
Mukherjee

Shelve in
.NET

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Thinking in LINQ
LINQ represents a paradigm shift for developers used to an imperative/object 
oriented programming style, because LINQ draws on functional programming 
principles. Thinking in LINQ addresses the differences between these two by 
providing a set of succinct recipes arranged in several groups, including:

• Basic and extended LINQ operators
• Text processing
• Loop refactoring
• Monitoring code health
• Reactive Extensions (Rx.NET)
• Building domain-specific languages

Using the familiar “recipes” approach, Thinking in LINQ shows you how to 
approach building LINQ-based solutions, how such solutions are different from 
what you already know, and why they’re better. The recipes cover a wide range 
of real-world problems, from using LINQ to replace existing loops, to writing your 
own Swype-like keyboard entry routines, to finding duplicate files on your hard 
drive. The goal of these recipes is to get you “thinking in LINQ,” so you can use 
the techniques in your own code to write more efficient and concise data-intensive 
applications.

RELATED

9 781430 268451

53999
ISBN 978-1-4302-6845-1

www.it-ebooks.info

http://www.it-ebooks.info/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 

www.it-ebooks.info

http://www.it-ebooks.info/


v

Contents at a Glance

About the Author �������������������������������������������������������������������������������������������������������������� xxv

About the Technical Reviewer ���������������������������������������������������������������������������������������� xxvii

Acknowledgments ����������������������������������������������������������������������������������������������������������� xxix

Introduction ��������������������������������������������������������������������������������������������������������������������� xxxi

Chapter 1: Thinking Functionally  ■  ��������������������������������������������������������������������������������������1

Chapter 2: Series Generation ■  ���������������������������������������������������������������������������������������������7

Chapter 3: Text Processing ■  ����������������������������������������������������������������������������������������������49

Chapter 4: Refactoring with LINQ ■  ������������������������������������������������������������������������������������89

Chapter 5: Refactoring with MoreLINQ ■  ��������������������������������������������������������������������������109

Chapter 6: Creating Domain-Specific Languages ■  ����������������������������������������������������������123

Chapter 7: Static Code Analysis ■  ������������������������������������������������������������������������������������151

Chapter 8: Exploratory Data Analysis ■  ����������������������������������������������������������������������������165

Chapter 9: Interacting with the File System  ■  �����������������������������������������������������������������195

Appendix A: Lean LINQ Tips ■  �������������������������������������������������������������������������������������������205

Appendix B: Taming Streaming Data with Rx�NET ■  ���������������������������������������������������������211

Index ���������������������������������������������������������������������������������������������������������������������������������231

www.it-ebooks.info

http://www.it-ebooks.info/


xxxi

Introduction

This book won’t teach you the basics of LINQ. It will teach you how to use it appropriately. Having a jackhammer is 
great only if you know how to use it properly; otherwise, you are not much better off than someone with a hammer. 
LINQ is powerful. Powerful beyond measure. I hope you will see some of that power by following the examples  
in the book.

Here is a brief walk-through of the chapters: 

Chapter 1: Thinking Functionally •	

Our generation of programmers has been raised with object-oriented programming ideas. 
This initial chapter is dedicated to showing how functional programming is different from 
object-oriented programming. This chapter sets the context for the rest of the book. 

Chapter 2: Series Generation•	

This chapter has recipes for generating several series using LINQ. For example, it shows 
how to generate recursive patterns and mathematical series.

Chapter 3: Text Processing•	

Text processing is a blanket term used to cover a range of tasks, from generation of text to 
spell-checking. This chapter shows how to use LINQ to perform several text-processing 
tasks that are seemingly commonplace. 

Chapter 4: Refactoring with LINQ•	

Legacy code bases grow, and grow fast—faster than you might think they would. 
Maintaining such huge code blocks can become a nightmare. When is the last time you 
had trouble understanding what some complex loop code does? This chapter shows how 
to  refactor your legacy loops to LINQ.

Chapter 5: Refactoring with MoreLINQ•	

MoreLINQ is an open source LINQ API that has several methods for slicing and dicing 
data. Some of these operators are easily composable using other LINQ operators. But 
some are also truly helpful in minimizing the total number of code lines. This chapter 
shows how you can benefit from using MoreLINQ.

Chapter 6: Creating Domain-Specific Languages Using LINQ  •	

Domain-specific languages (DSLs) are gaining in popularity because they convey the 
intent of the programmer very nicely. This chapter shows how to create several DSLs. 

Chapter 7: Static Code Analysis•	

LINQ treats everything as data. Code is also data. This chapter shows how, by using  
LINQ-to-Reflection, you can do a lot of meta programming in .NET. 

www.it-ebooks.info

http://www.it-ebooks.info/


■ IntroduCtIon

xxxii

Chapter 8: Exploratory Data Analysis•	

This chapter shows how you can use LINQ to solve several data analysis tasks. I hope you 
find this chapter enjoyable, because the examples are really interesting.

Chapter 9: Interaction with the File System•	

I have always wished that Windows Explorer included better features for querying the file 
system. However, by using LINQ, you can build your own custom queries quickly. This 
chapter shows you some examples that can be useful in the real world. 

Appendix A: Lean LINQ Tips•	

LINQ is an API that provides several operators to express your intent. Although that 
is super powerful, it comes with a price. If you don’t know how these operators work 
internally, you might end up using a combination that results in slower code. This 
appendix provides some hard-earned knowledge about how to glue LINQ operators 
together for optimum performance. 

Appendix B: Taming Streaming Data with Rx.NET•	

Being reactive is important when dealing with streaming data. Microsoft’s über-cool 
framework, Rx.NET, is a fantastic API for dealing with streaming data and async 
operations. This appendix shows how to use Rx.NET to tackle streaming data.

www.it-ebooks.info

http://www.it-ebooks.info/


1

Chapter 1

Thinking Functionally 

As you begin this book, I urge you to forget everything you know about programming and bear with me while I walk 
you through a high-level view of what I think programming is. To me, to program is to transform. I’ll give you a few 
simple examples to explain my viewpoint.

First, suppose you have some data in a database and you want to show some values in a website after performing 
some calculations on that data. What are you actually doing here? You are transforming the data.

That first example is obvious, but there are many other less obvious examples. Spell-checking, for example, is a 
transformation of a list of dictionary words to a set of plausible spelling-correction suggestions. Generating a series of 
numbers that follow a pattern (such as the Fibonacci series) is also a transforming operation, in which you transform 
the initial two values to a series.

1-1. Understanding Functional Programming
Transforming data often requires intermediate transformations. You can model each such intermediate 
transformation by a function. The art of gluing together several such functions to achieve a bigger transformation 
is called functional programming. Note that functional programming is nothing new. It’s just high-school math 
in disguise.

For example, suppose you have the following functions:
 
f(x) = x + 1
g(x) = x + 2
z(x,y) = x == y
 

Using these functions, you can create several composite functions in which the arguments are functions 
themselves. For example, f.g (read as f of g) is shown as follows:
 
f(g(x)) = f(x+2) = x + 2 + 1 = x + 3
 

Similarly g.f (read as g of f ) is as follows:
 
g(f(x)) = g(x+1) = x + 1 + 2 = x + 3
 

I will leave it up to you to determine that z(f.g) is equal to z(g.f) for all values of x.
Now, imagine that your goal is to add 6 to x using these two functions. Try to find the function call sequence that 

will do this for you.
To think of it another way, functional programming is programming using functions but without worrying about 

the internal state of the variables. Functional programming allows programmers to concentrate more on what gets 
done than how exactly how it gets done.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1 ■ thinking FunCtionally 

2

With that in mind, imagine that you want a cup of coffee. You go to the local coffee shop, but when you ask for 
coffee at the sales counter, you don’t worry in painful detail about how the coffee has to be made. A great video by  
Dr. Don Syme, the man behind Microsoft’s functional programming language, F# explains this concept better than I 
ever could. I strongly recommend that you watch it (www.youtube.com/watch?v=ALr212cTpf4).

1-2. Using Func<> in C# to Represent Functions 
You might be wondering how to port such functions to C#. Fortunately, it’s quite straightforward. C# includes a class 
called Func. Using this class, you can create functional methods much as you create variables of any primitive type, 
such as integers. Here’s how you could write the functions described in the previous section:
 
Func<int,int> f = x => x + 1; // describing f(x) = x + 1
Func<int,int> g = x => x + 2; // describing g(x) = x + 2
 

Here’s how to define f.g (read f of g) by using Func<>:
 
Func<Func<int,int>,Func<int,int>,int,int> fog = (f1,g1,x) => f1.Invoke(g1.Invoke(x));
 

In the preceding definition, fog is a function that takes two functions as arguments and calls them to obtain the 
final output. The initial argument to the first function is provided in x. Note how the function itself is passed as an 
argument to the composite function.

The Func<> class has several constructors that can be used to represent functions. In each constructor, the last 
argument represents the return type. So, for example, a declaration such as Func<int,int> represents a function 
that takes an integer and returns an integer. Similarly, the function z (z(x,y) = x == y ) declared previously can be 
represented as Func<int,int,bool> because it takes two integers and returns a Boolean value.

1-3. Using Various Types of Functions 
Several kinds of functions can be classified broadly into four major categories, as shown in Figure 1-1: generator 
functions, statistical functions, projection functions, and filters.

Figure 1-1. Classification of several types of functions 

www.it-ebooks.info

https://www.youtube.com/watch?v=ALr212cTpf4
http://www.it-ebooks.info/


Chapter 1 ■ thinking FunCtionally 

3

Generator Functions 
A generator function creates values out of nothing. Think of this as a method that takes no arguments but returns an 
IEnumerable<T>.

Enumerable.Range() and Enumerable.Repeat() are example of generator functions.
A generator function can be represented by the following equation, where T represents any type:

 
() => T[]

Statistical Functions
Statistical functions return some kind of statistic about a collection. For example, you might want to know how many 
elements are present in a collection, or whether a given element is available in a collection. These types of operations 
are statistical in nature because they return either a number or a Boolean value.

Any(), Count(), Single(), and SingleOrDefault() are examples of statistical functions. A statistical function can 
be represented by either of the following equations:
 
T[] => Number
T[] => Boolean

Projector Functions
Functions that take a collection of type T and return a collection of type U (where U could be the same type as T) are 
called projector functions.

For example, suppose you have a list of names, and the first and last names are separated by whitespace. You 
want to project only the last names. Because the full names are represented as strings, and the last name is a substring 
of the full name, it’s also a string. Thus the result type of the projection is the same as that of the source collection 
(string). So in this case, U is the same as T.

Here’s a situation where U and T don’t match: Say you have a list of integers, and each integer represents a number 
of days. You want to create a DateTime array from these numbers by adding the day values to DateTime.Today. In this 
case, the initial type is System.Int32, but the projection type is DateTime. In this case, U and T don’t match up.

Select(), SelectMany(), and Cast<T>() are other examples of projector functions. A projector function can be 
represented by the following equation, where U can be the same as T:
 
T[] => U[]

Filters 
Filters are just what you would think they are. These functions filter out elements of a given collection that don’t 
match a given expression. 

Where(), First(), and Last() are examples of filter functions. A filter function can be represented by either of 
the following equations:

T[] => T[]: The function output is a list of values that match a given condition.

T[] => T: The function output is a single value that matches a given condition/predicate.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1 ■ thinking FunCtionally 

4

1-4. Understanding the Benefits of Functional Programming
I’ll walk you through the top five benefits of using a functional programming approach. However don’t bother trying 
to memorize these. After you get comfortable with functional programming, these will seem obvious. The five top 
benefits are as follows:

Composability•	

Lazy evaluation•	

Immutability•	

Parallelizable•	

Declarative•	

Composability 
Composability lets you create solutions for complex problems easily. In fact, it’s the only good way to combat 
complexity. Composability is based on the divide and rule principle. Imagine you are planning a party and you want 
everything to be done properly. You have a bunch of friends who are willing to help. If you could give each friend a 
single responsibility, you could rest assured that everything would be done properly.

The same is true in programming. If each method or loop has a single responsibility, each will be easier to 
refactor as new methods, resulting in cleaner and thus more maintainable code. Functional programming thrives 
because of the composability it offers.

Lazy Evaluation 
Lazy evaluation is a concept that provides the results of queries only when you need them. Imagine that you have 
a long list of objects, and you want to filter that list based on a certain condition, showing only the first ten such 
matching entries in your user interface. In imperative programming, each operation would be evaluated. Therefore, 
if the filter operation takes a long time, your user would have to wait for it to complete. However, functional 
programming languages, including implementations such as F# or LINQ, allow you to take advantage of deferred 
execution and lazy evaluation, in which the program performs operations such as this filter only when needed, thus 
saving time. You’ll see more about lazy evaluation in Chapter 6.

Immutability
Immutability lets you write code that is free of side effects. Although functional programming doesn’t guarantee that 
you will have code free of side effects, the best practices of functional programming preach this as a goal—with good 
reason. Side effects such as shared variables not only may lead to ambiguous situations, but also can also be a serious 
hindrance in writing parallel programs. Imagine you are in a queue to buy movie tickets. You (and everyone else) 
have to wait until it’s your turn to buy a ticket, which prevents you from going directly into the theater. Shared states or 
shared variables are like that. When you have a lot of threads or tasks waiting for a single variable (or collection), you 
are limiting the speed with which code can execute. A better strategy is more like buying tickets online. You start your 
task or thread with its own token/variable/state. That way, it never has to wait for access to shared variables.

Parallelizable
Functional programs are easier to parallelize than their imperative counterparts because most functional programs 
are side-effect free (immutable) by design. In LINQ, you can easily parallelize your code by using the AsParallel() 
and AsOrdered() operators. You’ll see a full example in Chapter 4.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1 ■ thinking FunCtionally 

5

Declarative
Declarative programming helps you write very expressive code, so that code readability improves. Declarative 
programming often also lets you get more done with less code. For example, it’s often possible to wrap an entire algorithm 
into a single line of C# by using LINQ operators. You’ll see examples of this later in this book, in Chapters 6 and 8.

1-5. Getting LINQPad 
You can enter and execute all the examples in this book with a useful tool called LINQPad. LINQPad is a free 
C#/VB.NET/F# snippet compiler. If you’re serious about .NET programming, you should become familiar with 
LINQPad—it does more than just let you test LINQ statements.

You can download LINQPad from www.linqpad.net/GetFile.aspx?LINQPad4Setup.exe.

Note ■  i highly recommend you download and install linQpad now, before you continue.

Some of the examples in this book run in LINQPad with the LINQPad language option set to C# Expressions.  
The rest of the examples run in LINQPad with the LINQPad language option set to C# Statement(s). I’ve made an 
effort to add reminders throughout the book where appropriate, but if you can’t get an example to run, check the 
LINQPad Language drop-down option.

www.it-ebooks.info

http://www.linqpad.net/GetFile.aspx?LINQPad4Setup.exe
http://www.it-ebooks.info/


7

Chapter 2

Series Generation

LINQ helps you generate series by using intuitive and readable code. In this chapter, you will see how to use several 
LINQ standard query operators (LSQO) to generate common mathematical and recursive series. All these queries are 
designed to run on LINQPad (www.linqpad.net) as C# statements.

Series generation has applications in many areas. Although the problems in this chapter may seem disconnected, 
they demonstrate how to use LINQ to solve diverse sets of problems. I have categorized the problems into six main 
areas: math and statistics, recursive series and patterns, collections, number theory, game design, and working with 
miscellaneous series.

The following problems are related to simple everyday mathematics and statistics.

2-1. Math and Statistics: Finding the Dot Product of Two Vectors
The dot product of two vectors is defined as the member-wise multiplication of their coefficients.

Problem
The problem is to write a function that finds the dot product of two vectors. 

Solution
Use the Zip() standard query operator, passing it a function delegate that multiplies two values at the same location 
in the arrays.

Listing 2-1 generates the dot product of these two vectors. Figure 2-1 shows the result.

Listing 2-1. Finding a dot product

int[] v1 = {1,2,3}; //First vector
int[] v2 = {3,2,1}; //Second vector
 
//dot product of vector
v1.Zip(v2, (a,b) => a * b).Dump("Dot Product"); 

Figure 2-1. The dot product of two vectors {1, 2, 3} and {3, 2, 1}

www.it-ebooks.info

http://www.linqpad.net/
http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

8

How It Works
Zip() is a LINQ standard query operator that operates on two members at the same location (or index). The delegate 
passed to Zip() denotes the function used to generate a zipped single value from the members at the same index in 
two series. For a vector dot product, the function is a simple multiplication denoted by (a,b) => a * b.

2-2. Math and Statistics: Generating Pythagorean Triples
A Pythagorean triple is a tuple of three integers that can form the sides of a right-triangle.

Problem
Use LINQ to generate a Pythagorean triple.

Solution
The most common Pythagorean triple is {3, 4, 5}. The obvious scheme for generating more of these triples is to multiply 
an existing triple by some number. For example, multiplying {3, 4, 5} by 2 yields {6, 8, 10}—another Pythagorean triple. 
However, Babylonians came up with a more general formula for generating Pythagorean triples: The base and height 
assume the values of c * c –1 and 2 * c, respectively, where c represents a number greater than or equal to 2.  
The hypotenuse, the longest side of a right triangle, is always one greater than the square of that number (c).

Listing 2-2 generates Pythagorean triplets by using the old and simple Babylonian formula.

Listing 2-2. Generating Pythagorean triples with the Babylonian formula

Enumerable.Range(2,10)
     .Select (c => new {Length = 2*c,
                        Height = c * c - 1,
                        Hypotenuse = c * c + 1})
     .Dump("Pythagorean Triples");
 

This generates the output shown in Figure 2-2.

Figure 2-2. Pythagorean triplets generated by the Babylonian method

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

9

How It Works
This example uses an anonymous type. Note that the code doesn’t define a type with properties or fields named 
Length, Height, or Hypotenuse. However, LINQ doesn’t complain. LINQPad clearly shows that the type of the 
projected collection is anonymous. Check out the tool tip shown in Figure 2-3.

This feature is useful because it saves you from having to create placeholder classes or using tuples. (The example 
could have used a Tuple<int,int,int> in place of the anonymous method, but using the anonymous type improves 
readability.) If, however, you project the result to a List<T> and then try to dereference it by using an index, you will 
see the properties Length, Height, and Hypotenuse as shown in Figure 2-4—just as if you had defined a strongly typed 
collection of some type with those public properties. 

2-3. Math and Statistics: Finding a Weighted Sum
Finding vector dot products has real-world applications, the most common of which is finding a weighted sum. 

Problem
Suppose every subject in an exam has a different weight. In such a setting, each student’s score is the weighted sum of 
the weight for each subject and the score obtained by the student in that subject. The problem here is to use LINQ to 
find the weighted sum.

Solution
Mathematically, the weighted sum is the sum of the coefficients of the vector dot product, which you can obtain easily 
with LINQ, by using Zip() and Sum(). Listing 2-3 shows the solution.

Figure 2-3. A tool tip that shows the projection of the anonymous type

Figure 2-4. The properties of the anonymous type show up in IntelliSense

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

10

Listing 2-3. Finding a weighted sum

int[] values = {1,2,3};
int[] weights = {3,2,1};
 
//dot product of vector
values.Zip(weights, (value,weight) =>
           value * weight) //same as a dot product
    .Sum() //sum of the multiplications of values and weights
    .Dump("Weighted Sum");
 

Figure 2-5 shows the results.

How It Works
The call to Zip() creates a dot product, while the call to Sum() adds the results of multiplying the values and weights.

2-4. Math and Statistics: Finding the Percentile for Each  
Element in an Array of Numbers
Percentile is a measure most often used to analyze the result of a competitive examination. It gives the percentage of 
people who scored below a given score obtained by a student.

Problem
Imagine you have a list of scores and want to find the percentile for each score. In other words, you want to calculate 
the percentage of people who scored below that score.

Solution
Listing 2-4 shows the solution.

Listing 2-4. Score percentile solution

int[] nums = {20,15,31,34,35,40,50,90,99,100};
nums
    .ToLookup(k=>k, k=> nums.Where (n => n<k))
    .Select(k => new KeyValuePair<int,double>
        (k.Key,100*((double)k.First().Count()/(double)nums.Length)))
    .Dump("Percentile");
 

Figure 2-5. The weighted sum of two vectors

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

11

The code creates a lookup table in which each score becomes a key, and the values for that key are all the scores 
less than the key. For example, the first key is 20, which has a single value: 15 (because 15 is the only score less than 20). 
The second key is 15, which has no values (because that’s the lowest score).

Next, the code creates a list of KeyValuePair objects, each of which contains the key from the lookup table, and a 
calculated percentile, obtained by multiplying the number of values that appear under each key in the lookup table by 
100 and then dividing that by the number of scores (10 in this case).

This code generates the output shown in Figure 2-6.

Figure 2-6. Score and percentile obtained by students

Finding the rank of each mark is also simple, as you obtain rank from percentile. The student with the highest 
percentile gets the first rank, and the student with the lowest percentile gets the last rank, as shown in Listing 2-5.

Listing 2-5. Obtaining score ranking from percentile

int[] marks = {20,15,31,34,35,50,40,90,99,100};
marks
     .ToLookup(k=>k, k=> marks.Where (n => n>=k))
     .Select (k => new {
          Marks = k.Key,
          Rank = 10*((double)k.First().Count()/(double)marks.Length)
      })
     .Dump("Ranks");
 

Figure 2-7 shows the ranks of the students derived from the percentile.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

12

How It Works
This example uses a lookup table to find out the percentile. The keys in the lookup table hold the number, and the 
values are all those numbers that are smaller than that number. Later the code finds the percent of these values 
against the total number of items. That yields the percentile for the particular number represented by the key.

2-5. Math and Statistics: Finding the Dominator in an Array
A dominator is an element in an array that repeats in more than 50 percent of the array positions.

Problem
Assume you have the following array: {3, 4, 3, 2, 3, -1, 3, 3}. There are eight elements, and 3 appears in five of those.  
So in this case the dominator is 3. The problem is to use LINQ to find the dominator in an array.

Solution
The first algorithm that comes to mind to find a dominator has to loop through the array twice and thus has quadratic 
time complexity, but you can improve the efficiency by using a lookup. Listing 2-6 shows the solution.

Listing 2-6. Finding the array dominator

int[] array = { 3, 4, 3, 2, 3, -1, 3, 3};
array.ToLookup (a => a).First (a => a.Count() >
     array.Length/2).Key.Dump("Dominator");
 

Figure 2-7. Student rank derived from percentile

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

13

How It Works
array.ToLookup (a => a) creates a lookup table in which the keys are the values. Because there are duplicates,  
there will be many values. However, you are interested in only the first value. So an item that has occurred more  
than array.Length / 2 times is the dominator. And you will find that dominator as the key of this element in the 
lookup table.

2-6. Math and Statistics: Finding the Minimum Number of 
Currency Bills Required for a Given Amount
Machines that process financial transactions involving cash, such as ATM machines or self-service grocery checkout 
stations, must be able to make change efficiently, providing users with the minimum number of bills required to add 
up to a specific amount.

Problem
Given all the currencies available in a country and an amount, write a program that determines the minimum number 
of currency bills required to match that amount.

Solution
Listing 2-7 shows the solution.

Listing 2-7. Finding minimum number of currency bills

//These are available currencies
int[] curvals = {500,100,50,20,10,5,2,1,1000};
 
int amount = 2548;
 
Dictionary<int,int> map = new Dictionary<int,int>();
 
curvals.OrderByDescending (c => c)
       .ToList()
       .ForEach(c => {map.Add(c,amount/c); amount = amount % c;});
 
map.Where (m => m.Value!=0)
    .Dump();
 

Figure 2-8. The dominator of an array

This generates the result shown in Figure 2-8.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

14

When you run this query in LINQPad, you will see the output shown in Figure 2-9. The Key column shows  
the face value of various bills, while the Value column shows the number of those bills required to add up to the  
target value.

How It Works
The algorithm to find the minimum number of currency bills required is recursive. It is a continuous division of the 
value by the largest currency value that results in an integer greater than or equal to 1, repeated against the remainder 
until the value of the amount diminishes to zero.

amount/c (amount divided by c) calculates the number of currency bills required with value c. The remaining 
amount is the remainder, as calculated by amount % c.

The data is stored as a currency and currency count pair in the C# dictionary map. Each dictionary key is a 
currency bill face value, and the value is the number of such currency bills required to total the given amount, using 
the minimum number of currency bills. Thus, any nonzero value in the map is what you should look for. The LINQ 
query map.Where (m => m.Value!=0) does just that. And that’s about it!

LINQPad has a cool feature that sums up the values in the Value column. In this case, that summation is 8.  
That means it will require a minimum of eight currency bills to make 2,548.

The first call to OrderByDescending() makes sure that you start with the highest available currency value.

2-7. Math and Statistics: Finding Moving Averages
Finding a moving average is a problem that often arises in time series analysis, where it’s used to smooth out local 
fluctuations. A moving average is just what it says—an average that “moves.” In other words, it is the average of all 
elements that fall within a moving window of a predefined size. For example, suppose you have the numbers 1, 2, 3, 4, 
and the window size is 2. In that case, there are three moving averages: the average of 1 and 2, the average of 2 and 3, 
and the average of 3 and 4.

Problem
Create a program that finds the moving average of given window size.

Figure 2-9. Output of the minimum currency bill count query

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

15

Solution
Listing 2-8 shows the solution.

Listing 2-8. Finding a moving average

List<double> numbers = new List<double>(){1,2,3,4};
List<double> movingAvgs = new List<double>();
 
//moving window is of length 4.
int windowSize = 2;
 
Enumerable.Range(0,numbers.Count - windowSize + 1)
              .ToList()
              .ForEach(k => movingAvgs.Add(numbers.Skip(k).Take(windowSize).Average()));
//Listing moving averages
movingAvgs.Dump();
 

This generates the output shown in Figure 2-10.

How It Works
The first step toward calculating the moving average is to find the moving sum. And to find the moving sum, you need 
to find the elements currently available under the window.

Figure 2-11 shows the movement of the sliding window as the gray rectangle in each row. The moving window 
slides across the array for a given window size of 2.

Figure 2-10. The moving average of 1, 2, 3, 4 with window size 2

Figure 2-11. A sliding window over example input data for calculating the moving average

At first the sliding window has two elements: 1 and 2. Then it slides toward the right by one position. The movement 
of the sliding window can be described as follows: At first, no element is skipped and the 2 element is taken. Then the  
1 element is skipped and the 2 element is taken, and so forth. Thus in general you can find the elements currently present 
in the sliding window by using the following LINQ query numbers.Skip(k).Take(windowSize), where k ranges from 0 to 
numbers.Count - windowSize + 1.

The LSQO Average() finds the average of the sequence. Thus all the moving averages are stored in 
listmovingAvgs. 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

16

2-8. Math and Statistics: Finding a Cumulative Sum
To find the growth of a variable, you have to measure it at regular intervals.

Problem
Let’s say you have a list of numbers that represent the value of some business entity, which varies year to year. You 
want to measure the growth percentage for that entity from year to year. Remember that the numbers in the list 
represent entity values for a particular year, not a cumulative amount up until that year. However, to measure growth, 
you need a value that represents the previous total. This value is called a cumulative sum. The problem is to write a 
function to find the cumulative sum of a given sequence by using LINQ standard query operators. 

Solution
Listing 2-9 shows the solution.

Listing 2-9. Cumulative sum solution

List<KeyValuePair<int,int>> cumSums =
    new List<KeyValuePair<int,int>>();
var range = Enumerable.Range(1,10);
range.ToList().ForEach( k => cumSums.Add(
    new KeyValuePair<int,int>(k,range.Take(k).Sum())));
cumSums.Dump("Numbers and \"Cumulative Sum\" at each level");
 

This generates the output shown in Figure 2-12.

Figure 2-12. A sequence and the cumulative sum of the sequence at each stage

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

17

How It Works
The code is fairly self-explanatory. If you were to describe the cumulative sum (sometimes referred to as a cumsum) 
algorithm to your grandma, you might say, “Grandma, take the first element, then the sum of the the first two 
elements, then the sum of the first three elements, and so on until you run out of elements.” Now look at the code. 
Doesn’t it look just like that? To show a number and then the cumulative sum up to that number, I am using a 
List<KeyValuePair<int,int>>.

A pattern that can be expressed using a recurrence relation is known as a recursive pattern. For example, fractals 
are recursive patterns. Their entire fractal structure resembles the smallest building block. In the following problems, 
you will explore how to use LINQ to generate such patterns.

2-9. Recursive Series and Patterns: Generating Recursive 
Structures by Using L-System Grammar
Aristid Lindenmayer was a Hungarian biologist who developed a system of formal languages that are today called 
Lindenmayer systems, or L-systems (see http://en.wikipedia.org/wiki/L-system). Lindenmayer used these 
languages to model the behavior of plant cells. Today, L-systems are also used to model whole plants.

Problem
Lindenmayer described the growth of algae as follows: At first the algae is represented by an A. Later this A is replaced 
by AB, and B is replaced by A. So the algae grows like this. The letter n denotes the iteration:
 
n = 0 : A
n = 1 : AB
n = 2 : ABA
n = 3 : ABAAB
n = 4 : ABAABABA
n = 5 : ABAABABAABAAB
n = 6 : ABAABABAABAABABAABABA
n = 7 : ABAABABAABAABABAABABAABAABABAABAAB
 

The problem here is to simulate the growth of algae by using a functional programming approach.

Solution
Listing 2-10 simulates the growth of algae as described by an L-system.

Listing 2-10. Algal growth using L-system grammar

string algae = "A";
 
Func<string,string> transformA = x => x.Replace("A","AB");
Func<string,string> markBs     = x => x.Replace("B","[B]");
Func<string,string> transformB = x => x.Replace("[B]","A");
 
int length = 7;
Enumerable.Range(1,length).ToList()
    .ForEach ( k => algae = transformB(transformA(markBs(algae))));
 
algae.Dump("Algae at 7th Iteration");
 

www.it-ebooks.info

http://en.wikipedia.org/wiki/L-system
http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

18

How It Works
The trick is to identify which Bs to modify for the current iteration. Because A gets transformed to AB and B gets 
transformed to A, you need to do the transformation for A first, followed by the transformation of B. The code  
transformB(transformA(markBs(algae))) does that in the described order.

2-10. Recursive Series and Patterns Step-by-Step Growth  
of Algae
The previous example shows only the final stage of the algae. However, by modifying the example slightly, you can 
show the growth of the algae at each stage.

Problem
Modify the program in Listing 2-10 so that it shows the growth of the algae at each stage.

Solution
The bold code in Listing 2-11 shows the changes made to the previous example.

Listing 2-11. Algal growth shown by stages

string algae = "A";
 
Func<string,string> transformA = x => x.Replace("A","AB");
Func<string,string> markBs     = x => x.Replace("B","[B]");
Func<string,string> transformB = x => x.Replace("[B]","A");
 
int length = 7;
Enumerable.Range(1,length)
.Select (k => new KeyValuePair<int,string>(
    k,algae = transformB(transformA(markBs(algae)))))
.Dump("Showing the growth of the algae as described by L-System");
 

This shows the growth of the algae at each stage, as shown in Figure 2-14.

Figure 2-13. Algae at its seventh iteration

This generates the algae at its seventh iteration, as shown in Figure 2-13.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

19

How It Works
Unlike the previous version, this version stores the state of the algae at each stage, projected as a key/value pair, 
where the key represents the number of the iteration, and the value represents the stage of the algae at that iteration. 
Interestingly, the length of the algae string always forms a Fibonacci series. At the second iteration (the number 1 in 
the preceding output), the value of the algae is AB, so the length of the algae is 2. At the third iteration, the algae is 
ABA, and the length is 3. At the fourth iteration, the algae is ABAAB, and the length is 5 (the next Fibonacci number 
after 3), and so on.

You can project the length of the algae by using Listing 2-12; changes from the preceding example are shown  
in bold.

Listing 2-12. Projecting the length of algal strings

int length = 5;
Enumerable.Range(1,length)
    .Select (k => new Tuple<int,string,int>(k,algae =
        transformB(transformA(markBs(algae))),algae.Length))
    .Dump("The length of the alage forms the Fibonacci Series");
 

This generates the output shown in Figure 2-15.

Figure 2-14. The growth of the algae at each iteration

Figure 2-15. The length of the algae at each iteration forms the Fibonacci series

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

20

This table has three columns: Item1, Item2, and Item3. The first column, Item1, shows the serial number 
depicting the stage of the algae growth. Item2 shows the algae, and Item3 shows the length of the algae at that stage.  
At each stage, the length of the algae is a Fibonacci number.

2-11. Recursive Series and Patterns: Generating Logo 
Commands to Draw a Koch Curve
Logo is a computer language created for teaching programming. One of its features is turtle graphics, in which the 
programmer directs a virtual onscreen turtle to draw shapes by using simple commands such as turn left, turn right, 
start drawing, stop drawing, and so on.

Problem
You can generate several fractals, including the Sierpinksi Triangle, Koch curve, and Hilbert curve by using the 
L-system and a series of generated turtle graphics commands. These commands consist of constants and axioms.  
For example, here are the details to generate a Koch curve:

•	 Variables: F

•	 Constants: +, −

•	 Start: F

•	 Rules: (F → F+F−F−F+F) //This means at each iteration, "F" has to be  
replaced by "F+F-F-F+F"

Here, F means draw forward, plus (+) means turn left 90°, and minus (−) means turn right 90° (for a more 
complete explanation, see http://en.wikipedia.org/wiki/Turtle_graphics). The problem here is to generate a 
Koch curve and related patterns by using LINQ.

Solution
Listing 2-13 shows the code that generates the Logo commands to create a Koch curve.

Listing 2-13. Generate Logo commands to create a Koch curve

string koch = "F";
Func<string,string> transform = x => x.Replace("F","F+F-F-F+F");
 
int length = 3;
 
//Initialize the location and direction of the turtle
string command = @"home
setxy 10 340
right 90
";
 

www.it-ebooks.info

http://en.wikipedia.org/wiki/Turtle_graphics
http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

21

//Finish it in the next line so a new line appears in the command
command += Enumerable.Range(1,length)
     .Select (k => koch = transform(koch))
     .Last()
     .Replace("F","forward 15")
     .Replace("+",Environment.NewLine + "Left 90" +
          Environment.NewLine)
     .Replace("-",Environment.NewLine + "Right 90" +
          Environment.NewLine);
 
command.Dump();

How It Works
This generates the output partially shown in Figure 2-16.

Figure 2-16. The first few generated Logo commands to draw a Koch curve

Note ■  to see how a Koch curve is drawn in Logo, go to http://logo.twentygototen.org/ and paste the generated 
command in the text box on the right-hand side. then click run normally or run Slowly to see how the curve is drawn.  
i have uploaded a demo. You can check it out at www.youtube.com/watch?v=hdSMPp607tI&feature=youtu.be.

2-12. Recursive Series and Patterns: Generating Logo 
Commands to Draw a Sierpinski Triangle
By following a pattern similar to that discussed in the previous section, you can generate Logo commands to draw 
Sierpinski triangles.

www.it-ebooks.info

http://logo.twentygototen.org/
http://www.youtube.com/watch?v=hdSMPp607tI&feature=youtu.be
http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

22

Problem
The rules to draw a Sierpinski triangle are as follows:

•	 Variables: A, B

•	 Constants: +, −

•	 Start: A

•	 Rules: (A → B − A − B), (B → A + B + A)

•	 Angle: 60°

Here, A and B both mean draw forward, a plus sign (+) means turn left by some angle, and a minus sign (−) means 
turn right by some angle. The problem here is to use LINQ to follow the rules and draw a Sierpinski triangle.

Solution
Listing 2-14 shows the code to generate the Logo commands that draw the Sierpinski triangle.

Listing 2-14. Generate Logo commands to draw a Serpinski triangle

string serpinskiTriangle = "A";
 
Func<string,string> transformA = x => x.Replace("A","B-A-B");
Func<string,string> markBs     = x => x.Replace("B","[B]");
Func<string,string> transformB = x => x.Replace("[B]","A+B+A");
 
int length = 6;
 
Enumerable.Range(1,length)
.ToList()
.ForEach (k => serpinskiTriangle =
    transformB(transformA(markBs(serpinskyTriangle))));
 
serpinskiTriangle
    .Replace("A", "forward 5" + Environment.NewLine)
    .Replace("B", "forward 5" + Environment.NewLine)
    .Replace("+", "left 60" + Environment.NewLine)
    .Replace("-", "right 60" + Environment.NewLine)
    .Dump("LOGO Commands for drawing Serpinsky Triangle");

How It Works
You can follow the same structure to generate several other fascinating space-filling graphs such as the dragon curve 
or the Hilbert curve. To see these fractals generated at each iteration, visit www.kevs3d.co.uk/dev/lsystems/.

www.it-ebooks.info

http://www.kevs3d.co.uk/dev/lsystems/
http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

23

2-13. Recursive Series and Patterns: Generating Fibonacci 
Numbers Nonrecursively (Much Faster)
Generating a Fibonacci series is one of the classic recursive algorithms. You may already be familiar with the 
Fibonacci series; however, for the sake of completeness, here’s a brief explanation. The Fibonacci series is a recursive 
series in which each item is the sum of the previous two items in the series.

Problem
Here are the first few terms in the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21. Generating those is simple enough. However, 
recursively calculating Fibonacci numbers takes quite some time and sometimes can cause overflow. By using a 
collection and saving the last two numbers to add, you can make it much faster. The problem here is to write some 
LINQ code that uses the faster method.

Solution
Listing 2-15 shows the solution. For each item in the initial range, the query checks to see if it’s less than or equal 
to 1. If so, it adds a 1 to the fibonacciNumbers list. Otherwise, it adds the sum of the last two numbers in the 
fibonacciNumbers list.

Listing 2-15. Generating Fibonacci numbers with LINQ

List<ulong> fibonacciNumbers = new List<ulong>();
Enumerable.Range(0,200)
         .ToList()
         .ForEach(k =>
               fibonacciNumbers.Add(k <= 1 ? 1:
               fibonacciNumbers[k-2] + fibonacciNumbers[k-1]));
       
fibonacciNumbers.Take(10).Dump("Fibonacci Numbers");
 

This displays the first ten Fibonacci numbers, as shown in Figure 2-17.

Figure 2-17. The first ten Fibonacci numbers

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

24

How It Works
The problem with recursion is that it’s stateless. In plain English, that means recursive algorithms are forgetful—they 
don’t remember what they calculated in previous iterations.

To solve this, you need a collection to hold the previously calculated values. After you have that collection, 
the next entry to be added is the sum of the two preceding elements denoted by fibonacciNumbers[k-2] and 
fibonacciNumbers[k-1].

The technique represented in the preceding example is a scheme to make this recursive program run faster. 
There are several such problems, and because the pattern of these problems is the same, you can create a common 
generic structure to generate the results.

2-14. Recursive Series and Patterns: Generating Permutations
Generating permutations of a sequence is important in several applications. The following code generates all 
permutations of a given string. However, the algorithm can be extended to use with any data type.

Problem
Generate permutations of a given sequence.

Tip ■  For this code to work, you have to change the LinQpad language combo box to C# program.

Solution
Listing 2-16 shows the solution.

Listing 2-16.

private HashSet<string> GeneratePartialPermutation(string word)
{
    return new HashSet<string>(Enumerable.Range(0,word.Length)
    .Select(i => word.Remove(i,1).Insert(0,word[i].ToString())));
}
void Main()
{
        HashSet<string> perms = GeneratePartialPermutation("abc");
 
        Enumerable.Range(0,2)
        .ToList()
        .ForEach
        (
           c=>
           {
                     Enumerable.Range(0,perms.Count ())
                    .ToList()
                    .ForEach

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

25

                     (
                       i => GeneratePartialPermutation(
                           perms.ElementAt(i))
                     .ToList().ForEach(p=>perms.Add(p))
                     );
 
                    Enumerable.Range(0,perms.Count ())
                   .ToList()
                   .ForEach
                    (
                         i => GeneratePartialPermutation(new string
                           (perms.ElementAt(i).ToCharArray()
                           .Reverse().ToArray())
                     )
                   .ToList().ForEach(p=>perms.Add(p)));
          
           });
        perms.OrderBy (p => p).Dump("Permutations of 'abc'");
}
 

This generates the output shown in Figure 2-18.

How It Works
The first step in generating permutations is to generate rotated versions of the given sequence. To do this, you 
bring each character to the front, leaving the order of the other characters unchanged. That’s what the method 
GeneratePartialPermutation() does. So if the word is abcd, GeneratePartialPermutation() will return a set 
containing the items {"abcd", "bacd", "cabd", "dabc"}.

The next step is to generate the partial permutation for each of these and then the reverse of each. By running this 
process twice, you can ensure that you have traversed all possible permutations of the given string.

Finally, the code sorts the generated set of permutations alphabetically by using OrderBy().

Figure 2-18. Permutations of the string abc

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

26

2-15. Recursive Series and Patterns: Generating a Power Set  
of a Given Set
A power set is a set that contains all possible sets that can be created from the elements of the given set.

Problem
For the set {'a', 'b', 'c'}, the power set will be {"a", "ab", "bc", "ca", "abc"}. The problem is to write some 
LINQ code to generate the power set from any given set.

Solution
Listing 2-17 generates a power set from all the characters of a given string.

Listing 2-17. Create a power set from a given string

void Main()
{
        string word = "abc";
        HashSet<string> perms = GeneratePartialPermutation(word);
        Enumerable.Range(0,word.Length).ToList().ForEach(x=>
        Enumerable.Range(0,word.Length)
       .ToList()
       .ForEach( z=>
        {
               perms.Add(perms.ElementAt(x).Substring(0,z));
               perms.Add(perms.ElementAt(x).Substring(z+1));
        }));
     perms.Select (p => new string(p.ToCharArray()
          .OrderBy (x => x)
          .ToArray()))
          .Distinct()
          .OrderBy (p =>p.Length )
          .Dump("Power-set of 'abc'");
}
 

This code generates the power set of the string abc, as shown in Figure 2-19.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

27

How It Works
This solution starts by creating the partial permutation list of the given word. Note that to get the elements of the power set, 
it is sufficient to split each partial permutation at each index and take the first and last token. For example, the word abc will 
generate these three element pairs: {"a", "bc"}, {"ab", "c"}, {"abc"}. By doing this for all the partial permutations, 
you are guaranteed to have generated all elements of the power set. However, this technique produces duplicate elements. 
Therefore, the final step sorts the characters of these tokens alphabetically and removes duplicates by using a Distinct() 
call. This leaves us with all the elements of the power set of the characters of the given word: abc, in this case.

We have all written code to manipulate in-memory collections by using a traditional loop-and-branch style. 
However, with LINQ, these types of manipulations become easy. In the following sections, some of these are solved 
using LINQ operators that appear often as subproblems in our code.

2-16. Collections: Picking Every n th Element
Picking every nth element from a given collection is a common problem that often appears as a subproblem of other 
problems such as shuffling or load distribution. The idea is to pick every nth element without dividing the index to 
figure out whether to include an entry.

Problem
Write an idiomatic LINQ query to find every nth element from a given sequence.

Solution
The code in Listing 2-18 shows the solution.

Listing 2-18. Picking every nth element from a given collection

int n = 20; //Pick every 20th element.
List<int> numbers = Enumerable.Range(1,100).ToList();
List<int> nthElements = new List<int>();
Enumerable.Range(0,numbers.Count()/n)
       .ToList()
       .ForEach(k => nthElements.Add(numbers.Skip(k*n).First()));
nthElements.Dump();
 

Figure 2-19. The power set of the set formed from the characters of the string abc

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

28

How It Works
This example uses Skip() and First() in unison. This is idiomatic LINQ usage that you’ll find in many applications. 
If you want to pick every nth element, there will be exactly (numbers.Count()/n) + 1 elements after the pick, starting 
at the first index. In this case, the value for k ranges from 0 to 4. Thus the code snippet numbers.Skip (k*n).First() 
picks the first element after skipping k*n items from the left for all values of k starting at 0 and ending at 4. So when k is 1, 
the query skips the first 20 (because k*n is 20) elements, and then picks the next element (the 21st element in this case). 
This process continues until the end of the series.

2-17. Collections: Finding the Larger or Smaller of Several 
Sequences at Each Index
Finding the minimum or the maximum value at each location from several collections of the same length is useful for 
many applications.

Problem
Imagine that the numbers in some collections denote the bidding values for several different items. You want to find 
the maximum and minimum bid values for all the items. The problem is to write a generic LINQ query to find such 
values easily.

Solution
Listing 2-19 shows the solution.

Listing 2-19. Picking minimum or maximum values from multiple collections

List<int> bidValues1 = new List<int>(){1,2,3,4,5};
List<int> bidValues2 = new List<int>(){2,1,4,5,6};
 
bidValues1.Zip(bidValues2, (firstBid,secondBid) =>
    Math.Max(firstBid,secondBid))
    .Dump("Maximum bids");
 
bidValues1.Zip(bidValues2, (firstBid,secondBid) =>
    Math.Min(firstBid,secondBid))
    .Dump("Minimum bids");
 

Figure 2-20. The result of picking every 20th element

The output of the program is shown in Figure 2-20.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

29

This generates the output in Figure 2-21, which shows the minimum and maximum bid values at each stage.

Figure 2-21. Member-wise maximum and minimum values

This example uses only two collections; however, in a real setting, you might need to extract minimum and/or 
maximum values at one or more specified locations from many collections.

While the code shown so far works, LINQ provides a cleaner way to solve the problem (see Listing 2-20).

Listing 2-20. A better LINQ solution for picking minimum and maximum values from multiple collections

List<List<int>> allValues = new List<List<int>>();
List<int> bidValues1 = new List<int>(){1,2,3,4,5};
List<int> bidValues2 = new List<int>(){2,1,4,5,6};
List<int> bidValues3 = new List<int>(){4,0,6,8,1};
List<int> bidValues4 = new List<int>(){9,2,4,1,6};
 
//Add all collections in this list of collections.
allValues.Add(bidValues1);
allValues.Add(bidValues2);
allValues.Add(bidValues3);
allValues.Add(bidValues4);
 
//Showing the maximum values compared at each location for 4 collections
allValues
.Aggregate((z1,z2) => z1.Zip(z2,(x,y) => Math.Max(x,y)).ToList())
.Dump("Maximum values : Generalized Approach");
 
//Showing the minimum values compared at each location for 4 collections
allValues
.Aggregate((z1,z2) => z1.Zip(z2,(x,y) => Math.Min(x,y)).ToList())
.Dump("Minimum values : Generalized Approach");
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

30

The preceding code generates the output in Figure 2-22, which shows minimum and maximum bid amounts at 
each stage.

How It Works
This is a little tricky. The solution aggregates a list of lists over their zipped values. It may take some time to wrap your 
head around this.

Consider the following code:
 
Aggregate((z1,z2) => z1.Zip(z2,(x,y) => Math.Min(x,y)).ToList())
 

Here, z1 and z2 are of type List<int>. The inner call to Zip() uses the minimum value at each location to find 
out what the result should be at that location. Thus, at each level of aggregation (which processes two lists at a time), 
you always have a collection that has the minimum values at each location for all the collections aggregated thus far, 
as shown in Figure 2-23.

Figure 2-22. Maximum and minimum values from several collections at each location

Figure 2-23. How the minimum values get picked at each stage

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

31

These tables illustrate how the code finds the minimum number at each location and at each stage. The resulting 
collection, containing the minimum value at each location for the initial two lists, serves as the first argument in the 
next step. Changed values at each step are in the third column of the table.

Number theory has some fascinating examples of series generation in action. Most of us were taught 
programming using these examples. If you have been programming for a while, you likely are familiar with the 
number sequences described here. That choice is deliberate. I wanted to show how LINQ can help us approach the 
problem differently.

2-18. Number Theory: Generating Armstrong Numbers and 
Similar Number Sequences
In recreational mathematics, an Armstrong number is a topic of interest. An Armstrong number is a number that is the 
same as the sum of its digits raised to the power of three. For example, consider the number 153, as shown in Figure 2-24. 

Note that the number is obtained by summing up all its digits raised to the power of three.
A Dudeney number is a positive integer that is a perfect cube, such that the sum of its decimal digits is equal to the 

cube root of the number. Consider the number 512. The sum of the digits in 512 is 8. And the cube of 8 is 512. Stated 
another way, the cube root of 512 is 8, which is the sum of the digits of 512.

A sum-product number is an integer that in a given base is equal to the sum of its digits times the product of its 
digits. Or, to put it algebraically, given an integer n that is l digit long in base b (with dx representing the xth digit), if 
the following condition shown in Figure 2-25

A factorion is a natural number that equals the sum of the factorials of its decimal digits. For example, 145 is a 
factorion because 1! + 4! + 5! = 1 + 24 + 120 = 145.

Problem
Given a range, can you find all the Armstrong numbers, Dudeney numbers, sum-product numbers, or factorions in 
that range?

Solution
Because all these number definitions deal with the digits of integer numbers, you can first create a method to extract 
the individual digits of a number from a given integer. Listing 2-21 shows the code for an extension method that 
extracts digits from a given integer number.

Figure 2-24. An Armstrong number

Figure 2-25. Equation of a sum-product number

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

32

Listing 2-21. Finding Armstrong numbers, Dudeney numbers, sum-product numbers, and factorions in a range

public static class NumberEx
{
      public static IEnumerable<int> Digits(this int n)
      {
          List<char> chars = new List<char>() {'0','1','2','3','4','5','6','7','8','9'};
          List<int> digits = new List<int>();
            foreach (char c in n.ToString())
                  digits.Add(chars.IndexOf(c));
            return digits.AsEnumerable();
      }
}
 
void Main()
{
     
    Enumerable.Range(0,1000)
    .Where(k => k.Digits().Select (x => x * x * x).Sum() == k)
        .Dump("Armstrong Numbers"); 
     
    Enumerable.Range(0,1000)
    .Where(k => {
        var digits = k.Digits();
        if(digits.Sum() * digits.Aggregate ((x,y) =>x*y) == k)
            return true;
        else
            return false;
    }).Dump("Sum Product Numbers");
    Enumerable.Range(0,1000)
         .Where (e => Math.Pow(e.Digits().Sum(),3) == e)
         .Dump("Dudeney Numbers");
      
    Enumerable.Range(1,1000)
         .Where (e => e.Digits()
         .Where (d => d > 0)
         .Select(x =>Enumerable.Range(1,x)
         .Aggregate((a,b) => a*b)) //Calculating factorial of each digit
         .Sum() //Calculating summation of factorials
          == e) //when summation matches number it's a factorion
         .Dump("Factorions");
}
 

This generates the output shown in Figure 2-26.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

33

How It Works
At the heart of these examples is the Digits() extension method that returns a List<int> containing the individual 
digits. For example, 153.Digits() returns a List<int> containing the values {1, 5, and 3}.

Let’s start with Armstrong numbers. The following code projects each digit of the number k as its cube, and then 
sums the projected values:
 
k.Digits().Select (x => x * x * x).Sum()
 

Figure 2-26. Armstrong numbers and other similar numbers 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

34

For example, if k is 153, then k.Digits().Select (x => x * x * x) returns {1 , 125, 27}, The Sum() operator 
totals these projected values. Because the sum of 1, 125, and 27 is 153, 153 is a valid Armstrong number. To find the 
sum-product numbers, you need to find the sum and the product of digits. digits.Sum() returns the sum of the 
digits, and digits.Aggregate ((x,y) =>x*y) finds the product of the digits. If the product of these two figures 
matches the number itself, you can declare that the number is a sum-product number.

The code for finding Dudeney numbers couldn’t be more straightforward. It is one of those perfect examples that 
shows how LINQ can make code look more intuitive and yet be more readable at the same time.

The code for finding factorions is a little trickier; however, the algorithm is simple. First, find all the digits of the 
number. Then discard all zeros because a factorial of zero doesn’t make sense. Then, for all such nonzero digits, go to 
that digit starting from 1. Multiply all the digits you encounter along the way. This will give you the factorial of each 
digit. If you want to avoid this step, you can precalculate and save the factorials of digits 1 to 9 in a dictionary. At the 
end, you sum these factorials. If the sum matches the number, that number is a factorion.

2-19. Number Theory: Generating Pascal’s Triangle 
Nonrecursively 
In mathematics, Pascal’s triangle is a triangular array of the binomial coefficients. It is named after the French 
mathematician Blaise Pascal. The first few rows of the Pascal triangle are shown in Figure 2-27.

Figure 2-27. The first few rows of Pascal’s triangle

The structure is recursive. Apart from the first and the last column, every value is the sum of the elements just 
above it. For example, the 4 in the next-to-last row in Figure 2-27 is the result of adding 1 and 3 immediately above 
it. Classically, these number triangles are created by calling a function recursively, passing the row and column 
position. But as the number of rows increases, this method becomes very slow and may even throw an out-of-memory 
exception because the stack overflows. However, you can avoid the recursion by using extra storage.

Problem
The problem here is to avoid recursion by using external storage. In functional programming, this technique is known 
as memoization.

Listing 2-22 shows some code that generates the Pascal’s triangle without recursion. It’s much faster than the 
recursive version.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

35

Solution
Listing 2-22 shows the solution.

Listing 2-22. Generating a Pascal’s triangle without recursion

List<Tuple<int,int,int>> pascalValues = new List<Tuple<int,int,int>>();
pascalValues.Add(new Tuple<int,int,int>(1,1,1));
pascalValues.Add(new Tuple<int,int,int>(2,1,1));
pascalValues.Add(new Tuple<int,int,int>(2,2,1));
 
for(int i=1;i<10;i++)
{
    int currentRow = pascalValues.Last().Item1  + 1;
    int currentCol = pascalValues.Last().Item2 + 1;
    for(int j = 1;j<=currentCol;j++)
    {
        if(j==1 || j== currentCol)
            pascalValues.Add(new Tuple<int,int,int>(currentRow,j,1));
        else
            pascalValues.Add(new Tuple<int,int,int>(currentRow,j,
            pascalValues.First (v => v.Item1 == currentRow - 1 &&
                v.Item2 == j - 1).Item3 +
            pascalValues.First (v => v.Item1 == currentRow - 1 &&
                v.Item2 == j).Item3 ));
     }
}
//Show the table
pascalValues
.ToLookup(t=>t.Item1,t=>t.Item3.ToString())
.Select (t => t.Aggregate ((x,y)  => x + " " + y ))
.Aggregate ((u,v)  => u + Environment.NewLine + v)
.Dump("Pascal's Triangle");
 

This generates the output shown in Figure 2-28.

Figure 2-28. The first tenrows of Pascal’s triangle

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

36

How It Works
You can represent number triangles as a series of tuples, where each tuple stores the row, column, and the value at 
the row, col position. For example, you can use a List<Tuple<int,int,int>> in C# where the first item in the tuple 
represents the row, the second item represents the column, and the third/last item represents the value at that  
(row, col) position in the triangle.

These three lines store the first three items of the triangle:
 
pascalValues.Add(new Tuple<int,int,int>(1,1,1));
pascalValues.Add(new Tuple<int,int,int>(2,1,1));
pascalValues.Add(new Tuple<int,int,int>(2,2,1));
 

For the first and the last column, the value is always 1. The following code takes care of filling that correctly:
 
if(j==1 || j== currentCol)
    pascalValues.Add(new Tuple<int,int,int>(currentRow,j,1));
 

Every other element is the sum of the element directly above it (same column, previous row) and the element 
diagonally above it (previous column, previous row). The following code obtains this value:
 
pascalValues.Add(new Tuple<int,int,int>(currentRow,j,
pascalValues.First (v => v.Item1 == currentRow - 1 && v.Item2 == j - 1).Item3  +
pascalValues.First (v => v.Item1 == currentRow - 1 && v.Item2 == j).Item3 ));
 

You can apply similar logic to generate all other number triangles.

2-20. Game Design: Finding All Winning Paths in an Arbitrary  
Tic-Tac-Toe Board
Most tic-tac-toe boards are 3×3 grids. Tic-tac-toe game implementations usually hard-code the winning paths in 
the code. However, if you want to create a game that uses an arbitrary-size tic-tac-toe board, you have to find out the 
winning paths at runtime—whenever the user changes the board size. Because tic-tac-toe boards are square, you can 
represent a 3×3 board by the integer 3.

Problem
Generate all winning paths of an arbitrarily sized tic-tac-toe board, starting the cell numbering at 1. For a 3×3 board, 
the cells range from 1 to 9. For a 4×4 board, cells range from 1 to 16.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

37

Solution
Listing 2-23 shows the solution.

Listing 2-23. Generate winning paths for a tic-tac-toe board

int boardSize = 3;
var range = Enumerable.Range(1,boardSize*boardSize);
 
List<List<int>> winningPaths = new List<List<int>>();
//Horizontal Paths
Enumerable.Range(0,boardSize)
    .ToList()
    .ForEach(k => winningPaths.Add(range.Skip(k*boardSize)
         .Take(boardSize).ToList()));
 
//Vertical Paths
Enumerable.Range(0,boardSize)
    .ToList()
    .ForEach(k => winningPaths.Add(winningPaths.Take(boardSize)
         .Select(p => p[k]).ToList()));
 
//Diagonal Paths
//Main diagonal
winningPaths.Add(range.Where((r,i) =>
    i % (boardSize + 1) == 0).ToList());
 
//reverse diagonal
winningPaths.Add(range.Where ((r,i) =>
    i % (boardSize - 1) == 0).Skip(1).Take(boardSize).ToList());
//printing all the paths; one path on each line.
winningPaths.Select(x => x.Select (z => z.ToString()).Aggregate
    ((a,b)=> a.ToString () + " " + b.ToString() ))
    .Dump("All winning paths for a Tic-Tac-Toe board of size 3");
 

This generates the output shown in Figure 2-29.

Figure 2-29. All winning paths of a 3×3 tic-tac-toe board

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

38

How It Works
Tic-tac-toe boards have four types of winning paths, as shown in Figure 2-30. Follow this hint to find how the  
code works.

Figure 2-30. The direction of all winning paths in a tic-tac-toe board

Finding horizontal paths is simple. At each stage, you need to take as many elements as the board size. So if the 
board size is 3×3, you have to take three elements at each stage. Skip() followed by Take() achieves that. This is a 
common technique. Whenever you want to skip a few elements at each stage and then take one or more, this LINQ 
idiom comes in handy.

For vertical paths, note that each element in each vertical path is selected from its respective index of the 
corresponding horizontal paths. Or in other words, vertical paths are a transposition of the matrix created from the 
horizontal paths.

Finding elements of the main diagonal path is also simple. Elements at the main diagonal appear at a gap 
of (boardSize + 1). In other words, elements of the main diagonal form an arithmetic progression (AP) with a 
difference of (boardSize + 1).

The code var range = Enumerable.Range(1,boardSize*boardSize); generates a range of all cell values. 
Subsequently, the code range.Where ((r,i) => i % (boardSize - 1) == 0) filters the range, skipping the first 
element, and then picking boardSize elements, leaving you with the elements of the reverse diagonal.

2-21. Series in Game Design: Solving Go Figure
Go Figure is a puzzle to figure out a mathematical expression involving four unique digits (0 to 9), that evaluate 
to a given answer. For example, if the set of digits is {1, 2, 4, and 9} and the answer is 10, then (9 + 4) – (2 + 1) is a 
valid expression. The puzzle challenges players to use mathematical symbols (+, -, and *) and brackets to create an 
expression. Evaluating the expression results in the given answer.

Problem
Write a program that generates answers for a Go Figure puzzle. 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

39

Solution
The program in Listing 2-24 solves the puzzle.

Listing 2-24. Generating answers for a Go-Figure puzzle

//Assume the answer we want to reach is "10"
int answer = 10 ;

//And we want to create 10 using 1, 2, 4 and 9
List<int> set = new List<int>() {1,2,4,9};
 
List<KeyValuePair<int,string>> query =
set.SelectMany ((s,i) => set.Where (se => se!=s)
    .Select (se => new KeyValuePair<int,string>
    (se+s,se.ToString()+"+"+s.ToString()))).ToList();
 
query.AddRange(
set.SelectMany ((s,i) => set.Where (se => se!=s)
    .Select (se => new KeyValuePair<int,string>
    (se*s,se.ToString()+"*"+s.ToString()))));
 
query.AddRange(
set.SelectMany ((s,i) => set.Where (se => se!=s)
    .Select (se => new KeyValuePair<int,string>
    (se-s,se.ToString()+"-"+s.ToString()))));
 
List<string> expressions = new List<string>();
for(int i=0;i<query.Count();i++)
{
    for(int j=0;j<query.Count ();j++)
    {
        if(i!=j)
        {
            if(!Regex.Matches(query[i].Value,"[0-9]")
                .Cast<Match>()
                .Select (m =>Convert.ToInt16(m.Value))
                .OrderBy (m => m)
                .Any(z => Regex.Matches(query[j].Value,"[0-9]")
                .Cast<Match>()
                .Select (m =>Convert.ToInt16(m.Value))
                .OrderBy (m => m)
                .Contains(z)))
              {
                   if(query[i].Key  + query[j].Key == answer)
                   {
                       expressions.Add("(" + query[i].Value + ") +
                           (" + query[j].Value +")");
                       break;
                   }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

40

                   if(query[i].Key - query[j].Key == answer)
                   {
                       expressions.Add("(" + query[i].Value + ") -
                           (" + query[j].Value +")");
                       break;
                   }
                   if(query[i].Key * query[j].Key == answer)
                   {
                       expressions.Add("(" + query[i].Value + ")
                           * (" + query[j].Value +")");
                       break;
                   }
              }
        }
    }
}
 
expressions.Dump("Expressions");
 

This generates the output shown in Figure 2-31.

How It Works
At the core of this solution is the logic that calculates all the possible values that can be reached by adding, 
subtracting, or multiplying the given values in the set.

For example, the following code generates a list of key/value pairs, where the keys represent the summation and 
the values represent the expressions that resulted in the summation. For the given set {1, 4, 2, and 9}, one such entry in 
this list is represented by the following key and value combination: key = 5, value = 9 – 4.
 
List<KeyValuePair<int,string>> query =
set.SelectMany ((s,i) => set.Where (se => se!=s )
.Select (se => new KeyValuePair<int,string>(se+s,se.ToString()+"+"+s.ToString()))).ToList();
 

Similarly, other expressions and their resultant values are calculated and are added to the query. So when * is 
used between 9 and 4, you get 36 as the value and 9 * 4 as the expression. However, there isn’t any check to identify 
that 9 * 4 and 4 * 9 are same. Can you bring that in? That would be a good exercise.

Figure 2-31. All expressions that result in the answer

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

41

After constructing the list of results and expressions, you need to iterate over the list to find the final expression 
that results in the given answer. However, you must avoid expressions that share the same digit. For example, if you 
choose 9 – 4 as the first part of the expression, you can’t subsequently use any expression containing either of those 
digits. The following code checks that.:
 
if(!Regex.Matches(query[i].Value,"[0-9]")
                             .Cast<Match>()
                             .Select (m =>Convert.ToInt16(m.Value))
                             .OrderBy (m => m)
                             .Any(z => Regex.Matches(query[j].Value,"[0-9]")
                                   .Cast<Match>()
                                   .Select (m =>Convert.ToInt16(m.Value))
                                   .OrderBy (m => m)
                                   .Contains(z)))

2-22. Miscellaneous Series: Finding Matching Pairs from Two 
Unsorted Collections
Assume you have two or more unsorted collections and you want to find a pair of entries from these collections  
that match.

Problem
Here’s a more concrete example. Imagine two arrays containing English words. You want to find words in one array 
that rhyme with one or more words in the other array. Further, for the purposes of this example, assume that if the 
last three letters of two words are identical, they probably rhyme. For example, rubble and bubble rhyme, and so do 
brush and rush. Obviously, this rule doesn’t work for all words. Remember that the solution shouldn’t involve sorting, 
because that can be computationally expensive—precisely what you should avoid.

Solution
Listing 2-25 shows the solution.

Listing 2-25. Finding matching pairs in two unsorted collections

 //finding matching pairs
 string[] words1 = {"orange", "herbal", "rubble", "indicative", "mandatory",
                      "brush", "golden", "diplomatic", "pace"};
 
 string[] words2 = {"verbal", "rush", "pragmatic", "story", "race",
                    "bubble", "olden"};
 
 //Checking whether the last three characters match.
 //is a rudimentary way to tell if two words rhyme.
 Func<string,string,bool> mightRhyme = (a,b) =>
  a[a.Length-1]==b[b.Length - 1]
  && a[a.Length-2]==b[b.Length - 2]
  && a[a.Length-3]==b[b.Length - 3];
  

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

42

 words1
 .Select(w => new KeyValuePair<string,string>(w, words2.FirstOrDefault(wo => mightRhyme(w,wo))))
 .Where(w => !String.IsNullOrEmpty(w.Value))
 .Dump("Matching Pairs");
 

This query when run on LINQPad generates the output shown in Figure 2-32.

How It Works
At first glance, this problem seems to have a straightforward nested loop-based quadratic time solution. You just 
have to loop through the collections and find the matching pairs one at a time. The preceding code is just a LINQ 
implementation of this method.

words2.FirstOrDefault(wo => mightRhyme(w,wo) will return the matching pair for w in words2 or it will return 
null when there no matching pair exists. In this case, the binary predicate is the method mightRhyme, which takes two 
strings and returns true if their three trailing characters match.
 
Select(w => new KeyValuePair<string,string>(w, words2.FirstOrDefault(wo => mightRhyme(w,wo)))) 
 

This code generates an IEnumerable<KeyValuePair<string,string>>, where the keys hold each word in the 
array words1 and the values hold rhyming pairs found in the array words2, if any, or null if no matches exist.

The following code filters out pairs for which no rhyming was found:
 
Where (w => !String.IsNullOrEmpty(w.Value)) That leaves us with rhyming pairs.

2-23. Miscellaneous Series: Using a Lookup-Based Approach
The solution you have explored in this section works. However, it takes quadratic time because it has to loop through 
the other collection to find rhyming words. So this method is neither scalable nor efficient.

Fortunately, a linear-time solution exists. Because you are finding matching words by matching their last three 
letters, you can treat the three trailing characters from each word as a hash of each word. So bal is the hash of verbal. 
The word herbal also has the same ble hash. 

Figure 2-32. The result of matching pair extraction from unsorted collections

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

43

Problem
Find pairs of possible rhymes in two lists using a lookup-based approach.

Solution
If you create a lookup table based on the hash (that is, just the last three characters of each word), then wherever 
the hashes match (a collision, in other words), you have a likely candidate for a rhyming pair. The following query 
generates the hash-based lookup table and finds potential rhyming words using the same two word lists used in the 
previous solution:
 
string[] words1 = {"orange", "herbal", "rubble", "indicative", "mandatory",
                      "brush", "golden", "diplomatic", "pace"};
 
string[] words2 = {"verbal", "rush", "pragmatic", "story", "race",
                    "bubble", "olden"};
words1
 .Concat(words2)
 .ToLookup(w => w.Substring(w.Length-3))
 .Where(w => w.Count() >= 2)
 .Select(w => w.Aggregate((m,n)=>m+", "+n))
 .Dump("Showing rhyming pairs comma separated");
 

This generates the output shown in Figure 2-33.

Figure 2-33. Rhyming pair of words selected from two unsorted collections of words

How It Works
words1.Concat(words2) returns the list of all the words.

ToLookup (w => w.Substring(w.Length-3))) creates a lookup table, where the hash is the last three characters 
of each word. The lookup table looks like Figure 2-34.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

44

Now take a close look at the table. The pairs that rhyme have two items. For example, brush and rush share the 
same hash—ush. So it will be sufficient to find those entries from the lookup table that contain two or more entries. 
That filtering operation is performed by the code Where (w => w.Count() >= 2). In the final stage, these filtered 
entries are projected as comma-separated values by Select(w => w.Aggregate((m,n)=>m+", "+n)).

2-24. Miscellaneous Series: Solving the FizzBuzz Challenge in a 
LINQ One-Liner
The FizzBuzz problem has been used as a litmus test of programming capability among aspiring programming job 
candidates, which—by itself—makes it worth a bit of study.

Problem
Write a program that prints the numbers from 1 to 100. But for multiples of 3, print Fizz instead of the number, and for 
the multiples of 5, print Buzz. For numbers that are multiples of both 3 and 5, print FizzBuzz.

Figure 2-34. A lookup table with a hash-key consisting of the last three characters of each word

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

45

Solution
Listing 2-26 shows the solution.

Listing 2-26. Solving the FizzBuzz Challenge with LINQ

List<string> fizzBuzzes = new List<string>();
Enumerable.Range(1,100).ToList().ForEach(k =>
    fizzBuzzes.Add(k % 15 == 0 ? "FizzBuzz" : k % 5 == 0 ? "Buzz"
                                            : k % 3 == 0 ? "Fizz"
                                            : k.ToString()));
fizzBuzzes.Take(20).Dump(); //show the first 20 elements
 

This generates the output shown in Figure 2-35.

Figure 2-35. The first 20 elements of the FizzBuzz series

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

46

How It Works
Solving the FizzBuzz problem requires nothing but a straightforward if-else structure described by the following 
pseudo code:
 
If the number is divisible by 15
     Replace with FizzBuzz
Else if the number is divisible by 5
     Replace with Buzz
Else if the number is divisible by 3
     Replace with Fizz
Else // for everything else
     Don t do anything. Just show that number.
 

Using the ternary operator (? : ), you can write this logic in a single line of code. The following line does just that:
 
k % 15 == 0 ? "FizzBuzz" : k % 5 == 0 ? "Buzz" : k % 3 == 0 ? "Fizz" : k.ToString()
 

However, because 15 is a multiple of both 3 and 5, you can optimize for that and eliminate the division by 15.  
The next example demonstrates that.

2-25. Miscellaneous Series: Solving the FizzBuzz Challenge by 
Using Set Theory
The previous solution used division by 15. However, because 15 is a multiple of 3 and 5, you can avoid 
computationally expensive divisions by 15 by relying on the fact that sets divisible by 15 are also divisible by 3 and 5. 
This boils down to the following solution using set theory properties. The code might look a bit clumsy, but it will offer 
better performance for longer sequences because it avoids the unnecessary division by 15.

Problem
Rewrite the FizzBuzz Challenge code to eliminate the division by 15.

Solution
Listing 2-27 shows the solution.

Listing 2-27. Solving the FizzBuzz Challenge using set theory

var range = Enumerable.Range(1,40);
var mod3 = range.Where(e => e % 3 == 0);
var mod5 = range.Where(e => e% 5 == 0);
var mod15 = mod3.Intersect(mod5);
 
//Find numbers that are divisible by 3 but not by 5 or 15
mod3 = mod3.Except(mod15);
 
//Find numbers that are divisible by 5 but not by 3 or 15
mod5 = mod5.Except(mod15);
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

47

//Find integers that are not divisible by either 3 or 5
var neither = range.Except(mod3.Concat(mod5).Concat(mod15));
 
//Project each of these numbers as per the rule of the challenge.
neither.Select (n => new KeyValuePair<int,string>(n, n.ToString()))
    .Concat(mod3.Select (m => new KeyValuePair<int,string>(m, "fizz")))
    .Concat(mod5.Select (m => new KeyValuePair<int,string>(m, "buzz")))
    .Concat(mod15.Select (m => new KeyValuePair<int,string>(m, "fizzbuzz")))
 
    //Sort the projected values as per the integer keys
    .OrderBy (n => n.Key)
 
    //But show the values only.
    .Select (n => n.Value)
 
    .Take(20) //showing first 20 elements
    //Dump the result
    .Dump ("Fizz Buzz Challenge");

How It Works
Although this solution looks overwhelmingly large compared to the previous version, it is simple. If you denote all 
numbers divisible by 3 as a set, and all numbers divisible by 5 as another set, then the intersection of these two sets 
will be the set of numbers divisible by 15.
 
//Creates a set of multiples of the number 3
var mod3 = range.Where (e => e % 3 == 0);
var mod5 = range.Where(e => e% 5 == 0); //does so for the number 5.
 

Except() returns elements present in one set but not in the other. Because the numbers divisible by 15 will be 
present in both sets, you can remove those items. The following lines of code do that:
 
//Find numbers that are divisible by 3 but not by 5 or 15
mod3 = mod3.Except(mod15);
//Find numbers that are divisible by 5 but not by 3 or 15
mod5 = mod5.Except(mod15);
 

So at this point, mod3 contains only elements divisible by 3, while mod5 contains elements only divisible by 5, 
and mod15 contains elements divisible by 15. The rest of the numbers in the range are not divisible by any of these 
numbers (3, 5, or 15). These numbers are found and stored in the variable neither.

The following line of code projects the integers and their corresponding values as per FizzBuzz rule:
 
IEnumerable<KeyVlauePair<int,string>>
neither.Select (n => new KeyValuePair<int,string>(n, n.ToString()))
    .Concat(mod3.Select (m => new KeyValuePair<int,string>(m, "fizz")))
    .Concat(mod5.Select (m => new KeyValuePair<int,string>(m, "buzz")))
    .Concat(mod15.Select (m => new KeyValuePair<int,string>(m, "fizzbuzz")))
 

OrderBy (n => n.Key) sorts this projected range of keys in ascending order. Finally, the values for the FizzBuzz 
series are projected by Select (n => n.Value).

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ SerieS Generation

48

Summary
Congratulations on finishing a long chapter! The problems here were selected to represent real-world applications 
while keeping variety and simplicity in mind. The key takeaway from this chapter is that you can apply LINQ to solve 
problems in several domains. The code in this chapter illustrates several idiomatic usages of LINQ. By now you should 
have a solid grasp of how to apply such LINQ idioms to generate several sequences. The advantage is that using LINQ 
operators makes your query look clean and concise. In the next chapter, you will see how to apply LINQ to solve 
several types of text-processing tasks.

www.it-ebooks.info

http://www.it-ebooks.info/


49

Chapter 3

Text Processing

Text processing is a blanket term used to describe any kind of string processing. Checking whether a pair of words are 
anagrams of each other is one example of text processing. Generating suggestions for an autocomplete or assisted 
input process is another. Some types of text processing, such as spell-check and correction features, have become so 
commonplace that software users now expect them to be present in virtually every program they use.

LINQ changes the way developers deal with text because it lets you write intuitive code to solve complex  
text-processing tasks. In this chapter, you will have a chance to solve some fun—yet useful—text-processing 
challenges. The examples in this chapter vary widely in terms of difficulty. They are intended to serve as basic 
examples of how LINQ can help solve numerous text-processing problems.

The problems in this chapter fall into three broad but related categories:

•	 Human-computer interactions that deal with various input strategies and spell-check

•	 Text generation and manipulation, such as the anagram problem mentioned earlier

•	 Information extraction, such as pulling content from a document

3-1. Simulating a T9 Word Suggestion 
Typing on mobile phones wasn’t easy in the early days, so several schemes were invented to make it simpler. 
Autocompletion of words using a T9 dictionary was one such early solution. Figure 3-1 shows a typical basic mobile 
phone keypad.

Figure 3-1. The keypad of a mobile phone, with the letters on each key

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

50

A typical mobile phone has the entire alphabet on its keys. This type of keypad enables users to enter predictive 
text using a T9 dictionary.

Problem
Given a set of T9 key presses, select all possible matching words from a dictionary.

Solution
The code in Listing 3-1 implements an algorithm to pull all the words from T9 that match the keystrokes entered from 
the keypad. Words that share the same key combination are known as textonyms. For example, the key combination 
4663 matches the words good, home, gone, and hood. Those words are textonyms of each other. So when a user types 
4663 on a T9-enabled keypad of a mobile phone, the phone offers all the textonyms as suggestions to pick from. 
Sometimes these suggestions can be quite amusing. For example, select and reject are textonyms, because they both 
use the key combination 735328.

Listing 3-1. Find words that match T9 keypresses

string keyPad =    @"2 = ABC2
                     3 = DEF3
                     4 = GHI4
                     5 = JKL5
                     6 = MNO6
                     7 = PQRS7
                     8 = TUV8
                     9 = WXYZ9";
 
Dictionary<char,char> keyMap = new Dictionary<char,char>();
 
//4663 can lead to "good","home" etc
string key = "4663";
 
//"735328";//select/reject
//"select" and "reject" can be typed using the key combination "735328"
 
List<KeyValuePair<string,string>> keyAndLetters =
    keyPad.ToLower()
    .Split(new char[]{'\r','\n'},StringSplitOptions.RemoveEmptyEntries)
    .Select
    (
       p =>
       new KeyValuePair<string,string>(p.Split('=')[0].Trim(),p.Split('=')[1].Trim()))
                  .ToList();
 
foreach (var keyL in keyAndLetters)
{
     foreach (char c in keyL.Value.ToCharArray())
        keyMap.Add(c,Convert.ToChar(keyL.Key));
}
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

51

StreamReader sr = new StreamReader ("C:\\T9.txt");
string total = sr.ReadToEnd();
sr.Close();
 
var query = total
             .Split(new char[]{'\r','\n',' '},StringSplitOptions.RemoveEmptyEntries)
             .Where (t => t.Length==key.Length)
                 .Select (t => t.Trim());
  
query
   .ToList()
   .Select(w=> new KeyValuePair<string,string>(w,
       new string(w.ToCharArray().Select (x => keyMap[x]).ToArray())))
   .Where (w => w.Value==key)
   .Select (w => w.Key)
   .Dump("Word suggestions");
 

I have used this code in a Windows application that simulates T9 typing. You can see it in action on YouTube 
(www.youtube.com/watch?v=Su4-_v2qGvQ&feature=youtu.be). Of course, the program is also in the downloadable 
code that accompanies this book.

When you run the program, you will see a list of suggested words that correspond to the key combination 4663. 
On a T9-enabled mobile keypad, entering 4663 matches several words, including gone, good, goof, and home, as you 
can see in Figure 3-2.

Figure 3-2. Suggestions for the keystrokes 4663 on a T9-enabled keyboard

How It Works
The task is to locate all the possible words from a given dictionary that match a given a key combination. If you 
approach this problem from another direction, you can think of it as replacing all the characters in a given word with 
the key on which that letter is available. For example, because a, b, and c are all available on the 2 key, you can replace 
all occurrences of these three letters with 2. Doing so re-creates the numeric combination used to enter the word.

For example, suppose you enter the word home. To determine the set of numeric keys required to enter home, replace 
each letter with its corresponding numeric digit from the keypad. Referring to the keypad shown in Figure 3-1, you can see 
that h is on key 4, o and m are both on key 6, and e is on key 3. Thus the numeric key for the word home is 4663.

Figure 3-3 represents the entire keypad. Each line shows the numeric key and the corresponding letters that can 
be entered by pressing that key. The Key column represents a key on the mobile phone’s keypad. The Value column 
represents all the characters a user can enter with that key. So the first line shows, for example, that by pressing the  
2 key, users can enter an a, b, c, or of course the number 2.

www.it-ebooks.info

http://www.youtube.com/watch?v=Su4-_v2qGvQ&feature=youtu.be
http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

52

If you reverse this so that each character is a key, and each mobile phone key number is a value, you end up 
with a one-to-one mapping, in which each character is matched with its corresponding digit, as shown (partially) 
in Figure 3-4.

Figure 3-3. The keys and the corresponding letters that can be typed by using them

Figure 3-4. A one-to-one mapping of each character and its corresponding key on the mobile phone keypad

The following code creates a list of KeyValuePairs, where the keys are words from the dictionary and the values 
are the corresponding numeric keys:
 
query.ToList()
   .Select(w=> new KeyValuePair<string,string>(w,
       new string(w.ToCharArray().Select (x => keyMap[x]).ToArray())))
 

At the next stage, this list of key/value pairs is filtered by the following Where clause:
 
Where (w => w.Value==key)
 

This returns the list of those key/value pairs whose value is 4663. So keys of these filtered values are textonyms of 
each other. Projecting the keys of the filtered values by using the final Select() call Select (w => w.Key) leaves us 
with the textonyms.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

53

3-2. Simulating a Gesture Keyboard  
Touch-enabled mobile devices introduced a new era of human-computer interaction. This posed several challenges 
for interaction designers. Because mobile devices come in all shapes and sizes (also known as form factors), it proved 
truly difficult to design a touch keyboard that worked well on all devices (an approach known as form factor–agnostic 
design). Simply porting traditional keyboard layout and interaction logic from desktops and laptops proved to be a 
poor solution for touch keypads on mobile devices.

Using an onscreen keyboard on small mobile devices had long been a pain point for users. The problem is largely 
one of size and accuracy. Users too often tap a different character than the one they intend, which can be annoying. 
To solve this frustration, interaction designers came up with the idea of gesture typing. This technology lets the user 
input (note that I didn’t write type) a word by sliding their fingers over the letters on the keypad, essentially drawing a 
line from one letter to the next. The Swype app, for example, uses this technology.

Gesture keyboards use multiple algorithms, including machine learning, to predict words that users might have 
intended. However, at the core of these algorithms is a simple string-processing algorithm called finding the longest 
common subsequence. A subsequence of a string is another string, where the letters of the latter occur in the first 
at monotonically increasing indices. In a monotonically increasing sequence, each element is followed by another 
greater than itself. For example, the sequence {1,2,4,6} is a monotonically increasing sequence because 1 is  
less than 2, 2 is less than 4, and 4 is less than 6. However, the sequence {1,2,0,5} isn’t monotonically increasing 
because 0 is less than 2.

Here are couple of amusing examples. The word wine is a subsequence of the phrase world is not enough.  
As another example, rental is a subsequence of ornamental. In the first example, the letters of the word wine (w, i, n, 
and e) occur at the indices {0,6,9,13}. These indices are monotonically increasing. Thus wine is a subsequence of the 
phrase world is not enough. I will leave it up to you to prove that the word rental is also a monotonically increasing 
subsequence of the word ornamental.

Suppose a user wants to type rental but the path she traces with her finger touches the letters rewsantdal. 
Several English words are subsequences of this character sequence—to list a few: rat, want, rant, sand, and rental. 
As you can see, rental is the longest common subsequence between the word rental and the character sequence 
rewsantdal. Thus, when the longest common subsequence of the word and the traced-character sequence is the word 
itself, that’s probably a correct entry. When it isn’t, however, the longest of such matches should be first in the list of 
suggested words, because that’s most likely what the user intended to input. Now let’s see how this can prove helpful 
in predicting words.

Problem
Given a gesture-typed string generated by a user, generate a list of suggested words by using LINQ to select the best 
matches from a dictionary.

Solution
Find the longest common monotonically increasing subsequences that are words in the dictionary, and list them for 
the user.

The code in this solution uses simulated gesture typing. Assume the user wants to type understands but touches 
the following characters along the way: ujnbvcderesdftrewazxcvbnhgfds. You will see that understands is the longest 
common subsequence of this character sequence that is also an English word.

This example in Listing 3-2 uses the LongestCommonSubsequence() method from the .NET open source string-
processing API StringDefs (see www.codeplex.com/stringdefs). I started that project to get better string-processing 
capabilities in .NET.

www.it-ebooks.info

http://www.codeplex.com/stringdefs
http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

54

Listing 3-2. Find closest-match words from a dictionary

void Main()
{
       // Define other methods and classes here
       StreamReader sr = new StreamReader ("C:\\T9.txt");
       string total = sr.ReadToEnd();
       sr.Close();
 
       List<string> suggestions  = new List<string>();
       var query = total.Split(new char[]{'\r','\n',' '},StringSplitOptions.RemoveEmptyEntries)
                .Select (t => t.Trim());
 
       //should show understand. See the bold characters.
       string path = "ujnbvcderesdftrewazxcvbnhgfds";
 
       query.Where(word => LongestCommonSubsequence(path,word).Equals(word))
            .OrderByDescending (word => word.Length)
            .ThenByDescending (word => word )
            .Take(4)//Show first 4 suggestions.
            .Dump("Suggestions");
}
 

The simulation generates the suggestions shown in Figure 3-5. These are all the words suggested/predicted by 
the gesture keyboard algorithm that the user might have intended to type.

Figure 3-5. All the suggestions derived from the gesture keyboard input

How It Works
Those words for which the longest common subsequence of it and the character sequence is the word itself are 
possible candidates for word suggestions/predictions. However, the longer the word, the higher the probability of it 
being the intended word. Thus the matching words are sorted by length, in descending order. Finally, the items are 
sorted in reverse alphabetical order. This is required because you want to preserve the prefix. Because the user started 
with a u, it is reasonable to assume that the intended word starts with a u.

3-3. Cloning Peter Norvig’s Spelling-Correction Algorithm  
Peter Norvig wrote a great spelling-correction program in about 20 lines of Python code. You can find the code and 
algorithm discussed at great length at http://norvig.com/spell-correct.html. At the heart of the Python code lies 
a concept called list comprehension (see http://en.wikipedia.org/wiki/List_comprehension).

LINQ is perfect for moving list comprehension from theory to practice in C#.

www.it-ebooks.info

http://norvig.com/spell-correct.html
http://en.wikipedia.org/wiki/List_comprehension
http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

55

Problem
Use LINQ to clone Peter Norvig’s Python code in C#.

Solution
The code in Listing 3-3 shows the solution.

Listing 3-3. Implementing spelling correction

Dictionary<string,int> NWords = new Dictionary<string,int>();
public IEnumerable<string> Edits1(string word)
{
    char[] alphabet = {'a','b','c','d','e','f','g','h','j','k','l','m','n','o',
                       'p','q','r','s','t','u','v','w','x','y','z'};
    var splits = Enumerable.Range(1,word.Length)
            .Select(i =>
                new {First = word.Substring(0,i),
                     Second = word.Substring(i+1)});
 
    var deletes = splits.Where (split  => !string.IsNullOrEmpty(split.Second))
                        .Select (split => split.First + split.Second.Substring(1));
 
    var transposes = splits
                       .Where  (split => split.Second.Length>1)
                       .Select (split => split.First + split.Second[1] + split.Second[0]
                                + split.Second.Substring(2));
  
    var replaces = splits
                       .Where (split => !string.IsNullOrEmpty(split.Second))
                       .SelectMany(split => alphabet
                       .Select (c => split.First + c + split.Second.Substring(1)));
     
    var inserts = splits
                       .Where (split     => !string.IsNullOrEmpty(split.Second))
                       .SelectMany(split => alphabet
                                  .Select (c => split.First + c + split.Second));
     return deletes
                 .Union(transposes)
                 .Union(replaces)
                 .Union(inserts);
}
  
public Dictionary<string,int> Train(IEnumerable<string> features)
{
       Dictionary<string,int> model = new Dictionary<string,int>();
       Features
             .ToList()
             .ForEach(f => {if (model.ContainsKey(f)) model[f] += 1; else model.Add(f,1);});
       return model;
     }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

56

     public IEnumerable<string> KnownEdits2(string word)
     {
           List<string> knownEdits2 = new List<string>();
           return Edits1(word)
                 .SelectMany(e1 => Edits1(e1)
                 .Where (x => NWords.ContainsKey(x)));
     }
     public IEnumerable<string> Known(IEnumerable<string> words)
     {
           return words.Intersect(NWords.Select (v => v.Key));
     }
     public IEnumerable<string> Correct(string word)
     {
           List<string> candidates = new List<string>();
           candidates.AddRange(Known(new List<string>(){word}));
           candidates.AddRange(Known(Edits1(word)));
           candidates.AddRange(Known(Edits1(word)));
           candidates.AddRange(KnownEdits2(word));
           candidates.Add(word);
           return candidates
                   .Where (c => NWords.ContainsKey(c)).OrderByDescending (c => NWords[c]);
     }
     void Main()
     {
           StreamReader sr = new StreamReader ("big.txt");
           string total = sr.ReadToEnd();
           sr.Close();
           NWords = Train(Regex.Matches(total,"[a-z]+")
                    .Cast<Match>()
                    .Select (m => m.Value.ToLower()));
           string word = "mysgtry"; //should return "mystery"
           Correct(word)
                 .Distinct()
                 .OrderByDescending (x => x.Length)
                 .Dump(“Did you mean”);
      }
 

This produces the output shown in Figure 3-6.

Figure 3-6. Results of the spelling-correction algorithm

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

57

How It Works
At the heart of the Python implementation is the edits1() method, as shown in this Python code snippet:
 
def edits1(word):
   splits     = [(word[:i], word[i:]) for i in range(len(word) + 1)]
   deletes    = [a + b[1:] for a, b in splits if b]
   transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]
   replaces   = [a + c + b[1:] for a, b in splits for c in alphabet if b]
   inserts    = [a + c + b     for a, b in splits for c in alphabet]
   return set(deletes + transposes + replaces + inserts)
 

The list splits contains list of key/value pairs, in which the keys are substrings of the words through the specified 
index i and the values are substrings of the words from the index i + 1.

Here is the clone of splits:
 
var splits = Enumerable.Range(1,word.Length).Select(i => new {First = word.Substring(0,i),
                                                              Second = word.Substring(i+1)});
 

In contrast, the deletes collection contains the keys of splits and the substring of the value from the second 
index onward should the value field exist. Note that every other variable in the edits1() method is declared in 
terms of splits(). LINQ achieves list comprehension by using filtering—a call to Where() followed by the required 
projection, followed by calls to Select() or SelectMany().

I have used the same variable names and method names as those used in the original Python code. You can see 
how the original Python code and my clone compares at  
http://consulttoday.com/PeterNorvigsSpellingCorrection.html.

3-4. Reversing a Sentence Word by Word 
Reversing the words in a sentence may seem simple. However, the classical solution, which uses loops, requires using 
intermediate storage and looping constructs.

Problem
Write LINQ code to reverse the words in a given sentence.

Solution
Listing 3-4 shows the solution.

Listing 3-4. Reversing a sentence

//Reversing a sentence word-by-word
string line = "nothing know I";
 
line.Split(' ').Aggregate ((a,b) => b + " " + a).Dump();
 

This program prints the following:
 
"I know nothing"

www.it-ebooks.info

http://consulttoday.com/PeterNorvigsSpellingCorrection.html
http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

58

How It Works
Line.Split(' ') returns a list of the words in the sentence nothing know I. The Aggregate() function then takes 
one pair at a time and writes them in reverse order. At the end, the string is completely reversed. You might also find 
Reverse() used to reverse a word collection and then Aggregate() used to stitch those reversed words together to 
get the reversed sentence. However, you see that’s not needed, because you can do the same with Aggregate() just by 
swapping the arguments in the body of the lambda function.

3-5. Creating a Word Triangle  
A word triangle is one of those puzzles that nearly everyone encountered during their formative years. This simple 
problem sets the context for more-sophisticated problems later.

Problem
Write a program using LINQ to generate a word triangle from a given word.

Solution 
The LINQ statement in Listing 3-5 prints a word triangle for the word umbrella.

Listing 3-5. Create a word triangle

//Word Triangle
string word = "umbrella";
Enumerable
        .Range(1, word.Length)
        .Select (k => new string(word.ToCharArray().Take(k).ToArray()))
        .Concat
        (
              Enumerable.Range(1, word.Length)
                        .Select(k => new string(word.ToCharArray()
                                            .Take(word.Length - k)
                                            .ToArray()))
        )
       .Aggregate ((m,n) => m + Environment.NewLine + n)
       .Dump("Word Triangle");
 

This generates the output shown in Figure 3-7. A triangle is formed with the letters of the given word.  
The program starts with the first letter. Then it takes the first two, then the first three, and so on, until it prints the 
whole word. Then the program repeats, but taking letters from the end, instead, until only one letter remains.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

59

How It Works
The line Enumerable.Range(1, word.Length) creates a range from 1 to the length of the given word. The resultant 
values are projected to obtain a sequence of characters that increases in length by one each time, starting from the left 
side of the given word. Here’s the projection code:
 
Select (k => new string(word.ToCharArray().Take(k).ToArray()))
 

As the value of k changes from 1 to word.Length, this leaves you with a substring of the given word, of length 
k starting from the zero index position, at each stage. So when k is 1, you get u. When k is 2, you get um, and so on. 
When k finally hits the word.Length value, you get the entire word, umbrella. So that portion of the code provides the 
upper part of the triangle.

For the bottom part of the word triangle, you just need to reverse this process. You take every character from 
the left, except the last one in the first call, except the last two in the next call, and so on. You concatenate these two 
sequences by using Concat().

Finally, you can use the Aggregate() operator to place the incremental and decremented substrings of the given 
words so that each one appears right after the previous one in a new line.

3-6. Finding Anagrams
Anagrams are fascinating. Anagrams, which are words created by transposing the letters of another word, are also 
useful to point out and correct obvious spelling mistakes. For example, if you type hte in Microsoft Word, it will be 
autocorrected to the, because hte is not a word in the dictionary, and the is an anagram that is frequently used in English.

Problem
Write a query using LINQ that takes two phrases and returns true if they are anagrams of each other; otherwise, it 
returns false.

Solution
The query in Listing 3-6 checks whether two phrases are anagrams of each other. It considers only the alphabetic 
characters—not any punctuation. The easiest way to tell whether two words are anagrams of each other is to sort the 
characters and then compare the resultant sequences for equality. For example, the words oriental and relation are 
anagrams. When sorted alphabetically, the characters in both words are aeilnort.

Figure 3-7. Output for the word triangle

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

60

Listing 3-6. Determining whether two phrases are anagrams of each other

string phrase1 = "the eyes";
string phrase2 = "they see";
 
phrase1.ToCharArray().Where (p => Char.IsLetterOrDigit(p))
       .OrderBy (p => p)
       .SequenceEqual(phrase2.ToCharArray().Where (p => Char.IsLetterOrDigit(p))
       .OrderBy (p => p))
       .Dump();
 

This query outputs true, because the phrases are anagrams of each other.

How It Works
IsLetterOrDigit()filters anything except a letter or a digit.

The code phrase1.ToCharArray().Where (p => Char.IsLetterOrDigit(p)) returns a list of characters 
only. Because in this case all the characters match the condition, you end up with IEnumerable<char> 
{'t','h','e','e','y','e','s'}. The OrderBy() clause sorts this character sequence, generating eeehsty. The 
same call for phrase2 generates the same character sequence. Using the SequenceEqual() operator proves these two 
sequences are equal.

SequenceEqual() cares about the order of the elements in the source collections. That’s why you have to sort the 
sequences first, using the OrderBy() clauses.

3-7. Checking for Anagrams Without Sorting Characters
The solution in the previous section, which sorts the characters and then checks for anagrams, works fine. However, 
it’s resource-intensive when the input phrases grow big. In this section, you’ll try another approach.

Problem 
Write a method to determine whether two strings are anagrams of each other, without sorting the characters of 
the phrases.

Solution
In such situations, you can compare the character histograms of both phrases instead. A character histogram is a 
character frequency table that stores the number of times each character occurs in the phrase. For example, in the 
phrase the eyes, the character frequency for the letter e is 3, because e occurs three times. Listing 3-7 creates character 
histograms and then compares them to determine whether the phrases are anagrams of each other instead of sorting. 
For big strings, this method yields faster results.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

61

Listing 3-7. Checking for anagrams without sorting

string phrase1 = "the eyes";
string phrase2 = "they see";
 
var characterHistogram1 = phrase1
                              .ToCharArray()
                              .Where (p => Char.IsLetterOrDigit(p))
                              .ToLookup (p => p)
                              .ToDictionary (p => p.Key, p=>p.Count ());
var characterHistogram2 = phrase2
                              .ToCharArray()
                              .Where (p => Char.IsLetterOrDigit(p))
                              .ToLookup (p => p)
                              .ToDictionary (p => p.Key, p=>p.Count ());
 
bool isAnagram = characterHistogram1.All(d =>
                 characterHistogram2[d.Key] == characterHistogram1 [d.Key]);

How It Works
As you can see, the filtering part is same as the solution in the previous section. The code ignores anything except a 
letter or digit. Later, this is projected as a lookup table by calling the ToLookup() operator. Figure 3-8 shows the lookup 
table for the first phrase, the eyes.

Figure 3-8. Lookup table for the phrase the eyes

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

62

At the next stage, this lookup table is converted to a dictionary by using the ToDictionary() operator. p.Count() 
returns the number of elements in each group. Thus the process generates the character histogram shown in Figure 3-9.

In Figure 3-9, the Key column represents the characters of the phrase, while the Value column represents the 
frequency of that character in the given phrase.

After obtaining a character histogram for each phrase, you can test their equality to see whether the phrases are 
anagrammatic pairs.

The operator All() returns true when all the values in the calling collection match the given predicate. If the  
two phrases are anagrams, their values will match for every key. The predicate characterHistogram2[d.Key] == 
dic1[d.Key] validates that.

3-8. Creating a Rudimentary Programming Language Identifier 
and Automatic Syntax Highlighter
Syntax highlighting is important because it improves the readability of code. Using LINQ and SyntaxHighlighter, 
you can create an automatic syntax highlighter that can parse code in any language and highlight the code. 
SyntaxHighlighter is an open source JavaScript API for providing lightweight syntax highlighting support.  
Most blogging engines already support it.

Problem 
From raw text input, identify the programming language and then apply a proper syntax highlighter brush for that 
language.

Solution
Listing 3-8 reads raw code in any language from the file SampleCode.txt and generates a syntax-highlighted version. 
LINQ is used to identify the language based on keywords.

Figure 3-9. The character histogram for the phrase the eyes

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

63

Listing 3-8. Adding syntax highlighting to code

Dictionary<string, List<string>> langKeywords = new Dictionary<string, List<string>>();
 
string directory = @"C:\syntaxhighlighter_3.0.83";
string[] files = Directory.GetFiles(directory,"*.js");
 
foreach (string file in files)
{
        try
        {
                string key = new FileInfo(file).Name.Replace("shBrush", string.Empty)
                                                    .Replace(".js", string.Empty);
                langKeywords.Add(key, new List<string>());
                langKeywords[key] = Regex.Matches(File.ReadAllText(file)
                                         .Split(';')
                                         .FirstOrDefault(m => m.Contains("var keywords"))
                                                                         .Split('=')[1], "[a-z]+")
                                         .Cast<Match>()
                                                     .Select(m => m.Value).ToList();
        }
        catch
        {
                continue;
        }
}
         
string sampleCode = File.ReadAllText("C:\\SampleCode.txt");
 
Dictionary<string,int> confiMap = new Dictionary<string,int>();
foreach (var lang in langKeywords.Keys)
{
        foreach(var kw in langKeywords[lang])
        {
                if(sampleCode.Contains(kw))
                {
                        if(!confiMap.ContainsKey(lang))
                                confiMap.Add(lang,1);
                        else
                                confiMap[lang]++;
                }
        }
 }
 Dictionary<string,string> brushAliases = new Dictionary<string,string>();
 brushAliases.Add("CSharp","csharp");
 brushAliases.Add("Python","python");
 brushAliases.Add("Ruby","ruby");
 brushAliases.Add("Perl","perl");
 brushAliases.Add("CPP","cpp");
  

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

64

 StreamReader sr = new StreamReader ("C:\\rudiSynTemplate.html");
 string total = sr.ReadToEnd();
 sr.Close();
 total = total.Replace("{brushAlias}",brushAliases[confiMap.OrderByDescending (m => m.Value )
 
.First ().Key]);
 total = total.Replace("<code>",sampleCode);
  
 StreamWriter sw = new StreamWriter (@"C:\syntaxhighlighter_3.0.83\synh.html");
 sw.WriteLine(total);
 sw.Close();
  
 System.Diagnostics.Process.Start(@"C:\syntaxhighlighter_3.0.83\synh.html");

How It Works
I tested this code with the edits1() method from Peter Norvig’s spell-checker. The automatic syntax highligher 
correctly identified that the code is written in Python and applied SyntaxHighlighter’s Python brush. Figure 3-10 
shows the result as rendered on the browser.

Figure 3-10. Result of applying automatic syntax highlighting on Python code

To execute this, you need to download SyntaxHighlighter. SyntaxHighlighter has a highlighter brush for several 
programming languages, and each brush has a keyword section that stores all the keywords in the language. For 
example, here is the list of Ruby keywords from the Ruby brush:
 
var keywords = 'alias and BEGIN begin break case class def define_method defined ' +
    'do each else elsif END end ensure false for if in module new next nil not or raise ' +
    'redo rescue retry return self super then throw true undef unless until when while yield';
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

65

Next, the program finds these keywords that have to be highlighted in the sample code. Based on the number 
of keywords found in the sample code, the program guesses the programing language. The frequency of matches are 
maintained in a dictionary called confiMap. For the preceding Python example, Figure 3-12 shows the content of confiMap.

Figure 3-11. Dictionary holding language names and their keywords

Figure 3-12. Confidence score for the code to apply syntax highlighting

You see that seven Python keywords were found in the sample code, which is the highest number. Thus the 
program guesses that the sample code is written in Python.

The program keeps track of all the keywords for all the languages in the one-to-many dictionary langKeywords.
Figure 3-11 shows a collapsed view of the dictionary for a few languages.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

66

3-9. Creating a Word-Ladder Solver 
Word ladder, or doublets, (http://en.wikipedia.org/wiki/Word_ladder) is a game in which players change one 
letter at a time while trying to find a path between a given pair of start and end words of the same length.  
One interesting example is the path from myth to fact, as shown here:

myth ➤ math ➤ mate ➤ fate ➤ face ➤ fact

Notice that at each step, only one letter is changed to get to the next word.

Problem
Write a program to solve a word-ladder game. Given two words, print the path between these two words if one exists.

Solution
Listing 3-9 provides a program that prints the word-ladder path between two given words if it exists; otherwise, it 
prints no path. To run this, you have to change the language combo value to C# Program in LINQPad.

Listing 3-9. A LINQ-based word-ladder solver

/// <summary>
/// Calculates the Hamming Distance between two strings
/// </summary>
// <param name="first">The first string</param>
/// <param name="second">The second string</param>
/// <returns></returns>
public static int HammingDistance(string first, string second)
{
        return first.ToCharArray().Where((f,i) => second[i]!=f).Count();
}
void Main()
{
          <string> transitions = new List<string>();
 
          List<string> allWords = new List<string>();
          StreamReader t9Reader = new StreamReader(@"C:\T9.txt");
          string total = t9Reader.ReadToEnd();
          t9Reader.Close();
          //Start and End words
          string start = "myth";
          string end = "fact";
  
          string startCopy = start;
 
          transitions.Add(start);
 
          allWords.AddRange(total.Split(new char[] { ' ', '\r', '\n' },
                                             StringSplitOptions.RemoveEmptyEntries));
 

www.it-ebooks.info

http://en.wikipedia.org/wiki/Word_ladder
http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

67

          allWords = allWords    .Where(word => word.Length == start.Length)
                        .ToList();
 
          allWords.Add(end);
 
          Dictionary<string, List<string>> wordEditDistanceMap =
  
         allWords.ToLookup (w => w)
                 .ToDictionary
                (
                     //key selector
                     w => w.Key,
                     //value selector
                     w => allWords.Where(a =>
                                  HammingDistance(a,w.Key)==1).ToList()
                );
         
       //At this point we have the dictionary separated by edit distance 1
       bool noPath = false;
 
        List<string> currentList = new List<string>();
        do
        {
 
           string[] currents = wordEditDistanceMap[start]
            .Where(word => HammingDistance(word, end) ==
                wordEditDistanceMap[start].Min(c => HammingDistance(end, c))).ToArray();
                do
                {
                        foreach (string c in currents)
                        {
                                if (!currentList.Contains(c))
                                {
                                        currentList.Add(c);
                                        break;
                                }
                                if ((currents.Length == 1 && currentList.Contains(c)))
                                {
                                        Console.WriteLine("There is no such path !");
                                        noPath = true;
                                        break;
                                }
                        }
 
                        if (noPath)
                                break;
                } while (currentList.Count == 0);
                if (noPath)
                        break;
                transitions.Add(currentList[currentList.Count - 1]);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

68

                if(transitions.Count >=2 && transitions[transitions.Count -2]==transitions.Last ( ))
                {
                        Console.WriteLine("There is no such path");
                        noPath=true;
                        break;
                }
 
                start = currentList[currentList.Count - 1];
        } while (!start.Equals(end) || noPath==true );
        (!noPath)
                transitions.Dump("Transition");// from \"" + startCopy + "\" to \"" + end +"\"");
}

How It Works
In this solution, you find the next word through a neighborhood forest of words that are one edit distance away at each 
step. The edit distance of two equal-length strings is defined as the number of characters that differ (this is also called 
the hamming distance). For example, the edit distance between myth and math is 1. Although the entire solution 
doesn’t use LINQ; however, key elements are expressed using LINQ, illustrating a couple of idiomatic LINQ usages 
that you will find useful elsewhere too.

The first LINQ usage is the edit distance calculation. This uses the indexed version of the Where() operator.
Consider the following code:

 
first.ToCharArray().Where((f,i) => second[i]!=f).Count();
 

This checks the number of occasions that the ith element of the second string doesn’t match its corresponding 
character from the first string. The indexed version of Where() is handy for removing a nested looping situation like 
this one. Or, in other words, in the absence of an indexed version, you would have to code it like this:
 
int count = 0;
foreach(var f in first)
        for(int i = 0; i<second.Length;i++)
                if(f != second[i])
                        count++;
 

The second idiom is ToLookup() followed by ToDictionary():
In this example, this idiom is used to create a dictionary in which the keys are all the words in the T9 dictionary 

and the values are all other words that are one edit distance away from the T9 words. Figure 3-13 shows an entry of 
this dictionary.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

69

Notice that the words face, fast, and pact are all one edit distance away from the word fact. So these words end up 
in the value list of the word fact.

The next challenge in solving this puzzle is to locate the best candidate, the one that is closest to the target word. 
So if we start with myth and are going toward fact, the next word we should pick is math and not moth, because moth 
is further from fact than math. The hamming distance between moth and fact is 4. The hamming distance between 
math and fact is 3. Thus, in this case, math is a better choice than moth in our journey from myth to fact. To determine 
this next candidate, the following code is used:
 
string[] currents = wordEditDistanceMap[start]
         .Where(word => HammingDistance(word, end) ==
            wordEditDistanceMap[start].Min(c => HammingDistance(end, c))).ToArray();
 

This code returns all words that are one edit distance away from the current starting word, and for which the edit 
distance is the minimum from the target word.

At each step, these identified next-best-candidate words get added to the transition path by the following code:
 
transitions.Add(currentList[currentList.Count - 1]);
 

The remaining code is used to avoid infinite looping. So whenever we come back to any word we’ve already 
visited and that is not our target word, then there can’t be any path.

3-10. Formatting on the Fly 
To format free-form text, you have likely been writing specific functions. For example, assume you have a list of 
social security numbers from all users, but those numbers are not formatted well. Another example might be a list 
of unformatted phone numbers. Although these examples are similar, you would typically have to write separate 
functions to apply the right formatting to them. By using LINQ, you can generate these random formatting functions 
on the fly. Using LINQ in this manner is much like teaching a human how to format a given type of string and then 
asking that person to format a bunch of those strings. If you have used the new Flash Fill feature of Microsoft Excel, 
this solution will look similar. However Flash Fill is a much more complex feature that uses machine learning.

Problem 
Create a function that returns a transformer given an example transformation. Later, this generated transformer 
function can be applied to other values.

Figure 3-13. Words that are one edit distance  away are stored in the dictionary

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

70

Solution
Listing 3-10 shows how to create a function that can transform given text to another format.

Listing 3-10. On-the-fly formatting

public Func<string,string> FormatLikeThis(string transformation)
{
         string[] tokens = transformation.Split(new string[]{"=>"},StringSplitOptions.

RemoveEmptyEntries);
        string start = tokens[0];
        string end = tokens[1];
        Dictionary<int,char> insertCharMap = new Dictionary<int,char>();
        Enumerable.Range(0,end.Length).Where(k => !start.Contains(end[k]))
                                      .ToList()
                                             .ForEach(k => insertCharMap.Add(k,end[k]));
 
        Func<string,string> transformer = x =>
        {
                insertCharMap.ToList().ForEach(z => x = x.Insert(z.Key,z.Value.ToString()));
                return x;
        };
        return transformer;
}
 
void Main()
{
        string[] someVals = {"234567890","345678901","456789012"};
        List<string> modifiedVals = new List<string>();
        var transformer = FormatLikeThis("123456789=>123-456-789");
        someVals.ToList().ForEach(k => modifiedVals.Add(transformer.Invoke(k)));
        someVals.Dump("Before");
        modifiedVals.Dump("After");
}
 

This generates the output shown in Figure 3-14.

Figure 3-14. Values before and after formatting 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

71

How It Works 
This code works by inserting characters that aren’t present in the current string. At the first stage, the given 
transformation is broken into two pieces. The first part is the starting text, and the last part is the transformed text.  
The transformed text may have characters that aren’t part of the starting string. Consider the following code:
 
Enumerable.Range(0,end.Length).Where(k => !start.Contains(end[k]))
                                      .ToList()
                                             .ForEach(k => insertCharMap.Add(k,end[k]));
 

This code stores the locations and new characters that have been introduced. For the example, the 
transformations 123456789=>123-456-789 and the content of insertCharMap are shown in Figure 3-15.

After this character-insert mapping is created, this is used to generate a function by implementing the definition 
of this function dynamically.

Consider the following code:
 
insertCharMap.ToList().ForEach(z => x = x.Insert(z.Key,z.Value.ToString()));
 

This code inserts characters in the starting text to make it the target text. Another way to think about this is that 
the strategy to transform one text to another remains the same; only the implementations change during runtime.  
I encourage you to experiment with other formatting problems.

3-11. Solving Eric Lippert’s Comma-Quibbling Problem 
Eric Lippert posed a question on his blog that received more attention than he originally expected. The question asks 
readers to insert a comma between all words in a given collection, but to insert the word and (instead of a comma) 
before the last word, and then wrap the output in curly braces.

Here are four scenarios from Eric’s blog:

 1. If the sequence is empty, the resulting string is {}.

 2. If the sequence is a single item ABC, the resulting string is {ABC}.

 3. If the sequence is the two-item sequence ABC, DEF, the resulting string is {ABC and DEF}.

 4. If the sequence has more than two items—for example, ABC, DEF, G, H—the resulting 
string is {ABC, DEF, G and H}. (Note that the G is not followed by a comma.)

Figure 3-15. Characters to insert and indices

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

72

Problem
Write a method to return comma-delimited text by using the preceding rules.

Solution
The program in Listing 3-11 solves this comma-quibbling problem.

Listing 3-11. One comma-quibbling problem solution

string[] input = {"ABC", "DEF", "G", "H"};
string result =
"{" //starting/opening brace
+ input.Take(input.Length - 1).Aggregate((f,s) => f + ", " + s)
+ " and "
+  input.Last()
+ "}";//closing brace
result.Dump("Eric's Comma Quibbling");
 

This query generates the output shown in Figure 3-16.

How It Works
The challenge is to place a comma between every pair except the last word/entry in the input sequence. input.Length  
gives the length of the input sequence. In this case, that’s 4. So input.Take(input.Length – 1) returns an 
IEnumerable<string> that contains the first three elements: ABC, DEF, and G in this case.

The call to Aggregate in Aggregate((f,s) => f + ", " + s) takes a pair of elements, starting from the leftmost, 
one at a time, and joins these with a comma followed by a space. This returns the string ABC, DEF, G. To make the 
text read well, you need to insert an and before the last word in the series. The code does just that: it adds the and 
and then calls Last() to get the last element of the input sequence (H, in this case), and appends that to the end of the 
result string.

Finally, the code places curly braces at the start and end of the result.
This solution will work only when the list contains two or more values. To completely solve the problem, you would 

also need to handle an empty sequence or one containing only a single value as described in the previous scenarios.

3-12. Generating Random Serials 
Random serial generation is a common problem. Two examples are random password generation and serial key 
generation to be used as license keys.

Problem
Write a program to generate random serials.

Figure 3-16. Sample output from Eric Lippert’s comma-quibbling challenge

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

73

Solution
Listing 3-12 shows a way to generate random serials of length 8. The serials will consist of letters (lowercase and 
uppercase) and numbers.

Listing 3-12. Generating random serials

//Serial generation
for(int i=0;i<5;i++)
{
     Enumerable
         .Range(65,26)
         .Select (e => ((char)e).ToString())
     .Concat(Enumerable.Range(97,26).Select (e => ((char)e).ToString()))
     .Concat(Enumerable.Range(0,10).Select (e => e.ToString()))
     .OrderBy (e => Guid.NewGuid())
     .Take(8)
     .ToList().ForEach (e => Console.Write(e));
      //Give a line break between two random serials
      Console.WriteLine();
}
 

This generates five random serials, as shown in Figure 3-17. Each random serial consists of uppercase and 
lowercase characters and numbers, and has a length of 8.

How It Works
At the heart of this algorithm is the ability to randomly and easily sort a collection by using OrderBy(). In the following 
code, OrderBy (e => Guid.NewGuid()) sorts the collection in random order, because for each element, a new GUID 
is generated. The ASCII code for a is 97, and the code for A is 65. Take a look at the following two lines:
 
Enumerable.Range(65,26)
 .Select (e => ((char)e).ToString())
 

This code generates the sequence ABCDEFGHIJKLMNOPQRSTUVWZYZabcdefghijklmnopqrstuvwxyz.
Next, we have the following line:

 
.Concat(Enumerable.Range(97,26).Select(e => ((char)e).ToString()))
 

This line appends the digits 0 to 9, so the sequence becomes 
ABCDEFGHIJKLMNOPQRSTUVWZYZabcdefghijklmnopqrstuvwxyz0123456789.

Then the final call to OrderBy() randomly sorts the characters in this sequence, creating a different sequence 
every time. Finally, it picks the first eight characters—and there you have it: a random serial.

Figure 3-17. Five generated random serials

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

74

3-13. Generating All Substrings of a Given String
Generating all substrings of a given string is a problem you are likely to encounter in many different situations. For 
example, in some plagiarism-detection algorithms, substrings from several sources are extracted and then the number 
of tokens are checked for a match. The total percentage of tokens that are same in both sources give an impression of 
how much those two sources match. This is sometime referred as a similarity measure or a proximity score.

Problem
Write a program to generate all the substrings of a given string.

Solution
The program in Listing 3-13 prints all the substrings of the given string.

Listing 3-13. Generating all substrings of a given string

public static List<string> NGrams(string sentence, int q)
{
       int total = sentence.Length - q;
       List<string> tokens = new List<string>();
       for (int i = 0; i <= total; i++)
            tokens.Add(sentence.Substring(i, q));
       return tokens;
}
void Main()
{
     string name  = "LINQ";
     Enumerable.Range(0,name.Length+1)
               .SelectMany(z => NGrams(name,z))
               .Distinct()
               .Where (b => b.Length!=0)
               .Dump("All substrings of 'LINQ'");
}
 

This generates the output shown in Figure 3-18: all substrings of the string LINQ.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

75

How It Works
At the heart of this implementation is the NGrams() method. This method returns all the tokens of size q. So if q is 2, 
and you call NGrams() with the string LINQ, it will generate three substrings: LI, IN, and NQ. Some computing texts refer 
to this process as a sliding window.

So if you call the NGrams() method with all possible sizes (in this case, that’s 1, 2, 3, and 4) because the string LINQ 
has a length of 4), you will end up with all the possible substrings of LINQ.

Enumerable.Range(0,name.Length+1) calculates the length range for which you want to generate N-Grams. 
Because NGrams() returns a collection of items, you get a one-to-many relationship from one integer length to a set of 
substrings. This relationship is aptly represented by the projection using SelectMany():
 
SelectMany(z => NGrams(name,z))
 

Because there might be duplicates, it is good to clean the results with a call to Distinct().

3-14. Creating a Scrabble Cheater 
Scrabble is a game to showcase word power. The more words you can make from a set of given letters, the more 
you score.

Problem
Write a program that can generate all other possible words that can be formed by using all the letters or a subset of 
those letters of the given word.

Solution
The following program generates a list of all words that can be made from a subset of the letters of the given word.  
For example, if the given word is what, players can form the words hat, thaw, a, and at }.

Listing 3-14 finds all words that can be formed using the letters of the given word or a subset of those letters.  
It uses a T9 dictionary to locate words.

Figure 3-18. All substrings of the string LINQ

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

76

Listing 3-14. Find all words that can be formed from a given set of letters

Func<string,Dictionary<char,int>> ToHist =
                                  word => word.ToCharArray()
                                              .ToLookup (w => w)
                                              .ToDictionary(w => w.Key, w => w.Count());
//Scrabble Cheat
string GivenWord = "what";
 
StreamReader sr = new StreamReader("C:\\T9.txt");
string total = sr.ReadToEnd();
sr.Close();
List<string> allWords = Regex.Matches(total,"[a-z]+")
                             .Cast<Match>()
                             .Select (m => m.Value)
                             .Distinct()
                             .ToList();
 
Dictionary<string,Dictionary<char,int>> forest =
               new Dictionary<string,Dictionary<char,int>>();
 
allWords.ForEach(w => forest.Add(w, ToHist(w)));
 
Dictionary<char,int> hist = ToHist(GivenWord);
 
List<string> scrabbleCheats = new List<string>();
 
foreach (string w in forest.Keys)
{
  if(
      //keys should match
      forest[w].Select (x => x.Key).All(x => hist.Select (h => h.Key).Contains(x))
      &&
      //values should be less than or equal to that of hist
      forest[w].All (x => hist[x.Key]-forest[w][x.Key] >= 0)
    )
   scrabbleCheats.Add(w);
}
 
scrabbleCheats.OrderBy (c => c.Length).Dump("Scrabble Cheats");
 

This generates the words shown in Figure 3-19: all the words that can be generated from the word what.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

77

How It Works
To locate words that can be formed from all the characters of a given word or a subset of those characters, you locate 
the words for which the character histogram is equal to or is a subset of the character histogram of the given word.

OK, that might sound heavy. Here’s an example. Let’s say we want to find all words that can be formed with 
the letters of the word what. The first step is to construct a character histogram of what. This histogram is shown 
in Table 3-1.

Note that the histogram for the word hat is a subset of this histogram. In other words, to create hat, we need one h, 
one a, and one t. We have one of each in what. So the word hat can be formed using the letters of the word what.

In the code, the C# dictionary forest holds all the character histograms for all words in the T9 dictionary.  
The forest keys represent the words in the dictionary, and the values store their character histograms.

The delegate ToHist generates the histogram of a given word. ToHist() uses ToLookup() to generate a lookup 
table of characters. This call is followed by a ToDictionary() call, where each key is a character of the word, and each 
value is a character’s frequency (the number of times that character occurs in a given string).

Figure 3-20 shows the intermediate lookup table, created by ToLookup(), for the word cool. Here all the unique 
characters are keys, and the values represent the occurrences.

Table 3-1. The character histogram of the word what

Character Frequency

W 1

H 1

A 1

T 1

Figure 3-19. All the words that can be formed using the letters of the word what

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

78

So this lookup table is converted to a dictionary, displayed as a table in Figure 3-21. The table has two columns: 
Key and Value. The Key column lists the distinct characters of the word cool. The Value column stores the frequency of 
the characters in the word.

Iterating over the keys in the dictionary forest, we find those keys where all the characters in the histogram 
match those of the given word by using the following statement:

forest[w].Select (x => x.Key).All(x => hist.Select (h => h.Key).Contains(x)) forest[w] gives us 
the character histogram. Projecting the keys of this dictionary by using Select (x => x.Key) gives us all the distinct 
characters. All(x => hist.Select (h => h.Key).Contains(x)) checks whether all these characters are also present 
in the histogram of the given word.

The last call to All(), forest[w].All (x => hist[x.Key]-forest[w][x.Key] >= 0) checks whether the 
character frequencies match up for all characters. hist[x.Key] represents the frequency of the character represented 
by x.Key. forest[w][x.Key] represents the frequency of the character x.Key for the word forest[w].

Figure 3-20. The lookup table created for the word cool

Figure 3-21. The character histogram of the word cool generated from the lookup table

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

79

3-15. Finding All the Subsequences of a Given String
As you learned earlier in this chapter, a subsequence is a string that can be formed from a subset of another string, 
where these characters appear in monotonically increasing indices in the latter string. For example, the word wine is a 
subsequence of the phrase world is not enough. Another example is the word rental is a subsequence of ornamental.

Problem
Write a program to find all the subsequences of the given string.

Solution
Listing 3-15 finds all the sub-sequences of a given word.

Listing 3-15. Finding all sub-sequences of a given word

StreamReader sr = new StreamReader ("C:\\T9.txt");
var allWords = Regex.Matches(sr.ReadToEnd(),"[a-z]+").Cast<Match>().Select (m => m.Value).ToList();
sr.Close();
List<string> subsequences = new List<string>();
string bigWord = "awesome";
foreach (string smallWord in allWords)
{
        var q = smallWord
                    .ToCharArray()
                    .Select (x => bigWord
                    .ToCharArray()
                    .ToList()
                    .LastIndexOf(x));
 
if(q.All (x => x !=-1)
   &&
      q.Take(q.Count () - 1)
       .Select ((x,i) => new {CurrentIndex = x, NextIndex = q.ElementAt(i+1)})
       .All (x => x.NextIndex - x.CurrentIndex > 0))
      {
           subsequences.Add(smallWord);
      }
}
subsequences.Dump("All subsequences");
 

This generates all the subsequences of the word awesome, as shown in Figure 3-22.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

80

How It Works
In this example, the letters of the word some appear at monotonically increasing indices in awesome. (The letters of 
some appear at indices 4, 5, 6, and 7 in awesome.) Thus some is a subsequence of awesome. The following query finds 
all the indices of the bigWord word where the letters of the smallWord occur.
 
var q  = smallWord .ToCharArray()
                     .Select (x => bigWord
                     .ToCharArray()
                     .ToList()
                     .LastIndexOf(x));
 

If smallWord is rental and bigWord is ornamental, q will have the indices shown in Figure 3-23.

Figure 3-22. All the sub-sequences of the word awesome

Figure 3-23. All the indices of ornamental where the letters of rental occur

To find the subsequence, it’s enough to check for monotonicity of these indices. Also because all characters of 
the smaller subsequence word have to occur in the bigger word, none of these indices can’t be -1. The first statement 
q.All (x => x !=-1) verifies that statement.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

81

The second statement checks for the monotonicity of these indices. The first part of the second statement is  
as follows:
 
q.Take(q.Count () - 1)
       .Select ((x,i) => new {CurrentIndex = x, NextIndex = q.ElementAt(i+1)})
 

This code projects a list of key/value pairs, where each key represents the current index at each level and the 
value represents the next index at each level. So the preceding list of indices gets projected as shown in Figure 3-24.

The final call to All(), shown below, checks whether CurrentIndex is less than and not equal to the next level, for 
all these projected values.
 
All (x => x.NextIndex - x.CurrentIndex > 0)
 

The preceding call will return true only when the indices are monotonically increasing.
Here is a negative test case to prove that this code works. The word saw is not a sub-sequence of awesome. 

Figure 3-25 shows a table for the current and next index for saw.

In this example, the last All() call will return false, so saw can’t be a subsequence of awesome.

Figure 3-25. The gap (current index) and next index of the word saw

Figure 3-24. Current and next index at each level

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

82

3-16. Squeezing a Paragraph to Fill Tightly
Many text editors support a functionality to fill a paragraph tightly so that the number of words in each line becomes 
almost the same. This is useful for wrapping text to properly utilize screen area.

Problem
Write a program to wrap a given paragraph of multiple lines so that the lengths of the lines become almost the same.

Solution
This program, shown in Listing 3-16, uses average line length and a LINQ operator to generate a nicely distributed 
paragraph in which all lines are of almost the same length.

Listing 3-16. Line-wrapping algorithm to equalize line lengths

string text =
             @"Almost any text editor provides a fill
              operation. The fill operation transforms raggedy-looking text
              with lines of
              different lengths into nicely formatted text with lines
              nearly the same length.";
text.Dump("Before");
 
var words = text.Split(new char[]{' ','\r','\n'},StringSplitOptions.RemoveEmptyEntries)
                .Where (t => t.Trim().Length!=0);
 
var lines = text.Split(new char[]{'\r','\n'},StringSplitOptions.RemoveEmptyEntries);
 
int max  = lines
                .Select(l => l.Split(new char[]{' '},
                 StringSplitOptions.RemoveEmptyEntries).Count ())
                .OrderByDescending (l => l)
                .First();
 
max  = max + max / 2;//Maximum width is 1.5 times that of the current maximum width
  
Enumerable.Range(0,words.Count ()/max + 1)//decide how many lines need to be there.
          .Select(k => words.Skip(k*max).Take(max).Aggregate ((u,v) => u + " " + v))
               .Aggregate ((m,n) => m + Environment.NewLine + n)//provide line breaks
               .Dump("After");
 

This generates the output shown in Figure 3-26.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

83

How It Works
The first step to lay lines with even lengths is to determine a decent width for each line. The line with the maximum 
width is a good starting point. The following code finds the length of the longest line:
 
lines.Select(l => l.Split(new char[]{' '},StringSplitOptions.RemoveEmptyEntries).Count ())
       .OrderByDescending (l => l)
       .First();
 

Using 1.5 times this number should be a good-enough length for the longest line.
The code max = max + max / 2; calculates the maximum line length. The words list contains all the words in 

the paragraph. Thus words.Length / max + 1 gives the total number of lines required to display the paragraph in the 
result. Next, the following code creates all the new lines with the required number of words:

Select(k => words.Skip(k*max).Take(max).Aggregate ((u,v) => u + " " + v))

When k is 0, no word is skipped. At the next stage, when the value of k is increased, that many (k*max) words are 
skipped. The call to Aggregate() stitches the words together to generate the new line. The final call to Aggregate() 
inserts the line breaks.

3-17. Printing the Lines of a Song
There are many programming languages, some popular, and some not so popular. Some are considered esoteric; 
however, that doesn’t mean some people don’t use them. 99 Bottles of Beer is a web site that challenges people 
to write a program in any language to generate the lines of the song “99 Bottles of Beer.” You can find the lyrics at 
http://99-bottles-of-beer.net/lyrics.html.

Problem
Write a program to generate the lines of the song “99 Bottles of Beer.” Although you can use for loops, please don’t;  
try to do it using LINQ operators instead.

Figure 3-26. Results before and after the Fill Paragraph routine

www.it-ebooks.info

http://99-bottles-of-beer.net/lyrics.html
http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

84

Solution
I wrote the code in Listing 3-17 by using LINQ to generate the song lines. You can find my full solution on the 99 
Bottles of Beer web site, at http://99-bottles-of-beer.net/language-csharp-2549.html.

Listing 3-17. Generating the lyrics to “99 Bottles of Beer”

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace _99Bottlez
{
    class Program
    {
        static void Main(string[] args)
        {
            int countOfBottles = 10;//Number of bottles
            string lineTemplate = @"{X} bottles of beer on the wall, {X} bottles
                                  of beer. Take one down and pass it around, {Y}
                                  bottles of beer on the wall.";
 
            string lastLine = @"No more bottles of beer on the wall, no more
                              bottles of beer.Go to the store and buy some
                              more, {X} bottles of beer on the wall.";
 
            List<string> songLines = new List<string> ();
            Enumerable.Range(1, countOfBottles)
                .Reverse()
                .ToList()
                .ForEach
                 (c => songLines.Add(lineTemplate.Replace("{X}",
                 c.ToString()).Replace("{Y}", (c-1)!=0?(c - 1).ToString():@" No
                 more bottles of beer on the wall.")));
             
            //Add the last line
            songLines.Add(lastLine.Replace("{X}", countOfBottles.ToString()));
 
            songLines.ForEach(c => Console.WriteLine(c));
            Console.ReadLine();
        }
    }
}

www.it-ebooks.info

http://99-bottles-of-beer.net/language-csharp-2549.html
http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

85

How It Works
The program first generates a list of all line numbers and then reverses the list. Finally, the placeholders in the line 
template (all but last line) get replaced with the proper numbers and added to the songLines list. The code creates the 
final line by replacing the placeholders in the last-line template, and appends that to the songLines list. The final lines 
print the result to the Console.

3-18. Mining Abbreviations and Full Forms from News Articles
Newspaper articles often set abbreviations apart from the rest of the text. Normally, they wrap abbreviations in 
parentheses. The full form of the abbreviations are typically provided just before the abbreviations appear. For 
example, a newspaper article might state, “Today United Nations (UN) officials….” If a program can be written to read 
news articles and mine them for abbreviations and their full forms, making glossaries and indexes would be easy.  
This program could also be used to automatically tag a news article using abbreviations that appear in the text, 
making it possible to use an indexed search to find news articles related to an abbreviation.

Problem
Write a program that reads a news article in the form of plain text and returns all abbreviations and their full forms.

Solution
The following program finds all the abbreviations and their full forms from a given paragraph of a newspaper article.  
I have made the abbreviations and their expanded forms bold in the sample input in Listing 3-18.

Listing 3-18. Identifying abbreviations and their expanded forms

string sentence = @"This is an effort by the World Health Organization (WHO) and
                    Fédération Internationale de Football Association (FIFA) to help
                 footballers in poor nations. Associated Press (AP) reports.";
//Add all stop words in this list
List<string> stopWords = new List<string>() {"of", "de"};
foreach(string sw in stopWords)
{
        List<string> matches = Regex
                                   .Matches(sentence,sw + " " + "[A-Z][a-z]+")
                                   .Cast<Match>()
                                   .Select(m => m.Value).ToList();
 
        foreach (string m in matches)
        {
                sentence = sentence.Replace(m,m.Replace(sw+" ",string.Empty)+"_"+sw);
        }
}
List<string> all = sentence.Split(new char[]{' ',',','!',';','[',']','(',')',
              '-','\'','"','\r','\n'},StringSplitOptions.RemoveEmptyEntries).ToList();
List<string> abbs = all
                       .Where (s => s.ToCharArray().All (x => x>='A' && x<'Z'))
                       .Distinct()
                       .ToList();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

86

abbs
    .Select (a => new KeyValuePair<int,int>(all.IndexOf(a),a.Length))
    .Select(a => new { Abbreviation = all[a.Key], Expansion =
       Enumerable.Range(a.Key-a.Value,a.Value)
                   
    .Select (e => all[e])
    .Aggregate((f,g) => f.Split('_').Aggregate ((x,y) => y +  " " + x )
                + " " + g.Split('_').Aggregate ((x,y) => y +  " " + x )).Trim()})
   .OrderBy (a => a.Abbreviation).Dump("Abbreviations with Expansions");
 

This program generates the output shown in Figure 3-27. In the table, the first column shows the abbreviation, 
and the second column shows the expanded form of the abbreviation.

How It Works
The program first loads all the words from the input into a list. Using a regular expression, the program finds the 
abbreviations within that list and creates a list of them as well. (Of course, those abbreviations are also stored in the 
first list, because all the words of the given text are stored there.)

The program relies on the length of the abbreviations to backtrack and find the full expanded text for the 
abbreviation. However, stop words such as of or in can jeopardize that process, because those words aren’t reflected 
in the abbreviation. For example the abbreviation for “United States of America” is typically USA, not USoA. To fix this 
potential problem, the example uses a regular expression to locate patterns in which a stop word appears followed 
by a word with a capital letter. The program transforms this combination to a single word by concatenating the stop 
word to the following word with a leading underscore. For example, in this example, the phrase of International is 
transformed to International_of. That may look weird, but the transformation ensures that backtracking will find 
the complete expanded form of the abbreviation.

Consider this code snippet:
 
abbs
    .Select (a => new KeyValuePair<int,int>(all.IndexOf(a),a.Length))
 

This returns IEnumerable<KeyValuePair<int,int>>, where the first integer represents the index of the 
abbreviation in the list of all words. The second integer stores the length of all abbreviations as values. This value 
determines how many words we should check back (backtrack) to find the expansion of the abbreviation.

Figure 3-27. Extracted abbreviations and their expanded forms

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ text proCessing

87

The following snippet returns as many words as the length of the abbreviation, which are immediately before the 
abbreviation in the list of all words:
 
Enumerable.Range(a.Key-a.Value,a.Value)
    .Select (e => all[e])
 

a.Key represents the index where the abbreviation is found, and a.Value represents its length.  
So a.Key - a.Value returns an index which is a.Value ahead of the abbreviation in the list of all words.

The following call to Aggregate deals with the stop word tokens properly:
 
.Aggregate((f,g) => f.Split('_').Aggregate ((x,y) => y +  " " + x )
            + " " + g.Split('_').Aggregate ((x,y) => y +  " " + x )).Trim()})
 

This call transforms International_of back to of International. It also stitches together the words that form 
the expanded form of the abbreviation. Finally, the list is sorted alphabetically by abbreviations.

Summary
Congratulations on finishing yet another long chapter. I hope you had fun trying out the examples. Also, you’ve seen 
how diverse problems such as human-computer interaction and data-mining tasks can be implemented using LINQ. 
And you have picked up a few LINQ idioms along the way. These idioms will be useful in later chapters—and beyond 
this book, when you deal with your own code. The next chapter shows how to refactor code by using LINQ to make it 
cleaner and more concise.

www.it-ebooks.info

http://www.it-ebooks.info/


89

Chapter 4

Refactoring with LINQ

When I help my colleagues refactor their loops by using LINQ, they always ask me, “How do you know what LINQ 
operator to use?” I am sure my colleagues are not alone. This chapter is dedicated to providing detailed examples to 
help answer that question.

After reading this chapter, you should be able to look at code snippets and know which ones can be replaced 
with a LINQ query. Think of LINQ operators as similar to Lego blocks. After you know how to use them, you can see 
and replace a repetitive pattern in your code by gluing together LINQ operators, leading to cleaner, more-intuitive, 
and thus more maintainable code. Apart from elegance, there is another good reason to transform good old loops 
into LINQ queries: by doing that, you can make queries run in parallel, using all the cores of the development system 
by using Parallel LINQ (PLINQ). Parallel queries often run much faster, but remember that LINQ queries aren’t 
inherently faster unless you use parallelism.

4-1. Replacing Loops by Using LINQ Operators
Looping is a basic construct in programming. When someone learns a new programming language, they have to 
learn the syntax of how to loop through a collection; otherwise, they can’t do anything useful. C# has four looping 
constructs: the for loop, the do-while loop, the while loop, and the foreach loop. C# programmers are familiar 
with these looping constructs. However, except for the simplest loops, it is often very difficult—if not impossible—to 
discern a loop’s intention simply by looking at it. That’s true even of single loops, let alone nested ones. If you have 
been programming for a while, you will know what I mean.

Several looping constructs appear more often than others in code. Replacing these repeating looping constructs 
with standard LINQ operators usually results in shorter, more-intuitive code. This section shows how you can replace 
traditional looping constructs (which sometimes can become ugly quickly) with simpler, smaller, and intuitive LINQ 
queries. The biggest advantage of using LINQ over looping constructs is that you get to move the code one step closer 
to the concept. For example, consider the sentence “Check whether any element in the collection matches a given 
condition.” A looping construct doesn’t visually reflect the intent of that sentence. But LINQ operators and LINQ 
queries do.

The recipes in this chapter show looping constructs and the equivalent code using LINQ operators side by side. 
Each section begins with a LINQ query operator that you can use to simplify the code, followed by the problem 
statement and a side-by-side comparison of the loop-based and LINQ-based approaches.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

90

A General Strategy to Transform a Loop to a LINQ Query
A loop has three parts: initialization, condition, and loop variable-state-change handler. If you can rewrite your logic 
using a foreach loop at each stage, your transformation will become simpler. To do that, follow this three-step process:

 1. Identify the range of the loop.

 2. Identify the conditional block.

 3. Find the appropriate LINQ operator to replace the conditional block.

You‘ll follow this procedure in the following example.
Suppose you have a loop like this:

 
for(int k = 0 ; k < numbers.Length ; k++)
    if( numbers [ k ] > threshold )
            goodNumbers.Add( numbers [ k ] );
 

In this case, the code loops through an array called numbers, and if the element at a given index is greater than a 
predefined threshold, it adds that element to goodNumbers.

You could easily rewrite this by using a foreach loop:
 
foreach(var n in numbers)
        if( n > threshold)
            goodNumbers.Add(n)
 

You translate the for loop to foreach because doing so gets rid of all the temporary looping variables. The next 
step is to identify the LINQ operator that can help you transform the conditional block. In this case, the code simply 
applies a filter, so the filter operator Where fits the bill. The range of the loop is the range of numbers.

Now reorder these statements. This is closer to the equivalent LINQ statement:
 
goodNumbers.Add(n)
         foreach(var n in numbers)
if(n>threshold)
 

Then do the following:

Replace the first •	 .Add(n) with   = .

Replace •	 foreach(var n in numbers) with Enumerable.Range(0,numbers.Length).

Replace •	 if(n > threshold) with Where ( n =>  n > threshold).ToList(); .

After making those substitutions, you will have this LINQ script:
 
goodNumbers = Enumerable.Range(0, numbers.Length).Where(n=>n > threshold).ToList();
 

This strategy is applicable for any level of depth of the looping construct that you want to refactor using LINQ.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

91

4-2. The Any Operator
The Any operator returns true if there is at least a single element in a collection that matches a given condition.

Problem
Find out whether any number in a collection is greater than 150.

Solution
Use the Any operator to replace a for loop.

How It Works
The for loop on the left uses a conditional statement in each loop iteration to test the value of each item in the nums 
collection. To discover that, you have to read the code carefully. In contrast, the refactored LINQ code on the right 
makes it immediately obvious that the code is checking for any value within the collection greater than 150.

Loop (Imperative Paradigm) LINQ (Functional Paradigm)

int[] nums = {14,21,24,51,131,1,11,54};  
bool isAny = false;  
for(int i=0;i<nums.Length;i++)  
{ 
     if(nums[i]>=150) 
     { 
         isAny = true; 
         break; 
     } 
}

int[] nums  = {14,21,24,51,131,1,11,54};  
bool isAny = nums.Any (n => n >= 150);

4-3. The All Operator
The All operator is useful when you want to check whether all elements in a collection match a given condition.

Problem
Determine whether all elements in a collection are less than 150.

Solution
Use the All operator to replace the for loop.

How It Works
The for loop on the left uses a conditional statement in each loop iteration to test the value of each item in the nums 
collection. To discover that, you have to read the code carefully. In contrast, the refactored LINQ code on the right 
makes it immediately obvious that the code is checking for all values of the collection less than 150.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

92

Loop LINQ

int[] nums = {14,21,24,51,131,1,11,54};  
bool isAll = true;  
for(int i=0;i<nums.Length;i++)  
{ 
    if(nums[i]<150) 
    { 
        isAll = false; 
        break; 
    }  
}

int[] nums  = {14,21,24,51,131,1,11,54};  
bool isAll = nums.All (n => n < 150);

4-4. The Take Operator 
The Take operator selects the first specified number of elements from the given collection.

Problem
Extract the first four elements.

Solution
Use the Take operator to replace a for loop that iterates over the first four elements.

How It Works
The for loop on the left loops through the first four elements and puts these numbers in a different array. However, it 
is evident looking at the LINQ syntax that we want to extract the first four elements.

Loop LINQ

int[] nums  = {14,21,24,51,131,1,11,54};  
int[] first4 = new int[4];  
for(int i=0;i<4;i++)  
{ 
   first4[i] = nums[i]; }

int[] nums  = {14,21,24,51,131,1,11,54};

int[] first4 = new int[4];

first4 = nums.Take(4).ToArray();

4-5. The Skip Operator 
The Skip operator picks all except the first k elements elements from a collection.

Problem
Pick all elements of a given integer array except the first four elements.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

93

Solution
Use the Skip operator to replace a for loop.

How It Works
The for loop uses two loop counters to keep track of elements being iterated. However, the LINQ implementation 
reads like plain English. This also eliminates the need to maintain looping counters.

Loop LINQ

int[] nums  = {14,21,24,51,131,1,11,54};  
int[] skip4 = new  
int[nums.Length - 4];   
for(int i=4,j=0;i<nums.Length;i++,j++)  
{ 
    skip4[j] = nums[i];  
}  
skip4.Dump();

int[] nums  = {14,21,24,51,131,1,11,54};

int[] skip4 = new int[nums.Length - 4];

skip4 = nums.Skip(4).ToArray();

skip4.Dump();

4-6. The TakeWhile Operator
The TakeWhile operator enables you to take elements from a collection as long as a given condition is true.

Problem
Pick elements from the start of an unsorted integer array as long as the given condition (the number is less than 50, in 
this case) is true.

Solution
Use the TakeWhile operator to replace the for loop and branching statement.

How It Works
Imagine TakeWhile as shorthand for the looping syntax, where the condition of the nested if statement is expressed 
in the lambda expression n => n < 50. The final call to ToList() returns a list of integers that are less than 50, taken 
from the beginning of the array.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

94

4-7. The SkipWhile Operator
SkipWhile skips elements as long as a given condition is true. As soon as the condition becomes false, the operator 
starts picking values.

Problem
Pick all elements of a given integer array that are not evenly divisible by 7.

Solution
Use the SkipWhile operator to replace a for loop and branching.

How It Works
The condition inside the loop becomes the lambda expression.

Loop LINQ

int[] nums  = {14,21,24,51,131,1,11,54}; 
List<int> skipWhileDivisibleBy7  = new 
List<int>();  
for(int i=0;i<nums.Length;i++)  
{  
     if(nums[i] % 7 == 0) 
     {  
         continue;  
     }  
     else  
      skipWhileDivisibleBy7.Add(nums[i]);  
}

int[] nums  = {14,21,24,51,131,1,11,54};

List<int> skipWhileDivisibleBy7  =

nums.SkipWhile (n => n % 7 == 0).ToList();

In the next chapter, you will learn about the TakeUntil() and SkipUntil() operators available in the MoreLINQ 
project. They are mirrors of the TakeWhile() and SkipWhile() operators.

Loop LINQ

int[] nums  = {14,21,24,51,131,1,11,54}; 
List<int> until50  = new  
    List<int>();  
for(int i=0;i<nums.Length;i++) { 
              if(nums[i]<50) 
              { 
until50.Add(nums[i]); 
     } 
     else  
        break; 
}  
until50.Dump();

int[] nums  = {14,21,24,51,131,1,11,54};

List<int> until50  = new List<int>();

until50 = nums.TakeWhile (n => n < 50).ToList();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

95

4-8. The Where Operator
The Where operator finds elements that match a given condition. Think of it as the looping and branching construct all 
in one. This is one of the most used operators.

Problem
Pick all elements of a given integer array that are greater than 50.

Solution
Use the Where operator to replace a for loop and branching inside the loop.

How It Works
The for loop uses two loop counters to keep track of elements being iterated. However, the LINQ implementation 
reads like plain English. This eliminates the need to maintain looping counters, and the intent of the code becomes 
immediately evident.

Loop LINQ

int[] nums  = {14,21,24,51,131,1,11,54};  
int[] above50 = new int[nums.Length];  
int j = 0;  
for(int i=0;i<nums.Length;i++)  
{ 
    if(nums[i] > 50) 
    { 
        above50[j]=nums[i]; 
        j++; 
    } 
} 
Array.Resize(ref above50,j);

int[] nums  = {14,21,24,51,131,1,11,54}; int[] 
above50 = nums.Where (n => n > 50).ToArray();

4-9. The Zip Operator
The Zip operator applies a specified function to the corresponding elements of two sequences to generate a 
result sequence.

Problem
Print the full names of all family members, including the salutation, first name, and last name.

Solution
Use the Zip operator to replace a for loop.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

96

How It Works
The for loop uses a loop counter to keep track of the current index and prints the values for each array (salutation 
and name, in this case) as long as there are elements. The LINQ statement does that same thing. The lambda function 
((salutation, name ) => salutation + " " + name + " Smith") does the work of concatenating parts of the 
name for each individual person.

Loop LINQ

string[] salutations =  
    {"Mr.", "Mrs.","Master.","Ms."};

string[] names  = {"Patrick","Nancy","Jon","Jane"};

List<string> allNames = new  
    List<string>();

for(int i=0; i< salutations.Length; i++)

allNames.Add(salutations[i] + " " +  
    names[i] + " Smith");

string[] salutations  =  
    {"Mr.", Mrs.","Master.","Ms."};

string[] names  = {"Patrick","Nancy","Jon","Jane"};

salutations.Zip(names, (salutation, name )

    => salutation + " " + name + " Smith")

    .Dump();

4-10. OrderBy and OrderByDescending Operators
Sorting shouldn’t hurt. Use OrderBy and OrderByDescending to sort in order and in descending order, respectively.

Problem
Sort an array of strings based on their length.

Solution
Use the OrderBy operator to replace Comparer logic.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

97

How It Works
The default sorting for string values is alphabetical. So to sort a bunch of strings by their lengths, a comparer must be 
implemented. But with LINQ, there is no need to create a custom comparer. The key to use for sorting is passed in the 
form of a lambda expression: in this case, item => item.Length.

Loop LINQ

public class StringLengthComparer : 
IComparer<string>  
{  
   public int Compare(string x, string y)  
   {  
       return x.Length.CompareTo(y.Length);  
   }  
}

void Main()  
{  
    string[] codes  = 
{"abc","bc","a","d","abcd"};  
    StringLengthComparer slc = new  
StringLengthComparer();  
    List<string> codesAsList = codes.ToList();  
    codesAsList.Sort(slc);  
    codesAsList.Dump();  }

string[] codes  = {"abc","bc","a","d","abcd"};

List<string> codesAsList = codes

.OrderBy ( item => item.Length).ToList();

To sort the string in reverse order of their lengths, just change the logic from x.LengthCompareTo(y.Length) to 
y.Length.CompareTo(x.Length). In the LINQ version, using OrderByDescending() will do the trick.

4-11. The Distinct Operator
The Distinct operator finds unique elements from a given collection.

Problem
Find unique names from the list of a given names.

Solution
Use the Distinct operator.

How It Works
The Distinct operator has two overloaded versions. The first one uses the default comparer for the type of the 
collection. The second one expects a custom comparer. In the next chapter, you will learn about the DistinctBy() 
operator, which lets you pass a lambda expression instead of a comparer.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

98

Loop LINQ

string[] names = {"Sam","David","Sam","Eric", 
"Daniel","Sam"};  
Array.Sort(names);   
List<string> distinctNames = new List<string>();  
for(int i=0;i<names.Length - 1 ;i++)  
{  
    if(names[i]!=names[i+1])  
        distinctNames.Add(names[i]);  
    else  
    {  
       if(distinctNames[distinctNames.Count - 
1]!= names[i])  
distinctNames.Add(names[i]);  
    }  
}   
distinctNames.Dump("Unique names");

string[] names = {"Sam","David","Sam","Eric", 
"Daniel","Sam"};

List<string> distinctNames =  names.Distinct().
ToList();

distinctNames.Dump("Unique names");

4-12. The Union Operator
The Union operator finds the union of two given collections.

Problem
Find the union of a couple of string arrays.

Solution
Use the Union operator.

How It Works
The Union operator has two overloaded versions. The first one uses the default comparer for the type of the collection. 
The second one expects a custom comparer. For the current example, the default comparer is fine. However, if you 
need some other custom comparer logic to determine uniqueness, you have to implement a custom comparer.
 
static void Main(string[] args)
{
     string[] names1 = { "Sam", "David", "Sam", "Eric", "Daniel", "Sam" };
     string[] names2 = { "David", "Eric", "Samuel" };
 
     string[] names = new string[names1.Length + names2.Length];
 
     for (int i = 0; i < names1.Length; i++)
          names[i] = names1[i];
     for (int i = 0, j = names1.Length; i < names2.Length; i++, j++)
          names[j] = names2[i];
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

99

     List<string> unionNames = new List<string>();
     Array.Sort(names);
             
     for (int i = 0; i < names.Length - 1 ; i++)
     {
         if (names[i] != names[i + 1])
         {
             if (unionNames.Count > 0)
             {
                  if (unionNames[unionNames.Count - 1] != names[i])
                      unionNames.Add(names[i]);
             }
             else
                 unionNames.Add(names[i]);
         }
         else
         {
            if (unionNames[unionNames.Count - 1] != names[i])
                unionNames.Add(names[i]);
         }
       }
       if (names[names.Length - 1] != names[names.Length - 2])
           unionNames.Add(names[names.Length - 1]);
     }
 

The preceding implementation is the most straightforward. You can use a Dictionary to perform the union 
operation, storing the elements as the key of the dictionary and later producing a list of all keys. However, the 
argument is, you can save all that and let LINQ handle it by using the LINQ operator Union():

unionNames = names1.Union(names2).ToList();

4-13. The Intersect Operator
The Intersect operator finds the intersection of two collections.

Problem
Find the intersection of a couple of string arrays.

Solution
Use the Intersect operator.

How It Works
The Intersect operator has two overloaded versions. The first one uses the default comparer for the type of the 
collection. The second one expects a custom comparer. For the current example, the default comparer is fine. 
However, if you need some other custom comparer logic to determine uniqueness,  you have to implement a custom 
comparer.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

100

Loop LINQ

string[] names1 = {"Sam","David","Sam","Eric", 
"Daniel","Sam"};  
string[] names2 = {"David","Eric","Samuel"}; 
List<string> commonNames = new List<string>(); 
for(int i=0;i<names1.Length;i++) {  
      if(Array.FindIndex(names2, m => m == 
names1[i])!=-1)  
            commonNames.Add(names1[i]); } 
commonNames.Dump();

string[] names1 = {"Sam","David","Sam","Eric", 
"Daniel","Sam"};  
string[] names2 = {"David","Eric","Samuel"};

commonNames = names1.Intersect(names2).ToList();

commonNames.Dump();

4-14. The Except Operator
The Except operator finds the elements that are exclusively available in one of the given collections.

Problem
Finding names that are exclusively available in one collection and not in another.

Solution
Use the Except operator.

How It Works
The Except operator has two overloaded versions. The first one uses the default comparer for the type of the 
collection. The second one expects a custom comparer. For the current example, the default comparer is fine. 
However, if you need some other custom comparer logic to determine uniqueness, you have to implement a custom 
equality comparer.

Loop LINQ

string[] names1 = {"Sam","David","Eric","Daniel"};  
string[] names2 = {"David","Eric","Samuel"};  
List<string> exclusiveNames = new 
List<string>();  
for(int i=0;i<names1.Length;i++)  
{  
    if(Array.FindIndex(names2, m => m == 
names1[i])==-1)  
exclusiveNames.Add(names1[i]);  
}  
 exclusiveNames.Dump();

string[] names1 = {"Sam","David","Eric","Daniel"};  
string[] names2 = {"David","Eric","Samuel"};  
List<string> exclusiveNames = new 
List<string>();

exclusiveNames = names1.Except(names2).ToList();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

101

4-15. The Concat Operator
The Concat operator concatenates two sequences together, back to back.

Problem
Generate a list of all names (including duplicates, if any) by concatenating two lists of names.

Solution
Use the Concat operator.

How It Works
Concat is useful because it saves you from having to keep track of the size of the array. Using Concat(), you will make 
sure to avoid one-off errors.

Loop Linq

string[] names1 = {"Sam","David","Erik","Daniel"};  
string[] names2 = {"David","Erik","Samuel"};  
string[] names = new string[names1.Length + 
names2.Length];   
for (int i = 0; i < names1.Length; i++)  
     names[i] = names1[i];  
for (int i = 0, j = names1.Length; i < names2.
Length; i++, j++)  
     names[j] = names2[i];

string[] names1 = {"Sam","David","Erik","Daniel"};  
string[] names2 = {"David","Erik","Samuel"};  
string[] names = names1.Concat(names2).
ToArray();

4-16. The SequenceEqual Operator
The SequenceEqual operator checks whether two sequences have the same element at each index, starting from the 
0th index and maintaining the order.

Problem
Check whether two integer arrays are equal.

Solution
Use the SequenceEqual operator.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

102

How It Works
The SequenceEqual operator has two overloaded versions. The first one uses the default comparer for the type of 
the collection. The second one expects a custom comparer. For the current example, the default comparer is fine. 
However, if you need some other custom comparer logic to determine uniqueness,  you have to implement a custom 
equality comparer.

A different situation arises when we need to check for availability of all elements from a source collection in 
another collection, disregarding the order of occurrence. SequenceEqual() works only when the elements in both 
the participating collections appear in the same order. A solution would be to apply OrderBy() calls to both of the 
participating sequences and then do a SequenceEqual() call. However, the following approach using the All() 
operator solves that problem without sorting.

Loop LINQ

int[] codes = {343,2132,12,32143,234};  
int[] expected = {343,12,2132,32143,234};  
bool all = false; for(int i=0;i<codes.
Length;i++)  
{  
  all = expected.Contains(codes[i]);  
  if(!all)  
       break;

}

int[] codes = {343,2132,12,32143,234}; int[] expected = 
{343,12,2132,32143,234};   
bool all = codes.All(x => expected.Contains(x)).Dump();

Loop Linq

public bool IsSequenceEqual(int[] first,int[] 
second)  
{  
       if(first.Length == second.Length)  
       {  
           for(int i=0;i<first.Length;i++)  
               if(first[i]!=second[i])  
                     return false;  
           return true;  
       }  
       return false;  
}  
void Main()  
{  
       int[] codes = {343,2132,12,32143,234};  
       int[] expected = {343,12,2132,32143,234};  
       IsSequenceEqual(codes,expected).Dump(); }

int[] codes = {343,2132,12,32143,234};  
int[] expected = {343,12,2132,32143,234};   
codes.SequenceEqual(expected).Dump();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

103

4-17. The Of Type Operator
The OfType operator finds elements of only the given type from a collection that has elements of several types.

Problem 
Extract only the string values from an object array that has other types of elements apart from strings.

Solution
Use the OfType operator instead of looping and branching.

How It Works
OfType can be used for sanity checking. For example, let’s say you have an object array that is meant to be filled with 
only strings. Before doing anything with the content of the array, it is good to verify that all the elements of the array 
are actually strings. To do so, it will be enough to check whether the length of OfType<string>() is the same as the 
length of the array.

Loop LINQ

object[] things = {"Sam",1,DateTime.
Today,"Eric"};

foreach (var v in things)

if( v.GetType() == typeof(string))

v.Dump();

object[] things = {"Sam",1,DateTime.
Today,"Eric"};

things.OfType<string>().Dump();

4-18. The Cast Operator
Safe casting isn’t hard and shouldn’t hurt. The Cast<T>() operator can cast any loosely typed collection to a strongly 
typed collection of the given type T.

Problem 
Create a strongly typed collection from a loosely typed one.

Solution
Use the Cast operator.

How It Works
In the following code snippet, the LINQ code creates IEnumerable<string> from an object array.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

104

Loop LINQ

object[] things = {"Sam","Dave","Greg","Travis",
"Dan",2};

List<string> allStrings = new List<string>();

foreach (var v in things)

{

                    string z = v as string;

                                     if(z!=null)

allStrings.Add(z);

}

object[] things = {"Sam","Dave","Greg","Travis",
"Dan",2};

things.Select (t => t as string)

          .Where (t => t != null )

          .Cast<string>()

          .Dump();

4-19. The Aggregate Operator
The Aggregate operator joins the elements of a given collection by using a provided lambda function.

Problem 
Create a comma-separated list using the names given in a string array.

Solution
Use the Aggregate operator.

How It Works
This works the same way as the comma-quibbling problem code in Chapter 3. The lambda function
(f,s) => f + " " + s) is used to generate the comma-separated list.

Loop LINQ

string[] names = {"Greg","Travis","Dan"};

for (int k = 0; k< names.Length - 1; k++)

Console.Write(names[k]+",");

//Printing the last name (one off logic)

Console.Write(names[names.Length - 1]);

string[] names = {"Greg","Travis","Dan"};

names.Aggregate((f,s)=>f+","+s).Dump();

So far, you have seen how to use several LINQ operators to replace traditional loop-based logic, leading to 
cleaner, intuitive code. In the next section, you will see how operators from a community LINQ project can be used to 
refactor loops.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

105

4-20. Replacing Nested Loops 
Be warned! Replacing nested loops with LINQ standard query operators might look flat, but the complexity doesn’t 
change. However, the point is that by using LINQ operators, the code does look more intuitive.

The most common form of nested loops is a set of two loops. The strategy to replace loops with LINQ is to use 
projection with SelectMany().

The SelectMany Operator
If we want to print all the characters of all the words for each word in a given array, we can use nested loops or we can 
replace nested loops with SelectMany(), as shown next. Although this example is trivial, it is deliberately chosen so 
that you can relate it to one of your own one-to-many situations. You can use this operator to flatten your dictionary-
like collections.
 
string[] words = {"dog", "elephant", "fox", "bear"};
 
List<char> allChars = new List<char>();
foreach(string word in words)
{
     allChars.AddRange(word.ToCharArray());
}
 
words.SelectMany (w => w.ToCharArray()).Dump();

Removing Nested Loops by Using SelectMany
Let’s say we have the following nested loop. This simple  nested loop just adds two integers together:
 
List<int> fromLoop = new List<int>();
for(int i = 0;i<10;i++)
        for(int j = 0 ; j < 10 ; j ++ )
                fromLoop.Add( i + j);
 

Here is the same loop implemented by using LINQ operators:
 
int[] initialValues = Enumerable.Range(0,10).ToArray();
List<int> fromLINQ = Enumerable.Range(0,10)
                               .SelectMany (e => initialValues.Select (v => v + e )).ToList();
 
//Finally check whether you have the same values or not.
fromLoop.SequenceEqual(fromLINQ).Dump();
 

This returns true as both the sequences are equal.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

106

Replacing If-Else Blocks Inside a Loop
The philosophy behind replacing a loop-if-else-end-loop block with a bunch of LINQ statements is that flat is 
better than nesting. Let’s say you have a loop like this:
 
for(int i = 0;i<4; i++)
{
    if (i%2==0)
    {
        someThings.Insert(0,i);
    }
    else if((2*i+1)%2==0)
    {
        someThings.Add(i);
    }
    else //everything else falls here
    {
        someThings.Add(i);
        someThings.Add(i+1);
    }
}
 

This can be replaced with the following three LINQ statements:
 
List<int> someThings = new List<int>();
Enumerable.Range(0,4).Where(i => i%2==0).ForEach( a => someThings.Insert(0,a));
Enumerable.Range(0,4).Where(i => (2*i+1)%2==0).ForEach( a => someThings.Add(a));
Enumerable.Range(0,4).Where(i => (2*i+1)%2!=0 && i%2!=0).ForEach( a =>
    someThings.AddRange(new int[]{a,a + 1}));
 

The strategy for this approach is simple and can be declared by the following three steps:

Range (using the •	 Range operator)

Filter (using the •	 Where operator )

Perform the action (using the •	 ForEach operator)

The idea is to segregate loops as different Project ➤ Filter ➤ Action blocks and give each block a single 
responsibility. This way, it will be simpler to refactor when needed.

4-21. Running Code in Parallel Using AsParallel( ) and 
AsOrdered( ) Operators 
Making use of all your computing power is simple with LINQ. By using the AsParallel() operator, you can 
“automagically” make sure that your code runs faster. But be warned, plugging in AsParallel() doesn’t always 
guarantee faster execution time. Sometimes it might take longer to distribute the task to multiple processors, and 
it can take a longer time running the code in parallel than in sequential mode. AsParallel() splits the input data 
to multiple groups so the order of the elements in the input doesn’t remain intact. If you care about the order of the 
elements in the result, plug in AsOrdered() right after the AsParallel() call.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

107

Problem
Create a program that finds all the prime numbers from 1 to 10,000—fast.

Solution
The solution is as follows:
 
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
 
namespace RefactoringWithAsParallel
{
    class Program
    {
        static void Main(string[] args)
        {
            Stopwatch w = new Stopwatch();
            w.Start();
            List<int> Qs = new List<int>();
            List<int> Qsp = new List<int>();
            for (int i = 0; i < 2; i++)
                Qs = Enumerable.Range(1, 10000).Where(d => Enumerable.Range(2, d / 2)
                                                       .All(e => d % e != 0)).ToList();
            w.Stop();
            double timeWithoutParallelization = w.Elapsed.TotalMilliseconds;
 
            Stopwatch w2 = new Stopwatch();
            w2.Start();
            for (int i = 0; i < 2; i++)
                Qsp = Enumerable.Range(1, 10000).AsParallel().Where(d =>
                         Enumerable.Range(2, d / 2)
                         .All(e => d % e != 0)).ToList();
            w2.Stop();
            double timeWithParallelization = w2.Elapsed.TotalMilliseconds;
            double percentageGainInPerformance = (timeWithoutParallelization -   
                                                  timeWithParallelization) / 
                                                  timeWithoutParallelization;
            bool isSame = Qs.SequenceEqual(Qsp);
 
        }
    }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ refaCtoring with LinQ

108

How It Works
Although the algorithm used to check whether the number is prime or not is naïve, that’s not the point. The point is 
that adding AsParallel() makes the code faster. I recommend that you run the program multiple times and check the 
value of percentageGainInPerformance. For me, that value was roughly between 29% and 45%. However, you will see 
that isSame is false, because the order of the elements in the result obtained by applying AsParallel() is not the same 
as that of the input. If you want to guarantee the order, add AsOrdered() right after AsParallel(), as shown next.
 
Qsp = Enumerable.Range(1, 10000).AsParallel().AsOrdered().Where(d => Enumerable.Range(2, d / 2)
                                                           .All(e => d % e != 0)).ToList();
 

Note that adding AsOrdered() decreases the performance gain a little. And if you think for a while, that’s 
intuitive. Because after the result is obtained, the program has to order it back as per the order of the elements in the 
input collection.

Summary
This chapter provided some strategies for refactoring loops with LINQ queries, resulting in cleaner, more-intuitive 
code. You can make a query run in parallel just by using the AsParallel() operator after the collection, and you can 
order the result by calling AsOrdered() if the order is important to you.  The next chapter takes this concept further 
to explore using LINQ to help improve readability and maintainability—and even improve code performance—by 
implementing embedded domain-specific languages (DSLs) for several practical purposes.

www.it-ebooks.info

http://www.it-ebooks.info/


109

Chapter 5

Refactoring with MoreLINQ

In the preceding chapter, you saw how LINQ can help replace existing loops. Loop constructs can sometimes 
range from difficult to impossible to comprehend, especially when nested. This chapter extends the loop-to-LINQ 
replacement concept by showing how the open source LINQ API called MoreLINQ can help you refactor legacy code. 
By going beyond the core LINQ operators, the MoreLINQ API offers a wide range of operators that you can readily use 
to replace looping or looping/branching logic. After reading this chapter, you should be able to rewrite such code by 
using methods found in the MoreLINQ API.

5-1. Getting MoreLINQ
MoreLINQ is a library written by Jon Skeet (see https://twitter.com/jonskeet), which you can find on Google Code 
(http://code.google.com/p/morelinq/source/browse/).

The following sections show how looping constructs might have been written to solve specific problems, and how 
the MoreLINQ operators can help you refactor those loops.

5-2. Using the Scan Operator 
The Scan operator applies a function cumulatively on a sequence, yielding the result at each stage. 

Problem
Find the cumulative sum of a given integer sequence.

Solution 
Use the Scan operator instead of using loops. The following table shows a loop solution in the left column, and the 
equivalent MoreLINQ solution, using Scan, on the right.

Loop MoreLINQ

int[] numbers = {1,2,3,4};  
int[] sums = new int[numbers.Length];  
for(int i=0;i<numbers.Length;i++)  
{  
     for(int j = 0;j<=i;j++)  
         sums[i]+=numbers[j];  
}  
sums.Dump();

int[] numbers = {1,2,3,4};

numbers.Scan((a,b)=>a + b).Dump();

www.it-ebooks.info

https://twitter.com/jonskeet
http://code.google.com/p/morelinq/source/browse/
http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

110

How It Works 
The output of this code is the cumulative sum of the sequence 1,2,3,4, as shown in Figure 5-1.

Figure 5-1. Result of the cumulative sum operation

At first glance, Scan might look similar to Aggregate. But Aggregate runs the folding function provided on every 
element of the collection and returns a final value. In contrast, Scan returns the sum of elements up to the current 
number, for each number, until it reaches the end of the list. So the difference is that the last element of the result 
obtained from a Scan call is the same as the result of an Aggregate call.

5-3. Using the Slice Operator 
The Slice operator extracts a slice from a sequence. The first argument to Slice is the starting index, and the second 
is the run length of the sequence segment to be extracted. 

Problem
Extract four elements, starting at the fourth element.

Solution 
Use the Slice operator rather than using loops and doing the bookkeeping yourself.

Loop MoreLINQ

int[] values = {1,2,3,4,5,6,7,8,9,10};

int k = 4;

int start = 3;

int[] slice = new int[k];

for(int i = start,j = 0 ; i< start + k ;i++,j++)

            slice[j] = values[i];

slice.Dump();

int[] values = {1,2,3,4,5,6,7,8,9,10};

int[] slice = values.Slice(3,4).ToArray();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

111

How It Works
You can think of this method as a shortcut to the Skip(m).Take(n) idiom, where you simply pass m and n as the 
arguments to Slice.

5-4. Using the Interleave Operator
The Interleave operator joins two sequences, taking elements from each sequence alternately. 

Problem
Join two integer sequences such that each element in the resultant sequence is taken in turn from one of the source 
sequences. You can imagine that these integer sequences are formed by the contents of packets arriving over the 
network, and the processor must pick one element from each sequence, alternating between sequences. Another way 
to imagine this is as a kind of simple load-balancing strategy.

Solution
Use the Interleave operator instead of loops.

Loop MoreLINQ

int[] n1 = {1,3,4,5};  
int[] n2 = { 4,6};  

int[] total = new int[n1.Length + n2.Length]; 

int first = 0;  
int second = 0;  
int index = 0;  
for(;index< n1.Length+n2.Length;index++)  
{  
     if(index % 2 == 0 )  
     {  
            //Pick element from the first  
            if(first!=n1.Length)  
            {  
                 total[index] = n1[first];  
                 first++;  
            }  
            else  
            {  
                 if (second != n2.Length)  
                 {  
                     total[index] = n2[second];  
                     second++;  
                 }  
            }  
     } 

int[] n1 = {1,3,4,5}; 
int[] n2 = { 4,6}; 
int[] total = n1.Interleave(n2) 
                .ToArray();

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

112

Loop MoreLINQ

    else
    {  
           //Pick element from the second  
           if(second!=n2.Length)  
           {  
                total[index] = n2[second];  
                second++;  
           }  
           else  
           {  
                if (first != n1.Length)  
                {  
                    total[index] = n1[first];  
                    first++;  
                }  
           }  
     }  
}  
total.Dump();

How It Works
In Figure 5-2, the first sequence is longer than the second sequence. The first sequence consists of dark circles, and 
the second sequence consists of light circles. The resulting sequence created by Interleave takes one element 
from each source sequence in turn, so the result has one dark circle followed by a light one, and so on. This goes on 
until the operation reaches the end of the shorter sequence (Sequence #2, in this case), after which the code simply 
appends elements from the longer sequence until it reaches the end of that sequence as well.

Figure 5-2. How Interleave() works to generate the interleaved sequence

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

113

5-5. Using the Windowed Operator
The Windowed operator generates content as a collection of collections, creating several intermediate collections for a 
sliding window of a given size from any given collection.

Problem 
Find the moving average from a given sequence in which the moving window size is 2.

Solution
Use the Windowed operator to generate a sequence of sequences instead of using a nested looping construct.

Loop MoreLINQ

int[] values = {1,2,3,4,5,6,7,8,9,10,11}; 
List<List<int>> windowVals = new List<List<int>>(); 
for(int i=0;i<values.Length-1;i++)  
{  
   List<int> inner = new List<int>();  
   for(int j=i;j<i+2;j++)  
      inner.Add(values[j]);  
    windowVals.Add(inner);  
}  
List<double> movingAvgs = new List<double>();  
for(int i=0;i<windowVals.Count;i++)  
{  
       double avg = 0;  
       for(int j = 0;j<windowVals[i].Count;j++)  
           avg += windowVals[i][j];  
       movingAvgs.Add(avg/windowVals[i].Count);  
}  
movingAvgs.Dump("Moving Averages using loops");

int[] values = {1,2,3,4,5,6,7,8,9,10,11};

values.Windowed(2)

      .Select(list => list.Average())

      .Dump("Moving Averages");

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

114

How It Works
Both the looping example and the Windowed example generate the output shown in Figure 5-3.

Figure 5-3. Moving average of numbers 1 to 11 with two numbers taken at a time

Figure 5-4. How the sliding window moves and generates intermediate collections

Windowed generates an enumerable of enumerables, in which each enumerable holds the values that result from 
sliding the window. Figure 5-4 shows how Windowed works in more detail. The underline denotes the sliding window.

The call to Select (list => list.Average()) projects the average of each list generated by Windowed.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

115

5-6. Using the Cartesian Operator
The Cartesian operator finds the Cartesian product of a series of collections. As in the other examples in this chapter, 
this can help you replace vanilla nested loops with more-readable code.

Problem
Find the volumes of all parallelepipeds from a given set of lengths, breadths, and heights.

Solution
Use the Cartesian operator instead of three nested loops.

Loop MoreLINQ

int[] lengths = {1,2,3,4,5,6,7};

int[] breadths = {1,1,2,3,1,3};

int[] heights = {2,1,3,1,4};

List<int> volumes = new List<int>();

for(int r = 0;r<lengths.Length; r++)

{

    for(int c = 0; c< breadths.Length; c++)

    {

        for(int z=0;z<heights.Length;z++)

        {

        volumes.Add(lengths[r]*breadths[c]*heights[z]);

        }

    }

}

int[] lengths = {1,2,3,4,5,6,7};

int[] breadths = {1,1,2,3,1,3};

int[] heights = {2,1,3,1,4};

List<int> volumesLINQ = lengths

    .Cartesian(breadths, (b,l)=> b * l)

    .Cartesian(heights, (a,b)=> a * b)

    .ToList();

volumesLINQ.Take(10).Dump();

How It Works 
Nested loops are sometimes referred to as bow-and-arrow patterns, because they assume a shape similar to a bow and 
arrow. As shown in the preceding code, you can replace such a bow and arrow pattern with a call to Cartesian. The 
example on the left in the Solution section above shows applying Cartesian with three nested loops; however, you 
can use the MoreLINQ Cartesian command to generate Cartesian products nested as deeply as required. Cartesian 
takes two arguments. The first is an enumerable over which the command will iterate, while the second is a lambda 
expression that represents the inner calculation. If you have single statements inside the innermost loop, you can 
translate those loops into a sequence of calls to Cartesian. Figure 5-5 shows the output.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

116

5-7. Using the Partition Operator
The Partition operator partitions a sequence according to a given number of items. 

Problem
Let’s say that you have a 10-element array and you want partition the array into three sections such that the first part 
holds 30 percent of the elements (three, in this case), the middle section holds 60 percent of the elements (six, in this 
case), and the last part holds 10 percent of the elements (one, in this case).

Figure 5-5. The  first 10 calculated volumes of the set of parallelepipeds

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

117

Solution 

Loop MoreLINQ

int[] values = {1,2,3,4,5,6,7,8,9,10};

//We want a List<List<int>>

//with values distributed according to the

//given percentages.

//This means there will need to be three lists

//where the first one will have 30% elements

//second one 60% and the last one 10%.

int[] percentages = {30,60,10};

int[] numbersOfItems =  
new int[percentages.Length];

for(int i = 0;i<percentages.Length;i++)

        numbersOfItems[i] = (int) Math.Floor( 
(double)values.Length*percentages[i]/100);

List<List<int>> distributions = new 
List<List<int>>();

for(int i = 0;i<numbersOfItems.Length;i++)

{

    List<int> innerList = new List<int>();

    if(i==0)

    {

        for(int j=0;j<numbersOfItems[i];j++)

        innerList.Add(values[j]);

    }

    else

    {

        int index = 0;

        for(int k = 0;k<i;k++)

            index+= numbersOfItems[k];

        for (int j = index; j < index +

             numbersOfItems[i];j++ )

             innerList.Add(values[j]);

    }

    distributions.Add(innerList);

}

distributions.Dump("Partitioned as per 
percentage");

int[] values = {1,2,3,4,5,6,7,8,9,10};

int[] percentages = {30,60,10};

List<IEnumerable<int>> distributions = new 
List<IEnumerable<int>>();

int[] numbersOfItems = percentages

    .Select (n=> (int) Math.Floor( (double)
values.Length*n/100)).ToArray();

distributions = values.Partition(numbersOfItems)

    .ToList();

distributions.Dump("Partitioned as per 
percentage");

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

118

How It Works
Both versions generate the output shown in Figure 5-6.

Figure 5-6. The result of partitioning an array with the given distribution percentage

Partition has two overloaded versions. The first version takes a single integer that represents a single size for 
all the partitions. The other overloaded version takes an IEnumerable<int> whose values represent different sizes for 
the required partitions. The example first obtains the number of elements required in each partition by calculating 
that from the given percentages, and stores those values in the numbersOfItems array, which is passed to the second 
overload of Partition.

5-8. Using the Index Operator 
The Index operator returns an enumeration with the index and the value at each index for the given collection.

Problem
Keep track of the index for each character in a given string.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

119

Solution

Loop MoreLINQ

string input = "LINQ";  
List<KeyValuePair<int,char>> indices = new  
List<KeyValuePair<int,char>>();  
for(int i = 0; i< input.Length; i++)  
{  
    indices.Add(new KeyValuePair<int,char>(i,input[i]));  
}  
indices.Dump();

char[] chars = "LINQ".ToCharArray();  
chars.Index().Dump();

Both of these examples produce the result shown in Figure 5-7. For the looping construct, however, the result is 
strongly typed to be a List<KeyValuePair<int, char>>.

Figure 5-7. The key/value pairs for the word LINQ. The Key columnn shows the index of the letters, while the  
Value column represents the character values at those indices

How It Works
Index returns an IEnumerable<int,T> when used on a collection of type T. This operator might not seem so useful, 
but it can be. For example, in the next section, you will see how Index can help write generic code to remove 
consecutive duplicates from a given collection, which is a rather common programming task.

5-9. Using the PairWise Operator
The PairWise operator performs an action over two neighboring/consecutive elements of a given collection and 
returns an enumerable with the result of all such actions performed across the collection. In other words, if you need 
to perform an operation on each pair of elements, starting from the leftmost element, then PairWise is the operator 
you need. I won’t show the looping code to do this, but you’ve probably written similar loops before. 

Problem
Remove consecutive repeated characters from a string. If you want to experiment further, see if you can use the same 
method to remove consecutive identical dates.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

120

Solution
The logic for this can be wrapped inside a LINQ extension, as shown here:
 
public static class MyLinqEx
{
        public static IEnumerable<T> RemoveConsecutiveDuplicates<T>(this IEnumerable<T> input)
                                                            where T:IComparable
        {
                var conditions = input.Pairwise((a,b)=>a.Equals(b));
                var dontPickIndices = conditions.Index()
                                .Where (c => c.Value==true)
                                .Select(k => k.Key);
                return Enumerable.Range(0,input.Count())
                        .Where (e => !dontPickIndices.Contains(e))
                        .Select(k => input.ElementAt(k));
             }
}
 

Here is how you can use this operator:
 
void Main()
{
    "LLIIIINNQQ".ToCharArray().RemoveConsecutiveDuplicates().Dump();
}

How It Works
The extension is built around two basic building blocks, Index and PairWise operator. The PairWise operator 
generates the output in Figure 5-8 by comparing each pair of letters in the input to see whether they’re the same.

Figure 5-8. The state of neighborhood similarity of two characters

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

121

Next, the Index operator generates the output shown in Figure 5-9.

Figure 5-9. The indices of neighborhood similarity check result

By selecting the keys for which the value is true, you would get the indices that have the same characters as those 
of their next consecutive neighbor. Conversely, by avoiding these indices, you get a list of consecutive nonrepeating 
characters. The variable dontPickIndices holds the true indices.

5-10. The ForEach Operator
The ForEach operator performs an action on all elements of a given sequence. Without this, the result would need to 
be projected to a strongly typed list (List<T>) to run an operation on each member, which can lead to performance 
issues when the list is large.  

Problem
Perform an operation on each element in an enumerable.

Solution 
Use the ForEach operator instead of looping or converting the enumerable to a strongly typed list.

Loop MoreLINQ

int[] numbers = {1,2,8,7,5,6,4,3};
Action<int> ack = a =>  
  Console.WriteLine(
     DateTime.Today.AddDays(a)
    .DayOfWeek);
foreach (var integer in numbers)
  ack.Invoke(integer);

int[] numbers = {1,2,8,7,5,6,4,3};  
Action<int> ack = a => Console.WriteLine 
(DateTime.Today.AddDays(a).DayOfWeek);  
numbers.ForEach(ack);

How It Works 
The ForEach operator takes an action that it then invokes on each member of the collection on which ForEach is 
being invoked.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5 ■ refaCtoring with MoreLinQ

122

5-11. Using the MinBy/MaxBy Operator 
The MinBy operator finds the value from the given source collection that results in the minimum value of a given 
function. The LINQ standard query operator Min finds the minimum value of the generated values from the given 
collection by the given formula.

Problem
Find the value from a set of values that minimizes the given function. Here’s an example: Assume you have a list of 
distances from various cities to a zoo stored in an array—and a tiger has escaped from the zoo. The zoo authorities 
want to notify people in the city closest to a 10 kilometer radius around the zoo.

Solution

Loop MoreLINQ

int[] distances = {23,41,11,34,45};

int x = distances[0];

for(int i = 0;i<distances.Length;i++)

if(distances[i]-10<x-10)

x = distances[i];

x.Dump();

int[] distances = {23,41,11,34,45};  
//The value that minimizes the given function f(x) = x - 10 
//in this case distances.
MinBy(a => a - 10).Dump(); 
//The minimum value of the values projected by the given 
formula distances. 
Min (a => a - 10).Dump();

The output of the loop code is 11, while the output of the LINQ code is 11 and then 1. The outputs differ because  
I added a call to the LINQ Min() operator at the end of the LINQ code to help make the difference between these  
two operators clear. The extra 1 is the result of the Min() call.

How It Works
The LINQ code generates 11 and then 1 as output. The value 11 minimizes the function f(x) = x – 10, denoted by the 
lambda expression a => a – 10.

The final call to the LINQ operator Min()  generates 1 because that’s the minimum value obtained from the 
projection of all values in the array distance by the function a – 10. By virtue of this internal projection, the values will 
be {13, 31, 1, 24, 35}. Because 1 is the minimum value in that set, it’s the value that Min() returns.

Similar to MinBy(), MoreLINQ offers another operator called MaxBy(), which finds the value that maximizes a 
given function.

Summary
There are several other operators available in MoreLINQ. However, the ones covered here are the most interesting, 
and for the most part, are not easily reproducible by combining the standard LINQ operators. However, I recommend 
you explore the library documentation for yourself. The project has a very good unit test suite, which can help you 
figure out what the code does.

www.it-ebooks.info

http://www.it-ebooks.info/


123

Chapter 6

Creating Domain-Specific Languages

Every domain has a language that helps practitioners communicate their thoughts easily. When a chef instructs a 
helper to sauté vegetables, both parties know what the term means. However, software solutions created for several 
domains using general-purpose, high-level programming languages such as C# or Java often quickly become difficult 
to maintain. Even only a few months later, the original authors of these solutions may find it difficult to remember 
how the code works so they can fix bugs.

Thankfully, you can avoid such problems by creating expressive and succinct internal APIs. These API sets 
are also called internal, or embedded, domain-specific languages (DSLs). You can later extend these to develop an 
external DSL that subject matter experts who do not necessarily have programming experience in a high-level, 
general-purpose programming language can use. Subject matter experts usually appreciate the opportunity to express 
themselves with these DSLs. MATLAB is an example of an external DSL, which is unsuitable for general-purpose 
tasks. In contrast, LINQ is an example of an internal, or embedded, DSL.

In this chapter, the first few sections describe techniques for creating embedded DSLs that blend well with the 
syntax of the host language (C#, in this case). The later sections show how to use the open source LINQ API to create 
external DSLs that use the internal DSL created previously. The purpose of this chapter is to illustrate how to apply 
these techniques to a variety of problem domains for your own purposes.

The next section compares the classic style of coding to using a DSL.

6-1. Feel the Difference 
Compare the side-by-side code blocks in Figure 6-1 and try to understand what they do.

Figure 6-1. DSLs can improve the readability of a program

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

124

The loop at the left finds Armstrong numbers between 1 and 1,000. The LINQ query on the right does the same 
thing. Which one do you think more closely approaches the textual definition of Armstrong numbers? In my opinion, 
the LINQ query is much cleaner and far more readable than the loop. Some of my colleagues have argued that if 
they were to start writing code like the LINQ query on the right, they would soon forget how to interpret the loops. 
You’ll have to decide which approach is better. But if you have the war wounds most veteran programmers eventually 
experience, you will probably agree that code readability counts.

You may have noticed that the Digits() and Cube() methods are not shown in Figure 6-1. DSLs are not magical. 
Using them will not let you skip the process of implementing the logic. But in this case, the implementations are 
elsewhere, wrapped in some classes. The next section shows how to create a mini DSL to find numbers such as 
Armstrong numbers.

6-2. Creating a Simple DSL for Mathematicians 
A language is made up of vocabulary. A domain-specific language is no different. To create a DSL, you first need to 
identify the reasonable vocabulary set for that language. The language you’ll create in this section is intended to help 
mathematicians write expressive code to find numbers such as Armstrong numbers. 

Problem
Create a set of vocabulary and the grammar that glues those vocabulary terms together.

Solution
You may recall from Chapter 2 that Armstrong numbers and other related numbers are denoted by functions that act 
on the digits of those numbers. So Digits must be a word in this language. You also want to declare all the functions 
that can be performed on digits as vocabulary terms, so users (mathematicians) can glue those functions together. So 
functions such as Sum, Cube, and Factorial have to be declared as vocabulary terms. Since this is going to be a DSL for 
finding interesting numbers such as Armstrong numbers, I have named it Armstrong.

In C#, you can define these vocabulary terms as extension methods. Consider how Microsoft implemented LINQ 
standard query operators as extension methods of IEnumerable<T>. Can you see a connection? 

Add the class code shown in Listing 6-1 to a new LINQPad query tab. Select C# Program from the Language drop-
down menu.

Listing 6-1. Caption Here

public static class IntEx
{
    public static int Cube(this int number)
    {
        return number * number * number;
    }
    public static int Square(this int number)
    {
        return number * number;
    }
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

125

    public static IEnumerable<int> Digits(this int number)
    {
        return number.ToString().ToCharArray()
            .Select (n => Convert.ToInt32(n.ToString()));
    }
    public static IEnumerable<int> ReverseDigits(this int number)
    {
        return number.Digits().Reverse();
    }
    public static IEnumerable<int> EvenDigits(this int number)
    {
        return number.ToString().ToCharArray()
            .Where ((m,i) => i%2==0).Select (n => Convert.ToInt32(n.ToString()));
    }
    public static IEnumerable<int> OddDigits(this int number)
    {
        return number.ToString().ToCharArray()
            .Where ((m,i) => i%2!=0).Select (n => Convert.ToInt32(n.ToString()));
    }
    public static bool Are(this IEnumerable<int> actualDigits, params int[] digits)
    {
        return actualDigits.SequenceEqual(digits);
    }
    public static IEnumerable<int> DigitsAt(this int number, params int[] indices)
    {
        var asString = number.ToString();
        return indices.Select (i => Convert.ToInt32(asString[i].ToString()));
    }
    public static bool AreZero(this IEnumerable<int> digits)
    {
        return digits.All (d => d == 0);
    }
    public static int FormNumber(this IEnumerable<int> digits)
    {
        return digits.Select ((d,i) => d * (int)Math.Pow (10,digits.Count()-(i+1)))
                                                .Aggregate ((a,b) => a + b);
    }
    public static IEnumerable<int> Factorial(this IEnumerable<int> digits)
    {
        foreach (var d in digits)
            if (d == 0)
                yield return 1;
            else
                yield return Enumerable.Range(1, d).Aggregate((a, b) => a * b);
    }
      
    public static int Product(this IEnumerable<int> digits)
    {
        return digits.Aggregate ((f,s) => f*s);
    }
     

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

126

    public static IEnumerable<int> Cube(this IEnumerable<int> digits)
    {
        return digits.Select (d => d * d * d);
    }
     
    public static IEnumerable<int> Square(this IEnumerable<int> digits)
    {
        return digits.Select (d => d * d);
    }
     
    public static IEnumerable<int> RaiseSelfToSelf(this IEnumerable<int> digits)
    {
        return digits.Select (d => (int) Math.Pow(d,d));
    }
     
    public static IEnumerable<int> IncrementalPower(this IEnumerable<int> digits)
    {
        return digits.Select ((d,i) => (int) Math.Pow(d,i));
    }
}
 

Add the following code inside Main():
 
void Main()
{
     Enumerable.Range(1,10000)
              .Where ( n => n.Digits().Cube().Sum() == n )
              .Dump("Armstrong Numbers");
}
 

Running this code results in the output shown in Figure 6-2.

Figure 6-2. Armstrong numbers found with the help of the Armstrong DSL

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

127

Using the newly designed Armstrong embedded DSL, you can find these numbers by writing expressive code, 
as shown in Listing 6-2. The code segments that use the methods in the DSL appear in bold. Now compare the 
definitions of these numbers (in Figure 6-3) to the code that finds them in Listing 6-2. This way, this embedded DSL 
will help users keep their code clean and professional. To run this code in LINQPad, set the Language drop-down 
menu to C# Statements.

Listing 6-2. Caption Here

Enumerable.Range(0,10000)
            .Where (d => d.Digits().Sum().Cube() == d)
            .Dump("Dudeney numbers");
Enumerable.Range(0,10000)
            .Where (d => d.Digits().Factorial().Sum() == d)
            .Dump("Factorions");
Enumerable.Range(0,10000)
            .Where (d => d.Digits().Sum() * d.Digits().Product() == d)
            .Dump("Sum Product numbers");
 

Figure 6-4 shows the result of running the code in Listing 6-2.

Figure 6-3. Definitions for several numbers similar to Armstrong numbers

Some of the extension methods in the IntEx class might look trivial. However, they are important for creating an 
expressive language. Moreover, these methods are critical when you later want to expose this embedded DSL as an 
external DSL (outside the host language C#).

Now, let’s see how the new language helps define similar numbers. Figure 6-3 shows the definitions of some 
similar numbers from Wikipedia (en.wikipedia.org/wiki/Narcissistic_number).

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

128

Table 6-1. Methods in Armstrong

Function Purpose

Digits This returns an IEnumerable<int> with the digits of the given integer.

ReverseDigits This returns an IEnumerable<int> with the digits of the given integer in reverse order.

EvenDigits This returns an IEnumerable<int> with just the digits at the even indices of the given integer.

OddDigits This returns an IEnumerable<int> with just the digits at the odd indices of the given integer.

Cube There are two versions of this method. The first one operates on a list of digits, and the second 
one operates on an integer.

Square Similar to Cube. There are two versions of this method. The first one operates on a list of digits, 
and the second operates on an integer.

Product This method returns the product of the digits of the number.

Are This is a handy synonym for the SequenceEqual method, just to make its purpose a little bit 
more understandable.

Figure 6-4. Result of the code written in embedded DSL

How It Works
Congratulations! You have just created a small embedded DSL. This language has a vocabulary described by using  
C# extension methods on the integer data type. Table 6-1 lists these methods.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

129

6-3. Testing Armstrong by Using NUnit 
Most of the methods shown in the preceding section are simple and easy to understand. However, I thought it would 
be nice to have a small test suite for these methods to make their usage immediately evident.

Problem
Create a test suite for the methods in Recipe 6-1.

Solution 
To create a test suite, I used the NUnit framework. So the first step is to go to the NUnit web site and get the latest 
appropriate version for you. I used the version available at http://launchpad.net/nunitv2/trunk/2.6.3/+download/
NUnit-2.6.3.msi.

After you have installed the NUnit framework, follow these steps:

 1. Create a Class Library project and copy all the code for Armstrong and name it Armstrong.

 2. Add another class library project called ArmstrongTest. Add NUnit references there along 
with the Armstrong reference, as shown in Figure 6-5.  

Function Purpose

Factorial This returns the factorials of the digits of the given number.

AreZero This is a predicate. This returns true if all the given digits are zero.

FormNumber This helper function helps create a number formed from the digits of the given number.

RaiseSelfToSelf This function returns all the digits raised to the power of themselves.

IncrementalPower This function returns all the digits raised to the power of their index in the list.

Table 6-1. (continued)

Figure 6-5. Adding references to NUnit and the Armstrong project to the test project ArmstrongTest

www.it-ebooks.info

http://launchpad.net/nunitv2/trunk/2.6.3/+download/NUnit-2.6.3.msi
http://launchpad.net/nunitv2/trunk/2.6.3/+download/NUnit-2.6.3.msi
http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

130

 3. Change the name of the class from Class1.cs to ArmstrongTest.cs and add the code in 
Listing 6-3 to that class file.

Listing 6-3. Caption Here

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using NUnit.Framework;
using Armstrong;
 
namespace ArmstrongTest
{
    [TestFixture]
    public class ArmstrongTest
    {
        [Test]
        public void TestFormNumber()
        {
            Assert.AreEqual(24, 12345.OddDigits().FormNumber());
            Assert.AreEqual(135, 12345.EvenDigits().FormNumber());
        }
        [Test]
        public void TestDigitsAt()
        {
            Assert.IsTrue(12345.DigitsAt(1, 3).SequenceEqual(new int[] { 2, 4 }));
        }
        [Test]
        public void TestEvenDigits()
        {
            Assert.IsTrue(12345.EvenDigits().SequenceEqual(new int[] { 1, 3, 5 }));
        }
        [Test]
        public void TestOddDigits()
        {
            Assert.IsTrue(12345.OddDigits().SequenceEqual(new int[] { 2, 4 }));
        }
        [Test]
        public void TestFactorial()
        {
            Assert.AreEqual(145, 145.Digits().Factorial().Sum());
        }
        [Test]
        public void TestRaiseToSelf()
        {
            Assert.AreEqual(32, 123.Digits().RaiseSelfToSelf().Sum());
        }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

131

        [Test]
        public void TestIncrementalPower()
        {
            Assert.AreEqual(12, 123.Digits().IncrementalPower().Sum());
        }
        [Test]
        public void TestProducts()
        {
            Assert.AreEqual(6, 123.Digits().Product());
        }
        [Test]
        public void TestDigits()
        {
            Assert.IsTrue(1234.Digits().SequenceEqual(new int[]{1, 2, 3, 4}));
        }
        [Test]
        public void TestArmstrongNumber()
        {
            Assert.IsTrue(153.Digits().Cube().Sum() == 153);
        }
        [Test]
        public void TestDudeney()
        {
            Assert.IsTrue(512.Digits().Sum().Cube() == 512);
        }
    }
}

Note ■  make sure to add a reference to Armstrong.dll to the reference of this test project. otherwise, it won’t  
compile.

 4. After building the test project successfully, open the NUnit GUI to load the tests and run 
them. To do that, that you must locate ArmstrongTest.dll, as shown in Figure 6-6.

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

132

 5. When you locate the ArmstrongTest.dll, all the tests will load, as shown in Figure 6-7.  

Figure 6-6. Locate the ArmstrongTest.dll from wherever you have saved the project

Figure 6-7. All the Armstrong tests loaded in the NUnit GUI

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

133

 6. Click the Run button. Every test should pass, and you should see a green bar.

Feel free to do your own experiments and see how the results differ. In fact, I recommend that you make changes 
to the tests or to the Armstrong code so it fails some of the tests.

How It Works
The code in this section works by building a series of assertion tests that check the functions in Armstrong.dll, thus 
verifying that the code works as expected.

6-4. Exposing Armstrong as an External DSL 
As designed so far, the Armstrong language is good for boosting developer productivity, but it is still unusable by 
people who don’t code in C# or some other .NET language. For the language to serve its purpose, you need to expose 
it in a form that accepts free-form input from users and generates the appropriate queries from that input. In this 
section, you will see how to expose the functionality of the language by using an external English-like language with 
Armstrong keywords embedded. This will not be hard for users, because the Armstrong keywords match the normal 
English vocabulary of mathematicians, so they should feel at home using it. 

Again, comparing the internal DSL with the typical mathematical vocabulary should help illustrate the 
difference. Figure 6-8 shows both.

Figure 6-8. The difference between the external and internal representation of Armstrong

While a C# programmer could write the first version shown in Figure 6-8 by using the internal representation 
of Armstrong with host language support from C#, a nonprogrammer domain expert (mathematicians, in this case) 
would likely find the free-flowing form of Armstrong expressed in the lower part of Figure 6-8 far simpler and more 
intuitive. That’s why DSLs are important. I have highlighted the Armstrong tokens in the text phrase in bold.

Problem
Expose Armstrong as a free-flowing, English-like, external DSL.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

134

Solution
The strategy is to generate Armstrong code from an English-like syntax. The generated Armstrong query must be able 
to run on a range of input variables. To run the generated LINQ statement, you need a LINQ compiler that can take a 
LINQ statement as a string and run it against a given input range. For this, I have used the open source LINQ compiler 
available from CodePlex at http://linqcompiler.codeplex.com/.

Here are the steps you need to follow:

 1. Download the LINQ compiler and place the compiler DLL (Evaluant.LINQ.Compiler.dll) 
in a new folder.

 2. In LINQPad, add the IntEx class created earlier in this chapter to the query. Change the 
query type to C# Program. Add the following code in Main() and outside of Main() as part 
of the executing class:
 
private static string SanitizeBraces(string generatedStatement)
{
    int gap = generatedStatement.ToCharArray().Count(c => c == '(') -
                   generatedStatement.ToCharArray().Count(c => c == ')');
    if (gap == 0)
        return generatedStatement;
    else
        return generatedStatement + new string(')', gap);
}
private static string GenerateArmStrongStatement(List<string> tokens)
{
    Dictionary<string, string> mapping = new Dictionary<string, string>();
    mapping.Add("*", "*");
    mapping.Add("times", "*");
    mapping.Add("(", ")");
    mapping.Add(")", "(");
    mapping.Add("are-same", ".IsSame()");
    mapping.Add("==", "==");
    mapping.Add("proper-divisors", ".ProperDivisors()");
    mapping.Add("even-digits", ".EvenDigits()");
    mapping.Add("odd-digits", ".OddDigits()");
    mapping.Add("number", "n");
    mapping.Add("square", ".Square()");
    mapping.Add("product", ".Product()");
    mapping.Add("is", "==");
    mapping.Add("!=", "!=");
    mapping.Add("+", "+");
    mapping.Add("-", "-");
    mapping.Add("and", "&&");
    mapping.Add("or", "||");
    mapping.Add("/", "/");
    mapping.Add(">", "<");
    mapping.Add("<", ">");
    mapping.Add("<=", ">=");
    mapping.Add(">=", "<=");
    mapping.Add("divided-by", "/");
    mapping.Add("are", ".Are(");

www.it-ebooks.info

http://linqcompiler.codeplex.com/
http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

135

    mapping.Add("digits", ".Digits()");
    mapping.Add("reverse-digits",".ReverseDigits()");
    mapping.Add("cube", ".Cube()");
    mapping.Add("factorial", ".Factorial()");
    mapping.Add("sum", ".Sum()");
 
    //Add all normal LINQ operators
    mapping.Add("average", ".Average()");
    mapping.Add("maximum", ".Max()");
    mapping.Add("minimum", ".Min()");
    mapping.Add("digits-at", ".DigitsAt(");
 
    StringBuilder armstrongBuilder = new StringBuilder();
    foreach (string to in tokens)
    {
        if (mapping.ContainsKey(to))
            armstrongBuilder.Append(mapping[to]);
        if (to.ToCharArray().All(t => Char.IsNumber(t) || t == '.'))
            armstrongBuilder.Append(to);
    }
 
    return SanitizeBraces("input.Where ( n => " + armstrongBuilder.ToString() + ")");
}
 
void Main()
{
    do
    {
        var inputs = Enumerable.Range(1, 10000);
        Console.WriteLine("Armstrong >>");
        string line = Console.ReadLine()
                           .Replace("(", "( ")
                           .Replace(")", " )");
        string statement = GenerateArmStrongStatement(GetTokens(line));
 
        LinqCompiler lc = new LinqCompiler(statement);
        lc.ExternalAssemblies.Add(typeof(IntEx).Assembly);
        lc.ExternalAssemblies.Add(typeof(MathEx).Assembly);
        lc.AddSource("input", inputs);
        line.Dump("Armstrong Query Expressed in Plain English");
        statement.Dump("Generated LINQ Query");
        lc.Evaluate().Dump("Answers");
 
    } while (true);
}
 

 3. This query uses the LINQ compiler. So you need to point LINQPad to that DLL. To do 
that, press F4 to load the Query Properties window. Then provide the path to this DLL, 
as shown in Figure 6-9. In my case, it was available in the C:\ drive. For you, it might be 
somewhere else. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

136

 4. Navigate to the Additional Namespaces Imports tab and type Evaluant.Linq.Compiler. 
This tells LINQPad to use the functionality available in the LINQ Compiler project.

Now you are ready to test the “experimental” version of Armstrong. If you run the query from LINQPad, you will 
see the output shown in Figure 6-10.

Figure 6-9. Add Evaluant LINQ Compiler to LINQPad

Figure 6-10. LINQPad is waiting on user input

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

137

The black rectangle at the bottom of Figure 6-10 is where you have to type the Armstrong query. Table 6-2 lists a 
few examples that you can try.

Table 6-2. Armstrong Statements Illustrating How to Use the External DSL

Example Armstrong Statement That You Can Type What It Does

sum of the cube of the digits of the number 
is the number itself

Finds Armstrong numbers.

cube of the sum of the digits of the number 
is the number

Finds Dudeney numbers.

sum of the factorial of the digits of the 
number is the number

Finds factorions.

sum of the odd-digits of the number is 10 Finds all numbers that match this predicate.

sum of the odd-digits of the number is equal 
to the sum of the even-digits of the number 
and number >= 200 and number <= 1000

Finds all numbers that match the given condition.

even-digits of the number are the same as 
that of the odd-digits of the number

Finds all numbers where even and odd digits are the same.

digits of the number are the same as that of 
the reverse-digits of the number

Finds all numbers that are palindromic. The digits of these 
numbers read the same both ways.

Tip ■  remember to type queries in lowercase. 

Figure 6-11 shows how the interface looked when I started typing the command in the black rectangle provided.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

138

Figure 6-12 shows the result after entering the command.

Figure 6-11. Typing an Armstrong query in the LINQPad user input box

Figure 6-12. The result of the Armstrong query (between 1 and 10,000)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

139

How It Works
The expression entered by a user at the console is parsed. Based on the words that match Armstrong keywords  
(such as sum, cube, and digits), it generates a LINQ query. Later, the LINQ query is passed to the LINQ compiler, 
which evaluates the statement.

Note that the keywords in the statement and in the LINQ query appear in reverse order (most of the time). For 
example, consider the query in Figure 6-11. The keywords sum, cube, and digits occur in sequence in the English-like 
statement. However, for LINQ to work, these must be glued together in the opposite direction. In other words, the 
digits of the number have to be extracted first. Then those digits have to be projected, using their cube values, and 
finally, the cubed digits must be added together by calling sum. In order to achieve this, the code uses a stack. I have 
put together a small demo of this on YouTube at www.youtube.com/watch?v=x0jbfDq8-Zk.

Here’s the take-home lesson from this experiment: After you have a good embedded DSL, it is easy to expose it as 
an external language. You can write an interpreter like this console to translate that external DSL to your embedded 
DSL code and then execute it to show results to the users.

6-5. Cloning Handy F# Functions by Using LINQ
LINQ standard query operators are comprehensive enough that you can craft almost any query by using them. 
However, sometimes the resulting code looks ugly, and that can lead to maintenance nightmares. Although you can 
already use F# methods in C#, the point of this section is to show you how to use standard LINQ operators to craft any 
arbitrary operator that other languages (in this case, F#) offer. I have picked ones that are absent conceptually from 
the LINQ standard set of operators, as shown in Table 6-3.

Table 6-3. F# Operators Missing from LINQ

Operator Purpose

Iterate Similar to ForEach on IList<T>, this operator iterates over a collection and performs an action.

Exists2 Similar to Any but works on two consecutive elements at a time.

ForAll2 Similar to All but works on two consecutive elements at a time.

Zip3 Combines three collections into a list of tuples of three elements.

FindIndex Returns the index of the given element in the collection, if found; otherwise, returns -1.

Pairwise Returns a list of key/value pairs, where the keys represent the first element and the values 
represent the second element of consecutive-pair collections.

Scan Generates a sequence of numbers by performing a set of operations.

ScanBack Same as Scan, but this time the list of operations is read backward.

IntersectMany Same as Intersect, except this operator works on a list of elements instead of just two.

UnionMany Same as Union, but this operator works on a list of elements instead of just two.

Partition Partitions the given collection into two parts. The first part is generated from elements for 
which the given predicate returns true, and the second part is formed from elements for which 
the given predicate returns false.

Scan Generates a series of numbers from a given seed number and a list of functions that depicts the 
step calculations.

ScanBack Same as Scan, but in this case the functions are reversed and applied.

www.it-ebooks.info

http://www.youtube.com/watch?v=x0jbfDq8-Zk
http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

140

Problem
Clone these F# methods so they can be used by any collection in a generic way, using LINQ.

Solution
Change the query type in LINQPad to C# Program, and then add the class FSharpEx shown in Listing 6-4.

Listing 6-4. Caption Here

public static class FSharpEx
{
    /// <summary>
    /// This method generates a list of numbers from a given seed number
    /// and a list of functions that are used to generate the next number
    /// one step at a time.
    /// </summary>
    /// <typeparam name="T">The type of the seed and the function arguments</typeparam>
    /// <param name="x0">The seed value</param>
    /// <param name="projectors">The step descriptions in terms of Functions</param>
    /// <returns>A list of generated elements</returns>
    public static IEnumerable<T> Scan<T>(this T x0, IEnumerable<Func<T, T>> projectors)
                                                                    where T : IEquatable<T>
    {
        List<T> values = new List<T>();
        values.Add(x0);
        foreach (var f in projectors)
        {
            values.Add(f.Invoke(values.Last()));
        }
        return values.AsEnumerable();
    }

    /// <summary>
    /// This is same as Scan just that the functions provided are used in reverse order
    /// while generating the elements
    /// unlike Scan where the sequence of the functions are used as is.
    /// </summary>
    /// <typeparam name="T">The type of the collection and the seed value</typeparam>
    /// <param name="x0">The seed value</param>
    /// <param name="projectors">The step descriptions</param>
    /// <returns>A list of generated elements</returns>
    public static IEnumerable<T> ScanBack<T>(this T x0, IEnumerable<Func<T, T>> projectors)
                                                   where T : IEquatable<T>
    {
        List<T> values = new List<T>();
        values.Add(x0);
        foreach (var f in projectors.Reverse())
        {
            values.Add(f.Invoke(values.Last()));
        }
        return values.AsEnumerable();
    }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

141

    /// <summary>
    /// This method partitions the given collection into two parts.
    /// The first part contains elements for which the predicate returns true.
    /// The other part contains elements for which the predicate returns false.
    /// </summary>
    /// <typeparam name="T">The type of the collection</typeparam>
    /// <param name="collection">The collection</param>
    /// <param name="predicate">The predicate.</param>
    /// <returns>A tuple with two ranges. The first range has the elements for
    /// which the predicate returns true and the second part returns elements
    /// for which the predicate returns false.</returns>
    public static Tuple<IEnumerable<T>, IEnumerable<T>> Partition<T>(
        this IEnumerable<T> collection, Func<T, bool> predicate)
    {
        return new Tuple<IEnumerable<T>, IEnumerable<T>>(
                         collection.Where(c => predicate.Invoke(c)),
                         collection.Where(c => !predicate.Invoke(c))); 
    }

    /// <summary>
    /// Applies the given action for all elements of the given collection
    /// </summary>
    /// <typeparam name="T">The type of the collection</typeparam>
    /// <param name="collection">The collection</param>
    /// <param name="action">The action to be performed</param>
    public static void Iterate<T>(this IEnumerable<T> collection, Action<T> action)
    {
        foreach (var v in collection)
            action.Invoke(v);
    }

    /// <summary>
    /// This method wraps three collections into one.
    /// </summary>
    /// <typeparam name="T1">The type of the first collection</typeparam>
    /// <typeparam name="T2">The type of the second collection</typeparam>
    /// <typeparam name="T3">The type of the third collection</typeparam>
    /// <param name="first">The first collection</param>
    /// <param name="second">The second collection</param>
    /// <param name="third">The third/last collection</param>
    /// <returns>A list of tuples where the items of the tuples are picked from the first,
    //  second, and third collection,
    /// respectively.</returns>
    public static IEnumerable<Tuple<T1, T2, T3>> Zip3<T1, T2, T3>(IEnumerable<T1> first,
                                            IEnumerable<T2> second,
                                            IEnumerable<T3> third)
    {
        int smallest = (new List<int>() { first.Count(), second.Count(),
        third.Count() }).Min();
        for (int i = 0; i < smallest; i++)
            yield return new Tuple<T1, T2, T3>(first.ElementAt(i), second.ElementAt(i),
            third.ElementAt(i));
    }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

142

    /// <summary>
    /// Returns the index of the given item in the given collection
    /// </summary>
    /// <typeparam name="T">The type of the collection</typeparam>
    /// <param name="collection">The collection</param>
    /// <param name="predicate">The predicate to be used to search the given item</param>
    /// <returns>Returns the index of the given element in the collection, else returns -1
    /// if not found.</returns>
    public static int FindIndex<T>(this IEnumerable<T> collection, Func<T, bool> predicate)
    {
        try
        {
            return collection.Select((c, i) => new KeyValuePair<int, bool>(i, predicate.Invoke(c)))
                                   .First(c => c.Value == true).Key;
        }
        catch (InvalidOperationException ex)
        {
            return -1;
        }
    }

    /// <summary>
    /// Returns a list of consecutive items as a list of key/value pairs
    /// </summary>
    /// <typeparam name="T">The type of the input collection</typeparam>
    /// <param name="collection">The collection</param>
    /// <returns>A list of key/alue pairs</returns>
    public static IEnumerable<KeyValuePair<T, T>> Pairwise<T>(
        this IEnumerable<T> collection)
    {
        return collection.Zip(collection.Skip(1), (a, b) => new KeyValuePair<T, T>(a, b));
    }

    /// <summary>
    /// Checks whether there is a pair of consecutive entries that matches
    /// the given condition
    /// </summary>
    /// <typeparam name="T">The type of the collection</typeparam>
    /// <param name="collection">The collection</param>
    /// <param name="predicate">The predicate to use</param>
    /// <returns>True if such a pair exists that matches the given predicate pairwise
    /// else returns false</returns>
    public static bool Exists2<T>(this IEnumerable<T> collection,
        Func<T, T, bool> predicate)
    {
        return collection.Zip(collection.Skip(1), (a, b) =>
             predicate.Invoke(a, b)).Any(c => c == true);
    }

    /// <summary>
    /// Checks whether all pairwise items (taken 2 at a time) from the given collection
    /// matches the predicate or not
    /// </summary>

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

143

    /// <typeparam name="T">The type of the collection</typeparam>
    /// <param name="collection">The collection</param>
    /// <param name="predicate">The predicate to run against all pairwise coupled
    /// items.</param>
    /// <returns></returns>
    public static bool ForAll2<T>(this IEnumerable<T> collection,
        Func<T, T, bool> predicate)
    {
        return collection.Zip(collection.Skip(1), (a, b) => predicate.Invoke(a, b))
            .All(c => c == true);
    }

    /// <summary>
    /// Finds intersection of several collections
    /// </summary>
    /// <typeparam name="T">type of these collections</typeparam>
    /// <param name="sets">all collections</param>
    /// <returns>A list with all the elements that appear in the intersection of
    /// all these collections</returns>
    public static IEnumerable<T> IntersectMany<T>(this IEnumerable<IEnumerable<T>> sets)
                                                     where T : IComparable
    {
        HashSet<T> temp = new HashSet<T>(sets.ElementAt(0));
        sets.ToList().ForEach(z => temp = new HashSet<T>(z.Intersect(temp)));
        return temp;
    }

    /// <summary>
    /// Finds the union of several collections.
    /// </summary>
    /// <typeparam name="T">The type of these collections</typeparam>
    /// <param name="sets">All the collections, not just sets</param>
    /// <returns>A collection of elements with all the elements in the total union</returns>
    public static IEnumerable<T> UnionMany<T>(this IEnumerable<IEnumerable<T>> sets)
                                                where T : IComparable
    {
        HashSet<T> allValues = new HashSet<T>();
        sets.SelectMany(s => s).ToList().ForEach(z => allValues.Add(z));
        return allValues;
    }
}
 

Also add the following code in Main():
 
void Main()
{
        int x = 10;
        List<Func<int,int>> steps = new List<Func<int,int>>();
        steps.Add( a => a + 1);
        steps.Add( a => a + 3);
        steps.Add( a => a - 4);
        steps.Add( a => 2*a - 1);
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

144

        x.Scan(steps).Dump("Scan");
        x.ScanBack(steps).Dump("Scanned Back");
        FSharpEx.Zip3(x.Scan(steps),x.ScanBack(steps),x.Scan(steps.Concat(steps.Skip(1))))
 
            .Dump("Zipped");
        x.Scan(steps).Iterate(a => Console.WriteLine("Score is " + a));
        int[] series = {1,2,3,4,5,6,7,8,9,10};
        //Check whether the given series is in AP
        bool isAPSeries = series.Pairwise()
           .Select (s => new {First = s.Key, Second = s.Value,
                    Difference = s.Value - s.Key })
           .All (s => s.Difference == series[1]-series[0]);
 
        isAPSeries.Dump("isAP using Pairwise");
 
        series.ForAll2((a,b) => b - a == series[1] - series[0])
              .Dump("isAP using ForAll2");
 
        series.Exists2((a,b) => a + b >= 100 && a + b <= 200)
              .Dump("Is there any such couple of elements");
     
        series.Pairwise().Dump("Items picked Pairwise");
 
        series.Partition(a => a % 2 == 0).Dump("Partitioned");
          
        int[] theseOnes = {1,3,52,2,1};
        int[] thatOnes = {4,5,2,1,3,4};
        int[] otherOnes = {2,3,1,1,3,14};
        FSharpEx.IntersectMany((new List<int[]>(){theseOnes, thatOnes, otherOnes }))
                              .Dump("Intersect Many");
        FSharpEx.UnionMany((new List<int[]>(){theseOnes, thatOnes, otherOnes }))
                              .Dump("Union Many");
 
}
 

When I ran the preceding code, I got the results shown in Figure 6-13. I encourage you to change the values in the 
collections and observe the effects in the results. I have moved the values to the right in the interest of space.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

145

How It Works 
Because there are so many outputs, I numbered them in Figure 6-13. Here are some explanations of the results.

Tip ■  the following numbered items correspond to the numbered items in figure 6-13. 

 1. The rules to increment the given number (10, in this case) are a => a + 1 and so on.  
So the number changes from 10 to 11 and so on, according to the rules.

 2. This case uses the same functions as item 1, but with the order of the functions applied on 
the seed reversed.

 3. Three lists (all are of integer types in this case) are zipped together to form a list of tuples. 
Notice the result type in the header of the result grid.

Figure 6-13. The result of several calculations done with F# extension methods

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

146

 4. Because the ForEach operator can be used to perform an action over all the elements 
of the given collection, there is a requirement to project any collection of <T> to a 
List<T> just to use this functionality. However, converting any collection to a list is 
computationally expensive. Therefore, to reduce the projection requirement, you can use 
the Iteration() operator. The result (in item 4) shows the result of running an iteration 
over the given collection.

 5. The Pairwise() operator returns the elements wrapped into pairs—consecutive pairs, 
in this case. If you want sorted pairs, you can sort the collection first and then use the 
Pairwise() operator. In this example, Pairwise() is used to check whether the given 
sequence on which Pairwise() is called is an arithmetic progression (AP).

ForAll2() is used to find whether the given sequence is an AP. It would have been 
sufficient to check whether the values obtained from performing the subtraction 
between each pair of items is the same as that of the first and second element of the given 
collection.

 6. This grid shows the result of calling Pairwise().

 7. This grid shows the result of calling Partition(). When a partition is complete, it returns 
two sets of values based on the predicate provided. For this example, I have partitioned the 
given list into even and odd members.

 8. This grid shows the intersection and union of the collections.

6-6. Lazily Generating Items from a Recurrence Relation 
There are several definitions of recurrence relations. For the purposes of this section, recurrence relations are those 
where the nth variable of the sequence is described by the previous elements thus far. For example, the Fibonacci 
series follows this logic:
 
F[n] = F[n-1] + F[n-2]
 

Therefore, any nth item in the Fibonacci series is the sum of the two preceding items.
Finding such numbers using recursion can lead to a stack overflow error. If the sequences are generated lazily—

in other words, generated only when elements are required—then a stack overflow error won’t occur. To do that, you 
must store the intermediate results of the recurrence relation in a collection. For example, when Fibonacci numbers 
get evaluated, the elements identified so far can be stored in a collection. That way, to generate the next number, only 
the last two items need to be added together. This technique is known as memoization.

Problem
Create an embedded DSL that helps with the creation of recurrence relations lazily.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

147

Solution
Paste the following class into LINQPad in a new query. Set the query type to C# Program. Make sure that this class is 
outside the Main() method. 
 
public static class SequenceEx
{
    public static IEnumerable<T> StartWith<T>(params T[] seeds)
    {
        return new List<T>(seeds).AsEnumerable();
    }
     
    public static IEnumerable<T> ThenFollow<T>(this IEnumerable<T> thisSequence,
        Func<T,T,T> rule) where T:IEquatable<T>
    {
        while(true)
        {
            T last = thisSequence.ElementAt(thisSequence.Count () - 1);
            T lastButOne = thisSequence.ElementAt(thisSequence.Count () - 2);
         
            thisSequence = thisSequence
                                   .Concat((new List<T>()
                                   {rule.Invoke(last,lastButOne)}).AsEnumerable());
            yield return rule.Invoke(last,lastButOne);
                           
        }
    }
    public static IEnumerable<T> ThenFollow<T>(this IEnumerable<T> thisSequence, Func<T,T> rule)
        where T:IEquatable<T>
     {
        while(true)
        {
            T last = thisSequence.ElementAt(thisSequence.Count () - 1);
             
            thisSequence = thisSequence.Concat((new List<T>()
                                            {rule.Invoke(last)}).AsEnumerable());
            yield return rule.Invoke(last);
                           
        }
    }
}
 

Now add the following code in the Main() method:
 
void Main()
{
    Func<long,long,long> A015531Rule = (x,y) =>  4 *x + 5*y;
    Func<long,long,long> fibonacciRule = (x,y) => x + y;
    Func<double,double> arbitraryRule = (x) => 1/(x + 1/x);
    SequenceEx.StartWith<long>(0,1)
                        .ThenFollow(A015531Rule)
                        .Take(5)
                        .Dump("A015531");
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

148

    SequenceEx.StartWith<long>(1,1)
                         .ThenFollow(fibonacciRule)
                         .Take(5)
                         .Dump("First few Fibonacci Numbers");
 
    SequenceEx.StartWith(1.0)
                        .ThenFollow(arbitraryRule)
                        .Take(5)
                        .Dump("Arbitrary Sequence");
}
 

When you run it, this code generates the output shown in Figure 6-14.

Figure 6-14. Some recurrence relations

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Creating Domain-SpeCifiC LanguageS

149

How It Works 
The method Startwith() generates a list with the seed values. There can be as many seed values as needed, because 
the values are passed as a params array. Once this initial list of numbers (seed values) is created, the rule can use 
them to expand the list. The ThenFollow() method takes a Func that operates on the last (or the last and next-to-last) 
elements of the collection thus far and returns the new element to be added in the collection. Thus the collection 
grows lazily. It returns only as many elements as were requested. (This example uses Take to find the first five 
elements in each case.)

If you are wondering why this example is titled A015531, it’s because that’s the name of an interesting  
recurrence relation from the On-Line Encyclopedia of Integer Sequences (OEIS). You can see the definition at  
https://oeis.org/A015531.

Summary
This chapter discussed how to use LINQ to design and use domain-specific languages. I kept the examples and the 
designed DSLs to a bare minimum so you could see the power of DSLs using only a small amount of code. DSLs can 
make the lives of programmers a lot easier. You may already be thinking of designing your own DSLs for your own 
problem domains. As a general strategy, remember that the workflow for designing a DSL is to identify the vocabulary 
first, and then identify the grammar that works well to glue the vocabulary terms together.

This chapter discussed only DSLs that are suited to the functional programming capabilities offered by LINQ.  
But it’s worth noting that other DSLs exist. They’re not necessarily functional but are still useful. Consider the 
Starbucks DSL (www.fssnip.net/9w), which lets you find the cost of a cup of coffee. As a useful exercise, try cloning 
that DSL to C#, using extension methods on integers and doubles.

www.it-ebooks.info

https://oeis.org/A015531
http://www.fssnip.net/9w
http://www.it-ebooks.info/


151

Chapter 7

Static Code Analysis

Programmers always tend to think that code and data are separate. However, for a general-purpose framework such 
as LINQ, code is also data. By taking advantage of LINQ and .NET Reflection, you can perform a great deal of static 
code analysis and gain a lot of insight into code. This chapter presents several LINQ scripts that will help you accrue 
knowledge about your code base.

7-1. Finding Verbose Type Names in the .NET 3.5 Framework
Naming is personal, and naming conventions and the length of names varies between programmers and teams. 
However, the first step in enforcing naming conventions is knowing what names have been used. For example, if you 
wanted to find out the longest and shortest names that Microsoft gives to a type in a .NET assembly, you can do that 
easily by using LINQ.

Problem
Find the most verbose type names in .NET 3.5.

Solution
Enter the following LINQ code in a new LINQPad query. Set the Language drop-down to C# statement(s). Make sure 
the path in the first line appears on a single line:
 
Directory.GetFiles(@"C:\Program Files\Reference Assemblies\
    Microsoft\Framework\v3.5","*.dll")
    .SelectMany (d => Assembly.LoadFrom(d).GetTypes()
    .Where (a => a.IsClass && a.IsPublic)
         .Select (a =>new { Namespace = a.Namespace,
                            Name = a.Name,
                            Length = a.Name.Length}))
    .ToLookup (d => d.Length)
    .OrderByDescending (d => d.Key)
    .Select (d => d.ElementAt(0) )
    .Take(20)
    .Dump("Top 20 most verbose types in .NET 3.5");
 

This code produces the output shown in Figure 7-1.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

152

Note ■  this example and others in this chapter assume that Windows is installed on the root of your C:\ drive; if not, 
you will need to modify the path appropriately.

How It Works
The first SelectMany() call returns an IEnumerable<Type>. This list of types includes all the types for the entire  
.NET 3.5 framework. The Where() clause filters out everything except public classes. The next call to Select() creates 
a custom projection with three attributes (Namespace, Name, and Length) that apply to the name of the type. Later 
these are projected using ToLookup() as a lookup table. For each key of the lookup table, the code takes the first entry 
and projects it by using the call to Select (d =>  d.ElementAt(0)). This example shows 20 such items.

7-2. Finding the Number of Overloads for a Method
Sometimes you can refactor function overloading by using .NET generics. Other times, function overloads are exactly 
what you need. But the decision depends on the function algorithm. Therefore, before deciding to refactor, knowing 
how many overloads a method has can be crucial.

Figure 7-1. The top 20 longest type names in the .NET 3.5 framework

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

153

Problem
Find the number of overloads that each LINQ standard operator has.

Solution
Enter the following code into a new LINQPad query, selecting C# Statement(s) from the Language drop-down. Note 
that you will need to change the path in the first line if the framework is installed in a nonstandard location on your 
computer.

Note ■  Make sure that the entire path C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5 in 
the following code appears on a single line; otherwise, the example won’t work. 

Directory.GetFiles(@"C:\Program Files\Reference Assemblies\
    Microsoft\Framework\v3.5","*.dll")
    .SelectMany (d => Assembly.LoadFrom(d).GetTypes()
    .SelectMany (a => a.GetMethods()))
        .Where (d => d.IsPublic
            && d.DeclaringType.Namespace=="System.Linq"
            && !d.Name.StartsWith("get_")
            && !d.Name.StartsWith("set_"))
            .ToLookup (d => d.Name)
            .Select (d => new { MethodName = d.Key,
                Overloads = d.Count ()})
                //Overloads = 1 doesn't make sense.
                  .Where (d => d.Overloads>=2)
                  .OrderByDescending (d => d.Overloads)
                  .Take(10)//Show only the top 10 entries
                  .Dump();
 

This code produces the output shown in Figure 7-2.

Figure 7-2. Partial result of the number of overloads for all methods in System.Linq 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

154

How It Works
This example shows nested SelectMany() calls, which find all the methods of all the types available in the  
System.Linq namespace.

The first SelectMany() call returns a list of the public methods from all the types. Then the Where() clause 
filters out methods that don’t belong to the System.Linq namespace or that are getter/setter functions for properties, 
leaving only public methods from the System.Linq namespace. 

Next, this list is used to create a lookup table in which the key of the table is the name of the method. Later it 
projects the lookup table values. The key of the lookup table is the name of the method, and the total number of 
entries for each key is the number of overloads. These results are projected using the following call to Select:
 
.Select (d => new { MethodName = d.Key, Overloads = d.Count ()})
 

When the value of Overloads is 1, the method doesn’t have any overloads. The Where() clause filters out these 
values. Finally, the results are sorted by the number of overloads in descending order.

To save space, I have limited the result to just the top ten values. You can see the complete results by commenting 
out the Take() call. The result is quite interesting. Who would have thought that Sum()—the method to perform 
summation on a given collection of items—would have 60 overloads?

7-3. Finding the Size of a Namespace
The size of a namespace is defined by the number of types it contains. The greater the number of types a namespace 
includes, the greater its conceptual load. In other words, it will take longer to discover what a namespace is useful for 
if it contains a lot of types. During refactoring, such information can be crucial.

Problem
Find the number of types in a namespace.

Solution
Enter the following code in LINQPad. Set the Language drop-down to C# Statement(s).
 
//Find conceptual load for all namespaces in .NET 3.5
//Conceptual load is the total number of public types in the namespace
 
Directory.GetFiles(@"C:\Program Files\Reference Assemblies\
    Microsoft\Framework\v3.5","*.dll")
    .SelectMany (d => Assembly.LoadFrom(d).GetTypes()
        .Where (a => a.IsClass && a.IsPublic))
    .ToLookup (d => d.Namespace)
    .ToDictionary (d => d.Key, d => d.Count ())
    .OrderByDescending (d => d.Value )
    .Take(10)//Only the first 10 elements are shown
    .Dump();
 

The preceding code produces the output shown in Figure 7-3.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

155

How It Works
The first SelectMany() call returns all the public types available in the .NET 3.5 framework. Don’t be surprised if it 
contains some types and namespaces you may never have seen. The truth is that few people have ever seen the entire 
list of .NET types. Don’t worry about all the names.

The call to ToLookup() creates a lookup table with the keys as the namespaces. Figure 7-4 shows a partial view of 
that lookup table. Here’s the code I used to get that partial view:
 
Directory.GetFiles(@"C:\Program Files\Reference Assemblies\
    Microsoft\Framework\v3.5","*.dll")
    .SelectMany (d => Assembly.LoadFrom(d).GetTypes()
        .Where (a => a.IsClass && a.IsPublic))
    .ToLookup (d => d.Namespace)
    .OrderBy (d => d.Count () )
    .Take(4)
    .Dump(); 

Figure 7-3. The number of types available in various namespaces 

Figure 7-4. Showing a partial view of the lookup table

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

156

As you can see, the value of each key of the lookup table is an object of type IGrouping<string, Type>. So 
.ToDictionary (d => d.Key, d => d.Count ()) creates a dictionary in which the keys are the same as those of the 
lookup table. The dictionary values are the count of types available in that list.

Finally, the code sorts the dictionary entries by the number of types they contain, in descending order. This 
example shows only the first ten such entries. To show the complete results, remove the Take() call.

7-4. Finding the Code-to-Comment (C# Style) Ratio
Commenting code is necessary because even the original authors of programs can find it difficult to understand  
what a particular portion of code does after some time has passed. While refactoring, it is beneficial to know the  
code-to-comment ratio for the code to be refactored. The ratio helps identify code that isn’t sufficiently commented. 

Problem
Write a LINQ script to find the code-to-comment ratio of a C# code. Assume that there are no C-style comments  
(/* ... */) in the code.

Solution
Enter the following code in a LINQPad query tab. Set the Language drop-down to C# Statement(s).
 
string code = @"//This is a test
    int x = 10;//set x to 10
    //increase x by one
    x++;
    var rad = Radius(x);//Find radius";
 
var lookup = code.Split(new string[]{Environment.NewLine,";"}
    ,StringSplitOptions.RemoveEmptyEntries)
    .Select (line => line.Trim())
    .Select (line =>
    new
    {
        Line = line,
        IsComment = line.StartsWith("//")
    })
    .ToLookup (line => line.IsComment);
 
lookup.Select (entry =>
    new
    {
        Component = entry.Key==true?"Comment":"Code",
        Percentage = 100*Math.Round((double)entry.Count()/
        (double)lookup.SelectMany (l => l).Count(),2)
    })
    .Dump("Code to Comment Ratio");
 

This produces the output shown in Figure 7-5.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

157

How It Works
As the first step, this script tokenizes the entire code snippet, resulting in multiple lines. Each line that starts with // is 
assumed to be a comment line; otherwise, the code assumes it’s a code line. The second Select() call, shown here
 
.Select (line =>
new
{
    Line = line,
    IsComment = line.StartsWith("//")
})
 
creates a projection of anonymous type with two attributes: Line and IsComment. A lookup table is created from this 
projection in which the key is the value of IsComment. Because IsComment is a Boolean field, there will be only two 
entries in the lookup table. Figure 7-6 shows the lookup table for this example.

Figure 7-5. Code-to-comment ratio for a sample code snippet

Figure 7-6. Lookup table showing code vs. comment splits

As you can see in Figure 7-6, there are four comment entries and three code entries, making a total of seven lines 
of code. So the percentage of code lines is 400/7, or roughly 57 percent.

The code (double)lookup.SelectMany (l => l).Count() finds the total number of lines in the code snippet.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

158

7-5. Finding the Size of Types
The size of a type can be expressed as the number of public methods it exposes. The greater the number of public 
methods, the greater the size. Generally, best practice is to avoid types with a large number of methods. Therefore, 
being able to determine the size of public types in a framework is a good starting point for refactoring. 

Problem
Write a LINQ script to find the size of all public types in .NET 3.5.

Solution
Enter the following LINQ script into a new LINQPad query:
 
Directory.GetFiles(@"C:\Program Files\Reference Assemblies\
    Microsoft\Framework\v3.5","*.dll")
    .SelectMany (d => Assembly.LoadFrom(d).GetTypes()
        .Where (a => a.IsClass && a.IsPublic)
            .Select ( s =>
            new
            {
                TypeName =  s.FullName,
                MethodCount = s.GetMethods()
                .Count(m => m.IsPublic
                    && !m.Name.StartsWith("get_")
                    && !m.Name.StartsWith("set_"))}))
                .OrderByDescending (d => d.MethodCount)
                .Take(10)
                .Dump();
 

The preceding code produces the output shown in Figure 7-7.

Figure 7-7. Size of public types in .NET 3.5

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

159

How It Works
The first call, to SelectMany(), returns an IEnumerable of all the public classes. The second call, to Select(), 
projects this result as an IEnumerable of an anonymous type that has two attributes: the type name, and the number 
of public methods that aren’t property getters or setters. Note that names of property getter methods start with get_ 
and set_, respectively.

Finally, the code sorts the projected list in descending order based on the number of methods (MethodCount).  
For brevity, I have used the Take() operator to pick only the first ten elements.

7-6. Generating Documentation Automatically 
Sometimes you get to use libraries that don’t come with explicit documentation. LINQ can help you generate 
documentation on-the-fly.

Problem
Write a LINQ script to generate documentation automatically from the DLL and the corresponding XML file. 

Solution
Write the following query in a LINQPad query tab:

Note ■  you need to add the MorelinQ dll and namespace to linQpad to run this script.

 public string GetSummary(string total, string methodName)
{
        string search = methodName;
        string summary = total.Substring(
            total.IndexOf(search)+search.Length);
        summary = summary.Substring( 
        summary.IndexOf("<summary>")+"<summary>".Length);
        summary = summary.Substring(0,summary.IndexOf("</summary"));
        return summary;
}
void Main()
{
        string moreLINQdll = @"C:\MoreLINQ\MoreLINQ.dll";
        string xmlFilePath = @"C:\MoreLINQ\MoreLinq.xml";
        StreamReader sr = new StreamReader (xmlFilePath);
        string total = sr.ReadToEnd(); 
        sr.Close();
        total = total
            .Replace("<c>",string.Empty).Replace("</c>",string.Empty)
            .Replace("&lt;","<").Replace("&gt;",">");
        var allMethods = Assembly
            .LoadFrom(moreLINQdll)
            .GetTypes()

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

160

            .Where (a => a.IsPublic )
            .ToList()
            .Select(t => new KeyValuePair<string,
                 List<KeyValuePair<string,string>>>
                 (t.Name,t.GetMethods()
                     .Where (x => x.IsPublic
                         && (!x.Name.StartsWith("get_")
                         && !x.Name.StartsWith("set_")
                         && !x.Name.StartsWith("GetHashCode")
                         && !x.Name.StartsWith("ToString")
                         && !x.Name.StartsWith("Equals")
                         && !x.Name.StartsWith("CompareTo")
                         && !x.Name.StartsWith("GetType")))
                         .Select (x => new
                             KeyValuePair<string,string>
                             (x.Name, GetSummary(
                                 total,t.Name+"."+x.Name)))
                             .DistinctBy(z => z.Key)
                             .ToList()))
            .First()
            .Dump();
}
 

This generates the output shown in Figure 7-8.

Figure 7-8. Partial documentation of MoreLINQ methods

How It Works
Because every class will include the methods of the Object class, you can get rid of those methods. Also, you want to 
ignore class properties along with their getter and setter methods. 

The call to Where() does that:
 
.Where (x => x.IsPublic &&
        (!x.Name.StartsWith("get_")
        && !x.Name.StartsWith("set_")
        && !x.Name.StartsWith("GetHashCode")

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

161

        && !x.Name.StartsWith("ToString")
        && !x.Name.StartsWith("Equals")
        && !x.Name.StartsWith("CompareTo")
        && !x.Name.StartsWith("GetType")))
 

At the heart of this script is the following data structure:
 
KeyValuePair<string,List<KeyValuePair<string,string>>> 
 

This nested KeyValuePair structure holds all the methods (including overloads) of all the public classes available 
in the explicitly loaded assembly. The key of the outer KeyValuePair denotes the public class name, while the keys 
of the inner key/value pair represent the names of the methods. The values of the inner key/value pair represent the 
summary of the method. The summary is extracted from the XML documentation that was written by the library 
developers.

There can be many entries of the same type. This script uses the DistinctBy operator from MoreLINQ to remove 
duplicates by class name.

For this example, I chose to show only the documentation for the first type in the library. To get the 
documentation for all the types in a library (which is generally what you will want), remove the call to First().

7-7. Finding Inheritance Relationships 
One best practice guideline is to avoid classes with deep inheritance relationships. Therefore, it’s useful to be able to 
explore the inheritance relationships within a given framework.

Problem
Write a LINQ script to find out the inheritance relationship between several classes in the given framework.

Solution
Write the following code in a new LINQPad query tab. As usual, the path must appear without the following:
 
Directory.GetFiles(@"C:\Program Files\Reference Assemblies\
    Microsoft\Framework\v3.5","*.dll")
    .SelectMany (d => Assembly.LoadFrom(d).GetTypes().Where
        (a => a.IsPublic && a.IsClass)
    .Select (a => new { Parent =  a.BaseType, Name = a.Name}))
        .Where (d => d.Parent!=null)
        .Select (a => new { Parent = a.Parent.Name , Name = a.Name})
            .ToLookup (a => a.Parent )
            .Take(10)
            .Dump();
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

162

How It Works
BaseType returns the type from which the current type inherits. Therefore, the name property of BaseType returns the 
name of the parent class. The code creates the lookup table by using the parent class as the key and its children as 
the values.

7-8. Locating Complex Methods 
Creating methods that require lots of parameters is generally a bad idea. The rule of thumb is that methods with seven 
parameters (plus or minus two) are generally too complex to use and understand easily. Such methods scream for 
refactoring.

Problem
Write a LINQ script to discover methods that require a large number of input parameters.

Figure 7-9. Showing inheritance relationships between several types in the .NET framework

The preceding code generates the output shown in Figure 7-9.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

163

Solution
Write the following code in a new LINQPad query:
 
//Locate highly complex methods with lots of arguments
Directory.GetFiles(@"C:\Program Files\Reference Assemblies\
    Microsoft\Framework\v3.5","*.dll")
    .SelectMany (d => Assembly.LoadFrom(d).GetTypes()
        .SelectMany (a => a.GetMethods()))
        .Where (d => !d.Name.StartsWith("get_")
                && !d.Name.StartsWith("set_"))
        .Select (d => new { MethodName = d.Name,
             NameSpace = d.DeclaringType.Namespace,
             Class = d.DeclaringType.FullName,
             NumberOfParameters = d.GetParameters().Count()} )
                 .Where (d => d.NameSpace=="System.Linq")
                 .OrderByDescending (d => d.NumberOfParameters )
                 .Take(20)
                 .Dump();
 

The preceding code generates the output shown in Figure 7-10.

Figure 7-10. The top 20 methods sorted by the number of arguments they take

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ StatiC Code analySiS

164

How It Works
The explanation for this example is similar to its predecessors. The code first makes a projection, and then sorts 
it in descending order based on the number of parameters, providing a list of the most complex methods in each 
namespace. To save space, I have limited the output to only 20 methods. To see the full list, remove the Take(20) call.

Summary
In this chapter, you’ve seen several examples of how you can use LINQ to Reflection to quickly find details and gain 
insights into a code base. These examples should help illustrate that you can use LINQ to query essentially any data. 
Code is usually considered separate from data, but by using LINQ, you can treat code itself as data. Besides showing 
how to use LINQ to Reflection, the examples in this chapter exemplify several idiomatic LINQ usages—for example, 
projecting followed by creation of a lookup. The next chapter follows up on the idea of LINQ as a general-purpose tool 
to perform scripting-like exploratory data analysis.

www.it-ebooks.info

http://www.it-ebooks.info/


165

Chapter 8

Exploratory Data Analysis

Generalization is an extremely powerful concept when applied correctly. For example, in MATLAB even the most 
trivial addition is performed as a matrix addition. Data comes in many formats. Mostly these formats are not ready 
for analysis, so programmers, researchers, and data scientists often need to write a lot of data-wrangling code to get 
the data into a useful form. However, LINQ has changed the way programmers interact with data. LINQ works on the 
generalization that data is a list—of something. For example, you can think of a database table as a list of rows, an 
XML file as a list of nodes, a CSV file as a list of comma-delimited string arrays, and so on.

Exploratory data analysis typically starts with a set of questions and then tries to obtain answers by examining 
the available data. Sometimes this is done just by finding statistics, but other times plotting data helps find trends or 
compare values.

In some of the examples in this chapter, you will see data visualizations that represent the findings in a concise 
manner. This approach often leads to insights that go beyond the initial answers to questions. You will see examples 
of using LINQ to analyze data and find such insights. For each problem presented here, a few questions will be 
posed, and then you’ll see example LINQ queries that can find the answers to those questions. Along the way, you 
should pick up some useful LINQ idioms that I hope are general enough to apply to your own data analysis problems. 
Anonymous types and anonymous methods will play a major role in most of the queries in this chapter.

8-1. Analyzing the Titanic Survivors Dataset 
The Titanic dataset is a CSV file containing the list of passengers and their survival status. The dataset contains the 
following information:

Field Name Description

PassengerId The ID of the passenger. This is an integer.

Survived A Boolean field that has the value 1 or 0; 1 means the passenger survived.

PClass The class of the passenger: first, second, or third.

Name Name of the passenger.

Sex Gender of the passenger.

Age Age of the passenger.

Sibsp Count of sibling or spouse of the passenger onboard.

Parch Count of parent or child of the passenger onboard.

Ticket Ticket number of the passenger.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

166

Field Name Description

Fare The fare paid by the passenger .

Cabin Cabin number of the passenger.

Embarked Which port the passenger boarded from:

S—Southampton

C—Cherbourg

Q—Queenstown

Problem
The question I posed for this dataset is, “What’s the chance of survival for passengers in each class, grouped by 
gender?”

Solution 
To begin, you need to load the Titanic dataset from the CSV file to an in-memory collection. Because the dataset has 
names wrapped in double quotes, I had to use regular expressions.

Open a new LINQPad tab and write the code in Listing 8-1. Change the value of the Language box drop-down to 
C# Statements.

Listing 8-1. Finding Titanic passenger survival rates

string text = File.ReadAllText(@"C:\titanic.csv");
 
Regex.Matches(text,"\"[A-Za-z ., ()'-/]+\"").Cast<Match>()
     .Select (m => m.Value)
     .ToList()
     .ForEach( z => text = text.Replace(z, z.Replace(",","[__COMMA__]")));
 
text.Split(new char[]{'\r','\n'},StringSplitOptions.RemoveEmptyEntries)
     .Skip(1)//Skip the column header row of the CSV file
     .Select (t => t.Split(','))
     .Select (t => new
     {
            PassengerId = t[0],
                 Survived = t[1]=="1"?"Yes":"No",
                 Pclass = t[2],
            Name = t[3].Replace("[__COMMA__]",","),
               Sex = t[4],
               Age = t[5].Length !=0 ? Convert.ToDouble(t[5]):-1,
               SibSp = t[6],
               Parch = t[7],
               Ticket = t[8],
               Fare = Convert.ToDouble(t[9]),
               Cabin = t[10],
               Embarked = t[11]
       })//At this point the CSV is loaded as a collection of an anonymous type
                          

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

167

.Select (f => new   Tuple<string,double,string,string,double>
              (f.Pclass,Math.Round(f.Fare,2),f.Survived,f.Sex,f.Age))
.ToLookup (f => f.Item1)
.OrderByDescending (f => f.Key)
.ToDictionary(f => f.Key, f=> new KeyValuePair<double,double>
              (100*((double)f.Count (x => x.Item4 == "female" && x.Item3 == "Yes")/
              (double)f.Count(j => j.Item4=="female")),
              100*((double)f.Count (x => x.Item4 == "male" && x.Item3 == "Yes")/
              (double)f.Count(j => j.Item4=="male"))))
.Select (f => new { PClass = f.Key,
              FemaleSurvivalRate = Math.Round(f.Value.Key,3) ,
              MaleSurvivalRate = Math.Round(f.Value.Value,3)} )
.OrderByDescending (f => f.FemaleSurvivalRate )
.Dump("Survivor Percentage per class");
 

This produces the output shown in Figure 8-1.

Figure 8-1. Survivor percentage per class

LINQPad has a cool feature that draws a horizontal bar chart. As you click the bar icons visible in the top row, 
LINQPad draws the bar charts as shown in Figure 8-2.

Figure 8-2. Bar charts for survivor percentage for each passenger class

How It Works
At first, the code masks commas within names with a special string [__COMMA__] so that splitting the values in any 
given row at the commas later in the process doesn’t affect the field values. Then the code parses the CSV, splitting 
each row (except the first row, which contains the header) at the commas, thus generating a list of values. These 
values then get assigned to properties of an anonymous type. Each anonymous type instance represents one row of 
the CSV file. The column header names become properties of the anonymous type.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

168

Next, the collection of this anonymous type is projected with five fields—class, fare, survival status, sex, and 
age—by using the following code:
 
Select (f => new Tuple<string,double,string,string,double>
             (f.Pclass,Math.Round(f.Fare,2),f.Survived,f.Sex,f.Age))
 

The code then creates a lookup table in which the key represents the passenger classes. Later it creates a 
dictionary from this lookup table: the dictionary keys are the passenger classes, and the values are key/value pairs of 
doubles that represent the survival percentages of females and males, respectively, for the associated passenger class. 
The keys of the key/value pair represent the female survival percentages, while the values represent the male survival 
percentages.

The final call to Select()
 
Select (f => new { PClass = f.Key,
                   FemaleSurvivalRate = Math.Round(f.Value.Key,3) ,
                   MaleSurvivalRate = Math.Round(f.Value.Value,3)} )
 

projects these dictionary values in a meaningful way, with three columns: PClass, FemaleSurvivalRate,  and 
MaleSurvivalRate. This result is then sorted in descending order by FemaleSurvivalRate. As expected, the result 
shows that passengers in the higher classes were more likely to survive.

Problem
Another question you could pose using this data is, “What’s the survival percentage grouped by the following age 
ranges?”

0–2: Infants•	

2–6: Toddlers•	

6–12: Kids•	

13–19: Teenagers•	

20–30: Young adults•	

30–35: Early thirties•	

36–40: Late thirties•	

40–50: Middle-aged•	

50–60: Old•	

60+: Retired•	

Solution
To answer the question, you need a way to create the age groups by using the age value. The  anonymous function 
shown in Listing 8-2 does that.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

169

Listing 8-2. Creating age range groups

Func<double,string> AgeGroup =
                  x => x!=-1 && x<2?"Infants"
                 :x>=2 && x<6 ? "Toddlers"
                 :x >= 6 && x<13 ?"Kids"
                 :x>=13 && x<=19?"Teenagers"
                 :x>=20 && x<30? "Young Adults"
                 :x>=30 && x<=35? "Early thirties"
                 :x>=36 && x<40? "Late thirties"
                 :x>=40 && x<=50? "Middle Aged"
                 :x>=51 && x<60 ? "Old"
                 :"Retired";
 

The data contains a few rows where the age value is missing, so for those rows I have assigned the value of -1. 
This way, the analysis will skip the rows where the age is missing. Otherwise, the result would be wrong.

As in the previous problem, you also want to project the CSV to a collection of an anonymous type. For the sake of 
avoiding duplicated code, I won’t repeat that code here. So everything up to the comment //At this point the CSV 
is loaded as a collection of the anonymous type in Listing 8-1 shown previously is identical in this solution 
too. After that, the projection in Listing 8-3 does the job.

Listing 8-3. Calculating survivor percentages by age range

.Select( x =>
             new
             {
                Sex = x.Sex,
                Age = x.Age,
                Embarked = x.Embarked,
                AgeGroup = AgeGroup(x.Age),
                Survived = x.Survived
             })
.ToLookup (x => x.AgeGroup)
.ToDictionary (x => x.Key, x => new KeyValuePair<double,double>
 (100*((double)x.Count (z => z.Sex == "female" && z.Survived == "Yes")/(double)x.Count()),
 100*((double)x.Count (z => z.Sex == "male" && z.Survived  == "Yes")/(double)x.Count())))
.Select(x =>
         new
        {
           AgeGroup = x.Key,
           FemaleSurvival = Math.Round(x.Value.Key,2),
           MaleSurvival = Math.Round(x.Value.Value,2)
         }
       )
.OrderByDescending( x=> x.FemaleSurvival)
.Dump("Agewise survival percentages");
 

Figure 8-3 shows the output sorted by female survival percentage in descending order for each age group.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

170

How It Works
The anonymous function AgeGroup returns the age group for each row, given the integer value of the age. For 
example, if the age value is 14, AgeGroup returns Teenagers. Next, the code creates a lookup table in which the keys 
represent the age groups. ToDictionary() transforms the lookup table to a dictionary with keys that still represent 
the age groups, but with values that are key/value pairs of doubles. The first double represents the survival percentage 
of female passengers in that age group, and the second double represents the percentage of male passengers who 
survived in that age group.

However, up to this point in the code, all these values are internal; thus it is hard to make sense of the data. 
Therefore, a Select() call projects this data as an IEnumerable of an anonymous type with three attributes: AgeGroup, 
FemaleSurvival, and MaleSurvival; the last two are percentages.

Finally, to find out which age range of female passengers was most likely to survive, the result is sorted by the 
FemaleSurvival column in descending order.

8-2. Converting SurveyMonkey Results to CSV
Last year during my company’s official outing, a colleague of mine tasked with handling the logistics created a survey 
on the popular free survey web site SurveyMonkey. He had to arrange for buses for people to travel from our office 
to the resort where the day’s outing was planned. However, he wanted to be sure of the number of people who would 
need the bus service before striking a deal with our travel vendor.

Unfortunately, after the survey was complete, he found the data unusable: it wasn’t in CSV format, which meant 
that running any kind of analysis was difficult. I wrote a converter to get the data into CSV format, but that converter 
wasn’t generic; it would work only for his particular survey. It later occurred to me that such conversions are a 
common issue. Therefore, in writing this chapter, I created a parser that can translate any SurveyMonkey results to 
CSV file format. The headers of the CSV file will be the questions used for the survey.

Problem
Write a parser that can parse SurveyMonkey results and return a CSV file.

Solution
SurveyMonkey results aren’t CSV files, so the first step is to get the data into CSV format. Listing 8-4 shows the code.

Figure 8-3. Survivors in different age groups

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

171

Listing 8-4. Turning SurveyMonkey results into CSV format

//Parsing Survey Monkey Results
string result = @"Will you come by bus
                                No
                                Name
                                Sam
                                Phone number
                                1234
                                Will you come by bus
                                Yes
                                Name
                                Ram
                                Phone number
                                3213
                                Will you come by bus
                                Yes
                                Name
                                Raul
                                Phone number
                                4245";
 
string[] questions = {"Will you come by bus","Name","Phone number"};
var allResponses = result.Split(questions,StringSplitOptions.RemoveEmptyEntries)
    .Select (r => r.Trim());
int numberOfResponses = allResponses.Count ()/questions.Length;
 
string csv =
//Headers
questions
        .Select (q => "\"" +  q + "\"" )
                .Aggregate ((h1,h2) => h1 + "," + h2 ) +
//Insert Newline
Environment.NewLine  +
//Rows
Enumerable.Range(0,numberOfResponses)
          .Select (e => allResponses.Skip(e*questions.Length).Take(questions.Length))
                  .Select (e => Enumerable.Range(0,questions.Length)
                                          .Select (en => e.ElementAt(en) ))
                  .Select (e => e.Select (x =>  "\"" +  x + "\"")
                                 .Aggregate ((m,n) => m + "," + n  ))
                  .Aggregate ((a,b)  =>  a + Environment.NewLine + b);
 
csv.Dump("CSV representation");
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

172

If you save the preceding content in a text (.csv) file and then open it in Microsoft Excel, it shows up formatted as 
shown in Figure 8-5.

Figure 8-5. SurveyMonkey converted result shown in Excel

Figure 8-4. SurveyMonkey result converted to CSV format

How It Works
Splitting the result by the questions leaves only the answers, which appear in the same order as the questions. The 
total number of responders is equal to the total number of answers divided by the number of questions. Each such set 
of answers represents one row.

The code allResponses.Skip(e*questions.Length).Take(questions.Length) returns a list of elements that 
are answers to the current question. At the first run, the value of e is zero. So the number of  elements picked from 
the start is equal to the number of questions. At each iteration, the value of e increases by one. Thus an appropriate 
number of responses are ignored and the latest answer set is picked up to form the current row.

Skip() followed by Take() is a common idiom to progressively advance the scanning window of any algorithm 
that picks some elements, skipping a few from the beginning of a given collection.

As you can see, this code is almost completely generic: to run it against data from a different survey, you just need 
to change the values in the questions array, and you will be finished.

8-3. Analyzing Trends in Baby Names 
Baby names always capture the imagination of new parents. Even though I have already named my son, I still find the 
trend analysis of baby names a fascinating topic. At one point, I found a list of baby names along with a measure for 
popularity. The data was a CSV file, which had the following fields:

Field Description

Year The information in the current row is for this year.

The range of the years is 1880 to 2008.

Name The name of the baby.

Percent A measure of popularity.

Sex Gender of the baby.

This generates the output shown in Figure 8-4.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

173

Problem
Looking at this dataset, I posed couple of questions that would help make sense of the data:

 1. What are the top ten boys’ and girls’ names?

 2. How has the popularity of a name changed over the course of the years?

 3. What are the top ten most popular boy and girl names for each decade?

Solution
Go to a new LINQPad tab and add the query shown in Listing 8-5.

Listing 8-5. Determining name popularity

var babyNames =  File.ReadAllLines(@"C:\Personal\TableAPI\baby-names.csv")
     .Select (f => f.Split(','))
     .Skip(1) //Skip the header row
     .Select
          (
                a =>
                    new
                    {
                      Year = Convert.ToInt32(a[0]),
                      Name = a[1].Trim(new char[]{'"',' '}),
                      Percentage = Convert.ToDouble(a[2]),
                      Sex = a[3].Trim(new char[]{'"',' '})
                    }
           );
 
babyNames
         .Where (n => n.Sex == "boy") // This analysis is being done for baby boy names.
         .ToLookup (n => n.Name)
         .ToDictionary (n => n.Key )
         .Select (n =>
                      new {
                            Name = n.Key,
                            Popularity =  n.Value
                           .Select (v => new { Year = v.Year,
                                               PopularityPercentage = v.Percentage})
                           .ToList()
                          })
 
            .OrderByDescending (n => n.Popularity.Select (p => p.PopularityPercentage )
                                 .Average ())
            .Take(10) //Show top 10 names as per the average popularity
            .Dump("Popularity of top 10 baby \"boy\" names over the years");
 

Figure 8-6 shows the overall result structure. I have collapsed the entries for each name.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

174

Figure 8-7 shows a partial view of the 129 items for the name John.

Figure 8-7. The decreasing popularity of the name John over time

Figure 8-6. The top ten baby boy names between 1880 and 2008

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

175

Although these results show the top baby names between 1880 and 2008, the format makes it  hard to compare 
the popularity of one name to another. Also it is hard to figure out when a particular name started to become more 
popular than other names at that time.

I could have found these insights immediately if the data were plotted, as you’ll see. For the example, I’ve used 
Highcharts—a popular JavaScript-based data-visualization engine. You can download it from highcharts.com.

After downloading Highcharts, you can explore all the chart types it supports, but this example uses only the 
area-inverted chart. Open the file index.html located under the examples/area-inverted/ folder. You will see that 
you provide data to this chart in JSON format:
 
series: [{
                name: 'John',
                data: [3, 4, 3, 5, 4, 10, 12]
            }, {
                name: 'Jane',
                data: [1, 3, 4, 3, 3, 5, 4]
            }]
 

In the previous sections, you saw how to get the data for each name. That makes it easy to generate data in JSON 
format so you can chart name popularity. Add the following code after the Take(10) call in the previous code snippet:
 
.Select (n => "{" + String.Format(@"
                name: '{0}',
                data: [{1}]
            ",n.Name,n.Popularity.Select (p => p.PopularityPercentage.ToString())
                                               .Aggregate ((p,q) => p + "," + q ))+"}")
.Aggregate ((m,n) => m + "," + n )
 

This generates all the series using all the names and their associated popularity percentages for all the years in 
the range. Copy this generated string representing the series and replace the series section in the existing file. Change 
the name of the file to something you prefer so you don’t lose the original example.

The y axis of the chart needs to show the years, so edit the categories to reflect that change. Here is a partial list of 
categories:
 
categories:  
[1880','1881','1882','1883','1884','1885','1886','1887','1888','1889','1890','1891','1892',
'1893','1894','1895','1896','1897','1898','1899','1900','1901','1902','1903','1904','1905',
'1906','1907','1908','1909','1910','1911','1912','1913','1914','1915','1916','1917','1918',
'1919','1920','1921','1922','1923','1924','1925','1926','1927','1928','1929','1930','1931'...   
'1990','1991','1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002',
'2003','2004','2005','2006','2007','2008']
       

The final remaining task is to change the chart title to Baby Name Popularity from 1880 to 2008 and the x-axis 
caption to Baby Name Popularity. After completing those changes, open the new file in your browser. You will see 
something similar to Figure 8-8.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

176

You can see the color version of this visualization at https://twitter.com/samthecoder/
status/502471431519608832/photo/1.

I did the same experiment with baby girl names and found the trends shown in Figure 8-9.

Figure 8-9. Popularity of baby girl names over time

Figure 8-8. Popularity of baby boy names over time

The color visualization is here: https://twitter.com/samthecoder/status/502472516342784000/photo/1.
By looking at the charts, I can say with confidence that John and Mary have been by far the most popular names 

in the last 130 years.

www.it-ebooks.info

https://twitter.com/samthecoder/status/502471431519608832/photo/1
https://twitter.com/samthecoder/status/502471431519608832/photo/1
https://twitter.com/samthecoder/status/502472516342784000/photo/1
http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

177

How It Works
The CSV file is first loaded into a collection of an anonymous type representing each row of the data. Each row has 
four columns: Year, Name, Popularity Percentage, and Sex. The first Skip() call skips the CSV headers, while the 
next Select() call generates a list of an anonymous type that represents the CSV as an in-memory collection.

The filter Where (n => n.Sex == "boy") filters out baby girl names, leaving only baby boy names in the 
collection. Next the code creates a lookup table with each name using .ToLookup (n => n.Name). This lookup table is 
converted to a dictionary where the keys of the dictionary represent baby boy names and the values represent the list 
of years and the percentage popularity of the name in that year. Figure 8-7 shows one such entry from this dictionary.

Finally, the dictionary entries are sorted based on the average popularity of the names, in descending order, 
ensuring that the most popular names appear at the top. The top ten entries are selected to discover the top ten most 
popular baby boy names.

To do this analysis for baby girl names, you need to change only the Where clause to filter out the baby boy 
names instead.

8-4. Analyzing Stock Values 
Data about stock prices of many companies are available from Yahoo Finance. If you want to know historical stock 
prices for Google, you can find them at http://finance.yahoo.com/q/hp?s=GOOG. The word GOOG is the ticker 
symbol for Google. For Microsoft, it is MSFT; for Apple, it is AAPL.

If you visit this page, you will see a table showing the historical values for the company for which the symbol is 
provided. Below the table is a CSV file available for download. If you copy the link to the CSV file, it looks like this:
 
http://real-chart.finance.yahoo.com/table.csv?s= 
GOOG&d=7&e=22&f=2014&g=d&a=2&b=27&c=2014&ignore=.csv
 

Note that the query string in the link has the symbol s=GOOG. So if you wanted to download historical stock prices 
for Microsoft, you would change the ticker symbol to MSFT, resulting in the following query string:
 
http://real-chart.finance.yahoo.com/table.csv?s= 
MSFT&d=7&e=22&f=2014&g=d&a=2&b=27&c=2014&ignore=.csv

Problem
Given a list of ticker symbols, create a program to load the historical stock values for those companies.

Solution
The code in Listing 8-6 uses the historical values from the Yahoo CSV files mentioned above.

Listing 8-6. Loading historical values for specified stock symbols

string[] symbols =  {"AAPL","GOOG","MSFT"};
WebClient wc = new WebClient();
//This structure will hold the stock values
List<Tuple<string,DateTime,double,double,double,double,double,Tuple<double>>> mapping
     = new List<Tuple<string,DateTime,double,double,double,double,double,Tuple<double>>>();
foreach (var symbol in symbols)
{
        File.Delete("temp.csv");

www.it-ebooks.info

http://finance.yahoo.com/q/hp?s=GOOG
http://real-chart.finance.yahoo.com/table.csv?s=%0aGOOG%26d=7%26e=22%26f=2014%26g=d%26a=2%26b=27%26c=2014%26ignore=.csv
http://real-chart.finance.yahoo.com/table.csv?s=%0aGOOG%26d=7%26e=22%26f=2014%26g=d%26a=2%26b=27%26c=2014%26ignore=.csv
http://real-chart.finance.yahoo.com/table.csv?s=%0aMSFT%26d=7%26e=22%26f=2014%26g=d%26a=2%26b=27%26c=2014%26ignore=.csv
http://real-chart.finance.yahoo.com/table.csv?s=%0aMSFT%26d=7%26e=22%26f=2014%26g=d%26a=2%26b=27%26c=2014%26ignore=.csv
http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

178

        wc.DownloadFile(
        String.Format(
//Make sure the following URL string appears in a single line. Otherwise, the program won't work
@"http://realchart.finance.yahoo.com/table.csv?s={0}&d=7&e=19&f=2014&g=d&a=2&b=13&c=1986&ignore=
    .csv",symbol),"temp.csv");
 
mapping.AddRange(File.ReadAllLines(@"temp.csv")
       .Skip(1)//Skip the header
       .Select( l =>
        {
            var toks = l.Split(',');
            return new Tuple<string,DateTime,double,double,double,double,double,Tuple<double>>
            (
             symbol,
             DateTime.Parse(toks[0]),
             Convert.ToDouble(toks[1]),
             Convert.ToDouble(toks[2]),
             Convert.ToDouble(toks[3]),
             Convert.ToDouble(toks[4]),
             Convert.ToDouble(toks[5]),
             //The last element must be a Tuple again.
             new Tuple<double>(Convert.ToDouble(toks[6])));
         }));
 
}
var stocks = mapping.Select (m =>
                       new
                       {
                         Symbol = m.Item1,
                         Date = m.Item2,
                         Open = m.Item3,
                         High = m.Item4,
                         Low = m.Item5,
                         Close = m.Item6,
                         Volume = m.Item7,
                         AdjClose = m.Rest.Item1
                       })
                       .ToLookup (m => m.Symbol)
                       .SelectMany (m => m.Take(7));
  
stocks.Dump("Stock values for last month");

Figure 8-10 shows a partial result of this query.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

179

Note ■  this code uses the WebClient class from the System.Net namespace, so you must add a reference to that Dll 
and add that namespace in linQpad to get this code to work. 

How It Works
This example demonstrates the special case of tuple creation. For a tuple with eight or more elements, the last 
element must be a tuple again. This element is denoted as Rest for the outer tuple, and its elements are accessed the 
usual way, as Rest.Item1 and so on.

Tuples are great for representing rows of CSV/database tables. However, one problem with using a tuple is 
that you can’t name its properties. It is difficult to understand the intent of code such as something.Item1, where 
something is a tuple. But by projecting a list of tuples by using Select(), you can create easy-to-understand code. This 
code employs two Select() calls. This is an idiom you’ll find frequently in LINQ code.

The second Select() call gives proper names to the tuple items.
After projecting the CSV as a list of anonymous objects, the code creates a lookup table using the symbol as the 

key. Because there are three symbols in this example, there will be three keys. So when SelectMany() is called with 
the argument 7, the call takes 7 from each of the entries in the lookup table values, resulting in 21 rows. If necessary, 
you can dump the lookup table to visualize what’s happening. That’s a big benefit of using LINQPad. You can even 
save these internal views of your code for future references.

8-5. Analyzing Git Logs 
Contributors around the world participate in open source projects and contribute their code. It is interesting to see 
how these projects evolve, using code contributions from people who don’t even know each other. Git maintains logs 
of all the commits that have happened. Figure 8-11 shows a snapshot of a Git log for the jQuery project.

Figure 8-10. Values of stock prices for some companies during a week

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

180

Problem
Here are couple of data analysis tasks that make sense for any project that uses Git, either publicly or on a private 
server. I will start with the simpler task:

Develop a leaderboard that shows the top contributors, sorted by number of commits in descending order. 
(Sometimes developers commit more often than they would prefer because of missing files and such. But for this 
example, I have assumed that all commits are genuine and not the result of fixing an earlier faulty commit.)

Solution
Save the JQuery Git log to a text file, jquerygitlogs.txt. Then write the query in Listing 8-7 in a new LINQPad tab. 
This query finds the leaders who contributed more than their peers for JQuery. This also includes the project founder.

Listing 8-7. Creating a Jquery Git leaderboard

string log = File.ReadAllText("C:\\jquerygitlogs.txt");
string[] commits = Regex.Matches(log,"commit [a-zA-Z0-9]{40}")
                                       .Cast<Match>()
                                       .Select (m => m.Value)
                                       .ToArray();
string[] authors = Regex.Matches(log,"Author: [a-zA-Z0-9-. @<>']+")
                                      .Cast<Match>()
                                      .Select (m => m.Value)
                                      .ToArray();
string[] dates = Regex.Matches(log,"Date: [a-zA-Z0-9-:+ ]+")
                                   .Cast<Match>()
                                   .Select (m => m.Value)
                                   .ToArray();
 
List<Tuple<string,string,string>> details = new List<Tuple<string,string,string>>();
Enumerable.Range(0,5000).ToList().ForEach( k => details.Add(new  
Tuple<string,string,string>(commits[k],authors[k],dates[k])));
 

Figure 8-11. A portion of the JQuery Git log

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

181

details.Select (d =>
                 new {
                       Author = d.Item2.Substring(d.Item2.IndexOf(':')+1),
                       Date = DateTime.ParseExact(
                          d.Item3.Substring(d.Item3.IndexOf(' ')).Trim(),
                          "ddd MMM d HH:mm:ss yyyy zzz",CultureInfo.InvariantCulture),
                        Location = d.Item3.EndsWith("-0700")?"USA/Canada":"Elsewhere"
                     }
               )
          .ToLookup (d => d.Author)
          .Select (d => new { Author = d.Key, CommitCount = d.Count()})
          .OrderByDescending (d => d.CommitCount )
          .Take(10)
          .Dump("JQuery Leaderboard");
 

This produces the output shown in Figure 8-12. This result correctly shows John Resig at the top, because he is the 
main author of the JQuery library and has committed significantly more than other core team members.

Figure 8-12. JQuery leaderboard

How It Works
The leaderboard is created from a projection that holds data about the authors. I created a list of author names, 
the date when each commit was performed, and the author’s location. You can determine the rough location 
by examining the GMT offset. I haven’t used these variables; however, I encourage you to experiment with the 
information. One possible task is to identify how many contributions have been made from various continents.

Returning to the explanation at hand, the list of authors (which is basically a list of anonymous types representing 
author names, locations, and commit dates) is used to generate a lookup table where the index is the author names. 
So there will be as many keys in the table as there are distinct author names in the log file. The values of this lookup 
table show all the commits performed by the author whose name is being used as the key of the lookup table. You can 
dump this table to see what’s happing visually.

Later these values from the lookup table are used to generate a different projection with author names and the 
total number of commits each author performed. Finally, this is sorted by the number of commits in descending 
order. Taking the top ten such entries results in the leaderboard.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

182

Problem
Another, slightly more complex problem is to show a timeline of how the JQuery project has grown by monitoring 
commits.

Solution
For this, I decided to use the Highcharts line-time series chart. This chart is zoomable, which is convenient. In a new 
LINQPad query tab, write the query in Listing 8-8 to generate and save the number of commits done per day.

Listing 8-8. Creating a Jquery timeline by monitoring Git commits

string log = File.ReadAllText("C:\\jquerygitlogs.txt");
string[] commits = Regex.Matches(log,"commit [a-zA-Z0-9]{40}")
                                        .Cast<Match>()
                                        .Select (m => m.Value)
                                        .ToArray();
string[] authors = Regex.Matches(log,"Author: [a-zA-Z0-9-. @<>']+")
                                      .Cast<Match>()
                                      .Select (m => m.Value)
                                      .ToArray();
string[] dates = Regex.Matches(log,"Date: [a-zA-Z0-9-:+ ]+")
                                   .Cast<Match>()
                                   .Select (m => m.Value)
                                   .ToArray();
//There can be the word "commit" followed by a valid SHA ID of the commit inside a commit
//To bypass these we need to take the minimum length of all these three arrays.
var length = (new List<int>(){commits.Length, authors.Length, dates.Length}).Min();
 
List<Tuple<string,string,string>> details = new List<Tuple<string,string,string>>();
Enumerable.Range(0,length).ToList().ForEach( k => details.Add(new Tuple<string,string,string>(commit
s[k],authors[k],dates[k])));
 
var logs = details.Select (d =>
                                 new
                                     {
                                        Author = d.Item2.Substring(d.Item2.IndexOf(':')+1),
                                        Date = DateTime.ParseExact(
                                            d.Item3.Substring(d.Item3.IndexOf(' ')).Trim(),
                                            "ddd MMM d HH:mm:ss yyyy zzz",
                                            CultureInfo.InvariantCulture)
                         });
 
DateTime startDate = logs.OrderBy (l => l.Date).First ().Date.Date;
DateTime endDate = logs.OrderBy (l => l.Date).Last().Date.Date;
 
startDate.Dump("Start Date");
var logMap = logs.ToLookup (l => l.Date.Date)
                 .ToDictionary (l =>  l.Key, l => l.Count());
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

183

List<int> commitCounts = new List<int>();
for(;startDate!=endDate;startDate = startDate.AddDays(1))
{
        if(logMap.ContainsKey(startDate))
            commitCounts.Add(logMap[startDate]);
        else
            commitCounts.Add(0);
}
StreamWriter sw = new StreamWriter("C:\\dataJQuery.txt");
sw.WriteLine(commitCounts.Select (c => c.ToString()).Aggregate ((m,n) => m + "," + n));
sw.Close();
 

This generates the following output:

5644
3/22/2006 12:00:00 AM

The output shows that there have been 5,644 commits, and that the first commit was performed on March 22, 
2006. In addition to this output, the query saves the number of commits made per day in the file dataJQuery.txt. 
Open the file, and you will see the data shown in Figure 8-13.

Figure 8-13. The number of commits done per day in the JQuery project

Copy the entire content of this file. Go to the example\line-time-series\ folder in the Highcharts example 
directory. Copy the file index.htm and paste it in the same directory. Open the copied file in your favorite text editor 
or in Visual Studio. Locate the string data: [ and replace everything between the braces  that appear right after data:. 
In other words, replace the data with the generated content that you copied earlier.

Right before data: you’ll see the following line:
 
pointStart: Date.UTC(2006, 0, 01)
 

Replace this line with the following:
 
pointStart: Date.UTC(2006, 2, 22)
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

184

This line marks the starting point of the zoomable timeline that gets rendered. The parameters UTC takes are 
the year, an integer between 0–11 representing the month, and an integer between 1–31 representing the day of the 
month. Because the first commit of the JQuery was done on March 22, 2006, the date as per UTC is 2006, 2, 22.

Finally, change the chart title and axis titles, as follows:

Existing Text Replace With

text: ‘USD to EUR exchange  
rate from 2006 through 2008’

text: ‘JQuery Growth from  
2006 through 2014’

name: ‘USD to EUR’ ‘Commits’

text: ‘Exchange rate’ text: ‘Contributions’

At this stage, you are all set to see the visualization. Open the modified HTML file in your favorite browser. 
Figure 8-14 shows how it rendered in Mozilla Firefox.

Figure 8-14. JQuery commit pattern from inception until 2014 (the time this chapter was written)

How It Works
I have created a video of the visualization. You can see it at www.youtube.com/watch?v=i6s8hcIciUM.

The code works by identifying the dates between which commits have happened. The dictionary logMap keeps 
track of all the commits that have been pushed to JQuery on a particular date. If a date isn’t found as a key of logMap, 
no commit was made on that date. Using a loop, the list commitCounts is populated such that the first entry of this list 
stores the number of commits performed on the day the JQuery project started, and so on for all other dates. Finally, 
the series is dumped as a CSV file in dataJQuery.txt.

8-6. Analyzing Movie Ratings  
MovieLens is a defunct dataset containing various types of movies along with recorded ratings. This dataset is good 
for testing movie recommendation engines. However, it is also just sheer fun to perform some exploratory analysis on 
this data. In doing so, I found some startling myth-buster information that I hadn’t known before. For example, one 
myth is that women like romantic movies more than men. I found the reality to be the opposite.

You can get the MovieLens files from http://grouplens.org/datasets/movielens/. There are several files in 
the ml-100k.zip file. For this example, I have used only the following files:

u.Item: I renamed this file to movies.txt. (This has details about movies.)

u.User: I renamed this file to users.txt. (This has demographic information about users.)

u.Data: I renamed this file to movieRatings.txt. (This has rating information about movies.)

www.it-ebooks.info

https://www.youtube.com/watch?v=i6s8hcIciUM
http://grouplens.org/datasets/movielens/
http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

185

I recommend that you read the ReadMe.txt file available from the grouplens.org link previously provided so you 
understand the layout of the data being parsed for each file.

Problem
Here are the questions I tried to answer with the analysis:

 1. How many movies were made in each category?

 2. What types of movies (by category) do men and women like?

 3. What are the genre preferences of men and women?

Solution
To obtain the answer to the first question, create a new C# statement query in LINQPad and write the code in Listing 8-9.

Listing 8-9. Analyzing Movie Categories

string[] allStrings = File.ReadAllText(@"C:\Personal\TableAPI\movies.txt")
                            .Split(new string[]{"|","\r","\n"},StringSplitOptions.None);
  
var movies =
Enumerable.Range(0,allStrings.Length/24)
          .ToList()
          .Select ( s  => allStrings.Skip(s*24).Take(24))
          .Select (s =>
          {
         return new
         {
                ID = s.ElementAt(0),
                Title = s.ElementAt(1),
                ReleaseDate = s.ElementAt(2).Trim(),
                IMDBURL = s.ElementAt(4),
                IsAction = s.ElementAt(5)=="1"?true:false,
                IsAdventure = s.ElementAt(6)=="1"?true:false,
                IsAnimation = s.ElementAt(7)=="1"?true:false,
                IsChildrens = s.ElementAt(8)=="1"?true:false,
                IsComedy = s.ElementAt(9)=="1"?true:false,
                IsCrime = s.ElementAt(10)=="1"?true:false,
                IsDocumentary = s.ElementAt(11)=="1"?true:false,
                IsDrama = s.ElementAt(12)=="1"?true:false,
                IsFantasy = s.ElementAt(13)=="1"?true:false,
                IsFilm_Noir = s.ElementAt(14)=="1"?true:false,
                IsHorror = s.ElementAt(15)=="1"?true:false,
                IsMusical = s.ElementAt(16)=="1"?true:false,
                IsMystery = s.ElementAt(17)=="1"?true:false,
                IsRomance = s.ElementAt(18)=="1"?true:false,
                IsSci_Fi = s.ElementAt(19)=="1"?true:false,
                IsThriller = s.ElementAt(20)=="1"?true:false,
                IsWar = s.ElementAt(21)=="1"?true:false,
                IsWestern = s.ElementAt(22)=="1"?true:false
        };
  });
                                 
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

186

Dictionary<string,int> moviesPerCategory = new Dictionary<string,int>();
 
foreach (var movie in movies)
{
  movie
       .GetType()
       .GetProperties()
       .Select (m => new KeyValuePair<string,object>(m.Name, m.GetValue(movie)))
       .Skip(4)//Skipping ID,Title,ReleaseDate and IMDBURL field
       .Where (f => Convert.ToBoolean(f.Value)==true)
       .Select (f => f.Key.Substring(2))
       .ToList()
       .ForEach( k =>
        {
            if(!moviesPerCategory.ContainsKey(k))
                moviesPerCategory.Add(k,1);
            else
                moviesPerCategory[k]++;
        });
}
int totalMovieCount = moviesPerCategory.Select( t => t.Value).Sum();
moviesPerCategory.Select (pc =>
                 new {
                      Category = pc.Key,
                      Count = pc.Value,
                      Percentage = (100*Math.Round((double)pc.Value/(double)totalMovieCount,2))
                  })
                  .OrderByDescending (movie => movie.Percentage)
                  .Dump("Movie Categories");
 

Running this code results in the output shown in Figure 8-15. I have enabled charting. It is clear from this result 
that during the early ’90s (the time when this dataset was created), Fantasy movies were in great demand. One in 
every four movies made was a Fantasy movie.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

187

How It Works
The variable movies is an anonymous type collection representing each movie. Each public property, such as 
IsRomance holds a Boolean determining whether the movie belongs in that genre. An individual movie can be 
associated with multiple genres. The goal in this example was to find out the number of movies made in each genre. 
To represent this data, I needed a dictionary in which the keys were the movie genres and the values the number of 
such movies. The dictionary moviesPerCategory holds this information.

The way this dictionary gets populated is particularly interesting. The loop that iterates over the movies collection 
uses reflection to determine the type of the anonymous type, and then lists all the public properties that represent 
the genres. The names of these properties are used as the keys of the moviesPerCategory dictionary. The call to 
Substring() drops the initial two letters Is for each of the properties.

To obtain the percentage of movies made in each genre, you need to know the total number of movies made. That 
value is saved in totalMovieCount. Finally, the dictionary entries are projected to show the genre of the movie, total 
number of movies made in that genre, and the percentage of movies made in that genre. This result is then shown 
sorted by the percentage of movies made in descending order.

You can build on the code so far to find the answer for the second question: What types of movies (by category) 
do men and women like?

To find the answer, create the query in Listing 8-10 in LINQPad.

Figure 8-15. SPercentage of movies made of each genre

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

188

Listing 8-10. Discovering what movies men and women like

string[] allStrings = File.ReadAllText(@"C:\movies.txt")
                            .Split(new string[]{"|","\r","\n"},StringSplitOptions.None);
var movies =
Enumerable.Range(0,allStrings.Length/24)
          .ToList().Select ( s  => allStrings.Skip(s*24).Take(24))
          .Select (s =>
          {
         return new
        {
                ID = s.ElementAt(0),
                Title = s.ElementAt(1),
                ReleaseDate = s.ElementAt(2),
                IMDBURL = s.ElementAt(4),
                IsAction = s.ElementAt(5)=="1"?true:false,
                IsAdventure = s.ElementAt(6)=="1"?true:false,
                IsAnimation = s.ElementAt(7)=="1"?true:false,
                IsChildrens = s.ElementAt(8)=="1"?true:false,
                IsComedy = s.ElementAt(9)=="1"?true:false,
                IsCrime = s.ElementAt(10)=="1"?true:false,
                IsDocumentary = s.ElementAt(11)=="1"?true:false,
                IsDrama = s.ElementAt(12)=="1"?true:false,
                IsFantasy = s.ElementAt(13)=="1"?true:false,
                IsFilm_Noir = s.ElementAt(14)=="1"?true:false,
                IsHorror = s.ElementAt(15)=="1"?true:false,
                IsMusical = s.ElementAt(16)=="1"?true:false,
                IsMystery = s.ElementAt(17)=="1"?true:false,
                IsRomance = s.ElementAt(18)=="1"?true:false,
                IsSci_Fi = s.ElementAt(19)=="1"?true:false,
                IsThriller = s.ElementAt(20)=="1"?true:false,
                IsWar = s.ElementAt(21)=="1"?true:false,
                IsWestern = s.ElementAt(22)=="1"?true:false
             };
       })
.ToLookup (s => s.ID);
 
//Loading users in a collection
var users  = File.ReadAllText(@"C:\users.txt")
                          .Split(new char[]{'\r','\n'},StringSplitOptions.RemoveEmptyEntries)
                         .Select (f => f.Split('|'))
                         .Select (f => new { ID = f[0], Age = f[1], Sex = f[2],
                             Profession = f[3], ZIP  = f[4]} )
                         .ToLookup(f => f.ID);
 
//Loading movie ratings
var movieRatingTokens = File.ReadAllText(@"C:\Personal\TableAPI\movieRatings.txt")
            .Split(new char[]{' ','\t','\r','\n'},StringSplitOptions.RemoveEmptyEntries);
 
var movieRatings = Enumerable.Range(0,movieRatingTokens.Length/4)
                                                  .Select( k => movieRatingTokens.Skip(4*k).Take(4))

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

189

.Select (k => new { UserID = k.ElementAt(0), MovieID = k.ElementAt(1), Rating =
            Convert.ToInt32( k.ElementAt(2)), TimeStamp = k.ElementAt(3)
} )
 .Select (k =>
        {
                var currentUser = users[k.UserID].First();
                var movie  = movies[ k.MovieID].First();
                         return new { Age = currentUser.Age, Sex = currentUser.Sex,
                Movie = movie.Title, Rating = k.Rating ,
                IsAdenture = movie.IsAdventure,
                IsAnimation = movie.IsAnimation,
                IsChildrens = movie.IsChildrens,
                IsComedy = movie.IsComedy,
                IsCrime = movie.IsCrime,
                IsDocumentary = movie.IsDocumentary,
                IsDrama = movie.IsDrama,
                IsFantasy = movie.IsFantasy,
                IsFilm_Noir = movie.IsFilm_Noir,
                IsHorror = movie.IsHorror,
                IsMusical = movie.IsMusical,
                IsMystery = movie.IsMystery,
                IsRomance = movie.IsRomance,
                IsSci_Fi = movie.IsSci_Fi,
                IsThriller = movie.IsThriller,
                IsWar = movie.IsWar,
                IsWestern = movie.IsWestern
          };
} );
                                                          
Dictionary<string,Dictionary<string,int>> genderBias = new
    Dictionary<string,Dictionary<string,int>>();
genderBias.Add("M",new Dictionary<string,int>());
genderBias.Add("F",new Dictionary<string,int>());
foreach (var mr in movieRatings)
{
        string strRep = mr.ToString();
        string key = strRep.Contains("Sex = M")?"M":"F";
         
        var matches = Regex.Matches(strRep,"Is[A-Za-z_ ]+= True")
                           .Cast<Match>()
                                           .Select (m => m.Value)
                                           .Select (m => m.Substring(2,m.IndexOf('=')-2)
                                           .Trim());
        foreach (var m in matches)
        if(!genderBias[key].ContainsKey(m))
                genderBias[key].Add(m,1);
        else
                genderBias[key][m]++;
         
}
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

190

var pieData = genderBias.ToDictionary (b =>  b.Key,
                                       b => b.Value
                                             .Select
                         (
                            v =>
                            new
                            {
                                       Key = v.Key ,
                                   Liking = (double)v.Value/(double)(b.Value
                                          .Select (va => va.Value).Sum ())
                             }
                                               )
                        .OrderByDescending (v => v.Liking )
                        .ToDictionary (v => v.Key))
                             .Select (b => b.Key + "->" + b.Value.Select (v => "['" +
                                 v.Key + "'," + 100 * Math.Round( v.Value.Liking,2) +"]")
                        .Aggregate ((m,n) => m + "," + n));
 
Console.WriteLine(pieData);
 

This generates the following output:

Using this data, you can draw a couple of pie charts showing the genre preferences of men and women. 
Highcharts has a pie chart folder. Copy the file you find there, and then make the following changes to the copied file:

Change This To This

['Firefox',   45.0],

['IE',       26.8],

{

name: 'Chrome',

y: 12.8,

sliced: true,

selected: true

},

['Safari',    8.5],

['Opera',     6.2],

['Others',   0.7]

The first row M->['Fantasy',18]... etc. of the result obtained

'Browser market shares at a 
specific website, 2014'

'What kind of movies do men like?'

name: 'Browser share' name: 'Movie Likings'

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

191

Now, when you open the modified file in a browser, you will see a pie chart showing men’s movie preferences. 
The two pie charts in Figure 8-16 show the results for both men and women.

8-7. Identifying Flowers by Using Machine Learning
Classification is a common problem in machine learning. There are several supervised learning algorithms  
(http://en.wikipedia.org/wiki/Supervised_learning) for determining the class of a given element. One of the 
most commonly used supervised learning algorithms is k–Nearest Neighbors (k-NN). In this example, you will see 
how to use LINQ to implement k-NN () to identify the species of an iris flower.

Note ■  see http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm for an explanation of the k–nearest 
neighbors algorithm.

Problem
The iris multivariate dataset (downloadable from http://en.wikipedia.org/wiki/Iris_flower_data_set) contains 
data about three varieties of iris flowers. The task is to identify the species of the iris flower from the given dataset by 
using the k-NN algorithm. You can download the dataset from http://aima.cs.berkeley.edu/data/iris.csv.

Solution 
Enter the following as a new query in LINQPad:
 
//Nearest Neighbor
var trainingSet = File.ReadAllText(@"C:\iris.csv")
                                .Split(new char[]{'\r','\n'},StringSplitOptions.RemoveEmptyEntries)
                   .Select ( f => f.Split(','))
                   .Skip(1)
                   .Select (f =>

Figure 8-16. Showing movie genre preferences of men and women

www.it-ebooks.info

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://aima.cs.berkeley.edu/data/iris.csv
http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

192

                         new
                           {
                                SepalLength = Convert.ToDouble( f[0]),
                                SepalWidth = Convert.ToDouble(f[1]),
                                PetalLength = Convert.ToDouble(f[2]),
                                PetalWidth = Convert.ToDouble(f[3]),
                               Name = f[4]
                          })
                   //RandomSubset is a method from MoreLINQ.
                   // So you have to reference that
                   //in LINQPad to use this method. Refer to Chapter 5.
                  .RandomSubset(100);
 
//Test data
double sepalLength = 5.5;
double sepalWidth  = 2.6;
double petalLength = 4;
double petalWidth = 1.2;
 
int k = 5;
//Euclidean distance function
Func<double,double,double,double,double,double,double,double,double> Distance =
     (sl1,sl2,sw1,sw2,pl1,pl2,pw1,pw2)  => Math.Sqrt(Math.Pow(sl1-sl2,2)
                                                     + Math.Pow(sw1-sw2,2)
                                                     + Math.Pow(pl1-pl2,2)
                                                     + Math.Pow(pw1-pw2,2));
          
//Figure out what flower it is.
trainingSet
       .Select (s => -
          new
            {
                Name = s.Name,
                DistanceFromTestData =
                Distance(sepalLength,s.SepalLength,sepalWidth,s.SepalWidth,
                petalLength, s.PetalLength, petalWidth, s.PetalWidth)
            })
        .OrderBy (s => s.DistanceFromTestData )
        //Take the first "k" elements
        .Take(k)
        //Create a lookup with the "Name"
        .ToLookup (s => s.Name)
        //Sort the elements as per the descending order of number of elements in that class
        .OrderByDescending (s => s.Count())
        //Pick the first one--with the highest count
        .First ()
        //Pick its class
        .Key
        .Dump("I think the flower is");

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ exploratory Data analysis

193

This generates the following output:

How It Works
At the heart of this query is the Euclidian distance function, represented by the method Distance.

The Distance method determines the distance between each point in the training set and the point in question—
the target point. Then this projected result, along with the distance from the test point, is sorted by the distance,  
and the first k entries are picked. This projection is then used to create a lookup table with the Name property, which 
is the class or tag of that entry. The count of values for each tag/key in the lookup table is the number of the nearest 
neighbors whose tag is represented by the associated key. So the key with the highest number of values is probably the 
best guess for the class/tag of the given test point. I recommend you change the value of k to something big, such as 
25, and dump the lookup table in LINQPad to see what’s happening visually.

Summary
Congratulations! You’ve covered a lot of ground in this chapter. The goal of this chapter was to show you how to 
perform several data processing tasks by using LINQ in a functional way. Along the way, you should have also picked 
up how to use some of the most frequent LINQ idioms, including Skip() followed by Take(), Select() followed by 
ToLookup() and ToDictionary(), and so on. I urge you to experiment with these examples, pose other questions for 
yourself, and see how you can obtain the answers for those questions by using the techniques you have seen so far in 
this book.

www.it-ebooks.info

http://www.it-ebooks.info/


195

Chapter 9

Interacting with the File System 

You can use LINQ as you would a scripting programming language to perform several types of file system analytics 
operations. For .NET developers, LINQ can be as useful as PowerShell—in fact, sometimes even better, because when 
using LINQ, developers can still leverage all the other benefits that the host language has to offer (C# in this case).

In this chapter, you will see recipes that illustrate how you can use LINQ to perform various file operations, 
including the following:

Comparing CSV files•	

Finding the total size of a set of files in a directory•	

Simulating some common LINUX commands•	

Finding duplicate files, duplicate file names, and zero-length files•	

9-1. Comparing Two CSV Files
Most file diff utilities work on matching files on a line-by-line basis. However, this scheme doesn’t work for CSV file 
comparison. Two CSV files are the same if their rows are the same—irrespective of the order in which the rows appear. 
The same is true for columns. If two CSV files have the same columns, even if the columns appear in a different 
sequence, the files can be considered to have the same column headers.

Problem
Write a general-purpose function to check whether two CSV files are the same or different.

Solution
Listing 9-1 provides an admirably short, yet still complete solution.

Listing 9-1. Determine whether two CSV files are the same.

Func<string,IEnumerable<string>> GetHeaders =
    (fileName) => File.ReadAllLines(fileName)
        .First()
        .Split(new char[]{','},StringSplitOptions.None);
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

196

Func<string,IEnumerable<string>> GetBody  =
    (fileName) => File.ReadAllLines(fileName)
        .Skip(1)
        .Where (f => f.Trim().Length!=0);
Func<string,string,bool> IsSameCSV =
    (firstFile,secondFile) =>
        //Match column headers
        GetHeaders(firstFile)
           .All (x => GetHeaders(secondFile).Contains(x))
        //Match the body
        && GetBody(firstFile)
           .All (x => GetBody(secondFile).Contains(x));
 

When this code is run using the two CSV files shown in Figure 9-1, the function IsSameCSV returns true.

Figure 9-1. Showing two same CSV files

How It Works
Comparing two CSV files requires comparing both the headers and the rows. When the header order and row order 
are the same, the problem is trivial, but the task becomes more complicated when the headers and/or the rows 
appear in a different order in one file than in the other. Therefore, when comparing two CSV files, you must make sure 
that you’re comparing only the values in the lines—irrespective of the order in which the lines appear.

Note ■  when referring to the order of lines, the code still assumes that the header line is the first line in the file  
(which is reasonable, because that is part of the CSV specification).

The methods GetHeaders() and GetBody() return the headers (columns) and the body (rows) of the CSV file, 
respectively. Note that the GetBody() method skips the header line, by calling Skip(1).

IsSameCSV takes two file names as arguments, and returns true if the headers and body of these two CSV files are 
the same. It compares the headers and bodies separately. The following code compares the headers, but you can see 
from the “Solution” section that the code to compare the bodies follows exactly the same logic.
 
GetHeaders(firstFile)
    .All (x => GetHeaders(secondFile).Contains(x))

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

197

9-2. Finding the Total File Size in a Directory
Finding the total size of the files in each of a set of directories and showing that in megabytes or gigabytes is an 
important component of understanding disk space consumption. To find the total size of a directory, you must 
recursively calculate the size of all the files in each subdirectory of that directory.

Problem
Write a LINQ script that lists the size (measured in megabytes) of all the directories and files inside a given directory.

Solution
Listing 9-2 shows a complete solution.

Listing 9-2. Calculate the total size of files in a directory.

Directory.GetFiles(@"C:\Users\mukhsudi\Downloads","*.*",
                   SearchOption.AllDirectories)
    .Select (d => new FileInfo(d))
    .Select (d => new { Directory = d.DirectoryName,
         FileSize = d.Length} )
    .ToLookup (d => d.Directory )
    .Select (d => new { Directory  = d.Key, TotalSizeInMB =
    Math.Round(d.Select (x => x.FileSize).Sum () /
       Math.Pow(1024.0,2),2)})
    .OrderByDescending (d => d.TotalSizeInMB)
    .Dump();

Note ■  you will need to edit the path in the following code to be a valid directory on your computer.

How It Works
Calling GetFiles with SearchOption.AllDirectories returns the full name of all the files in all the subdirectories of 
the specified directory. The operating system represents the size of files in bytes. You can retrieve the file’s size from 
its Length property. Dividing it by 1024 raised to the power of 2 gives you the size of the file in megabytes. Because a 
directory/folder can contain many files, d.Select(x => x.FileSize) returns a collection of file sizes measured in 
megabytes. The final call to Sum() finds the total size of the files in the specified directory.

9-3. Cloning LINUX Head and Tail Commands
Listing the first few or the last few lines of a file is a common task. Linux includes the commands head and tail to do 
this; however, the Windows command prompt doesn’t include any equivalent commands. Using LINQ, you can easily 
brew up your own version of head and tail.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

198

Problem
Write a program to clone the Linux head and tail commands for Windows.

Solution
Listing 9-3 creates clones of the LINUX head and tail commands.

Listing 9-3. Clone the Linux head and tail commands

Func<IEnumerable<string>,int,IEnumerable<string>> TakeLast =
     (list, count) => list.Skip(list.Count()-count);
//Cloning head
Func<string,int,IEnumerable<string>> Head = (fileName, lineCount)=>
     File.ReadAllLines(fileName).Take(lineCount);
//Cloning tail
Func<string,int,IEnumerable<string>> Tail = (fileName, lineCount)=>
     TakeLast(File.ReadAllLines(fileName),lineCount);
 
Head("C:\\conf.txt",4).Dump();
Tail("C:\\conf.txt",4).Dump();
 

Figure 9-2 shows the content of the conf.txt file.

Figure 9-2. Content of the conf.txt file

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

199

The output of the code is shown in Figure 9-3.

Figure 9-3. Output of the cloned Linux head and tail commands

How It Works
Showing the first few lines from a text file is the same as taking the first few lines from the file. The Take() operator, 
which you’ve encountered numerous times earlier in this book, works perfectly in this context. On the other hand, 
showing the last few rows of the file is the same as skipping the total number of lines minus the number of lines you 
want to show, and then showing those last few lines. The TakeLast() method does exactly that.

9-4. Locating Files with the Same Name (Possible Duplicates)
Sometimes the same file gets copied to multiple destinations. From a file management perspective, it’s important to 
be able to find such duplicate files and delete all the unneeded copies. The first step in doing that is to locate all files 
that have the same name.

Caution ■  Just because two files have the same name doesn’t necessarily mean that they’re duplicates.  
For example, two very different software installations might use the file name license.txt. But the content of the 
two files is likely to be different.

Problem
Write a LINQ script to find files residing in different directories with the same name.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

200

Solution
Listing 9-4 shows how to find identically named files in different directories.

Listing 9-4. Find files of the same name.

//Locating duplicate files
Directory.GetFiles(@"C:\Users\mukhsudi\Downloads",
              "*.*",SearchOption.AllDirectories)
             .Select (d => new FileInfo(d))
             .Select (d => new {FileName = d.Name,
                     Directory = d.DirectoryName})
             .ToLookup (d => d.FileName)
             .Where (d => d.Count ()>=2)
             .Dump();

How It Works
The code first finds the files and maps their directories. Next, it creates a lookup table using the file name as the key. 
The result is that for any file whose name is duplicated elsewhere in some other folder/directory, there will be at least 
two entries for that particular key. These duplicate entries are found by the filter .Where (d => d.Count ()>=2).

9-5. Finding Exact-Duplicate Files
This is an extension of the preceding recipe. Sometimes people rename duplicate files without changing the contents. 
Unfortunately, that means the same file—but with different names—may exist in several different folders. The code 
from the previous recipe finds only duplicate names, not duplicate files. This recipe finds exact file duplicates—even if 
the file names are different.

Problem
Write a LINQ script to find duplicate files with different names, even if the duplicate files reside in different folders.

Solution
This solution, shown in Listing 9-5, complements the previous solution by finding files with identical content, even if 
the file names are different.

Listing 9-5. Find files with identical content

//Locating exact-duplicate files
Directory.GetFiles(@"C:\Program Files"
              ,"*.*",SearchOption.AllDirectories)
        .Where (d => d.EndsWith(".txt"))
        .Select (d => new { FileName = d,
                ContentHash = File.ReadAllText(d).GetHashCode()})
        .ToLookup (d => d.ContentHash)
        .Where (d => d.Count ()>=2)
        .Dump();

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

201

Note ■  the code below will raise an error if you do not have sufficient rights to access all the files in the specified 
directory.

How It Works
Locating exact-duplicate files is an expensive process, because to determine whether the content of two files is 
identical, you need to read the files, create a hashcode, and then compare hashcodes. Unlike the previous example, 
this example creates the lookup table using the hashcodes of the files as the lookup table key. If the result contains two 
or more elements for any given hashcode key, then those files are exact duplicates.

9-6. Organizing Downloads Automatically
If you’re like me, you probably download a lot of files—and then forget about them. Over time, it becomes a pain to 
organize all these files in proper directories. Using a LINQ script, you can bring order to this chaos.

Problem
The problem here is to manage downloaded files by placing them in specific directories organized by file type and 
keyword.

Solution
Listing 9-6 organizes downloaded files by keyword and file type, storing them in appropriate directories.

Listing 9-6. Programmatically organize downloaded files.

string[] keywords = {"Roslyn","Rx","LINQ","F#"};
string[] videoFormats = {".mp4",".mpg",".mpeg",".flv"};
string[] slides = {".pptx",".ppt"};
string[] articles = {".pdf",".doc",".docx"};
string[] blogs = {".html",".htm"};
 
Directory.GetFiles(@"C:\Users\mukhsudi\Downloads")
.ToLookup (d => keywords.FirstOrDefault(x => d.Contains(x)))
.Where (d => d.Key != null )
.Select (d =>
          new
           {
             Key = d.Key,
             //Find all the videos for the given keyword
             Videos = d.Where (x => videoFormats
                              .Any (f => x.EndsWith(f))),
             //Find all the articles
              Articles = d.Where (x => articles
                              .Any (f => x.EndsWith(f)))
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

202

//I omitted Slides and Blogs because those will be similar.
 
           })
.ToList()
.ForEach(z =>
            {
                  Directory.CreateDirectory(z.Key + " Videos");
                  z.Videos
                   .ToList()
                  .ForEach(f =>
                   File.Copy(f,Path.Combine(z.Key + " Videos",
                               new FileInfo(f).Name)));
                  Directory.CreateDirectory(z.Key + " Articles");
                  z.Articles.ToList().ForEach(f =>
                  File.Copy(f,Path.Combine(z.Key + " Articles",
                            new FileInfo(f).Name)));
});

How It Works
At the heart of this solution are the lists of keywords that determine how you want to classify your files. Each list 
contains several types of files that you want to store in separate directories. In this case, the file type lists are as follows:
 
string[] videoFormats = {".mp4",".mpg",".mpeg",".flv"};
string[] slides = {".pptx",".ppt"};
string[] articles = {".pdf",".doc",".docx"};
string[] blogs = {".html",".htm"};
 

These arrays determine the various file types in each different category. For example, if a file’s extension is either 
pptx or ppt, it’s a presentation file. I want to keep these files in a folder called XYZ Slides, where XYZ is a placeholder 
for the keywords defined in the first line—in this case, Roslyn, C#, LINQ and F#.  The goal is that if the file name 
contains one of the keywords, for example, LINQ, and has a .pptx extension, then that file will be copied into a LINQ 
Slides folder. The idea is the same for all the other keywords and for all the other extensions.

The first call to ToLookup() tries to find matching keywords from the files. It stores the keywords and the file 
names in a lookup table. For file names that don’t contain any of the specified keywords, the key returned is null.  
The next Where() call filters out those files. Finally, the Select() call projects the list of the files with the file  
name—the videos and articles associated with the current keyword.

At the end, the call to ForEach copies all the files into their appropriate destination folders.

9-7. Finding Files Modified Last Week
While doing forensic analysis on a file system, you often need to know when a file was last accessed. Using LINQ and 
the FileSystem APIs, it’s easy to find all files modified within the last week.

Problem
Find all files in a directory that were modified during the past week.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

203

Solution 
Listing 9-7 finds all the files modified within the previous week.

Listing 9-7. Find modified files within a date/time range

Directory.GetFiles(@"C:\Program Files","*.*",SearchOption.AllDirectories)
             .Select (d => new FileInfo(d))
             .OrderByDescending (d => d.LastWriteTime)
             .Select (d => new {Name  = d.FullName ,
                     LastModifiedTime = d.LastWriteTime})
             .Where (d => d.LastModifiedTime.AddDays(7)
                        .CompareTo(DateTime.Today)>=0 )
             .Dump("Files modified during last week");

Note ■  the code below will raise an error if you do not have sufficient rights to access all the files in the  
specified directory.

How It Works
Whenever a file is modified, the last write time changes. Thus you can use the last write time to determine when a file 
was last changed. Knowing that, you can find all files where the last write time is within seven days of the current date, 
using the filter call shown here:
 
.Where (d => d.LastModifiedTime.AddDays(7)
                        .CompareTo(DateTime.Today)>=0 )

9-8. Locating Dead Files (Files with Zero Bytes)
A dead file is a file that has nothing in it. These files are far more common than you might think in your file system.

Problem
Locate dead files in your file system.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ InteraCtIng wIth the FIle SyStem 

204

Solution
This short solution, shown in Listing 9-8, finds dead files in a specified directory and all its subdirectories.

Listing 9-8. Find zero-length files in a directory tree

Directory.GetFiles(@"C:\Program Files","*.*",SearchOption.AllDirectories)
        .Select (d => new FileInfo(d))
        .Where (d => d.Length == 0)
        .Dump("Dead Files");

Note ■  the code below will raise an error if you do not have sufficient rights to access all the files in the  
specified directory.

How It Works
Files with nothing in them are generally not useful. You can find these files by checking whether the Length property 
of the file is zero. GetFiles() returns a string array containing the names of the files, and then Select()projects this 
list as an IEnumerable of FileInfo.

www.it-ebooks.info

http://www.it-ebooks.info/


205

Appendix A

Lean LINQ Tips

LINQ allows users to query any data source in a unified way. However, even with the LINQ standard query operators, 
used to create these queries, it’s easy to misuse these operators unless you have a solid understanding of how they 
work internally. Such misuse leads to inefficient queries that are slower—in some cases much slower—than the 
equivalent properly tuned query.

For example, .NET 4.0 offers implicit typing, in which the compiler figures out the intended data type of a query 
result at runtime. That’s convenient, so developers tend to be comfortable projecting the result to a strongly typed 
collection like List<T> via the projection operators ToList() and such. But such conversions and projections are 
computationally expensive and offer little benefit. People may also use the convenient range methods such as ForEach() 
that List<T>) exposes. Again, these provide no benefits; in fact, they simply contribute to the performance issues.

This appendix contains a list of tips (or in some cases “micro-tips,” if you will) that you can use to tune your 
queries to yield results faster.

Tip 1
Avoid projection such as ToList() or ToArray(), when possible They make the program slow.

Explanation
ToList(), and ToArray() project a list to a newly created list. These projections also force the list values to be 
evaluated, which is not helpful because that negates the benefits of lazy evaluation and deferred execution that  
LINQ offers.

Tip 2
Combine multiple Where clauses into a single Where clause unless they are done on separate lists.

Explanation
For each Where clause, you must loop through the collection once. Therefore, the looping process will occur as many 
times as there are Where loops on any given list. So while refactoring multiple nested if statements together in a Where 
clause, try putting all of the clauses together.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix A ■ LeAn LinQ Tips

206

Tip 3 
Use the TrueForAll() method available on the IList<T> implementation instead of All().

Explanation
For long-running operations and cross-collection membership checks, All<T>() offers worse  performance than 
TrueForAll. TrueForAll() uses a for loop, whereas All<T>() uses a foreach loop.

Tip 4
Use OrderBy() and OrderByDescending() wherever you can instead of the native Sort() implementations for lists.

Explanation
To use Sort(), you have to project the collection as a List<T>(). Moreover, Sort() is an in-place implementation. 
This way, using Sort() the original collection will be corrupted.

Tip 5
Avoid membership lookup using Contains() on any native container within lambda expressions.

Explanation
With the exception of HashSet<T>, collections are not optimized for membership lookup. Therefore, using Contains() 
inside a lambda means it will have to loop over the entire collection to find the membership status. This makes the 
query slower.

Tip 6
Use public property Count in the Boolean expression list Object.Count > 0 instead of Any().

Explanation
The Count property is updated whenever a new entry gets added to the collection. Therefore, using Count > 0  to 
determine whether the collection contains any elements is faster than calling Any(), which has to loop through the 
collection and update a local variable with the count, as long as the collection remains iterable. Thus, Any() is slower.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix A ■ LeAn LinQ Tips

207

Tip 7
Avoid using ElementAt() on containers that support native array-based indexing.

Explanation
For collections that aren’t IList based, ElementAt() loops through the collection to find the element at the specified 
index, which takes time. So when you need to repeatedly use indexing over the collection, projecting it to an array by 
using ToArray() once is more efficient than using ElementAt().

Tip 8
Don’t use ElementAt() on dictionaries. It’s not guaranteed to return what you think it should.

Explanation
Dictionaries are implemented by using binary search trees, which by nature are nonlinear data structures. So, by default, 
integer indexing is not available for dictionaries. In general, if you need integer indexing over a dictionary, it’s time to 
rethink the design. For example, you might be better off using a List<KeyValuePair<T,U>> type.

Tip 9
Prefer exception handling over ElementAtOrDefault(), FirstOrDefault(), or SingleOrDefault().

Explanation
ElementAtOrDefault() and the other methods in this tip throw exceptions when no element is found at the specified 
index or when no element is found that matches the given criterion. So don’t rely on these methods to deal with 
exceptions—it won’t happen. The default versions give you the default values of the type of the collection.

Tip 10
For IList-based containers that support native indexing, don't use First() or Last(). Instead, use [0] and [Count-1].

Explanation
Integer indexing over an array or an IList implementation is the fastest performance you can get in terms of 
indexing over a generic collection in .NET. In contrast, Last() loops through the entire collection as long as it remains 
iterable. However, whenever a new element is added to a collection, the Count property gets updated. Thus Count – 1 
gets evaluated in constant time, regardless of the size of the collection. Therefore, retrieving the last element using 
[Count – 1] is usually faster than using Last(). The exception is when you are using the overload of Last() that 
takes a predicate. In that case, the execution time is essentially the same.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix A ■ LeAn LinQ Tips

208

Tip 11
Use IEnumerable<T> as much as possible in public APIs.

Explanation
Because the entire LINQ API is based on the IEnumerable<T> type, if you take advantage of that by exposing 
IEnumerable<T> in your public APIs, consumers of your API can immediately take full advantage of everything  
that LINQ has to offer—most important, deferred execution. In LINQ, unless you’re using a projection operator  
(such as ToList() and so forth), a query doesn’t get executed immediately. However, when you expose strongly  
typed collections, any queries performed against your collections must be evaluated immediately, which leads to 
slower performance.

Tip 12
Consider using home-grown mathematical routines over Sum(), and Average(). Typically, these are about three times 
slower than their loop-based cousins.

Explanation
Sum(), and Average() use foreach loops internally. In addition, they check for null references. These are slower than 
a home-grown solution that uses a straight for loop. When you need to find a sum or average, particularly repeatedly, 
resist the temptation to use the built-in methods and write your own, using a for loop.

Tip 13
Create your own ForEach(Action<T>) that can work on an IEnumerable<T> instance.

Explanation
By doing that, you save the time required to convert the collection to an IList<T> implementation. If you recall, you 
can use the ForEach operator from MoreLINQ, as discussed in Chapter 5.

Tip 14
Prefer Select<T>() over Cast<T>().

Explanation
Projecting is essentially casting with some sidebars to hold on to when things go wrong (think “exceptions”). Cast<T> 
throws an exception when it can’t cast the collection to the type specified. However, if you use Select<T>(), you gain 
complete control on how the casting happens and what to do when an exception occurs.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix A ■ LeAn LinQ Tips

209

Tip 15
For any container that supports a public Count property, prefer <instance of container>.Count == 0 over Any().

Explanation
As explained in earlier tips, calling the Count property is a constant-time operation, whereas Any() iterates over the 
collection. Thus the first version is much faster.

Tip 16
Don’t use Aggregate over a long list. Use a straight for loop instead.

Explanation
At each step, Aggregate has to determine whether it’s reached the edge of the collection. This makes it slower than a 
straight for loop, where programmers are responsible for handling the number of elements and edge conditions.

Tip 17
Don’t use FirstOrDefault in a loop. It can be terribly slow when called repeatedly (such as in a loop).

Explanation
FirstOrDefault loops from the beginning to the end to find an element that matches a specified predicate condition. 
Therefore, when placed inside a loop, it results in quadratic time increases.

www.it-ebooks.info

http://www.it-ebooks.info/


211

Appendix B

Taming Streaming Data with Rx.NET

Developers now have access to more streaming data than ever before. Much of this data originates from sensors 
connected to the Internet. These sensors continually post the data they collect.

For example, a high-profile gym asks users to swipe their smart membership cards at an RFID reader placed 
at the entrance. As soon as members do this, an event fires (assume the name of the event is MemberEnteredGym). 
Subscribers can register for the event, and are notified immediately. However, that’s nothing new. What’s new is 
that this event will be fired every time a member swipes his or her card. And there may be thousands or millions of 
members around the world, each generating an event each time they enter their gym. Suddenly, you have a pool of 
events, or an event stream.

There are two inherent characteristics of a .NET event. First, events don’t offer composability. If you have a 
stream of MemberEnteredGym events and you want to filter that stream for unauthenticated or fraudulent accesses, 
your only option is to write the code inside the event handler of a particular subscriber. Unfortunately, that means 
creating composable solutions using LINQ is not possible.

Moreover, .NET events aren’t first-class citizens in the .NET ecosystem. For example, you can pass an integer 
around to functions. You can even pass a function around to other functions (provided you declared it with Func<> 
as a variable). But you can’t pass around a .NET event, such as a MouseMove event from a Windows Forms class.

When you move your mouse over a form, the form generates MouseMove events. However, if you create a 
traditional event, you can’t pass around MouseMove event arguments that hold data about where the mouse has been 
so far.

Rx.NET is a framework that offers the ability to translate such events to an Observable collection of event 
arguments that interested parties can subscribe to. Rx.NET piggybanks on the composable nature of LINQ and is built 
on a push-based architecture rather than the pull-based concepts of IEnumerable.

Push and pull have an excellent real-life use-case analogy these days. For example, assume you go to a busy 
restaurant for your Sunday brunch. You place your order and then wait for your meal to appear. After a while, when 
your order still hasn’t shown up, you get a little restless. Perhaps you inquire about its status at the counter or ask 
your waiter. Asking is the same as polling, or pulling. On the other hand, some restaurants now give their customers 
an RFID-enabled vibrator when they place their orders. When the order is ready for pickup, the device receives a 
signal. That way, users know that their order is ready for pickup. This is a pushing scheme. The source (in this case the 
restaurant) is notifying the targets (the people who placed orders).

Figure B-1 captures this expression nicely in general terms.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

212

In the Interactive model, shown in Figure B-2, the consumers of the enumerations ask for the next element 
available by calling MoveNext() on the iterator. However, in the reactive world, the source (also known as the 
Observable) returns the value as it is generated by calling OnNext(). The Reactive model also has two more methods, 
called OnError() and OnCompleted(). These methods fire when an error occurs (like exceptions) or when the 
sequence doesn’t have any more elements.

Figure B-1. The intent of push and pull operations in a .NET eventing context

Figure B-2. Bart De Smet’s depiction of the Interactive and Reactive paradigm

Figure B-3 shows a comparison between using IObserver and IEnumerator.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

213

A Brief Explanation of the Interfaces
IEnumerator is the basis of a pull-based world, where client code polls for the next element by calling the 
enumerator’s MoveNext() method. Any of three conditions can occur during this activity. First, if everything works 
as expected, the client code will obtain the next element T after MoveNext(), by evaluating Current. Second, there 
may be no more items in the collection to be iterated. This is same as successful completion of the iteration, and 
the code must handle that condition. Third, an error can occur during this process—again, the client code must 
handle that condition.

Put another way, calling MoveNext can result in a T, a void signaling completion, or an Exception signaling an 
error. These three situations are mirrored in a push-based world by the OnNext(), OnCompleted(), and OnError() 
methods of the IObserver<> interface. There is a good video by Bart De Smet at http://channel9.msdn.com/Shows/
Going+Deep/Bart-De-Smet-Observations-on-IQbservable-The-Dual-of-IQueryable that explains these concepts. 
I recommend you watch that video.

In the rest of this chapter, you’ll see how to use Rx.NET to tame oncoming event streams. The Observable class 
has a number of extension methods for processing the event stream. Some are ported from the IEnumerable class but 
have been made usable for Observables as extension methods. For example, Range() is one such extension method. 
Some of these methods are also explained in this chapter.

Getting Rx.NET 
You can download Rx.NET from http://msdn.microsoft.com/en-in/data/gg577610.

Rx.NET is being made available for several platforms, including Windows Phone.

Using Rx.NET in LINQPad
LINQPad is the one of the coolest tools out there for .NET developers. We are all grateful to Joseph Albahari for 
creating it. One special LINQPad feature can even help you understand Rx.NET better.

To configure LINQPad to use Rx.NET, you need to add references for the following assemblies:

•	 System.Reactive.Core.dll

•	 System.Reactive.Interfaces.dll

•	 System.Reactive.Linq.dll

Figure B-3. Side-by-side comparison of the main interfaces of Reactive and Interactive paradigm

www.it-ebooks.info

http://channel9.msdn.com/Shows/Going+Deep/Bart-De-Smet-Observations-on-IQbservable-The-Dual-of-IQueryable
http://channel9.msdn.com/Shows/Going+Deep/Bart-De-Smet-Observations-on-IQbservable-The-Dual-of-IQueryable
http://msdn.microsoft.com/en-in/data/gg577610
http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

214

Note ■  every example in this chapter uses version 2.2.5 of all these assemblies. By the time this book is published, 
there may be another stable version available—-but it’s also possible that some of the methods i’ve used might be 
deprecated. So to follow the examples, i recommend getting version 2.2.5. For your own experiments, you should 
download any more recent versions.

Press F4 in LINQPad and you’ll see the dialog box to add the DLLs. After adding them, the list should look like 
Figure B-4. Make sure to click the Set as Default for New Queries button.

Figure B-4. The list of Rx.NET references in LINQPad

Figure B-5. Showing additional namespaces to include for using Rx.NET

This will make sure that you get Rx.NET extension methods and classes on all the new LINQPad tabs that you open.
Next, click the Additional Namespace Imports tab and add the following namespaces, as shown in Figure B-5.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

215

Click the Set as Default for New Queries” button in this tab as well.
Finally, click OK to save your settings and exit.
Now that you are ready to use LINQPad with Rx.NET, it’s a good time to mention the special feature that 

LINQPad offers. You can use LINQPad’s Dump() method to dump Observables to the output. As long as they are being 
evaluated, the Dump() result header will remain green; however, when the evaluation completes—in other words, 
when the Observable raises the OnCompleted() event—the Dump() result header turns blue (green and blue are 
LINQPad’s default colors). I found this transition to be extremely helpful while running Rx.NET queries.

Also, you can terminate evaluation of any long-running Observable by pressing Ctrl+Shift+F5. This message also 
appears at the bottom right of LINQPad.

Now use the following query to make sure you are ready to run Rx queries in LINQPad.
Open a new LINQPad window and paste in the following query. Change the Language drop-down value  

to C# Statements.
 
Observable.Interval(TimeSpan.FromSeconds(1))
          .Take(10)
          .Dump("Slow stream");
 
Observable.Interval(TimeSpan.FromSeconds(0.5))
          .Take(10)
          .Dump("Fast stream");
 

This should generate the outputs shown in Figure B-6. I’ve shown only three here, all captured at different times: 
the first dump, one in the middle, and one at the end. The operation is best captured through a video, so I recorded 
my result and posted it at https://www.youtube.com/watch?v=mYinKlHET5s&feature=youtu.be.

Figure B-6. Special feature of LINQPad

www.it-ebooks.info

https://www.youtube.com/watch?v=mYinKlHET5s&feature=youtu.be
http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

216

Creating Observables and Subscribing 
The Observable class offers several extension methods to create Observables. It’s unlikely that you would ever need 
to implement the interfaces to create Observables in your own class.

Here are some of the extension methods used most frequently to generate Observables:

•	 Range

•	 Repeat

•	 Never

•	 Throw (throws an Exception)

•	 Interval

•	 Generate

•	 ToObservable

The following sections describe how to use these methods to generate and subscribe to Observables.

Range
The Range() method creates an Observable with values in the given range. This is conceptually the same as 
creating a range with an Enumerable class.

Note ■  Set the Language drop-down to C# Statement for all the code in this chapter unless instructed otherwise.

Add the following code in a new LINQPad tab:
 
var range  = Observable.Range(1,10);
range.Take(4).Dump();
 

When you run the query, it generates the output shown in Figure B-7.

Figure B-7. Showing first four values of the Observable collection created with Range()

Notice that the type of the output is IObservable<int>.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

217

Repeat
The Repeat method does just what you probably expect—it repeats the given value. For example, if you want an 
infinite Observable of the value 42, you can write it like this:
 
Observable.Repeat(42).Dump();
 

Because this will run as long as you want it to, you need to resort to a deferred execution model, which you can 
do by plugging a Take() call at the end, like this:
 
Observable.Repeat(42).Take(10).Dump();
 

This will return an Observable with 42 repeated ten times.

Never 
The Never method is almost the same as the Enumerable.Empty method. Empty produces an empty Enumerable, 
while Never produces an empty Observable. It will never produce any value. Never can’t determine the type of the 
Observable, so you must provide the value as a generic type, as shown here:
 
Observable.Never<int>().Dump();

Interval
The Interval() method lets you create an Observable that produces an element at a given frequency. You can 
provide the frequency as a Timespan. Here’s an example:
 
var times = Observable.Interval(TimeSpan.FromSeconds(2)).Take(10);
times.Dump();
 

This generates ten values—one every 2 seconds.

Generate
Using Generate, you can generate arbitrary Observable collections. The method takes four arguments:

A seed value.•	

A functor that returns a Boolean and determines how long the •	 Observable should run. 
Generate continues to generate data as long as this returns true.

A delegate that tells •	 Generate how to update the seed value to the next one.

A projection strategy—how you want to project the data.•	

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

218

Here is an example showing how to use Generate to generate Fibonacci numbers:
 
KeyValuePair<int,int> seed = new KeyValuePair<int,int>(0,1);
 
Observable.Generate(
          //Start with this seed value
          seed
          // Run it eternally
          ,x=>true
          //Here is how to step through to go to the next one
          ,x => new KeyValuePair<int,int>(x.Value,x.Key+x.Value)
          //Return the “Key” of the key value pair.
          ,x => x.Key)
      .Take(10)
      .Dump("First 10 Fibonacci numbers");
 

This is one of the best implementations of generating Fibonacci numbers because it uses only one KeyValuePair 
to store the last-calculated Fibonacci number, which is a very effective way to implement memoization. Observables 
don’t have to remember the values that have been generated so far.

You can see the output in Figure B-8.

Figure B-8. Fibonacci numbers calculated using the Generate method

An earlier version of Rx.NET had a member called GenerateWithTime that could produce values at a given 
frequency supplied in the form of a TimeSpan. However that method is no longer available. You can still generate 
values at a certain frequency. Just replace the line
 
x => x.Key
 
with
 
,x => {Thread.Sleep(TimeSpan.FromMilliseconds(500));return x.Key;})
 

Now you have an Observable that churns out the next Fibonacci number every half a second. Such techniques 
can be extremely useful in simulations. For example, suppose you were writing a car-parking simulation and the 
model you are using assumes that every half-second the number of cars appearing is the same as the next Fibonacci 
number.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

219

ToObservable
ToObservable converts Enumerables to Observables. This method comes in very handy while trying to write unit 
tests for Observables.

Here’s a simple example that takes an array of integers and returns the corresponding Observable:
 
(new int[]{1,2,3}).ToObservable().Dump();

Creating Observables from .NET Events 
Most of the time in real-life applications, your Observable collections are generated from .NET events. To convert a .NET 
event to an event stream, you can use the Observable.FromEventPattern method.

Open a new LINQPad window and add the following code:
 
Form myForm = new Form();
 myForm.Show();
 var moves = Observable.FromEventPattern<MouseEventArgs>
                             (myForm,"MouseMove")
                             .Select( p => p.EventArgs.Location);
    
 var bisector = moves.Where(p => p.X == p.Y);
 bisector.Dump("You are on the bisector at"); 

Note ■  To run this code, you need to add System.Windows.Forms.dll to the references and then click Additional 
namespaces. Click the pick from Assemblies link, then click System.Windows.Forms.dll and select System.Windows.Forms 
from the namespaces list.

Running the code creates a Windows form. When you move your mouse over the form, LINQPad will show the 
co-ordinates of the mouse pointer whenever it crosses the form’s bisector—a slanted line running from upper left to 
bottom right.

Figure B-9 shows some typical output.

Figure B-9. Points where the mouse crossed the form’s bisector

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

220

Again, this is an example best shown through video. I recorded my experiment with LINQPad for this example 
and posted it at https://www.youtube.com/watch?v=4FTkRF7aYLo. If you’re not running the example, the video will 
be helpful. Observables are generated, so there is a very real sense of time involved, and the concepts are difficult to 
grasp solely by reading.

Subscribe
The Subscribe method subscribes to an event. Subscribe requires at least one parameter to print the result generated 
from the Observable collection. You will find examples of this method used later in this chapter.

Combining Observable Collections 
In real-life applications, you often get Observable collections from more than one source and need to combine them 
to get a single Observable collection. Fortunately, there are several useful extension methods to do just that:

•	 Concat

•	 Merge

•	 Amb

•	 Zip

Concat
Concat plugs in two or more Observables, one after the other.

The image in Figure B-10 is a marble diagram showing how Concat works. A marble diagram shows the values 
from several Observables as colored marbles.

Figure B-10. Marble digram for Concat

www.it-ebooks.info

https://www.youtube.com/watch?v=4FTkRF7aYLo
http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

221

Paste the following code into LINQPad to see how Concat works:
 
var range1 = Observable.Range(11,5).Select(x => (long)x);
var inte1 = Observable.Interval(TimeSpan.FromSeconds(.5)).Take(5);
 
range1.Concat(inte1).Dump();
 

Running this code produces the output shown in Figure B-11

Figure B-11. A Concat result.

Figure B-12. Marble diagram for the Merge method

Merge 
The Merge method combines two Observable collections as depicted in the marble diagram in Figure B-12 The X in 
the first line represents an exception; in other words, the first Observable collection threw an exception.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

222

Add the following code to LINQPad in a new tab and change the Language drop-down to C# Program.
 
void Main()
{
        var slow = GetSomeTokens().ToObservable();
        var fast = GetSomeTokensFast().ToObservable();
        Observable.Merge(slow,fast).Dump();
}
public IEnumerable<string> GetSomeTokensFast()
{
        string[] names = {"A","B","C","D","E","F","G"};
        for(int i = 0;i<names.Length;i++)
        {
                Thread.Sleep(new Random().Next(500));
                yield return names[i];
        }
}
 
 
public IEnumerable<string> GetSomeTokens()
{
        string[] names = {"Af","fB","fD","fE","fF","fG"};
        for(int i = 0;i<names.Length;i++)
        {
                Thread.Sleep(new Random().Next(1000));
                yield return names[i];
        }
}
 

This generates the output you would expect, as shown in Figure B-13.

Figure B-13. The result of Merge

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

223

Amb
The Amb method lets you pick the Observable that reacts faster and completely ignores the other sources. Amb is short 
for ambiguous. As shown in Figure B-14, this method can generate a different result each time it is used.

Figure B-14. Marble diagram for Amb

Figure B-15. The output from Amb()

To explore how Amb works, just change the method in the preceding example from Merge to Amb. You will get the 
output shown in Figure B-15.

Zip
The Zip() method works the same as it does for Enumerables. The example used for Amb and Merge is just as useful for 
showing how Zip works. Just change the call in the first line to use Zip rather than Merge or Amb:
 
Observable.Zip(slow,fast).Dump();
 

Note that the Zip operation yields a value at each index only after the slowest Observable is done churning out 
the values.

Zip generates the output shown in Figure B-16.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

224

Here is a common scenario in which you might want to use Zip. Let’s say you have two servers that are sending 
e-book prices. You want to show readers the cheapest price. Typically, you would have to wait until both servers have 
sent all the data, so it’s quite difficult to do traditionally.

Here’s a simulation of this example. Paste the following code into LINQPad as a new C# statement query:
 
var ebookPricesOne = Observable.Interval(TimeSpan.FromSeconds(1))
                      .Select( x => new Random().NextDouble()*10)
                      .Take(4);
var ebookPricesTwo = Observable.Interval(TimeSpan.FromSeconds(.5))
                      .Select( x => new Random().NextDouble()*10)
                      .Take(4);
 
ebookPricesOne.Dump("First Service");
ebookPricesTwo.Dump("Second Service");
 
Observable.Zip(ebookPricesOne, ebookPricesTwo)
          .Select(x => x.First() <= x.Last ( )? x.First ():x.Last ( ))
          .Dump("Cheapest e-book prices");
 

Running this code will produce a result similar to that shown in Figure B-17. Every time you run it, the code 
generates a different output, because it works with random numbers. However the overall effect remains same.

Figure B-16. The result of Zip applied on two Observables

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

225

Partitioning Observables 
Streaming data is generally serviced with multiple servers. However, generating data load for all these servers can 
be difficult. In other words, generating the right amount of data for each buffer for sending it to the assigned server 
can be difficult. Buffer and Window are the two functions that help make this easy. They are conceptually similar, but 
Buffer returns an IObservable<IList<T>> while Window returns an IObservable<IObservable<T>>.

Window
Window returns several windows with nonoverlapping values from the source collection:
 
var times = Observable.Interval(TimeSpan.FromSeconds(2))
                      .Take(10);
times.Window(2).Dump();
 

The output of this code is shown in Figure B-18.

Figure B-17. The result of Zip() to find out the cheapest e-book price

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

226

As you can see, these sliced/buffered data values can now be passed to several servers for further processing.

Time-Tagging Observables 
Sometimes it is important to know the timestamp of data as it arrives in the form of an Observable. Also it is important 
to know how long it took for the generator sending the Observable to generate each set of values. The methods 
described in the following sections help to do that.

Timestamp
The Timestamp method adds a timestamp for each generated value:
 
var slow = Observable.Interval(TimeSpan.FromSeconds(2)).Take(10);
slow
      .Timestamp()//Adds a timestamp value for each generated value
      .Dump();
 

This code generates the output shown in Figure B-19.

Figure B-18. The result of Window

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

227

TimeInterval 
TimeInterval shows the time between two generated values in an Observable.

The example from the Timestamp section works fine—just change the method call to TimeInterval. The output  
I got is shown in Figure B-20; your results will be different.

Figure B-19. The values and their associated timestamps

Figure B-20. Showing results of TimeInterval

These two methods can be handy. Imagine that you are using Rx.NET for processing orders that are being 
received from a website and you see a surge of orders coming in a surprisingly fast time interval. That’s a sign of a 
fraudulent transaction. Maybe your customer’s account is compromised. A technology called anomaly detection, 
in simple terms, finds the “odd one out.” Using the output from Figure B-20, you can run anomaly detection to find 
fraudulent transactions or faulty products.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

228

Rx.NET Showcase 
Rx can be used for a whole array of problems where the data is streaming. It is being made available on several 
frameworks; for example, Windows Phone 7.1 has it.

This section contains three examples that I think capture the beauty and power that Rx brings to event-stream 
processing.

Creating a Signature Capture Screen 
This example is a small Windows application for capturing signatures. Here’s the scenario. Courier companies want to 
get digital signatures from their customers, who—in the real world—use a stylus to write on a screen. This simulation 
replaces the stylus with the mouse for convenience.

Create a new LINQPad tab and add the following code:
 
Form sigCapture = new Form();
List<System.Drawing.Point> points = new List<System.Drawing.Point>();
bool draw = false;
sigCapture.Show();
var moves = Observable.FromEventPattern<MouseEventArgs>
                    (sigCapture,"MouseMove")
                    .Select(x => x.EventArgs);
var mouseDowns = Observable.FromEventPattern<MouseEventArgs>
                    (sigCapture,"MouseDown")
                    .Select(x => x.EventArgs);
var mouseUps = Observable.FromEventPattern<MouseEventArgs>
                    (sigCapture,"MouseUp")
                    .Select(x => x.EventArgs);
mouseDowns.Subscribe( x => { draw = true; });
mouseUps.Subscribe( x => { draw = false; });
moves.Subscribe(p =>
      {
                  points.Add(p.Location);
                  if(points.Count >= 2 && draw)
                  {
                           sigCapture.CreateGraphics()
                                   .DrawLine(new System.Drawing.Pen(
                                       System.Drawing.Color.Purple,5.7f),
                        points[points.Count - 2],
                        points[points.Count - 1]);
                 }
        });
 

This code creates a Windows form that you can draw on with the mouse. When you click the form, the flag Draw becomes  
true, and subsequent mouse movements draw a line. The video at https://www.youtube.com/watch?v=KV4r_gyg424  
shows me signing the form. That’s not my official signature! For an exercise, try adding functionality to save the signature 
and redraw it.

The code is simple. As the user moves the mouse over the form, the event stream generates data; and thus the 
mouse points get added to the points collection. As soon as there are two or more points in the points collection, the 
example uses GDI to draw a line between the last two points collected. This example uses GDI to draw a line.

www.it-ebooks.info

https://www.youtube.com/watch?v=KV4r_gyg424
http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

229

However, you don’t always want to draw a line whenever the user moves the mouse. There has to be a notion 
of “pen down” or “pen up.” The draw flag fulfills that purpose. On MouseDown, the flag is set to true, and on MouseUp 
it’s set to false. That way, whenever the users presses the mouse button and moves it, the example draws a line (or 
rather, multiple lines, one after the other), much like Microsoft Paint.

Live File System Watcher
By watching events on file systems, a system administrator can create a live dashboard that reflects file events 
happening in that directory.

For example let’s say you want to know whenever a file is created, deleted, changed, or renamed in a given 
directory. Using Rx, you can do this very easily.

Here is the complete code. Paste this in LINQPad and set the Language drop-down to C# Statements. Provide the 
path to a folder that you want to monitor.
 
System.IO.FileSystemWatcher w = new
//Set the folder you want to monitor.
System.IO.FileSystemWatcher("C:\\Apress");
             
//start the File System Watcher to watch events
w.EnableRaisingEvents = true;
//Find the files that have been created
var fileCreated = Observable
      .FromEventPattern<FileSystemEventArgs>(w, "Created")
      .Select(z =>
             {
              var file = new FileInfo(z.EventArgs.FullPath);
              return new
              {
                          FullPath = z.EventArgs.FullPath,
                          Created = z.EventArgs.ChangeType,
                          Name = z.EventArgs.Name,
                          DirectoryName = file.DirectoryName
              };
           });
//Find the files that have been changed.
var fileChanged = Observable
                  .FromEventPattern<FileSystemEventArgs>(w, "Changed")
                  .Select(z =>
                        new {
                          FullPath = z.EventArgs.FullPath,
                          ChangeType = z.EventArgs.ChangeType
                         });
 
//Find the files that have been renamed
var fileRenamed = Observable
                .FromEventPattern<RenamedEventArgs>(w, "Renamed")
                .Select(z => new

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B ■ TAming STreAming dATA wiTh rx.neT

230

                 {
                    OldFullPath = z.EventArgs.OldFullPath,
                    NewPath = z.EventArgs.FullPath,
                    ChangeType = z.EventArgs.ChangeType
                 });
fileCreated.Dump("Created");
fileRenamed.Dump("Renamed");
fileChanged.Dump("Changed");
 

When you run this, you will see how the data gets surfaced as you create, rename, or change files in the specified 
directory.

Summary
Be warned! Rx.NET is not a replacement for the existing .NET eventing system. You should use Rx.NET only when 
you want to pass around the event arguments and process them in some way using the composable nature of LINQ 
and related frameworks. I hope you have already started thinking of how Rx.NET can help rewire some of your 
legacy code.

www.it-ebooks.info

http://www.it-ebooks.info/


A, B���������
Aggregate() function, 58
Aggregate operator, 104
All operator, 91, 102
allResponses.Skip(e*questions.Length).  

Take(questions.Length), 172
Anonymous function, 168
Any operator, 91
Armstrong numbers, 31

extension methods, 124
mathematical vocabulary, 133
methods, 128
NUnit framework, 129
statements, 137
vocabulary, 124

AsOrdered() operator, 106, 108
AsParallel() operator, 106, 108

C���������
Cast operator, 103–104
Code-to-comment ratio, 156
Collections

minimum/maximum value, 28
nth element, 27

Composite functions, 1
Concat operator, 101
Contains(), 206
[Count-1], 207
Count property, 206

D���������
Data analysis, 165

baby names, 172
baby boy names, 174
baby name popularity, 175
data-visualization engine, 175

decreasing popularity, 174
JSON format, 175
name popularity, 173
popularity boy names, 176
popularity girl names, 176

CSV
allResponses.Skip(e*questions.Length).

Take(questions.Length), 172
Excel, 172
file format, 171–172

JQuery Git log
chart title and axis titles, 184
JQuery commit pattern, 184
JQuery project, 183
leaderboard, 180–181
monitoring commits, 182–183

machine learning
distance method, 193
LINQPad, 191–192

movieRatings, 184
genre preferences, 188–189, 191
Movie Categories, 185–186
moviesPerCategory, 187
SPercentage, 187

stock values
historical stock values, 177–178
stock prices, 179
tuple creation, 179

titanic survivors dataset, 165
age range, 169
anonymous function, 170
passenger  

survival rates, 166–167
range groups, 169
survivor percentage, 167

Dictionaries, 207
Distance function (), 193
DistinctBy() operator, 97
Distinct operator, 97

Index

231

www.it-ebooks.info

http://www.it-ebooks.info/


Domain-specific language (DSL), 123
Armstrong numbers, 124

extension methods, 124
mathematical vocabulary, 133
methods, 128
NUnit framework, 129
statements, 137
vocabulary, 124

Cube() methods, 124
Digits() methods, 124

Dudeney number, 31–33

E���������
edits1() method, 57
ElementAt(), 207
Exception handling, 207
Except operator, 100

F���������
Factorial, 31–33
Fibonacci series, 18, 23
File system

CSV files, 195
dead files, 203
directory, 197
downloaded files, 201
exact-duplicate files, 200
file duplication, 199
file modification,  

date/time range, 202
LINUX, 197

Filters, 3
F# Operators, 139

code implementation, 140
ForEach operator, 146
Iteration() operator, 146
Pairwise() operator, 146
Partition() operators, 146

ForEach(Action<T>), 208
Functional programming

benefits of
composability, 4
declarative, 5
immutability, 4
lazy evaluation, 4
parallelizable, 4

composite, 1
definition, 1
filters, 3
Func<> class, 2
generator, 3
LINQPad, 5

projector, 3
statistical, 3
types of, 2

Function overloading, 152
LINQPad query, 153
SelectMany() function, 154
Where() clause, 154

G, H���������
Game design, Tic-Tac-Toe Board.  

See Tic-Tac-Toe Board game
Generator function, 3
GetBody() method, 196

I, J���������
IEnumerable<T>, 208
Inheritance relationships, 161–162
Intersect operator, 99
IsComment, 157

K���������
Koch curve, 20

L���������
Lambda function, 104
Lindenmayer system grammar

coding implementation,  
algae grows, 17–18

definition, 17
LINQ, 89

Aggregate operator, 104
All operator, 91
Any operator, 91
AsParallel() and AsOrdered() operators, 106
Cast operator, 103
Concat operator, 101
Distinct operator, 97
Except operator, 100
Intersect operator, 99
LINQ operators, 89

initialization, condition, and loop  
variable-state-change handler, 90

LINQ Query, 90
Nested loops, 105
OfType operator, 103
OrderBy and OrderByDescending Operators, 96
SequenceEqual operator, 101
Skip operator, 92
SkipWhile Operator, 94
Take operator, 92

■ index

232

www.it-ebooks.info

http://www.it-ebooks.info/


TakeWhile Operator, 93
Union operator, 98
Where Operator, 95
Zip Operator, 95

LINQPad query tab, 182
LINQPad tab, 173
LINQ script, 151

generating documentation
getter and setter methods, 160–161
LINQPad query tab, 159–160
XML file, 159

methods, 162–163
LINQ syntax, 92
LongestCommonSubsequence() method, 53
L-system grammar.  

See Lindenmayer system grammar

M���������
Math and statistics

cumulative sum, 16
dominator, 12
dot product of two vectors, 7
minimum currency  

bill count query, 13–14
moving average, 14–15
percentile

code creation, 11
definition, 10
student rank, 11–12

Pythagorean triples
definition, 8
formula, 8
properties of, anonymous type, 9

weighted sum finding, 9
Miscellaneous series

FizzBuzz problem
set theory, 46
with LINQ, 44

lookup-based approach, 42
unsorted collections, 41–42

MoreLINQ
Cartesian operator, 115
ForEach operator, 121
Index operator, 118
Interleave operator, 111
MinBy/MaxBy operator, 122
PairWise operator, 119
Partition operator, 116
Scan operator, 109
Slice operator, 110
Windowed operator, 113

MoveNext() method, 213
Multiple Where clauses, 205

N���������
Namespace

definition, 154
LINQPad coding, 154–155
SelectMany(), 155
ToLookup(), 155

.NET 3.5 framework,LINQ
public types, size of, 158
verbose type names, 151

NGrams() method, 75
Number theory

Armstrong number, 31
Pascal’s triangle, 34

O���������
OfType operator, 103
OrderBy and OrderByDescending operator, 96
OrderByDescending() method, 206
OrderBy() method, 73, 206

P, Q���������
Parallel LINQ (PLINQ), 89
Pascal’s triangle, 34
Permutations, 24
Projector functions, 3
Pythagorean triples

definition, 8
formula, 8
properties of, anonymous type, 9

R���������
Recurrence relations

code implementation, 147
memoization, 146
Startwith() method, 149
ThenFollow() method, 149

Recursive series and patterns
Fibonacci series, 18, 23
Lindenmayer system grammar

coding implementation, algae grows, 17–18
definition, 17

Logo commands
Koch curve, 20
Sierpinski triangle, 21

permutations, 24
power set, 26

Reverse() function, 58
Rx.NET

characteristics, 211
file system watcher, 229

■ index

233

www.it-ebooks.info

http://www.it-ebooks.info/


interactive and reactive model, 212
interfaces, 213

MoveNext() method, 213
OnNext(), OnCompleted(),  

and OnError() methods, 213
LINQPad

drop-down value, 215
Dump() method, 215
feature, 213, 215
namespaces, 214

observables
Amb method, 223
Concat plugs, 220
Generate method, 217
Interval() method, 217
Merge method, 221
.NET events, 219
Never method, 217
Range() method, 216
Repeat method, 217
Subscribe method, 220
TimeInterval method, 227
Timestamp method, 226
ToObservable method, 219
Window, 225
Zip() method, 223

push and pull operations, 212
signature capture screen, creation, 228

S���������
Select<T>(), 208
SelectMany() method, 179
SelectMany() operator, 105
Select() method, 168, 179
Select() or SelectMany() function, 57
SequenceEqual() operator, 60, 102
Sierpinski triangle, 21
Skip() method, 172, 177
Skip operator, 92
SkipWhile operator, 94
Statistical functions, 3
Substring() method, 187
Sum() method, 9
Sum-product number, 31–33

T���������
Take() method, 172
Take operator, 92
TakeUntil() and SkipUntil() operators, 94
TakeWhile operator, 93–94

Text processing, 49
anagrams

character histogram, 60, 62
phrase1.ToCharArray(), 60
sorting characters, 61
ToLookup() operator, 61

automatic syntax highlighting, 63
edits1() method, 64
langKeywords, 65
Python code, 64
sample code, 65

99 Bottles of Beer, 84
comma-quibbling problem

Eric Lippert’s output, 72
Eric’s blog, 71
IEnumerable<string>, 72

comma-quibbling problem, 71
fly formatting

insertCharMap, 71
values, 70

gesture keyboard
edits1() method, 57
keyboard input, 54
methods and classes, 54
spelling correction, 55–56
string-processing algorithm, 53
suggestions/predictions, 54
Swype app, 53

identifying abbreviations, 85
expanded forms, 86
IEnumerable<KeyValuePair<int,int>>, 86

line-wrapping algorithm, 82
random serials

characters and numbers, 73
OrderBy() method, 73

scrabble cheater, 75
character histogram, 77
lookup table, 78
ToLookup() method, 77

string generation, 74
Distinct() method, 75
NGrams() method, 75
string LINQ, 75

subsequences, 79
current and next  

index level, 81
ornamental and rental, 80

T9 Word Suggestion, 49
keystrokes, 51
key/value pairs, 52
numeric key, 51
one-to-one mapping, 52
T9 keypad, 50–51

■ index

234

Rx.NET (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/


word-ladder solver, 66–67
hamming distance, 68
ToLookup() operator, 68
Where() operator, 68

word triangle, 58
Aggregate() operator, 59
output, 59
word.Length, 59

Tic-Tac-Toe Board game
arithmetic progression (AP), 38
definition, 36
Go Figure puzzle, 38
Skip(), 38
Take(), 38
winning paths, 37

Tips for tuning queries, LINQ, 205
Contains(), 206
[Count-1], 207
Count property, 206, 209
dictionaries, 207
ElementAt(), 207
exception handling, 207
FirstOrDefault, 209
ForEach(Action<T>), 208
home-grown mathematical routines, 208
IEnumerable<T>, 208
multiple Where clauses, 205

OrderBy() method, 206
Select<T>(), 208
straight for loop, 209
ToArray(), 205
ToList(), 205
TrueForAll() method, 206

ToDictionary() method, 77
ToDictionary() operator, 62
ToDictionary() transforms, 170
ToList() function, 93
ToLookup (n => n.Name), 177
TrueForAll() method, 206

U, V���������
Union operator, 98
United Nations (UN), 85

W, X, Y���������
Where operator, 95

Z���������
Zip() function, 30
Zip() method, 9
Zip operator, 95

■ index

235

www.it-ebooks.info

http://www.it-ebooks.info/


Thinking in LINQ
Harnessing the Power of Functional 
Programming in .NET Applications

Sudipta Mukherjee

www.it-ebooks.info

http://www.it-ebooks.info/


Thinking in LINQ: Harnessing the power of functional programing in .NET applications

Copyright © 2014 by Sudipta Mukherjee

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. 
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material 
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the 
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from 
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are 
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6845-1

ISBN-13 (electronic): 978-1-4302-6844-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. 

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Development Editors: Russell Jones
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf, Jonathan Gennick, 

Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,  
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global 
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or  
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer 
Science+Business Media Finance Inc. (SSBM Finance Inc.). SSBM Finance Inc. is a Delaware corporation. 

For information on translations, please e-mail rights rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook 
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at  
www.apress.com. For detailed information about how to locate your book’s source code, go to  
www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/


Sohan, this is for you, my son. You have been my inspiration.

www.it-ebooks.info

http://www.it-ebooks.info/


vii

Contents

About the Author �������������������������������������������������������������������������������������������������������������� xxv

About the Technical Reviewer ���������������������������������������������������������������������������������������� xxvii

Acknowledgments ����������������������������������������������������������������������������������������������������������� xxix

Introduction ��������������������������������������������������������������������������������������������������������������������� xxxi

Chapter 1: Thinking Functionally  ■  ��������������������������������������������������������������������������������������1

1-1. Understanding Functional Programming ...............................................................................1

1-2. Using Func<> in C# to Represent Functions  ........................................................................2

1-3. Using Various Types of Functions  ..........................................................................................2

Generator Functions  ............................................................................................................................................. 3

Statistical Functions .............................................................................................................................................. 3

Projector Functions................................................................................................................................................ 3

Filters  .................................................................................................................................................................... 3

1-4. Understanding the Benefits of Functional Programming .......................................................4

Composability  ....................................................................................................................................................... 4

Lazy Evaluation  ..................................................................................................................................................... 4

Immutability ........................................................................................................................................................... 4

Parallelizable ......................................................................................................................................................... 4

Declarative ............................................................................................................................................................. 5

1-5. Getting LINQPad  ....................................................................................................................5

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

viii

Chapter 2: Series Generation ■  ���������������������������������������������������������������������������������������������7

2-1. Math and Statistics: Finding the Dot Product of Two Vectors ................................................7

Problem ................................................................................................................................................................. 7

Solution.................................................................................................................................................................. 7

How It Works .......................................................................................................................................................... 8

2-2. Math and Statistics: Generating Pythagorean Triples ............................................................8

Problem ................................................................................................................................................................. 8

Solution.................................................................................................................................................................. 8

How It Works .......................................................................................................................................................... 9

2-3. Math and Statistics: Finding a Weighted Sum .......................................................................9

Problem ................................................................................................................................................................. 9

Solution.................................................................................................................................................................. 9

How It Works ........................................................................................................................................................ 10

2-4. Math and Statistics: Finding the Percentile for Each Element in an Array of Numbers .......10

Problem ............................................................................................................................................................... 10

Solution................................................................................................................................................................ 10

How It Works ........................................................................................................................................................ 12

2-5. Math and Statistics: Finding the Dominator in an Array ......................................................12

Problem ............................................................................................................................................................... 12

Solution................................................................................................................................................................ 12

How It Works ........................................................................................................................................................ 13

2-6.  Math and Statistics: Finding the Minimum Number of Currency Bills Required for  
a Given Amount ....................................................................................................................13

Problem ............................................................................................................................................................... 13

Solution................................................................................................................................................................ 13

How It Works ........................................................................................................................................................ 14

2-7. Math and Statistics: Finding Moving Averages ....................................................................14

Problem ............................................................................................................................................................... 14

Solution................................................................................................................................................................ 15

How It Works ........................................................................................................................................................ 15

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

ix

2-8. Math and Statistics: Finding a Cumulative Sum ..................................................................16

Problem ............................................................................................................................................................... 16

Solution................................................................................................................................................................ 16

How It Works ........................................................................................................................................................ 17

2-9.  Recursive Series and Patterns: Generating Recursive Structures by Using  
L-System Grammar ..............................................................................................................17

Problem ............................................................................................................................................................... 17

Solution................................................................................................................................................................ 17

How It Works ........................................................................................................................................................ 18

2-10. Recursive Series and Patterns Step-by-Step Growth of Algae ..........................................18

Problem ............................................................................................................................................................... 18

Solution................................................................................................................................................................ 18

How It Works ........................................................................................................................................................ 19

2-11. Recursive Series and Patterns: Generating Logo Commands to Draw a Koch Curve ........20

Problem ............................................................................................................................................................... 20

Solution................................................................................................................................................................ 20

How It Works ........................................................................................................................................................ 21

2-12.  Recursive Series and Patterns: Generating Logo Commands to Draw a  
Sierpinski Triangle .............................................................................................................21

Problem ............................................................................................................................................................... 22

Solution................................................................................................................................................................ 22

How It Works ........................................................................................................................................................ 22

2-13.  Recursive Series and Patterns: Generating Fibonacci Numbers Nonrecursively  
(Much Faster) .....................................................................................................................23

Problem ............................................................................................................................................................... 23

Solution................................................................................................................................................................ 23

How It Works ........................................................................................................................................................ 24

2-14. Recursive Series and Patterns: Generating Permutations .................................................24

Problem ............................................................................................................................................................... 24

Solution................................................................................................................................................................ 24

How It Works ........................................................................................................................................................ 25

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

x

2-15. Recursive Series and Patterns: Generating a Power Set of a Given Set ............................26

Problem ............................................................................................................................................................... 26

Solution................................................................................................................................................................ 26

How It Works ........................................................................................................................................................ 27

2-16. Collections: Picking Every n th Element .............................................................................27

Problem ............................................................................................................................................................... 27

Solution................................................................................................................................................................ 27

How It Works ........................................................................................................................................................ 28

2-17. Collections: Finding the Larger or Smaller of Several Sequences at Each Index ...............28

Problem ............................................................................................................................................................... 28

Solution................................................................................................................................................................ 28

How It Works ........................................................................................................................................................ 30

2-18. Number Theory: Generating Armstrong Numbers and Similar Number Sequences ..........31

Problem ............................................................................................................................................................... 31

Solution................................................................................................................................................................ 31

How It Works ........................................................................................................................................................ 33

2-19. Number Theory: Generating Pascal’s Triangle Nonrecursively  ..........................................34

Problem ............................................................................................................................................................... 34

Solution................................................................................................................................................................ 35

How It Works ........................................................................................................................................................ 36

2-20. Game Design: Finding All Winning Paths in an Arbitrary Tic-Tac-Toe Board ......................36

Problem ............................................................................................................................................................... 36

Solution................................................................................................................................................................ 37

How It Works ........................................................................................................................................................ 38

2-21. Series in Game Design: Solving Go Figure .........................................................................38

Problem ............................................................................................................................................................... 38

Solution................................................................................................................................................................ 39

How It Works ........................................................................................................................................................ 40

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xi

2-22. Miscellaneous Series: Finding Matching Pairs from Two Unsorted Collections .................41

Problem ............................................................................................................................................................... 41

Solution................................................................................................................................................................ 41

How It Works ........................................................................................................................................................ 42

2-23. Miscellaneous Series: Using a Lookup-Based Approach ...................................................42

Problem ............................................................................................................................................................... 43

Solution................................................................................................................................................................ 43

How It Works ........................................................................................................................................................ 43

2-24. Miscellaneous Series: Solving the FizzBuzz Challenge in a LINQ One-Liner .....................44

Problem ............................................................................................................................................................... 44

Solution................................................................................................................................................................ 45

How It Works ........................................................................................................................................................ 46

2-25. Miscellaneous Series: Solving the FizzBuzz Challenge by Using Set Theory .....................46

Problem ............................................................................................................................................................... 46

Solution................................................................................................................................................................ 46

How It Works ........................................................................................................................................................ 47

Summary .....................................................................................................................................48

Chapter 3: Text Processing ■  ����������������������������������������������������������������������������������������������49

3-1. Simulating a T9 Word Suggestion  .......................................................................................49

Problem ............................................................................................................................................................... 50

Solution................................................................................................................................................................ 50

How It Works ........................................................................................................................................................ 51

3-2. Simulating a Gesture Keyboard   .........................................................................................53

Problem ............................................................................................................................................................... 53

Solution................................................................................................................................................................ 53

How It Works ........................................................................................................................................................ 54

3-3. Cloning Peter Norvig’s Spelling-Correction Algorithm   .......................................................54

Problem ............................................................................................................................................................... 55

Solution................................................................................................................................................................ 55

How It Works ........................................................................................................................................................ 57

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xii

3-4. Reversing a Sentence Word by Word  ..................................................................................57

Problem ............................................................................................................................................................... 57

Solution................................................................................................................................................................ 57

How It Works ........................................................................................................................................................ 58

3-5. Creating a Word Triangle  .....................................................................................................58

Problem ............................................................................................................................................................... 58

Solution ............................................................................................................................................................... 58

How It Works ........................................................................................................................................................ 59

3-6. Finding Anagrams ................................................................................................................59

Problem ............................................................................................................................................................... 59

Solution................................................................................................................................................................ 59

How It Works ........................................................................................................................................................ 60

3-7. Checking for Anagrams Without Sorting Characters ............................................................60

Problem  .............................................................................................................................................................. 60

Solution................................................................................................................................................................ 60

How It Works ........................................................................................................................................................ 61

3-8.  Creating a Rudimentary Programming Language Identifier and Automatic  
Syntax Highlighter ...............................................................................................................62

Problem  .............................................................................................................................................................. 62

Solution................................................................................................................................................................ 62

How It Works ........................................................................................................................................................ 64

3-9. Creating a Word-Ladder Solver  ...........................................................................................66

Problem ............................................................................................................................................................... 66

Solution................................................................................................................................................................ 66

How It Works ........................................................................................................................................................ 68

3-10. Formatting on the Fly  ........................................................................................................69

Problem  .............................................................................................................................................................. 69

Solution................................................................................................................................................................ 70

How It Works  ....................................................................................................................................................... 71

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xiii

3-11. Solving Eric Lippert’s Comma-Quibbling Problem  ............................................................71

Problem ............................................................................................................................................................... 72

Solution................................................................................................................................................................ 72

How It Works ........................................................................................................................................................ 72

3-12. Generating Random Serials  ..............................................................................................72

Problem ............................................................................................................................................................... 72

Solution................................................................................................................................................................ 73

How It Works ........................................................................................................................................................ 73

3-13. Generating All Substrings of a Given String .......................................................................74

Problem ............................................................................................................................................................... 74

Solution................................................................................................................................................................ 74

How It Works ........................................................................................................................................................ 75

3-14. Creating a Scrabble Cheater  .............................................................................................75

Problem ............................................................................................................................................................... 75

Solution................................................................................................................................................................ 75

How It Works ........................................................................................................................................................ 77

3-15. Finding All the Subsequences of a Given String ................................................................79

Problem ............................................................................................................................................................... 79

Solution................................................................................................................................................................ 79

How It Works ........................................................................................................................................................ 80

3-16. Squeezing a Paragraph to Fill Tightly ................................................................................82

Problem ............................................................................................................................................................... 82

Solution................................................................................................................................................................ 82

How It Works ........................................................................................................................................................ 83

3-17. Printing the Lines of a Song ...............................................................................................83

Problem ............................................................................................................................................................... 83

Solution................................................................................................................................................................ 84

How It Works ........................................................................................................................................................ 85

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xiv

3-18. Mining Abbreviations and Full Forms from News Articles .................................................85

Problem ............................................................................................................................................................... 85

Solution................................................................................................................................................................ 85

How It Works ........................................................................................................................................................ 86

Summary .....................................................................................................................................87

Chapter 4: Refactoring with LINQ ■  ������������������������������������������������������������������������������������89

4-1. Replacing Loops by Using LINQ Operators ...........................................................................89

A General Strategy to Transform a Loop to a LINQ Query .................................................................................... 90

4-2. The Any Operator .................................................................................................................91

Problem ............................................................................................................................................................... 91

Solution................................................................................................................................................................ 91

How It Works ........................................................................................................................................................ 91

4-3. The All Operator ...................................................................................................................91

Problem ............................................................................................................................................................... 91

Solution................................................................................................................................................................ 91

How It Works ........................................................................................................................................................ 91

4-4. The Take Operator  ...............................................................................................................92

Problem ............................................................................................................................................................... 92

Solution................................................................................................................................................................ 92

How It Works ........................................................................................................................................................ 92

4-5. The Skip Operator  ...............................................................................................................92

Problem ............................................................................................................................................................... 92

Solution................................................................................................................................................................ 93

How It Works ........................................................................................................................................................ 93

4-6. The TakeWhile Operator .......................................................................................................93

Problem ............................................................................................................................................................... 93

Solution................................................................................................................................................................ 93

How It Works ........................................................................................................................................................ 93

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xv

4-7. The SkipWhile Operator .......................................................................................................94

Problem ............................................................................................................................................................... 94

Solution................................................................................................................................................................ 94

How It Works ........................................................................................................................................................ 94

4-8. The Where Operator .............................................................................................................95

Problem ............................................................................................................................................................... 95

Solution................................................................................................................................................................ 95

How It Works ........................................................................................................................................................ 95

4-9. The Zip Operator ..................................................................................................................95

Problem ............................................................................................................................................................... 95

Solution................................................................................................................................................................ 95

How It Works ........................................................................................................................................................ 96

4-10. OrderBy and OrderByDescending Operators ......................................................................96

Problem ............................................................................................................................................................... 96

Solution................................................................................................................................................................ 96

How It Works ........................................................................................................................................................ 97

4-11. The Distinct Operator .........................................................................................................97

Problem ............................................................................................................................................................... 97

Solution................................................................................................................................................................ 97

How It Works ........................................................................................................................................................ 97

4-12. The Union Operator ............................................................................................................98

Problem ............................................................................................................................................................... 98

Solution................................................................................................................................................................ 98

How It Works ........................................................................................................................................................ 98

4-13. The Intersect Operator .......................................................................................................99

Problem ............................................................................................................................................................... 99

Solution................................................................................................................................................................ 99

How It Works ........................................................................................................................................................ 99

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xvi

4-14. The Except Operator ........................................................................................................100

Problem ............................................................................................................................................................. 100

Solution.............................................................................................................................................................. 100

How It Works ...................................................................................................................................................... 100

4-15. The Concat Operator ........................................................................................................101

Problem ............................................................................................................................................................. 101

Solution.............................................................................................................................................................. 101

How It Works ...................................................................................................................................................... 101

4-16. The SequenceEqual Operator...........................................................................................101

Problem ............................................................................................................................................................. 101

Solution.............................................................................................................................................................. 101

How It Works ...................................................................................................................................................... 102

4-17. The Of Type Operator ........................................................................................................103

Problem  ............................................................................................................................................................ 103

Solution.............................................................................................................................................................. 103

How It Works ...................................................................................................................................................... 103

4-18. The Cast Operator ............................................................................................................103

Problem  ............................................................................................................................................................ 103

Solution.............................................................................................................................................................. 103

How It Works ...................................................................................................................................................... 103

4-19. The Aggregate Operator ...................................................................................................104

Problem  ............................................................................................................................................................ 104

Solution.............................................................................................................................................................. 104

How It Works ...................................................................................................................................................... 104

4-20. Replacing Nested Loops  .................................................................................................105

The SelectMany Operator .................................................................................................................................. 105

Removing Nested Loops by Using SelectMany .................................................................................................. 105

Replacing If-Else Blocks Inside a Loop .............................................................................................................. 106

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xvii

4-21. Running Code in Parallel Using AsParallel( ) and AsOrdered( ) Operators  ........................106

Problem ............................................................................................................................................................. 107

Solution.............................................................................................................................................................. 107

How It Works ...................................................................................................................................................... 108

Summary ...................................................................................................................................108

Chapter 5: Refactoring with MoreLINQ ■  ��������������������������������������������������������������������������109

5-1. Getting MoreLINQ ...............................................................................................................109

5-2. Using the Scan Operator  ...................................................................................................109

Problem ............................................................................................................................................................. 109

Solution ............................................................................................................................................................. 109

How It Works  ..................................................................................................................................................... 110

5-3. Using the Slice Operator  ...................................................................................................110

Problem ............................................................................................................................................................. 110

Solution ............................................................................................................................................................. 110

How It Works ...................................................................................................................................................... 111

5-4. Using the Interleave Operator ............................................................................................111

Problem ............................................................................................................................................................. 111

Solution.............................................................................................................................................................. 111

How It Works ...................................................................................................................................................... 112

5-5. Using the Windowed Operator ...........................................................................................113

Problem  ............................................................................................................................................................ 113

Solution.............................................................................................................................................................. 113

How It Works ...................................................................................................................................................... 114

5-6. Using the Cartesian Operator .............................................................................................115

Problem ............................................................................................................................................................. 115

Solution.............................................................................................................................................................. 115

How It Works  ..................................................................................................................................................... 115

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xviii

5-7. Using the Partition Operator ..............................................................................................116

Problem ............................................................................................................................................................. 116

Solution ............................................................................................................................................................. 117

How It Works ...................................................................................................................................................... 118

5-8. Using the Index Operator  ..................................................................................................118

Problem ............................................................................................................................................................. 118

Solution.............................................................................................................................................................. 119

How It Works ...................................................................................................................................................... 119

5-9. Using the PairWise Operator ..............................................................................................119

Problem ............................................................................................................................................................. 119

Solution.............................................................................................................................................................. 120

How It Works ...................................................................................................................................................... 120

5-10. The ForEach Operator ......................................................................................................121

Problem ............................................................................................................................................................. 121

Solution ............................................................................................................................................................. 121

How It Works  ..................................................................................................................................................... 121

5-11. Using the MinBy/MaxBy Operator  ...................................................................................122

Problem ............................................................................................................................................................. 122

Solution.............................................................................................................................................................. 122

How It Works ...................................................................................................................................................... 122

Summary ...................................................................................................................................122

Chapter 6: Creating Domain-Specific Languages ■  ����������������������������������������������������������123

6-1. Feel the Difference  ...........................................................................................................123

6-2. Creating a Simple DSL for Mathematicians  ......................................................................124

Problem ............................................................................................................................................................. 124

Solution.............................................................................................................................................................. 124

How It Works ...................................................................................................................................................... 128

6-3. Testing Armstrong by Using NUnit  ....................................................................................129

Problem ............................................................................................................................................................. 129

Solution ............................................................................................................................................................. 129

How It Works ...................................................................................................................................................... 133

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xix

6-4. Exposing Armstrong as an External DSL  ...........................................................................133

Problem ............................................................................................................................................................. 133

Solution.............................................................................................................................................................. 134

How It Works ...................................................................................................................................................... 139

6-5. Cloning Handy F# Functions by Using LINQ .......................................................................139

Problem ............................................................................................................................................................. 140

Solution.............................................................................................................................................................. 140

How It Works  ..................................................................................................................................................... 145

6-6. Lazily Generating Items from a Recurrence Relation  ........................................................146

Problem ............................................................................................................................................................. 146

Solution.............................................................................................................................................................. 147

How It Works  ..................................................................................................................................................... 149

Summary ...................................................................................................................................149

Chapter 7: Static Code Analysis ■  ������������������������������������������������������������������������������������151

7-1. Finding Verbose Type Names in the .NET 3.5 Framework..................................................151

Problem ............................................................................................................................................................. 151

Solution.............................................................................................................................................................. 151

How It Works ...................................................................................................................................................... 152

7-2. Finding the Number of Overloads for a Method .................................................................152

Problem ............................................................................................................................................................. 153

Solution.............................................................................................................................................................. 153

How It Works ...................................................................................................................................................... 154

7-3. Finding the Size of a Namespace ......................................................................................154

Problem ............................................................................................................................................................. 154

Solution.............................................................................................................................................................. 154

How It Works ...................................................................................................................................................... 155

7-4. Finding the Code-to-Comment (C# Style) Ratio .................................................................156

Problem ............................................................................................................................................................. 156

Solution.............................................................................................................................................................. 156

How It Works ...................................................................................................................................................... 157

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xx

7-5. Finding the Size of Types ...................................................................................................158

Problem ............................................................................................................................................................. 158

Solution.............................................................................................................................................................. 158

How It Works ...................................................................................................................................................... 159

7-6. Generating Documentation Automatically  .........................................................................159

Problem ............................................................................................................................................................. 159

Solution.............................................................................................................................................................. 159

How It Works ...................................................................................................................................................... 160

7-7. Finding Inheritance Relationships  ....................................................................................161

Problem ............................................................................................................................................................. 161

Solution.............................................................................................................................................................. 161

How It Works ...................................................................................................................................................... 162

7-8. Locating Complex Methods ...............................................................................................162

Problem ............................................................................................................................................................. 162

Solution.............................................................................................................................................................. 163

How It Works ...................................................................................................................................................... 164

Summary ...................................................................................................................................164

Chapter 8: Exploratory Data Analysis ■  ����������������������������������������������������������������������������165

8-1. Analyzing the Titanic Survivors Dataset  ............................................................................165

Problem ............................................................................................................................................................. 166

Solution ............................................................................................................................................................. 166

How It Works ...................................................................................................................................................... 167

Problem ............................................................................................................................................................. 168

Solution.............................................................................................................................................................. 168

How It Works ...................................................................................................................................................... 170

8-2. Converting SurveyMonkey Results to CSV .........................................................................170

Problem ............................................................................................................................................................. 170

Solution.............................................................................................................................................................. 170

How It Works ...................................................................................................................................................... 172

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xxi

8-3. Analyzing Trends in Baby Names  ......................................................................................172

Problem ............................................................................................................................................................. 173

Solution.............................................................................................................................................................. 173

How It Works ...................................................................................................................................................... 177

8-4. Analyzing Stock Values  .....................................................................................................177

Problem ............................................................................................................................................................. 177

Solution.............................................................................................................................................................. 177

How It Works ...................................................................................................................................................... 179

8-5. Analyzing Git Logs  .............................................................................................................179

Problem ............................................................................................................................................................. 180

Solution.............................................................................................................................................................. 180

How It Works ...................................................................................................................................................... 181

Problem ............................................................................................................................................................. 182

Solution.............................................................................................................................................................. 182

How It Works ...................................................................................................................................................... 184

8-6. Analyzing Movie Ratings   ..................................................................................................184

Problem ............................................................................................................................................................. 185

Solution.............................................................................................................................................................. 185

How It Works ...................................................................................................................................................... 187

8-7. Identifying Flowers by Using Machine Learning ................................................................191

Problem ............................................................................................................................................................. 191

Solution ............................................................................................................................................................. 191

How It Works ...................................................................................................................................................... 193

Summary ...................................................................................................................................193

Chapter 9: Interacting with the File System  ■  �����������������������������������������������������������������195

9-1. Comparing Two CSV Files ..................................................................................................195

Problem ............................................................................................................................................................. 195

Solution.............................................................................................................................................................. 195

How It Works ...................................................................................................................................................... 196

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xxii

9-2. Finding the Total File Size in a Directory ............................................................................197

Problem ............................................................................................................................................................. 197

Solution.............................................................................................................................................................. 197

How It Works ...................................................................................................................................................... 197

9-3. Cloning LINUX Head and Tail Commands ...........................................................................197

Problem ............................................................................................................................................................. 198

Solution.............................................................................................................................................................. 198

How It Works ...................................................................................................................................................... 199

9-4. Locating Files with the Same Name (Possible Duplicates) ................................................199

Problem ............................................................................................................................................................. 199

Solution.............................................................................................................................................................. 200

How It Works ...................................................................................................................................................... 200

9-5. Finding Exact-Duplicate Files ............................................................................................200

Problem ............................................................................................................................................................. 200

Solution.............................................................................................................................................................. 200

How It Works ...................................................................................................................................................... 201

9-6. Organizing Downloads Automatically ................................................................................201

Problem ............................................................................................................................................................. 201

Solution.............................................................................................................................................................. 201

How It Works ...................................................................................................................................................... 202

9-7. Finding Files Modified Last Week ......................................................................................202

Problem ............................................................................................................................................................. 202

Solution ............................................................................................................................................................. 203

How It Works ...................................................................................................................................................... 203

9-8. Locating Dead Files (Files with Zero Bytes) .......................................................................203

Problem ............................................................................................................................................................. 203

Solution.............................................................................................................................................................. 204

How It Works ...................................................................................................................................................... 204

Appendix A: Lean LINQ Tips ■  �������������������������������������������������������������������������������������������205

Tip 1 ..........................................................................................................................................205

Explanation ........................................................................................................................................................ 205

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xxiii

Tip 2 ..........................................................................................................................................205

Explanation ........................................................................................................................................................ 205

Tip 3  .........................................................................................................................................206

Explanation ........................................................................................................................................................ 206

Tip 4 ..........................................................................................................................................206

Explanation ........................................................................................................................................................ 206

Tip 5 ..........................................................................................................................................206

Explanation ........................................................................................................................................................ 206

Tip 6 ..........................................................................................................................................206

Explanation ........................................................................................................................................................ 206

Tip 7 ..........................................................................................................................................207

Explanation ........................................................................................................................................................ 207

Tip 8 ..........................................................................................................................................207

Explanation ........................................................................................................................................................ 207

Tip 9 ..........................................................................................................................................207

Explanation ........................................................................................................................................................ 207

Tip 10 ........................................................................................................................................207

Explanation ........................................................................................................................................................ 207

Tip 11 ........................................................................................................................................208

Explanation ........................................................................................................................................................ 208

Tip 12 ........................................................................................................................................208

Explanation ........................................................................................................................................................ 208

Tip 13 ........................................................................................................................................208

Explanation ........................................................................................................................................................ 208

Tip 14 ........................................................................................................................................208

Explanation ........................................................................................................................................................ 208

Tip 15 ........................................................................................................................................209

Explanation ........................................................................................................................................................ 209

Tip 16 ........................................................................................................................................209

Explanation ........................................................................................................................................................ 209

www.it-ebooks.info

http://www.it-ebooks.info/


■ Contents

xxiv

Tip 17 ........................................................................................................................................209

Explanation ........................................................................................................................................................ 209

Appendix B: Taming Streaming Data with Rx�NET ■  ���������������������������������������������������������211

A Brief Explanation of the Interfaces .........................................................................................213

Getting Rx.NET  .........................................................................................................................213

Using Rx.NET in LINQPad...........................................................................................................213

Creating Observables and Subscribing  ....................................................................................216

Range ................................................................................................................................................................ 216

Repeat ............................................................................................................................................................... 217

Never  ................................................................................................................................................................ 217

Interval ............................................................................................................................................................... 217

Generate ............................................................................................................................................................ 217

ToObservable ..................................................................................................................................................... 219

Creating Observables from .NET Events  ...................................................................................219

Subscribe ........................................................................................................................................................... 220

Combining Observable Collections  ...........................................................................................220

Concat................................................................................................................................................................ 220

Merge  ............................................................................................................................................................... 221

Amb ................................................................................................................................................................... 223

Zip ...................................................................................................................................................................... 223

Partitioning Observables  ..........................................................................................................225

Window .............................................................................................................................................................. 225

Time-Tagging Observables  .......................................................................................................226

Timestamp ......................................................................................................................................................... 226

TimeInterval  ...................................................................................................................................................... 227

Rx.NET Showcase  ....................................................................................................................228

Creating a Signature Capture Screen  ............................................................................................................... 228

Live File System Watcher .................................................................................................................................. 229

Summary ...................................................................................................................................230

Index ���������������������������������������������������������������������������������������������������������������������������������231

www.it-ebooks.info

http://www.it-ebooks.info/


xxv

About the Author

Sudipta Mukherjee is an experienced programmer. Born in Shibpur, a town in 
the Howrah district of West Bengal in India, he grew up in Bally, another small 
town in the Howrah district. He has been working with C# and LINQ since they 
were first released, and is an enthusiastic advocate for LINQ. Sudipta is a prolific 
author, whose previous books include Data Structures Using C (http://goo.gl/
pttSh) and .NET 4.0 Generics: Beginner’s Guide (http://goo.gl/LwVmZ5).

His interests are data structure, algorithms, text processing, machine learning, 
natural language processing, programming languages, and tools development. 
When not working at his day job or writing books, Sudipta likes spending time with 
his family and following his passion of sketching and painting. Sudipta lives in 
Bangalore and can be contacted via e-mail at sudipto80@yahoo.com or on Twitter  
@samthecoder.

www.it-ebooks.info

http://goo.gl/pttSh
http://goo.gl/pttSh
http://goo.gl/LwVmZ5
http://sudipto80@yahoo.com
http://www.it-ebooks.info/


xxvii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies.  
He works at BluArancio SpA (www.bluarancio.com) as a senior analyst/developer and Microsoft Dynamics CRM 
Specialist. He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for  
.NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past ten years, he’s written 
articles for Italian and international magazines and coauthored more than ten books on a variety of computer topics.

www.it-ebooks.info

www.bluarancio.com
http://www.it-ebooks.info/


xxix

Acknowledgments

A book like this can’t be published without continuous support from the publisher, editors, and the technical reviewer. 
I am very thankful to James T. DeWolf and Kevin Walter of Apress for being patient and supportive. I had incredible 
support from my development editor, Russell Jones.  I also want to thank Fabio Claudio Ferracchiati for his invaluable 
help in reviewing and running each and every program that I wrote. Thanks a lot, gentlemen.

Anybody who has ever written a technical book will probably tell you that it is not easy to follow this path until 
the end. It requires a lot of patience and support. Thanks to God, I have a lot a patience. And I had tremendous 
support, especially from my wife, Moue, and everybody in my family. Thank you, sweetheart! Last but not least, I want 
to thank God once again for giving me my little angel, Sohan. It is such a joy to be with him. I have learned a lot from 
him; his perseverance especially has helped me overcome some of my own stumbling blocks in life.

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Thinking Functionally
	1-1. Understanding Functional Programming
	1-2. Using Func<> in C# to Represent Functions
	1-3. Using Various Types of Functions
	Generator Functions
	Statistical Functions
	Projector Functions
	Filters

	1-4. Understanding the Benefits of Functional Programming
	Composability
	Lazy Evaluation
	Immutability
	Parallelizable
	Declarative

	1-5. Getting LINQPad

	Chapter 2: Series Generation
	2-1. Math and Statistics: Finding the Dot Product of Two Vectors
	Problem
	Solution
	How It Works

	2-2. Math and Statistics: Generating Pythagorean Triples
	Problem
	Solution
	How It Works

	2-3. Math and Statistics: Finding a Weighted Sum
	Problem
	Solution
	How It Works

	2-4. Math and Statistics: Finding the Percentile for Each Element in an Array of Numbers
	Problem
	Solution
	How It Works

	2-5. Math and Statistics: Finding the Dominator in an Array
	Problem
	Solution
	How It Works

	2-6. Math and Statistics: Finding the Minimum Number of Currency Bills Required for a Given Amount
	Problem
	Solution
	How It Works

	2-7. Math and Statistics: Finding Moving Averages
	Problem
	Solution
	How It Works

	2-8. Math and Statistics: Finding a Cumulative Sum
	Problem
	Solution
	How It Works

	2-9. Recursive Series and Patterns: Generating Recursive Structures by Using L-System Grammar
	Problem
	Solution
	How It Works

	2-10. Recursive Series and Patterns Step-by-Step Growth of Algae
	Problem
	Solution
	How It Works

	2-11. Recursive Series and Patterns: Generating Logo Commands to Draw a Koch Curve
	Problem
	Solution
	How It Works

	2-12. Recursive Series and Patterns: Generating Logo Commands to Draw a Sierpinski Triangle
	Problem
	Solution
	How It Works

	2-13. Recursive Series and Patterns: Generating Fibonacci Numbers Nonrecursively (Much Faster)
	Problem
	Solution
	How It Works

	2-14. Recursive Series and Patterns: Generating Permutations
	Problem
	Solution
	How It Works

	2-15. Recursive Series and Patterns: Generating a Power Set of a Given Set
	Problem
	Solution
	How It Works

	2-16. Collections: Picking Every n  th Element
	Problem
	Solution
	How It Works

	2-17. Collections: Finding the Larger or Smaller of Several Sequences at Each Index
	Problem
	Solution
	How It Works

	2-18. Number Theory: Generating Armstrong Numbers and Similar Number Sequences
	Problem
	Solution
	How It Works

	2-19. Number Theory: Generating Pascal’s Triangle Nonrecursively
	Problem
	Solution
	How It Works

	2-20. Game Design: Finding All Winning Paths in an Arbitrary Tic-Tac-Toe Board
	Problem
	Solution
	How It Works

	2-21. Series in Game Design: Solving Go Figure
	Problem
	Solution
	How It Works

	2-22. Miscellaneous Series: Finding Matching Pairs from Two Unsorted Collections
	Problem
	Solution
	How It Works

	2-23. Miscellaneous Series: Using a Lookup-Based Approach
	Problem
	Solution
	How It Works

	2-24. Miscellaneous Series: Solving the FizzBuzz Challenge in a LINQ One-Liner
	Problem
	Solution
	How It Works

	2-25. Miscellaneous Series: Solving the FizzBuzz Challenge by Using Set Theory
	Problem
	Solution
	How It Works

	Summary

	Chapter 3: Text Processing
	3-1. Simulating a T9 Word Suggestion
	Problem
	Solution
	How It Works

	3-2. Simulating a Gesture Keyboard
	Problem
	Solution
	How It Works

	3-3. Cloning Peter Norvig’s Spelling-Correction Algorithm
	Problem
	Solution
	How It Works

	3-4. Reversing a Sentence Word by Word
	Problem
	Solution
	How It Works

	3-5. Creating a Word Triangle
	Problem
	Solution
	How It Works

	3-6. Finding Anagrams
	Problem
	Solution
	How It Works

	3-7. Checking for Anagrams Without Sorting Characters
	Problem
	Solution
	How It Works

	3-8. Creating a Rudimentary Programming Language Identifier and Automatic Syntax Highlighter
	Problem
	Solution
	How It Works

	3-9. Creating a Word-Ladder Solver
	Problem
	Solution
	How It Works

	3-10. Formatting on the Fly
	Problem
	Solution
	How It Works

	3-11. Solving Eric Lippert’s Comma-Quibbling Problem
	Problem
	Solution
	How It Works

	3-12. Generating Random Serials
	Problem
	Solution
	How It Works

	3-13. Generating All Substrings of a Given String
	Problem
	Solution
	How It Works

	3-14. Creating a Scrabble Cheater
	Problem
	Solution
	How It Works

	3-15. Finding All the Subsequences of a Given String
	How It Works

	3-16. Squeezing a Paragraph to Fill Tightly
	Problem
	Solution
	How It Works

	3-17. Printing the Lines of a Song
	Problem
	Solution
	How It Works

	3-18. Mining Abbreviations and Full Forms from News Articles
	Problem
	Solution
	How It Works

	Summary

	Chapter 4: Refactoring with LINQ
	4-1. Replacing Loops by Using LINQ Operators
	A General Strategy to Transform a Loop to a LINQ Query

	4-2. The Any Operator
	Problem
	Solution
	How It Works

	4-3. The All Operator
	Problem
	Solution
	How It Works

	4-4. The Take Operator
	Problem
	Solution
	How It Works

	4-5. The Skip Operator
	Problem
	Solution
	How It Works

	4-6. The TakeWhile Operator
	Problem
	Solution
	How It Works

	4-7. The SkipWhile Operator
	Problem
	Solution
	How It Works

	4-8. The Where Operator
	Problem
	Solution
	How It Works

	4-9. The Zip Operator
	Problem
	Solution
	How It Works

	4-10. OrderBy and OrderByDescending Operators
	Problem
	Solution
	How It Works

	4-11. The Distinct Operator
	Problem
	Solution
	How It Works

	4-12. The Union Operator
	Problem
	Solution
	How It Works

	4-13. The Intersect Operator
	Problem
	Solution
	How It Works

	4-14. The Except Operator
	Problem
	Solution
	How It Works

	4-15. The Concat Operator
	Problem
	Solution
	How It Works

	4-16. The SequenceEqual Operator
	Problem
	Solution
	How It Works

	4-17. The Of Type Operator
	Problem
	Solution
	How It Works

	4-18. The Cast Operator
	Problem
	Solution
	How It Works

	4-19. The Aggregate Operator
	Problem
	Solution
	How It Works

	4-20. Replacing Nested Loops
	The SelectMany Operator
	Removing Nested Loops by Using SelectMany
	Replacing If-Else Blocks Inside a Loop

	4-21. Running Code in Parallel Using AsParallel( ) and AsOrdered( ) Operators
	Problem
	Solution
	How It Works

	Summary

	Chapter 5: Refactoring with MoreLINQ
	5-1. Getting MoreLINQ
	5-2. Using the Scan Operator
	Problem
	Solution
	How It Works

	5-3. Using the Slice Operator
	Problem
	Solution
	How It Works

	5-4. Using the Interleave Operator
	Problem
	Solution
	How It Works

	5-5. Using the Windowed Operator
	Problem
	Solution
	How It Works

	5-6. Using the Cartesian Operator
	Problem
	Solution
	How It Works

	5-7. Using the Partition Operator
	Problem
	Solution
	How It Works

	5-8. Using the Index Operator
	Problem
	Solution
	How It Works

	5-9. Using the PairWise Operator
	Problem
	Solution
	How It Works

	5-10. The ForEach Operator
	Problem
	Solution
	How It Works

	5-11. Using the MinBy/MaxBy Operator
	Problem
	Solution
	How It Works

	Summary

	Chapter 6: Creating Domain-Specific Languages
	6-1. Feel the Difference
	6-2. Creating a Simple DSL for Mathematicians
	Problem
	Solution
	How It Works

	6-3. Testing Armstrong by Using NUnit
	Problem
	Solution
	How It Works

	6-4. Exposing Armstrong as an External DSL
	Problem
	Solution
	How It Works

	6-5. Cloning Handy F# Functions by Using LINQ
	Problem
	Solution
	How It Works

	6-6. Lazily Generating Items from a Recurrence Relation
	Problem
	Solution
	How It Works

	Summary

	Chapter 7: Static Code Analysis
	7-1. Finding Verbose Type Names in the .NET 3.5 Framework
	Problem
	Solution
	How It Works

	7-2. Finding the Number of Overloads for a Method
	Problem
	Solution
	How It Works

	7-3. Finding the Size of a Namespace
	Problem
	Solution
	How It Works

	7-4. Finding the Code-to-Comment (C# Style) Ratio
	Problem
	Solution
	How It Works

	7-5. Finding the Size of Types
	Problem
	Solution
	How It Works

	7-6. Generating Documentation Automatically
	Problem
	Solution
	How It Works

	7-7. Finding Inheritance Relationships
	7-8. Locating Complex Methods
	Summary

	Chapter 8: Exploratory Data Analysis
	8-1. Analyzing the Titanic Survivors Dataset
	Problem
	Solution
	How It Works
	Problem
	Solution
	How It Works

	8-2. Converting SurveyMonkey Results to CSV
	Problem
	Solution
	How It Works

	8-3. Analyzing Trends in Baby Names
	Problem
	Solution
	How It Works

	8-4. Analyzing Stock Values
	Problem
	Solution
	How It Works

	8-5. Analyzing Git Logs
	Problem
	Solution
	How It Works
	Problem
	Solution
	How It Works

	8-6. Analyzing Movie Ratings
	Problem
	Solution
	How It Works

	8-7. Identifying Flowers by Using Machine Learning
	Problem
	Solution
	How It Works

	Summary

	Chapter 9: Interacting with the File System
	9-1. Comparing Two CSV Files
	Problem
	Solution
	How It Works

	9-2. Finding the Total File Size in a Directory
	Problem
	Solution
	How It Works

	9-3. Cloning LINUX Head and Tail Commands
	Problem
	Solution
	How It Works

	9-4. Locating Files with the Same Name (Possible Duplicates)
	Problem
	Solution
	How It Works

	9-5. Finding Exact-Duplicate Files
	Problem
	Solution
	How It Works

	9-6. Organizing Downloads Automatically
	Problem
	Solution
	How It Works

	9-7. Finding Files Modified Last Week
	Problem
	Solution
	How It Works

	9-8. Locating Dead Files (Files with Zero Bytes)
	Problem
	Solution
	How It Works


	Appendix A: Lean LINQ Tips
	Tip 1
	Explanation

	Tip 2
	Explanation

	Tip 3
	Explanation

	Tip 4
	Explanation

	Tip 5
	Explanation

	Tip 6
	Explanation

	Tip 7
	Explanation

	Tip 8
	Explanation

	Tip 9
	Explanation

	Tip 10
	Explanation

	Tip 11
	Explanation

	Tip 12
	Explanation

	Tip 13
	Explanation

	Tip 14
	Explanation

	Tip 15
	Explanation

	Tip 16
	Explanation

	Tip 17
	Explanation


	Appendix B: Taming Streaming Data with Rx.NET
	A Brief Explanation of the Interfaces
	Getting Rx.NET
	Using Rx.NET in LINQPad
	Creating Observables and Subscribing
	Range
	Repeat
	Never
	Interval
	Generate
	ToObservable

	Creating Observables from .NET Events
	Subscribe

	Combining Observable Collections
	Concat
	Merge
	Amb
	Zip

	Partitioning Observables
	Window

	Time-Tagging Observables
	Timestamp
	TimeInterval

	Rx.NET Showcase
	Creating a Signature Capture Screen
	Live File System Watcher

	Summary

	Index




