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PREFACE

This volume is the proceedings of the Fourth International Symposium on Trends
in Functional Programming held in Edinburgh, on September 11th and 12th, 2003.
For the first time this year the TFP symposium was co-located with the Implemen-
tation of Functional Languages workshop.

The Trends in Functional Programming series occupies a unique place in the
spectrum of functional programming events because of its highly commendable
policy of encouraging new speakers, particularly PhD students, to air their work
to a receptive and friendly audience. By encouraging the next generation of func-
tional programmers in this way the workshop helps to instill the understanding
that functional programming is more than just syntax, semantics and type sys-
tems and nourishes the essence of the subject itself.

This year the papers from the workshop have addressed the research prob-
lems at the forefront of practical application of functional languages as in the pa-
pers on real-time functional programming in Hume from Kevin Hammond, Greg
Michaelson and Jocelyn Serot and resource-bounded functional programming in
Camelot from Kenneth MacKenzie and Nicholas Wolverson.

Functional programming languages are supported by sophisticated implemen-
tations. Two papers address this aspect of functional programming research,
Jeremy Singer’s paper on static single information and the paper on the imple-
mentation of Mobile Haskell from André Rauber Du Bois, Phil Trinder and Hans-
Wolfgang Loidl.

For all of their virtues, functional programs are not automatically error-free
so the book closes with two papers on testing functional programs from Manfred
Widera and from Pieter Koopman and Rinus Plasmeijer.

I would like to thank the organisers of IFL, Abyd Al Zain, André Rauber
Du Bois, June Maxwell, Greg Michaelson, Jan Henry Nyström and Phil Trinder
for their work in organising the workshop registrations, the excursion, delegate
packs, room bookings, audio-visuals and many other aspects of the event and for
allowing the TFP meeting to make use of their industriousness in making all of
this run smoothly.

My thanks also go to all of the authors for preparing their papers carefully
using Hans-Wolfgang Loidl’s LATEX style file and to the referees for their thorough
and rapid reviewing of the papers which were submitted.

The Trends in Functional Programming workshop gratefully acknowledges
the support of the British Computer Society Formal Aspects of Computer Science
special interest group.

Stephen Gilmore,
Edinburgh
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Chapter 1

Is It Time for Real-Time
Functional Programming?
Kevin Hammond1

Abstract This paper explores the suitability of functional languages for pro-
gramming real-time systems. We study the requirements of real-time systems
in general, outline typical language approaches for this domain, consider issues
relating to memory and time usage and explore how all existing functional lan-
guages, including our own language Hume, match these requirements. We con-
clude by posing some research challenges that functional language designs and
implementations must meet if they are to be regarded as suitable vehicles for real-
time systems implementation.

1.1 INTRODUCTION

Functional programs use large amounts of memory. Functional programs are slow.
It is impossible to predict memory and other resource usage for functional lan-
guages. Clearly, functional languages are therefore unsuitable for use in restricted
memory settings with strong time requirements. Or are they? This paper explores
the suitability of functional language designs for use in settings with strong limita-
tions on resource usage such as real-time systems. It compares current functional
approaches, including our own Hume notation (Sec. 1.6), with those used by other
language paradigms and outlines some challenges for functional language designs
and implementations that must be met if functional programming is to be used for
serious real-time programming.
1School of Computer Science, University of St Andrews, North Haugh, St Andrews,

Scotland, KY16 9SS. email: kh@dcs.st-and.ac.uk.
This work has been supported by UK EPSRC grant GR/R 70545/01.
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1.2 WHAT IS REAL-TIME PROGRAMMING?

The key characteristic of a real-time system is that its correctness depends not only
on its functional behaviour, but also on the (real-)time or times at which it pro-
duces those results [15]. Such systems can be classified as having either soft real-
time or hard real-time properties. Soft real-time has been defined as a situation
where “nothing really serious happens if a time constraint is not met” [3]. Exam-
ples of soft real-time systems might include computer games, telephone switches,
digital set-top boxes or digital sound cards. In contrast, hard real-time involves
guaranteed system response and is often associated with safety-critical systems or
ones with high penalty cost for failure. Examples include avionics control soft-
ware, autonomous vehicles, or software used by stock market traders. In many
situations, such as embedded systems, such real-time constraints are combined
with other resource restrictions including memory limitations and even power
consumption requirements. Despite the focus on real-time, such systems need not
necessarily be ultra high-performance. The problem is to design systems that are
sufficiently reliable and have minimal cost and acceptable performance. Doing so
in a cost-effective manner is a major bonus.

1.2.1 The Importance of Real-Time Systems

Real-time systems have been growing in importance in recent years. Numerically,
a very high percentage of all computer systems produced today have real-time
characteristics. Many of these are embedded systems. Real-time embedded sys-
tems are a fundamental part of modern everyday society in the shape of vehicle
control systems, mobile telephones, GPS and consumer appliances such as DVD
players or digital set-top boxes. These commonplace devices are additional to
those used in telecommunications, to promote automation in factories, to ensure
security and safety in the home and workplace, to increase the safety and effi-
ciency of transport and service industries and for military uses, etc. In fact, today
more than 98 per cent of all new processors are used in such systems [59].

1.2.2 Essential Properties of Real-Time Languages

McDermid identifies a number of essential or desirable properties for a language
that is aimed at hard real-time systems [44].

� determinacy – the language should allow the construction of determinate sys-
tems, by which we mean that under identical environmental constraints, all
executions of the system should be observationally equivalent;

� bounded time/space – the language must allow the construction of systems
whose resource costs are statically bounded – so ensuring that hard real-time
and real-space constraints can be met;

� asynchronicity – the language must allow the construction of systems that are
capable of responding to inputs as they are received without imposing total
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ordering on environmental or internal interactions;
� concurrency – the language must allow the construction of systems as com-
municating units of independent computation;

� correctness – the language must allow a high degree of confidence that con-
structed systems meet their formal requirements [1].

These requirements may be relaxed to acceptable engineering tolerances for soft
real-time systems. Moreover, the language design must incorporate at least:

� periodic scheduling to ensure that real-time constraints are met;
� interrupts and polling to deal with connections to external devices.

1.3 LANGUAGES FOR PROGRAMMING REAL-TIME SYSTEMS

Programming languages for real-time systems may be either specially designed to
meet the requirements of the domain (domain-specific languages) or adapted from
commonly used designs. Since non-functional approaches have been described in
detail elsewhere (e.g. [21]), this paper provides only a brief overview of such
languages here. Berry [11] further considers the issue of whether to use general
purpose or domain-specific languages for real-time programming.

1.3.1 Using General Purpose Languages for Real-Time Programming

Historically, much embedded systems software/firmware was written for specific
hardware using native assembler. Rapid increases in software and the need for
productivity improvements mean that there has been a transition to the use of
C/C++ and in some cases Java.Two extreme approaches to enforcing real-time
properties in a language that is derived from a general-purpose design are exem-
plified by SPARK Ada [8] and the real-time specification for Java (RTSJ) [17].
SPARK Ada epitomises the idea of language design by elimination of unwanted
behaviour from a general-purpose language, including concurrency. The remain-
ing behaviour is guaranteed by strong formal models. In contrast, RTSJ provides
specialised runtime and library support for real-time systems work, but makes no
absolute performance guarantees. Thus, SPARK Ada provides a minimal, highly
controlled environment for real-time programming emphasising correctness by
construction,whilst Real-Time Java provides a much more expressible but less
controlled environment, without formal guarantees.
A major issue for programming real-time embedded systems is memory man-

agement: it is essential both to bound memory usage and to control memory ac-
cess time. When using general purpose languages, it is thus common to avoid re-
cursive programming constructs (which may grow the stack in an “unrestricted”
fashion) and also to avoid automatic dynamic memory allocation/collection. In
Sec. 1.4 we describe some modern approaches that may allow the safe use of such
constructs in a real-time embedded system.
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1.3.2 Domain-Specific Languages for Real-Time Programming

Process Algebra Derived Notations

Process algebras such as CSP, CCS, LOTOS and the π-calculus are formal no-
tations designed to permit reasoning about complex systems of concurrent pro-
cesses. They provide an elegant set of operators for developing concurrent sys-
tems, so allowing succinct expression of concurrent programs. Typical process
algebras use synchronous communication, support non-determinism, and allow
choice, restriction of names and relabelling at the process level. Concurrency is
usually modelled through interleaving processes. Process algebras provide a rich,
tractable semantics, using observation equivalence to hide internal behaviours.
This extensionalist approach contrasts with the intensionalist approach taken by
Petri nets, where internal behaviour is important and must consequently be ex-
posed. Explicit notions of time have been incorporated into a number of process
algebras, e.g. TCCS or Timed CSP. While process algebras are generally intended
as formal notations to allow reasoning about concurrent specifications, there have
also been some attempts to derive concrete programming notations from such
bases. For example, LOTOS (Language of Temporally Ordered Specifications)
is often used as a programming notation and several timed extensions have been
designed with the intention of dealing with real-time systems.

Finite-State Languages

Finite-state approaches are attractive when dealing with certain kinds of real-time
system, since they allow a system to be defined by composing small, easily costed
components. Such approaches often, however, prove problematic when one is
constructing complex programs: typically the finite-state machines derived for
such systems will have a large number of states, which can be difficult for the pro-
grammer to manage; moreover, relatively small extensions can cause exponential
growth in the number of states. A number of extended finite-state languages have
been proposed incorporating composition, communication and data structures to
give Turing-complete notations. Many also incorporate quantitative notions of
time. Three common examples are Estelle [20], an imperative language devel-
oped for OSI communications protocols; SDL [63], a language similar to Estelle,
which has a graphical dialect used as a design tool; and TTM [49], a graphical
notation, similar to Petri nets, used to describe real-time discrete event processes.
In synchronous dataflow languages, every action (whether computation or

communication) has a zero-time duration. In practice this means that actions
must complete before the arrival of the next event to be processed. Communi-
cation with the outside world occurs by reaction to external stimuli and by in-
stantaneous emission of responses. Because of their origin in the combination of
control theory and computer science, synchronous notations have long been pop-
ular in the area of automatic control. Since they are equivalent to the zero-delay
model of circuits, they have also more recently found employment in hardware
design [12, 61].
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Several languages have applied the synchronous model to real-time systems
control. For example, Signal [28] and Lustre [50] are similar declarative notations,
built around the notion of timed sequences of values. Esterel [18, 13, 14] is an
imperative notation that can be translated into finite-state machines or hardware
circuits, and Statecharts [31, 64] is a quasi-synchronous notation with a visual
notation, which is primarily used for design, and which has been subsumed into
UML [58]. One obvious deficiency of pure synchronous notations is the lack of
expressive power, notably the absence of recursion and of higher-order combina-
tors. SynchronousKahn networks [39, 23] incorporate higher-order functions and
recursion, but lose strong guarantees of resource boundedness. It is thus generally
accepted [11] that pure synchronous languages are not powerful enough for com-
plex systems programming and must interact with other languages and communi-
cation styles, in particular with asynchronous ones. There have consequently been
some attempts to combine the two styles of programming, for example CRP [54]
combines Esterel and CSP, and the Polis [7] hardware/software codesign system
also employs Esterel in a mixed synchronous and asychronous setting.

1.3.3 Functional Language Approaches

The main advantages of functional language approaches are compositionality,
ease of reasoning and program structuring. Typical modern language designs,
such as Standard ML or Haskell, incorporate automatic memory management
which eliminates errors arising from poor manual memory management; strong
typing which eliminates a large number of programming errors; higher-order
functions which abstract over common patterns of computation; polymorphism
which abstracts internal details of data structures; and recursion allows a num-
ber of algorithms, especially involving data structures, to be expressed in a more
natural and thus less error-prone fashion.
These language features improve productivity through raising the level of ex-

pressivity and program abstraction. However, they divorce the programmer from
the ability to directly control program execution, and thus from a simple intuitive
model of the program’s time and space behaviour. Moreover, functional language
implementations must bridge a larger gap between source language and concrete
machine than is present with lower-level languages. This has historically led to
a significant performance difference between functional languages and their im-
perative counterparts, and consequent doubt over the suitability of functional no-
tations for real-time settings, where it is necessary to program within strong time
and space bounds.
Compared with McDermid’s criteria, the primary functional language designs

thus meet the requirements for determinacy and correctness, but fail to deal effec-
tively with asynchronicity, concurrency and bounded time and space. Concurrent
extensions such as Concurrent ML [57] or Concurrent Haskell [51] add mecha-
nisms for asynchronicity and concurrency, but likewise provide no bounded time
or space guarantees. None of these notations provide mechanisms for periodic
scheduling or interrupt handling, and all use a relatively low-level notion of thread
and communication, with explicit message handling.
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Soft Real-Time Functional Languages

The most widely used soft real-time functional language is the impure, strict lan-
guage Erlang [4], a concurrent language with a similar design to Concurrent ML.
Erlang has been used by Ericsson to construct a number of successful telecommu-
nications applications in the telephony sector [16], including a real-time database,
Mnesia [68]. Erlang is concurrent, with a lightweight notion of a process. Such
processes are constructed using explicit spawn operations, with communication
occurring through explicit send and receive operations to nominated processes.
Finally, rather than exploiting static analysis order to ensure that hard dynamic
resource bounds are achieved, the weakly typed Erlang relies exclusively on dy-
namic timeouts to meet soft real-time targets.
In contrast, Embedded Gofer is a strongly-typed purely functional program-

ming language with a two-level structure, separating process and functional lay-
ers. It uses a monadic notation with explicit register access, processes and com-
munication, similar in kind to other explicitly concurrent programming notations.
Unlike Erlang, Embedded Gofer is non-strict, raising questions about accurate
static costing of programs (as opposed to dynamic measurement of typical run-
time behaviour, which is not adequate to guarantee real-time behaviour). A simi-
lar approach has been taken by Fijma and Udink, who introduced special language
constructs into Twentel to control a robot arm [27].
RT-FRP [66] builds on functional reactive programming embedded as a domain-

specific language in Haskell to construct time and space bounded programs. RT-
FRP is separated into a reactive part (comparable to a synchronous system) and a
base part that must be guaranteed terminating and resource-bounded. It exploits
tail-recursion across reactive components to encapsulate time and space resource
usage within a single reactive component, and also supports integration across a
series of reactive components. The work provides a formal operational semantics
for resource consumption, which can be used to construct an automatic analysis to
determine space and time bounds. Since RT-FRP is based on Haskell, of course,
the underlying language implementation technologymay affect timings and space
usage through non-strict evaluation and non-real-time garbage collection. Conse-
quently, in the current system, these bounds cannot be guaranteed. A different
language substrate might, however, provide a better basis for these requirements.
Finally, RT-FRP does not yet consider issues of periodic scheduling, and events
are handled without regard to real-time concerns, such as dynamic memory allo-
cation, making them unsuitable for low-level interrupt handling.
Finally, a number of reactive applications have been written in more con-

ventional functional languages without recourse to even an incremental garbage
collector or attempting to formally bound time or space behaviour. Examples
include the impure Concurrent ML [57] and the purely functional Concurrent
Haskell [51], Concurrent Clean [48] and Eden [19]. An interesting example of
such work is the games engine and games written in Concurrent Clean [67].
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1.4 BOUNDING TIME AND SPACE USAGE

Garbage collection is both expensive and can introduce “embarrassing pauses”
into a program execution. When the application is either soft- or hard- real-time,
such pauses may be unacceptable. Three approaches have been taken to deal with
this problem: real-time garbage collection techniques attempt to bound the cost of
garbage collections to an acceptable level, thereby eliminating arbitrary pauses;
while static analysis or compile-time garbage collection attempts to bound mem-
ory usage statically or eliminate garbage collection throughmemory reuse; finally,
language designs may be restricted so as to automatically bound time and/ormem-
ory usage.

1.4.1 Real-Time Dynamic Memory Management

Effective management of dynamically allocated memory for a real-time system
involves controlling the costs of both allocation and collection, ensuring that
the system is non-disruptive in terms of meeting the application’s real-time con-
straints. In memory constrained settings, it is also necessary to avoid wastage
through fragmentation and other overheads. Developing an automatic memory
management system for real-time systems represents a serious technical chal-
lenge. The Real-Time Specification of Java states, for example: “ � � � the expert
group believes, that no garbage collector algorithm or implementation is known

� � � which could be considered appropriate for all real-time systems” [17]. Many
non-disruptive memory management systems require additional hardware sup-
port, which is not generally available, while others allocate memory only in fixed-
size units, imposing potentially high memory overheads.
Most real-time memorymanagement techniques use Incremental garbage col-

lectors. Incremental copying techniques (e.g. [43]) achieve fast allocation but
can have high memory overheads and incur time overheads in the form of write-
and/or read-barriers. Non-copying techniques such as those using incremental
reference-counting [26] do not incur the overheads of copying, but may have
poor memory utilisation owing to external fragmentation (requiring an incremen-
tal compactor) and reference counts.
A number of such collectors have been proposed for use in functional lan-

guage implementations. For example, Virding et al. have proposed an incremental
collector for Erlang [2]; Wallace and Runciman have implemented an incremen-
tal collector for Embedded Gofer that has been used for undergraduate teaching
at York University; and Cheadle et al. have implemented a similar incremental
collector for the Glasgow Haskell compiler [24], though this has not yet been
incorporated in the production release.

1.4.2 Static Analyses for Bounding Memory Usage

Compile-time garbage collection techniques attempt to eliminate some or all heap-
based memory allocation through strong static means. One approach [60] that has
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recently found favour is the use of region types. Such types allow memory cells
to be tagged with an allocation region, whose scope can be determined statically.
When the region is no longer required, all memory associated with that region
may be freed without invoking a garbage collector. In non-recursive contexts,
the memory may be allocated statically and freed following the last use of any
variable that is allocated in the region. In a recursive context, this heap-based
allocation can be replaced by (possibly unbounded) stack-based allocation.
Hofmann’s linearly-typed functional programming language LFPL [33, 35]

uses linear types to determine resource usage patterns. A special resource type
called “diamond” is used to count constructors. First-order LFPL definitions can
be computed in linearly bounded space, even in the presence of general recursion.
More recently, Hofmann and Jost have introduced [35] an automatic inference of
these resource types and thus of heap-space consumption, using linear program-
ming; at the same time, the linear typing discipline is relaxed to allow analysis of
programs typable in a usage type system such as in [41, 6, 52].
Extensions of LFPL to higher-order functions have been studied in [34] where

it was shown that such programs can be evaluated using dynamic programming
in time O

�
2p � n � � where n is the size of the input and p is a fixed polynomial. By

a result of Cook this is equivalent to polynomial space plus an unbounded stack.
With unrestricted use of higher-order functions, it remains an unsolved problem
to turn this theoretical result into an efficient compilation scheme. If higher-order
functions are used restrictively, as in the language C, then no closures are required
and they can be “compiled away” without penalty.
Building on earlier work on sized types [37, 56], we have developed an au-

tomatic analysis to infer the upper bounds on evaluation costs for a simple, but
representative, functional language with parametric polymorphism, higher-order
functions and recursion [65]. Our approach assigns finite costs to a non-trivial
subset of primitive recursive definitions. It is fully automatic in producing cost
equations without any user intervention, even in the form of type annotations,
though obtaining closed-form solutions to the costs of recursive definitions cur-
rently requires the use of an external solver. The first-order subset of this work
has been applied to our resource-bounded language Hume (Sec. 1.6.1).

1.4.3 Worst Case Execution Time Analysis

Static analysis ofworst-case execution time (WCET) in real-time systems is an es-
sential part of the over-all response time and quality of service analysis [21, 53].
However, WCET analysis is a challenging issue, as the complexity of interac-
tion between the software and hardware system components often results in very
pessimistic WCET estimates. Recent work on WCET analysis for Java and C
programs [9, 10] has employed a combination of analytical (in particular, prob-
abilistic) and experimental (e.g. trace generation) techniques in order to reduce
the degree of pessimism in WCET. However, the disadvantage of this approach is
that it starts from a low-level code representation (Java byte-code or compiled ma-
chine code) which makes it difficult to capture and analyse the high-level program
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structure and therefore to make predictions based on the programmer’s intentions.
In an extension of work undertaken in EU project Daedalus, AbsInt have de-

veloped accurate cost models for hardware instruction and cache behaviour for
a number of architectures [40]. These models allow precise costing of execu-
tion times based on static analysis of machine code instructions. Compared with
the probabilistic models that are commonly employed by WCET analyses, this
approach allows vastly improved confidence in the quality of the analysis. Con-
sequently, the reliability of real-time estimates can be raised dramatically for real
architectures.

1.4.4 Syntactically Restricted Functional Languages

Other than our own work [56, 65], we are aware of three main studies of for-
mally bounded time and space behaviour in a functional setting [22, 36, 62]. All
three approaches are based on restricted language constructs to ensure that bounds
can be placed on time/space usage. In their recent proposal for Embedded ML,
Hughes and Pareto [36] have combined the earlier sized type system [37] with
the notion of region types [60] to give bounded space and termination for a first-
order strict functional language [36]. Their language is restricted in a number of
ways: most notably in not supporting higher-order functions and in requiring the
programmer to specify detailed memory usage through type specifications. The
practicality of such a system is correspondingly reduced. Burstall [22] proposed
the use of an extended ind case notation in a functional context, to define in-
ductive cases from inductively defined data types. While ind case enables static
confirmation of termination, Burstall’s examples suggest that considerable ingen-
uity is required to recast terminating functions based on a laxer syntax. Turner’s
elementary strong functional programming [62] has similarly explored issues of
guaranteed termination in a purely functional programming language. Turner’s
approach separates finite data structures such as tuples from potentially infinite
structures such as streams. This allows the definition of functions that are guaran-
teed to be primitive recursive, but at a cost in addtional programmer notation.

1.5 FUNCTIONAL LANGUAGES FOR RELATED PROBLEM AREAS

Functional Languages for Mobility

Mobile languages focus on issues of security and portability rather than on time
deadlines or absolute space usage. Mobile Haskell [55] is one functional notation
that has explored the design space of mobile systems through exploiting a portable
byte-code implementation that is capable of exporting and managing tasks across
a distributed system.
A primary concern of mobile systems is to ensure that code that is generated

at a remote site does not have unwanted local effects. These effects might be to
access or alter local system state, so violating privacy, compromising security or
damaging local data; or to either deliberately or accidentally overload local system
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resources. It follows that providing formally verifiable certificates of resource us-
age is important to mobile systems code. These certificates might include bounds
on time and space usage and use a proof-carrying code approach.
This issue has been explored by the EU Framework V Mobile Resource Guar-

antees project in the shape of the Camelot and Grail notations [42]. Camelot is a
resource-aware functional programming language that can be compiled to a sub-
set of JVM bytecodes; Grail is a functional abstraction over these bytecodes. This
abstraction possesses a formal operational semantics that allows the construction
of a program logic capable of capturing program behaviours such as time and
space usage [5]. The objective of the work is to synthesise proofs of resource
bounds in the Isabelle theorem prover and to attach these proofs to mobile code
in the form of more easily verifiable proof derivations. In this way the recipient
of a piece of mobile code can cheaply and easily verify its resource requirements.

Functional Hardware Description Languages

In a slightly different context, functional hardware description languages [25, 38]
also necessarily provide hard limits on time and space cost bounds. Like con-
ventional finite-state notations, computation in such languages is necessarily re-
stricted by the requirement to produce static hardware structures from the func-
tional descriptions. The use of higher-order functions and recursion is thus re-
stricted to forms that can be mapped to small finite structures. Examples of such
notations include the Lava hardware description language for specifying FPGA
circuits, which has been developed in association with XiLinx Corporation [25],
the functional derivation approach, for deriving FPGA circuits fromHaskell spec-
ifications [32], the Hawk hardware verification language [38], the Hydra system
for logic circuit specification, and Mycroft and Sharp’s statically allocated lan-
guage for hardware description [47]. Like RT-FRP, most of these notations restrict
recursion, if present, either to tail-recursion or to specific packaged, unfoldable
recursive forms which can be used to generate repetitive circuits.

1.6 THE HUME LANGUAGE

The Hume language design attempts to maintain the essential properties and fea-
tures required by the embedded systems domain (especially for transparent time
and space costing) whilst incorporating as high a level of program abstraction as
possible. We have designed Hume as a three-layer language [30]: an outer (static)
declaration/metaprogramming layer, an intermediate coordination layer describ-
ing a static layout of dynamic processes (“boxes”) and the associated devices, and
an inner layer describing each process as a (dynamic) mapping from patterns to
expressions. The inner layer is stateless and purely functional. Since boxes map
bounded inputs to bounded outputs, real-time, bounded space responses to input
requests can be ensured provided the functional expression layer can be deter-
mined to use finite space and execute in bounded time.
Rather than attempting to apply cost modelling and correctness proving tech-
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FIGURE 1.1 Hume Design Space

application predicted actual excess predicted actual excess
heap heap stack stack

pump controller 483 425 14.5% 166 162 2.5%
railway layout 1065 946 11% 310 310 0%
vehicle simulator 99408 98446 0.98% 319 298 6.5%

FIGURE 1.2 Heap and stack usage in words for FSM-Hume applications

nology to an existing language framework either directly or by altering the lan-
guage to a greater or lesser extent (as with e.g. RTSj [17]), our approach is to
design Hume in such a way that we are certain that formal models, proofs and the
associated analyses can be constructed so as to ensure formally bounded time and
space behaviour. We envisage a series of overlapping Hume language levels as
shown in Fig. 1.1, where each level adds expressibility to the expression seman-
tics, but either loses some desirable property or increases the technical difficulty
of providing formal correctness/cost models.
Hume thus meets McDermid’s criteria as follows: determinacy is enforced

at the language level, through a deterministic operational semantics; bounded
time/space is ensured by the formal models and analyses for each Hume level;
asynchronous concurrency is provided through concurrent boxes, with buffered
communication and asynchronous pattern-matching rules; and correctness is as-
sisted by the use of a purely functional expression layer and through the provision
of formal language semantics. The design also incorporates periodic scheduling,
interrupts and device polling.
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1.6.1 Real Time and Space Behaviour of FSM-Hume Programs

We have applied our stack and heap analysis to a number of programs written
using the FSM-Hume [46] language level1: a simple mine drainage pump con-
troller; a model railway layout system with safety conditions; and a simulation
of an autonomous vehicle controller [45]. Details of these applications can be
found at http://www.hume-lang.org. Fig. 1.2 shows results that are obtained from
our analysis and prototype implementation. Note that any analysis (including one
conducted by hand) must produce an over-estimate to account for cases that by
chance do not arise during the actual dynamic execution. With this caveat, we can
see that the analysis is a good predictor of both stack and heap usage. Typically,
we obtain better predictions of stack usage than heap. The memory used for the
stack is also less than the heap usage.
We have ported the Hume implementation to the RTLinux real-time operat-

ing system. Our measurements [29] show that the total memory requirements
of the pump application, including heap and stack overheads as calculated here,
RTLinux operating system code and data, Hume runtime system code and data,
and the abstract machine instructions amount to less than 62KB. RTLinux itself
accounts for 34.4KB of this total. The results can be extrapolated to the other
applications discussed here: the vehicle simulator would require much less than
512KB of dynamic memory, for example. Clearly, these results indicate both that
tight dynamic memory bounds can be determined and that these bounds are suffi-
ciently small to allow implementation on typical modern embedded hardware.
To verify that our system can also meet real-time requirements, we have run

the mine drainage control system continuously for a period of about 6 minutes
under RTLinux on the same 1GHz Pentium III processor (effectively locking out
all Linux processes during this period). At this point, the simulation has run
to completion. Clock timings have been taken using the RTLinux system clock,
which is accurate to the nanosecond level. The primary real-time constraint on the
mine drainage control system is that it must produce an alarm within 3ms if the
methane level rises above some threshold. In fact, we have measured this delay
to be approximately 150µs (20 times faster than required). Moreover, over the six
minute time period, the maximum delay in servicing any input is approximately
2.2ms.
In order to demonstrate the robustness of the implementation within strong

memory bounds, the vehicle simulation was run continuously under RT-Linux
as a real-time program for a period of 36 hours using our calculated memory
settings. The program ran without any memory accesses outside the allocated
area and without “growing” or “leaking”memory: essential requirements for real-
time control applications. Total dynamic memory usage (including code, runtime
stack, and runtime libraries) was 105340 words (412KB) of memory.
1which admits first-order non-recursive functions in the functional expression layer

and a form of tail recursion in the coordination layer, analogously to RT-FRP.
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1.7 THE CHALLENGES

To summarise, while several functional notations have been proposed for soft real-
time programming, Hume is the only language that we are aware of that has been
shown to deal with hard real-time systems in practice, providing strong verifiable
guarantees of space (and potentially) behaviour and running under a true real-time
operating system. To date this has been achieved only for the FSM-Hume level,
however, which roughly corresponds to RT-FRP or synchronous dataflow designs
plus first-order non-recursive functions. It is not clear whether formal analyses
can be developed to deal with richer levels of Hume, including generalised forms
of recursive definition and higher-order functions.
The primary issue facing functional languages as vehicles for programming

real-time systems is whether they can meet the necessary strong time and space
requirements, whilst simultaneously providing an effective means for program-
mingwith such behavioural concepts. Languages for real-time programmingmust
incorporate notions of low-level behaviour including time, interrupts and schedul-
ing. They must also accurately support (formal and informal) reasoning about
time and space usage from the high-level source. This may be harder for func-
tional languages to achieve because of the high-level programming abstractions
such as higher-order functions and polymorphic typing that make them attractive
programming mechanisms. The challenge is to incorporate low level notions into
the high-level notation without compromising abstraction capability. This may
involve a first-class treatment of real time and space and/or special language con-
structs. Such treatments are generally lacking in the literature.
At the same time, it is necessary to develop compilers for real-time functional

languages that are both (adequately) high performance and highly verifiable. A
number of languages (such as OCAML and SAC) demonstrated that strict func-
tional languages can have extremely good time performance, and it is common
to provide formal descriptions of functional abstract machine implementations in
terms of formal or semi-formal transformation from the source level. The chal-
lenge is to combine the latter techniques with a mechanism such as Hofmann’s
verifiable resource certificates and to apply this to high-performance functional
language compilers. Moreover, optimising compilers must give proper attention
to space as well as time usage.
Cost analyses can help to provide information about time and space usage on

an expression or program level. However, the current state of such analyses is that
they require severe restrictions to the programming notations that can be used.
For example, LFPL guarantees strong space bounds in a first-order context for
programs that are linear [33]. Our own sized time analysis [65] will handle more
general recursive, polymorphic programs, but the forms of recursion are restricted
to simple inductions over natural numbers or linear data structures such as lists (in
the form of primitive recursive cost equations) and there can be loss of quality in
some important cases. Clearly more research is required if such analyses are to
be exploited by Joe Functional Programmer.
Advances in compile-time garbage collection technologies such as regions [60]
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are welcome, but it does not seem possible to eliminate all dynamic memory al-
location except in restricted settings such as FSM-Hume. Transforming heap al-
locations into stack allocations, as can happen with regions, increases memory
residency, and the solution of reusing space through tail recursion is only a partial
one. Thus, there is a need for good real-time garbage collectors. Unfortunately,
non-disruptive garbage collectors tend to be accompanied by high memory over-
heads. The challenge is to devise a (hybrid?) memory management system that
minimises memory overhead while providing real-time guarantees.
Finally, the majority of research into bounded time and space behaviour for

functional languages has focused on strict notations. It is both much easier to
provide strong formal cost models for strict languages and to provide implemen-
tations that accurately reflect intuitions of time and space behaviour. Because
evaluation is usually demand-based in a non-strict notation, it is an interesting
and open question whether such demand can be predicted in such a way that it is
possible to determine formal time or space bounds for the evaluation of a term.
Analytical techniques will thus require good cost models to be combined with
good resource usage models. Alternatively, it may be possible to produce a hy-
brid notation where real-time code is evaluated eagerly and can thus exploit tech-
nology for strict notations, while non-real-time code is evaluated lazily to provide
good compositional capability. The challenge is to produce such a notation whose
total space usage can be bounded in a sensible fashion.

1.8 CONCLUSION

Functional programming is potentially attractive for real-time systems because of
its property of strong determinacy and the promise of easily constructing formal
proofs of correctness. Moreover, higher-order functions and other mechanisms
allow rapid program construction and restructuring (refactoring), leading to po-
tential productivity advantages. However, issues relating to time and space man-
agement are key to the area, and until recently these have not been seriously con-
sidered by the community. Progress is being made on theoretical approaches that
are geared towards bounding time and space usage, andmany of these are couched
in functional terms. There is, however, a gap between this and most existing prac-
tical work.
We have identified a number of challenges that are faced by functional lan-

guage designers and implementors if real-time functional systems are to become
truly feasible. Chief amongst these are serious consideration of time and space
behaviour. It is necessary to raise time into the programming language in such a
way that the real-time programmer can express real-time deadlines and constraints
and can guarantee that the programmeets those constraints. It is also necessary to
provide strong verifiable models of dynamic memory allocation that can be used
to guarantee memory bounds and to ensure that costs associated with automatic
memory management do not adversely impact real-time deadlines.
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Chapter 2

FSM-Hume is Finite State
Greg Michaelson,1 Kevin Hammond2 and Jocelyn Serot3

Abstract Hume is a domain-specific programming language targeting resource-
bounded computations. It is based on generalised concurrent bounded automata,
controlled by transitions characterised by pattern matching on inputs and recursive
function generation of outputs. Here we discuss the design of FSM-Hume, a strict
finite state subset of Hume, and suggest that it is indeed classically finite state.

2.1 INTRODUCTION

We would like to be able to prove automatically the correctness, equivalence, ter-
mination, space use and complexity of arbitrary programs but these properties
are all undecidable for Turing-complete (TC) languages [1]. Some decidability
may be achieved by restricting the types and constructs in a language. Languages
based on primitive recursion, such as Turner’s elementary strong functional pro-
gramming [6] or Burstall’s inductively defined functions [2], seem unwieldy and
to lack clear programming methodologies. Languages based on finite state au-
tomata (FSA), such as Promela with the related Spin model checker [4], have
proved much more successful, but of relatively limited application and with vast
state spaces, constraining verification of substantial programs.

Hume [3] is based on a generalisation of standard FSA transition notation to
encompass a full TC language. Concurrent processing is based on explicit mul-
tiple communicating FSA, called boxes. Within Hume, an explicit distinction
is made between the coordination language, which describes external properties
and configurations of boxes, and the expression language, which describes in-
put/output transitions within boxes. Finally, in full Hume, both sub-languages

1School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton,
Scotland, EH14 4AS, greg@macs.hw.ac.uk

2School of Computer Science, University of St Andrews, North Haugh, St Andrews,
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FIGURE 2.1. Mealy machine for alternating 1s and 0s

share a rich, polymorphic type system. These design decisions enable us to iden-
tify layers of language in Hume, with different decidable properties, which may
be supported by high-level cost models [5].

A FSA with output (Mealy machine) is usually characterised by transition
quadruplets of the form: (old state,input) � (new state,out put)
where old state, input, new state and output are finite sets, for example, the Mealy
machine which checks that a binary sequence has alternating 1s and 0s, shown in
Fig. 2.1, has transitions:

(ZERO,0) -> (ZERO,ERROR)
(ZERO,1) -> (ONE,OK)
(ONE,0) -> (ZERO,OK)
(ONE,1) -> (ONE,ERROR)

However, both the diagrammatic and state transition characterisations are mis-
leading. First of all, it is implicit that a FSA cycles indefinitely, communicating
with an external environment to consume single input symbols and generating sin-
gle output symbols. Secondly, it is implicit that a FSA retains its state in between
cycles. The external input/output links and state retention are made explicit for
the above example in Fig. 2.2.

In general, for one FSA it need not be specified where the input comes from
or where the output goes to: both could be linked to arbitrary sources and sinks,
including to other FSA. Similarly, in principle, the old and new state need not
be a direct feedback link but could again come via arbitrary sources and sinks,
including other FSA.

The state and I/O symbol sets for a FSA must be finite but they may also
be very big. Given a large enough set that maps to integers, then complex data
structures may be encoded using either Gödel numbers within the set, or, more
familiarly, structured ASCII sequences whose concatenated bit values are integers
within the set.

Noting that the left and right hand sides of traditional transitions are like two-
element tuples, we generalise them to: pattern � expression. Here the left hand
side pattern is composed of variables, constants and structures. Note the wildcard
pattern *which ignores the corresponding inputs without consuming it. Similarly,
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FIGURE 2.2. Mealy machine with explicit I/O and state

the right hand side expression may involve the components of the pattern, in
particular the variables it introduces.

Thus, we generalise a FSA to a box with multiple input and output wires,
where the state is no longer necessarily distinguishable from the input or output.
Operationally, a box cycles repeatedly, trying to match transition patterns against
the current values on the input wires, treated as a single top-level tuple value. For
a match to succeed, constants and constructors must appear in the same positions
in the pattern and input value. Variables in the pattern are then instantiated to
corresponding components of the input value. After a successful match, the output
wires are instantiated from the tuple of values generated by the transition’s right
hand side.

For example, we can write the above Mealy machine in Hume as:

type BIT = int 1;
data STATE = ZERO | ONE;
stream Input from "std_in";
stream Output to "std_out";

box Bits
in (oldstate::STATE,input::BIT)
out (newstate::STATE,output::string)
match
(ZERO,0) -> (ZERO,"ERROR\n") |
(ZERO,1) -> (ONE,"OK\n") |
(ONE,0) -> (ZERO,"OK\n") |
(ONE,1) -> (ONE,"ERROR\n");
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wire Bits (Bits.newstate initially ZERO,Input)
(Bits.oldstate,Output);

Full Hume has constructs found in a contemporary polymorphic functional
language, including recursive, unbounded, user-defined types. Finite State Ma-
chine Hume (FSM-Hume) is the Hume layer with finite types on wires and only
simple operations, such as boolean and arithmetic, in transition expressions.

It might be thought that allowing operations whose state space is larger than
the input space, such as multiplication, would transcend finite state-ness. How-
ever, for fixed precision numbers, it is possible to build a FSA that will carry out
multiplication for values whose multiples do not exceed the largest allowed value,
for example by encoding the appropriate look up table.

It might also be thought that Hume suffers from the same problems as other
FSA-based languages, in particular state space explosion for practical verification
of realistic programs. However, given appropriate transformation techniques, it
should be possible to convert multiple boxes employing an impoverished expres-
sion language to fewer boxes using a richer expression language. Gross properties
of box internals would still have to be established, using, say, automated theorem
proving, but the state space of the overall box system would have been reduced.
The balance between model checking and theorem proving in establishing proper-
ties of Hume programs is an interesting avenue of research which is not discussed
further here.

A more serious concern is to clarify in what sense a multi-box Hume program
is actually still a FSA, given the presence of multiple inputs and outputs, and the
withering away of the state. We first discuss the status of a single box program
and then explore multi-box programs.

Note that the following sections provide an informal framework for possible
formalisation and are intended to convey conviction rather than establish correct-
ness.

2.2 SINGLE BOX FSM-HUME PROGRAMS ARE FINITE STATE

Consider a Hume box with multiple inputs and outputs, and no distinguished state.
As noted above, multiple values from finite domains, represented as a fixed width
tuple, can be encoded as a single symbol, given a large enough space of symbols.
Thus a box with multiple inputs or outputs may be treated as if it had just one
input and output, each bearing a tuple value.

A multi-state FSA may be converted to a single state FSA as follows. The state
symbol in each transition is combined with the input/output symbols in tuples.
Each transition is then extended with a new single state value, in the state position
on the left and right hand sides. In general:

(old state,input) � (new state,out put) �
�

(single state, (old state,input)) � (single state, (new state,out put))
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(ZERO,1)/(ONE,OK)
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(ONE,0)/(ZERO,OK)

ONESTATE

FIGURE 2.3. Single state Mealy machine for alternating 1s and 0s

For example, the Mealy machine above might be changed as shown in Fig. 2.3,
with transitions:

(ONESTATE,(ZERO,0)) -> (ONESTATE,(ZERO,ERROR))
(ONESTATE,(ZERO,1)) -> (ONESTATE,(ONE,OK))
(ONESTATE,(ONE,0)) -> (ONESTATE,(ZERO,OK))
(ONESTATE,(ONE,1)) -> (ONESTATE,(ONE,ERROR))

Using this technique, a Hume box with multiple inputs and outputs, and no
distinguished state, may be converted directly to a single state FSA with sin-
gle composite input and output tuples, provided it has no variables in transition
patterns. A variable in a pattern corresponds to successfully matching any value
in the domain for the variable’s type. Thus, to fully convert a Hume transition
with variables to pure FSA form, it must be replaced by multiple copies, with one
copy for each combination of variable type domain values.

2.3 MULTI-BOX FSM-HUME PROGRAMS ARE FINITE STATE

We also need to convince ourselves that a multi-box FSM-Hume program is still
finite state. If such a program may be converted into a single box FSM-Hume
program then that program is finite state by the preceding argument.

Hume box scheduling is well defined as sequential, round robin where each
box takes in it turns to execute once, in fixed sequence. For a multi-box program,
we combine the box transitions and introduce an explicit state value to ensure
sequentiality. Essentially, each transition for the combined box will correspond
to a transition of one of the separate boxes, augmented with additional left hand
side patterns and right hand side expressions to circulate the wire values for all
the other boxes without changing them.
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In general, a successful transition for any one box must be able to transmit all
possible wire values for the other boxes: any one box must be able to succeed if its
inputs are matched successfully, regardless of the values on the wires for the other
boxes. We employ Hume variables to generalise arbitrary input values, noting that
they may in turn be replaced by all possible values of the corresponding types for
pure FSAness, at the cost of a huge explosion in code size.

Suppose there are N boxes and box i has Ii inputs (ini1...inIi) and Oi outputs
(outi1...outOi).

For each box, we construct a top level pattern template:

Pi: vari1,vari2...variIi

with a unique variable for each input. We also construct a top level expression
template:

Ei: var
�

i1,var
�

i2...var
�

iOi

where var
�

i j is the new variable corresponding to the box input to which output
outi j is connected.

We then form a top level template for the transitions of the composite box
by concatenating together the box pattern templates on the left and expression
templates on the right:

(P1,P2...PN) � (E1,E2...EN)

This template accepts arbitrary inputs and sends them to the appropriate outputs
unchanged.

Suppose box i has Ti transitions, where the kth is: tik: pattik
� expik

Then for each transition of box i, tik, we make a copy of the composite box’s top
level template, replace the pattern template Pi with the pattern pattik and replace
the expression template Ei with the expression expik:

(P1...pattik...PN) � (E1...expik...EN)

Where the expression is a condition, the right hand side of the template must
be pushed through to the condition options. Similarly, where the expression is a
definition, the right hand side of the template must be pushed through to the result
expression.

After this stage, where any remaining pattern template has a variable which
has been replaced by an expression on the right hand side, then that variable
should be replaced by the “ignore” pattern *: there should not be an input value
present for that variable because a new value has been output for it. Similarly,
where any expression template has a variable that was replaced in a pattern tem-
plate, then that variable must be replaced by the “no output” operator *: the input
has been consumed and cannot be re-circulated.

We are then left with common variables between left and right hand sides
which consume inputs and reproduce them as outputs, to act as the inputs again
on the next cycle. The effect is as if the corresponding wires had been ignored.
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Thus, all variables on the left/right of a transition which are not in that transition’s
replacement pattern may be replaced by the “ignore” pattern/“no output” *.

Next, we introduce an explicit state which changes on each transition. We
precede each composite pattern with the number of the corresponding box and
each composite expression with the number of the next box:

(i,*,...,*,pattik,*,...,*) � (i
�

1,*,...*,expik,*,...,*)

or, for the last box, with the number of the first box.
Finally, we combine the wiring for each box, again adding a new feedback

wire for the new explicit state.
The effect is two-fold. From a Hume perspective, we have constructed a single

box which emulates multi-box scheduling. From a FSA perspective, we can easily
convert the composite box into a FSA, with an explicit state, and composite input
and output, using the technique described above.

2.4 EXAMPLE: VEHICLE SIMULATION

We now illustrate this transformation with reference to the simulation of a simple
autonomous vehicle, which tries to follow a white line by repeatedly analysing
a camera image consisting of one row of bits from a two-dimensional bit-map
scene, effectively a map of the terrain the vehicle is traversing. The vehicle has
a location consisting of its Cartesian coordinates in terrain space and its angle of
orientation relative to the horizontal. The vehicle sends its current location to the
environment. If the vehicle has not “bumped” into the edge of the terrain then the
environment returns an image corresponding to the vehicle’s position. The vehicle
then sends the image to the control which calculates a new orientation to try to
bring the white line back into the centre of the image. Finally, the vehicle changes
its position and requests the next image from the environment. The vehicle also
sends monitoring information to standard output:

box env in (loc::location) out (v::image,b::bool)
match loc -> if within_scene loc

then (lookat loc, false)
else (null_image, true);

wire env (vehicle.loc initially init_loc)
(vehicle.v, vehicle.b);

box vehicle
in (v::image,b::bool,ploc::location,c::real)
out (loc::location,m::monitor,

loc’::location,v’::image)
match
(v, false, pl, c) ->
let nl = move pl c
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in (nl, (v,pl,false,c,’\n’), nl, v)
| (v, true, pl, c) ->

(init_loc, (v,pl,true,c,’\n’),
init_loc, lookat init_loc);

wire vehicle
(env.v,env.b,vehicle.loc’ initially init_loc,
control.da initially 0.0)

(env.loc,std_out,vehicle.ploc,control.v);

box control in (v::image) out (da::real)
match
<<_,_,_,_,_,_,_,1,_,_,_,_,_,_,_>> -> 0.0

...
| _ -> 0.0 ;

wire control (vehicle.v’) (vehicle.c);

The simulation runs in real time and the vehicle never deviates more than a few
bits to either side of the line.

2.4.1 Single-box FSM-Hume

First we construct the pattern templates and then the expression templates using
the variable names from the pattern templates. We adopt the convention of naming
template variables by preceding each input wire’s name with a letter to denote its
box name:

control pattern: c v; env pattern: e loc;
vehicle pattern: v v,v b,v ploc,v c
control expression: v c; env expression: v v,v b;
vehicle expression: e loc,o,v ploc,c v

i.e. the control output is wired to the vehicle input c; the env output is
wired to the vehicle inputs v and b; etc.

The overall transition template is:

c_v,e_loc,v_v,v_b,v_ploc,v_c ->
v_c,v_v,v_b,e_loc,o,v_ploc,c_v

Consider the first transition for the control. In the template, we replace c v on
the left with the transition pattern, v c on the right with the transition expression
and all other variables with *.

Consider the transition for the env. In the template, we replace e loc on the
left with the pattern. The transition expression is a conditional expression so we
leave the condition in place, replace the option expressions with the template right
hand side and insert the components expressions in place of the corresponding
template variables v v and v b. Again, all other variables are replaced by *.
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Consider the first transition for the vehicle. In the template, we replacev v,
v b, v ploc and v c with the pattern components. There is a local definition on
the right so we leave the declaration part in place, replace the expression with
the template right hand side and insert the components of the expression in place
of the corresponding template variables e loc, o, v ploc and c v. Again, all
other variables are replaced by *.

Numbering the boxes control/1, env/2 and vehicle/3, we add state pat-
terns and expressions to each transition:

box vehicle
in (s::integer,c_v::image,e_loc::location,

v_v::image,v_b::bool,v_ploc::location,v_c::command)
out (s’::integer,c_da::real,e_v::image,e_b::bool,

v_loc::location, v_m::monitor,v_loc’::location,
v_v’::image)

match
(1,<<_,_,_,_,_,_,_,1,_,_,_,_,_,_,_>>,*,*,*,*,*) ->
(2,0.0,*,*,*,*,*,*) |
...

(2,*,loc,*,*,*,*) ->
if within_scene loc
then (3,*,lookat loc, false,*,*,*,*)
else (3,*,null_image, true,*,*,*,*) |

(3,*,*,v, false, pl, c) ->
let nl = move pl c
in (1,*,*,*,nl, (v,pl,false,c,’\n’), nl, v) |
...

Finally, we amalgamate the box wires and add appropriate wiring for the state, to
start with the env box in state 2:

wire vehicle
(vehicle.s’ initially 2,vehicle.v_v’,
vehicle.v_loc initially init_loc,
...
vehicle.c_da initially 0.0)
(vehicle.s,vehicle.v_c,vehicle.v_v,vehicle.v_b,
vehicle.e_loc, output,vehicle.v_ploc,vehicle.c_v);

The single box version of the vehicle simulation gives the same behaviour as
the multi-box version, on the full Hume interpreter and on the HAM. It is also
substantially faster and requires substantially less space.
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2.5 CONCLUSION

We have explored the specific properties of the Hume finite state subset FSM-
Hume to demonstrate informally that it is indeed finite state. In so doing, we
derived a transformation to convert multi-box FSM-Hume programs to a single
box and applied it to the simulation of a simple line following vehicle. We now
plan to formalise and prove the transformation.

The application of the transformation to the vehicle simulation was performed
by hand. We also plan to automate the transformation and to perform further
experimentation to determine whether this transformation is a useful optimisation
for general FSM-Hume programs.

This work has been partly supported by UK EPSRC grant GR/R 70545/01 and
by a French CNRS grant.
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Chapter 3

Camelot and Grail:
Resource-Aware Functional
Programming for the JVM
K. MacKenzie1 and N.Wolverson1

Abstract We describe the functional language Camelot, which is a language of
the ML family with extensions for explicit management of heap storage, and the
intermediate language Grail, which is a functional form of JVM bytecode. A
scheme for transforming Camelot into Grail is described. We also give some fig-
ures for execution times which show that Camelot programs perform reasonably
well when compared with Java equivalents.

3.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project [15] aims to develop a Proof
Carrying Code (PCC) [16] framework to endow mobile computer programs with
guarantees of resource bounds. Typical resources are time, heap space, system
calls, and stack size. Our goal is to provide a resource-safe programming language
to be used for writing mobile code. This language, which is called Camelot, is a
high-level functional language which is compiled into JVM bytecode. The class
files produced by the compiler will be equipped with a proof that the programs
obey specified resource constraints and can then be transmitted across a network
in the usual way. The consumer of the mobile code can then independently verify
the resource constraints by checking the proof attached to the code; if verification
is successful then execution can proceed as normal. This technique provides an
unforgeable guarantee that the claimed resource limits will not be exceeded.

1Laboratory for the Foundations of Computer Science, School of Informatics, The
University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK; Email:
kwxm@inf.ed.ac.uk, N.Wolverson@sms.ed.ac.uk
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In this paper we will describe Camelot and its translation to JVM bytecode.
Camelot is similar to a subset of O’Caml, the main novelty lying in extensions
for performing in-place modifications to heap-allocated data-structures. These
features are similar to those described in by Hofmann in [6] but include some
extra extensions for freelist management. To retain a purely functional semantics
for the language in the presence of these extensions a linear type system can be
employed: in the present implementation, linearity can be enforced via a compiler
switch. We are in the process of enhancing the compiler by the addition of other,
less restrictive type systems which still allow safe in-place modifications. More
details will be given below.

Crucial design choices for the compilation are transparency and an exact spec-
ification of the compilation process. The former ensures that the compilation does
not modify the resource consumption in an unpredictable way. The latter provides
a formal basis for using resource information inferred for the high-level language
in proofs on the intermediate language.

3.2 CAMELOT

Camelot is a strongly typed language of the ML family with features added to
enable close control of heap usage. The syntax of Camelot (which is similar to a
subset of the syntax of the O’Caml language [17]) is given below. The terms ty-
con, cname, fname and var refer to type constructors, constructor names, function
names and variable names respectively: all of these are names in SML style. Con-
structor names must begin with an upper-case letter, whereas all other identifiers
begin with a lower-case letter. The term tyvar refers to a type variable, which is
a name beginning with a single quote. Literal constants (const below) are similar
to those in O’Caml. Optional items are enclosed in angular parentheses.

program ::= 〈typedecseq〉 〈valdecseq〉 〈funimpseq〉
typedecseq ::= typedec 〈typedecseq〉

typedec ::= type 〈(tyvar1 . . . tyvarn)〉 tycon = conbind

conbind ::= cname 〈of ty1 ∗ . . .∗ tyn〉 〈 | conbind 〉
| !cname 〈 | conbind 〉

ty ::= unit | bool | int | float | string | tyvar

| ty array | tyseq tycon | tyn -> . . . -> ty1 -> ty

valdecseq ::= valdec 〈valdecseq〉
valdec ::= val var: ty | val fname: ty

funimpseq ::= funimp 〈 funimpseq〉
funimp ::= let 〈rec〉 fundecseq

fundecseq ::= fundec 〈and fundecseq〉
fundec ::= fname varseq = expr

30



expr ::= const | var | uop expr | expr op expr | fname expr1 . . .exprn

| cname (expr1, . . . ,exprn) | cname (expr1, . . . ,exprn)@var

| let pat = expr in expr | if expr then expr else expr

| match expr with match | free var | (expr) | begin expr end

match ::= mrule 〈 | match〉
mrule ::= con〈(pat1, . . . ,patn)〉 -> expr

| con〈(pat1, . . . ,patn)〉@pat -> expr

pat ::= var |
uop ::= - | -. | not

op ::= arithop | cmp | ˆ | && | ||
arithop ::= + | - | * | / | mod | +. | -. | *. | /.

cmp ::= = | < | <= | >= | > | =. | <. | <=. | >=. | >.

There are a number of built-in operators: the operators +,-, . . .> apply to inte-
ger values, whereas +.,-., . . . apply to floating-point values. The boolean expres-
sion e1 && e2 is an abbreviation for if e1 then e2 else false; similarly e1 || e2

represents if e1 then true else e2. The remaining binary operator is ^, which
performs string concatenation. There are also three unary negation operators.

In addition there are a number of predefined functions such as print int,
print int newline, and int of float, whose names should explain them-
selves. The same string function is used to compare strings for equality. There
are functions for handling arrays, but we will not use these here. Camelot also
includes a built-in polymorphic list type. In order to execute a program the user
must include a function start: string list -> unit ; when the class file is
executed the start function will be executed with an argument consisting of a
list containing the command-line arguments to the program.

Note that in some contexts the symbol can be used instead of a variable
name. This feature can be used to discard unwanted values such as unit values
returned by print statements.

3.2.1 Basic Features of Camelot

The core of Camelot is a standard polymorphic ML-type functional language.
One can define datatypes in the normal way:

type intlist = Nil | Cons of int * intlist

type ’a polylist = NIL | CONS of ’a * ’a polylist

type (’a, ’b) pair = Pair of ’a *’b

To simplify the compilation process we prohibit the unit type in datatype
definitions. This does not cause any loss of generality since the excluded datatypes
are isomorphic to types of the kind which we do allow. Values belonging to user-
defined types are created by applying constructors and are deconstructed using
the match statement:
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let rec length l = match l with

Nil -> 0

| Cons (h,t) -> 1+length t

let test () = let l = Cons(2, Cons(7,Nil))

in length l

The form of the match statement is much more restricted than in SML or
O’Caml. There must be exactly one rule for each constructor in the associated
datatype, and each rule binds the values contained in the constructor to variables
(or discards them by using the pseudo-variable ). Complex patterns are not avail-
able, and must be simulated with further match and if statements.

As can be seen from the example above, constructor arguments are enclosed
in parentheses and are separated by commas. In contrast, function definitions and
applications which require multiple arguments are written in a “curried” style:

let add a b = a+b

let f x y z = add x (add y z)

Despite this notation, the present version of Camelot does not support higher-
order functions; any application of a function must involve exactly the same num-
ber of arguments as are specified in the definition of the function.

3.2.2 Diamonds and Resource Control

Our current implementation of Camelot targets the Java Virtual Machine, and
values from user-defined datatypes are represented by heap-allocated objects from
a certain JVM class. Details of this representation will be given in Sec. 3.4.1.

Consider the following function which uses an accumulator to reverse a list of
integers (as defined by the intlist type above).

let rec rev l acc = match l with

Nil -> acc

| Cons (h,t) -> rev t (Cons (h,acc))

let reverse l = rev l Nil

This function allocates an amount of memory equal to the amount occupied by
the input list. If no further reference is made to the input list then the heap space
which it occupies may eventually be reclaimed by the JVM garbage collector.

In order to allow more precise control of heap usage, Camelot includes con-
structs allowing re-use of heap cells. There is a special type known as the diamond
type (denoted by <>) whose values represent blocks of heap-allocated memory,
and Camelot allows explicit manipulation of diamond objects. This is achieved
by equipping constructors and match rules with special annotations referring to
diamond values. Here is the reverse function rewritten using diamonds so that
it performs in-place reversal:

let rec rev l acc = match l with

Nil -> acc

| Cons (h,t)@d -> rev t (Cons (h,acc)@d)

let reverse l = rev l Nil
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The annotation “@d” on the first occurrence of Cons tells the compiler that
the diamond value d is to be bound to a reference to the space used by the list
cell. The annotation on the second occurrence of Cons specifies that the list cell
Cons(h,acc) should be constructed in the diamond object referred to by d, and
no new space should be allocated on the heap.

One might not always wish to re-use a diamond value immediately. This can
sometimes cause difficulty since such diamonds might then have to be returned as
part of a function result so that they can be recycled by other parts of the program.
For example, the alert reader may have noticed that the list reversal function above
does not in fact reverse lists entirely in place. When the user calls reverse, the
invocation of the Nil constructor in the call to rev will cause a new list cell to
be allocated. Also, the Nil value at the end of the input list occupies a diamond,
and this is simply discarded in the second line of the rev function (and will be
subject to garbage collection if there are no other references to it). The overall
effect is that we create a new diamond before calling the rev function and are left
with an extra diamond after the call has completed. We could recover the extra
diamond by making the reverse function return a pair consisting of the reversed
list and the spare diamond, but this is rather clumsy and programs quickly become
very complex when using this sort of technique. To avoid this kind of problem,
unwanted diamonds can be stored on a freelist for later use. This is done by using
the annotation “@ ” as in the following example which returns the sum of the
entries in an integer list, destroying the list in the process:

let rec sum l acc = match l with

Nil@_ -> acc

| Cons (h,t)@_ -> sum t (acc+h)

The question now is how the user retrieves a diamond from the freelist. In
fact, this happens automatically during constructor invocation. If a program uses
an undecorated constructor such as Nil or Cons(4,Nil) then if the freelist is
empty the JVM new instruction is used to allocate memory for a new diamond
object on the heap; otherwise, a diamond is removed from the head of the freelist
and is used to construct the value. It may occasionally be useful to explicitly
return a diamond to the freelist and an operator free: <> -> unit is provided
for this purpose.

There is one final notational refinement. The in-place list reversal function
above is still not entirely satisfactory since the Nil value carries no data but
is nonetheless allocated on the heap. We can overcome this by redefining the
intlist type as

type intlist = !Nil | Cons of int * intlist

The exclamation mark directs the compiler to represent the Nil constructor by
the JVM null reference. With the new definition of intlist the original list-
reversal function performs true in-place reversal: no heap space is consumed or
destroyed when the reverse function is applied. The ! annotation can be used
for a single zero-argument constructor in any datatype definition. In addition, if
every constructor for a particular datatype is nullary then they may all be preceded
by!, in which case they will be represented by integer values at runtime. We have
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deliberately chosen to expose this choice to the programmer (rather than allowing
the compiler to automatically choose the most efficient representation) in keeping
with our policy of not allowing the compiler to perform optimisations which have
unexpected results on resource consumption.

The features described above are very powerful and can lead to many kinds
of program error. For example, if one applied the reverse function to a sublist
of some larger list then the small list would be reversed properly, but the larger
list could become partially reversed. Perhaps worse, a diamond object might be
used in several different data structures of different types simultaneously. Thus a
list cell might also be used as a tree node, and any modification of one structure
might lead to modifications of the other. The simplest way of preventing this kind
of problem is to require linear usage of heap-allocated objects, which means that
variables bound to such objects may be used at most once after they are bound.
Details of this approach can be found in Hofmann’s paper [6]. Strict linearity
would require one to write the list length function as something like

let rec length l = match l with

Nil -> Pair (0, Nil)

| Cons(h,t)@d ->

let p = length t

in match p with

Pair(n, t1)@d1 -> Pair(n+1, Cons(h,t1)@d)@d1

It is necessary to return a new copy of the list since it is illegal to refer to l after
calling length l.

Our compiler has a switch to enforce linearity, but the example demonstrates
that the restrictive nature of linear typing can lead to unnecessary complications.
Aspinall and Hofmann [1] give a type system which relaxes the linearity condition
while still allowing safe in-place updates, and Michal Konečný generalises this
still further in [9, 10]. As part of the MRG project, Konečný has implemented a
typechecker for a variant of the type system of [9] adapted to Camelot.

A different approach to providing heap-usage guarantees is given by Hofmann
and Jost in [7], where an algorithm is presented which can be used to statically in-
fer heap-usage bounds for functional programs of a suitable form. In collaboration
with the MRG project, Steffen Jost has implemented a variant of this inference al-
gorithm for Camelot. The implementation is described in [8].

Both of these implementations are currently stand-alone programs, but we are
in the process of integrating them with the Camelot compiler.

One of our goals in the design of Camelot was to define a language which
could be used as a testbed for different heap-usage analysis methods. The inclu-
sion of explicit diamonds fits the type systems of [1, 9, 10], and the inclusion of
the freelist facilitates the Hofmann-Jost inference algorithm, which requires that
all memory management takes place via a freelist. We believe that the fact that
implementations of two radically different systems have been based on Camelot
indicates that our goal was achieved successfully.
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3.3 GRAIL

Instead of translating directly to JVM bytecode, the Camelot compiler targets
the intermediate language Grail (Guaranteed resource allocation intermediate lan-
guage). This is a small typed language which allows us to represent (a subset of )
JVM bytecode in a functional form (see [13] or [23] for more information about
the Java Virtual Machine and JVM bytecode). The design of Grail was inspired
by the λJVM language of [11]. We will give a brief overview of Grail here. For
further details see [14] or [3].

A Grail program defines a single Java class, potentially containing static fields,
instance fields, static methods and instance methods. Field definitions are straight-
forward. The real interest of Grail lies in method definitions, which are repre-
sented in a functional form whose syntax is given below.

methoddef ::= method modifiers rty jname (〈ty1 var1, · · · , tyn varn〉) = methodbody

methodbody ::= let 〈valdec1 · · ·valdecm〉 〈 fundec1 · · · fundecn〉 in result end

valdec ::= val var = primop | val () = primop

fundec ::= fun fname(〈ty1 var1, · · · , tyn varn〉) = funbody

funbody ::= result | let 〈valdec1 · · ·valdecn〉 in result end

result ::= primres | if value test value then primres else primres

primres ::= primop | () | fname(〈var1, · · · ,varn〉)
primop ::= value | binop value value | new <condesc> (〈value1, · · · ,valuen〉)

| invokevirtual var <methoddesc> (〈value1, · · · ,valuen〉)
| invokestatic <methoddesc> (〈value1, · · · ,valuen〉)
| invokespecial var <methoddesc> (〈value1, · · · ,valuen〉)
| getfield var <fielddesc> | putfield var <fielddesc> value

| getstatic <fielddesc> | putstatic <fielddesc> value

| checkcast longjname var | instanceof longjname var

| itof value | ftoi value | arrayop

arrayop ::= empty value ty | length var | get var value | set var value value

condesc ::= longjname (〈ty1, · · · , tyn〉)
methoddesc ::= rty longjname (〈ty1, · · · , tyn〉)

fielddesc ::= ty longjname

test ::= = | <> | < | <= | > | >=
binop ::= add | sub | mul | div | mod
value ::= var | intvalue | floatvalue | stringvalue | null[longjname]

ty ::= int | float | string | longjname | ty[]

rty ::= ty | void
modifiers ::= 〈public | protected | private〉 〈static〉 〈final〉

The terms longjname and jname refer to Java-style class, field and method names;
items of type longjname may contain dots, whereas those of type jname may
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not. In addition, Java method names for initialisers may end with .<init> or
.<clinit>. The terms var and fname denote local variable names and function
names respectively. Expressions of the form val () = . . . are used to invoke
operations such as putfield which do not return a result, and also to call void
methods.

As a simple example of Grail, the following code defines a class containing a
method for calculating the factorial of an integer.

class Fac {

method public static int fac (int n) =

let

val b = 1

fun f(int n, int b) = if n < 1 then b else f_else(n,b)

fun f_else(int n, int b) =

let val b = mul b n

val n = sub n 1

in f(n,b) end

in f(n,b) end

}

3.3.1 The Grail Type System

Grail implements a type system similar to a subset of the JVM type system. The
int and float types are the same as corresponding JVM types. There is also
a collection of reference types which represent Java class instances and arrays.
These can be used to access any Java class or method from Grail. The concrete
syntax also includes a string type which is the same as java.lang.String.
One major difference between the Grail and JVM type systems is that there is no
subtyping in Grail. The JVM allows an object x from a class C to be used in any
context where an object from a superclass S of C is expected, but Grail requires
object types to match exactly. The object x must be explicitly upcast to S using the
checkcast operation before the assignment takes place. This causes unnecessary
casting operations to occur in the corresponding bytecode, but enables consider-
able simplifications in typechecking for Grail; furthermore, the Camelot compiler
does not make any use of the Java inheritance features at present, so this point
does not cause any problems.

3.3.2 Compilation of Grail

We will describe some features of the Grail compilation process. Full details can
be found in [14].

In Grail, named variables are in one-to-one correspondence with JVM local
variables. The JVM operand stack is used in a very restricted way in that interme-
diate results may not be left on the stack for later use: they must immediately be
stored in a variable, leaving the stack empty. Thus to add three integers one must
add the first two and store the result in some intermediate variable x, say, and then
add the final variable to x.
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The primitive operations (the class primop above) correspond directly to atomic
JVM operations and can be translated more or less verbatim (except for the Grail
new operation, which combines object creation and initialisation).

Each Grail method is compiled into a JVM method. The JVM is an imperative
machine with branches and goto statements, but these instructions are not visible
in Grail. Instead, flow control within a Grail method is handled by calls to local
functions defined in the method. These function calls are very restricted: they
may only occur in tail position, and we require that whenever a function is called
the names of its actual parameters must exactly match those used in its declara-
tion. This convention allows a very simple translation to JVM bytecode. Function
bodies are translated into basic blocks of bytecode, and every function call may
assume that its arguments are already stored in the correct registers, so that the
call can be translated into a direct jump.

The structure of Grail (in particular the calling convention) means that there is
a very close correspondence between functional Grail and the imperative bytecode
obtained by compiling it. In fact, the resulting bytecode is so idiomatic that it is
easy to translate it back to the original Grail source, which is a useful feature
from the PCC viewpoint. In addition, the transparency of the correspondence is
important from the point of view of resource accounting. For example, the calling
convention means that no extra code which might affect execution time or stack
size has to be introduced to place arguments in the correct registers.

The restricted form of Grail bytecode also has interesting implications for the
JVM verification process. One example of this is that the structure of the lan-
guage in fact guarantees that valid Grail will compile to verifiable bytecode (we
do not have a formal proof of this, but we are confident that it is true); this means
that we have a syntactic guarantee of verifiability, whereas the verifiability of ar-
bitrary bytecode can only be established algorithmically, by actually running the
verification algorithm.

It also turns out that bytecode obtained from Grail is much easier to verify
than arbitrary bytecode. For example, one of the conditions that bytecode must
satisfy during verification is that at any particular point in a program the number
and types of the elements on the operand stack are independent of the path taken
to reach that point. To establish this requires an iterative dataflow analysis to cal-
culate fixpoints for stack types (see [13, Sec. 4.9.2]), which can consume a lot
of time and space (see [12, Sec. 2.3] for some concrete figures). In [12] Leroy
examines JVM bytecode verification in detail and shows that if some simple re-
strictions are imposed on the form of the bytecode (notably that the stack be empty
at each jump destination) then checking this property is considerably simpler. In
fact, Leroy shows that the entire verification process can be carried out in con-
stant space (in practice, less than 100 bytes). The improvement is such that byte-
code verification can be performed even with the extremely limited resources of a
smartcard. This has hitherto been infeasible, and the standard approach has been
for a trusted agent to perform off-card verification of bytecode prior to download-
ing. It is easily seen that Grail satisfies Leroy’s conditions, which is encouraging
since we hope to use it with devices with limited resources.
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Some other properties of Grail are studied in [3]: among other things it is
shown that the structure of Grail has connections with the well-known static
single-assignment form.

We have implemented programs called gdf and gf which perform the trans-
lation from Grail to JVM and back. These can be downloaded from [15].

3.4 COMPILING CAMELOT TO GRAIL

We have implemented a Camelot compiler (available from [15]) which operates
by translating Camelot into Grail and then into JVM bytecode. The compiler is
a whole-program compiler whose back end is essentially the gdf program men-
tioned above. This section will describe the translation from Camelot to Grail.

3.4.1 Representing Data

Our compilation strategy is type-preserving in that well-typed Camelot programs
are translated into well-typed Grail programs. This increases the robustness of the
compiler since implementation errors often lead to type errors in the Grail code
which are then detected by the Grail typechecker in the back end of the compiler.

The basic types bool, int, float and string are represented by the obvious
Grail types. The unit type causes difficulties since there is no corresponding type
in Grail. It is in fact possible to “compile away” occurrences of the unit type: this
is described in an extended version of this paper available from [15].

Objects belonging to user-defined datatypes are represented by members of
a single JVM class which we will refer to as the diamond class. Objects of the
diamond class contain enough fields to represent any member of any datatype
defined in the program. Each instance X of the diamond class contains an integer
tag field which identifies the constructor with which X is associated. The diamond
class also contains a static field pointing to the freelist. The freelist is managed via
the static methods alloc (which returns the diamond at the head of the freelist,
or creates a new diamond by calling new if the freelist is empty), and free which
places a diamond object on the freelist. The diamond class also has overloaded
static methods called make and fill, one instance of each for every sequence
of types appearing in a constructor. The make methods are used to implement
ordinary constructor application; each takes an integer tag value and a sequence
of argument values and calls alloc to obtain an instance of the diamond class,
and then calls a corresponding fill method to fill in the appropriate fields with
the tag and the arguments. The fill methods are also used when the programmer
reuses an existing diamond to construct a datatype value.

It can be argued that this representation is inefficient in that datatype values
are often represented by JVM objects which are larger than they need to be. This
is true, but is difficult to avoid owing to the type-safe nature of JVM memory
management which prevents one from re-using the heap space occupied by a value
of one type to store a value of a different type. We wish to be able to reuse heap
space, but this can be impossible if objects can contain only one type of data.
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With the current scheme one can easily write a heapsort program which operates
entirely in-place. List cells are large enough to be reused as heap nodes and this
allows a heap to be built using cells obtained by destroying the input list. Once
the heap has been built it can in turn be destroyed and the space reused to build
the output list. In this case, the amount of memory occupied by a list cell is larger
than it needs to be, but the overall amount of store required is less than would be
the case if separate classes were used to contain list cells and heap nodes.

In the current context it can be claimed that it is better to have an inefficient
representation about which we can give concrete guarantees than an efficient one
which about we can say nothing. Most of the programs which we have written so
far use a limited number of datatypes so that the overhead introduced by the mono-
lithic representation for diamonds is not too severe. However, it is likely that for
very large programs this overhead would become unacceptably large. One possi-
bility which we have not yet explored is that it might be possible to achieve more
efficient heap usage by using dataflow techniques to follow the flow of diamonds
through the program and detect datatypes which are never used in an overlapping
way. One could then equip a program with several smaller diamond classes which
would represent such non-overlapping types.

These problems could be avoided by compiling to some platform other than
the JVM (for example to C or to a specialised virtual machine) where compaction
of heap regions would be possible. The Hofmann-Jost algorithm is still applica-
ble in this situation, so it would still be feasible to produce resource guarantees.
However, it was a fundamental decision of the MRG project to use the JVM,
based on the facts that the JVM is widely deployed and very well-known and
that resource usage is a genuine concern in many contexts where the JVM is used.
Our present approach allows us to produce concrete guarantees at the cost of some
overhead; we hope that at a later stage a more sophisticated approach (such as the
one suggested above) might allow us to reduce the overheads while still obtaining
guaranteed resource bounds.

3.4.2 Compilation of Programs

We compile a Camelot program to a single class with one static method for each
function in the program. This technique is somewhat problematic since recursive
function calls translate to recursive calls on JVM methods, which are expensive
and can potentially lead to overflow of the JVM stack.

Functions which call themselves in a tail-recursive manner can safely be com-
piled into recursive Grail function calls, and a compiler option is available which
enables this feature (see [24], which also includes a proof that the optimisation
has no effect on heap usage). However, mutually tail-recursive functions are diffi-
cult to program within a single stack frame because JVM methods can only have
one entry point and there is a limit on the size of method bodies.

Various techniques are known which can overcome this problem (for example,
the trampoline [22, §6.2], Baker’s “Cheney on the MTA” technique [2]). Unfortu-
nately, all of these strategies tend to require extra heap usage and thus compromise
the transparency of the compilation process. Because of this, at present we sim-
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ply compile each function as a separate method and implement (non-recursive)
tail calls as standard method calls, which carries a risk of stack overflow in pro-
grams which make a lot of use of mutual recursion. We will return to this problem
in our closing remarks.

3.4.3 Initial Transformations

Compilation begins with a phase in which several transformations are applied to
the abstract syntax tree.

Monomorphisation

Firstly, all polymorphism is removed from the program. For polymorphic types
(αn, . . . ,α1) t such as α list we examine the entire program to determine all in-
stantiations of the type variables and compile a separate datatype for each distinct
instantiation. Similarly, whenever a polymorphic function is defined the program
is examined to find all uses of the function and a monomorphic function of the
appropriate type is generated for each distinct instantiation of types.

Normalisation

After monomorphisation there is a phase referred to as normalisation which trans-
forms the Camelot program into a form (Normalised Camelot) which closely re-
sembles Grail.

First, the compiler ensures that all variables have unique names. Any du-
plication is resolved by generating new names. This allows us to map Camelot
variable names directly onto Grail variable names (which in turn map onto JVM
local variable locations) with no danger of clashes arising.

We next have to simplify boolean expressions. Grail has no direct equivalent
for expressions such as m < n outside if-expressions and we deal with this by re-
placing such expressions with ones of the form if m < n then true else false.

Next, we give names to intermediate results in many contexts by replacing
complex expressions with variables. For example, the expression f (a + b + c)
would be replaced by an expression of the form let t1 = a + b in let t2 =
t1 + c in f t2. The introduction of names for intermediate results can produce
a large number of Grail (and hence JVM) variables. After the source code has
been compiled to Grail the number of local variables is minimised by applying a
standard register allocation algorithm (see [24]).

A final transformation ensures that let-expressions are in a “straight-line”
form. After all of these transformations have been performed expressions have
been reduced to the following form:

expr ::= expr′ | let pat = expr′ in expr

expr′ ::= primexp | if atom cmp atom then expr else expr

| if atom then expr else expr | match var with match end
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primexp ::= atom | uop atom | atom arithop atom | free var

| fname atom1 . . .atomn | cname (atom1, . . . ,atomn)〈@var〉
atom ::= const | var

(undefined syntactic classes remain the same as those in the full syntax of Camelot
given earlier). The structure of normalised Camelot (which is in fact in a type of
A-normal form [5]) is sufficiently close to that of Grail to make it fairly easy to
translate from the former to the latter. Another benefit of normalisation is that it
is easier to write and implement type systems for normalised Camelot. The fact
that the components of many expressions are atoms rather than complex subex-
pressions means that typing rules can have very simple premisses.

3.4.4 Compilation of Expressions

The Camelot expressions labelled by the term primexp in the normalised syntax
above will be referred to as primitive expressions. They are significant because
they correspond directly to primitive operations in Grail and thus admit an easy
translation. This is the key to compilation of normalised Camelot into Grail.
A normalised Camelot expression consists of a nested sequence of let expres-
sions. The translation procedure essentially translates an expression (in particu-
lar, a function body) into a collection of mutually recursive Grail local functions
by descending down the chain of let-expressions, emitting a Grail valdec for
each term of the form let p = e with e primitive. This process terminates when
a non-primitive expression e is encountered; at this point e must be a branch of
some kind, and the compiler recursively generates a new local function for each
of the subexpressions occurring in the branch, terminating the original function
with a Grail if-result (or, in the case of a match statement, a block of code im-
plementing a sequence of such results). This a highly simplified description of the
translation to Grail; space constraints preclude a full description, but the extended
version of this paper (see [15]) contains an appendix giving a full and precise
specification of the translation.

3.5 PERFORMANCE

We have described a procedure for compiling Camelot into Grail, and thence to
JVM. This is a long process involving several different stages, and one might
suspect that it would introduce inefficiencies into the final bytecode programs. In
this section we will present figures comparing the run-time of various Camelot
programs with versions of the same programs written in Java and in Scheme,
which we hope will demonstrate that performance is not compromised unduly.

Java programs were compiled using the standard Sun Java compiler. To com-
pile Scheme programs for the JVM the Bigloo Scheme compiler [20, 19] was
used.
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Timings were obtained using the JFluid JVM profiling tool [4]; this uses a
special version of the Sun JVM (version 1.4.2) which has been modified to allow
dynamic instrumentation of class files. The figures which are obtained appear to
be fairly accurate since one can focus on particular areas of the program without
incurring an overhead by profiling irrelevant code. By default the JVM performs
adaptive compilation to native code for frequently-executed code sequences. This
feature is not available in JFluid, so all execution was performed by interpretation.
However, we felt that this would still give a realistic (worst-case) estimate of
program times. Also, JVMs for limited-memory devices generally provide no
alternatives to interpretation. The timings were carried out on a 366MHz Pentium
2 processor under Linux. All timings are in milliseconds and represent an average
taken over five runs.

Firstly we consider several list-reversal programs. Each program generates
a list consisting of the integers between 1 and 1,000,000 and then proceeds as
follows:

• A reverses the list in place.

• B reverses the list in place, but replaces each element x by x+ x.

• C returns a reversed copy of the list, leaving the original intact.

• D returns a reversed copy with each element doubled as in B.

We timed the execution of the entire program (including construction of the input
list) and also of the reversal function in isolation. The results follow below.

A B
main reverse main reverse

Java 6289ms 507ms 6653ms 850ms
Camelot 11263ms 1684ms 11684ms 1785ms
Scheme 28884ms 3645ms 58595ms 30734ms

C D
main reverse main reverse

Java 10824ms 5009ms 10670ms 5215ms
Camelot 20285ms 10439ms 20580ms 10676ms
Scheme 31686ms 6829ms 54178ms 28822ms

We note that the Camelot versions are slower than the Java versions but are
generally faster than the Scheme versions. There are several reasons why Camelot
is slower than Java.

(1) The requirement that all intermediate results in Grail are explicitly named
means that the bytecode often contains pairs of instructions where a value is stored
in a local variable and then immediately recalled for further use (and the stored
copy is never used again). This certainly has the effect of slowing down the ex-
ecution of the bytecode, but the decision to use this form of code was made de-
liberately in the hope that the regularity of the bytecode would simplify formal
analyses.
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(2) In Camelot it is not possible to modify individual fields within an object:
when a value is constructed in a recycled Camelot diamond, the fields in the cor-
responding object are filled in by a method call (to the fill method mentioned
in 3.4.1). All fields must be explicitly rewritten, even if some have not changed
(see the reversal example in 3.2.2, which is essentially the same as the one used in
program A). In contrast, in Java one can perform list-reversal simply by changing
pointers in list cells and leaving the other values stored in the cells intact. This
accounts for the fact that simple in-place reversal in Java is three times as fast as
in Camelot, but when the entries in the list are modified, as in program B, the
Java version is only twice as fast as the Camelot version. The fact that a method
call is used, rather than a sequence of putfield operations, also adds some extra
overhead. Again, this was a conscious design decision: a constructor application
in Camelot corresponds directly to a single method application, and it was felt
that this correspondence would simplify analysis.

We performed the Scheme comparisons as we thought it would be interesting
to compare Camelot’s performance with that of another functional language run-
ning on the JVM. It was somewhat surprising to discover that while Scheme took
six times as long as Java to perform simple in-place list reversal, it took more than
36 times as long to perform reversal with doubling. This appears to be due to the
fact that Scheme’s numeric + operator is overloaded. Inspection of the bytecode
produced by the compiler reveals that Bigloo handles overloading by representing
numeric values in a boxed form as Java objects. When elements in the list are dou-
bled this requires the + operator to examine the boxed values to determine their
numeric type, then to call an appropriate specialised addition operator, and finally
to re-box the result prior to insertion in the modified list. Since this happens for
each of the million elements in the list it is not surprising that there is a consid-
erable slowdown. By using the Scheme +fx operator in place of + it is possible
to use Scheme fixnum values, which Bigloo encodes as JVM int values. When
program B is modified in this way the execution time for the reversal function
reduces to about 14000ms. This figure is still about 16 times as long as the Java
version: we suspect that this is largely due to the fact that dynamic typechecking
is still required before the addition operator is actually called.

The following table gives timings for some other programs:

Fibonacci Quicksort Insertion Sort
Java 221229ms 21009ms 23963ms
Camelot 239039ms 34166ms 42415ms
Scheme 709598ms 42368ms 73412ms

The first column gives times for calculation of the 40th Fibonacci number by
a direct implementation of the recursive definition. Execution of the program
consists mostly of recursive method invocations, so the performance of Java and
Camelot is very similar. Again Scheme performs badly owing to dynamic type-
checking. The figures given represent a calculation using finxum values; when
these were replaced by the default boxed integer values, the execution time rose
to 6577734ms, or about 1 hour and 49 minutes.
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The second column of the table gives times for execution of an in-place quick-
sort algorithm on a list of 25586 words (the text of [21]), and the third column
gives times for an in-place insertion sort of a list consisting of the first 5000 words
of the same list. Again Java performs best, with Camelot second and Scheme
third, but in these examples the differences are less marked than in some of the
previous examples.

Overall the figures show that Camelot programs compare favourably with Java
programs. Furthermore, it is fairly clear which features of Camelot are responsi-
ble for its poorer performance. As suggested above, the somewhat rigid structure
of the bytecode obtained from Camelot programs is due to deliberate design de-
cisions which were made in order to allow a precisely-defined and transparent
compilation procedure which would facilitate program analysis. It is possible that
some of these restrictions could eventually be relaxed (thereby improving perfor-
mance) without compromising the validity of our analyses.

We have only considered execution time here. Of course, our main interest is
in memory usage. JFluid also allows one to collect memory profiling information,
and this indicates that the heap usage of the Java and Camelot programs was
exactly as expected. Unfortunately we were unable to obtain any heap profiling
for the Scheme programs since they appeared to terminate in a nonstandard way
which the JFluid system was unable to deal with properly.

3.6 FINAL REMARKS

We have described a technique for compiling Camelot into JVM bytecode via
the functional intermediate language Grail; we believe that this technique satis-
fies the strict requirements of the PCC framework. We have also provided some
performance figures which indicate that the rigid specification of the compilation
procedure does not degrade execution speed unduly.

There are various ways in which Camelot could be extended. The lack of
higher-order functions is inconvenient, but the resource-aware type systems which
we use are presently unable to deal with higher-order functions, partly because of
the fact that these are normally implemented using heap-allocated closures whose
size may be difficult to predict. A possible strategy for dealing with this which
we are currently investigating is Reynolds’ technique of defunctionalization [18]
which transforms higher-order programs into first-order ones, essentially by per-
forming a transformation of the source code which replaces closures with mem-
bers of datatypes. This has the advantage that extra space required by closures is
exposed at the source level, where it is amenable to analysis by the heap-usage
inference techniques mentioned earlier.

A similar strategy can be used to eliminate mutual tail-recursion. Given a
set of mutually recursive functions F whose results are of type t, we define a
datatype s which has for each of the functions in F a constructor with arguments
corresponding to the function’s arguments. The collection of functions F is then
replaced by a single function f: s -> t whose body is a match statement which
carries out the computations required by the individual functions in F . In this
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way the mutually recursive functions can be replaced by a single tail-recursive
function, and we already have an optimisation which eliminates recursion for such
functions. This technique is somewhat clumsy and care is required in recycling
the diamonds which are required to contain members of the datatypes required
by s. Another potential problem is that several small functions are effectively
combined into one large one, and there is thus a danger that that 64k limit for
JVM methods might be exceeded. Nevertheless, this technique does overcome
the problems related to mutual recursion without affecting the transparency of the
compilation process unduly, and it might be possible for the compiler to perform
the appropriate transformations automatically. We intend to investigate this in
more detail.

As an extension in a different direction, the second author has recently ex-
tended the language (and the compiler) to include object-oriented features and
allow the use of pre-existing Java libraries: details can be found in [25].

As mentioned earlier, complex resource-aware type-systems and inference
methods have been implemented for Camelot and will soon be integrated with
the present compiler. Eventually, the MRG project aims to have a certifying com-
piler which will take a Camelot program and automatically provide a proof that it
abides by a given resource policy.

Acknowledgments

The authors would like to thank Hans-Wolfgang Loidl and Ian Stark for their
comments.

This research was supported by the MRG project (IST-2001-33149) which is
funded by the EC under the FET proactive initiative on Global Computing.

REFERENCES

[1] David Aspinall and Martin Hofmann. Another type system for in-place update. In
Proc. 11th European Symposium on Programming, Grenoble, volume 2305 of Lec-
ture Notes in Computer Science. Springer, 2002.

[2] Henry G. Baker. CONS should not CONS its arguments, part II: Cheney on the
M.T.A. ACM SIGPLAN Notices, 30(9):17–20, September 1995.

[3] Lennart Beringer, Kenneth MacKenzie, and Ian Stark. Grail: a functional form for
imperative mobile code. In Vladimiro Sassone, editor, Electronic Notes in Theoretical
Computer Science, volume 85. Elsevier, 2003.

[4] M. Dmitriev. Welcome to JFluid, October 2003. Documentation and download avail-
able at http://research.sun.com/projects/jfluid.

[5] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In Proceedings ACM SIGPLAN 1993 Conf. on Pro-
gramming Language Design and Implementation, PLDI’93, Albuquerque, NM, USA,
23–25 June 1993, volume 28(6), pages 237–247. ACM Press, New York, 1993.

[6] Martin Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 7(4):258–289, 2000.

45



[7] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-
order functional programs. In Proc. 30th ACM Symp. on Principles of Programming
Languages, New Orleans, 2003.

[8] S. Jost. lfd_infer: an implementation of a static inference on heap-space usage. In
Proceedings of SPACE’04, Venice, 2004. To appear.
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Chapter 4

O’Camelot: Adding Objects
to a Resource-Aware
Functional Language
Nicholas Wolverson and Kenneth MacKenzie1

Abstract We outline an object-oriented extension to Camelot, a functional lan-
guage in the ML family designed for resource aware computation. Camelot is
compiled for the Java Virtual Machine, and our extension allows Camelot pro-
grams to interact easily with the Java object system, harnessing the power of Java
libraries and allowing Java programs to incorporate resource-bounded Camelot
code.2

4.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project aims to equip mobile bytecode
programs with guarantees that their usage of certain computational resources
(such as time, heap space or stack space) does not exceed some agreed limit,
using a Proof Carrying Code framework. Programs written in the functional lan-
guage Camelot will be compiled into bytecode for the Java Virtual Machine. The
resulting class files will be packaged with a proof of the desired property and
transmitted across the network to a code consumer—perhaps a mobile phone, or
PDA. The recipient can then use the proof to verify the given property of the pro-
gram before execution. There is thus an unforgeable guarantee that the program
will not exceed the stated bounds.

The core Camelot language, as described in [8], enables the programmer to

1Laboratory for Foundations of Computer Science, The University of Edinburgh.
Email: N.Wolverson@ed.ac.uk, kwxm@inf.ed.ac.uk

2This research was supported by the MRG project (IST-2001-33149) which is funded
by the EC under the FET proactive initiative on Global Computing.
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write a program with a predictable resource usage; future work will provide each
program with a proof that it does not exceed a stated resource bound. A com-
piler exists for this language, compiling polymorphic resource-aware Camelot
programs to the JVM. However, only primitive interaction with the outside world
is possible, through command line arguments, file input and printed output. To be
able to write a full interface for a game or utility to be run on a mobile device,
Camelot programs must be able to interface with external Java libraries. Similarly,
the programmer may wish to utilise device-specific libraries or Java’s extensive
class library.

Here we describe an Object-Oriented extension to Camelot primarily intended
to allow Camelot programs to access Java libraries. It would also be possible
to write resource-certified libraries in Camelot for consumption by standard Java
programs or indeed use the object system for OO programming for its own sake,
but giving Camelot programs access to the outside world is the main objective.

4.2 CAMELOT

Camelot is an ML-like language with additional features to enable close control of
heap usage. Certain restrictions are made in order to enable a compilation process
which is transparent in terms of resource usage and to allow analysis of resource
usage by various novel type systems.

The concrete syntax of Camelot is very close to O’Caml, as described in [1].
The following program defines a polymorphic list datatype and functions sort
and insert performing an insertion sort on such lists.

type ’a lst = !Nil | Cons of ’a * ’a lst
let rec insert n l d =
match l with Nil -> Cons(n, Nil)@d

| Cons(h,t)@d’ ->
if n <= h then Cons(n, Cons(h,t)@d’)@d
else Cons(h, insert n t d)@d’

let rec sort l =
match l with Nil -> Nil

| Cons(h,t)@d -> insert h (sort t) d

Ignoring annotations such as @d and occurrences of the associated variable d,
and the ! in front of Nil, this program is valid O’Caml and indeed defines an
insertion sort. Here we are more concerned about space rather than time issues;
notice that the datatype constructor Cons is applied O(n2) times on average, but
this much storage is not necessary. While a sensible garbage collector means we
will not really lose the use of this space, this is not guaranteed, and we cannot
predict when the space will be reclaimed. This is unacceptable when considering
proof carrying code, and indeed on some mobile devices we will not have the
luxury of a garbage collector at all.

In order to allow better control of heap usage, Camelot adds features allowing
control of heap allocated storage. Camelot includes a diamond type (denoted by
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<>) representing regions of heap-allocated memory and allows explicit manip-
ulation of diamond objects. The representation of Camelot datatypes is critical
here—values from user-defined datatypes are represented by heap-allocated ob-
jects from a certain Java class and a diamond value corresponds directly to an
object of this class.

The diamond annotations in the above program result in an in-place insertion
sort algorithm. During the execution of sort on a list, no new block of heap
storage is allocated, but instead the existing storage is reused for the new list. The
annotation @d on the occurrence of Cons in sort indicates that the space used
in that list cell should be made available for re-use via the diamond value d. This
diamond value is passed to a call of insert, where it is used in the expression
Cons(n, Nil)@d to specify that the cons cell should be constructed in the
heap space referred to by d. Lastly the use of ! in the definition of the Nil
constructor indicates that Nil does not take up a diamond (Nil is represented by
the null pointer).

With explicit management of heap-space comes the possibility of program er-
rors. The above sort function destroys the original list, so any subsequent attempt
to reuse that list may result in an error, and if the list is a sublist of a larger list,
the sublist will be correctly sorted but the larger list will become damaged. Vari-
ous type systems can be used to ensure that diamond annotations are safe. Most
simply, we can require all uses of heap-allocated storage to be linearly typed as
described in [5]; the above program is typable under this system. We can also
take a less restrictive approach as described in [7]. It is also possible to infer some
diamond annotations, as shown in [6], and indeed this process can also give an
upper bound on a program’s heap usage.

As well as adding resource-related extensions, we make some restrictions, the
first of which is to the form of patterns in the match statement. Nested patterns
are not permitted, and instead each constructor of a datatype must be matched by
exactly one pattern. Patterns are also not permitted in the arguments of function
definitions. These features must be simulated by nested match statements.

The second restriction is on function application. While function application is
written using a curried syntax as above, higher order functions are not permitted in
the current version of Camelot. Functions must always be fully applied, and there
is no lambda term. This is because closures would seem to introduce an additional
non-transparent memory usage, although hopefully this can be overcome at a later
date, and higher order functions added to the language.

4.3 EXTENSIONS

In designing an object system for Camelot, many choices are made for us, or are
at least tightly constrained. We wish to create a system allowing inter-operation
with Java, and we wish to compile an object system to JVML. So we are almost
forced into drawing the object system of the JVM up to the Camelot level and
cannot seriously consider a fundamentally different system.

On the other hand, the type system is strongly influenced by the existing
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Camelot type system. There is more scope for choice, but implementation can
become complex, and an overly complex type system is undesirable from a pro-
grammer’s point of view. We also do not want to interfere with type systems for
resources as mentioned above.

We shall first attempt to make the essential features of Java objects visible in
Camelot in a simple form, with the view that a simple abbreviation or module
system can be added at a later date to make things more palatable if desired.

Basic Features

We shall view objects as records of possibly mutable fields together with related
methods, although Camelot has no existing record system. We define the usual
operations on these objects, namely object creation, method invocation, field ac-
cess and update, and casting and matching. As one might expect, we choose a
class-based system closely modelling the Java object system. Consequently we
must acknowledge Java’s uses of classes for encapsulation and associate static
methods and fields with classes also.

We now consider these features. The examples below illustrate the new classes
of expressions we add to Camelot.

Static method calls There is no conceptual difference between static methods
and functions, ignoring the use of classes for encapsulation, so we can treat
static method calls just like function calls.

java.lang.Math.max a b

Static field access Some libraries require the use of static fields. We should only
need to provide access to constant static fields, so they correspond to simple
values.

java.math.BigInteger.ONE

Object creation We clearly need a way to create objects, and there is no need to
deviate from the new operator. By analogy with standard Camelot function
application syntax (i.e. curried form) we have:

new java.math.BigInteger "101010" 2

Instance field access To retrieve the value of an instance variable, we write

object#field

whereas to update that value we use the syntax

object#field <- value

assuming that field is declared to be a mutable field.

It could be argued that allowing unfettered external access to an object’s vari-
ables is against the spirit of OO and, more to the point, inappropriate for our
small language extension, but we wish to allow easy interoperability with any
external Java code.
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Method invocation Drawing inspiration from the O’Caml syntax, and again us-
ing a curried form, we have instance method invocation:

myMap#put key value

Null values In Java, any method with object return type may return the null
object. For this reason we add a construct

isnull e

which tests if the expression e is a null value.

Casts and typecase It may occasionally be necessary to cast objects up to super-
classes, for example to force the intended choice between overloaded meth-
ods. We will also want to recover subclasses, such as when removing an object
from a collection. Here we propose a simple notation for up-casting:

obj :> Class

This notation is that of O’Caml, also borrowed by MLj (described in [2]). To
handle down-casting we shall extend patterns in the manner of typecase
(again like MLj) as follows:

match obj with o :> C1 -> o.a()
| o :> C2 -> o.b()
| _ -> obj.c()

Here o is bound in the appropriate subexpressions to the object obj viewed
as an object of type C1 or C2 respectively. As in datatype matches, we require
that every possible case is covered; here this means that the default case is
mandatory. We also require that each class is a subclass of the type of obj, and
suggest that a compiler warning should be given for any redundant matches.

Unlike MLj we choose not to allow downcasting outside of the new form of
match statement, partly because at present Camelot has no exception support
to handle invalid down-casts.

As usual, the arguments of a (static or instance) method invocation may be sub-
classes of the method’s argument types, or classes implementing the specified
interfaces.

The following example demonstrates some of the above features and illustrates
the ease of interoperability. We will discuss the need for type constraints as on the
parameter l later.

let convert (l: string list) =
match l with [] -> new java.util.LinkedList ()

| h::t ->
let ll = convert t
in let _ = ll#addFirst h
in ll
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Defining classes

Once we have the ability to write and compile programs using objects, we may
as well start writing classes in Camelot. We must be able to create classes to
implement callbacks, such as in the Swing GUI system which requires us to write
stateful adaptor classes. Otherwise, as mentioned previously, we may wish to
write Camelot code to be called from Java, for example to create a resource-
certified library for use in a Java program, and defining a class is a natural way
to do this. Implementation of these classes will obviously be tied to the JVM, but
the form these take in Camelot has more scope for variation.

We allow the programmer to define a class which may explicitly subclass an-
other class, and implement a number of interfaces. We also allow the programmer
to define (possibly mutable) fields and methods, as well as static methods and
fields for the purpose of creating a specific class for interfacing with Java. We
naturally allow reference to this.

The form of a class declaration is given below. Items within angular brackets
〈. . .〉 are optional.

classdecl ::= class cname = 〈scname with〉 body end

body ::= 〈inter f aces〉 〈 f ields〉 〈methods〉
inter f aces ::= implement iname 〈inter f aces〉

f ields ::= f ield 〈 f ields〉
methods ::= method 〈methods〉

This defines a class called cname, implementing the specified interfaces. The op-
tional scname gives the name of the direct superclass; if it is not present, the super-
class is taken to be the root of the class hierarchy, namely java.lang.Object.
The class cname inherits the methods and values present in its superclass, and
these may be referred to in its definition.

As well as a superclass, a class can declare that it implements one or more
interfaces. These correspond directly to the Java notion of an interface. Java li-
braries often require the creation of a class implementing a particular interface—
for example, to use a Swing GUI one must create classes implementing various
interfaces to be used as callbacks. Note that at the current time it is not possi-
ble to define interfaces in Camelot; they are provided purely for the purpose of
interoperability.

Now we describe field declarations.

f ield ::= field x : τ | field mutable x : τ | val x : τ

Instance fields are defined using the keyword field, and can optionally be de-
clared to be mutable. Static fields are defined using val, and are non-mutable. In
a sense these mutable fields are the first introduction of side-effects into Camelot.
While the Camelot language is defined to have an array type, this has largely
been ignored in our more formal treatments as it is not fundamental to the lan-
guage. Mutable fields, on the other hand, are fundamental to our notion of object
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orientation, so we expect any extension of Camelot resource-control features to
O’Camelot to have to deal with this properly.

Methods are defined as follows, where 1 ≤ i1 . . . im ≤ n.

method ::= maker(x1:τ1) . . .(xn:τn) 〈: super xi1 . . .xim〉 = exp

| method m(x1:τ1) . . .(xn:τn) : τ = exp

| method m() : τ = exp

| let m(x1:τ1) . . .(xn:τn) : τ = exp

| let m() : τ = exp

Again, we use the usual let syntax to declare what Java would call static meth-
ods. Static methods are simply monomorphic Camelot functions which happen
to be defined within a class, although they are invoked using the syntax described
earlier. Instance methods, on the other hand, are actually a fundamentally new ad-
dition to the language. We consider the instance methods of a class to be a set of
mutually recursive monomorphic functions, in which the special variable this
is bound to the current object of that class.

We can consider the methods as mutually recursive without using any addi-
tional syntax (such as and blocks) since they are monomorphic. ML uses and
blocks to group mutually recursive functions because its let-polymorphism pre-
vents any of these functions being used polymorphically in the body of the others,
but this is not an issue here. In any case, this implicit mutual recursion feels ap-
propriate when we are compiling to the Java Virtual Machine and have to come to
terms with open recursion.

In addition to static and instance methods, we also allow a special kind of
method called a maker. This is just what would be called a constructor in the Java
world, but as in [4] we use the term maker in order to avoid confusion between
object and datatype constructors. The maker term above defines a maker of the
containing class C such that if new C is invoked with arguments of type τ1 . . .τn,
an object of class C is created, the superclass maker is executed (this is the zero-
argument maker of the superclass if none is explicitly specified), expression exp
(of unit type) is executed, and the object is returned as the result of the new
expression. Every class has at least one maker; a class with no explicit maker
is taken to have the maker with no arguments which invokes the superclass zero-
argument maker and does nothing. This implicit maker is inserted by the compiler.

4.4 TYPING

Typing rules for some of the more important Object Oriented extensions are given
in Fig. 4.1. Rules for static method invocation and static field access are similar to
those given for instance versions, and rules for the base language are roughly as
one might expect, except that the rule for function application forces functions to
be fully applied. The requirement above to state the types of fields, methods and
makers at the point of definition means we can easily construct the sets of these
types as makers(C), methods(C) and fields(C) for each class C.
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NEW
(τ1 → . . . → τn) ∈ makers(C) Σ 	 xi : τ′i τ′i � τi

Σ 	 newC x1 . . .xn : C

INVOKE
Σ 	 e : C (id : τ1 → . . . → τn → τ) ∈ methods(C) Σ 	 xi : τ′i τ′i � τi

Σ 	 e#id x1 . . .xn : τ

FIELD
Σ 	 e : C (id : τ) ∈ fields(C)

Σ 	 e#id : τ

UPDATE
Σ 	 e : C (id : τ) ∈ fields(C) Σ 	 e′ : τ

Σ 	 e#id <- e′ : unit

CAST
Σ 	 e : τ τ � τ′

Σ 	 e :> τ′ : τ′

FIGURE 4.1 Additional Camelot typing rules

Consider rules INVOKE, and FIELD. Firstly, types must match exactly for field
access, whereas methods can be called with subtypes of their argument types.
Otherwise these are fairly similar.

Secondly, note that we look up methods(C) (respectively fields(C)). This im-
plies that at the time this rule is applied the class C of the object in question must
be known, at least in the obvious implementation. This has real consequences
for the programmer—the programmer must ensure that the type of the object is
suitably constrained at the time of invocation. In practice, this will probably mean
that almost all function arguments of object type must be constrained before use
and coercions may also be necessary in some places.

Additionally, method (and maker) overloading introduces ambiguity. Differ-
ent instances of INVOKE or NEW may apply depending on the argument types,
and indeed for many argument types there is no unique applicable method. In
Java this is resolved by choosing the “most specific” method if it exists. In com-
bination with the standard type inference algorithm this forces us to know the type
of all arguments to a method at the point it is applied. Indeed in our current imple-
mentation this is exactly what happens; we assume argument types are available
at the point of application and compute the most specific of the applicable meth-
ods. Again this puts a burden on the programmer, although in practice this has
been proved in reasonable examples.

A more intelligent solution would only place constraints to be solved globally,
but unfortunately these cannot be equality constraints, and so we have to depart
from the simple unification algorithm. We are not alone in this problem; for
example, the MLj implementation described in [2] also suffers from this. In [10],
a new type inference algorithm is given for MLj which solves a system of more
complex constraints using branching search and backtracking. Branching search
is required because of the complexities of the type system, including implicit
coercions such as option, and it may be that our more naive type system could
use a simpler algorithm.
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One way of avoiding these issues could be to avoid considering method in-
vocations during type inference. Constraints could be inferred and solved by
unification as usual, but with no constraints present for these invocations. Af-
ter unification has taken place, we will be left with a typed program with some
free type variables, and we can then resolve overloading in a more simplistic
fashion (as the types of objects and method arguments should be known by this
point). The remaining type variables will thus be instantiated after unification.
Unfortunately this resolution requires another full typechecking, and indeed in
our present implementation it may be easier to implement a system in the style of
[10] if necessary.

Polymorphism

We remarked earlier that static methods are basically monomorphic Camelot func-
tions together with a form of encapsulation, but it is worth considering polymor-
phism more explicitly. O’Camelot methods, whether static or instance methods,
are not polymorphic. That is, they have subtype polymorphism but not parametric
polymorphism (genericity), unlike Camelot functions which have parametric but
not subtype polymorphism. This is not generally a problem, as most polymorphic
functions will involve manipulation of polymorphic datatypes and can be placed
in the main program, whereas most methods will be interfacing with the Java
world and thus should conform to Java’s subtyping polymorphism.

4.5 TRANSLATION

As mentioned earlier, the target for the present Camelot compiler is Java byte-
code. However we make use of the intermediate language Grail (see [3]). Grail
is a low-level functional language and is basically a functional form for Java
bytecode. Grail’s functional nature makes the compilation from Camelot more
straightforward, but Grail is faithful enough to JVML that the compilation pro-
cess is reversible.

Here we use the notation of Grail to describe the compilation of new Camelot
features, but mostly the meanings of Grail phrases should be self-evident. How-
ever, it is worthwhile noting that the JVML basic blocks comprising a Camelot
method are represented in Grail by a collection of mutually tail-recursive funct-
ions—calling these functions corresponds to JVML goto instructions. There are
several different method invocation instructions, namely invokestatic for
static methods, invokevirtual for instance methods, and invokespecial
for calling object constructors—standard Camelot functions are tranlsated to static
methods, and their application correpsonds to an invokestatic instruction.
Grail differs from JVML by combining object creation and initialisation into the
new instruction, but we must still use the invokespecial instruction to call
the superclass constructor.

Notational issues aside, translating the new features is relatively straightfor-
ward, as the JVM (and Grail) provide what we need. In particular, Grail is suf-
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fun β1(. . .) =
let

val i = instance C1 ve

in
if i = 1 then γ1(. . .)

else β2(. . .)
end

fun γ1 (. . . ) =
let

val o1 = checkcast C1 ve

in ρ1(. . .) end

. . .

. . .

fun βn−1(. . .) =
let

val i = instance Cn−1 ve

in
if i = 1 then γn−1(. . .)

else γn(. . .)
end

fun γn (. . . ) =
let

val on = checkcast Cn ve

in ρn(. . .) end

FIGURE 4.2 Functions generated for match expression

ficiently expressive that it was not necessary to extend the compiler backend sig-
nificantly.

Function φ below informally specifies the translation of the new Camelot ex-
pressions to Grail code. We assume these expressions are normalised in the style
of the basic Camelot expressions, so that all subexpressions are atomic and have
a simple Grail expansion, rather than requiring the generation of extra Grail func-
tions and let statements.

φ(package.Class.method x1 . . .xn) =
invokestatic <τret package.Class.method τarg> (φ(x1), . . . ,φ(xn))

φ(package.Class. f ield) = getstatic <τ package.Class. f ield>
φ(new package.Class x1 . . .xn) = new <package.Class(τarg)> (φ(x1) . . .φ(xn))
φ(ob j#mname x1 . . .xn) =

invokevirtual ob j <τret package.Class.mname (τarg)> (φ(x1) . . .φ(xn))
φ(ob j# f ield) = getfield ob j <τ package.Class. f ield>
φ(ob j# f ield<-exp) = putfield ob j <τ package.Class. f ield> exp
φ(ob j :> package.Class) = checkcast package.Class ob j
φ(isnull exp) = exp = null[τ]

Types τ, τarg and τret are Grail types derived from the Camelot types inferred
for the appropriate fields and methods. To illustrate the above translation, we
show the translation of the multiplication of two BigInteger objects using the
multiply instance method.

φ(n#multiply r) =
invokevirtual n <java.math.BigInteger
java.math.BigInteger.multiply
(java.math.BigInteger)> (r)

The new match expressions are more complex. An example of the new type
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of match statement is

match e with
o1 :>C1 -> e1
...
on :>Cn -> en

where each Ci is a class name. We generate functions as in Fig 4.2, where β1

will be the first function to be executed, i is a fresh variable, and ve is a variable
holding the result of evaluating expression e. Additionally we generate functions
ρ1 . . .ρn which compute the expressions e1 . . .en then proceed with the current
computation.

Making Classes

Translating class definitions is fairly straightforward. A val declaration corre-
sponds to a final static field, the type of which is the translation of the stated
Camelot type. Similarly a field definition corresponds to an instance field of
the appropriate type, which will be final if the field is not mutable.

A maker corresponds to a method called <init> taking arguments of the
appropriate type (returning void), and calling the appropriate <init> method
in the superclass before executing the code corresponding to expression in the
body, which is compiled as above.

As remarked earlier, static methods are basically monomorphic Camelot func-
tions encapsulated in a class, and so their compilation is just as standard Camelot
functions. Instance methods are also compiled like monomorphic Camelot func-
tions, but references to this are permitted.

4.6 OBJECTS AND RESOURCE TYPES

As described in Sec. 4.2, the use of diamond annotations on Camelot programs
in combination with certain resource-aware type systems allows the heap usage
of those programs to be inferred, as well as allowing some in-place update to
occur. Clearly the presence of mutable objects in O’Camelot also provides for
in-place update. However by allowing arbitrary object creation we also replicate
the unbounded heap-usage problem solved for datatypes. Perhaps more seriously,
we are allowing Camelot programs to invoke arbitrary Java code, which may use
an unlimited amount of heap space.

First consider the second problem. Even if we have some way to place a bound
on the heap space used by our new OO features within a Camelot program, exter-
nal Java code may use any amount of heap whatsoever. There seem to be a few
possible approaches to this problem, none of which are particularly satisfactory.
We could decide only to allow the use of external classes if they came with a
proof of bounded heap usage. Constructing a resource-bounded Java class library
or inferring resource bounds for an existing library would be a massive undertak-
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ing, although perhaps less problematic with the smaller class libraries used with
mobile devices. This suggestion seems somewhat unrealistic.

Alternatively, we could simply allow the resource usage of external methods to
be stated by the programmer or library creator. This extends the trusted computing
base in the sense of resources, but seems a more reasonable solution. The other
alternative—considering resource-bound proofs only to refer to the resources di-
rectly consumed by the Camelot code—seems unrealistic, as one could easily (and
even accidentally) cheat by using Java libraries to do some memory-consuming
“dirty work”.

The issue of heap-usage internal to O’Camelot programs seems more tract-
able, although we do not propose a solution here. A first attempt might mimic the
techniques used earlier for datatypes; perhaps we can adapt the use of diamonds
and linear type systems? The use of diamonds for in-place update is irrelevant
here and indeed relies on the uniform representation of datatypes by objects of a
particular Java class. Since we are hardly going to represent every Java object by
an object of one class we could not hope to have such a direct correlation between
diamonds and chunks of storage.

However, we could imagine an abstract diamond which represents the heap
storage used by an arbitrary object and require any instance of new to supply one
of these diamonds, in order that the total number of objects created is limited.
Unfortunately reclamation of such an abstract diamond would only correspond to
making an object available to garbage collection, rather than definitely being able
to re-use the storage. Even so, such a system might be able to give a measure
of the total number of objects created and the maximum number in active use
simultaneously.

4.7 RELATED WORK

We have made reference to MLj, the aspects of which related to Java interoper-
ability are described in [2]. MLj is a fully formed implementation of Standard ML
and as such is a much larger language than we consider here. In particular, MLj
can draw upon features from SML such as modules and functors, for example, al-
lowing the creation of classes parameterised on types. Such flexibility comes with
a price, and we hope that the restrictions of our system will make the certification
of the resource usage of O’Camelot programs more feasible.

By virtue of compiling an ML-like language to the JVM, we have made many
of the same choices that have been made with MLj. In many cases there is one
obvious translation from high level concept to implementation, and in others the
appropriate language construct is suggested by the Java object system. However,
we have also made different choices more appropriate to our purpose, in terms of
transparency of resource usage and wanting a smaller language. For example, we
represent objects as records of mutable fields whereas MLj uses immutable fields
holding references.

There have been various other attempts to add object-oriented features to ML
and ML-like languages. O’Caml provides a clean, flexible object system with
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many features and impressive type inference—a formalised subset is described in
[12]. As in O’Camelot, objects are modelled as records of mutable fields plus
a collection of methods. Many of the additional features of O’Caml could be
added to O’Camelot if desired, but there are some complications caused when
we consider Java compatibility. For example, there are various ways to compile
parameterised classes and polymorphic methods for the JVM, but making these
features interact cleanly with the Java world is more subtle.

The power of the O’Caml object system seems to come more from the dis-
tinctive type system employed. O’Caml uses the notion of a row variable, a type
variable standing for the types of a number of methods. This makes it possible
to express “a class with these methods, and possibly more” as a type. Where
we would have a method parameter taking a particular object type and by sub-
sumption any subtype, in O’Caml the type of that parameter would include a row
variable, so that any object with the appropriate methods and fields could be used.
This allows O’Caml to preserve type inference, but this is less important for our
application and does not map cleanly to the JVM.

A class mechanism for Moby is defined in [4] with the principle that classes
and modules should be orthogonal concepts. Lacking a module system, Camelot
is unable to take such an approach, but both Moby and O’Caml have been a guide
to concrete representation. Many other relevant issues are discussed in [9], but
again lack of a module system—and our desire to avoid this to keep the language
small—gives us a different perspective on the issues.

4.8 CONCLUSION

We have described the language Camelot and its unique features enabling the
control of heap-allocated data and have outlined an object-oriented extension al-
lowing interoperability with Java programs and libraries. We have kept the lan-
guage extension fairly minimal in order to facilitate further research on resource
aware programming, yet it is fully-featured enough for the mobile applications we
envisage for Camelot.

The O’Camelot compiler implements all the features described here. The cur-
rent version of the compiler can be obtained from

http://www.lfcs.inf.ed.ac.uk/mrg/camelot/

A EXAMPLE

Here we give an example of the features defined above. The code below, together
with the two standard utility functions rev and len for list reversal and length,
defines a program for Sun’s MIDP platform (as described in [11]), which runs
on devices such as PalmOS PDAs. The program displays the list of primes in
an interval. Two numbers are entered into the first page of the GUI, and when a
button is pressed a second screen appears with the list of primes, calculated using
the sieve of Eratosthenes, along with a button leading back to the initial display.

59



This example has been compiled with our current compiler implementation,
and executed on a PalmOS device.

class primes = javax.microedition.midlet.MIDlet with
implement javax.microedition.lcdui.CommandListener

field exitCommand: javax.microedition.lcdui.Command
field goCommand: javax.microedition.lcdui.Command
field doneCommand: javax.microedition.lcdui.Command
field mainForm: javax.microedition.lcdui.Form
(* lower and upper limits: *)
field lltf: javax.microedition.lcdui.TextField
field ultf: javax.microedition.lcdui.TextField
field display: javax.microedition.lcdui.Display

maker () =
let _ = display <-
(javax.microedition.lcdui.Display.getDisplay
(this:> javax.microedition.midlet.MIDlet))

in let _ = goCommand <-
(new javax.microedition.lcdui.Command
"Go" javax.microedition.lcdui.Command.SCREEN 1)

in let _ = exitCommand <-
(new javax.microedition.lcdui.Command
"Exit" javax.microedition.lcdui.Command.SCREEN 2)

in let t = new javax.microedition.lcdui.Form "Primes"
in let ll = new javax.microedition.lcdui.TextField

"Lower limit:" "" 10
javax.microedition.lcdui.TextField.NUMERIC

in let _ = lltf <- ll
in let _ = t#append ll
in let ul = new javax.microedition.lcdui.TextField

"Upper limit:" "" 10
javax.microedition.lcdui.TextField.NUMERIC

in let _ = ultf <- ul
in let _ = t#append ul
in let _ = t#addCommand (this#goCommand)
in let _ = t#addCommand (this#exitCommand)
in let _ = mainForm <- t
in t#setCommandListener this

method startApp (): unit =
this#display#setCurrent (this#mainForm)

method pauseApp (): unit = ()
method destroyApp (b:bool): unit = ()
method commandAction

(cmd: javax.microedition.lcdui.Command)
(s: javax.microedition.lcdui.Displayable)
: unit =
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if cmd#equals (this#exitCommand)
then let _ = this#destroyApp false

in this#notifyDestroyed ()
(* create & display list of primes *)
else if cmd#equals (this#goCommand)
then
let lower_limit = int_of_string

(this#lltf#getString())
in let upper_limit = int_of_string

(this#ultf#getString())
in let primes =

new javax.microedition.lcdui.Form "Primes"
in let _ = appendPrimes lower_limit upper_limit primes
in let done = new javax.microedition.lcdui.Command

"Done"
javax.microedition.lcdui.Command.SCREEN 1

in let _ = doneCommand <- done
in let _ = primes#addCommand done
in let _ = primes#setCommandListener this
in let _ =
javax.microedition.lcdui.AlertType.INFO#playSound
(this#display)

in this#display#setCurrent primes
(* back to main form *)
else if cmd#equals (this#doneCommand) then
this#display#setCurrent (this#mainForm)

else ()
end
(* Generate a list of prime numbers in an interval [a..b] *)
(* Integer square roots *)
let increase k n = if (k+1)*(k+1) > n then k else k+1
let rec intsqrt n = if n = 0 then 0

else increase (2*(intsqrt (n/4))) n

(* n is divisible by no member of l which is <= sqrt n *)
let isPrime n l lim =
match l with
[] -> true

| h::t -> h <= lim && n mod h <> 0 && isPrime n t lim

(* generate list of primes between n and top *)
let make1 n top acc =
if n > top then rev acc []
else if isPrime n acc n then make1 (n+2) top (n::acc)
else make1 (n+2) top acc

let makeSmallPrimes top = make1 3 top [2]
let makePrimes n top smallPrimes =
if n > top then []
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else if isPrime n smallPrimes n then
n::(makePrimes (n+2) top smallPrimes)

else makePrimes (n+2) top smallPrimes

let appList l (f: javax.microedition.lcdui.Form) =
match l with [] -> ()
| (h::t)@_ -> let _ = f#append ( (string_of_int h)ˆ"\n")

in appList t f

let appendPrimes bot top
(f: javax.microedition.lcdui.Form) =

let smallPrimes = makeSmallPrimes (intsqrt top)
in let primes = makePrimes (bot + 1 - bot mod 2)

top smallPrimes
in let s = (string_of_int (len primes)) ˆ " primes\n"
in let _ = f#append s
in appList primes f
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Chapter 5

Static Single Information
from a Functional Perspective
Jeremy Singer1

Abstract Static single information form is a natural extension of the well-known
static single assignment form. It is a program intermediate representation used in
optimising compilers for imperative programming languages. In this paper we
show how a program expressed in static single information form can be trans-
formed into an equivalent program in functional notation. We also examine the
implications of this transformation.

5.1 INTRODUCTION

Static single information form (SSI) [2] is a natural extension of the well-known
static single assignment form (SSA) [11]. SSA is a compiler intermediate repre-
sentation for imperative programs that enables precise and efficient analyses and
optimisations.

In SSA, each program variable has a unique definition point. To achieve this, it
is necessary to rename variables and insert extra pseudo-definitions (φ-functions)
at control flow merge points. Control flow merge points occur at the start of
basic blocks. A basic block is a (not necessarily maximal) sequence of primi-
tive instructions with the property that if control reaches the first instruction, then
all instructions in the basic block will be executed. SSA programs have the de-
sirable property of referential transparency—that is, the value of an expression
depends only on the value of its subexpressions and not on the order of evaluation
or side-effects of other expressions. Referentially transparent programs are easier
to analyse and reason about.

We take the following simple program as an example:

1University of Cambridge Computer Laboratory,
William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK
Email: jeremy.singer@cl.cam.ac.uk
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1: z ← input()
2: if (z = 0)
3: then y ← 42
4: else y ← z+1
5: output(y)

To convert this program into SSA form, we have to rename instances of vari-
able y so that each new variable has only a single definition point in the program.

The SSA version of the program is shown below:

1: z ← input()
2: if (z = 0)
3: then y0 ← 42
4: else y1 ← z+1
5: y2 ← φ(y0,y1)
6: output(y2)

The φ-function merges (or multiplexes) the two incoming definitions of y0 and
y1 at line 5. If the path of execution comes from the then branch, then the φ-
function takes the value of y0, whereas if the path of execution comes from the
else branch, then the φ-function takes the value of y1.

SSI is an extension of SSA. It introduces another pseudo-definition, the σ-
function. When converting to SSI, in addition to renaming variables, and insert-
ing φ-functions at control flow merge points, it is necessary to insert σ-functions
at control flow split points. We have contrasted SSA and SSI at length elsewhere
[25], in terms of their computation and data flow analysis properties. It is suffi-
cient to say that SSI can be computed almost as efficiently as SSA and that SSI
permits a wider range of data flow analysis techniques than SSA.

The σ-function is the exact opposite of the φ-function. The differences are
tabulated in Fig. 5.1.

We now convert the above program into SSI:

1: z0 ← input()
2: if (z0 = 0)
3: z1,z2 ← σ(z0)
4: then y0 ← 42
5: else y1 ← z2 +1
6: y2 ← φ(y0,y1)
7: output(y2)

The σ-function splits (or demultiplexes) the outgoing definition of z0 at line 3.
If the path of execution proceeds to the then branch, then the σ-function assigns
the value of z0 to z1. However, if the path of execution proceeds to the else
branch, then the σ-function assigns the value of z0 to z2.

Since SSI is such a straightforward extension of SSA, it follows that algo-
rithms for SSA can be quickly and naturally modified to handle SSI. For example,
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φ-function σ-function
inserted at control flow merge
points

inserted at control flow split points

placed at start of basic block placed at end of basic block
single destination operand n destination operands, where n is

the number of successors to the
basic block that contains this σ-
function

n source operands, where n is the
number of predecessors to the basic
block that contains this φ-function.

single source operand

takes the value of one of its source
operands (dependent on control
flow) and assigns this value to the
destination operand

takes the value of its source operand
and assigns this value to one of the
destination operands (dependent on
control flow)

FIGURE 5.1 Differences between φ- and σ-functions

the standard SSA computation algorithm [11] can be simply extended to compute
SSI instead [23]. Similarly, the SSA conditional constant propagation algorithm
[29] has a natural analogue in SSI [2], which produces even better results.

It is a well-known fact that SSA can be seen as a form of functional program-
ming [6]. Inside every SSA program, there is a functional program waiting to be
released. Therefore, we should not be surprised to discover that SSI can also be
seen as a form of functional programming.

Consider the following program, which calculates the factorial of 5.

1: r ← 1
2: x ← 5
3: while (x > 0) do
4: r ← r ∗ x
5: x ← x−1
6: done
7: return r

First we convert this program into a standard control flow graph (CFG) [1],
as shown in Fig. 5.2. Then we translate this program into SSI form, as shown in
Fig. 5.3. This SSI program can be simply transformed into the functional program
shown in Fig. 5.4.

In the conversion from SSA to functional notation, a basic block #n that be-
gins with one or more φ-functions is transformed into a function fn. Jumps to
such basic blocks become tail calls to the corresponding functions. The actual
parameters of the tail calls are the source operands of the φ-functions. The for-
mal parameters of the corresponding functions are the destination operands of the
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r ← 1

x ← 5

if (x > 0)

r ← r ∗ x

x ← x−1

return r

�

�
�

���

�
�

���

�

#1

#2

#3 #4

true false

FIGURE 5.2 Control flow graph for factorial program

φ-functions.
In the conversion from SSI to functional notation, in addition to the above

transformation, whenever a basic block ends with one or more σ-functions, then
successor blocks #p and #q are transformed into functions fp and fq. Jumps to
such successor blocks become tail calls to the corresponding functions. The actual
parameters of the tail calls are the source operands of the σ-functions. The formal
parameters of the corresponding functions are the relevant destination operands
of the σ-functions. (We notice again that σ-functions have analogous properties
to φ-functions.)

The main technical contribution of this paper is the detailed presentation of an
algorithm to convert SSI programs into a functional intermediate representation.
The remainder of the paper is laid out as follows: in section 5.2 we review the
previous work in this area, in section 5.3 we formally define SSI, in section 5.4 we
present the algorithm to transform SSI code into a functional program, in section
5.5 we show how there are both an optimistic and a pessimistic version of this
transformation, in section 5.6 we contemplate the possibility of recovering SSI
from a functional program (the reverse transformation), in section 5.7 we discuss
why the transformation from SSI to functional notation may be useful, then finally
in section 5.8 we draw some conclusions.
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r0 ← 1

x0 ← 5

r1 ← φ(r4,r0)
x1 ← φ(x4,x0)
if (x1 > 0)
r2,r3 ← σ(r1)
x2,x3 ← σ(x1)

r4 ← r2 ∗ x2

x4 ← x2 −1

return r3

�

�
�

���

�
�

���

�

#1

#2

#3 #4

true false

FIGURE 5.3 Static single information form for factorial program

5.2 RELATED WORK

To the best of our knowledge no-one has attempted to transform SSI into a func-
tional notation. Ananian [2] gives an executable representation for SSI, but this is
defined in terms of demand-driven operational semantics and seems rather com-
plicated.

Several people have noted a correspondence between programs in SSA and
λ-calculus. Kelsey [16] shows how to convert continuation passing style [4] into
SSA and vice versa. Appel [6] informally shows the correspondence between
SSA and functional programming. He gives an algorithm [5] for translating SSA
to functional intermediate representation. (We extend Appel’s algorithm in sec-
tion 5.4 of this paper.)

Chakravarty et al. [10] formalise a mapping from programs in SSA form to
administrative normal form (ANF) [12]. ANF is a restricted form of λ-calculus.
They also show how the standard SSA conditional constant propagation algorithm
[29] can be rephrased in terms of ANF programs.
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let r0 = 1, x0 = 5
in

let function f2(r1,x1) =
let function f3(r2,x2) =

let r4 = r2 ∗ x2, x4 = x2 −1
in

f2(r4,x4)
and function f4(r3,x3) =

return r3

in
if (x1 > 0)

then f3(r1,x1)
else f4(r1,x1)

in
f2(r0,x0)

FIGURE 5.4 Functional representation for SSI factorial program

5.3 STATIC SINGLE INFORMATION

Static single information form (SSI) was originally described by Ananian [2]. He
states that “the principal benefits of using SSI form are the ability to do predicated
and backwards data flow analyses efficiently”. He gives several examples includ-
ing very busy expressions analysis and sparse predicated typed constant propaga-
tion. Indeed, SSI has been applied to a wide range of problems [22, 28, 14, 3].

The MIT Flex compiler [13] uses SSI as its intermediate representation. Flex
is a compiler for Java, written in Java. As far as we are aware, Flex is the only
publicly available SSI-based compiler. However, we are adding support for SSI
to Machine SUIF [27], an extensible compiler infrastructure for imperative lan-
guages like C and Fortran. We have implemented an efficient algorithm for SSI
computation [23] and several new SSI analysis passes.

Below, we give the complete formal definition of a transformation from CFG
to SSI notation. This definition is taken from Ananian [2]. A few auxiliary def-
initions may be required before we quote Ananian’s SSI definition. The original
program is the classical CFG representation of the program [1]. Program state-
ments are contained within nodes (also known as basic blocks). Directed edges
between nodes represent the possible flow of control. A path is a sequence of
consecutive edges. →+ represents a path consisting of at least one edge (a non-
null path). There is a path from the START node to every node in the CFG and
there is a path from every node in the CFG to the END node. The new program
is in SSI. It is also a CFG, but it contains additional pseudo-definition functions
and the variables have been renamed. The variables in the original program are
referred to as the original variables. The SSI variables in the new program are
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referred to as the new variables.
So, here is Ananian’s definition:

1. If two nonnull paths X→+Z and Y→+Z exist having only the node Z where
they converge in common, and nodes X and Y contain either assignments to
a variable V in the original program or a φ- or σ-function for V in the new
program, then a φ-function for V has been inserted at Z in the new program.
(Placement of φ-functions)

2. If two nonnull paths Z→+X and Z→+Y exist having only the node Z where
they diverge in common, and nodes X and Y contain either uses of a variable
V in the original program or a φ- or σ-function for V in the new program, then
a σ-function for V has been inserted at Z in the new program. (Placement of
σ-functions)

3. For every node X containing a definition of a variable V in the new program
and node Y containing a use of that variable, there exists at least one path
X→+Y and no such path contains a definition of V other than at X . (Naming
after φ-functions)

4. For every pair of nodes X and Y containing uses of a variable defined at node
Z in the new program, either every path Z→+X must contain Y or every path
Z→+Y must contain X . (Naming after σ-functions)

5. For the purposes of this definition, the START node is assumed to contain a
definition and the END node a use for every variable in the original program.
(Boundary conditions)

6. Along any possible control flow path in a program being executed consider
any use of a variable V in the original program and the corresponding use Vi

in the new program. Then, at every occurrence of the use on the path, V and
Vi have the same value. The path need not be cycle-free. (Correctness)

Ananian’s original SSI computation algorithm can be performed in O(EV )
time, where E is a measure of the number of edges in the control flow graph and
V is a measure of the number of variables in the original program. This is worst
case complexity, but typical time complexity is linear in the program size.

5.4 TRANSFORMATION

In this section we present the algorithm that transforms SSI into a functional no-
tation.

We adopt a cut-down version of Appel’s functional intermediate representa-
tion (FIR) [5]. The abstract syntax of our FIR is given in Fig. 5.5. FIR has the
same expressive power as ANF [12]. Expressions are broken down into primitive
operations whose order of evaluation is specified. Every intermediate result is
an explicitly named temporary. Every argument of an operator or function is an

69



atom → c constant integer
atom → v variable

exp → let fundefs in exp function declaration
exp → let v = atom in exp copy
exp → let v = binop(atom,atom) in exp arithmetic operator
exp → if atom relop atom then exp else exp conditional branch
exp → atom(args) tail call
exp → let v = atom(args) in exp non-tail call
exp → return atom return

args →
args → atom args
fundefs →
fundefs → fundefs function v(formals) = exp
formals →
formals → v formals

binop → plus | minus | mul | . . .
relop → eq | ne | lt | . . .

FIGURE 5.5 Functional intermediate representation

atom (variable or constant). As in SSA, SSI and λ-calculus, every variable has
a single assignment (binding), and every use of that variable is within the scope
of the binding. (In Fig. 5.5, binding occurrences of variables are underlined.) No
variable name can be used in more than one binding. Every binding of a variable
has a scope within which all the uses of that variable must occur.

• For a variable bound by let v = . . . in exp, the scope of v is just exp.

• The scope of a function variable fi bound in

let function f1(. . .) = exp1 . . .
function fk(. . .) = expk

in exp

includes all the exp j (to allow for mutually recursive functions) as well as exp.

• For a variable bound as the formal parameter of a function, the scope is the
body of that function.

Any SSI program can be translated into FIR. Each basic block with more than
one predecessor is transformed into a function. The formal parameters of that
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function are the destination operands of the φ-functions in that basic block. (If
the block has no φ-functions then it is transformed into a parameterless function.)
Similarly, each basic block that is the target of a conditional branch instruction
is transformed into a function. The formal parameters of that function are the
appropriate destination operands of the σ-functions in the preceding basic block
(that is to say, the σ-functions that are associated with the conditional branch). We
assume that the SSI program is in edge-split form—no basic block with multiple
successors has an edge to a basic block with multiple predecessors. In particu-
lar this means that basic blocks that are the targets of a conditional branch can
only have a single predecessor. (It should always be possible to transform an SSI
program into edge-split form.)

If block f dominates block g, then the function for g will be nested inside
the body of the function for f . Instead of jumping to a block which has been
transformed into a function, a tail call replaces the jump. The actual parameters
of the tail call will be the appropriate source operands of corresponding σ- or
φ-functions. (Every conditional branch will dominate both its then and else
blocks, in edge-split SSI.)

The algorithm for transforming SSI into FIR is given in Fig. 5.6. It is based
on algorithm 19.20 from Appel’s book [5]. Translate() ensures function def-
initions are correctly nested. Statements() outputs FIR code for each basic
block. Appel’s algorithm handles SSA, so we extend it to deal with SSI instead.
In our algorithm lines of code that have been altered from Appel’s original SSA-
based algorithm are marked with a ! and entirely new lines of code (to handle
SSI-specific cases) are marked with a +. In the code for the Statements()
function, ⊕ represents the general case for binary arithmetic operators and < rep-
resents the general case for binary relational operators.

5.5 OPTIMISTIC VERSUS PESSIMISTIC

There are two different approaches to computing SSI. Ananian’s approach [2] is
pessimistic, in that it assumes that φ- and σ-functions are needed everywhere, then
it removes such functions when it can show that they are not actually required.
This is a kind of greatest fixed point calculation. (Aycock and Horspool adopt the
same pessimistic approach in their generation of SSA [8].) The alternative ap-
proach to computing SSI [23] is optimistic. It assumes that no φ- or σ-functions
are needed, then it inserts such functions when it can show that they are actually
required. This is a kind of least fixed point calculation. (The classical SSA com-
putation algorithm [11] employs the same optimistic approach.) Ananian claims
that this optimistic approach ought to take longer, but in practice it seems to be
faster than the pessimistic approach.

Just as there is an optimistic and a pessimistic approach to the computation
of SSI, there appear to be an optimistic and a pessimistic approach to the trans-
formation into functional notation. The pessimistic approach takes the original
program CFG and converts each basic block into a top-level function, with tail
calls to appropriate successor functions. Each generated top-level function has a

71



formal parameter for every program variable, and each function call site has an
actual parameter for every program variable. Appel [6] refers to this as the “re-
ally crude approach.” Useless parameters may be identified and eliminated with
the help of liveness and other data flow information. The necessary parameters
for each functional block should be those variables which are live at each cor-
responding basic block boundary in the original program. (A variable is live at
a particular program point if there is a control flow path from that point along
which the variable’s value may be used before that variable is redefined.) This
makes sense since SSI is an encoding of liveness information, as Ananian states
[2].

The optimistic approach is exactly as given in section 5.4. It can be explained
in the following manner. It uses the dominance relations of the control flow graph
to determine how the functional blocks should be nested. (Nesting is required
in order for functional blocks to use variables declared in outer scope.) Then it
applies standard lambda lifting techniques [15] to generate the appropriate param-
eters for each functional block.

A formal clarification of the relationship between optimistic and pessimistic
computation of SSI is the subject of ongoing research.

5.6 CONVERTING FUNCTIONAL PROGRAMS BACK TO SSI

It is possible to transform an arbitrary program p expressed in FIR into SSI, sim-
ply by treating p as an imperative program. (Let-bound atomic variables become
mutable virtual registers and function applications become procedure calls.) Stan-
dard SSI computation techniques [2, 23] can then be applied to the imperative
program.

However, suppose that a program pSSI in SSI has been transformed into a
program pfunc in FIR. In this section we address the concept of recovering pSSI

from pfunc.
pfunc is in SSA, since each let-bound variable is only assigned a value at one

program point. However pfunc is not in SSI, since the same parameters are sup-
plied to the tail calls on either side of an if statement. (Recall that these pa-
rameters correspond to the source parameters of the σ-functions associated with
this conditional branch in pSSI.) The simplest way to transform pfunc into a valid
SSI program, say p′SSI, is to add σ-functions at each if statement, and rename
the parameters of the tail calls accordingly. There is a drawback with this ap-
proach however. Now imagine converting p′SSI into FIR using our algorithm.
There would be an additional layer of function calls at the if statements, because
of the extra σ-functions. Admittedly these extra function calls could be removed
by limited β-contraction, but it is embarrassing to admit that converting from SSI
to FIR and back to SSI (ad infinitum) does not reach a fixed point. In fact this is a
diverging computation.

The problem is that the σ-functions are already encoded as function calls in
pfunc but we do not recover this information. We insert extra σ-functions instead.
One way to avoid this would be to inline (β-contract) all functions in pfunc that
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are only called from one call site (this includes all functions that originated from
σ-functions). If this transformation is done prior to the insertion of σ-functions,
then the problem of an extra layer of function call indirection does not arise.

Kelsey [16] gives a method for recovering φ-functions from functional pro-
grams. We should be able to apply similar techniques to pfunc. Thus it should be
possible to recover (something resembling) pSSI from pfunc.

5.7 MOTIVATION

In this section we briefly consider why the transformation from SSI into functional
notation may be of value.

Typed functional languages may be useful as compiler intermediate represen-
tations for imperative languages. There has recently been a great deal of research
effort in this area, with systems such as typed assembly language [18], proof car-
rying code [20, 7] and the value dependence graph [30]. SSA and SSI fit neatly
into this category, since they can be seen from a functional perspective, and they
are most amenable to high-level type inference techniques [19, 26]. The imple-
mentors of similar typed functional representations for Java bytecode, such as
λJVM [17] and GRAIL [9], comment that a functional representation makes both
verification and analysis straightforward. It is useful for reasoning about program
properties, such as security and resource consumption guarantees. Functional
notations are also well-suited for translation into lower-level program representa-
tions.

It is certainly true that algorithms on such functional representations can often
be more rigorously defined [10] and proved correct. It would be interesting to
compare existing SSA or SSI data flow analyses with the equivalent analyses in
the functional paradigm, perhaps to discover similarities and differences. Such
cross-community experience is often instructive to one of the parties, if not both.

We have effectively made SSI interprocedural in scope, by abstracting all con-
trol flow into function calls. Until now, SSI has only been envisaged as an in-
traprocedural representation, and it has not been clear how to extend SSI to whole
program scope. Now there is no longer any distinction between intraprocedural
and interprocedural control flow.

Finally we note that the functional representation of SSI programs is exe-
cutable. Standard SSI is not an executable representation; it is restricted in the
same manner as original SSA. (φ- and σ-functions require some kind of runtime
support to determine which value to assign to which variable.) Ananian has con-
cocted an operational semantics for an extended version of SSI [2], however this
is quite complex and unwieldy to use. On the other hand, functional programs
are natural, understandable and easily executable with a well-known semantics.
We have successfully translated some simple SSI programs into Haskell and ML
code, using the transformation algorithm of section 5.4.

For instance, Fig. 5.7 shows the dynamic data flow graph [21] of three Haskell
factorial functions that each compute 5! (the answer is 120). The three values are
then added together (the sum total is 360). The left portion of the graph represents
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a standard Haskell iterative definition of the factorial function:

faci 0 acc = acc
faci n acc = fac1 (n-1) (acc*n)

The middle portion of the graph represents a standard Haskell recursive definition
of the factorial function:

facr 0 = 1
facr n = n * facr (n-1)

The right portion of the graph represents the Haskell version of the functional pro-
gram from figure 5.4 which is the transformation of the SSI program from figure
5.3. We notice that the right portion of the dynamic data flow graph has exactly
the same shape as the left portion, which reveals that both are computing facto-
rials iteratively, so we see that the transformation from imperative to functional
style does not alter the data flow behaviour of the program at all.

5.8 CONCLUSIONS

In this paper we have shown how SSI (generally regarded as an imperative pro-
gram representation) can be converted into a simple functional notation. We have
specified a transformation algorithm and we have briefly discussed the possible
applications of this transformation process.

Compilers for functional programming languages (such as the Glasgow Haskell
compiler) often translate their intermediate form into an imperative language (such
as C), which is then compiled to machine code. This seems rather wasteful, since
the C compiler (if it uses a functional representation as its intermediate form) will
attempt to reconstruct the functional program which has been carelessly thrown
away by the functional compiler backend.

Finally we comment on future work. The transformation algorithm presented
in section 5.4 could possibly be formalised, in the same manner as Appel’s orig-
inal work on SSA [6, 5] has been formalised [10]. Next we need to translate
existing SSI analysis algorithms to this new functional framework. We must also
consider how to take advantage of this functional notation in order to devise new
analyses and optimisations.

On a different note, SSA and SSI are just two members of a large family of
renaming schemes [24]. It would be interesting to see if every scheme in the fam-
ily could be converted to a functional notation, using the same general techniques
outlined in this paper.
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1: Translate(node) =
2: let C be the children of node in the dominator tree
3: let p1, . . . , pn be the nodes of C that have more than one predecessor
4: for i ← 1 to n
5: let a1, . . . ,ak be the targets of φ-functions in pi (possibly k = 0)
6: let Si = Translate(pi)
7: let Fi = “function fpi(a1, . . . ,ak) = Si”

+ 8: let s1, . . . ,sm be the nodes of C that are the target of a conditional branch
+ 9: for i ← 1 to m
+ 10: let qi be the (unique) predecessor of si
+ 11: let a1, . . . ,ak be the targets (associated with si) of σ-functions in qi
+ 12: let Ti = Translate(si)
+ 13: let Gi = “function fsi(a1, . . . ,ak) = Ti”
! 14: let F = F1F2 . . .FnG1G2 . . .Gm

15: return Statements(node,1,F)

16: Statements(node, j,F) =
17: if there are < j statements in node
18: then let s be the successor of node
19: if s has only one predecessor
20: then return Statements(s,1,F)
21: else s has m predecessors
22: suppose node is the ith predecessor of s
23: suppose the φ-functions in s are

a1 ← φ(a11, . . . ,a1m), . . .
ak ← φ(ak1, . . . ,akm)

24: return “let F in fs(a1i, . . . ,aki)”
25: else if the jth statement of node is a φ-function
26: then return Statements(node, j +1,F)

+ 27: else if the jth statement of node is a σ-function
+ 28: then return Statements(node, j +1,F)

29: else if the jth statement of node is “return a”
30: then return “let F in return a”
31: else if the jth statement of node is a ← b⊕ c
32: then let S = Statements(node, j +1,F)
33: return “let a = b⊕ c in S”
34: else if the jth statement of node is a ← b
35: then let S = Statements(node, j +1,F)
36: return “let a = b in S”
37: else if the jth statement of node is “if a < b then goto s1 else goto s2”
38: then since this is edge-split SSI form
39: assume s1 and s2 each has only one predecessor

! 40: let a1, . . . ,ak be
! the source operands of σ-functions in node (possibly k = 0)
! 41: return “let F in if a < b then fs1(a1, . . . ,ak) else fs2(a1, . . . ,ak)”

FIGURE 5.6 Algorithm that transforms SSI to functional intermediate represen-
tation
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+ : 360L

* : 120L

-(_, c.1L) : 1L

-(_, c.1L) : 2L

* : 120L

-(_, c.1L) : 3L

* : 60L

-(s.5L, c.1L)
4L

* : 20L

*(s.5L, s.1L)
5L

+ : 240L

*(s.5L, _) : 120L

* : 24L

-(s.5L, s.1L)
4L

-(_, s.1L) : 3L

* : 6L

-(_, s.1L) : 2L

* : 2L

-(_, s.1L) : 1L

*(_, s.1L) : 1L

* : 120L

-(_, c.1L) : 1L

-(_, c.1L) : 2L

* : 120L

-(_, c.1L) : 3L

* : 60L

-(s.5L, c.1L)
4L

* : 20L

*(s.5L, s.1L)
5L

FIGURE 5.7 Dynamic data flow graph for three factorial(5) functions
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Chapter 6

Implementing Mobile Haskell
André Rauber Du Bois1, Phil Trinder1, Hans-Wolfgang Loidl2

Abstract Mobile computation enables computations to move between a dynamic
set of locations and is becoming an increasingly important paradigm. Mobile
Haskell (mHaskell) is an extension of Haskell that supports mobile computation
in open distributed systems i.e. dynamically changing systems where multiple ex-
ecuting programs can interact using a predefined protocol. This paper outlines the
mHaskell primitives, discusses the design and pragmatics of their implementation
and includes preliminary performance comparisons with Jocaml. The implemen-
tation addresses several challenges, including serialisation of programs in a lazy
language with sharing and using a combination of bytecode and machine code to
manage the common software base, i.e. to determine what to communicate be-
tween locations.

6.1 INTRODUCTION

Mobile Haskell [6] (mHaskell) is an extension of the purely functional Haskell
language designed to facilitate the construction of distributed mobile software.
As depicted in Fig. 6.1, mHaskell extends Concurrent Haskell [21], an extension
supporting concurrent programming, with higher order communication channels
called Mobile Channels (MChannels), that allow the communication of arbitrary
Haskell values including functions, IO actions and channels.

The main features of the mHaskell implementation are:

� mHaskell supports the construction of open systems, enabling programs to
connect and communicate with other programs and to discover new resources
in the network. The abstractions we use to provide this basic functionality are

1School of Mathematical and Computer Science, Heriot-Watt University, Edinburgh
EH14 4AS, Scotland, Email:
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MChannels and remote evaluation and both have fast implementations in the
RTS (runtime system) using C and TCP/IP sockets.

� mHaskell is portable. It is implemented as an extension of the GHC (Glas-
gow Haskell Compiler) [10] compiler that has been ported to many different
architectures and operating systems. Our extensions are implemented using
standard C and TCP/IP sockets, maintaining a high degree of portability.

� mHaskell is designed to run on heterogeneous networks. Mobile languages
designed to work on global distributed systems, such as the Internet, must be
able to communicate code between machines of different architectures and op-
erating systems. The usual approach for communicating computations on het-
erogeneous networks is by compiling programs into architecture-independent
byte-code. GHC combines both an optimising compiler and an interactive en-
vironment called GHCi, which compiles user defined functions into byte-code,
and this technology could be used by mHaskell for communicating computa-
tions on heterogeneous networks.

� mHaskell takes a hybrid approach, combining byte-code and machine code.
GHCi is designed for fast compilation and linking. It generates machine inde-
pendent byte-code that is linked to the fast native-code available for the basic
primitives of the language. As the basic modules in GHC are compiled into
machine code and are present in every standard installation of the compiler,
the routines for communication have to send only the machine independent
part of the program and link it to the local definitions of the machine depen-
dent part when the code is received. This gives us the advantage of having
much faster code than using only byte-code.

Haskell 98

Haskell

mHaskell

Concurrent

FIGURE 6.1 mHaskell is an extension of Concurrent Haskell

This paper is organised as follows: In the next section we present the MChan-
nels communication primitives and the primitives for resource discovery and reg-
istration. In section 6.3 the implementation of mHaskell is described, first by giv-
ing a general overview of the platform and its challenges and then by describing
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each of the design decisions. Finally, the low level issues of the implementation
are discussed in section 6.4.

6.2 MOBILE HASKELL

6.2.1 Communication Primitives

Fig. 6.2 shows the MChannel primitives. Haskell with Ports [12] has similar
primitives but restricts the type of values that can be communicated to basic values
and data types, no functions or IO computations can be communicated.

data MChannel a -- abstract
type HostName = String
type ChanName = String

newMChannel :: IO (MChannel a)
writeMChannel :: MChannel a -> a -> IO ()
readMChannel :: MChannel a -> IO a
registerMChannel :: MChannel a -> ChanName -> IO ()
unregisterMChannel:: MChannel a -> IO()
lookupMChannel :: HostName -> ChanName ->

IO (Maybe (MChannel a))

FIGURE 6.2 Mobile Channels

The newMChannel function is used to create a mobile channel and the func-
tionswriteMChannel and readMChannel are used to write/read data from/to
a channel. MChannels are synchronous and have similar semantics to Concur-
rent Haskell channels: when a value is written to a channel the current thread
blocks until the value is received in the remote host. In the same way when
a readMChannel is performed in an empty MChannel it will block until a
value is received on that MChannel. The functions registerMChannel and
unregisterMChannel register/unregister channels in a name server. Once
registered, a channel can be found by other programs using lookupMChannel
which retrieves a mobile channel from the name server. A name server is always
running on every machine of the system and a channel is always registered in
the local name server with the registerMChannel function. MChannels are
single-reader channels, meaning that only the program that created the MChan-
nel can read values from it. Values are evaluated to normal form before being
communicated.

Fig. 6.3 depicts a pair of simple programs using MChannels. First a program
running on a machine called ushas registers a channel mv with the name "myC"
in its local name server. When registered the channel can be seen by other ma-
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Name Server Name Server

Prog 1

1.
registerMchannel mv "myC"

Prog 2

ushas.hw.ac.uk

lookupMChannel "ushas.hw.ac.uk" "myC"
2.

lxtrinder.hw.ac.uk

3. Connection is established

FIGURE 6.3 Example using MChannels

chines using the lookupMChannel primitive. After the lookup, the connection
between the two machines is established and communication is performed with
the functions writeMChannel and readMChannel.

6.2.2 Discovering Resources

One of the objectives of mobile programming is to better exploit the resources
available in a network. Hence, if a program migrates from one node of the network
to another, this program must be able to discover the resources available at the
destination. By resource, we mean anything that the mobile computation would
like to access in a remote host, from simple files to databases.

type ResName = String

registerRes :: a -> ResName -> IO ()
unregisterRes :: ResName -> IO ()
lookupRes :: ResName -> IO (Maybe a)

FIGURE 6.4 Primitives for resource discovery

Fig. 6.4 presents the three mHaskell primitives for resource discovery and reg-
istration. All machines running mHaskell programs must also run a registration
service for resources. The registerRes function takes a name (ResName)
and a resource (of type a) and registers this resource with the name given. The
function unregisterRes unregisters a resource associated with a name and
lookupRes takes a ResName and returns a resource registered with that name
in the local registration service. To avoid a type clash, if the programmer wants to
register resources with different types, she has to define an abstract data type that
will hold the different values that can be registered.

A better way to treat type clashes would be to use dynamic types like Clean’s
Dynamics [22], but at the moment there is no complete implementation of it in
any of the Haskell compilers.
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6.2.3 Remote Thread Creation

mHaskell also provides a construct for remote thread creation:

rforkIO :: IO () -> HostName -> IO ()

It is similar to Concurrent Haskell’s forkIO as it takes an IO action as an argu-
ment but instead of creating a local thread it sends the computation to be evaluated
on the remote host HostName. The rforkIO function is implemented using
MChannels as described in [6].

6.2.4 A Simple Example

Fig. 6.5 shows an mHaskell program that computes the load of a network. It visits
a listomachines and executes the computation called mobile on all the
machines of the list. First a channel mch is created and registered with the name
"mainmch". This channel is used by the remote locations to send the result of
the computation back to the main machine. Then, the function sendMobile
is mapped over the listofmachines. This computation looks for a specific
channel called clientmch on the remote host and sends mobile to be executed
remotely. The client receives the computation, executes it and sends the result
back to the main program through the mch channel.

The program in figure 6.5, although simple, uses all the facilities provided by
mHaskell (i.e. remote MChannels, registration of resources and mobile computa-
tion), and is used in the measurements given in Sec. 6.5.

6.3 IMPLEMENTATION DESIGN

6.3.1 Introduction

Mobile systems must abstract over the heterogeneity of large scale distributed
systems, allowing machines with different architectures and different operating
systems to communicate. This abstraction is usually achieved by compiling pro-
grams into architecture-independent byte-code. As a platform to build our system,
we have chosen the Glasgow Haskell Compiler (GHC) [10], a state-of-the-art im-
plementation of Haskell. The main reason for choosing GHC is that it supports
the execution of byte-code combined with machine code. GHC is both an opti-
mising compiler and an interactive environment called GHCi. GHCi is designed
for fast compilation and linking. It generates machine independent byte-code that
is linked to the fast native-code available for the basic primitives of the language.
Both GHC and GHCi share the same runtime-system, based on the Spineless Tag-
less G-machine (STG)-machine [20], that is a graph reduction machine.

This and the next section explain the implementation of mHaskell using the
GHC compiler. In this section, we discuss some design options at the language
level and their influence on an implementation. In the next section we discuss the
low level issues of the implementation.
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main = do
mch <- newMChannel
registerMChannel mch "mainmch"
list <- mapM (sendMobile mobile mch) listofmachines
let v = sum list
print ("Total Load of the network: " ++ (show v))
where
mobile = do

res <- lookupRes "getLoad"
case res of
Just getLoad -> do

load <- getLoad
return load

Nothing -> return 0
listofmachines = (...)

sendMobile:: IO() -> MChannel Int -> HostName -> IO Int
sendMobile comp mch host = do
mc <- lookupMChannel host "clientmch"
case mc of

Just nmc -> writeMChannel nmc comp
result <- readMChannel mch
return result

FIGURE 6.5 Program that computes the load of a network

6.3.2 Evaluating Expressions before Communication

When a value is sent through a channel, it is evaluated before communication
occurs. The reason for this design decision is that lazy evaluation makes it difficult
to reason about what is being communicated. Consider the following example:

let
(a,b,c) = f x
in if a then

writeMChannel ch b

Suppose that the first element (a) of the tuple returned by f x is a Boolean, the
second (b) an integer, and the third (c) is a large data structure. Based on the value
of a, the program selects to send the integer b (and only b) to a remote host. In
the example, it seems that the only value being sent is the integer, but because of
lazy evaluation that is not what happens. In the beginning of the evaluation, the
expression is represented by a graph similar to the one in figure 6.6.

At the point where writeMChannel is performed, the value b is repre-
sented in the heap as the selector that gets the second value of a tuple applied
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    (f x)

getFirst

getSecond

getThird

a =

b =

c = 

FIGURE 6.6 Graph for let (a,b,c) = f x

to the whole tuple. If writeMChannel does not evaluate its argument before
communication, the whole value is communicated and this is not apparent in the
Haskell code.

The evaluation of thunks (unevaluated expressions) affects only pure expres-
sions or expressions that can be evaluated using seq (a Haskell function that eval-
uates its argument to weak head normal form (WHNF)). IO computations will not
be executed during this evaluation step.

There are still ways of sending pure expressions to be evaluated on remote
hosts. A tuple with a function and its arguments can be sent, and the function is
applied to the values only on the remote end. Unevaluated expressions can also
be communicated if wrapped in an IO value, as in the apply function:

apply :: (a->b) -> a -> IO b
apply f x = return (f x)

6.3.3 Sharing Properties

Many non-strict functional languages are implemented using graph reduction,
where a program is represented as a graph and the evaluation of the program
is performed by rewriting the graph. The graph ensures that shared expressions
are evaluated at most once [19].

Maintaining sharing between nodes in a distributed system would result in a
large number of extra-messages and call-backs to the machines involved in the
computation (to request structures that were being evaluated somewhere else or
to update these structures). In a typical mobile application, the client will re-
ceive some code from a channel and then the machine can be disconnected from
the network while the computation is being executed (consider a handheld or a
laptop). If we preserve sharing, it is difficult to tell when a machine can be
disconnected, because even though the computation is not being executed any-
more, the result might be needed by some other application that shares the same
graph structure. The problem is already partially solved by making the primitives
strict: expressions will be evaluated just once and only the result is communi-
cated. In mHaskell, computations are copied between machines and no sharing is
preserved.
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6.3.4 MChannels

MChannels are single-reader channels, for two main reasons. First, it is difficult
to decide where a message should be sent when we have more than one machine
reading values from the same channel. The main question is where this channel
is located. Channels with multiple readers need to maintain a distributed state,
keeping track of all the machines that have references to the channel, and these
references must be updated every time the channel is moved to another place.

A simple way to have multiple reader channels would be to keep the channel in
one place, the place where it was created, and all other references to the channel
read and write values into the channel by sending messages to this main loca-
tion. The problem with this approach is that if the main location crashes all the
other machines that have references to the channel cannot communicate anymore
(Fig. 6.7).

MChannel A

Machine 2 Machine 3

Machine 1

writeMChannel A readMChannel A

FIGURE 6.7 Machines 2 and 3 cannot communicate if Machine 1 crashes

The second reason is security: with multiple reader channels one process can
pretend to be a server and steal messages. This is a classic problem also found in
the untyped π-calculus [15].

6.4 THE IMPLEMENTATION

6.4.1 Packing Routines

The graph representing the computation being communicated is packed at the
source and unpacked at the destination. The mHaskell pack and unpack routines
are based on the GUM [26] system, but are extended to pack GHCi’s Byte-Code
Objects (BCOs).

Packing, or serialising, arbitrary graph structures is not a trivial task and care
must be taken to preserve sharing and cycles. As in GPH [26], GDH [23] and
Eden [1], packing is done breadth-first, closure by closure and when the closure
is packed its address is recorded in a temporary table that is checked for each new
closure to be packed to preserve sharing and cycles. We proceed packing until
every reachable graph has been serialised.
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The main heap object to be packed in our implementation of mHaskell is the
BCO, that is GHC’s internal representation for its architecture-independent byte-
code. A BCO is composed of its info table (which contains information about
the closure’s fields and also its entry code), a list of instructions, a list of pointers
and a list of info tables. The BCO’s info table is the same for every BCO so it
does not need to be packed. Its list of instructions is just a list of bytes and is
packed easily. The list of pointers contains a list of other closures that are used
in the byte-code instructions, so all of them must also be packed. The list of info
tables contains pointers to info tables of data structures that are constructed during
the execution of the BCO’s instructions. Those info tables are machine dependent
hence are packed in a special way explained in section 6.4.2.

As the basic modules that come with GHC are compiled into machine code
and are present in every standard installation of the compiler, the packing routines
have to pack only the machine independent part of the program and link it to the
local definition of the machine dependent part when the code is received and un-
packed. This gives us the advantage of having much faster code than using only
byte-code. Once packed, the BCO can be communicated in the way described in
section 6.4.4. All machines running the mobile programs should have the same
version of the GHC/GHCi system with an implementation of the primitives for
mobility and also have the same binary libraries installed. Programs that com-
municate functions that are not in the standard libraries must be compiled into
byte-code using GHCi.

Our packing mechanism gives us a simple way of controlling the amount of
code communicated: since only functions that are compiled into byte code are
packed, if the programmer knows that one module used in the computation is
already in the remote host, this module must be compiled into machine code, so
it will not be communicated.

Programs that will only receive byte-code do not need to have GHCi installed
because the byte-code interpreter is part of GHC’s RTS. In fact, if only functions
from the standard libraries are used in the mobile programs, there is no need to
have GHCi at all in both ends of the communication.

6.4.2 Communicating User Defined Types

Currently, user defined data types (ADTs) are always compiled into machine code
in GHCi. There are two ways to overcome this problem. The first one would be
to compile the types into a different type of closure that uses BCOs internally.
This requires changing the compiler. The other solution is to ship the data type
including the values in its info table. The entry code for these objects is very
simple and has to be generated again in the destination.

In our current implementation, all data types used in the mobile programs
must be defined in all the machines that are going to receive the code. Thus we
only pack the name representing its info table in the linker and the content of
its fields. When unpacking, we look for the local definition of the info table by
searching for its name in the linker’s tables. We consider an implementation of
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one of the two solutions described above, as a tuning step in the development
of the prototype implementation, aiming to reduce the common software base
needed on all machines.

6.4.3 Evaluating Expressions

Evaluating expressions before communication is not as trivial as it seems. A
simple way to evaluate thunks would be to use evaluation strategies [25], e.g.:

let list = [1..100]
in writeMChannel mch list

where in the definition of writeMChannelwe use the rnf strategy to evaluate
its argument to normal form.

But strategies will not work in all cases. Consider the following example:

f:: a -> b -> Int

let
a = (...)

in writeMchannel ch (f a)

In this case it is not possible, inside of the definition of writeMChannel, to
evaluate the expression a using strategies. One solution to this problem would be
to implement a function kids with type:

kids:: HValue -> Array# HValue

That takes a value from the heap (the expression to be evaluated) and returns an
array with all the thunks pointed to by this value. Using kids we can write
a deepSeq :: a -> () function that recursively applies seq to all the
thunks pointed by its argument.

Another way to evaluate thunks is to do it inside the RTS using a primitive
function that creates a new RTS thread to evaluate its argument to normal form by
forcing the evaluation of all the expressions pointed by the argument.

mHaskell uses a hybrid approach: a thunk in the top level of the graph rep-
resenting the computation is forced by a seq (as in Fig. 6.8). If there are other
thunks in the graph, these thunks are evaluated by an extra thread in the RTS. Care
must be taken to preserve the queue of closures yet to be packed if the new thread
induces garbage collection. The solution to this problem is to make the packing
queue visible to the Garbage Collector.

6.4.4 Implementation of MChannels

The basic structure to support MChannels is implemented in a similar way to Ports
in Distributed Haskell [24].

Communication is implemented using the standard sockets library provided
by the operating system, thus avoiding the need for any extra libraries like PVM
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Thunk

FIGURE 6.8 Evaluation of thunks using seq

or MPI. Haskell objects are serialised using the packing routines explained before
and converted into an array of bytes that can be easily communicated through a
socket.

Communication via sockets may use two different protocols: TCP and UDP.
UDP is a fast connectionless protocol that does not handle message loss. TCP on
the other hand is a connection-based protocol, making it easier to implement com-
munication with the cost of a little extra overhead. We have chosen to implement
the communication routines using TCP.

The channel data type is a simple Haskell data type that contains internally all
the information that will be needed for communication, i.e. the name of the chan-
nel, the name of the host where it belongs and a concurrent Haskell channel (CHC)
through which the communication between the program and the mobile runtime
system occurs. When a new MChannel is created also a CHC is created to serve
as a communication link between the program and the communication layer of the
RTS. When a value is written into a MChannel, it is in fact written into its CHC.
The RTS then reads this value from the CHC, serialises it and communicates it to
the appropriate host based on the information present in the MChannel data type.
When the RTS receives a value from a remote host this value is written into the
CHC that represents the MChannel that should receive the message. A thread that
reads a value from a MChannel is in fact reading a value from the internal CHC
and will stay blocked in this CHC until a value is written by the RTS there.

To make ports visible to other machines in the network we use theregister-
MChannel and lookupMChannel primitives. These primitives communicate
with an external naming service that keeps listening for requests on a well-known
port. This service maintains a table with all the ports registered in the machine in
which it is running. It also communicates with lookups launched by other hosts
looking for channels. When a lookup is received, all the information about the
channel is sent back to the client, so the client can communicate directly with the
program that is waiting for requests on that channel.
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TABLE 6.1 Comparative Jocaml and mHaskell Execution Times

Number of Machines Jocaml mHaskell
visited (sec) (sec)
1 0.05s 0.47s
2 0.06s 0.93s
4 0.10s 1.85s
8 0.16s 3.70s
16 0.28s 7.42s

6.5 INITIAL EVALUATION

Table 6.1 shows a comparison between Jocaml [4] and mHaskell using the mobile
program from section 6.2.4.

Jocaml [4] is an extension to Objective-Caml [17], a strict functional language
with extensions for object-oriented programming, used to develop systems with
mobile agents. Jocaml extends Objective-Caml with a small set of primitives
taken from the Join-Calculus [8]. Jocaml programs communicate and synchronise
through messages sent on channels, called names in the Join-Calculus terminol-
ogy.

Although mHaskell presents good scalability when the number of machines is
increased, it is still approximately 20 times slower than Jocaml. The main reason
for that is the routine that recursively traverses the graph, forcing the evaluation of
thunks before packing. Every time a computation is sent, the graph has to be tra-
versed twice: once to force the evaluation and once for packing. It is not an option
to force the evaluation while packing because the evaluation of the graph might
change what has been already packed. Because Jocaml is strict, the evaluation of
expressions to be communicated occurs naturally. Moreover, Jocaml is built as
an extension to the Objective Caml compiler [17], a compiler with primitives for
serialisation.

mHaskell is still in its early stages and a lot of optimisation could be applied.
For example, in the program used in the experiments, the same function is sent
to different hosts and is repacked every time it is communicated. Such packed
computations could be stored for reuse.

6.6 RELATED WORK

There are numerous parallel and distributed Haskell extensions [27], and only
those closely related to mHaskell are discussed here.

GPH and Eden are simple and powerful extensions to the Haskell language
for parallel computing. They both allow remote execution of computation, but
the placement of threads is implicit. The programmer uses the par combinator
in GPH, or process abstractions in Eden, but where and when the data will be
shipped is decided by the implementation of the language.
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GDH is closer to the language presented here. Communication can be imple-
mented using MVars and remote execution of computations is provided with the
revalIO (remote evaluation) primitive. The problem in using GDH for mobile
computation is that it is implemented to run on closed systems. After a GDH pro-
gram starts running, no other PE (processing element) can join the computation.
Moreover the GDH implementation relies on a virtual shared heap that is shared
by all the machines running the computation. The algorithms used to implement
this kind of structure will not scale well for very large distributed systems like the
Internet [6].

Haskell with ports is a very interesting model to implement distributed pro-
grams in Haskell because it was designed to work on open systems. The only
drawback is that the current implementation of the language restricts the values
that can be sent through a port to the basic types and types that can instantiate
the Show class. Furthermore, the types of the messages that can be received with
readPort must be an instance of the Read class. The reason for these restric-
tions is that the values of the messages are converted to strings in order to be sent
over the network [12].

There are other extensions to functional languages that allow the communica-
tion of higher-order values. Kali-Scheme [2] and Erlang [7] are examples of strict
weakly typed languages that allow the communication of functions. Haskell is
a statically typed language hence the communication between nodes can be de-
scribed as a data type and many mistakes can be caught during the compilation
of programs. Other strict typed languages such as Nomadic Pict [29], Facile [14]
and Jocaml [4] implement the communication primitives as side effects while we
integrate them to the IO monad, preserving referential transparency.

Curry [11] is a functional logic language that provides communication based
on Ports in a similar way to the extension presented in this paper. Goffin [3] is
a Haskell extension for concurrent constraint programming using ports but there
is no distributed implementation of the language available yet. Another language
that is closely related to our system is Famke [28]. Famke is an implementation
of threads for the lazy functional language Clean [16] (using monads and contin-
uations), together with an extension for distributed communication using ports.
Famke has only a restricted form of concurrency, providing interleaved execution
of atomic actions using a continuations monad.

6.7 CONCLUSIONS AND FUTURE WORK

We have presented the implementation of mHaskell, an extension of Haskell for
mobile computation in open distributed systems. Unlike related systems, mHaskell
can communicate arbitrary values, including functions and MChannels, between
processors. This enables the use of powerful abstraction mechanisms provided by
functional languages. Although the current implementation of mHaskell is still a
prototype, it demonstrates the use of such abstraction mechanisms.

There are a number of issues that could be investigated in the future:
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� It may be possible to extend the compiler with a mobility analyses (maybe
based on a non-determinism analyses [18]) that would decide the parts of the
program that should be compiled into byte-code and the parts that could be
compiled into machine code, based on the occurrences of writeMChannel,
as in [13].

� The implementation could be optimised, e.g. maintain a cache of functions
already communicated to avoid repeated communication.

� Some languages that support mobility of code also support the migration of
running computations (usually referred as strong mobility [9]). We could also
extend Haskell with a primitive for transparent strong mobility that would be
a primitive to explicitly migrate threads:

moveTo :: HostName -> IO()

The primitive moveTo receives as its argument a HostName to where the
current thread should be moved.

Strong mobility could be implemented in two ways: RTS level and Code
Transformation.

– RTS level: The state of the current thread (its stack) is packed and sent to
be evaluated on a remote host. This work would extend our previous work
on thread migration for the parallel functional language GPH [5].

– Code Transformation: During compilation a program using moveTo is
transformed into a simpler program that uses only weak mobility. One way
to do that is to lift the IO monad into a continuation monad and then every
call to moveTo is translated into a remote evaluation of the continuation
of the current thread.
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Chapter 7

Testing Scheme Programming
Assignments Automatically
Manfred Widera1

Abstract In distance learning the lack of direct communication between teach-
ers and learners makes it difficult to provide direct assistance to students while
they are solving their homework tasks. We address this problem particularly
for programming tasks and describe a system for automatically analyzing stu-
dents’ homework tasks, and providing understandable feedback. Our approach
is adapted to the special situation in distance learning and is integrated into the
virtual university approach at the University of Hagen. It consists of a general
framework and instances for individual programming languages. For these in-
stances, one example is presented for the programming language Scheme.

7.1 INTRODUCTION

Both learning a programming language and giving a course in computer program-
ming can be tedious tasks. A full programming language is usually a complex
subject, so concentrating on some basic aspects first is necessary. One nice thing,
however, about learning to program is that the student may get quick rewards,
namely by seeing his own program actually being executed by a machine and
(hopefully) getting the desired effects upon its execution. However, even writing
a simple program and running it is often not so simple for beginners: many dif-
ferent aspects e.g. of the runtime system have to be taken into account, compiler
outputs are usually not very well suited for beginners, and user manuals unfortu-
nately often aim at the more experienced user.

In distance learning and education, direct interaction between students and
tutors is particularly difficult. While communication via phone, e-mail, or news-

1Praktische Informatik VIII - Wissensbasierte Systeme, Fachbereich Informatik,
FernUniversität in Hagen, 58084 Hagen, Germany; Email:
manfred.widera@fernuni-hagen.de
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groups helps, there is still need for more direct help in problem-solving situations
like programming. In this context, intelligent tutoring systems have been pro-
posed to support learning situations as they occur in distance education. A related
area is tool support for homework assignments. In this paper, we will present
an approach to the automatic revision of homework assignments in programming
language courses. In particular, we describe a framework for analyzing program-
ming homework tasks called AT(x) (analyze-and-test for a language x) and show
how exercises in Scheme [7] can be analyzed and tested automatically by an in-
stance AT(S) of it. The goal of AT(x) is to provide detailed generated feedback
for the student. For the moment, automatic assessment of assignments is not pro-
vided by the system and is also only of minor importance for further extensions,
compared to refined assistance for the students: while automatic assessment is a
goal of interest in every area of teaching, the automatic assistance to the student
is a special aim of distance learning and this system.

The destination platform for our AT(x) system is WebAssign [2, 6] which
was developed at the University of Hagen for distance learning and is accessi-
ble for every teacher. WebAssign is a general system for support, evaluation,
and management of homework assignments. Experiences with WebAssign, in-
volving thousands of students over the last few years, show that especially for
programming language courses (up to now mostly Pascal), the students using the
system scored significantly higher in programming exercises than those not using
the system. WebAssign is now widely used by many different universities and
institutions [12].

Whereas WebAssign provides a general framework, customized components
for different types of exercises are needed. For such components AT(x) pro-
vides an abstract frame which analyzes programs written by a student and – via
WebAssign – sends back comments. In this way, AT(x) supports the learning pro-
cess of our students by interaction that otherwise would not be possible. Apart
from the general design of AT(x) and the benefits of such a generalized approach,
in this paper we especially focus on the AT(x) instance AT(S) analyzing Scheme
programs as an example for the analysis process on functional programming lan-
guages.

While WebAssign is the most important platform for the use of AT(x) in the
near future, the system has also been coupled to VILAB, a virtual electronic lab-
oratory for applied computer science [9]. VILAB is a system that guides students
through a number of (potentially larger) exercises and experiments. The inter-
face between AT(x) and VILAB is also generic over the different programming
languages covered by the AT(x)-instances.

The rest of the paper is organized as follows: Sec. 7.2 gives an overview of
WebAssign, the AT(x) system, and their interaction. A sample session of AT(S)
analyzing a Scheme program is given in Sec. 7.3. Sec. 7.4 describes the general
structure of AT(x) which consists of several components. The general require-
ments on an analysis component and their realization in the analysis component
for Scheme programs are described in Sec. 7.5. Sec. 7.6 briefly states the current
implementation and use of the system. In Sec. 7.7 related work is discussed, and
conclusions and some further work are described in Sec. 7.8.
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7.2 WebAssign AND AT(x)

The AT(x) system described in this paper is specialized to the situation at the Fer-
nUniversität in Hagen. For presenting and solving homework assignments online,
the WebAssign system is available for use by customized assignment systems.
Since WebAssign as the target platform had some influence on several design de-
cisions for AT(x), we offer a brief overview of WebAssign and the way AT(x) is
seen from WebAssign’s point of view.

WebAssign is a web-based system that provides support for assignments and
assessment of homework tasks. As stated in [2], it provides support with web-
based interfaces for all activities occurring in the assignment process, e.g. for the
activities of the author of a task, a student solving it, and a corrector correcting and
grading the submitted solution. In particular, it enables tasks with automatic test
facilities and manual assessment, scoring and annotation. WebAssign is integrated
in the Virtual University system of the FernUniversität Hagen [10].

From the students’ point of view, WebAssign provides access to the tasks to be
solved by them. A student can work out his solution and submit it to WebAssign.
Here, two different submission modes are distinguished. In the so-called pre-test
mode, the submission is only preliminary. In pre-test mode, automatic analyses or
tests are carried out to give feedback to the student. The student can then modify
and correct his solution, and he can use the pre-test mode again until he is satisfied
with his solution. Eventually, he submits his solution in final assessment mode
after which the assessment of the submitted solution is done, either manually or
automatically, or by a combination of both.

Several standard tasks are achieved by WebAssign and need not be addressed
by customized analysis components using it.

• WebAssign provides only authenticated access for students and teachers. This
can be based on a common authentication database for the whole university or
on a database locally administered by WebAssign.

• Persistence of results between sessions and after final submission. In pre-test
mode WebAssign stores the last submission for every task and every student in
a database and provides it as a starting point to the student in further sessions.
For final assessment, the teacher can access the solutions in this database (to-
gether with automatically generated comments if available). Comments and
assessments from a human corrector or an automatic tool are also stored in
this database and are made available to the student via WebAssign.

While WebAssign has built-in components for automatic handling of easy-to-
correct tasks like multiple-choice questions, this is not the case for more complex
tasks like programming exercises. Here, specific correction modules are needed.
The AT(x) system (and especially the AT(S) instance described here in more de-
tail) aims at analyzing solutions to programming exercises and is a system that
can be used as an automatic correction module for WebAssign. Its main purpose
is to serve as an automatic test and analysis facility in pre-test mode. (As a side-
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effect we can make the output of the system available for the corrector in order to
simplify the detection of errors.)

Instances of the AT(x) framework have a task database that contains an en-
try for each task. When a student submits a solution, AT(x) gets an assignment
number identifying the task to be solved and a submitted program written to solve
the task via WebAssign’s communication components. Further information iden-
tifying the submitting student is also available, but its use is not discussed here.
Taking the above data as input, AT(x) analyzes the submitted program. Again
via WebAssign, the results of its analysis are sent as feedback to the student (cf.
Fig. 7.1). The division of WebAssign and AT(x) is not only a logical one. While
WebAssign is meant to reside on a global university server, the AT(x) components
run on local servers that provide full control to individual teachers.

Supervisor

core component
(in target language)

user interface
user adminiatrationWebAssign

Student Student Student Student

background

(test queries,

reference solution)
test results

data analysis system

Java interface

FIGURE 7.1 Structure of AT(x)

Owing to the learning situation in which we want to apply the analysis of
Scheme programs, we did not make any restrictions with respect to the language
constructs allowed in the students’ solutions. AT(S) is able to handle the full stan-
dards of the Scheme programming language as it is implemented by MzScheme
[4].

7.3 A SAMPLE SESSION

Before we go into the description of the individual components of the AT(x) sys-
tem, we give an example of the execution of a homework task.

Solving a homework task includes the following subtasks: after logging into
the WebAssign system the student chooses a task to solve in a web interface. The
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task is presented as a web page containing forms for the solution. After filling in a
solution (or correcting a previously supplied solution which is preserved between
sessions), the student clicks a submit button. A few seconds later the system
answers his submission with a new web page containing the analysis results. The
submitted version replaces the previously preserved version of a solution.

Usually, several individual tasks are combined into an exercise. When the
student is satisfied with all tasks in the exercise, he can close it, and the manual
correction and assessment can start.

The following example is based on the AT(x) instance AT(S) for Scheme pro-
grams. The task is described as follows:

Define a function fac that expects an integer n as input and returns the
factorial of n if n ≥ 0, and the atom negative otherwise.

Let us assume that the following program is submitted. After authentication has
been performed by WebAssign, this is the only input the student has to pass to the
system in order to solve the task.

(define (fac i)
(if (= i 0) 1

(+ i (fac (- i 1)))))

In this program the test for negative numbers is missing, and the first operator in
the last line must be ∗ instead of +.
The system’s output, identifying these two errors, is the following:

The following errors where detected in your program:
------------------------------------------------------
The following test was aborted to enforce termination:
(fac -1)
The function called when the abortion took place
was ‘‘fac’’.
A threshold of 10000 recursive calls was exceeded.
Please check whether your program contains an
infinite loop!
------------------------------------------------------
The following test was aborted to enforce termination:
(fac -42)
The function called when the abortion took place
was ‘‘fac’’.
A threshold of 10000 recursive calls was exceeded.
Please check whether your program contains an
infinite loop!
------------------------------------------------------
The following test generated a wrong result:
(fac 5)
The result generated was 16 instead of the
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expected result 120.
------------------------------------------------------
The following test generated a wrong result:
(fac 6)
The result generated was 22 instead of the
expected result 720.
------------------------------------------------------
The following test generated a wrong result:
(fac 10)
The result generated was 56 instead of the
expected result 3628800.
------------------------------------------------------

One important aspect of the AT(S) system is the following: the system is
designed to perform a large number of tests. In the generated report, however,
it can filter some of the detected errors for presentation. Several different filters
generating reports of different precision and length are available. The example
above shows all detected errors (for a rather small test set) at once.

7.4 STRUCTURE OF THE AT(x) FRAMEWORK

The AT(x) framework combines different tools. Interfaces to different user groups
(especially students and supervisors) have to be provided via WebAssign. The
design decisions caused by this situation are described in this section.

7.4.1 Components of the AT(x) System

AT(x) is divided into two main components: the main work is done by the analysis
component (lower part of the analysis system in Fig. 7.1). Especially in functional
(and also in logic) programming, the used language is well suited for handling
programs as data. The analysis component of AT(S) is therefore implemented in
the target language Scheme.

A further component implemented in Java serves as an interface between this
analysis component and WebAssign (upper part of the analysis system in Fig.
7.1). As shown in the figure, this interface completely performs the interaction
between AT(x) and the WebAssign server. The reason for using such an interface
component is its reusability and its easy implementation in Java. The WebAssign
interface is based on Corba communication. A framework for WebAssign clients
implementing an analysis component is given by an abstract Java class. Instead
of implementing an appropriate Corba client independently for each of the AT(x)
instances in the individual target languages, the presented approach contains a
reusable interface component implemented in Java (that makes use of the existing
abstract class) and a very simple interface to the analysis component.

The background data in Fig. 7.1 consists of text templates for error messages
used by the interface and different static inputs to the core analysis component as
described in Sec. 7.5.1.
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7.4.2 Communication Interface of the Analysis Component

The individual analysis component is the main part of an AT(x) instance. It per-
forms tests on the students’ programs and generates appropriate error messages.
The performed tests and the detectable error types of AT(S) are discussed in detail
in Sec. 7.5. Here, we concentrate on the interface of this component.

The analysis component of each AT(x) instance expects to read an exercise
identifier (used to access the corresponding information on the task to solve) and
a student’s program from the standard input stream. It returns its messages, each
as a line of text, at the component’s standard output stream. These lines of text
contain an error number and some data fields containing additional error descrip-
tions separated by a unique identifier. The number and the types of the additional
data fields are fixed for each error number.

An example of such an error line is the following:

###4###(fac 5)###16###120###

Such a line consists of a fixed number of entries (four in this case) which are
separated by ###. This delimiter also starts and ends the line. The first entry
contains the error number (in this case 4 for a wrong result). The remaining
entries depend on the error number. In this case, the second entry contains the test
(fac 5) causing the error, the third one contains the wrong result 16, and the
fourth one the expected result 120.

The presentation of the messages in a readable form is done by the Java inter-
face component. An example of such a presentation is given in Sec. 7.3.

7.4.3 Function and Implementation of the Interface Component

WebAssign provides a communication interface based on Corba to the analysis
components. In contrast, the analysis components of AT(x) use a simple interface
with textual communication via the stdin and stdout streams of the analysis pro-
cess, which avoids the need to re-implement a Corba client in the language used
for the analysis component. We therefore use an interface process connecting an
analysis component of AT(x) to WebAssign which performs the following tasks:

• Starting the analysis system and providing an exercise identifier and the stu-
dent’s program.

• Reading the error messages from the analysis component.

• Selecting some of the messages for presentation.

• Preparing the selected messages for presentation.

The interface component starts the analysis system (via the Java class Runtime)
and writes the needed information into its standard input stream (which is avail-
able by the Java process via standard classes). Afterwards, it reads the message
lines from the standard output stream of the analysis system, parses the individual
messages and stores them into an internal representation.

101



During the implementation of the system it turned out that some language in-
terpreters (especially SICStus Prolog used for the AT(P)-instance [1]) generate
a number of messages at the stderr stream, e.g. when loading modules. These
messages can block the analysis process when the stderr stream buffer is not
cleared. Our Java interface component is therefore able to consume the data from
the stderr stream of the controlled process without actually using them. With a
minor change to the Java interface component the messages from stderr can, of
course, be accessed. From our experience (using SICStus Prolog and MzScheme)
it is, however, preferable to catch errors by custom error handlers inside the anal-
ysis components, providing appropriate messages via the standard interface of the
analysis component. This keeps the interface between the two components uni-
form and avoids the need for parsing messages from the compiler that are usually
not designed with automatic parsing in mind.

For presenting errors to the student, each error number is connected to a text
template that gives a description of this kind of error. An error message is gener-
ated by instantiating the template of an error with the data fields provided by the
analysis component together with the error number. The resulting text parts for
the individual errors are concatenated and transferred to WebAssign as one piece
of HTML text. An example of a message generated by the analysis component
can be found in Subsec. 7.4.2. The sample session in Sec. 7.3 shows how this
message is presented to the student.

When using this system in education it turns out that presenting all detected
errors at once is not the best action in every case.

Example 7.1. Consider the example session described in Sec. 7.3. Having error
messages for all detected errors available, a student could write the following
program that only consists of a case distinction and easily outfoxes the system.

(define (fac n)
(cond
((= n -1) ’negative)
((= n -42) ’negative)
((= n 5) 120)
((= n 6) 720)
((= n 10) 3628800)))

To avoid the kind of programs that are fine tuned to the set of tests performed by
the analysis component, the interface component has the capability of selecting
certain messages for output according to one of the following strategies:

• Only one error is presented. This is especially useful in beginners courses,
since a beginner in programming should not get confused and demotivated by
a large number of error messages. He can instead concentrate on one mes-
sage and may receive further messages when restarting the analysis with the
corrected program.

• For every type of error occurring in the list of errors only one example is
selected for output. This strategy provides more information at once to ex-
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perienced users. A better overview of the pathological program behaviour is
given, because all different error types are described, each with one represen-
tative. This may result in fewer iterations of the cycle consisting of program
correction and analysis. The strategy, however, still hides the full set of all test
cases from the student and therefore prevents fine tuning a program accord-
ing to the performed tests. Compared to returning just one message, this filter
becomes more useful the more different errors can be distinguished.

• All detected errors are presented at once. This provides the complete overview
over the program errors and is especially useful when the program correction
is done offline. In order to prevent fine tuning of a program according to
the performed tests, students should be aware that in final assessment mode
additional tests not present in the pre-test mode will be applied.

Hiding some of the error messages and test cases from the student is, however,
not a safe way to avoid fine tuned programs. Iterated testing with programs tuned
towards all tests which are known so far eventually yields the whole set of test
cases. Since the system is designed to support the students (and since e.g. a ran-
domized test case generation needs special care to cover all special cases and is
therefore quite complex), this weakness can be accepted for the purpose of AT(S).

7.4.4 Global Security Issues

Security is an issue that is common to all instances of AT(x). It should therefore
be addressed by the framework rather than in every individual instance. Security
includes the following topics:

• Authentication: access to WebAssign (apart from some introductory web
pages) is only possible by authenticated users. User identificators are available
with every submission. Since AT(x) is only accessible via WebAssign (using
a Corba interface), and since WebAssign has proven its reliability during sev-
eral years with thousands of students, further authentication is not necessary
by AT(x).

• Denial of service: AT(x) is only accessed via WebAssign. The AT(x) sys-
tem can therefore be protected by a firewall that can only be passed by the
WebAssign server.

• Malicious code from students: without restricting the considered program-
ming language, students’ programs can access the machine running an AT(x)
instance directly. Mechanisms preventing problems for the service include:

– The analysis component can rule out malicious code. Here it is problem-
atic to detect every malicious program without rejecting correct programs.

– Several UNIX mechanisms can be employed to provide some relative form
of security. It is possible to protect the machine and AT(x) itself, but a ma-
licious program might still interfere with an analysis of another student’s
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program. This approach is implemented at the moment in AT(x) and was
sufficient so far for programming exercises that do not need access to hard-
ware.

– For system programming or other areas with extended need for security,
a sandbox approach is necessary. In such an approach the interface com-
ponent could start each instance of the analysis component in a new sand-
box simulating the machines behaviour. Adapting or implementing such a
sandbox is an area of future work in our implementation.

7.5 THE CORE ANALYSIS COMPONENT

The heart of the AT(x) system is given by the individual analysis components for
the different programming languages. In this section we give an overview of the
general requirements for these analysis components and describe a component for
analyzing programs in Scheme instantiating AT(x) to AT(S) in more detail.

7.5.1 Requirements on the Analysis Components

The intended use in testing homework assignments rather than arbitrary programs
implies some important requirements and properties of the analysis component
discussed here: it can rely on the availability of a detailed specification of the
homework tasks, it must be robust against non-terminating input programs and
runtime errors, and it must generate reliable output understandable for beginners.

Though the requirements formulated here carry over to an extension towards
automatic assessment (comparable to e.g. [5]) we especially focus on the goal of
quick, reliable and understandable feedback given to the students.

The description for each homework task consists of the following parts:

• A textual description of the task. (This is not directly needed for analyzing
students’ programs. For the teacher it is, however, convenient in preparing the
tasks to have the task description available together with the other data items
described here.)

• A set of test cases for the task.

• A reference solution. (This is a program which is assumed to be a correct
solution to the homework task and which can be used to judge the correctness
of the students’ solutions.)

• Specifications of program properties and of the generated solutions. (This
is not a necessary part of the input. In our implementation we use abstract
specifications mainly for Prolog programs (cf. [1]). They are, however, also
available for AT(S).)

This part of input is called the static input to the analysis component because it
usually remains unchanged between the individual test sessions. Each call to the
analysis system contains an additional dynamic input which consists of a unique

104



identifier for the homework task (used to access the appropriate set of static input)
and a program to be tested.

We now discuss the requirements on the behaviour of the analysis system in
more detail. Concretizing the requirement of reliable output, we want our analysis
component to return an error only if such an error really exists. Where this is not
possible (especially when non-termination is suspected), the restricted confidence
should clearly be communicated to the student, e.g. by marking the returned mes-
sage as a warning instead of an error. For warnings the system should describe an
additional task to be performed by the student in order to discriminate errors from
false messages. Especially in checking generated results for correctness, special
care has to be taken that all correct alternative solutions are considered correct.

Runtime errors of every kind must be caught without affecting the whole sys-
tem. If executing the student’s program causes a runtime error, this should not
corrupt the behaviour of the other components. Towards this end, our AT(S)
implementation exploits the hooks of user-defined error handlers provided by
MzScheme [4]. An occurring runtime error is reported to the student, and no
further testing is done, because the system’s state is no longer reliable.

For ensuring termination of the testing process, infinite loops in the tested
program must also be detected and aborted. As the question whether an arbitrary
program terminates is undecidable in general, we chose an approximation that is
easy to implement and guarantees every infinite loop can be detected: a threshold
for the maximal number of function calls (counted independently for each func-
tion) is introduced and the program execution is aborted whenever this threshold
is exceeded.1 As homework assignments are usually small tasks, it is possible to
estimate the maximal number of needed function calls and to choose the threshold
sufficiently. The report to the student must, however, clearly state the restricted
confidence on the detected non-termination.

Counting the number of function calls is only possible when executing the
program to be tested in a supervised manner. The different approaches for super-
vising recursion include the implementation of an own interpreter for the target
language; and the instrumentation of each function definition during a preprocess-
ing step such that it calls a counter function at the beginning of every execution
of the function. The second approach was chosen for AT(S) and is described in
more detail in the following subsection.

7.5.2 Analysis of Scheme Programs

The aim of the AT(S) analysis component is the evaluation of tests in a given stu-
dent’s program and to check the correctness of the results. A result is considered
correct if comparing it with the result of the reference solution does not indicate
an error.

A problem inherent to functional programs is the potentially complex structure

1In the context of the Scheme programs considered here, every iteration is
implemented by recursion and therefore supervising the number of function calls suffices.
In the presence of further looping constructs, a refined termination control is necessary.
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of the results. Not only can several results to a question be composed into a
structure, but it is furthermore possible to generate functions (and thereby e.g.
infinite output structures) as results.

Example 7.2. Consider the following homework task:

Implement a function words that expects a positive integer n and returns
a list of all words over the alphabet Σ = {0,1} with length l, 1 ≤ l ≤ n.

For the test expression (words 3) there are (among others) the valid solutions

(0 1 00 01 10 11 000 001 010 011 100 101 110 111)
(1 0 11 10 01 00 111 110 101 100 011 010 001 000)
(111 110 101 100 011 010 001 000 11 10 01 00 1 0)

which only differ in the order of the words. Since no order has been specified in
the task description, all these results must be considered correct.

For comparing such structures, a simple equality check is not appropriate. Instead,
we provide an interface for the teacher to implement an equality function that is
adapted to the expected output structures and that returns true if the properties of
the two compared structures are similar enough for assuming correctness in the
context of pre-testing. Using such an approximation of the full equality is safe
since in the usual final assessment the submission is corrected and graded by a
human tutor. In order not to confuse the student it is, however, critical not to
report correct results as erroneous, merely because they differ from the expected
result.

Example 7.3. For the task in Example 7.2 the equality check could be

(define (check l1 l2)
(equal? (sort l1) (sort l2)))

with an appropriate sort function sort.
A more complex test can e.g. consist of comparing functions from numbers to

numbers. Such a test can return true after comparing the results of both functions
for n (for some appropriate number n) well-chosen test inputs for equality. If an
assignment is expected to return more complex functions, it is even possible to
consider the returned function as new homework and to call the analysis compo-
nent recursively, provided that the specimen program is given as a result for a new
task.

Termination analysis of Scheme programs is done by applying a program trans-
formation to the student program. We have implemented a function that counts
the number of function calls for different lambda expressions independently and
that aborts the evaluation via an exception if the number of calls exceeds a thresh-
old for one of the lambda expressions. To perform the counting, each lambda
expression of the form

(lambda (args) body)
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is transformed into

(lambda (args) (let ((tester::tmp tc)) body))

where tc is an expression sending a message to the count function containing a
unique identifier of the lambda expression and tester::tmp is just a dummy
variable whose value is not used.

After performing the transformation on the student’s program, the individual
tests are evaluated in the transformed program and in the reference solution. The
results from both programs are compared, and messages are generated when er-
rors are detected. Runtime errors generated by the student’s program are caught,
and an explaining error message is sent to the interface component of AT(S).

In detail, the analysis component of AT(S) is able to distinguish several error
messages, which can stem from failed equality checks, the termination control
and the runtime system. These include wrong results generated by the student’s
program, aborted executions due to suspected infinite loops, syntax errors, unde-
fined identifiers, and several other kinds of runtime errors detected by the system.
A generic error code can be used by the system to give detailed descriptions on
failed tests for certain program properties, e.g. factorial can be checked always to
return a non-negative integer.

For each of these errors the interface component of AT(S) contains a text tem-
plate that is instantiated with the details of the error, and is then presented to the
student. When implementing a new instance of AT(x) an appropriate set of codes
needs to be defined, and text templates for these codes have to be provided to the
interface component by instantiating an abstract Java class.

7.6 IMPLEMENTATION AND EXPERIENCES

The AT(x) framework with its instance AT(S) (and a further instance for Prolog)
is fully implemented and operational. The analysis component runs under the
Solaris 7 operating system and, via its Java interface component, serves as a client
for WebAssign.

Owing to the modular design of our system, the implementation of new analy-
sis components can concentrate on the analysis tasks. The implementation of the
analysis component of AT(S) took approximately three person months. For the
adaption of the starting procedure and the specific error codes inside the interface
component an additional two weeks were necessary.

At the moment the system with the instances AT(P) and AT(S) for Prolog
and Scheme goes through its first application in a programming course. It is
available only for selected homework tasks. Although using the system means
sending in homeworks in two different ways (WebAssign for the selected available
tasks, plain paper sent in by mail for the remaining tasks) two thirds of the active
students used the system. Feedback from the students was positive in general,
mentioning both a better motivation to solve the tasks and better insight in the
new programming paradigm.
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7.7 RELATED WORK

In the context of teaching Scheme, the most popular system is DrScheme [11].
The system contains several tools for easily writing and debugging Scheme pro-
grams by students. For testing a program, test suites can be generated. Our AT(S)
system differs from that approach primarily in providing a test suite that is hidden
from the student and that is generated without a certain student’s program in mind,
but following the approach called specification based testing in testing literature
(cf. e.g. [13]).

A system very similar to our approach is presented in [5] for Ceilidh. While
our approach is focused on quick and understandable feedback to the students,
Ceilidh is used for automatic assessment of homework assignments. Since the
WebAssign system offers automatic assessment, it might be possible to extend
the scope of our system in this direction. Because of the undecidability of pro-
gram equivalence and program correctness, however, we decided to run some tests
with hand correction of assignments first, using the corresponding pre-correction
outputs to simplify the manual final correction.

Other testing approaches to functional programming (e.g. QuickCheck [3])
do not focus on testing programming assignments and are therefore not designed
to use a reference solution for judging the correctness of computation results.
The approach of abstractly describing properties of the intended results can be
found in our approach as well. The randomized generation of test cases used in
QuickCheck is a possible extension of our system. We must, however, make sure
that tests for special cases are contained in every test set.

A further topic related to our approach is the area of intelligent tutoring sys-
tems (ITS) (see e.g. an overview in [8]). Our approach does not aim at the goals of
an ITS, but is just a testing tool to be integrated in the distance learning context of
the FernUniversität in Hagen. Even when thinking of an “intelligent” testing tool,
finding and understanding the errors in the student solutions is a first necessary
step, so that our tool can be of use in constructing an ITS in future.

An automatic tool for testing programming assignments in WebAssign already
exists for the programming language Pascal [12]. In contrast to our approach
here, several different programs have to be called in sequence, namely a compiler
for Pascal programs and the result of the compilation process. The same holds
for possible analysis tools aiming at other compiled programming languages like
e.g. C and Java. To keep a uniform interface, it is advisable to write an analysis
component that compiles a program, calls it for several inputs, and analyzes the
results. This component can then be coupled to our interface component instead
of rewriting the interface for every compiled language. For instantiating AT(x)
to another functional programming language it is, however, advisable to use the
read-evaluate-print-loop of the language, and to implement the analysis compo-
nent completely in the target language.

Putting the differences together, the AT(x) approach is novel in providing a
framework that is highly generic over both the chosen programming language
(with a focus on high-level languages providing a REP-loop) and the communi-
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cation platform (up to now mostly WebAssign, but also VILAB). It is completely
focused on aiding the student in solving programming tasks in a distance learning
framework.

7.8 CONCLUSIONS AND FURTHER WORK

We addressed the situation of students in programming lessons during distance
learning studies. The problem here is the usually missing or insufficient direct
communication between learners and teachers and between learners. This makes
it more difficult to get around problems during self-tests and homework assign-
ments.

In this paper we have presented the AT(x) approach, which is capable of au-
tomatically analyzing programs with respect to given tests and a reference solu-
tion. In the framework of small homework assignments with precisely describ-
able tasks, the AT(x) instances are able to find many of the errors usually made
by students and to communicate them in a manner understandable for beginners
in programming (in contrast to the error messages of most compilers.)

The AT(x) framework is designed to be used in combination with WebAssign,
which is available at the FernUniversität Hagen, and provides a general framework
for all activities occurring in the assignment process. This causes AT(x) to be
constructed from two main components, an analysis component (often written in
the target language) and a uniform interface component written in Java.

By implementing the necessary analysis components, instances of AT(x) for
different programming languages are generated. This was presented for the in-
stance AT(S), which performs the analysis task for Scheme programs. This anal-
ysis component is robust against programs causing infinite loops and runtime er-
rors, and is able to generate appropriate messages in these cases. The general
interface to WebAssign makes it easy to implement further instances of AT(x),
for which the required main properties are also given in this paper.

During the next semesters, AT(S) will be applied in courses at the FernUniver-
sität Hagen and its benefit for Scheme programming courses in distance learning
will be evaluated.

Future work on AT(S) can address the following topics. While the current
system aids the students in preparing their homework assignments, an automatic
assessment stage comparable to [5] can reduce the effort required by the teacher
to correct them. This, however, makes it necessary to understand errors not only
in terms of the I/O-behaviour, but in terms of the source code. The precise assess-
ment can be calculated as the similarity of the student’s solution to a specimen
program according to some appropriate distance function. Understanding errors
in terms of the source code is also necessary in order to extend AT(S) towards an
ITS. Furthermore, an ITS needs a model of the student’s programming skills and
possible misunderstandings, in order to find reasons for certain errors and to pro-
vide more specialized help. In all these extensions we believe that useful online
assistance to the students should always be one of the most important aims (or
even the most important aim) in distance learning.
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Chapter 8

Testing Reactive Systems with
GAST
Pieter Koopman and Rinus Plasmeijer 1

Abstract G∀ST is a fully automatic test system. Given a logical property, stated
as a function, it is able to generate appropriate test values, to execute tests with
these values, and to evaluate the results of these tests. Many reactive systems,
like automata and protocols, however, are specified by a model rather than in
logic. There exist tools that are able to test software described by such a model-
based specification, but these tools have limited capabilities to generate test data
involving data types. Moreover, in these tools it is hard or even impossible to state
properties of these values in logic. In this paper we introduce some extensions of
G∀ST to combine the best of logic and model based testing. The integration of
model based testing and testing based on logical properties in a single automated
system is the contribution of this paper. The system consists only of a small library
rather than a huge stand-alone system.

8.1 INTRODUCTION

Within the fully automatic test system G∀ST [15], properties over functions and
data types are expressed in first order logic. These properties are written as func-
tions in the functional programming language CLEAN [18]. Based on the types
used in these functions, G∀ST automatically and systematically generates test val-
ues. It evaluates the property for these values and analyses the test results. This
avoids the burden to design and evaluate a test suite by hand and makes it easy to
repeat the test after changing the program (regression tests). This automatic and
systematic generation of test data is a distinguishing feature of G∀ST that even
allows proofs for finite types by exhaustive testing. In [15] we focused mainly on
the concepts and implementation of G∀ST.

1Nijmegen Institute for Computer and Information Science, Nijmegen University, The
Netherlands. Email: {pieter,rinus}@cs.kun.nl
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It is possible to specify the behaviour of reactive systems, like the famous
coffee-vending machines and protocols [5], in logic, as demonstrated by Z [20].
However, these reactive systems are usually specified by a model, instead of by a
property in logic. Many formalisms are used in the literature to specify reactive
systems. We use labelled transition systems (LTS), since they have shown to be
very general and effective for testing [13, 10].

G∀ST was originally designed for logic-based testing, not for model-based
tesing. In this paper we introduce some extensions that make G∀ST suitable for
model based testing. We introduce a general format to specify labelled transition
systems as a data structure in CLEAN. The specification of an LTS by a function
is shown to be more concise and can handle an unbounded number of labels and
states.

To test conformance effectively these specifications are used as a basis for
test case generation. These test cases are much more effective for this purpose
than the systematic generation of all possible inputs, which in its turn is more
effective than random generation of inputs. For each deterministic and finite LTS
it becomes possible to prove that the implementation behaves as specified, or to
spot an error under the assumption that the implementation is an LTS that does
not contain more states than the specification [25].

An advantage of extending G∀ST to enable testing of products specified by an
LTS is that the original ability to test data types is preserved and can be combined
with the new possibilities. The generation of data to test properties involving data
types is a weak point of the existing automatic model-based test systems.

Unlike model checkers like SPIN [12], we assume that the given specification
is correct. In practice, however, differences between the specification and the
actual implementation appear also to be caused by incorrect specifications. So,
testing also increases the quality and confidence in the specification.

8.2 OVERVIEW OF G∀ST

To make this paper self-contained we give an overview of G∀ST. It is an automatic
test system embedded in the functional programming language CLEAN. The idea
behind G∀ST is similar to the test system Quickcheck for Haskell [7, 8]. Distin-
guishing features of G∀ST are the systematic test data generation and the ability
to prove properties. Quickcheck generates test data randomly.

Ordinary CLEAN functions are used to specify properties. As an example,
we consider the rotate 13 algorithm, a simple way to encrypt texts. It is used
to hide text from casual reading and rotates the alphabet by half its length, i.e.
13 characters. Characters not in the alphabet are not effected. For example, the
encryption of The answer = 42 yields Gur nafjre = 42 [1].

A nice property of this encryption method is that it is its own decryption:
applying the algorithm twice yields the original character. In logic this is ∀c ∈
Char.rot13(rot13(c)) = c. In G∀ST this is expressed as:
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propRot13 :: Char -> Bool
propRot13 c = rot13 (rot13 c) == c

Notice that the arguments of the functions that specify the desired property are
treated as universally quantified variables.

8.2.1 Testing and Results

Given an implementation of rot13, the property propRot13 is tested by applying it
for a number of characters and checking whether it yields True for all arguments.
This is exactly what the function test does: generate arguments of the desired
type in a systematic way, evaluate the specified property for these arguments,
and investigate whether the test cases are successful. This test is initiated by
executing Start = test propRot13. We use the following implementation of rot13

in the tests:

rot13 :: Char -> Char
rot13 c | isUpper c = toChar ((toInt(c-’A’)+13) rem 26) + ’A’

| isLower c = toChar ((toInt(c-’a’)+13) rem 26) + ’a’
= c

Testing this property yields: Proof: success for all arguments after

98 tests. Owing to the systematic generation of test data, G∀ST can, in this
situation, detect that this property holds for all possible well–defined arguments.
Hence the result qualifies as a proof rather than just a successful test result. For
the type Char G∀ST only generates the printable characters; which explains why
there are only 98 successful test performed. Below we show how this property is
tested for all 256 possible characters, if that is desired.

8.2.2 Evaluating Test Results

The function test has type p->[String]|Testable p. Given a member of the class
Testable, this function yields a list of strings containing the test report. There exist
instances of the class Testable for Bool and functions of type (a->b)|Testable b &

TestArg a. A type belongs to the class TestArg if G∀ST knows how to generate and
show values of this type.

The basic rules for evaluating a series of test results are rather simple:

1. As soon as a single counterexample is encountered the property does not hold.
The testing process terminates with an appropriate error message.

2. If no counterexamples are found and all possible test values are used, the prop-
erty is proven. Such a proof is only possible for finite types and feasible for
rather small types.

3. If no counterexamples are found within a certain upper bound of tests, the
property passes the test successfully. We gained confidence in its correctness.

113



8.2.3 Logical Operators in G∀ST

As an additional property we might require that applying rot13 to any character
yields a different character:

propRot13b :: Char -> Bool
propRot13b c = rot13 c <> c

Testing this property yields the message: Counterexample found after 5

tests: ’;’. As stated above, only alphabetic characters are changed. Other
characters are unaffected by rot13. Hence rot13 ’;’ is equal to ’;’ and this prop-
erty does not hold for ’;’.

For a more precise formulation of this property we might require that applying
rot13 to a letter yields a different character:

propRot13c :: Char -> Property
propRot13c c = isAlpha c ==> rot13 c <> c

The operator ==> mimics the implication operator, ⇒, from logic. It has the usual
semantics: if the left operand holds, the right-hand operand should be obeyed.
For implementation reasons this function yields an element of type Property rather
than a Boolean. Any Boolean result is transformed to such a Property by applying
the function prop. Semantically the type Property is the union of Booleans and
functions yielding a Boolean (which are just logical expressions containing a uni-
versal quantifier). Evaluating this property by G∀ST yields: Proof: Success

for all not rejected arguments, 52 tests, 46 rejections.
If the left-hand argument of the operator ==> yields False, the test-value is

rejected instead of counted as success. This operator is used to select test values:
if the test value is rejected, nothing is known about the property on the right-hand
side. It would be misleading to count this as a successful test.

There are several ways for the tester to control the generation of test values.
Using the infix operator For the property is tested for all values in the list on the
right-hand side of the operator. The For operator is used to test propRot13 for
all 256 characters in the standard ASCII in:

Start = test (propRot13 For map toChar [0..255])

Here G∀ST reports Passed after 100 tests. In this situation it is easy to
turn this result to a proof. We only have to increase the number of tests allowed.

Start = testn 500 (propRot13 For map toChar [0..255])

G∀ST reports Proof: success for all arguments after 256 tests.

8.2.4 Automatic Generation of Test Values

Test data generation for predefined types like Char is rather easy. G∀ST generates
all possible elements of finite and relatively small types like Bool and Char as
test value. For large types like Int and Real this is of course not feasible. G∀ST

generates by default common border types (like −1, 0 and 1), followed by random
values for these types.
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The generation of test values for user-defined (recursive) types is interesting.
Using CLEAN’s generic programming facilities [11, 3], G∀ST generates instances
of these types fully automatically. Test data are generated such that small in-
stances come first and larger values afterwards. Owing to the use of systematic
generation duplicates are also avoided in this situation. This implies that G∀ST is
able to detect that all instances of a finite type are generated. If a property holds
for all these values, it is proven correct.

8.3 SPECIFYING REACTIVE SYSTEMS IN G∀ST

A reactive system is an automaton that posseses an internal state and interacts with
its environment. In this paper we restrict ourselves to software systems with a sin-
gle input and output channel. For instance, a communication channel is modelled
as a function of type [Message] -> [Message].

For some simple reactive systems we can specify aspects of their behaviour in
first order logic. For instance, a system consisting of an unreliable communication
channel supervised by an alternating bit protocol is required to yield the same list
of messages as is to be sent. In G∀ST this is:
propAltBit :: (Int->Bool) (Int->Bool) [Int] -> Bool
propAltBit sError rError input = input == abpSystem sError rError input

The function abpSystem::(Int->Bool) (Int->Bool) [c] -> [c] mimics the commu-
nication channel. The first two function arguments are used for the introduction
of communication errors in the sending and receiving direction of the channel re-
spectively. The last argument, the list [c], is the input of the channel and the result
is the output of the alternating bit protocol to the user.

The implementation of the alternating bit protocol used in the tests is:
:: Message c = M c Bit | A Bit | Error
:: SenderState c = Send Bit | Wait Bit c

sender :: (SenderState c) [c] [Message c] -> [Message c]
sender (Send b) [] as = []
sender (Send b) [c:cs] as = [M c b: sender (Wait b c) cs as]
sender state=:(Wait b c) cs [a:as]
= case a of

A d | b==d = sender (Send (˜b)) cs as
_ = [M c b: sender state cs as]

receiver :: Bit [Message c] -> ([Message c],[c])
receiver rState [] = ([],[])
receiver b [m:ms]
= case m of

M c d|b==d = ([A b :as],[c:cs]) where (as,cs) = receiver (˜b) ms
_ = ([A (˜b):as], cs ) where (as,cs) = receiver b ms

channel :: (Int->Bool) [Message c] -> [Message c]
channel error ms = [ if (error n) Error m \\ m <- ms & n <- [1..]]

abpSystem sError rError list = received
where (acks,received) = receiver firstBit (channel sError messages)

messages = sender (Send firstBit) list (channel rError acks)
firstBit = O

This implementation passes any test of the property propAltBit in G∀ST.
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Although this works fine, the properties that can be specified in this way are
limited. For instance, it is troublesome to specify the behaviour of the sender of
the alternating bit protocol in this formalism. Often, labelled transition systems
are used to specify this kind of behaviour of systems.

8.3.1 Labelled Transition Systems

A very popular way to specify a reactive systems is by means of a labelled transi-
tion system (LTS). In this section we introduce labelled transition systems, show
how they can be represented in CLEAN and show how they can be used as a basis
for testing in our predicate based test system.

An LTS description is defined in terms of a set of states and labelled transi-
tions between these states. To have a clear separation between input and output
labels we deviate from the usual definition of an LTS by using different types.
Moreover, we allow one input to generate a list of outputs. By introducing addi-
tional intermediate states, such an LTS can be transformed to a traditional LTS.
Our representation reduces the number of transitions needed to specify a system
and makes it easier to use an LTS as a basis for testing.

Given Q a non-empty countable set of states, I a non-empty countable set of
input symbols, and O a non-empty countable set of output symbols, we have a
transition relation T ⊆ Q× I ×〈O〉×Q. Given some q0 ∈ Q a labelled transition
system is give by the tuple (Q, I,O,T,q0).

For the moment we restrict ourselves to deterministic systems: the output
and new state are uniquely determined by the current state and the input. In
fact we have a Mealy finite state machine [17]. That is, if (q, i,o1,q1) ∈ T and
(q, i,o2,q2) ∈ T we have q1 = q2 ∧o1 = o2. One often writes (q1, i,o,q2) ∈ T as:

q1
i/o→q2

Where model checkers and other test systems often use a tailor-made specifi-
cation language (like Promela used within SPIN [12] and TorX [22]) to describe
the labelled transition systems that serves as specification, we prefer a specifica-
tion in CLEAN. This has two advantages. First, we can use the full power of a
functional programming language to write the specification or to write functions
that generate the desired specification. Second, there is no need for an additional
language.

Instead of explicit sets of states, Q, and labels, I and O, we employ the type
system of CLEAN to enforce the correct use of states and labels. A straightforward
realisation of an LTS consists of a record containing a list of transitions and an
initial state.

:: Transition state input output :== (state,input,[output],state)
:: LTS state input output

= { trans :: [Transition state input output]
, initial :: state
}

The use of type-parameters for the sets of states and labels involved gives us
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maximum flexibility. We can even use various different types of transition systems
in the same program if desired.

Usually the LTS is a partial function, so we have to decide what to do when
an input is received in a state that is not covered by the LTS. Like most model
checkers we choose to ignore the input: the state does not change and the output
is empty. This is known as implicit completion of the model.

8.3.2 Example: Conference Protocol

The conference protocol described here is a well-known case study in many model
specifications and testers [24]. The conference protocol is used to describe the
behaviour of a conference protocol entity (CPE). The conference protocol allows
a fixed number of entities to chat in various conferences. In order to chat, the user
is able to issue the following commands to the CPE:

Join nickname conference The user joins the named conference under the given
nickname. A user participates in at most one conference at any time.

Datarequest messages All users in the conference receive this message.

Leave The user leaves the current conference.

There is a network through which the CPEs communicate. The interface from a
CPE to the network is via a User Datagram Protocol (UDP). The CPE sends Pro-
tocol Data Units (PDUs) to the network. The network delivers these PDUs to the
indicated CPE and adds the identification of the sender. There are no assumptions
on the order of the arrival of the messages, nor on the reliability of the connection.
A CPE can receive the following inputs from the network:

DataPDUin cpe message This CPE receives a messages from cpe.

AnswerPDUin cpe nickname conference The indicated cpe wants to join the
named conference under the given nickname.

JoinPDUin cpe nickname conference Request to join the named conference
from the indicated cpe under the supplied nickname.

LeavePDUin cpe The indicated cpe leaves the current conference.

To accomplish its task a CPE can send the following output messages. Only the
last message is sent to the user; all other messages are directed to the indicated
CPE via the network.

JoinPDUout cpe nickname conference Send a request to the named cpe to
join the named conference. The network transforms this message to an An-
swerPDUin input where the cpe of destination is replaced by the sender.
Used to tell other CPEs that the user issues a Join.

AnswerPDUout cpe nickname conference Confirmation that cpe wants to par-
ticipate in the conference. This is used as an answer to JoinPDUin.
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DataPDUout cpe message Send the given message to the indicated cpe.

LeavePDUout cpe indicates to cpe that this user leaves the conference.

Data nickname message Show a received message to the user.

After the definition of appropriate data types to hold CPE identifiers, mes-
sages, nicknames and conferences, these messages are transformed directly to the
corresponding algebraic data types. The state of a CPE is either Idle or it partici-
pates in a Conference. The list of tuples consisting of a CPEid and a Nickname
records which other CPEs participate in this conference and their nicknames. This
list is sorted and each CPE occurs at most once.

:: CPEstate = Idle | Conf ConferenceID Nickname [(CPEid,Nickname)]

The number of states is finite if the conference-ids, nicknames and CPEids are
finite.

The specification for a given CPE is generated by the function in Fig. 8.1. It
is sufficient to grasp the idea of the specification, so do not bother about all of the
details. The occurring nicknames, conference-ids, and messages are modelled by
simple algebraic datatypes. The lists of members of these types used (Nicknames,
ConferenceIDs, CPEids and Messages) are generated by the systematic generation
functions of G∀ST. For instance:

:: ConferenceID = Conference1 | Conference2

ConferenceIDs :: [ConferenceID]
ConferenceIDs =: generateAll pseudoRandomInts

The list of pseudo random integers is used by generateAll to control the order of
values, see [15] for details.

All possible conferences occurring as state for a given CPE are generated by
the function Conferences::CPEid -> [CPEstate]. Owing to the restrictions imposed
on the list of participants (it should be ordered and each partner occurs at most
once) it is not possible to use generic generation for the conferences.

Owing to the generic generation of lists of elements of a type, like ConferenceIDs,
the generation function for the LTS, CPElts, remains correct if we add, change, or
remove members in any of the types involved. Hence, it is more powerful and
convenient to use than the definitions of the labelled transition systems used in
most existing model-based test systems. For instance, TorX uses a specification
of the LTS in Promela. In the Promela specification at [24] the number of partners
is hardwired into the specification. Moreover, our specification is very concise if
we compare it to all other specifications collected at [24]. The difference in size
between this specification and the others is at least a factor of two.

8.3.3 Executing a Deterministic LTS

To use a given LTS as the basis for testing, we must be able to execute it. That
is, given an LTS, a current state and an input we need to be able to determine the
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CPElts :: CPEid -> LTS CPEstate CPEin CPEout
CPElts myId
= { initial = Idle
, trans

= [ (Idle, Join nn confId
,[JoinPDUout cpe nn confId \\ cpe <- CPEids | cpe<>myId]
, Conf confId nn [])

\\ nn <- Nicknames
, confId <- ConferenceIDs
] ++
[ (conf, JoinPDUin cpe nn2 id

,[AnswerPDUout cpe nn id],Conf id nn (mkset (cpe,nn2) mem))
\\ conf=:(Conf id nn mem) <- Conferences myId
, cpe <- CPEids
, nn2 <- Nicknames
| cpe <> myId && not (isMember cpe (map fst mem))
] ++
[ (conf, AnswerPDUin cpe nn2 id

,[],Conf id nn (mkset (cpe,nn2) mem))
\\ conf=:(Conf id nn mem) <- Conferences myId
, cpe <- CPEids
, nn2 <- Nicknames
| cpe<>myId && not (isMember cpe (map fst mem))
] ++
[ (conf, Leave, [LeavePDUout cpe \\ (cpe,_) <- mem], Idle)
\\ conf=:(Conf id nn mem) <- Conferences myId
] ++
[ (conf, LeavePDUin cpe, [], Conf c nn [t\\t<-mem|fst t<>cpe])
\\ conf=:(Conf c nn mem) <- Conferences myId
, (cpe,_) <- mem
] ++
[ (conf, DataPDUin cpe mes,[Data nn2 mes], conf)
\\ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
, (cpe,nn2) <- mem
] ++ // to compensate loss of AnswerPDU
[ (conf, DataPDUin cpe mes,[JoinPDUout cpe nn id], conf)
\\ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
, cpe <- CPEids
| cpe <> myId && not (isMember cpe (map fst mem))
] ++
[ (conf, Datareq mes,[DataPDUout cpe mes\\(cpe,_) <- mem],conf)
\\ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
| not (isEmpty mem)
]

}

FIGURE 8.1 The specification of a CPE by the data structure LTS

associated output and new state. The realisation is very straightforward. Since the
LTS is currently deterministic, we have in fact a finite state machine, FSM.

Often we prefer to give a sequence of inputs and obtain a list of associated out-
puts rather than giving a single input. This is achieved by the following function
to execute a deterministic LTS.
runFSM :: (LTS s i o) [i] -> [[o]] | == s & == i
runFSM {trans,initial} inputs = run initial inputs
where

run state [] = []
run state [i:r]
= case [(o,t) \\ (s,j,o,t) <- trans | s==state && i==j] of

[] = [[]:run state r] // undefined: ignore input
[(o,t)] = [o :run t r]
_ = abort "This LTS is not deterministic!"
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8.3.4 The Implementation Under Test

We perform a black box test of the Implementation Under Test (IUT): we can only
observe the output of the system given an input. To show clearly that a single input
produces a sequence of outputs and a new state, we use the type:

:: IUT input output = IUT (input -> ([output],IUT input output))

It is often convenient to transform this to a function that converts a sequence of
inputs to the associated outputs. This is done by:

runIUT :: (IUT i o) [i] -> [[o]]
runIUT iut [] = []
runIUT (IUT f) [a:r] = [o:runIUT iut r] where (o,iut) = f a

Here we define only the type of the IUT; it is all we need to know. In order to
execute the test an implementation should be available.

8.3.5 Testing the Conference Protocol

After the introduction of a representation for model-based specifications and the
tools to execute the specification and the IUT, we are ready to formulate properties
to be tested automatically by G∀ST. We assume that an implementation of the CPE
is available as a function of type cpeImpl::CPEid -> IUT CPEin CPEout.

A desirable property for any implementation of the conference protocol is that
its outputs are equal to the outputs obtained by execution of the specification:

propCPE :: CPEid [CPEin] -> Bool
propCPE id input = runFSM (CPElts id) input == runIUT (cpeImpl id) input

This is a standard property for G∀ST. Hence, it is tested like any other property in
G∀ST by executing Start = test propCPE.

This model-based property can be combined with an ordinary logical property.
If we have a logical predicate properState::CPEstate -> Bool to check the sanity
of states (CPEs are ordered and not duplicated), we can combine these properties
to:

propCPEa :: CPEid [CPEin] -> Property
propCPEa id input = propCPE id input /\ (properState For (Conferences id))

When we are convinced that the protocol handles all CPEs equally, we can
also limit the test to a single CPE-id. For CPE1 the last property becomes:

propCPEb :: ([CPEin] -> Bool)
propCPEb = propCPEa CPE1

Testing these properties reveals some discrepancies between the initial versions of
the specification and the implementation. The differences concern the handling
of unusual inputs, like receiving a DataPDUin from a CPE that is not a member of
the conference. This led us to improvements of the implementation as well as the
specification. Afterwards G∀ST reports that these properties pass the tests.

When the implementation passes some significant number of tests it is tempt-
ing to believe that the implementation conforms to the specification. However,
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analysis of the generated inputs showed that only a few conferences were estab-
lished during the tests. Although the inputs are generated systematically, only
a small fraction of the generated inputs correspond to actually entering a con-
ference and sending messages. Typically, only one single data transfer within a
conference is established in the first 100 tests that are generated.

Tests with systematically generated inputs appear to be very valuable to verify
that the specification and the implementation ignore the same inputs, even if the
sequence of messages is completely meaningless. This only tests that the IUT
shows the specified behaviour: robustness testing.

8.3.6 Implementations with Other Types

The type of the IUT used above suits our tests very well. However, not every
implementation we want to test has such a type. An alternative custom type for the
implementation is cpeImpl2::CPEid [CPEin] -> [[CPEout]]. Even when the IUT
produces a single stream of output tokens, cpeImpl3::CPEid [CPEin] -> [CPEout],
rather than a sequence of output per event, we can still test these implementations
in G∀ST by adapting the property slightly:

propCPE‘ :: [CPEin] CPEid -> Bool
propCPE‘ input id = runFSM (CPElts id) input == cpeImpl2 id input

propCPE‘‘ :: [CPEin] CPEid -> Bool
propCPE‘‘ input id = flatten (runFSM (CPElts id) input) == cpeImpl3 id input

For propCPE‘‘ we only have lost the ability to check whether a particular output
element is generated in response to the correct input. A particular element of
the output might be generated too late or too early. Such a synchronization can
cause serious troubles in the communication with a reactive system. In order
to be able to detect these synchronization problems we prefer the somewhat more
complicated type of output, [[out]], above the plain list of output elements, [out].

8.4 BETTER TEST DATA GENERATION FROM THE LTS

To check the correct behaviour for meaningful sequences of messages, confor-
mance, we use the LTS as a source of information to produce meaningful input
sequences. For instance, each meaningful sequence of inputs starts with an input
corresponding to a transition from the initial state. We can use the existing know-
ledge of testing a FSM [25, 16]. An input sequence is usually called a path in the
world of FSM-testing. If one assumes that the IUT is also deterministic, we do
not learn anything new from executing a path which is a prefix of another tested
path. If we furthermore assume that the IUT does not have more states than the
specification, it is useless to test the same transition twice. Both assumptions are
standard in FSM testing. We use this knowledge to construct a finite amount of
longer and meaningful inputs. This implies that we are now able to prove things
by exhaustive testing, instead of just executing successful tests. We discuss some
test generation algorithms inspired by [21] and [25].
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# nick confer mes # trans paths generated
CPEs names ences sages states itions A1 A2 A3 A4

1 1 1 1 2 2 ∞ 1 1 1
2 1 1 1 3 9 ∞ 118 4 3
3 1 1 1 5 28 ∞ >10,000 11 6
2 2 1 1 7 30 ∞ >10,000 14 8
2 1 2 1 5 18 ∞ 27,848 7 6
2 1 1 2 3 12 ∞ 7,827 4 3
2 2 2 2 13 80 ∞ >10,000 26 16
3 3 3 3 145 2070 ∞ >10,000 567 282

TABLE 8.1 Number of paths generated for various size of types.

A1 From each state in the specification we only test the transitions from that state.
To terminate each input sequence we randomly choose to end the path here
or to use one of the possible transitions at each point. This is basically the
algorithm for test-data generation used by TorX.

A2 Since it is useless to test the same transition twice, we terminate a path when
there is no untested transition from the current state.

A3 The paths generated by the previous algorithm do not verify the final state at
the end of the path. Since the IUT is a black box we cannot check this final
state directly. The state can only be identified via the observed response to
inputs. This algorithm checks the final state by performing additional transi-
tions: we require that each transition occurs twice in the test suite.

A4 In this algorithm we use a function of type state -> [input], to determine
the inputs used to test the final state. Ideally, we use a unique input output
sequence, UIO, or a distinguishing sequence, DS, to identify the final state [2].
Using a UIO we can verify whether we are in a given state by observing the
output corresponding to the input sequence associated with that state. Using a
DS we can identify the state by observing the output corresponding to an input
sequence associated to the entire LTS. If the UIO and DS are unknown or do
not exist, we can use a short sequence of inputs as an approximation.

Finding the shortest set of paths that achieve the goals of A3 and A4 is yet an-
other variant of the travelling salesman problem. We use a simple algorithm that
chooses the first transition available. An input sequence is terminated when we
cannot extend it without taking a transition too often. Until all transitions are used
enough we extend a prefix of one of the used inputs with transitions that still need
to be done.

In Table 8.1 we list the number of states, the number of transitions in the
LTS, and the generated number of input sequences according to algorithms above
for various numbers of CPE’s, nicknames, conferences and messages. By its
nature A1 always generate infinitely many paths. For a particular test we choose
some number of these paths. This table shows that the number of input sequences
generated by A2 is rather big, even for specifications of modest size. In practice,
it is too large for a quick and complete automatic test.
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Algorithm A4 produces fewer paths and is more accurate, but requires known
paths to verify the final state. For testing the conference protocol we used:

CPEtestSeq :: CPEstate -> [CPEin]
CPEtestSeq state = [ Datareq mess, Join nn confId ]
where mess = hd Messages; nn = hd Nicknames; confId = hd ConferenceIDs

By using the generic definitions for Messages, Nicknames and ConferenceIDs again,
this definition is completely independent of the actual contents of these types.

Algorithm A3 is used when an appropriate test sequence for final states is not
at hand. It usually gives good results.

It is important to realize that these tests only check if the IUT behaves as
specified by the LTS; this is known as conformance testing. Testing with the
generated input sequences does not show whether the IUT shows any unspecified
behaviour. For this purpose we need exhaustive tests of all inputs in all states.
The default generation algorithm of G∀ST for input sequences appears to test this
effectively.

The algorithms A2..A4 are superior to a system where the test function decides
dynamically whether it is useful to apply a given input. We do not have to wait
until a suited input occurs. Moreover, we can decide easily when all states and
transitions are visited and the testing is finished. This allows proofs of confor-
mance instead of just successful tests.

8.5 FUNCTIONAL AND NONDETERMINISTIC SPECIFICATIONS

The LTS type straightforwardly represents labelled transition systems. However, it
suffers from the following drawbacks:

1. It allows nondeterminism, but a thorough examination of the data structure is
necessary to see whether the specification is deterministic or not.

2. It is limited to a finite number of transitions. Each and every state and input
that can occur should be listed explicitly in the LTS. This makes it impossible
to specify a system that echoes a given integer or string. It is desirable to use
variables in states and functions.

3. It is impossible to use typical functional language features, like guards and
pattern matching, in the specification.

All these problems are solved by using functions of type

:: Spec state input output :== state -> input -> [(state,[output])]

as specification. Just like above, we use implicit completion when we use this
specification: inputs for states not specified do not change the state and produce
no output. Consider the following system that returns the absolute value of every
second negative integer. This small definition covers the transition for all integer
lists.
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cpeSpec myId Idle (Join nn conf)
= [(Conf conf nn [],[JoinPDUout cpe nn conf \\ cpe<-CPEids| cpe<>myId])]

cpeSpec myId state=:(Conf conf nn mem) input
# memberCPEs = map fst mem
= case input of

Datareq mes = [(state,[DataPDUout cpe mes \\ (cpe,_) <- mem])]
Leave = [(Idle,[LeavePDUout cpe \\ (cpe,_) <- mem])]
DataPDUin id mes
| isMember id memberCPEs
= [(state,[Data nn mes\\(cpe,nn) <- mem | cpe == id])]

| id<>myId
= [(state,[JoinPDUout id nn conf])] // handle lost join

AnswerPDUin id nn2 conf2
| conf == conf2 && not (isMember id [myId: memberCPEs])
= [(Conf conf nn (mkset (id,nn2) mem),[])]

JoinPDUin id nn2 conf2
| conf == conf2 && not (isMember id [myId: memberCPEs])
= [(Conf conf nn (mkset (id,nn2) mem),[AnswerPDUout id nn conf])]

LeavePDUin id = [(Conf conf nn [t \\ t=:(m,_) <- mem | m <> id],[])]
_ = [] // to make the specification total

cpeSpec _ _ _ = [] // to make the specification total

FIGURE 8.2 The specification of a CPE by a function

absoluteValue :: Spec Bool Int Int
absoluteValue b n

| n<0
| b = [(False, [˜n])]

= [(True , [])]
= [] // other transitions are not allowed

To compare the new specification with the specification by a data structure
in figure 8.1 we list the specification of the conference protocol by a function in
figure 8.2. The second version is clearly more compact than the previous version
using a data structure instead of a function. Since all lists yielded have at most
length one, it is obvious that this specification is deterministic. In contrast to the
specification by a data structure, listed in figure 8.1, this version also works if
we use large (or infinite) domains like Int for cpe–ids and String for messages
and nicknames. Using an infinite domain for a specification as used in figure 8.1
would result in an infinite representation of the specification, an specification by
a function as in figure 8.2 can handle this without problems. This makes this kind
of specifications really more powerful.

The test sequence generation algorithms, A1..A4, in section 8.4 operate on
data structures. To uses these algorithms with functions as specifications we need
to generate transitions from the specification by a function. For ordinary testing
this is not needed. All transitions from a given state are produced by:

generateTrans :: (Spec s i o) s [i] -> [Transition s i o]
generateTrans spec s inputs = [(s,i,o,s2)\\i<-inputs, (s2,o)<-spec s i]

To obtain the entire transition relation, we just have to construct these transitions
for every reachable state. For finite types we can use generic generation for the
list of inputs to be tested. For infinite and extremely large types, like Int, the tester
has to supply a list of inputs to be used.
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8.6 TESTING NONDETERMINISTIC SYSTEMS

Until here we have assumed that each LTS is deterministic. Now we drop this
assumption. An LTS is nondeterministic if there can occur several transitions for
a given state and input. These transitions can differ in output and/or target state.
Many real life systems contain some form of nondeterminism.

Consider a simple vending machine spcified by the nondeterministic LTS:

FinalT
Coin/[Tea]� Stea

Button/[ ]� Idle
Button/[ ]� Scoffee

Coin/[Coffee]� FinalC

Initially the system is in the state Idle. If the button is pressed the machine decides
to produce either tea or coffee, but nothing happens until a coin is inserted. A
better vending machine returns to Idle after producing coffee or tea. From the
input/ouput one cannot decide in which state the machine is after pressing the
button. It is also impossible to guarantee that this machine is in state Stea by
supplying inputs, it is always possible for the machine to take the other branch.
This machine is specified in G∀ST as:

vendingSpec Idle Button = [(Stea,[]),(Scoffee,[])]
vendingSpec Stea Coin = [(FinalT,[Tea])]
vendingSpec Scoffee Coin = [(FinalC,[Coffee])]
vendingSpec state input = []

To cope with this situation we use the ioco–test [22, 23, 4]. The name ioco stands
for input/output conformance. The idea is that when an input belonging to the
specification is supplied to the IUT, the observed output must be allowed by the
specification. It is not required that all specified behaviour is implemented. When
the specification contains a nondeterministic choice at some state for a given input,
it is sufficient that at least one of these branches is implemented. This implies that
an implementation with behaviour

Idle
Button/[ ]� Scoffee

Coin/[Coffee]� FinalC

is ioco–correct with respect to the specification above: any behaviour shown by
this implementation is allowed by the specification.

The ioco–relation allows partial specifications: the implementation is allowed
to respond to inputs not occurring in the specification. Due to the restriction that
inputs should belong to the specification, this additional behaviour is not con-
sidered in the ioco-correctness. For instance the vending machine that produces
drinking chocolate after being hit, the input Bang, and the insertion of a coin is an
ioco–correct implementation of the specification above.

FinalC
Coin/[Cacao]� Scacao

Bang/[ ]� Idle
Button/[ ]� Scoffee

Coin/[Coffee]� FinalC

An implementation that can offer cacao after pushing the button and inserting
a coin, however, is incorrect.

FinalC
Coin/[Cacao]� Scacao

Button/[ ]� Idle
Button/[ ]� Scoffee

Coin/[Coffee]� FinalC
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The output Cacao after inputs belonging to the specification, Button and Coin, is
not allowed by the specification. This error is discovered during testing as soon
as the implementation produces cacao for the first time.

During the test we do not know always in which state of the specification we
are currently. For instance, after applying the input button and observing that
there is no output, the implementation might be in a state corresponding to Stea or
to Scoffee. To deal with this nondeterminism we maintain a list of possible current
states, instead of a single current state. After the input Button in the state Idle the
list of possible states is [Stea,Scoffee].

This is implemented by testIOCO. Similar to test this function yields a report
encoded in a list of strings. For clarity we use a separate function testIOCO rather
than a new operator for test.

testIOCO :: (Spec s i o) [s] (IUT i o) [[i]] -> [String] | == o
testIOCO spec states iut paths = test 1 paths
where
test n [] = ["All tests successful"]
test n [p:paths] = [toString n: ioco iut states p (test (n+1) paths)]
ioco iut [] path cont = ["Error!"]
ioco iut states [] cont = ["OK\n":cont]
ioco (IUT iut) states [i:path] cont = ioco iut2 states2 path cont
where (iutout,iut2) = iut i

states2 = [t\\s<-states, (t,specout)<-spec s i| specout==iutout]

This test does not require that the system is really nondeterministic. It can, for
instance, be used to test the conference protocol where the input is generated by
one of the algorithms discussed above. Paths can be generated by the algorithms
A1..A4, introduced in section 8.4. The needed Start function is: Start = testIOCO

(cpeSpec CPE1) [Idle] (cpeImpl CPE1) (A4 (CPElts CPE1) CPEtestSeq).
A more sophisticated ioco–test algorithm might generate the input on basis of

the observed behaviour. This on the fly testing [9] remains future work.
Note that this ioco–test is done by a small function inside the G∀ST framework.

All other test systems for model based specifications (like TorX) are huge stand
alone systems. These systems lacks the abilities to generate data types G∀ST has
and have troubles with properties of these data types.

8.7 RELATED WORK

The closest related test system for logical properties (i.e. the original G∀ST) is
QuickCheck [7, 8]. The discriminating difference between QuickCheck and G∀ST

is the systematic test data generation in G∀ST. Test data generation in QuickCheck
is based on a class, the user has to supply an instance for each new type, and
random data generation. In G∀ST the test data generation for a new type comes
for free since it is based on generics [3, 11]. Moreover, the generation of test data
is systematic from small to large without duplicates. When a property holds for
all values in a type, it is proven.

With the extension of G∀ST introduced in this paper makes it a model based
test system [6] like TorX [22, 21], Autolink [19, 14], TGV [?], and UIO Test
[9]. Basically these systems generate inputs for the system to be tested based on
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the LTS–specification. Currently these systems have difficulties with conditions
on values and the generation of these values. In G∀ST however, such conditions
can easily be expressed in first order logic. We are aware of a number of running
projects to extend model based test systems with capabilities to handle restrictions
on types. No results have been reported yet. The model based specifications in
CLEAN appear to be clearer, shorter and more general than the example specifi-
cations collected at [24].

In [8] it is shown how Quickcheck can handle systems with a state. These
systems are monad based, and specified in logic instead of an LTS. We expect
that those extensions can be incorporated into G∀ST, and that Quickcheck can be
extended with the capabilities of G∀ST.

8.8 CONCLUSION

In this paper we extended G∀ST with the ability to test software described by
model–based specifications. We used labelled transition systems for these specifi-
cations, and shown that such an LTS can be better specified by a function than data
type. The well–know ioco-relation for nondeterministic systems can be tested by
a small extension to the test library G∀ST, instead of a huge stand alone test sys-
tem.

By representing a labelled transition system as a data type and enabling the
execution of such an LTS, we are able to test systems specified by an LTS in G∀ST.
This is a significant improvement since many interesting systems are specified by
a model instead of a property in first order logic.

Moreover, such an LTS is used as a basis for test data generation. These
input sequences test that the system behaves correct for inputs that are part of
the specification. The default data generation of G∀ST is used to verify that the
system does not show undesired behaviour for other inputs.

The use of functions instead of a data type to specify an LTS has two signif-
icant advantages. The specification becomes even more concise and it is able to
handle infinite data types for labels and states.

The model based testing is well integrated with the automatic testing of logical
properties. This makes G∀ST with this extension stronger than existing model
based testers. These systems are known to be weak at testing data types. There
are several projects running to extend model based test systems with the ability to
generate data values, no results have been reported yet.
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