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Preface

This book contains selected papers from the proceedings presented at the
Sixth Symposium on Trends in Functional Programming (TFP05). Contin-
uing the TFP series with its previous instances held in Stirling (1999), St.
Andrews (2000), Stirling (2001), Edinburgh (2003) and Munich (2004) the
symposium was held in Tallinn, Estland in co-location with ICFP 2005 and
GPCE 2005.

TFP (www.tifp.org) aims to combine a lively environment for presenting
the latest research results with a formal post-symposium refereeing process
leading to the publication by Intellect of a high-profile volume containing a
selection of the best papers presented at the symposium. Compared to the
earlier events in the TFP sequence the sixth symposium in 2005 was proud
to host more participants than ever. This was partly due to the financial
support given to many participants via the APPSEM II Thematic Network.

The 2005 Symposium on Trends in Functional Programming (TFP05)
was an international forum for researchers with interests in all aspects of
functional programming languages, focusing on providing a broad view of
current and future trends in Functional Programming. Via the submission of
abstracts admission to the symposium was made possible upon acceptance
by the program chair. The Tallinn proceedings contain 30 full papers based
on these abstracts.

After the Symposium all authors were given the opportunity to improve
their papers incorporating personal feedback given at the symposium. These
improved papers were refereed according to academic peer-review standards
by the TFP05 programme committee. Finally, all submitted papers (student
and non-student) were reviewed according to the same criteria. Out of 27
submitted papers the best 14 papers were selected for this book. These
papers all fulfill the criteria for academic publication as laid down by the
programme committee.

Evaluation of extra student feedback round

In order to enhance the quality of student submissions, student papers were
given the option of an extra programme committee review feedback round
based upon their submission to the symposium proceedings. This feedback
in advance of the post-symposium refereeing process is intended for authors
who are less familiar with a formal publication process. It provides general
qualitative feedback on the submission, but it does not give a grade or
ranking. This extra student feedback round was a novelty for the TFP-
series suggested by the programme chair and approved by the programme
committee.

Since the effort of an extra student feedback round performed by the PC
was novel, it was decided to evaluate it. Fifteen students used the feedback

v



round. Twelve of them still decided to submit after the extra feedback
round. The others decided to work more on their paper and submit to
another venue later. The feedback round included comments from at least
3 pc-members. At the final submission a letter was attached by the student
author explaining how the feedback was incorporated in the final paper.
Then, the student papers were reviewed again by the original reviewers
according to the standard criteria.

In the final submission the acceptance rates for the students (0.42) were
a bit lower than the overall acceptance rate (0.52). This is a significant
improvement compared to earlier TFP-events where the acceptance rates
for students were much lower.

It is also important to note that the grades that were given by the re-
viewers to student papers were on average at the same level as the overall
average (2.903 vs 2.898 on a decreasing scale from 1 to 5).

As part of the evaluation we sent round a questionnaire to the students
asking 13 different questions evaluating the feedback round. Ten out of
15 returned the questionnaire. The answers were very positive. For some
students the advantages were mainly in improving technical details or in
improving the motivation of the work. For most students the advantages
were in improving the structure or the presentation of the work. Overall,
the students gave on average 4.5 on an increasing scale from 1 to 5 to the
questions regarding the usefulness and the desirability of the feedback round.

It was decided by the TFP-advisory committee to continue this feedback
round in later TFP-events.

New paper categories

Upon proposal of the TFP05 programme chair, the TFP05 programme com-
mittee introduced besides the usual research papers three other paper cate-
gories reflecting the focus of the symposium on trends in functional program-
ming: Project Start papers (acknowledging that new projects fit in or create
a new trend), Project Evaluation papers (acknowledging that evaluations of
finished projects may greatly influence the direction and the creation of new
trends) and Position papers (acknowledging that an academically motivated
position may create a new trend in itself).

This book contains papers from two out of three of these new categories.
The criteria for each category are given on page viii of this book.

Best student paper award

TFP traditionally pays special attention to research students, acknowledging
that students are almost by definition part of new subject trends. As part
of the post-symposium refereeing process the TFP05 best student paper

vi



award (i.e. for the best paper with a student as first author) acknowledges
more formally the special attention TFP has for students.

The best student paper award of TFP05 was awarded to Kevin Millikin
from the University of Aarhus for his paper entitled ‘A New Approach to
One-Pass Transformations’.

It is certainly worth noticing that for this paper the grades that were
given by the reviewers were the best of all the papers that were submitted.

Acknowledgements

As TFP05 programme chair I would like to thank all those who provided
help in making the 2005 TFP symposium work.

First of all, of course, I want to thank the full programme committee
(for a full list of members see page x) for their effort in providing the peer-
reviewing resulting in this selection of papers.

Secondly, I want to thank Ando Saabas and Ronny Wichers Schreur for
their excellent technical assistance. Thirdly, I thank organisational chair
Tarmo Uustalu for the enormous amount of local organisation work. With-
out Tarmo nothing would have happened.

Last but in no way least, I would like to thank the TFP2005 general chair
Kevin Hammond who excellently kept me on track by providing direction,
support and advice and by sending me ‘just in time’ messages where needed.

Nijmegen,

Marko van Eekelen

TFP05 Programme Chair
Editor of Trends in Functional Programming Volume 6

vii



TFP Review Criteria

These are the TFP05 review criteria as used by the programme committee
to decide upon academic publication.

General Criteria For All Papers

• Formatted according to the TFP-rules;

• The number of submitted pages is less or equal to 16 (the pro-
gramme committee may ask the authors to elaborate a bit on
certain aspects, allowing a few extra pages);

• Original, technically correct, previously unpublished, not submit-
ted elsewhere;

• In English, well written, well structured, well illustrated;

• Abstract, introduction, conclusion;

• Clearly stated topic, clearly indicated category (student/non-
student; research, project, evaluation, overview, position);

• Relevance as well as methodology are well motivated;

• Proper reference to and comparison with relevant related work.

Student Paper

• Exactly the same as for non-student papers; just extra feedback!

Research Paper

• Leading-edge;

• Technical Contribution;

• Convincing motivation for the relevance of the problem and the
approach taken to solve it;

• Clear outline of approach to solve the problem, the solution and
how the solution solves the problem;

• Conclusion: summarise the problem, the solution and how the
work solves the problem.

Project Start Paper

• Description of recently started new project, likely part of a new
trend;

• Convincing motivation for relevance of the project;

• Motivated overview of project methodology;

• Expected academic benefits of the results;
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• Technical content.

Project Evaluation Paper

• Overview of a finished project, its goals and its academic results;

• Description and motivation of the essential choices that were
made during the project; evaluation of these choices;

• Reflection on the achieved results in relation to the aims of the
project;

• Clear, well-motivated description of the methodological lessons
that can be drawn from a finished project;

• A discussion on how this may influence new trends;

• Technical Content.

Position Paper

• A convincing academic motivation for what should become a new
trend;

• Academic arguments, convincing examples;

• Motivation why there are academically realistic prospects;

• Technical Content.
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Chapter 1

Best Student Paper:
A New Approach to
One-Pass Transformations
Kevin Millikin 1

Abstract: We show how to construct a one-pass optimizing transformation by
fusing a non-optimizing transformation with an optimization pass. We state the
transformation in build form and the optimization pass in cata form, i.e., as a
catamorphism; and we use cata/build fusion to combine them. We illustrate the
method by fusing Plotkin’s call-by-value and call-by-name CPS transformations
with a reduction-free normalization function for theλ-calculus, thus obtaining
two new one-pass CPS transformations.

1.1 INTRODUCTION

Compiler writers often face a choice between implementing a simple, non-opti-
mizing transformation pass that generates poor code which will require subse-
quent optimization, and implementing a complex, optimizing transformation pass
that avoids generating poor code in the first place. A two-pass strategy is com-
pelling because it is simpler to implement correctly, but its disadvantage is that
the intermediate data structures can be large and traversing them unnecessarily
can be costly. In a system performing just-in-time compilation or run-time code
generation, the costs associated with a two-pass compilation strategy can render
it impractical. A one-pass optimizing transformation is compelling because it
avoids generating intermediate data structures requiring further optimization, but
its disadvantage is that the transformation is more difficult to implement.

The specification of a one-pass transformation is that it is extensionally equal
to the composition of a non-optimizing transformation and an optimization pass.

1Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34,
DK-8200 Aarhus N, Denmark; Email:kmillikin@brics.dk
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A one-pass transformation is not usually constructed this way,however, but is
instead constructed as a separate artifact which must then be demonstrated to
match its specification. Our approach is to construct one-pass transformations
directly, as the fusion of passes via shortcut deforestation [GLJ93, TM95], thus
maintaining the explicit connection to both the non-optimizing transformation and
the optimization pass.

Shortcut deforestation relies on a simple but powerful program transforma-
tion rule known as cata/build fusion. This rule requires both the transformation
and optimization passes to be expressed in a stylized form. The first pass, the
transformation, must be written as abuild, abstracted over the constructors of its
input. The second pass, the optimization, must be acatamorphism, defined by
compositional recursive descent over its input.

The non-optimizing CPS transformation generates terms that containadmin-
istrative redexeswhich can be optimized away byβ-reduction. A one-pass CPS
transformation [DF90, DF92] generates terms that do not contain administrative
redexes, in a single pass, by contracting these redexes at transformation time.
Thusβ-reduction is the notion of optimization for the CPS transformation. The
normalization function we will use for reduction of CPS terms, however, contracts
all β-redexes, not just administrative redexes. In Section 1.6 we describe how to
contract only the administrative redexes.

When using a metalanguage to express normalization in the object language,
as we do here, the evaluation order of the metalanguage is usually important.
However, because CPS terms are insensitive to evaluation order [Plo75], evalua-
tion order is not a concern.

This work. We present a systematic method to construct a one-pass transforma-
tion, based on the fusion of a non-optimizing transformation with an optimization
pass. We demonstrate the method by constructing new one-pass CPS transfor-
mations as the fusion of non-optimizing CPS transformations with a catamorphic
normalization function.

The rest of the paper is organized as follows. First, we briefly review cata-
morphisms, builds, and cata/build fusion in Section 1.2. Then, in Section 1.3
we restate Plotkin’s call-by-value CPS transformation [Plo75] with build, and in
Section 1.4 we restate a reduction-free normalization function for the untyped
λ-calculus to use a catamorphism. We then present a new one-pass CPS trans-
formation obtained by fusion, in Section 1.5. In Section 1.6 we describe how to
modify the transformation to contract only the administrative redexes. We com-
pare our new CPS transformation to the one-pass transformation of Danvy and
Filinski [DF92] in Section 1.7. In Section 1.8 we repeat the method for Plotkin’s
call-by-name CPS transformation. We present related work and conclude in Sec-
tion 1.9.

Prerequisites. The reader should be familiar with reduction in theλ-calculus,
and the CPS transformation [Plo75]. Knowledge of functional programming,
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particularly catamorphisms (i.e., the higher-order functionfold) [MFP91] is ex-
pected. We use a functional pseudocode that is similar to Haskell.

1.2 CATA/BUILD FUSION FOR λ-TERMS

The familiar datatype ofλ-terms is defined by the following context-free grammar
(assuming the metavariablex ranges over a setIdentof identifiers):

Term∋ m ::= var x | lam x m | app m m

A catamorphism [GLJ93, MFP91, TM95] (or fold) overλ-terms captures a com-
mon pattern of recursion. It recurs on all subterms and replaces each of the con-
structorsvar, lam, andapp in aλ-term with functions of the appropriate type. We
use the combinatorfoldλ, with type∀A.(Ident→A)→ (Ident→ A→ A)→ (A→
A→ A) → Term→ A, to construct a catamorphism overλ-terms:

foldλ vr lm ap(var x) = vr x
foldλ vr lm ap(lam x m) = lm x(foldλ vr lm ap m)
foldλ vr lm ap(app m0 m1) = ap(foldλ vr lm ap m0) (foldλ vr lm ap m1)

We use the combinatorbuildλ to systematically constructλ-terms. It takes a poly-
morphic functionf which uses arbitrary functions (of the appropriate types) in-
stead of theλ-term constructors to transform an input into an output, and then
appliesf to theλ-term constructors, producing a function that transforms an in-
put into aλ-term. It has type∀A.(∀B.(Ident→ B) → (Ident→ B→ B) → (B→
B→ B) → A→ B) → A→ Term:

buildλ f = f var lam app

Cata/build fusion [GLJ93, TM95] is a simple program transformation that fuses a
catamorphism with a function that produces its output using build. Forλ-terms,
cata/build fusion consists of the rewrite rule:

(foldλ vr lm ap)◦ (buildλ f ) ⇒ f vr lm ap

The fused function produces its output without constructing intermediate data
structures.

1.3 THE CALL-BY-VALUE CPS TRANSFORMATION USING BUILD

The non-optimizing call-by-value CPS transformation [Plo75] is given in Fig-
ure 1.1. We assume the ability to choose fresh identifiers when needed; the iden-
tifiers k, v0, andv1 are chosen fresh.

Fusion with a catamorphic normalization function requires that the transfor-
mation is written using build, i.e., parameterized over the constructors used to
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transform : Term→ Term
transform(var x) = lam k (app (var k) (var x))
transform(lam x m) = lam k (app (var k) (lam x (transform m)))
transform(app m0 m1) = lam k (app (transform m0)

(lam v0 (app (transform m1)
(lam v1 (app (app (var v0) (var v1)) (var k))))))

FIGURE 1.1. Plotkin’s non-optimizing call-by-value CPS transformation

produce its output. The transformation using build thus constructs a Church en-
coding of the original output.2 The non-optimizing transformation in build form
is shown in Figure 1.2. As before, the identifiersk, v0, andv1 are chosen fresh.

f : ∀B.(Ident→ B) → (Ident→ B→ B)
→ (B→ B→ B) → Term→ B

f vr lm ap(var x) = lm k (ap(vr k) (vr x))
f vr lm ap(lam x m) = lm k (ap(vr k) (lm x ( f vr lm ap m)))
f vr lm ap(app m0 m1) = lm k (ap( f vr lm ap m0)

(lm v0 (ap( f vr lm ap m1)
(lm v1 (ap(ap(vr v0) (vr v1)) (vr k))))))

transform : Term→ Term
transform = buildλ f

FIGURE 1.2. Non-optimizing CPS transformation as a build

The transformation is non-optimizing because it produces terms that contain
extraneous administrative redexes. Transforming the simple termλx.λy.y x (writ-
ten with the usual notation forλ-terms) produces the term

λk.k (λx.λk.((λk.k (λy.λk.k y)) (λx0.((λk.k x) (λx1.x0 x1 k)))))

containing administrative redexes (for simplicity, we have used only a single con-
tinuation identifier).

1.4 A CATAMORPHIC NORMALIZATION FUNCTION

Normalization by evaluation (NBE) is a reduction-free approach to normalization
that is not based on the transitive closure of a single-step reduction function. In-
stead, NBE uses a non-standard evaluator to map a term to its denotation in a

2Placing the last argument first in the definition off in Figure 1.2 yields a function
that constructs a Church encoding of the output oftransformin Figure 1.1
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residualizing model. The residualizing model has the property that a denotation
in the model can be reified into a syntactic representation of a term, and that rei-
fied terms are in normal form. Areduction-freenormalization function is then
constructed as the composition of evaluation and reification.

NBE has been used in the typedλ-calculus, combinatory logic, the free mo-
noid, and the untypedλ-calculus [DD98]. We adopt the traditional normalization
function for the untypedλ-calculus as our optimizer for CPS terms. We show it in
Figure 1.3. Just as in the CPS transformation, we assume the ability to choose a
fresh identifier when needed. We note, however, that our approach works equally
well with other methods of name generation such as using de Bruijn levels or
threading a source of fresh names through the evaluator. We opt against the former
approach here because we want to compare our resulting one-pass transformation
with existing one-pass transformations. The latter approach goes through without
a hitch, but we opt against it here because the extra machinery involved with
name generation distracts from the overall example without contributing anything
essential.

Norm∋ n ::= atomN a | lamN x n
Atom∋ a ::= varN x | appN a n

Val = Atom+(Val→ Val)
Val∋ v ::= res a | fun f

Env = Ident→ Val

eval : Term→ Env→ Val
eval(var x) ρ = ρ x
eval(lam x m) ρ = fun (λv.eval m(ρ{x 7→ v}))
eval(app m0 m1) ρ = apply(eval m0 ρ) (eval m1 ρ)

↓ : Val→ Norm
↓(res a) = atomN a
↓(fun f ) = lamN x (↓( f (res (varN x)))), wherex is fresh

apply : Val→ Val→ Val
apply(res a) v = res (appN a (↓v))
apply(fun f ) v = f v

normalize : Term→ Norm
normalize m = ↓(eval mρinit)

FIGURE 1.3. Reduction-free normalization function

The normalization function maps terms to theirβ-normal form. Normal forms
are given by the grammar forNorm in Figure 1.3. ElementsVal of the residualiz-
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ing model are either atoms (terms that are not abstractions, given by the grammar
for Atom), or else functions fromVal to Val.

Environments are somewhat unusual in that the initial environment maps each
identifier to itself as an element of the residualizing model, which allows us to
handle open terms:

ρinit x = res (varN x)
(ρ{x 7→ v}) x = v
(ρ{y 7→ v}) x = ρ x, if x 6= y

Abstractions denote functions fromVal to Val. The recursive function reify (↓)
extracts a normal term from an element of the residualizing model. The func-
tion applydispatches on the value of the operator of an application to determine
whether to build a residual atom or to apply the function. Normalization is then
the composition of evaluation (in the initial environment) followed by reification.

Because the evaluation function is compositional, we can rewrite it as a cata-
morphism overλ-terms, given in Figure 1.4. The domains of terms, atoms, values,
and environments do not change, nor do the auxiliary functions↓ andapply.

vr : Ident→ Env→ Val
vr x ρ = ρ x

lm : Ident→ (Env→ Val) → Env→ Val
lm x mρ = fun (λv.m(ρ{x 7→ v}))

ap : (Env→ Val) → (Env→ Val) → Env→ Val
ap m0 m1 ρ = apply(m0 ρ) (m1 ρ)

eval : Term→ Env→ Val
eval = foldλ vr lm ap

FIGURE 1.4. Evaluation as a catamorphism

Using this normalization function to normalize the example term from Sec-
tion 1.3 producesλx2.x2 (λx3.λx4.x4 x3), where all theβ-redexes have been con-
tracted (and fresh identifiers have been generated for all bound variables).

1.5 A NEW ONE-PASS CALL-BY-VALUE CPS TRANSFORMATION

We fuse the non-optimizing CPS transformationbuildλ f : Term→ Termof Sec-
tion 1.3 and the catamorphic evaluation functionfoldλ vr lm ap: Term→ Env→
Val of Section 1.4 to produce a one-pass transformation fromλ-terms into the
residualizing model. This one-pass transformation is simplyf vr lm ap: Term→
Env→ Val. We then extractβ-normal forms from the residualizing model by
applying to the initial environment and reifying, as before.
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Inlining the definitions off , vr, lm and ap, performingβ-reduction, and sim-
plifying environment operations (namely, replacing environment applications that
yield a known value with their value and trimming bindings that are known to
be unneeded) yields the simplified specification of the one-pass transformation
shown in Figure 1.5. The domains of normal terms, atoms, values, and environ-
ments as well as the auxiliary functions↓ andapplyare the same as in Figure 1.3.

xform : Term→ Env→ Val
xform(var x) ρ = fun (λk.apply k(ρ x))
xform(lam x m) ρ = fun (λk.apply k(fun (λv.xform m(ρ{x 7→ v}))))
xform(app m0 m1) ρ = fun (λk.apply(xform m0 ρ)

(fun (λv0.apply(xform m1 ρ)
(fun (λv1.apply(apply v0 v1) k)))))

transform : Term→ Norm
transform m = ↓(xform mρinit)

FIGURE 1.5. A new one-pass call-by-value CPS transformation

We have implemented this one-pass transformation in Standard ML and Has-
kell, letting the type inferencer act as a theorem prover to verify that the transfor-
mation returns aβ-normal form if it terminates [DRR01].

1.6 SUPPRESSING CONTRACTION OF SOURCE REDEXES

Compared to traditional one-pass CPS transformations, our transformation is over-
zealous. The normalization function we use contracts allβ-redexes; it cannot tell
which ones are administrative redexes. Therefore our CPS transformation does
not terminate for terms that do not have aβ-normal form (e.g.,(λx.x x) (λx.x x)).
Of course, if we restricted the input to simply-typedλ-terms, then the transforma-
tion would always terminate because the corresponding normalization function
does.

We can modify the new CPS transformation to contract only the administra-
tive redexes. We modify the datatype of intermediate terms (and the associated
catamorphism operator) to contain two types of applications, corresponding to
source and administrative redexes. This is an example of a general technique of
embedding information known to the first pass in the structure of the intermediate
language, for use by the second pass.

Term∋ m ::= var x | lam x m | app m m | srcapp m m

We then modify the non-optimizing CPS transformation to preserve source ap-
plications (by replacing theapp (var v0) (var v1) with srcapp (var v0) (var v1) in
the clause for applications) and we modify the normalization function (to always

7



reify both the operator and operand of source applications). The datatype of nor-
mal forms now includes source redexes:

Norm∋ n ::= atomN a | lamN x n
Atom∋ a ::= varN x | appN a n | srcappN n n

The result of fusing the modified call-by-value CPS transformation with the
modified normalization function is shown in Figure 1.6. Again, the domains of
values and environments, and the auxiliary functions↓ andapplyare the same as
in Figure 1.3.

xform : Term→ Env→ Val
xform(var x) ρ = fun (λk.apply k(ρ x))
xform(lam x m) ρ = fun (λk.apply k(fun (λv.xform m(ρ{x 7→ v}))))
xform(app m0 m1) ρ = fun (λk.apply(xform m0 ρ)

(fun (λv0.apply(xform m1 ρ)
(fun (λv1.apply(res (srcappN (↓v0) (↓v1))) k)))))

transform : Term→ Norm
transform m = ↓(xform mρinit)

FIGURE 1.6. A call-by-value CPS transformation that does not contract source
redexes

Given the term from Section 1.3, the modified transformation produces

λx0.x0 (λx1.λx2.(((λx3.λx4.x4 x3) x1) x2))

(i.e., it does not contract the source redex).

1.7 COMPARISON TO DANVY AND FILINSKI’S
ONE-PASS CPS TRANSFORMATION

Danvy and Filinski [DF92] obtained a one-pass CPS transformation by anticipat-
ing which administrative redexes would be built and contracting them at trans-
formation time. They introduced a binding-time separation between static and
dynamic constructs in the CPS transformation (static constructs are represented
here by metalanguage variables, abstractions, and applications; and dynamic con-
structs by the constructorsvar, lam, andapp). Staticβ-redexes are contracted
at transformation time and dynamic redexes are residualized. We present their
transformation in Figure 1.7.

In our transformation, the binding-time separation is present as well. Resid-
ualized atoms are dynamic and functions from values to values are static. This
distinction arises naturally as a consequence of the residualizing model of the nor-
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xform : Term→ (Term→ Term) → Term
xform(var x) = λκ.κ (var x)
xform(lam x m) = λκ.κ (lam x (lam k (xform′ m(var k))))
xform(app m0 m1) = λκ.xform m0

(λv0.xform m1

(λv1.app (app (var v0) (var v1)) (lam x (κ (var x)))))

xform′ : Term→ Term→ Term
xform′ (var x) = λk.app k (var x)
xform′ (lam x m) = λk.app k (lam x (lam k′ (xform′ m (var k′))))
xform′ (app m0 m1) = λk.xform m0

(λv0.xform m1

(λv1.app (app (var v0) (var v1)) k))

transform : Term→ Term
transform m = lam k (xform′ m (var k))

FIGURE 1.7. Danvy and Filinski’s one-pass CPS transformation

malization function. Dynamic abstractions are only constructed by the auxiliary
function↓, and dynamic applications are only constructed byapply.

Both CPS transformations are properly tail recursive: they do not generate
η-redexes as the continuations of tail calls. In order to avoid generating thisη-
redex, Danvy and Filinski employ a pair of transformation functions, one for terms
in tail position and one for terms in non-tail position. Our transformation uses a
single transformation function for both terms in tail position and terms in non-tail
position. Theapply function determines whether the operand of an application
will be reified or not (reification will construct anη-expanded term if its argument
is not already a normal-form atom).

1.8 A NEW ONE-PASS CALL-BY-NAME CPS TRANSFORMATION

The same fusion technique can be used with the CPS transformations for other
evaluation orders [HD94]. For instance, we can start with Plotkin’s call-by-name
CPS transformation [Plo75] shown in Figure 1.8.

After fusion and simplification, we obtain the one-pass call-by-name CPS
transformation of Figure 1.9.

The evaluation order of the normalization function is the same as that of the
metalanguage. Due to the indifference theorems for both the call-by-value and
call-by-name CPS transformations [Plo75], the evaluation order of the normaliza-
tion function is irrelevant here.
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transform : Term→ Term
transform(var x) = var x
transform(lam x m) = lam k (app (var k) (lam x (transform m)))
transform(app m0 m1) = lam k (app (transform m0)

(lam v (app (app (var v) (transform m1)) (var k))))

FIGURE 1.8. Plotkin’s non-optimizing call-by-name CPS transformation

xform : Term→ Env→ Val
xform(var x) ρ = ρ x
xform(lam x m) ρ = fun (λk.apply k(fun (λv.xform m(ρ{x 7→ v}))))
xform(app m0 m1) ρ = fun (λk.apply(xform m0 ρ)

(fun (λv.apply(apply v(xform m1 ρ)) k)))

transform : Term→ Norm
transform m = ↓(xform mρinit)

FIGURE 1.9. A new one-pass call-by-name CPS transformation

1.9 RELATED WORK AND CONCLUSION

This work brings together two strands of functional-programming research: pro-
gram fusion and normalization by evaluation. It combines them to construct new
one-pass CPS transformations based on NBE. The method should be applicable
to constructing one-pass transformations from a pair of transformations where the
second (optimization) pass is compositional (i.e., a catamorphism).

Program fusion. Techniques to eliminate intermediate data structures from func-
tional programs are an active area of research spanning three decades [Bur75].
Wadler coined the term “deforestation” to describe the elimination of intermedi-
ate trees [Wad90], and Gill et al. introduced the idea of using repeated application
of the foldr/build rule for “shortcut” deforestation of intermediate lists [GLJ93].
Takano and Meijer extended shortcut deforestation to arbitrary polynomial data-
types [TM95]. Ghani et al. give an alternative semantics for programming with
catamorphism and build [GUV04], which is equivalent to the usual initial alge-
bra semantics but has the cata/build fusion rule as a simple consequence. Our
contribution is the use of program-fusion techniques to construct one-pass trans-
formations

Normalization by evaluation. The idea behind normalization by evaluation, that
the metalanguage can be used to express normalization in the object language, is

10



due to Martin Löf [ML75]. This idea is present in Danvy and Filinski’s one-pass
CPS transformation [DF90, DF92], which is therefore an instance of NBE. Other
examples include the free monoid [BD95], the untyped lambda-calculus and com-
binatory logic [Gol96a, Gol96b, Gol00], the simply-typedλ-calculus [Ber93,
BS91], and type-directed partial evaluation [Dan96b]. The term “normalization
by evaluation” was coined by Schwichtenberg in 1998 [BES98]. Many people
have discovered the same type-directed normalization function for the typedλ-
calculus, using reify and reflect auxiliary functions [DD98]. The normalization
function for the untypedλ-calculus has also been multiply discovered (e.g., by
Coquand in the setting of dependent types [SPG03]). It has recently been inves-
tigated operationally by Aehlig and Joachimski [AJ04] and denotationally by Fil-
inski and Rohde [FR02]. Our contribution is to factor Danvy and Filinski’s early
example of NBE—the one-pass CPS transformation—into Plotkin’s original CPS
transformation and the normalization function for the untypedλ-calculus. The
factorization scales to other CPS transformations [HD94] and more generally to
other transformations on theλ-calculus.

NBE and the CPS transformation. Two other works combine normalization by
evaluation with the CPS transformation. Danvy uses type-directed partial evalu-
ation to residualize values produced by a continuation-passing evaluator for the
λ-calculus [Dan96a], producing CPS terms inβ-normal form; he does this for
both call-by-value and call-by-name evaluators, yielding call-by-value and call-
by-name CPS transformations. Filinski defines a (type-directed) extensional CPS
transformation from direct-style values to CPS values and its inverse [Fil01]; he
composes this extensional CPS transformation with a type-directed reification
function for the typedλ-calculus to obtain a transformation from direct-style val-
ues to CPS terms. We are not aware, however, of any other work combining the
CPS transformation and reduction-free normalization using program fusion.
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Christian Queinnec, editors,JFLA 96 – Journées francophones des langages
applicatifs, volume 15 ofCollection Didactique, pages 133–146, Val-Morin,
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Chapter 2

A Static Checker for Safe
Pattern Matching in Haskell
Neil Mitchell and Colin Runciman2.1

Abstract: A Haskell program may fail at runtime with a pattern-match error if
the program has any incomplete (non-exhaustive) patterns in definitions or case
alternatives. This paper describes a static checker that allows non-exhaustive pat-
terns to exist, yet ensures that a pattern-match error does not occur. It describes a
constraint language that can be used to reason about pattern matches, along with
mechanisms to propagate these constraints between program components.

2.1 INTRODUCTION

Often it is useful to define pattern matches which are incomplete, for example
head fails on the empty list. Unfortunately programs with incomplete pattern
matches may fail at runtime.

Consider the following example:

risers :: Ord a => [a] -> [[a]]
risers [] = []
risers [x] = [[x]]
risers (x:y:etc) = if x <= y then (x:s):ss else [x]:(s:ss)

where (s:ss) = risers (y:etc)

A sample execution of this function would be:

> risers [1,2,3,1,2]
[[1,2,3],[1,2]]

In the last line of the definition,(s:ss) is matched against the output of
risers. If risers (y:etc) returns an empty list this would cause a pattern

2.1University of York, UK. http://www.cs.york.ac.uk/∼ndm and http://www.cs.york.ac.uk/∼colin
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match error. It takes a few moments to check this program manually – and a few
more to be sure one has not made a mistake!

GHC [The05] 6.4 has a warning flag to detect incomplete patterns, which is
named-fwarn-incomplete-patterns. Adding this flag at compile time
reports:2.2

Warning: Pattern match(es) are non-exhaustive

But the GHC checks are only local. If the functionhead is defined, then it
raises a warning. No effort is made to check thecallers of head – this is an
obligation left to the programmer.

Turning therisers function over to the checker developed in this paper, the
output is:

> (risers (y:etc)){:}
> True

The checker first decides that for the code to be safe the recursive call to
risers must always yield a non-empty list. It then notices that if the argument
in a risers application is non-empty, then so will the result be. This satisfies it,
and it returns True, guaranteeing that no pattern-match errors will occur.

2.1.1 Roadmap

This paper starts by introducing a reduced language similar to Haskell in§2.2.
Next a constraint language is introduced in§2.3 and algorithms are given to ma-
nipulate these constraints in§2.4. A worked example is given in§2.5, followed
by a range of small examples and a case study in§2.6. This paper is compared
to related work in§2.7. Finally conclusions are given in§2.8, along with some
remaining tasks – this paper reports on work in progress.

2.2 REDUCED HASKELL

The full Haskell language is a bit unwieldy for analysis. In particular the syntactic
sugar complicates analysis by introducing more types of expression to consider.
The checker works instead on a simplified language, a core to which other Haskell
programs can be reduced. This core language is a functional language, making
use of case expressions, function applications and algebraic data types.

As shown in example 1, only one defining equation per function is permitted,
pattern-matching occurs only in case expressions and every element within a con-
structor must be uniquely named by a selector (e.g.hd andtl). A convertor from
a reasonable subset of Haskell to this reduced language has been written.

2.2The additional flag-fwarn-simple-patterns is needed, but this is due to GHC bug
number 1075259
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Example 2.1

data [] a = (:) {hd :: a, tl :: [] a} | []

head x = case x of (a:_) -> a

map f xs = case xs of
[] -> []
(a:as) -> f x : map f as

reverse xs = rev xs []

reverse2 x a = case x of
[] -> a
(y:ys) -> reverse2 ys (y:a)

2.2.1 Higher Order Functions

The current checker is not higher order, and does not allow partial application.
The checker tries to eliminate higher-order functions by specialization. A mu-

tually recursive group of functions can be specialized in theirnth argument if in
all recursive calls this argument is invariant.

Examples of common functions whose applications can be specialized in this
way includemap,filter, foldr andfoldl.

When a function can be specialized, the expression passed as thenth argu-
ment has all its free variables passed as extra arguments, and is expanded in the
specialized version. All recursive calls within the new function are then renamed.

Example 2.2

map f xs = case xs of
[] -> []
(a:as) -> f a : map f as

adds x n = map (add n) x

is transformed into:

map_adds n xs = case xs of
[] -> []
(a:as) -> add n a : map_adds n as

adds x n = map_adds n x

Although this firstification approach is not complete by any means, it appears
to be sufficient for a large range of examples. Alternative methods are available
for full firstification, such as that detailed by Hughes [Hug96], or the defunction-
alisation approach by Reynolds [Rey72].
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2.2.2 Internal Representation

While the concrete syntax allows the introduction of new variable names, the
internal representation does not. All variables are referred to using aselector path
from an argument to the function.

For example, the internal representation ofmap is:

map f xs = case xs of
[] -> []
(_:_) -> f (xs· hd) : map f (xs· tl)

(Note that the infix· operator here is used to compose paths; it isnot the
Haskell function composition operator.)

2.3 A CONSTRAINT LANGUAGE

In order to implement a checker that can ensure unfailing patterns, it is useful to
have some way of expressing properties of data values. A constraint is written as
〈e, r,c〉 , wheree is an expression,r is a regular expression over selectors andc is
a set of constructors. Such a constraint asserts that any well-defined application
to eof a path of selectors described byr must reach a constructor in the setc.

These constraints are used as atoms in a predicate language with conjunction
and disjunction, so constraints can be about several expressions and relations be-
tween them. The checker does not require a negation operator. We also use the
term constraint to refer to logical formulae with constraints as atoms.

Example 2.3

Consider the functionminimum, defined as:

minimum xs = case xs of
[x] -> x
(a:b:xs) -> minimum (min a b : xs)

min a b = case a < b of
True -> a
False -> b

Now consider the expressionminimum e. The constraint that must hold for
this expression to be safe is〈e,λ,{:}〉 . This says that the expressionemust reduce
to an application of:, i.e. a non-empty list. In this example the path wasλ – the
empty path.

Example 2.4

Consider the expressionmap minimum e. In this case the constraint gener-
ated is〈e,tl ∗·hd, {:}〉 . If we apply any number (possibly zero) oftls to e,
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then applyhd, we reach a: construction. Values satisfying this constraint in-
clude [] and [[1],[2],[3]], but not [[1],[]]. The value [] satisfies
this constraint because it is impossible to apply eithertl or hd, and therefore the
constraint does not assert anything about the possible constructors.

Constraints divide up into three parts – thesubject, thepathand thecondition.

The subject in the above two examples was juste, representing any expression –
including a call, a construction or even acase.

The path is a regular expression over selectors.

A regular expression is defined as:

s+ t union of regular expressionss andt
s· t concatenation of regular expressionss thent
s∗ any number (possibly zero) occurrences ofs
x a selector, such ashd or tl
λ the language is the set containing the empty string
φ the language is the empty set

The condition is a set of constructors which, due to static type checking, must all
be of the same result type.

The meaning of a constraint is defined by:

〈e, r,c〉 ⇔ (∀l ∈ L(r)•defined(e, l)⇒ constructor(e· l) ∈ c)

HereL(r) is the language represented by the regular expressionr; definedreturns
true if a path selection is well-defined; andconstructorgives the constructor used
to create the data. Of course, sinceL(r) is potentially infinite, this cannot be
checked by enumeration.

If no path selection is well-defined then the constraint is vacuously true.

2.3.1 Simplifying the Constraints

From the definition of the constraints it is possible to construct a number of iden-
tities which can be used for simplification.

Path does not exist:in the constraint〈[], hd, {:}〉 the expression[] does not
have ahd path, so this constraint simplifies to true.

Detecting failure: the constraint〈[], λ,{:}〉 simplifies to false because the[]
value is not the constructor:.

Empty path: in the constraint〈e,φ,c〉, the regular expression isφ, the empty lan-
guage, so the constraint is always true.
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Exhaustive conditions:in the constraint〈e,λ,{:,[]}〉 the condition lists all the
possible constructors, ife reaches weak head normal form then because of
static typingemust be one of these constructors, therefore this constraint sim-
plifies to true.

Algebraic conditions: finally a couple of algebraic equivalences:

〈e, r1,c〉∧ 〈e, r2,c〉 = 〈e,(r1 + r2),c〉
〈e, r,c1〉∧ 〈e, r,c2〉 = 〈e, r,c1∩c2〉

2.4 DETERMINING THE CONSTRAINTS

This section concerns the derivation of the constraints, and the operations involved
in this task.

2.4.1 The Initial Constraints

In general, acase expression, where−→v are the arguments to a constructor:

case e of C 1
−→v -> val 1; ...; C n

−→v -> val n

produces the initial constraint〈e,λ,{C1,...,C n}〉. If the case alternatives are
exhaustive, then this can be simplified to true. Allcase expressions in the pro-
gram are found, their initial constraints are found, and these are joined together
with conjunction.

2.4.2 Transforming the constraints

For each constraint in turn, if the subject isxf (i.e. thex argument tof), the
checker searches for every application off, and gets the expression for the ar-
gumentx. On this expression, it sets the existing constraint. This constraint is
then transformed using a backward analysis (see§2.4.3), until a constraint on ar-
guments is found.

Example 2.5

Consider the constraint〈xs minimum,λ,{:}〉 – that isminimum’s argumentxs
must be a non-empty list. If the program contains the expression:

f x = minimum (g x)

then the derived constraint is〈(g x f), λ,{:}〉 .

2.4.3 Backward Analysis

Backward analysis takes a constraint in which the subject is a compound expres-
sion, and derives a combination of constraints over arguments only. This process
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ϕ〈e·s,r,c〉 →ϕ〈e,s· r,c〉 (sel)

V#−→e
i=1 ϕ〈ei ,

∂r
∂S(C,i) ,c〉 →P

ϕ〈C −→e , r,c〉 → (λ ∈ L(r)⇒C∈ c)∧P
(con)

ϕ〈 f −→e , r,c〉 →ϕ〈D( f ,−→e ), r,c〉 (app)

V#−→e
i=1 (ϕ〈e0,λ,C (Ci)〉∨ϕ〈ei , r,c〉)→ P

ϕ〈case e0 of {C1
−→v ->e 1; · · · ; Cn

−→v ->e n}, r,c〉 →P
(cas)

FIGURE 2.1. Specification of backward analysis,ϕ

is denoted by a functionϕ, which takes a constraint and returns a predicate over
constraints. This function is detailed in Figure 2.1.

In this figure,C denotes a constructor,c is a set of constructors,f is a function,
e is an expression,r is a regular expression over selectors ands is a selector.

The (sel) rulemoves the composition from the expression to the path.

The (con) rule deals with an application of a constructorC. If λ is in the path lan-
guage theC must be permitted by the condition. This depends on theempty
word property(ewp) [Con71], which can be calculated structurally on the reg-
ular expression.

For each of the arguments toC, a new constraint is obtained from the deriva-
tive of the regular expression with respect to that argument’s selector. This is
denoted by∂r/∂S(C, i), whereS(C, i) gives the selector for theith argument
of the constructorC. The differentiation method is based on that described by
Conway [Con71]. It can be used to test for membership in the following way:

λ ∈ L(r) = ewp(r)
s· r ′ ∈ L(r) = r ′ ∈ L(∂r/∂s)

Two particular cases of note are∂λ/∂a = φ and∂φ/∂a = φ.

The (app) rule uses the notationD( f ,−→e ) to express the result of substituting
each of the arguments in−→e into the body of the functionf . The naive appli-
cation of this rule to any function with a recursive call will loop forever. To
combat this, if a function is already in the process of being evaluated with the
same constraint, its result is given as true, and the recursive arguments are put
into a special pile to be examined later on, see§2.4.4 for details.

The (cas) rulegenerates a conjunct for each alternative. The functionC (C) re-
turns the set of all other constructors with the same result type asC, i.e.
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C ([]) = {:}. The generated condition says either the subject of the case
analysis has a different constructor (so this particular alternative is not exe-
cuted in this circumstance), or the right hand side of the alternative is safe
given the conditions for this expression.

2.4.4 Obtaining a Fixed Point

We have noted that if a function is in the process of being evaluated, and its
value is asked for again with the same constraints, then the call is deferred. After
backwards analysis has been performed on the result of a function, there will be
a constraint in terms of the arguments, along with a set of recursive calls. If these
recursive calls had been analyzed further, then the checking computation would
not have terminated.

Example 2.6

mapHead xs = case xs of
[] -> []
(x:xs) -> head x : mapHead xs

The functionmapHead is exactly equivalent tomap head. Running back-
ward analysis over this function, the constraint generated is〈xs mapHead,hd, {:}〉 ,
and the only recursive call noted ismapHead (xs· tl). The recursive call is
written asxs ←↩ xs· tl, showing how the value of xs changes. Observe that
the path in the constraint only reaches the first element in the list, while the desired
constraint would reach them all. In effectmapHead has been analyzed without
considering any recursive applications.

The fixed point for this function can be derived by repeatedly replacingxs
with xs· tl in the subject of the constraint, and joining these constraints with
conjunction.

〈xs, hd, {:}〉∧ 〈 xs· tl, hd, {:}〉∧ 〈 xs· tl· tl, hd, {:}〉∧ . . . (1)

≡ 〈xs, hd, {:}〉∧ 〈 xs, tl· hd, {:}〉∧ 〈 xs, tl· tl· hd, {:}〉∧ . . . (2)

≡ 〈xs, hd+tl· hd+tl· tl· hd+. . . ,{:}〉 (3)

≡ 〈xs, (λ+tl+tl· tl+. . . )· hd, {:}〉 (4)

≡ 〈xs, tl ∗·hd, {:}〉 (5)

The justification is as follows. First use the backwards analysis rule given in
Figure 2.1 to transform between (1) and (2) – selectors move from the subject to
the path. To obtain (3) the first algebraic condition given in§2.3.1 is used. The
factorisation of thehd element of the regular expression is applied. Finally this
can be rewritten using the regular expression∗operator as the result.

More generally, given any constraint of the form〈x, r,c〉 and a recursive call
of the formx ←↩ x. p, the fixed point is〈x, p∗ · r,c〉. A special case is wherep
is λ, in which casep∗·r = r.
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Example 2.7

Consider the functionreverse written using an accumulator:

reverse x = reverse2 x []

reverse2 x a = case x of
[] -> a
(y:ys) -> reverse2 ys (y:a)

Argumentxs follows the patternx ←↩ x.tl, but we also have the recursive
call a ←↩ (x· hd:a). If the program being analyzed contained an instance of
map head (reverse x), the part of the condition that applies to a before
the fixed pointing ofa is 〈a, tl ∗·hd, {:}〉 .

In this case a second rule for obtaining a fixed point can be used. For recursive
calls of the forma ←↩ C x1 · · · xn a, wheres is the selector corresponding
to the position ofa, the rule is:

^

r ′∈r#

((
λ ∈ L(r ′)⇒C∈ c

)
∧〈a,r ′,c〉∧

n̂

i=1

〈xi ,
∂r ′

∂S(C, i)
,c〉

)

Where:

r# = {r0, r1, . . . , r∞} r0 = r r (n+1) =
∂rn

∂s

It can be shown thatr# is always a finite set [Law04]. This expression is
derived from the (con) rule§2.4.3, applied until it reaches a fixed point.

In the reverse example,r# is {tl ∗·hd}, since∂tl ∗·hd/∂tl = tl ∗·hd.
Also λ /∈ L(tl ∗·hd) , so the result is:

〈a, tl ∗·hd, {:}〉∧〈 x·hd,
∂tl ∗·hd

∂hd
,{:}〉

≡ 〈a, tl ∗·hd, {:}〉∧〈 x·hd, λ,{:}〉
≡ 〈a, tl ∗·hd, {:}〉∧〈 x, hd, {:}〉

Next applying the fixed pointing due tox, gives a final condition, as expected:
〈a, tl ∗·hd, {:}〉 ∧ 〈 x, tl ∗·hd, {:}〉

While the two rules given do cover a wide range of examples, they are not
complete. Additional rules exist for other forms of recursion but not all recursive
functions can be handled using the current scheme.

Example 2.8

interleave x y = case x of
[] -> y
(a:b) -> a : interleave y b
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Here the recursive call isy ←↩ x· tl, which does not have a rule defined
for it. In such cases the checker conservatively outputsFalse, and also gives a
warning message to the user. The checker always terminates.

The fixed point rules classify exactly which forms of recursion can be accepted
by the checker. Defining more fixed point rules which can capture an increasingly
large number of patterns is a matter for future work.

2.5 A WORKED EXAMPLE

Recall therisers example in§2.1. The first step of the checker is to transform
this into reduced Haskell.

risers xs =
case xs of

[] -> []
[x] -> [[x]]
(x:y:etc) -> risers2 (x <= y) x (risers (y:etc))

risers2 b x y = case y of
(s:ss) -> case b of

True -> (x:s) : ss
False -> [x] : (s:ss)

The auxiliaryrisers2 is necessary because reduced Haskell has nowhere
clause. The checker proceeds as follows:

Step 1, Find all incomplete case statements.The checker finds one, in the
body of risers2, the argument y must be a non-empty list. The constraint
is 〈yrisers2,λ,{:}〉 .

Step 2, Propagate. The auxiliaryrisers2 is applied byrisers with risers
(y:etc) as the arguments. This gives〈(risers (y:etc)), λ,{:}〉 . When
rewritten in terms of arguments and paths of selectors, this gives the constraint
〈(risers (xs risers·tl· hd : xs risers·tl· tl)), λ,{:}〉 .

Step 3, Backward analysis.The constraint is transformed using the backward
analysis rules. The first rule invoked is (app), which says that the body ofrisers
must evaluate to a non-empty list, in effect an inline version of the constraint.
Backward analysis is then performed over the case statement, the constructors,
and finallyrisers2. The conclusion is that provided xs risers is a :, the result
will be. The constraint is〈(xs risers·tl· hd : xs risers·tl· tl), λ,{:}〉 , which
is true.

In this example, there is no need to perform any fixed pointing.

24



2.6 SOME SMALL EXAMPLES AND A CASE STUDY

In the following examples, each line represents one propagation step in the checker.
The final constraint is given on the last line.

head x = case x of
(y:ys) -> y

main x = head x
> 〈xhead,λ,{:}〉
> 〈xmain,λ,{:}〉

This example requires only initial constraint generation, and a simple propagation.

Example 2.9

main x = map head x
> 〈xhead,λ,{:}〉
> 〈xmap head, tl ∗·hd, {:}〉
> 〈xmain, tl ∗·hd, {:}〉

This example shows specialization generating a new functionmap_head, fixed
pointing being applied tomap, and the constraints being propagated through the
system.

Example 2.10

main x = map head (reverse x)
> 〈xhead,λ,{:}〉
> 〈xmap head, tl ∗·hd, {:}〉
> 〈xmain, tl ∗,{:}〉 ∨ 〈 xmain, tl ∗·hd, {:}〉

This result may at first seem surprising. The first disjunct of the constraint says
that applyingtl any number of times toxmain the result must always be a:, in
other wordsx must be infinite. This guarantees case safety becausereverse is
tail strict, so if its argument is an infinite list, no result will ever be produced, and
a case error will not occur. The second disjunct says, less surprisingly, that every
item inx must be a non-empty list.

Example 2.11

main xs ys = case null xs || null ys of
True -> 0
False -> head xs + head ys

> 〈xhead,λ,{:}〉
> 〈(null xs main || null ys main), λ,{True}〉 ∨

(〈 xs main,λ,{:}〉 ∧ 〈 ys main,λ,{:}〉 )
> 〈xs main,λ,{[]}〉 ∨ 〈 ys main,λ,{[]}〉 ∨ (〈 xs main,λ,{:}〉 ∧ 〈 ys main,λ,{:}〉 )
> True
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This example shows the use of a more complex condition to guard a potentially
unsafe application ofhead. The backward analysis applied tonull and|| gives
precise requirements, which when expanded results in a tautology, showing that
no pattern match error can occur.

Example 2.12

main x = tails x
tails x = foldr tails2 [[]] x
tails2 x y = (x:head y) : y
> 〈xhead,λ,{:}〉
> 〈ytails2,λ,{:}〉
> 〈n1foldr tails2,λ,{:}〉 ∨ 〈 n2foldr tails2, tl ∗·tl, {:}〉
> True

This final example uses a fold to calculate thetails function. As the auxiliary
tails2 makes use ofhead the program is not obviously free from pattern-
match errors. The first two lines of the output are simply moving the constraint
around. The third line is the interesting one. In this line the checker gives two
alternative conditions for the case safety offoldr tails2 – either its first
argument is a:, or its second argument is empty or infinite. The way the require-
ment for empty or infinite length is encoded is by the pathtl ∗·tl. If the list is
[], then there are no tails to match the path. If however, there is one tail, then that
tail, and all successive tails must be:. So either foldr does not call its function
argument because it immediately takes the[] case, orfoldr recurses infinitely,
and therefore the function is never called. Either way, becausefoldr’s second
argument is a:, and becausetails2 always returns a:, the first part of the
condition can be satisfied.

2.6.1 The Clausify Program

Our goal is to check standard Haskell programs, and to provide useful feedback
to the user. To test the checker against these objectives we have used several
Haskell programs, all written some time ago for other purposes. The analysis of
one program is discussed below.

The Clausify program has been around for a very long time, since at least
1990. It has made its way into thenofib benchmark suite [Par92], and was the
focus of several papers on heap profiling [RW93]. It parses logical propositions
and puts them in clausal form. We ignore the parser and jump straight to the
transformation of propositions. The data structure for a formula is:

data F = Sym {char :: Char} | Not {n :: F}
| Dis {d1, d2 :: F} | Con {c1, c2 :: F}
| Imp {i1, i2 :: F} | Eqv {e1, e2 :: F}

and the main pipeline is:

unicl . split . disin . negin . elim
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Each of these stages takes a proposition and returns an equivalent version –
for example theelim stage replaces implications with disjunctions and negation.
Each stage eliminates certain forms of proposition, so that future stages do not
have to consider them. Despite most of the stages being designed to deal with a
restricted class of propositions, the only function which contains a non-exhaustive
pattern match is in the definition ofclause (a helper function forunicl).

clause p = clause’ p ([] , [])
where
clause’ (Dis p q) x = clause’ p (clause’ q x)
clause’ (Sym s) (c,a) = (insert s c , a)
clause’ (Not (Sym s)) (c,a) = (c , insert s a)

After encountering the non-exhaustive pattern match, the checker generates
the following constraints:

> 〈pclause′ , (d1+d2) ∗,{Dis,Sym,Not}〉 ∧ 〈 pclause′ , (d1+d2) ∗·n,{Sym}〉
> 〈pclause′ , (d1+d2) ∗,{Dis,Sym,Not}〉 ∧ 〈 pclause, (d1+d2) ∗·n,{Sym}〉
> 〈punicl′ , (d1+d2) ∗,{Dis,Sym,Not}〉 ∧ 〈 punicl′ , (d1+d2) ∗·n,{Sym}〉
> 〈xfoldr unicl, tl ∗·hd·(d1+d2) ∗,{Dis,Sym,Not}〉 ∧
〈xfoldr unicl, tl ∗·hd·(d1+d2) ∗·n,{Sym}〉

> 〈xunicl, tl ∗·hd·(d1+d2) ∗,{Dis,Sym,Not}〉 ∧
〈xunicl, tl ∗·hd·(d1+d2) ∗·n,{Sym}〉

These constraints give accurate and precise requirements for a case error not
to occur at each stage. However, when the condition is propagated back over the
split function, the result becomes less pleasing. None of our fixed pointing
schemes handle the original recursive definition ofsplit:

split p = split’ p []
where
split’ (Con p q) a = split’ p (split’ q a)
split’ p a = p : a

can be transformed manually by the removal of the accumulator:

split (Con p q) = split p ++ split q
split p = [p]

This second version is accepted by the checker, which generates the constraint:

> 〈psplit, (c1+c2) ∗,{Con,Dis,Sym,Not}〉 ∧
〈psplit, (c1+c2) ∗·(d1+d2)· (d1+d2) ∗,{Dis,Sym,Not}〉 ∧
〈psplit, (c1+c2) ∗·(d1+d2) ∗·n,{Sym}〉

This constraint can be read as follows: the outer structure of a propositional
argument tosplit is any number of nestedCon constructors; the next level
is any number of nestedDis constructors; at the innermost level there must be
either aSym, or aNot containing aSym. That is, propositions are inconjunctive
normal form.
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The one surprising part of this constraint is the(d1+d2)· (d1+d2) ∗ part
of the path in the 2nd conjunct. We might rather expect something similar to
(c1+c2) ∗·(d1+d2) ∗{Dis,Sym,Not}, but consider what this means. Take
as an example the value(Con (Sym ’x’) (Sym ’y’)) . This value meets
all 3 conjunctions generated by the tool, but does not meet this new constraint:
the path has the empty word property, so the root of the value can no longer be a
Con constructor.

The next function encountered isdisin which shifts disjunction inside con-
junction. The version in the nofib benchmark has the following equation in its
definition:

disin (Dis p q) = if conjunct dp || conjunct dq
then disin (Dis dp dq)
else (Dis dp dq)

where
dp = disin p
dq = disin q

Unfortunately, when expanded out this gives the call

disin (Dis (disin p) (disin q))

which does not have a fixed point under the present scheme. Refactoring is re-
quired to enable this stage to succeed. Fortunately, in [RW93] a new version of
disin is given, which is vastly more efficient than this one, and (as a happy side
effect) is also accepted by the checker.

At this point the story comes to an end. Although a constraint is calculated
for the newdisin, this constraint is approximately 15 printed pages long! Ini-
tial exploration suggests at least one reason for such a large constraint: there are
missed opportunities to simplify paths. We are confident that with further work
the Clausify example can be completed.

2.7 RELATED WORK

Viewed as aproof tool this work can be seen as following Turner’s goal to define a
Haskell-like language which is total [Tur04]. Turner disallows incomplete pattern
matches, saying this will “force you to pay attention to exactly those corner cases
which are likely to cause trouble”. Our checker may allow this restriction to be
lifted, yet still retain a total programming language.

Viewed as a basicpattern match checker, the work on compiling warnings
about incomplete and overlapping patterns is quite relevant [JHH+93, Mar05]. As
noted in the introduction, these checks are only local.

Viewed as amistake detectorthis tool has a similar purpose to the classic C
Lint tool [Joh78], or Dialyzer [LS04] – a static checker for Erlang. The aim is to
have a static checker that works on unmodified code, with no additional annota-
tions. However, a key difference is that in Dialyzer all warnings indicate a genuine
problem that needs to be fixed. Because Erlang is a dynamically typed language,
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a large proportion of Dialyzer’s warnings relate to mistakes a type checker would
have detected.

Viewed as asoft type systemthe checker can be compared to the tree automata
work done on XML and XSL [Toz01], which can be seen as an algebraic data
type and a functional language. Another soft typing system with similarities is by
Aiken [AM91], on the functional language FL. This system tries to assign a type
to each function using a set of constructors, for examplehead is given justCons
and notNil.

2.8 CONCLUSIONS AND FURTHER WORK

A static checker for potential pattern-match errors in Haskell has been specified
and implemented. This checker is capable of determining preconditions under
which a program with non-exhaustive patterns executes without failing due to a
pattern-match error. A range of small examples has been investigated success-
fully. Where programs cannot be checked initially, refactoring can increase the
checker’s success rate. Work in progress includes:

• The checker currently relies on specialization to remove higher order func-
tions.

• The checker is fully polymorphic but it does not currently handle Haskell’s
type classes; we hope these can be transformed away without vast complica-
tion [Jon94].

• Another challenge is to translate from full Haskell into the reduced language.
This work has been started: we have a converter for a useful subset.

• The checker should offer fuller traces that can be manually verified. Currently
the predicate at each stage is given, without any record of how it was obtained,
or what effect fixed pointing had. Although a more detailed trace would not
help an end user, it would help strengthen the understanding of the algorithms.

• The central algorithms of the checker can be refined. In particular a better fixed
pointing scheme is being developed. A complete analysis of which programs
can be verified would be useful.

• A correctness proof is needed to prove that the checker is sound. This will
require a semantics for the reduced Haskell-like language.

With these improvements we hope to check larger Haskell programs, and to
give useful feedback to the programmer.
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Chapter 3

Software Metrics:
Measuring Haskell
Chris Ryder1, Simon Thompson1

Abstract: Software metrics have been used in software engineering as a mecha-
nism for assessing code quality and for targeting software development activities,
such as testing or refactoring, at areas of a program that will most benefit from
them. Haskell [PJ03] has many tools for software engineering, such as testing,
debugging and refactoring tools, but software metrics have been neglected.

This paper identifies a collection of software metrics for use with Haskell pro-
grams. These metrics are subjected to statistical analysis to assess the correlation
between their values and the number of bug fixing changes occurring during the
development of two case study programs. In addition, the relationships between
the metrics are also explored, showing how combinations of metrics can be used
to improve their accuracy.

3.1 INTRODUCTION

Currently, most software engineering research for functional programs is focused
on tracing and observation techniques, although recent work by Li and others
[LRT03] has also looked at refactoring for functional programs. Such work is a
valuable addition to the field, but can be hard to effectively apply to large pro-
grams because of the difficulty of choosing appropriate application points.

In order to make effective use of such techniques it is typically necessary to
concentrate their application into areas of a program most likely to contain bugs.
However, the task of selecting such areas is often left to human intuition. Impera-
tive and object oriented languages have usedsoftware measurement(also known
assoftware metrics) to aid this task [GKMS00, Hal77, FP98], and so this work
examines the applicability of metrics to functional programs written in Haskell.

1Computing Laboratory, University Of Kent, Canterbury, Kent, CT2 7NF, UK;
Email: C.Ryder@kent.ac.uk, S.J.Thompson@kent.ac.uk
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3.1.1 Prior Work

Software metrics have been an active area of research since the early 70’s so there
is a large body of prior work for OO and imperative languages, such as that by
Fenton, Pfleeger and Melton [FP98, Mel96]. Some of the early work attracted
criticism for its lack of validation, but in recent years this has been addressed, for
instance by Briand and his co-workers [BEEM95]. Barnes and Hopkins [BH00]
addressed the issue of validation by examining the correlation between metric
values and the number of bug fixes over a programs development lifetime.

Surprisingly, there is little work exploring metrics for functional languages.
One of the few pieces is a thesis by Van Den Berg [VdB95] which examines the
use of metrics to compare the quality of software written in Miranda2 with that
written in Pascal. However, little consensus was found among programmers on
how to rate the quality of Miranda programs, so it is not discussed further here.

3.1.2 Motivation

The motivation for investigating software metrics for functional programming lan-
guages comes from three common software engineering tasks, software testing,
code reviews and refactoring.

Currently, these tasks rely on either human intuition, e.g. to decide which
refactoring to apply to a function, or brute force, e.g. by reviewing every func-
tion. Each of these tasks can be helped by using software metrics to concentrate
programmer’s effort on areas of the program where most benefit is likely to be
gained. For instance, functions which exhibit high metric values might be tested
more rigorously, may be subject to an in-depth code review, or may be refactored
to reduce their complexity. Conversely, functions which exhibit low metric values
may not require as much testing, reviewing or refactoring. Targeting programmer
effort using metrics in this manner can improve the quality of software by making
more efficient use of programmer’s time and skills.

In many ways metrics are analogous to compiler warnings. They indicate un-
usual features in the code, but there may be legitimate reasons for those features.
Like warnings, metrics give a hint that part of the code may need to be inspected.

3.1.3 Overview of this paper

The remainder of this paper is divided into the following sections: Section 3.2
introduces a selection of metrics that can be used with Haskell. Section 3.3 de-
scribes the way in which we attempt to validate the metrics. Section 3.4 presents
the results from the validation of the metrics. Section 3.5 presents the conclusions
we draw from this work.

2Miranda is a trademark of Research Software Ltd.
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3.2 WHAT CAN BE MEASURED

There is a large body of work describing metrics for imperative languages. Some
of those metrics, such aspathcountwhich counts the number of execution paths
through a function, may directly translate to Haskell. Other features of Haskell,
such as pattern matching, may not be considered by imperative metrics so it is
necessary to devise metrics for such features.

At the time this project was started we were unable to implement type-based
metrics, such as measuring the complexity of a function’s type, because we were
unable to find a stand-alone implementation of the Haskell type system. There-
fore the metrics presented here are a first step in assessing metrics for Haskell.
Recently, the Glasgow Haskell Compiler (GHC) [MPJ04] has begun to provide a
programming interface to its internal components, such as its type checker. This
allows type-based metrics to be implemented, which we hope to pursue in future.

In the remainder of this section we present a selection of the Haskell metrics
we analysed and discuss their relationship to imperative or OO metrics.

3.2.1 Patterns

Because patterns are widely used in Haskell programs it is interesting to investi-
gate how they affect the complexity of a program. To do this it is necessary to
consider which attributes of patterns might be measured, and how these attributes
might affect the complexity. We discuss these case by case now:-

• Pattern size(PSIZ). There are many ways one might choose to measure the
size of a pattern, but the simplest is to count the number of components in the
abstract syntax tree of the pattern. The assumption is that as patterns increase
in size they become more complex.

• Number of pattern variables(NPVS). Patterns often introduce variables into
scope. One way in which this might affect complexity is by increasing the
number of identifiers a programmer must know about in order to comprehend
the code. Studies [Boe81, McC92, FH79] have shown that at least 50% of the
effort of modifying a program is in comprehending the code being changed.

• Number of overridden pattern variablesor Number of overriding pattern vari-
ables. Variables introduced in patterns may override existing identifiers, or be
overridden by those in awhere clause for instance. Overriding identifiers can
be confusing and can lead to unintended program behaviour, particularly if the
compiler is unable to indicate the conflict because the identifiers have the same
type. Therefore one hypothesis is that high numbers of variables involved in
overriding may indicate potential points of error.

• Number of constructors(PATC). Patterns are often used when manipulating
algebraic data types by using the constructors of the data type in the pattern.
Like NPVS, the hypothesis is that the higher the number of constructors in a
pattern the more information a programmer needs to consider to understand it.
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in these scopes

foo, bar

a, b

c,fn

x,y

foo :: Int −> Int
foo a = a*a

bar :: [Int] −> [Int] −> [Int]

  where
    c = zip a b

bar a b = map fn c

    fn = \(x,y) −> foo (x+y)

Number of items

FIGURE 3.1. Measuring distance by the number of declarations brought into scope
for the function foo .

• Number of wildcards(WILD). When initially considering patterns it was sug-
gested that wildcards should be ignored because they state that the item they
are matching is of no interest. However, wildcards convey information about
the structure of items in the pattern, e.g. the position of constructor arguments.
Therefore it was decided that we should measure WILD to clarify their effect.

• Depth of nesting. Patterns are frequently nested, which can lead to compli-
cated patterns. When measuring the depth of nesting one must consider how
to measure the depth in patterns such as[(a,b),(c,d)] , which contain
more than one nested pattern. This study uses two ways,Sum of the depth of
nesting(SPDP) andMaximum depth of nesting, however the sum method may
also be measuring the size of the pattern.

3.2.2 Distance

In all but the most trivial program there will be several declarations which will in-
teract. The interactions between declarations are often described bydef-usepairs
[RW85]. For instance, the def-use pair(a,b) indicates thatb uses the declaration
a. Metrics that use def-use pairs are most often concerned with the testability of
programs, because def-use pairs indicate interactions that might require testing.

When one considers a def-use pair, there will inevitably be a distance between
the location of the use and the declaration in the source code. One hypothesis is
that the larger the distance, the greater the probability that an error will occur in
the way that declaration is used. Distance may be measured in a number of ways:

• Number of new scopes. One way to measure the distance between the use and
declaration of an identifier is by how many new scopes have been introduced
between the two points. This gives a “conceptual” distance which may indi-
cate how complex the name-space is at that use. This leads to a hypothesis that
a more complex name-space may make it harder to avoid introducing errors.

• Number of declarations brought into scope. An extension to the previous
distance metric is to count how many declarations have been introduced into
the name-space by any new scopes. This technique, illustrated in Figure 3.1,
may give an idea of how “busy” the nested scopes are.
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import Foo
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module Foo ...

...

fooBar :: ...
...
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of
file
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declaration

+
Foo.hs

FIGURE 3.2. Measuring distance across module boundaries.

• Number of source lines. The distance metrics described previously have mea-
sured the “conceptual” distance, however it is also important to consider the
“spatial” distance in the source code. The hypothesis is that the further away
items are in the source code, the harder it is to recall how they should be used.
The simplest way to measure spatial distance is by the number of source lines.

• Number of parse tree nodes. A problem with counting source lines as a mea-
sure of distance is that source lines contain varying amounts of program code.
One way to overcome this problem is to count the number of parse tree nodes
on the path between two points of the parse tree instead. This may give a more
consistent measure of the amount of code between the use and the declaration.

Measuring distance between modules using scope-based measures is straightfor-
ward, because imported identifiers will be in a top level scope of their own.

When measuring distance using source lines it is less clear how distance be-
tween modules should be calculated. For this work we have chosen to measure the
cross-module distance by measuring the distance between the use of an identifier
and the import statement that brings it into scope, plus the distance between the
declaration and the start of the module in which it is defined. This is illustrated in
Figure 3.2. This method reflects the number of lines a programmer may have to
look through, first finding the module the identifier is imported from, then find-
ing the identifier in the imported module. A variation of this method might be to
measure only the distance in the imported module, for instance.

Because a function is likely to call several functions there will be several dis-
tance measures, one for each called function, which must be aggregated in some
way to produce a single value for the calling function. This work examines three
methods: summing, taking the maximum and taking the mean.

3.2.3 Callgraph Attributes

Because function calls form a crucial part of Haskell it appears that some interest-
ing properties may be measured from the callgraph of a Haskell program. Some
of these are described below.
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• Strongly connected component size(SCCS). Because parts of a callgraph may
be cyclic it is possible to find the strongly connected components. A strongly
connected component (SCC) is a subgraph in which all the nodes (functions)
are connected (call) directly or indirectly to all the other nodes. Because all
functions that are part of a SCC depend directly or indirectly upon each other,
one might expect that as the size of the SCC increases, the number of changes
is likely to increase as well, because a change to a single function may cause
changes to other functions in the SCC. This is often known as theripple effect.

SCCS is a measure of coupling, similar to imperative and OO coupling metrics
such as theCoupling between object classes(CBO) metric used by Chidamber
and Kemerer [CK94]. The main difference is that CBO measures only direct
coupling between objects, e.g.A callsB, while SCCS also measures indirect
coupling between functions, e.g.A callsX which callsB.

• Indegree(IDEG). The indegree of a function in the callgraph is the number of
functions which call it, and thus IDEG is a measure of reuse. Functions with
high IDEG values may be more important, because they are heavily reused
in the program and therefore changes to them may affect much of the pro-
gram. This metric is inspired by theFan-Inmetric of Constantine and Yourdon
[YC79], which measures how many times a module is used by other modules.
Thus IDEG is Fan-In used on individual functions, rather than whole modules.

• Outdegree(OUTD). The outdegree of a function in the callgraph is the number
of functions it calls. One might assume that the larger the OUTD, the greater
the chance of the function needing to change, since changes in any of the
called functions may cause changes in the behaviour of the calling function.
Like the IDEG metric, the OUTD is inspired by the work of Constantine and
Yourdon, in this case by theirFan-Outmetric which measures the number
of modules used by a module. As with IDEG, the OUTD metric is used on
individual functions, rather than on whole modules.

It is possible to isolate the subgraph that represents the callgraph rooted at a single
function. One hypothesis is that the greater the complexity of the subgraph, the
more likely the function is to change, because it is harder to comprehend the
subgraph. Therefore one might measure several attributes from these subgraphs:

• Arc-to-node ratio(ATNR). The arc-to-node ratio is a useful indicator of how
“busy” a graph is. If a callgraph has a high ATNR, there is greater complex-
ity in the interaction of the functions, and therefore one might hypothesise,
a greater chance of errors occurring. This is similar to the FIFO metric sug-
gested by Constantine and Yourdon, but FIFO looks only at the direct depen-
dents and dependencies of the module being measured, while ATNR looks at
the complexity of all the interdependencies of the entire subgraph.

• Callgraph Depth(CGDP) and Callgraph Width(CGWD). The subgraph of
a function may be cyclic but can be transformed into a tree by breaking its
cycles, as is illustrated in Figure 3.3. Such a tree represents all the direct or
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readFile

readContentsopenFile

readChar

(a) The sub-callgraph

readFile

readContentsopenFile

readChar

(b) The sub-callgraph
with its cycles broken

FIGURE 3.3. An example of a sub-callgraph for a function readFile .

indirect dependencies of the function, and as such it is interesting to measure
the size of this tree. Two common measures of size are the depth and the
width. The deeper or wider the tree grows, the more complex it is likely to be.

The depth and width metrics described here are inspired by theDepth of In-
heritance Tree(DIT) and Number of Children(NOC) metrics suggested by
Chidamber and Kemerer for OO programs.

The DIT metric measures how deep a class is in the inheritance hierarchy of
an OO program. The deeper a class is, the greater the number of methods
it is likely to inherit, and hence the harder it is to predict its behaviour. In
Haskell we model this by measuring the depth of the subgraph, because a
deep subgraph is likely to be hard to comprehend than a shallow subgraph.

The NOC metric is the number of immediate children in the inheritance hier-
archy of the class being analysed. The number of children indicates how much
the class is reused, and thus how important the class is to the design of the pro-
gram. Our width measure looks superficially similar to the NOC metric, but in
fact measures dependencies, much like our depth metric. The Haskell metric
most closely resembling NOC is the IDEG metric, which also measures reuse.

3.2.4 Function Attributes

As well as the specific attributes highlighted in previous sections, one may also
measure some more general attributes such as the following.

• Pathcount(PATH). Pathcount is a measure of the number of logical paths
through a function. Barnes and Hopkins showed pathcount to be a good pre-
dictor of faults in Fortran programs, so it is interesting to investigate pathcount
metrics for Haskell programs. Implementing pathcount for Haskell is mostly
straightforward, although there are some places where the pathcount value is
not obvious. For instance, consider Example 3.1.

In this example there are three obvious execution paths, one for each pattern
expression, but there is also a fourth, less obvious execution path. If the second
pattern(x:xs) matches, the guardx > 0 will be tested. If this guard fails
execution will drop through to the third pattern expression, creating a fourth
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execution path. Although this is a contrived example, this kindof “hidden
path” can occur quite easily, for instance by omitting anotherwise guard.

Example 3.1 (Hidden execution paths when using patterns and guards).

func :: [Int] -> Int
func [] = 0
func (x:xs) | x > 0 = func xs
func (x:y:xs) = func xs

• Operators(OPRT) andOperands(OPRD). Having discussed various metrics
previously it is important not to ignore less sophisticated measures such as
function size. A large function is more likely to be complex than a small one.

There are many ways to measure program size. Van Den Berg used a variation
of Halstead’s [Hal77] operator and operand metrics in his work with Miranda.
This work updates Van Den Berg’s metrics for Haskell by defining all literals
and identifiers that are not operators as operands. Operators are the standard
operators and language keywords, such as:, ++,where, etc. Delimiters such
as() and[], etc, are also included as operators. Although OPRT and OPRD
were implemented as separate metrics, they are really a connected pair.

In this section we have presented a selection of metrics which cover a wide range
of attributes of the Haskell language. With the exception of the WILD metric,
these metrics are expected to increase in value as the complexity increases.

The metrics introduced here are all measuring distinct attributes, and it may
be that some of these can be combined to produce more sophisticated and accu-
rate measures. However it is important to validate these “atomic” metrics before
attempting to combine them.

3.3 VALIDATION METHODOLOGY

To validate the metrics described in Section 3.2 a number of case studies were
undertaken. For this work we followed the methodology described by Barnes and
Hopkins and took a series of measurements from a program over its development
lifetime, and then correlated those measures with the number of bug fixing or
refactoring changes occurring during that time. Metrics that correlate well with
the bug fix counts may be good indicators of targets for testing or refactoring.

A limitation of this method of validation is that all bug fixing changes are
considered to be of equal importance. In reality it is likely that some bug fixes
might be considered “trivial” because they were easy to implement or had only
minimal impact on the operation of the program, while others may be considered
to be much more serious because they were hard to implement or had a significant
impact on the operation of the program. It is not clear how the relative seriousness
of a bug fix should be incorporated into this analysis, for example, should serious
bug fixes be counted as multiple trivial bug fixes? or should trivial bug fixes be

38



discarded? Furthermore, it would be difficult to objectively assess the seriousness
of the changes. Therefore, we do not include “bug seriousness” in our analysis.

We experienced some difficulty in finding suitable case study programs. Can-
didate programs needed to have source code stored in a CVS repository with a
change history that contained enough changes to allow for meaningful analysis.

Most of the programs investigated had no clear separation between bug fixes,
refactorings and feature additions, with different types of changes often being
committed to CVS in the same commit. Unfortunately it is not possible to au-
tomatically classify these changes, e.g. by assuming small changes are bug fixes
and large changes are feature additions, with any degree of accuracy because the
sizes of the changes are not uniform. For instance, a feature addition may involve
lots of small changes to lots of functions, and thus be indistinguishable from a
collection of small bug fix changes, while conversely a bug fixing change may
require a large change to a function and thus look like a feature addition.

Because it was not possible to automatically classify changes it was necessary
to manually inspect each change in the CVS history of the programs to determine
the type of change, a very time-consuming process. However, this issue only
affects the validation process, not the use of the metrics.

The need to manually inspect changes necessitated choosing programs that
were small enough to be able to inspect manually within a reasonable amount of
time, but choosing smaller programs causes problems if there are too few changes
for statistically significant results to be obtained. The first of our case study pro-
grams, a Peg Solitaire program described later, suffers from this to some extent.

The use of a revision control system that uses fine grained commits, such as
darcs, may encourage programmers to clearly and individually record bug fixes.

The two programs chosen for the case study are both products of another re-
search project at the University of Kent. The programs were both maintained
in a CVS repository, giving easy access to the change histories. The programs
were developed separately from our work and we had no influence in their devel-
opment, other than to request that changes be committed to the CVS repository
individually, making it significantly easier to classify the types of the changes.

3.3.1 Peg Solitaire Case Study

The first case study program was a Peg Solitaire game [TR03] with both textual
and graphical interfaces, consisting of a number of modules which did not neces-
sarily all exist simultaneously. The module sizes are shown in Table 3.1.

3.3.2 Refactoring Case Study

The second case study program was a tool for refactoring Haskell programs [LRT03].
The program used a parser library which was not examined in this study, there-
fore only the code that manipulated parse trees was analysed. Table 3.1 shows
this program was approximately twice the size of the Peg Solitaire program.
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Module Min Size (LOC) Max Size (LOC) Num. Changes

P
eg

S
ol

ita
ire

Board 86 220 9
Main 25 27 38
Solve 39 101 7
Stack 26 31 0
GPegSolitaire 228 350 78
TPegSolitaire 98 177 16

Total Number of Changes 148

R
ef

ac
to

rin
g

EditorCommands 198 213 4
PFE0 332 337 2
PfeRefactoringCmds 18 24 5
PrettySymbols 23 23 0
RefacAddRmParam 142 434 56
RefacDupDef 62 157 19
RefacLocUtils 201 848 88
RefacMoveDef 322 796 56
RefacNewDef 77 478 58
RefacRenaming 67 236 23
RefacTypeSyn 20 21 0
RefacUtils 764 1088 126
ScopeModule 222 222 0
TiModule 140 140 0
Main 36 103 7

Total Number of Changes 444

TABLE 3.1. Summary of the Peg Solitaire and Refactoring case study programs.

3.3.3 Analysing change histories and metrics

The change histories of the two programs were manually examined to determine
the nature of the changes, such as feature additions, bug fixes, etc, and the num-
ber of bug fixing changes occurring for every function during the development
lifetime was recorded. It is important to note that the programs did compile after
every change, therefore the change counts do not include errors that would have
been caught by the compiler, except where they are part of a larger change.

The metrics described in Section 3.2 were then run on each version of each
program, and the maximum value of each metric was taken for every function.
The measurements were then correlated with the number of bug fixing changes
for each function using the statistical macros of Excel. Although it is possible that
taking the maximum value may introduce artifacts, the metric values for a given
function tend not to change very often so we do not believe this to be a problem.

3.4 RESULTS

This section presents some of the results of correlating the measurements taken
from the case study programs with their change histories. Metrics whose values
increase with increased complexity would be expected to show a positive cor-
relation with the number of changes, while metrics whose values decrease with
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Metric Correlation (r) r2

PS
OUTD 0.4783 0.229
SCCS 0.3446 0.119

RE

Distance by the sum of number of scopes 0.632 0.399
Distance by the maximum number of scopes0.6006 0.361
NPVS 0.5927 0.351
OPRD 0.5795 0.336
OUTD 0.5723 0.328

TABLE 3.2. Highest correlations for Peg Solitaire (PS) and Refactoring (RE).

increased complexity are likely to have negative correlations.
We also investigated the correlation between different metrics to see if any

metrics were related. The full and detailed results for this work are not presented
here due to space constraints, but are analysed in detail in the thesis by Ryder
[Ryd04]. Instead, the following main observations are discussed:

• The OUTD metric is correlated with the number of changes.

• All the distance metrics show similar levels of correlation.

• Callgraphs tend to grow uniformly in both width and depth.

• Most of the pattern metrics are measuring the size of a pattern.

3.4.1 Correlation of individual metrics

The first results we analysed were those taken by correlating metric values against
the number of changes. Table 3.2 summarises the highest statistically significant
correlation values obtained from the two case studies, as well as theirr2 values.
Ther2 values show the proportion of the variance in common between the metric
and the number of bug fixes. This gives an indication of the influence of the
correlation on the number of bug fixes. For instance, consider the OUTD metric
in Table 3.2. It has anr2 value of 0.229, which states that there is 22.9% of the
variance in common between OUTD and the number of bug fixes. In the rest of
this section correlation values will be followed by theirr2 values in parenthesis,
e.g. the correlation andr2 values of OUTD will be shown as 0.4783 (0.229).

These results show that, for most of the metrics, there was no statistically
significant correlation in the data taken from the Peg Solitaire program. Only the
SCCS and OUTD metrics show correlation that was statistically significant at the
5% level, with values of 0.3446 (0.119) and 0.4783 (0.229) respectively.

Conversely, the Refactoring program shows statistically significant correla-
tions for all the metrics except for the SCCS and IDEG metrics.

IDEG, which measures reuse, is not statistically significant for either program,
so one can assume that the reuse of a function has little effect on its complexity.

None of the distance measures were significant at the 5% level for the Peg
Solitaire program, however they were all significant for the Refactoring program.
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Most of the measures resulted in correlations between 0.4 (0.16) and 0.55 (0.303),
but the greatest correlation was provided by theDistance by the sum of the num-
ber of scopesmetric, with a correlation of 0.632 (0.399). These results seem to
confirm that the greater the distance between where something is used and where
it is declared, the greater the probability of an error occurring in how it is used.
The results also seem to suggest that it does not matter too much how the distance
is measured, with the “semantic” measures having slightly stronger correlation
with the number of bug fixes than the “spatial” measures on average.

However, we do not know what text editor was used in the development of
these case study programs. It may be that a “smart” editor that allows the pro-
grammer to jump directly to definitions may reduce the effect of distance.

From the callgraph measures, OUTD provided the greatest correlation for both
programs, with a correlation value of 0.4783 (0.229) for the Peg Solitaire program
and 0.5723 (0.328) for the Refactoring program. This provides some evidence
that functions that call lots of other functions are likely to change more often than
functions that do not call many functions. This is also known to occur for the
relatedFan-OutOO metric described previously in Section 3.2.3.

Of the other callgraph measures, SCCS has significant correlation for the Peg
Solitaire program, but not for the Refactoring program, as was discussed earlier.
Although none of the other callgraph measures have significant correlation for
the Peg Solitaire program, they do have significant values for the Refactoring
program, ranging from 0.3285 (0.108) for CGWD, to 0.4932 (0.243) for CGDP.

The results for the function attributes showed that although none of the met-
rics were significant at the 5% level for the Peg Solitaire program, the OPRD and
OPRT measures were significant at the 10% level. For each program the OPRD
and OPRT measurements showed very similar correlation values. The PATH mea-
sure showed a small correlation of 0.286 (0.082) for the Refactoring program.

3.4.2 Cross-correlation of metrics

Having looked at the correlation of metric values with the number of changes, it is
interesting to look at the correlation between metric values, which might indicate
relationships between the attributes being measured.

Initially, the cross-correlation between metrics of the same class is examined,
but later we examine correlation across metrics of different classes. Table 3.3
shows the clusters of metrics which appear to be strongly correlated.

The cluster formed by the pattern metrics, C3 in Table 3.3, implies that the
pattern metrics are measuring a similar attribute, most likely the size of a pattern.

The distance measures form two clusters, C1 and C4 in Table 3.3. Cluster C1
suggests there is little difference between measuring distance by the number of
source lines or by the number of parse tree nodes, and shows that measuring the
sum of the number of scopes or declarations in scopes does not give much more
information than measuring the number of source lines. This might be because
declarations that are further away in scope tend to be further away in the source
code. Likewise, as the number of declarations increases, so the distances between
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C1

Sum of the number of scopes

C3

NPVS
Sum of the number of declarations SPDP
Sum of the number of source lines PSIZ
Maximum number of source lines PATC (in Refactoring program only)
Average number of source lines

C4

Average number of scopes
Sum of the number of parse tree nodes Maximum number of declarations
Maximum number of parse tree nodes Maximum number of scopes
Average number of parse tree nodes Average number of declarations

C2
CGDP

C5
OPRD

CGWD OPRT

TABLE 3.3. Strongly correlated metrics for the case study programs.

declarations and where they are used tend to increase.
Cluster C4 shows that distance measured by the maximum or average number

of scopes or declarations in scope is not strongly correlated with distance by the
sum of the number of scopes or declarations in scope. One reason for this might
be that the identifiers used in a function are generally a similar distance from
their declarations, e.g. all the uses of a pattern variable in a function might have a
similar distance measure. This would cause the average and maximum values to
be similar between functions, while the sum measure would vary much more.

Examining the cross-correlation of the callgraph metrics, cluster C2 in Table
3.3, shows that apart from the CGDP and CGWD metrics, there is very little
correlation between this class of metrics. This seems to confirm that they are
measuring distinct attributes of callgraphs. The correlation between the CGWD
and CGDP metrics is interesting because it seems to suggest that callgraphs for
individual functions tend to grow uniformly in both depth and width.

The cluster C5 is unsurprising since these metrics are really part of a pair of
interconnected metrics. However, the PATH metric does not appear to be part of
the cluster, showing that it is unlikely to be measuring the size of a function.

3.4.3 Cross-correlation of all the metrics

If the clusters of strongly correlated metrics are replaced with a representative of
each cluster, it is possible to analyse the correlation between the various classes
of metrics. For this work, each cluster was represented by the metric with the
highest correlation value in the cluster. The measurements from the Peg Solitaire
case study showed no correlation between the various classes of metrics, while
the cross-correlation for the Refactoring case study is shown in Table 3.4.

The correlation between NPVS and OPRD seen in cluster C1 of Table 3.4 is
probably because variables are counted as operands, so an increase in the number
of pattern variables will necessarily entail an increase in the number of operands.
The correlation with theSum of number of scopesmeasure is less clear. It suggests
that as the number of pattern variables increases, the distance to any called func-
tions, measured by the sum of the number of scopes, also increases. This may be
because pattern variables are often introduced where new scopes are constructed.
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C1
Number of pattern variables

C2
Maximum number of scopes

Number of operands Outdegree
Sum of number of scopes

TABLE 3.4. Cross-correlated metrics for the Refactoring program.

Cluster C2 of Table 3.4 suggests that the largest distance to any function called
from any single function will increase as the number of called functions increases.
This may be because as more functions are called, they will tend to be further
away, since the called functions can not all be located in the same place.

3.4.4 Regression analysis of metrics

In order to obtain a greater correlation with the number of changes it may be
possible to combine a number of metrics. Determining the best combination of
metrics can be done using a regression analysis. The regression analysis of the
results from both case studies showed that statistically significant correlation can
be achieved for both programs, with correlation values of 0.583 (0.34) for the
Peg Solitaire program and 0.6973 (0.487) for the Refactoring program, which are
higher than any of the individual metrics correlation values.

The coefficients of the regression analysis for the Peg Solitaire program show
that the largest contribution, with a coefficient of 0.4731, comes from OUTD,
suggesting that the most important attribute is the number of direct dependencies.

The coefficient for theSum of number of source linesdistance metric,−0.2673,
is negative which suggests that if the functions used are a long way away in the
source code it isless likely to introduce errors. This may be caused by cross-
module function calls, which imply that the calling function is using some well
defined and stable interface, and hence is less likely to have to be changed as a
result of the called function being changed. This suggests that cross-module calls
may need to be measured differently to intra-module calls.

The coefficients from the Refactoring program regression analysis shows that
the largest contribution by some margin comes from theSum of number of scopes
metric with a coefficient of 0.315. This suggests that, for the Refactoring program,
it is important to know how complicated the name-space is for each function.

3.5 CONCLUSIONS AND FURTHER WORK

In this paper we have described a number of software metrics that can be used
on Haskell programs. Using two case study programs we have shown that it may
be possible to use some of these metrics to indicate functions that may have an
increased risk of containing errors, and which may therefore benefit from more
rigorous testing.

Unfortunately, because we were only able to assess two case study programs
there remain questions about the general applicability of these metrics to Haskell
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programs. The authors would therefore welcome contributions of Haskell pro-
grams that would make suitable case studies in order to further expand this anal-
ysis. Nevertheless, we were still able to show interesting results.

By analysing the cross-correlation of the metrics we have shown that some of
the metrics measure similar or closely related attributes. The regression analysis
of the metrics has shown that combining the measurements does increase the cor-
relation, and therefore the accuracy, of the metrics. From this we can see that there
is no single attribute that makes a Haskell program complex, but rather a combina-
tion of features. However, good estimates can be obtained using only the OUTD
metric, which measures the dependencies of a function. This suggests that, in
common with OO and imperative programs, most of the complexity in a Haskell
program lies not within individual functions, but rather in their interaction. We
note also that the OUTD metric does not appear to be cross-correlated with the
measures of function size, OPRD and OPRT, therefore this result is unlikely to be
caused simply by larger functions being more likely to contain bugs.

Overall, this preliminary study using mostly translations of imperative or OO
metrics has shown that metricscanbe used on Haskell programs to indicate areas
with increased probability of containing bugs. The success of this preliminary
work encourages further exploration, in particular, by designing metrics to analyse
Haskell specific features which may provide better predictors of bug locations.

As part of the thesis by Ryder, the results of this preliminary study of metrics
have been used to experiment with visualisation tools. These tools aim to exploit
the metrics to aid programmers in exploring the source code of their programs,
demonstrating one area where metrics can be of use.

3.5.1 Further Work

It is important to be realistic with the findings in this paper. They are based upon
two Haskell programs, which may not be representative of Haskell programs in
general. To clarify these results further it would be necessary to repeat these
studies on a larger range of programs, although the time and effort involved in
manually inspecting the change histories of the programs may be prohibitive.

What can be achieved much more easily is to further analyse the relationships
between the metrics. This further analysis has been performed as part of the thesis
by Ryder, but is not included here due to space constraints.

The metrics described in this paper are mostly translations of imperative or OO
metrics, but Haskell programs contain features not analysed by such metrics, e.g. a
powerful type system, higher-order and polymorphic functions, etc. Although we
were unable to implement metrics for these features during this project, recent de-
velopments in the Haskell community, such as the GHC API [MPJ04, RT05] and
Strafunski[LV03], have now made it possible. Therefore, one area to expand this
work is the design and evaluation of metrics for these advanced Haskell features.

We would also like to integrate the ideas of software metrics into the HaRe
[LRT03] refactoring tool. The aim of such a project would be to use metrics to
target refactorings, in line with Fowlers’ [FBB+99] work on “bad smells”.
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Chapter 4

Type-Specialized Serialization
with Sharing
Martin Elsman1

Abstract: We present an ML combinator library for serialization, which sup-
ports serialization of mutable and cyclic data structures and at the same time pre-
serves sharing. The technique generates compact serialized values, both due to
sharing, but also due to type specialization. The library is type safe in the sense
that a type specialized serializer can be applied only to values of the specialized
type.

The combinator library, which is written entirely in ML, may relieve language
designers and compiler writers from the technical details of built-in serializers
and, evenly important, support programmers with a portable solution to serializa-
tion.

The combinator library is used in practice for serializing symbol table infor-
mation in a separate compilation system for the MLKit compiler, a compiler for
the programming language Standard ML. The technique is shown to scale well
and allows the MLKit to be compiled with any Standard ML compliant compiler.

4.1 INTRODUCTION

Built-in serialization support in modern languages is arguably controversial. It
complicates language specifications and limits the possibilities for compiler writ-
ers to choose efficient object representations. However, most practical program-
ming language systems provide means for serialization. For Java and C#, for in-
stance, serialization is part of the language specification, yet for other languages,
programmers have relied on implementation support for serialization. The im-
portance of efficient serialization techniques is partly due to its relation to remote
method invocation (RMI) and distributed computing (marshalling). Other uses of

1IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S,
Denmark; Email: mael@itu.dk.
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serialization include storing of program state on disk for future program invoca-
tions.

Built-in serializers have many good properties. They are easy to use by appli-
cation programmers, are often efficient, and support serialization of all types of
objects, including function objects. However, the generality and efficiency come
with a price. Built-in serializers are often tightly integrated with an implemen-
tation’s runtime system, which may complicate and even limit modifications to
the runtime system (e.g., its copying garbage collector or runtime type tagging
scheme).

In this paper, we expand on Kennedy’s type indexed approach to serialization
[Ken04], which provides the programmer with a combinator library for construct-
ing pairs of a serializer and a deserializer for a given datatype. The approach has
the following key advantages:

• Compactness due to type specialization. No type information (tagging) is writ-
ten to the byte stream by the serializer, which leads to compact serialized data.
Necessary type information for deserializing the serialized value is present in
the type specialized deserializer.

• No need for runtime tags. The combinator library imposes no restrictions
on the representation of values. In particular, the technique supports a tag-free
representation of values, as the library is written entirely in the language itself.

• Type safety. A type specialized serializer may be applied only to values of
the specialized type. A subset of the library is truly type safe in the sense that
with this subset it is not possible to construct serializers that do not behave as
expected. Moreover, the technique can be extended so that, before a value is
deserialized, a type checksum in the serialized data is checked against the type
checksum of the specialized deserializer.

We make three main contributions:

1. Support for automatic compactness due to sharing. With the serialization li-
brary, serialization of two equivalent values leads to sharing in the serialized
data. Moreover, when the values are deserialized, their representation in pro-
gram memory is shared, which may lead to drastic memory savings during
program execution.

2. Support for serialization of mutable and cyclic data structures. The serial-
ization library preserves sharing of mutable data (e.g., ML references) and
distinguishes between non-shared mutable data. This feature broadens the
applicability of a serialization combinator library to allow for serialization
of anything but functional values, which is a significant improvement over
Kennedy’s solution.

3. Justification of the approach through practice. We demonstrate that the ap-
proach works for serializing large symbol tables (which contains cyclic muta-
ble data) in the MLKit, a cross-module optimizing compiler for the program-
ming language Standard ML.
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Although a combinator library approach to serialization may appear more
troublesome to use from an application programmer’s point of view, it may eas-
ily be augmented with a tool for applying the serialization combinators, given a
datatype description. Moreover, in languages with richer type systems than in
ML, generic programming [JJ97] may be used to relieve the application program-
mer from writing excessive boiler-plate code.

For efficiency our approach make extensive use of hashing for recognising
sharing and cycles in objects. In comparison with built-in serializers, the com-
binator for serializing ML references cannot make use of the actual pointer to
the ML reference (indeed, a garbage collection could change the pointer dur-
ing serialization). Thus, the best possible solution for the library to compute a
hash for an ML reference is to compute the hash value of the content of the refer-
ence. Unfortunately, this solution does not give distinct hash values to two distinct
ML references containing identical values, which leads to serialization algorithms
with a worst case quadratic time complexity. We identify a partial solution to this
problem, which requires the programmer to identify if an ML reference appears
linearly (i.e., only once) in the serialized data, in which case, the programmer may
use an efficient refLin combinator.

In Section 4.2, we present the serialization library interface and show some
example uses of the library combinators. In Section 4.3, we describe the imple-
mentation of the combinator library. In particular, we describe the use of hash-
ing and an implementation of type dynamic in ML to support sharing and cycles
in deserialized values, efficiently. In Section 4.4, we describe the performance
benefits of using the linear-reference combinator when serializing symbol table
information in the MLKit. Related work is described in Section 4.5. Finally, in
Section 4.6, we conclude and describe possible future work.

4.2 THE SERIALIZATION LIBRARY

The interface to the serialization library is given in Standard ML as a structure P
with the signature PICKLE presented in Figure 4.1.

The serialization interface is based on an abstract type ’a pu. Given a
value of type τ pu, for some type τ, it is possible to serialize values of type τ

into a stream of characters, using the function pickle. Similarly, the function
unpickle allows for deserializing a serialized value.

The interface provides a series of base combinators, for serializing values such
as integers, words, and strings. The interface also provides a series of construc-
tive combinators, for constructing serializers for pairs, triples, lists, and general
datatypes. For example, it is possible to construct a serializer for lists of integer
pairs:

val pu_ips:(int*int)list P.pu = P.list(P.pair(P.int,P.int))
val s:string = P.pickle pu_ips [(2,3),(1,2),(2,3)]

Although the pair (2,3) appears twice in the serialized list, sharing is introduced
by the serializer, which means that when the list is deserialized, the pairs (2,3)
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signature PICKLE = sig

(* abstract pickle/unpickle type *)
type ’a pu
val pickle : ’a pu -> ’a -> string
val unpickle : ’a pu -> string -> ’a

(* type safe combinators *)
val word : word pu
val int : int pu
val string : string pu
val pair : ’a pu * ’b pu -> (’a*’b) pu
val triple : ’a pu * ’b pu * ’c pu -> (’a*’b*’c) pu
val list : ’a pu -> ’a list pu
val refCyc : ’a -> ’a pu -> ’a ref pu

(* unsafe combinators *)
val ref0 : ’a pu -> ’a ref pu
val refLin : ’a pu -> ’a ref pu
val data : (’a->int) * (’a pu->’a pu) list -> ’a pu
val data2 : (’a->int) * (’a pu*’b pu->’a pu) list

* (’b->int) * (’a pu*’b pu->’b pu) list
-> ’a pu * ’b pu

val con0 : ’a -> ’b -> ’a pu
val con1 : (’a->’b) -> (’b->’a) -> ’a pu -> ’b pu
val conv : (’a->’b) * (’b->’a) -> ’a pu -> ’b pu
end

FIGURE 4.1. The PICKLE signature.

in the list share the same representation.
The first part of the serialization combinators are truly type safe in the sense

that, with this subset, deserialization results in a value equivalent to the value
being serialized. The combinator conv makes it possible to construct serializers
for Standard ML records, quadruples, and other datatypes that are easily converted
into an already serializable type.

4.2.1 Datatypes

For constructing serializers for datatypes, the combinator data may be used,
but only for datatypes that are not mutually recursive with other datatypes. The
combinator data2 makes it possible to construct serializers for two mutually
recursive datatypes.

Given a datatype t with value constructors C0 · · ·Cn−1, a serializer (of type
t pu) may be constructed by passing to the data combinator, (1) a function
mapping a value constructed using Ci to the integer i and (2) a list of functions
[ f0, · · · , fn−1], where each function fi is a serializer for the datatype for the con-
structor Ci, parametrized over a serializer to use for recursive instances of t. As
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an example, consider the following datatype:

datatype T = L | N of T * int * T

To construct a serializer for the datatype T, the data combinator can be applied,
together with the utility functions con0 and con1:

val pu_T : T P.pu = P.data (fn L => 0 | N _ => 1,
[fn pu=>P.con0 L pu,
fn pu=>P.con1 N (fn N a=>a) (P.triple(pu,P.int,pu))])

Consider the value declaration

val t = N(N(L,2,L),1,N(N(L,2,L),3,L))

The value bound to t is commonly represented in memory as shown in Fig-
ure 4.2(a). Serializing the value and deserializing it again results in a value that
shares the common value N(L,2,L), as pictured in Figure 4.2(b):

val t’ = (P.unpickle pu_T o P.pickle pu_T) t

1

2 3

2

L L L

LL

1

2 3L L L

(a) (b)
FIGURE 4.2. Representation of a tree value (a) without sharing and (b) with shar-
ing.

4.2.2 References

In Standard ML, cyclic data can be constructed, only by use of references (not
considering recursive closures). The combinator ref0 assumes that the reference—
when serialized—does not contribute to a cycle in the value. On the other hand,
the combinator RefCyc takes as its first argument a dummy value for the type
of the reference content, which allows the deserializer to reintroduce cycles ap-
pearing in the original value. The final combinator for constructing serializers for
references is the refLin combinator, which assumes that for each of the refer-
ence values, there is only ever one pointer to the reference. As we shall see in
Section 4.4, this combinator is important for efficiently serializing large values
containing distinct references pointing at identical data (i.e., boolean references).
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4.3 IMPLEMENTATION

Before we present the implementation of the serialization library, we first present
a module Dyn for embedding values of arbitrary type into a type dyn (type dy-
namic) and a stream module for implementing input and output streams. The
signature DYN for the structure Dyn is as follows:

signature DYN = sig
type dyn
val new : (’a*’a->bool) -> (’a->word)

-> (’a->dyn) * (dyn->’a)
val eq : dyn * dyn -> bool
val hash : dyn -> word

end

Here is an implementation of this module, based on Filinski’s implementation of
type dynamic [Fil96, page 106], but extended to provide a hash function and an
equality function on values of type dyn:

structure Dyn :> DYN = struct
datatype method = RESET | EQ | SET | HASH
type dyn = method -> word
fun new eq h =
let val r = ref NONE
in ( fn x => fn HASH => h x

| RESET => (r := NONE; 0w0)
| SET => (r := SOME x; 0w0)
| EQ => (case !r of NONE => 0w0

| SOME y =>
if eq(x,y) then 0w1
else 0w0)

, fn f => ( r:=NONE ; f SET ; valOf(!r) )
)

end
fun eq (f1,f2) = ( f2 RESET ; f1 SET ; f2 EQ = 0w1 )
fun hash f = f HASH

end

The stream module S has the following signature:

signature STREAM = sig
type ’kind stream
type IN and OUT (* kinds *)
type loc = word
val getLoc : ’k stream -> loc
val outw : word * OUT stream -> OUT stream
val getw : IN stream -> word * IN stream
val toString : OUT stream -> string
val openOut : unit -> OUT stream
val openIn : string -> IN stream

end
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A stream is either an input stream of kind IN or an output stream of kind OUT.
The function getLoc makes it possible to extract the location of a stream as
a word. For output streams there is a function for writing words, outw, which
compresses word values by assuming that smaller word values are written more
often than larger ones. Dually, there is a function getw for reading compressed
word values.

The final non-standard library used by the implementation is a hash table li-
brary. In the following, we assume a structure H matching a simplified version of
the signature POLYHASH from the SML/NJ Library:

signature POLYHASH = sig
type (’key, ’data) ht
val mkTable : (’k->int) * (’k*’k->bool) -> int*exn

-> (’k,’d) ht
val insert : (’k,’d) ht -> ’k*’d -> unit
val peek : (’k,’d) ht -> ’k -> ’d option

end

4.3.1 Representing Serializers

The abstract type ’a pu is defined by the following type declarations:

type pe = (Dyn.dyn, S.loc) H.ht
type upe = (S.loc, Dyn.dyn) H.ht
type instream = S.IN S.stream * upe
type outstream = S.OUT S.stream * pe
type ’a pu = {pickler : ’a -> outstream -> outstream,

unpickler : instream -> ’a*instream,
hasher : ’a -> word*int -> word*int,
eq : ’a*’a -> bool}

A pickler environment (of type pe) is a hash table mapping values of type Dyn.dyn
to stream locations. Moreover, an unpickler environment (of type upe) is a hash
table mapping stream locations to values of type Dyn.dyn. A value of type
outstream is a pair of an output stream and a pickler environment. Similarly,
a value of type instream is a pair of an input stream and an unpickler environ-
ment.

Given a type τ, a value of type τ pu is a record containing a pickler for values
of type τ, an unpickler for values of type τ, a hash function for values of type τ,
and an equality function for values of type τ.

From a value pu of type τ pu, for some type τ, it is straightforward to imple-
ment the functions pickle and unpickle as specified in the PICKLE signa-
ture, by composing functionality in the stream structure S with the pickler and
unpickler fields in the value pu.

4.3.2 Serializers for Base Types

For constructing serializers, we shall make use of a small module Hash for con-
structing hash functions for serializable values:
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structure Hash = struct
val maxDepth = 50
fun add w (a,d) = (w + a * 0w19, d - 1)
fun maybeStop f (a,d) = if d <= 0 then (a,d) else f (a,d)

end

To ensure termination of hash functions in case of cycles and to avoid that values
are traversed fully, the combinators count the number of hash operations per-
formed by the hash functions.

We can now show how serializers are constructed for base types, exemplified
by a serializer for word values:

val word : word pu =
{pickler = fn w => fn (s,pe) => (S.outw(w,s),pe),
unpickler = fn(s,upe) => let val (w,s) = S.getw s

in (w,(s,upe))
end,

hasher = Hash.add,
eq = op =}

4.3.3 Product Types

For constructing a pair serializer, the pair combinator takes as argument a seri-
alizer for each of the components of the pair:

fun pair (pu1 : ’a pu, pu2 : ’b pu) : (’a * ’b) pu =
{pickler = fn (v1,v2) =>

#pickler pu2 v2 o #pickler pu1 v1,
unpickler = fn s => let val (v1,s) = #unpickler pu1 s

val (v2,s) = #unpickler pu2 s
in ((v1,v2),s)
end,

hasher = fn (v1,v2) => Hash.maybeStop
(#hasher pu2 v2 o #hasher pu1 v1),

eq = fn ((a1,a2),(b1,b2)) =>
#eq pu1 (a1,b1) andalso #eq pu2 (a2,b2)}

Notice the use of the Hash.maybeStop combinator, which returns the hash
result when the hash counter has reached zero.

Combinators for serializing triples and quadruples are easily constructed using
the conv and pair combinators.

4.3.4 A Sharing Combinator

We shall now see how it is possible to make explicit use of stream locations and
environment information to construct a combinator share that leads to sharing
of serialized and deserialized data.

The share combinator, which is listed in Figure 4.3, takes any serializer as
argument and generates a serializer of the same type as the argument.
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fun share (pu:’a pu) : ’a pu =
let val REF = 0w0 and DEF = 0w1

val (toDyn,fromDyn) = Dyn.new (#eq pu)
(fn v => #1 (#hasher pu v (0w0,Hash.maxDepth)))

in {pickler = fn v => fn (s,pe) =>
let val d = toDyn v
in case H.peek pe d of

SOME loc => (S.outw(loc,S.outw(REF,s)),pe)
| NONE => let val s = S.outw(DEF,s)

val loc = S.getLoc s
val res = #pickler pu v (s,pe)

in case H.peek pe d of SOME _ => res
| NONE => (H.insert pe (d,loc); res)

end
end,

unpickler = fn (s,upe) =>
let val (tag,s) = S.getw s
in if tag = REF then

let val (loc,s) = S.getw s
in case H.peek upe loc of

SOME d => (fromDyn d, (s,upe))
| NONE => raise Fail "impossible:share"

end
else (* tag = DEF *)

let val loc = S.getLoc s
val (v,(s,upe)) = #unpickler pu (s,upe)

in H.insert upe (loc,toDyn v); (v,(s,upe))
end

end,
hasher = fn v => Hash.maybeStop (#hasher pu v),
eq = #eq pu}

end

FIGURE 4.3. The share combinator.

For serializing a value, it is first checked if some identical value is associated
with a location l in the pickle environment. In this case, a REF-tag is written to
the outstream together with a reference to the location l. If there is no value in the
pickle environment identical to the value to be serialized, a DEF-tag is written to
the output stream, the current location l of the output stream is recorded, the value
is serialized, and an entry is added to the pickle environment mapping the value
into the location l. In this way, future serialized values identical to the serialized
value can share representation with the serialized value in the outstream.

Dually, for deserializing a value, first the tag (i.e., REF or DEF) is read from
the input stream. If the tag is a REF-tag, a location l is read and used for looking
up the resulting value in the unpickler environment. If, on the other hand, the tag is
a DEF-tag, the location l of the input stream is recorded, a value v is deserialized
with the argument deserializer, and finally, an entry is added to the unpickler
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environment mapping the location l into the value v, which is also the result of
the deserialization.

One important point to notice here is that efficient inhomogeneous environ-
ments, mapping values of different types into locations, are possible only through
the use of the Dyn library, which supports a hash function on values of type dyn
and an equality function on values of type dyn.2

4.3.5 References and Cycles

To construct a serialization combinator for references, a number of challenges
must be overcome. First, for any two reference values contained in some value,
it can be observed (either by equality or by trivial assignment) whether or not the
two reference values denote the same reference value. It is crucial that such ref-
erence invariants are not violated by serialization and deserialization. Second, for
data structures that do not contain recursive closures, all cycles go through a ref
constructor. Thus in general, to ensure termination of constructed serializers, it is
necessary (and sufficient) to recognize cycles that go through ref constructors.
The pickle environment introduced earlier is used for this purpose. Third, once
a cyclic value has been serialized, it is crucial that when the value is deserialized
again, the cycle in the new constructed value is reestablished.

The general serialization combinator for references is shown in Figure 4.4.
The dummy value given as argument to the refCyc combinator is used for the
purpose of “tying the knot” when a serialized value is deserialized. The first
time a reference value is serialized, a DEF-tag is written to the current location l
of the outstream. Thereafter, the pickle environment is extended to associate the
reference value with the location l. Then the argument to the reference constructor
is serialized. On the other hand, if it is recognized that the reference value has
been serialized earlier by finding an entry in the pickle environment mapping
the reference value to a stream location l, a REF-tag is written to the outstream,
followed by the location l.

For deserializing a reference value, first the location l of the input stream is
obtained. Second, a reference value r is created with the argument being the
dummy value that was given as argument to the refCyc combinator. Then the
unpickle environment is extended to map the location l to the reference value r.
Thereafter, a value is deserialized, which is then assigned to the reference value r.
This assignment establishes the cycle and the dummy value no longer appears in
the deserialized value.

As mentioned in the introduction, it is difficult to find a better hash function
for references than that of using the hash function for the reference argument.

2The straightforward implementation in Standard ML of type dynamic using
exceptions can also be extended with a hash function and an equality function, which is
done by defining the type dyn to have type {v:exn, eq:exn*exn->bool,
h:exn->word}, where v is the actual value packed in a locally generated exception, eq
is an equality function returning true only for identical values applied to the same
exception constructor, and h is a hash function for the packed value.
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fun refCyc (dummy:’a) (pu:’a pu) : ’a ref pu =
let val REF = 0w0 and DEF = 0w1

val (toDyn,fromDyn) = Dyn.new (op =)
(fn ref v => #1 (#hasher pu v (0w0,Hash.maxDepth)))

in {pickler =
fn r as ref v => fn (s,pe) =>

let val d = toDyn r
in case H.peek pe d of

SOME loc => (S.outw(loc,S.outw(REF,s)),pe)
| NONE => let val s = S.outw(DEF,s)

val loc = S.getLoc s
in H.insert pe (d,loc)
; #pickler pu v (s, pe)

end
end,

unpickler =
fn (s,upe) =>

let val (tag,s) = S.getw s
in if tag = REF then

let val (loc,s) = S.getw s
in case H.peek upe loc of

SOME d => (fromDyn d, (s, upe))
| NONE => raise Fail "impossible:ref"

end
else (* tag = DEF *)
let val loc = S.getLoc s

val r = ref dummy
val _ = H.insert upe (loc,toDyn r)
val (v,(s,upe)) = #unpickler pu (s,upe)

in r := v ; (r, (s,upe))
end

end,
hasher = fn ref v => #hasher pu v,
eq = op =}

end

FIGURE 4.4. Cycle supporting serializer for references.

Equality on references reduces to pointer equality.
The two other serialization combinators for references (i.e., ref0 and refLin)

are implemented as special cases of the general reference combinator refCyc.
The ref0 combinator assumes that no cycles appear through reference values
serialized using this combinator. The refLin combinator assumes that the en-
tire value being serialized contains only one pointer to each value being serialized
using this combinator (which also does not allow cycles) and that the share
combinator is used at a higher level in the type structure, but lower than a point
where there can be multiple pointers to the value. With these assumptions, the
refLin combinator avoids the problem mentioned earlier of filling up hash ta-
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ble buckets in the pickle environment with distinct values having the same hash
value. In general, however, it is an unpleasant task for a programmer to establish
the requirements of the refLin combinator.

4.3.6 Datatypes

It turns out to be difficult in Standard ML to construct a general serialization com-
binator that works for any number of mutually recursive datatypes. In this section,
we describe the implementation of the serialization combinator data from Sec-
tion 4.2.1, which can be used for constructing a serializer and a deserializer for
a single recursive datatype. It is straightforward to extend this implementation to
any particular number of mutually recursive datatypes. The implementation of the
data serialization combinator is shown in Figure 4.5.

To allow for arbitrary sharing between parts of a data structure (of some
datatype) and perhaps parts of another data structure (of the same datatype), the
combinator makes use of the share combinator from Section 4.3.4. It is essen-
tial that the share combinator is not only applied to the resulting serialization
combinator for the datatype, but that this sharing version of the combinator is the
one that is used for recursive occurrences of the type being defined. Otherwise,
it would not, for instance, be possible to obtain sharing between the tail of a list
and some other list appearing in the value being serialized. Also, it would not be
possible to support the sharing obtained with the tree value in Figure 4.2(b).

Thus, in the implementation, the four functions (the pickler, unpickler, equal-
ity function, and hash function) that make up the serializer are mutually recursive
and a caching mechanism (the function getPUP) makes sure that the share
combinator is applied only once.

4.4 EXPERIMENTS WITH THE MLKIT

We now present experiments with serializing symbol table information in the
MLKit [TBE+01], a Standard ML compiler that allows arbitrary symbol table
information to migrate across module boundaries at compile time [Els99].

Many of the compilation phases in the MLKit make use of the possibility of
passing compilation information across compilation boundaries, thus symbol ta-
bles tend to be large. For instance, the region inference analysis in the MLKit
[TT97] is a type-based analysis, which associates function identifiers with so
called region type schemes, which provide information about in which regions
function arguments and results are stored.

Table 4.4 presents measurements for serializing symbol tables for the Standard
ML Basis Library. The table shows serialization times, deserialization times, and
file sizes for three different serialization configurations. The measurements were
run on a 2.80 GHz Intel Pentium 4 Linux box with 512Mb of RAM. The first
configuration implements full sharing of values (i.e., with consistent use of the
share combinator from Section 4.3.4.) The second configuration disables the
special treatment of programmer specified linear references by using the more
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fun data (toInt:’a->int, fs:(’a pu->’a pu)list) : ’a pu =
let val res : ’a pu option ref = ref NONE

val ps : ’a pu vector option ref = ref NONE
fun p v (s,pe) =
let val i = toInt v

val s = S.outw (Word.fromInt i, s)
in #pickler(getPUPI i) v (s,pe)
end

and up (s,upe) =
case S.getw s of (w,s) =>

#unpickler(getPUPI (Word.toInt w)) (s,upe)
and eq(a1:’a,a2:’a) : bool =
let val n = toInt a1
in n = toInt a2 andalso #eq (getPUPI n) (a1,a2)
end

and getPUP() =
case !res of

NONE => let val pup = share {pickler=p,hasher=h,
unpickler=up,eq=eq}

in res := SOME pup
; pup

end
| SOME pup => pup

and getPUPI (i:int) =
case !ps of

NONE => let val ps0 = map (fn f => f (getPUP())) fs
val psv = Vector.fromList ps0

in ps := SOME psv
; Vector.sub(psv,i)

end
| SOME psv => Vector.sub(psv,i)

and h v =
Hash.maybeStop (fn p =>

let val i = toInt v
in Hash.add (Word.fromInt i)

(#hasher (getPUPI i) v p)
end)

in getPUP()
end

FIGURE 4.5. Single datatype serialization combinator.

general ref0 combinator instead of the refLin combinator. Finally, the third
configuration supports sharing only for references (which also avoids problems
with cycles). The third configuration entails unsoundness of the special treatment
of programmer specified linear references, which is therefore also disabled in this
configuration.
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TABLE 4.1. Serialization time (S-time in seconds), deserialization time (D-time in
seconds), and file sizes for serializing the compiler basis for the Standard ML Basis
Library. Different rows in the table show measurements for different configurations
of the serializer.

S-time (s) D-time (s) Size (Mb)
Full sharing 14.2 4.0 1.88
No use of refLin 302 3.7 1.96
No sharing 297 3.4 4.10

4.5 RELATED WORK

There is a series of related work concerned with dynamic typing issues for dis-
tributed programming where values of dynamic type are transmitted over a net-
work [ACPP91, Dug98, Dug99, LM93]. Recently, Leifer et al. have worked
on ensuring that invariants on distributed abstract data types are not violated by
checking the identity of operations on abstract datatypes [LPSW03].

The Zephyr Abstract Syntax Description Language (ASDL) project [WAKS97]
aims at providing a language independent data exchange format by generating se-
rialization code from generic datatype specifications. Whereas generated ASDL
serialization code does not maintain sharing, it does avoid storing of redundant
type information by employing a type specialized prefix encoding of tree values.
The approach is in this respect similar to ours and to the Packed Encoding Rules
(PER) of ASN.1 [Uni02].

Independently of the present work, Kennedy has developed a similar combina-
tor library for serializing data structures [Ken04]. His combinator library is used
in the SML.NET compiler [KRB03] for serializing type information to disk so
as to support separate compilation. Contrary to our approach, Kennedy’s share
combinator requires the programmer to provide functionality for mapping values
to integers, which in principle violates abstraction principles. Kennedy does not
in his library make use of dynamic types, which are crucial for defining a proper
sharing combinator. Also, Kennedy’s fix combinators for constructing serializ-
ers for datatypes do not support sharing of subparts of datatypes, as our datatype
combinators. Whereas our serialization technique supports proper serialization of
all non-functional data, Kennedy’s combinator library does not support serializa-
tion of mutable or cyclic data.

Also related to this work is work on garbage collection algorithms for intro-
ducing sharing to save space by the use of hash-consing [AG93].

4.6 CONCLUSION AND FUTURE WORK

We have presented an ML combinator library for serialization, which may intro-
duce sharing in deserialized values even in cases where sharing was not present in
the value that was serialized. The approach works with mutable and cyclic data,
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and is implemented entirely in ML itself through use of higher-order functions,
references, and an implementation of dynamic types. The approach may relieve
language designers and compiler writers from the technical details of built-in se-
rializers and support programmers with a portable solution to serialization.

A possibility for future work is to investigate if it is possible to use a variant
of multiset discrimination [Hen03] for eliminating the need for the linear refer-
ence combinator of Section 4.3.5. Other possibilities for future work includes
an implementation of a tool for generating serializers for a given datatype, using
the combinator library, or to make use of generic programming [JJ97] to avoid
excessive boiler-plate code for serializing large datatypes.
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Chapter 5

Logical Relationsfor
Call-by-value Delimited
Continuations
Kenichi Asai1

Abstract: Logical relations, defined inductively on the structure of types, pro-
vide a powerful tool to characterize higher-order functions. They often enable
us to prove correctness of a program transformer written with higher-order func-
tions concisely. This paper demonstrates that the technique of logical relations
can be used to characterize call-by-value functions as well as delimited contin-
uations. Based on the traditional logical relations for call-by-name functions,
logical relations for call-by-value functions are first defined, whose CPS variant
is used to prove the correctness of an offline specializer for the call-by-valueλ-
calculus. They are then modified to cope with delimited continuations and are
used to establish the correctness of an offline specializer for the call-by-valueλ-
calculus with delimited continuation constructs, shift and reset. This is the first
correctness proof for such a specializer. Along the development, correctness of
the continuation-based and shift/reset-based let-insertion and A-normalization is
established.

5.1 INTRODUCTION

Whenever we build a program transformer, be it a compiler, an optimizer, or a
specializer, we need to establish its correctness. We have to show that the se-
mantics of a program does not change before and after the transformation. As
a program transformer gets sophisticated, however, it becomes harder to prove
its correctness. In particular, the non-trivial use of higher-order functions in the
transformer makes the correctness proof particularly difficult. A simple structural

1OchanomizuUniversity, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan; Email:
asai@is.ocha.ac.jp
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inductionon theinput program does not usually work, because we can not easily
characterize their behavior.

The technique of logical relations [16] is one of the proof methods that is often
used in such a case. With the help of types, it enables us to define a set of relations
that captures necessary properties of higher-order functions. Notably, Wand [20]
used this technique to prove correctness of an offline specializer [14] in which
higher-order functions rather than closures were used for the representation of
abstractions. However, the logical relations used by Wand were for call-by-name
functions. They were used to prove the correctness of a specializer for the call-by-
nameλ-calculus, but are not directly applicable to the call-by-value languages.

In this paper, we demonstrate that the technique of logical relations can be
used to characterize call-by-value functions as well as delimited continuations.
We first modify Wand’s logical relations so that we can use them for call-by-value
functions. We then prove the correctness of an offline specializer for the call-by-
valueλ-calculus. It is written in continuation-passing style (CPS) and uses the
continuation-based let-insertion to avoid computation elimination/duplication.

It is well-known that by using delimited continuation constructs,shift andre-
set, introduced by Danvy and Filinski [7], it is possible to implement the let-
insertion in direct style [18]. We demonstrate that the correctness of this direct-
style specializer with the shift/reset-based let-insertion can be also established by
properly characterizing delimited continuations in logical relations.

Then, the specializer is extended to cope with shift and reset in the source
language. To this end, the specialization-time delimited continuations are used
to implement the delimited continuations in the source language. To character-
ize such delimited continuations, we define logical relations based on Danvy and
Filinski’s type system [6]. Thanks to the explicit reference to the types of con-
tinuations and the final result, we can establish the correctness of the specializer.
This is the first correctness proof for the offline specializer for the call-by-value
λ-calculus with shift and reset. The present author previously showed the correct-
ness of a similar offline specializer [3], but it produced the result of specialization
in CPS.

The contributions of this paper are summarized as follows:

• We show that the technique of logical relations can be used to characterize
call-by-value functions as well as delimited continuations.

• We show for the first time the correctness of the offline specializer for the
call-by-valueλ-calculus with shift and reset.

• Along the development, we establish the correctness of the continuation-based
let-insertion, the shift/reset-based let-insertion, the continuation-based A-nor-
malization [13], and the shift/reset-based A-normalization.

The paper is organized as follows. After showing preliminaries in Section 5.2,
the call-by-name specializer and its correctness proof by Wand are reviewed in
Section 5.3. We then show the logical relations for call-by-value functions in
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Section5.4, anduse (a CPS variant of) them to prove the correctness of a spe-
cializer for the call-by-valueλ-calculus in Section 5.5. In Section 5.6, we trans-
form the specializer into direct style and prove its correctness. Then, we fur-
ther extend the specializer to cope with shift and reset. We show an interpreter
and an A-normalizer in Section 5.7, a specializer in Section 5.8, a type system
in Section 5.9, and logical relations with which the correctness is established in
Section 5.10. Related work is in Section 5.11 and the paper concludes in Sec-
tion 5.12. A complete proof of correctness of the offline specializer for shift and
reset is found in the technical report [4].
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5.2 PRELIMINARIES

The metalanguage we use is a left-to-rightλ-calculus extended with shift and reset
as well as datatype constructors. The syntax is given as follows:

M,K = x | λx.M | M M | ξk.M | 〈M〉 | n | M +1 |
Var(n) | Lam(n,M) | App(M,M) | Shift(n,M) | Reset(M) |
Lam(n,M) | App(M,M) | Shift(n,M) | Reset(M) |
Lam(n,M) | App(M,M) | Shift(n,M) | Reset(M)

ξk.M and〈M〉 representshift andreset, respectively, and appear only later in the
paper. Datatype constructors are for representing the input and output terms to our
specializer. In this baselanguage, an integern is used to represent a variable. For
this purpose, the language contains an integer and an add-one operation. As usual,
we use overline and underline to indicate static and dynamic terms, respectively.
We assume that all the datatype constructors are strict. Among the metalanguage,
a value (ranged over by a metavariableV) is either a variable, an abstraction, an
integer, or one of constructors whose arguments are values.

When a specializer produces its output, it needs to generate fresh variables.
To make the presentation simple, we use so-called the de Bruijn levels [9] (not
indices). Define the following five strict operators:

var(m) = λn.Var(m)
lam(f ) = λn.Lam(n, f (n+1))

app(f1, f2) = λn.App( f1n, f2n)
shift( f ) = λn.Shift(n, f (n+1))
reset( f ) = λn.Reset(f n)

They are used to represent a term parameterized with a variable name. Given a
termM in the de Bruijn level notation, we define the operation↓n M of obtaining
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aconcretetermas:↓n M = M n. Thus, we have:

↓3 (app(lam(λx. lam(λy.var(x))), lam(λy.var(y))))
= App(Lam(3,Lam(4,Var(3))),Lam(3,Var(3))) .

Since we can freely transform a term with de Bruijn levels into the one without,
we will use the former as the output of specializers.

Throughout this paper, we use three kinds of equalities between terms in the
metalanguage:= for definition or α-equality,∼n for β-equality under call-by-
name semantics, and∼v for β-equality under call-by-value semantics. The call-
by-valueβ-equality in the presence of shift and reset is defined by Kameyama and
Hasegawa [15, Fig. 2].

5.3 SPECIALIZER FOR CALL-BY-NAME λ-CALCULUS

In this section, we review the specializer for the call-by-nameλ-calculus and its
correctness proof using the technique of logical relations presented by Wand [20].

A specializer reduces expressions that are known (orstatic) at specialization
time and leaves unknown (ordynamic) expressions intact. Thus, it consists of
two parts: an interpreter for static expressions and a residualizer for dynamic
expressions. An interpreter for the input language is defined as follows:

I 1 [[Var(n)]]ρ = ρ(n)
I 1 [[Lam(n,M)]]ρ = λx.I 1 [[M]]ρ[x/n]

I 1 [[App(M1,M2)]]ρ = (I 1 [[M1]]ρ)(I 1 [[M2]]ρ)

whereρ[x/n] is the same environment asρ except thatρ(n) = x.
The residualizer is almost the identity function except for the use of de Bruijn

levels to avoid name clashes:

D1 [[Var(n)]]ρ = ρ(n)
D1 [[Lam(n,M)]]ρ = lam(λx.D1 [[M]]ρ[var(x)/n])

D1 [[App(M1,M2)]]ρ = app(D1 [[M1]]ρ,D1 [[M2]]ρ)

An offline specializer is given by putting the interpreter and the residualizer
together:

P 1 [[Var(n)]]ρ = ρ(n)
P 1 [[Lam(n,W)]]ρ = λx.P 1 [[W]]ρ[x/n]
P 1 [[Lam(n,W)]]ρ = lam(λx.P 1 [[W]]ρ[var(x)/n])

P 1 [[App(W1,W2)]]ρ = (P 1 [[W1]]ρ)(P 1 [[W2]]ρ)
P 1 [[App(W1,W2)]]ρ = app(P 1 [[W1]]ρ,P 1 [[W2]]ρ)

The specializer goes wrong if the input term is not well-annotated. Well-annotated-
ness of a term is specified as a binding-time analysis that, given an unannotated
term, produces a well-annotated term. Here, we show a type-based binding-time
analysis. Define binding-time types of expressions as follows:

τ = d | τ→ τ
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An expressionof typed denotes that the expression is dynamic, while an expres-
sion of typeτ → τ shows that it is a static function. We use a judgment of the
form A ` M : τ [W], which reads: under a type environmentA, a termM has a
binding-time typeτ and is annotated asW. The binding-time analysis is defined
by the following typing rules:

A[n : τ] ` Var(n) : τ [Var(n)]

A[n : σ] `M : τ [W]

A` Lam(n,M) : σ→ τ [Lam(n,W)]

A`M1 : σ→ τ [W1] A`M2 : σ [W2]

A` App(M1,M2) : τ [App(W1,W2)]

A[n : d] `M : d [W]
A` Lam(n,M) : d [Lam(n,W)]

A`M1 : d [W1] A`M2 : d [W2]
A` App(M1,M2) : d [App(W1,W2)]

To show the correctness of the specializer, Wand [20] uses the technique of
logical relations. Define logical relations between terms in the metalanguage by
induction on the structure of binding-time types as follows:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼n M′ for any largen (defined below)
(M,M′) ∈ Rσ→τ ⇐⇒ ∀(N,N′) ∈ Rσ. (M N,M′N′) ∈ Rτ

whereρid(n) =zn for all n. It relates free variables in the base- and metalanguage.
Since the logical relations are defined on open terms, we need to relate free vari-
ables in the base- and metalanguage in some way. We choose here to relate a
baselanguage variable Var(n)to a metalanguage variablezn.

In the definition ofRd, M is a metalanguage term in the de Bruijn level notation
that is either a value representing a baselanguage term or a term that is equal to (or
evaluates to) a value representing a baselanguage term in the underlying semantics
of the metalanguage (in this section, call-by-name).

The choice ofn in Rd needs a special attention. SinceM is possibly an open
term,n has to be chosen so that it does not capture free variables inM. We ensure
this property by the side condition “for any largen.” n is defined to be large ifn is
greater than any free variables in the baselanguage termM.

For environmentsρ andρ′, we say(ρ,ρ′) |= A iff (ρ(n),ρ′ (n))∈ RA(n) for all
n∈ dom(A), wheredom(A) is the domain ofA. Then, we can show the following
theorem by structural induction over types:

Theorem 5.1 (Wand [20]).If A `M : τ [W] and(ρ,ρ′) |= A, then
(P 1 [[W]]ρ,I 1 [[M]]ρ′) ∈ Rτ.

By instantiating it to an empty environmentρφ, we obtain the following corollary,
which establishes the correctness of specialization.

Corollary 5.2 (Wand [20]). If `M : d [W], thenI 1 [[↓0 (P 1 [[W]]ρφ)]]ρid ∼n I 1 [[M]]ρφ.
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5.4 LOGICAL RELATIONS FOR CALL-BY-VALUE λ-CALCULUS

Define logical relations for the call-by-valueλ-calculus as follows:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen
(M,M′) ∈ Rσ→τ ⇐⇒ ∀(V,V ′) ∈ Rσ. (MV,M′V ′) ∈ Rτ

There are two differences from the logical relations in the previous section. First,
call-by-value equality∼v is used instead of call-by-name equality∼n in the def-
inition of Rd. Secondly,M andM′ are allowed to be inRσ→τ if they transform
only relatedvalues(rather than arbitrary terms) into related terms.

If we could prove Theorem 5.1 with this definition ofRτ, we would have
obtained as a corollary the correctness of the specializer in the call-by-value se-
mantics. However, the proof fails for static applications. In fact, the specializer is
not correct under the call-by-value semantics.

5.5 SPECIALIZER IN CPS

The correctness under the call-by-value semantics does not hold for the special-
izer in Section 5.3 because it may discard a non-terminating computation. The
standard method to recover the correctness is to performlet-insertion[5]. Since
let-insertion requires explicit manipulation of continuations, we first rewrite our
specializer into CPS as follows:

P 2 [[Var(n)]]ρκ = κ(ρ(n))
P 2 [[Lam(n,W)]]ρκ = κ(λx.λk.P 2 [[W]]ρ[x/n]k)
P 2 [[Lam(n,W)]]ρκ = κ(lam(λx.P 2 [[W]]ρ[var(x)/n]λx.x))

P 2 [[App(W1,W2)]]ρκ = P 2 [[W1]]ρλm.P 2 [[W2]]ρλn.mnκ
P 2 [[App(W1,W2)]]ρκ = P 2 [[W1]]ρλm.P 2 [[W2]]ρλn.κ(app(m,n))

We then replace the last rule with the following:

P 2 [[App(W1,W2)]]ρκ = P 2 [[W1]]ρλm.P 2 [[W2]]ρλn.

let(app(m,n),lam(λt.κ(var(t))))

where let(M1, lam(λt.M2)) is an abbreviation for app(lam(λt.M2),M1). When-
ever an application is residualized, we insert a let-expression to residualize it ex-
actly once with a unique namet, and continue the rest of the specialization with
this name. Since the residualized application is not passed to the continuationκ,
it will never be discarded even ifκ discards its argument.

The let-insertion technique can be regarded as performing A-normalization
[13] on the fly during specialization. If we extract the rules for variables, dynamic
abstractions, and dynamic applications fromP 2, we obtain the following one-pass
A-normalizer written in CPS [13]:

A1 [[Var(n)]]ρκ = κ(ρ(n))
A1 [[Lam(n,M)]]ρκ = κ(lam(λx.A1 [[M]]ρ[var(x)/n]λx.x))

A1 [[App(M1,M2)]]ρκ = A1 [[M1]]ρλm.A1 [[M2]]ρλn.
let(app(m,n), lam(λt.κ(var(t))))
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We now want to show the correctness of the specializerP 2 under the call-
by-value semantics. Namely, we want to showI 1 [[↓0 (P 2 [[W]]ρφ λx.x)]]ρid ∼v

I 1 [[M]]ρφ along the similar story as we did in Section 5.3. Let us define the base
caseRd as follows:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen .

Then, we want to show(P 2 [[W]]ρφ λx.x,I 1 [[M]]ρφ) ∈ Rd with a suitable defini-
tion of Rσ→τ. To prove it, we first generalize the statement to make induction
work. Rather than proving only the case where environments and continuations
are the empty ones, we prove something like:

(P 2 [[W]]ρλv.K,(λv′.K′)(I 1 [[M]]ρ′)) ∈ Rτ

for some suitableρ, ρ′, λv.K, andλv′.K′. SinceI 1 is written in direct style, we
introduce its continuation as a form of a direct application.

Now, how can we defineRσ→τ? Unlike Section 5.3, it is not immediately clear
how to defineRσ→τ because the specializer is written in CPS. We need to relate
P 2 [[W]]ρλv.K and(λv′.K′)(I 1 [[M]]ρ′) properly. To do so, we need to character-
ize precisely the two continuations,λv.K andλv′.K′, and the final results. Going
back to the definition ofP 2, we notice two things:

• P 2 [[W]]ρλv.K as a whole returns a dynamic expression.

• λv.K returns a dynamic expression, given some valuev.

In ordinary CPS programs, the return type of continuations is polymorphic. It can
be of any type, usually referred to as a typeAnswer. Here, we used continuations
in a non-standard way, however. We instantiated theAnswertype into a type of
dynamic expressions and used it to construct dynamic expressions.

Taking into account that the type of dynamic expressions isd, the above ob-
servation leads us to the following definition of logical relations:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen
(M,M′) ∈ Rσ→τ ⇐⇒ ∀(V,V ′) ∈ Rσ. ∀(λv.K,λv′.K′) |= τ ; d.

(MV λv.K,(λv′.K′)(M′V ′ )) ∈ Rd

where(λv.K,λv′.K′) |= τ ; d is simultaneously defined as follows:

(λv.K,λv′.K′) |= τ ; d ⇐⇒ ∀(V,V ′) ∈ Rτ. ((λv.K)V,(λv′.K′)V ′) ∈ Rd

Intuitively, (λv.K,λv′.K′) |= τ ; d means thatλv.K andλv′.K′ are related con-
tinuations that, given related values of typeτ, produce related results of typed.
Using this definition,(M,M′) ∈ Rσ→τ states thatM and M′ are related if they
produce related results of typed, given related values of typeσ and related con-
tinuations of typeτ ; d. In the following, we use; for the type of continuations.

With this definition of logical relations, we can prove the correctness ofP 2

under the call-by-value semantics.
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Theorem5.3. If A`M : τ [W], (ρ,ρ′) |= A, and(λv.K,λv′.K′) |= τ ; d, then
(P 2 [[W]]ρλv.K,(λv′.K′)(I 1 [[M]]ρ′)) ∈ Rd.

The proof of this theorem is by induction on the structure of the proof ofA `
M : τ [W]. Even thoughP 2 is written in CPS, the induction does work thanks to
the explicit reference to the types of continuations and the final result. The proof
proceeds in a CPS manner. In particular, the cases for (both static and dynamic)
applications go from left to right. We use the induction hypotheses for the function
part and the argument part in this order.

By instantiating the theorem to the case where both the environment and the
continuation are empty, we obtain the following corollary that establishes the cor-
rectness of a specializer using the continuation-based let-insertion:

Corollary 5.4. If `M : d [W], thenI 1 [[↓0 (P 2 [[W]]ρφ λx.x)]]ρid ∼v I 1 [[M]]ρφ.

If we annotate the input to the specializer completely dynamic, the specializer be-
haves exactly the same as the A-normalizer. Thus, the theorem can be instantiated
to the following corollary, which proves the correctness of the continuation-based
A-normalization.

Corollary 5.5. I 1 [[↓0 (A1 [[M]]ρφ λx.x)]]ρid ∼v I 1 [[M]]ρφ for any closed M.

5.6 SPECIALIZER IN DIRECT STYLE

In this section, we present a specializer written in direct style and show its cor-
rectness under the call-by-value semantics. Since we have already established the
correctness of a specializer written in CPS in the previous section, the develop-
ment in this section is easy. Roughly speaking, we transform the results in the
previous sectionback to direct style[8]. During this process, we use the first-
class delimited continuation constructs,shiftandreset, to cope with non-standard
use of continuations. Intuitively, shift captures the current continuation up to its
enclosing reset [7]. Here is the definition of the specializer written in direct style:

P 3 [[Var(n)]]ρ = ρ(n)
P 3 [[Lam(n,W)]]ρ = λx.P 3 [[W]]ρ[x/n]
P 3 [[Lam(n,W)]]ρ = lam(λx.〈P 3 [[W]]ρ[var(x)/n]〉)

P 3 [[App(W1,W2)]]ρ = (P 3 [[W1]]ρ)(P 3 [[W2]]ρ)
P 3 [[App(W1,W2)]]ρ = ξκ. let(app(P 3 [[W1]]ρ,P 3 [[W2]]ρ), lam(λt.κ(var(t))))

As in the previous section, we obtain the one-pass A-normalizer written in
direct style with shift and reset [3] by extracting dynamic rules fromP 3:

A2 [[Var(n)]]ρ = ρ(n)
A2 [[Lam(x,M)]]ρ = lam(λx.〈A2 [[M]]ρ[var(x)/n]〉)

A2 [[App(M1,M2)]]ρ = ξκ. let(app(A2 [[M1]]ρ,A2 [[M2]]ρ), lam(λt.κ(var(t))))

To define suitable logical relations for the specializer written in direct style
(with shift and reset), we need to correctly handle delimited continuations. This
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is doneby observing the exact correspondence between continuations in the pre-
vious section and delimited continuations in this section. In particular, we type
the result of the delimited continuations asd.

Logical relations for the direct-style specializer with delimited continuations
are defined as follows:

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen
(M,M′) ∈ Rσ→τ ⇐⇒ ∀(V,V ′) ∈ Rσ.∀(λv.K,λv′.K′) |= τ ; d.

(〈(λv.K)(MV)〉,(λv′.K′)(M′V ′)) ∈ Rd

where(λv.K,λv′.K′) |= τ ; d is simultaneously defined as follows:

(λv.K,λv′.K′) |= τ ; d ⇐⇒ ∀(V,V ′) ∈ Rτ. (〈(λv.K)V〉,(λv′.K′)V ′) ∈ Rd

Then, the correctness of the specializer is stated as follows:

Theorem 5.6.If A `M : τ [W], (ρ,ρ′) |= A, and(λv.K,λv′.K′) |= τ ; d, then
(〈(λv.K)(P 3 [[W]]ρ)〉,(λv′.K′)(I 1 [[M]]ρ′)) ∈ Rd.

Although both the specializer and the interpreter are written in direct style, the
proof proceeds in a CPS manner. In particular, the cases for applications go from
left to right, naturally reflecting the call-by-value semantics.

By instantiating the theorem to the case where both the environment and the
continuation are empty, we obtain the following corollary that establishes the cor-
rectness of a specializer using the shift/reset-based let-insertion:

Corollary 5.7. If `M : d [W], thenI 1 [[↓0 〈P 3 [[W]]ρφ〉]]ρid ∼v I 1 [[M]]ρφ.

As before, if we annotate the input to the specializer completely dynamic, the
specializer behaves exactly the same as the A-normalizer. Thus, the theorem can
be instantiated to the following corollary, which proves the correctness of the
direct-style A-normalization.

Corollary 5.8. I 1 [[↓0 〈A2 [[M]]ρφ〉]]ρid ∼v I 1 [[M]]ρφ for any closed M.

5.7 INTERPRETER AND A-NORMALIZER FOR SHIFT AND RESET

So far, shift and reset appeared only in the metalanguage. In the following sec-
tions, we develop a specializer written in direct style that can handle shift and
reset in the baselanguage. We first define an interpreter, a residualizer, and an
A-normalizer for the call-by-valueλ-calculus with shift and reset. We then try to
combine the interpreter and the A-normalizer to obtain a specializer in the next
section. Here is the interpreter written in direct style:

I 2 [[Var(n)]]ρ = ρ(n)
I 2 [[Lam(n,M)]]ρ = λx.I 2 [[M]]ρ[x/n]

I 2 [[App(M1,M2)]]ρ = (I 2 [[M1]]ρ)(I 2 [[M2]]ρ)
I 2 [[Shift(n,M)]]ρ = ξk.I 2 [[M]]ρ[k/n]

I 2 [[Reset(M)]]ρ = 〈I 2 [[M]]ρ〉
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We usedshift and reset operations themselves to interpret shift and reset expres-
sions. A residualizer is defined as follows:

D2 [[Var(n)]]ρ = ρ(n)
D2 [[Lam(n,M)]]ρ = lam(λx.D2 [[M]]ρ[var(x)/n])

D2 [[App(M1,M2)]]ρ = app(D2 [[M1]]ρ,D2 [[M2]]ρ)
D2 [[Shift(n,M)]]ρ = shift(λk.D2 [[M]]ρ[var(k)/n])

D2 [[Reset(M)]]ρ = reset(D2 [[M]]ρ)

It simply renames bound variables and keeps other expressions unchanged. As be-
fore, this residualizer is not suitable for specializers. We instead use the following
A-normalizer:

A3 [[Var(n)]]ρ = ρ(n)
A3 [[Lam(n,M)]]ρ = lam(λx.〈A3 [[M]]ρ[var(x)/n]〉)

A3 [[App(M1,M2)]]ρ = ξk. let(app(A3 [[M1]]ρ,A3 [[M2]]ρ), lam(λt.k(var(t))))
A3 [[Shift(n,M)]]ρ = shift(λk.〈A3 [[M]]ρ[var(k)/n]〉)

A3 [[Reset(M)]]ρ = reset(〈A3 [[M]]ρ〉)

It replaces all the application expressions in the body of abstractions, shift expres-
sions, and reset operations with a sequence of let-expressions.

5.8 SPECIALIZER FOR SHIFT AND RESET

In this section, we show a specializer for the call-by-valueλ-calculus with shift
and reset. Our first attempt is to combine the interpreter and the A-normalizer as
we did before for the calculi without shift and reset:

P 4 [[Var(n)]]ρ = ρ(n)
P 4 [[Lam(n,W)]]ρ = λx.P 4 [[W]]ρ[x/n]
P 4 [[Lam(n,W)]]ρ = lam(λx.〈P 4 [[W]]ρ[var(x)/n]〉)

P 4 [[App(W1,W2)]]ρ = (P 4 [[W1]]ρ)(P 4 [[W2]]ρ)
P 4 [[App(W1,W2)]]ρ = ξk. let(app(P4 [[W1]]ρ,P 4 [[W2]]ρ), lam(λt.k(var(t))))

P 4 [[Shift(n,W)]]ρ = ξk.P 4 [[W]]ρ[k/n]
P 4 [[Shift(n,W)]]ρ = shift(λk.〈P 4 [[W]]ρ[var(k)/n]〉)

P 4 [[Reset(W)]]ρ = 〈P 4 [[W]]ρ〉
P 4 [[Reset(W)]]ρ = reset(〈P 4 [[W]]ρ〉)

Although this specializer does seem to work for carefully annotated inputs, it is
hard to specify the well-annotated term as a simple binding-time analysis. The
difficulty comes from the inconsistency between the specialization-time continu-
ation and the runtime continuation.

In the rule for the static shift, a continuation is grabbed at specialization time,
which means that we implicitly assume the grabbed continuation coincides with
the actual continuation at runtime. This was actually true for the interpreter: we
implemented shift in the baselanguage using shift in the metalanguage. In the
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specializer, however, the specialization-time continuation does not always coin-
cide with the actual continuation. To be more specific, in the rule for dynamic
abstractions, we specialize the bodyW in a static reset (i.e., in the empty contin-
uation) to perform A-normalization, but the actual continuation at the time when
W is executed is not necessarily the empty one. Rather, it is the one when the
abstraction is applied at runtime.

Given that the specialization-time continuation is not always consistent with
the actual one, we have to make sure that the continuation is captured statically
only when it represents the actual one. Furthermore, we have to make sure that
whenever shift is residualized, its enclosing reset is also residualized. One way to
express this information in the type system would be to split all the typing rules
into two, one for the case when the specialization-time continuation and the actual
continuation coincide (or, the continuation is known, static) and the other for the
case when they do not (the continuation is unknown, dynamic). We could then
statically grab the continuation only when it represents the actual one.

However, this solution leads to an extremely weak specialization. Unless an
enclosing reset is known at specialization time, we cannot grab continuations stat-
ically. Thus, under dynamic abstractions, no shift operation is possible at special-
ization time. Furthermore, because we use a type-based binding-time analysis,
it becomes impossible to performanyspecialization under dynamic abstractions.
Remember that a type system does not tell us what subexpressions appear in a
given expression, but only the type of the given expression. From a type system,
we cannot distinguish the expression that does not contain any shift expressions
from the one that does. Thus, even ifW1 turns out to have a static function type
in App(W1,W2) (and thus it appears that this application can be performed stati-
cally), we cannot actually perform this application, because the toplevel operator
of W1 might be a shift operation that passes a function to the grabbed continua-
tion. In other words, we cannot determine the binding-time of App(W1,W2) from
the binding-time ofW1, which makes it difficult to construct a simple type-based
binding-time analysis.

The solution we employ takes a different approach. We maintain the consis-
tency between specialization-time continuations and actual onesall the time. In
other words, we make the continuation always static. The modified specializer is
presented as follows:

P 5 [[Var(n)]]ρ = ρ(n)
P 5 [[Lam(n,W)]]ρ = λx.P 5 [[W]]ρ[x/n]
P 5 [[Lam(n,W)]]ρ = lam(λx.shift(λk.〈reset(app(var(k),P 5 [[W]]ρ[var(x)/n]))〉))

P 5 [[App(W1,W2)]]ρ = (P 5 [[W1]]ρ)(P 5 [[W2]]ρ)
P 5 [[App(W1,W2)]]ρ = ξk. reset(let(app(P 5 [[W1]]ρ,P 5 [[W2]]ρ), lam(λt.k(var(t)))))

P 5 [[Shift(n,W)]]ρ = ξk.P 5 [[W]]ρ[k/n]
P 5 [[Shift(n,W)]]ρ = ξk.P 5 [[W]]ρ[lam(λv.〈k(var(v))〉)/n]

P 5 [[Reset(W)]]ρ = 〈P 5 [[W]]ρ〉
There are four changes fromP 4. The first and the most important change is in the
rule for dynamic abstractions. Rather than specializing the bodyW of a dynamic
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abstractionin theempty context, we specialize it in the context reset(app(var(k), ·)).
This specialization-time continuation reset(app(var(k), ·)) turns out to be consis-
tent with the runtime continuation, because the variablek is bound in the dynamic
shift placed directly under the dynamic abstraction and represents the continua-
tion when the abstraction is applied at runtime.

The second change is in the rule for dynamic applications where dynamic reset
is inserted around the residualized let-expression. The third change is in the rule
for dynamic shift. Rather than residualizing a dynamic shift, which requires resid-
ualization of the corresponding reset, the current continuation is grabbed and it is
turned into a dynamic expression viaη-expansion. Finally, the rule for dynamic
reset is removed since all the shift operations are taken care of during special-
ization time, and there is no need to residualize reset. (This does not necessarily
mean that the result of specialization does not contain any reset expressions. Reset
is residualized in the rule for dynamic abstractions and applications.)

These changes not only define a correct specializer but result in a quite pow-
erful one. It can now handlepartially static continuations. Consider the term
Lam( f ,Lam(x,App(Var( f ),Shift(k,App(Var(k),App(Var(k),Var(x))))))). (This
term is well-annotated in the type system shown in the next section.) When we
specialize this term, the continuationk grabbed byShift(k, · · ·) is partially static:
we know that the first thing to do whenk is applied is to pass its argument to
f , but the computation that should be performed after that is unknown. It is the
continuation when Lam(x, · · ·) is applied to an argument. Even in this case,P 5

can expand this partial continuation into the result of specialization. By naming
the unknown continuationh, P 5 produces the following output (after removing
unnecessary dynamic shift and inlining the residualized let-expressions):

lam(λ f . lam(λx.shift(λh.
reset(app(var(h),app(var( f ), reset(app(var(h),app(var(f ),var(x)))))))))) .

Observe that the partial continuation reset(app(var(h),app(var( f ), ·))) is expanded
twice in the result. Iff were static, we could have been able to perform further
specialization, exploiting the partially static information of the continuation.

On the other hand, the above changes cause an interesting side-effect to the
result of specialization: all the residualized lambda abstractions now have a ‘stan-
dardized’ form lam(λx.shift(λk. · · ·)) (and this is the only place where shift is
residualized). In particular, even when we specialize Lam(x,W) whereshift is
notused during the evaluation ofW, the residualized abstraction has typically the
form lam(λx.shift(λk. reset(app(var(k),M)))) wherek does not occur free inM.
(If let-expressions are inserted, the result becomes somewhat more complicated.)
If we usedP 3 instead, we would have obtained the equivalent but simpler result:
lam(λx.M). In other words,P 5 is not a conservative extension ofP 3.

A question then is whether it is possible to obtain the latter result on the fly
using P 5 with some extra work. We expect that it is not likely. As long as a
simple type-based binding-time analysis is employed, it is impossible to tell if
the execution of the body of a dynamic abstraction includes any shift operations.
So, unless we introduce some extra mechanisms to keep track of this information,
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thereis no way to avoid the insertion of a dynamic shift in the rule for dynamic
abstractions. Then, rather than making the specializer complicated, we would
employ a simple post-processing to remove unnecessary shift expressions.

5.9 TYPE SYSTEM FOR SHIFT AND RESET

Since our proof technique relies on the logical relations, we need to define a type
system for the call-by-valueλ-calculus with shift and reset to prove the correct-
ness ofP 5. In this section, we briefly review Danvy and Filinski’s type system
[6]. More thorough explanation is found in [3, 6].

In the presence of first-class (delimited) continuations, we need to explicitly
specify the types of continuations and the final result. For this purpose, Danvy
and Filinski use a judgment of the formA,α ` M : τ,β [W]. It reads: under the
type assumptionA, an expressionM has a typeτ in a continuation of typeτ ; α
and the final result is of typeβ. Since we use this type system as the static part of
our binding-time analysis, we decorate it with[W] to indicate thatM is annotated
asW. If M does not contain any shift operations, the typesα andβ are always the
same, namely, theAnswertype. In the presence of shift and reset, however, they
can be different and of any type.

The type of functions also needs to include the types of continuations and the
final result. It has the form:σ/α → τ/β. It is a type of functions that receive an
argument of typeσ and returns a value of typeτ to a continuation of typeτ ; α
and the final result is of typeβ. As a result, types are specified as follows:

τ = d | τ/τ→ τ/τ .

Here goes the type system:

A[n : τ],α ` Var(n) : τ,α [Var(n)]

A[n : σ],α `M : τ,β [W]

A,δ ` Lam(n,M) : σ/α→ τ/β,δ [Lam(n,W)]

A,σ `M : σ,τ [W]

A,α ` Reset(M) : τ,α [Reset(W)]

A,δ `M1 : σ/α→ τ/ε,β [W1]
A,ε `M2 : σ,δ [W2]

A,α ` App(M1,M2) : τ,β [App(W1,W2)]

A[n : τ/δ→ α/δ],σ `M : σ,β [W]

A,α ` Shift(n,M) : τ,β [Shift(n,W)]

The above type system is a generalization of the standard type system where
types of continuations are made explicit. In Section 5.6, the result type of contin-
uations and the type of final results were alwaysd. In the above type system, it
means that a judgment had always the formA,d ` M : τ,d [W] and the function
type had always the formσ/d→ τ/d. So if we write them asA `M : τ [W] and
σ → τ, respectively, we obtain exactly the same type system as the one for the
ordinaryλ-calculus (the three static rules shown in Section 5.3).

The dynamic rules can be obtained by simply replacing all the static function
types withd (and types that occur within the function type). The dynamic rules
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areasfollows:

A[n : d],d `M : d,d [W]
A,δ ` Lam(n,M) : d,δ [Lam(n,W)]

A[n : d],σ `M : σ,β [W]
A,d ` Shift(n,M) : d,β [Shift(n,W)]

A,δ `M1 : d,β [W1] A,d `M2 : d,δ [W2]
A,d ` App(M1,M2) : d,β [App(W1,W2)]

5.10 LOGICAL RELATIONS FOR SHIFT AND RESET

In this section, we define the logical relations for the call-by-valueλ-calculus
with shift and reset, which are used to prove the correctness of the specializerP 5

presented in Section 5.8. They are the generalization of the logical relations in
Section 5.6 in that the types of the final result and the result of continuations are
not restricted tod.

(M,M′) ∈ Rd ⇐⇒ I 1 [[↓n M]]ρid ∼v M′ for any largen
(M,M′) ∈ Rσ/α→τ/β ⇐⇒ ∀(V,V ′) ∈ Rσ.∀(λv.K,λv′.K′) |= τ ; α.

(〈(λv.K)(MV)〉,〈(λv′.K′)(M′V ′)〉) ∈ Rβ

where(λv.K,λv′.K′) |= τ ; α is simultaneously defined as follows:

(λv.K,λv′.K′) |= τ ; α ⇐⇒ ∀(V,V ′) ∈ Rτ. (〈(λv.K)V〉,〈(λv′.K′)V ′〉) ∈ Rα

Then, the correctness of the specializer is stated as follows:

Theorem 5.9.If A,α ` M : τ,β [W], (ρ,ρ′) |= A, and(λv.K,λv′.K′) |= τ ; α,
then(〈(λv.K)(P 5 [[W]]ρ)〉,〈(λv′.K′)(I 2 [[M]]ρ′)〉) ∈ Rβ.

By instantiating the theorem to the case where both the environment and the con-
tinuation are empty, we obtain the following corollary that establishes the correct-
ness of a direct-style specializer that can handle shift and reset:

Corollary 5.10. If d `M : d,d [W], thenI 2 [[↓0 〈P 5 [[W]]ρφ〉]]ρid ∼v 〈I 2 [[M]]ρφ〉.
The complete proof of the theorem is found in the technical report [4].

5.11 RELATED WORK

This work extends our earlier work [3] where we presented offline specializers for
λ-calculus with shift and reset that produced the output in CPS. The present work
is a direct-style account of the previous work, but it contains non-trivial definition
of logical relations for shift and reset. We also presented theonlinespecializers
for theλ-calculus with shift and reset [2]. However, their correctness has not been
formally proved.

Thiemann [17] presented an offline partial evaluator for Scheme including
call/cc. In his partial evaluator,call/cc is reduced if the captured continuation and
the body ofcall/cc are both static. This is close to our first attempt in Section 5.8.
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Our solutionis more liberal and reduces more continuation-capturing constructs,
but with a side-effect that all the residualized abstractions include a toplevel shift,
which could be removed by a simple post-processing. More recently, Thiemann
[19] showed a sophisticated effect-based type system to show the equivalence
of the continuation-based let-insertion and the state-based let-insertion. His type
system captures the information on the let-residualized code as an effect. It might
be possible to extend his framework to avoid unnecessary shift at the front of
dynamic abstractions on the fly.

The correctness proof for offline specializers using the technique of logical
relations appears in Jones et al. [14, Chapter 8]. Wand [20] used it to prove the
correctness of an offline specializer for the call-by-nameλ-calculus. The present
work is a non-trivial extension of his work to cope with delimited continuations.
Wand’s formulation was based on substitution, but we used the environment-
based formulation, which is essentially the same but is more close to the im-
plementation.

Filinski presented normalization-by-evaluation algorithms for the call-by-value
λ-calculus [10] and the computationalλ-calculus [11]. He showed their correct-
ness denotationally using logical relations. The same framework is extended to
the untypedλ-calculus by Filinski and Rohde [12].

The type system used in this paper is due to Danvy and Filinski [6]. A sim-
ilar type system is studied by Ariola, Herbelin, and Sabry [1], which explicitly
mentions the type of continuations.

5.12 CONCLUSION

This paper demonstrated that logical relations can be defined to characterize not
only call-by-name higher-order functions but also call-by-value functions as well
as delimited continuations. They were used to show the correctness of various of-
fline specializers, including the one for the call-by-valueλ-calculus with shift and
reset. Along the development, we established the correctness of the continuation-
based let-insertion, the shift/reset-based let-insertion, the continuation-based A-
normalization, and the shift/reset-based A-normalization.
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Chapter 6

Epigram Reloaded:
A Standalone Typechecker for ETT
James Chapman1, Thorsten Altenkirch1, Conor McBride1

Abstract Epigram, a functional programming environment with dependent types,
interacts with the programmer via an extensible high level language of program-
ming constructs which elaborates incrementally into Epigram’s Type Theory,
ETT, a rather spartan λ-calculus with dependent types, playing the rôle of a ‘core
language’. We implement a standalone typechecker for ETT in Haskell, allowing
us to reload existing libraries into the system safely without re-elaboration.

Rather than adopting a rewriting approach to computation, we use a glued
representation of values, pairing first-order syntax with a functional representation
of its semantics, computed lazily. This approach separates β-reduction from βη-
conversion. We consequently can not only allow the η-laws for λ-abstractions and
pairs, but also collapse each of the unit and empty types.

6.1 INTRODUCTION

Epigram2 [22, 5] is at the same time a functional programming language with
dependent types and a type-driven, interactive program development system. Its
type system is strong enough to express a wide range of program properties, from
basic structural invariants to full specifications. Types assist interactive program-
ming and help to keep track of the constraints an evolving program has to satisfy.

Epigram interacts with the programmer in an extensible high level language of
programming constructs which is elaborated incrementally into Epigram’s Type
Theory, ETT. ETT is a rather spartan λ-calculus with dependent types, based on
Luo’s UTT (Unified Type Theory) [16] and more broadly on Martin-Löf’s Type
Theory [18]. It plays the rôle of a ‘core language’: it can be evaluated symbol-
ically; it can also be compiled into efficient executable code, exploiting a new

1University of Nottingham, {jmc,txa,ctm}@cs.nott.ac.uk
2The Epigram system and its documentation are available from www.e-pig.org.
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potential for optimisations due to the presence of dependent types [7].
Elaboration is supposed to generate well typed terms in ETT, but here we

implement a standalone typechecker for ETT in Haskell. Why do we need this?
Firstly, elaboration is expensive. We want to reload existing libraries into the
system without re-elaborating their high-level source. However, to preserve safety
and consistency, we should make sure that the reloaded code does typecheck.

Secondly, consumers may want to check mobile Epigram code before running
it. A secure run-time system need not contain the elaborator: an ETT checker is
faster, smaller and more trustworthy. McKinna suggested such a type theory for
trading in ‘deliverables’ [23], programs paired with proofs, precisely combining
computation and logic, with a single compact checker. More recent work on
proof-carrying code [24] further emphasizes minimality of the ‘trusted code base’.

Thirdly, as Epigram evolves, the elaborator evolves with it; ETT is much more
stable. The present work provides an implementation of ETT which should accept
the output of any version of the elaborator and acts as a target language reference
for anyone wishing to extend or interoperate with the system.

We hope this paper will serve as a useful resource for anyone curious about
how dependent typechecking can be done, especially as the approach we take is
necessarily quite novel. Our treatment of evaluation in ETT takes crucial advan-
tage of Haskell’s laziness to deliver considerable flexibility in how much or little
computation is done. Rather than adopting a conventional rewriting approach to
computation, we use a glued representation of values, pairing first-order syntax
with a functional representation of its semantics, computed as required.

This semantic approach readily separates β-reduction from βη-conversion.
We support more liberal notions of ‘conversion up to observation’ by allowing not
only the η-laws for λ-abstractions and pairs, but also identifying all elements of
the unit type, 1. We further identify all elements of the empty type, O, thus mak-
ing all types representing negative propositions P→ O proof irrelevant! These
rules are new to Epigram—the definition [22] considers only β-equality. Adding
them makes the theory more extensional, accepting more sensible programs and
simplifying elaboration by allowing general solutions to more type constraints. It
is also a stepping stone towards Observational Type Theory[4] based on [2]. The
laws for 1 and O do not fit with Coquand and Abel’s syntax-directed approach to
conversion checking [1], but require a type-directed algorithm like ours.

Acknowledgments We gratefully acknowledge the support of EPSRC grant
EP/C512022/1 ‘Observational Equality for Dependently Typed Programming’.
We also thank James McKinna, Edwin Brady and Peter Morris for many useful
discussions, and the anonymous referees for their helpful advice.

6.2 DEPENDENT TYPES AND TYPECHECKING

The heart of dependent type theory is the typing rule for application:

Γ ` f : Πx :S.T Γ ` s : S
Γ ` f s : [x 7→ s :S]T
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`
Γ ` S : ?
Γ;x :S `

Γ ` s : S
Γ;x 7→ s :S `

FIGURE 6.1. Context validity rules Γ `

The usual notion of function type S→ T is generalised to the dependent function
type Πx:S.T , where T may mention, hence depend on x. We may still write S→ T
if x does not appear in T . Π-types can thus indicate some relationship between the
input of a function and its output. The type of our application instantiates T with
the value of the argument s, by means of local definition. An immediate conse-
quence is that terms now appear in the language of types. Moreover, we take types
to be a subset of terms, with type ?, so that Π can also express polymorphism.

Once we have terms in types, we can express many useful properties of data.
For example, consider vector types given by Vec : Nat→ ?→ ?, where a natural
number fixes the length of a vector. We can now give concatenation the type

vconc : ΠX :?. Πm :Nat. Πn :Nat. Vec m X→ Vec n X→ Vec (m+n) X

When we concatenate two vectors of length 3, we acquire a vector of length 3+3;
it would be most inconvenient if such a vector could not be used in a situation
calling for a vector of length 6. That is, the arrival of terms in types brings with
it, the need for computation in types. The computation rules for ETT do not only
explain how to run programs, they play a crucial rôle in determining which types
are considered the same. A key typing rule is conversion, which identifies the
types of terms up to ETT’s judgemental equality, not just syntactic equality.

Γ ` s : S Γ ` S ' T : ?
Γ ` s : T

Formally, ETT is a system of inference rules for judgements of three forms

context validity typing equality
Γ ` Γ ` t : T Γ ` t1 ' t2 : T

We work relative to a context of parameters and definitions, which must have
valid types and values—this is enforced by the context validity rules (figure 6.1).
The empty context is valid and we may only extend it according to the two rules,
introducing a parameter with a valid type or a well typed definition. In the imple-
mentation, we check each extension to the context as it happens, so we only ever
work in valid contexts. In the formal presentation, we follow tradition in making
context validity a precondition for each atomic typing rule.

Figure 6.2 gives the typing rules for ETT. We supply a unit type, 1, an empty
type O, dependent function types Πx : S. T and dependent pair types Σx : S. T ,
abbreviated by S∧T in the non-dependent case. We annotate λ-terms with their
domain types and pairs with their range types in order to ensure that types can be
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Declared and defined variables
Γ `

Γ ` x : S x :S ∈ Γ
Γ `

Γ ` x : S x 7→ s :S ∈ Γ

Universe
Γ `

Γ ` ? : ?
Conversion

Γ ` s : S Γ ` S ' T : ?
Γ ` s : T

Local definition
Γ;x 7→ s :S ` t : T

Γ ` [x 7→ s :S]t : [x 7→ s :S]T
Type formation, introduction, and elimination

Γ `
Γ ` 1 : ?

Γ `
Γ ` 〈〉 : 1

Γ `
Γ ` O : ?

Γ ` z : O
Γ ` zŒ : ΠX :?.X

Γ;x :S ` T : ?
Γ `Πx :S.T : ?

Γ;x :S ` t : T
Γ ` λx :S. t : Πx :S.T

Γ ` f : Πx :S.T
Γ ` s : S

Γ ` f s : [x 7→ s :S]T

Γ;x :S ` T : ?
Γ ` Σx :S.T : ?

Γ ` s : S
Γ;x :S ` T : ?
Γ ` t : [x 7→ s :S]T
Γ ` 〈s;t〉T : Σx :S.T

Γ ` p : Σx :S.T
Γ ` pπ0 : S
Γ ` pπ1 : [x 7→ pπ0 :S]T

FIGURE 6.2. Typing rules Γ ` t : T

synthesised, not just checked. We write O’s eliminator, Œ (‘naught E’), and Σ-
type projections, π0 and π1 postfix like application—-the eliminator for Π-types.

The equality rules (figure 6.3)3 include β-laws which allow computations and
expand definitions, but we also add η-laws and proof-irrelevance for certain types,
justified by the fact that some terms are indistinguishable by observation. A proof-
irrelevant type has, as far as we can tell, at most one element; examples are the
unit type 1 and the empty type O. These rules combine to identify all inhabitants
of (A→ 1)∧ (B→ O), for example.

Equality (hence type-) checking is decidable if all computations terminate. A
carefully designed language can achieve this by executing only trusted programs
in types, but we do not address this issue here. Indeed, our current implementa-
tion uses ? : ? and hence admits non-termination due to Girard’s paradox [11].
Here, we deliver the core functionality of typechecking. Universe stratification
and positivity of inductive definitions are well established[15, 16] and orthogonal
to the subject of this article.

6.3 EPIGRAM AND ITS ELABORATION

Epigram’s high-level source code is elaborated incrementally into ETT. The elab-
orator produces the detailed evidence which justifies high-level programming con-

3We have omitted a number of trivial rules here, e.g. the rules stating that ' is an
equivalence and a number of congruence rules.
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definition lookup and disposal

Γ `
Γ ` x ' s : S x 7→ s :S ∈ Γ

Γ ` s ' s′ : S Γ;x 7→ s :S ` t ' t′ : T
Γ ` [x 7→ s :S]t ' [x 7→ s′ :S]t′ : [x 7→ s :S]T

structural rules for eliminations

Γ ` u ' u′ : O
Γ ` uŒ ' u′Œ : Πx :?. x

Γ ` f ' f ′ : Πx :S.T Γ ` s ' s′ : S
Γ ` f s ' f ′ s′ : [x 7→ s :S]T

Γ ` p ' p′ : Σx :S.T
Γ ` pπ0 ' p′π0 : S

Γ ` p ' p′ : Σx :S.T
Γ ` pπ1 ' p′π1 : [x 7→ (pπ0) :S]T

β-rules
Γ ` λx :S. t : Πx :S.T Γ ` s : S

Γ ` (λx :S. t)s ' [x 7→ s :S]t : [x 7→ s :S]T

Γ ` 〈s;t〉T : Σx :S.T
Γ ` 〈s;t〉T π0 ' s : S

Γ ` 〈s;t〉T : Σx :S.T
Γ ` 〈s;t〉T π1 ' t : [x 7→ s :S]T

observational rules
Γ ` u : 1 Γ ` u′ : 1

Γ ` u ' u′ : 1
Γ ` z : O Γ ` z′ : O

Γ ` z ' z′ : O

Γ;x :S ` f x ' f ′ x : T
Γ ` f ' f ′ : Πx :S.T

Γ ` pπ0 ' p′π0 : S
Γ ` pπ1 ' p′π1 : [x 7→ (pπ0) :S]T

Γ ` p ' p′ : Σx :S.T

FIGURE 6.3. Equality rules Γ ` t ' t′ : T

veniences, such as the kind of ‘filling in the blanks’ we usually associate with type
inference. For example, we may declare Nat and Vec as follows:

data
Nat : ?

where
zero : Nat

n : Nat
suc n : Nat

data n : Nat ; X : ?
Vec n X : ?

where
vnil : Vec zero X

x : X ; xs : Vec n X
vcons x xs : Vec (suc n) X

The elaborator fleshes out the implicit parts of programs. Elaboration makes
hidden quantifiers and their instances explicit. The above yields:

Nat : ? Vec : Πn :Nat.ΠX :?. ?
zero : Nat vnil : ΠX :?.VeczeroX
suc : Nat → Nat vcons : ΠX :?.Πn :Nat. X → Vecn X → Vec (sucn)X

For each datatype, the elaborator overloads the operator elim (postfix in ETT)
with the standard induction principle. For n : Nat and xs : Vecn X, we acquire

n elimNat : xs elimVec :
ΠP : Nat→ ?.
P zero→
(Πn′ :Nat.
P n′→ P (suc n′))→

P n

ΠP : Πn :Nat.Πxs :Vecn X. ? .
P zero (vnil X)→
(Πn′ :Nat.Πx :X.Πxs′ :Vecn′ X.
P n′ xs′→ P (sucn′) (vconsX n′ x xs′))→

P n xs
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These types are read as schemes for constructing structurally recursive pro-
grams. Epigram has no hard-wired notion of pattern matching—rather, if you
invoke an eliminator via the ‘by’ construct⇐, the elaborator reads off the appro-
priate patterns from its type. If we have an appropriate definition of +, we can
define concatenation for vectors using elim (prefix in Epigram source) as follows:

let x,y : Nat
x+y : Nat

x+y ⇐ elim x
zero +y ⇒y
suc x′+y ⇒suc (x′+y)

let xs : Vecm X ; ys : Vecn X
vconc xs ys : Vec (m+n)X vconc xs ys ⇐ elim xs

vconc vnil ys⇒ys
vconc (vcons x xs′) ys⇒vcons x (vconc xs′ ys)

The elaborator then generates this lump of ETT, inferring the ‘P’ argument to
xs elimVec and constructing the other two from the branches of the program.

vconc 7→ λX :?.λm :Nat.λn :Nat.λxs :Vecm X.λys :Vecn X.
xs elimVec (λm :Nat.λxs :Vecm X.Πn :Nat. Vecn X→ Vec (m+n)X)
(λn :Nat.λys :Vecn X. ys)
(λm′ :Nat.λx :X.λxs′ :Vecm′ X. λh :Πn :Nat. Vecn X→ Vec (m′+n)X.
λn :Nat.λys :Vecn X.vconsX (m′+n) x (h n ys))

n ys

The elaborator works even harder in more complex situations, like this:

let xs : Vec (sucn)X
vtail xs : Vecn X vtail xs ⇐ elim xs

vtail (vcons x xs′)⇒xs′

Here, the unification on lengths which eliminates the vnil case and specialises the
vcons case rests on a noConfusion theorem—constructors disjoint and injective—
proven by the elaborator for each datatype, and on the subst operator—replacing
equal with equal. These techniques are detailed in [19, 20], but their effect is to
deliver a large dull term which justifies the dependent case analysis.

vtail 7→ λn :Nat.λX :?.λxs :Vec (sucn)X. xs elimVec
(λm :Nat.λys :Vecm X.Πn :Nat.Πxs :Vec (sucn)X.Πq :m= sucn.Πq′ :ys= xs.Vecn X)
(λn :Nat.λxs :Vec (sucn)X.λq :zero= sucn.λq′ :vnil= xs.q noConfusionNat (Vecn X))
(λn′ :Nat.λx :X.λxs′ :Vecn′.
λh :Πn :Nat.Πxs :Vec (sucn)X.Πq :n′= sucn.Πq′ :xs′= xs.Vecn X.
λn :Nat.λxs :Vec (sucn)X.λq :sucn′= sucn.λq′ :vconsX n′ x xs′= xs.
q noConfusionNat (Vecn X)
(λq :n′=n.q subst

(λn :Nat.Πxs′ :Vecn′ X.Πh :Πn :Nat.Πxs :Vec (sucn)X.Πq :n′= sucn.Πq′ :xs′= xs.Vecn X.
Πxs :Vec (sucn)X.Πq′ :vconsX n′ x xs′= xs.Vecn X)

(λxs′ :Vecn′ X.λh :Πn :Nat.Πxs :Vec (sucn)X.Πq :n′= sucn.Πq′ :xs′= xs.Vecn X.
λxs :Vec (sucn′)X.λq′ :vconsX n′ x xs′= xs.q′ subst (λxs :Vec (sucn′)X.Vecn′ X) xs′)

xs′ h xs q′))
(sucn) xs (reflNat (sucn)) (refl (Vec (sucn)X) xs)

Merely checking all these details is much simpler than inferring them in the
first place. Reloading ETT involves none of the complexity of implicit syntax han-
dling or dependent pattern matching. Meanwhile, our observational equality rules
help the elaborator by allowing more type constraints to have general solutions.
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6.4 ETT SYNTAX IN HASKELL

We now implement ETT in Haskell. We first represent its syntax.

data Term = R Reference -- free variable (carries definition)
| V Int -- bound variable (de Bruijn index)
| Pi Type Scope -- Πx :S.T
| Si Type Scope -- Σx :S.T
| L Type Scope -- λx :S. t
| P Term (Term,Scope) -- 〈s;t〉T
| Term :$ Elim Term -- elimination form
| C Const -- constant
| Let (Term,Type) Scope -- [x 7→ s :S]t

type Type = Term -- types are just a subset of terms
data Scope = (:.){adv ::String,bdy ::Term}
data Elim t = A t | P0 | P1 | OE -- − t, −π0, −π1, −Œ
data Const = Star | One | Void | Zero -- ?, 1, 〈〉, O

As in [21], we explicitly separate free variables from bound, using a de Bruijn
index [13] representation for the latter. Each time we bind a variable, the indices
shift by one; we wrap up the term in scope of the new bound variable in the
datatype Scope. This distinction helps to avoid silly mistakes, supports useful
overloading and allows us to cache a string used only for display-name generation.

Correspondingly a λ-term carries a Type for its domain and a Scope for its
body. Σ and Π types are represented similarly. Pairs P Term (Term,Scope) carry
the range of their Σ-type—you cannot guess this from the type of the second
projection, which gives only its instance for the value of the first projection.

We gather the constants in Const. We also collect the elimination forms
Term :$ Elim Term, so that we can define their computational behaviour in one
place. Elim is an instance of Functor in the obvious way. By way of example, the
‘twice’ function, λX :?. λf :X→ X. λx :X. f (f x) becomes the following:

twice = L (C Star) ("X" :. L (Pi (V 0) ("x" :.V 1)) ("f" :.
L (V 1) ("x" :. V 1 :$ A (V 1 :$ A (V 0)) )))

In section 6.6, we shall equip this syntax with a semantics, introducing the type
Value which pairs these first-order terms with a functional representation of Scopes.
We exploit this semantics in the free variables R Reference, which include both
parameters and global definitions. A Reference carries its Name but also caches
its type, and in the case of a definition, its value.

type Reference = Name :=Typed Object
data Typed x = (:∈){trm :: x, typ ::Value}
data Object = Para | Defn Value

It is easy to extend Object with tagged constructor objects and Elim with datatype
eliminators which switch on the tags—constructing their types is explained in [21].
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6.4.1 Navigation under binders

The operations // and \\ provide a means to navigate into and out of binders.

(//) ::Scope→ Value→ Term
-- instantiates the bound variable of a Scope with a Value

(\\) :: (Name,String)→ Term→ Scope
-- binds a variable free in a Term to make a Scope

Namespace management uses the techniques of [21]. Names are backward lists
of Strings, resembling long names in module systems.

type Name = BList String
data BList x = B0 | BList x :/x deriving Eq

Our work is always relative to a root name: we define a Checking monad which
combines the threading of this root and the handling of errors. For this presenta-
tion we limit ourselves to Maybe for errors.

newtype Checking x = MkChecking{runChecking ::Name→Maybe x}
instance Monad Checking where

return x = MkChecking $ λ → return x
MkChecking f >>=g = MkChecking $ λname→ do

a← f name
runChecking (g a) name

User name choices never interfere with machine Name choices. Moreover, we
ensure that different tasks never choose clashing names by locally extending the
root name of each subtask with a different suffix.

(� ) ::String→ Checking x→ Checking x
name� (MkChecking f ) = MkChecking $ λroot→ f (root :/name)
root ::Checking Name
root = MkChecking return

Whether we really need to or not, we uniformly give every subcomputation a dis-
tinct local name, trivially guaranteeing the absence of name clashes. In particular,
we can use x� root to generate a fresh name for a fresh variable if we ensure that
x is distinct from the other local names.

6.5 CHECKING TYPES

In this section, we shall show how to synthesise the types of expressions and check
that they are correct. Typechecking makes essential use of the semantics of terms.
We defer our implementation of this semantics until section 6.6: here we indicate
our requirements for our representation of Values.

The typing rules are realized by three functions infer, synth and check. Firstly,
infer infers the type of its argument in a syntax-directed manner.

86



infer ::Term→ Checking Value

Secondly, synth calls infer to check that its argument has a type and, safe in this
knowledge, returns both its value and the inferred type.

synth ::Term→ Checking (Typed Value)
synth t = do

ty← "ty"� infer t
return (val t :∈ ty)

val ::Term→ Value -- must only be used with well-typed terms
syn ::Value→ Term -- recovers the syntax from a Value

Note that "ty"� infer t performs the inference in the namespace extended by
"ty" ensuring that name choices made by infer t are local to the new names-
pace. Thirdly, check takes a Value representing a required type and a Term. It
synthesises the value and type of the latter, then checks that types coincide, in
accordance with the conversion rule.

check ::Value→ Term→ Checking Value
check ty t = do

(tv :∈ sty)← "sy"� synth t
"eq"� areEqual ((ty,sty) :∈ vStar)
return tv

Type checking will require us to ask the following questions about values:

areEqual ::Typed (Value,Value)→ Checking ()
isZero ::Value→ Checking ()
isPi, isSi ::Value→ Checking (Value,ScoVal)

We have just seen that we need to check when types are equal. We also need to
determine whether a type matches the right pattern for a given elimination form,
extracting the components in the case of Π- and Σ-types. The ScoVal type gives
the semantics of Scopes, with val and syn correspondingly overloaded, as we shall
see in section 6.6.

In order to synthesise types, we shall need to construct values from checked
components returned by infer, synth and check, isPi and isSi. We thus define
‘smart constructors’ which assemble Values from the semantic counterparts of
the corrresponding Term constructors.

vStar,vAbsurd ::Value
vStar = val (C Star)
vAbsurd = val (Pi (C Star) ("T" :.V 0))
vPi,vSi ::Value→ ScoVal→ Value
vLet ::Typed Value→ ScoVal→ Value
vdefn ::Typed (Name,Value)→ Value
vpara :: (Typed Name)→ Value
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6.5.1 Implementing the Typing Rules

We will now define infer in accordance with the typing rules from figure 6.2. We
match on the syntax of the term and in each case implement the rule with the
corresponding conclusion, performing the checks in the hypotheses, then con-
structing the type from checked components. The base cases are easy: references
cache their types and constants have constant types—we just give the case for ?.

infer (R ( :=( :∈ ty))) = return ty
infer (C Star) = return vStar

The case for bound variables V i never arises. We always work with closed terms,
instantiating a bound variable as we enter its Scope, abstracting it when we leave.
Local definition is a case in point:

infer (Let (s,sty) t) = do
styv← "sty"� check vStar sty
sv ← "s" � check styv s
x ← "x" � root
ttyv ← "tty"� infer (t//vdefn ((x,sv) :∈ styv))
return (vLet (sv :∈ styv) (val ((x,adv t)\\syn ttyv)))

We check that ty is a type and that s inhabits it. The rules achieve this indirectly
via context validity at each leaf of the typing derivation; we perform the check
once, before vdefn creates the reference value which realises the extension of
the context. The new variable gets its fresh name from "x"� root, and the
corresponding value is used to instantiate the bound variable of t. Once we have
t’s type, ttyv, we use vLet to build the type of the whole thing from checked
components. Values do not support the (\\) operation, so we abstract x from
the syntax of ttyv, then generate a semantic scope with val. Checking a Π-type
requires a similar journey under a binder, but the resulting type is a simple ?.

infer (Pi dom ran) = do
domv← "dom"� check vStar dom
x ← "x" � root

← "ran"� check vStar (ran//vpara (x :∈ domv))
return vStar

We check that dom is a type, then create a fresh variable and instantiate the range,
ensuring that it also is a type. Checking a Σ-type works the same way. Meanwhile,
to typecheck a λ, we must use the type inferred under the binder to generate the
Π-type of the function, abstracting a scope from its syntax as we did for Let.

infer (L dom t) = do
domv← "dom"� check vStar dom
x ← "x" � root
ranv ← "ran"� infer (t//vpara (x :∈ domv))
return (vPi domv (val ((x,adv t)\\syn ranv)))
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To infer the type of an application we check that the ‘function’ actually has a Π-
type, revealing the domain type for which to check the argument. If all is well we
let-bind the return type, corresponding to the rule exactly.

infer (f :$ A a) = do
fty← "f"� infer f
(dom,ran)← isPi fty
av← "a"� check dom a
return (vLet (av :∈ dom) ran)

Here is how we infer the type of pairs:

infer (P s (t,ran)) = do
tys@(sv :∈ domv)← "s" � synth s
x ← "x" � root

← "ran"� check vStar (ran//vpara (x :∈ domv))
← "t" � check (vLet tys (val ran)) t

return (vSi domv (val ran))

First, we ensure that s is well typed yielding the domain of the Σ-type. Next,
we check that the supplied range ran is a type in the context extended with the
parameter of the domain type. Then we check t in the appropriately let bound
range. We then deliver the Σ-type. Meanwhile, projections are straightforward.

infer (p :$ P0) = do
pty ← "p"� infer p
(dom, )← isSi pty
return dom

infer (p :$ P1) = do
pty ← "p"� infer p
(dom,ran)← isSi pty
return (vLet ((val (p :$ P0)) :∈ dom) ran)

Finally, eliminating the empty type always yields absurdity!
infer (z :$ OE) = do

zty← "z"� infer z
isZero zty
return vAbsurd

6.6 FROM SYNTAX TO SEMANTICS

We shall now give a definition of Value which satisfies the requirements of our
checker. Other definitions are certainly possible, but this one has the merit of
allowing considerable control over which computations happen.

data Glued t w = (:⇓){syn :: t,sem :: w}
type Value = Glued Term Whnf
type ScoVal = Glued Scope (Value→Whnf)

A Value glues a Term to a functional representation of its weak head normal form
(Whnf). The semantic counterpart of a Scope is a ScoVal, which affixes a Haskell
function, delivering the meaning of the scope with its bound variable instantiated.
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Just as in ‘normalisation-by-evaluation’ [6], the behaviour of scopes (for Π and
Σ, not just λ) is delivered by the implementation language, but if we want to read
a Value, we just project its syntax. Whnfs are given as follows:

data Whnf = WR Reference (BList (Elim Value)) -- Spine
| WPi Value ScoVal |WSi Value ScoVal -- Π-type, Σ-type
| WL ScoVal |WP Value Value -- λ-abstraction, pair
| WC Const -- Constant

The only elimination forms we need to represent are those which operate on an
inert parameter, hence we pack them together, with the WR constructor. Bound
variables do not occur, except within the Scope part of a ScoVal. We drop the type
annotations on λ-abstractions and pairs as they have no operational use. With this
definition, operations such as isPi, isSi and isZero can be implemented directly by
pattern matching on Whnf. Meanwhile, the computational behaviour of Values is
given by the overloaded $$ operator:

class Eliminable t where
($$) :: t→ (Elim Value)→ t

instance Eliminable Value where
t $$ e = (syn t :$ fmap syn e) :⇓ (sem t $$ e)

instance Eliminable Whnf where
WL ( :⇓ f )$$A v = f v -- β-reduction by Haskell application
WP x $$P0 = sem x -- projections
WP y $$P1 = sem y
WR x es $$ e = WR x (es :/e) -- inert computations

We shall now use $$ to deliver the function eval which makes values from checked
syntax. This too is overloaded, and its syntactic aspect relies on the availability of
substitution of closed terms for bound variables.

type Env = BList Value
bproj ::BList x→ Int→ x
class Close t where

close :: t→ Env→ Int→ t -- the Int is the first bound variable to replace
class Close t⇒Whnv t w | t→ w where

whnv :: t→ Env→ w
eval :: t→ Env→ Glued t w
eval t γ = (close t γ 0) :⇓ (whnv t γ)
val :: t→ Glued t w
val t = t :⇓ whnv t B0

We export val, for closed terms, to the typechecker. However, eval and whnv,
defined mutually, thread an environment γ explaining the bound variables. By
separating Scope from Term, we can say how to go under a binder once, for all.

instance Close Scope where
close (s :. t) γ i = s :. close t γ (i+1) -- start γ further out
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instance Whnv Scope (Value→Whnf) where
whnv ( :. t) γ = λx→ whnv t (γ :/x) -- extend the environment

Meanwhile, whnv for Term traverses the syntax, delivering the semantics.

instance Whnv Term Whnf where
whnv (R ( :=(Defn v :∈ ))) = sem v
whnv (R r) = WR r B0
whnv (V i) γ = sem (bproj γ i)
whnv (Pi d r) γ = WPi (eval d γ) (eval r γ)
whnv (Si d r) γ = WSi (eval d γ) (eval r γ)
whnv (L r) γ = WL (eval r γ)
whnv (P x (y, )) γ = WP (eval x γ) (eval y γ)
whnv (t :$ e) γ = whnv t γ $$ fmap (‘eval‘γ) e
whnv (C c) = WC c
whnv (Let (t, ) s) γ = whnv s γ (eval t γ)

Defined free variables are expanded; parameters gain an empty spine; γ explains
bound variables. We interpret (:$) with ($$). Lets directly exploit the their bodies’
functional meaning. Everything else is structural.

The close operation just substitutes the environment for the bound variables,
without further evaluation. The Int counts the binders crossed, hence the number
of variables which should stay bound. We give only the interesting cases:

instance Close Term where
close t B0 = t
close (V j) γ i = if j< i then V j else syn (bproj γ (j− i))

6.7 CHECKING EQUALITY

Our equality algorithm does ‘on-the-fly’ η-expansion on weak-head β-normal
forms, directed by their types. The observational rules for elements of Π and
Σ-types perform the η-expansion to yield η-long normal forms at ground type
(?,1 or Zero). We now define areEqual skipping the structural cases for constant
types, WPi, WSi, and going straight to the interaction between the the observa-
tional rules and checking equality on spines.

We do not need to look at elements of type 1 to know that they are equal to 〈〉.
Elements of O (hypothetical, of course) are also equal. We compare functions by
applying them to a fresh parameter and pairs by comparing their projections.

areEqual ::Typed (Value,Value)→ Checking ()
areEqual ( :∈ ( :⇓WC One )) = return ()
areEqual ( :∈ ( :⇓WC Zero)) = return ()
areEqual ((f ,g) :∈ ( :⇓WPi dom ran)) = do

x← "x"� root
let v = vpara (x :∈ dom)
"ran"� areEqual ((f $$A v, f $$A v) :∈ vLet (v :∈ dom) ran)
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areEqual ((p,q) :∈ ( :⇓WSi dom ran)) = do
"fst"� areEqual ((p $$P0,q $$P0) :∈ dom)
"snd"� areEqual ((p $$P1,q $$P1) :∈ (vLet (p $$P0 :∈ dom) ran))

For ground terms of types other than 1 and O, we can only have inert references
with spines, which we compare in accordance with the structural rules. We rebuild
the type of a spine as we process it, in order to compare its components correctly.

areEqual (( :⇓WR r1@( :=( :∈ ty)) as, :⇓WR r2 bs) :∈ ) =
spineEq (as,bs) where

spineEq :: (Elim Value,Elim Value)→ Checking Value

We peel eliminators until we reach the reference, whose type we pass back.

spineEq (B0,B0) = guard (r1≡ r2)>> return ty

For applications, we check that preceding spines are equal and analyse the Π-type
they deliver; we then confirm that the arguments are equal elements of its domain
and pass on the instantiated range.

spineEq (as :/A a,bs :/A b) = do
sty← spineEq (as,bs)
(dom,ran)← isPi sty
"eqargs"� areEqual ((a,b) :∈ dom)
return (vLet (a :∈ dom) ran)

For like projections from pairs we analyse the Σ-type from the preceding spines
and pass on the appropriate component, instantiated if need be.

spineEq (as :/P0,bs :/P0) = do
sty← spineEq (as,bs)
(dom, )← isSi sty
return dom

spineEq (as :/P1,bs :/P1) = do
sty← spineEq (as,bs)
(dom,ran)← isSi sty
return (vLet ((spine (as :/P0)) :∈ dom) ran)

For ‘naught E’, we need look no further!

spineEq (as :/OE,bs :/OE) = return vAbsurd

spine :: (Elim Value)→ Value
spine B0 = val (R r1)
spine (es :/e) = spine r1 es $$ e

6.8 RELATED WORK

Type checking algorithms for dependent types are at the core of systems like Lego
[17] and Coq [9] (which have only β-equality) and Agda [10], for which Co-
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quand’s simple algorithm with βη-equality for Π-types [12] forms the core; he
and Abel have recently extended this to Σ-types [1]. Our more liberal equality
makes it easy to import developments from these systems, but harder to export to
them.

Coquand’s and Abel’s algorithms are syntax-directed: comparison proceeds
structurally on β-normal forms, except when comparing λx. t with some variable-
headed (or ‘neutral’) f , which gets expanded to λx. f x. Also, when comparing
〈s, t〉 with neutral p, the latter expands to 〈p π0,p π1〉. Leaving two neutral func-
tions or pairs unexpanded cannot make them appear different, so this ‘tit-for-tat’
η-expansion suffices. However, there is no such syntactic cue for 1 or O: appar-
ently distinct neutral terms can be equal, if they have a proof-irrelevant type.

We have taken type-directed η-expansion from normalisation-by-evaluation [6,
3], fusing it with the conversion check. Our whnv is untyped and lazy, but compi-
lation in the manner of Gregoire and Leroy [14] would certainly pay off for heavy
type-level computations, especially if enhanced by Brady’s optimisations [7, 8].

6.9 CONCLUSIONS AND FURTHER WORK

The main deliverable of our work is a standalone typechecker for ETT which
plays an important rôle in the overall architecture of Epigram. We have addressed
a number of challenges in implementing a stronger conversion incorporating ob-
servational rules. These simplify elaboration and will play a vital rôle in our
project to implement Observational Type Theory[4] whose equality judgement
remains decidable, but which supports reasoning up to observation as in [2].
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Chapter 7

Formalisation of Haskell
Refactorings
Huiqing Li1, Simon Thompson1

Abstract: Refactoring is a technique for improving the design of existing pro-
grams without changing their external behaviour. HaRe is the refactoring tool we
have built to support refactoring Haskell 98 programs. Along with the develop-
ment of HaRe, we have also investigated the formal specification and proof of
validity of refactorings. This formalisation process helps to clarify the meaning
of refactorings, improves our confidence in the behaviour-preservation of refac-
torings, and reduces the need for testing. This paper gives an overview of HaRe,
and shows our approach to the formalisation of refactorings.

7.1 INTRODUCTION

Refactoring [4] is about improving the design of a program without changing its
external behaviour. Behaviour preservation guarantees that refactoring does not
introduce (nor remove) any bugs. Separating general software updates into func-
tionality changes and refactorings has well-known benefits. While it is possible
to refactor a program by hand, tool support is considered invaluable as it is more
reliable and allows refactorings to be done (and undone) easily. Tools can ensure
the validity of refactoring steps by automating both the checking of the condi-
tions for the refactoring and the application of the refactoring itself, thus making
refactoring less painful and less error-prone.

As part of our project ‘Refactoring Functional Programs’ [15], we have devel-
oped the Haskell Refactorer, HaRe [7], providing support for refactoring Haskell
programs. HaRe covers the full Haskell 98 standard language, and is integrated
with two development environments: Vim and (X)Emacs. Apart from preserv-
ing behaviour, HaRe preserves both the comments and layout of the refactored

1Conputing Laboratory, University of Kent, UK; Email: H.Li@kent.ac.uk,
S.J.Thompson@kent.ac.uk
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-- Test.hs -- Test.hs
module Test where module Test where

f [] = 0 f m [] = 0
f (h:t) = hˆ2 + f t f m (h:t) = hˆm + f m t

-- Main.hs -- Main.hs
module Main where module Main where
import Test import Test

main = print $ f [1..5] main = print $ f 2 [1..5]

FIGURE 7.1. Generalise function f over the subexpression 2.

programs as much as possible. HaRe is itself implemented in Haskell. The first
version of HaRe was released in October 2003, and since then more features have
been added to make it more usable. The third release of HaRe supports 24 refac-
torings, and also exposes an API [8] for defining refactorings or more general
program transformations.
The refactorings implemented in HaRe fall into three categories: structural refac-
torings, module refactorings, and data-oriented refactorings. Structural refac-
torings, such as generalising a definition, renaming a definition, unfolding a defi-
nition and changing the scope of a definition, mainly concern the name and scope
of the entities defined in a program and the structure of definitions. Module refac-
torings, such as moving a definition from one module to another, removing re-
dundant imports, etc, concern the imports and exports of individual modules, and
the relocation of definitions among modules. Data-oriented refactorings, such
as from concrete to abstract data type, are associated with data type definitions.
Apart from implementing HaRe, we have also examined the formal specification
and proof of correctness of various refactorings.

A number of tools [11] have been developed to automate the application of
refactorings, especially for object-oriented(OO) programming languages. How-
ever the study of formalisation and proof of refactorings has been lagging behind
system development mostly due to the complexity of programming language se-
mantics. In comparison with imperative languages, pure functional languages
have a stronger theoretical basis, and reasoning about programs written in pure
functional languages is less complicated due to the referential transparency [5]
property. This is also manifested by the collection of related work in the functional
programming paradigm where functionality-preserving program transformations
are used for reasoning about programs [14], for deriving efficient implementations
from program specifications [2, 13], and for compiler optimisation [6].

This paper investigates the formal specification of refactorings as well as the
proof of their functionality preservation within our context of refactoring. Two
representative refactorings are examined in detail, and they are generalise a def-
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-- Test1.hs -- Test1.hs
module Test1(foo,sq) where module Test1(sq) where

sq x = x ˆ 2 sq x = x ˆ 2

foo x y = sq x + sq y -- Test2.hs
module Test2 where

-- Test2.hs import Test1(sq)
module Test2 where
import Test1(sq) foo x y = sq x + sq y

bar x y = x + y bar x y = x + y

-- Main.hs -- Main.hs
module Main where module Main where
import Test1 import Test1
import Test2(bar) import Test2(bar,foo)

main x y main x y
= print $ foo x y + bar x y = print $ foo x y + bar x y

FIGURE 7.2. Move the definition of foo to module M2

inition and move a definition from one module to another. The former, which is
typical of the class of structural refactorings, generalises a definition by making
an identified expression of its right-hand side into a value passed into the func-
tion via a new formal parameter, thereby improving the usability of the definition
illustrated by the example shown in Figure 7.1, where the program before gen-
eralisation appears in the left-hand column and the program after generalisation
appears in the right-hand column.

The second example, which is typical of the class of module refactorings,
moves a top-level definition from its current module to a specified module. Asso-
ciated with the definition move is the modification of the imports/exports of the
affected modules, which compensates for the changes caused by moving the defi-
nition, as shown in the example in Figure 7.2. These two refactorings are typical,
so by treating these we aim to illustrate how other refactorings can be formalised
in a similar way. The formalisation of data-oriented refactorings and how type
information can be used in the formalisation need further research, and are not
covered in this paper.

For each refactoring, we give its formal definition consisting of the represen-
tations of the program before and after the refactoring, the side-conditions that
should be met by the program in order for the refactoring to preserve behaviour,
and prove that the programs before and after the refactoring are equivalent in
functionality under the given side-conditions.

While HaRe is targeted at Haskell 98, our first formalisation of refactorings
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is based on the simple λ-calculus augmented with letrec-expressions (denoted as
λLetrec). By starting from λLetrec, we keep our specifications and proofs simple
and manageable, but still reflect the essential characteristics of refactorings. In
the case that a refactoring involves features not covered by λLetrec, such as data
constructors, the type system, etc, we could extend λLetrec accordingly. Another
reason for choosing λLetrec is that although Haskell has been evolved to maturity
in the last two decades, an officially defined, widely accepted semantics, for this
language does not exist yet.

In the remainder of this paper, Section 7.2 gives an overview of related work.
Section 7.3 introduces λLetrec. Section 7.4 presents some definitions and lemmas
needed for working with λLetrec and for the specification of refactorings. Section
7.5 studies the formalisation of the generalise a definition refactoring. In Section
7.6 , we extend λLetrec to λM to accommodate a simple module system. Some
fundamental definitions for the simple module system are given in Section 7.7.
Then the formalisation of move a definition from one module to another is given
in Section 7.8, and some conclusions are drawn in Section 7.9.

7.2 RELATED WORK

Refactorings should preserve the behaviour of software. Ideally, the most funda-
mental approach is to prove formally that refactorings preserve the full program
semantics. This requires a formal semantics for the target language to be defined.
However, for most complex languages such as C++, it is very difficult to define a
formal semantics.

Opdyke [12] proposed a set of seven invariants to preserve behaviour for
object-oriented programming language refactorings. These invariants are: unique
superclass, distinct class names, distinct member names, inherited member vari-
ables not redefined, compatible signatures in member function redefinition, type-
safe assignments and semantically equivalent reference and operations2 . Opdyke’s
refactorings were accompanied by proofs demonstrating that the enabling condi-
tions he identified for each refactoring preserved the invariants. Opdyke did not
prove that preserving these invariants preserves program behaviour. Similar work
by Tokuda et al is reported in [18].

In [17], Tip et al. explored the use of type constraints to verify the precondi-
tions and to determine the allowable source code modifications for a number of
generalisation-related refactorings in an OO programming language context.

Using a different approach, Mens et al. [10] explored the idea of using graph
transformation to formalise the effect of refactorings and prove behaviour preser-
vation in the object-oriented programming paradigm. This approach proposed to
use graphs to represent those aspects (access relation, update relation and call re-
lation) of the source code that should be preserved by a refactoring, and graph
rewriting rules as a formal specification for the refactoring transformations.

1Note that Opdyke’s final invariant is a catch-all “preserve semantics”, with the others
identifying particular ways that the (static) semantics can be preserved.
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7.3 THE λ-CALCULUS WITH LETREC (λLET REC)

The syntax of λLetrec terms is:

V ::= x | λx.E

E ::= V | E1 E2 | letrec D in E

D ::= ε | xi = Ei | D,D

where x,xi represent variables, V represents the set of values, E represents expres-
sions, and D is a sequence of bindings. A value is a variable or an abstraction. For
letrec D in E, we require that the variables xi defined in D are pairwise distinct.
Recursion is allowed in a letrec expression and the scope of xi in the expression

letrec x1 = E1, ...,xn = En in E

is E and all the Eis. No ordering among the bindings in a letrec expression is
assumed. As a notation, we use ≡ to represent syntactical equivalence, and .= to
represent semantic equivalence.

As to the reduction strategy, one option for calculating lambda expressions
with letrec is call-by-need [9], which is an implementation technique for the
call-by-name [14] semantics that avoids re-evaluating expressions multiple times
by memorising the result of the first evaluation. In the case that behaviour-
preservation allows introducing/removing sharing of computation, call-by-need
interpretation might invalidate many refactorings which preserve the observable
behaviour but change the sharing of computation. In this study, we use call-by-
name for reasoning about program transformations, so that sharing could be lost
or gained during the transformation. However, comments about the change of
sharing during a refactoring will be given when appropriate.

Instead of developing the call-by-name calculus for λLetrec from scratch, we
make use of the results from the paper Lambda Calculi plus Letrec [19], in which
Ariola and Blom developed a call-by-name cyclic calculus (λ◦name) where cyclic
implies that recursion is handled in this calculus. λ◦name defines exactly the same
set of terms as λLetrec does, only with slightly different notation. Figure 7.3 lists
the axioms of λ◦name expressed using the λLetrec notation.

In the axioms shown in Figure 7.3, a ′ attached to a term indicates that some
bound variables in the term might have been renamed to avoid name capture dur-
ing the transformation. Name capture and other standard definitions in λ-calculus
can be found in [1]. A context C[] is a term with a hole in the place of one sub-
term. The operation of filling the context C with a term M yields the term C[M].
The two substitution axioms require that the x (x1 is the second axiom) in the hole
occurs free in C[x]. FV (E) means the set of free variables in term E. D1⊥D2
means that the set of variables that occur on the left-hand side of of a definition in
D1 does not intersect with the set of free variables of D2. In the copying axiom,
σ is a function from recursion variables to recursion variables, and Eσ is the term
obtained by replacing all occurrences of recursion variables x by σ(x) (leaving the
free variables of E unchanged), followed by a reduction to normal form with the
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β◦ :

(λx. E) E1
.= letrec x = E1 in E, if x 6∈ FV (E1).

Substitution :

letrec x = E,D in C[x] .= letrec x = E,D in C′[E]

letrec x = C[x1],x1 = E1,D in E .= letrec x = C′[E1],x1 = E1,D in E

Lift :

(letrec D in E) E1
.= letrec D′ in (E ′ E1)

E1 (letrec D in E) .= letrec D′ in (E1 E ′)

λx.(letrec D1,D2 in E)
.= letrec D2 in λx.(letrec D1 in E), if D1 ⊥ D2 and x 6∈ FV (D2).

Merge :

letrec x = letrec D in E1,D1 in E .= letrec x = E ′1,D
′,D1 in E

letrec D1 in ( letrec D in E) .= letrec D1, D′ in E ′

Garbage collection :

letrec ε in E .= E

letrec D,D1 in E .= letrec D in E, if D1⊥D and D1⊥E.

Copying :

E .= E1, if ∃σ : ν→ ν,Eσ ≡ E1.

FIGURE 7.3. The call-by-name cyclic calculus axioms in the λLetrec notation

unification rule: x = E,x = E → x = E within the resulting letrec bindings [19].
These rules, together with the definitions and lemmas given in the next section,
form the basis of the proof of correctness of structural refactorings, as will be
shown in section 7.5.

7.4 THE FUNDAMENTALS OF λLET REC

Definition 1 Given two expressions E and E ′, E ′ is a sub-expression of E (notation
E ′ ⊆ E), if E ′ ∈ sub(E), where sub(E), the collection of sub-expressions of E, is
defined inductively as follows:

sub(x) = {x}
sub(λx.E) = {λx.E}∪ sub(E)
sub(E1 E2) = {E1 E2}∪ sub(E1)∪ sub(E2)
sub( letrec x1 = E1, ...,xn = En in E) =
{ letrec x1 = E1, ...,xn = En in E}∪ sub(E) ∪ sub(E1) ∪ ... ∪ sub(En)

Definition 2 Given an expression E and a context C[ ], we define sub(E,C) as
those sub-expressions of C[E], including C[E] itself, which contain the hole filled
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with the expression E, that is: e ∈ Sub(E,C) iff ∃ C1[ ], C2[ ], such that e ≡
C2[E]∧C[ ]≡C1[C2[ ]].

Definition 3 The result of substituting N for the free occurrences of x in E with
automatic renaming is defined as:
x[x := N] = N
y[x := N] = y; where y 6≡ x
(E1E2)[x := N] = E1[x := N]E2[x := N]
(λx.E)[x := N] = λx.E
(λy.E)[x := N] = λz.E[y := z][x := N] , where (y 6≡ x), and z≡ y if

x 6∈ FV (E) or y 6∈ FV (N), otherwise z is a fresh variable.
(letrec x1 = E1, ...,xn = En in E)[x := N]

= letrec z1 = E1[
→
x i:=

→
z i][x := N], ...,zn = En[

→
x i:=

→
z i][x := N]

in E[
→
x i:=

→
z i][x := N],

where zi ≡ xi if x 6∈ FV ( letrec x1 = E1, ...,xn = En in E) or xi 6∈ FV (N),
otherwise zi is a fresh variable (i=1..n).

Definition 4 Given x ∈ FV (E) and a context C[ ], we say that x is free over C[E]
if and only if ∀e,e ∈ sub(E,C)⇒ x ∈ FV (e). Otherwise we say that x becomes
bound over C[E].

Lemma 1 Let E1,E2 be expressions, and E2 ≡C[z], where z is a free variable in
E2 and does not occur free in C[ ]. If none of the free variables in E1 will become
bound over C[E1], then E2[z := E1]≡C[E1].

Proof. Proof by induction on the structure of E2.

7.5 FORMALISATION OF GENERALISING A DEFINITION

7.5.1 Definition of generalise a definition

Definition 5 Given an expression

letrec x1 = E1, ...,xi = Ei, ...,xn = En in E0

Assume E is a sub-expression of Ei, and Ei ≡C[E], then the condition for gener-
alising the definition xi = Ei on E is:

xi 6∈ FV (E)∧∀x,e : (x ∈ FV (E)∧ e ∈ sub(Ei,C)⇒ x ∈ FV (e)).

After generalisation, the original expression becomes:

letrec x1 = E1[xi := xiE], . . . ,xi = λz.C[z][xi := xiz], . . . ,xn = En[xi := xiE]
in E0[xi := xiE], where z is a fresh variable

What follows provides some explanation of the above definition:

• The condition xi 6∈ FV (E) means that there should be no recursive calls to xi
within the identified sub-expression E. Allowing recursive calls in the identi-
fied expression would need extra care to make sure that the generalised func-
tion has the correct number of parameters at its call-sites.
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• This specification replaces only the identified occurrence of E in the definition
xi = Ei by the formal parameter z. Another variant is to replace all the occur-
rences of E in xi = Ei by z. This does not change the side-conditions for the
refactoring, but it does change the transformation within xi = Ei.

• According to this definition of generalising a definition, the refactoring could
introduce duplicated computation. One way to avoid duplicating the computa-
tion of xiE is to introduce a new binding into the letrec expression to represent
the expression, instead of duplicating it at each call-site of xi. This discussion
reflects the general observation that under the same refactoring name, for in-
stance generalising a definition, different people may mean different things,
and there is no unique way of resolving this choice.

7.5.2 Behaviour-preservation of generalising a definition

In order to prove that this refactoring is behaviour-preserving, we decompose the
transformation into a number of steps. If each step is behaviour-preserving, then
we can conclude that the whole transformation is behaviour-preserving. An exam-
ple showing the application of the following proof to a Haskell program is avail-
able at http://www.cs.kent.ac.uk/projects/refactor-fp/presentations/TFP2005.ppt.

Proof. Given the original expression:

letrec x1 = E1, . . . ,xi = Ei, . . . ,xn = En in E0

Generalising the definition xi = Ei on the sub-expression E can be decomposed
into the following steps:

Step 1. add definition x′i = λz.C[z], where x′i and z are fresh variables, and C[E] =
Ei, we get

letrec x1 = E1, . . . ,xi = Ei,x′i = λz.C[z], . . . ,xn = En in E0

The equivalence of semantics is guaranteed by the garbage collection rule and
the commutability of bindings within letrec.

Step 2. By the side-conditions and axioms, in the context of the definition of x′i,
we can prove

x′iE ≡ (λz.C[z])E
= letrec z = E in C[z] by β◦
= letrec z = E in C[E] by substitution axiom and side-conditions
= C[E] by garbage collection axioms
≡ Ei

Therefore replacing Ei with x′iE in the context of this definition does not change
its semantics, so the original expression is equivalent to:

letrec x1 = E1, . . . ,xi = x′iE,x′i = λz.C[z], . . . ,xn = En in E0
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Step 3. Using the second substitution axiom, it is trivial to prove that substituting
x′iE for the free occurrences of xi in the right-hand-side of x′i does not change the
semantics of x′i. We get

letrec x1 = E1, . . . ,xi = x′iE,x′i = (λz.C[z])[xi := x′iE], . . . ,xn = En in E0

As z 6∈ FV (x′iE), we have:

letrec x1 = E1, . . . ,xi = x′iE,x′i = λz.C[z][xi := x′iE], . . . ,xn = En in E0

Step 4. In the definition of x′i, replace E with z. we get:

letrec x1 = E1, . . . ,xi = x′iE,x′i = λz.C[z][xi := x′iz], . . . ,xn = En in E0

It is evident that the right-hand-side (RHS) of the definition of x′i in this step is
not semantically equal to the RHS defined in step 3. However, we can prove the
equivalence of x′iE from step 3 to step 4 in the context of the bindings for x1, ...,xn
(note that x′i does not depend on the definition of xi, so there is no mutual depen-
dency between xi and x′i).

Step 5. Substituting x′iE for the free occurrences of xi outside the definition of xi
and x′i does not change the semantics of the let-expression, as xi = x′iE from step
4.

letrec x1 = E1[xi := x′iE], . . . ,xi = x′iE,x′i = λz.C[z][xi := x′iz], . . . ,xn = En[xi := x′iE]
in E0[xi := x′iE]

Step 6. Removing the unused definition of xi does not change the semantics
according to the garbage collection rules, and we get

letrec x1 = E1[xi := x′iE], . . . ,x′i = λz.C[z][xi := x′iz], . . . ,xn = En[xi := x′iE] in E0[xi := x′iE]

Step 7. Renaming x′i to xi, we have

letrec x1 = E1[xi := x′iE][x′i := xi], . . . ,xi = λz.C[z][xi := x′iz][x
′
i := xi],

. . . ,xn = En[xi := x′iE][x′i := xi]
in E0[xi := x′iE][x′i := xi]

Capture-free renaming of bound variables, i.e. α-renaming, does not change the
semantics. Finally, by the substitution lemma, we have

letrec x1 = E1[xi := xiE], . . . ,xi = λz.C[z][xi := xiz], . . . ,xn = En[xi := xiE] in E0[xi := xiE]

as required.

7.6 FORMALISATION OF A SIMPLE MODULE SYSTEM λM

A module-aware refactoring normally affects not only the definitions in a module,
but also the imports and exports of the module. More than that, it may potentially
affect every module in the system. In order to formalise module-aware refactor-
ings, we extend λLetrec with a simple module system. The definition of the new
language, which is called λM , is given next.
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7.6.1 The Simple Module System λM

The syntax of λM terms is defined as:

Program ::= let Mod in (Exp; Imp; letrec D in E)
Mod ::= ε |Modid = (Exp; Imp;D) |Mod;Mod

Exp ::= ε | (E p1, ...,E pn) (n0)
E p = x |Modid.x | module Modid

Imp ::= (I p1, ..., I pn) (n≥ 0)
I p = import Qual Modid Alias ImpSpec

Modid ::= Mi (i≥ 0)
Qual ::= ε | qualified
ImpSpec ::= ε | (x1, ...,xn) | hiding (x1, ...,xn) (n≥ 0)
Alias ::= ε | as Modid

V ::= x |Modid.x | λx.E

E ::= V | E1 E2 | letrec D in E

D ::= ε | x = E | D,D

In the above definition, Program represents a program and Mod is a sequence of
modules. Each module has a unique name in the program. A module consists of
three parts: Exp, which exports some of the locally available identifiers for use
by other modules; Imp, which imports identifiers defined in other modules, and
D, which defines a number of value identifiers. The (Exp; Imp; letrec D in E)
part of the definition of Program represents the Main module of the program, and
the expression E represents the main expression. ε means an null export list or
entity list in the definitions of Exp and ImpSpec, and empty in other definitions.
Qualified names are allowed, and we assume that the usage of qualified names
follows the rules specified in the Haskell 98 Report [16].

The module system has been defined to model aspects of the Haskell 98 mod-
ule system. Because only value identifiers can be defined in λM , λM’s module
system is actually a subset of the Haskell 98 module system. We assume that the
semantics of this simple module system follows the semantics of the Haskell 98
module system.

A formal specification of the Haskell 98 module system has been described in
[3], where the semantics of a Haskell program with regard to the module system
is a mapping from the collection of modules to their corresponding in-scope and
export relations. The in-scope relation of a module represents the set of names
(with the represented entities) that are visible to this module, and this forms the
top-level environment of the module. The export relation of a module represents
the set of names (also with the represented entities) that are made available by
this module for other modules to use; in other words, it defines the interface of
the module.

In the following specification of module-aware refactorings, we assume that,
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using the module system analysis algorithm from the formal specification given
in [3], we are able to get the in-scope and export relation of each module, and for
each identifier in the in-scope/export relation, we can infer the name of the module
in which the identifier is defined. In fact, the same module analysis system is used
in the implementation of HaRe.

When only module-level information is relevant, i.e. the exact definition of
entities is not of concern, we can view a multi-module program in this way: a
program P consists of a set of modules and each module consists of four parts:
the module name, M, the set of identifiers defined by this module, D, the set of
identifiers imported by this module, I, and the set of identifiers exported by this
module, E. Each top-level identifier can be uniquely identified by the combination
of the identifier’s name and its defining module as (modid, id), where modid is
the name of the identifier’s defining module and id is the name of the identifier.
Two identifiers are the same if they have the same name and defining module.
Accordingly, we can use P = {(Mi,Di, Ii,Ei)}i=1..n to denote the program.

7.7 FUNDAMENTALS OF λM

Definition 6 A client module of module M is a module which imports M either
directly or indirectly; A server module of module M is a module which is imported
by module M either directly or indirectly.

Definition 7 Given a module M=(Exp, Imp, D), we say that module M is exported
by itself if Exp is ε or module M occurs in Exp as an element of the export list.

Definition 8 The defining module of an identifier is the name of the module in
which the identifier is defined.

Definition 9 Suppose v is an identifier that is in scope in module M, we use
defineMod(v, M) to represent the name of the module in which the identifier is
defined.

Definition 10 We say that the identifier x defined in module N is used by module
M=(Exp, Imp, D) (M 6= N) if DefineMod(x,M) = N and either x ∈ FV(D) or x
is exported by module M, otherwise we say that the x defined in module N is not
used by module M.

Definition 11 Binding structure refers to the association of uses of identifiers with
their definitions in a program. Binding structure involves both top-level variables
and local variables. When analysing module-level phenomena, it is only the top-
level bindings that are relevant, in which case we define the binding structure, B,
of a program P = {(Mi,Di, Ii,Ei)}i=1..n as: B ⊂ ∪(Di × (Di ∪ Ii))i=1..n, so that
{((m1, id1),(m2, id2)) ∈ B | id2 occurs free in the definition of id1; id1’s defining
module is m1, and id2’s defining module is m2 }.

The following five definitions involve syntactical manipulations of the im-
port/export list. Due to the limits on space, we give their descriptions, but omit
the full definitions.
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Definition 12 Given a set of identifiers Y and an export list Exp, rmFromExp(Exp,Y)
is the export list Exp with the occurrences of the identifiers from Y removed.

Definition 13 Given an identifier y which is defined in module M, and the export
list, Exp, of module M, addToExp (Exp, y, M) is the export list with y added if it is
not already exported by Exp.

Definition 14 Given an identifier y which is exported by module M and Imp which
is a sequence of imports, rmFromImp (Imp, y, M) is the import sequence Imp with
the occurrences of y removed. The function can be used to remove the uses of y in
import declarations that import module M when y is no longer exported by M.

Definition 15 Given an identifier y which is exported by module M (M is not nec-
essarily the module where y is defined) and Imp which is a sequence of imports,
then hideInImp(Imp, y, M) is the import sequence Imp with y removed from the ex-
plicit entity list or added to the explicit hiding enity list in the import declarations
wich import module M, so that the resulting Imp does not bring this identifier into
scope by importing it from module M.

Definition 16 Suppose the same binding, say y, is exported by both module M1
and M2, and Imp is a sequence of import declarations, then chgImpPath(Imp, y,
M1, M2) is the import sequence Imp with the importing of y from M1 changed to
from M2.

7.8 FORMALISATION OF MOVE A DEFINITION FROM ONE MOD-
ULE TO ANOTHER IN λM

Like other refactorings, the realisation of Move a definition from one module to
another is not unique. Suppose we would like to move the definition of foo from
module M to module N, the following design decisions were made in the imple-
mentation of this refactoring in HaRe.

• If a variable which is free in the definition of foo is not in scope in module
N, then the refactorer will ask the user to refactor the program to make the
variable visible to module N first.

• If the identifier foo is already in scope in module N (either defined by module
N or imported from other modules), but it refers to a definition of foo other
than that in module M, the user will be prompted to do renaming first.

• We do not allow the introduction of during a refactoring due to the fact that
transparent compilation of mutually recursive modules are not yet supported
by the current working Haskell compilers/interpreters.

• Module N will export foo after the refactoring only if foo is either exported by
module M or used by the other definitions in module M before the refactor-
ing. The imports of foo will be via M if module M still exports foo after the
refactoring; otherwise via N.
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7.8.1 Definition of move a definition from one module to another

The definition of this refactoring and a commentary on the definition follows.

Definition 17 Given a valid program P:

P = let M1 = (Exp1; Imp1; x1 = E1, ...,xi = Ei, ...,xn = En);
M2 = (Exp2; Imp2; D2); . . . ;Mm = (Expm; Impm; Dm)

in (Exp0; Imp0; letrec D0 in E)

The conditions for moving the definition xi = Ei from module M1 to another
module, M2, are:

1. If xi is in scope at the top level of M2, then DefineMod(xi,M2) = M1.

2. ∀v ∈ FV (xi = Ei), if DefineMod(v, M1)=N, then v is in scope in M2 and De-
fineMod(v, M2)=N.

3. If M1 is a server module of M2, then {xi,M1.xi}∩FV (E j( j 6=i)) = /0.

4. If module M j( j 6=1) is a server module of M2, and xi ∈ FV (D j), then
De f ineMod(xi,M j) 6= M1 (xi could be qualified or not).

After moving the definition to module M2, the original program becomes:

P′ = let M1 = (Exp′1; Imp′1; x1 = E1, ...,xi−1 = Ei−1,xi+1 = Ei+1, ...,xn = En);
M2 = (Exp′2; Imp′2; xi = Ei[M1.xi := M2.xi],D2); . . . ;
Mm = (Expm; Imp′m; Dm)

in (Exp0; Imp′0; letrec D0 in E)

In the above definition, a ′ attached to an export/import indicates that this ex-
port/import might have been changed after the refactoring. In what follows, the
changes to those exports/imports are given according to whether xi is exported
by M1, and different situations are considered in each case. Only those im-
ports/exports which are actually changed are given in each case.

Case 1. xi is not exported by M1.
Case 1.1. xi is not used by other definitions in M1: {xi,M1.xi}∩FV (E j( j 6=i)) = /0.

Imp′j = hideInImp (Imp j,xi,M2) i f M2 is exported by itsel f ;
Imp j otherwise. (3≤ j ≤ m)

Case 1.2. xi is used by other definitions in M1.
Imp′1 = hideInImp (Imp1,xi,M2); import M2 as M1(xi)
Exp′2 = addToExp (Exp2,xi,M2)
Imp′j = hideInImp (Imp j,xi,M2) (3≤ j ≤ m)

Case 2. xi is exported by M1.
Case 2.1. M2 is not a client module of M1.
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Imp′1 = Imp1; import M2 as M1(xi)
Exp′2 = addToExp (Exp2,xi,M2)
Imp′j = hideInImp (Imp j,xi,M2) (3≤ j ≤ m)

Case 2.2. M2 is a client module of M1.
Exp′1 = rmFromExport (Exp1,xi,M1)
Exp′2 = addToExp (Exp2,xi,M2)
Imp′2 = rmFromImp (Imp2,xi,M1)
Imp′j = i f M j is a server module o f M2 then rmFromImp (Imp j,xi,M1)

else rmFromImp (chgImportPath (Imp′′j ,xi,M1,M2),xi,M1) (3≤ j≤m)
Imp′′j = i f xi is exported by M2 be f ore re f actoring, then Imp j;

hideInImp (Imp j,xi,M2) otherwise. (3≤ j ≤ m)

What follows is some explanation about the above definition:

• As to the side-conditions, condition 1) means that if xi is in scope in the target
module, M2, then this xi should be the same as the xi whose definition is to be
moved, in order to avoid conflict/ambiguous occurrence [16] in M2; condition
2) requires that all the free variables used in the definition of xi are in scope in
M2. Conditions 3) and 4) guarantee that mutual recursive modules won’t be
introduced during the refactoring process.

• The transformation rules are complicated mainly due to the Haskell 98 module
system’s lack of control in the export list. For example, when a new identifier
is brought into scope in a module, the identifier could also be exported auto-
matically by this module, and then further exported by other modules if this
module is imported and exported by those modules. However, this is danger-
ous in some cases as the new entity could cause name conflict/ambiguity in
modules which import it either directly or indirectly. Two strategies are used
in the transformation in order to overcome this problem: the first strategy is to
use hiding to exclude an identifier from being imported by another module
when we are unable to exclude it from being exported, as in case 1.1; the sec-
ond strategy is to use alias in the import declaration to avoid the changes to
the export list as in case 1.2.

7.8.2 Behaviour-preservation of move a definition from one module to an-
other

We prove the correctness of this refactoring from four aspects: the refactoring
does not change the structure of individual definitions; the refactoring creates
a binding structure which is isomorphic to the one before the refactoring; the
refactoring does not introduce mutually recursive modules; and the refactoring
does not violate any syntactic rules. More details follow.

• The refactoring does not change the structure of individual definitions. This
is obvious from the transformation rules. Inside the definition of xi = Ei, the
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uses of M1.xi have been changed to M2.xi, this is necessary as xi is now defined
in module M2. We keep the qualified names qualified in order to avoid name
capture inside the Ei. The uses of xi in module M2 will not cause ambiguous
reference due to condition a).

• The refactoring creates a binding structure which is isomorphic to the one
before the refactoring. Suppose the binding structures before and after the
refactoring are B and B′ respectively, then B and B′ satisfy:

B′ = {( f x, f y)|(x,y) ∈ B},
where f (M,x) = (M2,xi) if (M,x)≡ (M1,xi); (M,x) otherwise.

The only change from B to B′ is that the defining module of xi has been
changed from the M1 to M2. This is guaranteed by conditions a) and b).

• The refactoring does not introduce recursive modules. On one hand, moving
the definition does not add any import declarations to M2, therefore, there is
no chance for M2 to import any of its client modules. On the other hand, an
import declaration importing M2 is added to other modules only when it is
necessary and M2 is not a client module of them because of conditions c), d)
and the condition checking in case 2.2.

• The refactoring does not violate any syntactic rules. The only remaining po-
tential violations exist in the import/export lists of the modules involved. In
case 1.1, case 1.2 and case 2.1, except module M2, none of the modules’ in
scope/export relations have been changed; in case 2.2, M1 no longer exports xi,
and those modules which use xi now get it from module M2. rmFromExport,
addToExp, rmFromImp, and hideInImport are used to manipulate the program
syntactically to ensure the program’s syntactic correctness.

7.9 CONCLUSIONS AND FUTURE WORK

Behaviour preservation is the key criterion of refactorings, therefore the assurance
of behaviour preservation is indispensable during the refactoring process. This pa-
per explores the specification and proof of behaviour preservation of refactorings
in the context of refactoring Haskell programs in a formal way. To this purpose,
we first defined the simple lambda-calculus, λLetrec, then augmented it with a
simple module system. Two representative refactorings are examined in this pa-
per: generalise a definition and move a definition from one module to another. For
future work, more structural or module-related refactorings, such as, renaming,
lifting a definition, specialise a definition, add an item to the export list, etc[15],
can be formalised in this framework without difficulty.
This framework need to be extended to accommodate more features from the
Haskell 98 language, such as constants, case-expressions, data types, etc, so that
more complex refactorings, such as data refactorings, can be formalised. Never-
theless, this work provides a foundation for the further study of formalisation of
Haskell refactorings. Finally, a formally defined semantics for Haskell could help
the (potentially automate) verifications of Haskell refactorings.
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Chapter 8

Systematic Search for
Lambda Expressions
Susumu Katayama1

Abstract: We present a system for inductive synthesis of small functional pro-
grams by trial and error, or just by generating a stream of all the type-correct
programs in a systematic and exhaustive manner and evaluating them. The main
goal of this line of research is to ease functional programming, to provide an axis
to evaluate heuristic approaches to inductive program synthesis such as genetic
programming by investigating the best performance possible by exhaustive search
algorithms, and to provide a basis on which to build heuristics in a more modu-
lar way. While the previous approach to that goal used combinatory expressions
in order to simplify the synthesis process, which led to redundant combinatory
expressions with complex types, this research uses de Bruijn lambda expressions
and enjoys improved results.

8.1 INTRODUCTION

Type systems are by nature tools for sound programming that constrain programs
to help identifying errors. On the other hand, by exploiting strong typing, func-
tional programming can be done in a way like solving a jigsaw puzzle, by rep-
etition of combining unifying functions and their arguments until the program-
mer eventually obtains the intended program. Search-based approach to inductive
program synthesis, or program synthesis from incomplete specification, can be
viewed as automation of this process.

This research proposes an algorithm that searches for the type-consistent small
functional programs from an incomplete specification rather in a systematic and
exhaustive way, that is, by generating all the programs from small to infinitely

1Department of Computer Science and Systems Engineering, University of Miyazaki,
Miyazaki, Miyazaki 889-2155, Japan; Phone: +81 (985)58-7941; Email:
skata@cs.miyazaki-u.ac.jp
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large that match the given type and checking if they satisfy the specification. Note
that due to the incompleteness in the specification the synthesized programs may
not conform the users’ intentions, like other inductive programming methods. The
correctness of the synthesized programs could be assured through tests during or
after the synthesis. Also, for the above reason it is desirable that synthesized
programs are easy to understand and pretty printed.

The proposed algorithm improves the efficiency of the previous algorithm [Kat04]
by doing the following:

• it searches for de Bruijn lambda expressions, while the old one obtains com-
binatory expressions which is more redundant;

• the function taking the set of available atom expressions and a type t and
returning the prioritized set of synthesized expressions2 whose type and t unify
is now memoized;

• more equivalent expressions which cause redundancy in the search space and
multiple counting are excluded.

8.1.1 Perspective applications

One obvious effect of this research is to programming. Readers may gain more
concrete impression from Subsection 8.2.1, although further rearrangement of the
obtained expressions may be desired.

Another application can be auto-completion in functional shells (e.g. Esther
[vWP03]).

8.1.2 Related work

Conventional research on inductive synthesis of functional programs can be cate-
gorized into two styles. One approach is via computational traces. The other uses
genetic programming, which is a search-based heuristic approach.

Synthesis via computational traces There is a long history of this line of re-
search. Typically they first generate computational traces and then fold them into
a recursive program. Although the second folding step can be done by simple
pattern matching, the first step is more difficult, and as a result there have been
various approaches.

• Summers [Sum77] did that by limiting the scope to list functions and enforcing
partial orders.

• Later some people noticed that in some cases creating traces by hand is not a
great burden for users. This is called programming by demonstration, and is
actively explored by many scientists [Cyp93].

2More exactly it returns the prioritized set of tuples of synthesized expressions and a
unifier substitution.
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• Recently Schmid and her people have been working on search-based trace
generation [Sch01][SW04].

One point of these approaches is that they modularize their algorithms into two.
However, we think that the search space of the unfolded traces is much greater
than that of recursive programs, because the latter is much more compact and the
search space can bloat exponentially in the program length.

Genetic Programming Genetic Programming (GP) also searches for functional
programs. It is a kind of heuristic approach to search for programs by maintain-
ing a set of “promising programs” and by exchanging and varying their subex-
pressions, based on the assumption that promising programs should include use-
ful, reusable subexpressions. Although GP is heuristic, researchers of GP tend
not to compare their algorithms with non-heuristic approaches, leaving it unclear
whether the heuristic works or not, and how much it improves the efficiency. This
paper focuses on efficient implementation of exhaustive enumeration of expres-
sions, and provides a basis on which to build heuristic approaches in future.

8.2 IMPLEMENTED SYSTEM

This section details the implemented system, whose latest version is available
from
http://nautilus.cs.miyazaki-u.ac.jp/˜skata/MagicHaskeller.html.

8.2.1 Overview

User interface The implemented system has a user interface that looks like
Haskell interpreters. Figure 8.1 and Figure 8.2 show sample interactions with
the implemented system, where each > represents a command line prompt.

When the user types from the console a boolean function as the constraint,
the system tries to synthesize an expression which satisfies it, i.e., which makes
the function return True. The constraint can be any unary predicate in theory be-
cause it just filters the generated programs, although currently the interpreter only
supports a subset of the Haskell language.3 Then it prints the expression con-
verted into the usual lambda expression acceptable by Haskell interpreters and
compilers. Optionally the user may provide the type of the desired expression,
or otherwise it is inferred. The line beginning with :load loads the component
library file written in Haskell subset with the Hindley-Milner type system, and the
system generates all the type-correct lambda expressions using variables defined
there as primitives. Here is an example component library file, defining construc-
tors and curried paramorphisms of natural numbers and lists, and thus covering

3Also, it is desirable if the predicate always terminates within a short time. However,
sometimes it is more realistic to tell non-termination by trying the synthesis than to
assume such prior knowledge.
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a lot of useful total functions on them. Some discussion on library design and
termination can be found in the previous work. [Kat04]

module Library where

zero :: Int

zero = 0

inc :: Int→Int

inc = λx → x+1

nat_para :: Int → a → (Int → a → a) → a

nat_para = λi x f → if i ≡ 0 then x

else f (i−1) (nat_para (i−1) x f)

nil :: [a]

nil = []

cons :: a → [a] → [a]

cons = (:)

list_para :: [b] → a → (b → [b] → a → a) → a

list_para = λl x f → case l of [] → x

a:m → f a m (list_para m x f)

Although the above specification may look natural, it is not common among
GP systems solving the same kind of problems. Each time synthesizing a function,
they require a file with tens of lines written, which describes:

• which primitive functions/terminals to use,

• what constraints to satisfy,

• what fitness function to use as heuristic, and

• what values of the parameters to use.

This usually means that synthesizing a function requires more skills and labors
than those for implementing the function by hand. Unlike those systems, we
make only realistic requirements in order to create a useful system.

Language Currently the language is a Haskell subset without most of the syn-
tactic sugars. The Hindley-Milner type system can be supported, but for efficiency
reasons we prohibit compound data types containing functions such as [a->b],
(a, b->c), etc. Thus, for example, catamorphisms have to be defined in their
curried form, e.g.

curried_list_cata :: a → (b→a→a) → [b] → a

instead of
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list_cata :: (a, b→a→a) → [b] → a

where a tuple contains a function. (This conversion could be done internally, but
it is not yet done for now.) The program generator can deal with any data type
including user-defined ones in theory, but the interpreter does not support them
yet.

The system structure Figure 8.3 shows the rough structure of the implemented
system. The component library file is read beforehand, and when the user inputs
a constraint (and optionally a type), internally the system generates all the type-
correct expressions that can be expressed by the combinators in the component
library, and then, they are filtered by the constraint and the first expression is
printed.4 Note that currently there is no feedback from the interpreter result to
the generator — the generator literally exhausts all the expressions except those
which are semantically equivalent.

8.2.2 The old algorithm

This section describes the implementation used in the previous work [Kat04],
which did not elaborate on the implementation detail.

Monad for breadth-first search

Spivey [Spi00] devised a monad that abstracts and thus eases implementation of
breadth-first search algorithms. The ideas are:

• a value in the monad is defined as a stream of bags, representing a prioritized
bag of alternatives, where the n-th element of the stream represents the alter-
natives that reside at the depth n of the search tree and have the n-th priority,

• the depth n of the direct product of two of such monadic values can be defined
using the i-th bag of the first monadic value and the j-th of the second monadic
value for all the i and j combinations such that i+ j = n, and

• the direct sum of such monadic values can be defined as concatenation of bags
at the same depth.

Once this monad is defined, one can easily define breadth-first algorithms us-
ing the direct sum and product, or just by replacing the monad for depth-first
search in the source code of algorithms with the above one.

Preliminary experiments showed that using Spivey’s monad without change
for our algorithm causes huge consumption of the heap space. Changing the defi-
nition of the monad to recompute everything as the focus goes deeper in the search
tree solved the problem:

4Strictly speaking, such filtering is defined rather in a depth-wise manner, using the
Recomp monad introduced later.
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newtype Recomp a = Rc {unRc :: Int → Bag a}

instance Monad Recomp where

return x = Rc f where f 0 = [x]

f _ = []

Rc f >>= g = Rc (λn → [ y | i ← [0..n]

, x ← f i

, y ← unRc (g x) (n−i) ])

instance MonadPlus Recomp where

mzero = Rc (const [])

Rc f ‘mplus‘ Rc g = Rc (λi → f i ++ g i)

In order to represent alternative substitutions and infer consistent types dur-
ing search, Recomp monad is usually used in combination with monad trans-
former [LHJ95] for type inference defined as

newtype Monad m =>

TI m a = TI (Subst → Int → m (a, Subst, Int))

where Substs represent the current substitution and Ints represent the ID number
of the next fresh variable.

The expression construction

The old algorithm enumerates type-correct combinatory expressions that match
the requested type, and for representing lambda abstractions it heavily depends
on primitive SKIBC combinators. It works as follows: let us assume expres-
sions with type, say, ∀ a b. [a] → b → Int are requested. Firstly, the type vari-
ables, which are assumed to be universally quantified under the Hindley-Milner
type system, are replaced with non-existent type constructor names, say, G0 and
G1 for the above case. Then a function named unifyingExprs is invoked to
obtain the prioritized bags of expressions whose types and the requested type
[G0] → G1 → Int unify. It has the following type:

unifyingExprs

:: [(Expression,Type)] → Type → TI Recomp Expression

where the first argument represents variables and their types from the component
library, and the second represents the requested type.

For an intuitive explanation of the implementation of unifyingExprs, we use
simpler type as an example, namely Int, instead of [G0] → G1 → Int in order to
avoid complication. When expressions with type Int are to be generated, first
unifyingExprs generates a list of components whose return type and Int unify,
i.e., zero :: Int, succ :: Int → Int, nat_para :: Int → a → (Int → a → a) → a,
and list_para :: [b] → a → (b → [b] → a → a) → a if the component li-
brary shown in Section 8.2.1 is used as the primitive set. Let us call them head
candidates. Then, for each of their types, the algorithm applies the most general
unifier substitution, so in the case of list_para the substitution is [ a 7→ Int ]
and now list_para has type [b] → Int → (b → [b] → Int → Int) → Int.
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Then for each of its argument types, i.e. [b], Int, and b → [b] → Int → Int, the
algorithm generates a prioritized bag of expressions with the type, which can be
done by recursive call of unifyingExprs. Elements of the generated prioritized
bag are called spine candidates. Finally, all the combinations of the spine candi-
dates applied to the corresponding head candidates are generated as a prioritized
bag.

8.2.3 Improvements

de Bruijn lambda calculus

The old primitive combinatory approach is inefficient because the polymorphism
loosens the restrictions over the search domain, that is,

• expressions become redundant: polymorphic primitive combinators permit
combinatory expressions such as B C C which can also be implemented by
I, and such polymorphic combinators can appear everywhere including places
that have nothing to do with the program structure;

• undecided type variables make the shallow nodes in the search tree branch
many times: because type variables are replaced too late after being passed
through computations, branching is not restricted enough while computing
the program candidates, even in the cases where eventually at the leaf of the
search tree the algorithm finds out that there is no type-consistent expression
below that node;

• the complexity of the request type bloats rapidly as the program size increases.

A solution to the above problems could be use of director strings [KS88]. In
this paper we go further to search over the de Bruijn lambda expressions in the
η-long β-normal form equivalent to the expressions using director strings.

In the rest of this section we first present an unoptimized implementation of
the algorithm and then introduce efficiency improvements.

Unoptimized implementation

lambda expressions in de Bruijn notation can be defined as follows:

data Expression = Lambda Expression -- lambda abstraction
| X Int -- de Bruijn variable
| Expression :$ Expression -- function application
| Prim Int -- component

Types in the Hindley-Milner type system can be defined in the usual way,
except that the function type constructor (→) should receive special treatment:

data Type = TV TVar | TC TCon | TA Type Type | Type :−> Type
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i.e., a Type is either a type variable, a type constructor, application of another type
to a higher-order type, or a function type, where the function type constructor is
not considered as a higher-order type.

The type of unifyingExprs is updated to use the above definition of Expression.

unifyingExprs

:: [([Expression],Type)] →
[Type] → Type → TI Recomp [Expression]

This definition takes an additional argument avails::[Type] which represents
the types of usable de Bruijn variables, where the n-th of the avails represents
the type of the de Bruijn variable xn; Another change is that Expressions with the
same type are put together to form a list for reducing unnecessary type inference.
The effect of doing this becomes more obvious when we reorganize avails for
effective memoization as explained later.

When the requested type is a function type, the resulting expressions have to
be lambda abstracted as many times as its arity, because we generate η-expanded
forms. Since the abstracted variables are usable within the abstractions, we can
safely

• push the argument types at the beginning of avails in the reverse order,

• invoke unifyingExprs with the resulting avails as the first argument and
the return type of the requested type as the second argument, and

• lambda abstract each of the resulting expressions as many times as the arity of
the requested type.

Thus,

unifyingExprs prims avails (t0:−>t1)

= do result ← unifyingExprs prims (t0:avails) t1

return (map Lambda result)

For non-function types, the behavior of unifyingExprs is not very differ-
ent from that of the old algorithm. It makes head candidates, i.e., a set of the
expressions from the component library and avails whose return types and the
requested type reqret unify. Then, spine candidates are computed and combined
with the head candidates.

unifyingExprs prims avails reqret

= do (exprs,typ) ←
msum (zipWith (λ i t → return ([X i], t)) [0..] avails

++ map fresh prims)

unify (returnTypeOf typ) reqret

formSpine prims avails typ exprs

returnTypeOf (_:−>t) = returnTypeOf t

returnTypeOf t = t
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where unify :: MonadPlus m => Type → Type → TI m () extends the cur-
rent substitution with a most general unifier of its arguments if the two arguments
unify, or otherwise it returns mzero. fresh introduces fresh variables to univer-
sally quantified variables, which exist only in prims because we use Hindley-
Milner system:

fresh :: Monad m => (e,Type) → TI m (e,Type)

fresh (expr,typ) = do typ’ ← freshVariablesForForalls typ

return (expr,typ’)

The spine is formed by invoking unifyingExprs recursively using each ar-
gument type as the request type; then it returns the combination of the head with
the results of the recursive calls.

formSpine

:: [([Expression],Type)] →
[Type] → Type → [Expression] → TI Recomp [Expression]

formSpine prims avails (t:−>ts) funs

= delayTI (do args ← applyAndUnifyingExprs prims avails t

formSpine prims avails ts (liftM2 (:$) funs args))

formSpine prims avails _ funs = return funs

delayTI (TI f) = TI g where g s i = delay (f s i)

where applyAndUnifyingExprs applies the current substitution to types in
avails and the requested type.

applyAndUnifyingExprs prims avails t

= do subst ← getSubst

unifyingExprs prims (map (apply subst) avails)

(apply subst t)

Dealing with functions returning a type variable

The actual implementation of unifyingExprs has to be more complicated than
the above definition, because the return type of the head can be a type variable,
in which case the number of its arguments can be arbitrarily large. Our current
approach to this problem is rather naive, trying the infinite number of alternative
substitutions [X/a], [b → X/a], [b → c → X/a], [b → c → d → X/a], ... where X
is the requested return type, a is the return type of the head, and b,c, ... are fresh
variables.

Note that the above approach is quite inefficient in some ways, preventing
the algorithm from being applied to synthesis of larger programs. For example,
when the type variable a is replaced with an n-ary function type, by permuting
the arguments there are n! equivalent expressions. Currently we are fixing this
problem.

Also note that the arguments newly introduced by the substitutions have to be
used, or they introduce another redundancy. Because this can easily be tested by
seeing if all the fresh variables are replaced, the idea is already implemented in
the proposed algorithm.
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Memoization

The proposed algorithm often tries to synthesize the prioritized set of subexpres-
sions on requests of the same type. In such cases memoization often works.

Although lazy memoization that hashes the pointers of objects is quite com-
monly known in functional programming, for our algorithm it is not a good op-
tion, because pointer equality makes little sense here, and there is no need of lazy
memoization. We implemented a trie-based memoization by

• defining the data type of lazy infinite trie indexed by the arguments of the
memo function,

• putting the return value of the memo function at each leaf node of the trie, and

• looking up the trie instead of computing the function value whenever the return
value for any argument is required.

How to implement the generalized trie indexed by any data type is detailed in
[Hin00].5 When memoizing unifyingExprs, the trie is indexed by avails::[Type]
and reqret::Type, and has a Spivey’s monad instead of Recomp at each leaf
node. The type variable names in avails and reqret should be normalized be-
fore the look up, or e.g. ∀ a. [a] and ∀ b. [b] would be regarded as different types.

One problem is that although the same types are often requested, the set of
available variables change from time to time. Especially because the set of avail-
able variables increases monotonically as the position of the spine in question
goes deeper in the syntax tree, it is quite likely that the memoization rarely hits if
its argument is the naive combination of the requested return type and the set of
the available expressions.

A hint on this problem is: “when constructing a type-consistent expression
we are only interested in the types of the available variables, not those variables
themselves”, or in other words, “available variables of the same type are alterna-
tive in the sense of type-consistency.” Thus, instead of just looking up the memo
trie one should do the following to make memo trie hit more often and to save the
heap space for memoization:

• reorganize the set of available variables by classifying them by type, and as-
sign new variable number for each class,

• look up the return value from the trie using the reorganized list of such classes,
and

• replace all the variable numbers introduced above in the obtained expressions
with the available expressions.

5Note that a lazy infinite trie instead of a growing finite trie has to be used here, and
thus unlike the implementation in [Hin00] Patricia tree implementation (e.g. [OG98]) is
not fitted for the integer-indexed tries. However, because the only integers used as indexes
are the identification numbers for type variables and type constructors, which are usually
small below ten, usual lazy lists can be used instead of Patricia tree without outstanding
loss of efficiency.
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Because memoization costs the heap space, the values that are rarely looked
up should rather be recomputed than memoized. In the case of memoizing
unifyingExprs, it is effective to look up only small expressions from the memo
because they are requested many times.

Excluding unoptimized expressions

Every known optimization rule suggests when equivalent programs can be syn-
thesized, and helps to avoid such redundant synthesis. For example, from the
foldr/nil rule we know that foldr op x [] = x , and thus we should always avoid
synthesis of expressions including foldr ? ? [] pattern as a subexpression. Failure
to exploit such rules can cause a tremendous loss to our algorithm because with-
out doing so foldr ? ? [] pattern can appear everywhere even when the requested
type has nothing to do with lists at all.

Currently we use only the following heuristic to capture them:

• identify beforehand the library functions that consume some data type; whether
a function is a consumer or not is currently just guessed from its type;

• prohibit constants as the consumed strict parameter.

This is not enough to capture all the cases, and a lot of expressions which generate
and then consume lists are generated even when synthesizing an Int → Int func-
tion. However, there has been a long line of literature on identification of fusion
points by general rules (e.g. [OHIT97]), which could also be exploited for further
narrowing of the search space.

8.3 EFFICIENCY EVALUATION

Honestly speaking, the current system requires further improvements in efficiency
to become very useful. Although synthesis of simple functions consisting of sev-
eral primitive expressions requires only a few seconds, synthesis of functions con-
sisting of more than twelve primitive expressions usually requires more than a
minute, and may not finish the synthesis within an hour. Still, there is large room
for improvements by suppressing redundant expressions before trying heuristic
approaches. In fact, the efficiency keeps improving.

In addition to the old system, this research is related to GP algorithms such as
PolyGP [YC98], [Yu01] that is GP under polymorphic higher-order type system,
and ADATE [Ols95] that uses monomorphic first-order type system. Although it
is usually desirable to compare the proposed method with such algorithms, here
we do not compare efficiency with them for the reasons below.

Comparison with PolyGP should be unnecessary, because the comparison be-
tween PolyGP and the old system was made in [Kat04], where the latter showed
better results on all problems there, and thus if the current system shows improve-
ments from the old system on those problems, that should be enough.

The ADATE system has two releases: version 0.3 and 0.41, but unfortunately
on our computers both of them could not reproduce the interesting results from
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TABLE 8.1. Computation time (sec.) of the old and the new algorithms.

nth map length
computation time for the old system (real) 5.3 2.2 0.03

(user) 5.1 2.2 0.02
nth map length

computation time for the new system (real) 0.8 1.9 0.03
(user) 0.6 1.2 0.02

the literature. Version 0.3 is released only in the binary form, compiled with
legacy libraries, and thus is not runnable in our recent Linux systems. Although
Version 0.41 seems runnable, it does not show the reported efficiency even from
the sample specifications that come with the release — for example, the list sorting
problem, which can reportedly be solved in 1529 seconds on 200MHz Pentium
III, cannot be solved in five days on our 3GHz Pentium 4 machine. (In addition,
when given other problems than the samples, it aborts because of lack in error
handling.)

One possible reason of the above discouraging result might be as follows: al-
though in usual GP some descendants of parent individuals who are stuck at local
minima are dropped to minima at some interpolating positions by the crossover
operator, since ADATE lacks in any crossover it is likely that without good luck
in the random number seed it is difficult for any individual program to get out of
local minima.

It is unknown how often ADATE fails, when it should be restarted if it seems
to have failed, and how long it takes in average to obtain a desired result finally
after the failures.

Improvements from the old algorithm Table 8.1 shows the execution time of
synthesizing the same functions in the same environment as in [Kat04], i.e. on
Pentium4 2.00GHz machine with the Glasgow Haskell Compiler ver. 6.2 on
Linux 2.4.22, with the -O optimization flag.

For the new algorithm, we used an adapted version of the original library file
excluding SKIBC combinators and specialized variants of paramorphisms that are
no longer necessary. In other words, we added dec = subtract 1, head, and
tail to the example library file in Section 8.2.1.

In all the experiments performance improvements are observed.

8.4 DISCUSSIONS FOR FURTHER IMPROVEMENTS

8.4.1 Number of equivalent programs

Although the current version of the implemented system can synthesize many
interesting expressions consisted of around twelve components within a minute,
the efficiency has to be further improved for the serious purpose of reducing pro-
grammers’ burden. One question here for such improvement is how redundant
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the search space is, i.e., how many equivalent programs are tried. Whether we
should focus on eliminating equivalent programs or we should proceed to trying
heuristics depends on the answer to the question.

In order to tell a quite rough estimate of this amount, we tried a very lightweight
random testing for synthesis of take :: Int → [a] → [a]. For all the expressions
generated until the take function is obtained in f , we computed
(f 2 ”12332”, f 0 ”56789”, f 2 ”k”, f 0 ””), where the integers and the strings are
selected randomly while covering different cases. Then we compared the number
of expressions generated and that of different expressions generated. The former
was 251940, while the latter was 514. This result suggests potentially the synthe-
sis might be improved to about 500 times faster, and thus eliminating equivalent
programs further is still worth trying.

Another question is whether such equivalent programs can be eliminated only
by known optimization rules. One alternative approach might be to apply the same
kind of random testing to small expressions and eliminate or lower the priorities
of expressions that seem to be equivalent.

8.4.2 Should there be a timeout?

In the component libraries shown so far, expressions like fixpoint combinator that
cause programs to enter an infinite loop did not appear. For this reason, the current
version of the interpreter does without a timeout.

However, while the number of programs increases exponentially in the pro-
gram size at most, there is no limit in the interpretation time. We can verify this
fact by considering the program which takes n and applies (1+) to 0, say, 2(2n)

times. Hence, eventually the interpreter needs the timeout facility.

8.5 CONCLUSIONS

An algorithm that searches for the type-consistent functional programs from an
incomplete set of constraints in a systematic and exhaustive way is proposed.
It improves the efficiency of the previous algorithm by using de Bruijn lambda
calculus at the back end, memoization, and some rules to avoid multiple counting
of the equivalent expressions.
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> :set --quiet
> :load Library.hs
> \f -> f ["sldkfj","","324oj","wekljr3","43sld"] == "s3w4"
The inferred type is: (([] ([] Char)) -> ([] Char)).
Looking for the correct expression.
current program size = 1
current program size = 2
current program size = 3
current program size = 4
current program size = 5
current program size = 6
current program size = 7
current program size = 8
current program size = 9
Found!
(\ a -> list_para a nil (\ b c d -> list_para b d (\ e f g -> cons e d)))
1 sec in real,
0.28 seconds in CPU time spent.
> \f -> f (\x -> x+2) [1,2,3,4] == [3,4,5,6] ;; (a->a)->[a]->[a]
Looking for the correct expression.
current program size = 1
current program size = 2
current program size = 3
current program size = 4
current program size = 5
current program size = 6
current program size = 7
Found!
(\ a b -> list_para b nil (\ c d e -> cons (a c) e))
in real,
0.04 seconds in CPU time spent.
> \f -> f "qwerty" == "ytrewq"
The inferred type is: (([] Char) -> ([] Char)).
Looking for the correct expression.
current program size = 1
current program size = 2
current program size = 3
current program size = 4
current program size = 5
current program size = 6
current program size = 7
current program size = 8
Found!
(\ a -> list_para a (\ b -> b) (\ b c d e -> d (cons b e)) nil)
in real,
0.11 seconds in CPU time spent.
>

FIGURE 8.1. Sample user interaction. Program size is measured by the number of
function applications plus one.
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> :set --quiet
> \f -> f 3 "abcde" == ’c’
The inferred type is: (Int -> (([] Char) -> Char)).
Looking for the correct expression.
current program size = 1
current program size = 2
current program size = 3
current program size = 4
Found!
(\ a b -> hd (tl (tl b)))
in real,
0.000000000000 seconds in CPU time spent.
> \f -> (f 3 "abcde" == ’c’) && (f 4 "qwerty" == ’r’)
The inferred type is: (Int -> (([] Char) -> Char)).
Looking for the correct expression.
current program size = 1
current program size = 2
current program size = 3
current program size = 4
current program size = 5
current program size = 6
current program size = 7
current program size = 8
Found!
(\ a b -> hd (nat_para a nil (\ c d -> list_para d b (\ e f g -> f))))
in real,
0.23 seconds in CPU time spent.
>

FIGURE 8.2. Another sample user interaction. When the constraint is not strong
enough one can obtain wrong answers. Because the number of examples required
cannot be told before synthesis, one good policy is to start with a weak constraint and
then add examples for the failed cases lazily.
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FIGURE 8.3. The system structure
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Chapter 9

First-Class Open and Closed
Code Fragments
Morten Rhiger1

Abstract: Multi-stage languages that allow “evaluation under lambdas” are ex-
cellent implementation languages for programs that manipulate, specialize, and
execute code at runtime. In statically typed multi-stage languages, the existence of
staging primitives demands a sound distinction between open code, which may be
manipulated under lambdas, and closed code, which may be executed. We present
λ[ ], a monomorphic type-safe multi-staged language for manipulating code with
free identifiers. It differs from most existing multi-stage languages (such as, for
example, derivatives of MetaML) in that its dynamic fragment is not hygienic;
in other words, dynamic identifiers are not renamed during substitution. λ[ ] con-
tains a first-class run operation, supports mutable cells (and other computational
effects), and has decidable type inference. As such, it is a promising first step
towards a practical multi-stage programming language.

9.1 INTRODUCTION

Programs that manipulate code fragments abound. Compilers, interpreters, and
tools performing program optimization, program analysis, code refactoring, or
program specialization all accept code as input, produce code as output, or both.
In addition to these traditional examples, there is an increasing tendency to struc-
ture modern software development into two separate stages, namely (1) the imple-
mentation of generic software components and (2) the instantiation of these com-
ponents to parameters that suit a specific group of customers [2]. Such generic
software components can be implemented as multi-stage programs that produce
the customized, or specialized, software component when given a set of customer-
specific parameters. Therefore, program specialization techniques, and hence also

1Department of Computer Science, Roskilde University, P. O. Box 260, DK-4000
Roskilde, Denmark. E-mail: mir@ruc.dk. Homepage: www.ruc.dk/∼mir/.

127



programming languages that support code manipulation and generation, may play
an important role in the development of off-the-shelf application packages in the
future.

Program manipulation is one of the oldest disciplines of programming and has
been applied in practice at least since the development of the first Fortran compiler
in 1957 [1]. Due to the work by the artificial-intelligence community in the 1960s
and 1970s and the partial-evaluation community in the 1980s, quasi-quotations
have become the dominant program constructs supporting code generation [4].
As an example of their use, consider the following procedure implemented in the
Lisp-dialect Scheme [23].

(define (calcgen tax)
‘(define (calc amount) (* amount ,(/ tax 100))))

This procedure represents a generic tax-calculation module parameterized over
a tax rate. It uses a backquote (‘) to mark code that should be generated and a
comma (,) to mark a computation whose result should be inserted in the generated
code. When applied to a specific tax rate, it yields (the text of) a customized
function computing taxes of income amounts. For example, running (calcgen
13.5) yields (the text of) the program

(define (calc amount) (* amount 0.135))

The following common programming mistakes often arise in programs that
use quasi-quotation to generate code fragments.

• The staging of the program is incorrect either because a code fragment is used
as a value (for example as an argument to an arithmetic operation) or because
a compound value (such as a closure) is used as a code fragment [14, Section
2.4].

• The staging of the program is correct, but the generated code fragments are
illegal programs. This situation may arise if the generated programs contain
unbound variables. For example, if we had accidentally replaced the second
occurrence of amount by value in the above program, then the following
program containing an undefined variable would have been generated.

(define (calc amount) (* value 0.135))

These programming mistakes are purposely not caught by implementations of
Lisp and Scheme. In statically typed languages, additional errors may arise when
the generated program fragments are not well-typed. It is the goal of typesafe
multi-stage programming languages to catch all these mistakes during the type-
checking of the original multi-stage program [35].

9.1.1 Multi-stage languages

The field of multi-stage programming grew out of the studies of offline partial
evaluation conducted by Jones’s group in the late 1980s [5, 18, 22]. Offline par-
tial evaluation is a technique for specializing programs to parts of their inputs [11].
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In offline partial evaluation, a program subject to specialization is first binding-
time separated by differentiating between its static program parts (those that can
be “specialized away” when the static inputs are supplied) and dynamic program
parts (those that must remain in the specialized program). The binding-time sep-
arated program is then executed on its static inputs by interpreting the dynamic
program parts as code generating primitives. The output of such a multi-stage
program is (the text of) the specialized program. When viewed operationally like
this, a binding-time separated program is called a generating extension [17]. In
offline partial evaluation, binding times are statically verifiable properties that
play the same role as types in statically typed languages [30].

In the mid-1990s, Davies [15] and Davies and Pfenning [16] established the
logical connections between types and binding times. They showed that in the
two calculi λ© and λ�, images of, respectively, linear-time temporal logic and
the intuitionistic modal logic S4 under the Curry-Howard isomorphism, type cor-
rectness corresponds to binding-time correctness. These calculi extend the lambda
calculus with types ©τ and �τ of dynamic program parts of type τ. The primary
operational difference between the two calculi is that λ© allows manipulation
of open code fragments while λ� only allows manipulation of closed code frag-
ments. On the other hand, a first-class eval-like operation is definable in terms of
existing primitives in λ� while λ© becomes unsound in the presence of such an
operation. Neither of these calculi was designed to handle imperative features.

Following Davies and Pfenning, the multi-stage programming language com-
munity was established, one of whose aims was to combine the advantageous
features of λ© and λ� in one language. The effort of the community has led to
the development of multi-stage dialects of ML [8, 9, 38] and to much research
in static type systems for multi-stage languages [6, 7, 24, 29, 35–39]. All exist-
ing multi-stage languages extend a core type system with a type constructor of
code, similar in purpose to ©τ and �τ of λ© and λ�. The primary challenge that
multi-stage languages must address is probably the combination of open-code ma-
nipulations on one hand and a first-class run operation and imperative features on
the other. For example, the following staged-correct program should be rejected
since it evaluates an open code fragment x.

‘(lambda (x) ,(eval ‘x))

As another example, after evaluating the following stage-correct program, the cell
cell contains an open code fragment.

(define cell (box ‘1))
(define code ‘(lambda (x)

,(begin (set-box! cell ‘x)
‘x)))

The programmer may later attempt to introduce this code fragment under a binder
of its free variable x. A static type system should handle this situation correctly.
One approach to guarantee type safety under these circumstances has been to
count the number of occurrences of eval that “surrounds” a term [29]. However,
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this results in a system in which eval can not be lambda abstracted an hence is not
a first-class operation. Another approach have been to introduce a separate type of
second-class closed code [6]. The latest version of MetaOCaml [27], a multistage
dialect of the OCaml language, uses environment classifiers to decorate code type
with a symbolic classifier that constraints the variables that may occur free in a
code fragment [7].

9.1.2 Hygienic languages

Most existing multi-stage languages, such as those mentioned above, are hy-
gienic [25]. That is, dynamic (or future-stage) program parts are lexically scoped.
Hygiene is required to guarantee confluence for rewriting systems where a term
carrying free variables may be substituted under a binder for one of its free vari-
ables. Examples include rewriting systems that performs (full) β-normalization
(such as, e.g, partial evaluation [22], type-directed partial evaluation [12, 13],
Barendregt et al’s innermost spine reduction [3], and many other program opti-
mizations), macro systems, multi-stage languages, and variants of Scheme where
globally defined symbols are not reduced until they are needed (facilitating incre-
mentally defined mutually recursive procedures [23, Section 5.2.1]).

In macro systems and in multi-stage languages, lexically scoped dynamic
identifiers are often implemented by consistently renaming them using, e.g., a
gensym-like operation [26]. However, in the presence of side effects and of an
eval-like operation it has turned out to be somewhat challenging to design lan-
guages that account for renaming of dynamic identifiers in their type systems.

9.1.3 Contributions

Many of the existing multi-stage calculi mentioned above have evolved out of
studying the interplay between open and closed code. In the present work, we
propose to take non-hygiene as the primary principle for designing the multistage
language λ[ ]. We foresee that new statically typed multi-stage languages may
evolve out of studying the interplay between hygiene and non-hygiene.

In a non-hygienic language, future-stage variables are not renamed during sub-
stitutions. Therefore, a type system can explicitly mention free variables in the
type of dynamic code. In this article we hope to establish convincing evidences
demonstrating that the resulting type system treats code and stages in a fairly
straightforward manner.

An immediate and intriguing consequence of our design is that the type system
enables a uniform treatment of open and closed program fragments as first-class
data. The type system of λ[ ] extends the simply-typed lambda calculus with a
type [γ]τ of code. Intuitively, an expression has type [γ]τ if it evaluates to a code
fragment which has type τ in type environment γ. The language also contains
two staging primitives, ↑ and ↓, similar to those found in existing multi-stage
languages [15, 38] and to quasiquote and unquote in Lisp and Scheme [4].

In λ[ ], source identifiers occur in type environments and hence also in types.
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As an extreme example, the expression ↑ x is a legal closed program of type [x :
int]int; indeed ↑ x evaluates to the program fragment x which certainly has type
int in the type environment x : int. The type [x : int]int is not the principal type
of ↑x: This expression also has type, say, [x : bool,y : β]bool and neither of these
types appear to be more general than the other. This is mirrored by the fact that
neither x : int ` x : int nor x : bool,y : β ` x : bool are principal typings [21] of
the expression x. Principal types that involve code types use type environment
variables γ in a way similar to the use of traditional type variables. For example,
the principal type of ↑x is [x : α,γ]α; indeed ↑x evaluates to the program fragment
x which has type α in any type environment of shape x : α,γ. We can replace γ

and α by int and /0 (where /0 denotes the empty type environment) or by y : β and
bool to obtain the types shown above. We do not study principality in this article.
Since type environments occur in the type of code, the type of closed code of type
τ is easily expressible as [ /0]τ which we also write as [ ]τ. Therefore, the first-class
operation run has type [ ]τ → τ.

The type system alleviates some of the weaknesses of non-hygiene: It is some-
times possible to read from the types reported by the type system, the variables
that may be captured during evaluation. For example, the type [x : int,γ]τ → [γ]τ
of the term λc. ↑ (letx = 42 in ↓c), shows that this expression denotes a function
that maps code into code, and that any free x’s in the input will be captured in the
output.

9.1.4 Outline

The rest of this article is organized as follows. We present the terms, type system,
and operational semantics of λ[ ] in Section 9.2. In Section 9.3 we present a proof
of type safety. In Section 9.4 we demonstrate the capabilities of the proposed
language using examples. In Section 9.5 we outline related work in the area of
multi-stage programming and in Section 9.6 we conclude.

9.2 OPEN AND CLOSED CODE FRAGMENTS

In this section we introduce the syntax, the type system, and an operational se-
mantics of the monomorphic multi-stage language λ[ ]. We let x, y, z range over an
infinite set V of identifiers. Furthermore we let i range over the set Z of integers
and n over the set N = {0,1, · · ·} of natural numbers. Finally, ` ranges over an
infinite supply of names of reference cells.

The terms of λ[ ] are defined by the following grammar.

e,E ∈ EXPR ::= i | x | λx.e | e1 e2 — pure fragment
| ↑e | ↓e | lift(e) | run(e) — staged fragment
| ref(e) | get(e) | set(e1,e2) | ` — imperative fragment

The staging operations ↑, ↓, and run correspond, respectively, to quasiquote (‘),
unquote (,), and eval in Lisp and Scheme. The expression lift(e) injects the
value of e into a future stage. There is no general lifting operation in Lisp and
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Scheme; instead, the value of any “self-evaluating” constant expression is treated
(by eval) as the constant expression itself [23]. The operations ref, get, and
set correspond to the operations ref, !, and := on reference cells in Standard
ML [28] and box, unbox, and set-box! in many implementations of Scheme.
Since the language presented in this article is monomorphic, there are no polymor-
phic references requiring special treatment [40, 41]. Terms containing reference
cells ` may arise during reduction (as a result of creating new cells using ref) but
reference cells are not intended to occur in source terms.

9.2.1 Type system

The types of the multi-stage language consist of base types (here restricted to one
type int of integers), function types, types of reference cells, and a type [γ]τ for
code fragments of type τ in type environment γ.

τ ∈ TYPE ::= int | τ1 → τ2 | τ ref | [γ]τ
γ ∈ ENV ::= /0 | x : τ,γ

Γ ::= γ1, · · · ,γn
Σ ::= `1 : τ1, · · · , `n : τn

In the type rules and during type checking, a stack Γ contains type environ-
ments mapping free identifiers to types. Free static identifiers are at the bottom
of the stack (to the left) while dynamic identifiers are further towards the top (to
the right). In contrast to traditional typed lambda calculi, type environments not
only exists during type checking but may also appear in the final types assigned
to terms. During type checking, a location typing Σ assigns types to locations.

In the presentation of the type system, we represent type environments uni-
formly as elements of the inductively defined set ENV. In order to achieve princi-
pality [20], however, care must be taken to identify type environments that contain
re-ordered bindings rather than only syntactically identical type environments.
For example, the term ↑( f x) can be assigned both of the types [x : τ1, f : τ1 → τ2]t2
and [ f : τ1 → τ2,x : τ1]τ2 both of which we treat as principal type of ↑( f x). Tech-
nically, we define an equivalence relation on types and type environment that take
re-ordering of bindings into account and we work on the equivalence classes in-
duced by this relation instead of directly on the inductively defined elements.

Definition 9.1. We obtain a finite mapping V→ TYPE, here expressed as a subset
of V×TYPE, from a type environment as follows.

/0 = {}
x : τ,γ = {(x,τ)}∪{(y,τ ′) ∈ γ | y 6= x}

This definition guarantees that γ is a function, i.e., a subset of V×TYPE for which
(x,τ1) ∈ γ and (x,τ2) ∈ γ implies τ1 = τ2. Note that bindings to the left take
precedence over bindings to the right.

We treat two type environments as equivalent if they denote the same finite
mapping. This notion of equivalence is extended to types as follows.
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Definition 9.2 (Type equivalence). We define an equivalence relation ≈ on types
and type environments as follows.

dom(γ1) = dom(γ2)
For all x ∈ dom(γ1),γ1(x)≈ γ2(x)

γ1 ≈ γ2 int≈ int

τ1 ≈ τ2 τ
′
1 ≈ τ

′
2

τ1 → τ
′
1 ≈ τ2 → τ

′
2

τ ≈ τ
′

τ ref ≈ τ
′ ref

γ1 ≈ γ2 τ1 ≈ τ2

[γ1]τ1 ≈ [γ2]τ2

Note that ≈ is indeed an equivalence relation. We extend this notion of equiv-
alence to stacks of type environments and to location typings as follows: Two
stacks of type environments (two location typings) are equivalent, written Γ1 ≈ Γ2
(Σ1 ≈ Σ2) if their elements are point-wise equivalent.

In the rest of this article, we make frequent use of the construction of finite
mappings from type environments and of the equality relation. For example, a
γ that satisfies the equation [x : τ1,γ]τ ≈ [y : τ2,γ]τ for x 6= y, must have {x,y} ⊆
dom(γ) and must already assign τ1 to x and τ2 to y. In other words, we must have
γ ≈ x : τ1,y : τ2,γ

′ for some γ ′.
We use the following notational conventions. We omit the empty type envi-

ronment /0 and write, for example, [ ]τ and [x : τ]τ instead of [ /0]τ and [x : τ, /0]τ.
The code-type constructor [−]− has higher precedence than function arrows, so,
for example, the types [ ]τ → τ and ([ ]τ)→ τ are identical and both different from
[ ](τ → τ). We write ε for the empty stack of type environments. We allow access
to elements at both end of the stack; thus γ,Γ denotes a stack with γ at the bottom
while Γ,γ denotes a stack with γ at the top. The operation |− | yields the height
of a stack of type environments, i.e., |γ1, · · · ,γn|= n and |ε|= 0.

To account for reference cells that occur in terms, a typing judgment carries a
finite mapping Σ from names of reference cells to types. (Harper calls such map-
pings location typings to distinguish them from variable typings, or type environ-
ments, mapping variables to types [19].) We write Σ(`) for the type associated
with ` in Σ and we use the construction Σ[` : τ] to denote the result of updating
location typing Σ with a binding of ` to τ. In other words, (Σ[` : τ])(`) = τ and
(Σ[` : τ])(`′) = Σ(`′) if ` 6= `′. We write Σ ⊆ Σ′ if and only if for any ` ∈ dom(Σ),
` ∈ dom(Σ′) and Σ(`)≈ Σ′(`).

The type system for the monomorphic languages is given in Figure 9.1. A
typing judgment Γ ; Σ′ ` e : τ may be read “under the stack of type environments
Γ and given a location typing Σ, the term e has type τ.” (A type system for the
subset of the language without mutable references can be obtained simply by
removing all occurrences of Σ in the first eight rules in Figure 9.1 and discarding
the remaining four rules.)

Modulo type equivalence, the premise of the rule 3 in Figure 9.1 may be read
simply as Γ,(x : τ ′,γ) ; Σ ` e : τ. Rule 8 states that running a term of code type [ ]τ
yields a value of type τ. It is intended to guarantee that only closed and well-typed
code fragments can be executed at runtime. The symbol run may be abstracted,
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Pure fragment:

Γ,γ ; Σ ` i : int
(1)

Γ,γ ′ ; Σ ` e : τ γ
′ ≈ (x : τ

′,γ)
Γ,γ ; Σ ` λx.e : τ

′ → τ
(3)

γ(x)≈ τ

Γ,γ ; Σ ` x : τ
(2)

Γ,γ ; Σ ` e1 : τ2 → τ Γ,γ ; Σ ` e2 : τ2

Γ,γ ; Σ ` e1 e2 : τ
(4)

Staged fragment:

Γ,γ ; Σ ` e : τ

Γ ; Σ `↑e : [γ]τ
(5)

Γ ; Σ ` e : τ

Γ ; Σ ` lift(e) : [γ]τ
(7)

Γ ; Σ ` e : [γ]τ
Γ,γ ; Σ `↓e : τ

(6)
Γ ; Σ ` e : [ ]τ

Γ ; Σ ` run(e) : τ
(8)

Imperative fragment:

Σ(`)≈ τ

Γ ; Σ ` ` : τ ref
(9)

Γ ; Σ ` e : τ ref

Γ ; Σ ` get(e) : τ
(11)

Γ ; Σ ` e : τ

Γ ; Σ ` ref(e) : τ ref
(10)

Γ ; Σ ` e1 : τ ref Γ ; Σ ` e2 : τ

Γ ; Σ ` set(e1,e2) : τ
(12)

FIGURE 9.1. Typing rules for the monomorphic, multi-stage language λ[ ].

as in λx.run(x), but, like any other function, the result of type [ ]τ → τ cannot be
used polymorphically in this monomorphic language. Note that stages participate
in relating the definition and the uses of a variable in the sense that identifiers at
different stages are always different. For example, the expression λx. ↑x contains
two distinct identifiers of name x, the rightmost unbound. This expressions is se-
mantically equivalent to λy. ↑x. Similarly, λx. ↓x contains two distinct identifiers
of name x. (This expression is not equivalent to λy. ↓ x, however.) Therefore,
(λx. ↓x)E does not reduce to ↓E.

To justify the definition of type equivalence, we show that if a term can be
given a type then it can also be given any equivalent type.

Lemma 9.3. Assume Γ1 ; Σ1 ` e : τ1. If furthermore Γ1 ≈ Γ2, Σ1 ≈ Σ2, and τ1 ≈ τ2
then Γ2 ; Σ2 ` e : τ2.

Proof. By induction on the derivation of Γ1 ; Σ1 ` e : τ1.

9.2.2 Operational semantics

We present a left-to-right, call-by-value, small-step operational semantics of λ[ ]

below. The key difference between this semantics and the semantics of hygienic
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multi-stage languages is that substitution does not rename bound dynamic identi-
fiers. (It does rename bound static identifiers, however.)

We first need the following auxiliary definition.

Definition 9.4 (Free variables). FV(e)n denotes the set of free static identifiers
in the stage-n term e.

FV(i)n = {}
FV(x)0 = {x} FV(x)n+1 = {}

FV(λx.e)0 = FV(e)0\{x} FV(λx.e)n+1 = FV(e)n+1
FV(e1 e2)n = FV(e1)n∪FV(e2)n

FV(↑e)n = FV(e)n+1 FV(↓e)n+1 = FV(e)n
FV(lift(e))n = FV(e)n FV(run(e))n = FV(e)n
FV(ref(e))n = FV(e)n FV(`)n = {}

FV(set(e1,e2))n = FV(e1)n∪FV(e2)n FV(get(e))n = FV(e)n

In order to treat the manipulation of identifiers carefully, substitution is defined
as a relation on raw terms rather than as a function on α-equivalence classes as
follows. As in traditional λ-calculi, fresh static identifiers are introduced to avoid
capturing free static variables.

Definition 9.5 (Substitution).

i{E/x}n = i x{E/x}0 = E
y{E/x}0 = y, for x 6= y y{E/x}n+1 = y

(λx.e){E/x}0 = λx.e
(λz.e){E/x}n+1 = λz.e{E/x}n+1

(λz.e){E/x}0 = λy.e{y/z}0{E/x}0,
for z 6= x and y /∈ (FV(e)0\{z})∪FV(E)0

(e1 e2){E/x}n = (e1{E/x}n)(e2{E/x}n)

(↑e){E/x}n = ↑e{E/x}n+1 (↓e){E/x}n+1 = ↓e{E/x}n
(lift(e)){E/x}n = lift(e{E/x}n) (run(e)){E/x}n = run(e{E/x}n)
(ref(e)){E/x}n = ref(e{E/x}n) (get(e)){E/x}n = get(e{E/x}n)

`{E/x}n = ` (set(e1,e2)){E/x}n = set(e1{E/x}n,e2{E/x}n)

Restricted to operate on static terms (e.g., considering only the operation
−{−/−}0), this notion of substitution is capture avoiding and coincides with the
traditional substitution for the λ-calculus. For the dynamic fragment, identifiers
are dynamically bound in that they are not renamed during substitution. For ex-
ample, substituting ↑y for the free static identifier x in ↑(λy. ↓x) does not rename
the bound dynamic identifier y: (↑(λy. ↓x)){↑y/x}0 =↑(λy. ↓↑y).

The following two fundamental properties of the simply-typed λ-calculus also
hold for λ[ ].

Lemma 9.6 (Weakening). Assume γ,Γ ; Σ` e : τ. If furthermore x /∈ FV(e)|Γ| then

(x : τ
′,γ),Γ ; Σ ` e : τ.
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Pure (and staged) fragment:

V `n i
(1)

V `n+1 e
V `n↑e

(6)

V `n+1 x
(2)

V `n+1 e
V `n+2↓e

(7)

V `0 λx.e
(3)

V `n+1 e
V `n+1 lift(e)

(8)

V `n+1 e
V `n+1 λx.e

(4)
V `n+1 e

V `n+1 run(e)
(9)

V `n+1 e1 V `n+1 e2

V `n+1 e1 e2
(5)

Imperative (and staged) fragment:

V `n `
(10)

V `n+1 e
V `n+1 get(e)

(12)

V `n+1 e
V `n+1 ref(e)

(11)
V `n+1 e1 V `n+1 e2

V `n+1 set(e1,e2)
(13)

FIGURE 9.2. Values of λ[ ].

Proof. By induction on the derivation of γ,Γ ; Σ ` e : t.

Lemma 9.7 (Substitution). If (x : τ ′,γ),Γ ; Σ ` e : t and γ,Γ ; Σ ` e′ : τ ′ then

γ,Γ ; Σ ` e{e′/x}|G| : t.

Proof. By induction on the derivation of x : τ ′,γ),Γ ; Σ ` e : τ. Lemma 9.6 (Weak-
ening) is used in the case (x : τ ′,γ) ; Σ ` λz.e : τ ′′ → τ for z 6= x.

Figure 9.2 characterizes the values that can result from evaluating a stage-n
term. In the following section we show that only these values can be the final
results of evaluation well-typed λ[ ]-terms. But first we need a representation of
stores (or memories) and a characterization of when a store is well-typed with
respect to a location type Σ: A store σ is a finite mapping from reference cells to
values at stage 0 (i.e., expressions e satisfying V `0 e). We write σ[` := e] for the
operation that updates the store σ with a binding of ` to e.

Definition 9.8. A store σ has location type Σ, written σ : Σ, if for any ` ∈ dom(σ),

/0 ; Σ ` σ(`) : Σ(`).

The left-to-right, call-by-value, small-step operational semantics is presented
in Figure 9.3. In this figure, rule 1 represents evaluation under (dynamic) lambdas.
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Contextual rules:

S `n+1 〈e,σ〉 −→ 〈e′,σ ′〉
S `n+1 〈λx.e,σ〉 −→ 〈λx.e′,σ ′〉

(1)
S `n+1 〈e,σ〉 −→ 〈e′,σ ′〉
S `n 〈↑e,σ〉 −→ 〈↑e′,σ ′〉

(4)

S `n 〈e1,σ〉 −→ 〈e′1,σ ′〉
S `n 〈e1 e2,σ〉 −→ 〈e′1 e2,σ

′〉
(2)

S `n 〈e,σ〉 −→ 〈e′,σ ′〉
S `n+1 〈↓e,σ〉 −→ 〈↓e′,σ ′〉

(5)

V `n e1 S `n 〈e2,σ〉 −→ 〈e′2,σ ′〉
S `n 〈e1 e2,σ〉 −→ 〈e1 e′2,σ

′〉
(3)

S `n 〈e,σ〉 −→ 〈e′,σ ′〉
S `n 〈lift(e),σ〉 −→ 〈lift(e′),σ ′〉

(6)

S `n 〈e,σ〉 −→ 〈e′,σ ′〉
S `n 〈run(e),σ〉 −→ 〈run(e′),σ ′〉

(7)

S `n 〈e,σ〉 −→ 〈e′,σ ′〉
S `n 〈ref(e),σ〉 −→ 〈ref(e′),σ ′〉

(8)
S `n 〈e,σ〉 −→ 〈e′,σ ′〉

S `n 〈get(e),σ〉 −→ 〈get(e′),σ ′〉
(9)

S `n 〈e1,σ〉 −→ 〈e′1,σ ′〉
S `n 〈set(e1,e2),σ〉 −→ 〈set(e′1,e2),σ ′〉

(10)

V `n e1 S `n 〈e2,σ〉 −→ 〈e′2,σ ′〉
S `n 〈set(e1,e2),σ〉 −→ 〈set(e1,e′2),σ

′〉
(11)

Reduction rules:

V `0 e2

S `0 〈(λx.e1)e2,σ〉 −→ 〈e1{e2/x},σ〉
(12)

V `1 e
S `0 〈run(↑e),σ〉 −→ 〈e,σ〉

(16)

V `0 e ` /∈ dom(σ)
S `0 〈ref(e),σ〉 −→ 〈`,σ[` := e]〉

(13)
V `0 e

S `0 〈lift(e),σ〉 −→ 〈↑e,σ〉
(17)

S `0 〈get(`),σ〉 −→ 〈σ(`),σ〉
(14)

V `1 e
S `1 〈↓(↑e),σ〉 −→ 〈e,σ〉

(18)

V `0 e
S `0 〈set(`,e),σ〉 −→ 〈e,σ[` := e]〉

(15)

FIGURE 9.3. Left-to-right, call-by-value, small-step operational semantics.

9.3 SYNTACTIC TYPE SOUNDNESS

The following auxiliary result states that a well-typed value at stage n + 1 is also
a well-typed expression at stage n. In that respect, it serves the same purpose as
the demotion operation defined for MetaML [29, 36].

Lemma 9.9 (Demotion). If /0,Γ,γ ; Σ ` e : τ and V `|Γ|+1 e then Γ,γ ; Σ ` e : τ.

Proof. By induction on the derivation of /0,Γ,γ ; Σ ` e : τ.
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We also need the following result stating that a well-typed value at stage 0 is
also a well-typed value at stage 1.

Lemma 9.10 (Promotion at stage 0). If /0 ; Σ` e : τ and V `0 e then /0,γ ; Σ` e : τ.

Proof. Since e is a value at stage 0, e is closed. Hence, by repeating Lemma 9.6
(Weakening), γ ; Σ ` e : τ. Then we also have (by a straightforward separate
lemma) that /0,γ ; Σ ` e : τ as required.

Lemma 9.11 (Subject reduction). Assume /0,Γ ; Σ ` e : τ. If furthermore σ : Σ

and S `|Γ| 〈e,σ〉 −→ 〈e′,σ ′〉 then there exists a location typing Σ′ ⊇ Σ such that
σ ′ : Σ′ and /0,Γ ; Σ′ ` e′ : τ.

Proof. By induction on the derivation of S `|Γ| 〈e,σ〉 −→ 〈e′,σ ′〉. Lemmas 9.7
(Substitution), 9.9 (Demotion), and 9.10 (Promotion) are used used in the cases
where the redex is (λx.e1)e2, run(↑e), and lift(e), respectively.

Lemma 9.12 (Well-typed terms are not stuck). If /0,Γ ; Σ ` e : τ then either

1. V `|G| e, or

2. for any σ : Σ there exists e′ and σ ′ such that S `|Γ| 〈e,σ〉 −→ 〈e′,σ〉.

Proof. By induction on the derivation of /0,Γ ; Σ ` e : τ. A simple type inversion
result stating that abstractions are the only values of type τ1 → τ2, that reference
cells are the only values of type τ ref, and that quoted terms are the only values
of type [γ]τ is used in the three cases corresponding to the reduction rules 12, 16,
and 18 in Figure 9.3.

Definition 9.13 (Evaluation). We define an iterated reduction relation inductively
as follows.

There are no e′,σ ′ such that S `0 〈e,σ〉 −→ 〈e′,σ ′〉
〈e,σ〉 −→∗ 〈e,σ〉

S `0 〈e,σ〉 −→ 〈e′′,σ ′′〉 〈e′′,σ ′′〉 −→∗ 〈e′,σ ′〉
〈e,σ〉 −→∗ 〈e′,σ ′〉

We define a partial function EXPR → EXPR as follows.

eval(e) =

{
e′, if 〈e, /0〉 −→∗ 〈e′,σ ′〉 and V `0 e′

undefined, otherwise

The following main result states that a well-typed term either diverges or
yields a value of the same type.

Theorem 9.14 (Strong type safety). If /0 ; /0 ` e : t and eval(e) = e′ then V `0 e′

and there exists a location typing Σ such that /0 ; Σ ` e′ : t.
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9.4 EXAMPLES

Generating extensions can be implemented in λ[ ] using the staging primitives ↑
and ↓. The specialized programs output by generating extensions can be evaluated
using run to produce first-class functions. As an example, consider the following
implementation of the linear integer exponentiation function.2 (The logarithmic
exponentiation function is subject to the same considerations [14] but is left out
for pedagogical purposes.)

fun exp(n,x) = if n = 0 then 1 else x× (exp(n−1,x))

A generating extension of this function is a program that, given an integer n, yields
(the text of) a program that computes xn. A standard binding-time analysis of the
exponentiation function with respect to n being static and x dynamic reveals that
the integer constant 1 and the multiplication are dynamic. The rest of the pro-
gram is static. These annotations give rise to following the staged exponentiation
function.

fun expbta(n,x) = if n = 0 then ↑1 else ↑(↓x× ↓(expbta(n−1,x)))

This function has principal type int× [γ]int → [γ]int. It will be used at type
int× [z : int]int → [z : int]int below. The generating extension is defined as the
following two-level eta-expansion of the staged exponentiation function.

fun expgen(n) = ↑(λz. ↓(expbta(n,↑z)))

The generating extension expgen has type int→ [ ](int→ int). This type shows
that expgen produces closed code fragments. For example, expgen(3) has type
[ ](int → int) and evaluates to the program fragment λz.z× z× z× 1. This code
fragment can be executed using the operator run. Hence, run(expgen(3)) has type
int→ int and yields a first-class cube operation.

The example above is a standard application of multi-stage languages but it
demonstrates an important practical property of multi-stage programs: By erasing
the staging primitives one obtains the original unstaged program. In order to
apply this principle to programs using mutable cells, the multi-stage program must
be able to store open code fragments in mutable cells. Consider the following
imperative exponentiation function of type int× int→ int.

fun impexp(n,x) =
let val m = ref n

val r = ref 1
in while !m > 0 do (r := x×!r ; m :=!m−1);

!r
end

A multi-stage version of this functions looks as follows.
2In the rest of this paper, we use an ML-like notation. We also assume the existence of

recursion, conditionals, monomorphic let-expressions, tuples, etc. These extensions are
straightforward to add to λ[ ].
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fun impexpbta(n,x) =
let val m = ref n

val r = ref ↑1
in while !m > 0 do (r :=↑(↓x× ↓!r) ; m :=!m−1);

!r
end

This multi-stage function has principal type int× [γ]int → [γ]int. It is, as in the
functional case above, used at type int× [z : int]int → [z : int]int below. The
generating extension is defined as above, using a two-level eta-expansion of the
binding-time annotated function.

fun impexpgen(n) = ↑(λz. ↓(impexpbta(n,↑z)))

In the function impexpbta, the variable r has type ([z : int]int) ref. During spe-
cialization, this cell contains the sequence of dynamic terms 1, z× 1, z× z× 1,
z× z× z×1, etc.

The two examples above motivate the introduction of a general two-level eta
expansion

fun eta( f ) = ↑(λz. ↓( f ↑z))

of principal type ([z : α,γ ′]α → [z : β,γ]δ)→ [γ](β → δ). The expression

eta(λx.expbta(3,x))

of type [ ](int→ int) yields the (text of the) cube function. Note that eta can also be
used “non-hygienically:” Given f = λc. ↑(λz. ↓c) of principal type [z : α,γ ′]β →
[γ ′](α → β), eta( f ) evaluates to a representation of the code fragment λz.λz.z in
which the inner lambda (supplied by f ) shadows the outer lambda (supplied by
eta). It is (correctly) assigned the principal type [γ ′](α → β → β).

9.5 RELATED WORK

Pfenning and Elliott have used higher-order abstract syntax as a representation
of programs (and other entities) with bound variables [32]. Higher-order abstract
syntax also enables an embedded lightweight type system for programs that gen-
erate code fragments [33].

The observation that a naive hygienic multi-stage programming language be-
comes unsound in the presence of a first-class eval operation is due to Rowan
Davies, in the context of MetaML. Safe type systems have been designed that
combine types for open code and types for closed code and that contain an eval-
like operation [6, 29]. We have avoided the complexities of these languages by
taking non-hygiene as a primary design principle of λ[ ].

Chen and Xi take a first-order unstaged abstract syntax as the starting point
for defining the multi-stage type-safe calculus λ

+
code [10]. Like λ[ ], λ

+
code con-

tains a type of code parameterized by a type environment. λ
+
code is defined by a

translation into λcode, a nameless unstaged extension of the second-order poly-
morphic λ-calculus. In contrast, λ[ ] is a direct extension of the simply-typed
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λ-calculus, it does not require polymorphism, and it does not assume de Bruijn-
indexed terms. More seriously, dynamic λ

+
code-terms must be closed. For exam-

ple, the term letc =↑ (x,y) in(λx.λy. ↓ c,λy.λx. ↓ c) is ill-typed in λ
+
code (because

the dynamic sub-term ↑(x,y) contains free identifiers) but has type

[γ](τ1 → τ2 → τ1× τ2)× [γ](τ2 → τ1 → τ1× τ2)

in λ[ ].
DynJava, an extension of Java with dynamic compilation, is another type-safe

multi-stage language that builds on the principles of non-hygiene [31]. DynJava
has only two stages and its code type eliminator (@, which corresponds to ↓ of
λ[ ]) only applies to variables. Furthermore, DynJava is an extension of an imper-
ative, explicitly typed language whereas λ[ ] is an extension of an implicitly typed,
higher-order language.

Recently, Kim, Yi, and Calcagno have presented a multi-stage calculus which
extends λ[ ] with polymorphism and with additional support for type-safe genera-
tion of fresh dynamic identifiers during substitution [24]. Therefore, their calculus
supports both hygienic and non-hygienic manipulation of code fragments. They
prove the type system sound with respect to a big-step operational semantics.
They also prove that type-inference is decidable.

9.6 CONCLUSIONS

Well-designed languages balance concise specifications against expressive fea-
tures and safe execution. We have demonstrated that by liberating a multi-stage
language from the demand of hygiene, it can be given a type system that safely
handles mutable cells (and other effects) and a first-class run operation while re-
quiring only a minimum of extra type constructors and type rules. We have thus
provided a first step towards a practical higher-order multi-stage programming
language whose type system supports the implementation of run-time specializa-
tion and execution and other partial evaluation techniques. The extensions pro-
posed by Kim, Yi, and Calcagno [24] take our work one step further and answers
to our vision that useful multi-stage languages may grow out of the study of the
interplay between hygiene and non-hygiene.
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Rolim, and Emo Welzl, editors, Proceedings of the 27th International Colloquium on
Automata, Languages and Programming, number 1853 in Lecture Notes in Computer
Science, pages 25–36, Geneva, Switzerland, July 2000. Springer-Verlag.

[7] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like inference for classi-
fiers. In David A. Schmidt, editor, Proceedings of the Thirteenth European Sympo-
sium on Programming, number 2986 in Lecture Notes in Computer Science, pages
79–93, Barcelona, Spain, March 2004. Springer-Verlag.

[8] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. A bytecode-
compiled, type-safe, multi-stage language. Technical report, Rice University, 2002.

[9] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing
multi-stage languages using ASTs, gensym, and reflection. In Frank Pfenning and
Yannis Smaragdakis, editors, Proceedings of the Second International Conference
on Generative Programming and Component Engineering, number 2830 in Lecture
Notes in Computer Science, pages 57–76, Erfurt, Germany, September 2003.

[10] Chiyan Chen and Hongwei Xi. Meta-programming through typeful code representa-
tion. Journal of Functional Programming, 15(6):797–835, 2005.

[11] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In Susan L.
Graham, editor, Proceedings of the Twentieth Annual ACM Symposium on Principles
of Programming Languages, pages 493–501, Charleston, South Carolina, January
1993. ACM Press.

[12] Olivier Danvy. Type-directed partial evaluation. In Steele [34], pages 242–257.

[13] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Torben Æ. Mo-
gensen, and Peter Thiemann, editors, Partial Evaluation – Practice and Theory; Pro-
ceedings of the 1998 DIKU Summer School, number 1706 in Lecture Notes in Com-
puter Science, pages 367–411, Copenhagen, Denmark, July 1998. Springer-Verlag.

[14] Olivier Danvy. Programming techniques for partial evaluation. In Friedrich L. Bauer
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Chapter 10

Comonadic functional
attribute evaluation
Tarmo Uustalu1 and Varmo Vene2

Abstract: We have previously demonstrated that dataflow computation is co-
monadic. Here we argue that attribute evaluation has a lot in common with
dataflow computation and admits a similar analysis. We claim that this yields
a new, modular way to organize both attribute evaluation programs written di-
rectly in a functional language as well as attribute grammar processors. This is
analogous to the monadic approach to effects. In particular, we advocate it as a
technology of executable specification, not as one of efficient implementation.

10.1 INTRODUCTION

Following on from the seminal works of Moggi [Mog91] and Wadler [Wad92],
monads have become a standard tool in functional programming for structuring
effectful computations that are used both directly in programming and in language
processors. In order to be able to go also beyond what is covered by monads,
Power and Robinson [PR97] invented the concept of Freyd categories. Hughes
[Hug00] proposed the same, unaware of their work, under the name of arrow
types. The showcase application example of Freyd categories/arrow types has
been dataflow computation, which, for us, is an umbrella name for various forms
of computation based on streams or timed versions thereof and characterizes, in
particular, languages like Lucid [AW85], Lustre [HCRP91] and Lucid Synchrone
[CP96].

In two recent papers [UV05a, UV05b], we argued that, as far as dataflow
computation is concerned, a viable alternative to Freyd categories is provided by
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something considerably more basic and standard, namely comonads, the formal
dual of monads. In fact, comonads are even better, as they explicate more of
the structure present in dataflow computations than the laxer Freyd categories.
Comonads in general should be suitable to describe computations that depend on
an implicit context. Stream functions as abstractions of transformers of discrete-
time signals turn out to be a perfect example of such computations: the value of
the result stream in a position of interest (the present of the result signal) may
depend not only on the value in the argument stream in the same position (the
present of the argument signal), but also on other values in it (its past or future
or both). We showed that general, causal and anticausal stream functions are de-
scribed by comonads and that explicit use of the appropriate comonad modular-
izes both stream-based programs written in a functional language and processors
of stream-based languages.

In this paper, we demonstrate that attribute evaluation from attribute grammars
admits a similar comonadic analysis. In attribute grammars [Knu68], the value of
an attribute at a given node in a syntax tree is defined by the values of other
attributes at this and other nodes. Also, an attribute definition only makes sense
relative to a suitable node in a tree, but nodes are never referenced explicitly in
such definitions: context access happens solely via operations for relative local
navigation. This hints that attribute grammars exhibit a form of dependence on an
implicit context which is quite similar to that present in dataflow programming.
We establish that this form of context-dependence is comonadic and discuss the
implications. In particular, we obtain a new, modular way to organize attribute
evaluation programs, which is radically different from the approaches that only
use the initial-algebraic structure of tree types.

Similarly to the monadic approach to effects, this is primarily to be seen as an
executable specification approach. As implementations, our evaluators will nor-
mally be grossly inefficient, unless specifically fine-tuned, but as specifications,
they are of a very good format: they are concise and, because of their per-attribute
organization, smoothly composable (in the dimension of composing several at-
tribute grammars over the same underlying context-free grammar). Systematic
transformation of these reference evaluators into efficient implementations ought
to be possible, we conjecture, but this is a different line of work. This is highly
analogous to the problem of efficient compilation of dataflow programs (not very
hard in the case of causal languages, but a real challenge in the case of languages
that support anticipation).

We are not aware of earlier comonadic or arrow-based accounts of attribute
evaluation. But functional attribute evaluation has been a topic of research for
nearly 20 years, following on from the work of Johnsson [Joh87]. Some of this
work, concerned with per-attribute compositional specification of attribute gram-
mars, is mentioned in the related work section below.

The paper is organized as follows. In Section 10.2, we overview our co-
monadic approach to dataflow computation and processing of dataflow languages.
In Section 10.3, we demonstrate that the attribute evaluation paradigm can also be
analyzed comonadically, studying separately the simpler special case of purely
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synthesized attributed grammars and the general case. We also provide a discus-
sion of the strengths and problems with the approach. Section 10.4 is a brief re-
view of the related work whereas Section 10.5 summarizes. Most of the develop-
ment is a carried out in the programming language Haskell, directly demonstrating
that the approach is implementable (on the level of executable specifications). The
code is Haskell 98 extended with multiparameter classes.

10.2 COMONADS AND DATAFLOW COMPUTATION

We begin by mentioning the basics about comonads to then quickly continue with
a dense review of comonadic dataflow computation [UV05a, UV05b].

Comonads are the formal dual of monads, so acomonadon a categoryC is
given by a mappingD : |C | → |C | (by |C | we mean the collection of the objects
of C ) together with a|C |-indexed familyε of mapsεA : DA→ A (counit), and
an operation−† taking every mapk : DA → B in C to a mapk† : DA → DB
(coextension operation) such that

1. for anyk : DA→ B, εB◦k† = k,

2. εA
† = idDA,

3. for anyk : DA→ B, ` : DB→C, (`◦k†)† = `†◦k†.

Any comonad(D,ε,−†) defines a categoryCD where|CD|= |C | andCD(A,B)=
C (DA,B), (idD)A = εA, `◦D k = `◦k† (coKleisli category) and an identity on ob-
jects functorJ : C → CD whereJ f = f ◦ εA for f : A→ B.

CoKleisli categories make comonads relevant for analyzing notions of context-
dependent function. If the objectDA is viewed as the type of contextually situated
values ofA, a context-dependent function fromA to B is a mapDA→B in the base
category, i.e., a map fromA to B in the coKleisli category. The counitεA : DA→A
discards the context of its input whereas the coextensionk† : DA→DB of a func-
tion k : DA → B essentially duplicates it (to feed it tok and still have a copy
left). The functionJ f : DA→ B is a trivially context-dependent version of a pure
function f : A→ B.

In Haskell, we can define comonads as a type constructor class.

class Comonad d where
counit :: d a -> a
cobind :: (d a -> b) -> d a -> d b

Some examples are the following:

• DA = A, the identity comonad,

• DA = A×E, the product comonad,

• DA = StrA = νX.A×X, the streams comonad (νdenoting the greatest fixed-
point operator)
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The stream comonadStr is defined as follows:

data Stream a = a :< Stream a -- coinductive

instance Comonad Stream where
counit (a :< _) = a
cobind k d@(_ :< as) = k d :< cobind k as

(Note that we denote the cons constructor of streams by :<.)
This comonad is the simplest one relevant for dataflow computation. Intu-

itively, it is the comonad of future. In a value of typeStrA∼= A×StrA, the first
component of typeA is the main value of interest while the second component of
typeStrA is its context. In our application, the first is the present and the second
is the future of anA-signal. The coKleisli arrowsStrA→ B represent those func-
tionsStrA→ StrB that are anticausal in the sense only the present and future of
an input signal can influence the present of the output signal. The interpretation of
these representations as stream functions is directly provided by the coextension
operation:

class SF d where
run :: (d a -> b) -> Stream a -> Stream b

instance SF Stream where
run k = cobind k

A very important anticausal function is unit anticipation (cf. the ’next’ opera-
tor of dataflow languages):

class Antic d where
next :: d a -> a

instance Antic Stream where
next (_ :< (a’ :< _)) = a’

To be able to represent general stream functions, where the present of the out-
put can depend also on the past of the input, we must employ a different comonad
LS. It is defined byLSA = ListA×StrA whereListA = µX.1+X×A is the type
of (snoc-)lists overA (µ denoting the least fixedpoint operator). The idea is that
a value ofLSA∼= ListA× (A×StrA) can record the past, present and future of
a signal. (Notice that while the future of a signal is a stream, the past is a list: it
must be finite.) Note that, alternatively, we could have definedLSA= StrA×Nat
(a value in a context is the entire history of a signal together with a distinguished
time instant). This comonad is Haskell-defined as follows. (Although in Haskell
there is no difference between inductive and coinductive types, in the world of
sets and functions the definition of lists below should be read inductively.)

data List a = Nil | List a :> a -- inductive
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data LS a = List a :=| Stream a

instance Comonad LS where
counit (_ :=| (a :< _)) = a
cobind k d = cobindL k d :=| cobindS k d

where cobindL k (Nil :=| _ ) = Nil
cobindL k (az :> a :=| as) = cobindL k d’ :> k d’

where d’ = az :=| (a :< as)
cobindS k d@(az :=| (a :< as)) = k d :< cobindS k d’

where d’ = az :> a :=| as

(We denote the snoc constructor of lists by :>and pairing of a list and a
stream by :=|. Now the visual purpose of the notation becomes clear: in values
of typeLS A, both the snoc constructors of the list (the past of a signal) and the
cons constructors of the stream (the present and future) point to the present which
follows the special marker := |.)

The interpretation of coKleisli arrows as stream functions and the representa-
tion of unit anticipation are defined as follows:

instance SF LS where
run k as = bs where (Nil :=| bs) = cobind k (Nil :=| as)

instance Antic LS where
next (_ :=| (_ :< (a’ :< _))) = a’

With theLS comonad it is possible to represent also the important parameter-
ized causal function of initialized unit delay (the ‘followed-by’ operator):

class Delay d where
fby :: a -> d a -> a

instance Delay LS where
a0 ‘fby‘ (Nil :=| _) = a0
_ ‘fby‘ (_ :> a’ :=| _) = a’

Relevantly for “physically” motivated dataflow languages (where computa-
tions input or output physical dataflows), it is also possible to characterize causal
stream functions as a coKleisli category. The comonadLV is defined byLVA =
ListA×A, which is obtained fromLSA∼= ListA× (A× StrA) by removing the
factor of future. This comonad is Haskell-implemented as follows.

data LV a = List a := a

instance Comonad LV where
counit (_ := a) = a
cobind k d@(az := _) = cobindL k az := k d

where cobindL k Nil = Nil
cobindL k (az :> a) = cobindL k az :> k (az := a)
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instance SF LV where
run k as = run’ k (Nil :=| as)

where run’ k (az :=| (a :< as))
= k (az := a) :< run’ k (az :> a :=| as)

instance Delay LV where
a0 ‘fby‘ (Nil := _) = a0
_ ‘fby‘ ((_ :> a’) := _) = a’

Various stream functions are beautifully defined in terms of comonad opera-
tions and the additional operations of anticipation and delay. Some simple ex-
amples are the Fibonacci sequence, summation and averaging over the immediate
past, present and immediate future:

fib :: (Comonad d, Delay d) => d () -> Integer
fib d = 0 ‘fby‘

cobind (\ e -> fib e + (1 ‘fby‘ cobind fib e)) d

sum :: (Comonad d, Delay d) => d Integer -> Integer
sum d = (0 ‘fby‘ cobind sum d) + counit d

avg :: (Comonad d, Antic d, Delay d) => d Integer -> Integer
avg d = ((0 ‘fby‘ d) + counit d + next d) ‘div‘ 3

In a dataflow language, we would write these definitions like this.

fib = 0 fby (fib+(1 fby fib))
sum x = (0 fby sum x)+x

avg x = ((0 fby x)+x+nextx)/3

In [UV05b], we also discussed comonadic processors of dataflow languages,
in particular the meaning of higher-order dataflow computation (the interpretation
of lambda-abstraction); for space reasons, we cannot review this material here.

10.3 COMONADIC ATTRIBUTE EVALUATION

We are now ready to describe our comonadic approach to attribute evaluation.
Attribute evaluation is similar to stream-based computation in the sense that there
is a fixed (skeleton of a) datastructure on which computations are done. We will
build on this similarity.

10.3.1 Attribute grammars

An attribute grammar as a specification of an annotation (attribution) of a syntax
tree [Knu68] is a construction on top of a context-free grammar. To keep the
presentation simple and to circumvent the insufficient expressiveness of Haskell’s
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type system (to be discussed in Sec. 10.3.5), we consider here a fixed context-free
grammar with a single nonterminalSwith two associated production rules

S −→ E

S −→ SS

whereE is a pseudo-nonterminal standing for some set of terminals.
An attribute grammar extends its underlying context-free grammar with at-

tributes and semantic equations. These are attached to the nonterminals and the
production rules of the context-free grammar. A semantic equation determines
the value of an attribute at a node in a production rule application via the values
of other attributes at other nodes involved. We explain this on examples. Let us
use superscripts̀, b and subscriptsL, R as a notational device to tell apart the
different occurrences of the nonterminalS in the two production rules as follows:

S` −→ E

Sb −→ Sb
LSb

R

Now we can, for example, equip the nonterminalS with two boolean attributes
avl, locavl and a natural-number attributeheight and govern them by semantic
equations

S`.avl = tt

Sb.avl = Sb
L.avl∧Sb

R.avl∧Sb.locavl

S`.locavl = tt

Sb.locavl = |Sb
L.height−Sb

R.height| ≤ 1

S`.height = 0

Sb.height = max(Sb
L.height,Sb

R.height)+1

This gives us an attribute grammar for checking if anS-tree (a syntax tree whose
root is anS-node) is AVL.

We can also, for example, equip the nonterminalS with natural-number at-
tributesnumin,numoutand subject them to equations

Sb
L.numin = Sb.numin+1

Sb
R.numin = Sb

L.numout+1

S`.numout = S`.numin

Sb.numout = Sb
R.numout

This is a grammar for pre-order numbering of the nodes of a tree. The attribute
numincorresponds to the pre-order numbering, the attributenumoutis auxiliary.

We can see that the value of an attribute at a node can depend on the values
of that and other attributes at that node and the children nodes (as in the case of
avl, locavl, height, numout) or on the values of that and other attributes at that
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node, the parent node and sibling nodes (numin). Attributes of the first kind are
called synthesized. Attributes of the second kind are called inherited. Attribute
grammars are classified into purely synthesized attribute grammars and general
attribute grammars (where there are also inherited attributes).

The problem of attribute evaluation is to compute the full attribution of a given
grammatical tree (given the values of the inherited attributes at the root), but one
may of course really care about selected attributes of selected nodes. E.g., in the
case of AVLness, we are mostly interested in the value ofavl at the root, while, in
the case of pre-order numbering, our concern is the attributenumin.

The type of attributed grammaticalS-trees is

TreeE A = µX.A× (E +X×X)
∼= A× (E +TreeE A×TreeE A)

whereA is the type ofS-attributes of interest (aggregated into records). In Haskell,
we can define:

data Tree e a = a :< Trunk e (Tree e a)

data Trunk e x = Leaf e | Bin x x

(Now :< is a constructor for making an attributed tree.)
An attribute evaluator in the conventional sense is a tree transformer of type

TreeE1→ TreeE AwhereA is the type of records of allS-attributes of the gram-
mar.

10.3.2 Comonadic purely synthesized attributed grammars

In the case of a purely synthesized attribute grammar, the local value of the defined
attribute of an equation can only depend on the local and children-node values of
the defining attributes. This is similar to anticausal stream-computation. The
relevant comonad is the comonad structure onTreeE. The idea that the second
component of a value inTreeE A∼= A× (E +TreeE A×TreeE A) (the terminal
at a leaf or the subtrees rooted by the children of a binary node) is obviously the
natural datastructure to record the course of an attribute below a current node and
in a purely synthesized grammar the local value of an attribute can only depend on
the values of that and other attributes at the given node and below. The comonad
structure is Haskell-defined as follows, completely analogously to the comonad
structure onStr.

instance Comonad (Tree e) where
counit (a :< _) = a
cobind k d@(_ :< as) = k d :< case as of

Leaf e -> Leaf e
Bin asL asR -> Bin (cobind k asL) (cobind k asR)

The coKleisli arrows of the comonad are interpreted as tree functions by the
coextension operation as in the case ofStr. Looking up the attribute values at
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the children of a node (which is needed to define the local values of synthesized
attributes) can be done via an operation similar to ‘next’.

class TF e d where
run :: (d e a -> b) -> Tree e a -> Tree e b

instance TF e Tree where
run = cobind

class Synth e d where
children :: d e a -> Trunk e a

instance Synth e Tree where
children (_ :< as) = case as of

Leaf e -> Leaf e
Bin (aL :< _) (aR :< _) -> Bin aL aR

10.3.3 Comonadic general attributed grammars

To be able to define attribute evaluation for grammars that also have inherited
attributes (so the local value of an attribute can be defined through the values
of other attributes at the parent or sibling nodes), one needs a notion of context
that can store also store the upper-and-surrounding course of an attribute. This is
provided by Huet’s generic zipper datastructure [Hue97], instantiated for our tree
type constructor. The course of an attribute above and around a given node lives
in the type

PathE A = µX.1+X× (A×TreeE A+A×TreeE A)
∼= 1+PathE A× (A×TreeE A+A×TreeE A)

of path structures, which are snoc-lists collecting the values of the attribute at the
nodes on the path up to the root and in the side subtrees rooted by these nodes.
A zipperconsists of a tree and a path structure, which are the subtree rooted by
a node and the path structure up to the root of the global tree, and records both
the local value and lower and upper-and-surrounding courses of an attribute: we
define

ZipperE A = PathE A×TreeE A
∼= PathE A× (A× (E +TreeE A×TreeE A))

(Notice thatZipperE is analogous to the type constructorLS, which is the zipper
datatype for streams.) In Haskell, we can define:

data Path e a = Nil | Path e a :> Turn a (Tree e a)
type Turn x y = Either (x, y) (x, y)

data Zipper e a = Path e a :=| Tree e a
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(:> is a snoc-like constructor for path structures. := | is the pairing of a path
structure and a tree into a zipper.)

The zipper datatype supports movements both up and sideways as well as
down in a tree (redoingandundoingthe zipper). The following upward focus
shift operation in Haskell returns the zippers corresponding to the parent and the
right or left sibling of the local node (unless the local node is the root of the global
tree). (So we have put the parent and sibling functions into one partial function,
as both are defined exactly when the local node is not the global root. This will
be convenient for us.)

goParSibl :: Zipper e a
-> Maybe (Turn (Zipper e a) (Zipper e a))

goParSibl (Nil :=| as) = Nothing
goParSibl (az :> Left (a, asR) :=| as)

= Just (Left (az :=| (a :< Bin as asR),
(az :> Right (a, as) :=| asR)))

goParSibl (az :> Right (a, asL) :=| as)
= Just (Right (az :=| (a :< Bin asL as),

(az :> Left (a, as) :=| asL)))

The downward focus shift operation returns the terminal, if the local node is a
leaf, and the zippers corresponding to the children, if the local node is binary.
(We use a Trunk structure to represent this information.)

goChildren :: Zipper e a -> Trunk e (Zipper e a)

goChildren (az :=| (a :< Leaf e)) = Leaf e
goChildren (az :=| (a :< Bin asL asR))

= Bin (az :> Left (a, asR) :=| asL)
(az :> Right (a, asL) :=| asR)

This does not seem to have been mentioned in the literature, but the type con-
structorZipperE is a comonad (just asLS is; in fact, the same is true of all zipper
type constructors). Notably, the central operation of coextension is beautifully de-
finable in terms of the operations goParSibl and goChildren. This is only natural,
since a function taking a tree with a focus to a local value is lifted to a tree-valued
function by applying it to all possible refocussings of an input tree, and that is
best organized with the help of suitable operations of shifting the focus.

instance Comonad (Zipper e) where
counit (_ :=| (a :< _)) = a
cobind k d = cobindP k d :=| cobindT k d

where cobindP k d = case goParSibl d of
Nothing -> Nil
Just (Left (d’, dR)) ->

cobindP k d’ :> Left (k d’, cobindT k dR)
Just (Right (d’, dL)) ->

cobindP k d’ :> Right (k d’, cobindT k dL)
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cobindT k d = k d :< case goChildren d of
Leaf e -> Leaf e
Bin dL dR -> Bin (cobindT k dL) (cobindT k dR)

Of course,ZipperE is the comonad that structures general attribute evaluation,
similarly toLS in the case of general stream-based computation.

The interpretation of coKleisli arrows as tree functions and the operation for
obtaining the values of an attribute at the children are implemented essentially as
for TreeE.

instance TF e Zipper where
run k as = bs where Nil :=| bs = cobind k (Nil :=| as)

instance Synth e Zipper where
children (_ :=| (_ :< as)) = case as of

Leaf e -> Leaf e
Bin (aL :< _) (aR :< _) -> Bin aL aR

For the children operation, we might even choose to reuse the implementation
we already had forTreeE:

instance Synth e Zipper where
children (_ :=| d) = children d

But differently fromTreeE, the comonadZipperE makes it possible to also
query the parent and the sibling of the current node (or to see that it is the root).

class Inh e d where
parSibl :: d e a -> Maybe (Turn a a)

instance Inh e Zipper where
parSibl (Nil :=| _) = Nothing
parSibl (_ :> Left (a, aR :< _) :=| _) =

Just (Left (a, aR))
parSibl (_ :> Right (a, aL :< _) :=| _) =

Just (Right (a, aL))

Notice that the locality aspect of general attribute grammars (attribute values
at a node are defined in terms of values of this and other attributes at neighbor-
ing nodes) is nicely supported by the local navigation operations of the zipper
datatype. What is missing in the navigation operations is support for uniformity
(the value of an attribute is defined in the same way everywhere in a tree). But this
is provided by the coextension operation of the comonad structure on the zipper
datatype. Hence, it is exactly the presence of the comonad structure that makes
the zipper datatype so fit for explaining attribute evaluation.

10.3.4 Examples

We can now implement the two example attribute grammars. This amounts to
rewriting the semantic equations as definitions of coKleisli arrows from the unit
type.
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The first grammar rewrites to the following three (mutually recursive) def-
initions parameterized over a comonad capable of handling purely synthesized
attribute grammars (so they can be instantiated for bothTreeE andZipperE).

avl :: (Comonad (d e), Synth e d) => d e () -> Bool
avl d = case children d of

Leaf _ -> True
Bin _ _ -> bL && bR && locavl d

where Bin bL bR = children (cobind avl d)

locavl :: (Comonad (d e), Synth e d) => d e () -> Bool
locavl d = case children d of

Leaf _ -> True
Bin _ _ -> abs (hL - hR) <= 1

where Bin hL hR = children (cobind height d)

height :: (Comonad (d e), Synth e d) => d e () -> Integer
height d = case children d of

Leaf _ -> 0
Bin _ _ -> max hL hR + 1

where Bin hL hR = children (cobind height d)

The second grammar is rewritten completely analogously, but the definitions
require a comonad that can handle also inherited attributes (so that, of our two
comonads, onlyZipperE qualifies). Notice that the definition of the root value of
the inherited attributenuminbecomes part of the grammar description here.

numin :: (Comonad (d e), Synth e d, Inh e d)
=> d e () -> Int

numin d = case parSibl d of
Nothing -> 0
Just (Left _) -> ni + 1

where Just (Left (ni, _ )) = parSibl (cobind numin d)
Just (Right _) -> noL + 1

where Just (Right (_, noL)) = parSibl (cobind numout d)

numout :: (Comonad (d e), Synth e d, Inh e d)
=> d e () -> Int

numout d = case children d of
Leaf e -> numin d
Bin _ _ -> noR

where Bin _ noR = children (cobind numout d)

We can conduct some tests, which give the desired results:

> let t = () :< Bin
(() :< Bin

(() :< Leaf 100)
(() :< Bin

(() :< Leaf 101)

156



(() :< Leaf 102)))
(() :< Leaf 103)

> run (\ (d :: Tree Int ()) -> (avl d, height d)) t
(False,3) :< Bin

((True,2) :< Bin
((True,0) :< Leaf 100)
((True,1) :< Bin

((True,0) :< Leaf 101)
((True,0) :< Leaf 102)))

((True,0) :< Leaf 103)

> run (\ (d :: Zipper Int ()) -> (numin d, numout d)) t
(0,6) :< Bin

((1,5) :< Bin
((2,2) :< Leaf 100)
((3,5) :< Bin

((4,4) :< Leaf 101)
((5,5) :< Leaf 102)))

((6,6) :< Leaf 103)

We observe that the definitions of the coKleisli arrows match the semantic
equations most directly. That is, a simple attribute evaluator is obtained just by
putting together a tiny comonadic core and a straightforward rewrite of the seman-
tic equations. It is obvious that the rewriting is systematic and hence one could
easily write a generic comonadic attribute evaluator for attribute grammars on our
fixed context-free grammar. We refrain from doing this here.

10.3.5 Discussion

We now proceed to a short discussion of our proposal.
1. Our approach to attribute evaluation is very denotational by its spirit and

our code works thanks to Haskell’s laziness. There is no need for static planning
of the computations based on some analysis of the grammar, attribute values are
computed on demand. In particular, there is no need for static circularity checking,
the price being, of course, that the evaluator will loop when a computation is
circular.

But this denotational-semantic simplicity has severe consequences on effi-
ciency. Unless some specific infrastructure is introduced to cache already com-
puted function applications, we get evaluators that evaluate the same attribute
occurrence over and over. It is very obvious from our example of AVL-hood:
evaluation oflocavl at some given node in a tree takes evaluation ofheightat all
nodes below it. If we need to evaluatelocavl everywhere in the tree, we should
evaluateheighteverywhere below the root just once, but our evaluator will com-
pute the height of each node anew each time it needs it. The very same prob-
lem is present also in the comonadic approach to dataflow computation. Simple
comonadic code illustrates the meaning of dataflow computation very well, but
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to achieve efficiency, one has to put in more care. Luckily, there are methods for
doing so, ranging from memoization infrastructures to total reorganization of the
evaluator based on tupling and functionalization transformations. We refrain from
discussing these methods in the present paper.

2. Instead of relying on general recursion available in Haskell, we could for-
bid circularity on the syntactic level (essentially saying that an attribute value at a
node cannot be defined via itself). This is standard practice in attribute grammar
processors, but for us it means we can confine ourselves to using structured re-
cursion schemes only. For purely synthesized attribute grammars, where attribute
evaluation reduces to upward accumulations, we presented a solution based on
structured recursion in our SFP ’01 paper [UV02]. Obviously here is an analogy
to syntactic circularity prevention in dataflow languages, which is also standard
practice.

3. In the examples, we used incomplete pattern matches (in the where-clauses).
These are guaranteed to never give a run-time error, because the coextension op-
eration and the operations children and parSibl remember if a focal node is leaf
or parent, root, left child or right child. But the type system is unaware of this.
This aesthetic problem can be remedied with the generalized algebraic datatypes
(GADTs) of GHC [PJWW04] (in combination with rank-2 polymorphism). For
example, trees and trunks can be classified into leaves and parents at the type level
by defining

data Tree ty e a = a :< Trunk ty e (UTree e a)
data UTree e a = forall ty . Pack (Tree ty e a)

data Leaf
data Bin

data Trunk ty e x where
Leaf :: e -> Trunk Leaf e x
Bin :: x -> x -> Trunk Bin e x

An analogous refinement is possible for the path structure datatype. Under this
typing discipline, our pattern matches are complete.

These finer datatypes do however not solve another aesthetic problem. When
trees and trunks have been made leaves or parents at the type level, it feels unnat-
ural to test this at the level of values, as is done in the case-constructs of our code.
One would instead like a typecase construct. This situation arises because our
types Leaf and Bin should really be values from a doubleton type, but in Haskell
value-indexed types have to be faked by type-indexed types. A real solution would
be to switch to a dependently typed language and to use inductive families.

4. We finish by remarking that GADTs or inductive families are also needed to
deal with multiple nonterminals in a generic attribute grammar processor capable
of handling any underlying context-free grammar. For a fixed context-free gram-
mar, mutually recursive Haskell datatypes are enough (one attributed syntax tree
datatype for every nonterminal). But in the case where the underlying context-
free grammar becomes a parameter, these syntax tree datatypes must be indexed
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by the corresponding nonterminals, whereby each datatype in the indexed family
has different constructors. In this situation, GADTs become inevitable.

10.4 RELATED WORK

The uses of coKleisli categories of comonads to describe notions of computation
have been relatively few. The idea has been put forward several times, e.g., by
Brookes and Geva [BG92] and by Kieburtz [Kie99], but never caught on because
of a lack of compelling examples. The example of dataflow computation seems
to appear first in our papers [UV05a, UV05b].

The Freyd categories / arrow types of Power and Robinson [PR97] and Hughes
[Hug00] have been considerably more popular, see, e.g., [Pat03, Hug05] for over-
views. The main application is reactive functional programming.

From the denotational point of view, attribute grammars have usually been
analyzed proceeding from the initial algebra structure of tree types. The central
observation is that an attribute evaluator is ultimately a fold (if the grammar is
purely synthesized) or an application of a higher-order fold (if it also has inher-
ited attributes) [CM79, May81]; this definition of attribute evaluation is straight-
forwardly implemented in a lazy functional language [Joh87, KS86]. Gibbons
[Gib93, Gib00] has specifically analyzed upward and downward accumulations
on trees.

Finer functional attribute grammar processors depart from the denotational
approach; an in-depth analysis of the different approaches to functional attribute
grammar evaluation appears in Saraiva’s thesis [Sar99]. Some realistic functional
attribute grammar processors are Lrc [KS98] and UUAG [BSL03].

One of the salient features of our approach is the per-attribute organization of
the evaluators delivered. This is not typical to functional attribute grammar eval-
uators. But decomposability by attributes has been identified as desirable in the
works on “aspect-oriented” attribute grammar processors by de Moor, Peyton-
Jones and Van Wyk [dMPJvW99] and de Moor, K. Backhouse and Swierstra
[dMBS00]. These are clearly related to our proposal, but the exact relationship
is not clear at this stage. We conjecture that use of the comonad abstraction is
orthogonal to the techniques used in these papers, so they might even combine.

The zipper representation of trees with a distinguished position is a piece of
folklore that was first documented by Huet [Hue97]. Also related are container
type constructors that have been studied by McBride and his colleagues [McB00,
AAMG05].

The relation between upward accumulations and the comonad structure on
trees was described by in our SFP ’01 paper [UV02]. In that paper, we also
discussed a basic theorem about compositions of recursively specified upward
accumulations. We are not aware of any work relating attribute evaluation to
comonads or arrow types.
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10.5 CONCLUSIONS AND FUTURE WORK

We have shown that attribute evaluation bears a great deal of similarity to dataflow
computation in that computation happens on a fixed datastructure and that the
result values are defined uniformly throughout the structure with the help of a
few local navigation operations to access the contexts of the argument values.
As a consequence, our previous results on comonadic dataflow computation and
comonadic processing of dataflow languages are naturally transported to attribute
evaluation. We are very pleased about how well comonads explicate the funda-
mental locality and uniformity characteristics of attribute definitions that initial
algebras fail to highlight. In the case of the zipper datatype, we have seen that the
only thing needed to make it directly useable in attribute evaluation is to derive an
explicit coextension operation from the focus shift operations.

In order to properly validate the viability of our approach, we plan to develop a
proof-of-concept comonadic processor of attribute grammars capable of interpret-
ing attribute extensions of arbitrary context-free grammars. The goal is to obtain a
concise generic reference specification of attribute evaluation. We predict that the
limitations of Haskell’s type system may force a solution that is not as beautiful
than it should ideally be, but GADTs will provide some help.

We also plan to look into systematic ways for transforming the comonadic
specifications into efficient implementations (cf. the problem of efficient compi-
lation of dataflow languages). For purely synthesized attribute grammars, a rel-
atively straightforward generic tupling transformation should solve the problem,
but the general case will be a challenge.
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Chapter 11

Generic Generation of the
Elements of Data Types
Pieter Koopman1, Rinus Plasmeijer1

Abstract: An automatic test system for logical properties represents universal
quantified properties by Boolean functions. Such a function is evaluated for a
large number of values: the test suite. Automatic test systems generate a test
suite of the desired size, evaluate the predicate for the values in this test suite, and
generate a verdict based on the test results.

The automatic test system Gast uses a generic algorithm that generates test
suites for arbitrary data types in a systematic way. Such a generic algorithm has
as advantages that the generation of values of a new type can be derived automat-
ically, instead of being hand coded. The systematic generation has as advantages
that it allows proofs by exhaustive testing, and it is more efficient since test values
are not duplicated.

In this paper we present a new generic algorithm for the systematic generation
of elements of data types that is much more elegant, efficient and flexible than the
existing algorithm. We also show a variant that yields the elements in pseudo-
random order. Both algorithms are very efficient and lazy; only the elements
actually needed are generated.

11.1 INTRODUCTION

In this paper we describe an elegant generic algorithm that yields a list of all
elements of an arbitrary data type. Such an algorithm was needed in our model
based test tool Gast [9, 10, 20]. Also in other application areas it is handy or
necessary to be able to generate instances of an arbitrary type. For instance, data
generation is used in Generic Editor Components [1] to create an instance for the

1Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, Toernooiveld 1, Nijmegen, 6525 ED, The Netherlands;
Phone: +031 (0)24-3652643; Email: pieter@cs.ru.nl, rinus@cs.ru.nl
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arguments of a chosen constructor. Such a constructor can be chosen interactively
by the user as instance of an algebraic data type.

Automatic test systems like QuickCheck [3] and Gast represent a predicate of
the form ∀x ∈ T.P(x) by a function P : : T → Bool. The test systems evaluates
this function for a fixed number N of elements of type T : the test suite. An
automatic test system has to generate the test suite. If the system generates an
element tc of type T such that P(tc) yields False , the test system has found a
counterexample: the property does not hold. When the property holds for all
generated test data, the property passes the test. Properties can be proven by
exhaustive testing if the list contains every instance of the type and the size of
type (i.e. the number of elements in the type)

In this paper we concentrate on the generation of test suites. A popular way to
generate test suites is by some pseudo-random algorithm. Experience shows that a
well chosen pseudo-random generation and sufficient number of tests most likely
covers all interesting cases and hence discovers counterexamples if they exists.
Tools like QuickCheck and TorX [17] use pseudo-random generation of test suites.
Drawbacks of pseudo-random test data generation are that one does not know
when all elements of a finite type have been tested, and that elements might be
duplicated in the test suite. This implies that proofs by exhaustive testing will pass
unnoticed. Repetition of tests is useless in a referential transparent framework, the
test result will always be identical.

In a functional programming context it is appealing to define a type class for
the test suites. Based on the type of the predicate, the type system will select
the appropriate instance of this class and hence the right test suite. This idea is
used by QuickCheck. The test engineer has to provide an instance of this class
for every type used in the tests. QuickCheck provides a special purpose test data
generation language for defining test suites. Even with this language it is pretty
tricky to define good test suites, especially for recursive data types. A proper test
suite contains the nonrecursive instances of such a type, as well as finite recursive
instances of the type.

Using generic programming techniques we can free the test engineer from the
burden of defining a test suite for each type used in the tests. In generic program-
ming manipulations of data types are specified on a general representation of the
data types instead of the data types themselves. The generic system takes care
of the conversion between the actual types and their generic representation and
vice versa. Instead of specifying the manipulations for each and every data type,
the manipulations are now specified once and for all on the generic representation
of the data type. There are various variants of generic programming for func-
tional programming described. Most implementations of generics in functional
programming languages are based on the ideas of Ralf Hinze [6, 7]. There are
various implementations in Haskell, like Generic Haskell [5] and the scrap your
boilerplate approach [12, 13]. In this paper we will use generic programming in
Clean [14] as introduced by Alimarine [2].

The automatic test system Gast has always contained a generic algorithm for
the systematic generation of test suites [9], but here we present a new algorithm.
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This algorithm is much more elegant than the old one, it is much easier for a test
engineer to deviate from the default algorithm if that would be desired, and the
new algorithm is orders of magnitude faster.

The advantages of systematic test data generation over pseudo-random data
generation are: 1) all interesting boundary causes will occur, and will be used as
one of the first test cases; 2) systematic generation indicates when all instances of
a type are used and hence allows proofs by exhaustive testing; 3) since duplicates
are avoided the testing process is more efficient. The advantages of a generic
algorithm over a type class are that the generation of the elements of each new
type can be derived rather than hand coded by the test engineer.

Data types that have semantic restrictions which cannot be imposed by the
type system, like search trees and AVL-trees, cannot be handled by the generic
algorithm alone. Since the data generation algorithm uses only the type informa-
tion, it cannot cope with the additional semantic constraints. The test engineer has
to specify how instances of such a type have to be constructed using the interface
of the type. The generic algorithm can be used to generate the list of values to be
inserted in the instance of the restricted type.

In section 11.2 we will review the basis of automatic testing. Thereafter we
shortly review the original systematic data generation of Gast. In section 11.4
we introduce the new basic generic data generation algorithm. It is a widespread
believe under testers that pseudo random testing finds counterexamples faster.
In section 11.5 we show how the order of generated test data is pertubated in a
pseudo-random way. Section 11.6 shows how instances of restricted types, like
search trees, can be generated. Finally there are some conclusions. The reader
is assumed to be familiar with generic programming in functional languages in
general and in Clean in particular.

11.2 INTRODUCTION TO AUTOMATIC TESTING

In this section we will restrict ourselves to universally quantified predicates over a
single variable: ∀x∈ T.P(x). The predicate will be represented by a boolean func-
tion in Clean: P : : T → Bool. Some simple examples representing the predicates
∀c∈ Char. isAlpha c = (isUpper c || isLower c) and ∀x∈ Int. reverse [x] =
[x] are respectively:

propChar : : Char → Bool
propChar c = isAlpha c == (isUpper c | | isLower c)

propRevUnit : : Int → Bool
propRevUnit x = reverse [x] == [x]

In fact this property of the reverse function holds for any type. We indicate a
specific type instead of the more general propRevUnit : : x → Bool | Eq x to
enable the test system to chose a specific test suite.

The result of testing will be represented by the data type Verdict:

: : Verdict = Proof | Pass | Fail
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The function testAll implements the test process:

testAll : : Int (t→Bool) [t] → Verdict
testAll n p [ ] = Proof
testAll 0 p list = Pass
testAll n p [x:r]

| p x = testAll (n−1) p r
| otherwise = Fail

The parameter n is the maximum number of tests, p is the predicate to be tested,
and the list of values of type t is the test suite. For the purpose of explaining the
test system we will define a class testSuite that generates the elements of a type
in a very simple systematic way.

class testSuite a : : [a]

instance testSuite Bool where testSuite = [False,True]
instance testSuite Int where testSuite = [0 . . ]
instance testSuite Char where testSuite = map toChar [0 . .255]

Using this we define a function doTest that removes the burden of specifying the
maximum number of tests and the appropriate test suite.

doTest : : (t→Bool) → Verdict | testSuite t
doTest p = testAll 1000 p testSuite

The property propChar can now be tested by executing:

Start = doTest propChar

The result of this test is Proof. In the same way the property propRevUnit can be
tested. The result of this test isPass, since there are more than 1000 values for the
test value x. This merely indicates that this is a somewhat poorly designed test, it
would be better to test this property for characters or Booleans. For such a finite
type the test yields Proof rather than Pass.

With some effort we can also define instances of (polymorphic) recursive
types. As example we show the instance for list.

instance testSuite [a] | testSuite a
where testSuite = l where l = [ [ ] : [ [h:t] \\ (h,t)←diag2 testSuite l] ]

The function diag2 from Clean’s standard library takes care of a fair choice be-
tween a new element for the head and tail of the generated lists. The cycle through
l is inserted for efficiency reasons,

testSuite = [ [ ] : [ [h:t] \\ (h,t) ← diag2 testSuite testSuite] ]

produces the same test suite. An initial part of the generated list of integers is:

[ [ ] , [0] , [1] , [0,0] , [2] , [1,0] , [0,1] , [3] , [2,0] , [1,1] , [0,0,0] , [4] , [3,0 ] , . .

Using this test suite for lists we can state the property that reversing a list twice
yields the original list, ∀ l ∈ [Bool]. reverse (reverse l) = l. In Clean this is:
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propRevRev : : [Bool] → Bool
propRevRev l = reverse (reverse l) == l

This property can be tested by executing Start = doTest propRevRev. The result
is Pass. Since there are infinitely many lists of each type, it is impossible to do
exhaustive testing for this property.

Note that this property only holds for finite and total lists. Testing it for infinite
lists would cause nontermination. For these reasons all tests and properties in this
paper are restricted to finite and total values.

The actual implementation of the test system Gast is somewhat more compli-
cated since it has to cope with all operators of first order logic, predicates over
an arbitrary number variables, and has to record information about the test values
encountered. Also the number of test to perform can be specified. For instance,
Gast mimics the operator ∃x.P(x) by Exists x. P x (or Exists P using Curry-
ing). Gast will search for a single test value that makes property p true within the
first 1000 test values, using an equivalent of testAll for the Exists-operator.

11.3 GENERIC TEST DATA GENERATION IN PREVIOUS WORK

One of the distinguishing features of Gast is that it is able to generate test data in a
systematic way. This guarantees that test are never repeated. Repeating identical
tests is useless in a referentially transparent language like Clean. For finite data
types systematic test data generation enables proofs by exhaustive testing using a
test system: a property is proven if it holds for all elements of the finite data type.
Gast has used a generic systematic algorithm to generate test data from the very
beginning. In this section we will review the original algorithm and the design
decisions behind it.

In general it is impossible to test a property for all possible values. The num-
ber of values is simply too large (e.g. for the type Int), or even infinite (for re-
cursive data types). Boundary value analysis is a well-known technique in testing
that tells that not all values are equally interesting for testing. The values where
the specification or implementation indicates a bound and the values very close to
such a bound are interesting test values. For numbers, values like 0, 1,−1, minint,
and maxint are the most frequently occurring test values. For recursive types the
non-recursive constructor ( [ ] for lists and Leaf for trees) and small instances are
the obvious boundary values. Therefore, these values have to be in the beginning
of the list of data values generated. Instances of recursive types can be arbitrarily
large. Therefore there is no equivalent to the maximum values of integer in re-
cursive types. When specific boundary values for some situations are known, it is
easy to include these in the tests, see [10] for details.

The initial algorithm [9] was rather simple, but also very crude and inefficient.
The basic approach of the initial data generation algorithm was to use a tree to
record the generic representations of the values generated. For each new value to
be generated the tree was updated to record the generation of the new value. In
order to generate all small values early, the tree was extended in a breadth-first
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fashion. A somewhat simplified definition of the tree used is:

: : Trace = Empty
| Unit
| Pair [ (Trace,Trace) ] [ (Trace,Trace) ]
| Either Bool Trace Trace
| Int [Int]
| Done

The constructor Empty is used to indicate parts of the tree that are not yet visited.
Initially, the entire tree is not yet visited. The constructor Unit indicates that a
constructor is generated here.

The two lists of tuples of traces in aPair together implement an efficient queue
[15] of new traces to be considered. This queue is used for a standard breath-first
traversal of the tree, it contains the combinations of subtrees still to be considered
in the generation of values. Elements are taken of the first list and enqueued
by adding them to the front of the first list. When the first list is exhausted all
elements from the second list are transferred to the first list in reversed order. In
this way it is possible to enqueue and dequeue n elements in O(n) steps. A naive
implementation of a queue that appends each and every element to the end of a
queue, represented as a single list, will use O(n2) operations.

TheEitherpairs the traces corresponding to the generic constructorsLEFT and
and RIGHT. The Boolean indicates the direction where the first extension has to be
sought. For basic types, like integers, special constructors, like Int, are used to
record the values generated. When the generation algorithm discovers that some
part of the tree cannot be extended it is replaced by Done. This prevents fruitless
traversals in future extensions of the tree. See [9] for more details.

11.4 GENERIC DATA GENERATION: BASIC APPROACH

The new generic data generation algorithm presented in this paper does not use a
tree to record generated values. The use of the tree can be very time consuming.
For instance the generation of all tuples of two characters takes nearly 20 minutes.
All measurements in this paper are done on a basic 1 GHz AMD PC, running
Windows XP, Clean 2.1.1. and Gast 0.51.

The generic function gen generates the lazy list of all values of a type by
generating all relevant generic representations [2] of the members of that type.

generic gen a : : [a]

For the type UINT there is only one possibility: the constructor UNIT.

gen{|UNIT|} = [UNIT]

For a PAIR that combines two kinds of values, a naive definition using a list–com-
prehension would be [Pair a b \\ a←f, b←g] . However, we do not want the
first element of f to be combined with all elements of g before we consider the
second element of f , but some fair mixing of the values. This is also known as
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dovetailing. Suppose that f is the list [a,b,c, ..] and g the list [u,v,w, ..]. The de-
sired order of pairs is PAIR au, PAIR av, PAIR bu, PAIR aw, PAIR bv, PAIR cu, ..
rather than PAIR au, PAIR av, PAIR aw, .., PAIR bu, PAIR bv, PAIR bw, ... The
diagonalizing list comprehensions from Mirandatm [19] and the function diag2

from the Clean standard library exactly do this job. The function diag2 has type
[a] [b] → [ (a,b) ] , i.e. it generates a list of tuples with the elements of the ar-
gument lists in the desired order. Using a list comprehension the tuples are trans-
formed to pairs.

gen{|PAIR|} f g = [ PAIR a b \\ (a,b) ← diag2 f g ]

For the choice in the typeEITHERwe use an additional Boolean argument to merge
the elements in an interleaved way. The definition of the function merge is some-
what tricky in order to avoid that it becomes strict in one of its list arguments. If
the functionmergebecomes strict in one of its list arguments it generates all possi-
ble values before the current value is produced. This would cause the production
of an infinite amount of intermediate data and hence a Heap full error.

gen{|EITHER|} f g = merge True f g
where

merge : : !Bool [a] [b] → [EITHER a b]
merge left as bs
| left

= case as of
[ ] = map RIGHT bs
[a:as] = [LEFT a: merge (not left) as bs]

| otherwise
= case bs of

[ ] = map LEFT as
[b:bs] = [RIGHT b: merge (not left) as bs]

In order to let this merge algorithm terminate for recursive data types we assume
that the non recursive case (like Nil for lists, Leaf for trees) is listed first in the
type definition. Using knowledge of the generic representation allows us to make
the right initial choice in gen{|EITHER|} . In principle the generic representation
contains sufficient information to find the terminating constructor dynamically,
but this is more expensive and does not add any additional power. Since the order
of constructors in a data type does not have any other significance in Clean, the
assumption on the order of constructors is not considered to be a serious restric-
tion. If it becomes necessary, this restriction can be removed at the cost of an
runtime analysis of the structure of the generic representation of the type.

The actual implementation of generics in Clean uses some additional construc-
tors in order to store additional information about constructors, fields in a record
etcetera. The associated instances for the generic function gen are:

gen{|CONS|} f = map CONS f
gen{|FIELD|} f = map FIELD f

Finally we have to provide instances ofgen for the basic types of Clean. Some
examples are:
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gen{|Int|} = [0: [i \\ n←[1 . .maxint] , i←[n, −n] ] ]
gen{|Bool|} = [False,True]
gen{|Char|} = map toChar ( [32 . .126] ++ [9,10,13] ) / / the printable characters
gen{|String|} = map toString lists
where

lists : : [ [Char] ]
lists = gen{|∗ |}

In Clean a String is an array of characters rather than a list of characters as in
Haskell. Strings are generated by generating list of characters by the generic algo-
rithm,gen, and transforming the obtained lists of characters to strings bytoString.
The suffix {|∗ |} to gen indicates its kind. Generic functions of type {|∗ |} take
no type arguments, functions of type {|∗→∗ |} take one type argument etc. We
will use a generator of kind {|∗→∗ |} in the instance of the generator for lists,
gen{| [ ] |} , below. These kinds are similar to Hinze’s kind-indexed types [8].

After these preparations the generation of user defined types like

: : Color = Red | Yellow | Blue
: : Rec = { c : : Color, b : : Bool, i : : Int }
: : ThreeTree = ThreeLeaf | ThreeNode ThreeTree ThreeTree ThreeTree
: : Tree x = Leaf | Node (Tree x) x (Tree x)

and predefined types like two and three tuple can be derived by

derive gen Color, Rec, ThreeTree, Tree, ( , ) , ( , , )

If for one reason or another the test engineer wants to deviate from the default
generic behavior, this can be done very easily. Using the For-operator the test
engineer can specify a list of values for a specific test. See [9] for details.

If the test engineer decides to deviate from the default behavior for all tests, he
can define a specific instance for that type instead of deriving one. For instance
using only the colors Red and Blue and trees with exactly one Node in all tests is
achieved by defining:

gen{|Color|} = [ Red, Blue ]
gen{|Tree|} xs = [ Node Leaf x Leaf \\ x ← xs ]

instead of deriving the generation as shown above. In the examples below, gener-
ation is derived using the generic algorithm instead of using special definitions.

Unfortunately the order of elements in the predefined type list does not obey
the given assumption on the order of the constructors. The predefined Cons con-
structor is defined before the Nil constructor. This implies that genwould always
choose the Cons constructor if generic generation would be derived for lists.

Instead of changing the assumption, or the implementation of Clean, we sup-
ply a specific instance of gen for lists, instead of deriving one. A straightforward
implementation is the direct translation of the general algorithm, where the order
of constructors is reversed (first the empty list [ ] ).

gen{| [ ] |} f = [ [ ] : [ [h:t] \\ (h,t)←diag2 f (gen{|∗→∗ |} f) ] ]
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type values
[Color] [Red,Yellow,Blue]
[Int] [0,1,−1,2,−2,3,−3,4,−4,5,−5,6,−6,7,−7,8,−8,9, · · ·
[ (Color,Color) ] [ (Red,Red) , (Yellow,Red) , (Red,Yellow)

, (Blue,Red) , (Yellow,Yellow) , (Red,Blue)
, (Blue,Yellow) , (Yellow,Blue) , (Blue,Blue) ]

[ [Color] ] [ [ ] , [Red] , [Yellow] , [Red,Red] , [Blue]
, [Yellow,Red] , [Red,Yellow] , [Blue,Red]
, [Yellow,Yellow] , [Red,Red,Red] , · · ·

[ [Int] ] [ [ ] , [0] , [1] , [0,0] ,[−1] , [1,0] , [0,1] , [2] ,[−1,0]
, [1,1] , [0,0,0] ,[−2] , [2,0] ,[−1,1] , [1,0,0] , · · ·

[Rec] [ (Rec Red False 0) , (Rec Yellow False 0)
, (Rec Red True 0) , (Rec Blue False 0)
, (Rec Yellow True 0) , (Rec Red False 1)
, (Rec Blue True 0) , (Rec Yellow False 1) , · · ·

[Tree Color] [Leaf , (Node Leaf Red Leaf)
, (Node (Node Leaf Red Leaf) Red Leaf)
, (Node Leaf Yellow Leaf)
, (Node(Node(Node Leaf Red Leaf)Red Leaf)Red Leaf)
, (Node (Node Leaf Red Leaf) Yellow Leaf)
, (Node Leaf Red (Node Leaf Red Leaf) ) , · · ·

TABLE 11.1. Examples of lists of values generated bygen

The parameter f holds the list of all elements to be placed in the generated lists.
This list will be provided by the generic system. A more efficient implementation
uses a cycle to use the generated lists as the tails of new lists.

gen{| [ ] |} f = list where list = [ [ ] : [ [h:t] \\ (h,t)←diag2 f list ] ]

Here the function diag2 is used again to get the desired mix extending existing
lists and generating new lists with elements that are not used until now.

11.4.1 Examples

In order to illustrate the behavior of this algorithm we show (a part of) the list of
values generated for some of the example types introduced above in Table 11.1.
The list of all values of type can be generated by an appropriate instance of gen.
For instance the list of all elements of the type Color can be generated by:

list : : [Color]
list = gen{|∗ |}

For the type Tree Color the list of values is infinite, only an initial fragment of
these lists is shown. Also for Int and Rec only an initial fragment of the list of
values can be shown.

Note that the order of elements for parameterized types like (Color,Color)
and [Color] reflects the dovetail behavior of the generation algorithm.

This algorithm is efficient. Generating 106 elements of a type takes typically
2 to 7 seconds, depending on the type of elements generated.
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This algorithm generates all 9604 pairs of the 98 printable characters within
0.01 seconds, while the original algorithm outlined in section 11.3 needs 1136
seconds. This is five orders of magnitude faster.

11.5 PSEUDO-RANDOM DATA GENERATION

The actual algorithm used in Gast is slightly more complicated. It uses a stream
of pseudo-random numbers to make small perturbations to the order of elements
generated. Basically the choice between Left and Right in ggen{|Either|} be-
comes a pseudo-random one instead of strictly interleaved.

It is a widespread belief among testers that pseudo-random generation of test
values is needed in order to find issues2 quickly. This seems somewhat in contra-
diction with rule that boundary values should be tested first. When we consider
a predicate with multiple universal quantified variables of the same type, it can
make sense to try the elements of a type in a somewhat different order for the
various variables. We have encountered a number of examples where this indeed
raised issues faster. On the other hand it is very easy to create examples where
any perturbation of the order of test data delays the finding of counterexamples.
In order to achieve the best of both worlds Gast uses a systematic generation of
data values with a pseudo-random perturbation of the order of elements discussed
in section 11.4.

A simple solution would be to randomize the generated list of elements based
on a sequence of pseudo-random numbers. This implies that test values will be
generated (long) before they are actually used in the tests. This consumes just
space and is considered undesirable in a lazy language like Clean.

The solution used in Gast is to replace the strict interleaved order of the choice
in the instance of gen for EITHER by a pseudo-random choice. The change of se-
lecting LEFT of Right deserves some attention. At first sight a chance of 50%
seems fine. This works also very well for nonrecursive type likeColor, and recur-
sive types like list and Tree form section 11.4.

For a type like ThreeTree this approach fails. If we chose the constructor
ThreeLeaf with probability 50% then the chance that all three arguments of the
constructor ThreeNode terminate becomes too low. In practice such an algorithm
generates too many huge or infinite data structures. QuickCheck has, for exactly
this reason, a special language used by the test engineer to tune the relative fre-
quency of constructors. With well chosen frequencies, the generated instances
will be neither too small nor too large.

The problem of frequency of constructors can also be solved by an elaborated
analysis of the generic representation of the types involved in the data generation.
Due to the possibility of nested and mutually recursive data types this analysis is
far from simple, but it can be done by a piece of generic Clean-code. Fortunately,

2A counterexample found by testing is called an issue until that it is clear that it is
actually an error in the implementation. Other possible sources of counterexamples are
for instance incorrect specifications and inaccuracies of the test system.
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there is again a simple solution. We still assume that the nonrecursive constructor
is the first constructor of a data type (if it exists). By increasing the probability
of choosing the left branch in the recursive calls we can ensure that the small
instance are near the beginning of the generated list of values. Since duplicates
are never generated the algorithm cannot generate only the small elements.

In order to implement this we give the generic function ggen two arguments.
The first is an integer indicating the recursion depth, the second one is a list of
pseudo-random numbers guiding the choice between left and right.

generic ggen a : : Int [Int] → [a]

The instance of the generation forEITHER is the only one that changes significantly.

ggen{|EITHER|} f g n rnd = merge n r1 (f n r3) (g (n+1) r4)
where

(r1,r2) = split rnd
(r3,r4) = split r2

merge : : Int RandomStream [a] [b] → [EITHER a b]
merge n [i:r] as bs
| (i rem n) 6= 0

= case as of
[ ] = map RIGHT bs
[a:as] = [LEFT a: merge n r as bs]

| otherwise
= case bs of

[ ] = map LEFT as
[b:bs] = [RIGHT b: merge n r as bs]

The function split splits a random stream into two independent random streams.
Also the order of elements in the predefined data types is changed in a pseudo-

random way. For enumeration types likeBoolandChar the given order of elements
is randomized.

ggen{|Bool|} n rnd = randomize [False,True] rnd 2 (λ_ . [ ] )
ggen{|Char|} n rnd
= randomize (map toChar [32 . .126]++[9,10,13] ) rnd 98 (λ_ . [ ] )

randomize : : [a] [Int] Int ( [Int] → [a] ) → [a]
randomize list rnd n c = rand list rnd n [ ]
where

rand [ ] rnd n [ ] = c rnd
rand [ ] rnd n [x] = [x:c rnd]
rand [ ] rnd n l = rand l rnd n [ ]
rand [a:x] [i:rnd] n l

| n == 0 | | (i rem n) == 0
= [a:rand x rnd (n−1) l]

| otherwise
= rand x rnd n [a:l]

For integers and reals we generate pseudo-random values after the common bound-
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ary values. This introduces the possibility that tests are repeated, but for these
types it is usually less work than preventing duplicates. Due to the size of these
types, proofs by exhaustive testing are impossible anyway.

ggen{|Int|} n rnd = randomize [0,1,−1,maxint,minint] rnd 5 id

This algorithm appears to be very effective in practice. It works also for some
types that do not obey the rule that the nonrecursive constructor is the first one.
Termination depends on the ratio between the number of points of recursion in the
type and the number of constructors. One of the examples is the type list. This
implies that the generation for lists can be derived form the general generic algo-
rithm. In contrast to the previous algorithm, no hand coded definition is needed.

derive ggen [ ]

The exact effect of the pseudo-random data generation depends on the pseudo-
random numbers supplied as argument. By default the random numbers are
generated by the function genRandInt from the Clean library MersenneTwister

[18]. It generates pseudo-random numbers with period 219937− 1, and the 623-
dimensional equidistribution property is assured. A pseudo-random number gen-
erator is said to be k-dimensionally equidistributed if the generated numbers are
uniformly distributed in a k-dimensional cube through a whole period, that is, if
every consecutive k numbers have no relation. The 623-dimensional equidistri-
bution of the Mersenne Twister algorithm is far higher than of most other widely
used pseudo random generators. The seed of the pseudo random numbers can
be fixed to obtain repeatable tests, or for instance be obtained from the clock to
obtain different test values for each run.

11.5.1 Examples

The list of all pairs of colors with 42 as seed for the random number generation is
generated by:

list : : [ (Color,Color) ]
list = ggen{|∗ |} 2 (genRandInt 42)

In Table 11.2 we show the effects using the default random stream of Gast.
Note that the generated lists of values contain the same elements as the lists

generated by the algorithm gen in section 11.4.1. The property that all instances
of a type occur exactly once is preserved3. This algorithm needs about 40% more
time to generate the same number of elements for a type compared to the function
gen, but it is still very efficient. The test system Gast spends it time on evaluating
predicates and the administration of the test results, not on generating test data.

11.6 RESTRICTED DATA TYPES

Types like search trees, balanced trees, AVL-trees, red-black trees, and ordered
lists have more restrictions than the type system can impose. Since the generic

3The shown instance for integers and the instance for reals are the only exceptions.

174



type values
[Color] [Red,Blue,Yellow]
[Int] [0,−2147483648,2147483647,−1,1,684985474

,862966190,−1707763078,−930341561,−1734306050
,−114325444,−1262033632,−702429463,−913904323, · · ·

[ (Color,Color) ] [ (Red,Red) , (Yellow,Red) , (Red,Blue)
, (Blue,Red) , (Yellow,Blue) , (Red,Yellow)
, (Blue,Blue) , (Yellow,Yellow) , (Blue,Yellow) ]

[ [Color] ] [Red] , [ ] , [Yellow] , [Red,Red] , [Blue] , [Yellow,Red]
, [Red,Yellow] , [Blue,Red] , [Yellow,Yellow]
, [Red,Red,Red,Red,Red] , [Blue,Yellow] , . .

[ [Int] ] [ [1] ,[] ,[−2147483648] , [1,1] ,[−1] ,[−2147483648,1]
, [1,−1] , [0] ,[−1,1] ,[−2147483648,−1] ,
, [1,1,2147483647,−1,0] , [1,−1] , [0] ,[−1,1] , · · ·

[Rec] [ (Rec Red False 2147483647)
, (Rec Yellow False 2147483647)
, (Rec Red True 2147483647)
, (Rec Blue False 2147483647) , · · ·

[Tree Color] [Leaf
, (Node (Node Leaf Red (Node (Node Leaf Yellow
(Node Leaf Red Leaf) ) Red Leaf) ) Yellow (Node
Leaf Red (Node (Node Leaf Red Leaf) Red Leaf) ) )

, (Node Leaf Yellow (Node Leaf Red
(Node (Node Leaf Red Leaf) Red Leaf) ) ) , · · ·

TABLE 11.2. Examples of lists of values generated byggen

algorithm does not know these restrictions, it cannot cope with them. The generic
algorithm will generate instance that are type correct, but may or may not obey
the additional constraints.

The interface of such a restricted type will contain functions to create an initial
instance of the type, e.g. an empty tree, and to add elements to a valid instance of
the restricted type. Using these constructor functions and the generic generation
of elements to be included in the instance of the restricted type, we can easily
generate instances of the generic type.

As example we will consider a search tree of integers. A typical interface to
this abstract data type is:

: : SearchTree

empty : : SearchTree
ins : : Int SearchTree → SearchTree
delete : : Int SearchTree → SearchTree
occurs : : Int SearchTree → Bool

Using the functions ins and empty appropriate trees can be constructed. This can
be used in the instance of gen or ggen by inserting lists of integers in the empty
tree. These lists of integers are generated by the ordinary generic algorithm.

gen{|SearchTree|} = map (foldr ins empty) gen{|∗ |}

The initial part of the list of values is (using E for the empty tree and N as con-
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structor for binary nodes):

[E, N E 0 E, N E 1 E, N E 0 E, N E −1 E, N E 0 (N E 1 E) ,N (N E 0 E) 1 E
,N E 2 E, N (N E −1 E) 0 E, N E 1 E, N E 0 E, N E −2 E, N E 0 (N E 2 E) ,
,N (N E −1 E) 1 E, N E 0 (N E 1 E) , N E −1 (N E 0 E) , N E 3 E, · · ·

For the algorithm with pseudo-random changes in the order, only the addi-
tional arguments of the function ggen have to be passed around.

This approach is applicable to every ordinary restricted recursive data type,
since they all have an initial value and an insert operator. Depending on the re-
stricted type it is possible that duplicated values are generated by an implemen-
tation following this scheme. For instance inserting the elements from the lists
[0] and [0,0] in an empty tree yield the same search tree: [N E 0 E] . With addi-
tional effort one can prevent that identical trees will be generated, or remove the
generated duplicates by filtering.

11.7 RELATED WORK

Any test tool that wants to do more than only executing predefined test scripts,
needs to generate these suites. For any specification that contains variables, it is
necessary to generate values for these variables. To the best of our knowledge this
is the first approach to generate these values based on the type definition only.

The other tool that is able to test properties over types in a functional program-
ming language is QuickCheck [3]. Its data generation is based on an ordinary type
class instead of on generic programming. This implies that the user has to define
an instance of the generation class for each type used as in an universal quantifi-
cation. Moreover, the generation algorithm uses pseudo-random data generation
without omitting duplicated elements. As a consequence QuickCheck is not able
determine that all elements of a type are used in a test. Hence, QuickCheck cannot
stop at that point, nor conclude that it has achieved a proof by exhaustive testing.

Claessen and Hughes give in [3, section 3.2] two reasons for their approach of
test data generation based on an ordinary type class: .. ; we don’t want to oblige
users to run their programs through a pre-processor between editing and testing
them. But another strong reason is that it seems to be very hard to construct a
generator for a type, without knowing something about the desired distribution of
test cases. In their Haskell implementation the separate pre-processor is needed
for the generic code: Generic Haskell is implemented as a pre-processor. In Clean
the generics are fully integrated in the language and handled by the compiler. No
separate pre-processor is used. Our systematic generation from small to large
solves the distribution of values problem effectively and elegantly.

In [11] we show how functions can be generated based on the grammar of the
functions to be considered. This grammar is represented by a recursive algebraic
data type. A very simple function transforms the data type to the corresponding
function. The algorithm described here is used to generate instances of the data
type representing the functions. This representing functions by data structures
is similar to defunctionalization [4, 16]. Using the translation from data types
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to corresponding functions, the algorithm introduced here can also be used to
generate functions in a generic and controlled way.

11.8 CONCLUSION

This paper introduces an efficient and elegant generic algorithm to generate the
members of arbitrary data types. This list of values is an excellent test suite for
a fully automatic test system. The elements are generated from small to large as
required for effective testing based on boundary values. We show also a variant
of this algorithm that imposes a pseudo-random perturbation of the order, but
maintains the basic small to large order and avoids omissions or duplicates. This
is believed to make finding counterexamples on average faster.

This algorithm is an essential component of the test tool Gast. The property
that test data are not duplicated makes testing more efficient, evaluating a property
two times for the same value will always yield an identical result in a functional
context. The avoidance of omissions and duplicates makes it possible to prove
properties for finite types by exhaustive testing. The advantages of a generic al-
gorithm over an ordinary type class is that the generation for a new data type can
be derived: the generic algorithm works for any type. Using a type class, the test
engineer needs to specify an instance for each and every type used in the tests.
Defining good instances is not easy. The advantages of this generic algorithm
over the previous algorithm, outlined in sections 11.3, is that is is much more ef-
ficient, elegant, and comprehensible. As a consequence it is much easier for a test
engineer to deviate from the default generic algorithm, if that would be desired.

The presented algorithms are efficient. Each of the algorithms is able to gen-
erate hundreds of thousands of elements of a type within one second on a fairly
basic Windows PC.

Apart from a very useful algorithm in the context of an automatic test system,
it is also an elegant application of generic programming. It has the beauty of a
programming pearl. The test system Gast follows the trend towards construct-
ing general usable algorithms by generic programming techniques also for more
traditional applications as comparing, parsing and printing values.
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Chapter 12

Extensible records with
scoped labels
Daan Leijen1

Abstract: Records provide a safe and flexible way to construct data structures.
We describe a natural approach to typing polymorphic and extensible records that
is simple, easy to use in practice, and straightforward to implement. A novel
aspect of this work is that records can contain duplicate labels, effectively intro-
ducing a form of scoping over the labels. Furthermore, it is a fully orthogonal
extension to existing type systems and programming languages. In particular, we
show how it can be used conveniently with standard Hindley-Milner, qualified
types, and MLF.

12.1 INTRODUCTION

Tuples, or products, group data items together and are a fundamental concept to
describe data structures. In ML and Haskell, we can construct a product of three
integers as:

(7,7,1973)

Records are tuples where the individual components are labeled. Using curly
braces to denote records, we can write the above product more descriptively as:

{day = 7,month = 7,year = 1973}

The record notation is arguably more readable than the plain product. It is also
safer as we identify each component explicitly, preventing an accidental switch of
the day and month for example.

Even though records are fundamental building blocks of data structures, most
programming languages severely restrict their use: labels can not be reused at dif-

1Microsoft Research, Redmond, WA, USA. Email: daan@microsoft.com
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ferent types, records must be explicitly declared and are not extensible, etc. This
is surprising given the large amount of research that has gone into type systems
and compilation methods for records. We believe that the complexity of the pro-
posed systems is one of the most important reasons that they are not yet part of
mainstream programming languages. Most systems require non-trivial extensions
to a type system that are hard to implement, and, perhaps even more important,
that are difficult to explain to the user.

For all systems described in literature, it is assumed that records do not contain
duplicate labels. In this article we take a novel view at records where duplicate
labels are allowed and retained, effectively introducing a form of scoping over
the labels. This leads to a simple and natural system for records that integrates
seamlessly with many other type systems. In particular:

• The types are straightforward and basically what a naı̈ve user would expect
them to be. The system is easy to use in practice, as the user is not confronted
with artificial type system constructs. Of course, all operations are checked
and the type system statically prevents access to labels that are absent.

• The records support scoped labels since fields with duplicate labels are al-
lowed and retained. As records are equivalent up to permutation of distinct
labels, all basic operations are still well-defined. The concept of scoped la-
bels is useful in its own right and can lead to new applications of records in
practice.

• The system is straightforward to implement using a wide range of implementa-
tion techniques. For predicative type systems, we can guarantee constant-time
field selection.

• The system works with just about any polymorphic type system with minimal
effort. We only define a new notion of equality between (mono) types and
present an extended unification algorithm. This is all completely independent
of a particular set of type rules. We show how it can be used specifically with
MLF [15], a higher-ranked, impredicative type system. Building on MLF, we
can model a form of first-class modules with records.

The entire system is implemented in the experimental language Morrow [16].
The type system of Morrow is based on MLF, and all the examples in this article,
including the first-class modules, are valid Morrow programs.

The work described here builds on numerous other proposals for records, in
particular the work of Wand [28], Remy [24], and Gaster and Jones [7]. One can
view our work as just a small variation of the previous systems. However, we
believe that our design is an important variation, as it leads to a record system
with much less complexity. This makes our design more suitable for integration
with existing type systems and programming languages.

In the next section we introduce the basic record operations. We explain the
type rules and discuss what effect scoped labels have on programs. In Section 12.4
we show how our system can be used with MLF to encode a form of first-class
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modules. We formalize the type rules and inference in section 12.5 and 12.6. We
conclude with an overview of implementation techniques and related work.

12.2 RECORD OPERATIONS

Following Cardelli and Mitchell [2] we define three primitive operations on records:
selection, restriction, and extension. Furthermore, we add the constant {} as the
empty record.

Extension. We can extend a record r with a label l and value e using the syntax
{l = e | r}. For example:

origin = {x = 0 | {y = 0 | {}}}

To reduce the number of braces, we abbreviate a series of extensions using comma
separated fields, and we leave the extension of the empty record implicit. The
above example can thus be written more conveniently as:

origin = {x = 0,y = 0}

The construction of the record is anonymous: we do not have to declare this record
or its fields in advance. Furthermore, extension is polymorphic and not limited to
records with a fixed type, but also applies to previously defined records, or records
passed as an argument:

origin3 = {z = 0 | origin}
named s r = {name = s | r}

Selection. The selection operation (r.l) selects the value of a label l from a record
r. For example, we can define a function distance that calculates the distance of a
point to the origin:

distance p = sqrt ((p.x∗p.x)+(p.y∗p.y))

In contrast to many programming languages, the distance function works for any
record that contains an x and y field of a suitable numeric type. For example, we
can use this function on records with a different set of fields:

distance (named "2d" origin)+distance origin3

Restriction. Finally, the restriction operation (r− l) removes a label l from a
record r. Using our primitive operations, we can now define the common update
and rename operations:

{l := x | r} = {l = x | r− l} -- update l
{l← m | r} = {l = r.m | r−m} -- rename m to l

Here is an example of using update to change the x and y components of a point:

move p dx dy = {x :=p.x+dx, y :=p.y+dy | p}
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Note that move works on any record containing an x and y field, not just points.
Effectively, we use parametric polymorphism to model a limited form of subtyp-
ing [2].

12.2.1 Safe operations

The type system ensures statically that all record operations are safe. In particular,
it ensures that record selection and restriction are only applied when the field is
actually present. For example, the following expressions are both rejected by the
type system:

{x = 1}.y
distance {x = 1}

Our type system accepts the extension of a record with a field that is already
present, and the following example is accepted:

{x = 1 | origin}

We call this free extension. Many type systems in the literature require that a
record can only be extended with a label that absent, which we call strict exten-
sion. We believe that strict extension unnecessarily restricts the programs one
can write. For example, the function named extends any record with a new name
field. In a system with strict extension, we need to write two functions: one for
records without the label, and one for records that already contain the label. In
this particular example this is easy to do, but in general we might want to extend
records locally with helper fields. Without free extension, the local extensions
would artificially restrict the use of the function.

There are two possible semantics we can give to free extension. If a duplicate
label is encountered we can choose to overwrite the previous field with the new
field, or we can choose to retain the old field. All previous proposals that allow
free extension [28, 24, 1] use the first approach. In those systems, extension is
really a mixture of update and extension: if a field is absent, the record is extended.
If the field is already present, the previous value is overwritten, after which it is
no longer accessible.

We take another approach to free extension where the previous fields are al-
ways retained, both in the value and in the type. In our system, we clearly sepa-
rate the concepts of update and extension. To keep selection and restriction well-
defined, we need to explicitly define these operations to work on the first matching
label in a record. Therefore, we can always unambiguously select a particular la-
bel:

{x = 2,x = True}.x -- select the first x field
({x = 2,x = True}− x).x -- select the second x field

Since previous fields are retained, our record system effectively introduces a form
of scoping on labels. This is certainly useful in practice, where we can use scoped
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labels to model environments with access to previously defined values. For exam-
ple, suppose we have an environment that includes the current text color:

putText env s = putStr (ansiColor env.color s)

We can define a combinator that temporarily changes the output color:

warning env f = f {color = red | env}

The function f passed to warning formats its output in a red color. However, it
may want to format certain parts of its output in the color of the parent context.
Using scoped labels, this is easily arranged: we can remove the first color field
from the environment, thereby exposing the previous color field automatically (if
present):

f env = putText (env− color) "parent color"

As we see in the next section, the type of the function f reflects that the environ-
ment is required to contain at least two color fields.

Another example of scoped labels occurs when encoding objects as records.
Redefined members in a sub-class are simply extensions of the parent class. The
scoped labels can now be used to access the overridden members in a parent class.

One can argue that free extension can lead to programming errors where one
accidentally extends a record with a duplicate label. However, the type system
can always issue a warning if a record with a fixed type contains duplicate labels,
which could be attributed to a programmer mistake. This is comparable to a
standard shadowed variable warning – and indeed, a warning is more appropriate
here than a type error, since a program with duplicate labels can not go wrong!

12.3 THE TYPES OF RECORDS

We write the type of a record as a sequence of labeled types. To closely reflect the
syntax of record values, we enclose record types in curly braces {} too:

type Point = {x :: Int,y :: Int}

As we will see during the formal development, it makes sense to talk about a
sequence of labeled types as a separate concept. We call such sequence a row.
Following Gaster and Jones [7], we consider an extensible row calculus where a
row is either empty or an extension of a row. The empty row is written as (||) and
the extension of a row r with a label l and type τ is written as (|l :: τ | r|). The full
unabbreviated type of a Point is written with rows as:

type Point = {(|x :: Int | (|y :: Int | (||)|)|)}

Just like record extension, we abbreviate multiple extensions with a comma sepa-
rated list of fields. Furthermore, we leave out the row brackets if they are directly
enclosed by record braces.
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12.3.1 Types of record operations

Using row types, we can now give the type signatures for the basic record opera-
tions:

( .l) ::∀rα. {l :: α | r}→ α

( − l) ::∀rα. {l :: α | r}→ {r}
{l = | } ::∀rα. α→{r}→ {l :: α | r}

Note that we assume a distfix notation where argument positions are written as
“ ”. Furthermore, we explicitly quantify all types in this paper, but practical
systems can normally use implicit quantification. The selection operator ( .l)
takes a record that contains a field l of type α, and returns the value of type α.
Similarly, the restriction operator ( − l) returns the record without the l field.
The type of extension is very natural: it takes a value α and any record {r}, and
extends it with a new field l :: α. Here is for example the inferred type for origin:

origin ::{x :: Int,y :: Int}
origin = {x = 0,y = 0}

The type of selection naturally ensures that a label is present when it is selected.
For example, origin.x is well-typed, since the type of the record, {x :: Int,y :: Int},
is an instance of the type of the expected argument {x :: α | r} of the selector
function ( .x). Unfortunately, at this point, the type signatures are too strong: the
valid expression origin.y is still rejected as {x :: Int,y :: Int} is just not an instance
of {y :: α | r}.

To accept the above selection, we need a new notion of equality between types
where the rows are considered equal up to permutation of distinct labels. The
new equality relation (∼=) is formalized in Figure 12.1. The first three rules are
standard. Rule (eq-trans) defines equality as a transitive relation. The last two
rules define equality between rows. Rule (eq-head) defines two rows as equal
when their heads and tails are equal. The rule (eq-swap) is the most interesting: it
states that the first two fields of a row can be swapped if (and only if) their labels
are different. Together with transitivity (eq-trans) and row equality (eq-head),
this effectively allows us to swap a field repeatedly to the front of a record, but not
past an equal label. With the new notion of equality, we can immediately derive
that:

{x :: Int,y :: Int} ∼= {y :: Int,x :: Int}

The expression origin.y is now well-typed since the isomorphic type {y :: Int,x ::
Int} is an instance of {y :: α | r}. The new notion of equality is the only addition
needed to integrate our notion of records with a specific type system. Since no
other concepts are introduced, the types of the primitive operations are basically
what a naı̈ve user would expect them to be. The same holds for the inferred types
of derived operations such as update and rename:

{l := | } ::∀rαβ. α→{l :: β | r}→ {l :: α | r}
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(eq-var) α∼= α

(eq-const) c∼= c

(eq-app)
τ1 ∼= τ

′
1 τ2 ∼= τ

′
2

τ1 τ2 ∼= τ
′
1 τ
′
2

(eq-trans)
τ1 ∼= τ2 τ2 ∼= τ3

τ1 ∼= τ3

(eq-head)
τ∼= τ

′ r ∼= s
(|l :: τ | r|)∼= (|l :: τ

′ | s|)

(eq-swap)
l 6= l′

(|l :: τ, l′ :: τ
′ | r|)∼= (|l′ :: τ

′, l :: τ | r|)

FIGURE 12.1. Equality between (mono) types

{l := x | r}= {l = x | r− l}

{l← m | } ::∀rα.{m :: α | r}→ {l :: α | r}
{l← m | r}= {l = r.m | r−m}

We see that the type of update is very natural: given a record with an l field of
type β, we can assign it a new value of a possibly different type α.

12.3.2 Scoped labels

As remarked before, the type signature for record extension is free and does not
reject duplicate labels. For example, both of the following expressions are well-
typed:

{x = 2,x = True} ::{x :: Int,x :: Bool}
{x = True,x = 2} ::{x :: Bool,x :: Int}

Note that the types of the two expressions are not equivalent though. Since rule
(eq-swap) only applies to distinct labels, selection and restriction are still well-
defined operations. For example, the following expression selects the second field,
as signified by the derived type:

({x = 2,x = True}− x).x :: Bool

This example shows that it is essential to retain duplicate fields not only in the
runtime value, but also in the static type of the record.
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12.4 HIGHER-RANKED IMPREDICATIVE RECORDS

Since the type signatures for record operations are so general, we can conveniently
package related functions together. Together with a mechanism for local type dec-
larations, we can view these packages as a form of first-class modules. However,
records should be able to contain polymorphic values in order to encode more
complicated modules. Take for example the following type signature for a Monad
module:

type Monad m = {unit ::∀α. α→ m α

, bind ::∀αβ. m α→ (α→ m β)→ m β

}

In this signature, the monad implementation type m is polymorphic over the
monad record. Furthermore, the types of unit and bind members are itself poly-
morphic, and thus use impredicative higher-rank polymorphism since the quan-
tifiers are nested inside the record structure. Unfortunately, type inference for
impredicative rank-n polymorphism is a notoriously hard problem [15, 22, 19].

When we move to more complicated type systems, our framework of records
proves its value, since it only relies on a new notion of equality between (mono)
types and no extra type rules are introduced. This means that it becomes relatively
easy to add our system to just about any polymorphic type system. In particular,
it integrates seamlessly with MLF, an elegant impredicative higher-ranked type
inference system by Le Botlan and Remy [15]. We have a full implementation of
this system in the experimental Morrow compiler [16] and all the examples in this
article are valid Morrow programs.

The combination of MLF with anonymous polymorphic and extensible records
(and variants) leads to a powerful system where fields can have full polymorphic
type signatures. For example, we can for example give an implementation of an
identity monad:

newtype Id α = Id α

idm :: Monad Id
idm = {unit x = Id x

, bind (Id x) f = f x
}

Since Morrow uses the MLF type system, the (higher-ranked) type for idm is auto-
matically inferred and the type annotation is not necessary. Neither is it necessary
to declare the Monad type; we can just construct an anonymous record. Indeed,
we can use the unit member polymorphically without any type declaration:

twice ::∀α. α→ Id (Id α)
twice x = idm.unit (idm.unit x)

Apart from abstract types, these examples are very close to the goals of the XHM
system, described by Jones [14] as an approach to treat modules as first-class cit-
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izens. We believe that our notion of records in combination with higher-order
polymorphic MLF is therefore a significant step towards a realistic implementa-
tion of polymorphic and extensible first-class modules.

12.5 TYPE RULES

In this section, we formalize the concept of rows and define the structure of types.
First, we have to make some basic assumptions about the structure of types. This
structure is needed as not all types are well-formed. For example, a row type can
not extend an integer and a Maybe type needs a parameter:

(|l = Maybe | Int|)

Following standard techniques [13, 24] we assign kinds to types to exclude ill-
formed types. The kind language is very simple and given by the following gram-
mar:

κ ::= ∗ kind of term types
| row kind of row types
| κ1→ κ2 kind of type constructors

All terms have types of kind ∗. The arrow kind is used for type constructors like
Maybe and function types. Furthermore, the special kind row is the kind of row
types. We assume that there is an initial set of type variables α ∈ A and type
constants c ∈ C. Furthermore, the initial set of type constants C should contain:

Int :::∗ integers
(→) :::∗→ ∗→ ∗ functions
(||) ::: row empty row
(|l = | |) :::∗→ row→ row row extension
{ } ::: row→∗ record constructor
〈 〉 ::: row→∗ variant constructor

For each kind κ, we have a collection of types τκ of kind κ described by the
following grammar:

τκ ::= cκ constants
| ακ type variables
| τ

κ2→κ

1 τ
κ2
2 type application

Note how the above grammar rules for well-kinded types exclude the previous
ill-formed type example. The set of type schemes σ is described by quantification
of types of kind ∗:

σ ::= ∀ακ. σ polymorphic types
| τ∗ monotypes
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Using a simple process of kind inference [13] the kinds of all types can be auto-
matically inferred and no explicit annotations are necessary in practice. In the rest
of this article, we therefore leave out most kind annotations when they are appar-
ent from the context. Note that we assume higher-order polymorphism [13, 12]
where variables in type expressions can quantify over types of an arbitrary kind.
This is necessary since our primitive operations quantify over row kinds. For
example, here is the kind annotated type for selection:

( .l) ::∀rrowα∗.{l :: α | r}→ α

As we remarked before, our framework makes just few assumptions about the
actually type rules and can be embedded in any higher-order polymorphic type
system. To use our framework with standard Hindley-Milner type rules [8, 18]
we need to make the implicit syntactic equality between mono types explicit with
our equality relation defined in Figure 12.1. We do not repeat all the Hindley-
Milner type rules here, but just give the application rule as a typical example:

(app)
Γ ` e1 : τ1→ τ Γ ` e2 : τ2 τ1 ∼= τ2

Γ ` e1 e2 : τ

Exactly the same approach can be used to use our notion of records with qualified
types [10] and Haskell. To use our framework with the MLF type rules is even
easier as we only need to extend the rule (eq-refl) of the MLF equality relation on
poly types (≡) to include our notion of equality on mono types (∼=):

(eq-refl-mono)
τ∼= τ

′

τ≡ τ
′

No change is necessary to the actual type rules of MLF as those are already de-
fined in terms of the standard MLF equality relation on type schemes.

12.6 TYPE INFERENCE

This section describes how our system supports type inference, where the most
general type of an expression is automatically inferred. Central to type inference
is the unification algorithm.

12.6.1 Unification

To support higher-order polymorphism, we use kind preserving substitutions in
this article. A kind preserving substitution always maps type variables of a cer-
tain kind to types of the same kind. Formally, a substitution θ is a unifier of two
types τ and τ′ iff θτ ∼= θτ′. We call such unifier a most general unifier of these
types if every other unifier can be written as the composition θ′ ◦θ, for some sub-
stitution θ′. Figure 12.2 gives an algorithm for calculating unifiers in the presence
of rows. We write τ∼ τ′ : θ to calculate the (most general) unifier θ for two types
τ and τ′.
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(uni-const) c∼ c : []

(uni-var) α∼ α : []

(uni-varl)
α /∈ ftv(τ)

α
κ ∼ τ

κ : [α 7→ τ]

(uni-varr)
α /∈ ftv(τ)

τ
κ ∼ α

κ : [α 7→ τ]

(uni-app)
τ1 ∼ τ

′
1 : θ1 θ1τ2 ∼ θ1τ

′
2 : θ2

τ1 τ2 ∼ τ
′
1 τ
′
2 : θ2 ◦θ1

(uni-row)

s' (|l :: τ
′ | s′ |) : θ1 last(r) /∈ dom(θ1)

θ1τ∼ θ1τ
′ : θ2 θ2(θ1r)∼ θ2(θ1s′) : θ3

(|l :: τ | r |)∼ s : θ3 ◦θ2 ◦θ1

FIGURE 12.2. Unification between (mono) types

(row-head) (|l :: τ | r |)' (|l :: τ | r |) : []

(row-swap)
l 6= l′ r ' (|l :: τ | r′ |) : θ

(|l′ :: τ
′ | r |)' (|l :: τ | l′ :: τ

′ | r′ |) : θ

(row-var)
fresh(β) fresh(γ)

α' (|l :: γ | β |) : [α 7→ (|l :: γ | β |)]

FIGURE 12.3. Isomorphic rows

The first five rules are standard Robinson unification [26], slightly adapted to
only return kind-preserving unifications [13]. The last rule (uni-row) deals with
unification of rows. When a row (|l :: τ | r|) is unified with some row s, we first
try to rewrite s in the form (|l :: τ′ | s′|) using the rules for type equality defined in
Figure 12.1. If this succeeds, the unification proceeds by unifying the field types
and the tail of the rows.

Figure 12.3 gives the algorithm for rewriting rows where the expression r '
(|l ::τ | s|) : θ asserts that r can be rewritten to the form (|l ::τ | s|) under substitution
θ. Note that r and l are input parameters while τ, s, and θ are synthesized. The
first two rules correspond to the rules (eq-head) and (eq-swap) of type equality
in Figure 12.1. The last rule unifies a row tail that consist of a type variable. Note
that this rule introduces fresh type variables which might endanger termination of
the algorithm. This is the reason for the side condition in rule (uni-row): last(r) /∈
dom(θ1).

If we look closely at the rules in Figure 12.3 there are only two possible sub-
stitutions as the outcome of a row rewrite. When a label l can be found, the
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substitution will be empty as only the rules (row-swap) and (row-head) apply.
If a label is not present, the rule (row-var) applies and a singleton substitution
[α 7→ (|l :: γ | β|)] is returned, where α is the tail of s. Therefore, the side-condition
last(r) /∈ dom(θ1) prevents us from unifying rows with a common tail but a dis-
tinct prefix2. Here is an example where unification would not terminate without
the side condition:

\r→ if True then {x = 2 | r} else {y = 2 | r}

During type inference, the rows in both if branches are unified:

(|x :: Int | α|)∼ (|y :: Int | α|) : θ3 ◦θ2 ◦θ1

Which implies that (|y :: Int | α|) is rewritten as:

(|y :: Int | α|)' (|x :: γ | y :: Int | β|) : θ1

Where θ1 = [α 7→ (|x :: γ | β|)]. After unification of γ and Int, the unification of the
row tails is now similar to the initial situation and thus loops forever:

θ2(θ1α)∼ θ2(θ1((|y :: Int | β|))) : θ3
=

(|x :: Int | β|)∼ (|y :: Int | β|) : θ3

However, with the side condition in place, no such thing will happen since last(r)=
α ∈ {α} = dom(θ1). Not all record systems described in literature correctly en-
sure termination of record unification for this class of programs. For example, the
unification rules of TREX fail to terminate for this particular example [7].

The reader might be worried that the side condition endangers the soundness
or completeness of unification, but such is not the case, as asserted by the follow-
ing theorems.

Theorem 1. Unification is sound. If two types unify they are equal under the
resulting substitution: τ∼ τ′ : θ ⇒ θτ∼= θτ′.

Proof. Proved by straightforward induction over the cases of the unification
algorithm. A full proof can be found in [17].

Theorem 2. Unification is complete. If two types are equal under some unifier,
unification will succeed and find a most general unifier: θτ∼= θτ′ ⇒ τ∼ τ′ : θ1 ∧
θ1 v θ.

Proof. Standard proof of completeness over the structure of types. A constructive
proof is given in a separate technical report [17].

As most type inference algorithms reduce to a set of unification constraints, sound-
ness and completeness results carry over directly with the above results for row

2In practice, this side condition can also be implemented by passing last(r) to the (')
function and checking in (row-var) that α 6= last(r)
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unification. In particular, the proofs for Hindley-Milner, qualified types [11], and
MLF[15] are easily adapted to hold in the presence of row unification.

12.7 IMPLEMENTING RECORDS

Providing an efficient implementation for extensible and polymorphic records is
not entirely straightforward. In this section we discuss several implementation
techniques and show in particular how standard compilation techniques can be
used to provide constant-time access for label selection.

Association lists. A naı̈ve implementation of records uses a simple association
list of label-value pairs. Selection becomes a linear operation, and this is probably
too inefficient for most practical applications.

Labeled vectors. A more efficient representation for label selection is a vector of
label-value pairs where the fields are sorted on the label according to some order
on the labels. Label selection can now use a binary search to select a particular
label and becomes an O(log(n)) operation. When labels can be compared effi-
ciently, for example by using a Garrigue’s hashing scheme [4], the binary search
over the vector can be implemented quite efficiently. It is also possible to improve
the search time for small and medium sized records by using a partially evaluated
header [25], but at the price of a potentially more expensive extension operation.

Labeled vectors + constant folding. Label selection can be divided into two
separate operations: looking up the index of the label (lookup), and selecting
the value using that index (select). When the labels of the record are known
it is possible to partially evaluate the lookup operation using standard compiler
techniques. The expression {l = expr}.l is translated with lookup and select as:

let r = {l = expr}; i = lookup r l in select r i

Since the type of r is known, the compiler can statically evaluate lookup r l and
replace it by 0, avoiding a binary search at runtime:

let r = {l = expr} in select r 0

This optimization by itself guarantees constant-time label selection for all records
with a fixed set of labels (like in C or ML).

If the record type is open, the lookup operation can not be evaluated statically.
However, techniques like the worker-wrapper transformation in GHC [21] can
often expose known offsets. An aggressive compiler can also push the lookup
operation through extensions in order to float properly, where offsets are adjusted
along the lines of the evidence translation of Gaster and Jones [7].

Vectors. One of the most efficient representation for records is a plain vector
without labels. Gaster and Jones [7, 6] showed how to this representation can be
used with polymorphic extensible records using standard evidence translation of
qualified types [10, 11]. We can apply this technique to our system in the context
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of qualified types by adding an extension predicate l|r, that asserts that row r is
extended with a label l. For example, the type of selection becomes:

( .l) ::∀rα. (l|r)⇒{l :: α | r}→ α

Standard evidence translation turns each predicate l|r into a runtime parameter
that corresponds to the offset of l in the extended row r [7] It may seem that
we have sacrificed the simplicity of our system as the type signatures now show
an artificial predicate, that is just used for compilation. The crucial observation
here is that, in contrast to lacks predicates, extension predicates can always be
solved and never lead to an error. This means that the type system can use these
predicates under the hood without ever showing them to the user.

12.8 RELATED WORK

An impressive amount of work has been done on type systems for records and we
necessarily restrict ourselves to short overview of the most relevant work.

The label selective calculus [5, 3] is a system that labels function parameters.
Even though this calculus does not describe records, there are many similarities
with our system and the unification algorithm contains a similar side condition to
ensure termination. One of the earliest and most widely used approaches to typing
records is subtyping [2, 23]. The type of selection in such system becomes:

( .l) ::∀α.∀r 6 {l :: α}. r→ α

That is, we can select label l from any record r that is a subtype of the singleton
record {l :: α}. Unfortunately, the information about the other fields of a record is
lost, which makes it hard to describe operations like row extension. Cardelli and
Mitchell [2] introduce an overriding operator on types to overcome this problem.

Wand [28, 29] was the first to use row variables to capture the subtype relation-
ship between records using standard parametric polymorphism. However, since
his notion of free extension can overwrite previous labels, not all programs have a
principal type. The work of Wand is later refined by Berthomieu and Sagazan [1]
where a polynomial unification algorithm is presented. Remy [24] extended the
work of Wand with a flexible system of extensible records with principle types,
where flags are used to denote the presence or absence of labels and rows. For
example, the type of free extension becomes:

{l = | } ::∀rϕα. α→{l :: ϕ | r}→ {l :: pre(α) | r}

The type variable ϕ ranges over field types that can be either absent abs or present
pre(τ) with a type τ. The type of Remy’s extension encodes that a field that is
already present is overwritten, while an absent field becomes present. This is
a very flexible system, but the resulting types can be somewhat confusing since
absent labels in the value can be present in the type (with an absent flag abs).

Ohori [20] was the first to present an efficient compilation method for poly-
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morphic records with constant time label selection, but only for non-extensible
rows. Subsequently, Gaster and Jones [7, 6] presented an elegant type sytem for
records and variants based on the theory of qualified types [10, 11]. They use
strict extension with special lacks predicates to prevent duplicate labels.

{l = | } ::∀rα. (r\l)⇒ α→{r}→ {l :: α | r}

The predicates correspond to runtime label offsets, and standard evidence trans-
lation gives a straightforward compilation scheme with constant time label selec-
tion. A drawback is that this system relies on a type system that supports qualified
types, and that each use of a label leads to a lacks predicate, which in turn can lead
to large types that are hard to read or expensive to implement [9]. Sulzmann [27]
gives a general constraint based formulation of record operations, but it does not
lead directly to an efficient compilation scheme [6].

12.9 CONCLUSION

We believe that polymorphic and extensible records are a flexible and fundamen-
tal concept to program with data structures, but that the complexity of type sys-
tems for such records prevents widespread adoption in mainstream languages.
We presented polymorphic and extensible records based on scoped labels, which
is unconvential but also a simpler alternative to existing solutions.

We would like to thank François Pottier for pointing out the similarities be-
tween our system and the label selective calculus of Jaques Garrigue.
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[19] M. Odersky and K. Läufer. Putting type annotations to work. In 23th ACM Symp. on
Principles of Programming Languages (POPL’96), pages 54–67, Jan. 1996.

[20] A. Ohori. A polymorphic record calculus and its compilation. ACM Transactions on
Programming Languages and Systems, 17(6):844–895, 1995.

[21] S. Peyton Jones and A. Santos. A transformation-based optimiser for Haskell. Science
of Computer Programming, 32(1–3):3–47, Sept. 1998.

[22] S. Peyton-Jones and M. Shields. Practical type inference for arbitrary-rank types.
Submitted to the Journal of Functional Programming (JFP), 2004.

[23] B. C. Pierce and D. N. Turner. Simple type theoretic foundations for object-oriented
programming. Journal of Functional Programming, 4(2):207–247, Apr. 1994.
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FIGURE 13.1. Schematic Diagram of the Embounded Project Objectives

13.1 PROJECT OVERVIEW

EmBounded is a 3-year Specific Targeted Research Project (STREP) funded by
the European Commission under the Framework VI Future and Emerging Tech-
nology Open (FET-OPEN) programme. It commenced in June 2005 and involves
5 partners from 3 European countries, providing expertise in high-level resource
prediction (Ludgwig-Maximilians-Universität, Germany and St Andrews, UK);
precise costing of low-level hardware instructions (AbsInt GmbH, Germany);
domain-specific languages and implementation (Heriot-Watt University, UK and
St Andrews); and the design and implementation of real-time embedded sys-
tems applications, in particular in the area of computer vision algorithms for au-
tonomous vehicles (LASMEA, France and Heriot-Watt). Further details of the
project may be found at http://www.embounded.org.

The Embounded Vision

We envisage future real-time embedded system software engineers programming
in very high-level functionally-based programming notations, whilst being sup-
ported by automatic tools for analysing time and space behaviour. These tools
will provide automatically verifiable certificates of resource usage that will al-
low software to be built in a modular and compositional way, whilst providing
strong guarantees of overall system cost. In this way, we will progress towards
the strong standards of mathematically-based engineering that are present in other,
more mature, industries, whilst simultaneously enhancing engineering productiv-
ity and reducing time-to-market for embedded systems.

Project Objectives

The primary technical objectives of the EmBounded project are (Figure 13.1):
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a) to produce formal models of resource consumption in real-time embedded sys-
tems for functional programming language constructs;

b) to develop static analyses of upper bounds for these resources based on the
formal models of resource consumption;

c) to provide independently and cheaply verifiable automatically generated re-
source certificates for the space and time behaviour of software/firmware com-
ponents that can be used to construct embedded software/firmware in a com-
positional manner;

d) to validate our analyses against complex real-time embedded applications
taken from computer vision systems for autonomous vehicle control;

e) to investigate how these technologies can be applied in the short-to-medium
term in more conventional language frameworks for embedded systems.

Overall Research Methodology

Our work is undertaken in the context of Hume [12], a functionally-based domain-
specific high-level programming language for real-time embedded systems. The
project will combine and extend our existing work on source-level static analyses
for space [18, 16] and time [26] with machine-code level analyses for time [20].
This will yield static analyses capable of deriving generic time and space resource
bounds from source-level programs that can be accurately targeted to concrete
machine architectures. Our source-level analyses will exploit a standard type-
and-effect systems approach [2] and will model bounds on resource consumption
for higher-order, polymorphic and recursive expressions. The analyses will be
combined with the generation of resource certificates that can be checked against
concrete resource prediction models using standard automatic theorem-proving
techniques. We will also prove the correctness of our analyses for the same
theorem-proving technology by extending the proofs we have developed as part
of an earlier EU-funded project (IST-2001-33149, Mobile Resource Guarantees
– MRG). Our resource model will be phrased in terms of the Hume abstract ma-
chine architecture, HAM; will extend our earlier work by considering time and
other resources in addition to space usage and by handling advanced features of
the expression language including timeouts and exceptions; and will be related
to a concrete architecture specifically designed for real-time embedded systems
used, the Renesas M32C. The work will be evaluated in the context of a num-
ber of applications taken from the embedded systems sphere, primarily real-time
computer vision.

Novelty and Progress Beyond the State-of-the-art

EmBounded is novel in attempting to i) construct formal upper bounds for space
and time on recursive, polymorphic and higher-order functions; ii) bring auto-
matic memory management techniques to a hard real-time, real-space domain;
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iii) apply functional programming design to hard real-time and tightly bounded
space settings; and iv) produce formally verifiable and compositional certificates
of resource usage for real-time embedded programs. These are all open research
problems, for which at best partial solutions have so far been found. Novelty also
comes from the combination of static analyses at both high and low levels; from
the integration of hard real-time program analyses with certificate verification;
and from the applications domain. Finally, we anticipate developing new cost
analyses that will allow the analysis of more forms of recursive program and/or
the production of more accurate cost information than can presently be obtained.

If successful, we anticipate that the EmBounded project will enable several
research advances to be made:

• it will develop compositional resource certificates for embedded systems;

• it will allow safe use of features such as recursion, polymorphism and auto-
matic memory management in real-time systems, so allowing the in-principle
use of functional programming technology under real-time conditions;

• it will synthesise resource cost models from both source and machine levels,
so enabling more accurate modelling than is possible individually;

• it will extend theoretical cost modelling technology to recursive, higher-order
and polymorphic functions;

• it will characterise software development using constructs with well defined
formal and analytic properties in the context of realistic applications;

• it will represent the first serious attempt to apply modern functional program-
ming language technology to hard real-time systems, including complex industrially-
based applications.

As a minimum outcome, we expect to produce a set of certified models and
analyses that will determine upper bounds on time and space costs for a range of
useful primitive recursive function forms. We should also have determined the
accuracy of these models both against some representative computer vision algo-
rithms that have been adapted to the analyses, and against some representative,
simple real-time control applications that have been written in Hume. In this way
we will have made a step towards ensuring the practical application of functional
programming technology in a real-time, hard-space setting.

13.2 THE HUME LANGUAGE

Our research uses Hume as a “virtual laboratory” for studying issues related to
time and space cost modelling. Hume is designed as a layered language where
the coordination layer is used to construct reactive systems using a finite-state-
automata based notation; while the expression layer is used to structure compu-
tations using a purely functional rule-based notation that maps patterns to expres-
sions. Expressions can be classified according to a number of levels (Figure 13.2),
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data structures
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PR−Hume

HO−Hume

FSM−Hume
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Full Hume
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HO−Hume

Non−recursive higher−order functions

Non−recursive

FSM−Hume

Non−recursive first−order functions

Non−recursive data structures

HW−Hume

No functions

Non−recursive data structures

Full recursion

FIGURE 13.2. Expression Levels in the Hume Language

where lower levels lose abstraction/expressibility, but gain in terms of the proper-
ties that can be inferred. For example, the bounds on costs inferred for primitive
recursive functions (PR-Hume) will usually be less accurate than those for non-
recursive programs, while cost inference for Full Hume programs is undecidable
in general (and we therefore restrict our attention in the EmBounded project to
PR-Hume and below). A previous paper has considered the Hume language de-
sign in the general context of programming languages for real-time systems [11].

We have previously developed prototype stack and heap cost models for FSM-
Hume [13], based on a simple formal operational semantics derived from the
Hume Abstract Machine, and have also developed a prototype stack and heap
analysis for a subset of PR-Hume. During the course of the EmBounded project,
these analyses will be extended to cover time issues and the full range of Hume
language constructs. We must also explore issues of quality, compositionality
and the cost of the analysis in order to reach a good balance between theoretical
coverage and practicality.

13.3 PROJECT WORK PLAN

Formal Models of Resource Consumption

Our first technical objective is to produce formal models of the exact time and
space consumption of Hume programs. Space properties of interest include both
dynamic stack and heap allocations and static global data allocations. Time must
be measured in real, absolute time units at the granularity of the hardware clock
for each target architecture. In order to ensure accurate modelling of time con-
sumption, the models will reflect domain-specific compiler optimisations and im-
portant architectural characteristics such as cache behaviour.

Conceptually the formal cost models will be based on a formal operational se-
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Semantics Cost Model
Hume code evaluation−−−−−→ cost

↓ translation ‖ correspondence

HAM code evaluation D4−−−−−−−−→ cost

FIGURE 13.3. Cost Modelling Methodology

mantics, extended in order to make explicit the intensional properties of program
execution, such as time and space consumption. So as to achieve the desired level
of accuracy, low-level architectural issues will be integrated in the description of
state in the operational semantics. Accurate modelling of the compilation pro-
cess is also required, in order to retain a close relationship between information
that can be obtained from the concrete architecture and the results from the static
analyses. This will link the resource consumption models with the static analy-
ses. Finally, a correspondance proof determines the soundness of the Hume cost
model against the HAM seamtics. Our approach is shown in Figure 13.3.

The resulting formal models will form the basis for defining and automatically
verifying resource certificates. They will be novel in their accurate and rigorous
modelling of time and space. In particular, they will model low-level processor
characteristics such as cache behaviour and instruction-level-parallelism (ILP) us-
ing the techniques developed by Absint.

At the time of writing, we have largely completed this objective, having con-
structed formal operational semantics for both Hume and the HAM that have been
extended to expose explicit stack, heap and time information. We are now pro-
ceeding to incorporate time information derived from abstract interpretation of
binary code fragments using the AbsInt tool.

A Cost Model for Hume Expressions We illustrate our approach by showing
how a cost model can be constructed to expose time, heap and stack costs for
Hume expressions. The statement

V ,η
t
t ′

p
p′

m
m′ e `,η′

may be read as follows: expression e evaluates under the environment, heap
configuration V ,η in a finite number of steps to a result value stored at location
` in heap η′, provided that there were t time, p stack and m heap units available
before computation. Furthermore, at least t ′ time, p′ stack and m′ heap units are
unused after the evaluation is finished. We illustrate the approach by showing a
few sample rules. Integers are constructed as boxed values, and a pointer to the
new value saved on the stack. The time cost is given by Tmkint.

n ∈ Z NEW(η) = ` w = (int,n)

V ,η
t ′ +Tmkint

t ′
p′ +1

p′
m′ + SIZE(w)

m′ n `,η[` 7→ w]
(CONST INT)
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Variables are simply looked up from the environment and the corresponding value
pushed on the stack. The time cost of this is the cost of the PushVar instruction,
shown here as Tpushvar. There is no heap cost.

V (x) = `

V ,η
t ′ +Tpushvar

t ′
p′ +1

p′
m
m x `,η

(VARIABLE)

There are three cases for conditionals: two symmetric cases where the condition
is true or false, respectively; and a third case to deal with exceptions. We show
here only the false case. In the case of a true/false condition the time cost is the
cost of evaluating the conditional expression, plus the cost of evaluating an If
instruction Tiftrue/Tiffalse plus the cost of executing the true/false branch,
plus the cost of a goto if the condition is false.

V ,η
t1
t ′1

p
p′

m
m′ e1 `,η′ 0 /∈ dom(η′)

η′(`) = (bool, ff)
V ,η′

t ′1 −Tiffalse

t ′3

p′ +1
p′′

m′

m′′ e3 `′′,η′′

V ,η
t1

t ′3 −Tgoto

p
p′′

m
m′′

if e1 then e2 else e3 `′′,η′′

(CONDITIONAL FALSE)

The remaining rules are constructed similarly. The main technical difficulties
are dealing correctly with higher-order functions and exceptions and capturing
the costs of pattern-matching and scheduling. For reasons of brevity we will not
consider these issues here.

Static Analyses

The cost models we have outlined above can now be used as the basis for static
analyses. Our second objective is the development of static analyses correspond-
ing to these formal models. The analyses will predict upper bounds on both worst-
case execution time (WCET) and maximum space (both static and dynamic mem-
ory) usage for (a subset of) Hume programs as previously identified. They will
work on the Hume source level to produce conservative estimates of worst-case
behaviour based on the target architecture (whether abstract machine or concrete
hardware implementation).

Our analyses will build on our theoretical work on costing higher-order and re-
cursive definitions [26, 33, 16, 18], applied work on first-order programs [14, 24],
and the static analyses of low-level code developed by AbsInt [10, 22, 15]. Com-
bining these analyses will lead to a hybrid analysis that should yield considerably
more accurate results than can be obtained using either kind of analysis alone, and
that should be capable of analysing very high-level language constructs.

Our high-level analyses will be constructed using a type-and-effect system
approach. This approach allows our analyses to be scaled to consider higher-
order functions and complex data structures in a common framework. In order to
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support automatic memory management, we will include mechanisms to support
limited forms of compile-time garbage collection based on Tofte-style memory
regions [32] and/or usage annotations [4]. This will enable effective and accurate
prediction of run-time memory usage without compromising the required real-
time program properties. We will also investigate the application of our analyses
to implicit memory allocation.

Our low-level analyses use abstract interpretation of machine-code instruc-
tions to provide time and space analyses for a complete program. They exploit
detailed models of the hardware architecture including cache logic and the in-
struction scheduler, pipeline, and branch prediction.

At the time of writing, construction of the static analyses is the main focus of
work at St Andrews and LMU.

Formal, Verifiable Resource Certificates

Our third objective is the automatic generation of certificates of bounded resource
consumption. Such certificates can be attached to code fragments for the tar-
get machines, and composed to provide overall guarantees of bounded resource
consumption. In an embedded system context, once a program is linked and the
resource bounds verified, there is no further need for a certificate and it may be
discarded. An additional benefit from certificate generation is the enhancement of
confidence in the behavioural correctness of the program.

Formally defining the structure of certificates will amount to first defining an
assertion language that defines which statements can be made for HAM programs.
The structure of certificates will be a suitably simplified representation of a for-
mal proof of statements in the assertion language. The proof will be relative to
the resource-aware program logic for the HAM. This program logic has to accu-
rately model resources, but still be simple enough to enable automated reasoning
on these certificates. We will draw on our program logic, the Grail Logic [3],
for a JVM-like low-level language, in deciding on the style of the logic and the
embedding of the assertion language into the logic. In contrast to the Grail Logic,
the HAM Logic will have to model costs incurred at assembler level, for the par-
ticular hardware. Bridging this gap in abstraction levels on the low level will be a
major focus of this work, and we will investigate methods of reflecting this level
of detail without making the program logic prohibitively expensive.

At the time of writing, we have started work on encoding the formal cost
models we have now developed in a form that can be used by the Isabelle theorem
prover. This will form the basis for our subsequent work on certification.

Embedded Applications

Our fourth objective is the development of testbed applications in Hume that can
be costed using our new analyses. We need to develop three kinds of applications:
simple exemplars, isolating single issues; more complex cost benchmarks; and re-
alistic applications. The simple exemplars will provide underpinning components
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for the subsequent applications. They will also enable us to explore principled ap-
proaches to developing embedded software that exploit program constructs with
well characterised properties and analyses. The more complex cost benchmarks
will build on the simple exemplars and enable exploration of integration of differ-
ent analyses. The realistic applications will serve as proofs of concept, demon-
strating that our approach can deal with complex real-time applications with hard
space requirements.

EmBounded will build on Heriot-Watt and LASMEA expertise in formally
motivated development of vision and control software using functional languages,
through a series of closely linked stages of application software development. Ini-
tially, we will revisit classic vision algorithms for low-, intermediate- and high-
level vision, focusing on the Hume expression layer. We will investigate the
degree to which such algorithms can be formulated using strongly finite-state,
higher-order or primitive recursive constructs. We will empirically evaluate these
algorithms for direct comparison with predictions from the analyses, embodying
the cost models developed above. We will then look at composing classic vision
algorithms to form a complete mono-source vision system and a high-level stereo-
scopic vision system. Again we will empirically measure these systems to enable
evaluation of compositional cost-model based analyses. Next, we will explore
real-time tracking, again using composed components developed at earlier stages.
This is where we will first introduce concurrency at the Hume coordination layer,
enabling initial evaluation of cost modelling of full Hume programs. Finally, we
intend to develop a real-time control system for the CyCab autonomous vehicle,
incorporating real-time tracking and multiple sensor monitoring. Whilst the focus
will be on evaluation of cost models and analyses applied to a substantive, com-
plex system, we would also seek to incorporate the control system in a CyCab
vehicle for on-road trials.

At the time of writing, we have produced some simple exemplars of com-
puter vision algorithms that exploit recursion and dynamic data structures, and
are considering how these can best be analysed. We have also successfully pro-
duced and analysed space usage for a simple real-time computer game, based on
the commercial Simple Simon system. This application runs on a simple Renesas
M32C development board in less than 2KB of dynamic memory for Hume stack
and heap, plus 7KB of flash memory for the Hume program code and runtime
system, including interfaces to the physical buttons and LED outputs supported
by the board. We are now working on obtaining analytical time costs for this
architecture.

Application to Traditional Languages

Our final objective is the determination of how our formal models and analyses
could be applied to present-generation languages and application frameworks that
are in widespread use for the development of embedded systems. A number of
common language features, such as assignment, unrestricted exception handling
or dynamic method dispatch, are known to both complicate static analyses and to
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reduce the quality of analytical results. This has motivated our use of Hume as a
“virtual laboratory” in the first instance: by eliminating such features it is possible
to make more rapid progress on the key issues related to the analysis. In order to
extend our work, we will therefore first identify generic language features that are
amenable to analysis using our techniques. We will subsequently explore how
the analyses can be extended to the other language constructs of interest. Despite
the lack of good formal semantics for many traditional languages, we anticipate
being able to demonstrate that the use of a suitably restricted, but still powerful,
subset of the language will permit the construction of good-quality static analyses
for determining bounds on time- and space-resource usage.

13.4 THE STATE OF THE ART IN PROGRAM ANALYSES FOR REAL-
TIME EMBEDDED SYSTEMS

Static analysis of worst-case execution time (WCET) in real-time systems is an es-
sential part of the analyses of over-all response time and of quality of service [27].
However, WCET analysis is a challenging issue, as the complexity of interac-
tion between the software and hardware system components often results in very
pessimistic WCET estimates. For modern architectures such as the PPC755, for
example, WCET prediction based on simple weighted instruction counts may re-
sult in an over-estimate of time usage by a factor of 250. Obtaining high-quality
WCET results is important to avoid seriously over-engineering real-time embed-
ded systems, which would result in considerable and unnecessary hardware costs
for the large production runs that are often required.

Memory management is another important issue in real-time and/or embed-
ded systems with their focus on restricted memory settings. Some languages pro-
vide automatic dynamic memory management without strong guarantees on time
performance (e.g. Java [25]), whilst others rely on more predictable but error-
prone explicit memory management (e.g. C, C++, RTSj or Ada). One recent
approach [8] is to exploit memory regions for some or all allocation and to com-
bine annotations with automatic inference. Such approaches do not, however,
provide real-time guarantees, and typically require manual intervention in the al-
location process. Moreover, static region analysis can be overly pessimistic [8]
for long-lived allocations. Regardless of the memory management method, there
is a strong need for static guarantees of memory utilisation bounds.

Three competing technologies can be used for worst-case execution time anal-
ysis: experimental or testing-based approaches, probabilistic measures and static
analysis. Experimental approaches determine worst-case execution costs by (re-
peated and careful) measurement of real executions, using either software or hard-
ware monitoring. However, they cannot guarantee upper bounds on execution
cost. Probabilistic approaches similarly do not provide absolute guaranteed upper
bounds, but are cheap to construct, deliver more accurate costs, and can be engi-
neered to deliver high levels of trust in their results. Finally, existing static anal-
yses based on low-level machine models can provide guaranteed upper bounds
on execution time, but are time-consuming to construct, and may be unduly pes-
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simistic, especially for recent architectures with complex cache behaviour.

Experimental Approaches to WCET Analysis

Cache memories and pipelines usually work very well, but under some circum-
stances minimal changes in the program code or program input may lead to dra-
matic changes in the execution time. For (hard) real-time systems such as a flight-
control computer, this is undesirable and possibly even hazardous. The widely
used classical methods of predicting execution times are not generally applicable.
Software monitoring changes the code, which in turn impacts the cache behaviour.
Hardware simulation, emulation, or direct measurement with logic analysers can
only determine the execution times for some inputs and cannot be used to infer
the execution times for all possible inputs in general.

Some producers of time-critical software have thus developed their own method,
which is based on strict design and coding rules, the most deterministic usage of
the internal speed-up mechanisms of the microprocessor, and measurements of
code fragments whose limited size makes it possible to obtain a WCET for all
their possible inputs. This method allows the computation of a safe WCET for the
whole program by combining the WCETs of the individual fragments. An appro-
priate combination formula exists thanks to the design and coding rules. However,
this method poses the following drawbacks: it limits the effective power of the
CPU, requires manual effort for the measurements and related intellectual anal-
ysis, and cannot be performed too early during software development, since the
target hardware has to be available for measurement purposes. Moreover, in order
to ensure that an upper bound of the WCET is really being observed, complex
extensive verification and justification of the measurement process is required. It
is also possible that this measurement-based method might not scale up to future
projects. Therefore major industries depending on time-critical software are ac-
tively studying and evaluating new approaches to WCET determination based on
static program analysis, as they are pursued by AbsInt.

Probabilistic WCET Analysis

Probabilistic WCET analysis provides distribution functions, rather than absolute
upper bounds, for the execution time. This approach is valid even in the hard-real-
time environment, if it can provide a guarantee that the probability of deadline
over-run by any mission-critical task is within the accepted safety levels (e.g.,
less than 10−9 per flight hour for avionics applications).

Existing implementations of probabilistic WCET analysis tend to be rather
low-level: for example, in [6], the program units used are basic blocks (instruc-
tion sequences with one entry and one exit) of either Java byte-code, or machine
code compiled from C. The difficulty with this approach is that the information
about high-level program structure, which is essential for combining the distribu-
tion functions of individual basic blocks into “larger” functions, is then lost, and
needs to be re-constructed from specifically-designed program annotations. The
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analysis is performed in the “bottom-up” direction.

Static Analyses for Execution Cost

There has been a significant amount of work on analyzing general execution costs,
typically focusing on time usage, since the pioneering work on automatic com-
plexity analysis for first-order Lisp programs undertaken by Wegbreit [34]. There
has been progress on automatically costing higher-order functions, and recent
work has begun to tackle the many problems surrounding costing recursion (e.g.
Amadio et al. [1, 7] consider synthesis of polynomial time bounds for first-order
recursive programs). The static analyses for real-time systems of which we are
aware (e.g. Verilog’s SCADE or stack analysers such as that of Regehr et al. [28]
or AbsInt’s StackAnalyzer tool) are, however, highly conservative in limiting
their attention to first-order non-recursive systems with statically allocated data
structures. Typically, languages used for real-time systems do not support fea-
tures such as recursion or higher-order functions because of costing difficulties,
and cost analyses that might deal with such features are not applied to real-time
systems because the mostly widely-employed languages do not possess the requi-
site features.

Le Métayer [23] uses program transformation via a set of rewrite rules to de-
rive complexity functions for FP programs. A database of known recurrences is
used to produce closed forms for some recursive functions. However, the lan-
guage is restricted to a particular set of higher-order combinators for expressing
functions and the analysis is not modular as the transformation can only be ap-
plied to complete programs.

Rosendahl [30] also uses program transformation to obtain a step counting
version of first-order Lisp programs; this is followed by abstract interpretation to
obtain a program giving an upper bound on the cost. Again this abstract interpreta-
tion requires a complete program, limiting both its scalability and its applicability
to systems with e.g. compiled libraries. Finally, Benzinger [5] obtains worst-case
complexity analysis for NuPrl-synthesized programs by “symbolic execution” fol-
lowed by recurrence solving. The system supports first-order functions and lazy
lists but higher-order functions must be annotated with complexity information.
Moreover, only a restricted and awkward primitive recursion syntax is supported.

13.5 EXISTING WORK BY THE CONSORTIUM

High-Level Static Analyses for Real-Time, Hard Space Systems

St Andrews and LMU have developed complementary formal models for de-
termining upper bounds on space usage [18, 14] and time usage [26]. LMU
has focused on determining formally verified space models for first-order lan-
guages [16], whilst St Andrews has focused on models that allow inference of
time usage for higher-order, polymorphic and (primitive) recursive programs [33].
The combination of this work will lead to a powerful formal model capable of
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allowing inference of both time and space bounds for a language supporting mod-
ern language technologies, including higher-order definitions, polymorphism, re-
cursion and automatic memory management. Our work is influenced by that of
Reistad and Gifford [29] for the cost analysis of higher-order Lisp expressions,
by the “time system” of Dornic et al. [9], and by Hughes, Pareto and Sabry’s
sized types [19], for checking (but not inferring) termination for recursion and
productivity for reactive streams in a higher-order, recursive, and non-strict func-
tional language. Both St Andrews and LMU have produced automatic analyses
[18, 14, 26] based on these resource prediction models using standard type-and-
effect system technology to automatically infer costs from source programs.

Low-Level Static Analyses

Motivated by the problems of measurement-based methods for WCET estimation,
AbsInt has investigated a new approach based on static program analysis [22, 15].
This has been evaluated by Airbus France [31] within the Framework V RTD
project “DAEDALUS” (IST-1999-20527). The approach relies on the computa-
tion of abstract cache and pipeline states for every program point and execution
context using abstract interpretation. These abstract states provide safe approxi-
mations for all possible concrete cache and pipeline states, and provide the basis
for an accurate timing of hardware instructions, which leads to safe and precise
WCET estimates valid for all executions of the application.

Resource Certification

In the Framework V MRG project we aimed to develop certificates for bounded
resource consumption for higher-level JVM programs, and to use these certificates
in a proof-carrying-code infrastructure for mobile systems. In this infrastructure
a certifying compiler automatically generates certificates for (linear) bounds on
heap space consumption for a strict, first-order language with object-oriented ex-
tensions. These certificates can be independently checked when composing soft-
ware modules. Novel features in the reasoning infrastructure are the use of a
hiearchy of programming logics, using high-level type systems to capture infor-
mation on heap consumption, and the use of tactic-based certificates in the soft-
ware infrastructure. The latter drastically reduces the size of the certificates that
are generated. In the context of embedded systems, the cost model (and thus
the certificates built on them) must reflect lower-level architecture features. The
bounds for the resource consumption that are expressed in these certificates will
be provided by our static analyses, and may also incorporate information gained
by measurement on the concrete hardware.

Linear Types for Memory Allocation

LFPL [16, 18] uses linear types to determine resource usage patterns. A special
resource type called “diamond” is used to count constructors. First-order LFPL
definitions can be computed in linearly bounded space, even in the presence of
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general recursion. More recently, Hofmann and Jost have introduced [18] auto-
matic inference of these resource types, and thus of heap-space consumption, us-
ing linear programming. At the same time, the linear typing discipline is relaxed
to allow analysis of programs typable in a usage type system such as [21, 4]. Ex-
tensions of LFPL to higher-order functions have been studied in [17] where it was
shown that such programs can be evaluated using dynamic programming in time
O(2p(n)) where n is the size of the input and p is a fixed polynomial. It has been
shown that this is equivalent to polynomial space plus an unbounded stack.

13.6 CONCLUSIONS

In the EmBounded project, we are trying to push back the boundaries of applica-
bility for functional programming by considering hard real-time, hard space sys-
tems. We believe that functional programming notations have a great deal to offer
to modern software engineering practices, through the twin advantages of abstrac-
tion and compositionality. By tackling the long-standing behavioural bugbears of
time and space usage through careful language design in conjunction with state-
of-the-art static analysis techniques, we hope to show that functional languages
can also be highly practical and deliver real benefits in terms of automated sup-
port for the development of complex programs in the real-time embedded systems
domain.

Having constructed cost models for Hume and the HAM, our immediate chal-
lenge in the project is to construct sound resource analyses to determine good
upper bounds for recursive higher-order functions. In particular, we need to ex-
tend our work on space to also deal with time information and we must also study
the integration between time information at the source and binary levels. We must
also develop convincing real-time applications that exploit recursion and higher-
order functions in an essential way. In order to do this, we are studying appli-
cations from the computer vision domain that may be used for real-time object
tracking, or direction of autonomous vehicles. Finally, we must demonstrate that
functional languages are suitable for use in time- and space-constrained settings.
We have constructed one realistic demonstrator based on the Simple Simon game,
and will now consider additional.
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Chapter 14

Project Evaluation Paper:
Mobile Resource Guarantees
Donald Sannella1, Martin Hofmann2, David Aspinall1, Stephen Gilmore1,
Ian Stark1, Lennart Beringer1, Hans-Wolfgang Loidl2, Kenneth MacKen-
zie1, Alberto Momigliano1, Olha Shkaravska2

Abstract: The Mobile Resource Guarantees (MRG) project has developed a
proof-carrying-code infrastructure for certifying resource bounds of mobile code.
Key components of this infrastructure are a certifying compiler for a high-level
language, a hierarchy of program logics, tailored for reasoning about resource
consumption, and an embedding of the logics into a theorem prover. In this paper,
we give an overview of the project’s results, discuss the lessons learnt from it and
introduce follow-up work in new projects that will build on these results.

14.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project was a three year project funded
by the EC under the FET proactive initiative on Global Computing. The aim
of the MRG project was to develop an infrastructure needed to endow mobile
code with independently verifiable certificates describing its resource behaviour.
These certificates are condensed and formalised mathematical proofs of resource-
related properties which are by their very nature self-evident, unforgeable, and
independent of trust networks. This “proof-carrying-code” (PCC) approach to
security (19) has become increasingly popular in recent years (13; 1; 20).

Typical application scenarios for such an infrastructure include the following.

• A provider of a distributed computational power, for example a node in a
computational Grid, may only be willing to offer this service upon receiving
dependable guarantees about the required resource consumption.

1Laboratory for Foundations of Computer Science, School of Informatics, University
of Edinburgh, Edinburgh EH9 3JZ, Scotland

2Inst. f. Informatik, Ludwig-Maximilians Universität, D-80538 München, Germany
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• A user of a handheld device or another embedded system might want to know
that a downloaded application will definitely run within the limited amount of
memory available.

Our PCC infrastructure combines techniques from several different research ar-
eas. Most notably, we present a novel approach to PCC of building a hierarchy
of logics and of translating high-level language properties into a specialised pro-
gram logic (see Section 14.3). This approach combines the idea of minimising the
proof infrastructure as promoted by foundational PCC (1) with exploiting high-
level program properties in the certificates. The properties are expressed in an
extended type system and type inference is used for static program analysis. Thus
we combine work on program logics in the automated theorem proving commu-
nity with type-system-based analyses in the programming language community.
We also show how the embedding of this hierarchy of logics into the Isabelle/HOL
theorem prover yields an executable formalisation that can be directly used in the
infrastructure. Since soundness and completeness between the levels are estab-
lished within the prover, the specialised logic does not enter the trusted code base.

In the following section we will outline the initial objectives of the project
(Section 14.2) and then give an overview of the key techniques used, and newly
developed, to meet these objectives. We provide an overview of the design of
our proof and software infrastructure (Sections 14.3 and 14.4). We summarise
the main results in Section 14.5, and discuss future work which builds on these
results.

14.2 PROJECT OBJECTIVES

The objectives outlined in our initial proposal strike a balance between founda-
tional and more applied work. The foundational work develops a proof infras-
tructure built on type systems and program logics. The applied work creates a
software infrastructure in a PCC prototype which covers the entire path of mobile
code in a distributed system. A general overview of the project, developed about
half-way through the project, is presented in (5).

Objective 1 is the development of a framework in which certificates of resource
consumption exist as formal objects. This consists of a cost model and a program
logic for an appropriate virtual machine and run time environment.

Objective 2 consists of the development of a notion of formalised and checkable
proofs for this logic playing the role of certificates.

Objective 3 is the development of methods for machine generation of such cer-
tificates for appropriate high-level code. Type systems are used as an underlying
formalism for this endeavour. Since resource related properties of programs are

212



almost always undecidable, we aim — following common practice — for a con-
servative approximation: there will be programs for which no certificate can be
obtained although they may abide by the desired resource policy.

Objective 4 While proof-like certificates are generally desirable, they may some-
times be infeasible to construct or too large to transmit. We therefore study relax-
ations based on several rounds of negotiation between supplier and user of code
leading to higher and higher confidence that the resource policy is satisfied.

We have fully achieved Objectives 1–3, and we started work on Objective 4,
which is now being picked up in follow-up projects (see Section 14.5).

14.3 AN INFRASTRUCTURE FOR RESOURCE CERTIFICATION

Developing an efficient PCC infrastructure is a challenging task, both in terms
of foundations and engineering. In this section we present the foundational tools
needed in such an infrastructure, in particular high-level type-systems and pro-
gram logics. In terms of engineering, the main challenges are the size of the
certificates, the size of the trusted code base (TCB) and the speed of validation.

14.3.1 Proof Infrastructure

In this section we describe the proof infrastructure for certification of resources.
This is based on a multi-layered logics approach (shown in Figure 14.1), where all
logics are formalised in a proof assistant, and meta-theoretic results of soundness
and completeness provide the desired confidence.

As the basis we have the (trusted) operational semantics which is extended
with general “effects” for encoding the basic security-sensitive operations (for
example, heap allocation if the security policy is bounded heap consumption).
Judgements in the operational semantics have the form E ` h,e ⇓ h′,v,ρ, where
E maps variables to values, h represents the pre-heap and h′ the post-heap, and v
is the result value, consuming ρ resources. The foundational PCC approach (1)
performs proofs directly on this level thereby reducing the size of the TCB, but
thereby increasing the size of the generated proofs considerably. To remedy this
situation more recent designs, such as the Open Verifier Framework (12) or Certi-
fied Abstract Interpretation (10), add untrusted, but provably sound, components
to a foundational PCC design.

On the next level there is a general-purpose program logic for partial correct-
ness (2; 3). Judgements in this logic have the form Γ B e : A, where the context
Γ maps expressions to assertions, and A, an assertion, is a predicate over the pa-
rameters of the operational semantics. The role of the program logic is to serve
as a platform on which various higher level logics may be unified. The latter pur-
pose makes logical completeness of the program logic a desirable property, which
has hitherto been mostly of meta-theoretic interest. Of course, soundness remains
mandatory, as the trustworthiness of any application logic defined at higher levels
depends upon it. Our soundness and completeness results establish a strong link
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High-Level Type System

Specialised Logic

Termination Logic

Program Logic

Operational Semantics E ` h,e ⇓ h′,v,ρ

Γ B e : A

BT{P} e ↓

B ptq : D(Φ,τ)

compile

Φ `H t : τ

?

FIGURE 14.1. A family of logics for resource consumption

between operational semantics and program logic, shown as thick lines in Fig-
ure 14.1. Note that, since we formalise the entire hierarchy of logics and prove
soundness, we do not need to include any of these logics in the TCB.

Whereas assertions in the core logic make statements about partial program
correctness, the termination logic is defined on top of this level to certify termina-
tion. This separation improves modularity in developing these logics, and allows
us to use judgements of partial correctness when talking about termination. Judge-
ments in this logic have the form BT{P} e ↓, meaning an expression e terminates
under the precondition P.

On top of the general-purpose logic, we define a specialised logic (for ex-
ample the heap logic of (8)) that captures the specifics of a particular security
policy. This logic uses a restricted format of assertions, called derived assertions,
which reflects the judgement of the high-level type system. Judgements in the
specialised logic have the form B ptq : D(Φ,τ), where the expression ptq is the
result of compiling a high-level term t down to a low-level language, and the
information in the high-level type system is encoded in a special form of asser-
tion D(Φ,τ) that relies on the context Φ and type τ associated to t. Depending
on the property of interest, this level may be further refined into a hierarchy of
proof systems, for example if parts of the soundness argument of the specialised
assertions can be achieved by different type systems. In contrast to the general-
purpose logic, this specialised logic is not expected to be complete, but it should
provide support for automated proof search. In the case of the logic for heap
consumption, we achieve this by inferring a system of derived assertions whose
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level of granularity is roughly similar to the high-level type system. However, the
rules are expressed in terms of code fragments in the low-level language. Since
the side conditions of the typing rules are computationally easy to validate, auto-
mated proof search is supported by the syntax-directedness of the typing rules. At
points where syntax-directedness fails — such as recursive program structures —
the necessary invariants are provided by the type system.

On the top level we find a high-level type system that encodes information on
resource consumption. In the judgement Φ `H t : τ, the term t has an (extended)
type τ in a context Φ. This in an example of increasingly complex type systems
that have found their way into main-stream programming as a partial answer to
the unfeasibility of proving general program correctness. Given this complexity,
soundness proofs of the type systems become subtle. As we have seen, our ap-
proach towards guaranteeing the absence of bad behaviour at the compiled code
level is to translate types into proofs in a suitably specialised program logic.

The case we have worked out in (3) is the Hofmann-Jost type system for heap
usage (14) and a simpler instance is given in the rest of this section. In our work,
however, we give a general framework for tying such analyses into a fully for-
malised infrastructure for reasoning about resource consumption.

14.3.2 An Example of a Specialised Program Logic

We now elaborate our approach on a simple static analysis of heap-space con-
sumption based on (11). The idea is to prove a constant upper bound on heap
allocation, by showing that no function allocates heap in a loop. The goal is to
detect such non-loop-allocating cases and separate them from the rest, for which
no guarantees are given.

It should be emphasised that the heap space analysis in the MRG infrastructure
(as shown in Figure 14.5) can handle recursive functions with allocations as long
as the consumption can be bounded by a linear function on the input size (14).
We choose this simpler analysis in this section to explain the principles of our
approach without adding too much complexity in the logics.

We use the expression fragment of a simple first-order, strict language similar
to Camelot (18) (see later in 14.4.1), with lists as the only non-primitive data-
type and expressions in administrative-normal-form (ANF), meaning arguments
to functions must be variables (k are constants, x variables, f function names):

e ∈ expr ::= k | x | nil | cons(x1,x2) | f (x1, . . . ,xn f ) | let x=e1 in e2
| match x with nil⇒ e1;cons(x1,x2)⇒ e2

We now define a non-standard type system for this language, where Σ( f ) is a
pre-defined type signature mapping function names to N, as follows:

`H e : n n ≤ m

`H e : m
(WEAK)

`H k : 0
(CONST)

`H x : 0
(VAR)
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`H f (x1, . . . ,xn f ) : Σ( f )
(APP)

`H nil : 0
(NIL)

`H cons(x1,x2) : 1
(CONS)

`H e1 : m `H e2 : n

`H let x=e1 in e2 : m+n
(LET)

`H e1 : n `H e2 : n

`H match x with nil⇒ e1;cons(x1,x2)⇒ e2 : n
(MATCH)

Let us say that a function is recursive if it can be found on a cycle in the call
graph. Further, a function allocates if its body contains an allocation, i.e, a subex-
pression of the form cons(x1,x2). One can show that a program is typeable iff no
recursive function allocates. Moreover, in this case the type of a function bounds
the number of allocations it can make.

In order to establish correctness of the type system and, more importantly,
to enable generation of certificates as proofs in the program logic, we will now
develop a derived assertion and a set of syntax-directed proof rules that mimic the
typing rules and permit the automatic translation of any typing derivation into a
valid proof.

Recall that Γ B e : A is the judgement of the core logic, and that A is parame-
terised over variable environment, pre- and post-heap (see (2) for more details on
encoding program logics for these kinds of languages). Based on this logic, we
can now define a derived assertion, capturing the fact that the heap h′ after the
execution is at most n units larger than the heap h before execution2:

D(n)≡ λE h h′ v ρ. |dom(h′) |≤|dom(h) |+n

We can now prove derived rules of the canonical form Be : D(n) to arrive at a
program logic for heap consumption:

Be : D(n) n ≤ m

Be : D(m)
(DWEAK)

Bk : D(0)
(DCONST)

Bx : D(0)
(DVAR)

B f (x1, . . . ,xn f ) : Σ( f )
(DAPP)

Bnil : D(0)
(DNIL)

Bcons(x1,x2) : D(1)
(DCONS)

Be1 : D(m) B e2 : D(n)
Blet x=e1 in e2 : D(m+n)

(DLET)

Be1 : D(n) B e2 : D(n)
Bmatch x with nil⇒ e1;cons(x1,x2)⇒ e2 : D(n)

(DMATCH)

2We do not model garbage collection here, so the size of the heap always increases.
This restriction will be lifted in the next section.
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We can now automatically construct a proof of bounded heap consumption,
by replaying the type derivation for the high-level type system `H , and using the
corresponding rules in the derived logic. The verification conditions coming out
of this proof will consist only of the inequalities used in the derived logic. No
reasoning about the heaps is necessary at all at this level. This has been covered
already in the soundness proof of the derived logic w.r.t. the core program logic.

14.3.3 Modelling Reusable Memory

To tackle the issue of reusable memory, we introduce the model of a global “free-
list”. Heap allocations are fed from the freelist. Furthermore, Camelot provides
a destructive pattern match operator, which returns the heap cell matched against
to the freelist. This high-level memory model is the basis for extending the type
system and the logic to a language where memory can be reused.

We can generalise the type system to encompass this situation by assigning a
type of the form Σ( f ) = (m,n) with m,n ∈N to functions and, correspondingly, a
typing judgement of the format `Σ e : (m,n). The corresponding derived assertion
D(m,n) asserts that if in the pre-heap the global freelist has a length greater than
or equal to m, then the freelist in the post-heap has a length greater than or equal
to n. Since the freelist, as part of the overall heap, abstracts the system’s garbage
collection policy, we have the invariant that the size of the post-heap equals the
size of the pre-heap.

Now the type of an expression contains an upper bound on the space needed
for execution as well as the space left over after execution. If we know that, say, e :
(5,3) then we can execute e after filling the freelist with 5 freshly allocated cells,
and we will find 3 cells left-over, which can be used in subsequent computations.

The typing rules for this extended system are as follows. Corresponding de-
rived rules are provable in the program logic.

`H e : (m,n) m′ ≥ m+q n′ ≤ n+q

`H e : (m′,n′)
(WEAK)

`H k : (0,0)
(CONST)

`H x : (0,0)
(VAR)

`H f (x1, . . . ,xn f ) : Σ( f )
(APP)

`H nil : (0,0)
(NIL)

`H cons(x1,x2) : (1,0)
(CONS)

`H e1 : (m,n) `H e2 : (n,k)
`H let x=e1 in e2 : (m,k)

(LET)

`H e1 : (m,n) `H e2 : (m+1,n)
`H match x with nil⇒ e1;cons(x1,x2)@ ⇒ e2 : (m,n)

(MATCH)

Notice that this type system does not prevent deallocation of live cells. Doing
so would compromise functional correctness of the code but not the validity of
the derived assertions which merely speak about freelist size.

In (8) we extend the type system even further by allowing for input-dependent
freelist size using an amortised approach. Here it is crucial to rule out “rogue
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programs” that deallocate live data. There are a number of type systems capable
of doing precisely that; among them we choose the admittedly rather restrictive
linear typing that requires single use of each variable.

14.4 A PCC INFRASTRUCTURE FOR RESOURCES

Having discussed the main principles in the design of the MRG infrastructure,
we now elaborate on its main characteristic features (a detailed discussion of the
operational semantics and program logic is given in (2)).

14.4.1 Proof Infrastructure

As an instantiation of our multi-layered logics approach, the proof infrastructure
realises several program logics, with the higher-level ones tailored to facilitate
reasoning about heap-space consumption. While we focus on heap-space con-
sumption here, we have in the meantime extended our approach to cover more
general resources in the form of resource algebras (4).

Low-level language: JVM bytecode In order to use the infrastructure in an envi-
ronment for mobile computation, we focus on a commonplace low-level language:
a subset of JVM bytecode. This language abstracts over certain machine-specific
details of program execution. Being higher-level than assembler code facilitates
the development of a program logic as basis for certification, but also somewhat
complicates the cost modelling. For the main resource of interest, heap consump-
tion, allocation is still transparent enough to allow accurate prediction (as shown
by the evaluation of our cost model for the JVM). For other resources, in particular
execution time, cost modelling is significantly more complicated.

The unstructured nature of JVM code usually gives rise to fairly awkward rules
in the operational semantics and in the program logic. We have therefore decided
to introduce a slight abstraction over JVM bytecode, Grail (9), an intermediate
language with a functional flavour, which is in a one-to-one correspondence with
JVM bytecode satisfying some mild syntactic conditions. Thus, we can perform
certification on the Grail level, and retrieve the Grail code from the transmitted
JVM bytecode on the consumer side.

The operational semantics for Grail is a resource-aware, big-step semantics
over this functional language. Resources are modelled in general terms by spec-
ifying a resource algebra over constructs of the language. Separating the rules
of the semantics from the propagation of resources makes it easy to model new
resources on top of this semantics.

The program logic for Grail is a VDM-style partial correctness logic. Thus,
it can make meaningful statements about heap consumption, provided that a pro-
gram terminates. To assure termination, we have also developed a separate ter-
mination logic, built on top of the core program logic. It should be emphasised
that the program logic does not rely in any way on the Grail code being compiled
from a particular high level language. It can be seen as a uniform language for
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val fac: int -> int -> int
let rec fac n b =

if n < 1 then b
else fac (n - 1) (n * b)

val fac: int -> int
let rec fac n =

if n < 1 then 1
else n * fac (n - 1)

FIGURE 14.2. Tail-recursive (left) and recursive (right) Camelot code of factorial

phrasing properties of interest as discussed in the previous section. The benefit
of compiling down from a higher-level language is that its additional structure
can be used to automatically generate the certificates that prove statements in this
program logic.

High-level language: Camelot As high-level language we have defined a vari-
ant of OCAML: Camelot (18). It is a strict functional language with object-
oriented extensions and limited support for higher-order functions. Additionally,
it has a destructive match statement to model heap deallocation, and it uses a
freelist-based heap model that is implemented on top of the JVM’s heap model.
Most importantly, it is endowed with an inference algorithm for heap-space con-
sumption (14), based on this internal freelist heap model. This inference can
derive linear upper bounds for Camelot programs fulfilling certain linearity con-
straints. Based on this inference, the compiler can also generate a certificate for
bounded heap consumption, and it emits a statement in the Grail program logic,
expressing this bound for the overall program.

As an example let us examine a tail-recursive and a genuinely recursive Camelot
program implementing the factorial function, shown in Figure 14.2. The Java
Bytecode corresponding to the tail-recursive Camelot program is given in the first
column of Figure 14.3. Recall that many JVM commands refer to the operand
stack. If we explicitly denote the items on this stack by $0, $1, $2,. . . , starting
from the top, then we obtain a beautified bytecode of the tail-recursive version
given in the right column of Figure 14.3. In Grail we take this one step further
by removing the stack altogether and allowing arithmetic operations on arbitrary
variables. Moreover, we use a functional notation for jumps and local variables
as exemplified by the code in the left column of Figure 14.4. In contrast, the
genuinely recursive version uses JVM method invocation in the recursive call.

With this functional notation of Grail it is possible to develop a program logic
that is significantly simpler compared to other JVM-level logics such as (7). How-
ever, in our work we do not tackle issues such as multi-threading nor do we aim
to cover a full high-level language such as Java. We rather focus on the automatic
generation of resource certificates.

Meta Logic: Isabelle/HOL In order to realise our infrastructure, we have to
select and use a logical framework in the implementation of the hierarchy of pro-
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static int fac(int);
Code:

0: iconst_1
1: istore_1
2: iload_0
3: iconst_1
4: if_icmplt 18
7: iload_1
8: iload_0
9: imul

10: istore_1
11: iload_0
12: iconst_1
13: isub
14: istore_0
15: goto 2
18: iload_1
19: ireturn

static int fac(int);
Code:

0: $0 = 1
1: b = $0
2: $0 = n
3: $1 = 1
4: if ($0<$1) then 18 else 5
5: $0 = b
8: $1 = n
9: $0 = $0 * $1

10: b = $0
11: $0 = n
12: $1 = 1
13: $0 = $0 - $1
14: n = $0
15: goto 2
18: $0 = b
19: ireturn $0

FIGURE 14.3. Java bytecode in ordinary (left) and beautified (right) form

gram logics. Here we have chosen a very powerful system, Isabelle/HOL, and
to definitionally realise the program logic as an inductive definition in the meta
logic. To avoid the specification of a separate assertion language, we use a shal-
low embedding for assertions, which are simply meta-logical predicates over the
components of the operational semantics. This simplified approach comes at the
expense of an increased trusted code base, since we now have to use an entire
instance of Isabelle/HOL in the certificate validation phase, as we will see be-
low. However, we found this choice to be adequate for a prototype system in a
scenario of global computing with fairly powerful compute nodes. This choice
also enables us to use a very succinct representation of certificates as fragments
of Isabelle proof scripts. Even without any semantic compression we achieve a
certificate size of about 22-32% of the code size, close to the commonly quoted
20% as an acceptable size for a certificate.

14.4.2 Software Infrastructure

The overall structure of the software infrastructure is depicted in Figure 14.5 and
is an instance of a general PCC infrastructure (19) with a code producer (left
hand side) and a code consumer (right hand side). The main components on the
producer side are a certifying compiler, which translates high-level Camelot pro-
grams into the Grail intermediate code and additionally generates a certificate of
its heap consumption. The latter is formalised as a lemma in the heap space logic
for the Grail language (8). The Grail code is processed by an assembler, the Grail
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method static int fac (int n) =
let

val b = 1
fun f(int n, int b) =

if n<1 then b
else f_else(n,b)

fun f_else(int n, int b) =
let

val b = mul b n
val n = sub n 1

in
f(n,b)

end
in

f(n,b)
end

method static int fac (int n) =
let

fun f_else(n) =
let

val n’ = sub n 1
val n’ =

invokestatic <Fac Fac.fac(int)>(n’)
in mul n n’
end

in
if n<1 then 1

else f_else(n)
end

FIGURE 14.4. Tail-recursive (left) and recursive (right) Grail code of factorial

de-functionaliser (gdf), to generate JVM bytecode. This bytecode is transmitted
together with the Isabelle proof script as the certificate of its heap consumption
to the code consumer. On the consumer side, the Grail code is retrieved via a
disassembler, the Grail functionaliser (gf). Then Isabelle/HOL is used in batch
mode to automatically check that the resource property expressed in the attached
certificate is indeed fulfilled for this program. Once this has been confirmed the
code can be executed on the consumer side.

It should also be noted that the current infrastructure does not represent a
closed system, in which all mobile code has to be compiled with the same com-
piler. While the preferred way of generating a code/certificate pair is to write
the program in Camelot and have the compiler automatically produce a certifi-
cate, it is also possible to use another high-level language such as Java or Scheme
that compiles into JVM bytecode, and to then manually generate a proof for the
desired resource property. Since the logic has been formalised in Isabelle/HOL,
the entire development infrastructure for this prover is available in generating the
certificates. As a mixture of both scenarios, it is also possible to write the top
level program in Camelot, and call foreign language code from Camelot. This is
particularly useful for accessing Java library functions, e.g. for GUI parts of the
code. In (21) an extension of Camelot with object-oriented features is described.
These extensions have been used in implementing a directory lookup application
to be executed on a PDA, based on the MIDP standard for small devices, which
provides a restricted set of Java libraries and is partially based on Sun’s KVM.
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FIGURE 14.5. PCC infrastructure for MRG

14.5 RESULTS

The most visible result of the project is a complete working infrastructure for gen-
erating and checking certificates describing the resource behaviour of programs
written in a high-level functional programming language. Although the nature
of the project was foundational, we emphasised from the start the importance of
producing prototypes for the components of the PCC infrastructure — partly as
a testbed for experimentation, but also as an on-line test of our techniques in a
realistic, distributed setting.

The main novel techniques in the development of the infrastructure are our
multi-layered logics approach for providing reasoning support tuned to, but not re-
stricted to, the automatic verification of resource properties, and the use of tactic-
based certificates in order to reduce the size of the certificate, albeit at the cost
of increasing the TCB size. However, since we have established soundness of all
logics in the prover, of these only the operational semantics needs to be trusted
and as validation engine the prover could be replaced by a proof checker with
support for a subset of the proof scripting language.

More specifically we have produced the following:

• A completely formalised virtual machine and cost model (9) for a JVM-like
language. We have used Isabelle/HOL as the theorem proving platform for
this formalisation and for encoding the logics.
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• A resource aware program logic (2; 3) for the bytecode language of the above
virtual machine.

• A specialised logic for heap consumption (8) that is built on top of the program
logic.

• A certifying compiler for the strict, first-order functional, object-oriented lan-
guage Camelot (18), integrated into a prototype PCC infrastructure.

• Advanced reasoning principles (14; 17) for resources, based on high-level type
systems.

Our particular conclusions on the design of a PCC infrastructure are as follows:

• For automatic certificate generation it is crucial to make use of high-level
structural information and to propagate this information down to the program
logic. In our design we have realised this as several layers of logics, with the
heap logic being tailored to the high-level type-system used to infer informa-
tion on heap space consumption. In particular, we deliberately depart from the
standard approach of splitting certificate validation into verification condition
generation and simplification. In our experience, the verification conditions
even for simple properties become too complex to be automatically solved by
a proof assistant. In contrast, by drawing on information from the high level
type inference, we can perform simplifications “on the fly” and thus can keep
proofs more manageable.

• The program logic serves as a common language in which to phrase program
properties. Thus, program logics over low-level languages can be seen as the
“assembler code” for proofs of program properties and as the target language
for a compiler that realises high-level type systems to express such properties.

• Encoding the program logic in a proof assistant is not only useful for devel-
oping the logic and enforcing formal rigour; it can also serve as an immediate
platform for realising the required software infrastructure. While in terms of
the size of the TCB and interoperability with other systems a more general for-
mat of certificates as proof objects would be favourable, a direct embedding
into a proof assistant also yields certificates of small size.

• We found the VDM-style version of the program logic (for partial correct-
ness), with judgements of the form Γ B e : A, significantly easier to use than
an earlier Hoare-style version we had developed, with judgements of the form
ΓB{A} e {A′}. This confirms earlier observations on how the need for auxil-
iary variables in a Hoare setting complicates its practical usability (16; 19).

New projects that build on the MRG infrastructure are:

• MOBIUS, an Integrated Project of the FET-GC2 proactive initiative
(http://mobius.inria.fr/), deals with innovative trust management for
global computing, where the resources can be as diverse as network access
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and the secure flow of information. In contrast to MRG, this project focuses
on Java as a high-level language, and thus will bring the results of our research
to a broader community.

• EmBounded, a FET-Open STREP project (http://www.embounded.org/),
which aims to provide resource bounded computation for embedded systems,
using Hume as the high-level programming language. Here we can draw on
our amortised costs approach for developing inferences on resource consump-
tion (heap, stack and time) for Hume.

• ReQueST, an EPSRC-funded project (https://wiki.inf.ed.ac.uk/ReQueST),
aims to develop methods, invent algorithms, and engineer software to equip
each request for a Grid service with an irrefutable and accurate certificate
which specifies the quantity and type of resources which will be consumed if
the request is serviced.

Since the end of MRG, several extensions to the infrastructure as described in
this paper have been developed. Related to Objective 4 of the project, on ways of
reducing the size of the certificates, we are now studying the use of two forms of
resource policies to arrive at a more flexible system without the need of additional
communication. In this setup, a guaranteed resource policy is sent together with
the certificate. On the consumer side validation of a certificate now involves two
steps: a check that the guaranteed resource policy implies the target resource pol-
icy on the consumer and validation of the certificate w.r.t. the guaranteed resource
policy. Typically, the guaranteed resource policy will contain information about
the high-level program, such as the space consumption depending on the input
size, and local side-conditions on the consumer are captured in the target resource
policy. This approach is discussed in more detail in (6).

Overall we conclude that the project has been very successful in developing
the foundations for a novel PCC approach for resources and in producing a pro-
totype infrastructure demonstrating the principles. Finally, visit our project web
pages, where you can find project summaries, published papers, and a tutorial (15)
with on-line exercises: http://groups.inf.ed.ac.uk/mrg/. An on-line demo
is directly available at: http://projects.tcs.ifi.lmu.de/mrg/pcc/.
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