers a
set of classes with documented structure and behavior; these classes
are intended to be used as building blocks. Users can create new
classes that inherit from those building blocks and add customized
behavior.

CLOS defines conventions that are shared across the COMMON LISP
community. The benefits already mentioned are offered by other lan-
guages that support the object-oriented paradigm. CLOS, however,
has the additional advantage of being a language standard. CLOS de-
fines a standard set of conventions that will be supported by a wide
variety of CoMmMoN Lisp implementations. Thus, CLOS programs will
be portable across different implementations.

CLOS itself does not enforce modularity or make it impossible to orga-
nize programs poorly. Instead, it provides tools that can help you design
modular and extensible programs. The goal of this book is to help you
learn how to exploit these tools to good advantage.






2

Elements of CLOS
Programs

The elements of CLOS programs are classes, instances, generic func-
tions, and methods. None of these elements can be considered in isola-
tion, because each one’s purpose is to interact with the others in useful
and predictable ways. We begin by presenting the most important as-
pects of these elements and examining the relationships among them.
We then describe how CLOS is integrated with ComMoNn Lisp, focusing
on the common ground between classes and types.

2.1 CLASSES AND INSTANCES

The first step in writing a CLOS program is to define a new type of da-
ta structure called a class. A class is a ComMoN Lisp type. Each individ-
ual object of that type is an instance of the class. Each instance of a
given class has the same structure, behavior, and type as do the other
instances of the class.

We might define a class named month, which would have instances
representing January, February, March, and so on. Or we could define
a class named window to represent windows that appear on the screen of
a display terminal. When we need to create a new window, we make an-
other instance of that class. Figure 2.1 shows a class with three in-
stances.
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Figure 2.1 Instances of a class.

We can query an instance for its type with the usual CommoN Lisp
type functions. Although all instances are recognizably of the same type,
each one has a separate identity. This is compatible with the ComMmon
Lisp model, in which two objects can have the same type and the same
structure (such as two arrays with the same contents), yet be two dif-
ferent objects, each with its own identity.

2.2 SLOTS

We have said that all instances of a class have the same structure. That
structure is in the form of slots. A slot has a name and a value. A slot’s
name describes the characteristic it is modeling, and the value describes
the slot’s state at a given time. This state information can be read and
written by accessors.

CLOS offers two kinds of slots: local slots and shared slots. For local
slots, each instance holds its own value for the slot. For shared slots,
the instances share a single value for the slot. Since local slots are used
more frequently, we concentrate on them here; we discuss shared slots
in "Local and Shared Slots," page 66.

The class named window might have local slots named x-position,
y-position, width, and height. This state information describes, for any
given window, that window’s size and its position. Figure 2.2 shows the
names and values of the slots of two instances of the window class.

instance of window instance of window
x-position 15 x-position 99
y-position 0 y-position 123
width 1300 width 50
height 1300 height 25

Figure 2.2 State information stored in local slots.
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Notice that two instances of the same class have the same set of
named slots. In other words, they have the same structure. Each in-
stance, however, maintains its own values for its local slots; that is,
each instance has its own state.

2.3 SUPERCLASSES

CLOS enables you to build a class from other classes; the component
classes are called the new class’s superclasses. The new class inherits
both structure (slots) and behavior from its superclasses.

This style of programming is well suited to the task of modeling sev-
eral kinds of objects that are related to one another. For example, we
might want to have different kinds of windows. In addition to plain
windows, we might need windows with labels and windows with bor-
ders.] The new kinds of windows are similar to the existing window class,
but they have extra features. Figure 2.3 shows two new classes, window-
with-label and window-with-border, which are built on the existing class,
window,

Qindow-with-label ) Gindow-with-borderj

Figure 2.3 Two new classes built on the window class.

To build a class from components, you include a list of classes in the
definition of the class. These are called the direct superclasses of the
new class. In Fig, 2.3, each arrow points from a class to a direct super-
class of the class. In fact, a class is built not only from its direct super-
classes, but from each of their direct superclasses, and so on. The super-
classes of a class are all its component classes. The term subclass is the
illlverse of superclass., Here we apply this terminology to the window
classes:

IThe example of windows, windows with labels, and windows with borders, is
adapted from the paper “Flavors: A non-hierarchical approach to object-
oriented programming,” Symbolics, Inc., 1982, with permission from the
author, Howard 1. Cannon.
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window is a direct superclass of window-with~border.
window is a direct superclass of window-with-label.

window-with-border is a direct subclass of window.
window-with-label is a direct subclass of window.

Figure 2.4 shows an instance of window-with-label and an instance of
window-with-border. The class window-with-label inherits the four slots
of its superclass window and also has a slot named label. Similarly, the
class window-with-border inherits the slots of window and also has a slot
named border-width. Thus, the basic structure of a window is defined
only once (by the class window) and is inherited by many kinds of win-

dows.

instance of instance of
window-with-label window-with-border
x-position 15 x-position 90
y-position 0 y-position 0
width 250 width 400
height 250 height 100
label ToolKit border-width 5

Figure 2.4 Slots inherited from superclasses.

The order in which slots are stored in memory is implementation de-
pendent, and is not normally visible to the programmer.

2.4 GENERIC FUNCTIONS

Programs and users operate on instances by using generic functions. To
the caller, a generic function appears exactly like an ordinary Lisp func-
tion; the function-calling syntax is identical. When you call a function,
you do not need to know whether the function is defined as an ordinary
function or as a generic function.

Conceptually, a generic function performs a high-level operation, such
as "refresh a window." For different kinds of windows, this operation
mlg}}t require different work; whereas a plain window is simply cleared,
a window with a border must be cleared and then have its border re-
d;'awn. The high-level goal "refresh a window" must be implemented
dlfferently for different kinds of windows. In other words, each kind of
window needs an implementation that is appropriate to it.
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When we compare the workings of ordinary functions and generic’
functions, we find semantic differences. An ordinary Lisp function defi-
nition specifies both the interface and the implementation of the opera-
tion it performs. As shown in Fig. 2.5, when an ordinary Lisp function
is called, the Lisp system locates and executes the single body of code
that implements that function.

side effects

arguments

implementation values

Figure 2.5 Ordinary Lisp function.

A generic function specifies only the interface. The implementation of
a generic function does not exist in one place; it is distributed across a
set of methods. Whereas the implementation of an ordinary function
does not vary from call to call, the implementation of a generic function
does vary, depending on the classes of its arguments.

Consider the task of refreshing the three kinds of windows. We can
define a generic function called refresh, which can be used to refresh
any kind of window. The interface is the same, regardless of the class of
window. However, each of the three classes of window requires a slight-
ly different implementation of refresh. Instances of window are simply
cleared; the region of the screen covered by the window is made empty.
For an instance of window-with-border, the window is cleared and the
border is redrawn. Similarly, for an instance of window-with-label, the
window is cleared and the label is redrawn. Figure 2.6 shows that a
generic function can have several separate implementations.

implementations

side effects
values

side effects
arguments
values

side effects

values

Figure 2.6 Generic function.
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When refresh is called, CLOS determines the class of the argument
and chooses the appropriate implementation for that class. Each imple-
mentation might consist of one method or several methods. The proce-
dure for determining which methods to call and then calling them is
called generic dispatch. It happens automatically whenever a generic
function is called.

In the refresh example, the generic dispatch uses only one argument
(the window) to choose the implementation. In "Multi-Methods,” page
75, we shall show that the CLOS generic dispatch can use more than
one argument to choose the implementation.

2.5 METHODS

Methods are the underlying implementation of generic functions. Like
ordinary Lisp functions, methods take arguments, perform computation,
perhaps create side effects such as producing output, and return values.
Unlike ordinary Lisp functions, methods are not called directly; they are
called only by the generic dispatch procedure.

A programmer attaches a method to the generic function the method
implements, and to one or more classes by stating in the method’s
lambda-list the classes of arguments the method handles. The method is
called only if the arguments to the generic function are of the appropri-
ate classes.

For example, Fig. 2.7 shows that the refresh generic function might
have three methods attached to it, one for the class window, one for
window-with-label, and one for window-with-border.

window

Generic Function

window-with-label )

window-with-border)

Figure 2.7 Methods for refresh.

We have said that all instances of a class have the same behavior.
Methqu implement the behavior of instances. A class inherits methods
from its superclasses. For example, the classes window-with-border and
window-with-label inherit methods from the class window.
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There is not necessarily a one-to-one correspondence between an im-
plementation for a set of arguments and a single method. When a
generic function is called, the arguments may select an implementation
consisting of more than one method.

2.6 METHOD ROLES

CLOS makes it possible to split up the work of a generic function (for
some given arguments) into several methods. This capability stems from
the facts that methods are inherited, and that methods can have differ-
ent roles. The role of a method states what part it plays in the imple-
mentation of the generic function.

A primary method performs the bulk of the work of a generic func-
tion. Sometimes, one primary method does all the work of the generic
function for a particular set of arguments. In other cases, the primary
method can be assisted by auxiliary methods, such as before-methods
and after-methods. Before-methods are called before the primary
method; they can do set-up work in advance of the other methods. Af-
ter-methods are called after the primary method; they can do clean-up
work or any other computation. (CLOS also supports around-methods,
which we discuss in "Around-Methods," page 102.)

The primary method returns the values of the generic function. Be-
fore-methods and after-methods are intended for side effects only: they
are not called for value.

Given that classes inherit methods, this scheme allows for a division
of labor among a class and its superclasses. For example, one class
might provide the primary method that performs the bulk of the work,
while other classes provide auxiliary methods that do additional work.

The implementation of refresh can take good advantage of this mod-
el. All three kinds of windows must be cleared. Thus, we can define a
primary method for window that performs the clearing. For instances of
window, this method is sufficient.

That primary method for refresh is inherited by the classes window-
with-border and window-with-label. This is desirable, because windows
of both classes need to be cleared before anything else is done. An in-
stance of window-with-border must then have its border redrawn; this
can be done with an after-method attached to the class window-with-
border. Thus, the window-with-border class provides an auxiliary method
to perform its specialized behavior, but it inherits the primary method
from its superclass. Similarly, we need to define an after-method at-
tached to the class window-with-label to redraw the label.



12 2. Elements of CLOS Programs

Figure 2.8 shows that each method contains Lisp code to perform
some task, and that each method has a role. The implementation of
refresh is distributed among three different methods. The primary
method attached to the window class does the shared part of the work,
and that method is inherited by the two classes built on window. When
an instance of window is refreshed, CLOS calls only one method—the pri-
mary method attached to the window class.

primary method
Lisp code to -

clear window
after-method

Lisp code to | (‘window-with-border)
draw border

Generic Function

after-method
Lisp code to
draw label

_(window-with-label )

Figure 2.8 Roles of the refresh methods.

Figure 2.9 shows an inside view of the implementation chosen when
the argument to refresh is an instance of window-with-label.

Generic Function  Implementation

Argument
side effects

. instance of
window-with-label

values

Lisp code to
clear window

Lisp code to
draw label

Figuare 2.9 Sample generic dispatch of refresh.

side effects

values
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In Fig. 2.9, CLOS chooses an implementation consisting of two
methods: the primary method attached to the window class, and the af-
ter-method attached to the window-with-label class.

2.7 THE CONTROLLER OF INHERITANCE

Inheritance is the sharing of characteristics and behavior among a set of
classes. Slots are one example of inherited characteristics. Class defini-
tions can specify other characteristics, such as default values for slots;
these are inherited as well. Behavior is represented by methods, which
are inherited. A class inherits from all its superclasses.

When you put together a program from a set of classes, it is essential
that the inheritance occur in an orderly and predictable way. For exam-
ple, consider what happens if two superclasses offer competing charac-
teristics, such as methods for the same generic function. How is such a
conflict handled?

This concept has an analogy in human genetics: A baby might have a
gene for brown eyes and a gene for blue eyes. The baby’s eye color is
determined by the dominance of the brown-eye gene over the blue-eye
gene. When two classes offer competing traits, CLOS resolves the con-
flict by checking which class has precedence over the other class.

When you design an organization of classes, you are specifying the
precedence relationships among the classes. CLOS computes a class
precedence list based on your organization. The class precedence list
governs how methods, slots, and other characteristics are inherited.

Each class has a class precedence list, which includes the class itself
and all its superclasses. The classes in a class precedence list are ordered
from most specific to least specific. When one class is more specific than
another in this list, it has precedence (or dominance) over the other
class. Thus, if the two classes offer competing traits, the more specific
class takes precedence over the less specific class. The class precedence
list is discussed in detail later on, in "The Class Precedence List," page
118.

2.8 SUMMARY OF THE CLOS MODEL

Real-world objects are modeled by Lisp objects, which are called in-
stances. You manipulate these objects using generic functions. When
generic functions are called, the generic dispatch automatically arranges
for the appropriate implementation to be invoked, based on the classes
of the arguments.
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The structure of an instance is dictated by its class. Each instance
maintains a set of named slots, in which it stores state information. All
instances of a given class have the same structure and the same behav-
ior. The implementation of a generic function on an instance consists of
one or more methods, which are selected according to the class.

You can build classes on other classes in order to inherit structure
and behavior; this is the key aspect of modular design. A class inherits
both slots and methods from its superclasses.

2.9 HOW CLOS EXTENDS COMMON LISP

CLOS is a compatible extension to ComMoN Lisp. This section draws
parallels between ComMmoN Lisp types and CLOS classes, compares
defstruct structures and classes, and focuses on the new power that
CLOS offers.

We begin by discussing the similarities between types and classes. In
CoMmMoN Lisp, every Lisp object has a type. In CLOS, every Lisp object
has a class as well as a type. CLOS is based on the existing CoMMON
Lisp type system; it does not invent a whole new type system.

A class is a CommoN Lisp type, which means you can use a class as
the second argument to typep. Recall that typep tests whether an object
is of a given type, where "of a given type" includes the type itself or less
specific types. Since CLOS class names are type specifiers, the form
(typep instance class-name) returns t if class-name names the class or
a superclass of instance.

CommoN Lisp enables you to select an operation based on the type of
an object by using typecase. CLOS provides automatic support for se-
lecting an operation based on the class of an object. You write methods
that are attached to classes;, when the generic function is called, CLOS
automatically chooses the appropriate methods, based on the classes of
the arguments.

The CoMMON LisP defstruct facility enables you to define a new data
type with internal structure that is customized for your program. This
new data type can inherit from a type previously defined using
defstruct. Similarly, the CLOS defclass facility enables you to define a
new class with internal structure that is customized for your program.
The new class can inherit from existing classes.

_ The similarities between types and classes raise one important ques-
tion. Why are classes needed at all? The following comparison, although

nlot exhaustive, points out the most important advantages of CLOS
classes.
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« CLOS supports automatic association between code and a type of 0b-
Ject. The CoMMON Lisp typecase mechanism offers a way to associate
a body of code with a type of object. However, this association is lo-
calized; it is necessary to use typecase explicitly in every place where
the operation depends on the type of object. To upgrade a program to
support additional types of objects, you would need to edit each
typecase form to create the link between the new types and the oper-
ations appropriate to those types.

CLOS helps you abstract the operations appropriate to different
types. Callers can use operations on objects without being aware of
how those operations are implemented for different types of objects.

CLOS enables you to define methods, which are intrinsically linked to
a class of object. The process of choosing the operation appropriate to
the type of object (the generic dispatch) is entirely automatic. CLOS
provides a convenient way to link code permanently to the type of an
object, and removes the burden of maintaining links within typecase
forms.

o CLOS provides multiple inheritance. With defstruct, you can build a
new type from one component type by using the :include option. In
contrast, defclass allows you to build a new class from any number
of component classes. The CLOS multiple inheritance offers a great
deal more flexibility and power than does the single inheritance of
defstruct.

o CLOS offers flexible inheritance of behavior. CLOS supports the in-
heritance of structure in much the same way that CommoN Lisp
defstruct does. Although both defstruct structures and classes inher-
it slots from their components, the CLOS mechanisms for inheriting
behavior are much more powerful than the limited mechanisms of
CoMMON Lisp defstruct.

A Common Lisp defstruct structure can use any accessors for reading
or writing slots provided by its component; this is the extent of inher-
itance of behavior. In contrast, CLOS supports a much more trans-
parent and flexible means of inheriting behavior: Classes inherit
methods from their superclasses. A class can override inherited be-
havior by providing a primary method that shadows the inherited
method. A class can modify inherited behavior by adding a before-
method or after-method to customize the work done by the inherited
primary method. In addition, CLOS offers several advanced tech-
niques that give you further control over the inheritance of behavior.






3

Developing a Simple
CLOS Program:
Locks

This chapter demonstrates the power of programming with CLOS by
following the development of a sample application program. We begin
by defining classes and setting up the organization that reflects how the
classes are related to one another. Then we define the interface that
specifies how clients can create and manipulate objects of these classes.
Finally, we define the implementation; this is the Lisp code underlying
the interface. The interface is a set of generic functions, and the imple-
mentation consists of methods for those generic functions. The interface
states what operations you can perform on these objects, and the imple-
mentation states how the operations work internally.

In this chapter, we take different points of view on the program: we
design and develop it as a programmer does; we use it as a client does;
and finally we analyze how its pieces interact, as CLOS itself does.

3.1 OVERVIEW OF LOCKING

The goal of this sample application is to implement locks—objects that
are used to control concurrent access to some shared resource. For ex-
ample, in a meeting it is desirable for only one person to be speaking at
any given time. The expression "Mr, Smith has the floor" makes it clear
that the "floor" (a shared resource) is protected against simultaneous

17
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use by other people. Throughout this example, we use the term "seize"
to describe the act of securing or obtaining a lock, and "release" to
mean giving up a lock.

Locks are meaningful only in an environment where more than one
process can contend for a resource at a given time. Here, processes are
defined as multiple independent threads of control within a single Lisp
environment. Locks are used to ensure that a shared resource is ac-
cessed in a consistent fashion. Before accessing the resource, a process
should seize the lock associated with it. When finished, the process
should release the lock.

We recognize that processes are not part of CommoN Lisp, and that
this sample program would not be meaningful in a CommoN Lisp imple-
mentation that does not have multiple processes. However, our goal is
not to develop a program that works in all environments; rather, we
want to show a simple example of the object-oriented style. So, even if
locks would not be useful in your ComMoN Lisp environment, please
read on,

We call a lock "busy"” if it has been seized but not yet released, and
"free" if it is available to be seized. When a lock is busy, the process
that seized it is called its "owner."

We shall implement locks as Lisp objects. The interface to locks must
include the following operations:

Create Create a new lock.

Seize Seize a lock. When successful, the lock object is the
returned value.

Release Release a lock, if it is owned by the same process
that is now trying to release it.

There are many possible kinds of locks, and we want our locking pro-
gram to be extensible, since we plan to support more complex types of
locks later. For example, we might eventually need a lock that can avoid
deadlock situations. (Deadlock happens when one person picks up the
butter dish and reaches for the butter knife at the same time that an-
opher person has picked up the butter knife and reaches for the butter
dish. Neither person can obtain butter until the other has finished.)

We start by defining two elementary kinds of lock, which we can
later use as building blocks for other kinds of locks.

Simple lock This kind of lock has a name. The lock is either
busy or free. If the lock is busy, it keeps track of
1ts owner, which is a process.
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Null lock This kind of lock also has a name, but it does not.
keep track of whether it is busy or free. In effect, a
null lock is always free. A null lock supports the
normal locking operations without actually protect-
ing itself from being seized by other owners. This
kind of lock allows programs to deal consistently
with resources that sometimes need to be protected
against simultaneous access and sometimes do not.
The program goes through all the motions of seiz-
ing and releasing the lock, and the kind of lock
(whether null or another kind) controls whether or
not the resource is protected.

3.2 DEFINING THE KINDS OF OBJECTS—CLASSES

Now we must translate the English-language description of null locks
and simple locks into the language of CLOS. The translation illustrates

+ Designing a program that uses inheritance

» Using slots to store state information

+ Defining classes with the defclass macro

+ Requesting methods for reading and writing slots
+ Giving a slot a default initial value

Choosing the Classes to Represent Locks

Although at first glance it seems that we should define two classes (one
to represent simple locks and the other to represent null locks), we can
make better use of inheritance by defining three classes in the organiza-
tion shown in Fig. 3.1.

null-lock simple-lock

Figure 3.1 Organization of lock classes.

The classes simple-lock and null-lock include lock ir their definition;
we say that they are built on the class lock. They both inherit from the
class 1ock. Here is a terminology reminder:
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lock is a direct superclass of null-lock.
lock is a direct superclass of simple-lock.

null-lock is a direct subclass of lock.
simple-lock is a direct subclass of 1ock.

We call 1ock a basic class. The term "basic class" does not have any spe-
cific technical significance (the class lock acts just like any other class),
but it describes the purpose of the class. The lock class is intended to be
the foundation of all locks; its purpose is to contribute the characteris-
tics that all locks have in common. The principal characteristic that all
locks share is the fact that they are locks. By building all lock classes on
the class named lock, we can use (typep object 'lock) to find out
whether an object is a lock.

Also, both simple locks and null locks have names, so the "name
characteristic” is provided by the class lock and is inherited by all kinds
of locks. Another reason for providing a basic class is to make it conve-
nient to define default methods. A method attached to a basic class is a
default method. Any class that inherits from the basic class can choose
to use the default method, provide a method to override the default
method, or support additional behavior by providing a before-method or
an after-method to work with the default method. In summary, we de-
fine the class lock for three reasons:

+ It enables us to use (typep object ’1ock) to check whether an object is
a lock

+ It contributes the name characteristic to all locks

+ It supports the default behavior of all locks

We do not intend this class to stand alone, in that we do not expect to
create instances of it. The class lock will not have a complete set of
methods for supporting the locking protocol.

Using defclass

We define the class lock as follows:

(defclass lock ()
((name :initarg :name :reader lock-name))
(:documentation "The foundation of all locks."))

Evaluating this form creates a new class named lock with one slot
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called name. It also creates the generic function lock-name, and a method
for lock-name that allows you to read the value of the name slot of any
object whose type is lock. Here we examine each portion of the class
definition and see what it does:

defclass The macro for defining a new class,
lock The name of the new class.
() The list of direct superclasses. The list here is empty be-

cause we have not specified any superclasses for lock.

((name :initarg :name :reader lock-name))
The list of slot specifiers. Each slot specifier can be
given as a symbol (the name of the slot) or a list (the
name of the slot followed by slot options). Here we have
a single slot named name, with these two slot options:

:initarg :name

This option makes it possible to initialize the val-
ue of this slot when creating instances. To initial-
ize the name slot, we can give the :name keyword
argument to make-instance. (Note that make-
instance is the CLOS function for creating new
instances; we discuss it in "Using make-instance
or Constructors," page 24.)

:reader lock-name
This option makes it possible to read the value of
this slot by using the generic function lock-name.
This slot option causes the CLOS system to gen-
erate a method for lock-name. lock-name is called a
reader generic function.

(:documentation "The foundation of all locks.™)
This is a class option; it pertains to the class as a whole.
The :documentation class option provides a documenta-
tion string describing the purpose of the class. You can

retrieve the documentation string of a class by calling
the documentation function.
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Inheriting from a Superclass

The definition of null-lock illustrates how to define a class that is built
on a superclass. Here the class null-lock is built on one superclass, the
class lock.

(defclass null-lock (lock)

()
(:documentation "A lock that is always free."))

The class null-lock inherits the following from its superclass lock:

name slot Each instance of null-lock has a slot named name.

:initarg :name slot option
You can initialize the name slot when making an instance of
null-lock.

lock-name method
You can use the reader lock-name on instances of null-lock
to read the value of the name slot.

Accessors

We now define the class simple-lock. A simple lock keeps track of
whether it is busy or free. The definition of simple-lock provides the
slot owner, which indicates whether the simple lock is busy or free by re-
membering which process currently owns the lock. A free lock has its
owner slot set to nil, and a busy lock has its owner slot set to the process
that currently owns the lock.

(defclass simple-lock (lock)
((owner :initform nil :accessor lock-owner))
(:documentation ™A lock that is either free or busy."))

The class simple-lock inherits exactly the same characteristics and be-
havior from lock as does null-lock. Note that the class simple-lock in-
herits the slot name from its superclass, and that it adds a slot of its
own, the owner slot. The definition of simple-lock also includes two new
slot options:

:initform nil
This slot option allows you to give a default initial value
for a slot. Here, the default initial value of the owner slot is
nil. This means that, when a simple lock is created, it is
free,
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:accessor lock-owner )
This slot option enables you to access the slot owner for ei-
ther reading or writing the value of the slot. CLOS gener-
ates two generic functions: a reader generic function called
lock-owner and a corresponding writer generic function.
CLOS also defines methods for each of these generic func-
tions. Thus, you can read the value of the slot owner by us-
ing the reader generic function lock-owner, and you can
write the value of the slot by using setf with lock-owner.

The name of this reader generic function is the symbol lock-owner. To
call a reader, use normal function-calling syntax, such as:

(lock-owner lock-object)

The name of the writer generic function is the list (setf lock-owner).
This list is not a form to be evaluated; it is the name of the function—in
other words, it is the "function specifier." To call the writer, use the
setf syntax as follows:

(setf (lock-owner lock-object) new-value)

The slot options :reader and :accessor are similar. The :reader slot op-
tion generates a method for a reader generic function only. The
:accessor slot option generates two methods: one for a reader and one
for a writer. The term accessor generic function is an umbrella term
that includes both readers and writers. Usually you define a reader if
you want to read the slot, and both kinds of accessors if you want to
read and write the slot. It is possible to define only a writer (with the
:writer slot option), but this is rarely done.

Slots Used in Lock Classes

Here we review how we intend to use the name and owner slots, and re-
late that to the slot options chosen for the slots:

name Each lock has a name. We initialize the name when we
create a lock, by giving it as an argument to make-instance.
We do not provide a default initial value for the name slot
because that would not make sense; each lock needs a
name suited to its purpose, so no default name would be

a;;fropriate in enough cases to make defaulting worth-
while.
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We can use the reader lock-name to determine the name of
a lock. We have not provided a means for changing the
name of the lock; there is no writer method for lock-name.

owner Each simple lock has an owner. The owner slot is always
initialized to nil when a simple lock is created. We have
not allowed the slot to be initialized by an argument to
make-instance, because we want all newly created simple
locks to be free.

We can use the reader lock-owner to find out the owner of
a simple lock. We can use the writer method corresponding
to lock-owner to change the owner of a simple lock. The
name of the writer is (setf lock-owner). This writer
method will be useful inside the seize methods, but we do
not intend it to be part of the interface.

Despite the similarity in the names :initform and :initarg, these slot
options are intended for different purposes. The :initarg option lets you
provide an argument to make-instance for initializing the value of a slot.
Thus, using this slot option enables callers of make-instance to specify
an initial value for the slot. We used :initarg for the name slot.

In contrast, :initform provides a default initial value for the slot. The
slot is initialized to the value specified in the :initform option, instead
of being initialized by an argument to make-instance. We used :initform
for the owner slot.

3.3 CREATING NEW OBJECTS--INSTANCES

The code we have written will feel more real if we create some locks
and manipulate them. In the following sections, we create instances of
simple-lock and null-lock and experiment with them.

Using make-instance or Constructors

The function for creating new instances is make-instance. Here we use
make-instance to create a null lock and to initialize its name slot to be

"Null lock™:
(setq *null-lock*

(make~instance ‘null-lock :name "Null lock™))
=> §<NULL-LOCK 802335>



3.3 Creating New Objects—Instances 25

Here we use make-instance to create a simple lock and to initialize its
name slot to be "Simple Lock™:

(setq *simple-lock*
(make-instance ’simple- lock :name "Simple lock"))
=> §<SIMPLE-LOCK 802393>

You can use make-instance to make an instance of a class. The first ar-
gument is the name of the class. The following arguments are initargs
followed by values. Here the initarg :name is used to initialize the name
slot with a value.

We recommend that you define constructor functions to be used by
the clients to make instances. A constructor is a tailored way to make
an instance of a given class; its name usually describes the kind of in-
stance that it creates. A constructor provides a more abstract external
interface than does make-instance, because its name describes its higher-
level purpose (make a null lock) instead of its internal implementation
(make an instance of the class null-lock).

Another advantage is that a constructor can have required argu-
ments. In contrast, all arguments to make-instance except for the first
are optional. We might prefer to require that users initialize the name
of a lock.

You can define a constructor by using defun, and calling make-
instance in the body of the function. For example, here we define two
constructors, one for making a null lock, and the other for making a
simple lock:

(defun make-null-lock (name)
(make-instance 'null-lock :name name))

(defun make-simple-lock (name)
(make-instance ’'simple-lock :name name))

We shall advertise make-null-lock and make-simple-lock as part of the
mt':erface to be used by clients when creating new locks. Thus, instead of
using make-instance, clients use the constructors:

(make-null-lock ™Null lock™)
(make-simple-lock "Simple lock™)
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Using the Accessors

We can experiment with the reader and writer generic functions which
were automatically generated through the :reader and :accessor options
to defclass.

We have a reader generic function lock-name, and a method for it.
That method is attached to the lock class, and is inherited by both aull-
lock and simple-lock, because they are both built on 1ock.

(lock-name *null-lock*) => "Null lock”
(lock-name *simple-lock*) => "Simple lock”

We also have a reader generic function named lock-owner, and a corre-
sponding writer generic function named (setf lock-owner). Each of
these accessors has a method for it attached to the simple-lock class.
We can use these accessors on instances of simple-lock.

In the following example, we use lock-owner on the newly created
simple lock, which shows that the initial value of the owner slot is nil.
We then call the writer generic function to set the value of the slot to
3401, and call the reader again to see that the value is indeed 3401.

(lock-owner *simple-lock*) => nil
(setf (lock-owner *simple-lock*) 3401) => 3401
(lock-owner *simple~-lockt*) => 3401

We cannot use lock-owner or (setf lock-owner) on instances of null-
lock. No method is attached to null-lock for these generic functions,
and null-lock does not inherit any method for them. Therefore, if we
try to use these generic functions on an instance of null-lock, CLOS
will signal the "no applicable method" error.

(lock-owner *null-lock*)
ERROR: No applicable method for LOCK-OWNER
for the argument #<NULL-LOCK 802335>

(setf (lock-owner *null-lock*) 3401)
ERROR: No applicable method for (SETF LOCK-OWNER)
for the argument #<NULL-LOCK 802335>

Querying a Lock for Its Type

Now that we have instances, we can demonstrate that CLOS is neatly
integrated with the existing ComMoN Lisp type hierarchy. The names of
all classes are ComMoN Lisp type specifiers, so you can use type-of and
tlypep to query a Lisp object about its type. The type of an instance is its
class.
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(type-of *null-lock*) => NULL-LOCK
(type-of *simple-lock*) => SIMPLE-LOCK
(typep *simple-lock* ’simple-lock) => t

(typep *simple-lock* ’lock) =>t

(typep *simple-lock* 't) = t

We use typep as shown to indicate that the lock *simple-lock* is not on-
ly of the type simple-lock, but it is also of the type lock and the type t.
This is entirely analogous to how typep works for other CommoN Lisp
type specifiers, when one type is a subtype of another. For example, an
object of type integer is also of type number, because integer is a subtype
of number. Similarly, all objects are of type t.

The significance of this is related to inheritance. The instance
*simple-lock* is of the types simple-lock, lock, and t. That means that
each of those classes can contribute structure and behavior to *simple-
lock*. So we can use typep to find out whether the behavior of an in-
stance is affected by a particular class.

Similarly, to find out the relationship of one class to another, we can
use subtypep with classes:

(subtypep 'simple-lock "lock) =t t
(subtypep 'null-lock ’lock) =tt
(subtypep 'null-lock ’simple-lock) => nil t

The results confirm what we already knew: simple-lock is a subtype of
lock, null-lock is a subtype of lock, and null-lock is not a subtype of
simple-lock.

The first value of subtypep tells whether the first argument is a sub-
type of the second argument. The second value of subtypep indicates the
certainty of the first value. If the relationship between the two types is
not known, the values will be nil nil. This can happen for ComMmoN
Lisp types, but it can never happen for two classes. When both argu-
ments to subtypep are class names, the second value will always be t.

3.4 DEFINING THE INTERFACE—GENERIC FUNCTIONS

We have already completed one part of the interface, by giving clients a
means of creating new locks. Each kind of lock has its own constructor
for creating a new lock. The constructor make-simple-lock creates a sim-
ple lock and make-null-lock creates a null lock. Constructors are ordi-
nary functions, not generic functions.
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Once a lock has been created, it must support two locking ope{'ations:
seize and release. We shall implement these operations as generic func-
tions.

Using defgeneric to Document the Interface

We can document the interface of each generic function by using a
defgeneric form. The interface comprises three concepts, each of which
is represented in the defgeneric form:

Interface Described by defgeneric
Expected arguments | Parameters in the lambda-list
What it does The documentation string
Returned values The documentation string

You can use defgeneric to document the generic function for the benefit
of programmers who call it or define additional methods for it. A
defgeneric form also sets guidelines for the generic function that must
be followed by any future extensions to the program.

A defgeneric form describes the generic function as a whole. The
defgeneric forms for seize and release provide English text in the docu-
mentation string describing the overall purpose of the generic function.
The documentation string is not a functional piece of the program; it
does not actually do anything. However, without that documentation,
people who wanted to read the code and learn how a program works
would have to look at the method definitions and try to discern the
overall purpose of the generic function based on the set of methods.

(defgeneric seize (lock)
(:documentation
"Seizes the lock.
Returns the lock when the operation succeeds.
Some locks simply wait until they can succeed, while
other locks return NIL if they fail.™))

(defgeneric release (lock &optional failure-mode)
(:documentation

"Releases the lock if it is currently owned by this process.

Returns T if the operation succeeds.

If unsuccessful and failure-mode is :no-error, returns NIL.

If unsuccessful and failure-mode is :error, signals an error.

The default for failure-mode is :no-error.™))
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In Lisp, a lambda-list is the portion of a function that specifies names
for the parameters of the function. The defgeneric form for seize speci-
fies one required parameter (whose name is lock), and the defgeneric
form for release specifies one required parameter named lock and one
optional parameter named failure-mode.

The documentation strings look somewhat awkward as shown, but
there is a reason for aligning them at the left margin. If we indented
them, the documentation function would indent them, which is not what
we want. It is not necessary to align the first line of a documentation
string at the left margin, but we choose that style for strings that are
longer than one line, just to be consistent with the lines that follow.

Creation of a Generic Function

A defgeneric form creates a new generic function. Using defgeneric is
not the only way to define a generic function. The other way is to de-
fine a method. If you define a method for a generic function and the
generic function itself does not yet exist, CLOS automatically creates it.
The lambda-list of the generic function is derived from the lambda-list
of the method. You can use defgeneric later to specify the lambda-list of
the generic function, a documentation string, and any other options;
CLOS modifies the existing generic function according to your new def-
inition.

Although is not necessary to document the interface explicitly by
means of defgeneric, as we do here, doing so often makes it easier for
other people to learn how your program works, and provides guidelines
for programmers who wish to extend the program.

Establishment of the Parameter Pattern

A defgeneric form establishes a parameter pattern that must be fol-
lowed by all methods for that generic function. Thus, the lambda-list of
a defgeneric form is a functional piece of the program. CLOS requires
that the lambda-lists of all methods and the defgeneric form for a
generic function have the same "shape" or be "congruent." The lambda-
lists must have the same number of required parameters and the same
number of optional parameters. Special rules state what congruence
means for skey parameters. For full details, see "Congruent Lambda-
Lists," page 132.
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Naming Issues

The names of the parameters of a generic function should imply the
class of objects on which the generic function can operate. Here, we use
the name "lock" to indicate that the generic function can be used on
any lock. It happens that "lock" is also the name of a class, but there is
no requirement that parameter names of a generic function be class
names.

The same guideline applies to the name of a generic function. The
name should tell us something about the function’s purpose and should
answer the question, "How generic is it?" For example, we might later
add a generic function to the protocol for resetting a lock, which would
be useful for debugging; a process could reset the lock owned by anoth-
er process, The name "reset-lock” would be better than merely "reset”,
which is too general. One potential pitfall of an overly general name for
a generic function is related to the requirement that all methods for a
generic function must have congruent lambda-lists. If we name a gener-
ic function "reset” and several different programs want to write meth-
ods to reset different kinds of devices, it is likely that the different pro-
grams will want to establish different argument patterns, which is not
allowed.

The Locking Protocol

A generic function defines the interface of a single operation. This is a
valuable concept in the initial design phase, because it helps you focus
on the interface while leaving the details of the implementation until
later. It is also valuable during the maintenance of the program. A set
of defgeneric forms appearing at the beginning of a program can go a
long way toward documenting the roles of the individual pieces of the
program,

The generic functions taken together can be called a protocol. A pro-
tocol encompasses the complete behavior of the objects in the program.
For example, the basis of the locking protocol is as follows:

There must be a means for creating new locks, and all existing
locks must support the seize and release operations.

The locking protocol must convey more information on the semantics of
each operation: its arguments, what it does, and its returned values. For
the generic functions, this information is contained in the individual
defgeneric forms.
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The idea of a protocol gives us another perspective on an application
program. The question "What is a lock?" can be answered with "A lock
is an object that obeys the locking protocol." We now have an opera-
tional definition of locks. This perspective allows for a natural and accu-
rate description of a null lock: "A null lock obeys the locking protocol,
without actually protecting anything against simultaneous access." Note
that an instance of the basic class lock is not a lock by this definition,
because it does not obey the locking protocol.

When we define locks by the protocol that they obey, we are taking
an external point of view. We could take an internal point of view by
defining a lock as "an instance of any class that includes the class lock."
Each of these perspectives is valid and useful in its own right. Software
developers who use locks benefit by the external point of view, The im-
plementor of locks takes the internal point of view when defining the
classes and methods that constitute the locking program. However, the
implementor cannot neglect the external point of view, because the im-
plementation must ensure that the locks follow the advertised locking
protocol.

We are discussing not a formalized concept of a protocol, but rather
an informal notion that programmers find useful when designing and
describing object-oriented programs. CLOS does not include any mecha-
nism for enforcing protocols.

3.5 DEFINING THE IMPLEMENTATION-METHODS

In this section, we define the methods for null locks and simple locks.
We discuss methods in detail, including when a method is called, what
arguments it receives, and how a method can provide a default value for
an argument. Throughout this discussion, keep in mind the distinction
between the terms argument and parameter. You provide arguments to
a Lisp function when you call it, and you name the parameters of the
function when you define it. In the body of a function, you can refer to
an argument by using the corresponding parameter. Thus, a parameter
is a variable that is bound to an argument during the execution of a
function. For details on the different kinds of parameters, see Steele’s
Common LISP: The Language, pages 59-61.

Generic functions and methods use the same terminology. The lamb-
da-list of a defgeneric form names the parameters of the generic func-
tion, and the lambda-list of a defmethod form names the parameters of
the method.
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Methods for Null Locks

The purpose of implementing null locks is to disable locking in a pro-
gram that performs locking operations. The program follows its normal
seizing and releasing routine, without a need for a special "debug mode"
that turns locking off in exceptional circumstances. The methods exist
so that a null lock can be used wherever a program expects a lock.

The methods for the locking operations on null locks are simple.
They are primary methods and they do all the work of the generic func-
tions they implement. Each method adheres to the interface of its
generic function. Since these methods do not actually seize or release
anything, they are always successful and they always return the value
indicating success.

(defmethod seize ((1 null-lock))
1) ;return lock, no waiting

(defmethod release ((1 null-lock) &optional failure-mode)
(declare (ignore failure-mode)) ;never fails for null locks
t)

A Method’s Lambda-List

In an object-oriented program, it is important to understand the scope
of a method. When is this method applicable? The lambda-list states the
method’s scope by using specialized parameters, which attach the
method to one or more classes. A method is applicable when the argu-
ments to the generic function fulfill the requirements of the specialized
parameters in the lambda-list.

Figure 3.2 shows the lambda-list of the release method, which has
one specialized parameter.

({1 null-lock) &optional failure-mode)

specialized
parameter

Figure 3.2 Specialized parameter in a lambda-list.

The lambda-list of a method is an ordinary lambda-list with one dif-
ference. It distinguishes between two kinds of parameters:

« A specialized parameter indicates the applicability of the method by
stating the class of the argument for which this method applies. A
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specialized parameter is a list containing a variable and a class name.
The parameter is said to be specialized on that class. You can special-
ize any of the required parameters, but not soptional, &key, or &rest
parameters.

o An ordinary parameter does not indicate the applicability of the
method; it simply gives a variable to be bound to the argument to the
generic function,

Although a specialized parameter has the same syntax as a defaulted
parameter, there is no ambiguity, In methods, required parameters may
be specialized but may not have default values. Optional parameters
may not be specialized but may have default values.

The Applicability of a Method

When a generic function is called, CLOS selects the set of applicable
methods. A method is applicable if the arguments to the generic func-
tion match that method’s specialized parameters. For an argument to
match, it must be of the type indicated by the class. This includes in-
stances of the class itself and instances of classes built on that class
(subclasses).

In the lambda-list in Fig. 3.2, only the first parameter is specialized.
The parameter specializer is the class named null-lock, indicating that
the method is applicable when the first argument to the generic func-
tion is an instance of null-lock or some class built on it. In other words,
the following expression must be true:

(typep argument 'null-lock)

Sometimes we speak of a class "inheriting a method." This is a natural
way to describe the fact that an instance can use a method that is at-
tached to a superclass of its class. This model allows us to picture a link
between a class and a method attached to that class.

It is important to keep in mind that a method can contain any num-
ber of specialized parameters. A method can have links to more than
one class; it is linked to all the classes that are used as parameter spe-
cializers, We discuss this style of programming in "Multi-Methods,"
page 75. For methods that have more than one specialized parameter,
the model of "method applicability" is more appropriate than is the
model of "inheriting a method." We can express the rule of method ap-
plicability in one sentence:
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Rule of method applicability:

A method is applicable if each of its specialized parameters is
satisfied by the corresponding argument to the generic function.

Many methods have only one specialized parameter. Accessor methods
fall into this category, as do all the methods we define in the locking
program. We shall continue to use the model of "inheriting a method"
for methods that have only one specialized parameter.,

The Arguments Passed to a Method

When CLOS chooses the implementation of a generic function and calls
the methods, it passes all the arguments supplied to the generic func-
tion to each method. The variables in the lambda-list are bound to the
arguments, Within the method body, you can use the variables bound to
the objects by using generic functions or ordinary functions to manipu-
late them,

For example, when release is called on an instance of null-lock, the
method we defined for release is called. The variable 1 is bound to the
first argument to the generic function, the lock.

The variable failure-mode is bound to the second argument. The
method chooses to ignore this variable, because it has no need to use it.
Even though the method does not use this argument, it must explicitly
allow it by including a parameter for it in the lambda-list. This is neces-
sary because the method receives all arguments passed to the generic
function,

Locks and Processes

Before defining the methods for simple locks, we need to discuss pro-
cesses further. Our example assumes that processes do not actually exe-
cute concurrently, but rather are interleaved, as happens when a single
time-sliced processor is used.

'Since CommMmoN Lisp does not currently include functions for dealing
with processes, for the purposes of this example we assume three primi-
tives that support multiple processes in a shared address space. These
primitives are not part of CLOS or CommMon Lisp.,

without-process-preemption &body body
Thp body of this special form runs without risk of the process
being preempted by the scheduler. In other words, the body is
an atomic operation with respect to process scheduling.
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process-wait reason function &rest arguments
This function is the primitive for waiting. The current pro-
cess waits until the application of function to arguments re-
turns non-nil. At that time process-wait returns the values of
applying function to arguments, The argument reason is a
string describing the reason for waiting,

*current-process*
The value of this variable is an identifier of the process that
is currently executing.

We now define the macro setf-if, which we shall use in the seize and
release methods. The macro setf-if compares the value of a general-
ized variable to an expected value. If these values are the same, setf-if
sets the value of the variable to a new value and returns t; otherwise, it
does not change the value and it returns nil. setf-if uses without-
process-preemption to ensure that the operations happen atomically, to
ensure that another process cannot change the variable between the
time setf-if tests the variable and the time it changes it.

;3 If value of place is old-value, set it to new-value
;; Return t if the setf worked, nil otherwise
(defmacro setf-if (place old-value new-value)
*(without-process-preemption ;do atomically
(cond ((eql ,place ,old-value)

(setf ,place ,new-value)

t)

(t nil))))

Note that a real multiprocessing system would include its own definition
for a setf-if operation, which would no doubt be more efficient and
would deal better with order of evaluation issues.

Methods for Simple Locks

First, we define check-for-mylock to check for the common mistake in
which a process tries to seize a lock it already owns. The following
method for check-for-mylock signals an error in this situation. We shall
use check-for-mylock in the seize method.

(defmethod check-for-mylock ((1 simple-lock) process)
(when (eql (lock-owner 1) process)
(error "Can’t seize ~A because you already own it." 1)))
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The following seize method iterates with do until the setf-if succeeds.
On each iteration, setf-if determines whether the lock is free by using
lock-owner to find out if the owner slot is nil. If the lock is free, setf-if
sets its owner to the current process, thus seizing it. (This is done
atomically by setf-if.) If the lock is not free the first time around,
process-wait is called to wait until lock-owner returns nil, which indi-
cates that the lock is currently free. Then the setf-if form tries again.

(defmethod seize ((1 simple-lock))
(check-for-mylock 1 *current-processt*)
(do ()
((setf-if (lock-owner 1) nil *current-process*))
(process-wait "Seizing lock”
#' (lambda () (null (lock-owner 1)))))
1)

Note that the body of the do is not necessary, because without it the
end-test itself would iterate repeatedly until the setf-if succeeds. The
problem is that the setf-if might use a good deal of machine time be-
fore it finally succeeds. In contrast, using process-wait in the body of
the do allows other processes to run, and tries the setf-if only when it
is likely to succeed.

The following release method uses setf-if as a convenient way to
make sure that the process trying to release the lock is the current
owner of the lock. If not, setf-if does not release the lock.

(defmethod release ((1 simple-lock)
éoptional (failure-mode :no-error))
(or (setf-if (lock-owner 1) *current-process* nil)
(ecase failure-mode
(:no-error nil)
(:error (error "~A is not owned by this process™ 1)))))

Defaulting Optional Parameters of Methods

The lambda-list of the release method for simple-lock gives a default
value for the optional parameter failure-mode. A method lambda-list
may provide default values for any optional parameters, but not for re-
quired parameters. The defgeneric form may not provide a default val-
ue for any parameter in its lambda-list.
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8.6 SPECIALIZING THE BEHAVIOR OF LOCKS

At this point, we have completed the requirements of the locking appli-
cation. The interface is defined and the implementation is complete. In
this section, we add some final touches by specializing the printed repre-
sentation and description of locks. We describe the system-supplied de-
fault methods for printing and describing objects and discuss why it is
often useful to provide a method to override the default behavior. We
also show how methods can have different roles and work together co-
operatively.

Controlling How Locks Print

The printed representations of null locks and simple locks look some-
thing like this:

#<NULL-LOCK 738592>
#<SIMPLE-LOCK 220478>

This output gives the type of the lock and the address in memory where
the instance is stored. However, it does not give the name of the lock.
We might decide to change the way that locks are printed so that the
printed representation of a lock contains its name as well as its type
and address in memory:

#<NULL~LOCK "Debug lock™ 738592>
#<SIMPLE-LOCK "Database lock"™ 220478>

CLOS specifies that Lisp always calls the generic function print-object
whenever one of the printing functions is called, such as print, prinl,
princ, write, format, and so on. This generic function offers a hook for
programs to use to control the printed representation of various classes
of objects.

Each CLOS implementation supplies a default method for print-
object. The default method is inherited by all user-defined classes.
However, any class can provide a method to override the default
method.

We use this hook by specializing print-object. Conceptually, special-
izing a generic function means causing that generic function to behave
in a customized manner for a given set of arguments. We specialize a
generic function by defining a method for it. In this case, we shall pro-
vide a method to override the inherited method, so locks will be printed
in a customized way.

Before writing a method, you must understand the interface of the
generic function. The interface of print-object is documented in the
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CLOS specification. CLOS specifies that the generic function print-
object prints an object on a stream and then returns the object. It ac-
cepts two required arguments, an object and a stream. When Lisp calls
print-object, the stream argument will be a real stream, not t or nil.
(This is different from print, which does accept t or nil as the stream

argument,)

Specializing print-object for Locks

We want the method to be selected if the first argument is a lock. In
other words, we want all objects whose type is lock to inherit this
method. Since only the first argument will be used for method selection,
the lambda-list of the method has one specialized parameter and one or-
dinary parameter,

(defmethod print-object ({1 lock) stream)
(format stream "#<~S ~A ~D>"
(type-of 1)
(if (slot-boundp 1 ’name)
(lock-name 1)
" (no name)™)
(sys:%pointer 1))
1)

Once this method is defined, it will be used whenever a lock is printed,
and the result is exactly what we want,

The function sys:%$pointer is not part of CommoN Lisp; it is a func-
tion that returns the address of an object in memory in some imple-
mentations. It is useful for print-object methods to print the address of
the object because it distinguishes this object from other objects, which
can be helpful for debugging. The address of the object can change,
however, due to garbage collection.

Methods for print-object should not signal errors; it should be possi-
ble to get a printed representation of any Lisp object without error. The
print-object method for lock uses slot-boundp to check that the lock
has a name before calling lock-name. If the name slot were unbound, the
lock-name accessor would signal an error; see "Reading Unbound Slots,"”
page 75.

It is important to keep in mind the scope of this method. We know it
1s attached to the class lock, and can therefore use knowledge of the in-
ternal details of that class. We also know it is inherited by the classes
simple-lock and null-lock and will be used for instances of simple-lock
and null-lock. This method cannot use knowledge of any classes built
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on lock. For example, this method can use the reader generic function
lock-name, because the class lock has a method for it; however, it cannot
use the reader generic function lock-owner, because the only class that
has a method for lock-owner is simple-lock. If this method did use lock-
owner, and the argument to print-object were a null lock, an error
would be signaled at run time to indicate that there is no applicable
method for lock-owner.

Although this method must restrict itself to knowledge of the lock
class, we know that the method is inherited by other classes. A common
error people make when first learning to write object-oriented programs
is to assume that the method will be called only for instances of lock,
and not for instances of classes that are built on lock. This method
could have made that incorrect assumption and produced output stating
that the instance is a lock, instead of recognizing that the object might
be an instance of a class built on lock. By querying the object for its
type with type-of, however, we are recognizing that several different
classes will inherit this method.

What Is a Default Method?

The system’s method for print-object is a default method for objects of
all user-defined classes. We have provided a method for print-object for
the class lock. This is a default method for all locks, because all locks
are built on lock.

Like the term "basic class," the term "default method" does not have
a technical meaning. These terms simply describe the intended purpose
of the class or method. A basic class is usually intended to be the foun-
dation of a set of classes. A default method is intended to be inherited
by a set of classes. Many basic classes provide default behavior; thus, de-
fault methods usually are attached to basic classes.

Specializing describe for Locks

In addition to controlling the printed representation of locks, it would
belbeneﬁcial to provide a way for people to examine a lock in more de-
tail.

One way to do this is to specialize the describe generic function. An
alternative would be to write a method for a new generic function, such
as show-lock. Either way would accomplish the same thing, but often it
is preferable to extend a familiar ComMoN Lisp function rather than to
introduce a new function. This approach works only if the function is a
generic function.



40 3. Developing a Simple CLOS Program: Locks

Like print-object, describe is a generic function that is provided by
CLOS so users can specialize its behavior for a given class of object. A
system-supplied default method is available, but you can provide a
method to override it.

The interface for describe states that it takes a single argument,
prints a description of its argument to standard output, and returns no
values. This method specializes describe for locks:

(defmethod describe ((1 lock))
(format t "~&~S is a lock of type ~S named ~A."
1 (type-of 1)
(if (slot-boundp 1 ’'name)
(lock-name 1)
"(no name)™))
(values))

This primary method is applicable for all locks. It is inherited by null
locks and simple locks. We use slot-boundp to ensure that the describe
method does not signal an error if the name slot is unbound.

An After-Method for Describing Simple Locks

The primary method for describe does not give an adequate description
of a simple lock. A crucial element of a simple lock is its owner, if it is
currently busy. The describe method supplied by lock cannot give this
information, because it would be overstepping its bounds. The class lock
does not have an owner.

We want to specialize the behavior of describe for simple-lock so that
it will give the same information as does the describe method for lock,
but also describe the owner of the simple lock.

We could supply a primary method for describe attached to the class
simple-lock to override the method inherited from the class lock. Of
course, we would have to duplicate the code for displaying the lock’s
type_and name, and for ensuring that no values are returned. However,
duplication of code is antithetical to the object-oriented programming
style. Instead of overriding the method, we should seek to inherit it and
add behavior to it.

We can do this by providing an after-method for the class
simple-lock. The after-method takes care of describing the owner of the
simple lock.

When the generic function describe is called on a simple lock, the
generic dispatch procedure first calls the primary method supplied by
the class lock, and then calls the after-method supplied by the class
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simple-lock. The generic function returns the values returned by the
primary method, which is just what we want. Any values returned by
an after-method are ignored. After-methods are used to perform side ef-
fects, not to return values. An after-method has the keyword :after as
its method qualifier. This method qualifier gives the role of the method.
Until now, we have seen only primary methods, which have no method
qualifiers. If a method has any qualifiers, they appear immediately after
the name of the generic function.

(defmethod describe :after ((1 simple-lock))
(let ((owner (lock-owner 1)))
(format t (if owner
"~§It is now owned by process ~A.~%"
"~§It is now free.~%")
owner)))

When the describe generic function is called for a simple lock, two
methods are called. When the describe generic function is called for a
null lock, only one method is called. describe has only one interface, but
it has various implementations. This is the meaning of the term generic
function.

In this method, we assume that the owner slot is bound. If it is not,
this method will signal an error. The semantics of ordered locks require
that the owner slot be either a process or nil.

The System’s Default describe Method

The behavior of the default method for describe is implementation de-
pendent. Typically, the default method gives the type of the object and
the names and values of its slots. Why is the default method undesir-
able for describing locks?

Instead of merely displaying the names and values of the slots, our
method goes a step further and conveys the semantics behind the slots
and their values. Qur describe method provides output that gives an
English-language, conceptual description of the lock. The output of our
describe method looks like this:

$<SIMPLE-LOCK File lock 2417> is a lock of type
SIMPLE-LOCK named File lock.
It is now owned by Process 3299,

The output of a typical system-supplied default method for describe
looks like this:
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#<SIMPLE-LOCK "File lock™ 2417> is of type SIMPLE-LOCK,
with slots:

NAME : "File lock"

OWNER: 3299

There is another advantage to supplying a describe method customized
for a class of object. Often, it is desirable to conceal the details of the
implementation of the object. The default method has no way to de-
scribe the object other than by laying bare its implementation. By sup-
plying a describe method, you can control how users view your object.

3.7 ANALYZING THE INHERITANCE OF LOCKS

So far, we have been programming with an implicit understanding of
how inheritance should work. At this point it is worth examining inher-
itance in greater detail and making explicit some of the mechanisms be-
hind it.

Overriding Inherited Traits

Our organization of locks includes the basic class lock, and two classes
built on lock. Both simple-lock and null-lock inherit from the class
lock. Also, all wuser-defined classes inherit from the class
standard-object.

The class standard-object is a predefined class whose purpose is to
support default behavior. That is, several system-supplied default meth-
ods are attached to the class standard-object.

Consider what happens when the print-object generic function is
called with an instance of null-lock as its argument. The class null-
lock has two applicable primary methods for print-object: the method
attached to lock and the method attached to standard-object.

Class I Method for print-object

lock primary
standard-object | primary

Here we see two superclasses of null-lock offering competing traits;
t}}at is, primary methods for the same generic function. This is a con-
flict, but its resolution is simple and obvious. One of the methods is
more specific than the other. The precedence of a method is directly re-
lated to the precedence of the classes for which it is applicable. In the
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class precedence list of null-lock, the class lock precedes standard-
object, so the method supplied by lock overrides the method supplied
by standard-object.

The reason that lock is more specific than standard-object is that a
class has precedence over its superclasses. The class standard-object is a
superclass of the class lock.

Class Precedence Lists of Null and Simple Locks

The class precedence list is the arbiter of conflicting traits. CLOS deter-
mines the class precedence list for every class, based on the organization
of classes that the programmer has set up. During this process, CLOS
must answer two questions:

o From what classes does this class inherit? A class inherits from itself
and all its superclasses. This includes its direct superclasses, each of
their direct superclasses, and so on. CLOS derives this information
from the set of class definitions.

o What is the precedence order among these classes? The answer to this
question is also derived from the class definitions. CLOS uses an al-
gorithm to determine the precedence, and the algorithm always obeys
the following class precedence rule:

Rule 1 of class precedence:

A class always has precedence over its superclasses.

We have mentioned that all user-defined classes have standard-object as
a superclass. In addition, all classes have the class t as a superclass. The
class t is the root of all classes. Just as all types are subtypes of t, all
classes are subclasses of t.

Consider the example of simple-lock. This class inherits from itself,
simple-lock, and its superclasses, lock, standard-object, and t. When
CLOS applies Rule 1 to each of these class definitions, the result is a set
of ordering constraints:

simple-lock has precedence over lock
simple-lock has precedence over standard-object
simple-lock has precedence over t

lock has precedence over standard-object

lock has precedence over t

standard-object has precedence over t
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The class precedence list must satisfy all these constraints. The result-
ing class precedence list for simple-lock is

(simple-lock lock standard-object t)

Similarly, the class precedence list of null-lock is

(null-lock lock standard-object t)

It is a simple matter to determine the class precedence lists for these
two classes. It is more difficult for classes that have more than one di-
rect superclass. We introduce another class precedence rule to address
that situation, in "Class Precedence Lists of Ordered Locks ," page 48.

The Generic Dispatch Procedure

When a generic function is called, CLOS takes charge of selecting the
implementation that is appropriate to the arguments. This entails find-
ing the applicable methods, then sorting them by order of precedence,
and finally calling one or more of them. This procedure is called generic
dispatch. It happens automatically whenever a generic function is called.

You are responsible for defining the classes and methods in the first
place, with an understanding of how the generic dispatch works. CLOS
takes care of the mechanics behind the generic dispatch.

What You Do What CLOS Does

Define the classes. Computes the class precedence list
based on the class definitions.

Define the methods. Saves the methods for use when
a generic function is called.

Call generic functions.  Determines the types of the arguments.
Locates the set of applicable methods.
Sorts the methods from most specific to most
general, based on the class precedence list.
Calls before-methods.
Calls the most specific primary method.
Calls after-methods.
Returns the value(s) of the primary method.

Although calling a generic function sounds like a slow and complex pro-
cess, good CLOS implementations optimize it, precomputing many of
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the steps. In fact, in some implementations, calling a generic function is
nearly as fast as calling an ordinary function. Such optimizations can
make CLOS efficient enough for use in an operating system, for exam-
ple.

We discuss the order of execution of before-methods and after-
methods in "Order of Before- and After-Methods," page 50.

3.8 EXTENDING THE LOCKING PROGRAM

The design of the locking application is now complete, and the imple-
mentation of simple locks and null locks is done. We now want to add a
new kind of lock to the existing locking application. In this section, we
illustrate defining a "mixin class" to be used as a building block and
"aggregate classes" built on the mixin and another class.

Avoiding Deadlock with Ordered Locks

Some operations require you to access more than one shared resource.
You might want to delete an item from one data structure and add it to
another data structure. If the data structures are shared resources with
locks protecting them against simultaneous access, you must own the
locks on both resources while you do the adding and deleting opera-
tions.

Here is another scenario: To obtain butter you need to be holding
both the butter dish and the butter knife at the same time. When you
hold the butter dish and knife, you are protecting them from simultane-
ous use by other people (in other words, you "own the locks" on the
two butter resources).

When you need to own two locks at the same time, there is a risk of
deadlock. Suppose one person holds the butter dish and is waiting for
!;he butter knife. Meanwhile, another person holds the butter knife and
1s waiting for the butter dish. Neither person can obtain butter until
the other has finished. In this case, both people will realize that dead-
lock has occurred, and one person will probably release one of the re-
sources in contention. This allows the other person to obtain butter and
then to release both resources for other people to use. In this solution,
the people detect the deadlock and resolve it.

When a process needs to seize more than one simple lock, there is
the risk of deadlock. Remember that, if a simple lock cannot immediate-
ly seize a resource, it waits until the resource is free.

Instead of implementing deadlock detection and resolution, we can
seek to avoid deadlock. We use a technique in which all processes must
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seize a group of locks in a prescribed order. We could apply this ap-
proach at the dinner table by making a rule that to obtain butter, you
must pick up the butter dish before picking up the butter knife. If all
people obey this rule, no person will be holding the butter knife and
waiting for the butter dish, so no deadlock will happen.

We can invent a new kind of lock, called an ordered lock, to assist
programmers in using this technique. This enables you to assign a lock-
ing order to a set of locks. The ordered locking mechanism is a pro-
gramming tool that provides run time error-checking to make sure that
the order is not violated. It checks running code to see whether the pro-
gram runs the risk of deadlock, and signals an error in that case.

Thus, if we anticipate that processes need to seize both lock-A and
lock-B before doing an operation, we can use ordered locks. Each or-
dered lock has a lock level. The ordered locking mechanism enforces the
rule that a process cannot seize an ordered lock if the process already
owns a lock at a higher level. We might assign a lock level of 1 to lock-A
and a lock level of 2 to lock-B to ensure that lock-A must be seized be-
fore lock-B. In this scheme, all programs should be written to seize lock-
A, then seize lock-B, perform the operation, and finally release both
locks. If any process owns lock-B and attempts to seize lock-A, the or-
dered locking mechanism signals an error at run time. This approach
ensures that no process can be in the state of owning lock-B and wait-
ing for lock-A.

Defining a Mixin Class

We anticipate needing both ordered null locks and ordered simple locks.
The behavior that these two classes will have in common is the ordered
locking behavior. Here it is useful to create a mixin class that supports
the ordered locking behavior. We call that class ordered-lock-mixin.

This mixin class is not expected to stand alone; we do not create in-
stances of it. Instead, we define two aggregate classes that combine this
mixin class with other lock classes, and create instances of them. The
aggregate classes are named ordered-null-lock and ordered-lock. The
terms "mixin" and "aggregate" are informal designations that describe
the intended purpose of the class.

] We do not specify any superclasses for ordered-lock-mixin. There is a
single slot named level. We can initialize that slot when creating in-
stances and use a reader function to read its value. We do not expect to
change; the level of an ordered lock once the lock has been created, so
there is no writer provided for the level slot. Our implementation al-
lows a process to seize an ordered lock only if the process does not own
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another ordered lock at a higher level.

(defclass ordered-lock-mixin ()
((level :initarg :level
:reader lock-level
‘type integer))
(:documentation "Avoids deadlock by checking lock order.™))

The purpose of a mixin class is to customize the behavior of the classes
built on it. Generally, mixins do not interfere with or override inherited
behavior. Instead, mixins usually supply before-methods and after-
methods to augment inherited primary methods with customized be-
havior. Mixins might also provide primary methods for additional gener-
ic functions.

Notice the new slot option :type. This slot option declares that you
expect the value of the slot to be of a certain type. Type declarations on
slots are ignored by some implementations, whereas other implementa-
tions gain efficiency when declarations are used. Type declarations are
also a way of documenting the slot. You cannot, however, depend on
CLOS doing type checking when a value is stored in the slot. Although
some CLOS implementations might choose to do type checking, they are
not required to do so. This behavior is consistent with ComMoN Lisp it-
self, which has a loose type-checking behavior.

Defining Aggregate Classes

Here we define two aggregate classes by including the desired set of su-
perclasses:

(defclass ordered-lock (ordered-lock-mixin simple-lock)
()
(:documentation
"Avoids deadlock by ensuring that a process seizes
locks in a specific order.
When seizing, waits if the lock is busy."))

(defclass ordered-null-lock (ordered-lock-mixin null-lock)
()
(:documentation
"Avoids deadlock by ensuring that a process seizes locks
in a specific order. Does not actually Seize anything,
but does check that the lock ordering is obeyed.™))
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An aggregate class includes a set of superclasses that together make up
a complete whole, a class that can stand alone. Here, the aggregate class
ordered-lock derives most of its behavior from the class simple-lock and
customizes it with the ordered lock behavior of the class ordered-lock-
mixin. Only rarely does an aggregate class provide additional methods,
because that would make the program less modular. Ideally, all the slots
and methods are provided by the basic class or by the mixins. The ag-
gregate classes here do not need any further modification.
We need to define constructors for these two new kinds of locks:

(defun make-ordered-null-lock (name level)
(make-instance ’'ordered-null-lock :name name
:level level))

(defun make~ordered-lock (name level)
(make-instance ’'ordered-lock :name name
‘:level level))

Class Precedence Lists of Ordered Locks

For null locks and simple locks, CLOS could determine the class prece-
dence list by referring only to Rule 1: A class always has precedence
over its superclasses.

When a class has more than one direct superclass, however, this rule
is not sufficient for determining the class precedence list. Rule 1 does
not indicate how to rank the direct superclasses. For example, when de-
termining the class precedence list for ordered-lock, does ordered-lock-
mixin have precedence over simple-lock, or is it the other way around?
CLOS uses another rule in this situation:

Rule 2 of class precedence:

Each class definition sets the precedence order of its direct su-
perclasses.

The order of the direct superclasses in the defclass form states their
relative precedence. For example, the class definition of ordered-lock in-
clpdes two direct superclasses: ordered-lock-mixin and simple-lock.
Since ordered-lock-mixin appears first (leftmost) in the list, it is more
specific than simple-lock.

When we take into account the two rules, we can determine the class
precedence list for the two aggregate classes. The class precedence list of
ordered-lock is
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(ordered-lock ordered-lock-mixin simple-lock lock standard-object t)
The class precedence list of ordered-null-lock is

(ordered-null-lock ordered-lock-mixin null-lock lock standard-object t)

Specializing describe for Ordered Locks

Before delving into the implementation of ordered locks, we specialize
describe to display the lock level of an ordered lock. Because the lock
level is a critical aspect of an ordered lock, it is important for describe
to give that information.

(defmethod describe :after ((l1 ordered-lock-mixin))
(format t "~g&Its lock level is ~D." (lock-level 1)))

When we try to describe an instance of ordered-lock, CLOS finds the
following applicable methods:

Class Method for describe
ordered-lock-mixin | after

simple-lock after

lock primary
standard-object primary

There are two applicable primary methods. The primary method sup-
plied by lock is the more specific of the two, so it is called.

There are two applicable after-methods. Both of them are called.
They are called in most-specific-last order. Here, the after-method for
simple-lock is called first because it is the less specific of the two. When
it returns, the after-method for ordered-lock-mixin is called.

Here we create an ordered lock and call describe on it, to show the
effect of the generic dispatch on this set of methods:

(setq *lock-C* (make-ordered-lock "C" 3))
=> §<ORDERED-LOCK C 29451>

(describe *lock-C*)

#<ORDERED-LOCK C 29451> is a lock of type ORDERED-LOCK named C.
It is now free.

Its lock level is 3.

=> no values
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Order of Before- and After-Methods

The generic dispatch procedure finds all applicable methods, which
might include several before-methods, primary methods, and after
methods. The generic dispatch procedure calls the following methods:

1. All before-methods in most-specific-first order. This allows a more
specific class to do an operation before anything else happens,
where "anything else" includes inherited before-methods, the pri-
mary method, and after-methods.

2.  The most specific primary method. This allows a more specific class
to override an inherited primary method, if desired.

3. All after-methods in most-specific-last order. This allows a more
specific class to do an operation after everything else happens,
where "everything else" includes before-methods, the primary
method, and inherited after-methods.

In other words, a class can do something in advance of the behavior in-
herited from less-specific classes; it can also do something after the be-
havior inherited from less-specific classes occurs. This kind of nesting
should feel natural to programmers familiar with Lisp. :

Imagine that the classes ordered-lock-mixin, simple-lock, and lock all
provide a before-method and an after-method. Figure 3.3 shows the or-
der in which the methods would be called.

before-method for ordered-lock-mixin
before-method for simple-lock
before-method for lock
most specific primary method
after-method for lock
after-method for simple-lock
after-method for ordered-lock-mixin _—

Figure 3.3 Nesting of before- and after-methods.

In practice, any of these before- or after-methods can be present or
absent. When a generic function is called, the only requirement is that

there must be at least one applicable primary method. If there is none,
an error is signaled.
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Implementing Ordered Locking Behavior

We shall implement ordered locking behavior by keeping track of which
ordered locks are owned by a process. When a process tries to seize an
ordered lock, we shall first check to see whether the process already
owns an ordered lock at a higher level. If so, the lock is considered "out
of order” and invalid; an error is signaled and we do not allow the pro-
cess to seize that lock. Otherwise, the lock is considered "in order” and
valid, so we do allow the process to seize it.

We use a hash table to keep track of the ordered locks owned by each
process. The first two functions are used to update the table when a
process seizes or releases an ordered lock; the second two functions ex-
amine the table.

(defvar *process-lock-table* (make-hash-table)
"Each key is a process identifier;
value is a list of ordered locks it owns")

(defun add-process-lock (process lock)
(without-process-preemption
(push lock
(gethash process *process-lock-table*))))

(defun delete-process-lock (process lock)
(without-process-preemption
(let ((hash-entry
(gethash process *process-lock-table*)))
(setf (gethash process *process-lock-table*)
(delete lock hash-entry)))))

(defun get-process-locks (process)
(without-process-preemption
(gethash process *process-lock-table*)))

(defun get-highest-lock (process)
(first (get-process-locks process)))

In this code, we assume that the gethash and setf of gethash operations
are not atomic, so we use without-process-preemption around the use of
those functions. Note that get-highest-lock depends on the first lock be-
ing the highest lock. We rely on the caller of add-process-lock always
adding a higher level of lock; this is what ordered locking is all about.
The function delete-process-lock can delete any lock from a given pro-
cess, but it does not change the order of the remaining locks.
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The hash table is a simple and effective way of storing the association
between a process and the ordered locks it owns. In some Lisp imple-
mentations, the process itself would be implemented as an instance of a
class. In these cases, each process might have a slot in which it stores a
list of its ordered locks; this would replace the hash-table mechanism.

The functions defined here are the interface to the association be-
tween processes and their lists of ordered locks. We shall use that inter-
face within the methods that implement ordered locking. Nothing pre-
vents us from someday switching from the hash table to another repre-
sentation. We could redefine these functions to do their work differently
without affecting the callers of the functions. For example, we could
change them from ordinary functions to generic functions and methods
without changing the callers.

Methods for Ordered Locks

Before we allow a process to seize an ordered lock, we check that it does
not currently own a lock with a higher level. We do this by defining a
before-method for seize. If the before-method determines it is valid for
the process to seize the lock, it simply returns. This method does not do
any actual locking, but assumes that another method will take care of
that. If the before-method determines that it is invalid for the process to
seize this lock, it signals an error. Since error never returns, no other
method is called. The invocation of the seize generic function is aborted
by a nonlocal exit caused by the call to error. Thus, this method can
prevent the lock from being seized, if necessary.

(defmethod seize :before ({1l ordered-lock-mixin))
"Checks validity of this process seizing this ordered lock.

If invalid, signals an error.

If valid, does nothing and allows primary method to run.”
;i First check for the mylock mistake to give the specific
i; error for that case, instead of the "Out of order™ error.
(check-for-mylock 1 *current-process*)

;i Now check for a possible infraction of ordered locking.

(let ((highest-lock (get-highest-lock *current-process*)))

(when (and highest-lock
(<= (lock-level 1) (lock~level highest-lock)))
(error "Out of order: Can’t seize ~A while owning ~A"
1 highest-lock))))

After a process has seized an ordered lock, it is necessary to update the
*process-lock-table* to associate this lock with the process. We do this
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update with an after-method for seize:

(defmethod seize :after ((l ordered-lock-mixin))
"Adds the lock to the *process-lock-table*”
(add-process-lock *current-process* 1))

Similarly, after releasing an ordered lock, we must update the *process-
lock-table*. We need another after-method to take care of this update:

(defmethod release :after ((l ordered-lock-mixin)
soptional failure-mode)
"Deletes a lock from the *process-lock-table*”
(declare (ignore failure-mode))
(delete-process-lock *current-process* 1))

The class ordered-lock-mixin provides a before-method that checks for a
situation (in fact, for both the "mylock" and the "out of order" mis-
takes) and an after-method that notes a situation (the new association
between the lock and the process). These are typical uses of before- and
after-methods.

This is a simplified implementation of ordered locks, since this code
does not deal with the possibility of aborts happening at a bad time,
leaving the process table inconsistent with the actual state of the lock.
These details are omitted because they are irrelevant to the discussion
of object-oriented programming.

3.9 HOW CLIENT PROGRAMS USE LOCKS

So far, our locks have not been connected with any shared resource.
One way to make a resource lockable is to incorporate a lock into the
data structure representing the resource. You then write functions for
accessing the data structure that first seize the lock, then access the da-
ta structure, and finally release the lock.

Locking a Shared Queue

Consider how a print spooler might work. When a user requests a hard-
copy printout, the print spooler stores the print request in a queue until
the printer is ready, then sends the request to the printer. The print
spooler maintains a queue of print requests. Several processes can ac-
cess this queue, so it is important to guarantee that the queue is updat-

ed in a consistent way. This is a good candidate for a client program of
our locking application.
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A simple lock is the right kind of lock here. These processes will not
need to own more than one lock at a time, so deadlock should not be a
problem.

We can implement our queue of print requests by defining a class
that includes a slot for the lock and a slot for the list of print requests:

(defclass print-request-queue ()
((lock :accessor print-queue-lock
tinitform (make-simple-lock "Print Queue"))
(requests :accessor print-requests :initform nil))
(:documentation "Queue of pending print requests."))

(defun make-print-queue ()
(make-instance 'print-request-queue))

Here we create the print-request queue and define the constructor make-
print-queue. The constructor takes no arguments, so the two slots are
initialized to their default initial values. The lock slot is initialized with
a simple lock named "Print Queue" and the requests slot is initialized
to the empty list.

(defvar *print-queue* (make-print-queue))

The following functions for modifying the queue take care of seizing the
lock, modifying the data structure, and releasing the lock. The unwind-
protect ensures that the lock gets released even if the operation is
aborted.

(defun enqueue-print-request (r)
(let ((lock (print-queue-lock *print-queue*)))
(unwind-protect
(progn (seize lock)
(push r (print-requests *print-queue*)))
(release lock :no-error))))

The dequeue-print-request function takes a request as an argument
instead of simply popping the first request off the list. This allows the
caller—the print spooler—to choose which request to print first.
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(defun dequeue-print-request (r)
(let ((lock (print-queue-lock *print-queue*)))
(unwind-protect
(progn
(seize lock)
(setf (print-requests *print-queue*)
(delete r (print-requests *print-queue*))))
(release lock :no-error))))

Supporting the Typical Use of Locks: with-lock

When we step back and look at the first client program, we see that
both enqueue-print-request and dequeue-print-request demonstrate the
canonical use of locks: first seizing the lock, then performing an opera-
tion, then releasing the lock.

We can add a with-lock macro to the locking application to make it
more convenient for programs to use locks:

(defmacro with-lock ((lock) &body body)
(let ((lock-var (gensym)))
‘Y(let ((,lock-var ,lock))
(unwind-protect
(progn (seize ,lock-var)
’ @body)
(release ,lock-var :no-error)))))

This macro allows the developer of the client program to simplify the
two functions considerably:

(defun enqueue-print-request (r)
(with-lock ((print-queue-lock *print-queue*))
(push r (print-requests *print-queue*))))

(defun dequeue-print-request (r)
(with-lock ((print-queue-lock *print-queue*))
(setf (print-requests *print-queue*)
(delete r (print-requests *print-queue*)))))
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Specializing describe for Print-Request Queues

It is good style for the client program to specialize describe for the class
print-request-queue. Notice that this method does not seize the print-
request queue before describing it. This means that, if the queue has an
owner, that process might be presently modifying the queue, so the
pending print requests might be changing. .

The reason we do not seize the queue is that we believe it is more
valuable for describe to show the owner of a lock if it is busy, rather
than waiting until the queue is free. If we waited for the queue to be-
come free, it would be impossible to use describe for debugging in cases
where one process waits while owning the lock, because describe would
also wait.

(defmethod describe ((queue print-request-queue))
(let ((owner (lock-owner (print-queue-lock queue)))
(requests (print-requests queue)))
(if owner
(format t "~&Process ~A owns queue.~%" owner))
(format t (if (null requests)
"~§There are no print requests.~%"
"~&Pending print requests:~%"))
(dolist (x requests)
(format t "~&~A " x))))

3.10 REVIEWING THE LOCK CLASSES

Imagine that you are going to describe the structure of the locking pro-
gram to another programmer. When describing the organization of an

o_bject-oriented program, you would probably need to answer questions
like these:

What is the set of classes?
What does each class contribute to the whole?
How do the classes interact?

Once we have collected this information, we shall take a close look at
the class ordered-lock, to see how it works.
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What Is the Set of Classes?

The first two classes are building blocks that are not intended to stand
alone. The remaining four classes support the complete locking protocol
and can stand alone. This distinction is important.

Class Description
lock Foundation of all locks.
ordered-lock-mixin A mixin that supports ordered locking behav-

ior; an integral part of all ordered locks.

simple-lock A lock that is either busy or free. When busy,
it stores its owner. Constructor is make-
simple-lock.

null-lock A lock that is always free. It obeys the locking
protocol without seizing anything. Constructor
is make-null-lock.

ordered-lock A lock that supports ordered locking and is ei-
ther busy or free. Constructor is make-
ordered-lock.

ordered-null-lock A lock that supports ordered locking but is al-
ways free. It does not seize anything. Con-
structor is make-ordered-null-lock.

What Does Each Class Contribute?

A class can contribute slots and methods. Also, slot options are inherit-
ed; that is, they affect the classes built on the class that gives the slot
option. For example, the slot options :initarg and :initform are inherit-
ed by subclasses. If a class provides accessor methods, they are applica-
ble for subclasses as well. Here we concentrate on the slots and the
methods that support the locking protocol. We start by listing the slots
that each class supplies:
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Class Slots
lock name

ordered-lock-mixin | level
simple-lock owner
null-lock none
ordered-lock none
ordered-null-lock | none

We now list the methods for seize and release:

Class seize release
lock none none
ordered-lock-mixin | before, after | after
simple-lock primary primary
null-lock primary primary
ordered-lock none none
ordered-null-lock | none none

We now list the methods for describe and print-object. Notice that we
include the class standard-object here, because it supplies methods for
these generic functions:

Class describe | print-object
standard-object primary | primary

lock primary | primary
ordered-lock-mixin | after none
simple-lock after none
null-lock none none
ordered-lock none none
ordered-null-lock | none none

How Do the Classes Interact?

The i_nteraction of classes happens via inheritance. The key to under-
standm_g how one class inherits from its superclasses is the class prece-
dence list of that class. We have catalogued what each class contributes
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to the whole. Now we can describe any one class in detail by looking at
its class precedence list and collecting the contributions of each class in
the list.

The class precedence list of each class includes the class itself and all
of its superclasses, ordered from most to least specific. Although all
user-defined classes have standard-object and t at the end of their class

precedence lists, we omit these system-supplied classes here, because
they are a given.

Class Class Precedence List

lock (lock)

ordered-lock-mixin | (ordered-lock-mixin)

simple-lock (simple-lock lock)

null-lock (null-lock lock)

ordered-lock (ordered-lock ordered-lock-mixin
simple-lock lock)

ordered-null-lock (ordered-null-lock ordered-lock-mixin
null-leck lock)

Examining Ordered Locks

We use the information gathered in the previous sections to take a clos-
er look at the class ordered-lock. What slots does it have? Look at each
class in its class precedence list to see what slots they provide. The fol-
lowing table shows that ordered-lock has three slots: level, owner, and
name. (The classes standard-object and t have no slots and are not
shown.)

Class | Slots
ordered-lock none
ordered-lock-mixin | level
simple-lock owner
lock name

How does the class ordered-lock implement the seize generic function?

Look at the classes in its class precedence list to see what methods they
provide for seize:



60 3. Developing a Simple CLOS Program: Locks

Class Method for seize
ordered-lock none
ordered-lock-mixin | before, after
simple-lock primary

lock none

When seize is called on an instance of ordered-lock, the following meth-
ods are called:

1. The before-method provided by ordered-lock-mixin, which checks
the validity of allowing this process to seize this ordered lock

2. The primary method provided by simple-lock, which stores the
process identifier in the owner slot

3. The after-method provided by ordered-lock-mixin, which updates
the *process-lock-table* to note that this process now owns this
ordered lock

We can go through this same procedure to inspect any lock class, to find
out what slots it has and how it implements any of these generic func-
tions.

3.11 THE EXTERNAL AND INTERNAL PERSPECTIVES

We originally intended to write the methods that would support the
locking protocol. In the course of developing the program, we defined
additional methods, a macro, and several functions. Here we categorize
each of these Lisp operations according to their purpose: Which are part
of the external interface, and which are internal?

External Locking Protocol

The external locking protocol consists of the constructors and the lock-
Ing operations. Client programs are expected to create their own locks

by using these constructors and to use seize and release to manipulate
the locks.

seize release
make-simple-lock make-null-lock
make-ordered-lock make-ordered-null-lock
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Support for Other Protocols

These methods are intended for external use, but they are not part of
the locking protocol. Both describe and print-object have protocols of
their own, which our methods follow.

describe print-object

Support for Using Locks

This macro is intended for external use. It is a syntactic extension to
the locking protocol.

with-lock

For Internal Use Only

We defined methods for generic functions, a macro, a special variable,
and several functions that are not part of the external interface to lock-
ing. They are used within the implementation of locking or for debug-
ging. The following are intended for internal use only:

lock-name lock-level
lock-owner (setf lock-owner)
setf-if get-process-locks
get-highest-lock add-process-lock
delete-process-lock *process-lock-table*

There is no guarantee to the clients of the locking program that inter-
nal functions like these will always exist or always work in the same
way they work now. Similarly, the definitions of the classes could be
modified later. For example, the names of the slots can change, and
slots can be added or removed. These purely internal details are in the
domain of the implementor, who is free to change them for any reason.

Distinguishing the Internal from the External

CLOS does not enforce the distinction between the external and internal
perspectives. It is up to the programmer to design a program with this
separation as a design goal. The documentation of the program should
advertise only the external interface.
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You can distinguish internal from external names with packages by
setting up a package for your program and exporting from the package
only those symbols that are intended to be external names. CoMMON
Lisp provides convenient ways for a program to use the exported sym-
bols of a package without encountering the other symbols; these tech-
niques include use-package and the single-colon syntax for symbols. Us-
ing packages is a general CommoN Lisp technique, and we do not cover
it further in this book.

3.12 GUIDELINES ON DESIGNING PROTOCOLS

We have been quite strict with our definition of the locking protocol.
This strictness benefits the users, who can depend on the protocol’s
working as advertised, and the implementor, who can modify the imple-
mentation without disrupting the user community. CLOS offers the
framework for defining a protocol, but it is the responsibility of the pro-
grammer to invent a protocol for a new application. In addition to rec-
ommending using packages, we provide these guidelines to help you
keep the internal functions separate from the external protocol:

o Restrict the user’s access to the internal data structures. Our describe
methods give a good English description of simple locks and ordered
locks. The output does not reveal the names of the slots, which is an
internal implementation detail. The default method for describe prob-
ably would display the names and values of the slots, but our meth-
ods avoid displaying that internal view of the locks.

o Provide constructor functions for creating the data structures. There
are two ways to create instances: use a constructor function or use
make-instance. In either case, the end result is the same, but a con-
structor function encourages users to think of the object in more ab-
stract, conceptual terms. In contrast, make-instance gives away details
of the implementation. First, it publicizes that the conceptual object
is implemented as an instance of a class. If make-instance were part
of the advertised protocol, it would be awkward to change some as-
pects of the implementation. It would be impossible to change the
name of the class or its initargs, or to switch to a defstruct represen-
tation of data, without changing the advertised protocol.

+ Design the protocol to anticipate the needs of the users. When the pro-
tocol off(_ars all the power and flexibility that is needed by the user
community, there is little temptation for people to delve into the im-
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plementation. But sometimes a protocol is sufficient for the majority
of its users, while frustrating a small number of users by the lack of
a needed feature. These users might be motivated to search for an in-
ternal function that supports that feature. If users begin to depend
on an internal function, the implementor is no longer free to change
it. The valuable distinction between interface and implementation be-
comes muddied.

For example, our original design for locking anticipates the needs of
programs (the operations for creating, seizing, and releasing) and the
needs of people (hence the methods that print and describe locks).
This design seems quite adequate on paper, but one day we might
find a user who wants to change the name of a lock. A persistent
user could investigate the implementation, find out that the name is
stored in a slot, and use the primitive slot-value to change the value
of that slot. (Even when there is no accessor for a slot, you can access
a slot by calling slot-value. We discuss this in "Accessors Versus slot-
value," page 72.)

o Allow the protocol to evolve to meet the reasonable needs of users. Re-
alistically, it is usually impossible to anticipate all needs of the users
in advance. When you hear of a need for a feature, you can consider
adding a new interface to the protocol. Some requests for features
are reasonable, such as changing the name of a lock or adding a "re-
set-lock" generic function to the locking protocol. You might judge
some as unreasonable, such as wanting to convert a simple lock into
an ordered lock. If you decide the feature should be available, you can
extend the protocol in a compatible and controlled way.

We have said that there are two choices for users who find the exist-
ing protocol useful but not exactly appropriate for their applications:
They can dive into the internals and make use of them at their own
risk, or they can submit a request to the implementor to add new fea-
tures. The first avenue is not recommended, and the second might in-
volve a delay or even a refusal by the implementor.

There is another alternative. You can offer a lot of flexibility and
power by designing the protocol so that other people can extend it. This
1s an entirely different approach; it entails designing and documenting a
set of classes to be building blocks for user programs. This goal is more
ambitious and requires careful design work to achieve, but the benefits
can be valuable. We add one final guideline that describes this approach.



« Design some protocols to be extensible by the user. The usual way for
a user to extend an existing protocol is to define new classes that in-
clude some combination of the existing classes. This way users can
take advantage of the existing modules and tailor them to their own
purposes. Users should not interfere with the workings of the classes
provided by the protocol; instead of writing methods for the adver-
tised classes, users write methods for their own customized classes.

This last approach paves the way for future extensions of the program,
whether those extensions are done by other in-house programmers or
by customers of the product.

Consider how this approach can be used by people who develop and
sell computer systems for others to program. The original developer
supplies documented modules that use knowledge of the internals of the
machine (including hardware and microcode) and exploit the machine’s
power to best advantage. The users can define new classes built on the
advertised modules and can customize the new, aggregate classes; they
are freed from writing the lower level of code themselves. Meanwhile,
the developers retain the freedom to change the underlying mechanism,
to track upgrades to the internals of the machine. Developers have only
two requirements: they must document the interface, and then adhere
to it.

One portion of the locking example illustrates leaving a hook in the
code for future extensibility. We defined a method for check-for-mylock
for the class simple-lock; the method signals an error if the process at-
tempting to seize a lock already owns that lock. It would be an easy
matter to define a new class of lock built on simple-lock that does not
signal an error in the mylock situation. We could define the new class
and give it exactly one method: a primary method for check-for-mylock
that does not do anything. This method would override the method for
simple-lock and thus prevent an error from being signaled. Note that, if
we had defined check-for-mylock as an ordinary function, it would not
be a hook, because clients could not specialize it for a given class.
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Programming with
Methods

The locking program illustrated the central features of CLOS. This
chapter describes additional useful techniques, including how to write
methods to do the following:

+ Represent information without storing it in slots

« Add behavior to an accessor generic function

» Specialize on more than one argument

« Specialize on CommoN Lisp types such as strings and arrays
« Specialize on an individual Lisp object

We use three examples in this chapter. The first example represents tri-
angles as instances of classes and demonstrates different ways to store
information associated with triangles. The second example is an installa-
tion program designed to install various software products on different
operating systems; shows how to write methods that specialize on more
than one argument. The third example is a program supporting remote
evaluation, which illustrates methods that specialize on CommoN Lisp
types and on individual Lisp objects.

65
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4.1 IMPLEMENTATION CHOICES: METHODS VERSUS SLOTS

CLOS supports more than one way to represent certain kinds of infor-
mation associated with an instance or a class. This section introduces
the concept of a shared slot and discusses the pros and cons of repre-
senting information in slots versus in methods.

Local and Shared Slots

There are two kinds of slots. A local slot stores information about the
state of a particular instance. Each instance maintains its individual
copy of the slot with its own value. This is the default kind of slot. All
the slots mentioned previously in this book are local slots.

A shared slot stores information on the state of the class as a whole.
There is only one value of a shared slot; it is associated with the class
and shared by all instances of the class. If one instance changes the val-
ue of the shared slot, the new value will be seen by all instances if they
read the slot.

For example, we might define a class named triangle. Each instance
stores the length of its three sides in local slots named side-a, side-b,
and side-c. These must be local slots, so that each instance can keep
track of its own dimensions.

Suppose the triangle class is one of several classes in a program that
handles geometric shapes. The shape protocol states that the generic
function number-of-sides returns the number of sides of a given shape.
For the triangle class, we can store that information in a shared slot
named number-of-sides and provide a reader method for it. A shared
slot is appropriate, because all instances of the triangle class have the
same number of sides.

triangle class
number-of-sides 3|

instance instance
side-a 3 side-a 12
side-b 4 side-b 9
side-¢ 5 side-¢ 15

Figure 4.1 Local and shared slots.
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Figure 4.1 shows that each instance stores its individual values for
the local slots side-a, side-b, and side-c, but there is only a single value
for the shared slot number-of-sides. Local slots are stored inside each
instance, and shared slots are stored inside the class itself.

The defclass form defines the slots and controls whether the slot is
local or shared. The :allocation slot option specifies whether a slot is
local or shared. The default is :allocation :instance, which means the
slot is local. To specify that a slot should be shared, you give the
:allocation :class slot option.

The following defclass form defines three local slots and one shared
slot for the triangle class:

(defclass triangle (shape)

((side-a :accessor side-a :initarg :side-a)
(side-b :accessor side-b :initarg :side-b)
(side-c :accessor side-c :initarg :side-c)
(number-of-sides :reader number-of-sides

:initform 3
:allocation :class)))

The reader number-of-sides can be used on any instance of triangle.
The reader method returns the value of the slot named number-of-sides,
which is shared by all instances of the triangle class.

Useful Triangle Functions

1n the examples that follow, we label each angle of the triangle accord-
Ing to its opposite side. Angle-A is opposite side-a, and adjacent to side-b
and side-c. Figure 4.2 shows how the angles and sides are related to one
another.

Figure 4.2 Angles and sides of a triangle.

Here_we define two useful functions for dealing with triangles, which
we use in the examples that follow:
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;;:; Return the area of a triangle, given three sides.
;;; Algorithm is: area = ab(sin C)/2
(defun area-of-triangle (a b c)
(let ((angle-C (three-sides-to-angle c a b)))
(* a b (sin angle-C) .5)))

;7:; Return the angle A between adjacent sides b and ¢
;7+ and opposite side a, given all sides of a triangle
;:: Law of Cosines: a*2 = b*2 + ¢c*2 - 2bc(cos A)
(defun three-sides-to-angle (a b c)
(acos (/ (- (+ (expt b 2) (expt c 2))
(expt a 2))
(* 2 bc))))

We expand on the triangle example in "Example of Redefining CLOS
Elements," page 144.

Representing Information About an Instance

In the shape program, we might need to determine the area of a given
shape. There are two ways to represent the area of a shape: calculate it
in a method, or store the area in a local slot. For example, here are the
ways to represent the area of a triangle:

Method Define a method that calculates the area based on the
lengths of the sides of the triangle.

;:; Return the area of a triangle.
(defmethod area ((tri triangle))
(area-of-triangle (side-a tri)
(side-b tri)

(side-c tri)))

Local slot Define a local slot named area that stores the area of
each triangle and a reader method for the slot.

(defclass triangle (shape)

((side-a :accessor side-a :initarg :side-a)
(side-b :accessor side-b :initarg :side-b)
(side-c :accessor side-c :initarg :side-c)
(number-of-sides :reader number-of-sides

tinitform 3
tallocation :class)
(area :reader area :initarg :area)))
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We must calculate the area when the triangle is first
created. One effective way to do this is to define a con-
structor called make-triangle, which initializes the area:

(defun make-triangle (side-a side-b side-c)
(make-instance ’triangle
:side-a side-a
:side-b side-b
:side-c side-c
:area (area-of-triangle
side-a side-b side-c)))

Since many programs need to do initialization such as
this, CLOS provides a technique especially intended for
this purpose, called initialization methods; we discuss
them in "Controlling Initialization with Methods," page
159.

It is also necessary to recalculate the area whenever any
of the side lengths change, which we demonstrate in
"Defining Auxiliary Methods for Accessors," page 71.

Regardless of which implementation choice you make, the client gets the
area the same way: by calling the area generic function. The choice of
internal representation is up to the programmer. The effects of using a
method to calculate the area each time are that: less storage space is
needed and object-creation and updating of the side length are faster,
but the area query is slower. The effects of storing the area in a slot
are that: the area query is faster, but more storage space might be
needed, and object-creation and updating of the side length are slower.

Representing Information About a Class

We have already mentioned the need to represent information associat-
ed with a class, such as the number of sides of triangles. CLOS offers
two ways to do this:

Method Define a method that returns the information. The
number of sides is "stored" only in the method body and
not in a slot.

(defmethod number-of-sides ((tri triargle))
3)
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Shared slot Define a shared slot and a reader method for the generic
function number-of-sides. The two defclass forms for
triangle given earlier show how to define a shared slot
(use the :allocation :class slot option) and a reader
method (specify the :reader number-of-sides slot option).

Here the tradeoff is between speed of the query and the convenience of
updating the information associated with the class. When a method
stores the information, the query is probably faster, because no slot ac-
cess is required. This technique might also save storage space, since the
information is stored in one method, rather than in a slot and a reader
method. However, the only way to change the information is to redefine
the method. This approach works, but it requires programming (locat-
ing the method’s definition, editing it, and compiling it), rather than
just using a program (calling a writer generic function). In some appli-
cations, you can reasonably assume that the information associated with
a class will never change, so updating is not a problem. For example, we
know that the number of sides of a triangle will always be 3, and there
is no need ever to update that information. In other contexts, however,
the information associated with the class might need to be changed.

When the information is stored in a shared slot, you can conveniently
change it by using a writer generic function. However (depending on
the CLOS implementation), the query might be slower and more stor-
age space might be used.

4.2 PROGRAMMING WITH ACCESSORS

This section describes how to modify the behavior of an accessor generic
function and discusses the various ways to access slots.

Automatically Generated Accessors

By giving the :accessor slot option to defclass, you ask CLOS to gener-
ate a method for a reader generic function and a method for a writer
generic function. The reader method simply returns the value of the
slot, and the writer method writes a new value into the slot.

These are primary methods that behave just like any other primary
method, which means you can write auxiliary methods to perform addi-
tional computation. That is, you can define before-methods and after-
me_thods to augment the behavior of primary methods for reader and
writer generic functions.
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Defining Auxiliary Methods for Accessors

Here we continue to use the triangle example. Recall that the definition
of the triangle class gives the :accessor slot option to generate methods
for a reader named side-a and the corresponding writer named (setf
side-a).

Earlier, we mentioned the possibility of storing the area of a triangle
in a slot and recalculating the area every time a side length of the trian-
gle changes. To use this approach, we need a method to run every time
a new value is stored in any of the slots side-a, side-b, or side-c. We
can do this by defining after-methods for the writer generic functions
(setf side-a), (setf side-b), and (setf side-c).

You can use defmethod to write an auxiliary method for a reader
generic function or a writer generic function. The first argument is the
name of the generic function, which for a reader is a symbol, and for a
writer is a list such as (setf symbol). In methods for writer generic
functions, the first parameter in the lambda-list is the parameter for the
new value to be written into the slot. For example:

(defmethod (setf side-a) :after (new-length (tri triangle))
(setf (area tri)
(area-of-triangle new-length
(side-b tri)
(side-c tri))))

This is an after-method, which runs after the primary method for (setf
side-a). This method calculates the area of the triangle and stores it in
the area slot every time the writer function (setf side-a) is called. We
would need to write similar after-methods for (setf side-b) and (setf
side-c) to ensure that the area is updated whenever any of the side
lengths change.

Defining Primary Methods for Accessors

The :accessor, :reader, and :writer slot options are convenience fea-
tures of CLOS. You could implement primary methods for reading and
writing a slot yourself, by using defmethod. The body of a reader method
would use the primitive slot-value to read the value of the slot, where-
as a writer method would use setf with slot-value.

For example, in our previous definition for the triangle class, we
gave the :accessor option to define a reader and writer for side-a. Al-
ternatively, we could define primary methods for the readers and writ-
ers by hand.
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;:; Defining the reader side-a
(defmethod side-a ((tri triangle))
(slot-value tri ’side-a))

;:: Defining the writer (setf side-a)
(defmethod (setf side-a) (new-side-a (tri triangle))
(setf (slot-value tri "side-a) new-side-a))

Usually, there is no advantage to defining a primary method of an ac-
cessor by hand, because in almost all cases you want the primary
method simply to read or write the value of the slot. When you need to
do something special, you can provide a before-method or after-method
to work in conjunction with the primary method, rather than providing
a special-purpose primary method.

Accessors Versus slot-value

The implementation of primary methods for accessors (regardless of
whether the method is automatically generated by CLOS or is defined
by hand) is done in terms of slot-value. You can read the value of any
slot with slot-value, and you can write the value of a slot by using setf
with slot-value. It is important to understand the difference between
using slot-value and using an accessor.

Clients of a program are expected to use accessors to read and write
slots, because the accessors are usually the advertised interface. In con-
trast, slot-value is the underlying implementation of accessors and is
not intended to be used in other contexts. To call slot-value, you need
to know the name of the slot, which is strictly an internal detail of the
program. Consider what happens if the developer changes the internal
representation of that information by changing the name of the slot or
by storing the information in a method instead of a slot: presumably the
developer defines new methods for the generic functions to replace the
accessor methods, so callers of the advertised generic functions continue
to work. However, any callers of slot-value for that slot will be invali-
dated.

slot-value accesses the slot directly, without calling any accessor
methods. This is a disadvantage if the program depends on accessor
methods to do necessary work related to accessing the slot. Recall that
the triangle example uses after-methods for the writers of the side
length slots to update the area; if you use setf of slot-value to write
the value of a side length, the value of the area slot will be incorrect be-
cause no accessor methods will be called.
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-

You should use slot-value for two purposes: if you want to define an
accessor by hand, or if you want to access a slot without calling any ac-
cessor methods. The latter use of slot-value can be helpful when debug-

ging a program.

Using with-accessors and with-slots

Another way to access slots is to use with-accessors or with-slots, two
macros that allow you to access slots by using variable names. Within
the body of with-accessors, using the variable has the same effect as
calling the corresponding accessor generic function. In contrast, with-
slots translates use of the variable to a call to slot-value, S0 no acces-
sor methods are called.

The purpose of these macros is to simplify bodies of code that access
slots frequently, by supporting a shortcut syntax. Thus, using with-
accessors is a shortcut for calling the accessors, and using with-slots is
a shortcut for calling slot-value. Using these macros can result in more
concise code, especially when the bodies of the methods use either acces-
sors or slot-value frequently.

In the triangle example, we might need a method for returning angle
A, which is opposite to side a, and adjacent to sides b and c. Here, we
show two equivalent ways to access the sides.

Calling the readers to get the sides:

(defmethod angle-A ((tri triangle))
(three-sides-to-angle (side-a tri)
(side-b tri)
(side-c tri)))

Using with-accessors to get the sides:

(defmethod angle-A ((tri triangle))
(with-accessors ((a side-a)
(b side-b)
(c side-c))
tri
(three-sides-to-angle a b ¢)))

You can also write the value of a slot by using setq or setf with the
. variable. The following table shows how variables can be used in the
" body of the with-accessors form in method shown:
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This Form Translates to This Form

a (side-a tri)
(setq a value) | (setf (side-a tri) value)
(setf a value) | (setf (side-a tri) value)

The with-accessors macro requires you to specify a variable (such as a)
for each accessor (such as side-a). Although you can specify that the
variable should be the same symbol as the accessor, there is no brief

syntax for it; you always have to list both the variable and the accessor
names.

The with-slots macro does have a brief syntax: You list the slots you
want to access, and then you can access them by their names. Here we

show two equivalent ways to access the slots directly—calling slot-value
and using with-slots:

;:; Using slot-value to access the slots
(defmethod angle-A ((tri triangle))
(three-sides-to-angle (slot-value tri ’side-a)
(slot-value tri ’‘side-b)
(slot-value tri ’‘side-c)))

;:; Using with-slots to access the slots
(defmethod angle-A ((tri triangle))
(with-slots (side-a side-b side-c)
tri
(three-sides-to-angle side-a side-b side-c)))

The following table shows how variables can be used in the body of the
with-slots form in the method shown:

This Form Translates to This Form

a (slot-value tri ‘side-a)
(setq a value) | (setf (slot-value tri ’side-a) value)
(setf a value) | (setf (slot-value tri ‘side-a) value)

Note that, when you use with-slots or with-accessors, the instance
form gets evaluated only once.
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Reading Unbound Slots

If a slot is not initialized, and no value has been stored in it by means
of a writer, the slot is unbound. If you try to read the value of an un-
bound slot, an error is signaled.

The default behavior (signaling an error) is supported by the generic
function slot-unbound. That is, if you try to read an unbound slot,
CLOS calls the exception handler slot-unbound. The generic function
slot-unbound has a system-supplied default method that signals an error;
you can specialize this generic function if you want to change what hap-
pens when unbound slots are read in instances of a certain class.

4.3 MULTI-METHODS

Many object-oriented programs can be written with methods that spe-
cialize only one parameter. However, sometimes it is useful to write
methods that specialize more than one parameter. These are called mul-
ti-methods.

The technique of using multi-methods is intended for operations
whose implementation truly depends on the type of more than one ar-
gument,

We introduce multi-methods by discussing an installation scenario.
Suppose a company sells various software products, each of which can
run on a variety of operating systems. The installation procedure de-
pends on the type of the software product and on the type of the oper-
ating system. This company wants to provide a generic installation pro-
gram to automate the installation process.

Currently, the company supports two software products, Life and
Adventure, on two operating systems, GENERA and Unix. The company
plans to support additional software products and operating systems in
the future, so the installation program should be extensible. In this ex-
ample,_ we use the following representation of the software products and
operating systems:

» The software products are represented by the classes life and
adventure

« All software products are built on the class basic-product

* The operating systems are represented by the classes genera and unix

« All operating systems are built on the class basic-os
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Checking Arguments with Multi-Methods

We want to provide one top-level function for installing any of our sup-
ported products on any of our supported operating systems. We can do
this with a generic function install, which expects a software product
as its first argument and an operating system as its second argument:

(defgeneric install (software-product operating-system)
(:documentation "Installs software on the operating system."))

Method 1 is applicable when both arguments are valid; that is, the 'ﬁrst
argument is of the type basic-product, and the second argument is of
the type basic-os:

;i Method 1
(defmethod install ((sw basic-product) (os basic-os))

body)

Method 1 is a multi-method; it specializes two parameters. This method
is applicable only when both arguments are valid. The body of this
method will perform an installation. (We leave the body of the method
blank for now.)

What if the user calls install with invalid arguments? That is, what
if the first argument is not a software product, or the second argument
is not an operating system, or both? CLOS will look for applicable
methods, find none, and signal an error along the lines of "No applica-
ble method."”

Such an error message does not make it clear whether the error was
caused by a bug in the program or by the wrong kind of input given by
the user. For an installation tool, we should give the user a more infor-
mative error message. We can supply three methods to do this job.

/i; Method 2
(defmethod install ((sw basic-product) non-os)
(error "Cannot install because ~A is not
a recognized operating system." non-os))

ii; Method 3
(defmethod install (non-product (os basic-os))
(error "Cannot install because ~A is not a
recognized software product."” non-product))
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;;: Method 4
(defmethod install (non-product non-os)
(error "Cannot install because ~A is not a
recognized software product and ~A is not
a recognized operating system."
non-product non-os))

We intend that, for any pair of arguments, only one method is called. If
both arguments are valid, method 1 should be called to perform the in-
stallation. Otherwise, the most appropriate method of methods 2, 3, and
4 should be called, to give an informative message.

The methods are correctly written to fulfill their intended purposes.
Since they are all primary methods, we know that only the most specific
applicable method is called. CLOS selects that method by first finding
the set of applicable methods, and then ranking these methods in order
of precedence. The next two sections discuss the applicability and prece-
dence order of multi-methods.

Applicability of Multi-Methods

CLOS allows methods for the same generic function to specialize any of
the required parameters. The methods for install take advantage of
that flexibility:

Method | Lambda-list

Method 1| ((sw basic-product) (os basic-os))
Method 2 | ((sw basic-product) non-os)
Method 3 | (non-product (os basic-os))
Method 4| (non-product non-os)

When install is called, CLOS looks for the applicable methods. A
method is applicable if each specialized parameter is satisfied by the cor-
responding argument to the generic function. "Satisfied" means that the
argument is of the type of the parameter specializer; it is an instance of
the class itself or an instance of a subclass.

An unspecialized parameter is equivalent to the class t being the pa-
rameter specializer. Since all objects are of type t, an unspecialized pa-
rameter is always satisfied by the argument. Thus, method 4 is applica-
ble for any two arguments, no matter what their types.

Suppose install is called with two valid arguments. Here, *life* is
an instance of life, and *genera* is an instance of genera.
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;;; Here install is called with two valid arguments.
(install *life* *genera*)

Both methods 1 and 2 are applicable, as seen by the following tests:

;+: Method 1 is applicable because these forms are true.
(typep *life* ’‘basic-product)
(typep *genera* ‘basic-os)

;;; Method 2 is applicable because these forms are true.
(typep *life* ’‘basic-product)
(typep *genera* ‘t)

Similarly, methods 3 and 4 are applicable:

;;; Method 3 is applicable because these forms are true.
(typep *life* ‘t)
(typep *genera* ’'basic-os)

;s Method 4 is applicable because these forms are true.
(typep *life* ‘t)
(typep *genera* 't)

Earlier, we stated that a method is applicable if each specialized param-
eter is satisfied by the corresponding argument to the generic function.
This rule holds for multi-methods too. We can clarify this statement by
noting that all required parameters must be satisfied, and that any un-
specialized required parameters are treated as though they had the class
named t as their parameter specializers.

Rule of applicability of multi-methods:

A method is applicable if each of its required parameters is sat-
isfied by the corresponding argument to the generic function.

An unspecialized required parameter is equivalent to a parame-
ter that specializes on the class named t.

When CLOS finds more than one applicable primary method, only the
most specific one is called. Thus, CLOS must rank the applicable meth-
ods in order of precedence. We continue this example and rank methods
1 through 4 in order of precedence.
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Precedence Order of Multi-Methods

CLOS ranks two applicable methods in order of precedence by consider-
ing the required arguments of the method from left to right, with re-
spect to their parameter specializers. Mathematicians call this lexico-
graphic order.

Here, we show the class of the parameter specializer of the first re-
quired parameter, for the four methods:

Method | First Parameter
is Specialized by

Method 1| basic-product
Method 2 | basic~product
Method 3 | t
Method 4| t

The class precedence list of the corresponding argument to the generic
function determines which of these classes is more specific. The class of
the first argument, *1ife*, is 1ife, and its class precedence list is

(life basic-product t)

Since basic-product is more specific than t, methods 1 and 2 are more
specific than methods 3 and 4. To rank the precedence of method 1 ver-
sus method 2, CLOS proceeds to the next required parameter and com-
pares the pair of parameter specializers:

Method | Second Parameter

is Specialized by

Method 1
Method 2

basic-os
t

The class of the second argument, *genera*, is genera, and its class
precedence list is

(genera basic-os t)
Since basic-os is more specific than t, method 1 is more specific than

metl_lod 2. Using the same procedure, we find that method 3 is more
specific than method 4. Thus, the precedence order of the methods is

(method-1 method-2 method-3 method-4)

J}lst by looking at the lambda-lists of the methods, it probably feels
right that method 1 is the most specific (because it specializes both pa-
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rameters), and that method 4 is the least specific (because it does not
specialize either parameter). It is not intuitively obvious, however,
which of methods 2 and 3 is more specific:

Method | Lambda-list

Method 2 | ((sw basic-product) non-os)
Method 3| (non-product (os basic-os))

CLOS ranks method 2 as more specific than method 3 because of the
left-to-right order for comparing parameter specializers. That is, the or-
der of the parameters in the lambda-list affects the precedence of the
methods. Since the leftmost parameter specializer of method 2 is more
specific than the leftmost parameter specializer of method 3, method 2
is more specific than method 3. The remaining parameter specializers
are not considered.

The left-to-right precedence order of parameters is an arbitrary de-
fault. You can change it by using the :argument-precedence-order option
to defgeneric; see "Summary of Method Inheritance,”" page 98.

The Implementation of install

Usually, the installation of a software product requires several distinct
steps, which must be performed in a certain order. We might find that
all installations consist of four separate steps:

1. Restoring the software from tape

2. Compiling the software system

3.  Configuring the site to know about the new software
4.  Verifying the installation of the software product

We can implement install to call four generic functions. This frame-
work makes it convenient to write code in sharable modules.
/i Method 1
(defmethod install ((sw basic-product) (os basic-os))
(restore-product sw os)
(compile-product sw os)
(configure-site sw os)
(verify-product sw os))

I—_Iere we consider what methods are needed for each of the four installa-
tion operations.
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This probably uses a system-dependent function for restor-
ing data from tape. Since this operation depends on only
the type of operating system, it can be implemented by one
primary method for each type of operating system:

(defmethod restore-product (sw (os genera)) body)
(defmethod restore-product (sw (os unix)) body)

The sw argument is used for describing which product to
restore from tape. The only part of restore-product that
depends on both the type of the product and the type of
the operating system is the pathname where the source file
should be stored. The bodies of the restore-product meth-
ods call get-source-pathname for this information:

(defgeneric get-source-pathname (product os)
(:documentation "Returns a string."))

(defmethod get-source-pathname ((sw life) (os unix))
"/bin/games/life.lsp")

(defmethod get-source-pathname ((sw adventure) (os unix))
"/bin/games/adventure.1lsp") :

(defmethod get-source-pathname ((sw life) (os genera))
"sys:games;life.lisp")

(defmethod get-source-pathname ((sw adventure) (os genera))
"sys:games; adventure.lisp")

This operation can probably be done with one default
method.

(defmethod compile-product (sw os)
(compile-file (get-source-pathname sw os)))

This step configures the site to understand about the new
software package. It might include updating some configu-
ration files, such as designating a location for storing any
error messages generated by the software. This step proba-
bly depends on. both the type of software product and the
type of operating system:
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(defmethod configure-site ((sw life) (os genera)) body)
(defmethod configure-site ((sw adventure) (os genera)) bod
(defmethod configure-site ((sw life) (os unix)) body)
(defmethod configure-site ((sw adventure) (os unix)) body)

Verify This runs a test suite on the software product to ensure
that the installation was successful. Since the internal tests
work the same way for a given software product regardless
of the type of operating system, the methods specialize on-
ly the software product parameter:

(defmethod verify-product ((sw life) os) body)
(defmethod verify-product ((sw adventure) os) body)

At this point, the design of the program is done and only the implemen-
tation remains. We have sketched out an implementation based entirely
on primary methods. It might happen that this sketch does not account
for every piece of the installation. If we identify behavior that must be
added to this sketch, we can always use before- and after-methods.

This design makes for a reasonable protocol. To add support for a
new software product or another operating system, we need only imple-
ment methods for a subset of the installation operations. This design ef-
fectively separates the complexities of the operating system from the
software product:

+ We could add a new software product by defining methods for
configure-site, verify-product, and get-source-pathname

« We could support a new operating system by defining methods for
configure-site, restore-product, and get-source-pathname

4.4 METHODS FOR COMMON LISP TYPES

CLOS provides classes corresponding to some (but not all) of the stan-
dard Common Lisp types. The name of such a class is the same as the
name of the type. For example, there is a class named array correspond-
Ing to the type array. These classes are provided for a single reason: to
enable you to write methods that specialize on Common Lisp types.
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Classes Corresponding to COMMON LISP Types

We have already seen one example of a class corresponding to a Com-
MON LisP type—the class t, which corresponds to the type t. The class t
appears as the last (least specific) class in all class precedence lists, in-
cluding classes defined by users and classes provided by CLOS.

Table 4.1 lists the classes corresponding to Common Lisp types and
the class precedence list of each class. This table is adapted from "Com-
mon Lisp Object System Specification” with permission from the au-
thors.

Class Class Precedence List

array (array t)

bit-vector | (bit-vector vector array sequence t)
character | (character t)

complex (complex number t)

cons (cons list sequence t)

float (float number t)

integer (integer rational number t)

list (list sequence t)

null (null symbol list sequence t)
number (number t)

ratio (ratio rational number t)
rational (rational number t)

sequence (sequence t)

string (string vector array sequence t)
symbol (symbol t)

t (t)

vector (vector array sequence t)

Table 4.1 Precedence of classes corresponding to CoMmMoN Lisp types.

These classes have multiple inheritance. The class/subclass relation-
ships among them parallel the type/subtype relationships described in
Steele’s Common LISP: The Language. Consider the type vector:

* The type vector is a subtype of sequence and array
* The class vector is a subclass of sequence and array

For each class corresponding to a CommoN Lisp type, if Common LISP:
The Language specifies a type/subtype relationship, the class/subclass re-
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lationship is determined accordingly. In some cases, however, no
type/subtype relationship was specified, and the CLOS working group
decided on the precedence order. For example, the type string is a sub-
type of both array and sequence, but CommoN LisP does not specify a
type/subtype relationship between array and sequence. The CLOS work-
ing group decided that array should precede sequence in the class prece-
dence list for string,

There must be a completely specified class precedence list for each
class, in order for CLOS to choose the precedence of methods. One rea-
son why the CLOS working group did not specify that all CommoN Lisp
types should have corresponding classes is that some types have ill-
defined relationships to other types, and it would be difficult to decide
the precedence orders of the types. For example, consider what happens
if the argument is the instance 7, and two methods are applicable: one
specializes on (integer 0 10) and the other specializes on (integer 5
15)—which method should be deemed more specific? Since the semantics
of some types do not lend themselves to a strict precedence order, those
types do not have corresponding classes.

If a CommoN Lisp type does not have a corresponding class, you can-
not define a method that specializes on that type. CLOS does not sup-
port classes for type specifiers that are lists, such as

(integer 0 10)
(string 25)

(not number)
(vector (mod 256))

Built-in Classes

Usually, classes corresponding to CommoN LisP types are implemented
as "built-in classes,” which means they do not have all the properties of
classes defined with defclass. Built-in classes are implemented in a spe-
cial, system-dependent way, to take advantage of a machine’s architec-
ture, or for other reasons. For the most part, it does not make sense to
implement these classes with defclass, because they do not neatly fit in-
to that model.

The decision of how to implement classes corresponding to CoMMON
Lisp types is made by each CLOS implementation. Any of these classes
could be implemented as a built-in class or as a user-defined class.

Although built-in classes follow the CLOS model in some ways (they
have multiple inheritance; they have instances: they inherit from the
class t, and you can define methods that specialize on them), they di-
verge from the model in other ways. These are the significant differ-
ences between built-in classes and user-defined classes:
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Structure. The structure of a user-defined class is in the form of slots.
However, the internal structure of built-in classes is usually not rep-
resented by slots. For example, the value of a symbol is probably not
stored in a slot in most CLOS implementations.

Creation of instances. To create instances of user-defined classes, you
can use make-instance. However, CLOS does not allow using make-
instance to create instances of built-in classes. You use an indepen-
dent mechanism for creating instances, such as using the cons func-
tion to create an instance of cons.

Use as a superclass. CLOS does not allow you to include a built-in
class as a direct superclass of any user-defined class. The only excep-
tion to this rule is the class named t, which is automatically a super-
class of every class.

Inheritance from standard-object. Recall that standard-object is im-
plicitly included as a superclass of user-defined classes. In contrast,
standard-object is not a superclass of built-in classes. This distinction

makes it possible for implementations to provide default methods in-
tended for user-defined classes only.

The CLOS specification defines a set of requirements for implementa-
tions to follow with regard to built-in classes, but it also allows imple-
mentations to support extensions in this area. Here are two extensions
that you might encounter:

CLOS implementations may provide classes for other ComMoN Lisp
types, in addition to those required. This might include classes for
pathname, package, or others. All such classes must adhere to the
precedence implied by their type/subtype relationships defined in
Steele’s Common LISP: The Language.

As mentioned earlier, CLOS implementations can choose to imple-
ment the class for any ComMoN LisP type either as a built-in class
(which follows the restrictions noted) or as a user-defined class. For
example, a CLOS implementation is free to define the class string by
using defclass. When this is done, you can do anything with the class
string that you can do with other classes defined by defclass.

Note that programs that depend on extensions to CLOS are not readily
portable to other CLOS implementations.
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Examples of Methods for COMMON LISP Types

We can illustrate defining methods for Common Lisp types by imple-
menting a simple network protocol for performing remote evaluation.
This program enables a user to send a Lisp form to another machine
over a network and receive the result of evaluating that form. The ma-
chine that sends the form is called the client machine, and the machine
that performs the evaluation and returns the result to the client is
called the server machine.

The portion of this program pertaining to CommoN Lisp types lies in
the sending and receiving of Lisp objects over the network. A Lisp ob-
ject lives in one Lisp world, and it is not possible or desirable to trans-
mit the actual object. Instead, the client machine encodes a Lisp object
into a representation suitable for sending over the network. On the oth-
er side, the server machine decodes the representation and creates or
obtains a LisP object equivalent to the object that was encoded. The re-
sult of the evaluation is then encoded by the server, transmitted, and
decoded by the client machine.

Figure 4.3 shows the interaction between the client and the server
machines during a remote evaluation.

Client Server
encoded forms

client

process

-—
encoded values

Figure 4.3 Remote evaluation.

' Decoding and encoding are analogous to the Lisp reading and print-
Ing operations: The Lisp reader takes a typed-in representation of an
object and generates a Lisp object; the printer takes a Lisp object and
generates a representation of it suitable for printing. Like the printer
and reader, the decoding and encoding methods preserve only the "sim-
ple” characteristics of objects. For example, the contents of an array are
encoded, but any fill pointer is not.

Thg implementation of encoding takes advantage of classes corre-
sponding to CommoN LisP types. The remote-evaluation program sup-
ports the transmission of simple Lisp objects, such as lists, integers,
characters, strings, symbols, and vectors. We provide methods for encod-
ing these objects; these methods specialize on the classes corresponding
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to the various types of objects. It is possible to extend this model to
send instances of user-defined classes as well, by providing encoding and
decoding methods for those classes.

Although the main point of this example is to show the encoding and
decoding, for the sake of completeness we also describe the top-level
functions that call the encoding and decoding generic functions.

A Sample Remote Evaluation Session

We begin by describing how to use the remote evaluation program. We
create a remote-eval-stream and call the remote-eval function to send
forms to the stream and receive the results. Finally, we close the
stream:

(setq *my-stream* (make-remote-eval-stream Server-machine))

(remote-eval *my-stream* "hello") => "hello”
(remote-eval *my-stream* ‘(+ 1 23)) => 24

(close *my-stream*)

The Top-Level Functions

make-remote-eval-stream creates a network connection to the server ma-
chine and returns a bidirectional binary eight-bit byte stream. Once the
stream has been created, a process is started on the server to run the
eval-server function (defined below). Closing this stream kills the server
process and closes the network connection. Since the implementation of
make-remote-eval-stream is necessarily specific to the operating system, it
is not given here.

remote-eval implements the client side; it sends a form to the server,
receives the result of evaluating that form, and returns the result. The
form is evaluated in the server’s environment, and any side effects hap-
pen in that environment. This example does not transmit printed out-
put, transmit multiple return values, or handle errors generated by the

| e\éz(ailliiation of the form on the server; any of these features could be
added.
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;i; This must be defined on the client machine.
(defun remote-eval (stream form)

(encode form stream)

(force-output stream)

;; Read the return value

;; The first byte is a control byte

(decode (read-byte stream) stream))

eval-server implements the server side; it continually reads forms sent
to it, evaluates the forms, and returns the results. When the stream is
closed, this process is killed.

;::; This must be defined on the server machine.
(defun eval-server (stream)
(loop (encode
(eval (decode (read-byte stream) stream))
stream)
(force-output stream)))

The Encoding and Decoding Protocol

The bulk of the program lies in the encoding and decoding of Lisp ob-
Jects. We shall use a simple protocol for this purpose. To encode an ob-
ject, we first transmit on the stream a control byte that declares the
type of object. (A control byte is an eight-bit byte.) We then encode and
transmit the representation of the object itself; the implementation of
this varies, depending on the type of object. When decoding, we read a
control byte from the stream; this byte indicates what type of object is
being transmitted. We then decode the bytes that follow and convert the
encoded representation into a Lisp object. The implementation of decod-
ing an object depends on the type of object.

The method for encoding any one kind of object (such as symbols)
works together with the method for decoding that kind of object. Those
methods must use the same technique for encoding and decoding. How-
ever, the methods for encoding and decoding another type of object
(such as characters) can use an entirely different technique for encoding
and decoding from the technique used for symbols. The only require-
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ment is that the decoding method for any given type of object must un-
derstand how the encoding method for that type of object works.
Our protocol consists of two generic functions:

(defgeneric encode (object stream)
(:documentation
"Encode object and send the result to stream."))

(defgeneric decode (code stream)

(:documentation
"Based on the code, read an encoded representation
from the stream, decode, and create an object."))

This is an extensible protocol; it is a straightforward matter to extend it
to support additional types of objects. To do so, we would supply meth-
ods for encoding and decoding. There is no need to change the code that
calls encode and decode. This is one clear benefit of using generic func-
tions instead of having the callers use a typecase to select the code for
encoding and decoding the various types of objects.

This example shows how to encode and decode a handful of types of
objects. Each type of object has a corresponding control byte. These con-
trol bytes are

(defconstant $positive-integer 1)
(defconstant $negative-integer 2)
(defconstant $character 3)
(defconstant $symbol 4)
(defconstant $string 5)
(defconstant $list 6)
(defconstant $vector 7)

Encoding Integers

To encode an integer, we send the control byte indicating positive or
negative integer, then the length of the integer, then the absolute value
gf the integer itself. The length of the integer is always sent in one
yte.
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(defmethod encode ((num integer) stream)
(cond ((minusp num)
(write-byte %$negative-integer stream)
(setq num (abs num)))
(t
(write-byte %positive-integer stream)))
(let ((n-bytes (ceiling (integer-length num) 8)))
(write-byte n-bytes stream)
(dotimes (i n-bytes)
(write-byte (ldb (byte 8 0) num) stream)
(setq num (ash num -8)))))

To decode integers, we will need one method for decoding positive inte-
gers and another method for decoding negative integers. The method
that decodes positive integers will be called when the code is $positive-
integer. That method will read the length of the integer and then the
integer itself; it can then create (read) the integer and be finished. The
next byte on the stream is a new control byte, which is the start of a
new encoded object.

By sending the length of integers in one byte, we have implicitly
placed a limitation on the value of integers transmitted: No value of num
for which (> (ceiling (integer-length (abs num)) 8) 255) is true can be
transmitted, which means the maximum integer length is 2040. Using
the definition of integer-length on page 224 of Steele’s Common LISP:
The Language, the maximum positive integer is (1- (expt 2 (* 8 255)))
and the most negative integer is the negative of that. The limit is there-
fore very large, a bit over 10 raised to the 614th power.

The decoding methods are given in the next section, "Methods for In-
dividual LISP Objects," page 94.

Encoding Characters

To encode a character, we send the control byte indicating character
and then the ASCII code of the character in the next byte. This method
sends only the character’s code, and ignores any font or bits.

) To allow for differences in the native character sets of the server and
client machines, we convert the character to its ASCII code when en-
coding, and convert it from ASCII to the corresponding code in the na-
tive character set when decoding. The function char-to-ascii is imple-
mentation dependent and is not provided here. It is necessary that char-
to-ascii return a value less than 256 so it will fit within an eight-bit

byte.
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(defmethod encode ((char character) stream)
(write-byte %character stream)
(write-byte (char-to-ascii char) stream))

Encoding Lists and Vectors

To encode a list or vector, we determine the appropriate control byte,
then call encode-sequence to send the control byte, the length of the se-
quence, and the encoded representation of each element of the sequence.

(defmethod encode ((list list) stream)
(encode-sequence list stream $list))

(defmethod encode ((vector vector) stream)
(encode-sequence vector stream %$vector))

(defun encode-sequence (seq stream code)
(let ((length (length seq)))
(write-byte code stream)
(encode length stream)
(dotimes (i length)
(encode (elt seq i) stream))))

The two methods call the encode-sequence function to do the sharable
part of the work. This is a modular design that uses an ordinary func-
tion instead of a generic function. There is no advantage in implement-
ing encode-sequence as a generic function in this context.

Encoding Strings

A string is a vector, so the method for encoding vectors is applicable for
strings, and it would work fine for them. However, we are going to pro-
vide a method for string for efficiency reasons. It is easy to optimize the
encoding of strings because we know that each element of a string is a
character and will fit in one byte. When we encode a string, there is no
need to encode each character of the string. In contrast, there is no way
of knowing what the elements of a vector are, so each element must be
encoded.

To encode a string, we send the control byte indicating string, then
the length of the string, then each character of the string. Any fill
pointers, bits, or fonts are not encoded.
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(defmethod encode ((string string) stream)
(let ((length (length string)))
(write-byte $string stream)
;; careful to allow strings greater than 256 chars
(encode length stream)
(dotimes (i length)
(write-byte (char-to-ascii (aref string i)) stream))))

When encode is called with a string as its first argument, two methods
are applicable: the method that specializes on string, and the method
that specializes on vector. To determine which method is more specific,
CLOS consults the class precedence list of string, which is

(string vector array sequence t)

Since the class string has precedence over the class vector, the method
that specializes on string is more specific than the method that special-
izes on vector.

Encoding Symbols

To encode a symbol and its package, we send the control byte indicating
symbol, the encoded representation of the symbol’s name, and the en-
coded representation of the symbol’s package. Note that the value, func-
tion definition, and any properties of the symbol are not transmitted.
Also, the package must exist on the server side.

(defmethod encode ((symbol symbol) stream)
(write-byte §symbol stream)
(encode (symbol-name symbol) stream)
(encode (package-name (symbol-package symbol)) stream))

Design and Efficiency Considerations

Note that the method for character is quite efficient; it sends one con-
trol byte, then the ASCII character code. In contrast, the method for
symbol results in a lot of overhead. That method sends the control byte
indicating symbol, then the encoded representation of the symbol’s
name, then the encoded representation of the symbol’s package. Table

4.2 shows the encoded representation of the symbol + in the package
lisp.
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Datum | Meaning

$symbol

$string

$positive-integer

length of the integer
length of the string

3 ASCII character code of +
$string

$positive-integer

length of the integer
length of the string

76 ASCII character code of L
73 ASCII character code of I
83 ASCII character code of §
80 ASCII character code of P
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Table 4.2 Encoding of the symbol + in the lisp package.

The encoded representation of symbols uses five control bytes. This is a
result of using encode on both the symbol’s name and its package. If
speed is important, we can devise a more efficient strategy for encoding
symbols, However, the current strategy has two benefits. First, it allows
for error checking on the decoding side: the decode method expects a
symbol to contain a string (the symbol’s name) followed by another
string (the symbol’s package). Second, this method calls the method
that specializes on string instead of duplicating the work accomplished
by that method.

The overall design of encoding and decoding is simple, modular, and
effective. This design easily accommodates improvements and additions
to the program in several areas:

» Tuning for greater efficiency

» Transmitting multiple return values

» Transmitting printed output

» Handling errors encountered in the evaluation of the form on the
server

» Extending this protocol for transmitting additional types of objects
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4.5 METHODS FOR INDIVIDUAL LISP OBJECTS

So far, we have seen methods that specialize on the class of the argu-
ments to the generic function. That is, the parameter specializers are
classes. Sometimes, it is useful to write a method that specializes on an
individual Lisp object. A method that specializes one of its parameters
on an individual Lisp object is called an individual method.

Applicability and Precedence of Individual Methods

Suppose you have an operation that works a certain way when the ar-
gument is a number, but should work differently if the argument is the
integer 0. Method 2 is an individual method. Its second parameter is
specialized on the integer 0. The parameter specializer is the list (eql
0).

;i; Method 1

(defmethod divide ((dividend number) (divisor number))

(/ dividend divisor))

;7; Method 2
(defmethod divide ((dividend number) (zero (eql 0)))
(error "Cannot divide by zero."))

The lambda-list of an individual method contains a parameter such as
(var (eql form))

The parameter specializer is (eql object), where object is the result of
evaluating the form. The form is evaluated only once, when the method
is defined.

When divide is called with 0 as its second argument, both methods
are applicable. The rule of applicability of individual methods follows.
Note that since the test for.applicability uses eql, method 2 is applicable
for only the integer 0, and not for 0.0.

Eule of applicability of an individual method:

For a parameter specializer of the form (eql object), the argu-
ment to the generic function satisfies the parameter specializer
if the argument is eql to the object. In other words, this expres-
sion must be true:

(eql argument 'object)
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Method 2 is more specific, as you would expect. The rule of precedence
of individual methods follows.

Rule of precedence of an individual method:

When two parameter specializers are compared, a parameter
specializer of the form (eql object) is always more specific than
a class.

Examples of Individual Methods

Consider the job of decoding the encoded representations of Lisp objects.
Each Lisp object is encoded and decoded according to its type, so it
makes sense to write separate methods for encoding and decoding each
different type of object.

The encoder has a Lisp object as its argument, so those methods can
specialize on the classes of objects. However, the decoder does not have
Lisp objects as arguments; instead it reads from a stream and is alerted
to the type of an object by the control byte preceding the object in the
stream. Thus, the decoder cannot supply methods that specialize on
classes, but it can use individual methods that specialize on each of
these control bytes.

The generic function decode is repeated here:

(defgeneric decode (code stream)

(:documentation
"Based on the code, read an encoded representation
from the stream, decode, and create an object."))

Each method for decode specializes its first argument, and exactly one
method is applicable for each different control byte. Recall that decode is
called with one byte as its first argument (this is the control byte) and a
stream as its second argument. The definition of remote-eval is repeated
here to illustrate how decode is called:

(defun remote-eval (stream form)
(encode form stream)
(force-output stream)
i+ Read the return value
;; The first byte is a control byte
(decode (read-byte stream) stream))
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Decoding Integers

We need two methods to decode integers, because the method for encod-
ing integers sends two different control bytes, depending on whether
the integer is positive or negative. The first method is applicable when
the first argument is the control byte indicating positive integer. Simi-
larly, the second method is applicable when the first argument is the
control byte indicating negative integer.

(defmethod decode ((code (eql %positive-integer)) stream)
(decode-integer stream))

(defmethod decode ((code (eql %negative-integer)) stream)
(- (decode-integer stream)))

(defun decode-integer (stream)
(let ((num 0)
(n-bytes (read-byte stream)))
(dotimes (i n-bytes)
(setqg num (dpb (read-byte stream) (byte 8 (* i 8)) num)))
num))

$positive-integer and %negative-integer are evaluated exactly once, at
the time these methods are defined.

The function decode-integer does the sharable part of the work; it is
called by both methods. There is no advantage in implementing decode-
integer as a generic function.

Decoding Characters

To decode a character, we read one byte and convert it from the ASCII
code to the corresponding character code in the native character set.
The function ascii-to-char is implementation dependent and is not pro-
vided here.

(defmthod decode ((code (eql %character)) stream)
(ascii-to-char (read-byte stream)))
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Decoding Lists and Vectors

To decode a list or vector, we read the length of the sequence,.then de-
code each element in the sequence. Again, we can use a function to do
the sharable part of the work.

(defmethod decode ((code (eql $list)) stream)
(decode-sequence stream ‘list))

(defmethod decode ((code (eql $vector)) stream)
(decode-sequence stream 'vector))

(defun decode-sequence (stream type)
(let* ((length (decode (read-byte stream) stream))
(seq (make-sequence type length)))
(dotimes (i length)
(setf (elt seq i)
(decode (read-byte stream) stream)))
seq))

Decoding Strings

To decode a string, we read the length of the string, then each charac-
ter of the string.

(defmethod decode ((code (eql %string)) stream)
(let* ((length (decode (read-byte stream) stream))
(string (make-string length)))
(dotimes (i length)
(setf (aref string i) (ascii-to-char (read-byte stream))))
string))

Decoding Symbols

To decode a symbol, we first decode the name and then decode the

package. Note that this method does not create a package if it does not
already exist.



98 4. Programming with Methods

;+; Does not create the package.
(defmethod decode ((code (eql $symbol)) stream)
(let ((code (read-byte stream)))
(when (/= $string code)
(error "The symbol’s name must be a string."))
(let ((symbol-name (decode code stream)))
(setq code (read-byte stream))
(when (/= $string code)
(error "The symbol’s package name must be a string."))
(let* ((pkg-name (decode code stream))
(pkg (find-package pkg-name)))
(when (null pkg)
(error "Package named ~A not found." pkg-name))
(intern symbol-name pkg)))))

4.6 SUMMARY OF METHOD INHERITANCE

The inheritance of methods involves two separate mechanisms. Both
happen automatically as part of the generic dispatch.

1.  Selecting the set of applicable methods
2. Ranking the applicable methods in order of precedence

To select the set of applicable methods, CLOS requires knowledge of the
arguments to the generic function, and the methods defined for the
generic function. The following general rule takes into account all kinds
of methods, including methods that specialize enly one parameter, mul-
ti-methods, and individual methods:

General rule of method applicability:

A method is applicable if each of its required parameters is sat-
isfied by the corresponding argument (arg) to the generic func-
tion.

Required Parameter I Test

(var (eql form)) (eql arg ’object)
(var class-name) (typep arg ’class-name)
var (typep arg ’t)
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In the first case, the object is obtained by evaluating form once, at the
time the method is defined. In the last case, the required parameter is
unspecialized, which is equivalent to being specialized on the class t.
Any argument satisfies an unspecialized parameter, because every Lisp
object is of the type t.

To rank applicable methods in order of precedence, CLOS requires
knowledge of the following:

o The set of applicable methods

o The class precedence list of the class of each required argument to
the generic function

o The argument precedence order of the generic function

When ranking the precedence of two methods, CLOS compares the pa-
rameter specializers of the methods. An unspecialized parameter is
equivalent to the class named t being the parameter specializer.

Normally, the argument precedence order is left to right, meaning
that CLOS starts by comparing the first (leftmost) parameter specializer
of method A to the first parameter specializer of method B. If the two
parameter specializers are different, CLOS uses the following rule to de-
termine which parameter specializer is more specific and ranks the
methods on that basis, without considering any other parameter spe-
cializers. If the two parameter specializers are the same, however, CLOS
cannot rank the precedence of the methods on that basis. CLOS pro-
ceeds to the next pair of parameter specializers, and so on, until it finds
a pair of parameter specializers that are different; then the methods are
ranked on the basis of that pair of parameter specializers.

If two methods have all the same parameter specializers, they must
have different qualifiers. In this case, it does not matter which method
is more specific.

Rule of ranking parameter specializers:

A parameter specializer of (eql object) is more specific than a
class.

When both parameter specializers are classes, they are ranked
according to the class precedence list of the class of the corre-
sponding argument to the generic function. The class precedence
list indicates which class is more specific than the other.
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Argument Precedence Order

The precedence of methods depends on the argument precedence order
of the generic function. By default, CLOS uses left-to-right argument
precedence order, which means the first argument (the leftmost) is
more important in ranking precedence than the following arguments.
You can use the :argument-precedence-order option to defgeneric to
specify a different order.

The argument precedence order is important when CLOS ranks two
methods that specialize different parameters or methods that specialize
more than one parameter. Consider the following methods:

;:; Method A
(defmethod install ((sw basic-product) non-os)
body)

77 Method B
(defmethod install (non-product (os basic-os))

body)

Method A specializes its first parameter but leaves its second parameter
unspecialized. Method B specializes its second parameter but leaves its
first parameter unspecialized. If we consider the first parameters in iso-
lation, method A is more specific, because any specialized parameter
takes precedence over an unspecialized one. However, if we consider the
second parameters in isolation, method B is more specific. The argu-
ment precedence order resolves this conflict by stating which of the ar-
guments should be considered first.
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Controlling the
Generic Dispatch

All the sample programs we have written so far rely on before-methods,
primary methods, and after-methods. We can call these techniques the
"core framework" of CLOS. This chapter describes how to use several
advanced techniques that expand the core framework or replace it en-
tirely.

5.1 THE CORE FRAMEWORK
In the core framework, the flow of control is as follows:

1. All applicable before-methods are called in most-specific-first order
2. The most specific applicable primary method is called
3.  All applicable after-methods are called in most-specific-last order

In the core framework, any values of before- or after-inethods are ig-
nored, and the generic function returns the values of the primary
method. If there is no applicable primary method, an error is signaled.

101
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5.2 DECLARATIVE AND IMPERATIVE TECHNIQUES

Within the context of the core framework, you declare the role of a
method (by its qualifier). We call this a declarative technique. You as-
sign a role to a method and rely on the generic dispatch procedure to
call the applicable methods according to their roles within the core
framework,

This declarative technique works well for programs that fit naturally
into the core framework. However, sometimes you need to control the
generic dispatch procedure more directly. CLOS offers some imperative
techniques that enable you to control explicitly which method is called
next. The imperative techniques are

« Providing an around-method to "wrap around" the core framework
« Calling a shadowed primary method

CLOS also provides additional declarative techniques, both involving a
departure from the familiar method roles of the core framework. You
can specify that the generic dispatch should support different method
roles and use a different framework entirely.

CLOS supplies a set of built-in frameworks, which are called method
combination types. The method combination type controls what method
roles are supported, the order in which the various kinds of methods
are called, and how the values of the generic function are generated.
You can either use one of the built-in method combination types or in-
vent a new one. Thus, the new declarative techniques are

+ Using a built-in method combination type
+ Inventing and using a new method combination type

5.3 AROUND-METHODS

An around-method expands the core framework by wrapping a layer of
code around it. An around-method usually performs some computation
and calls call-next-method to invoke the methods of the core framework.
To specify that a method is an around-method, include the keyword
:around as the method qualifier in the defmethod form.

Around-methods offer a new kind of power that can be useful. They
can set up an environment to be in effect during the execution of the
of_;her methods. For example, an around-method can set up a catch or
bind a special variable. An around-method can use with-lock to seize
and hold a lock while the other methods are called. Although you could
use a before-method to seize a lock and an after-method to release it,
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that would not have the same effect as using with-lock in an around-
method: using with-lock ensures that the lock is released even if an
abort occurs.

When only one around-method is applicable, CLOS calls that around-
method first and returns its values as the values of the generic function.
(This is an important distinction from before- and after-methods, whose
values are ignored.) If that around-method calls call-next-method, the
entire core framework is called, and call-next-method returns the values
of the core framework to the around-method.

Around-methods are different from the methods we have seen so far,
because around-methods control which method is called next. If an
around-method uses call-next-method, the "next method" is called. If an
around-method does not use call-next-method, however, no other meth-
ods are called. Thus, an around-method can prevent other methods from
being called.

In the general case, any number of around-methods can be applicable.
In summary, the generic dispatch works like this:

1.  CLOS calls the most specific around-method; its values are the val-
ues of the generic function.

2. When an around-method calls call-next-method

o If there are other applicable around-methods, the next most spe-
cific around-method is called, and its values are returned by
call-next-method.

+ If not, the entire core framework (before-methods, the primary
method, and after-methods) is called, and its values are returned
by call-next-method.

Example of an Around-Method

As a simple example, we might provide an around-method to keep track
of how long an installation process takes. The role of the around-
method is well suited to the task of timing an installation. The follow-
ing method is applicable to all supported products and operating sys-
tems, and its role in the generic dispatch ensures that it wraps around
f:he entire installation. This method ordering allows it to start the tim-
Ing before the other methods run, and finish the timing after the other
methods return.
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(defmethod install :around
((sw basic-product) (os basic-o0s))
(declare (ignore sw o0s))
(let* ((start-time (get-internal-real-time))
(result (call-next-method)))
(if (null result) ; normal completion
(format t "~&Installation completed in ~A seconds.”
(round (- (get-internal-real-time)
start-time)
internal-time-units-per-second))
(format t "~&Installation failed.™))
result))

The timing example illustrates some interesting aspects of around-
methods:

« This method uses the value returned by call-next-method. This shows
a means for communication between methods that we have not seen
in the core framework. The around-method uses the result of the
core framework to decide which output to produce, and then returns
the result. It is customary, although not required, for around-
methods to return the value or values of call-next-method.

o This method works correctly only if there is no other applicable
around-method. If there were a more specific around-method, it
would be called before this one, so this method would not be timing
the complete installation. This is one example of how around-methods
can be tricky; often, you need explicit knowledge of the other applica-
ble methods in order to write an around-method. Thus, using
around-methods can lead to nonmodular code.

+ This around-method specializes on two basic classes, yet it is the first
method called by the generic dispatch (since there are no other appli-
cable around-methods). An around-method allows you to define code
associated with less specific classes to perform some computation in
advance of the other kinds of methods provided by more specific
classes.

« Although this method always calls call-next-method, it is possible for
an around-method to choose not to call call-next-method. Therefore,
an around-method can prevent before-methods, the primary method,
and after-methods from being called. In contrast, a before-method
cannot prevent other methods from being called without using error
or another function that abandons the current computation.
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5.4 CALLING A SHADOWED PRIMARY METHOD

This section describes the second imperative technique. CLOS allows
you to expand the second step of the core framework: the calling of the
primary method. In the core framework, only the most specific primary
method is called. Any other applicable primary methods are "shadowed”
by the most specific one. However, the most specific primary method
can call call-next-method to invoke the next most specific primary
method. The shadowed method can return values, and its caller can con-
tinue to execute and make use of those values.

CLOS signals an error if a generic function is called and there is no
applicable primary method. Also, if a method calls call-next-method and
there is no next method, CLOS signals an error. You can use next-
method-p within the body of a method to find out whether there is an-
other applicable primary method.

Any primary method can call call-next-method, which results in the
calling of the next most specific primary method. Actually, a primary
method can call call-next-method more than once, and each time the
same "next method" is called.

5.5 USING A DIFFERENT METHOD COMBINATION TYPE

CLOS enables you to specify that the generic dispatch should use an en-
tirely different framework and recognize different method roles. Each
generic function has a method combination type, which defines the
framework that the generic dispatch follows. The method combination
type controls

» The method qualifiers that are supported and what their roles are
» The order in which the methods are called
» The way the values of the generic function are generated

At one point in the generic dispatch, CLOS takes the set of applicable
methods and combines them into the Lisp code that is the implementa-
tion of the generic function. This Lisp code is called the effective method.
CLOS calls the effective method and returns its values to the caller of
thg generic function. The method combination type controls how the ap-
plicable methods are combined into the effective method.
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The Default Method Combination Type: standard

The default method combination type is named standard. It supports
methods with no qualifiers (primary methods) and methods with any
one of these qualifiers: :before, :after, or :around. The standard method
combination type supports using call-next-method in around-methods
and in primary methods. We have already discussed the order in which
the methods are called and how the values are generated, and we sum-
marize this information in "Summary of the Standard Method Combi-
nation Type,” page 113.

We can give a rough idea of the effective method of a generic func-
tion that uses standard method combination. Suppose the set of applica-
ble methods includes two before-methods, two primary methods, and
two after-methods. In this example, there are no applicable around-
methods, and call-next-method is not used. The effective method calls
the before-methods in most-specific-first order, the most specific primary
method, and the after-methods in most-specific-last order. The values of
tﬁe primary method are returned. Thus, the effective method resembles
this:

(multiple-value-progl
(progn (most-specific-before-method args)
(least-specific-before-method args)
(most-specific-primary-method args))
(least-specific-after-method args)
(most-specific-after-method args))

The progn Method Combination Type

Suppose we need to implement a function for cleanly shutting down a
computer resource, such as a network interface. The network interface
1s an instance of a class, which is constructed from several superclasses.
The shutdown generic function should allow each class the opportunity to
do cleanup work in preparation for the shutdown. One class might turn
off the hardware, and other classes might clear the pending input and
output queues and inform the higher layers of the network that the de-
vice is no longer operational.

For this generic function it is reasonable to use a framework that
calls all applicable primary methods in most-specific-first order. This
framework allows any class to provide a method for shutdown. You can
visualize such a framework as a Lisp form that uses progn to call all ap-
plicable primary methods:



5.6 Built-in Method Combination Types 107

(progn (method-1 args) ; inform higher layers
(method-2 args) ; flush pending queues
(method-3 args)) ; turn off hardware

CLOS offers a set of built-in method combination types, and progn is
one of them. Except for the standard method combination type, none of
the built-in method combination types recognize before- or after-
methods.

Using the progn Method Combination Type

To specify that a generic function should use a different type of method
combination, we use the :method-combination option to defgeneric, as
shown here:

(defgeneric shutdown (interface)

(:method-combination progn))

To write primary methods that are intended to be used with the progn
. method combination type, we supply the symbol progn as the method
qualifier:

(defmethod shutdown progn ((interface interface))

body)

CLOS signals an error if you define a method whose qualifier is not rec-
ognized by the method combination type in use by the generic function.
5.6 BUILT-IN METHOD COMBINATION TYPES

In addition to standard (the default method combination type), CLOS
provides the following built-in method combination types:

+ and append
list max min
nconc or progn

Notice that these method combination types have the same names as
I:ISP functions or special forms; we call them operator method combina-
tion types. Each one defines a framework that combines the applicable
primary methods inside a call to the Lisp operator of the same name.

The primary methods are combined in most-specific-first order. For
example, if there are three primary methods, numbered from most to
least specific, the effective method resembles this:
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(operator (primary-method-1 args)
(primary-method-2 args)
(primary-method-3 args))

The semantics of operator method combination types are defined by the
Lisp operator of the same name. For example, when the progn method
combination type is used, the operator is the progn special form. Thus,
the framework follows the semantics of progn: all the methods are
called, and the values of the last method are returned. Similarly, when
the 1ist method combination type is used, the result is a list of the val-
ues of all the methods.

Primary Methods in Operator Method Combination Types

In standard method combination, an unqualified method is a primary
method. This is not so, however, when operator method combination
types are used; they do not accept unqualified methods. A primary
method intended to be used with an operator method combination type
must have the method qualifier that is the name of the method combi-
nation type.

For example, the generic function total-electric-supply uses the +
method combination type:

(defgeneric total-electric-supply (region)
(:method-combination +))

A primary method for total-electric-supply must have the symbol + as
its method qualifier:

(defmethod total-electric-supply + ((city city))
body)

The operator method combination types do not support using call-next-
method in primary methods.

Around-Methods in Operator Method Combination Types

The operator method combination types support around-methods, and
the use of call-next-method in them. A method with the keyword
:around as its qualifier is an around-method. In the effective method,
any around-methods surround the call to the operator.

Usually, when you use an operator method combination type, you
supply only primary methods. However, around-methods are supported
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for the same reason that they are supported in standard method combi-

nation: to allow you an extra degree of control over the generic djspatch
procedure. For example, you might provide one method that prints an
English description of the result and then returns the result:

(defmethod total-electric-supply :around ((region region))
(let ((supply (call-next-method)))
(format t "Available electricity in ~A is: ~A"
region supply)
supply))

Usually, around-methods return whatever values are returned by call-
next-method, although this is not required.

Summary of Operator Method Combination Types

The operator method combination types do the following:

« Support primary methods and around-methods, but not before- or af-
ter-methods

« Support the use of call-next-method in around-methods, but not in
primary methods

o Call any around-methods in the same way as does the standard
method combination type

+ Combine all applicable primary methods inside a call to the Lisp oper-
ator whose name is the same as the name of the method combination
type, and call these methods in most-specific-first order

» Require at least one primary method and signal an error if none ex-
ists

5.7 DEFINING A NEW METHOD COMBINATION TYPE

CLOS makes it easy to define a new operator method combination

. type—a framework that combines all applicable primary methods inside
: a Lisp function, macro, or special form. The macro define-method-

#

é
i
i

combination has a short form and a long form. The short form has a

simple syntax and is adequate for defining many of the commonly used
types of method combination.
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Short Form of define-method-combination

The short form of define-method-combination defines an operator
method combination type. Any of the built-in operator method combina-
tion types could have been defined using the short form of define-
method-combination. For example, if the progn method combination type -
were not already defined, we could define it as follows:

(define-method-combination progn
:operator progn
:identity-with-one-argument t)

The first argument is the name of the method combination type. The
:operator keyword specifies the operator that receives the values of the
methods. It is often reasonable to give the method combination type the
same name as the operator. The :identity-with-one-argument t option
means "this is an identity when it is called with one argument." This
option requests the compiler to optimize for cases when there is only
one applicable method; it indicates that the value of that method should
be returned as the value of the generic function, rather than calling the
operator. This makes sense for operators such as progn, and, +, max, and
all the other built-in operator method combination types.

Operator method combination types support primary methods and
around-methods, but not before- and after-methods. Around-methods
may use call-next-method, but primary methods may not. Primary
methods must have a method qualifier that is the same symbol as the
name of the method combination type. For related information, see
"Built-in Method Combination Types," page 107.

Long Form of define-method-combination

The long form of define-method-combination supports a rich and power-
ful syntax for defining a new framework. You can use it when none of
the built-in method combination types (including standard) are appro-
priate, and the framework cannot be defined with the short form of
define-method-combination. Because we believe that most applications
will fit well with one of the built-in method combination types, we do
not cover the syntax of the long form of define-method-combination in
this book. See the CLOS specification for more information.
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5.8 GUIDELINES ON CONTROLLING THE GENERIC DISPATCH

The declarative technique relies on a consistent framework in which the
methods are called according to their roles within the framework; the
role of a method is declared by its qualifier. The generic dispatch auto-
mates the process of calling the appropriate applicable methods. You can
predict the order of the methods without looking at the code in the bod-
ies of the methods.

In contrast, the imperative technique allows the methods themselves
to alter the course of the generic dispatch by calling call-next-method.
This technique offers a different kind of power, while adding a consider-
able degree of complexity to the program. Usually, you need to under-
stand the implementation of inherited behavior in order to use call-
next-method; in a sense, this is a violation of modularity. However, you
cannot write some programs without resorting to the imperative tech-
nique. We recommend that you use around-methods and call-next-
method only when that power is truly necessary.

In the shutdown example, we used the declarative technique of using
the progn type of method combination. We could have written the pro-
gram differently, however, using the standard method combination type.
Here, we describe two alternate implementations of shutdown and discuss
the design considerations that led us to choose progn instead of the
standard method combination type.

o Imperative Technique: call-next-method. Each class could supply a
primary method that does whatever computation is desired and then
calls call-next-method to pass control to the next most specific prima-
ry method. The least specific method must return without calling
call-next-method.

This scheme has several disadvantages. It is necessary to examine all
the methods to understand the implementation. Any one method can
break the implementation by not calling call-next-method. Also, this
is not a consistent model; it requires the least specific method not to
call call-next-method, whereas all other methods must call call-next-
method. (Each method should use next-method-p to determine whether
there is a less specific method to call.) Finally, this scheme probably
requires several extra function calls, which add overhead.

o Declarative technique: before-methods. Each class could provide a be-
fore-method. Before-methods run in most-specific-first order, so the
desired order of methods can be achieved this way. Since the stan-
dard method combination requires a primary method, at least one
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class must provide a primary method. The primary method does not
have to do anything; it can simply return nil.

The disadvantage here is that the declared roles of the methods do
not accurately reflect their purposes. We expect a primary method to
do the bulk of the work, but this primary method is not essential to
the implementation; it simply fulfills a requirement of the standard
method combination. Usually, a before-method does auxiliary work
before the primary method, but these before-methods are not auxil-
iary to the implementation; they are the implementation. This
scheme tries to force a program into the standard method combina-
tion framework even though that framework is not appropriate to
the program.

These techniques rely on ad hoc conventions that all methods must fol-
low. The first convention relies on call-next-method, and the second re-
lies on before-methods. Both conventions treat one method differently
from the others.

In this example, the declarative technique of defining a new frame-
work has one great advantage: It eliminates the need for an ad hoc con-
vention that must be maintained by each method, in favor of a concrete
and consistent framework that is automatically maintained by the
generic dispatch procedure.

5.9 SUMMARY OF THE GENERIC DISPATCH PROCEDURE

When a generic function is called, the generic dispatch procedure takes
charge of choosing the implementation that is appropriate for the argu-
ments of the generic function. This process involves four steps:

1. Selecting the set of applicable methods

2. Ranking the applicable methods by precedence order

3.  Combining the methods into an effective method, according to the
roles of the methods and the method combination type

4.  Calling the effective method and returning its values

For a complete summary of the first and second steps of this procedure,
see "Summary of Method Inheritance,” page 98.

In the third step, CLOS chooses the final implementation of the
generic function, by combining the methods into a single body of code
called the effective method. The input to the third step includes the set
of applicable methods ranked by precedence order, and the method com-
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bination type. The method combination type describes how to combine
the methods, based on their qualifiers. By default, a generic function us-
es standard method combination type. When you define and use a new
type of method combination, you can customize the third step. The
method combination type has no effect on any of the other steps.

CLOS implementations are free to optimize the generic dispatch pro-
cedure such that some of these steps are precomputed and thus are not
performed on each generic function call.

5.10 SUMMARY OF THE STANDARD METHOD COMBINATION TYPE

The standard method combination type is the default. All generic func-
tions use this framework, unless the defgeneric form uses the :method-
combination option to specify another method combination type.

This section summarizes how the standard method combination type
works, including what method roles it supports, how the various meth-
ods are combined into an effective method, and how the values are
handled.

Recognized Method Roles

The standard method combination type recognizes four roles for meth-
ods, based on their qualifiers:

Qualifier | Method Role

none A primary method

:before | Called before the primary method

:after Called after the primary method

:around | Wrapped around all other kinds of methods

The standard method combination type supports call-next-method in
around-methods and in primary methods.

Flow of Control

Figure 5.1 shows the flow of control of methods in the standard method

~ combination. Each step poses a question; the answer to the question de-
termines where the flow of control goes next. Notice that in the around
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START: Input is a list of applicable methods.

v

AROUND STEP: Are there any uncalled around-methods? >s

YES: Call the most specific uncalled around-method.
If body uses call-next-method, repeat this step. «---

e ned

If body does not use call-next-method, go to DONE.-f=-~--+ )

0 When body returns, return its values to caller. :
NO: I '
y '

BEFORE STEP: Are there any uncalled before-methods? '
YES: Call the most specific uncalled before-method. !
When body returns, repeat this step. - 4

NO: % E
PRIMARY STEP: Are there any uncalled primary methods? |- E
YES: Call the most specific uncalled primary method. HEH
If body uses call-next-method, repeat this step. =«f--~* |

When body returns, return its values to caller. E

NO: l '

4 :

AFTER STEP: Are there any uncalled after-methods? v
YES: Call the least specific uncalled after-method. !
When body returns, repeat this step. 7] :

NO: | E
i 4 '

DONE: Return control and values to caller. ~==d

Figure 5.1 Flow of control of standard method combination.

and primary steps, there is a question that can be answered only by ex-
ecuting the body of the method: Does the body of this method use call-
next-method? If so, the "next method" is called. For an around-method,
the "next method" is the next most specific around-method if there is
one; otherwise, it is the entire core framework. For a primary method,
the "next method" is the next most specific primary method.

The dashed lines in Fig. 5.1 show decisions that are controlled by the
use of call-next-method. For example, if there is an around-method and
call-next-method is not used in the body, the flow of control goes direct-
ly to DONE, without calling any before-methods, primary methods, or af-
ter-methods.
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If the body of a method uses call-next-method more than once, the
same "next method" is called each time.

Errors

Figure 5.1 does not show the possible error situations. CLOS signals an
error if

« There is no applicable primary method

« A primary method uses call-next-method, and there is no "next
method" to call

« A before- or after-method uses call-next-method

Values
In summary, this is how the values of the methods are handled:

« Any values of before-methods and after-methods are ignored

« Each primary and around-method returns its values to its caller

« If there are no applicable around-methods, the final values of the
generic function are the values returned by the most specific primary
method

o If there are any applicable around-methods, the final values of the
generic function are the values returned by the most specific around-
method
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Class Inheritance

CLOS uses the class precedence list to determine the precedence, or
dominance, of any competing traits. This chapter describes how the
class precedence list is determined and how it controls the inheritance
of slots and slot options. We also discuss the classes that are implicitly
included as superclasses: standard-object and t.

6.1 INHERITANCE FROM DEFAULT CLASSES

All classes implicitly include t as a superclass. This is true for user-
defined classes (those we define with defclass) and built-in classes (such
as array and integer). The only exception is the class t itself, which has
no superclasses. One effect of inheriting from t is that every Lisp object
is of the type t. The type t is the root of the CommoN Lisp type system,
and the class t is the root of the CLOS class system.

All user-defined classes also implicitly include standard-object as a
superclass, but built-in classes do not. The existence of standard-object
enables CLOS implementations to define default behavior that is inher-
ited by all user-defined classes. For example, primary methods for the
class standard-object implement the print-object and describe generic
functions. The classes t and standard-object do not have slots.

17
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All classes have t as the last (least specific) class in their class prece-
dence lists. All user-defined classes have standard-object as the second-
to-last class in their class precedence lists. This is something you can
take for granted; it is always true.

6.2 THE CLASS PRECEDENCE LIST

CLOS calculates the class precedence list of each class. The class prece-
dence list contains the class itself and all its superclasses; it does not
contain any duplicate classes. The order of the classes in the class prece-
dence list is significant; it goes from most specific to least specific. If one
class is more specific than a second class, that class has precedence over
the second class.

The two rules governing the precedence order of classes are:

Rule 1 of class precedence:

A class always has precedence over its superclasses.

Rule 1 allows a class to override or modify aspects of behavior supplied
by its superclasses.

Rule 2 of class precedence:

Each class definition sets the precedence order of its direct su-
perclasses.

For Rule 2, the ordering constraints on the direct superclasses are ob-
tained by the order of superclasses listed in the defclass form. That is,
each class is more specific than the classes that follow it in this list.

By considering Rule 1 alone, we know the most specific class and the
least specific class in any class precedence list. The class itself is always
the most specific class in its own class precedence list, and the class t
the least specific class in any class precedence list. (Since every class has
t as a superclass, t cannot precede any class and is therefore always
last in.all class precedence lists.) For user-defined classes, standard-
object is the second-to-last class in the class precedence list. In the ex-
amples that follow, we do not explicitly mention the ordering con-
straints of standard-object or t, because the constraints are always the
same,

When CLOS determines the class precedence list of a class, it starts
with the definition of the class. CLOS applies both rules to the class def-
inition and obtains a set of local ordering constraints. CLOS then ap-
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plies the rules to the definitions of each of the direct superclasses, each
of their direct superclasses, and so on, until all paths end in the root
class t. The result is a set of ordering constraints on the classes.

The next step is to find a total ordering that satisfies all the ordering
constraints. CLOS does this by sorting the set of ordering constraints
topologically. In other words, each of the constraints is a partial order,
and the class precedence list is achieved by doing a topological sort on
the set of partial orders. The result is one of these three possibilities:

Case 1. Exactly one total ordering satisfies the constraints
Case 2. Several total orderings satisfy the constraints
Case 3. No total ordering satisfies the constraints

In either of the first two cases, CLOS produces a class precedence list.
In the third case, it signals an error.

We present examples of each of these cases. The examples show defi-
nitions of various stream classes that have superclasses but no slots. We
do not intend to describe the semantics of these classes, but rather to
focus on the mechanics of class precedence lists. (In "Developing an Ad-
vanced CLOS Program: Streams," page 171 we develop a stream exam-
ple based on an organization of a large number of classes.)

Case 1: Exactly One Total Ordering Satisfies the Constraints

In this case, when CLOS applies the two class precedence rules to the
class definitions of the class and all its superclasses, the result is only
one possible ordering, This becomes the class precedence list.

Here is an example, Our goal is to determine the class precedence list
for the class char-input-stream, given the following class definitions:

(defclass stream () ())
(defclass input-stream (stream) ())
(defclass char-stream (stream) ())

(defclass char-input-stream
(char-stream input-stream)
()

The following chart gives the set of ordering constraints for char-input-
stream. The symbol >> is shorthand for "precedes." Each constraint is
the result of applying one of the class precedence rules to one of the
class definitions. Thus, the first entry in the chart means "The class
input-stream precedes the class stream, which is the result of applying
Rule 1 to the input-stream class definition.” Similarly, the last entry
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means "The class char-stream precedes the class input-stream, which is
the result of applying Rule 2 to the char-input-stream class definition."

Constraint Rule | Class

input-stream
char-stream
char-input-stream
char-input-stream
char-input-stream

input-stream >> stream
char-stream >> stream
char-input-stream >> char-stream
char-input-stream >> input-stream
char-stream >> input-stream

[N T S e

Exactly one total ordering satisfies the constraints, so the class prece-
dence list for the class char-input-stream is

(char-input-stream char-stream input-stream stream
standard-object t)

Although the class stream is included by two different classes (it is a di-
rect superclass of both char-stream and input-stream), there are no du-
plicate classes in the class precedence list.

Case 2: Several Total Orderings Satisfy the Constraints

For many programs, the two class precedence rules do not yield a single
class precedence order. That is, some pairs of classes might not have an
ordering constraint based on the rules. This can happen when neither
class is a superclass of the other (Rule 1 does not constrain their rela-
tive precedence), and no class includes both classes as direct superclasses
(Rule 2 does not constrain their relative precedence). This does not pose
a problem for three reasons:

o The lack of constraints implies no conflict. When no ordering con-
straint on two classes is given, this implies that their relative prece-
dence order is not important. If the order of two classes is important,
the programmer can and should set an ordering constraint by explic-
itly including them as direct superclasses of the new class.

« CLOS chooses one of the possible orderings. CLOS uses an algorithm
that always yields a deterministic ranking of classes. This guarantees
that all implementations of CLOS choose the same class precedence
list, given the same set of class definitions. The details of the algo-
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rithm are not important, but the guarantee that the algorithm is de-
terministic provides a safety net for situations where a working
CLOS program depends on a certain order without explicitly stating
the dependency in a class definition. Such a program is portable to
another CLOS implementation.

o CLOS tries to keep family trees together in the class precedence list.
Consider a class and its superclasses to be a "family tree." When ap-
plying the algorithm to choose one ordering from the set of possible
orderings, CLOS uses this guideline: The entire "family tree" of each
direct superclass is kept together in the class precedence list, if that
would not violate either of the two class precedence rules.

Consider a class ascii-disk-stream that has two direct superclasses,
ascii-stream and disk-stream. The class ascii-stream precedes disk-
stream, and (if possible) all the superclasses of ascii-stream precede
disk-stream in the class precedence list. The effect is that you can
treat ascii-stream as a "black box" of behavior; disk-stream cannot
override behavior supplied by ascii-stream or any of its superclasses.
In cases where other ordering constraints prevent CLOS from follow-
ing this guideline (that is, the result would violate one or both of the
rules) CLOS chooses an ordering that keeps the members of each
family tree as close together as possible.

Here we give an example of the case when several total orderings satis-
fy the constraints. We determine the class precedence list for the class
ascii-disk-stream, given the following class definitions:

(defclass stream () ())

(defclass buffered-stream (stream) ())
(defclass disk-stream (buffered-stream) ())

(defclass char-stream (stream) ())
(defclass ascii-stream (char-stream) ())

(defclass ascii-disk~stream
(ascii-stream
disk-stream)

())

The set of ordering constraints for ascii-disk-stream is as follows:
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Constraint Rule | Class

buffered-stream
disk-stream
char-stream
ascii-stream
ascii-disk-stream
ascii-disk-stream
ascii-disk-stream

buffered-stream >> stream
disk-stream >> buffered-stream
char-stream >> stream
ascii-stream >> char-stream
ascii-disk-stream >> ascii-stream
ascii-disk-stream >> disk-stream
ascii-stream >> disk-stream

N = = = =

There are no constraints on the precedence of char-stream with respect
to buffered-stream, or on the precedence of char-stream with respect to
disk-stream. Here, we show three total orderings that satisfy the con-
straints. The middle line of each class precedence list shows where the
changes occur:

(ascii-disk-stream ascii-stream
char-stream disk-stream buffered-stream
stream standard-object t)

(ascii-disk~stream ascii-stream
disk-stream buffered-stream char-stream
stream standard-object t)

(ascii-disk~stream ascii-stream
disk-stream char-stream buffered-stream
stream standard-object t)

In this case, CLOS chooses the first total ordering. Here, we see an il-
lustration of the guideline that family trees are kept together. The fami-
ly tree of ascii-stream precedes the family tree of disk-stream, except
for the class stream, which is a superclass of both ascii-stream and
disk-stream.

Sometimes it is not possible to keep family trees intact, but if two su-
perclasses have a "common tail," it is moved to the end of the class
precedence list. Suppose class A has direct superclasses B and ¢, and the
class precedence list of B and ¢ are as follows:

Class | Class Precedence List

B (B B1 B2 B3 B4 D DI D2 standard-object t)
c (C C1 C2 D D1 D2 standard-object t)
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The classes B and ¢ have a common tail, because starting at D the two
class precedence lists are equal. Prior to class D, the class precedence
lists are disjoint. In the class precedence list of A, the common tail is
moved to the end:

(A B Bl B2 B3 B4 C C1 C2 D D1 D2 standard-object t)

There is no need for concern if several orderings satisfy the constraints
unless, in fact, the program does depend on one of the orderings. If so,
you should make the ordering dependency explicit, as shown next.

How to Add Ordering Constraints

To continue the previous example, suppose some aspect of the program
depends on the class disk-stream preceding the class char-stream, and on
the class char-stream preceding buffered-stream. That is, you want the
third of the possible total orderings to be chosen.

In this example, it is hard to conceive of any semantic reason why
the stream program should have the dependencies mentioned, because
there should be no interaction between the classes whose order is un-
constrained. In other programs, however, there might well be interac-
tion among various classes.

You can add the constraints mentioned by defining class ascii-disk-
stream in a different way:

(defclass ascii-disk-stream
(ascii-stream disk-stream
char-stream buffered-stream)
()

The previous constraints mentioned still hold, and there are two new
constraints:

Constraint | Rule | Class
disk-stream >> char-stream 2 ascii-disk-stream
char-stream > buffered-stream 2 ascii-disk-stream

These additional constraints result in exactly one possible total ordering:

(ascii-disk-stream ascii-stream
disk-stream char-stream buffered-stream
stream standard-object t)
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Case 3: No Total Ordering Satisfies the Constraints

No total ordering satisifies the constraints when a class is included by
more than one class definition and the local constraints set by the class
definitions are in direct conflict with each other.

CLOS cannot resolve such a conflict, so it signals an error. You can
then edit the class definitions to remove some of the conflicting ordering
constraints. Here is an example of a class organization in which no total
ordering is possible. We try to determine the class precedence list for
the class ascii-disk-stream, given the following class definitions:

(defclass stream () ())

(defclass buffered-stream (stream) ())
(defclass disk-stream (buffered-stream) ())

(defclass char-stream (stream) {())
(defclass ascii-stream (char-stream) ())

(defclass ascii-disk-stream
(ascii-stream buffered-stream disk-stream)
()

Two of the class definitions result in a conflict. Here we present only
the conflicting constraints:

Constraint | Rule I Class
disk-stream >> buffered-stream 1 disk-stream
buffered-stream >> disk-stream 2 ascii-disk-stream

In this case, CLOS signals an error because it cannot produce a class
precedence list consistent with the ordering constraints.

It is clear that this class organization is flawed. The class ascii-disk-

stream depends on buffered-stream preceding disk-stream, but the class
disk-stream depends on disk-stream preceding buffered-stream.
) This particular problem might have been caused by a misunderstand-
ing of the class organization. It seems likely that the constraint set by
the disk-stream definition is a semantic constraint that is necessary to
the correct working of disk streams, but that the constraint set by
ascii-disk-stream is simply a programmer error. Probably, there was
no need to include buffered-stream as a direct superclass of ascii-disk-
stream.
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If the class ascii-disk-stream really does depend on buffered-stream
preceding disk-stream, however, then the problem lies somewhere in the
class organization. The solution is to rethink the semantics of the class
organization.

Opposing Constraints Are Possible

It is possible to define two classes that contain opposing ord‘ering con-
straints, as long as you do not try to define a class that is built on both
of them.

(defclass stream () ())
(defclass input-stream (stream) ())
(defclass buffered-stream (stream) ())

(defclass disk-stream (buffered-stream input-stream) ())

(defclass tape-stream (input-stream buffered-stream) ())

Note that class disk-stream requires buffered-stream to precede input-
stream, but the class tape-stream requires input-stream to precede
buffered-stream.

These class definitions do not conflict, because as yet there is no con-
nection between the classes disk-stream and tape-stream. However,
CLOS would signal an error if you tried to define a class built on both
disk-stream and tape-stream:

(defclass disk-emulating-tape-stream (disk-stream tape-stream) ())

6.3 GUIDELINES ON DESIGNING CLASS ORGANIZATIONS

This section discusses how the class precedence rules affect program-
ming practice. An important aspect of the two class precedence rules is
that the programmer controls the ordering constraints locally, by decid-
ing which direct superclasses to include and what their order should be.
If all the local ordering constraints are correct, the resulting class prece-
dence list will be appropriate. When designing a class organization, you
should concentrate on the effect of the two rules on each class defini-
tion, without being concerned about the final class precedence list.

Rule 1 of class precedence:

A class always has precedence over its superclasses.
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Rule 1 suggests that you should define one or more basic classes and
build more specialized classes on them. This style of programming al-
lows the specialized classes to inherit desired behavior and override un-
wanted behavior.

Rule 2 of class precedence:

Each class definition sets the precedence order of its direct su-
perclasses.

Rule 2 has implications for classes built on more than one direct super-
class. In some cases, each direct superclass makes a distinct contribu-
tion, and there is no conflict between them; then it does not matter how
you order them in the list of superclasses. In other cases, however, two
superclasses offer competing traits. For example, they both might have
a primary method for the same generic function. In this case, you
should decide which of the two primary methods is more appropriate for
the new class and order the two direct superclasses accordingly.

Rule 2 also encourages the style of programming that uses mixin
classes. In this style, each mixin class supports a separate, well-defined
aspect of behavior. The goals of a mixin are to support that behavior
completely and not to collide with other classes. For example, a mixin
might provide before-methods and after-methods that modify the behav-
ior of primary methods provided by other classes. When a mixin does
not compete with other classes, its precedence order is not important.
Usually a mixin has the root class as its only superclass, so its ordering
constraints are minimal. This allows a class to be built from a set of
many mixins,

Note that the final class precedence list always satisfies the two
rules—and, in most cases, it also follows the guideline of keeping nonin-
tersecting family trees together. In most cases, a program can consider
each of the direct superclasses as a black box, and can rely on all the
superclasses of the first direct superclass preceding the second direct su-
perclass and all its superclasses. In cases where CLOS cannot follow the
guideline (due to other ordering constraints), the resulting class prece-
dence list allows a superclass of the second direct superclass to precede
a superclass of the first direct superclass.

A§ mentioned earlier, if a program depends on one class being more
specific than another, you should make that ordering constraint explicit.
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6.4 INHERITANCE OF SLOTS AND SLOT OPTIONS

A class can define a slot by providing a slot specifier, which includes the
name of the slot and possibly some slot options. In addition to the slots
that the class defines locally in its defclass form, the class inherits slots
and slot options defined by its superclasses.

Modifying Inherited Aspects of a Slot

A class can modify or override aspects of a slot that would otherwise be
inherited, by providing a local slot specifier for a slot with the same
name. For example:

(defclass basic-lock ()
((name :initarg :name)))

(defclass simple-lock (basic-lock)
((name :initform "Simple Lock")))

The class basic-lock provides a slot specifier for a slot named name and
the :initarg :name slot option.

The class simple-lock, which is built on basic-lock, inherits the name
slot and the :initarg :name slot option. It also provides a local slot speci-
fier for the name slot and the :initform slot option. This does not over-
ride any of the inherited traits, but it adds a default initial value form
to the slot. It is often useful for a class to supply a default initial value
form for a slot that is inherited from a superclass.

Each instance of simple-lock has only one slot with the name name.
The characteristics of that slot come from all classes in the class prece-
dence list that supply a slot specifier for name. Instances of simple-lock
receive the following slot characteristics from these classes:

Slot Characteristics From Class
the name slot itself basic-lock
:initarg :name basic-lock
:initform "Simple Lock™ | simple-lock
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Inheritance Behavior of Each Slot Option

Here we describe how each slot option is inherited. The slot options
have different inheritance behavior. It is important to note that each
slot option is inherited independently of the other slot options.

Each class in the class precedence list can affect the characteristics of
a slot by providing a slot specifier for the slot with that name. CLOS
gathers together the slot specifiers and ranks them from most specific
to least specific, based on the class precedence list. In other words, the
precedence of the slot specifier is controlled by the precedence of the
class that provides it.

These rules determine the final set of characteristics of the slot:

:accessor, :reader, :writer Not inherited

These slot options create methods but do not affect the slot it-
self. Although these slot options themselves are not inherited,
the accessor methods are inherited in the same way that any
other method is inherited.

:allocation Inherited by shadowing

The allocation of a slot is controlled by the most specific class
that provides a slot specifier for the slot, whether or not the
:allocation slot option is provided.

If the most specific slot specifier provides :allocation
:instance, or does not provide the :allocation slot option at
all, this slot is a local slot. If the most specific slot specifier
provides :allocation :class, this is a shared slot. (In this case,
a new class slot is created for this class, which is accessible to
all its instances and to instances of any subclasses that do not
provide or inherit a more specific slot specifier for the slot.)

:documentation Inherited by shadowing

The docqmentation of a slot is controlled by the most specific
slot specifier that provides the :documentation slot option for

this slot. Any less specific slot specifiers that provide the
:documentation slot option are ignored.
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tinitarg Inherited by union

A slot can have more than one initarg. If several classes in the
class precedence list provide the :initarg slot option for the
same slot, the slot can be initialized by using any of the ini-
targs.

:initform Inherited by shadowing

The initform of a slot is controlled by the most specific slot
specifier that provides the :initform slot option for this slot.
Any less specific slot specifiers that provide an :initform are
ignored.

:type Inherited by "and"

The type of a slot is controlled by all slot specifiers that pro-
vide the :type slot option. The value of the slot must satisfy
all the type constraints provided. For example, if three classes
in the class precedence list specify the type as being number,
rational, and integer, then the value of the slot must satisfy

(typep value ' (and number rational integer))

This implies that a class cannot relax any inherited type con-
straints on a slot, but it can make the type constraint more
stringent.

6.5 GUIDELINES ON USING INHERITANCE OF SLOT OPTIONS

The inheritance behavior of slots and slot options probably sounds com-
plicated. Each slot option is inherited independently and by different
rules. The inheritance behavior of each slot option offers a feature that
can be useful in some contexts, but most programs do not need all these
features.

_ Almost all CLOS programs make use of the fact that slots are inher-
ited. The basic class provides a small number of slots that are appropri-
ate for all classes built on it, and the more specialized classes can in-
clude additional slots.
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Many CLOS programs take advantage of the inheritance of the
:initform slot option. In some cases it is appropriate to inherit a default
initial value from a superclass. In other cases, it is useful to override an
inherited default initial value.

Many CLOS programs also take advantage of the inheritance of the
:initarg slot option. Usually, the class that provides the slot also pro-
vides the initarg, if the slot is intended to be initialized. Occasionally it
is useful for a subclass to provide the :initarg slot option to give the
slot another initarg.

When :type is used, typically the class that provides the slot also
specifies the slot’s type. Subclasses generally inherit the type without a
need for constraining it further.

Generally, subclasses do not choose to override the allocation of a
slot. It is unusual for a class to change the allocation of a slot from
:class to :instance or vice versa, because the semantics of a shared slot
versus a local slot are so different. The most common example of over-
riding the allocation occurs when one class specifies a :class slot, and
its subclass chooses not to share that particular slot, but rather to cre-
ate a new :class slot to be shared among the instances of the subclass
(and instances of its subclasses, unless they also create a new :class
slot).
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Defining CLOS
Elements

In this chapter, we describe what happens when you define classes,
methods, and generic functions. We discuss the following topics: the or-
der in which you should define CLOS elements, the congruence rules
for lambda-lists of a generic function and its methods, the Lisp objects
that represent the CLOS elements, and the relationships between these
objects and their names.

7.1 ORDER OF DEFINING CLOS ELEMENTS

CLOS is quite flexible in allowing you to define CLOS elements in vari-
ous orders:

« When designing a class organization, you can define the classes in
any order; you can define a class before defining its superclasses.

» You can define methods and generic functions in any order. If you de-
fine a method before defining the generic function, CLOS automati-
cally creates the generic function. The lambda-list of the generic func-
tion is derived from the method’s lambda-list; all other aspects of the
generic function are defaulted. If you use defgeneric later, the exist-
ing generic function is modified.

131
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There are, however, some ordering dependencies:

o Before you make an instance of a class, that class and all its super-
classes must be defined

 Before you define a method that specializes on a class, that class it-
self must be defined

7.2 CONGRUENT LAMBDA-LISTS

When a defgeneric form is evaluated and no methods for the generic
function exist, the defgeneric form establishes a parameter pattern that
must be followed by all the methods. If a method is defined before a
defgeneric form has been evaluated, that method establishes the pat-
tern. The parameter pattern is derived from the lambda-list of the
defmethod or defgeneric form. It specifies the number of required pa-
rameters, the number of optional parameters, and whether srest, &key,
or both are used.

Once the pattern is established, if any defmethod form or defgeneric
form is evaluated that does not match the pattern, CLOS signals an er-
ror. To match the pattern, the following CLOS congruence rules must
be obeyed:

o The number of required parameters must be the same as in the es-
tablished pattern.

o The number of optional parameters must be the same as in the es-
tablished pattern. Methods can supply default values for optional pa-
rameters, but the defgeneric form cannot.

o If the established pattern uses &rest or &key, all methods and the
defgeneric form must use &rest, or &key, or both.

Keyvyord parameters are treated specially. A defgeneric form can state a
requirement regarding skey parameters, whether or not the parameter
pattern was established before the defgeneric form was evaluated. We

;t;atf}al the rules for keyword parameters here, and then explain them
rther.

« If a defgeneric form specifies skey, its set of keyword parameters
must be accepted by each of the methods. In other words, the
defgeneric form states the minimum set of keywords that must be
accepted by all the methods. The methods can accept the keywords by
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naming them explicitly with &key, by using &rest and not skey, or by
specifying &allow-other-keys.

+ Each method can name &key parameters in addition to the set speci-
fied by the defgeneric form; the only requirement is that all methods
must accept the minimal set specified by the defgeneric.

For generic functions that use &key parameters, the keyword arguments
are checked for validity when the generic function is called. The set of
accepted keywords is controlled by the defgeneric form and the applica-
ble methods. A keyword argument is accepted by the generic function
call if it is accepted by the defgeneric form or by one or more applicable
methods.

In general, a generic function passes all its arguments to each
method it calls. Nevertheless, no error is signaled if a generic function
calls a method with a keyword argument that is not explicitly accepted
by the method. The generic function checks the validity of keyword ar-
guments; this checking is not done by the individual methods.

If the defgeneric form or any method for the generic function uses
&allow-other-keys, all keyword arguments are accepted when the gener-
ic function is called.

In general, CLOS signals an error if a method or generic function is
defined that does not adhere to these congruence rules. This can happen
in the following situations:

o A defmethod or defgeneric form is evaluated that does not match the
established pattern

o A defmethod form is evaluated that does not accept the minimal set of
keyword arguments specified by the defgeneric form

o A defgeneric form is evaluated and an existing method does not ac-

cept the minimal set of keyword arguments specified by the
defgeneric form

7.3 LISP OBJECTS REPRESENTING CLOS ELEMENTS

When you use defclass, the returned value is a class object. Similarly,
defgeneric returns a generic function object and defmethod returns a
method object. These Lisp objects are the internal representation of
CLOS classes, generic functions, and methods.

When writing application programs, you usually do not need to deal
directly with the Lisp objects representing the CLOS elements. Instead,
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you refer to these objects by their names. For example, when you use
defclass, you create a class object and give it a name. Later, you refer
to the class by its name—for example, when using make-instance. Simi-
larly, you refer to a generic function by its name when defining it (us-
ing defgeneric), creating methods for it (using defmethod), and calling it.

The CLOS programmer interface can be divided into two separate
levels. The macros defclass, defmethod, and defgeneric are in the
"macro level," which has a convenient syntax and enables you to deal
with names of objects. The macro level is implemented in terms of the
"functional level," which deals with objects and not with names. Most
application programs can be written entirely in terms of the macro lev-
el. The functional level offers greater flexibility, such as supporting
anonymous classes and generic functions.

7.4 MAPPING BETWEEN NAMES AND OBJECTS

This section describes the relationships between the names of CLOS ele-
ments and the Lisp objects that represent them.

Classes

When you use defclass, the returned value is a class object. That class
object has a name, which is a symbol. Actually, there are two associa-
tions between the name of the class and the class object. The defclass
macro sets up both of these associations automatically.

One association is maintained by the class object itself. You can query
a class object for its name by using class-name and use (setf class-
name) to change that association:

(class-name class-object)
(setf (class-name class-object) symbol)

The other association is maintained by a symbol. You can query a sym-
bol for the class with that name by using find-class and use (setf
find-class) to change that association:

(find-class symbol)
(setf (find-class symbol) class-object)

You use class-name to ask "What is the name of this class object?" and
you use find-class to ask "What is the class object with this name?"
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find-class

@ class

class-name
Figure 7.1 Links between a class and its name.

Figure 7.1 shows that these two associations are independent. Chang-
ing the class associated with a name (maintained by the symbol) does
not affect the name associated with a class (maintained by the class
object). Therefore, the two associations can become out of synch with
each other.

Generic Functions

Generic functions are named just as ordinary functions are named. A
generic function object is stored in the function cell of a symbol; that
symbol is the name of the generic function. You can query a symbol for
the generic function associated with it by using symbol-function, and use
(setf symbol-function) to change that association.

Since generic and ordinary functions are named in the same way, the
Common Lisp technique of using packages to keep related functions and
symbols together is just as useful for generic functions as it is for ordi-
nary functions. Also, one symbol cannot name both an ordinary and a
generic function.

In Lisp, functions need not have names; you can use lambda to define
an anonymous function. CLOS does not require that generic functions
have names. To create an anonymous generic function, you can use the
generic-function macro. It has the same syntax as defgeneric, except
there is no argument for the name of the generic function.

Methods

Methods do not have names. A method is identified by the generic func-
tion it implements, its parameter specializers, and its qualifiers. Rarely
would you need to access a method directly. Usually, you simply define
methods, and they are called automatically by the generic dispatch pro-
cedure. One situation in which you need to access a method occurs
when you want to use remove-method to break the association between a
generic function and a method. We give an example of this in "Remov-
ing Generic Functions and Methods," page 136.
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Parameter Specializers

CLOS distinguishes between the names of parameter specializers and
the objects that represent them. Only parameter specializer names ap-
pear in the defmethod lambda-list, whereas operators in the functional

level use parameter specializer objects.

Name Corresponding Object

a class name | the class object of that name,
which is obtained by find-class

(eql form) (eql object), where object is
the result of evaluating form

7.5 REMOVING GENERIC FUNCTIONS AND METHODS

This section describes how to "remove" the definition of a generic func-
tion or method, in the sense of making sure that it is never called.

Generic Functions

You can remove a generic function by breaking the association between
the name and the object. Just as for ordinary functions, you can do this
by using fmakunbound.

Methods

You can remove a method by breaking the association between the
method object and the generic function. Although CLOS does not pro-
vide a convenient macro for doing this, you can use remove-method and
find-method, two operators in the CLOS functional level. As mentioned
earlier, the functional level deals in objects, not names. To use these
operators, we must access a generic function object, a method object,
and parameter specializer objects. The syntax of remove-method is

(remove-method generic-function-object method-object)

To access th_e generic function object, use symbol-function of the name
of the‘ generic function. To access the method object, use the find-method
generic function. The syntax of find-method is
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(find-method generic-function-object
({method-qualifier}*) _
({parameter-specializer-objects}*))

The list of parameter specializer objects must have as many elements as
there are required parameters. An unspecialized required parameter has
the class named t as its parameter specializer.

Here, we show an example of removing a method. The parameter
specializer names are class names, so we access the parameter specializ-
er objects by using find-class.

7:+ The method to remove
(defmethod restore-product :before (sw (os genera))
body)

;::; Removing the method
(let* ((generic-function (symbol-function ’restore-product))
(method (find-method generic-function
" (:before)
(list (find-class 't)
(find-class ‘genera)))))
(remove-method generic-function method))
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Redefining CLOS
Elements

To redefine an element of CLOS is to evaluate a new defining form
(such as a defmethod form) when that element (the method) already ex-
ists. In general, CLOS replaces the old definition with the new.

The capability of redefining classes and methods is crucial to software
development. It allows you to continue to refine your design of a run-
ning program even after you have created instances; when a class is re-
defined, any existing instances are updated to the new definition. Often,
the most challenging part of designing an object-oriented program is
choosing the right modularity. Sometimes, when you begin writing
methods, you think of a better organization of classes that would yield
more modular code. CLOS supports a flexible means of redefining class-
es and methods, so you have the freedom to modify your original de-
sign, including the organization of classes.

In this chapter, we give an example of redefining a class, updating in-
stances to the new class definition, and redefining affected methods. The
first goal of this example is to illustrate the mechanics of redefining
CLOS elements. The second goal is to give some guidelines on designing
a program in which most of the elements are independent of one an-
other; in such a program, you can redefine one element without affect-
ing most of the other elements.

139
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8.1 REDEFINING CLASSES

If you evaluate a defclass form and a class of that name already exists,
the new class definition replaces the old. You can redefine a class to
change any aspect of it, including its slots, its superclasses, its accessor
methods, and any defclass options.

What Is Affected by the Redefinition

Note that changing a class definition affects all subclasses of the class,
because they inherit structure from the class. Since a class controls the
structure of its instances, all instances of the class and subclasses are al-
so affected. In addition, since defclass options define methods for read-
ers and writers, these methods might also be affected by redefining a
class. When you redefine a class, CLOS automatically propagates the
changes to everything that is affected, including subclasses, instances of
the class and of subclasses, and methods for accessors.

What Happens to Accessor Methods

Any accessor method that was created by the old class definition (by
means of the :accessor, :reader, or :writer slot options), but is not re-
quested by the new class definition, is removed from the generic func-
tion.

Automatic Updating of Instances

When you redefine a class such that the structure of the instances
changes (which happens when you add or delete slots, for example), all
instances of the class and its subclasses must be updated to the new
structure. CLOS updates the instances automatically.

CLOS specifies that the updating of each instance happens at some
time before any slot of that instance is accessed for reading or writing.
Although you cannot assume the updating of instances happens immedi-
ately upon evaluating the new class definition, the effect is semantically
the same; you are safeguarded from ever accessing an obsolete instance.

CLOS updates instances as they are needed, instead of all at once.
Thus, CLOS does not need to keep track of all instances of a class and
any unreferenced instances can be garbage collected.
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What Happens to the Slots of Existing Instances

When you redefine a class, the slots specified in the new definition
might be different from the slots of the old definition. There are three
common cases:

+ When the same slot is specified in both definitions, the value of the
slot is preserved.

« When a slot is specified by the new definition, but was not specified
by the old, the slot is added to instances and initialized according to
the :initform option.

« When a slot specified by the old definition is not specified by the new,
the slot is deleted from the instance and any value is discarded.
However, the values of deleted slots are not immediately discarded;
you can access them by writing a method to customize the updating.

We summarize this information in Table 8.1, which also shows what
happens when the allocation type of a slot is changed from local to
shared, or from shared to local. The entries in Table 8.1 have the fol-
lowing meanings:

preserved The value of the slot is the same before and after
the instance is updated. If the slot was previously
unbound, it is still unbound after the updating.

initialized The slot receives the value of the :initform of the
slot, if one is specified by the class or inherited
from superclasses. If there is no :initform, the val-
ue of the slot is unbound.

discarded The slot is deleted from instances and its value is
lost.

l Shared (New) I Local (New) l None (New)

shared (old) | preserved preserved discarded
local (old) initialized preserved discarded
none (old) initialized initialized [ no action

Table 8.1 Effects on slots when a class is redefined.
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Customizing the Updating

CLOS enables you to specify other actions to be taken when an instance
is updated to conform to the new definition of the class. To do so, you
can provide a method for update-instance-for-redefined-class to do
further work in updating instances. The body of the method can access
the values of discarded slots, which you can use to initialize other slots.

When you redefine a class, CLOS updates the structure of the class
and the subclasses (if necessary) and removes or adds accessor methods
(if necessary). CLOS updates the structure of each instance (at an im-
plementation-dependent time prior to the next access of a slot of the
instance), by adding new slots and deleting obsolete slots. Finally, CLOS
calls the update-instance-for-redefined-class generic function. The de-
fault primary method for update-instance-for-redefined-class initializes
slots in the way described previously.

In most cases, users should provide before- or after-methods for
update-instance-for-redefined-class, not primary methods. A primary
method would override the default method that initializes new slots,
and would prevent the usual initialization from happening. If you ini-
tialize a slot in a before-method, the default primary method does not
fill the slot with its initform.

You can customize update-instance-for-redefined-class to store val-
ues in the new slots based on values of slots being discarded. As a sim-
ple example, to rename a slot you can write a method to store the value
of the discarded slot into the new slot.

The update-instance-for-redefined-class generic function has four
required arguments and one &rest argument:

instance The instance, which has been updated to the new
structure

added-slots A list of the names of the added slots

discarded-slots A list of the names of the discarded slots

property-list A list containing alternating names and values of

the discarded slots (not including any discarded
slots that were unbound), and any slots specified as
local in the old definition and shared in the new
definition

&rest initargs The &rest argument is rarely used; we discuss it in
"Performing Initialization by Initargs," page 168
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The most useful argument is the property-list, which gives you a way to
access the values of discarded slots. For an example of redefining a class
and defining a method for update-instance-for-redefined-class, see
"Example of Redefining CLOS Elements," page 144.

8.2 REDEFINING METHODS AND GENERIC FUNCTIONS
Methods

If you evaluate a defmethod form, and a method already exists for the
same generic function, with the same parameter specializers and the
same qualifiers, the new method definition replaces the old.

Any future calls to the generic function will see the new definition of
the method. If the method is redefined during the execution of the
generic function itself, the effects are not predictable. Many CLOS im-
plementations optimize portions of the generic dispatch, so it is possible
that the new method definition will not be used for this generic func-
tion call.

Generic Functions

If you evaluate a defgeneric form and a generic function already exists
by that name, defgeneric redefines the existing generic function. An er-
ror is signaled if any methods for the generic function are not congru-
ent with the lambda-list specified by the defgeneric. When you redefine
a generic function, the new definition of the generic function replaces
the old definition.

A defgeneric form can define methods, by including the :method op-
tion. The :method option to defgeneric has the same effect as using
defmethod to define a method for that generic function. Sometimes, it is
useful to define methods in the defgeneric form itself, especially for de-
fault methods. This is a way to highlight the default behavior. For ex-
ilgréples of using that syntax, see "Defining Directional Streams," page

If you redefine a generic function and the new defgeneric form uses
the :method option, two things can happen. If that method already exists
(a method for the same generic function with the same parameter spe-
cializers and the same qualifiers), it is replaced by the method defined
in the :method option. If that method does not already exist, it is creat-
ed. Redefining a generic function might add methods to the generic
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function and might replace methods, but it never removes methods: If
the previous defgeneric defined a method with the :method option, but
the current defgeneric does not define that method, the method object
continues to exist in Lisp.

You cannot use defgeneric to redefine an ordinary Lisp function,
macro, or special form. An error is signaled if you evaluate a defgeneric
form and the first argument is the name of an ordinary function,
macro, or special form. In contrast, you can use defun to redefine a
generic function. If you define an ordinary Lisp function, macro, or spe-
cial form with the same name as an existing generic function, that
name is no longer associated with the generic function.

8.3 EXAMPLE OF REDEFINING CLOS ELEMENTS

The purpose of this example is to show how easily you can redefine por-
tions of a CLOS program, even after instances have been created and
clients are using the program.

First, we define two protocols for dealing with triangles, one external
(intended for clients) and one internal (to be used within the implemen-
tation of this program). We then define the implementation of both
protocols, including the class for representing triangles and a set of
methods.

Later, we decide to change the internal representation of triangles.
We can do this without altering the external protocol at all. However,
the change requires only that we redefine some of the methods for the
internal protocol and provide a method for updating any existing trian-
gles to the new representation.

The External Triangle Protocol

The interface that we advertise to clients consists of the following oper-
ations:

make-triangle side-a side-b side-c
Returns a new triangle; each argument is the length of one side of
the triangle

area triangle
Returns the area of the triangle

dimensions friangle
Returns a list of the lengths of the three sides of the triangle
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angles friangle
Returns a list of the three angles of the triangle

The Internal Triangle Protocol
The following six operations are useful within the implementation, be-

cause they are all needed for supporting the external protocol. Clients
are not expected to use these operations.

side-a tfriangle angle-A triangle
side-b triangle angle-B triangle
side-c triangle angle-C triangle

Each of these operations returns one aspect of the triangle: either the
length of one side, or the measurement of one angle. Note that angle-A
is the angle opposite side-a. Figure 8.1 shows how the angles and sides.
are related to one another.

Figure 8.1 Angles and sides of a triangle.

The Initial Implementation

First, we implement the triangle class. The internal representation of
triangles is straightforward; we store the length of each side in a slot.
By using the :reader option, we can conveniently provide methods for
side-a, side-b, and side-c.
(defclass shape () ()
(:documentation "The foundation of all shapes.™))

(defclass triangle (shape)
((a :reader side-a :initarg :side-a)
(b :reader side-b :initarg :side-b)
(c :reader side-c :initarg :side-c)))
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Next, we provide the constructor, make-triangle. This constructor co-
erces each side length into the type float prior to making the instance,
to ensure that all mathematical operations on sides use floating-point
arithmetic.

(defun make-triangle (a b c)
;; All sides should be represented as floats
(make-instance ’‘triangle :side-a (coerce a ’'float)
:side-b (coerce b ’float)
:side-c (coerce c ’float)))

The function three-sides-to-angle will be useful in the bodies of the
methods that return the angles of the triangle.

;:; Return the angle A between adjacent sides b and c
;:; and opposite side a, given all sides of a triangle
;+: Law of Cosines: a*2 = b*2 + ¢*2 - 2bc(cos A)
(defun three-sides-to-angle (a b c)

{acos (/ (- (+ (expt b 2)

(expt ¢ 2))
(expt a 2))
(* 2 bc))))

Next, we define the methods for returning the individual angles of a
triangle:

(defmethod angle-A ((tri triangle))
(three-sides-to-angle
(side-a tri) (side-b tri) (side-c tri)))

(defmethod angle-B ((tri triangle))
(three-sides-to-angle
(side-b tri) (side-c tri) (side-a tri)))

(defmethod angle-C ((tri triangle))
(three-sides-to-angle
(side-c tri) (side-a tri) (side-b tri)))

We choose to define explicitly the generic functions for the operations
that are part of the external protocol. The defgeneric forms indicate
that these three operations are intended to work on any shape:

(defgeneric dimensions (shape)
(:documentation "Returns list of side lengths.™)
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(defgeneric angles (shape)
(:documentation "Returns list of angles."))

(defgeneric area (shape)
(:documentation "Returns area of the shape."))

The three external operations that deal with existing triangles can be
defined in terms of the internal operations, without depending on any
knowledge of how those internal operations are implemented.

(defmethod dimensions ((tri triangle))
(list (side-a tri)
(side-b tri)
(side-c tri)))

(defmethod angles ((tri triangle))
(list (angle-A tri)
(angle-B tri)
(angle-C tri)))

;;: Return the area of a triangle
;;; Algorithm is: area = ab(sin C)/2
(defmethod area ((tri triangle))
(* (side-a tri) (side-b tri)
(sin (angle-C tri))
.3))

Changing the Representation of Triangles

Now we decide to change the internal representation of triangles. We
want to redefine the triangle class to store two sides and the angle be-
tween them, instead of storing three sides.

For a real program, one possible motivation for changing the internal
representation would be to increase the efficiency of an operation. In
this case, the angle-C operation probably will be faster when the
method simply reads the value of a slot instead of doing the somewhat
expensive calculation of computing the angle from the three sides. On
the other hand, side-c will be slower. This is a tradeoff based on how
the program is used.

The following class definition can replace the previous class defini-
tion. At this point, we write the defclass form, but we do not evaluate
it immediately. Prior to redefining the class, we must ensure that any
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existing instances will be updated properly.

(defclass triangle (shape)
((a :reader side-a :initarg :side-a)
(b :reader side-b :initarg :side-b)
(angle-C :reader angle-C :initarg :angle-C)))

Note that this class definition creates a method for the reader generic
function, angle-C. In fact, this method will replace the existing method
for the generic function angle-C. (We should also remove the previous
definition of the angle-C method from the source.) This is exactly what
we want; when the new class definition is evaluated, the angle-C generic
function will return the value of the angle-C slot, instead of calculating
the angle from the three sides of the triangle.

To update the instances, we provide a method for update-instance-
for-redefined-class. We choose to supply an after-method, so as not to
override the system-supplied default method. This is a safe practice,
even though in this case none of the slots use the :initform slot option,
and thus do not need to be initialized in this way. Possibly the class
triangle has a subclass with slots that do need to be initialized from
their initforms. Unless we have an explicit reason for preventing the
system-supplied method from occurring, it is best to allow it to run.

The values of the slots a and b are preserved, since these are local
slots that are defined in both the previous and the new classes. Before
this method is called, the slot ¢ will be deleted from the instance and
the slot angle-c will be added. This method will use the value of the dis-
carded slot ¢ to calculate the value of the new slot angle-C, and will
store the value in the slot,

Keep in mind that a class can be redefined more than once. We
might later decide that yet another representation of triangles is prefer-
able. Since instances are not necessarily updated immediately upon re-
definition, some existing instances might be several formats behind the
current format. This method attempts to be safe in the face of multiple
class redefinitions. Before doing anything else, this method checks that
thg instance is being updated in the expected way; that is, that slot ¢ is
being discarded and slot angle-C is being added. If both of these condi-
tions are met, the method computes the appropriate value for the slot
angle-C and stores it in the slot.
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;:; Here we delete slot ¢ and add angle-C
;i; We need to initialize the new slot angle-C
(defmethod update-instance-for-redefined-class :after
((instance triangle)
added-slots discarded-slots
plist &rest initargs)
(declare (ignore initargs))
;; Identify this particular redefinition
(if (and (member ‘c discarded-slots)
(member ’angle-C added-slots))
(setf (slot-value instance "angle-C)
(three-sides-to-angle
(getf plist 'c)
(side-a instance)
(side-b instance)))))

It is crucial to evaluate the method for update-instance-for-redefined-
class before evaluating the new class definition. Otherwise, in the inter-
val after redefining the class and before evaluating the method for
update-instance-for-redefined-class, it is possible for instances to be
updated to the new definition. An instance is updated sometime before
any of its slots are accessed. If an instance is updated before the method
is defined, only the slots a and b will have values. There will be no way
of calculating the angle-C slot, because the value of the deleted slot ¢
will have been discarded.

The methods for side-a and side-b are unchanged; they continue to
work as before. However, the method for side-c (which was a reader
method generated by the previous class definition) will be removed from
Lisp when the new class definition is evaluated. Therefore, we need to
write a new method for side-c. The method calculates the third side of
a triangle, based on two sides and the angle between them.

(defmethod side-c ((tri triangle))
(third-side (side-a tri)
(side-b tri)
(angle-C tri)))

;7 Algorithm is: ¢*2 = a*2 + b*2 - 2ab(cos C)
(defun third-side (a b angle-C)
(sqrt (- (+ (expt a 2)
(expt b 2))
(*2 a b {(cos angle-C)))))
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We also need to revise our constructor function, because it calls make-
instance with the initarg :side-c, which is no longer a valid initarg. It
is an easy matter to write a new constructor that takes the same argu-
ments, but fills different slots using that information. This constructor
uses the ¢ argument to calculate the appropriate value for the angle-C
slot.

(defun make-triangle (a b c)
(let* ((float-a (coerce a "float))
(float-b (coerce b ’'float))
(float-c (coerce c ’float))
(angle-C (three-sides-to-angle
float-c float-a float-b)))
(make-instance 'triangle :side-a float-a
:side-b float-b
:angle-C angle-C)))

Often a constructor needs to be redefined when the class itself is rede-
fined. Constructors are closely tied to the structure of the class, because
they usually take arguments and use them to fill slots.

What Changed, and What Stayed the Same

It is essential that, no matter what changes occur in the internals of the
program, the documented external protocol remains the same. This al-
lows any client code to continue to work. Here we also endeavored to
keep the documented internal protocol the same, which minimized the
amount of internal code that needed to be changed.

What Changed What Stayed the Same

Definition of the triangle class | User’s perception of triangles

Implementation of side-c, Documented external protocol
angle-C, and make-triangle Documented internal protocol

Implementation of side-a,
side-b, angle-A, angle-B, area,
dimensions, and angles

Since the constructor takes the three sides as arguments, we are en-
couraging the users to think of triangles as being represented by the
three sides. The new internal representation of triangles does not match
this perception, but since the external protocol remains the same, we
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are not requiring users to change their mental model of triangles. Simi-
larly, our documentation of the external protocol intentionally did not
state that side-c was previously implemented as a reader. The docu-
mentation of the external protocol should never expose the internals,
such as mentioning that a generic function is implemented as an acces-
sor,

We were "lucky” that a great deal of the implementation of the pro-
gram continued to work when the representation of triangles changed.
Actually, this is not luck at all, but rather is a direct result of docu-
menting and adhering to an internal protocol.

First, consider the operations area, dimensions, and angles. These ex-
ternal operations are all implemented in terms of the internal protocol,
which we continued to support after redefining the class. The internal
protocol guarantees that those three operations remain valid.

Next, consider the internal operations themselves. Each one fulfills a
specific task, returning one angle or side. This modularity of design im-
plies that a method needs to be rewritten only if it depends on some as-
pect of the class definition that has been changed. For example, since
the slots a and b remain the same, the methods for side-a and side-b
continue to be valid. ’

Another reason that most methods for the internal operations remain
valid is that those methods depend on the internal protocol, and not on
the internal structure of the class. Except for the accessors (which nec-
essarily depend on the slots), none of the methods use knowledge of the
internal details of the class. For example, to get the length of side-c,
the methods called the generic function side-c. An equivalent alterna-
tive to calling side-c is to use with-accessors. In contrast, any code that
uses with-slots has a built-in dependency on the internal representation
of the class; that code would need to be rewritten if the class were rede-
fined to delete the slot.

8.4 CHANGING THE CLASS OF AN INSTANCE

You can change the class of an existing instance by calling change-class.
We use the term "previous class” to mean the class of the instance be-
fore it is changed, and "target class" to mean the class of the instance
after it is changed. CLOS updates the instance to the structure of the
target class, which might involve deleting or adding slots.
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What Happens to the Slots of the Instance

When an instance is changed to a different class, there is no effect on
the values of any shared slots. The instance, however, will lose access to
any shared slots of the previous class. If the target class defines another
slot of the same name (whether shared or local), the instance will access
that slot instead. (If the previous and target classes access the same
shared slot because one of the classes inherits it from the other, the in-
stance will continue to access that slot.)

Table 8.2 indicates what happens to the values of slots. "Preserved,"
"initialized,” and "discarded” have the meanings described in "Redefin-
ing Classes," page 140. We introduce two more terms:

inaccessible The shared slot of the previous class is not accessi-
ble to the instance after its class has been changed
to the target class.

replaced For any shared slot of the target class, the instance
is updated to access that shared slot. If the previ-
ous class defined a slot of the same name, whether
local or shared, the updated instance no longer ac-
cesses that slot. Thus, we say the value of the slot
is "replaced" by the value of a shared slot of the
target class.

| Shared (Target) l Local (Target) | None (Target)

shared (previous) | replaced preserved inaccessible
local (previous) replaced preserved discarded
none (previous) replaced initialized no action

Table 8.2 Effects on slots when the class of an instance is changed.

Customizing the Updating

CLOS enables you to specify other actions to be taken when an instance
is updated to conform to the definition of a different class. You can pro-
vide methods for update-instance-for-different-class to do further
work in updating the instance.

When you call change-class, CLOS updates the structure of the in-
stance and then calls the generic function update-instance-for-
different-class. The default primary method initializes any new local
slots, according to the :initform of the target class.
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Note that, if you define a primary method for update-instance-for-
different-class, it will override the default method, which initializes
new local slots. In most cases, it is preferable to let that behavior occur
and to specialize update-instance-for-different-class by writing before-
or after-methods. If you initialize a slot in a before-method, the default
primary method does not fill the slot with its initform.

When CLOS calls update-instance-for-different-class, the first ar-
gument, previous, is a copy of the instance before it was updated. The
second argument, farget, is the updated instance. The target and previ-
ous arguments are not eq. You can access the values of all slots in the
previous instance by using accessors or slot-value on the previous ar-
gument; you can also use other functions or generic functions on the
previous argument.






9

Creating and
Initializing
Instances

Client programs usually use constructors to make instances. Construc-
tors call make-instance, which creates, initializes, and returns a new in-
stance. CLOS enables you to control many aspects of the initialization,
ranging from supplying a default value for a slot to customizing the ini-
tialization by writing a method. This chapter begins by describing the
arguments to make-instance and summarizing the steps CLOS performs
when make-instance is called. It then shows how to use the techniques
for controlling initialization,

9.1 ARGUMENTS TO MAKE-INSTANCE

The syntax of make-instance is
make-instance class &rest inifargs

The first argument is the class, which can be either the name of the
class or the class object itself. This gives you a clue that make-instance
straddles the fence between the macro level and the functional level. In
fact, make-instance is a powerful tool used by both applications program-
mers and metaobject programmers; we describe only those techniques
intended for applications programmers.

166
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The &rest argument consists of initargs, which is short for initializa-
tion arguments. An initarg controls some aspect of initialization; it
might fill a slot, or be used by an initialization method, or both.

Each initarg consists of an initarg name followed by a value. An ini-
targ name can be any symbol, not necessarily a keyword. The format of
the &rest argument is the same as the format of keyword arguments
that are processed as &key parameters.

9.2 SUMMARY OF WHAT MAKE-INSTANCE DOES

When you call make-instance, CLOS performs the following steps:

1. Combines the initargs you supply to make-instance with the default
values for any initargs you do not explicitly supply. The result is a
defaulted initarg list.

2. Ensures that all initarg names in the defaulted initarg list are
valid, and signals an error if they are not. If :allow-other-keys is
provided as true in the call to make-instance, all initarg names are
valid.

3.  Allocates storage for the instance and creates an instance whose
. slots are all unbound.

4. Applies the initialize-instance generic function to the newly cre-
ated instance and the defaulted initarg list. The default primary
method for initialize-instance does the following:

a. Initializes slots according to the defaulted initarg list
b.  Initializes any slots that have :initforms and are still un-
bound

The primary method for initialize-instance does this work by
calling shared-initialize, which we discuss in "A Procedural Defi-

nition: Initialization," page 165.

5. Returns the initialized instance.
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9.3 CONTROLLING INITIALIZATION WITH DEFCLASS OPTIONS

In this example, we define some classes to represent windows. These
class definitions use techniques for initializing windows. The basic class
window is intended to be the foundation of all windows. The defclass
form uses two slot options that pertain to initialization—the :initarg
and :initform options.

(defclass window ()
((x :initarg :x-position :accessor x-position)
(y :initarg :y-position :accessor y-position)
(height :initarg :height :accessor window-height)
(width :initarg :width :accessor window-width)
(exposed-p :initform nil :accessor exposed-p))
(:documentation "Foundation of all windows."))

Using the :initarg slot option

In the window class definition, four slots (x, y, height, and width) use the
:initarg option. This declares four symbols as valid initarg names for
the class window. For example, the symbol :x-position is an initarg
name. If you give it to make-instance followed by a value, that value will
be stored in the x slot. Similarly, the symbol :height is an initarg that
can be used to initialize the slot named height.

(make-instance 'window :x-position 0
:y~-position 0
:height 200
:width 75)

Note that the slot named exposed-p does not use the :initarg option.
Thus, you cannot initialize that slot by giving an argument to make-
instance. The exposed-p slot is not intended to be initialized by the user.

Using the :initform slot option

The slot named exposed-p uses the :initform slot option to associate a
default initial value with the slot. The value is nil. The semantics of
this slot are simple: When you first create a window, it is not exposed.
We intentionally do not offer an initarg, because we want all newly cre-
ated windows to be deexposed; this approach causes the slot to be ini-
tialized automatically to its initform (which is nil) and effectively pre-
- vents users from initializing the exposed-p slot.



168 9. Creating and Initializing Instances

Using the :default-initargs class option

Sometimes, it is useful for a class to provide a default value for an ini-
targ. The :default-initargs class option does this. It is used mostly for
remote defaulting; that is, for providing a default value for an inherited
initarg.

If an initarg is provided in the call to make-instance, it overrides the
default initarg. But if an initarg is omitted, the value of the the default
initarg is used.

We shall use :default-initargs when defining a class that is com-
monly used in the window program. A full-screen window is a window
that covers the entire screen. The height and width of such a window
are obtained from variables that store the screen’s dimensions. A full-
screen window is normally positioned at the origin, so we also give de-
faults for :x-position and :y-position.

(defclass full-screen-window (window) ()
(:default-initargs
:x-position *screen-origin-x*
:y-position *screen-origin-y*
:height *screen-height*
:width *screen-width*))

This class can be used alone or as a building block for other classes. It
has the same slots as does window, but it offers defaults for four initargs
as a convenience for clients that need to make full-screen windows.

Two Kinds of Defaults

It is important to keep in mind the difference between :default-
initargs and :initform. The :default-initargs option gives a default
value to an initarg, and the :initform option gives a default value to a
slot.

If you intend to allow users to initialize a slot, then you should

o Use :initarg to declare a symbol for initializing the slot
o Use :default-initargs, if you want to give that initarg a default val-
ue

If you do not intend to allow users to initialize a slot, then you should

o Not use the :initarg option
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o Use :initform, if you want to give the slot a default initial value

These two options come into conflict if they are used together. Consider
what happens when a slot has a default value via :initform and an ini-
targ via :initarg, which itself has a default value via :default-initargs.
The default given in the :default-initargs effectively overrides the de-
fault given by :initform.

For both of these options, the default value form is evaluated every
time it is used. The value of an :initform is evaluated each time it is
used to initialize a slot. The value of an initarg in :default-initargs is
evaluated each time make-instance is called and that initarg is not given
as an argument to make-instance.

9.4 CONTROLLING INITIALIZATION WITH METHODS

When make-instance is called, it creates an instance and calls the
initialize-instance generic function to initialize the new instance.
CLOS supplies a default primary method for initialize-instance, which
fills the slots with values according to their initargs and initforms. You
can customize the initialization of instances by writing a method for
initialize-instance to do additional work.

Defining After-Methods for initialize-instance

A window system probably needs to keep track of all windows. Here we
add the new window to the data structure that keeps track of the deex-
posed windows,

(defmethod initialize-instance :after ((w window) &key)
(push w *deexposed-windows*))

Usually you should define after-methods for initialize-instance (as we
do here) instead of primary methods. A primary method would override
the default primary method and prevent the usual slot initialization
from occurring.

Since methods for initialize-instance receive all the defaulted ini-
targs as arguments, methods for initialize-instance should use &key in
their lambda-lists. The result of using skey here is that the method al-
lows keywords without specifying that it uses any keyword arguments.
For more details on method lambda-lists, see "Congruent

Lambda-Lists," page 132.
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The Default Method for initialize-instance

make-instance calls initialize-instance with the instance and the de-
faulted initarg list. With these arguments, the default method for
initialize-instance fills the slots with values, as follows:

Step 1 If you provide a slot-filling initarg to make-instance, then its
value is stored in the associated slot. (A slot-filling initarg is
specified by the :initarg slot option.)

Step 2 If the slot is not filled by Step 1, and the initarg has a default
value form, then that form is evaluated and the result is
stored in the slot. (A default for an initarg is specified by the
:default-initargs class option.)

Step 3  If the slot is not filled by Step 2, and the slot has a default
initial value form, then that form is evaluated and the result
is stored in the slot. (A default for a slot is specified by the
:initform slot option.)

Step 4 If the slot is not filled by Step 3, then the slot remains un-
bound.

The default method for initialize-instance does this initialization work
by calling shared-initialize, a generic function that is called in other
contexts as well as in creating new instances. We describe shared-
initialize in detail in "Isolating Work Shared Among Procedures,"
page 167.

9.5 INITIALIZATION ARGUMENTS

This section describes initargs in more detail, focusing on how they are
used to initialize new instances. Initargs are used in other contexts as
well; see "Performing Initialization by Initargs," page 168.

Validity of Initarg Names
An initarg name must be declared as valid for a given class before it is

used in a call to make-instance. There are two ways to declare that an
initarg name is valid:
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:initarg slot option
Declares a symbol as a valid initarg name and specifies
that the value of the initarg should be stored in the slot.
Such a symbol is called a slot-filling initarg. The
:initarg slot option is inherited by union: all initarg
names declared by the class or any of its superclasses
are valid for the class.

initialize-instance methods
Declare all skey parameter names in the lambda-list as
valid initarg names for the class. (Methods for other
generic functions also declare skey parameters as valid
initarg names. See "Declaring Initarg Names as Valid,"
page 170.)

In addition, the initarg name :allow-other-keys is valid for all classes.
Its default value is nil, which means that CLOS checks the validity of
all initargs and signals an error if an invalid initarg name is detected. If
you call make-instance and give :allow-other-keys followed by a non-nil
value, this error checking is disabled.

If the lambda-list of an initialization method uses &allow-other-keys,
all possible symbols are declared as valid initargs. In other words,
&allow-other-keys in an initialization method disables the error checking
of initarg names.

Inheritance of Default Initargs

The :default-initargs class option associates a default value with an
initarg. The set of default initargs is inherited by union, but the default
value of any one initarg is inherited by shadowing. In other words,

Union The set of default initargs of a class is the union of all
default initargs provided by the classes in its class prece-
dence list

Shadowing The default value for any one initarg comes from the
most specific class that provided a default value for it
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Separation of Initarg and Slot Names

When you use the :initarg slot option, the name of the initarg is inde-
pendent of the name of the slot. This independence allows for a level of
abstraction; clients cannot assume that an initarg maps directly into a
slot of the same name. In fact, some initargs might not map into a slot
at all, and some slots might be filled with values that are calculated on
the basis of several initargs.

For example, the triangle class might accept three initargs, one for
the length of each side. However, the class might be implemented to
store the length of two sides and the angle between them, which can be
calculated from the three initargs. Thus, invisibly to the client, the third
side would be used to calculate the opposing angle, and then would be
discarded.

The following example uses this approach. Notice that the initializa-
tion method declares :side-a, :side-b, and :side-c as valid initarg
names, whereas the defclass form does not declare any initarg names,
We define the constructor make-triangle to make an abstract interface
for creating triangles and to make all sides be required arguments. All
the initialization work is done in the method for initialize-instance.

(defclass triangle (shape)
({a :reader side-a)
(b :reader side-b)
(angle-C :reader angle-C)))

;:; Do all initialization in this method
(defmethod initialize-instance :after
((tri triangle) &key side-a side-b side-c)
(let* ((float-a (coerce a ’float))
(float-b (coerce b ’float))
(float-c (coerce c ’float))
(float-angle-C (three-sides-to-angle
float-c float-a float-b)))
(with-slots (a b angle-C) tri
(setf a float-a)
(setf b float-b)
(setf angle-C float-angle-C))))
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;:; Define the constructor
(defun make-triangle (side-a side-b side-c)
(make-instance ‘triangle :side-a side-a
:side-b side-b
:side-c side-c))

9.6 CONSTRUCTORS

We recommend using constructors as the external interface for creating
instances, because constructors add a valuable level of abstraction be-
tween the client and the implementation. Consider triangles: The name
of the constructor, make-triangle, implies "making a triangle," which is
a higher-level concept than is "making an instance of the triangle
class."

Another advantage of constructors is that they can use the full power
of CommoN Lisp argument-processing. The make-instance syntax is ex-
tremely limited: Following the first argument (the class) is an srest pa-
rameter consisting of initargs. In many cases, the semantics of a class
can be better expressed with required arguments, optional arguments,
and so on. With triangles, for example, the &rest argument to make-
instance fails to imply that all three initargs—the sides—are required to
-make a triangle. The constructor, however, can make the three sides be
required arguments; the syntax of the constructor accurately reflects the
semantics of triangles.

Perhaps most important, constructors conceal the implementation of
objects, which frees you to change the implementation without disturb-
ing client programs. If you advertise constructors as the external inter-
face, you can later change to a defstruct representation of the object or
change the name or initargs of the class, without invalidating client
programs. Constructors can also select one of several classes, based on
lts arguments. If you advertise make-instance as the external interface,
you cannot make these changes within the implementation,
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ZX Procedural
Definition:
Initialization

In this chapter, we discuss the technique of designing a "procedural
definition" of a high-level task; this entails breaking down the task into
separate generic functions, each of which is responsible for a clearly de-
fined portion of the task. Usually, there is a default behavior for the
generic functions. Programmers use these generic functions as entry

. points; they can control portions of the task by specializing one or more
of the generic functions,

Some programs have several related tasks. The procedural definitions
of the tasks can overlap, to share code. Two or three tasks might be de-
fined to call a single generic function. This technique can lead to modu-
lar programs; it requires a careful design in which the shared work can

be shared, while the separate work can be kept separate. We examine
one example in detail: the CLOS procedural definition of initialization.

10 1 EXAMPLES OF PROCEDURAL DEFINITIONS
We used the techmque of a procedural definition in "The Implementa-
tion of install," page 80. As shown in Fig. 10.1, the installation task is

_divided into four generic functions, each of which performs a single as-
- pect of the installation.
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Installation Task

.{ restore-product
| compile-product

configure-site

verify-product

Figure 10.1 Procedural definition of the installation task.

Later, in "A Procedural Definition for Creating Streams," page 207,
we design a procedural definition for choosing the correct class of
stream to create, and for creating the stream by giving the appropriate
arguments to make-instance.

CLOS itself uses the technique of procedural definitions. We have al-
ready seen that make-instance has a procedural definition: it always
calls initialize-instance. Class redefinition is another example; it al-
ways calls update-instance-for-redefined-class. Similarly, change-class
always calls update-instance-for-different-class. The generic functions
initialize-instance, update-instance-for-redefined-class, and update-
instance-for-different-class are defined intentionally as entry
points—generic functions that can be specialized with methods.

Certain error situations also have procedural definitions: generic
functions that are called when errors are encountered. The default
method signals an error, but you can specialize the generic function to
do something different. The generic functions include the following:

slot-unbound

Called when an attempt is made to read an unbound slot
slot-missing

Called when an attempt is made to access a slot of an in-

stance, but there is no slot by that name accessible to the in-
stance

no-applicable-method

Called when a generic function is called and there is no appli-
cable method for it
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| no-next-method
Called when call-next-method is used and there is no "next
method"

10.2 ISOLATING WORK SHARED AMONG PROCEDURES

CLOS initializes instances in several contexts: when an instance is first
created with make-instance, when an instance is being updated because
its class was redefined, and when you use change-class to change the
class of an instance. In addition, the function reinitialize-instance
(rarely used in application programs, but used within the implementa-
tion of CLOS itself, in the metaobject protocol) performs initialization of
an instance based on initargs.

In each of these tasks, the initialization work is similar but not iden-
tical. In an object-oriented design, the goal is to isolate the work that
can be shared, define it once, and use it everywhere it is needed. In this
section, we describe how CLOS defines these related procedures in an
object-oriented way. You can use this approach when designing your
own programs. The four related initialization procedures are somewhat
complicated, and most application programs do not require this much
complexity; still, the example provides a good illustration of procedural
definitions.

The first step is to identify what the procedures have in common.
Here we focus on the initialization work done in each task:

initialize-instance
Performs initialization according to initargs; then, for any
slots that are still unbound, fills those slots with the values of
their initforms

reinitialize-instance
Performs initialization according to initargs

update-instance-for-redefined-class
Performs initialization according to initargs; then, for any
added local slots that are still unbound, fills those slots with
the values of their initforms

update-instance-for-different-class
Performs initialization according to initargs; then, for any
added local slots that are still unbound, fills those slots with
the values of their initforms
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We have identified two phases of initialization: performing initialization
according to initargs, and then filling some unbound slots with the val-
ues of their initforms. CLOS arranges for both phases to be done by one
generic function, shared-initialize, which is called by all four generic
functions mentioned. The four functions have slightly different require-
ments; these differences are managed by providing arguments to
shared-initialize. The syntax of shared-initialize is

(shared-initialize instance slots-for-initform srest initargs)

10.3 FILLING UNBOUND SLOTS WITH INITFORMS

For the two updating functions, the phase of filling unbound slots with
initforms is done for the added local slots. For initialize-instance, this
phase is done for all slots; for reinitialize-instance it is not done for
any slots.

The generic function shared-initialize takes a required argument
called slots-for-initform, indicating which slots to fill with their init-
forms. This argument is a list of names of slots, or t to indicate all
slots, or nil to indicate no slots. The following table shows how the
callers (default methods for the four generic functions) provide the
slots-for-initform argument:

Caller of Value of
shared-initialize slots-for-initform
initialize-instance t
reinitialize-instance nil
update-instance-for-redefined-class | added local slots
update-instance-for-different-class | added local slots

10.4 PERFORMING INITIALIZATION BY INITARGS

As described in "Controlling Initialization with Methods," page 159,
initialize-instance performs initialization according to initargs. If a
slot-filling initarg is given in the call to initialize-instance, the slot is
filled with that value, even if the slot already has a value. Initargs can
also be used by user-defined initialization methods that do extra work
required by the application program.

In most cases, there is no need for updating functions to use m1t1a1
ization arguments. Sometimes, however, an application program needs a
method for a special purpose, and that method needs some arguments
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as input. For example, a method for update-instance-for-redefined-
class might need an argument in addition to the four required argu-
ments; the same could be true for a method for update-instance-for-
different-class.

Initargs can be useful in all initialization tasks, so this is another
piece of work that can be shared. Thus, shared-initialize accepts an
srest argument consisting of initargs. Each caller of shared-initialize
chooses whether or not to supply initargs.

The user can provide initargs directly to make-instance; these initargs
are passed to initialize-instance, and then are passed to shared-
initialize. When redefining a class or changing the class of an in-
stance, however, the user cannot provide initargs. So how are initargs
useful in these updating procedures? You can define an around-method
for update-instance-for-redefined-class  oOr update-instance-for-
different-class. The around-method computes initargs and passes them
on in a call to call-next-method; the default method is invoked with
those initargs, and it passes them on to shared-initialize. Thus,
around-methods are the entry point that allows the updating functions
to use initargs.

10.5 SPECIALIZING A PORTION OF THE PROCEDURE

A procedural definition enables users to specialize one or more aspects
of the procedure as a whole. The initialization scheme recognizes that
some work is appropriate to one task only (such as class redefinition),
whereas other work is appropriate to all initialization tasks. The proce-
dural definition both separates the four initialization tasks from one
another, and combines them via the call to shared-initialize.

Specializing this Generic Function | Affects

initialize-instance instance creation

reinitialize-instance instance reinitialization

update-instance-for-redefined-class | class redefinition

update-instance-for-different-class | class change

shared-initialize instance creation,
instance reinitialization,
class redefinition,
and class change




Each of the five initialization functions has a default primary method.
For example, the default method for update-instance-for-different-
class calls initialize-instance with the appropriate arguments. In turn,
the default method for initialize-instance performs initialization ac-
cording to initargs and initforms, based on its arguments. Typically,
programmers specialize these generic functions by providing after-
methods, not primary methods.

10.6 DECLARING INITARG NAMES AS VALID

All five initialization functions accept initargs. As mentioned in "Initial-
ization Arguments,” page 160, initarg names must be declared as valid.
If a generic function is called with an unrecognized initarg name, an er-
ror is signaled.

The :initarg slot option declares initarg names as valid for all five
initialization functions. Defining initialization methods that use &key pa-
rameters declares the parameter names as valid initarg names. For each
call to an initialization generic function, the set of valid initarg names
depends on the appropriate applicable initialization methods:

Task Performed Initialization Methods that
Declare Initarg Names as Valid

Instance creation make-instance,
initialize-instance,
shared-initialize

Instance reinitialization | reinitialize-instance,
shared-initialize

Class change update-instance-for-different-class,
shared-initialize

Class redefinition update-instance-for-redefined-class,
shared-initialize




11

Developing an
Advanced CLOS
Program: Streams

This chapter illustrates an object-oriented foundation for implementing
CoMMoN Lisp streams, whose behavior is specified in Steele’s Common
LISP: The Language. Streams fit naturally into the object-oriented
model. The many varieties of related streams can be modeled with mul-
tiple inheritance.

This example is considerably more challenging than the other exam-
ples in this book. Qur goal is to demonstrate how to attack a good-sized
problem by using CLOS techniques to break up the problem into man-
ageable modules. The design of the stream foundation specifies the re-
sponsibility of each module. The implementation consists of the modules
themselves, which are classes, generic functions, and methods. The de-
sign is the challenging part—but if it is done right, the implementation
should be relatively straightforward. (You will notice that the imple-
mentation of one of the modules—disk streams—is actually quite com-
plex, but the complexity is due to the handling of the disk device itself,
which would be necessary regardless of the design of streams.)

We start by summarizing what CommoN Lisp streams are, and how
they are created and used. We then describe our overall design and
show the portions of the implementation that illustrate CLOS and the
object-oriented style. This example develops a foundation for streams
and illustrates how a handful of the familiar CommoN Lisp stream func-
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tions can be written to use that foundation. For example, we show how
read-char, write-char, read-byte, and write-byte can be written using
this foundation, but we omit the definitions of other functions, such as
read-line and write-line.

The external interface is specified by Common LISP: The Language,
in the following chapters and sections:

Chapter 21 Streams

Section 22.2 Input Functions

Section 22.3 Output Functions

Section 23.2 Opening and Closing Files

This example is not intended to be an actual implementation of streams;
that is a topic that could fill an entire book. For the most part, we ig-
nore efficiency considerations. Streams need to access devices for I/0, so
we assume (and document) a set of low-level primitives for tape and
disk I/O that we call in the methods. These primitives are simplified
versions of what might exist in a real I/O system. We do not include
Lisp code to implement these primitives, because it would be device-
dependent, long and complex, and probably not relevant to object-
oriented programming.

The value of this example lies in the techniques of decomposing a
substantial problem into separate components of functionality, and of
specifying a protocol for communication among these components. The
details of the method bodies are less important than the overall modu-
larity. As you read, we encourage you to focus on how the pieces fit to-
gether, instead of getting bogged down in the details of any one piece.

11.1 OVERVIEW OF STREAMS

The first step in designing and developing an object-oriented program is
to understand the problem you are trying to solve. We start by describ-
ing all the types of objects we need to model and the operations on the
objects. With this information we will be able to design an organization
of classes.

CommoN Lisp streams are used to transmit data from a source to a
destination. For example, when you are using a text editor, and you
give the editor command to save the contents of a buffer to a file, a
stream is used to transmit the data.
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Types of Streams

There are different types of streams, which are used for different pur-
poses. The following stream types are related to the direction of data
flow:

input stream Brings data from an outside source into Lisp.
An example is the stream to which *standard-
input* is bound.

output stream Sends data from Lisp to an outside destina-
tion. An example is the stream to which
*standard-output* is bound.

bidirectional stream Transmits data in both the input and output
directions. An example is the stream to which
*query-io* is bound.

The following stream types are related to the type of the data being
transmitted, which is the element type of the stream:

character stream Transmits characters

byte stream Transmits binary bytes of data, where a
"byte" is an integer with a specified number
of bits

Streams have two ends; they connect two things. One end is connected
to Lisp, and the other end is connected to some sort of device. An input
stream brings data from the device into Lisp, whereas an output stream
sends data from Lisp to the device.

The device might be a disk, magnetic tape, network, terminal, or
some other kind of device. In this example, we support disk and mag-
netic-tape devices. The following stream types are related to the device
connected to the stream:

disk stream Transmits data to and from a disk device
tape stream Transmits data to and from a magnetic tape
device

When you use a stream, that stream has three aspects: a direction, an
element type, and a device type. For example, when saving the contents
of an editor buffer to a disk file, you are using a stream that is at once
a character stream, an output stream, and a disk stream.
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CoMMmoN Lisp defines the notion of directional streams; the predicates
input-stream-p, output-stream-p, and bidirectional-stream-p are used to
determine the direction of a stream. CoMmMon Lisp also defines the no-
tion of element type streams by providing the stream-element-type func-
tion to query a stream for its element type. Device streams are not a
CommoN Lisp concept: they belong to the design of our stream founda-
tion.

The Stream’s Type Determines Its Operations

The type of a stream determines which operations can be performed on
that stream. An output stream supports operations such as force-output
and finish-output. A character input stream supports read-char; a char-
acter output stream supports write-char. A character bidirectional
stream supports both the character input and output operations. Simi-
larly, a byte input stream supports read-byte; a byte output stream sup-
ports write-byte; and a byte bidirectional stream supports both read-
byte and write-byte.

The device type of a stream also controls the operations that can be
performed on the stream. In this example, the magnetic-tape device sup-
ports sequential access, and the disk device supports both sequential and
random access. Because we have greater control in using the disk de-
vice, the disk streams have greater capabilities than do the tape
streams, which are limited to sequential operations.

Creating and Using Streams

One way to create a stream is to open a file. The function open returns
a stream connected to the specified file. The arguments to open control
the type of the stream. For example, to create a character output
stream (for the purpose of transmitting characters to a file), you could
evaluate this form, with an appropriate filename argument:

(open filename :direction :output :element-type ’character)

The device type of the file stream is extracted from the filename argu-
ment. If the filename indicates a disk device, the stream will be a disk
stream. When you are finished using the file, you can close the stream.
No input or output operations are permitted on a closed stream.

(close filename)
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When you use open, you are creating a file stream. A file stream sup-
ports operations on files such as deleting and renaming. Our stream
foundation provides the lower-level support for file streams; file streams
could be built on this foundation.

11.2 DESIGN OF OUR STREAM FOUNDATION
We have the following design goals:

o To organize a set of stream classes in a way that accurately reflects
the relationships among the different kinds of streams.

o To extract common behavior into distinct modules that can be used
in several contexts. In other words, we will define a set of classes,
each of which has methods that support a well-defined aspect of
stream behavior. We want to share code that is common among sev-
eral classes, to avoid duplication of code, and to make the program as
a whole smaller, simpler, and easier to maintain.

o To plan for extensions to our foundation. We will define an internal
protocol, use it within our implementation, and document it for other
programmers o use.

Organization of Stream Classes
To meet the stated goals, we define these groups of classes:

» The foundation of all streams: stream

. Directional streams, including input-stream, output-stream,
bidirectional-stream

+ Element type streams, including character-stream, byte-stream

¢ Device streams, including disk-stream, tape-stream

Our design effectively defines a stream as "an object built on the stream
class." Thus, clients can find out whether an object is a stream by using
ltypep, as well as by using streamp. The following two forms are equiva-
ent:

(typep object ' stream)
(streamp object)

. Each of these classes is a building block equipped to handle only one as-
pect of the stream. A complete stream consists of building blocks that
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specify the direction, the element type, and the device. One example of a
complete stream is character-disk-input-stream: This class inherits from
character-stream, disk-stream, input-stream, and stream.

The device streams manipulate elements of data without knowing
whether the elements are characters or bytes. Each element type stream
manipulates data with knowledge of the datatype, but without knowl-
edge of the various devices. We want to isolate the device-specific opera-
tions within the realm of the device streams, and to isolate all datatype-
specific operations within the element type streams.

This design makes it easy for clients to extend our stream program.
To add support for a new element type, the client needs to provide
methods for only the generic functions that are specific to the element
type of the stream. The new element type stream immediately works
with all types of devices supporting the internal protocol. Similarly, in-
troducing a new device requires adding methods for the device-specific
generic functions, and the new device will immediately work with all
types of elements.

There are three basic directional types of streams, each of which is
built on stream: input-stream, output-stream, and bidirectional-stream.
As shown in Fig. 11.1, bidirectional-stream is built on both input-stream
and output-stream.

stream

(bidirectional—strea@

Figure 11.1 Directional stream classes.

This pattern is reflected in the other groups of classes. Figure 11.2
shows the organization of character classes.

Although not shown in these figures, each of the character stream
classes is built on a directional stream class. That is, character-stream is
built on stream, character-input-stream is built on input-stream, and so
on.
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(character—strea@

Ccha racter-input-st ream) Ccha racter—output—strea@

( character—bidirectional—streanD

Figure 11.2 Character stream classes.

The device stream classes follow the same pattern. For example, we
will define the following classes for the disk device: disk-stream, disk-
input-stream, disk-output-stream, and disk-bidirectional-stream.

External Stream Protocol

The external protocol of streams is specified in Common LISP: The
Language. In this example, we implement the following subset of the
CoMmMmoON Lisp stream operations:

Stream Type Operations

all streams input-stream-p, output-stream-p,
close, stream-element-type

output force-output, finish-output

byte input read-byte

byte output write-byte

byte bidirectional read-byte, write-byte

character input read-char

character output write-char

character bidirectional | read-char, write-char

disk set-position

The function set-position is an extension to Common Lisp for disk
streams. We document the contract of set-position here:

~8et-position stream new-position goptional eof-error-p eof-value
Sets the current position to the desired element position.
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The element position is the element number in the file,
where the first element is number 0, the next is 1, and so
on. If the new-position is beyond the end of file, eof-errorp
and eof-value define whether an error or a value is re-
turned; otherwise, the new position is returned.

We discuss how streams are created and opened later, in "A Procedural
Definition for Creating Streams,” page 207.

Internal Stream Protocol

Our purpose in defining an internal protocol is to codify the communica-
tion among the different stream classes. This makes it possible for each
class to implement a well-defined aspect of the internal protocol and de-
pend on the other classes to implement their aspects. The internal
stream protocol consists of the following operations:

bytes-per-element stream
Supported by all element type streams. Returns the num-
ber of eight-bit bytes required to store one element of this
datatype. This must be a positive integer.

storage-unit-size stream
Supported by all device streams. Returns the size of a unit
normally read or written by this device, expressed in eight-
bit bytes. For a disk stream, this is the size of a disk sec-
tor. For a tape stream, this is the size of a tape record.

make-element-array stream

Supported by all streams. Creates an array to serve as a
buffer for input or output. The size of the array is appro-
priate for the device (note that the low-level device primi-
tives read and write in fixed-size blocks), and for the ele-
ment type appropriate to the stream. This can be imple-
mented in terms of storage-unit-size, stream-element-type,
and bytes-per-element.

ensure-open-stream stream

Supported by all streams. Checks whether a stream is open
before allowing access to it. Signals an error if an attempt
is made to access a stream that is closed.

read-next-element input-stream
Supported by all device input streams. Uses low-level de-



11.3 Experimenting with the Stream Example 179

vice primitives to read one element of data. Returns a sec-
ond value, which is t if the end of file was reached, else
nil.

write-next-element oufput-stream
Supported by all device output streams. Uses low-level de-
vice primitives to write one element of data.

force-output-internal oufpul-stream
Supported by all output streams. Does the work of force-
output.

finish-output-internal oufput-stream
Supported by all output streams. Does the work of finish-
output.

11.3 EXPERIMENTING WITH THE STREAM EXAMPLE

If you intend to try out the code in this example, keep in mind that we
redefine several important Common Lisp functions that operate on
streams. You can define a package for the purpose of testing this exam-
ple and specify that certain CommoN Lisp symbols should be shadowed.
This enables you to retain the previous definitions of the stream func-
tions, which is necessary for keeping your Lisp usable. (If ComMoN Lisp
specified that the stream functions were generic, there would be no
need to shadow the existing definitions; you could simply add methods
to the existing generic functions.)

(setq *clos-streams-package*
(make-package ‘clos-streams :nicknames ’ ("cs")
:use ’‘lisp))

(shadow ’ (input-stream-p output-stream-p
force-output finish-output
close stream-element-type
read-char write-char
read-byte write-byte)

'clos-streams)

You will notice that we declare the returned values of generic functions
In several defgeneric forms. This is a convenient way to document part
of the contract of the generic function—the expected roturned values. Al-
though CommoN Lisp does not specify values as a recognized declaration
specifier, we can make it one by proclaiming values as a declaration as



180 11. Developing an Advanced CLOS Program: Streams

follows:
(proclaim ’ (declaration values))

If we neglected to proclaim values as a declaration, the compiler would
probably give a warning that the declaration was unsupported.

11.4 DIRECTIONAL STREAMS

Here we define the classes stream, input-stream, output-stream, and
bidirectional-stream. We also define the methods that each of these
classes supplies. Then, we mention aspects of this code that are of par-
ticular interest.

The style of this program groups methods and generic functions ac-
cording to the class definitions. For example, under the stream class
definition, you will find definitions for the generic functions that are
supported by all streams. All methods supplied by a class are located un-
der the class definition. We also separate the external interface from the
internal interface with comments in the code.

This style fits this particular example well; another program might
benefit from a different style. A program that depends heavily on multi-
methods could not group methods this way, because a multi-method is
attached to more than one class. One alternative would be to group the
classes, methods, and generic functions together according to the proto-
cols they support.

Defining Directional Streams

;::; THE CLASS STREAM

;;; This basic class must be included in all streams.
(defclass stream {)
((state :initform ’‘open :accessor stream-state))
(:documentation "Foundation of all streams.™))

;::; EXTERNAL PROTOCOL SUPPORTED BY ALL STREAMS

;;; Page 332 in Common LISP: The Language

(defgeneric input-stream-p (stream)
;; Input streams should override this default method.
(:method ((stream stream)) nil))
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;;; Page 332 in Common LISP: The Language

(defgeneric output-stream-p (stream)
;; Output streams should override this default method.
(:method ((stream stream)) nil))

;:; Page 332 in Common LISP: The Language
(defgeneric close (stream &key abort)
(:documentation "Prevents further I/O operations on stream")
(:method ((stream stream) &key abort)
(declare (ignore abort))
(setf (stream-state stream) ’closed)))

;;; Page 332 in Common LISP: The Language
;:; Must be implemented by the element type streams.
(defgeneric stream-element-type (stream)

(:documentation "Returns the type of elements of stream"))

;7;; INTERNAL PROTOCOL SUPPORTED BY ALL STREAMS

(defun ensure-open-stream (stream)
"Prevents access to a stream if it is not open."
(let ((state (stream-state stream)))
(unless (eq state ‘open)
(error "Attempt to use stream ~A which is ~A"
stream state))))

;;; bytes-per-element must be implemented by element type streams.
(defgeneric bytes-per-element (stream)

(declare (values n-bytes))

(:documentation "Returns length of one element, in 8-bit bytes."))

¢/i:; storage-unit-size must be implemented by device streams.
(defgeneric storage-unit-size (stream)

(declare (values n-bytes))

(:documentation "Returns size of i/o buffer, in 8-bit bytes."))

(defun make-element-array (stream)
"Returns array of correct size and element type for stream.”
(make-array (/ (storage-unit-size stream)
(bytes-per-element stream))
:element-type (stream-element-type stream)))
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;::; THE CLASS INPUT-STREAM AND ITS METHODS

;::; This basic class must be included in all input streams.
(defclass input-stream (stream) ()
(:documentation "Foundation of all input streams."))

;;: Override the default primary method to return true.
(defmethod input-stream-p ((stream input-stream))
t)

;7 :; INTERNAL PROTOCOL SUPPORTED BY ALL INPUT STREAMS

;;: Make sure the stream is open before any input is allowed.
(defgeneric read-next-element (input-stream)

(declare (values element eof-p))

(:method :before ((stream input-stream))

;; This method ensures that stream is open before

;; reading; it is inherited by all element type input

;; streams, so it saves each of those methods from

;; duplicating this code.

(ensure-open-stream stream)))

;7; This default method on stream is overridden by input
;7; streams. It is defined simply to give a comprehensible
;:;; error message when this situation occurs, and to make it
;77 unnecessary for all external functions to check the
;7 stream arqument type.
(defmethod read-next-element ((stream stream))

(error "Cannot get input from stream ~A of type ~A."

stream (type-of stream)))

¢+ i THE CLASS OUTPUT-STREAM AND ITS METHODS
;77 This basic class must be included in all output streams.
(defclass output-stream (stream) ()

(:documentation "Foundation of all output streams."))
;ii Override the default primary method to return true.
(defmethod output-stream-p ((stream output-stream))

t)

;++; EXTERNAL PROTOCOL SUPPORTED BY ALL QUTPUT STREAMS
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;;; Although COMMON LISP implies that force-output
;;; and finish-output are supported by character
;;: streams only, they should apply to all output
;;; output streams, which is how we do it below.

;;; Also, since COMMON LISP specifies that the stream
;;; argument of force-output and finish-output is

;;; optional, we can’t implement these operations

;;; directly as generic functions.

;;; Therefore, we define force-output-internal and

;;; finish-output-internal as generic functions, both of
;;: which belong to the internal protocol.

;;; Standardize stream variable if t or nil was given
(defmacro standardize-output-stream-var (stream)
‘(setf ,stream (cond ((eq ,stream t) *terminal-io*)
((null ,stream) *standard-output*)
(t ,stream))))

;;; Page 384 in Common LISP: The Language

(defun force-output (&optional (stream *standard-output*)}
(standardize-output-stream-var stream)
(force-output-internal stream))

;;: Page 384 in Common LISP: The Language

(defun finish-output (goptional (stream *standard-output*))
(standardize-output-stream-var stream)
(finish-output-internal stream))

77 :; INTERNAL PROTOCOL SUPPORTED BY ALL OUTPUT STREAMS

(defgeneric force-output-internal (output-stream)
(:method :before ((stream output-stream))
;; The stream must be open, else generate an error.
(ensure-open-stream stream)))

(defgeneric finish-output-internal (output-stream)
(:method :before ((stream output-stream))
;; The stream must be open, else generate an error.
(ensure-open-stream stream)))

183
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(defgeneric write-next-element (output-stream element)
(:method :before ((stream output-stream) element)
(declare (ignore element))
;; Default method ensures that stream is open before
;; writing. This method is inherited by all element type
;; output streams, and thus it saves each of those
;; methods from duplicating this code.
(ensure-open-stream stream)))

;7; This default method on stream is overridden by output streams.
;;; It is defined simply to give a comprehensible error message
;;; when this situation occurs, and to make it unnecessary for
;;; all user-interface functions to check the stream argument type.
(defmethod write-next-element ((stream stream) element)

(declare (ignore element))

(error "Cannot do output to stream ~A of type ~A."

stream (type-of stream)))

;;; THE CLASS BIDIRECTIONAL-STREAM

;7; This class inherits all needed methods, and supplies none
;;; of its own.
(defclass bidirectional-stream
(input-stream output-stream)
()
(:documentation "A combined input and output stream."))

Highlights of Directional Streams

The relationships among directional streams are defined here. All
streams are built on the class stream. Input streams are built on input-
stream, and output streams are built on output-stream.

The CommoN Lisp type predicates on streams are defined here, in-
cluding input-stream-p and output-stream-p. The inheritance of these
methods works neatly and effectively.

+ The class stream provides default methods for input-stream-p and
output-stream-p, which return nil.

e The glass input-stream provides a method for input-stream-p that
overrides the default method and returns t. However, the class
input-stream inherits the default method for output-stream-p.
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o The class output-stream provides a method for output-stream-p that
overrides the default method and returns t. However, the class
output-stream inherits the default method for input-stream-p.

o The class bidirectional-stream inherits all these methods from its su-
perclasses input-stream, output-stream, and stream. The method for
input-stream-p supplied by class input-stream overrides the method
supplied by the class stream; therefore, a bidirectional stream is de-
fined to be an input stream. Similarly, a bidirectional stream is de-
fined to be an output stream.

Sometimes it is not possible to implement a function as a generic func-
tion. For example, CommoN Lisp specifies that the stream argument to
force-output is optional. In CLOS, methods cannot specialize on optional
arguments. Since we want the stream argument to select methods, we
define force-output as an ordinary function, which processes its argu-
ments and then calls force-output-internal to do its work. We define
force-output-internal as a generic function whose stream argument is
required. We do the same for finish-output.

We implemented ensure-open-stream and make-element-array as ordi-
nary Lisp functions. We do not anticipate that different types of streams
will need specialized behavior for these operations. The stream protocol
can be implemented in terms of both ordinary and generic functions.

11.5 TAPE STREAMS

For the purpose of this example, we assume an extremely simple tape
system. Tape streams do not support all the capabilities of disk streams
because the tape device supports sequential access, not random access.
Note that tape streams do not support set-position or the appending of
data. We also do not provide a bidirectional tape stream.

Low-Level Tape Interface

Here we specify the interface to an imaginary operating system for
streams to magnetic-tape units. We document these primitives, but do
not include Lisp code that implements them. We assume that these
primitives exist, and we call them in the methods for tape streams.

To keep the example simple, tape records are all fixed size, except for
the last record, which usually is incomplete (it does not contain a full
tape record of data), and thus smaller. This tape system supports only
one contiguous amount of data, starting at the beginning of the tape
and going to an EOF (end of file) mark.
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open-tape-unit tape-unit-number
Returns a "tape-handle” identifying the tape unit.

close-tape-unit fape-handle
Closes the tape unit and deallocates the tape-handle.

read-record fape-handle array element-type
Reads the next tape record into the array. Returns two
values, named eof and eof-position. The first value (eof) is
nil if the array contains a complete record, or t if the ar-
ray contains an incomplete record; in this case, the second
value is a number marking the position of the EOF.

write-record lape-handle array element-type &optional (size *tape-
record-byte-size*)
Writes the contents of the array into the next tape record.
The size argument is used for writing the last record,
which is usually incomplete, and thus smaller than *tape-
record-byte-size*. write-record does not write any ele-
ments of the array past the given size.

write-eof-mark tape-handle
Writes an EOF mark on the tape.

rewind lape-handle
Rewinds the tape unit to the beginning of the tape.

Defining Tape Streams

;+:; THE CLASS TAPE-STREAM AND ITS METHODS

(defclass tape-stream
(stream)
({unit :accessor tape-unit
:initform 0
:initarg :unit)
(tape-handle :initform nil :accessor tape-handle)
(tape-record-size :allocation :class
:initform *tape-record-byte-size*
:reader storage-unit-size)
(element-buffer :accessor element-buffer)
(buffer-index :accessor buffer-index))
(:documentation "A stream for accessing a tape device."))
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(defmethod initialize-instance :after
((stream tape-stream) &key)
(with-accessors ((tape-handle tape-handle)
(unit tape-unit)
(element-buffer element-buffer))
stream
(setf tape-handle (open-tape-unit unit))
(setf element-buffer (make-element-array stream))))

;;; Close the tape unit and clear the tape-handle.
(defmethod close ((stream tape-stream) &key abort)
(declare (ignore abort))
(with-accessors ((tape-handle tape-handle))
stream
(when tape-handle
(close-tape-unit tape-handle)
(setf tape-handle nil))))

;i:; THE CLASS TAPE-INPUT-STREAM AND ITS METHODS

(defclass tape-input-stream

(tape-stream input-stream)

;; position in buffer of EOF

;; or nil if EOF has not been reached

((eof-offset :initform nil

:accessor eof-offset)

;¢ provide a default value for this inherited slot

(buffer-index :initform nil))
(:documentation "A stream for getting input from a tape device."))

(defmethod read-next-element ((stream tape-input-stream))
(with-accessors ((element-buffer element-buffer)
(buffer-index buffer-index)
(tape-handle tape-handle)
(eof-offset eof-offset))
stream
;; Make sure the input buffer contains the desired data
(unless ({and buffer-index
(< buffer-index (length element-buffer)))
;7 The current buffer does not contain the desired element.
;; Read the next record.
(multiple-value-bind (eof byte-offset)



188 11 Developing an Advanced CLOS Program: Streams

(read-record tape-handle element-buffer
(stream-element-type stream))
(if eof (setf eof-offset
(/ byte-offset (bytes-per-element stream))))
(setf buffer-index 0)))
;; Return nil t if EOF is reached
(if (and eof-offset (>= buffer-index eof-offset))
(values nil t)
;; Otherwise return data element and update buffer index
(progl (aref element-buffer buffer-index)
(incf buffer-index)))))

;7:; THE CLASS TAPE-OUTPUT-STREAM AND ITS METHODS

(defclass tape-output-stream
(tape-stream output-stream)
((buffer-index :initform 0))
(:documentation "A stream for writing output to a tape device."))

(defmethod write-next-element ((stream tape-output-stream) element)
(with-accessors ((element-buffer element-buffer)
(buffer-index buffer-index)
(tape-handle tape-handle))
stream
(unless (< buffer-index (length element-buffer))
;; index is past the end of the buffer, so we
;; need to write out the buffer and update index
(write-record tape-handle element-buffer
(stream-element-type stream))
(setf buffer-index 0))
(setf (aref element-buffer buffer-index) element)
(incf buffer-index)))

;7; For close :abort, rewind tape immediately and write EOF.
;:; For normal close, write out remaining buffered data (if
/i, necessary) and then write EOF.

(defmethod close :before ((stream tape-output-stream)

&key abort)
(with-accessors ((tape-handle tape-handle))
stream
(if abort
(rewind tape-handle)
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;; No need to write buffer out if there is no buffer-index
;7 because that implies that no writing has begun
(unless (zerop buffer-index)
(write-record tape-handle element-buffer
(stream-element-type stream)
;; include the size argument
(* buffer-index
(bytes-per-element stream)))))
(write-eof-mark tape-handle)))

; Neither force-output-internal nor finish-output-internal
;7; should write an incomplete tape record to the tape device,
;;: because it would then be impossible to continue to do

;7; output at the correct tape position. Therefore the two
;7; methods below don’t do anything.

(defmethod force-output-internal ((stream tape-output-stream))
nil) ;nil is the documented returned value.

(defmethod finish-output-internal ((stream tape-output-stream))
nil) ;nil is the documented returned value.

Highlights of Tape Streams

The purpose of tape streams is to isolate all knowledge of the magnetic-
tape device. The only part of our program that uses the tape primitives
is the tape streams. An equally important aspect of tape streams is that
they access the magnetic-tape device for input and or output, without
any knowledge of the type of elements being read or written. Tape
streams manipulate data without knowing whether the data consist of
characters, bytes, or other types of data.

This modularity is the keystone of our design. The modularity de-
pends on a strict delineation of responsibility. Tape stream classes are
responsible for accessing the magnetic-tape device, and they must rely
on the element type stream classes to handle any work that is specific
to the element type of the data.

The primitives in our tape interface do not support set-position. The
tape device reads from beginning to end, or writes from beginning to
end, and cannot change its notion of current position, other than to
rewind all the way to the beginning of the tape. This limitation has two
effects on tape streams:
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o Tape streams do not supply a method for set-position. If a client
tries to set the position of a tape stream, the "no applicable method"
error is signaled.

« Since we cannot set the position, it is not possible to implement
force-output-internal or finish-output-internal. If we were to write
an incomplete tape record to the tape device, we could no longer con-
tinue to do output at the correct tape position. However, even though
we cannot implement these generic functions, it is essential that we
define methods for them. When called, the methods simply return
nil. The existence of these methods enables clients to use force-
output and finish-output on all output streams. If the device can
force or finish the output it does so; if it cannot, no error is signaled.

This behavior is consistent with our defined external protocol. All out-
put streams must support force-output and finish-output, although the
actual details of what happens depend on the device. It is part of the
contract of these two functions that no error should be signaled, even if
the device cannot support the functions. This is unusual; typically, it is
aporopriate to allow the "no applicable method" error to be signaled
when the generic function is not implemented for the set of arguments.

11.6 DISK STREAMS

Disk streams need to have direct access to the disk. For the purpose of
this example, we assume a simple interface to an imaginary operating
system for streams to disk files. In a real implementation, this layer
would be the very lowest file-system support.

Low-Level Disk Interface

We assume a simple operating system that supports random-access files
with fixed-size blocks (corresponding to a disk sector). The interface as-
sumes that the file already exists, or else open-disk-file will create it.
disk-write creates the block if it does not already exist. We assume the
following primitives for accessing the disk:

open-disk-file file-name-string
Returns a "file-handle" for identifying the file and opens
the file for random block-oriented access.
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byte-length file-handle
Returns the length of the file in bytes.

(setf byte-length) n-bytes file-handle
Sets the length of a file in bytes. Called with the setf syn-

tax as follows:
(setf (byte-length file-handle) n-bytes)

close-disk-file file-handle
Closes the file and deallocates the file-handle.

disk-read file-handle array block-number element-type skey (wait t)
Reads the contents of the file’s specified block into the ar-
ray, automatically converting from the disk’s internal data
format into the element type. If wait is t, disk-read does
not return until the disk operation finishes. Otherwise,
disk-read returns immediately after requesting the opera-
tion, returning an identifier that can be passed to disk-
finished-p to see whether the disk operation is finished.
The contents of the array should not be accessed until the
disk operation finishes. That is, if wait is nil, the array
should not be accessed until disk-finished-p returns t.

disk-write file-handle array block-number element-type skey (wait t)
Writes the contents of the array into the file’s specified
block, automatically converting from the element type into
the disk’s internal data format. If wait is t, disk-write does
not return until the disk operation finishes. Otherwise,
disk-write returns immediately after requesting the opera-
tion, returning an identifier that can be passed to disk-
finished-p to see whether the disk operation is finished.
The contents of the array should not be accessed until the
disk operation finishes. That is, if wait is nil, the array
should not be accessed until disk-finished-p returns t.

disk-finished-p tdentifier
Returns t if the operation is finished. The identifier is the
value returned by disk-read or disk-write if wait is nil.

Disk streams are considerably more complicated than tape streams. The
disk-write primitive supports a wait keyword, which we will use for dis-
tinguishing between force-output and finish-output. CoMMON Lisp spec-
ifies that force-output should begin to write the buffered data, but
should not wait for the writing to be finished. In contrast, finish-output
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writes the buffered data and does wait until the writing is finished. This
distinction means that disk streams have some asynchronous activities,
which requires us to keep in mind those situations for which we need to
check whether a disk-write operation is in progress before proceeding.

Defining Disk Streams

;:::; THE DISK-STREAM CLASS

(defclass disk-stream
;; Disk streams are built on the basic class stream
(stream)
;; Handle to file returned by OS
((file-handle :initform nil
:accessor file-handle)
;; Name of the file for.the 0S
(pathname :initarg :pathname
:accessor disk-pathname)
;; Size of a disk sector, expressed in 8-bit bytes
(disk-sector-size :allocation :class
:initform *disk-sector-byte-size*
:reader storage-unit-size)
;; Position of current element within file
(element-number :initform 0
:accessor element-number)
;; Total number of elements in disk file
(element-length :accessor element-length)
;; Element buffer, used for I/0
(element-buffer :accessor element-buffer)
;; Index into element buffer or NIL if uninitialized
(buffer-index :initform nil
:accessor buffer-index)
;; Disk block number of buffer.
(block-number :initform 0
:accessor block-number))
(:documentation "A stream for accessing a disk file."))

;7; This method does a lot of initialization, and some of
;7; it depends on happening in a certain order. Hence an
;7; initialization method is preferable to initforms,

;;; whose execution order is not defined.

(defmethod initialize-instance :after
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((stream disk-stream) &key)
;; we use with-accessors for convenient access to the slots
(with-accessors ((file-handle file-handle)
(element-length element-length)
(pathname disk-pathname)
(element-buffer element-buffer))
stream
(setf file-handle (open-disk-file (namestring pathname)))
(setf element-buffer (make-element-array stream))
(setf element-length (/ (byte-length file-handle)
(bytes-per-element stream)))))

;i::; EXTERNAL PROTOCOL SUPPORTED BY ALL DISK STREAMS

;;; set-position is an extension to COMMON LISP, which
;:: we include in the External Interface. It allows
;;: greater control when accessing disk streams.

;:; This sets the current position to the desired element
;:; position. If the element position is beyond the end
;7; of the file, eof-error-p and eof-value define whether
;;; an error or a value is returned. The element position
;i; is the element number in the file, where the first
;;; element is number 0, the next is 1, and so on.
(defgeneric set-position (disk-stream new-position
soptional eof-error-p eof-value)
(:method ((stream disk-stream) new-position
soptional eof-error-p eof-value)
(with-accessors ((element-buffer element-buffer)
(buffer-index buffer-index)
(element-length element-length)
(file-handle file-handle)
(block-number block-number))
stream
i; Don’t allow setting position past end of file
(if (> new-position element-length)
(if eof-error-p
(error "End of file in ~A" stream)
eof-value)
;; Here, new-position is OK
(multiple-value-bind (block-no offset)
(truncate new-position (length element-buffer))

193
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;; Unless current buffer is valid
(unless (and buffer-index
;; And contains the same block
(= block-number block-no))
;; Have to read in the desired block
(setf block-number block-no)
(disk-read file-handle element-buffer block-number
(stream-element-type stream)))
(setf buffer-index offset)
(setf element-number new-position))))))

(defmethod close ((stream disk-stream) &key abort)
(declare (ignore abort))
(with-accessors ((file-handle file-handle))
stream
;; Checking and clearing the file-handle isn’t essential
;; but is good practice in case CLOSE is called multiple
;7 times, especially CLOSE then CLOSE :ABORT T
(when file-handle
(close-disk-file file-handle)
(setf file-handle nil))))

¢7:; THE CLASS DISK-INPUT-STREAM AND ITS METHODS

(defclass disk~input-stream (disk-stream input-stream) ()
(:documentation "A stream for getting input from a disk.™))

(defmethod read-next-element ((stream disk-input-stream))
(with-accessors ((element-number element-number)
(element-length element-length)
(buffer-index buffer-index)
(element-buffer element-buffer)
(block-number block-number)
(file-handle file-handle))
stream
(cond ((< element-number element-length)
;; Make sure the input buffer contains the desired data.
(unless (and buffer-index
(< buffer-index (length element-buffer)))
;; Unless at beginning, advance to next block.
(if buffer-index (incf block-number))
(disk-read file-handle element-buffer block-number
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(stream-element-type stream))
(setf buffer-index 0))
;; Update pointers and return data element.
(incf element-number)
(progl (aref element-buffer buffer-index)
(incf buffer-index)))
(t ;; At EOF
(values nil t)))))

;7;; THE CLASS DISK-OUTPUT-STREAM AND ITS METHODS

(defclass disk-output-stream
(disk-stream output-stream)
;; disk-id is used to store the identifier returned
;; by disk-write, which we will use to find out if
;; the disk-write is still in progress.
((disk-id :initform nil

:accessor disk-id))
(:documentation "A stream for writing output to a disk."))

;;: This comes in useful when we need to ensure that
;;; there is no disk-write currently in progress.
(defmethod wait-for-disk ((stream disk-output-stream))
(with-accessors ((disk-id disk-id))
stream
(unless (null disk-id)
;7 process-wait is not part of COMMON LISP, but we
;; defined it earlier, in "Locks and Processes"”
(process-wait "Disk wait"™ #’disk-finished-p disk-id)
(setf disk-id nil))))

(defmethod write-next-element
((stream disk-output-stream) element)
(with-accessors ((element-buffer element-buffer)
(buffer-index buffer-index)
(block-number block-number)
(element-number element-number)
(element-length element-length)
(file-handle file-handle))
stream
i; Ensure that no disk write is happening.
(wait-for-disk stream)
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(unless (and buffer-index (< buffer-index
(length element-buffer)))
;; Current buffer does not contain the desired element.
(when buffer-index
;; Write out the old buffer and update the pointers.
(disk-write file-handle element-buffer block-number
(stream-element-type stream))
(incf block-number))
;; Need to read in next block in case we are
;; overwriting an existing file.
(when (< element-number element-length)
(disk-read file-handle element-buffer block-number
(stream-element-type stream)))
(setf buffer-index 0))
(setf (aref element-buffer buffer-index) element)
(incf buffer-index)
(incf element-number)
;; Update the EOF pointer as well, but defer the actual
;; setting of the EOF pointer on the disk until CLOSE (or
;; FINISH-OUTPUT) time to reduce overhead. FINISH-OUTPUT
;; should be called anyway when dealing with files which
;; are being read by other processes.
(when (>= element-number element-length)
(setf element-length element-number))))

777 The methods for force-output-internal and finish-output-internal
i7; check whether a force-output-internal is already in progress.
i7; If so, they don’t do an additional, unnecessary disk-write.

(defmethod force-output-internal ((stream disk-output-stream))
(with-accessors ((buffer-index buffer-index)
(file-handle file-handle)
(element-buffer element-buffer)
(disk-id disk-id)
(block~number block-number))
stream
(unless disk-id
;7 A force-output-internal is not already in
;; progress, so we start one.
(when buffer-index
;; The current buffer contents are valid. Write them
;; out. Don’t change any of the pointers in case
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;; output is simply continued.
(setf disk-id (disk-write file-handle element-buffer
block-number
(stream-element-type stream)
:wait nil)))))
nil) ;; nil is the documented returned value.

(defmethod finish-output-internal ((stream disk-output-stream))
(with-accessors ((file-handle file-handle)
(buffer-index buffer-index)
(element-length element-length)
(disk-id disk-id))
stream
;; Don’t do anything if buffer is invalid
(when buffer-index
(unless disk-id
;7 A force-output-internal is not already in
;; progress, so we start one.
(force-output-internal stream))
;; Also, update the EQOF pointer on the disk. It’s OK
;; if the operating system causes this to hang until
;; the disk is updated. Note: this could be optimized
;; to do this only if the value has changed.
(setf (byte-length file-handle)
(* element-length (bytes-per-element stream)))
;; And then wait for it to finish.
(wait-for-disk stream))))

(defmethod set-position :before ((stream disk-output-stream)
new-position
soptional eof-error-p eof-value)
(declare (ignore new-position eof-error-p eof-value))
;; Before a new disk block can be read in containing the
;; new position, we have to write out the old block if it
;i has been modified. Note: this could be improved by
;; seeing whether the new-position argument is still in
i+ the same buffer, and not doing finish-output-internal
;; in that case.
(finish-output-internal stream))

;7; This needs to be done before the primary methods are
;i; called, to prepare the file to be closed by first sending
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;::; out any buffered output.
(defmethod close :before ((stream disk-output-stream)
&key abort)
{unless abort
(finish-output-internal stream)))

;;:: THE CLASS DISK-BIDIRECTIONAL-STREAM

(defclass disk-bidirectional-stream
(disk-input-stream disk-output-stream bidirectional-stream)

()
(:documentation "A combined input and output disk stream."))

;:: Bidirectional streams do both reading and writing.
;:; Before reading, ensure that no disk-write is happening.
(defmethod read-next-element :before
((stream disk-bidirectional-stream)}
(wait-for-disk stream))

Highlights of Disk Streams

Disk streams are analogous to tape streams, in that they isolate all
knowledge of the disk device. The disk streams are responsible for han-
dling all work related to the disk, and they must do their job without
depending on knowledge of the element type of the data.

However, the disk streams do need to provide the element type of the
stream as an argument to disk-read and disk-write. To do so, the disk
stream methods call the stream-element-type generic function. Each ele-
ment type stream provides a method for stream-element-type. Thus,
when disk stream methods need information about the element type,
they use the documented internal protocol and rely on the element type
classes handling the element type aspects of streams.

It is also worth noting that disk streams introduce one new function
into the external protocol: set-position. Since the disk primitives sup-
port reading and writing random blocks, it is useful to bring that capa-
bility directly to the users of our stream program. Disk streams support
set-position because to do so makes sense for a disk device; however,
there is no requirement that all device streams must support set-
position.

Disk streams are more complex than tape streams because of the
asynchronous behavior of disk writing (supported by the :wait keyword
to disk-write) and the set-position capability. It is valuable to identify
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the places in the code where we use wait-for-disk, because that gives us
a framework for discussing the modularity of disk streams. The general
guideline is that we must wait for the disk to finish writing before we
modify the buffer of data. The buffer is modified by both disk-read and
functions that write elements to the array.

wait-for-disk is implemented by a method on disk-output-stream and
by the slot disk-id, which is a slot of disk-output-stream. It is correct
to associate the wait-for-disk behavior with disk output streams, be-
cause disk writing takes place in disk output streams only.

An input-only disk stream would have no need to call disk-write,
which means that an input-only stream never has to wait for the
disk. No methods for disk-input-stream call wait-for-disk.

In general, an output-only disk stream needs to wait for the disk be-
fore modifying the buffer. This happens in the method for write-
next-element.

The primary method for set-position is attached to the class disk-
stream. This method calls disk-read without waiting for the disk be-
cause for input-only streams waiting is unnecessary and, in fact, is
unsupported. However, output streams must wait for the disk before
calling disk-read. We implement this waiting by providing a before-
method for set-position for the class disk-output-stream. This
method calls finish-output, which in turn calls write-next-element,
which waits for the disk if necessary.

A bidirectional disk stream needs to wait for the disk before calling
disk-read or disk-write. Bidirectional streams inherit the waiting be-
havior already implemented by output streams, but there is no wait-
ing behavior in input streams (because waiting is unnecessary for in-
put-only streams). Therefore, we support the waiting behavior in a
before-method for read-next-element for the class disk-bidirectional-
stream,

1.7 CHARACTER STREAMS

Here we deﬁne; our first element type streams; character streams do
anything that is needed to handle the character element type. These

: streams are considerably simpler than the device type streams.
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Defining Character Streams

;::: THE CLASS CHARACTER-STREAM

(defclass character-stream
(stream)
((bytes-per-element :allocation :class
;initform 1
:reader bytes-per-element)
(element-type :allocation :class
:initform ’character
:reader stream-element-type))
(:documentation "A stream for transmitting characters."))

; ¢, EXTERNAL PROTOCOL SUPPORTED BY CHARACTER STREAMS

;:; Because COMMON LISP specifies that the stream argument to
;;: read-char and write-char is optional, we implement

;:; these operations as ordinary functions. The "generic”
;;; aspect of read-char and write-char lies within the bodies
;¢; of the functions, where they call the generic functions
;:; read-next-element and write-next-element.

;:; Standardize stream variable if t or nil was given.

;:; This is done for input streams on characters, but

;:; not on bytes, since the byte-stream operations do

;7 not default the stream argument; it is required.

(defmacro standardize-char-input-stream-var (stream)

‘(setf ,stream (cond ((eq ,stream t) *terminal-io*)

((null ,stream) *standard-input*)
(t ,stream))))

;77 Page 379 in Common LISP: The Language
(defun read-char (&optional (input-stream *standard-inputt*)
eof-error-p eof-value recursive-p)
(standardize-char-input-stream-var input-stream)
(multiple-value-bind (element eof-p)
(read-next-element input-stream)
(cond (eof-p
(if eof-error-p
(if recursive-p
(error "End of file while reading from ~A"™
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input-~-stream)
(error "End of file in ~A" input-stream))
eof-value))
(t
element))))

;:;; Page 384 in Common LISP: The Language
(defun write-char (character
&optional (output-stream *standard-output*))
(standardize-output-stream-var output-stream)
(write-next-element output-stream character))

;7:: THE DIRECTIONAL CHARACTER-STREAM CLASSES

(defclass character-input-stream
(character-stream input-stream)

()
(:documentation "A stream for getting character input."))

(defclass character-output-stream
(character-stream output-stream)

()
(:documentation "A stream for writing character output.™))

(defclass character-bidirectional-stream
(character-input~stream
character-output-stream
bidirectional-stream)
()
(:documentation "A combined input and output character stream."))

Highlights of Character Streams

Character streams handle the character element type. The generic func-
tions bytes-per-element and stream-element-type store information about
the structure of character elements. Since both of these are constants,
we chose to store them in class slots that have reader methods. Alter-
natively, we could have stored the information in defmethod forms,
where the methods simply returned the constants.

The character-stream class assumes each character fits in a single
byte. Some implementations support characters that require more than
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one byte of storage. Our model could be extended to include classes
built on character-stream; such classes could provide a class slot named
bytes-per-element to override the class slot defined by the character-
stream class.

CoMMON Lisp specifies that character streams support the functions
read-char and write-char. (CoMMoN Lisp also specifies several other
functions that manipulate character streams, but this example does not
implement all of them.) The real benefits of our stream foundation be-
come clear here: It is very easy to define read-char and write-char in
terms of read-next-element and write-next-element. As we shall demon-
strate in byte streams, it is equally easy to implement the byte input
and output functions using the same foundation.

We define character-input-stream, character-output-stream, and
character-bidirectional-stream to fill out the type organization. None of
those classes supplies methods or slots of its own. By defining these
classes, however, we enable clients to use typep to determine whether
an object is of one of these stream types.

11.8 BYTE STREAMS

Here we define several kinds of byte streams, each intended to handle
bytes of various sizes.

Defining Byte Streams
;+;; THE BYTE-STREAM CLASSES

(defclass byte-stream (stream) ()
(:documentation "A stream for transmitting bytes of data."))

(defclass 8-bit-byte-stream
(byte-stream)
{(bytes-per-element :allocation :class
tinitform 1
:reader bytes-per-element)
(element-type :allocation :class
:initform ' (unsigned-byte 8)
:reader stream-element-type))
(:documentation "A stream for transmitting 8-bit bytes of data."})
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(defclass 32-bit-word-stream
(byte-stream)
((bytes-per-element :allocation :class
tinitform 4
:reader bytes-per-element)
(element-type :allocation :class
tinitform ' (signed-byte 32)
:reader stream-element-type))
(:documentation "A stream for transmitting 32-bit words of data."}))

;1:: THE CLASS BYTE-INPUT-STREAM AND A METHOD
(defclass byte-input-stream (byte-stream input-stream) ())

;;: Page 382 in Common LISP: The Language
(defgeneric read-byte (byte-input-stream
&optional eof-error-p eof-value)
(:method ((stream byte-input-stream)
toptional eof-error-p eof-value)
(multiple-value-bind {element eof-p}
(read-next-element stream)
(cond (eof-p
(if eof-error-p
(error "End of file while reading from ~A" stream)
eof-value))
{t
element)))))

;+:; THE CLASS BYTE-QUTPUT-STREAM AND A METHOD

(defclass byte-output-stream (byte-stream output-stream) ())

;:: Page 385 in Common LISP: The Language

(defgeneric write-byte (output-stream byte)
(:method ((stream byte-output-stream) byte)
(write-next-element stream byte)))

;i7:; THE OTHER BYTE-STREAM CLASSES

(defclass 8-bit-byte-input-stream

(8-bit-byte-stream byte-input-stream)
()
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(defclass 8-bit-byte-output-stream
{8-bit-byte-stream byte-output-stream)
()

(defclass 8-bit-byte-bidirectional-stream
(8-bit-byte-input-stream
8-bit-byte-output-stream
bidirectional-stream)

()

(defclass 32-bit-word-input-stream
(32-bit-word-stream byte-input-stream)
()

(defclass 32-bit-word-output-stream
(32-bit-word-stream byte-output-stream)
Mm

(defclass 32-bit-word-bidirectional-stream
(32-bit-word-input-stream
32-bit-word-output-stream
bidirectional-stream)

())

Highlights of Byte Streams

Byte streams exhibit another good use of modularity. We have divided
byte streams into two pieces: one piece supporting the directional as-
pect, the other piece supporting the structural aspect (the structure of
the element type).

The directional aspect of byte streams includes the ComMoN Lisp
functions read-byte and write-byte; that is, a byte input stream sup-
ports read-byte, whereas a byte output stream supports write-byte. The
classes byte-input-stream and byte-output-stream support those func-
tions with methods that call read-next-element and write-next-element.
Thus, these two classes handle the directional aspect of byte streams.

The structural aspect of byte streams includes bytes-per-element and
stream-element-type, which describe the structure of the element type.
The classes 8-bit-byte-stream and 32-bit-word-stream support those
generic functions with methods (reader methods that access the class
slots where the information is stored). Thus, these two classes handle
the structural aspect of byte streams.
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We then define classes that are built on both a "directional aspect of
the element type" stream and a "structural aspect of the element type"
stream class. For example, the class 8-bit-byte-input-stream inherits
from byte-input-stream and 8-bit-byte-stream.

1.9 INSTANTIABLE STREAMS

A usable stream needs three components: a directional class, a device
class, and an element type class. We do not expect users to create an in-
stance of any of the stream classes defined so far, because all these
stream classes are incomplete. We now define the complete, usable
streams, which we might call the "instantiable” streams. "Instantiable"
indicates that we do expect clients to create instances of these streams.

Defining the Instantiable Streams

;¢ An instantiable stream needs three components, indicating
;:::; the element type, the direction, and the device type.

;77; INSTANTIABLE CHARACTER DISK STREAMS

(defclass character-disk-input-stream
(character-input-stream disk-input-stream)
())

(defclass character-disk-output-stream
(character-output-stream disk-output-stream)
()

(defclass character-disk-bidirectional-stream
(character-bidirectional-stream disk-bidirectional-stream)
()

7777 INSTANTIABLE CHARACTER TAPE STREAMS

(defclass character-tape-input-stream
(character-input-stream tape-input-stream)
0)

(defclass character-tape-output-stream
(character-output-stream tape-output-stream)
()
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;::; INSTANTIABLE 8-BIT-BYTE DISK STREAMS

(defclass 8-bit-byte-disk-input-stream
(8-bit-byte-input-stream disk-input-stream)
()

(defclass 8-bit-byte-disk-output-stream
(8-bit-byte-output-stream disk-output-stream)
()

(defclass 8-bit-byte-disk-bidirectional-stream
(8-bit-byte-bidirectional-stream
disk-bidirectional-stream)

()

;+:; INSTANTIABLE 8-BIT-BYTE TAPE STREAMS

(defclass 8-bit-byte-tape-input-stream
(8-bit-byte-input-stream tape-input-stream)
()

(defclass 8-bit-byte-tape-output-stream
(8-bit-byte-output-stream tape-output-stream)
()

7:;; INSTANTIABLE 32-BIT-WORD DISK STREAMS

(defclass 32-bit~-word-disk-input-stream
(32-bit-word-input-stream disk-input-stream)
() ’

(defclass 32-bit-word-disk-output-stream
(32-bit-word-output-stream disk-output-stream)
()

(defclass 32-bit-word-disk-bidirectional-stream
(32-bit-word-bidirectional-stream
disk-bidirectional-stream)

()
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;::; INSTANTIABLE 32-BIT-WORD TAPE STREAMS

(defclass 32-bit-word-tape-input-stream
(32-bit-word-input-stream tape-input-stream)
0

(defclass 32-bit-word-tape-output-stream
(32-bit-word-output-stream tape-output-stream)
()

11.10 A PROCEDURAL DEFINITION FOR CREATING STREAMS

At this point, we have finished the foundation of streams, and have im-
plemented several of the familiar CommoN Lisp stream functions. How-
ever, we have ignored the question of how streams are created in the
first place. We need to define an interface for creating streams. Since
one of our goals was to make streams easily extensible, we should de-
sign this interface as an extensible protocol and document it; this proto-
col enables programmers to hook a new stream class into the existing
mechanism and make the new class generally available.

Designing a Protocol for Creating Streams

The interface for creating streams will be used by open and other func-
tions that need to create streams. The bulk of the work of creating a
stream is done by make-stream, which we document as follows:

make-stream device-type direction element-type name

Returns an opened stream of the correct type for the ar-
guments. Calls select-stream-class to choose the class.
Calls make-device-stream to choose the correct arguments
to make-instance and to create the instance itself. device-
type is a symbol, such as tape or disk. direction is the sym-
bol input or output or bidirectional. element-type is a type
specifier. name is a string: for a disk device it names a
pathname; for a tape device, it names a unit number.

Smce we document two functions that make-stream calls, we are design-
ing a procedural definition for make-stream. We might envision the defi-
nition of make-stream as the following:
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;:: Called by any function that needs to create a stream.
;;: make-stream creates, opens, and returns a stream.
(defun make-stream (device-type direction element-type name)
(let* ((stream-class (select-stream-class
direction element-type device-type))
(stream (make-device-stream device-type stream-class
name)))
(setf (stream-state stream) ’open)
stream))

The two aspects of the make-stream procedure that we need to identify
further are

» Selecting the stream class with select-stream-class
« Making an instance of the stream class with make-device-stream

We specify that make-stream calls select-stream-class to choose the ap-
propriate class based on the desired direction, element type, and device.
The association from sets of direction, element type, and device to the
stream classes is set up by calling add-stream-class. In this design, both
select-stream-class and add-stream-class are ordinary functions and
are not intended to be specialized by programmers. Instead, we expect
programmers to call add-stream-class for each instantiable class, to as-
sociate the stream class with the correct direction, element type, and
device. We document select-stream-class and add-stream-class as fol-
lows:

add-stream-class direction element-type device-type class
Sets up an association from the first three arguments to
the class. This association is used by select-stream-class.
direction is a keyword argument; element-type is a type
specifier; and device-type is a symbol.

select-stream-class direction element-type device-type
Returns the appropriate class for the arguments. The argu-
ments are the same as the first three arguments to add-
stream-class.

As far as the external protocol is concerned, the implementation of
select-stream-class and add-stream-class is irrelevant. One possible
way to implement these operations is with an association table, as fol-
lows:
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;:: Maintains association used by select-stream-class.
(defvar *stream-selector* nil)

;i Sets up association from first 3 args to the class.
(defun add-stream-class (direction element-type device-type class)
(setq *stream-selector*
(acons (list direction element-type device-type) class
*stream-selector*)))

;:: Chooses the appropriate class based on its arguments.
;s;; Signals an error if there is no matching stream.
(defun select-stream-class (direction element-type device-type)
(let* ((entry (assoc (list direction element-type device-type)
*stream-selector*
:test #'compare-stream-lists))
(class (cdr entry)))
(if (null entry)
(error "Cannot create a ~A ~A stream for device-type ~A."
element-type direction device-type)
class)))

;7; Returns t if the stream lists are equivalent.
;:: Used to compare plist keys in *stream-selector*
(defun compare-stream-lists (listl list2)
(and (eql (first listl) (first list2))
;; compare the element-types
(equal-typep (second listl) (second list2))
(eql (third listl) (third list2))))

;:; Tests whether two type specifiers are equivalent.
(defun equal-typep (tl t2)
(and (subtypep tl t2) (subtypep t2 t1)))

The keys in the association list are lists of direction, element type, and
device type. We need to ensure that equivalent type specifiers choose
the element type correctly: (mod 256) and (unsigned-byte 8) are equiva-
lent and both should result in a stream whose element type is
(unsigned-byte 8). We use equal-typep to compare type specifiers.

The job of make-device-stream is to call make-instance with the correct
arguments for the device. We expect programmers to specialize make-
device-stream for any new instantiable device type. In this example, we
assume that the device-fype argument is a symbol, such as disk or
tape—so the methods must be individual methods that specialize on
those symbols.
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make-device-st ream device-type class name
Creates and returns a stream; its main purpose is to pro-
vide the correct arguments to make-instance for the device
class. This generic function is intended to be specialized for
each device type. device-type is a symbol, such as tape or
disk. name is a string: for a disk device it names a path-
name; for a tape device, it names a unit number.

In summary, the protocol for hooking a new stream into the stream-
creation mechanism consists of two tasks:

o add-stream-class must be called for new instantiable streams
o make-device-stream must be specialized for new device classes

Using the Protocol for Creating Streams
;s :; THE MAKE-DEVICE-STREAM GENERIC FUNCTION

(defgeneric make-device-stream (device-type class name)
(:documentation "Create an instance with correct initargs.”))

;+;; METHODS FOR MAKE-DEVICE-STREAM
(defmethod make-device-stream ((device-type (eql ’tape))

class name)
(make-instance class :unit (parse-integer name)))

(defmethod make-device-stream ((device-type (eql ’'disk))
class name)
(make-instance class :pathname name))

;+;; ADDING CHARACTER DISK STREAMS

(add-stream-class :input ’‘character ’disk
(find-class ’character-disk-input-stream))

(add-stream-class :output ‘character ’‘disk
(find-class ‘character-disk-output-stream))

(add-stream-class :bidirectional ’character ’'disk
(find-class ‘character-disk-bidirectional-stream)
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;:.; ADDING CHARACTER TAPE STREAMS

(add-stream-class :input ’character ’tape
(find-class ’character-tape-input-stream))

(add-stream-class :output ’character ’tape
(find-class ‘character-tape-output-stream))

;7;; ADDING 8-BIT-BYTE DISK STREAMS

(add-stream-class :input ’ (unsigned-byte 8) ’disk
(find-class ’8-bit-byte-disk-input-stream))

(add-stream-class :output ’ (unsigned-byte 8) ’‘disk
(find-class ‘8-bit-byte-disk-output-stream))

(add-stream-class :bidirectional ’ (unsigned-byte 8) ’disk
(find-class
'8~-bit-byte-disk-bidirectional-stream))

;:;;; ADDING 8-BIT-BYTE TAPE STREAMS

(add-stream-class :input ’ (unsigned-byte 8) ’tape
(find-class ’8-bit-byte-tape-input-stream))

(add-stream-class :output ’ (unsigned-byte 8) ’tape
(find-class '8-bit-byte-tape-output-stream))
;;:; ADDING 32~BIT-WORD DISK STREAMS

(add-stream-class :input ’ (signed-byte 32) ’disk
(find-class ’32-bit-word-disk-input-stream))

(add-stream-class :output ’ (signed-byte 32) ’disk
(find-class '32-bit-word-disk-output-stream))

(add-stream-class :bidirectional ’ (signed-byte 32) ‘disk
(find-class
'32-bit-word-disk-bidirectional-stream))
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;i:;; ADDING 32-BIT-WORD TAPE STREAMS

(add-stream-class :input ’ (signed-byte 32) 'tape
(find-class ’'32-bit-word-tape-input-stream))

(add-stream-class :output ’ (signed-byte 32) 'tape
(find-class ’'32-bit~word-tape-output-stream))

11.11 SUMMARY OF TECHNIQUES USED IN STREAMS

We have shown an example using CLOS and object-oriented techniques
to solve a complex problem. The important techniques are as follows:

. Identifying classes that represent the types of objects manipulated by
the program

« Documenting an external protocol to be used by clients to create and
manipulate the objects

« Maximizing the sharing of code while minimizing the duplication of
both code and information (knowledge), by

> Arranging the classes into an organization that accurately reflects
the interaction among the different types of objects

> Documenting an internal protocol to be used by the different class-
es to communicate with one another

« Providing a mechanism for linking the classes themselves to the ex-
ternal interface for creating objects

Although we have documented the external and internal stream proto-
cols, we need to document the implementation of streams to enable oth-
er programmers to extend streams. The alternative would be to make
the source code of streams available to programmers.

1L12 DOCUMENTING THE IMPLEMENTATION OF STREAMS

The task of documenting an implementation is a challenge, because it
requires you to be aware of which aspects of the implementation are in-
ternal and which are external. We recommend a conservative approach,
which is to document the implementation on a strict "need to know"
basis. That is, document only those portions of the implementation that
outside programmers must understand in order to extend the program.
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(Documentation of the internals would be useful for maintainers; this is,
however, a different issue from that of documenting an implementation
for other programmers to extend.)

It is important to document the existence and organization of the
stream classes. Programmers need to know what methods are defined
for the generic functions in the internal and external protocols, which
classes those methods are attached to, and what the methods do. We
can, however, omit the details of how the methods work. Some methods
do not need to be documented at all. For example, the method for wait-
for-disk is purely internal to disk streams. Programmers who want to
extend streams to handle other devices or element types would have no
need to call wait-for-disk, to specialize it, or to be aware of its exis-
tence. On the other hand, if we want to enable programmers to extend
disk streams, we do need to document wait-for-disk.

We would probably choose not to expose the slots of a class, in favor
of documenting the methods that access them. For example, document-
ing the methods for stream-state and (setf stream-state) gives pro-
grammers sufficient information to query a stream for its state and to
change that state. There is no need to expose the fact that these are
reader and writer methods for a slot.






12
Highlights of CLOS

In this chapter, we discuss the original design goals for CLOS, and how
they were achieved. We address three important design goals of CLOS
and one nongoal:

» CLOS should be a standard language extension that includes the
most useful aspects of the existing object-oriented paradigms

» The CLOS programmer interface should be powerful and flexible
enough for developing most application programs

+ CLOS itself should be designed as an extensible protocol, to allow for
customization of its behavior and to encourage further research in
object-oriented programming

+ CLOS should not provide automatic support for specifying and en-
forcing protocols

The third goal leads to an advanced topic of CLOS—the metaobject pro-
tocol. We introduce the motivation for the metaobject protocol and dis-
cuss it briefly.

2156
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12.1 DESIGNING A STANDARD OBJECT-ORIENTED PARADIGM

When CLOS was designed (starting in 1986), a number of object-
oriented paradigms had been available in various Lisp implementations
for several years. The goal of designing CLOS was to define a standard
language extension to ComMoN Lisp. The immediate benefit of this stan-
dard would be to enable Lisp programmers to write portable code in an
object-oriented style.

Many of the existing object-oriented paradigms had important simi-
larities. The CLOS Working Group wanted to gather the most useful as-
pects of these paradigms into a single, unified language extension. From
the beginning, the Working Group agreed that a primary goal in defin-
ing a language standard was to be conservative — to include in the
CLOS standard only those features and techniques that were well un-
derstood. The Working Group tried to define a consistent model based
on the strengths of existing paradigms, while excluding unnecessary
features.

12.2 SUMMARY OF THE PROGRAMMER INTERFACE

Here we summarize the major techniques supported by the CLOS pro-
grammer interface:

« Defining organizations of classes. You can conveniently define organi-
zations of classes. A class inherits structure and behavior from its di-
rect superclasses, which are listed in the defclass form. CLOS auto-
matically computes a class precedence list based on the constraints
specified locally in the defclass forms.

o Creating and initializing instances. You can create instances with
make-instance. CLOS provides you with a good measure of control
over how the instances are initialized. You can specify that a slot
should be filled by an initarg and provide default initial values for
slots and initargs. You can perform further initialization by specializ-
ing initialize-instance.

o Defining different kinds of methods. You can define methods for
many different purposes, including:

° Specializing the behavior of a reader or writer

> Specializing on a ComMoN Lisp type

> Specializing on more than one argument (multi-methods)
° Specializing on an individual Lisp object
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» Defining methods that work together. The default behavior of the
generic dispatch (the standard method combination type) allows for
methods of different roles, including primary methods, before-
methods, after-methods, and around-methods. This is an extremely
flexible framework that—together with the class inheritance mecha-
nism—enables you to define code in modules. Each module comes into
play when it is appropriate, according to the arguments to the gener-
ic function and the method’s role.

« Using a different framework for generic dispatch. You can easily use
one of the built-in method combination types or define a new one
based on a Lisp function, macro, or special form. The freedom to use
other method combination types allows you to control how the meth-
ods are called and what is done with their values.

+ Redefining elements dynamically. You can redefine generic functions,
methods, and classes on the fly. You can redefine a class even after
instances of the class exist. CLOS ensures that everything that is af-
fected by the redefinition is automatically updated, including in-
stances, subclasses, and instances of subclasses. When instances are
updated, the default method adds or deletes slots according to the
new definition, and preserves the values of slots that have not
changed. You can perform further action during the redefinition by
specializing update-instance-structure.

These features add up to a great deal of expressive power. However, the
goal of "satisfying most applications" has a tradeoff. To satisfy most ap-
plications, the programmer interface is very flexible. The disadvantage
of this flexibility is that CLOS users might be overwhelmed by the wide
assortment of techniques and features to be learned. Also, CLOS often
supports more than one way of doing a single thing, and there is not al-
ways a clear guideline as to which way is preferable.

Certainly, it is not necessary to understand all these techniques to
write a good-sized application program. Any single program will require
only a subset of these techniques. We encourage new users to concen-
trate on learning the central themes of how CLOS works, especially the
generic dispatch. If you understand what happens when a generic func-
Flon is called, you are well on your way. The next step is to start writ-
ing CLOS programs. In the course of development, you might find prob-
lems that cannot be conveniently solved with the most basic CLOS fea-
tures (such as primary methods, before-methods, and after-methods),
and you can then investigate the more advanced features (such as
around-methods, or other types of method combination).
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12.3 EXPLORING ALTERNATIVE PARADIGMS

With all the expressive power mentioned so far, what more is needed?
The CLOS programmer interface supports one model of object-oriented
programming, but there are alternative paradigms.

For example, in CLOS, a class inherits nearly every aspect of its su-
perclasses: slots, some slot and class options, and methods. We can call
this "open sharing”; a class inherits nearly everything by default, but
can choose to override some of the inherited behavior or characteristics,
if desired. An alternative paradigm might support "closed sharing,”
where a class inherits nothing from its superclasses by default, but can
explicitly specify which aspects of its superclasses it wants to inherit.

Two other key aspects of any object-oriented paradigm are how the
organization of classes is specified, and how the precedence among those
classes is controlled. In CLOS, the programmer specifies an organization
of classes in the defclass forms; each class has a list of superclasses.
The order of these superclasses sets up local constraints on the prece-
dence of the classes. CLOS uses an algorithm to compute a class prece-
dence list for each class, which is always consistent with the set of local
constraints. This is just one of many possible ways to control inheri-
tance.

When CLOS was being defined, most developers who had experience
with one or more of the existing paradigms agreed that object-oriented
programming was essential for designing and implementing large sys-
tems. However, even the phrase "object-oriented programming” had dif-
ferent meanings for different people. Each individual paradigm invented
not just its own syntax, but also its own semantics.

The Working Group had to make certain decisions and choices, in or-
der to define CLOS as a consistent model. The Working Group also be-
lieved that it was important to encourage ongoing experimentation with
alternative paradigms. The solution was to define and document CLOS
itself as an extensible protocol, which is called the Metaobject Protocol.
We discuss this in "The CLOS Metaobject Protocol," page 219.

12.4 A NONGOAL: AUTOMATIC PROTOCOL SUPPORT

Some object-oriented paradigms actively assist the programmer in speci-
fying protocols. The definition of a class can describe more of the se-
mantics of the class. For example, a class definition can state that the
class is intended to be a building block only, and that no instances of it
should be made. The requirements of a class can be stated explicitly in
the class definition. For example, a mixin class such as ordered-lock-
mixin has some implicit requirements: It is intended to be used as a
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building block along with another lock class (such as simple-lock or
null-lock), and that lock class must provide the methods for the lock
protocol. Some object-oriented languages provide a means for stating
those requirements explicitly, and for enforcing them.

CLOS does not provide automatic support for protocols. This is an
area that the Working Group deemed experimental and not yet ready
for standardization.

In this book, we have focused on the theme of protocols as a valuable
means of designing programs. Although CLOS does not actively support
protocols, it is nevertheless a language conducive for defining them. The
aspect of CLOS that makes protocol definition convenient is the fact
that generic functions are not called by a special syntax. To the caller,
there is no discernible difference between ordinary and generic func-
tions. In other object-oriented paradigms, the caller must know whether
a function is ordinary or generic in order to choose the appropriate call-
ing syntax. The difference in calling syntax obscures the essential dis-
tinction between interface and implementation.

Currently, the vehicle for defining protocols is documentation. We
recommend documenting the external protocol and advertising it to the
clients. For a large application, it is also useful to document the internal
protocol and advertise it to the developers and maintainers of the pro-
gram. Sometimes, an internal protocol is implicitly defined as the set of
operators that are not advertised in the external protocol.

Although CLOS itself does not support protocols, the Working Group
believes that protocols are valuable and important. CLOS itself is docu-
mented as an extensible protocol. The foundation of the CLOS program-
mer interface lies in the metaobject protocol, which is documented to al-
low researchers and developers to experiment with other object-oriented
paradigms.

12.5 THE CLOS METAOBJECT PROTOCOL

This section gives a brief overview of the metaobject protocol—just
enough to give you an idea of how it is related to the CLOS program-
mer interface.

The Classes of CLOS Elements

An importapt aspect of CLOS is that every Lisp object is an instance of
a glass. This means that a class object itself has a class, as do method
objects and generic function objects. CLOS uses the term metaclass to

denote a class that is the class of a class. Here are three predefined
metaclasses:



220 12. Highlights of CLOS

standard-class
The default class of class objects defined by defclass.

built-in-class
The class of class objects that are implemented in a special way
(not by defclass). Most class objects corresponding to CoMMON
Lisp type specifiers are implemented as instances of built-in-
class, although others might be implemented as instances of
standard-class.

structure-class
The class of class objects defined by defstruct, when the :type op-
tion is not given.

We have used the informal term "user-defined class" when describing a
class whose metaclass is standard-class. Similarly, the term "built-in
class" denotes a class whose metaclass is built-in-class. The metaclass
is important to users, because it determines the behavior of the classes.
For example, standard-class supports make-instance, but built-in-class
does not. In other words, CLOS provides a method for make-instance at-
tached to the class standard-class, but there is no method for make-
instance attached to built-in-class.

CLOS extends defstruct to enable you to write methods for defstruct
structures. If you use defstruct without giving the :type option, the
defstruct structure is implemented as a class whose metaclass is
structure-class. The advantage of this is that you can write methods
for that class. If you want to write methods, however, using defclass is
probably better than using defstruct. For one thing, using defclass
frees you from the limitation of single inheritance. Also, the flexibility of
redefining classes is supported by standard-class, but not by structure-
class or built-in-class.

CLOS uses the term metaobject for objects that represent CLOS ele-
ments, such as class objects, method objects, and generic function ob-
Jects. Here are two predefined classes of metaobjects:

standard-method
The default class of method objects defined by defmethod

standard-generic-function
The default class of generic function objects defined by defgeneric

The basic CLOS elements are themselves implemented as CLOS ele-
ments, so we see that classes, generic functions, and methods follow the
CLOS model. The structure and behavior of a class (or generic function,
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or method) is defined by its class. The predefined metaobject classes
have methods that support the default behavior of CLOS.

For most CLOS application programs, the default behavior of CLOS
is sufficiently powerful and flexible that there is no need to know or
care that classes, methods, and generic functions are themselves in-
stances of classes. Programmers interested in other object-oriented
paradigms can use CLOS as a basis for experimentation. Programmers
can define new metaclasses (usually built on the standard metaclasses)
that support new and different behavior for classes. Programmers can
also define new metaobject classes to be the classes of generic functions
or methods. This is an additional level of CLOS, called the metaobject
level. Tt is the foundation of the functional level, which in turn is the
foundation of the macro level.

In addition to fostering research and experimentation, the metaobject
level makes it possible to develop tools for browsing or analyzing CLOS
programs. The metaobject protocol describes how to obtain information
about user-defined CLOS elements: A class object can be queried for its
class precedence list, slots, and defclass options; a generic function ob-
ject can be queried for its set of methods. Information is available;
browsers and environmental tools can devise ways to present it usefully
to CLOS programmers.

CLOS Level | Deals with | Context of Use

Macro names most CLOS applications
Functional |{ objects programs using anonymous objects
Metaobject | metaobjects | tools, research, experimentation

Classes, Superclasses, and Metaclasses

Discussing metaclasses adds a degree of complexity to the CLOS model.
Even the terminology is confusing. Here we make some statements that
should help clarify the meanings of classes, superclasses, and metaclass-
es. The following concepts are used in CLOS application programming:

. Every Lisp object is an instance of a class. You can use (class-of ob-
Ject) to find out the class of an object.

» The class of an object determines its structure and behavior. All in-
stances of a givel} class have the same set of slots. Any method that
specializes on a given class is applicable to all instances of that class.
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. A class has a set of superclasses. The class inherits structure and be-
havior from its superclasses. In other words, methods attached to a
class are applicable to instances of subclasses of that class.

The following are concepts of CLOS metaobject programming. Notice
that each of these concepts is a natural extension of a concept used in
application programming.

« Since every Lisp object is an instance of a class, a class object itself is
an instance of a class. You can use (class-of class-object) to find out
the class of a class object. The term for the class of class objects is
metaclass. In other words, the instances of a metaclass are class ob-
Jjects.

o The class of a class object (which is a metaclass) determines the
structure and behavior of that class object. All classes of a given
metaclass have the same set of slots. Methods that specialize on a
given metaclass are applicable to all class objects of that metaclass.

« A class has a set of superclasses. The class inherits structure and be-
havior from its superclasses. Because a metaclass is a class, it can al-
so have superclasses from which it inherits structure and behavior. In
other words, methods attached to a metaclass are applicable to in-
stances of subclasses of that metaclass.

Metaobject Programming

The CLOS specification documents a set of predefined metaobjects and
the protocol they follow. Developers can use these metaobjects as a
point of departure. To support classes with entirely different behavior,
you can define a new metaclass. You can modify the default behavior
only slightly by defining a class built on standard-class; in this way, you
can override some aspects of behavior while inheriting other aspects.

We have already stated that CLOS application programs are portable.
The portability benefit applies to metaobject programs as well. A devel-
oper can invent a new paradigm and applications based on it, and can
run them on other CLOS implementations. New paradigms can be
shared freely, which facilitates further research. Applications using al-
ternative paradigms are portable, so end users can also benefit from the
metaobject protocol.
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Accessor
A generic function for reading or writing the value of a slot. The
term "accessor" includes both readers and writers. The :accessor
slot option to defclass causes methods for a reader and a writer
for that slot to be generated automatically.

After-method
A method whose role is to be called after the primary method,
usually to do some sort of cleanup work. The standard method
combination recognizes an after-method by the method qualifier
:after in the defmethod form.

Aggregate class
A descriptive term for a class composed of several building block
classes. An aggregate class usually derives all its structure and
behavior from its superclasses and does not provide further cus-
tomizations.

Applicable method
A method whose required parameters are all satisfied by the cor-
responding arguments to the generic function. When a generic
function is called, CLOS locates the set of applicable methods.
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Argument
An object given as input to a function.

Around-method

A method whose role is to surround all other kinds of methods.
An around-method usually performs some computation and uses
call-next-method to invoke the before-methods, primary method,
and after-methods. An around-method can set up an environment
to be in effect during the execution of the other methods, such as
setting up a catch, binding a special variable, or owning a lock.
The standard method combination recognizes an around-method
by the method qualifier :around in the defmethod form.

Basic class
A descriptive term for a class that is the root, or foundation, of a
set of classes. A basic class provides characteristics that all its
subclasses have in common, such as their type (for example, all
locks are of type lock), and default methods.

Before-method
A method whose role is to be called before the primary method,
usually to do some sort of set-up work in advance of the primary
method. The standard method combination recognizes a before-
method by the method qualifier :before in the defmethod form.

Built-in class
A predefined class that is implemented in a special system-
dependent way; in other words, it is not implemented as a user-
defined class. Many of the classes corresponding to CoMmMoN Lisp
types (such as array, list, number, and t) are implemented as
built-in classes.

Built-in method combination type
A predefined method combination type provided by CLOS. The
default method combination type is called standard. The others
are operator method combination types, including; +, and, append,
list, max, min, nconc, or, and progn.

Class A ComMoN Lisp type that defines the structure and behavior of a
set of objects, which are called instances of the class. The struc-
ture of the class lies in its slots. The behavior is implemented by
methods. Classes can be "built on" other classes, to inherit struc-
ture and behavior from them.
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Class precedence list
A list of classes containing the class itself and all its superclasses,
ordered from most to least specific. CLOS computes a class prece-
dence list for each class, based on the defclass forms of the class
and all of its superclasses. The class precedence list governs how
methods, slots, and other characteristics are inherited. When one
class is more specific than another, it has precedence (or domi-
nance) over the other class. Thus, if the two classes offer compet-
ing traits, the more specific class takes precedence over the less
specific class.

Client A Lisp program that uses a CLOS program,; the client calls gener-
ic functions defined by the CLOS program.

CLOS implementation
A body of code that supports CLOS as defined by the CLOS speci-
fication and runs on a particular operating system. This term is
useful for discussing portability issues (issues of writing programs
with the intention of running them on different operating sys-
tems).

Constructor
A function used to create new instances. Constructors are ordi-
nary Lisp functions that call make~instance. Constructors provide
a more abstract interface than does make-instance, and they can
use the full power of Lisp argument processing.

Default method
A descriptive term for a method whose purpose is to be inherited
by a family of classes. CLOS provides several default methods,
which we call "system-supplied default methods" to distinguish
them from methods that users define.

Direct subclass
A direct subclass is the inverse of a direct superclass. If the class
shape is a direct superclass of the class triangle, then triangle is
a direct subclass of shape.

Direct superclass
A class that is included in the defclass form of another class. The
relationship between a class and its direct superclass is like that
between a child and its parent, in that there is no intervening
ancestor. A class inherits structure and behavior from its direct
superclasses. Class inheritance is transitive, so a class inherits

from each of its direct superclasses, their direct superclasses, and
SO om.
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Effective method
The Lisp code that comprises the implementation of a generic
function for a given set of arguments. An effective method com-
bines the applicable methods according to the method combina-
tion type.

Generic dispatch

The CLOS mechanism that occurs when a generic function is
called. The generic dispatch chooses the implementation appropri-
ate for the arguments. This entails selecting the set of applicable
methods, ranking the applicable methods in precedence order,
combining the applicable methods into an effective method, call-
ing the effective method, and returning the values of the effective
method.

Generic function

A Lisp function whose implementation is distributed across one
or more methods. To the caller, a generic function looks like an
ordinary Lisp function. It accepts arguments, performs some op-
eration, and returns values. Invisibly to the caller, an internal
and automatic procedure (the generic dispatch) occurs when a
generic function is called; this entails choosing the method or
methods appropriate to the arguments.

Implementation
The inner workings of a program or function. This information is
usually known to the developer of the program but is concealed
from callers. The implementation of an ordinary function consists
of the body of the defun, whereas the implementation of a generic
function is distributed across a set of methods. See also "CLOS
implementation" in this glossary.

Individual method
A method that specializes one of its parameters on an individual
Lisp object. The lambda-list of an individual method contains a
parameter specializer name such as (eql form). This method is
applicable if the corresponding argument is eql to the object that
is the value of form (and if all other specialized parameters are
satisfied).

Inheritance
The sharing of characteristics or behavior among related classes.
CLOS supports inheriting methods, slots, most slot options, and
one class option.
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Initarg
An argument given to make-instance to control the initialization
of instances. An initarg can be used to fill a slot with a value, or
by an initialization method, or both. Initargs can be used in relat-
ed initialization tasks, such as updating an instance when a class
is redefined, changing the class of an instance, and reinitializing
an instance. Initarg is shorthand for "initialization argument.”

Initform
A default value for a slot. The :initform slot option to defclass is
used to provide a default value for a slot.

Instance
A Lisp object. With the advent of CLOS, every Lisp object is an
instance of a class. Objects of the Common Lisp types, such as
numbers, arrays, and lists, are instances of classes whose name is
the same as the name of the type specifier. Other objects are in-
stances of user-defined classes. All instances of a given class have
the same type, the same structure, and the same behavior. (Note
that individual methods can be used to cause one particular in-
stance to behave differently from the other instances of its class.)

Interface
The information about a function (whether it is ordinary or
generic) that callers need to know, including: its expected argu-
ments, the job it does, and its returned values.

Lambda-list
A list that specifies the names of parameters of a function. Meth-
ods and generic functions have lambda-lists, as do ordinary Lisp
functions.

Local slot
A slot that stores information about the state of an instance. A
local slot is defined when the :allocation :instance slot option to
defclass is provided, or when the :allocation slot option is omit-
ted.

Metaobject
An object that represents a CLOS element, such as a class object,
method object, or generic function object.

Metaclass
A class whose instances are class objects, such as standard-class,
built-in-class, and structure-class.
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Method

Lisp code that implements a portion of (or the entire) implemen-
tation of a generic function for a set of arguments. Like func-
tions, methods take arguments, perform some computation, possi-
bly produce side effects, and return values. Unlike functions,
methods are never called directly; they are called by the generic
dispatch procedure. Each method has a role, which states its pur-
pose in the generic function and controls how it interacts with
other methods.

Method combination type
A mechanism that specifies, for a generic function, what method
roles are allowed, how the applicable methods are combined into
an effective method, and how the values of the generic function
are computed. A method combination type is a Lisp object named
by a symbol.

Method qualifier
A symbol appearing in the defmethod form that indicates the
method’s role. The symbols :after, :before, and :around are three
examples. A method whose qualifier is :after is an after-method.

Method role
The way this method interacts with the other applicable methods.
The method combination type uses the method’s role when com-
bining it with the other methods into the effective method.

Mixin class

A descriptive term for a class intended to be a building block for
other classes. It usually supports some aspect of behavior orthog-
onal to the behavior supported by other classes in the program;
typically, this customization is supported in before- and after-
methods. A mixin class is not intended to interfere with other
behavior, so it usually does not override primary methods sup-
plied by other classes.

Multi-method
A method that specializes more than one parameter. The tech-
nique of using multi-methods is intended for operations whose
implementation truly depends on the type of more than one ar-
gument.

Multiple inheritance
A system in which a class can share the characteristics and be-
havior of more than one direct superclass. CLOS supports multi-
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ple inheritance, in that a class can have any number of direct su-
perclasses. This flexibility makes all sorts of class organizations
possible, whereas single inheritance is limited to strictly hierar-
chical organizations. CLOS controls the multiple inheritance by
using a class precedence list, which unambiguously states the
precedence of each class with respect to the others.

Operator method combination types
A method combination type that defines a framework that com-
bines all applicable primary methods inside a Lisp function,
macro, or special form. CLOS offers a set of built-in operator
method combination types, and you can define new ones with the
short from of define-method~combination.

Parameter
A specification of the expected input of a function, generic func-
tion, method, or other kind of Lisp operator. Each parameter
specifies a variable name, which is bound to the corresponding ar-
gument when the function is called. Methods can have specialized
parameters, which indicate the method’s applicability, as well as
variable names.

Parameter specializer
The object indicated by a parameter specializer name. If a param-
eter specializer name is a class name, the parameter specializer is
the class object named by that name. If a parameter specializer
name is a list (eql form), the parameter specializer is the list
(eql object), where object is the result of evaluating form at the
time the method is defined.

Parameter specializer name
The portion of a specialized parameter appearing in a method’s
lambda-list that indicates the applicability of the method. A pa-
rameter specializer name can be a class name or a list (eql
form).

Primary method

A method whose role is to perform the bulk of the work of a
generic function. In the standard method combination, only the
most specific applicable primary method is called; however, a pri-
mary method can use call-next-method to cause the next most
specific applicable primary method to be called. The standard
method combination recognizes a primary method by the absence
of any method qualifier in the defmethod form.
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Procedural definition
A technique in which a high-level task is broken down into sepa-
rate generic functions, each of which is responsible for a clearly
defined portion of the task. Usually there is a default behavior
for the generic functions. Programmers use these generic func-
tions as entry points; they can control portions of the task by spe-
cializing one or more of the generic functions.

Protocol
A definition of the behavior of a set of objects. Some protocols are
intended for programmers who are developing client programs,
whereas other protocols are intended for programmers who wish
to extend a program.

Reader
A generic function for reading the value of a slot. Reader meth-
ods can be generated automatically, through use of the :accessor
or :reader slot options to defclass.

Shared slot
A slot that stores information about the state of a class (or of all
instances of the class). A shared slot is defined when the
:allocation :class slot option to defclass is provided.

Single inheritance
A system in which a class can be built on no more than one other
class, which in turn can be built on no more than one other class,
and so on. Single inheritance results in a strictly hierarchical or-
ganization. CoMMON LisP defstruct supports single inheritance.

Slot A place where state information is stored. A slot has a name and
a value. The :allocation slot option to defclass controls whether
a slot is local or shared. A local slot stores information about the
state of an instance, and a shared slot stores information about
the state of a class (or of all instances of the class). The value of
a slot can be read and written by accessors.

Specialized parameter
A parameter expressed as a list whose first element is a variable,
and whose second element is a parameter specializer name. Any
required parameter in a method’s lambda-list may be specialized.

standard-object

A class that is implicitly included in the class precedence list of
every user-defined class. Several default methods are attached to
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the class standard-object.

standard method combination type
The default method combination type: It supports around-
methods, before-methods, primary methods, and after-methods.

Subclass
The inverse of superclass. If the class t is a superclass of the
class triangle, then triangle is a subclass of t.

Superclass
A class from which another class inherits. The superclasses of a
class include all of its direct superclasses, all of their direct su-
perclasses, and so on.

Unbound slot
A slot that has no value. A slot that was neither initialized nor
written to is unbound. CLOS signals an error if an attempt is
made to read the value of an unbound slot.

Writer
A generic function for writing the value of a slot. Writer methods
can be generated automatically, through use of the :accessor or
:writer slot options to defclass. Usually, the name of a writer is
a list such as (setf reader); such a writer is called with the setf
syntax, which is (setf (reader object) new-value).






Appendix B
Syntax of CLOS
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This appendix is intended to be used as a reference. It briefly describes
the purpose, syntax, and return values of the operators covered by this
book, and refers to the sections in the book where the operator is pre-
sented in context. The operators are listed alphabetically.

The descriptions of the CLOS operators are adapted from the "Com-
mon Lisp Object System Specification" with permission from the au-
thors. This book does not cover every operator in the CLOS program-
mer interface, and the descriptions given here are not complete refer-
ence documentation. Refer to the "Common Lisp Object System Specifi-
cation" for the complete definition of CLOS.

In Appendix C, we list the operators in the programmer interface
that are not covered by this book.

call-next-method srest arguments Function

Used within a method to call the "next method,” which is defined
by the method combination type in use by the generic function.
call-next-method returns the values of the next method. If there is
no next method, an error is signaled. (The default behavior of sig-
naling an error is supported by the no-next-method generic function,
which is called whenever this error is detected.) You can use next-
method-p in the body of a method to test whether there is a next
method.
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The standard method combination type supports call-next-method in
around-methods and primary methods. The operator method combi-
nation types support call-next-method in around-methods only.

arguments Arguments to be passed to the next method.

Usually, you call call-next-method with no arguments, and the origi-
nal arguments given to the generic function are passed to the next
method. However, you can pass different arguments to the next
method as long as the new arguments would cause the same set of
applicable methods to be selected, as did the original arguments.

For related information, see

"Around-Methods," page 102

"Calling a Shadowed Primary Method," page 105

"Summary of the Standard Method Combination Type," page 113
"Controlling the Generic Dispatch,” page 101

change-class instance new-class Generic Function

Changes the class of an instance to a new class and calls the generic
function update-instance-for-different-class. The change-class
function returns the instance.

instance An object.

new-class A class object or the name of a class.

CLOS guarantees that change-class is supported when both the

original class of the instance and the new class are of the metaclass
standard-class. An individual CLOS implementation might support
change-class in other circumstances as well.

For related information, see
"Changing the Class of an Instance,” page 151
"A Procedural Definition: Initialization,” page 165

class-name class Generic Function

Returns the name of the class object.

class A class object.
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You can use setf with class-name to change the name of the clas_s

object.

For related information, see

"Mapping Between Names and Objects,” page 134

class-of object

Function

Returns the class of the object. Note that every object is of some
class. class-of returns a class object.

object

Any object.

defclass name ({superclass}*) Macro
({slot-spec}*) (class-option)*

Defines a new class or redefines an existing one. The name of the
class and the class object are made valid type specifiers. defclass re-
turns the class object that represents the new class.

name

superclass

slot-spec

A symbol naming this class.

A symbol naming a direct superclass of this
class.

Defines a slot of the new class. Can be given as
a symbol (the name of the slot), or as a list
containing the name of the slot followed by one
or more slot-options pertaining to the slot:

slot-name
(slot-name slot-options...)

The slot-options are as follows:

:accessor reader-name

Defines methods for a reader and a writer
generic function. You can then use the reader
named reader-name to read the value of this
slot, and use the writer named (setf reader-
name) to write the value of this slot.

:reader reader-name

Defines a method for the reader generic func-
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tion named reader-name for reading the value
of this slot.

:writer function-spec

Defines a method for the writer generic func-
tion named function-spec for writing the value
of this slot. If function-spec is a symbol, you
call the writer with the normal Lisp syntax:
(symbol new-value instance). If function-spec is
a list such as (setf symbol), you call the writer
with the setf syntax, which is (setf (symbol
instance) new-value).

:documentation string
Specifies documentation for the slot.

:allocation allocation-type
States whether this is a shared or local slot.
The default allocation-type is :instance, which
indicates a local slot; :class indicates a shared
slot.

:initform form
Gives a default initial value form for the slot.
form is evaluated each time it is used, in the
lexical environment in which the defclass was
evaluated.

tinitarg name
Specifies an initarg for the slot. You can then
initialize the value of the slot when making an
instance, by providing this initarg name and a
value in the call to make-instance.

:type type-specifier
States that the value of this slot is expected to
be of the type named by #ype-specifier. This can
result in compiler optimizations, but CLOS
does not guarantee error checking when the
value is stored in the slot.

class-option An option pertaining to the class as a whole.
The class-options are as follows:
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(:documentation string)

Specifies documentation for the class.

(:default-initargs {initarg-name form}*)

Specifies default values for initargs. Each form
is treated as a default initial value form for the
initarg of initarg-name. The :default-initargs
class option is the only class option inherited by
subclasses; see "Initialization Arguments,” page
160.

(:metaclass class-name)

States the class of the newly defined class; this
is known as the metaclass. The default meta-
class is standard-class.

For related information, see

"Defining the Kinds of Objects—Classes,” page 19
"Implementation Choices: Methods versus Slots," page 66
"Class Inheritance,” page 117

"Redefining Classes,” page 140

"Creating and Initializing Instances,” page 155

defgeneric name lambda-list {option}* Macro

Defines a new generic function or redefines an existing one. Enables
you to specify aspects of the generic function, such as the lambda-
list, documentation, method combination type, argument precedence
order, and declarations. You can also define methods within the
defgeneric form. defgeneric returns the generic function object.

name

lambda-list

options

Names the generic function; it is either a sym-
bol or a list such as (setf symbol).

Describes the parameters of this generic func-
tion. It cannot contain any &aux variables. Op-
tional and keyword arguments may not have
default initial value forms or use supplied-p
parameters. No parameter in this lambda-list
may be specialized.

The options are as follows:
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{:argument-precedence-order {parameter-name}+)

This affects the ranking of methods by prece-
dence order. Instead of the default left-to-right
order, the arguments are considered in the or-
der of the parameter names given here. Each
required parameter must appear in this list.
For more information, see "Summary of
Method Inheritance,” page 98.

(declare {declaration}+)
Specifies declarations for the generic function.
optimize can be given to specify whether the
generic dispatch procedure should be optimized
for speed or space. The following declarations
are not allowed: special, ftype, function,
inline, notline, and declaration.

(:documentation string)
Specifies documentation for the generic func-
tion.

(:method-combination symbol {arg}*)

Specifies that this generic function uses the
method combination type whose name is sym-
bol. args are any arguments used by the
method combination type. For example, all
method combination types defined by the short
form of define-method-combination accept an op-
tional order argument, which can be :most-
specific-last to reverse the order of the pri-
mary methods. :most-specific-first is the de-
fault. For more information, see "Defining a
New Method Combination Type," page 109.

(:method {qualifier}* specialized-lambda-list {decl | doc}*
{form}*)
Defines a method for this generic function. The
method’s qualifier, specialized lambda-list, dec-
larations, documentation, and forms are the
same as for defmethod.

(:generic-~function~class class-name)
Specifies the class of the generic function ob-
ject; the default is standard-generic-function.
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{:method-class class-name)
Specifies the class of the methods for this
generic function; the default is standard-method.

defgeneric is used to define a named generic function. You can use
generic-function to define an anonymous generic function. generic-
function has the same syntax as defgeneric, except the name argu-
ment is omitted.

For related information, see

"Defining the Interface—Generic Functions,” page 27
"Congruent Lambda-Lists," page 132

"Redefining Methods and Generic Functions,"” page 143
"Removing Generic Functions and Methods," page 136

define-method-combination name {option}* Macro

Defines a new method combination type. Provides a convenient
short-form syntax, which defines an operator method combination
type. The syntax given here is for the short form.

name A symbol naming this method combination
type.
option These are the options for the short form:

:documentation string
Specifies documentation for the method combi-
nation type.

:identity-with-one~arqument boolean

Requests the compiler to optimize for cases
when there is only one method; this indicates
that the value of that method should be re-
turned as the value of the generic function,
rather than the operator being called. This
makes sense for operators such as progn, and, +,
and max.

:operator operator
Specifies the operator that receives the values
of the methods.
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The alternate long form provides a more flexible syntax that allows
for defining more complex method combination types. This book
does not cover the syntax of the long form.

For related information, see

"Defining a New Method Combination Type," page 109

defmethod name {qualifier}* specialized-lambda-list Macro

{decl | doc }* {form}*

Defines a new method for a generic function or redefines an existing
one, defmethod returns the method object.

name

qualifier

The name of the generic function that this
method is implementing. This is either a sym-
bol or a list such as (setf symbol).

A non-null atom used to identify the role of
this method, according to the method combina-
tion type of the generic function. When
standard method combination type is used, the
lack of any qualifier indicates a primary
method. The standard method combination also
recognizes the method qualifiers :before,
:after, and :around.

specialized-lambda-list

An ordinary function lambda-list except that
the name of any of the required parameters
can be replaced by a specialized parameter.
That is, a required parameter is either var or
(var parameter-specializer-name). The optional
parameters have exactly the same syntax as
they do in an ordinary lambda-lists, and they
may not be specialized.

parameter-specializer-name

decl

Can be a list such as (eql form) or a symbol
naming a class. The class can be a user-defined
class, a built-in class, or a structure defined by
defstruct if the :type option was not used.

A declaration pertaining to this method.
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doc A documentation string for this method. A

form The body of this method. This is Lisp code to
be executed when the generic dispatch calls this
method.

For related information, see

"Methods for Null Locks," page 32

"Methods for Simple Locks,"” page 35

"Programming with Methods," page 65

"Summary of Method Inheritance," page 98
"Congruent Lambda-Lists," page 132

"Redefining Methods and Generic Functions," page 143
"Removing Generic Functions and Methods," page 136

describe object Generic Function

Prints a description of an object on the standard output stream.
This is a generic function for which you can write methods, to spe-
cialize its behavior for a given class. describe returns no values.

object Any Lisp object.

CLOS provides a default primary method for describe. describe uses
the standard method combination type.
For related information, see

"Specializing describe for Locks," page 39

"An After-Method for Describing Simple Locks," page 40

"Specializing describe for Ordered Locks,"” page 49
"Specializing describe for Print-Request Queues,” page 56

find-class symbol &optional (errorp t) environment Function

If the symbol is the name of a class, find-class returns the class
object.
symbol The name of a class.

errorp States what to do if there is no class by this
name: If errorp is true, an error is signaled;
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otherwise, nil is returned.

You can use setf with find-class to change the class associated
with this symbol.

For related information, see

"Mapping Between Names and Objects,” page 134

find-method generic-function qualifiers Generic Function

specializers soptional errorp
Returns the method object identified by the generic function it im-
plements, the method’s qualifiers, and the parameter specializers.

generic-function A generic function object, which can be ob-
tained by using symbol-function.

qualifiers A list of the method’s qualifiers.

parameter-specializers
A list of the method’s parameter specializer
objects. This list must contain one element cor-
responding to each required parameter. For
any unspecialized parameters, the class named
t should be given.

errorp If errorp is t, CLOS signals an error if there is
no such method. If errorp is nil, CLOS returns
nil if there is no such method. The default is t.

For related information, see

"Mapping Between Names and Objects," page 134
"Removing Generic Functions and Methods," page 136

initialize-instance instance srest initargs Generic Function

Invoked automatically by the system when make-instance is called;
initialize-instance should not be called by users. You can special-
ize initialize-instance to control how new instances are initialized.
This generic function returns the instance.

instance The newly created instance.
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initargs Alternating initarg names and values. The valid
initarg names include the slot-filling initarg
names for the class (defined by the :initarg op-
tion to defclass) and the names of keyword pa-
rameters specified in methods for initialize-
instance or shared-initialize.

A system-supplied default primary method performs slot initializa-
tion by calling shared-initialize with the instance, t (indicating
that all slots should be filled with the values of their initforms), and
the initargs. In most cases, you should supply after-methods to al-
low the default primary method to run. This generic function uses
the standard method combination type.

For related information, see

"Creating and Initializing Instances,” page 155
"Controlling Initialization with Methods," page 159
"A Procedural Definition: Initialization,"” page 165

make-instance class srest initargs Generic Function

Creates a new instance of the specified class and initializes the slots
of the new instance by calling the generic function initialize-
instance with the newly created instance and initargs. make-instance
returns the initialized instance.

class The name of a class or a class object.

initargs Alternating initarg names and values. The valid
initarg names include the slot-filling initarg
names for the class (defined by the :initarg op-
tion to defclass) and the names of keyword pa-
rameters  specified in methods for
make-instance, initialize-instance, and shared-
initialize.

For related information, see

"Creating and Initializing Instances," page 155

"Summary of What make-instance Does," page 156
"Controlling Initialization with defclass Options,” page 157
"Controlling Initialization with Methods," page 159
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“Initialization Arguments,” page 160
"Defining Tape Streams," page 186
"Defining Disk Streams," page 192
next-method-p Function

Can be called within a method to find out whether there is a "next
method.” This function is useful in methods where you expect to
use call-next-method, and you want to ensure that there is a next
method to call. This function takes no arguments. It returns true if
there is a next method, and nil if there is not.

The method combination type defines what the "next method" is.
The standard method combination type defines the next method as
follows:

« In an around-method, the "next method"” is the next most specific
around-method if there is one. Otherwise, the "next method" con-
sists of the before-methods, the most specific primary method,
and the after-methods.

« In a primary method, the "next method" is the next most specific
primary method.

For related information, see

"Around-Methods," page 102
"Calling a Shadowed Primary Method," page 105

print-object object stream Generic Function

Writes the printed representation of an object to a stream. The pur-
pose of print-object is to allow you to control the printing behavior
of objects of a given class, by writing methods that specialize print-
object. CLOS provides a default primary method for print-object.
print-object uses the standard method combination type.

print-object is called by the print system and should not be called
by users. All CommoN Lisp printing functions call print-object, in-
cluding write, prinl, format ~A and ~S, and others.

print-object returns the object, its first argument.

object Any object.
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stream This must be a real stream, and cannot be t or
nil.

The generic function print-object has a protocol that all methods
should follow. Methods should obey the print control special vari-
ables described in Steele’s Common LISP: The Language. For more
details on print-object, see the CLOS specification.

For related information, see

"Controlling How Locks Print," page 37
"“Specializing print-object for Locks," page 38

reinitialize-instance instance srest initargs Generic Function

Reinitializes an instance according to the initargs. You can specialize
reinitialize-instance to control how instances are reinitialized.
This generic function is rarely used in application programs, but is
used within the implementation of CLOS itself, in the metaobject
protocol. This generic function returns the instance.

instance The instance to reinitialize.

initargs Alternating initarg names and values. The valid
initarg names include the slot-filling initarg
names for the class (defined by the :initarg op-
tion to defclass) and the names of keyword pa-
rameters specified in methods for reinitialize-
instance or shared-initialize.

A system-supplied default primary method performs slot initializa-
tion by calling shared-initialize with the instance, nil (indicating
that no slots should be filled with the values of their initforms), and
the initargs. In most cases, you should supply after-methods to al-
low the default primary method to run. This generic function uses
the standard method combination type.

For related information, see

"A Procedural Definition: Initialization,” page 165
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remove-method generic-function method Generic Function

Removes a method from a generic function and returns the modified
generic function object.

generic-function A generic function object.
method A method object.

CLOS signals an error if the method is not one of the methods for
the generic function.

For related information, see

"Removing Generic Functions and Methods," page 136

shared-initialize instance slots-for-initform Generic Function
&rest initargs

Called in four contexts to initialize an instance: to initialize a new
instance (initialize-instance), to reinitialize an instance
(reinitialize-instance), to update an instance to a new class redefi-
nition (update-instance-for-redefined-class), and to update an in-
stance to a different class (update-instance-for-different-class).
The shared-initialize generic function should not be called by
users. You can specialize shared-initialize to control how instances
are initialized in these four contexts. This generic function returns
the instance.

instance The instance to initialize.

slots-for-initform Indicates which slots should be filled with the
values of their initforms (if they are still un-
bound). Either a list of slot names, or t to indi-
cate all slots, or nil to indicate no slots.

initargs Alternating initarg names and values. The valid
initarg names include the slot-filling initarg
names for the class (defined by the :initarg op-
tion to defclass) and the names of keyword pa-
rameters specified in methods for shared-
initialize.

A system-supplied default primary method first initializes all slots
for which a slot-filling initarg is given. Then, for any slots indicated
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by the slots-for-initform argument that are still unbound, the
method fills those slots with the values of their initforms. In most
cases, you should supply after-methods for shared-initialize, to al-
low the default primary method to run. This generic function uses
the standard method combination type.

For related information, see

"A Procedural Definition: Initialization," page 165
"Creating and Initializing Instances," page 155

slot-boundp instance slot-name Function
Returns true if the indicated slot of the instance is bound; other-
wise, returns false.
instance An instance.
slot-name A symbol naming a slot of the instance.
This generic function is useful in methods for print-object or
describe, if you want to ensure that the methods do not signal er-

rors if slots are unbound. It can also be useful in methods that ini-
tialize instances.

For related information, see

"Specializing print-object for Locks,” page 38

slot-value object slot-name Function

Returns the value of the specified slot of the object. If there is no
slot of that name, an error is signaled. You can use setf with slot-
value to write a new value into the slot. slot-value is the primitive

used to implement accessor methods.

object A form evaluating to an object that has slots.
Usually this is an instance of a user-defined
class, since the structure of these classes is in
the form of slots.

slot-name A symbol naming a slot.
For related information, see

"Programming with Accessors,” page 70
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update-instance-for-different-class Generic Function
previous new §rest initargs

Invoked automatically by the system when change-class is called;
update-instance-for-different-class should not be called by users.
You can specialize update-instance-for-different-class to control
how instances are updated to the target class. Any value returned is
ignored by the caller, change-class.

previous A copy of the previous version of the instance.
new The new version of the instance.
initargs Alternating initarg names and values. The valid

initarg names include the slot-filling initarg
names for the class (defined by the :initarg op-
tion to defclass) and the names of keyword pa-
rameters specified in methods for update-
instance-for-different-class or shared-
initialize.

A system-supplied default primary method performs slot initializa-
tion by calling shared-initialize with the instance, a list of the
names of the added local slots (indicating that they should be filled
with the values of their initforms), and the initargs. In most cases,
you should supply after-methods to allow the default primary
method to run. This generic function uses the standard method
combination type.

The caller of change-class arranges the arguments such that a copy
of the previous version is accessible, as well as the new version of
the instance. This allows methods to access information stored in
the previous version and to use that information to update the new
version of the instance. Any value returned is ignored by its caller.

For related information, see

"Changing the Class of an Instance," page 151
"A Procedural Definition: Initialization,” page 165
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update-instance-for-redefined-class instance Generic Function
added-slots discarded-slots plist
&rest initargs

Invoked automatically by the system when a class is redefined;
update-instance-for-redefined-class should not be called by users.
You can specialize update-instance-for-redefined-class to control
how instances are updated to the new version. Any value returned
is ignored by the caller.

The caller of update-instance-for-redefined-class provides the argu-
ments added-slots, discarded-slots, and plist to be used by methods.
These arguments allow methods for update-instance-for-redefined-
class to access information stored in the previous version and to use
that information to update the new version of the instance.

instance The instance after its structure has been up-
dated.

added-slots A list of slots that were added to the instance.

discarded-slots A list of slots whose values are being discarded.

This includes any slots specified in the old class
definition but not in the new one, and any slots
specified as local in the old definition and
shared in the new one.

plist A list of alternating slot names and values.
Each discarded slot with a value appears in the
plist. No unbound slots appear in the plist.

initargs Alternating initarg names and values. The valid
initarg names include the slot-filling initarg
names for the class (defined by the :initarg op-
tion to defclass) and the names of keyword pa-
rameters specified in methods for update-
instance-for-redefined-class or shared-
initialize.

A system-supplied default primary method performs slot initializa-
tion by calling shared-initialize with the instance, added-slots (in-
dicating that all added local slots should be filled with the values of
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their initforms), and the initargs. In most cases, you should supply
after-methods to allow the default primary method to run. This
generic function uses the standard method combination type.

For related information, see

"Redefining Classes," page 140
"Example of Redefining CLOS Elements," page 144
"A Procedural Definition: Initialization," page 165

with-accessors ({accessor-entry}*) instance-form sbody body Macro

Creates a lexical context for referring to accessors by variables. This
is a convenient shorthand for calling reader or writer generic func-
tions. with-accessors returns the values of the last form in the

body.

instance-form A form that evaluates to an instance.

accessor-entry A list of the form (variable-name
accessor-name).

Within the body of with-accessors you can use setf or setq with the

variable to call the writer generic function.

For related information, see

"Programming with Accessors,” page 70
"Using with-accessors and with-slots,” page 73

with-slots ({slot-entry}*) instance-form sbody body Macro

Creates a lexical context for referring to slots by variables. This is a
convenient shorthand for calling slot-value. with-slots returns the
values of the last form in the body.

instance-form A form that evaluates to an instance.

slot-entry Either a slot name alone or a list (variable-
name slot-name). If the slot name is given
alone, you can access the slot by a variable
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with the same name as the slot. The alternate.
syntax allows you to specify a different variable
name for accessing the slot.

Within the body of with-slots you can use setf or setq with the
variable to write a value into the slot.

For related information, see

"Programming with Accessors,” page 70
"Using with-accessors and with-slots,” page 73






Appendix C

CLOS Operators
Not Documented in
This Book

This appendix briefly mentions the CLOS operators that are not covered
in this book.

Generic Functions with Local Names or No Names

CLOS enables you to define generic functions whose names are local in
much the same way that ComMmoN Lisp enables you to define ordinary
functions whose names are local. You can also define a generic function
with no name; this is analogous to defining an ordinary Lisp function
with no name.

generic-flet special form
Defines new generic functions and methods; the scoping is
like flet.

generic-labels special form
Defines new generic functions and methods; the scoping is
like labels.

with-added-methods special form
Defines new generic functions and methods; the names are

253
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scoped within the lexical context of the body. This is an ex-
tension to generic-labels.

generic-function macro
Defines an anonymous generic function and methods for it.

Generic Functions Called in Error Situations

These generic functions are not intended to be called by users; they are
called when errors are encountered. These generic functions are excep-
tion handlers. The default method signals an error, but you can special-
ize the generic function to do something different.

slot-unbound generic function
Called when an attempt is made to read an unbound slot.

slot-missing generic function

Called when an attempt is made to access a slot of an in-
stance, but there is no slot by that name accessible to the in-
stance.

no-applicable-method generic function
Called when a generic function is called and there is no appli-
cable method for it.

no-next-method generic function

Called when call-next-method is used and there is no "next
method."

Tools for Defining Method Combination Types

The long form of define-method-combination offers a rich syntax for
defining new method combination types. The other operators mentioned
here are used within the body of define-method-combination.

define-method-combination macro
Defines a new method combination type.

call-method macro

In the framework of a method combination type, indicates
that a method should be called.

method-qualifiers generic function
Returns a list of the qualifiers of a method.
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method-combination-error function .
Signals an error encountered in the method combination pro-
cess.

invalid-method-error function
Signals an error when an applicable method has method qual-
ifiers that are not recognized by the method combination

type.

Miscellaneous Operators

add-method generic function
Adds a method object to a generic function; this function level
operator implements defmethod and other macros that create
methods for generic functions.

documentation generic function
Retrieves the documentation string of various kinds of Lisp
objects.

ensure-generic-function function
Defines a generic function object; this function level operator
implements defgeneric and other macros that create generic
functions.

function-keywords
Returns the keyword parameters of a given method.

make-instances-obsolete generic function
Called by the system when a class is redefined to trigger the
updating process. Users can call make-instances-obsolete to
cause the update-instance-for-redefined-class generic func-
tion to be called for instances of a given class (and for in-
stances of subclasses).

slot-makunbound function
Makes a slot of an instance unbound.

slot-exists-p function
Tests whether an instance has a slot of a given name.

symbol-macrolet macro
Associates forms with variables within ite body; using such a
variable causes the form to be executed. This macro imple-
ments the with-accessors and with-slots macros.
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*current-process*, 34
accessor generic functions, 22, 223
automatically generated methods
for, 22, 70
defining primary methods for, 71
examples of calling, 26
examples of specializing, 71
vs. slot-value, 72
:accessor slot option, 22, 128
add-method, 255
after-methods, 11, 223
examples of defining, 40, 149,
159, 162
order of execution, 50
aggregate classes, 46, 205, 223
examples of defining, 47
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:allocation slot option, 67, 128
applicability
general rule of method
applicability, 98
of individual methods, 94
of methods, 33
of multi-methods, 77
argument precedence order, 100
arguments, 223
passed to methods, 34
vs. parameters, 31
around-methods, 102, 224
and built-in method combination
types, 108
examples of defining, 103
auxiliary methods, 11, 71
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basic classes, 20, 39, 224
before-methods, 11, 224

examples of defining, 52

order of execution, 50

signaling errors in, 52
behavior of instances; see methods
built-in-class, 219
built-in classes, 84, 224
built-in method combination types,

107, 224

call-method, 254
call-next-method, 233
in around-methods, 102
in primary methods, 105
change-class, 151, 234
check-keyword-arguments, 255
classes, 5, 224
built-in, 84
for CoMMON LisP types, 83
examples of redefining, 144
inheritance of, 117
instantiable, 205
names of, 134
ohjects representing, 133
redefining, 140
used as type specifiers, 26
class-name, 134, 234
class-of, 235
class options, 21
class precedence lists, 118, 224
examples of calculating, 119, 121,
124
how CLOS calculates, 118
purpose of, 13
client programs, 1, 225
client programs that use locks, 53
CLOS implementation, 225
CLOS rules; see rules
CoMMoON Lisp and CLOS, 14
constructors, 163, 225

advantages of, 24, 163
examples of defining, 24, 48, 146,
150
core framework, 101
creating instances, 24, 155
examples of initializing and, 157
customizing inherited behavior, 40

declarations in generic functions,
179
declarative programming
techniques, 102, 111
decoding for remote evaluation, 95
:default-initargs class option, 158,
161
default methods, 20, 39, 225
reasons for overriding system-
supplied methods, 41
for standard-object, 42
system-supplied method for
describe, 39
system-supplied method for
print-object, 37
defclass, 235
examples of calling, 20, 22
defgeneric, 28, 237
define-method-combination, 110, 239,
254
defmethod, 240
defstruct, 219
describe, 241
examples of specializing, 39, 40,
49, 56
design goals of CLOS, 215
direct subclasses, 7, 225
direct superclasses, 7, 21, 225
documentation, 255
documentation
of classes, 21
of generic functions, 28
:documentation class option, 21
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of methods for COMMON Lisp
types (remote

the implementation of CLOS
programs, 212
protocols, 219

effective method, 105, 225
efficiency of generic dispatch, 44,

112

elements of CLOS programs, 5

defining, 131

examples of redefining, 144
names and objects, 134
objects representing, 133
order of defining, 131
redefining, 139

encoding for remote evaluation, 86
ensure-generic-function, 255
errors

invalid initarg name, 156

invalid keyword arguments to a
generic function, 132

no applicable method, 26, 50

in print-object methods, 38

procedural definitions for errors,
166

reading an unbound slot, 75

signaling in before-methods, 52

unrecognized method qualifier,
107

when lambda-lists are not
congruent, 132

when standard method
combination is used, 115

examples

developing an advanced CLOS
program (streams), 171

developing a simple CLOS
program (locking), 17

of individual methods (remote
evaluation, 95

evaluation), 86

of multi-methods (installation),
75

of procedural definitions, 167,
207

of procedural definitions
(initialization), 165

of redefining CLOS elements
(triangles), 144

extensions to CLOS programs

extending the installation
program, 82

extending the locking program,
45

extending the remote-evaluation
program, 93

extending the streams program,
207

planning for future, 63, 212

external perspective on CLOS

programs, 31, 60, 62,
150, 177

and constructors, 163

find-class, 134

find-method, 136, 242

functional level, 134, 221
examples of using, 136

generic dispatch, 9, 44, 226
controlling the, 101
efficiency of, 44, 112
illustration of, 12
of standard method combination
type, 113
summary of, 112
generic-flet, 253
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generic-function, 135, 253
generic functions, 8, 226

of slots and slot options, 127
from standard-object and t, 84,

creating, 29

declarations in, 179

distributed implementation of, 8
names of, 135

objects representing, 133
parameter patterns of, 132
purpose of using defgeneric, 28
redefining, 143

returned values of, 115

syntax of calling, 8

vs. ordinary Lisp functions, 8

117
initargs, 155, 160, 168, 226
declaring the validity of, 160, 170
defaulting of, 156, 161
:initarg slot option, 21, 24, 128,
157
:initform slot option, 22, 24, 129,
157
initialization arguments; see
initargs
initialization methods; see

generic-labels, 253 initialize-instance

guidelines initialize-instance, 167, 242
on controlling the generic and :allow-other-keys, 160
dispatch, 111 default behavior of, 156
on designing class organizations, examples of specializing, 159
125 and &key, 159

on designing protocols, 62
on using inheritance of slot

installation example, 75
instances, 5, 227

options, 129 changing the class of, 151
creating, 24
identity of, 6
identity printed representation of, 37
of instances, 6

type of, 26
instantiable classes, 205
interface, 27, 227
techniques, 102, 111 internal perspective on CLOS
implementation, 226 programs, 31, 60, 62,
individual methods, 94, 226 150, 178
applicability of, 94
examples of defining, 95
precedence of, 94
inheritance, 13, 226
alternate paradigms of, 218
of classes, 117
of class options, 237 lambda-lists, 227
of :default-initargs class option, congruence of generic functions
161 and methods, 132
of methods, 98 of generic functions, 28
single versus multiple, 14 of methods, 32, 34

of methods, 135
imperative programming

invalid-method-error, 254

tkey and initialize-instance, 159



local slots, 6, 66, 227
vs. methods, 68

locks, 17
analyzing the inheritance of, 42
classes that represent, 19
class precedence lists of, 43
controlling the printed

representation of, 37

deadlock, 45
processes and, 34
summary of the lock classes, 56
terminology of, 17

macro level, 134, 221
make-instance, 1565, 243
arguments to, 155
examples of calling, 24, 157
summary of, 156
vs. constructors, 163
make-instances-obsolete, 255
make-method, 254
metaclasses, 219, 221, 227
metaobject level, 221
metaohject protocol, 219
metaobjects, 220
method-combination-error, 254
method combination types, 105, 228
built-in, 107
defining new, 109
progn, 106
standard, 106
method qualifiers, 41, 113
method-qualifiers, 254
methods, 10, 227
applicabilty of, 33
for COMMON LisP types, 82, 86
default methods, 20, 39
identity of, 135
inheritance of, 98
objects representing, 133
qualifiers of, 41, 228
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redefining, 143
removing definitions of, 136
returned values of, 11, 115
roles of, 11, 228
mixin classes, 46, 228
most-specific-first order, 50
most-specific-last order, 50
multi-methods, 75, 228
applicability of, 77
checking arguments with, 76
precedence of, 79
multiple inheritance, 14, 228

names, 134

of classes, 134

of generic functions, 135

of parameter specializers, 136
naming issues, 30
nesting of before- and after-

methods, 50

next methed, 105, 115, 233, 244
next-method-p, 244
no-applicable-method, 166, 254
no-next-method, 166, 254

objects representing CLOS
elements, 133
operator method combination types,
107, 229
order
of before- and after-methods, 50
of defining CLOS elements, 131
of methods in standard method
combination, 113
most-specific-first, 50
most-specific-last, 50
of slots stored in memory, 8
overriding inherited methods, 37,
42
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packages, 61, 135
parameter patterns of generic
functions, 29, 132
parameters, 229
defaulting optional parameters of
methods, 33, 36
specialized, 32
vs. arguments, 31
parameter specializers, 136, 229
objects representing, 133
rule of ranking the precedence
of, 99
portability of CLOS programs, 216,
222
precedence, 13
argument precedence order, 100
of classes, 118
of individual methods, 94
of multi-methods, 79
primary methods, 11, 229
and built-in method combination
types, 108
call-next-method and, 105
printed representation of instances,
37
print-object, 244
example of specializing, 37, 38
procedural definitions, 165, 207,
229
processes, 17
and locks, 34
multiple, 34
primitives supporting, 34
process-wait, 34
programmer interface, 134, 216
protocols, 30, 230
for creating streams, 207
designing a protocol for creating
streams, 207
for encoding and decoding, 88
enforcement of, 218
guidelines on designing, 62

of locking, 30, 60

of streams, 177

techniques for designing, 207
of triangles, 144, 150

reader generic functions, 21, 22,
230
automatically generated methods
for, 22, 70
examples of calling, 26
:reader slot option, 21, 128
redefining CLOS elements, 139
changing the class of an
instance, 151
classes, 140
examples of, 144
generic functions, 143
methods, 143
reinitialize-instance, 167, 245
remote evaluation example, 86
remove-method, 136, 246
returned values
of generic functions, 115
of methods, 11, 115
root class; see t
rules
of class precedence, 118
of method applicability, 98
of ranking parameter
specializers, 99

setf-if, 35

setf syntax, 22

shared-initialize, 167, 246

shared slots, 66, 230
example of defining, 69, 200, 202
vs. methods, 69

single inheritance, 14, 230

slot-boundp, 38, 247

slot-exists-p, 255



:lot-makunbound, 255
ilot-missing, 166, 254
lot options, 21
guidelines on using inheritance
of, 129
inheritance of, 128
lots, 6, 230
inheritance of, 127
inherited from superclasses, 8
initializing when creating
instances, 157
local, 66
shared, 66
unbound, 75
used in lock classes, 23
ilot-unbound, 75, 166, 254
ilot-value, 247
vs. accessor generic functions, 72
ipecialized parameters, 32, 230
;pecializing describe; see describe
ipecializing print-object; see print-
object
itandard-class, 219
itandard-generic-function, 220
itandard-method, 220
itandard method combination type,
106, 231
summary of, 113
itandard-object, 42, 117, 230
itate information; see slots
itreams, 171
byte stream classes, 202
character stream classes, 199
directional stream classes, 180
disk stream classes, 190
instantiable streams, 205
operations on, 174
procedural definition for
creating, 207
tape stream classes, 185
types of, 173
itructure-class, 219
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structure of instances; see slots
subclasses, 7, 231
subtypep, 27
summary
of built-in method combination
types, 109
of method inheritance, 98
of standard method combination
type, 113
of techniques used in the stream
example, 212
of the CLOS model, 13
of the generic dispatch
procedure, 112
of the lock classes, 56
of the programmer interface, 216
of what make-instance does, 156
superclasses, 7, 221, 231
symbol-macrolet, 255
syntax of CLOS operators, 233
sys:%pointer, 38
system-supplied methods; see
default methods, 41

t, 43, 84, 117

triangle example, 144
typep, 27, 33

:type slot option, 47, 129
type specifiers, 14, 26

unbound slots, 75, 231
update-instance-for-different-class
151, 167, 248
update-instance-for-redefined-class
148, 167, 249

values; see returned values
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with-accessors, 73, 250
with-added-methods, 2563
with-lock, 55
without-process-preemption, 34
with-slots, 73, 151, 250

writer generic functions, 22, 231
automatically generated methods
for, 22, 70
examples of calling, 26
:writer slot option, 22, 128
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