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PREFACE

This volume is the proceedings of the Fourth International Symposium on Trends
in Functional Programming held in Edinburgh, on September 11th and 12th, 2003.
For the first time this year the TFP symposium was co-located with the Implemen-
tation of Functional Languages workshop.

The Trends in Functional Programming series occupies a unique place in the
spectrum of functional programming events because of its highly commendable
policy of encouraging new speakers, particularly PhD students, to air their work
to a receptive and friendly audience. By encouraging the next generation of func-
tional programmers in this way the workshop helps to instill the understanding
that functional programming is more than just syntax, semantics and type sys-
tems and nourishes the essence of the subject itself.

This year the papers from the workshop have addressed the research prob-
lems at the forefront of practical application of functional languages as in the pa-
pers on real-time functional programming in Hume from Kevin Hammond, Greg
Michaelson and Jocelyn Serot and resource-bounded functional programming in
Camelot from Kenneth MacKenzie and Nicholas Wolverson.

Functional programming languages are supported by sophisticated implemen-
tations. Two papers address this aspect of functional programming research,
Jeremy Singer’s paper on static single information and the paper on the imple-
mentation of Mobile Haskell from André Rauber Du Bois, Phil Trinder and Hans-
Wolfgang Loidl.

For all of their virtues, functional programs are not automatically error-free
so the book closes with two papers on testing functional programs from Manfred
Widera and from Pieter Koopman and Rinus Plasmeijer.

I would like to thank the organisers of IFL, Abyd Al Zain, André Rauber
Du Bois, June Maxwell, Greg Michaelson, Jan Henry Nystrom and Phil Trinder
for their work in organising the workshop registrations, the excursion, delegate
packs, room bookings, audio-visuals and many other aspects of the event and for
allowing the TFP meeting to make use of their industriousness in making all of
this run smoothly.

My thanks also go to all of the authors for preparing their papers carefully
using Hans-Wolfgang Loidl’s ISTEX style file and to the referees for their thorough
and rapid reviewing of the papers which were submitted.

The Trends in Functional Programming workshop gratefully acknowledges
the support of the British Computer Society Formal Aspects of Computer Science
special interest group.

BCS

B FACS

Stephen Gilmore,
Edinburgh
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Chapter 1

Is It Time for Real-Time
Functional Programming?

Kevin Hammond'

Abstract This paper explores the suitability of functional languages for pro-
gramming real-time systems. We study the requirements of real-time systems
in general, outline typical language approaches for this domain, consider issues
relating to memory and time usage and explore how all existing functional lan-
guages, including our own language Hume, match these requirements. We con-
clude by posing some research challenges that functional language designs and
implementations must meet if they are to be regarded as suitable vehicles for real-
time systems implementation.

1.1 INTRODUCTION

Functional programs use large amounts of memory. Functional programs are slow.
It is impossible to predict memory and other resource usage for functional lan-
guages. Clearly, functional languages are therefore unsuitable for use in restricted
memory settings with strong time requirements. Or are they? This paper explores
the suitability of functional language designs for use in settings with strong limita-
tions on resource usage such as real-time systems. It compares current functional
approaches, including our own Hume notation (Sec. 1.6), with those used by other
language paradigms and outlines some challenges for functional language designs
and implementations that must be met if functional programming is to be used for
serious real-time programming.

1School of Computer Science, University of St Andrews, North Haugh, St Andrews,
Scotland, KY16 9SS. email: kh@dcs.st—-and.ac.uk.
This work has been supported by UK EPSRC grant GR/R 70545/01.



1.2 WHAT IS REAL-TIME PROGRAMMING?

The key characteristic of a real-time system is that its correctness depends not only
on its functional behaviour, but also on the (real-)time or times at which it pro-
duces those results [15]. Such systems can be classified as having either soft real-
time or hard real-time properties. Soft real-time has been defined as a situation
where “nothing really serious happens if a time constraint is not met” [3]. Exam-
ples of soft real-time systems might include computer games, telephone switches,
digital set-top boxes or digital sound cards. In contrast, hard real-time involves
guaranteed system response and is often associated with safety-critical systems or
ones with high penalty cost for failure. Examples include avionics control soft-
ware, autonomous vehicles, or software used by stock market traders. In many
situations, such as embedded systems, such real-time constraints are combined
with other resource restrictions including memory limitations and even power
consumption requirements. Despite the focus on real-time, such systems need not
necessarily be ultra high-performance. The problem is to design systems that are
sufficiently reliable and have minimal cost and acceptable performance. Doing so
in a cost-effective manner is a major bonus.

1.2.1 The Importance of Real-Time Systems

Real-time systems have been growing in importance in recent years. Numerically,
a very high percentage of all computer systems produced today have real-time
characteristics. Many of these are embedded systems. Real-time embedded sys-
tems are a fundamental part of modern everyday society in the shape of vehicle
control systems, mobile telephones, GPS and consumer appliances such as DVD
players or digital set-top boxes. These commonplace devices are additional to
those used in telecommunications, to promote automation in factories, to ensure
security and safety in the home and workplace, to increase the safety and effi-
ciency of transport and service industries and for military uses, etc. In fact, today
more than 98 per cent of all new processors are used in such systems [59].

1.2.2 Essential Properties of Real-Time Languages

McDermid identifies a number of essential or desirable properties for a language
that is aimed at hard real-time systems [44].

e determinacy — the language should allow the construction of determinate sys-
tems, by which we mean that under identical environmental constraints, all
executions of the system should be observationally equivalent;

e bounded time/space — the language must allow the construction of systems
whose resource costs are statically bounded — so ensuring that hard real-time
and real-space constraints can be met;

e asynchronicity — the language must allow the construction of systems that are
capable of responding to inputs as they are received without imposing total



ordering on environmental or internal interactions;

e concurrency — the language must allow the construction of systems as com-
municating units of independent computation;

e correctness — the language must allow a high degree of confidence that con-
structed systems meet their formal requirements [1].

These requirements may be relaxed to acceptable engineering tolerances for soft
real-time systems. Moreover, the language design must incorporate at least:

e periodic scheduling to ensure that real-time constraints are met;

e interrupts and polling to deal with connections to external devices.

1.3 LANGUAGES FOR PROGRAMMING REAL-TIME SYSTEMS

Programming languages for real-time systems may be either specially designed to
meet the requirements of the domain (domain-specific languages) or adapted from
commonly used designs. Since non-functional approaches have been described in
detail elsewhere (e.g. [21]), this paper provides only a brief overview of such
languages here. Berry [11] further considers the issue of whether to use general
purpose or domain-specific languages for real-time programming.

1.3.1 Using General Purpose Languages for Real-Time Programming

Historically, much embedded systems software/firmware was written for specific
hardware using native assembler. Rapid increases in software and the need for
productivity improvements mean that there has been a transition to the use of
C/C++ and in some cases Java.Two extreme approaches to enforcing real-time
properties in a language that is derived from a general-purpose design are exem-
plified by SPARK Ada [8] and the real-time specification for Java (RTSJ) [17].
SPARK Ada epitomises the idea of language design by elimination of unwanted
behaviour from a general-purpose language, including concurrency. The remain-
ing behaviour is guaranteed by strong formal models. In contrast, RTSJ provides
specialised runtime and library support for real-time systems work, but makes no
absolute performance guarantees. Thus, SPARK Ada provides a minimal, highly
controlled environment for real-time programming emphasising correctness by
construction,whilst Real-Time Java provides a much more expressible but less
controlled environment, without formal guarantees.

A major issue for programming real-time embedded systems is memory man-
agement: it is essential both to bound memory usage and to control memory ac-
cess time. When using general purpose languages, it is thus common to avoid re-
cursive programming constructs (which may grow the stack in an “unrestricted”
fashion) and also to avoid automatic dynamic memory allocation/collection. In
Sec. 1.4 we describe some modern approaches that may allow the safe use of such
constructs in a real-time embedded system.



1.3.2 Domain-Specific Languages for Real-Time Programming
Process Algebra Derived Notations

Process algebras such as CSP, CCS, LOTOS and the mt-calculus are formal no-
tations designed to permit reasoning about complex systems of concurrent pro-
cesses. They provide an elegant set of operators for developing concurrent sys-
tems, so allowing succinct expression of concurrent programs. Typical process
algebras use synchronous communication, support non-determinism, and allow
choice, restriction of names and relabelling at the process level. Concurrency is
usually modelled through interleaving processes. Process algebras provide a rich,
tractable semantics, using observation equivalence to hide internal behaviours.
This extensionalist approach contrasts with the intensionalist approach taken by
Petri nets, where internal behaviour is important and must consequently be ex-
posed. Explicit notions of time have been incorporated into a number of process
algebras, e.g. TCCS or Timed CSP. While process algebras are generally intended
as formal notations to allow reasoning about concurrent specifications, there have
also been some attempts to derive concrete programming notations from such
bases. For example, LOTOS (Language of Temporally Ordered Specifications)
is often used as a programming notation and several timed extensions have been
designed with the intention of dealing with real-time systems.

Finite-State Languages

Finite-state approaches are attractive when dealing with certain kinds of real-time
system, since they allow a system to be defined by composing small, easily costed
components. Such approaches often, however, prove problematic when one is
constructing complex programs: typically the finite-state machines derived for
such systems will have a large number of states, which can be difficult for the pro-
grammer to manage; moreover, relatively small extensions can cause exponential
growth in the number of states. A number of extended finite-state languages have
been proposed incorporating composition, communication and data structures to
give Turing-complete notations. Many also incorporate quantitative notions of
time. Three common examples are Estelle [20], an imperative language devel-
oped for OSI communications protocols; SDL [63], a language similar to Estelle,
which has a graphical dialect used as a design tool; and TTM [49], a graphical
notation, similar to Petri nets, used to describe real-time discrete event processes.

In synchronous dataflow languages, every action (whether computation or
communication) has a zero-time duration. In practice this means that actions
must complete before the arrival of the next event to be processed. Communi-
cation with the outside world occurs by reaction to external stimuli and by in-
stantaneous emission of responses. Because of their origin in the combination of
control theory and computer science, synchronous notations have long been pop-
ular in the area of automatic control. Since they are equivalent to the zero-delay
model of circuits, they have also more recently found employment in hardware
design [12, 61].



Several languages have applied the synchronous model to real-time systems
control. For example, Signal [28] and Lustre [50] are similar declarative notations,
built around the notion of timed sequences of values. Esterel [18, 13, 14] is an
imperative notation that can be translated into finite-state machines or hardware
circuits, and Statecharts [31, 64] is a quasi-synchronous notation with a visual
notation, which is primarily used for design, and which has been subsumed into
UML [58]. One obvious deficiency of pure synchronous notations is the lack of
expressive power, notably the absence of recursion and of higher-order combina-
tors. Synchronous Kahn networks [39, 23] incorporate higher-order functions and
recursion, but lose strong guarantees of resource boundedness. It is thus generally
accepted [11] that pure synchronous languages are not powerful enough for com-
plex systems programming and must interact with other languages and communi-
cation styles, in particular with asynchronous ones. There have consequently been
some attempts to combine the two styles of programming, for example CRP [54]
combines Esterel and CSP, and the Polis [7] hardware/software codesign system
also employs Esterel in a mixed synchronous and asychronous setting.

1.3.3 Functional Language Approaches

The main advantages of functional language approaches are compositionality,
ease of reasoning and program structuring. Typical modern language designs,
such as Standard ML or Haskell, incorporate automatic memory management
which eliminates errors arising from poor manual memory management; strong
typing which eliminates a large number of programming errors; higher-order
functions which abstract over common patterns of computation; polymorphism
which abstracts internal details of data structures; and recursion allows a num-
ber of algorithms, especially involving data structures, to be expressed in a more
natural and thus less error-prone fashion.

These language features improve productivity through raising the level of ex-
pressivity and program abstraction. However, they divorce the programmer from
the ability to directly control program execution, and thus from a simple intuitive
model of the program’s time and space behaviour. Moreover, functional language
implementations must bridge a larger gap between source language and concrete
machine than is present with lower-level languages. This has historically led to
a significant performance difference between functional languages and their im-
perative counterparts, and consequent doubt over the suitability of functional no-
tations for real-time settings, where it is necessary to program within strong time
and space bounds.

Compared with McDermid’s criteria, the primary functional language designs
thus meet the requirements for determinacy and correctness, but fail to deal effec-
tively with asynchronicity, concurrency and bounded time and space. Concurrent
extensions such as Concurrent ML [57] or Concurrent Haskell [51] add mecha-
nisms for asynchronicity and concurrency, but likewise provide no bounded time
or space guarantees. None of these notations provide mechanisms for periodic
scheduling or interrupt handling, and all use a relatively low-level notion of thread
and communication, with explicit message handling.
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Soft Real-Time Functional Languages

The most widely used soft real-time functional language is the impure, strict lan-
guage Erlang [4], a concurrent language with a similar design to Concurrent ML.
Erlang has been used by Ericsson to construct a number of successful telecommu-
nications applications in the telephony sector [16], including a real-time database,
Mnesia [68]. Erlang is concurrent, with a lightweight notion of a process. Such
processes are constructed using explicit spawn operations, with communication
occurring through explicit send and receive operations to nominated processes.
Finally, rather than exploiting static analysis order to ensure that hard dynamic
resource bounds are achieved, the weakly typed Erlang relies exclusively on dy-
namic timeouts to meet soft real-time targets.

In contrast, Embedded Gofer is a strongly-typed purely functional program-
ming language with a two-level structure, separating process and functional lay-
ers. It uses a monadic notation with explicit register access, processes and com-
munication, similar in kind to other explicitly concurrent programming notations.
Unlike Erlang, Embedded Gofer is non-strict, raising questions about accurate
static costing of programs (as opposed to dynamic measurement of typical run-
time behaviour, which is not adequate to guarantee real-time behaviour). A simi-
lar approach has been taken by Fijma and Udink, who introduced special language
constructs into Twentel to control a robot arm [27].

RT-FRP [66] builds on functional reactive programming embedded as a domain-
specific language in Haskell to construct time and space bounded programs. RT-
FRP is separated into a reactive part (comparable to a synchronous system) and a
base part that must be guaranteed terminating and resource-bounded. It exploits
tail-recursion across reactive components to encapsulate time and space resource
usage within a single reactive component, and also supports integration across a
series of reactive components. The work provides a formal operational semantics
for resource consumption, which can be used to construct an automatic analysis to
determine space and time bounds. Since RT-FRP is based on Haskell, of course,
the underlying language implementation technology may affect timings and space
usage through non-strict evaluation and non-real-time garbage collection. Conse-
quently, in the current system, these bounds cannot be guaranteed. A different
language substrate might, however, provide a better basis for these requirements.
Finally, RT-FRP does not yet consider issues of periodic scheduling, and events
are handled without regard to real-time concerns, such as dynamic memory allo-
cation, making them unsuitable for low-level interrupt handling.

Finally, a number of reactive applications have been written in more con-
ventional functional languages without recourse to even an incremental garbage
collector or attempting to formally bound time or space behaviour. Examples
include the impure Concurrent ML [57] and the purely functional Concurrent
Haskell [51], Concurrent Clean [48] and Eden [19]. An interesting example of
such work is the games engine and games written in Concurrent Clean [67].



1.4 BOUNDING TIME AND SPACE USAGE

Garbage collection is both expensive and can introduce “embarrassing pauses”
into a program execution. When the application is either soft- or hard- real-time,
such pauses may be unacceptable. Three approaches have been taken to deal with
this problem: real-time garbage collection techniques attempt to bound the cost of
garbage collections to an acceptable level, thereby eliminating arbitrary pauses;
while static analysis or compile-time garbage collection attempts to bound mem-
ory usage statically or eliminate garbage collection through memory reuse; finally,
language designs may be restricted so as to automatically bound time and/or mem-
ory usage.

1.4.1 Real-Time Dynamic Memory Management

Effective management of dynamically allocated memory for a real-time system
involves controlling the costs of both allocation and collection, ensuring that
the system is non-disruptive in terms of meeting the application’s real-time con-
straints. In memory constrained settings, it is also necessary to avoid wastage
through fragmentation and other overheads. Developing an automatic memory
management system for real-time systems represents a serious technical chal-
lenge. The Real-Time Specification of Java states, for example: “...the expert
group believes, that no garbage collector algorithm or implementation is known
... which could be considered appropriate for all real-time systems” [17]. Many
non-disruptive memory management systems require additional hardware sup-
port, which is not generally available, while others allocate memory only in fixed-
size units, imposing potentially high memory overheads.

Most real-time memory management techniques use Incremental garbage col-
lectors. Incremental copying techniques (e.g. [43]) achieve fast allocation but
can have high memory overheads and incur time overheads in the form of write-
and/or read-barriers. Non-copying techniques such as those using incremental
reference-counting [26] do not incur the overheads of copying, but may have
poor memory utilisation owing to external fragmentation (requiring an incremen-
tal compactor) and reference counts.

A number of such collectors have been proposed for use in functional lan-
guage implementations. For example, Virding et al. have proposed an incremental
collector for Erlang [2]; Wallace and Runciman have implemented an incremen-
tal collector for Embedded Gofer that has been used for undergraduate teaching
at York University; and Cheadle et al. have implemented a similar incremental
collector for the Glasgow Haskell compiler [24], though this has not yet been
incorporated in the production release.

1.4.2 Static Analyses for Bounding Memory Usage

Compile-time garbage collection techniques attempt to eliminate some or all heap-
based memory allocation through strong static means. One approach [60] that has



recently found favour is the use of region types. Such types allow memory cells
to be tagged with an allocation region, whose scope can be determined statically.
When the region is no longer required, all memory associated with that region
may be freed without invoking a garbage collector. In non-recursive contexts,
the memory may be allocated statically and freed following the last use of any
variable that is allocated in the region. In a recursive context, this heap-based
allocation can be replaced by (possibly unbounded) stack-based allocation.

Hofmann’s linearly-typed functional programming language LFPL [33, 35]
uses linear types to determine resource usage patterns. A special resource type
called “diamond” is used to count constructors. First-order LFPL definitions can
be computed in linearly bounded space, even in the presence of general recursion.
More recently, Hofmann and Jost have introduced [35] an automatic inference of
these resource types and thus of heap-space consumption, using linear program-
ming; at the same time, the linear typing discipline is relaxed to allow analysis of
programs typable in a usage type system such as in [41, 6, 52].

Extensions of LFPL to higher-order functions have been studied in [34] where
it was shown that such programs can be evaluated using dynamic programming
in time 0(21’(”)) where n is the size of the input and p is a fixed polynomial. By
a result of Cook this is equivalent to polynomial space plus an unbounded stack.
With unrestricted use of higher-order functions, it remains an unsolved problem
to turn this theoretical result into an efficient compilation scheme. If higher-order
functions are used restrictively, as in the language C, then no closures are required
and they can be “compiled away” without penalty.

Building on earlier work on sized types [37, 56], we have developed an au-
tomatic analysis to infer the upper bounds on evaluation costs for a simple, but
representative, functional language with parametric polymorphism, higher-order
functions and recursion [65]. Our approach assigns finite costs to a non-trivial
subset of primitive recursive definitions. It is fully automatic in producing cost
equations without any user intervention, even in the form of type annotations,
though obtaining closed-form solutions to the costs of recursive definitions cur-
rently requires the use of an external solver. The first-order subset of this work
has been applied to our resource-bounded language Hume (Sec. 1.6.1).

1.4.3 Worst Case Execution Time Analysis

Static analysis of worst-case execution time (WCET) in real-time systems is an es-
sential part of the over-all response time and quality of service analysis [21, 53].
However, WCET analysis is a challenging issue, as the complexity of interac-
tion between the software and hardware system components often results in very
pessimistic WCET estimates. Recent work on WCET analysis for Java and C
programs [9, 10] has employed a combination of analytical (in particular, prob-
abilistic) and experimental (e.g. trace generation) techniques in order to reduce
the degree of pessimism in WCET. However, the disadvantage of this approach is
that it starts from a low-level code representation (Java byte-code or compiled ma-
chine code) which makes it difficult to capture and analyse the high-level program



structure and therefore to make predictions based on the programmer’s intentions.

In an extension of work undertaken in EU project Daedalus, AbsInt have de-
veloped accurate cost models for hardware instruction and cache behaviour for
a number of architectures [40]. These models allow precise costing of execu-
tion times based on static analysis of machine code instructions. Compared with
the probabilistic models that are commonly employed by WCET analyses, this
approach allows vastly improved confidence in the quality of the analysis. Con-
sequently, the reliability of real-time estimates can be raised dramatically for real
architectures.

1.4.4 Syntactically Restricted Functional Languages

Other than our own work [56, 65], we are aware of three main studies of for-
mally bounded time and space behaviour in a functional setting [22, 36, 62]. All
three approaches are based on restricted language constructs to ensure that bounds
can be placed on time/space usage. In their recent proposal for Embedded ML,
Hughes and Pareto [36] have combined the earlier sized type system [37] with
the notion of region types [60] to give bounded space and termination for a first-
order strict functional language [36]. Their language is restricted in a number of
ways: most notably in not supporting higher-order functions and in requiring the
programmer to specify detailed memory usage through type specifications. The
practicality of such a system is correspondingly reduced. Burstall [22] proposed
the use of an extended ind case notation in a functional context, to define in-
ductive cases from inductively defined data types. While ind case enables static
confirmation of termination, Burstall’s examples suggest that considerable ingen-
uity is required to recast terminating functions based on a laxer syntax. Turner’s
elementary strong functional programming [62] has similarly explored issues of
guaranteed termination in a purely functional programming language. Turner’s
approach separates finite data structures such as tuples from potentially infinite
structures such as streams. This allows the definition of functions that are guaran-
teed to be primitive recursive, but at a cost in addtional programmer notation.

1.5 FUNCTIONAL LANGUAGES FOR RELATED PROBLEM AREAS

Functional Languages for Mobility

Mobile languages focus on issues of security and portability rather than on time
deadlines or absolute space usage. Mobile Haskell [55] is one functional notation
that has explored the design space of mobile systems through exploiting a portable
byte-code implementation that is capable of exporting and managing tasks across
a distributed system.

A primary concern of mobile systems is to ensure that code that is generated
at a remote site does not have unwanted local effects. These effects might be to
access or alter local system state, so violating privacy, compromising security or
damaging local data; or to either deliberately or accidentally overload local system



resources. It follows that providing formally verifiable certificates of resource us-
age is important to mobile systems code. These certificates might include bounds
on time and space usage and use a proof-carrying code approach.

This issue has been explored by the EU Framework V Mobile Resource Guar-
antees project in the shape of the Camelot and Grail notations [42]. Camelot is a
resource-aware functional programming language that can be compiled to a sub-
set of JVM bytecodes; Grail is a functional abstraction over these bytecodes. This
abstraction possesses a formal operational semantics that allows the construction
of a program logic capable of capturing program behaviours such as time and
space usage [5]. The objective of the work is to synthesise proofs of resource
bounds in the Isabelle theorem prover and to attach these proofs to mobile code
in the form of more easily verifiable proof derivations. In this way the recipient
of a piece of mobile code can cheaply and easily verify its resource requirements.

Functional Hardware Description Languages

In a slightly different context, functional hardware description languages [25, 38]
also necessarily provide hard limits on time and space cost bounds. Like con-
ventional finite-state notations, computation in such languages is necessarily re-
stricted by the requirement to produce static hardware structures from the func-
tional descriptions. The use of higher-order functions and recursion is thus re-
stricted to forms that can be mapped to small finite structures. Examples of such
notations include the Lava hardware description language for specifying FPGA
circuits, which has been developed in association with XiLinx Corporation [25],
the functional derivation approach, for deriving FPGA circuits from Haskell spec-
ifications [32], the Hawk hardware verification language [38], the Hydra system
for logic circuit specification, and Mycroft and Sharp’s statically allocated lan-
guage for hardware description [47]. Like RT-FRP, most of these notations restrict
recursion, if present, either to tail-recursion or to specific packaged, unfoldable
recursive forms which can be used to generate repetitive circuits.

1.6 THE HUME LANGUAGE

The Hume language design attempts to maintain the essential properties and fea-
tures required by the embedded systems domain (especially for transparent time
and space costing) whilst incorporating as high a level of program abstraction as
possible. We have designed Hume as a three-layer language [30]: an outer (static)
declaration/metaprogramming layer, an intermediate coordination layer describ-
ing a static layout of dynamic processes (“boxes”) and the associated devices, and
an inner layer describing each process as a (dynamic) mapping from patterns to
expressions. The inner layer is stateless and purely functional. Since boxes map
bounded inputs to bounded outputs, real-time, bounded space responses to input
requests can be ensured provided the functional expression layer can be deter-
mined to use finite space and execute in bounded time.

Rather than attempting to apply cost modelling and correctness proving tech-
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Full Hume
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Full Hume
s ~N PR—-Hume
PR—Hume Primitive Recursive functions
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Non-recursive higher—order functions
FSM—-Hume Non-recursive data structures

FSM-Hume
Non-recursive first—order functions

HW-Hume Non-recursive data structures
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N J No functions
N J Non-recursive data structures

FIGURE 1.1 Hume Design Space

application predicted | actual | excess | predicted | actual | excess
heap | heap stack | stack

pump controller 483 425 | 14.5% 166 162 | 2.5%

railway layout 1065 946 11% 310 310 0%

vehicle simulator 99408 | 98446 | 0.98% 319 298 6.5%

FIGURE 1.2 Heap and stack usage in words for FSM-Hume applications

nology to an existing language framework either directly or by altering the lan-
guage to a greater or lesser extent (as with e.g. RTSj [17]), our approach is to
design Hume in such a way that we are certain that formal models, proofs and the
associated analyses can be constructed so as to ensure formally bounded time and
space behaviour. We envisage a series of overlapping Hume language levels as
shown in Fig. 1.1, where each level adds expressibility to the expression seman-
tics, but either loses some desirable property or increases the technical difficulty
of providing formal correctness/cost models.

Hume thus meets McDermid’s criteria as follows: determinacy is enforced
at the language level, through a deterministic operational semantics; bounded
time/space is ensured by the formal models and analyses for each Hume level;
asynchronous concurrency is provided through concurrent boxes, with buffered
communication and asynchronous pattern-matching rules; and correctness is as-
sisted by the use of a purely functional expression layer and through the provision
of formal language semantics. The design also incorporates periodic scheduling,
interrupts and device polling.
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1.6.1 Real Time and Space Behaviour of FSM-Hume Programs

We have applied our stack and heap analysis to a number of programs written
using the FSM-Hume [46] language level': a simple mine drainage pump con-
troller; a model railway layout system with safety conditions; and a simulation
of an autonomous vehicle controller [45]. Details of these applications can be
found at http://www.hume-lang.org. Fig. 1.2 shows results that are obtained from
our analysis and prototype implementation. Note that any analysis (including one
conducted by hand) must produce an over-estimate to account for cases that by
chance do not arise during the actual dynamic execution. With this caveat, we can
see that the analysis is a good predictor of both stack and heap usage. Typically,
we obtain better predictions of stack usage than heap. The memory used for the
stack is also less than the heap usage.

We have ported the Hume implementation to the RTLinux real-time operat-
ing system. Our measurements [29] show that the total memory requirements
of the pump application, including heap and stack overheads as calculated here,
RTLinux operating system code and data, Hume runtime system code and data,
and the abstract machine instructions amount to less than 62KB. RTLinux itself
accounts for 34.4KB of this total. The results can be extrapolated to the other
applications discussed here: the vehicle simulator would require much less than
512KB of dynamic memory, for example. Clearly, these results indicate both that
tight dynamic memory bounds can be determined and that these bounds are suffi-
ciently small to allow implementation on typical modern embedded hardware.

To verify that our system can also meet real-time requirements, we have run
the mine drainage control system continuously for a period of about 6 minutes
under RTLinux on the same 1GHz Pentium III processor (effectively locking out
all Linux processes during this period). At this point, the simulation has run
to completion. Clock timings have been taken using the RTLinux system clock,
which is accurate to the nanosecond level. The primary real-time constraint on the
mine drainage control system is that it must produce an alarm within 3ms if the
methane level rises above some threshold. In fact, we have measured this delay
to be approximately 150us (20 times faster than required). Moreover, over the six
minute time period, the maximum delay in servicing any input is approximately
2.2ms.

In order to demonstrate the robustness of the implementation within strong
memory bounds, the vehicle simulation was run continuously under RT-Linux
as a real-time program for a period of 36 hours using our calculated memory
settings. The program ran without any memory accesses outside the allocated
area and without “growing” or “leaking” memory: essential requirements for real-
time control applications. Total dynamic memory usage (including code, runtime
stack, and runtime libraries) was 105340 words (412KB) of memory.

which admits first-order non-recursive functions in the functional expression layer
and a form of tail recursion in the coordination layer, analogously to RT-FRP.
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1.7 THE CHALLENGES

To summarise, while several functional notations have been proposed for soft real-
time programming, Hume is the only language that we are aware of that has been
shown to deal with hard real-time systems in practice, providing strong verifiable
guarantees of space (and potentially) behaviour and running under a true real-time
operating system. To date this has been achieved only for the FSM-Hume level,
however, which roughly corresponds to RT-FRP or synchronous dataflow designs
plus first-order non-recursive functions. It is not clear whether formal analyses
can be developed to deal with richer levels of Hume, including generalised forms
of recursive definition and higher-order functions.

The primary issue facing functional languages as vehicles for programming
real-time systems is whether they can meet the necessary strong time and space
requirements, whilst simultaneously providing an effective means for program-
ming with such behavioural concepts. Languages for real-time programming must
incorporate notions of low-level behaviour including time, interrupts and schedul-
ing. They must also accurately support (formal and informal) reasoning about
time and space usage from the high-level source. This may be harder for func-
tional languages to achieve because of the high-level programming abstractions
such as higher-order functions and polymorphic typing that make them attractive
programming mechanisms. The challenge is to incorporate low level notions into
the high-level notation without compromising abstraction capability. This may
involve a first-class treatment of real time and space and/or special language con-
structs. Such treatments are generally lacking in the literature.

At the same time, it is necessary to develop compilers for real-time functional
languages that are both (adequately) high performance and highly verifiable. A
number of languages (such as OCAML and SAC) demonstrated that strict func-
tional languages can have extremely good time performance, and it is common
to provide formal descriptions of functional abstract machine implementations in
terms of formal or semi-formal transformation from the source level. The chal-
lenge is to combine the latter techniques with a mechanism such as Hofmann’s
verifiable resource certificates and to apply this to high-performance functional
language compilers. Moreover, optimising compilers must give proper attention
to space as well as time usage.

Cost analyses can help to provide information about time and space usage on
an expression or program level. However, the current state of such analyses is that
they require severe restrictions to the programming notations that can be used.
For example, LFPL guarantees strong space bounds in a first-order context for
programs that are linear [33]. Our own sized time analysis [65] will handle more
general recursive, polymorphic programs, but the forms of recursion are restricted
to simple inductions over natural numbers or linear data structures such as lists (in
the form of primitive recursive cost equations) and there can be loss of quality in
some important cases. Clearly more research is required if such analyses are to
be exploited by Joe Functional Programmer.

Advances in compile-time garbage collection technologies such as regions [60]
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are welcome, but it does not seem possible to eliminate all dynamic memory al-
location except in restricted settings such as FSM-Hume. Transforming heap al-
locations into stack allocations, as can happen with regions, increases memory
residency, and the solution of reusing space through tail recursion is only a partial
one. Thus, there is a need for good real-time garbage collectors. Unfortunately,
non-disruptive garbage collectors tend to be accompanied by high memory over-
heads. The challenge is to devise a (hybrid?) memory management system that
minimises memory overhead while providing real-time guarantees.

Finally, the majority of research into bounded time and space behaviour for
functional languages has focused on strict notations. It is both much easier to
provide strong formal cost models for strict languages and to provide implemen-
tations that accurately reflect intuitions of time and space behaviour. Because
evaluation is usually demand-based in a non-strict notation, it is an interesting
and open question whether such demand can be predicted in such a way that it is
possible to determine formal time or space bounds for the evaluation of a term.
Analytical techniques will thus require good cost models to be combined with
good resource usage models. Alternatively, it may be possible to produce a hy-
brid notation where real-time code is evaluated eagerly and can thus exploit tech-
nology for strict notations, while non-real-time code is evaluated lazily to provide
good compositional capability. The challenge is to produce such a notation whose
total space usage can be bounded in a sensible fashion.

1.8 CONCLUSION

Functional programming is potentially attractive for real-time systems because of
its property of strong determinacy and the promise of easily constructing formal
proofs of correctness. Moreover, higher-order functions and other mechanisms
allow rapid program construction and restructuring (refactoring), leading to po-
tential productivity advantages. However, issues relating to time and space man-
agement are key to the area, and until recently these have not been seriously con-
sidered by the community. Progress is being made on theoretical approaches that
are geared towards bounding time and space usage, and many of these are couched
in functional terms. There is, however, a gap between this and most existing prac-
tical work.

We have identified a number of challenges that are faced by functional lan-
guage designers and implementors if real-time functional systems are to become
truly feasible. Chief amongst these are serious consideration of time and space
behaviour. It is necessary to raise time into the programming language in such a
way that the real-time programmer can express real-time deadlines and constraints
and can guarantee that the program meets those constraints. It is also necessary to
provide strong verifiable models of dynamic memory allocation that can be used
to guarantee memory bounds and to ensure that costs associated with automatic
memory management do not adversely impact real-time deadlines.
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Chapter 2

FSM-Hume is Finite State

Greg Michaelson,! Kevin Hammond? and Jocelyn Serot?

Abstract Hume is a domain-specific programming language targeting resource-
bounded computations. It is based on generalised concurrent bounded automata,
controlled by transitions characterised by pattern matching on inputs and recursive
function generation of outputs. Here we discuss the design of FSM-Hume, a strict
finite state subset of Hume, and suggest that it is indeed classically finite state.

2.1 INTRODUCTION

We would like to be able to prove automatically the correctness, equivalence, ter-
mination, space use and complexity of arbitrary programs but these properties
are all undecidable for Turing-complete (TC) languages [1]. Some decidability
may be achieved by restricting the types and constructs in a language. Languages
based on primitive recursion, such as Turner’s elementary strong functional pro-
gramming [6] or Burstall’s inductively defined functions [2], seem unwieldy and
to lack clear programming methodologies. Languages based on finite state au-
tomata (FSA), such as Promela with the related Spin model checker [4], have
proved much more successful, but of relatively limited application and with vast
state spaces, constraining verification of substantial programs.

Hume [3] is based on a generalisation of standard FSA transition notation to
encompass a full TC language. Concurrent processing is based on explicit mul-
tiple communicating FSA, called boxes. Within Hume, an explicit distinction
is made between the coordination language, which describes external properties
and configurations of boxes, and the expression language, which describes in-
put/output transitions within boxes. Finally, in full Hume, both sub-languages
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share a rich, polymorphic type system. These design decisions enable us to iden-
tify layers of language in Hume, with different decidable properties, which may
be supported by high-level cost models [5].

A FSA with output (Mealy machine) is usually characterised by transition
quadruplets of the form: (old state,input) — (new state,out put)
where old state, input, new state and output are finite sets, for example, the Mealy
machine which checks that a binary sequence has alternating 1s and 0s, shown in
Fig. 2.1, has transitions:

(ZERO,0) -> (ZERO,ERROR)
(ZERO,1) -> (ONE,OK)
(ONE,0) -> (ZERO,OK)
(ONE,1) -> (ONE,ERROR)

However, both the diagrammatic and state transition characterisations are mis-
leading. First of all, it is implicit that a FSA cycles indefinitely, communicating
with an external environment to consume single input symbols and generating sin-
gle output symbols. Secondly, it is implicit that a FSA retains its state in between
cycles. The external input/output links and state retention are made explicit for
the above example in Fig. 2.2.

In general, for one FSA it need not be specified where the input comes from
or where the output goes to: both could be linked to arbitrary sources and sinks,
including to other FSA. Similarly, in principle, the old and new state need not
be a direct feedback link but could again come via arbitrary sources and sinks,
including other FSA.

The state and I/O symbol sets for a FSA must be finite but they may also
be very big. Given a large enough set that maps to integers, then complex data
structures may be encoded using either Godel numbers within the set, or, more
familiarly, structured ASCII sequences whose concatenated bit values are integers
within the set.

Noting that the left and right hand sides of traditional transitions are like two-
element tuples, we generalise them to: pattern — expression. Here the left hand
side pattern is composed of variables, constants and structures. Note the wildcard
pattern * which ignores the corresponding inputs without consuming it. Similarly,
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new state

old state

FIGURE 2.2. Mealy machine with explicit I/O and state

the right hand side expression may involve the components of the pattern, in

particular the variables it introduces.

Thus, we generalise a FSA to a box with multiple input and output wires,
where the state is no longer necessarily distinguishable from the input or output.
Operationally, a box cycles repeatedly, trying to match transition patterns against
the current values on the input wires, treated as a single top-level tuple value. For
a match to succeed, constants and constructors must appear in the same positions
in the pattern and input value. Variables in the pattern are then instantiated to
corresponding components of the input value. After a successful match, the output
wires are instantiated from the tuple of values generated by the transition’s right

hand side.

For example, we can write the above Mealy machine in Hume as:

type BIT = int 1;

data STATE = ZERO | ONE;
stream Input from "std _in";
stream Output to "std out";

box Bits
in (oldstate::STATE,input::BIT)
out (newstate::STATE,output::string)
match
(ZERO,0) -> (ZERO, "ERROR\n") |
(ZERO,1) -> (ONE,"OK\n") |
(ONE,0) -> (ZERO,"OK\n") |
(ONE,1) -> (ONE, "ERROR\n");
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wire Bits (Bits.newstate initially ZERO,Input)
(Bits.oldstate,Output);

Full Hume has constructs found in a contemporary polymorphic functional
language, including recursive, unbounded, user-defined types. Finite State Ma-
chine Hume (FSM-Hume) is the Hume layer with finite types on wires and only
simple operations, such as boolean and arithmetic, in transition expressions.

It might be thought that allowing operations whose state space is larger than
the input space, such as multiplication, would transcend finite state-ness. How-
ever, for fixed precision numbers, it is possible to build a FSA that will carry out
multiplication for values whose multiples do not exceed the largest allowed value,
for example by encoding the appropriate look up table.

It might also be thought that Hume suffers from the same problems as other
FSA-based languages, in particular state space explosion for practical verification
of realistic programs. However, given appropriate transformation techniques, it
should be possible to convert multiple boxes employing an impoverished expres-
sion language to fewer boxes using a richer expression language. Gross properties
of box internals would still have to be established, using, say, automated theorem
proving, but the state space of the overall box system would have been reduced.
The balance between model checking and theorem proving in establishing proper-
ties of Hume programs is an interesting avenue of research which is not discussed
further here.

A more serious concern is to clarify in what sense a multi-box Hume program
is actually still a FSA, given the presence of multiple inputs and outputs, and the
withering away of the state. We first discuss the status of a single box program
and then explore multi-box programs.

Note that the following sections provide an informal framework for possible
formalisation and are intended to convey conviction rather than establish correct-
ness.

2.2 SINGLE BOX FSM-HUME PROGRAMS ARE FINITE STATE

Consider a Hume box with multiple inputs and outputs, and no distinguished state.
As noted above, multiple values from finite domains, represented as a fixed width
tuple, can be encoded as a single symbol, given a large enough space of symbols.
Thus a box with multiple inputs or outputs may be treated as if it had just one
input and output, each bearing a tuple value.

A multi-state FSA may be converted to a single state FSA as follows. The state
symbol in each transition is combined with the input/output symbols in tuples.
Each transition is then extended with a new single state value, in the state position
on the left and right hand sides. In general:

(old state,input) — (new state,out put) —»
(single state, (old state,input)) — (single state, (new state,out put))
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(ZERO,1)/(ONE,OK)

(ONE,1)/(ONE,ERROR)

(ZERO,0)/(ZERO,ERROR)

(ONE.0Y/(ZERO.OK)

FIGURE 2.3. Single state Mealy machine for alternating 1s and Os

For example, the Mealy machine above might be changed as shown in Fig. 2.3,
with transitions:

(ONESTATE, (ZERO,0)) -> (ONESTATE, (ZERO,ERROR))
(ONESTATE, (ZERO,1)) -> (ONESTATE, (ONE,OK))
(ONESTATE, (ONE,0)) -> (ONESTATE, (ZERO,OK))
(ONESTATE, (ONE, 1)) -> (ONESTATE, (ONE,ERROR))

Using this technique, a Hume box with multiple inputs and outputs, and no
distinguished state, may be converted directly to a single state FSA with sin-
gle composite input and output tuples, provided it has no variables in transition
patterns. A variable in a pattern corresponds to successfully matching any value
in the domain for the variable’s type. Thus, to fully convert a Hume transition
with variables to pure FSA form, it must be replaced by multiple copies, with one
copy for each combination of variable type domain values.

2.3 MULTI-BOX FSM-HUME PROGRAMS ARE FINITE STATE

We also need to convince ourselves that a multi-box FSM-Hume program is still
finite state. If such a program may be converted into a single box FSM-Hume
program then that program is finite state by the preceding argument.

Hume box scheduling is well defined as sequential, round robin where each
box takes in it turns to execute once, in fixed sequence. For a multi-box program,
we combine the box transitions and introduce an explicit state value to ensure
sequentiality. Essentially, each transition for the combined box will correspond
to a transition of one of the separate boxes, augmented with additional left hand
side patterns and right hand side expressions to circulate the wire values for all
the other boxes without changing them.
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In general, a successful transition for any one box must be able to transmit all
possible wire values for the other boxes: any one box must be able to succeed if its
inputs are matched successfully, regardless of the values on the wires for the other
boxes. We employ Hume variables to generalise arbitrary input values, noting that
they may in turn be replaced by all possible values of the corresponding types for
pure FSAness, at the cost of a huge explosion in code size.

Suppose there are N boxes and box i has I; inputs (in;;...in;;) and O; outputs
(out;y...outo,).

For each box, we construct a top level pattern template:

P;: vary varp...varj,

with a unique variable for each input. We also construct a top level expression
template:

E;: varl ,varfz...varfoi
where var) ; is the new variable corresponding to the box input to which output
out;; is connected.

We then form a top level template for the transitions of the composite box
by concatenating together the box pattern templates on the left and expression
templates on the right:

(P1,P...Py) = (E1,E>...EN)

This template accepts arbitrary inputs and sends them to the appropriate outputs
unchanged.

Suppose box i has 7; transitions, where the kth is: #;: patty, — expix
Then for each transition of box i, t;;, we make a copy of the composite box’s top
level template, replace the pattern template P; with the pattern patt;;, and replace
the expression template E; with the expression expj:

(Pl...pal‘tik...PN) — (El...expik...EN)

Where the expression is a condition, the right hand side of the template must
be pushed through to the condition options. Similarly, where the expression is a
definition, the right hand side of the template must be pushed through to the result
expression.

After this stage, where any remaining pattern template has a variable which
has been replaced by an expression on the right hand side, then that variable
should be replaced by the “ignore” pattern *: there should not be an input value
present for that variable because a new value has been output for it. Similarly,
where any expression template has a variable that was replaced in a pattern tem-
plate, then that variable must be replaced by the “no output” operator *: the input
has been consumed and cannot be re-circulated.

We are then left with common variables between left and right hand sides
which consume inputs and reproduce them as outputs, to act as the inputs again
on the next cycle. The effect is as if the corresponding wires had been ignored.
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Thus, all variables on the left/right of a transition which are not in that transition’s
replacement pattern may be replaced by the “ignore” pattern/“no output” *.

Next, we introduce an explicit state which changes on each transition. We
precede each composite pattern with the number of the corresponding box and
each composite expression with the number of the next box:

(i’*"-"*7pattik’*""’*) — (l+ 19*""*7expika*7"-7*)

or, for the last box, with the number of the first box.

Finally, we combine the wiring for each box, again adding a new feedback
wire for the new explicit state.

The effect is two-fold. From a Hume perspective, we have constructed a single
box which emulates multi-box scheduling. From a FSA perspective, we can easily
convert the composite box into a FSA, with an explicit state, and composite input
and output, using the technique described above.

24 EXAMPLE: VEHICLE SIMULATION

We now illustrate this transformation with reference to the simulation of a simple
autonomous vehicle, which tries to follow a white line by repeatedly analysing
a camera image consisting of one row of bits from a two-dimensional bit-map
scene, effectively a map of the terrain the vehicle is traversing. The vehicle has
a location consisting of its Cartesian coordinates in terrain space and its angle of
orientation relative to the horizontal. The vehicle sends its current location to the
environment. If the vehicle has not “bumped” into the edge of the terrain then the
environment returns an image corresponding to the vehicle’s position. The vehicle
then sends the image to the control which calculates a new orientation to try to
bring the white line back into the centre of the image. Finally, the vehicle changes
its position and requests the next image from the environment. The vehicle also
sends monitoring information to standard output:

box env in (loc::location) out (v::image,b::bool)
match loc -> if within scene loc

then (lookat loc, false)

else (null image, true);

wire env (vehicle.loc initially init loc)
(vehicle.v, vehicle.b);

box vehicle
in (v::image,b::bool,ploc::location,c::real)
out (loc::location,m::monitor,
loc’::location,v’::image)
match
(v, false, pl, c) ->
let nl = move pl c
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in (nl, (v,pl,false,c,’\n’), nl, v)
| (v, true, pl, c) ->

(init loc, (v,pl,true,c,’\n’),

init loc, lookat init loc);

wire vehicle
(env.v,env.b,vehicle.loc’ initially init loc,
control.da initially 0.0)
(env.loc,std out,vehicle.ploc,control.v);

box control in (v::image) out (da::real)
match

wire control (vehicle.v'’) (vehicle.c);

The simulation runs in real time and the vehicle never deviates more than a few
bits to either side of the line.

2.4.1 Single-box FSM-Hume

First we construct the pattern templates and then the expression templates using
the variable names from the pattern templates. We adopt the convention of naming
template variables by preceding each input wire’s name with a letter to denote its
box name:

control pattern: c_v; env pattern: e_loc;

vehicle pattern: v_v,v_b,v_ploc,v_c

control expression: v_c; env expression: v_v,v_b;
vehicle expression: e_loc,0,v_ploc,c_v

ie. the control output is wired to the vehicle input c; the env output is
wired to the vehicle inputs v and b; etc.
The overall transition template is:

c_v,e_loc,v_v,v_b,v_ploc,v_c ->
v.c,v._v,v_b,e loc,o,v_ploc,c v

Consider the first transition for the control. In the template, we replace c_v on
the left with the transition pattern, v_c on the right with the transition expression
and all other variables with *.

Consider the transition for the env. In the template, we replace e_1oc on the
left with the pattern. The transition expression is a conditional expression so we
leave the condition in place, replace the option expressions with the template right
hand side and insert the components expressions in place of the corresponding
template variables v_v and v_b. Again, all other variables are replaced by *.
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Consider the first transition for the vehicle. In the template, we replace v_v,
v_b, v_ploc and v_c with the pattern components. There is a local definition on
the right so we leave the declaration part in place, replace the expression with
the template right hand side and insert the components of the expression in place
of the corresponding template variables e_loc, o, v_ploc and c_v. Again, all
other variables are replaced by *.

Numbering the boxes control/l, env/2 and vehicle/3, we add state pat-
terns and expressions to each transition:

box vehicle

in (s::integer,c _v::image,e loc::location,
v_v::image,v_b::bool,v_ploc::location,v_c::command)

out (s’::integer,c da::real,e v::image,e b::bool,
v_loc::location, v_m::monitor,v_loc’::location,
v_v'::image)

match

(1l<< 14 14 4 4 4 4 lll 4 4 14 14 14 14 >>I*I*I*I*I*) ->

(21*11001*1*1*1*) ->
if within scene loc
then (3,*,lookat loc, false,*,*,*,*)
else (3,*,null image, true,*,*,*,*) |

(3,*,*,v, false, pl, c) ->
let nl = move pl c
in (1,*,*,*,nl, (v,pl,false,c,’\n’), nl, v) |

Finally, we amalgamate the box wires and add appropriate wiring for the state, to
start with the env box in state 2:

wire vehicle
(vehicle.s’ initially 2,vehicle.v_v’,
vehicle.v_loc initially init loc,
vehicle.c_da initially 0.0)
(vehicle.s,vehicle.v_c,vehicle.v_v,vehicle.v b,
vehicle.e loc, output,vehicle.v_ploc,vehicle.c _v);

The single box version of the vehicle simulation gives the same behaviour as
the multi-box version, on the full Hume interpreter and on the HAM. It is also
substantially faster and requires substantially less space.
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2.5 CONCLUSION

We have explored the specific properties of the Hume finite state subset FSM-
Hume to demonstrate informally that it is indeed finite state. In so doing, we
derived a transformation to convert multi-box FSM-Hume programs to a single
box and applied it to the simulation of a simple line following vehicle. We now
plan to formalise and prove the transformation.

The application of the transformation to the vehicle simulation was performed
by hand. We also plan to automate the transformation and to perform further
experimentation to determine whether this transformation is a useful optimisation
for general FSM-Hume programs.

This work has been partly supported by UK EPSRC grant GR/R 70545/01 and
by a French CNRS grant.
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Chapter 3

Camelot and Grail:
Resource-Aware Functional
Programming for the JVM

K. MacKenzie! and N.Wolverson'

Abstract 'We describe the functional language Camelot, which is a language of
the ML family with extensions for explicit management of heap storage, and the
intermediate language Grail, which is a functional form of JVM bytecode. A
scheme for transforming Camelot into Grail is described. We also give some fig-
ures for execution times which show that Camelot programs perform reasonably
well when compared with Java equivalents.

3.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project [15] aims to develop a Proof
Carrying Code (PCC) [16] framework to endow mobile computer programs with
guarantees of resource bounds. Typical resources are time, heap space, system
calls, and stack size. Our goal is to provide a resource-safe programming language
to be used for writing mobile code. This language, which is called Camelot, is a
high-level functional language which is compiled into JVM bytecode. The class
files produced by the compiler will be equipped with a proof that the programs
obey specified resource constraints and can then be transmitted across a network
in the usual way. The consumer of the mobile code can then independently verify
the resource constraints by checking the proof attached to the code; if verification
is successful then execution can proceed as normal. This technique provides an
unforgeable guarantee that the claimed resource limits will not be exceeded.

ILaboratory for the Foundations of Computer Science, School of Informatics, The
University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK; Email:
kwxm@inf.ed.ac.uk,N.Wolverson@sms.ed.ac.uk
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In this paper we will describe Camelot and its translation to JVM bytecode.
Camelot is similar to a subset of O’Caml, the main novelty lying in extensions
for performing in-place modifications to heap-allocated data-structures. These
features are similar to those described in by Hofmann in [6] but include some
extra extensions for freelist management. To retain a purely functional semantics
for the language in the presence of these extensions a linear type system can be
employed: in the present implementation, linearity can be enforced via a compiler
switch. We are in the process of enhancing the compiler by the addition of other,
less restrictive type systems which still allow safe in-place modifications. More
details will be given below.

Crucial design choices for the compilation are transparency and an exact spec-
ification of the compilation process. The former ensures that the compilation does
not modify the resource consumption in an unpredictable way. The latter provides
a formal basis for using resource information inferred for the high-level language
in proofs on the intermediate language.

3.2 CAMELOT

Camelot is a strongly typed language of the ML family with features added to
enable close control of heap usage. The syntax of Camelot (which is similar to a
subset of the syntax of the O’Caml language [17]) is given below. The terms ry-
con, cname, fname and var refer to type constructors, constructor names, function
names and variable names respectively: all of these are names in SML style. Con-
structor names must begin with an upper-case letter, whereas all other identifiers
begin with a lower-case letter. The term fyvar refers to a type variable, which is
a name beginning with a single quote. Literal constants (const below) are similar
to those in O’Caml. Optional items are enclosed in angular parentheses.

program = (typedecseq) (valdecseq) (funimpseq)
typedecseq = typedec (typedecseq)
typedec ::= type ((tyvary...tyvar,)) tycon = conbind
conbind = cname (of ty) *...xty,) ( | conbind)

| tcname (| conbind)

ty = unit|bool|int |float |string|tyvar
| ty array | tyseq tycon | ty, => ... =>1ty; => 1ty

valdecseq ::= valdec (valdecseq)

valdec = wvalvar: ty|val fname: ty
Sfunimpseq = funimp ( funimpseq)

funimp = let (rec) fundecseq
fundecseq = fundec (and fundecseq)

fundec = fname varseq = expr
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expr = const|var | uop expr | expr op expr | fname expr ...expr,
| cname Cexpry, ... ,expr,) | cname (expry, ..., expr,)Qvar
| Let pat = expr in expr | if expr then expr else expr
| match expr with match | free var | (expr) | begin expr end
match = mrule | match)
mrule = con((paty,...,pat,)) =>expr

| con{(paty,...,pat,))@pat > expr

pat = var|._
uop = ~-|-.|not
op == arithop|cmp|”|&&| ||
arithop == +|=|*|/|mod|+.|-.|*.]|/.
cmp = =|<|<=|>=|>|=.|<.|<=.|>=.|>.
There are a number of built-in operators: the operators +,-, ...> apply to inte-

ger values, whereas +.,-., ... apply to floating-point values. The boolean expres-
sion e && e; is an abbreviation for if e; then e; else false; similarly e; | | e;

represents if e; then true else e;. The remaining binary operator is ~, which
performs string concatenation. There are also three unary negation operators.

In addition there are a number of predefined functions such as print_int,
print_int newline, and int_of_float, whose names should explain them-
selves. The same_string function is used to compare strings for equality. There
are functions for handling arrays, but we will not use these here. Camelot also
includes a built-in polymorphic 1ist type. In order to execute a program the user
must include a function start: string list -> unit ; when the class file is
executed the start function will be executed with an argument consisting of a
list containing the command-line arguments to the program.

Note that in some contexts the symbol _ can be used instead of a variable
name. This feature can be used to discard unwanted values such as unit values
returned by print statements.

3.2.1 Basic Features of Camelot

The core of Camelot is a standard polymorphic ML-type functional language.
One can define datatypes in the normal way:

type intlist = Nil | Cons of int * intlist
type ’a polylist = NIL | CONS of ’a * ’a polylist
type (’a, ’b) pair = Pair of ’a *’Db

To simplify the compilation process we prohibit the unit type in datatype
definitions. This does not cause any loss of generality since the excluded datatypes
are isomorphic to types of the kind which we do allow. Values belonging to user-
defined types are created by applying constructors and are deconstructed using
the match statement:
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let rec length 1 = match 1 with
Nil -> 0
| Cons (h,t) -> 1+length t

let test () = let 1 = Cons(2, Cons(7,Nil))
in length 1

The form of the match statement is much more restricted than in SML or
O’Caml. There must be exactly one rule for each constructor in the associated
datatype, and each rule binds the values contained in the constructor to variables
(or discards them by using the pseudo-variable _). Complex patterns are not avail-
able, and must be simulated with further match and if statements.

As can be seen from the example above, constructor arguments are enclosed
in parentheses and are separated by commas. In contrast, function definitions and
applications which require multiple arguments are written in a “curried” style:

let add a b = atb
let £ xyz=add x (add y 2z)

Despite this notation, the present version of Camelot does not support higher-
order functions; any application of a function must involve exactly the same num-
ber of arguments as are specified in the definition of the function.

3.2.2 Diamonds and Resource Control

Our current implementation of Camelot targets the Java Virtual Machine, and
values from user-defined datatypes are represented by heap-allocated objects from
a certain JVM class. Details of this representation will be given in Sec. 3.4.1.

Consider the following function which uses an accumulator to reverse a list of
integers (as defined by the intlist type above).

let rec rev 1 acc = match 1 with
Nil -> acc
| Cons (h,t) -> rev t (Cons (h,acc))
let reverse 1 = rev 1 Nil

This function allocates an amount of memory equal to the amount occupied by
the input list. If no further reference is made to the input list then the heap space
which it occupies may eventually be reclaimed by the JVM garbage collector.

In order to allow more precise control of heap usage, Camelot includes con-
structs allowing re-use of heap cells. There is a special type known as the diamond
type (denoted by <>) whose values represent blocks of heap-allocated memory,
and Camelot allows explicit manipulation of diamond objects. This is achieved
by equipping constructors and match rules with special annotations referring to
diamond values. Here is the reverse function rewritten using diamonds so that
it performs in-place reversal:

let rec rev 1 acc = match 1 with
Nil -> acc
| Cons (h,t)@d -> rev t (Cons (h,acc)@d)
let reverse 1 = rev 1 Nil
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The annotation “@d” on the first occurrence of Cons tells the compiler that
the diamond value d is to be bound to a reference to the space used by the list
cell. The annotation on the second occurrence of Cons specifies that the list cell
Cons (h,acc) should be constructed in the diamond object referred to by d, and
no new space should be allocated on the heap.

One might not always wish to re-use a diamond value immediately. This can
sometimes cause difficulty since such diamonds might then have to be returned as
part of a function result so that they can be recycled by other parts of the program.
For example, the alert reader may have noticed that the list reversal function above
does not in fact reverse lists entirely in place. When the user calls reverse, the
invocation of the Nil constructor in the call to rev will cause a new list cell to
be allocated. Also, the Nil value at the end of the input list occupies a diamond,
and this is simply discarded in the second line of the rev function (and will be
subject to garbage collection if there are no other references to it). The overall
effect is that we create a new diamond before calling the rev function and are left
with an extra diamond after the call has completed. We could recover the extra
diamond by making the reverse function return a pair consisting of the reversed
list and the spare diamond, but this is rather clumsy and programs quickly become
very complex when using this sort of technique. To avoid this kind of problem,
unwanted diamonds can be stored on a freelist for later use. This is done by using
the annotation “@.” as in the following example which returns the sum of the
entries in an integer list, destroying the list in the process:

let rec sum 1 acc = match 1 with
Nil@_ -> acc
| Cons (h,t)@_ -> sum t (acc+h)

The question now is how the user retrieves a diamond from the freelist. In
fact, this happens automatically during constructor invocation. If a program uses
an undecorated constructor such as Nil or Cons(4,Nil) then if the freelist is
empty the JVM new instruction is used to allocate memory for a new diamond
object on the heap; otherwise, a diamond is removed from the head of the freelist
and is used to construct the value. It may occasionally be useful to explicitly
return a diamond to the freelist and an operator free: <> -> unit is provided
for this purpose.

There is one final notational refinement. The in-place list reversal function
above is still not entirely satisfactory since the Nil value carries no data but
is nonetheless allocated on the heap. We can overcome this by redefining the
intlist type as

type intlist = !Nil | Cons of int * intlist

The exclamation mark directs the compiler to represent the Nil constructor by
the JVM null reference. With the new definition of intlist the original list-
reversal function performs true in-place reversal: no heap space is consumed or
destroyed when the reverse function is applied. The ! annotation can be used
for a single zero-argument constructor in any datatype definition. In addition, if
every constructor for a particular datatype is nullary then they may all be preceded
by!, in which case they will be represented by integer values at runtime. We have
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deliberately chosen to expose this choice to the programmer (rather than allowing
the compiler to automatically choose the most efficient representation) in keeping
with our policy of not allowing the compiler to perform optimisations which have
unexpected results on resource consumption.

The features described above are very powerful and can lead to many kinds
of program error. For example, if one applied the reverse function to a sublist
of some larger list then the small list would be reversed properly, but the larger
list could become partially reversed. Perhaps worse, a diamond object might be
used in several different data structures of different types simultaneously. Thus a
list cell might also be used as a tree node, and any modification of one structure
might lead to modifications of the other. The simplest way of preventing this kind
of problem is to require linear usage of heap-allocated objects, which means that
variables bound to such objects may be used at most once after they are bound.
Details of this approach can be found in Hofmann’s paper [6]. Strict linearity
would require one to write the list length function as something like

let rec length 1 = match 1 with
Nil -> Pair (0, Nil)
| Cons(h,t)@ed ->
let p = length t
in match p with
Pair(n, t1)@dl -> Pair(n+1l, Cons(h,t1)@d)e@dil

It is necessary to return a new copy of the list since it is illegal to refer to 1 after
calling length 1.

Our compiler has a switch to enforce linearity, but the example demonstrates
that the restrictive nature of linear typing can lead to unnecessary complications.
Aspinall and Hofmann [1] give a type system which relaxes the linearity condition
while still allowing safe in-place updates, and Michal Kone¢ny generalises this
still further in [9, 10]. As part of the MRG project, Kone¢ny has implemented a
typechecker for a variant of the type system of [9] adapted to Camelot.

A different approach to providing heap-usage guarantees is given by Hofmann
and Jost in [7], where an algorithm is presented which can be used to statically in-
fer heap-usage bounds for functional programs of a suitable form. In collaboration
with the MRG project, Steffen Jost has implemented a variant of this inference al-
gorithm for Camelot. The implementation is described in [8].

Both of these implementations are currently stand-alone programs, but we are
in the process of integrating them with the Camelot compiler.

One of our goals in the design of Camelot was to define a language which
could be used as a testbed for different heap-usage analysis methods. The inclu-
sion of explicit diamonds fits the type systems of [1, 9, 10], and the inclusion of
the freelist facilitates the Hofmann-Jost inference algorithm, which requires that
all memory management takes place via a freelist. We believe that the fact that
implementations of two radically different systems have been based on Camelot
indicates that our goal was achieved successfully.
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3.3 GRAIL

Instead of translating directly to JVM bytecode, the Camelot compiler targets
the intermediate language Grail (Guaranteed resource allocation intermediate lan-
guage). This is a small typed language which allows us to represent (a subset of )
JVM bytecode in a functional form (see [13] or [23] for more information about
the Java Virtual Machine and JVM bytecode). The design of Grail was inspired
by the AJVM language of [11]. We will give a brief overview of Grail here. For
further details see [14] or [3].

A Grail program defines a single Java class, potentially containing static fields,
instance fields, static methods and instance methods. Field definitions are straight-
forward. The real interest of Grail lies in method definitions, which are repre-
sented in a functional form whose syntax is given below.

methoddef = method modifiers rty jname ({ty, vary,--- ,ty, varp)) = methodbody
methodbody = 1let (valdec ---valdecy,) ( fundec ---fundec,) in result end
valdec = valvar=primop | val () = primop
fundec = funfname((ty; vary,--- ,ty, vary)) =funbody
funbody = result|let (valdec;---valdec,) in result end
result = primres | if value test value then primres else primres
primres = primop | O | fname ({vary,--- ,vary))
primop = value | binop value value | new <condesc> ((valuey,--- ,value,))
| invokevirtual var <methoddesc> ({valuey,--- ,value,))
| invokestatic <methoddesc> ({value,--- ,valuey))
| invokespecial var <methoddesc> ({valuey,--- ,value,))

| getfield var <fielddesc> | putfield var <fielddesc> value
| getstatic <fielddesc> | putstatic <fielddesc> value
| checkcast longjname var | instanceof longjname var

| itof value | ftoi value | arrayop

arrayop = empty value ty | lengthvar | get var value | set var value value
condesc = longjname ({ty|, - ,ty,))
methoddesc  ::=  rty longjname ({ty;,--,1y,))
fielddesc ::= ty longjname
test = =|<>|<|<=]>]|>=
binop = add|sub|mul|div|mod
value = var|intvalue | floatvalue | stringvalue | null [longjname]
ty = int|float|string|longjname |ty[]
rty = ty|void
modifiers = (public |protected |private) (static) (final)

The terms longjname and jname refer to Java-style class, field and method names;
items of type longjname may contain dots, whereas those of type jname may
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not. In addition, Java method names for initialisers may end with .<init> or
.<clinit>. The terms var and fname denote local variable names and function
names respectively. Expressions of the form val () = ... are used to invoke
operations such as putfield which do not return a result, and also to call void
methods.

As a simple example of Grail, the following code defines a class containing a
method for calculating the factorial of an integer.

class Fac {

method public static int fac (int n) =

let
val b = 1
fun f(int n, int b) = if n < 1 then b else f_else(n,b)
fun f_else(int n, int b) =
let val b = mul b n

val n = subn 1

in f(n,b) end

in f(n,b) end

3.3.1 The Grail Type System

Grail implements a type system similar to a subset of the JVM type system. The
int and float types are the same as corresponding JVM types. There is also
a collection of reference types which represent Java class instances and arrays.
These can be used to access any Java class or method from Grail. The concrete
syntax also includes a string type which is the same as java.lang.String.
One major difference between the Grail and JVM type systems is that there is no
subtyping in Grail. The JVM allows an object x from a class C to be used in any
context where an object from a superclass S of C is expected, but Grail requires
object types to match exactly. The object x must be explicitly upcast to S using the
checkcast operation before the assignment takes place. This causes unnecessary
casting operations to occur in the corresponding bytecode, but enables consider-
able simplifications in typechecking for Grail; furthermore, the Camelot compiler
does not make any use of the Java inheritance features at present, so this point
does not cause any problems.

3.3.2 Compilation of Grail

We will describe some features of the Grail compilation process. Full details can
be found in [14].

In Grail, named variables are in one-to-one correspondence with JVM local
variables. The JVM operand stack is used in a very restricted way in that interme-
diate results may not be left on the stack for later use: they must immediately be
stored in a variable, leaving the stack empty. Thus to add three integers one must
add the first two and store the result in some intermediate variable x, say, and then
add the final variable to x.
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The primitive operations (the class primop above) correspond directly to atomic
JVM operations and can be translated more or less verbatim (except for the Grail
new operation, which combines object creation and initialisation).

Each Grail method is compiled into a JVM method. The JVM is an imperative
machine with branches and goto statements, but these instructions are not visible
in Grail. Instead, flow control within a Grail method is handled by calls to local
functions defined in the method. These function calls are very restricted: they
may only occur in tail position, and we require that whenever a function is called
the names of its actual parameters must exactly match those used in its declara-
tion. This convention allows a very simple translation to JVM bytecode. Function
bodies are translated into basic blocks of bytecode, and every function call may
assume that its arguments are already stored in the correct registers, so that the
call can be translated into a direct jump.

The structure of Grail (in particular the calling convention) means that there is
a very close correspondence between functional Grail and the imperative bytecode
obtained by compiling it. In fact, the resulting bytecode is so idiomatic that it is
easy to translate it back to the original Grail source, which is a useful feature
from the PCC viewpoint. In addition, the transparency of the correspondence is
important from the point of view of resource accounting. For example, the calling
convention means that no extra code which might affect execution time or stack
size has to be introduced to place arguments in the correct registers.

The restricted form of Grail bytecode also has interesting implications for the
JVM verification process. One example of this is that the structure of the lan-
guage in fact guarantees that valid Grail will compile to verifiable bytecode (we
do not have a formal proof of this, but we are confident that it is true); this means
that we have a syntactic guarantee of verifiability, whereas the verifiability of ar-
bitrary bytecode can only be established algorithmically, by actually running the
verification algorithm.

It also turns out that bytecode obtained from Grail is much easier to verify
than arbitrary bytecode. For example, one of the conditions that bytecode must
satisfy during verification is that at any particular point in a program the number
and types of the elements on the operand stack are independent of the path taken
to reach that point. To establish this requires an iterative dataflow analysis to cal-
culate fixpoints for stack types (see [13, Sec. 4.9.2]), which can consume a lot
of time and space (see [12, Sec. 2.3] for some concrete figures). In [12] Leroy
examines JVM bytecode verification in detail and shows that if some simple re-
strictions are imposed on the form of the bytecode (notably that the stack be empty
at each jump destination) then checking this property is considerably simpler. In
fact, Leroy shows that the entire verification process can be carried out in con-
stant space (in practice, less than 100 bytes). The improvement is such that byte-
code verification can be performed even with the extremely limited resources of a
smartcard. This has hitherto been infeasible, and the standard approach has been
for a trusted agent to perform off-card verification of bytecode prior to download-
ing. It is easily seen that Grail satisfies Leroy’s conditions, which is encouraging
since we hope to use it with devices with limited resources.
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Some other properties of Grail are studied in [3]: among other things it is
shown that the structure of Grail has connections with the well-known static
single-assignment form.

We have implemented programs called gdf and gf which perform the trans-
lation from Grail to JVM and back. These can be downloaded from [15].

3.4 COMPILING CAMELOT TO GRAIL

We have implemented a Camelot compiler (available from [15]) which operates
by translating Camelot into Grail and then into JVM bytecode. The compiler is
a whole-program compiler whose back end is essentially the gdf program men-
tioned above. This section will describe the translation from Camelot to Grail.

3.4.1 Representing Data

Our compilation strategy is type-preserving in that well-typed Camelot programs
are translated into well-typed Grail programs. This increases the robustness of the
compiler since implementation errors often lead to type errors in the Grail code
which are then detected by the Grail typechecker in the back end of the compiler.

The basic types bool, int, float and string are represented by the obvious
Grail types. The unit type causes difficulties since there is no corresponding type
in Grail. It is in fact possible to “compile away” occurrences of the unit type: this
is described in an extended version of this paper available from [15].

Objects belonging to user-defined datatypes are represented by members of
a single JVM class which we will refer to as the diamond class. Objects of the
diamond class contain enough fields to represent any member of any datatype
defined in the program. Each instance X of the diamond class contains an integer
tag field which identifies the constructor with which X is associated. The diamond
class also contains a static field pointing to the freelist. The freelist is managed via
the static methods alloc (which returns the diamond at the head of the freelist,
or creates a new diamond by calling new if the freelist is empty), and free which
places a diamond object on the freelist. The diamond class also has overloaded
static methods called make and £ill, one instance of each for every sequence
of types appearing in a constructor. The make methods are used to implement
ordinary constructor application; each takes an integer tag value and a sequence
of argument values and calls alloc to obtain an instance of the diamond class,
and then calls a corresponding £il1l method to fill in the appropriate fields with
the tag and the arguments. The £i11 methods are also used when the programmer
reuses an existing diamond to construct a datatype value.

It can be argued that this representation is inefficient in that datatype values
are often represented by JVM objects which are larger than they need to be. This
is true, but is difficult to avoid owing to the type-safe nature of JVM memory
management which prevents one from re-using the heap space occupied by a value
of one type to store a value of a different type. We wish to be able to reuse heap
space, but this can be impossible if objects can contain only one type of data.
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With the current scheme one can easily write a heapsort program which operates
entirely in-place. List cells are large enough to be reused as heap nodes and this
allows a heap to be built using cells obtained by destroying the input list. Once
the heap has been built it can in turn be destroyed and the space reused to build
the output list. In this case, the amount of memory occupied by a list cell is larger
than it needs to be, but the overall amount of store required is less than would be
the case if separate classes were used to contain list cells and heap nodes.

In the current context it can be claimed that it is better to have an inefficient
representation about which we can give concrete guarantees than an efficient one
which about we can say nothing. Most of the programs which we have written so
far use a limited number of datatypes so that the overhead introduced by the mono-
lithic representation for diamonds is not too severe. However, it is likely that for
very large programs this overhead would become unacceptably large. One possi-
bility which we have not yet explored is that it might be possible to achieve more
efficient heap usage by using dataflow techniques to follow the flow of diamonds
through the program and detect datatypes which are never used in an overlapping
way. One could then equip a program with several smaller diamond classes which
would represent such non-overlapping types.

These problems could be avoided by compiling to some platform other than
the JVM (for example to C or to a specialised virtual machine) where compaction
of heap regions would be possible. The Hofmann-Jost algorithm is still applica-
ble in this situation, so it would still be feasible to produce resource guarantees.
However, it was a fundamental decision of the MRG project to use the JVM,
based on the facts that the JVM is widely deployed and very well-known and
that resource usage is a genuine concern in many contexts where the JVM is used.
Our present approach allows us to produce concrete guarantees at the cost of some
overhead; we hope that at a later stage a more sophisticated approach (such as the
one suggested above) might allow us to reduce the overheads while still obtaining
guaranteed resource bounds.

3.4.2 Compilation of Programs

We compile a Camelot program to a single class with one static method for each
function in the program. This technique is somewhat problematic since recursive
function calls translate to recursive calls on JVM methods, which are expensive
and can potentially lead to overflow of the JVM stack.

Functions which call themselves in a tail-recursive manner can safely be com-
piled into recursive Grail function calls, and a compiler option is available which
enables this feature (see [24], which also includes a proof that the optimisation
has no effect on heap usage). However, mutually tail-recursive functions are diffi-
cult to program within a single stack frame because JVM methods can only have
one entry point and there is a limit on the size of method bodies.

Various techniques are known which can overcome this problem (for example,
the trampoline [22, §6.2], Baker’s “Cheney on the MTA” technique [2]). Unfortu-
nately, all of these strategies tend to require extra heap usage and thus compromise
the transparency of the compilation process. Because of this, at present we sim-
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ply compile each function as a separate method and implement (non-recursive)
tail calls as standard method calls, which carries a risk of stack overflow in pro-
grams which make a lot of use of mutual recursion. We will return to this problem
in our closing remarks.

3.4.3 Initial Transformations

Compilation begins with a phase in which several transformations are applied to
the abstract syntax tree.

Monomorphisation

Firstly, all polymorphism is removed from the program. For polymorphic types
(aty,...,01) ¢ such as o 1ist we examine the entire program to determine all in-
stantiations of the type variables and compile a separate datatype for each distinct
instantiation. Similarly, whenever a polymorphic function is defined the program
is examined to find all uses of the function and a monomorphic function of the
appropriate type is generated for each distinct instantiation of types.

Normalisation

After monomorphisation there is a phase referred to as normalisation which trans-
forms the Camelot program into a form (Normalised Camelot) which closely re-
sembles Grail.

First, the compiler ensures that all variables have unique names. Any du-
plication is resolved by generating new names. This allows us to map Camelot
variable names directly onto Grail variable names (which in turn map onto JVM
local variable locations) with no danger of clashes arising.

We next have to simplify boolean expressions. Grail has no direct equivalent
for expressions such as m < n outside 1f-expressions and we deal with this by re-
placing such expressions with ones of the form if m < n then true else false.

Next, we give names to intermediate results in many contexts by replacing
complex expressions with variables. For example, the expression f(a+ b+ ¢)
would be replaced by an expression of the form let tj =a+b in let f, =
ti +c in f t. The introduction of names for intermediate results can produce
a large number of Grail (and hence JVM) variables. After the source code has
been compiled to Grail the number of local variables is minimised by applying a
standard register allocation algorithm (see [24]).

A final transformation ensures that let-expressions are in a “straight-line”
form. After all of these transformations have been performed expressions have
been reduced to the following form:

. / _ /.
expr = expr |let pat=expr in expr
expr’ = primexp | if atom cmp atom then expr else expr

| if atom then expr else expr | match var with match end
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primexp = atom | uop atom | atom arithop atom | free var
| fname atom ...atomy, | cname (atomy,...,atomy) (Qvar)
atom = const|var

(undefined syntactic classes remain the same as those in the full syntax of Camelot

given earlier). The structure of normalised Camelot (which is in fact in a type of
A-normal form [5]) is sufficiently close to that of Grail to make it fairly easy to
translate from the former to the latter. Another benefit of normalisation is that it
is easier to write and implement type systems for normalised Camelot. The fact
that the components of many expressions are atoms rather than complex subex-
pressions means that typing rules can have very simple premisses.

3.4.4 Compilation of Expressions

The Camelot expressions labelled by the term primexp in the normalised syntax
above will be referred to as primitive expressions. They are significant because
they correspond directly to primitive operations in Grail and thus admit an easy
translation. This is the key to compilation of normalised Camelot into Grail.
A normalised Camelot expression consists of a nested sequence of let expres-
sions. The translation procedure essentially translates an expression (in particu-
lar, a function body) into a collection of mutually recursive Grail local functions
by descending down the chain of let-expressions, emitting a Grail valdec for
each term of the form 1let p = e with e primitive. This process terminates when
a non-primitive expression e is encountered; at this point ¢ must be a branch of
some kind, and the compiler recursively generates a new local function for each
of the subexpressions occurring in the branch, terminating the original function
with a Grail if-result (or, in the case of a match statement, a block of code im-
plementing a sequence of such results). This a highly simplified description of the
translation to Grail; space constraints preclude a full description, but the extended
version of this paper (see [15]) contains an appendix giving a full and precise
specification of the translation.

3.5 PERFORMANCE

We have described a procedure for compiling Camelot into Grail, and thence to
JVM. This is a long process involving several different stages, and one might
suspect that it would introduce inefficiencies into the final bytecode programs. In
this section we will present figures comparing the run-time of various Camelot
programs with versions of the same programs written in Java and in Scheme,
which we hope will demonstrate that performance is not compromised unduly.

Java programs were compiled using the standard Sun Java compiler. To com-
pile Scheme programs for the JVM the Bigloo Scheme compiler [20, 19] was
used.
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Timings were obtained using the JFluid JVM profiling tool [4]; this uses a
special version of the Sun JVM (version 1.4.2) which has been modified to allow
dynamic instrumentation of class files. The figures which are obtained appear to
be fairly accurate since one can focus on particular areas of the program without
incurring an overhead by profiling irrelevant code. By default the JVM performs
adaptive compilation to native code for frequently-executed code sequences. This
feature is not available in JFluid, so all execution was performed by interpretation.
However, we felt that this would still give a realistic (worst-case) estimate of
program times. Also, JVMs for limited-memory devices generally provide no
alternatives to interpretation. The timings were carried out on a 366MHz Pentium
2 processor under Linux. All timings are in milliseconds and represent an average
taken over five runs.

Firstly we consider several list-reversal programs. Each program generates
a list consisting of the integers between 1 and 1,000,000 and then proceeds as
follows:

e A reverses the list in place.

e B reverses the list in place, but replaces each element x by x 4 x.
o C returns a reversed copy of the list, leaving the original intact.
e D returns a reversed copy with each element doubled as in B.

We timed the execution of the entire program (including construction of the input
list) and also of the reversal function in isolation. The results follow below.

A B
main reverse main reverse
Java 6289ms 507ms 6653ms 850ms
Camelot || 11263ms | 1684ms | 11684ms 1785ms
Scheme || 28884ms | 3645ms | 58595ms | 30734ms
C D
main reverse main reverse
Java 10824 ms 5009ms | 10670ms 5215ms
Camelot || 20285ms | 10439ms | 20580ms | 10676ms
Scheme 31686ms 6829ms | 54178ms | 28822ms

We note that the Camelot versions are slower than the Java versions but are
generally faster than the Scheme versions. There are several reasons why Camelot
is slower than Java.

(1) The requirement that all intermediate results in Grail are explicitly named
means that the bytecode often contains pairs of instructions where a value is stored
in a local variable and then immediately recalled for further use (and the stored
copy is never used again). This certainly has the effect of slowing down the ex-
ecution of the bytecode, but the decision to use this form of code was made de-
liberately in the hope that the regularity of the bytecode would simplify formal
analyses.
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(2) In Camelot it is not possible to modify individual fields within an object:
when a value is constructed in a recycled Camelot diamond, the fields in the cor-
responding object are filled in by a method call (to the £i11 method mentioned
in 3.4.1). All fields must be explicitly rewritten, even if some have not changed
(see the reversal example in 3.2.2, which is essentially the same as the one used in
program A). In contrast, in Java one can perform list-reversal simply by changing
pointers in list cells and leaving the other values stored in the cells intact. This
accounts for the fact that simple in-place reversal in Java is three times as fast as
in Camelot, but when the entries in the list are modified, as in program B, the
Java version is only twice as fast as the Camelot version. The fact that a method
call is used, rather than a sequence of putfield operations, also adds some extra
overhead. Again, this was a conscious design decision: a constructor application
in Camelot corresponds directly to a single method application, and it was felt
that this correspondence would simplify analysis.

We performed the Scheme comparisons as we thought it would be interesting
to compare Camelot’s performance with that of another functional language run-
ning on the JVM. It was somewhat surprising to discover that while Scheme took
six times as long as Java to perform simple in-place list reversal, it took more than
36 times as long to perform reversal with doubling. This appears to be due to the
fact that Scheme’s numeric + operator is overloaded. Inspection of the bytecode
produced by the compiler reveals that Bigloo handles overloading by representing
numeric values in a boxed form as Java objects. When elements in the list are dou-
bled this requires the + operator to examine the boxed values to determine their
numeric type, then to call an appropriate specialised addition operator, and finally
to re-box the result prior to insertion in the modified list. Since this happens for
each of the million elements in the list it is not surprising that there is a consid-
erable slowdown. By using the Scheme +fx operator in place of + it is possible
to use Scheme fixnum values, which Bigloo encodes as JVM int values. When
program B is modified in this way the execution time for the reversal function
reduces to about 14000ms. This figure is still about 16 times as long as the Java
version: we suspect that this is largely due to the fact that dynamic typechecking
is still required before the addition operator is actually called.

The following table gives timings for some other programs:

Fibonacci | Quicksort | Insertion Sort
Java 221229ms | 21009ms 23963ms
Camelot || 239039ms | 34166ms 42415ms
Scheme || 709598ms | 42368ms 73412ms

The first column gives times for calculation of the 40th Fibonacci number by
a direct implementation of the recursive definition. Execution of the program
consists mostly of recursive method invocations, so the performance of Java and
Camelot is very similar. Again Scheme performs badly owing to dynamic type-
checking. The figures given represent a calculation using finxum values; when
these were replaced by the default boxed integer values, the execution time rose
to 6577734ms, or about 1 hour and 49 minutes.

43



The second column of the table gives times for execution of an in-place quick-
sort algorithm on a list of 25586 words (the text of [21]), and the third column
gives times for an in-place insertion sort of a list consisting of the first 5000 words
of the same list. Again Java performs best, with Camelot second and Scheme
third, but in these examples the differences are less marked than in some of the
previous examples.

Opverall the figures show that Camelot programs compare favourably with Java
programs. Furthermore, it is fairly clear which features of Camelot are responsi-
ble for its poorer performance. As suggested above, the somewhat rigid structure
of the bytecode obtained from Camelot programs is due to deliberate design de-
cisions which were made in order to allow a precisely-defined and transparent
compilation procedure which would facilitate program analysis. It is possible that
some of these restrictions could eventually be relaxed (thereby improving perfor-
mance) without compromising the validity of our analyses.

We have only considered execution time here. Of course, our main interest is
in memory usage. JFluid also allows one to collect memory profiling information,
and this indicates that the heap usage of the Java and Camelot programs was
exactly as expected. Unfortunately we were unable to obtain any heap profiling
for the Scheme programs since they appeared to terminate in a nonstandard way
which the JFluid system was unable to deal with properly.

3.6 FINAL REMARKS

We have described a technique for compiling Camelot into JVM bytecode via
the functional intermediate language Grail; we believe that this technique satis-
fies the strict requirements of the PCC framework. We have also provided some
performance figures which indicate that the rigid specification of the compilation
procedure does not degrade execution speed unduly.

There are various ways in which Camelot could be extended. The lack of
higher-order functions is inconvenient, but the resource-aware type systems which
we use are presently unable to deal with higher-order functions, partly because of
the fact that these are normally implemented using heap-allocated closures whose
size may be difficult to predict. A possible strategy for dealing with this which
we are currently investigating is Reynolds’ technique of defunctionalization [18]
which transforms higher-order programs into first-order ones, essentially by per-
forming a transformation of the source code which replaces closures with mem-
bers of datatypes. This has the advantage that extra space required by closures is
exposed at the source level, where it is amenable to analysis by the heap-usage
inference techniques mentioned earlier.

A similar strategy can be used to eliminate mutual tail-recursion. Given a
set of mutually recursive functions # whose results are of type t, we define a
datatype s which has for each of the functions in # a constructor with arguments
corresponding to the function’s arguments. The collection of functions ¥ is then
replaced by a single function £: s -> t whose body is a match statement which
carries out the computations required by the individual functions in #. In this
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way the mutually recursive functions can be replaced by a single tail-recursive
function, and we already have an optimisation which eliminates recursion for such
functions. This technique is somewhat clumsy and care is required in recycling
the diamonds which are required to contain members of the datatypes required
by s. Another potential problem is that several small functions are effectively
combined into one large one, and there is thus a danger that that 64k limit for
JVM methods might be exceeded. Nevertheless, this technique does overcome
the problems related to mutual recursion without affecting the transparency of the
compilation process unduly, and it might be possible for the compiler to perform
the appropriate transformations automatically. We intend to investigate this in
more detail.

As an extension in a different direction, the second author has recently ex-
tended the language (and the compiler) to include object-oriented features and
allow the use of pre-existing Java libraries: details can be found in [25].

As mentioned earlier, complex resource-aware type-systems and inference
methods have been implemented for Camelot and will soon be integrated with
the present compiler. Eventually, the MRG project aims to have a certifying com-
piler which will take a Camelot program and automatically provide a proof that it
abides by a given resource policy.
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Chapter 4

O’Camelot: Adding Objects
to a Resource-Aware
Functional Language

Nicholas Wolverson and Kenneth MacKenzie!

Abstract 'We outline an object-oriented extension to Camelot, a functional lan-
guage in the ML family designed for resource aware computation. Camelot is
compiled for the Java Virtual Machine, and our extension allows Camelot pro-
grams to interact easily with the Java object system, harnessing the power of Java
libraries and allowing Java programs to incorporate resource-bounded Camelot
code.?

4.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project aims to equip mobile bytecode
programs with guarantees that their usage of certain computational resources
(such as time, heap space or stack space) does not exceed some agreed limit,
using a Proof Carrying Code framework. Programs written in the functional lan-
guage Camelot will be compiled into bytecode for the Java Virtual Machine. The
resulting class files will be packaged with a proof of the desired property and
transmitted across the network to a code consumer— perhaps a mobile phone, or
PDA. The recipient can then use the proof to verify the given property of the pro-
gram before execution. There is thus an unforgeable guarantee that the program
will not exceed the stated bounds.

The core Camelot language, as described in [8], enables the programmer to
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write a program with a predictable resource usage; future work will provide each
program with a proof that it does not exceed a stated resource bound. A com-
piler exists for this language, compiling polymorphic resource-aware Camelot
programs to the JVM. However, only primitive interaction with the outside world
is possible, through command line arguments, file input and printed output. To be
able to write a full interface for a game or utility to be run on a mobile device,
Camelot programs must be able to interface with external Java libraries. Similarly,
the programmer may wish to utilise device-specific libraries or Java’s extensive
class library.

Here we describe an Object-Oriented extension to Camelot primarily intended
to allow Camelot programs to access Java libraries. It would also be possible
to write resource-certified libraries in Camelot for consumption by standard Java
programs or indeed use the object system for OO programming for its own sake,
but giving Camelot programs access to the outside world is the main objective.

42 CAMELOT

Camelot is an ML-like language with additional features to enable close control of
heap usage. Certain restrictions are made in order to enable a compilation process
which is transparent in terms of resource usage and to allow analysis of resource
usage by various novel type systems.

The concrete syntax of Camelot is very close to O’Caml, as described in [1].
The following program defines a polymorphic list datatype and functions sort
and insert performing an insertion sort on such lists.

type ’‘a lst = INil | Cons of 'a * ’'a 1lst
let rec insert n 1 d =
match 1 with Nil -> Cons(n, Nil)@d
| cons(h,t)@d’ ->
if n <= h then Cons(n, Cons(h,t)@d’)ed
else Cons(h, insert n t d)ed’
let rec sort 1 =
match 1 with Nil -> Nil
| Cons(h,t)@d -> insert h (sort t) d

Ignoring annotations such as @d and occurrences of the associated variable d,
and the ! in front of Nil, this program is valid O’Caml and indeed defines an
insertion sort. Here we are more concerned about space rather than time issues;
notice that the datatype constructor Cons is applied O(n?) times on average, but
this much storage is not necessary. While a sensible garbage collector means we
will not really lose the use of this space, this is not guaranteed, and we cannot
predict when the space will be reclaimed. This is unacceptable when considering
proof carrying code, and indeed on some mobile devices we will not have the
luxury of a garbage collector at all.

In order to allow better control of heap usage, Camelot adds features allowing
control of heap allocated storage. Camelot includes a diamond type (denoted by
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<>) representing regions of heap-allocated memory and allows explicit manip-
ulation of diamond objects. The representation of Camelot datatypes is critical
here —values from user-defined datatypes are represented by heap-allocated ob-
jects from a certain Java class and a diamond value corresponds directly to an
object of this class.

The diamond annotations in the above program result in an in-place insertion
sort algorithm. During the execution of sort on a list, no new block of heap
storage is allocated, but instead the existing storage is reused for the new list. The
annotation @d on the occurrence of Cons in sort indicates that the space used
in that list cell should be made available for re-use via the diamond value d. This
diamond value is passed to a call of insert, where it is used in the expression
Cons(n, Nil)@d to specify that the cons cell should be constructed in the
heap space referred to by d. Lastly the use of ! in the definition of the Nil
constructor indicates that Nil does not take up a diamond (Ni1l is represented by
the null pointer).

With explicit management of heap-space comes the possibility of program er-
rors. The above sort function destroys the original list, so any subsequent attempt
to reuse that list may result in an error, and if the list is a sublist of a larger list,
the sublist will be correctly sorted but the larger list will become damaged. Vari-
ous type systems can be used to ensure that diamond annotations are safe. Most
simply, we can require all uses of heap-allocated storage to be linearly typed as
described in [5]; the above program is typable under this system. We can also
take a less restrictive approach as described in [7]. It is also possible to infer some
diamond annotations, as shown in [6], and indeed this process can also give an
upper bound on a program’s heap usage.

As well as adding resource-related extensions, we make some restrictions, the
first of which is to the form of patterns in the match statement. Nested patterns
are not permitted, and instead each constructor of a datatype must be matched by
exactly one pattern. Patterns are also not permitted in the arguments of function
definitions. These features must be simulated by nested match statements.

The second restriction is on function application. While function application is
written using a curried syntax as above, higher order functions are not permitted in
the current version of Camelot. Functions must always be fully applied, and there
is no lambda term. This is because closures would seem to introduce an additional
non-transparent memory usage, although hopefully this can be overcome at a later
date, and higher order functions added to the language.

4.3 EXTENSIONS

In designing an object system for Camelot, many choices are made for us, or are
at least tightly constrained. We wish to create a system allowing inter-operation
with Java, and we wish to compile an object system to JVML. So we are almost
forced into drawing the object system of the JVM up to the Camelot level and
cannot seriously consider a fundamentally different system.

On the other hand, the type system is strongly influenced by the existing
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Camelot type system. There is more scope for choice, but implementation can
become complex, and an overly complex type system is undesirable from a pro-
grammer’s point of view. We also do not want to interfere with type systems for
resources as mentioned above.

We shall first attempt to make the essential features of Java objects visible in
Camelot in a simple form, with the view that a simple abbreviation or module
system can be added at a later date to make things more palatable if desired.

Basic Features

We shall view objects as records of possibly mutable fields together with related
methods, although Camelot has no existing record system. We define the usual
operations on these objects, namely object creation, method invocation, field ac-
cess and update, and casting and matching. As one might expect, we choose a
class-based system closely modelling the Java object system. Consequently we
must acknowledge Java’s uses of classes for encapsulation and associate static
methods and fields with classes also.

We now consider these features. The examples below illustrate the new classes
of expressions we add to Camelot.

Static method calls There is no conceptual difference between static methods
and functions, ignoring the use of classes for encapsulation, so we can treat
static method calls just like function calls.

java.lang.Math.max a b
Static field access Some libraries require the use of static fields. We should only

need to provide access to constant static fields, so they correspond to simple
values.

java.math.BigInteger.ONE
Object creation We clearly need a way to create objects, and there is no need to

deviate from the new operator. By analogy with standard Camelot function
application syntax (i.e. curried form) we have:

new java.math.BigInteger "101010" 2

Instance field access To retrieve the value of an instance variable, we write
object#field
whereas to update that value we use the syntax
object#field <- value
assuming that £ield is declared to be a mutable field.

It could be argued that allowing unfettered external access to an object’s vari-
ables is against the spirit of OO and, more to the point, inappropriate for our
small language extension, but we wish to allow easy interoperability with any
external Java code.
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Method invocation Drawing inspiration from the O’Caml syntax, and again us-
ing a curried form, we have instance method invocation:

myMap#put key value

Null values In Java, any method with object return type may return the null
object. For this reason we add a construct

isnulle

which tests if the expression e is a null value.

Casts and typecase It may occasionally be necessary to cast objects up to super-
classes, for example to force the intended choice between overloaded meth-
ods. We will also want to recover subclasses, such as when removing an object
from a collection. Here we propose a simple notation for up-casting:

obj :> Class

This notation is that of O’Caml, also borrowed by MLj (described in [2]). To
handle down-casting we shall extend patterns in the manner of typecase
(again like MLjj) as follows:

match obj with o :> Cl -> o.a()
| o :> C2 => o0.b()
| _ => obj.c()

Here o is bound in the appropriate subexpressions to the object obj viewed
as an object of type C1 or C2 respectively. As in datatype matches, we require
that every possible case is covered; here this means that the default case is
mandatory. We also require that each class is a subclass of the type of obj, and
suggest that a compiler warning should be given for any redundant matches.

Unlike MLj we choose not to allow downcasting outside of the new form of
match statement, partly because at present Camelot has no exception support
to handle invalid down-casts.

As usual, the arguments of a (static or instance) method invocation may be sub-
classes of the method’s argument types, or classes implementing the specified
interfaces.

The following example demonstrates some of the above features and illustrates
the ease of interoperability. We will discuss the need for type constraints as on the
parameter / later.

let convert (l: string list) =
match 1 with [] -> new java.util.LinkedList ()

| h::t ->
let 11 = convert t
in let _ = ll#addFirst h
in 11
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Defining classes

Once we have the ability to write and compile programs using objects, we may
as well start writing classes in Camelot. We must be able to create classes to
implement callbacks, such as in the Swing GUI system which requires us to write
stateful adaptor classes. Otherwise, as mentioned previously, we may wish to
write Camelot code to be called from Java, for example to create a resource-
certified library for use in a Java program, and defining a class is a natural way
to do this. Implementation of these classes will obviously be tied to the JVM, but
the form these take in Camelot has more scope for variation.

We allow the programmer to define a class which may explicitly subclass an-
other class, and implement a number of interfaces. We also allow the programmer
to define (possibly mutable) fields and methods, as well as static methods and
fields for the purpose of creating a specific class for interfacing with Java. We
naturally allow reference to this.

The form of a class declaration is given below. Items within angular brackets
(...) are optional.

classdecl = class cname = (scname with) body end
body = (interfaces) (fields) (methods)
interfaces = implement iname (interfaces)
fields = field (fields)
methods ::= method (methods)

This defines a class called cname, implementing the specified interfaces. The op-
tional scname gives the name of the direct superclass; if it is not present, the super-
class is taken to be the root of the class hierarchy, namely java.lang.Object.
The class cname inherits the methods and values present in its superclass, and
these may be referred to in its definition.

As well as a superclass, a class can declare that it implements one or more
interfaces. These correspond directly to the Java notion of an interface. Java li-
braries often require the creation of a class implementing a particular interface—
for example, to use a Swing GUI one must create classes implementing various
interfaces to be used as callbacks. Note that at the current time it is not possi-
ble to define interfaces in Camelot; they are provided purely for the purpose of
interoperability.

Now we describe field declarations.

field = fieldx:t | fieldmutablex:t|valx:t

Instance fields are defined using the keyword field, and can optionally be de-
clared to be mutable. Static fields are defined using val, and are non-mutable. In
a sense these mutable fields are the first introduction of side-effects into Camelot.
While the Camelot language is defined to have an array type, this has largely
been ignored in our more formal treatments as it is not fundamental to the lan-
guage. Mutable fields, on the other hand, are fundamental to our notion of object
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orientation, so we expect any extension of Camelot resource-control features to
O’Camelot to have to deal with this properly.
Methods are defined as follows, where 1 <ij...i, <n.

method = maker (x;:Ti)...(x,:T,) (2 superx; ...x;,) = exp
|methodm(x1:t1) ... (Xn2Ty) : T=exp
| methodm() : t=exp
| let m(x;2T1) ... (X,2Ty) ¢ T=exp

|letm() : t=exp

Again, we use the usual let syntax to declare what Java would call static meth-
ods. Static methods are simply monomorphic Camelot functions which happen
to be defined within a class, although they are invoked using the syntax described
earlier. Instance methods, on the other hand, are actually a fundamentally new ad-
dition to the language. We consider the instance methods of a class to be a set of
mutually recursive monomorphic functions, in which the special variable this
is bound to the current object of that class.

We can consider the methods as mutually recursive without using any addi-
tional syntax (such as and blocks) since they are monomorphic. ML uses and
blocks to group mutually recursive functions because its let-polymorphism pre-
vents any of these functions being used polymorphically in the body of the others,
but this is not an issue here. In any case, this implicit mutual recursion feels ap-
propriate when we are compiling to the Java Virtual Machine and have to come to
terms with open recursion.

In addition to static and instance methods, we also allow a special kind of
method called a maker. This is just what would be called a constructor in the Java
world, but as in [4] we use the term maker in order to avoid confusion between
object and datatype constructors. The maker term above defines a maker of the
containing class C such that if new C is invoked with arguments of type T ...T,,
an object of class C is created, the superclass maker is executed (this is the zero-
argument maker of the superclass if none is explicitly specified), expression exp
(of unit type) is executed, and the object is returned as the result of the new
expression. Every class has at least one maker; a class with no explicit maker
is taken to have the maker with no arguments which invokes the superclass zero-
argument maker and does nothing. This implicit maker is inserted by the compiler.

44 TYPING

Typing rules for some of the more important Object Oriented extensions are given
in Fig. 4.1. Rules for static method invocation and static field access are similar to
those given for instance versions, and rules for the base language are roughly as
one might expect, except that the rule for function application forces functions to
be fully applied. The requirement above to state the types of fields, methods and
makers at the point of definition means we can easily construct the sets of these
types as makers(C), methods(C) and fields(C) for each class C.
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FIGURE 4.1 Additional Camelot typing rules

Consider rules INVOKE, and FIELD. Firstly, types must match exactly for field
access, whereas methods can be called with subtypes of their argument types.
Otherwise these are fairly similar.

Secondly, note that we look up methods(C) (respectively fields(C)). This im-
plies that at the time this rule is applied the class C of the object in question must
be known, at least in the obvious implementation. This has real consequences
for the programmer—the programmer must ensure that the type of the object is
suitably constrained at the time of invocation. In practice, this will probably mean
that almost all function arguments of object type must be constrained before use
and coercions may also be necessary in some places.

Additionally, method (and maker) overloading introduces ambiguity. Differ-
ent instances of INVOKE or NEW may apply depending on the argument types,
and indeed for many argument types there is no unique applicable method. In
Java this is resolved by choosing the “most specific” method if it exists. In com-
bination with the standard type inference algorithm this forces us to know the type
of all arguments to a method at the point it is applied. Indeed in our current imple-
mentation this is exactly what happens; we assume argument types are available
at the point of application and compute the most specific of the applicable meth-
ods. Again this puts a burden on the programmer, although in practice this has
been proved in reasonable examples.

A more intelligent solution would only place constraints to be solved globally,
but unfortunately these cannot be equality constraints, and so we have to depart
from the simple unification algorithm. We are not alone in this problem; for
example, the MLj implementation described in [2] also suffers from this. In [10],
a new type inference algorithm is given for MLj which solves a system of more
complex constraints using branching search and backtracking. Branching search
is required because of the complexities of the type system, including implicit
coercions such as option, and it may be that our more naive type system could
use a simpler algorithm.
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One way of avoiding these issues could be to avoid considering method in-
vocations during type inference. Constraints could be inferred and solved by
unification as usual, but with no constraints present for these invocations. Af-
ter unification has taken place, we will be left with a typed program with some
free type variables, and we can then resolve overloading in a more simplistic
fashion (as the types of objects and method arguments should be known by this
point). The remaining type variables will thus be instantiated after unification.
Unfortunately this resolution requires another full typechecking, and indeed in
our present implementation it may be easier to implement a system in the style of
[10] if necessary.

Polymorphism

We remarked earlier that static methods are basically monomorphic Camelot func-
tions together with a form of encapsulation, but it is worth considering polymor-
phism more explicitly. O’Camelot methods, whether static or instance methods,
are not polymorphic. That is, they have subtype polymorphism but not parametric
polymorphism (genericity), unlike Camelot functions which have parametric but
not subtype polymorphism. This is not generally a problem, as most polymorphic
functions will involve manipulation of polymorphic datatypes and can be placed
in the main program, whereas most methods will be interfacing with the Java
world and thus should conform to Java’s subtyping polymorphism.

4.5 TRANSLATION

As mentioned earlier, the target for the present Camelot compiler is Java byte-
code. However we make use of the intermediate language Grail (see [3]). Grail
is a low-level functional language and is basically a functional form for Java
bytecode. Grail’s functional nature makes the compilation from Camelot more
straightforward, but Grail is faithful enough to JVML that the compilation pro-
cess is reversible.

Here we use the notation of Grail to describe the compilation of new Camelot
features, but mostly the meanings of Grail phrases should be self-evident. How-
ever, it is worthwhile noting that the JVML basic blocks comprising a Camelot
method are represented in Grail by a collection of mutually tail-recursive funct-
ions—calling these functions corresponds to JVML goto instructions. There are
several different method invocation instructions, namely invokestatic for
static methods, invokevirtual for instance methods, and invokespecial
for calling object constructors —standard Camelot functions are tranlsated to static
methods, and their application correpsonds to an invokestatic instruction.
Grail differs from JVML by combining object creation and initialisation into the
new instruction, but we must still use the invokespecial instruction to call
the superclass constructor.

Notational issues aside, translating the new features is relatively straightfor-
ward, as the JVM (and Grail) provide what we need. In particular, Grail is suf-
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fun By(...) = funB,_i(...) =

let let

vali=instance(C] v, vali=instance C,_; v
in in

ifi=1theny(...) ifi=1thenvy,(...)

else f(...) elsey,(...)

end end
funy; (...) = funy, (...) =
let let

val oy = checkcast C| v, val o, = checkcast C, v,
inp(...)end in pu(...) end

FIGURE 4.2 Functions generated for match expression

ficiently expressive that it was not necessary to extend the compiler backend sig-
nificantly.

Function ¢ below informally specifies the translation of the new Camelot ex-
pressions to Grail code. We assume these expressions are normalised in the style
of the basic Camelot expressions, so that all subexpressions are atomic and have
a simple Grail expansion, rather than requiring the generation of extra Grail func-
tions and let statements.

o(package.Class.method xi . ..x,) =

invokestatic <t package.Class.method Targ> (§(x1),...,9(xs))
(package.Class.field) = getstatic <t package.Class.field>
(new package.Class xi ...x,) = new <package.Class(Targ)> (d(x1)...0(x4))
(ob j#mname x; ... x,) =

invokevirtual obj <t package.Class.mname (Targ)> ($(x1)...¢(xy))
obj#field) = getfield obj <t package.Class.field>
obj#field<-exp) = putfield obj <t package.Class.field> exp
obj :> package.Class) = checkcast package.Class obj
isnull exp)= exp=null[t]

Types T, Targ and T, are Grail types derived from the Camelot types inferred
for the appropriate fields and methods. To illustrate the above translation, we
show the translation of the multiplication of two BigInteger objects using the
multiply instance method.
¢(n#multiply r)=
invokevirtual n <java.math.BigInteger
java.math.BigInteger.multiply
(java.math.BigInteger)> (r)

The new match expressions are more complex. An example of the new type
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of match statement is

match ewith
01 :>C| ->¢

0, :>Cyp->¢,

where each C; is a class name. We generate functions as in Fig 4.2, where 3;
will be the first function to be executed, i is a fresh variable, and v, is a variable
holding the result of evaluating expression e. Additionally we generate functions
p1...p, Which compute the expressions e ...e, then proceed with the current
computation.

Making Classes

Translating class definitions is fairly straightforward. A val declaration corre-
sponds to a final static field, the type of which is the translation of the stated
Camelot type. Similarly a £ield definition corresponds to an instance field of
the appropriate type, which will be £inal if the field is not mutable.

A maker corresponds to a method called <init> taking arguments of the
appropriate type (returning void), and calling the appropriate <init> method
in the superclass before executing the code corresponding to expression in the
body, which is compiled as above.

As remarked earlier, static methods are basically monomorphic Camelot func-
tions encapsulated in a class, and so their compilation is just as standard Camelot
functions. Instance methods are also compiled like monomorphic Camelot func-
tions, but references to this are permitted.

4.6 OBJECTS AND RESOURCE TYPES

As described in Sec. 4.2, the use of diamond annotations on Camelot programs
in combination with certain resource-aware type systems allows the heap usage
of those programs to be inferred, as well as allowing some in-place update to
occur. Clearly the presence of mutable objects in O’Camelot also provides for
in-place update. However by allowing arbitrary object creation we also replicate
the unbounded heap-usage problem solved for datatypes. Perhaps more seriously,
we are allowing Camelot programs to invoke arbitrary Java code, which may use
an unlimited amount of heap space.

First consider the second problem. Even if we have some way to place a bound
on the heap space used by our new OO features within a Camelot program, exter-
nal Java code may use any amount of heap whatsoever. There seem to be a few
possible approaches to this problem, none of which are particularly satisfactory.
We could decide only to allow the use of external classes if they came with a
proof of bounded heap usage. Constructing a resource-bounded Java class library
or inferring resource bounds for an existing library would be a massive undertak-
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ing, although perhaps less problematic with the smaller class libraries used with
mobile devices. This suggestion seems somewhat unrealistic.

Alternatively, we could simply allow the resource usage of external methods to
be stated by the programmer or library creator. This extends the trusted computing
base in the sense of resources, but seems a more reasonable solution. The other
alternative —considering resource-bound proofs only to refer to the resources di-
rectly consumed by the Camelot code —seems unrealistic, as one could easily (and
even accidentally) cheat by using Java libraries to do some memory-consuming
“dirty work”.

The issue of heap-usage internal to O’Camelot programs seems more tract-
able, although we do not propose a solution here. A first attempt might mimic the
techniques used earlier for datatypes; perhaps we can adapt the use of diamonds
and linear type systems? The use of diamonds for in-place update is irrelevant
here and indeed relies on the uniform representation of datatypes by objects of a
particular Java class. Since we are hardly going to represent every Java object by
an object of one class we could not hope to have such a direct correlation between
diamonds and chunks of storage.

However, we could imagine an abstract diamond which represents the heap
storage used by an arbitrary object and require any instance of new to supply one
of these diamonds, in order that the total number of objects created is limited.
Unfortunately reclamation of such an abstract diamond would only correspond to
making an object available to garbage collection, rather than definitely being able
to re-use the storage. Even so, such a system might be able to give a measure
of the total number of objects created and the maximum number in active use
simultaneously.

4.7 RELATED WORK

We have made reference to MLj, the aspects of which related to Java interoper-
ability are described in [2]. ML} is a fully formed implementation of Standard ML
and as such is a much larger language than we consider here. In particular, ML;j
can draw upon features from SML such as modules and functors, for example, al-
lowing the creation of classes parameterised on types. Such flexibility comes with
a price, and we hope that the restrictions of our system will make the certification
of the resource usage of O’Camelot programs more feasible.

By virtue of compiling an ML-like language to the JVM, we have made many
of the same choices that have been made with MLj. In many cases there is one
obvious translation from high level concept to implementation, and in others the
appropriate language construct is suggested by the Java object system. However,
we have also made different choices more appropriate to our purpose, in terms of
transparency of resource usage and wanting a smaller language. For example, we
represent objects as records of mutable fields whereas MLj uses immutable fields
holding references.

There have been various other attempts to add object-oriented features to ML
and ML-like languages. O’Caml provides a clean, flexible object system with
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many features and impressive type inference —a formalised subset is described in
[12]. As in O’Camelot, objects are modelled as records of mutable fields plus
a collection of methods. Many of the additional features of O’Caml could be
added to O’Camelot if desired, but there are some complications caused when
we consider Java compatibility. For example, there are various ways to compile
parameterised classes and polymorphic methods for the JVM, but making these
features interact cleanly with the Java world is more subtle.

The power of the O’Caml object system seems to come more from the dis-
tinctive type system employed. O’Caml uses the notion of a row variable, a type
variable standing for the types of a number of methods. This makes it possible
to express “a class with these methods, and possibly more” as a type. Where
we would have a method parameter taking a particular object type and by sub-
sumption any subtype, in O’Caml the type of that parameter would include a row
variable, so that any object with the appropriate methods and fields could be used.
This allows O’Caml to preserve type inference, but this is less important for our
application and does not map cleanly to the JVM.

A class mechanism for Moby is defined in [4] with the principle that classes
and modules should be orthogonal concepts. Lacking a module system, Camelot
is unable to take such an approach, but both Moby and O’Caml have been a guide
to concrete representation. Many other relevant issues are discussed in [9], but
again lack of a module system —and our desire to avoid this to keep the language
small —gives us a different perspective on the issues.

4.8 CONCLUSION

We have described the language Camelot and its unique features enabling the
control of heap-allocated data and have outlined an object-oriented extension al-
lowing interoperability with Java programs and libraries. We have kept the lan-
guage extension fairly minimal in order to facilitate further research on resource
aware programming, yet it is fully-featured enough for the mobile applications we
envisage for Camelot.

The O’Camelot compiler implements all the features described here. The cur-
rent version of the compiler can be obtained from

http://www.lfcs.inf.ed.ac.uk/mrg/camelot/

A EXAMPLE

Here we give an example of the features defined above. The code below, together
with the two standard utility functions rev and len for list reversal and length,
defines a program for Sun’s MIDP platform (as described in [11]), which runs
on