Pearls of Functional Algorithm Design

PEARLS OF FUNCTIONAL ALGORITHM DESIGN

In Pearls of Functional Algorithm Design Richard Bird takes a radically new approach to algorithm design, namely design by calculation. The body of the text is divided into 30 short chapters, called pearls, each of which deals with a particular programming problem. These problems, some of which are completely new, are drawn from sources as diverse as games and puzzles, intriguing combinatorial tasks and more familiar algorithms in areas such as data compression and string matching.

Each pearl starts with the statement of the problem expressed using the functional programming language Haskell, a powerful yet succinct language for capturing algorithmic ideas clearly and simply. The novel aspect of the book is that each solution is calculated from the problem statement by appealing to the laws of functional programming.

Pearls of Functional Algorithm Design will appeal to the aspiring functional programmer, students and teachers interested in the principles of algorithm design, and anyone seeking to master the techniques of reasoning about programs in an equational style.

RIChARD BIRD is Professor of Computer Science at Oxford University and Fellow of Lincoln College, Oxford.

PEARLS OF FUNCTIONAL ALGORITHM DESIGN

RICHARD BIRD
University of Oxford

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9780521513388
© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.
First published in print format 2010
ISBN-13 978-0-511-90044-0 eBook (EBL)
ISBN-13 978-0-521-51338-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to my wife, Norma.

Contents

Preface page ix
1 The smallest free number 1
2 A surpassing problem 7
3 Improving on saddleback search 12
4 A selection problem 21
5 Sorting pairwise sums 27
6 Making a century 33
7 Building a tree with minimum height 41
8 Unravelling greedy algorithms 50
$9 \quad$ Finding celebrities 56
10 Removing duplicates 64
11 Not the maximum segment sum 73
12 Ranking suffixes 79
13 The Burrows-Wheeler transform 91
14 The last tail 102
15 All the common prefixes 112
16 The Boyer-Moore algorithm 117
17 The Knuth-Morris-Pratt algorithm 127
18 Planning solves the Rush Hour problem 136
19 A simple Sudoku solver 147
20 The Countdown problem 156
21 Hylomorphisms and nexuses 168
22 Three ways of computing determinants 180
23 Inside the convex hull 188
24 Rational arithmetic coding 198
25 Integer arithmetic coding 208
26 The Schorr-Waite algorithm 221
27 Orderly insertion 231
28 Loopless functional algorithms 242
29 The Johnson-Trotter algorithm 251
30 Spider spinning for dummies 258
Index 275

Preface

In 1990, when the Journal of Functional Programming (JFP) was in the stages of being planned, I was asked by the then editors, Simon Peyton Jones and Philip Wadler, to contribute a regular column to be called Functional Pearls. The idea they had in mind was to emulate the very successful series of essays that Jon Bentley had written in the 1980s under the title "Programming Pearls" in the Communications of the ACM. Bentley wrote about his pearls:

Just as natural pearls grow from grains of sand that have irritated oysters, these programming pearls have grown from real problems that have irritated programmers. The programs are fun, and they teach important programming techniques and fundamental design principles.

I think the editors had asked me because I was interested in the specific task of taking a clear but inefficient functional program, a program that acted as a specification of the problem in hand, and using equational reasoning to calculate a more efficient one. One factor that stimulated growing interest in functional languages in the 1990s was that such languages were good for equational reasoning. Indeed, the functional language GOFER, invented by Mark Jones, captured this thought as an acronym. GOFER was one of the languages that contributed to the development of Haskell, the language on which this book is based. Equational reasoning dominates everything in this book.

In the past 20 years, some 80 pearls have appeared in the JFP, together with a sprinkling of pearls at conferences such as the International Conference of Functional Programming (ICFP) and the Mathematics of Program Construction Conference (MPC). I have written about a quarter of them, but most have been written by others. The topics of these pearls include interesting program calculations, novel data structures and small but elegant domain-specific languages embedded in Haskell and ML for particular applications.

My interest has always been in algorithms and their design. Hence the title of this book is Pearls of Functional Algorithm Design rather than the more general Functional Pearls. Many, though by no means all, of the pearls start with a specification in Haskell and then go on to calculate a more efficient version. My aim in writing these particular pearls is to see to what extent algorithm design can be cast in a familiar mathematical tradition of calculating a result by using well-established mathematical principles, theorems and laws. While it is generally true in mathematics that calculations are designed to simplify complicated things, in algorithm design it is usually the other way around: simple but inefficient programs are transformed into more efficient versions that can be completely opaque. It is not the final program that is the pearl; rather it is the calculation that yields it. Other pearls, some of which contain very few calculations, are devoted to trying to give simple explanations of some interesting and subtle algorithms. Explaining the ideas behind an algorithm is so much easier in a functional style than in a procedural one: the constituent functions can be more easily separated, they are brief and they capture powerful patterns of computation.

The pearls in this book that have appeared before in the JFP and other places have been polished and repolished. In fact, many do not bear much resemblance to the original. Even so, they could easily be polished more. The gold standard for beauty in mathematics is Proofs from The Book by Aigner and Ziegler (third edition, Springer, 2003), which contains some perfect proofs for mathematical theorems. I have always had this book in mind as an ideal towards which to strive.

About a third of the pearls are new. With some exceptions, clearly indicated, the pearls can be read in any order, though the chapters have been arranged to some extent in themes, such as divide and conquer, greedy algorithms, exhaustive search and so on. There is some repetition of material in the pearls, mostly concerning the properties of the library functions that we use, as well as more general laws, such as the fusion laws of various folds. A brief index has been included to guide the reader when necessary.

Finally, many people have contributed to the material. Indeed, several pearls were originally composed in collaboration with other authors. I would like to thank Sharon Curtis, Jeremy Gibbons, Ralf Hinze, Geraint Jones and Shin-Cheng Mu, my co-authors on these pearls, for their kind generosity in allowing me to rework the material. Jeremy Gibbons read the final draft and made numerous useful suggestions for improving the presentation. Some pearls have also been subject to close scrutiny at meetings of the Algebra of Programming research group at Oxford. While a number of flaws and errors have been removed, no doubt additional ones have been introduced. Apart
from those mentioned above, I would like to thank Stephen Drape, Tom Harper, Daniel James, Jeffrey Lake, Meng Wang and Nicholas Wu for many positive suggestions for improving presentation. I would also like to thank Lambert Meertens and Oege de Moor for much fruitful collaboration over the years. Finally, I am indebted to David Tranah, my editor at Cambridge University Press, for encouragement and support, including much needed technical advice in the preparation of the final copy.

Richard Bird

1
 The smallest free number

Introduction

Consider the problem of computing the smallest natural number not in a given finite set X of natural numbers. The problem is a simplification of a common programming task in which the numbers name objects and X is the set of objects currently in use. The task is to find some object not in use, say the one with the smallest name.

The solution to the problem depends, of course, on how X is represented. If X is given as a list without duplicates and in increasing order, then the solution is straightforward: simply look for the first gap. But suppose X is given as a list of distinct numbers in no particular order. For example,
$[08,23,09,00,12,11,01,10,13,07,41,04,14,21,05,17,03,19,02,06]$
How would you find the smallest number not in this list?
It is not immediately clear that there is a linear-time solution to the problem; after all, sorting an arbitrary list of numbers cannot be done in linear time. Nevertheless, linear-time solutions do exist and the aim of this pearl is to describe two of them: one is based on Haskell arrays and the other on divide and conquer.

An array-based solution

The problem can be specified as a function minfree, defined by

$$
\begin{array}{lll}
\text { minfree } & :: & {[N a t] \rightarrow \text { Nat }} \\
\text { minfree } x s & = & \text { head }([0 . .] \backslash \backslash x s)
\end{array}
$$

The expression $u s \backslash \backslash v s$ denotes the list of those elements of $u s$ that remain after removing any elements in vs:

$$
\begin{array}{ll}
(\backslash \backslash) & :: \quad \text { Eq } a \Rightarrow[a] \rightarrow[a] \rightarrow[a] \\
u s \backslash v s & =\text { filter }(\notin v s) u s
\end{array}
$$

The function minfree is executable but requires $\Theta\left(n^{2}\right)$ steps on a list of length n in the worst case. For example, evaluating minfree $[n-1, n-2 . .0]$ requires evaluating $i \notin[n-1, n-2 . .0]$ for $0 \leq i \leq n$, and thus $n(n+1) / 2$ equality tests.

The key fact for both the array-based and divide and conquer solutions is that not every number in the range $[0$.. length $x s]$ can be in $x s$. Thus the smallest number not in $x s$ is the smallest number not in filter $(\leq n) x s$, where $n=$ length $x s$. The array-based program uses this fact to build a checklist of those numbers present in filter $(\leq n) x s$. The checklist is a Boolean array with $n+1$ slots, numbered from 0 to n, whose initial entries are everywhere False. For each element x in $x s$ and provided $x \leq n$ we set the array element at position x to True. The smallest free number is then found as the position of the first False entry. Thus, minfree $=$ search \cdot checklist, where

$$
\begin{aligned}
\text { search } & :: \text { Array Int Bool } \rightarrow \text { Int } \\
\text { search } & =\text { length } \cdot \text { takeWhile id } \cdot \text { elems }
\end{aligned}
$$

The function search takes an array of Booleans, converts the array into a list of Booleans and returns the length of the longest initial segment consisting of True entries. This number will be the position of the first False entry.

One way to implement checklist in linear time is to use the function accumArray in the Haskell library Data.Array. This function has the rather daunting type

$$
\text { Ix } i \Rightarrow(e \rightarrow v \rightarrow e) \rightarrow e \rightarrow(i, i) \rightarrow[(i, v)] \rightarrow \text { Array i } e
$$

The type constraint Ix i restricts i to be an Index type, such as Int or Char, for naming the indices or positions of the array. The first argument is an "accumulating" function for transforming array entries and values into new entries, the second argument is an initial entry for each index, the third argument is a pair naming the lower and upper indices and the fourth is an association list of index-value pairs. The function accumArray builds an array by processing the association list from left to right, combining entries and values into new entries using the accumulating function. This process takes linear time in the length of the association list, assuming the accumulating function takes constant time.

The function checklist is defined as an instance of accumArray:

$$
\begin{aligned}
\text { checklist }:: & {[\text { Int }] \rightarrow \text { Array Int Bool } } \\
\text { checklist xs }= & \text { accumArray }(\mathrm{V}) \text { False }(0, n) \\
& (\text { zip }(\text { filter }(\leq n) \text { xs })(\text { repeat True })) \\
& \text { where } n=\text { length xs }
\end{aligned}
$$

This implementation does not require the elements of $x s$ to be distinct, but does require them to be natural numbers.

It is worth mentioning that accumArray can be used to sort a list of numbers in linear time, provided the elements of the list all lie in some known range $(0, n)$. We replace checklist by countlist, where

```
countlist :: [Int] }->\mathrm{ Array Int Int
countlist xs = accumArray (+)0(0,n)(zip xs (repeat 1))
```

Then sort $x s=$ concat $[$ replicate $k x \mid(x, k) \leftarrow$ countlist $x s]$. In fact, if we use countlist instead of checklist, then we can implement minfree as the position of the first 0 entry.

The above implementation builds the array in one go using a clever library function. A more prosaic way to implement checklist is to tick off entries step by step using a constant-time update operation. This is possible in Haskell only if the necessary array operations are executed in a suitable monad, such as the state monad. The following program for checklist makes use of the library Data.Array.ST:

$$
\begin{aligned}
\text { checklist xs }= & \text { runSTArray }(\text { do } \\
& \{a \leftarrow \text { newArray }(0, n) \text { False } ; \\
& \text { sequence }[\text { writeArray a } x \text { True } \mid x \leftarrow x s, x \leq n] ; \\
& \text { return } a\}) \\
& \text { where } n=\text { length } x s
\end{aligned}
$$

This solution would not satisfy the pure functional programmer because it is essentially a procedural program in functional clothing.

A divide and conquer solution

Now we turn to a divide and conquer solution to the problem. The idea is to express minfree ($x s+y s$) in terms of minfree xs and minfree ys. We begin by recording the following properties of $\backslash \backslash$:

$$
\begin{aligned}
(a s+b s) \backslash c s & =(a s \backslash \backslash c s)+(b s \backslash \backslash c s) \\
a s \backslash \backslash(b s+c s) & =(a s \backslash \backslash b s) \backslash \backslash c \\
(a s \backslash \backslash s) \backslash \backslash c s & =(a s \backslash \backslash c s) \backslash \backslash b s
\end{aligned}
$$

These properties reflect similar laws about sets in which set union \cup replaces + and set difference \backslash replaces $\backslash \backslash$. Suppose now that as and vs are disjoint, meaning $a s \backslash \backslash v=a s$, and that $b s$ and $u s$ are also disjoint, so $b s \backslash \backslash u s=b s$. It follows from these properties of + and $\backslash \backslash$ that

$$
(a s+b s) \backslash(u s+v s)=(a s \backslash u s)+(b s \backslash \backslash v)
$$

Now, choose any natural number b and let $a s=[0 . . b-1]$ and $b s=[b .$.$] .$ Furthermore, let us $=$ filter $(<b) x s$ and $v s=$ filter $(\geq b) x s$. Then as and $v s$ are disjoint, and so are $b s$ and $u s$. Hence

$$
\begin{aligned}
{[0 . .] \backslash \backslash x=} & ([0 . . b-1] \backslash \backslash u s)+([b . .] \backslash \backslash v s) \\
& \text { where }(u s, v s)=\operatorname{partition}(<b) x s
\end{aligned}
$$

Haskell provides an efficient implementation of a function partition p that partitions a list into those elements that satisfy p and those that do not. Since

$$
\text { head }(x s+y s)=\text { if null } x s \text { then head ys else head xs }
$$

we obtain, still for any natural number b, that

$$
\begin{aligned}
\text { minfree } x s= & \text { if null }([0 \ldots b-1] \backslash \backslash u s) \\
& \text { then head }([b . .] \backslash \text { vs }) \\
& \text { else head }([0 . .] \backslash \backslash \text { us }) \\
& \text { where }(u s, v s)=\text { partition }(<b) \text { xs }
\end{aligned}
$$

The next question is: can we implement the test null ($[0 . . b-1] \backslash \backslash u s)$ more efficiently than by direct computation, which takes quadratic time in the length of $u s$? Yes, the input is a list of distinct natural numbers, so is us. And every element of $u s$ is less than b. Hence

$$
\text { null }([0 . . b-1] \backslash \backslash \text { us } \equiv \text { length } u s==b
$$

Note that the array-based solution did not depend on the assumption that the given list did not contain duplicates, but it is a crucial one for an efficient divide and conquer solution.

Further inspection of the above code for minfree suggests that we should generalise minfree to a function, minfrom say, defined by

$$
\begin{array}{ll}
\text { minfrom } & :: \text { Nat } \rightarrow[\text { Nat }] \rightarrow \text { Nat } \\
\text { minfrom axs } & =\text { head }([a . .] \backslash x s)
\end{array}
$$

where every element of $x s$ is assumed to be greater than or equal to a. Then, provided b is chosen so that both length us and length vs are less than length $x s$, the following recursive definition of minfree is well-founded:

| $\operatorname{minfree} x s$ |
| :--- | :--- |
| minfrom $a x s$ |$|$| minfrom $0 x s$ |
| :--- |
| null xs |
| length $u s==b-a=a$ |
| otherwise |
| |
| |
| where $(u s, v s)=$ minfrom b vs |
| partition $(<b)$ xs |

It remains to choose b. Clearly, we want $b>a$. And we would also like to choose b so that the maximum of the lengths of $u s$ and $v s$ is as small as possible. The right choice of b to satisfy these requirements is

$$
b=a+1+n \operatorname{div} 2
$$

where $n=$ length x s. If $n \neq 0$ and length $u s<b-a$, then
length us $\leq n \operatorname{div} 2<n$
And, if length $u s=b-a$, then
length vs $=n-n$ div $2-1 \leq n \operatorname{div} 2$
With this choice the number of steps $T(n)$ for evaluating minfrom 0 xs when $n=$ length $x s$ satisfies $T(n)=T(n \operatorname{div} 2)+\Theta(n)$, with the solution $T(n)=\Theta(n)$.

As a final optimisation we can avoid repeatedly computing length with a simple data refinement, representing $x s$ by a pair (length $x s, x s$). That leads to the final program

$$
\begin{aligned}
& \text { minfree xs } \quad=\text { minfrom } 0 \text { (length } x s, x s) \\
& \text { minfrom } a(n, x s) \quad \mid \quad n=0 \quad=a \\
& \text { | } m=b-a=\operatorname{minfrom} b(n-m, v s) \\
& \text { otherwise }=\text { minfrom } a(m, u s) \\
& \text { where }(u s, v s)=\operatorname{partition}(<b) x s \\
& b \quad=a+1+n \operatorname{div} 2 \\
& m \quad=\text { length us }
\end{aligned}
$$

It turns out that the above program is about twice as fast as the incremental array-based program, and about 20% faster than the one using accumArray.

Final remarks

This was a simple problem with at least two simple solutions. The second solution was based on a common technique of algorithm design, namely divide and conquer. The idea of partitioning a list into those elements less than a given value, and the rest, arises in a number of algorithms, most notably Quicksort. When seeking a $\Theta(n)$ algorithm involving a list of n elements, it is tempting to head at once for a method that processes each element of the list in constant time, or at least in amortized constant time. But a recursive process that performs $\Theta(n)$ processing steps in order to reduce the problem to another instance of at most half the size is also good enough.

One of the differences between a pure functional algorithm designer and a procedural one is that the former does not assume the existence of arrays with a constant-time update operation, at least not without a certain amount of plumbing. For a pure functional programmer, an update operation takes logarithmic time in the size of the array. ${ }^{1}$ That explains why there sometimes seems to be a logarithmic gap between the best functional and procedural solutions to a problem. But sometimes, as here, the gap vanishes on a closer inspection.

[^0]
2

A surpassing problem

Introduction

In this pearl we solve a small programming exercise of Martin Rem (1988a). While Rem's solution uses binary search, our solution is another application of divide and conquer. By definition, a surpasser of an element of an array is a greater element to the right, so $x[j]$ is a surpasser of $x[i]$ if $i<j$ and $x[i]<x[j]$. The surpasser count of an element is the number of its surpassers. For example, the surpasser counts of the letters of the string GENERATING are given by

$$
\begin{array}{cccccccccc}
\mathrm{G} & \mathrm{E} & \mathrm{~N} & \mathrm{E} & \mathrm{R} & \mathrm{~A} & \mathrm{~T} & \mathrm{I} & \mathrm{~N} & \mathrm{G} \\
5 & 6 & 2 & 5 & 1 & 4 & 0 & 1 & 0 & 0
\end{array}
$$

The maximum surpasser count is six. The first occurrence of letter E has six surpassers, namely $\mathrm{N}, \mathrm{R}, \mathrm{T}, \mathrm{I}, \mathrm{N}$ and G. Rem's problem is to compute the maximum surpasser count of an array of length $n>1$ and to do so with an $O(n \log n)$ algorithm.

Specification

We will suppose that the input is given as a list rather than an array. The function msc (short for maximum surpasser count) is specified by

```
msc :: Ord a m [a] -> Int
mscxs = maximum [scount zzs | z:zs\leftarrowtails xs]
scount x xs = length (filter (x<)xs)
```

The value of scount $x x s$ is the surpasser count of x in the list $x s$ and tails returns the nonempty tails of a nonempty list in decreasing order of length: ${ }^{1}$

```
tails [ ] = []
tails (x:xs) = (x:xs): tails xs
```

The definition of $m s c$ is executable but takes quadratic time.

[^1]
Divide and conquer

Given the target complexity of $O(n \log n)$ steps, it seems reasonable to head for a divide and conquer algorithm. If we can find a function join so that

$$
m s c(x s+y s)=j o i n(m s c x s)(m s c y s)
$$

and join can be computed in linear time, then the time complexity $T(n)$ of the divide and conquer algorithm for computing msc on a list of length n satisfies $T(n)=2 T(n / 2)+O(n)$, with solution $T(n)=O(n \log n)$. But it is fairly obvious that no such join can exist: too little information is provided by the single number msc xs for any such decomposition.

The minimal generalisation is to start out with the table of all surpasser counts:

$$
\text { table } x s=[(z, \text { scount } z z s) \mid z: z s \leftarrow \text { tails } x s]
$$

Then $m s c=$ maximum \cdot map snd \cdot table. Can we find a linear-time join to satisfy

$$
\text { table }(x s+y s)=\text { join }(\text { table } x s)(\text { table } y s)
$$

Well, let us see. We will need the following divide and conquer property of tails:

$$
\text { tails }(x s+y s)=\operatorname{map}(+y s)(\text { tails } x s)+\text { tails ys }
$$

The calculation goes as follows:

$$
\begin{aligned}
& \text { table (xs + ys) } \\
& =\quad\{\text { definition }\} \\
& {[(z, \text { scount } z z s) \mid z: z s \leftarrow \text { tails }(x s+y s)]} \\
& =\quad\{\text { divide and conquer property of tails }\} \\
& {[(z, \text { scount } z z s) \mid z: z s \leftarrow \operatorname{map}(+y s)(\text { tails } x s)+\text { tails } y s]} \\
& =\quad \text { \{distributing } \leftarrow \text { over } H\} \\
& {[(z, \text { scount } z(z s+y s)) \mid z: z s \leftarrow \text { tails } x s]+} \\
& [(z, \text { scount } z z s) \mid z: z s \leftarrow \text { tails } y s]) \\
& =\quad\{\text { since scount } z(z s+y s)=\text { scount } z z s+\text { scount } z y s\} \\
& {[(z, \text { scount } z z s+\text { scount } z y s) \mid z: z s \leftarrow \text { tails } x s]+} \\
& [(z, \text { scount } z z s) \mid z: z s \leftarrow \text { tails } y s]) \\
& =\quad\{\text { definition of table and ys }=\text { map fst (table ys) }\} \\
& {[(z, c+\text { scount } z(\text { map fst }(\text { table } y s))) \mid(z, c) \leftarrow \text { table } x s]+\text { table ys }}
\end{aligned}
$$

Hence join can be defined by

$$
\begin{aligned}
\text { join txs tys } & =[(z, c+\text { tcount } z \text { tys }) \mid(z, c) \leftarrow \text { txs }]+\text { tys } \\
\text { tcount } z \text { tys } & =\text { scount } z \text { (map fst tys) }
\end{aligned}
$$

The problem with this definition, however, is that join txs tys does not take linear time in the length of txs and tys.

We could improve the computation of tcount if tys were sorted in ascending order of first component. Then we can reason:

$$
\begin{aligned}
& \text { tcount } z \text { tys } \\
= & \{\text { definition of tcount and scount }\} \\
& \text { length }(\text { filter }(z<)(\text { map fst tys })) \\
= & \{\text { since filter } p \cdot \operatorname{map} f=\text { map } f \cdot \text { filter }(p \cdot f)\} \\
& \text { length }(\text { map } f s t(\text { filter }((z<) \cdot f s t) \text { tys })) \\
= & \{\text { since length } \cdot \text { map } f=\text { length }\} \\
& \text { length }(\text { filter }((z<) \cdot f s t) \text { tys }) \\
= & \quad \text { since tys is sorted on first argument }\} \\
& \text { length }(\text { dropWhile }((z \geq) \cdot \text { fst }) \text { tys })
\end{aligned}
$$

Hence

$$
\begin{equation*}
\text { tcount } z \text { tys }=\text { length }(\text { dropWhile }((z \geq) \cdot f s t) \text { tys }) \tag{2.1}
\end{equation*}
$$

This calculation suggests it would be sensible to maintain table in ascending order of first component:

$$
\text { table xs }=\operatorname{sort}[(z, \text { scount } z z s) \mid z: z s \leftarrow \text { tails } x s]
$$

Repeating the calculation above, but for the sorted version of table, we find that

$$
\begin{equation*}
\text { join txs tys }=[(x, c+\text { tcount } x \text { tys }) \mid(x, c) \leftarrow \text { txs }] \text { M tys } \tag{2.2}
\end{equation*}
$$

where M merges two sorted lists. Using this identity we can now calculate a more efficient recursive definition of join. One of the base cases, namely join [] tys $=t y s$, is immediate. The other base case, join txs [] $=t x s$, follows because tcount $x[]=0$. For the recursive case we simplify
join txs@((x,c): txs') tys@((y,d):tys')
by comparing x and y. (In Haskell, the @ sign introduces a synonym, so txs is a synonym for $(x, c): t x s^{\prime}$; similarly for tys.) Using (2.2), (2.3) reduces to

$$
\left((x, c+\text { tcount } x \text { tys }):\left[(x, c+\text { tcount } x \text { tys }) \mid(x, c) \leftarrow \text { txs } s^{\prime}\right]\right) \mathbb{M} \text { tys }
$$

To see which element is produced first by M we need to compare x and y. If $x<y$, then it is the element on the left and, since tcount x tys $=$ length tys by (2.1), expression (2.3) reduces to
($x, c+$ length tys $):$ join trs ${ }^{\prime}$ tys
If $x=y$, we need to compare $c+$ tcount x tys and d. But $d=t$ count x tys ${ }^{\prime}$ by the definition of table and tcount x tys $=$ tcount x tys ${ }^{\prime}$ by (2.1), so (2.3) reduces to (y, d) : join txs tys s^{\prime}. This is also the result in the final case $x>y$.

Putting these results together, and introducing length tys as an additional argument to join in order to avoid repeating length calculations, we arrive at the following divide and conquer algorithm for table:

$$
\begin{aligned}
& \text { table }[x]=[(x, 0)] \\
& \text { table } x s=\text { join }(m-n)(\text { table ys) (table zs) } \\
& \text { where } m \quad=\quad \text { length } x s \\
& n \quad=m \operatorname{div} 2 \\
& (y s, z s)=\text { splitAt } n x s \\
& \text { join } 0 \text { txs [] }=\text { txs } \\
& \text { join } n[] \text { tys }=\text { tys } \\
& \text { join } n \text { txs @ }\left((x, c): t x s^{\prime}\right) \text { tys } @\left((y, d): t y s^{\prime}\right) \\
& \text { | } x<y=(x, c+n): \text { join } n \text { txs }{ }^{\prime} \text { tys } \\
& \text { | } x \geq y=(y, d): \text { join }(n-1) \text { txs tys }{ }^{\prime}
\end{aligned}
$$

Since join takes linear time, table is computed in $O(n \log n)$ steps, and so is $m s c$.

Final remarks

It is not possible to do better than an $O(n \log n)$ algorithm for computing table. The reason is that if $x s$ is a list of distinct elements, then table xs provides enough information to determine the permutation of $x s$ that sorts $x s$. Moreover, no further comparisons between list elements are required. In fact, table $x s$ is related to the inversion table of a permutation of n elements; see Knuth (1998): table xs is just the inversion table of reverse xs. Since comparison-based sorting of n elements requires $\Omega(n \log n)$ steps, so does the computation of table.

As we said in the Introduction for this pearl, the solution in Rem (1998b) is different, in that it is based on an iterative algorithm and uses binary search. A procedural programmer could also head for a divide and conquer algorithm, but would probably prefer an in-place array-based algorithm simply because it consumes less space.

References

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching, second edition. Reading, MA: Addison-Wesley.
Rem, M. (1988a). Small programming exercises 20. Science of Computer Programming 10 (1), 99-105.
Rem, M. (1998b). Small programming exercises 21. Science of Computer Programming 10 (3), 319-25.

3

Improving on saddleback search

The setting is a tutorial on functional algorithm design. There are four students: Anne, Jack, Mary and Theo.

Teacher: Good morning class. Today I would like you design a function invert that takes two arguments: a function f from pairs of natural numbers to natural numbers, and a natural number z. The value invert $f z$ is a list of all pairs (x, y) satisfying $f(x, y)=z$. You can assume that f is strictly increasing in each argument, but nothing else.

Jack: That seems an easy problem. Since f is a function on naturals and is increasing in each argument, we know that $f(x, y)=z$ implies $x \leq z$ and $y \leq z$. Hence we can define invert by a simple search of all possible pairs of values:

$$
\text { invert } f z=[(x, y) \mid x \leftarrow[0 \ldots z], y \leftarrow[0 . . z], f(x, y)==z]
$$

Doesn't this solve the problem?
Teacher: Yes it does, but your solution involves $(z+1)^{2}$ evaluations of f. Since f may be very expensive to compute, I would like a solution with as few evaluations of f as possible.

Theo: Well, it is easy to halve the evaluations. Since $f(x, y) \geq x+y$ if f is increasing, the search can be confined to values on or below the diagonal of the square:

$$
\text { invert } f z=[(x, y) \mid x \leftarrow[0 \ldots z], y \leftarrow[0 \ldots z-x], f(x, y)==z]
$$

Come to think of it, you can replace the two upper bounds by $z-f(0,0)$ and $z-x-f(0,0)$. Then if $z<f(0,0)$ the search terminates at once.

Anne: Assuming it doesn't matter in which order the solutions are found, I think you can do better still. Jack's method searches a square of size $z+1$
from the origin at the bottom left, and proceeds upwards column by column. We can do better if we start at the top-left corner $(0, z)$ of the square. At any stage the search space is constrained to be a rectangle with top-left corner (u, v) and bottom-right corner $(z, 0)$. Here is the picture:

Let me define

$$
\text { find }(u, v) f z=[(x, y) \mid x \leftarrow[u . . z], y \leftarrow[v, v-1 . .0], f(x, y)==z]
$$

so that invert $f z=\operatorname{find}(0, z) f z$. It is now easy enough to calculate a more efficient implementation of find.

First of all, if $u>z$ or $v<0$, then, clearly, $\operatorname{find}(u, v) f z=[]$. Otherwise, we carry out a case analysis on the value $f(u, v)$. If $f(u, v)<z$, then the rest of column u can be eliminated, since $f\left(u, v^{\prime}\right)<f(u, v)<z$ for $v^{\prime}<v$. If $f(u, v)>z$, we can similarly eliminate, the rest of row v. Finally, if $f(u, v)=z$, then we can record (u, v) and eliminate the rest of both column u and row v.

Here is my improved version of invert:

$$
\begin{aligned}
& \text { invert } f z=\operatorname{find}(0, z) f z \\
& \text { find }(u, v) f z \\
& \left\lvert\, \begin{array}{ll}
u>z \vee v<0 & =[] \\
z^{\prime}<z & =\operatorname{find}(u+1, v) f z \\
z^{\prime}=z & =(u, v): \operatorname{find}(u+1, v-1) f z \\
z^{\prime}>z & =\operatorname{find}(u, v-1) f z \\
& \text { where } z^{\prime}=f(u, v)
\end{array}\right.
\end{aligned}
$$

In the worst case, when find traverses the perimeter of the square from the top-left corner to the bottom-right corner, it performs $2 z+1$ evaluations of f. In the best case, when find proceeds directly to either the bottom or rightmost boundary, it requires only $z+1$ evaluations.

Theo: You can reduce the search space still further because the initial square with top-left corner $(0, z)$ and bottom-right corner $(z, 0)$ is an overly
generous estimate of where the required values lie. Suppose we first compute m and n, where

$$
\begin{aligned}
& m=\operatorname{maximum}(\text { filter }(\lambda y \rightarrow f(0, y) \leq z)[0 \ldots z]) \\
& n=\operatorname{maximum}(\text { filter }(\lambda x \rightarrow f(x, 0) \leq z)[0 \ldots z])
\end{aligned}
$$

Then we can define invert $f z=$ find $(0, m) f z$, where find has exactly the same form that Anne gave, except that the first guard becomes $u>n \vee v<0$. In other words, rather than search a $(z+1) \times(z+1)$ square we can get away with searching an $(m+1) \times(n+1)$ rectangle.

The crucial point is that we can compute m and n by binary search. Let g be an increasing function on the natural numbers and suppose x, y and z satisfy $g x \leq z<g y$. To determine the unique value m, where $m=b s e a r c h ~ g(x, y) z$, in the range $x \leq m<y$ such that $g m \leq z<g(m+1)$ we can maintain the invariants $g a \leq z<g b$ and $x \leq a<b \leq y$. This leads to the program

$$
\begin{aligned}
& \text { bsearch } g(a, b) z \\
& \left\lvert\, \begin{array}{ll}
a+1==b & =a \\
g m \leq z & =b \operatorname{search} g(m, b) z \\
\text { otherwise } & =b \operatorname{search} g(a, m) z \\
& \text { where } m=(a+b) \text { div } 2
\end{array}\right.
\end{aligned}
$$

Since $a+1<b \Rightarrow a<m<y$ it follows that neither $g x$ nor $g y$ are evaluated by the algorithm, so they can be fictitious values. In particular, we have

$$
\begin{aligned}
m & =b \operatorname{search}(\lambda y \rightarrow f(0, y))(-1, z+1) z \\
n & =b \operatorname{search}(\lambda x \rightarrow f(x, 0))(-1, z+1) z
\end{aligned}
$$

where we extend f with fictitious values $f(0,-1)=0$ and $f(-1,0)=0$.
This version of invert takes about $2 \log z+m+n$ evaluations of f in the worst case and $2 \log z+m \min n$ in the best case. Since m or n may be substantially less than z, for example when $f(x, y)=2^{x}+3^{y}$, we can end up with an algorithm that takes only $O(\log z)$ steps in the worst case.

Teacher: Congratulations, Anne and Theo, you have rediscovered an important search strategy, dubbed saddleback search by David Gries; see Backhouse (1986), Dijkstra (1985) and Gries (1981). I imagine Gries called it that because the shape of the three-dimensional plot of f, with the smallest element at the bottom left, the largest at the top right and two wings, is a bit like a saddle. The crucial idea, as Anne has spotted, is to start the search at the tip of one of the wings rather than at the smallest or highest value. In his treatment of the problem, Dijkstra (1985) also mentioned the advantage of using a logarithmic search to find the appropriate starting rectangle.

Mary: What happens if we go for a divide and conquer solution? I mean, why not look at the middle element of the rectangle first? Surely it is reasonable to investigate the two-dimensional analogue of binary search.

Suppose we have confined the search to a rectangle with top-left corner (u, v) and bottom-right corner (r, s). Instead of looking at $f(u, v)$, why not inspect $f(p, q)$, where $p=(u+r)$ div 2 and $q=(v+s)$ div 2 ? Here is the picture:

If $f(p, q)<z$, then we can throw away all elements of the lower-left rectangle A. Similarly, if $f(p, q)>z$, then we can throw away the upper-right rectangle B. And if $f(p, q)=z$, then we can throw away both.

I know that this strategy does not maintain Anne's property that the search space is always a rectangle; instead, we have two rectangles or an L-shape. But we are functional programmers and don't have to confine ourselves to simple loops: a divide and conquer algorithm is as easy for us to implement as an iterative one because both have to be expressed recursively.

Jack: You have to deal with the L-shape though. You can split an L-shape into two rectangles of course. In fact you can do it in two ways, either with a horizontal cut or a vertical one. Let me do a rough calculation. Consider an $m \times n$ rectangle and let $T(m, n)$ denote the number of evaluations of f required to search it. If $m=0$ or $n=0$ then there is nothing to search. If $m=1$ or $n=1$ we have

$$
\begin{aligned}
& T(1, n)=1+T(1,\lceil n / 2\rceil) \\
& T(m, 1)=1+T(\lceil m / 2\rceil, 1)
\end{aligned}
$$

Otherwise, when $m \geq 2$ and $n \geq 2$, we can throw away a rectangle of size at least $\lfloor m / 2\rfloor \times\lfloor n / 2\rfloor$. If we make a horizontal cut, then we are left with two rectangles, one of size $\lfloor m / 2\rfloor \times\lceil n / 2\rceil$ and the other of size $\lceil m / 2\rceil \times n$. Hence

$$
T(m, n)=1+T(\lfloor m / 2\rfloor,\lceil n / 2\rceil)+T(\lceil m / 2\rceil, n)
$$

If we make a vertical cut, then we have

$$
T(m, n)=1+T(\lceil m / 2\rceil,\lfloor n / 2\rfloor)+T(m,\lceil n / 2\rceil)
$$

I don't immediately see the solutions to these recurrence relations.

Theo: If you make both a horizontal and a vertical cut, you are left with three rectangles, so when $m \geq 2$ and $n \geq 2$ we have

$$
T(m, n)=1+T(\lceil m / 2\rceil,\lfloor n / 2\rfloor)+T(\lceil m / 2\rceil,\lceil n / 2\rceil)+T(\lfloor m / 2\rfloor,\lceil n / 2\rceil)
$$

I can solve this recurrence. Set $U(i, j)=T\left(2^{i}, 2^{j}\right)$, so

$$
\begin{array}{ll}
U(i, 0) & =i \\
U(0, j) & =j \\
U(i+1, j+1) & =1+3 U(i, j)
\end{array}
$$

The solution is $U(i, j)=3^{k}(|j-i|+1 / 2)-1 / 2$, where $k=i \min j$, as one can check by induction. Hence, if $m \leq n$ we have

$$
T(m, n) \leq 3^{\log m} \log (2 n / m)=m^{1.59} \log (2 n / m)
$$

That's better than $m+n$ when m is much smaller than n.

Jack: I don't think the three-rectangle solution is as good as the tworectangle one. Following your approach, Theo, let me set $U(i, j)=T\left(2^{i}, 2^{j}\right)$. Supposing $i \leq j$ and making a horizontal cut, we have

$$
\begin{array}{ll}
U(0, j) & =j \\
U(i+1, j+1) & =1+U(i, j)+U(i, j+1)
\end{array}
$$

The solution is $U(i, j)=2^{i}(j-i / 2+1)-1$, as one can check by induction. Hence

$$
T(m, n) \leq m \log (2 n / \sqrt{m})
$$

If $i \geq j$ we should make a vertical cut rather than a horizontal one; then we get an algorithm with at most $n \log (2 m / \sqrt{n})$ evaluations of f. In either case, if one of m or n is much smaller than the other we get a better algorithm than saddleback search.

Anne: While you two have been solving recurrences I have been thinking of a lower bound on the complexity of invert. Consider the different possible outputs when we have an $m \times n$ rectangle to search. Suppose there are $A(m, n)$ different possible answers. Each test of $f(x, y)$ against z has three possible outcomes, so the height h of the ternary tree of tests has to satisfy $h \geq \log _{3} A(m, n)$. Provided we can estimate $A(m, n)$ this gives us a lower bound on the number of tests that have to be performed. The situation is the same with sorting n items by binary comparisons; there are n ! possible outcomes, so any sorting algorithm has to make at least $\log _{2} n$! comparisons in the worst case.

It is easy to estimate $A(m, n)$: each list of pairs (x, y) in the range $0 \leq$ $x<n$ and $0 \leq y<m$ with $f(x, y)=z$ is in a one-to-one correspondence with a step shape from the top-left corner of the $m \times n$ rectangle to the bottom-right corner, in which the value z appears at the inner corners of the steps. Of course, this step shape is not necessarily the one traced by the function find. The number of such paths is $\binom{m+n}{n}$, so that is the value of $A(m, n)$.

Another way to see this result is to suppose there are k solutions. The value z can appear in k rows in exactly $\binom{m}{k}$ ways, and for each way there are $\binom{n}{k}$ possible choices for the columns. Hence

$$
A(m, n)=\sum_{k=0}^{m}\binom{m}{k}\binom{n}{k}=\binom{m+n}{n}
$$

since the summation is an instance of Vandermonde's convolution; see Graham et al. (1989). Taking logarithms, we obtain the lower bound

$$
\log A(m, n)=\Omega(m \log (1+n / m)+n \log (1+m / n))
$$

This estimate shows that when $m=n$ we cannot do better than $\Omega(m+n)$ steps. But if $m \leq n$ then $m \leq n \log (1+m / n)$, since $x \leq \log (1+x)$ if $0 \leq x \leq 1$. Thus $A(m, n)=\Omega(m \log (n / m))$. Jack's solution does not quite achieve this bound because he obtains only an $O(m \log (n / \sqrt{m}))$ algorithm in the case $m \leq n$.

Mary: I don't think that Jack's divide and conquer solution is really necessary; there are other ways of using binary search to solve the problem. One is simply to carry out m binary searches, one on each row. That gives an $O(m \log n)$ solution. But I think we can do better and achieve the optimal asymptotic $O(m \log (n / m))$ bound, assuming $m \leq n$.

Suppose, as before, we have confined the search to a rectangle with top-left corner (u, v) and bottom-right corner (r, s). Thus, there are $r-u$ columns and $s-v$ rows. Furthermore, assume $v-s \leq r-u$, so there at least as many columns as rows. Suppose we carry out a binary search along the middle row, $q=(v+s)$ div 2 , in order to determine a p such that $f(p, q) \leq$ $z<f(p+1, q)$. If $f(p, q)<z$, then we need continue the search only on the two rectangles $((u, v),(p, q+1))$ and $((p+1, q-1),(r, s))$. If $f(p, q)=z$ then we can cut out column p and can continue the search only on the rectangles $((u, v),(p-1, q+1))$ and $((p+1, q-1),(r, s))$. The reasoning is dual if there are more rows than columns. As a result, we can eliminate about half the elements of the array with a logarithmic number of probes.

```
find \((u, v)(r, s) f z\)
    \(u>r \vee v<s=\) []
    \(v-s \leq r-u=r\) rind \((b s e a r c h(\lambda x \rightarrow f(x, q))(u-1, r+1) z)\)
    otherwise \(\quad=c\) find \((b s e a r c h ~(\lambda y \rightarrow f(p, y))(s-1, v+1) z)\)
    where
        \(p \quad=\quad(u+r) \operatorname{div} 2\)
        \(q=(v+s) \operatorname{div} 2\)
        rfind \(p=(\) if \(f(p, q)=z\) then \((p, q):\) find \((u, v)(p-1, q+1) f z\)
        else find \((u, v)(p, q+1) f z)+\)
        find \((p+1, q-1)(r, s) f z\)
        cfind \(q=\) find \((u, v)(p-1, q+1) f z+\)
        (if \(f(p, q)=z\) then \((p, q):\) find \((p+1, q-1)(r, s) f z\)
            else find \((p+1, q)(r, s) f z)\)
```

Fig. 3.1 The revised definition of find

Here is the algorithm I have in mind: we implement invert by

$$
\begin{aligned}
\text { invert } f z & = \\
\text { where } m & =b, m)(n, 0) f z \\
n & =b \operatorname{search}(\lambda y \rightarrow f(0, y))(-1, z+1) z \\
& =f x \rightarrow f(x, 0))(-1, z+1) z
\end{aligned}
$$

where find $(u, v)(r, s) f z$, given in Figure 3.1, searches a rectangle with top-left corner (u, v) and bottom-right corner (r, s).

As to the analysis, again let $T(m, n)$ denote the number of evaluations required to search an $m \times n$ rectangle. Suppose $m \leq n$. In the best case, when for example each binary search on a row returns the leftmost or rightmost element, we have $T(m, n)=\log n+T(m / 2, n)$ with solution $T(m, n)=$ $O(\log m \times \log n)$. In the worst case, when each binary search returns the middle element, we have

$$
T(m, n)=\log n+2 T(m / 2, n / 2)
$$

To solve this, set $U(i, j)=T\left(2^{i}, 2^{j}\right)$. Then we have

$$
U(i, j)=\sum_{k=0}^{i-1} 2^{k}(j-k)=O\left(2^{i}(j-i)\right)
$$

Hence $T(m, n)=O(m \log (n / m))$. This is asymptotically optimal by Anne's lower bound.

Teacher: Well done the four of you! It is surprising that in the 25 years or so that saddleback search has been presented as a paradigm of formal program construction nobody has seemed to notice that it is not asymptotically the best algorithm for searching.

Algorithm	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}
Anne	7501	5011	6668	5068	9989
Theo	2537	38	1749	157	5025
Mary	121	42	445	181	134

Fig. 3.2 Number of evaluations

Algorithm	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}
Anne	0.42	0.40	0.17	0.15	0.54
Theo	0.06	0.01	0.05	0.01	0.15
Mary	0.01	0.01	0.02	0.02	0.01

Fig. 3.3 Absolute running times

Afterword

The real story behind this pearl was that I decided to use saddleback search as an exercise when interviewing candidates for entry to Oxford. They were given a two-dimensional array of numbers, increasing along each row and up each column and asked for a systematic way to spot all occurrences of a given number. My aim was to get them to realise that searching from the top-left or bottom-right was a good strategy. But those candidates who had done some computing at school kept wanting to use binary search, either by going for the middle of each row or for the middle element of the rectangle. Thinking that saddleback search was the gold standard for this problem, I steered them away from pursuing the thought. Only afterwards did I wonder whether they might have had a point.

Apart from describing a new algorithm for an old problem, I think that two other methodological aspects are worthy of note. First, formal program calculation is heavily influenced by the available computational methods of the target language. While nobody would say it was elegant, Mary's final program is simple enough, given recursion and list concatenation as basic constructs, but would be more difficult to express with just arrays and loops. Second, as algorithm designers fully appreciate, formal program calculation has to be supplemented by insight into possible directions for improving efficiency. Such insight is provided, in part, by solving recurrence relations and determining lower bounds.

This pearl originally appeared in Bird (2006). One of the referees of the original paper wrote:

Complexity brings with it its own efficiency overheads, which are so often neglected in the sort of analyses included in the paper. If the author really wants to convince
us that his algorithms are better than Gries's, then he should show some concrete evidence. Run the algorithm for specific functions on specific data, and compare the results.

Figures 3.2 and 3.3 provide such evidence. Five functions were chosen almost at random:

$$
\begin{aligned}
f_{0}(x, y) & =2^{y}(2 x+1)-1 \\
f_{1}(x, y) & =x 2^{x}+y 2^{y}+2 x+y \\
f_{2}(x, y) & =3 x+27 y+y^{2} \\
f_{3}(x, y) & =x^{2}+y^{2}+x+y \\
f_{4}(x, y) & =x+2^{y}+y-1
\end{aligned}
$$

Figure 3.2 lists the exact number of evaluations of f_{i} required in the computation of invert $f_{i} 5000$ using Anne's initial version of saddleback search, Theo's version (with binary search to compute the boundaries) and Mary's final version. Figure 3.3 lists absolute running times in seconds under GHCi. The close correspondence with the first table shows that the number of evaluations is a reasonable guide to absolute running time.

References

Backhouse, R. (1986). Program Construction and Verification. International Series in Computer Science. Prentice Hall.
Bird, R. (2006). Improving saddleback search: a lesson in algorithm design. Mathematics of Program Construction, LNCS 4014, pp. 82-9.
Dijkstra, E. W. (1985). The saddleback search. EWD-934.
http://www.cs.utexas.edu/users/EWD/index09xx.html.
Gries, D. (1981). The Science of Programming. Springer-Verlag.
Graham, R. L., Knuth, D. E. and Patashnik, O. (1989). Concrete Mathematics. Reading, MA: Addison-Wesley.

A selection problem

Introduction

Let X and Y be two finite disjoint sets of elements over some ordered type and of combined size greater than k. Consider the problem of computing the k th smallest element of $X \cup Y$. By definition, the k th smallest element of a set is one for which there are exactly k elements smaller than it, so the zeroth smallest is the smallest. How long does such a computation take?

The answer depends, of course, on how the sets X and Y are represented. If they are both given as sorted lists, then $O(|X|+|Y|)$ steps are sufficient. The two lists can be merged in linear time and the k th smallest can be found at position k in the merged list in a further $O(k)$ steps. In fact, the total time is $O(k)$ steps, since only the first $k+1$ elements of the merged list need be computed. But if the two sets are given as sorted arrays, then as we show below - the time can further be reduced to $O(\log |X|+\log |Y|)$ steps. This bound depends on arrays having a constant-time access function. The same bound is attainable if both X and Y are represented by balanced binary search trees, despite the fact that two such trees cannot be merged in less than linear time.

The fast algorithm is another example of divide and conquer, and the proof that it works hinges on a particular relationship between merging and selection. Our aim in this pearl is to spell out the relationship, calculate the list-based divide and conquer algorithm and then implement it for the array representation of lists.

Formalisation and first steps

In terms of two sorted disjoint lists $x s$ and $y s$, the problem is to compute

$$
\begin{array}{ll}
\text { smallest } & :: \text { Ord } a \Rightarrow \text { Int } \rightarrow([a],[a]) \rightarrow a \\
\text { smallest } k(x s, y s) & =\text { union }(x s, y s)!!k
\end{array}
$$

The value of $x s!!k$ is the element of $x s$ at position k, counting from zero. The function union :: Ord $a \Rightarrow([a],[a]) \rightarrow[a]$ for merging two disjoint lists, each in increasing order, is defined by

union $(x s,[])$	$=x s$
union $([], y s)$	$=y s$
union $(x: x s, y: y s)$	$\left\lvert\,$$x<y=x:$ union $(x s, y: y s)$ $\quad y>y=y\right.:$ union $(x: x s, y s)$

Our aim is to derive a divide and conquer algorithm for smallest, so we need some decomposition rules for !! and union. For the former, abbreviating length xs to $|x s|$, we have

$$
\begin{equation*}
(x s+y s)!!k=\text { if } k<|x s| \text { then } x s!!k \text { else } y s!!(k-|x s|) \tag{4.1}
\end{equation*}
$$

The straightforward proof is omitted. For union we have the following property. Suppose $x s+y s$ and $u s+v s$ are two sorted disjoint lists such that

$$
\text { union }(x s, v s)=x s+v s \quad \text { and } \quad \text { union }(u s, y s)=u s+y s
$$

In other words, no element of $x s$ is greater than or equal to any element of $v s$; similarly for $u s$ and $y s$. Then

$$
\begin{equation*}
\text { union }(x s+y s, u s+v s)=\text { union }(x s, u s)+\operatorname{union}(y s, v s) \tag{4.2}
\end{equation*}
$$

It is instructive to rewrite (4.2) using an infix symbol \cup for union:

$$
(x s+y s) \cup(u s+v s)=(x s \cup u s) H(y s \cup v s)
$$

Compare this with the similar identity ${ }^{1}$ involving list difference $\backslash \backslash$:

$$
(x s+y s) \backslash(u s+v s)=(x s \backslash u s)+(y s \backslash \backslash v s)
$$

which holds when $x s \backslash \backslash v=x s$ and $y s \backslash \backslash u s=y s$. When two operators, $\#$ and \cup, or H and $\backslash \backslash$, interact in this way, they are said to abide ${ }^{2}$ with one another. The abides property (4.2) of $\#$ and \cup is, we hope, sufficiently clear that we can omit a formal proof.

In what follows, the condition union $(x s, y s)=x s+y s$ is abbreviated to $x s \triangleleft y s$. Thus, $x s \triangleleft y s$ if $x<y$ for all elements x of $x s$ and y of $y s$. Note that, restricted to nonempty lists, \triangleleft is a transitive relation.

[^2]
Divide and conquer

The aim of this section is to decompose the expression
smallest $k(x s+[a]+y s, u s+[b]+v s)$
We deal only with the case $a<b$, since the case $a>b$, is entirely dual. The key point is that $(x s+[a]) \triangleleft([b]+v s)$ if $a<b$ because all lists are in increasing order.

Assume first that $k<|x s+[a]+u s|$, which is equivalent to $k \leq \mid x s+u s]$. We calculate:

$$
\left.\begin{array}{rl}
& \begin{array}{c}
\text { smallest } k(x s+[a]+y s, u s+[b]+v s) \\
=
\end{array} \quad\{\text { definition }\} \\
& \text { union }(x s+[a]+y s, u s+[b]+v s)!!k \\
= & \left\{\text { choose } y s_{1} \text { and } y s_{2} \text { so that } y s=y s_{1}+y s_{2}\right. \text { and } \\
& \left.\left(x s+[a]+y s_{1}\right) \triangleleft([b]+v s) \text { and } u s \triangleleft y s_{2}\right\}
\end{array}\right\}
$$

Next, assume that $k \geq|x s+[a]+u s|$. A symmetric argument gives

$$
\begin{aligned}
& \text { smallest } k(x s+[a]+y s, u s+[b]+v s) \\
= & \{\text { definition }\} \\
& \text { union }(x s+[a]+y s, u s+[b]+v s)!!k \\
= & \left\{\text { choose } u s_{1} \text { and } u s_{2} \text { so that } u s=u s_{1}+u s_{2}\right. \text { and } \\
& \left.u s_{1} \triangleleft y s \text { and }(x s+[a]) \triangleleft\left(u s_{2}+[b]+v s\right)\right\} \\
& \text { union }\left(x s+[a]+y s, u s_{1}+u s_{2}+[b]+v s\right)!!k \\
= & \left\{\text { abides property of } \# \text { and } \cup \text { and choice of } u s_{1} \text { and } u s_{2}\right\} \\
& \left(\text { union }\left(x s+[a], u s_{1}\right)+\text { union }\left(y s, u s_{2}+[b]+v s\right)\right)!!k
\end{aligned}
$$

```
\(=\quad\{\operatorname{using}(4.1)\) and assumption that \(k \geq|x s+[a] \# u s|\}\)
        union \(\left(y s, u s_{2}+[b]+v s\right)!!\left(k-\left|x s+[a]+u s_{1}\right|\right)\)
\(=\{\) using (4.1) again \(\}\)
        (union \(\left([], u s_{1}\right)+\) union \(\left.\left(y s, u s_{2}+[b]+v s\right)\right)!!(k-|x s+[a]|)\)
\(=\quad\{\) as before \(\}\)
    smallest \((k-|x s+[a]|)(y s, u s+[b]+v s)\)
```

Summarising, we have that if $a<b$, then

```
smallest \(k(x s+[a]+y s, u s+[b]+v s)\)
    \(k \leq p+q=\) smallest \(k(x s+[a]+y s, u s)\)
    \(k>p+q=\operatorname{smallest}(k-p-1)(y s, u s+[b]+v s)\)
        where \((p, q)=(\) length \(x s\), length us)
```

Entirely dual reasoning in the case $a>b$ yields

```
smallest \(k(x s+[a]+y s, u s+[b]+v s)\)
    | \(k \leq p+q=\) smallest \(k(x s, u s+[b] \# v s)\)
    \(\mid k>p+q=\) smallest \((k-q-1)(x s+[a]+y s, v s)\)
        where \((p, q)=(\) length \(x s\), length \(u s)\)
```

To complete the divide and conquer algorithm for smallest we have to consider the base cases when one or other of the argument lists is empty. This is easy, and we arrive at the following program:

```
smallest \(k([], w s)=w s!!k\)
smallest \(k(z s,[])=z s!!k\)
smallest \(k(z s, w s)=\)
    case \((a<b, k \leq p+q)\) of
        (True, True) \(\rightarrow\) smallest \(k(z s, u s)\)
        (True, False) \(\rightarrow\) smallest \((k-p-1)(y s, w s)\)
        (False, True) \(\rightarrow\) smallest \(k(x s, w s)\)
        (False, False) \(\rightarrow\) smallest \((k-q-1)(z s, v s)\)
where \(p=(\) length \(z s) \operatorname{div} 2\)
        \(q \quad=\quad(\) length \(w s) \operatorname{div} 2\)
        \((x s, a: y s)=\) splitAt \(p z s\)
        \((u s, b: v s)=\) splitAt \(q w s\)
```

The running time of smallest $k(x s, y s)$ is linear in the lengths of the lists $x s$ and $y s$, so the divide and conquer algorithm is no faster than the specification. The payoff comes when $x s$ and $y s$ are given as sorted arrays rather than lists. Then the program can be modified to run in logarithmic time in the sizes of

```
search \(k(l x, r x)(l y r y)\)
    \(l x==r x \quad=\quad y a!k\)
    \(l y=r y \quad=x a!k\)
    otherwise \(=\) case \((x a!m x<y a!m y, k \leq m x+m y)\) of
    (True, True) \(\rightarrow\) search \(k(l x, r x)(l y, m y)\)
    (True, False) \(\rightarrow\) search \((k-m x-1)(m x, r x)(l y, r y)\)
    (False, True) \(\rightarrow\) search \(k(l x, m x)(l y, r y)\)
    (False, False) \(\rightarrow\) search \((k-m y-1)(l x, r x)(m y, r y)\)
    where \(m x=(l x+r x) \operatorname{div} 2 ; m y=(l y+r y) \operatorname{div} 2\)
```

Fig. 4.1 Definition of search
the arrays. Instead of repeatedly splitting the two lists, everything can be done with array indices. More precisely, a list $x s$ is represented by an array $x a$ and two indices $(l x, r x)$ under the abstraction $x s=\operatorname{map}(x a!)[l x . . r x-1]$, where (!) is the array indexing operator in the Haskell library Data.Array. This library provides efficient operations on immutable arrays, arrays that are constructed in one go. In particular, (!) takes constant time. A list $x s$ can be converted into an array $x a$ indexed from zero by

$$
x a=\text { listArray }(0, \text { length } x s-1) x s
$$

We can now define

$$
\begin{array}{ll}
\text { smallest } & :: \text { Int } \rightarrow(\text { Array Int a, Array Int } a) \rightarrow a \\
\text { smallest } k(x a, y a)= & \operatorname{search} k(0, m+1)(0, n+1) \\
& \text { where }(0, m)=\text { bounds } x a \\
& (0, n)=\text { bounds ya }
\end{array}
$$

The function bounds returns the lower and upper bounds on an array, here indexed from zero. Finally, the function search, which is local to smallest because it refers to the arrays $x a$ and $y a$, is given in Figure 4.1.

There is a constant amount of work at each recursive call, and each call halves one or other of the two intervals, so the running time of search is logarithmic.

Final remarks

Although we have phrased the problem in terms of disjoint sets represented by lists in increasing order, there is a variation on the problem in which the lists are not necessarily disjoint and are only in weakly increasing order. Such lists represents multisets or bags. Consider the computation
of merge $(x s, y s)!!k$, where merge merges two lists in ascending order, so merge $=$ uncurry $(M):$

```
\(\operatorname{merge}([], y s)=y s\)
\(\operatorname{merge}(x s,[])=x s\)
\(\operatorname{merge}(x: x s, y: y s) \quad \mid \quad x \leq y=x: \operatorname{merge}(x s, y: y s)\)
    \(x \geq y=y: \operatorname{merge}(x: x s, y s)\)
```

Thus, merge has the same definition as union except that $<$ and $>$ are replaced by \leq and \geq. Of course, the result is no longer necessarily the k th smallest element of the combined lists. Furthermore, provided we replace \triangleleft by \unlhd, where $x s \unlhd y s$ if merge $(x s, y s)=x s+y s$, and equivalently if $x \leq y$ for all x in $x s$ and y in $y s$, then the calculation recorded above remains valid provided the cases $a<b$ and $a>b$ are weakened to $a \leq b$ and $a \geq b$.

As a final remark, this pearl originally appeared, under a different title, in Bird (1997). But do not look at it, because it made heavy weather of the crucial relationship between merging and selection. Subsequently, Jeremy Gibbons (1997) spotted a much simpler way to proceed, and it is really his calculation that has been recorded above.

References

Bird, R. S. (1997). On merging and selection. Journal of Functional Programming 7 (3), 349-54.
Gibbons, J. (1997). More on merging and selection. Technical Report CMS-TR-97-08, Oxford Brookes University, UK.

5

Sorting pairwise sums

Introduction

Let A be some linearly ordered set and $(\oplus):: A \rightarrow A \rightarrow A$ some monotonic binary operation on A, so $x \leq x^{\prime} \wedge y \leq y^{\prime} \Rightarrow x \oplus y \leq x^{\prime} \oplus y^{\prime}$. Consider the problem of computing

$$
\begin{array}{ll}
\text { sortsums } & ::[A] \rightarrow[A] \rightarrow[A] \\
\text { sortsums xs ys } & =\text { sort }[x \oplus y \mid x \leftarrow x s, y \leftarrow y s]
\end{array}
$$

Counting just comparisons, and supposing $x s$ and $y s$ have the same length n, how long does sortsums xs ys take?

Certainly $O\left(n^{2} \log n\right)$ comparisons are sufficient. There are n^{2} sums and sorting a list of length n^{2} can be done with $O\left(n^{2} \log n\right)$ comparisons. This upper bound does not depend on \oplus being monotonic. In fact, without further information about \oplus and A this bound is also a lower bound. The assumption that \oplus is monotonic does not reduce the asymptotic complexity, only the constant factor.

But now suppose we know more about \oplus and A : specifically that (\oplus, A) is an Abelian group. Thus, \oplus is associative and commutative, with identity element e and an operation negate $:: A \rightarrow A$ such that $x \oplus$ negate $x=e$. Given this extra information, Jean-Luc Lambert (1992) proved that sortsums can be computed with $O\left(n^{2}\right)$ comparisons. However, his algorithm also requires $C n^{2} \log n$ additional operations, where C is quite large. It remains an open problem, some 35 years after it was first posed by Harper et al. (1975), as to whether the total cost of computing sortsums can be reduced to $O\left(n^{2}\right)$ comparisons and $O\left(n^{2}\right)$ other steps.

Lambert's algorithm is another nifty example of divide and conquer. Our aim in this pearl is just to present the essential ideas and give an implementation in Haskell.

Lambert's algorithm

Let's first prove the $\Omega\left(n^{2} \log n\right)$ lower bound on sortsums when the only assumption is that (\oplus) is monotonic. Suppose $x s$ and $y s$ are both sorted into increasing order and consider the $n \times n$ matrix

$$
[[x \oplus y \mid y \leftarrow y s] \mid x \leftarrow x s]
$$

Each row and column of the matrix is therefore in increasing order. The matrix is an example of a standard Young tableau, and it follows from Theorem H of Section 5.1.4 of Knuth (1998) that there are precisely

$$
E(n)=\left(n^{2}\right)!/\left(\frac{(2 n-1)!}{(n-1)!} \frac{(2 n-2)!}{(n-2)!} \cdots \frac{n!}{0!}\right)
$$

ways of assigning the values 1 to n^{2} to the elements of the matrix, and so exactly $E(n)$ potential permutations that sort the input. Using the fact that $\log E(n)=\Omega\left(n^{2} \log n\right)$, we conclude that at least this number of comparisons is required.

Now for the meat of the exercise. Lambert's algorithm depends on two simple facts. Define the subtraction operation $(\ominus):: A \rightarrow A \rightarrow A$ by $x \ominus y=x \oplus$ negate y. Then:

$$
\begin{align*}
x \oplus y & =x \ominus \text { negate } y \tag{5.1}\\
x \ominus y \leq x^{\prime} \ominus y^{\prime} & \equiv x \ominus x^{\prime} \leq y \ominus y^{\prime} \tag{5.2}
\end{align*}
$$

Verification of (5.1) is easy, but (5.2), which we leave as an exercise, requires all the properties of an Abelian group. In effect, (5.1) says that the problem of sorting sums can be reduced to the problem of sorting subtractions and (5.2) says that the latter problem is, in turn, reducible to the problem of sorting subtractions over a single list.

Here is how (5.1) and (5.2) are used. Consider the list subs xs ys of labelled subtractions defined by

$$
\begin{array}{lll}
\text { subs } & :: \quad[A] \rightarrow[A] \rightarrow[\text { Label } A] \\
\text { subs xs ys } & = & {[(x \ominus y,(i, j)) \mid(x, i) \leftarrow \text { zip } x s[1 . .],(y, j) \leftarrow \text { zip ys }[1 . .]]}
\end{array}
$$

where Label a is a synonym for $(a,($ Int, Int $))$. Thus, each term $x \ominus y$ is labelled with the position of x in $x s$ and y in $y s$. Labelling information will be needed later on. The first fact (5.1) gives

$$
\begin{aligned}
& \text { sortsums xs ys }=\text { map fst (sortsubs xs (map negate ys)) } \\
& \text { sortsubs xs ys }
\end{aligned}=\text { sort (subs xs ys) }
$$

The sums are sorted by sorting the associated labelled subtractions and throwing away the labels.

The next step is to exploit (5.2) to show how to compute sortsubs xs ys with a quadratic number of comparisons. Construct the list table by

```
table \(\quad:: \quad[A] \rightarrow[A] \rightarrow[(\) Int, Int, Int \()]\)
table xs ys \(\quad=\quad\) map snd \((\operatorname{map}(\operatorname{tag} 1) x x s \wedge \operatorname{map}(t a g 2) y y s)\)
    where \(x x s=\) sortsubs xs xs
        yys \(=\) sortsubs ys ys
\(\operatorname{tag} i(x,(j, k))=(x,(i, j, k))\)
```

Here, M merges two sorted lists. In words, table is constructed by merging the two sorted lists $x x s$ and yys after first tagging each list in order to be able to determine the origin of each element in the merged list. According to (5.2), table contains sufficient information to enable sortsubs xs ys to be computed with no comparisons over A. For suppose that $x \ominus y$ has label (i, j) and $x^{\prime} \ominus y^{\prime}$ has label (k, ℓ). Then $x \ominus y \leq x^{\prime} \ominus y^{\prime}$ if and only if $(1, i, k)$ precedes $(2, j, \ell)$ in table. No comparisons of elements of A are needed beyond those required to construct table.

To implement the idea we need to be able to compute precedence information quickly. This is most simply achieved by converting table into a Haskell array:

$$
\begin{aligned}
& m k A r r a y \text { xs ys }=\text { array } b(z i p(\text { table xs ys) [1..]) } \\
& \text { where } b=((1,1,1),(2, p, p)) \\
& p=\max (\text { length } x s) \text { (length ys) }
\end{aligned}
$$

The definition of mkArray makes use of the library Data.Array of Haskell arrays. The first argument b of array is a pair of bounds, the lowest and highest indices in the array. The second argument of array is an association list of index-value pairs. With this representation, $(1, i, k)$ precedes $(2, j, \ell)$ in table if $a!(1, i, k)<a!(2, j, \ell)$, where $a=m k A r r a y x s$ ys. The array indexing operation (!) takes constant time, so a precedence test takes constant time. We can now compute sortsubs xs ys using the Haskell utility function sortBy:

$$
\begin{aligned}
& \text { sortsubs xs ys }=\text { sortBy }(\text { cmp }(m k A r r a y ~ x s ~ y s))(\text { subs xs ys }) \\
& \begin{aligned}
\text { cmp } a(x,(i, j)) & (y,(k, \ell)) \\
& =\text { compare }(a!(1, i, k))(a!(2, j, \ell))
\end{aligned}
\end{aligned}
$$

The function compare is a method in the type class Ord. In particular, sort $=$ sortBy compare and $(M)=$ mergeBy compare. We omit the divide and conquer definition of sort $B y$ in terms of merge $B y$.

The program so far is summarised in Figure 5.1. It is complete apart from the definition of sortsubs ${ }^{\prime}$, where sortsubs ${ }^{\prime}$ xs $=$ sortsubs xs xs. However, this definition cannot be used in sortsums because the recursion would not be

```
sortsums xs ys = map fst (sortsubs xs (map negate ys))
sortsubs xs ys = sortBy (cmp (mkArray xs ys))(subs xs ys)
```

subs xs ys $=[(x \ominus y,(i, j)) \mid(x, i) \leftarrow$ zip xs [1..], $(y, j) \leftarrow$ zip ys [1..]]
cmp $a(x,(i, j))(y,(k, \ell)=$ compare $(a!(1, i, k))(a!(2, j, \ell))$
$m k A r r a y$ xs ys $=$ array $b($ zip (table xs ys) [1..])
where $b=((1,1,1),(2, p, p))$
$p=\max ($ length xs $)($ length ys)
table xs ys $\quad=\quad$ map snd $($ map (tag 1) xxs M map (tag 2) yys)
where xxs $=$ sortsubs ${ }^{\prime} x s$
yys $=$ sortsubs $^{\prime} y s$
$\operatorname{tag} i(x,(j, k))=(x,(i, j, k))$

Fig. 5.1 The complete code for sortsums, except for sortsubs ${ }^{\prime}$
well founded. Although computing sortsubs xs ys takes $O(m n \log m n)$ steps, it uses no comparisons on A beyond those needed to construct table. And table needs only $O\left(m^{2}+n^{2}\right)$ comparisons plus those comparisons needed to construct sortsubs ${ }^{\prime} x s$ and sortsubs ${ }^{\prime} y s$. What remains is to show how to compute sortsubs ${ }^{\prime}$ with a quadratic number of comparisons.

Divide and conquer

Ignoring labels for the moment and writing $x s \ominus y s$ for $[x \ominus y \mid x \leftarrow x s, y \leftarrow y s]$, the key to a divide and conquer algorithm is the identity

$$
\begin{aligned}
& (x s+y s) \ominus(x s+y s) \\
& \quad=(x s \ominus x s)+(x s \ominus y s)+(y s \ominus x s)+(y s \ominus y s)
\end{aligned}
$$

Hence, to sort the list on the left, we can sort the four lists on the right and merge them together. The presence of labels complicates the divide and conquer algorithm slightly because the labels have to be adjusted correctly. The labelled version reads

```
subs (xs + ys) (xs + ys)
    = subs xs xs + map (incr m) (subs xs ys) #
    map (incl m) (subs ys xs) + map (incb m) (subs ys ys)
```

where $m=$ length $x s$ and

```
incl m(x,(i,j)) = (x,(m+i,j))
incr m (x, (i,j)) = (x, (i,m+j))
incb m (x, (i,j)) = (x,(m+i,m+j))
```

```
sortsubs' \(^{\prime}[]=[]\)
sortsubs \({ }^{\prime}[w]=[(w \ominus w,(1,1))]\)
sortsubs \({ }^{\prime}\) ws \(=\) foldr \(1(M)[x x s\), map (incr \(m\) ) xys,
                                    map (incl m) yxs, map (incb m)yys]
    where xxs \(\quad=\quad\) sortsubs \({ }^{\prime}\) xs
        xys \(\quad=\operatorname{sortBy}(c m p(m k A r r a y ~ x s ~ y s))(\) subs xs ys)
        yxs \(=\) map switch (reverse xys)
        yys \(=\) sortsubs' ys
        \((x s, y s)=\) splitAt \(m\) ws
        \(m \quad=\quad\) length ws div 2
incl \(m(x,(i, j))=(x,(m+i, j))\)
incr \(m(x,(i, j))=(x,(i, m+j))\)
incb \(m(x,(i, j))=(x,(m+i, m+j))\)
\(\operatorname{switch}(x,(i, j))=(\) negate \(x,(j, i))\)
```

Fig. 5.2 The code for sortsubs ${ }^{\prime}$

To compute sortsubs' ws we split ws into two equal halves $x s$ and $y s$. The lists sortsubs' xs and sortsubs' ys are computed recursively. The list sortsubs xs ys is computed by applying the algorithm of the previous section. We can also compute sortsubs ys $x s$ in the same way, but an alternative is simply to reverse sortsubs xs ys and negate its elements:

```
sortsubs ys \(x s=\) map switch (reverse (sortsubs xs ys)
\(\operatorname{switch}(x,(i, j))=(\) negate \(x,(j, i))\)
```

The program for sortsubs' is given in Figure 5.2. The number $C(n)$ of comparisons required to compute sortsubs ${ }^{\prime}$ on a list of length n satisfies the recurrence $C(n)=2 C(n / 2)+O\left(n^{2}\right)$ with solution $C(n)=O\left(n^{2}\right)$. That means sortsums can be computed with $O\left(n^{2}\right)$ comparisons. However, the total time $T(n)$ satisfies $T(n)=2 T(n / 2)+O\left(n^{2} \log n\right)$ with solution $T(n)=O\left(n^{2} \log n\right)$. The logarithmic factor can be removed from $T(n)$ if sortBy cmp can be computed in quadratic time, but this result remains elusive. In any case, the additional complexity arising from replacing comparisons by other operations makes the algorithm very inefficient in practice.

Final remarks

The problem of sorting pairwise sums is given as Problem 41 in the Open Problems Project (Demaine et al., 2009), a web resource devoted to recording open problems of interest to researchers in computational geometry and related fields. The earliest known reference to the problem is Fedman (1976),
who attributes the problem to Elwyn Berlekamp. All these references consider the problem in terms of numbers rather than Abelian groups, but the idea is the same.

References

Demaine, E. D., Mitchell, J. S. B. and O'Rourke, J. (2009). The Open Problems Project. http://mave,smith.edu/~orourke/TOPP/.
Fedman, M. L. (1976). How good is the information theory lower bound in sorting? Theoretical Computer Science 1, 355-61.
Harper, L. H., Payne, T. H., Savage, J. E. and Straus, E. (1975). Sorting X + Y. Communications of the ACM 18 (6), 347-9.
Knuth, D. E. (1998). The Art of Computer Programming: Volume 3, Sorting and Searching, second edition. Reading, MA: Addison-Wesley.
Lambert, J.-L. (1992). Sorting the sums $\left(x_{i}+y_{j}\right)$ in $O\left(n^{2}\right)$ comparisons. Theoretical Computer Science 103, 137-41.

6

Making a century

Introduction

The problem of making a century is to list all the ways the operations + and \times can be inserted into the list of digits $[1 . .9]$ so as to make a total of 100. Two such ways are:

$$
\begin{aligned}
& 100=12+34+5 \times 6+7+8+9 \\
& 100=1+2 \times 3+4+5+67+8+9
\end{aligned}
$$

Note that no parentheses are allowed in expressions and \times binds more tightly than + . The only way to solve the problem seems to be by searching through all possible expressions, in other words to carry out an exhaustive search. The primary aim of this pearl is to examine a little of the theory of exhaustive search in order to identify any features that can improve its performance. The theory is then applied to the problem of making a century.

A little theory

We begin with the three types Data, Candidate and Value and three functions:

$$
\begin{array}{lll}
\text { candidates } & :: & \text { Data } \rightarrow \text { [Candidate }] \\
\text { value } & :: & \text { Candidate } \rightarrow \text { Value } \\
\text { good } & :: & \text { Value } \rightarrow \text { Bool }
\end{array}
$$

These three functions are be used to construct a function solutions:
solutions $\quad:: \quad$ Data \rightarrow [Candidate $]$
solutions $=$ filter $($ good \cdot value $) \cdot$ candidates
The function solutions carries out an exhaustive search through the list of candidates to find all those having good value. No special steps have to be taken if only one answer is required because lazy evaluation will ensure that only the work needed to evaluate the first solution will be performed. Apart
from this general remark about the benefits of lazy evaluation, nothing much more can be said about solutions unless we make some assumptions about the ingredients.

The first assumption is that Data is a list of values, say [Datum], and that candidates $::[$ Datum $] \rightarrow[$ Candidate $]$ takes the form

$$
\begin{equation*}
\text { candidates }=\text { foldr extend }[] \tag{6.1}
\end{equation*}
$$

where extend $::$ Datum \rightarrow [Candidate $] \rightarrow$ [Candidate $]$ is some function that builds a list of extended candidates from a given datum and a list of candidates.

The second assumption is in two parts. First, there is a predicate $o k$ such that every good value is necessarily an ok value, so good $v \Rightarrow$ ok v for all v. Hence

$$
\begin{equation*}
\text { filter }(\text { good } \cdot \text { value })=\text { filter }(\text { good } \cdot \text { value }) \cdot \text { filter }(\text { ok } \cdot \text { value }) \tag{6.2}
\end{equation*}
$$

The second part is that candidates with ok values are the extensions of candidates with ok values:

$$
\begin{align*}
& \text { filter }(o k \cdot v a l u e) \cdot \text { extend } x \\
& \quad=\text { filter }(o k \cdot v a l u e) \cdot \text { extend } x \cdot \text { filter }(o k \cdot \text { value }) \tag{6.3}
\end{align*}
$$

Using these assumptions, we calculate:

solutions

```
\(=\{\) definition of solutions \(\}\)
    filter (good • value) • candidates
\(=\quad\) \{equation (6.1)\}
        filter (good • value) • foldr extend [ ]
\(=\{\) equation (6.2)\}
    filter (good \(\cdot\) value) • filter (ok \(\cdot\) value) \(\cdot\) foldr extend [ ]
\(=\quad\left\{\right.\) with extend \({ }^{\prime} x=\) filter \((o k \cdot v a l u e) \cdot\) extend \(x\); see below \(\}\)
    filter (good \(\cdot\) value) \(\cdot\) foldr extend' [ ]
```

The last step in this calculation is an appeal to the fusion law of foldr. Recall that this laws states that $f \cdot$ foldr $g a=$ foldr $h b$ provided three conditions are satisfied: (i) f is a strict function; (ii) $f a=b$; (iii) $f(g x y)=h x(f y)$ for all x and y. In particular, taking $f=$ filter (ok \cdot value) and $g=$ extend, we have that (i) is satisfied, (ii) holds for $a=b=[]$ and (iii) is just (6.3) with $h=$ extend $^{\prime}$.

We have shown that

$$
\text { solutions }=\text { filter }(\text { good } \cdot \text { value }) \cdot \text { foldr extend }{ }^{\prime}[]
$$

The new version of solutions is better than the previous one, as a potentially much smaller list of candidates is constructed at each stage, namely only those with an $o k$ value. On the other hand, the function value is recomputed at each evaluation of extend ${ }^{\prime}$.

We can avoid recomputing value with the help of yet a third assumption:
map value \cdot extend $x=$ modify $x \cdot$ map value
Assumption (6.4) states that the values of an extended set of candidates can be obtained by modifying the values of the candidates out of which the extensions are built.

Suppose we redefine candidates to read

$$
\text { candidates }=\operatorname{map}(\text { fork }(i d, \text { value })) \cdot \text { foldr extend }{ }^{\prime}[]
$$

where fork $(f, g) x=(f x, g x)$. The new version of candidates returns a list of pairs of candidates and their values. The form of the new definition suggests another appeal to the fusion law of foldr. For the main fusion condition we have to find a function, expand say, satisfying

$$
\operatorname{map}(\text { fork }(i d, \text { value })) \cdot \text { extend }^{\prime} x=\text { expand } x \cdot \operatorname{map}(\text { fork }(i d, \text { value }))
$$

Then we obtain candidates $=$ foldr expand [].
We are going to use simple equational reasoning to discover expand. In order to do so, we need a number of combinatorial laws about fork, laws that are used in many program calculations. The first law is that

$$
\begin{equation*}
f s t \cdot \text { fork }(f, g)=f \quad \text { and } \quad \text { snd } \cdot \text { fork }(f, g)=g \tag{6.5}
\end{equation*}
$$

The second law is a simple fusion law:

$$
\begin{equation*}
\text { fork }(f, g) \cdot h=\text { fork }(f \cdot h, g \cdot h) \tag{6.6}
\end{equation*}
$$

For the third law, define cross by cross $(f, g)(x, y)=(f x, g y)$. Then we have

$$
\begin{equation*}
\operatorname{fork}(f \cdot h, g \cdot k)=\operatorname{cross}(f, g) \cdot \operatorname{fork}(h, k) \tag{6.7}
\end{equation*}
$$

The next two laws relate fork to two functions, zip and unzip. The function unzip is defined by

$$
\begin{aligned}
\text { unzip } & ::[(a, b)] \rightarrow([a],[b]) \\
\text { unzip } & =\text { fork (map fst, map snd })
\end{aligned}
$$

and zip $::([a],[b]) \rightarrow[(a, b)]$ is specified by the condition zip \cdot unzip $=i d .{ }^{1}$ In particular, we can reason:

$$
\begin{aligned}
& \text { unzip } \cdot \operatorname{map}(\text { fork }(f, g)) \\
= & \{\text { definition of unzip }\} \\
& \text { fork }(\text { map fst, map snd }) \cdot \operatorname{map}(\text { fork }(f, g)) \\
= & \{(6.6) \text { and } \operatorname{map}(f \cdot g)=\operatorname{map} f \cdot \operatorname{map} g\} \\
& \text { fork }(\operatorname{map}(\text { fst } \cdot \text { fork }(f, g)), \operatorname{map}(\text { snd } \cdot \text { fork }(f, g))) \\
=\quad & \quad\{(6.5)\} \\
& \text { fork }(\operatorname{map} f, \operatorname{map} g)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\text { fork }(\operatorname{map} f, \operatorname{map} g)=\text { unzip } \cdot \operatorname{map}(\text { fork }(f, g)) \tag{6.8}
\end{equation*}
$$

Using zip \cdot unzip $=i d$ we have from (6.8) that

$$
\begin{equation*}
\operatorname{map}(\text { fork }(f, g))=\text { zip } \cdot \text { fork }(\operatorname{map} f, \operatorname{map} g) \tag{6.9}
\end{equation*}
$$

The final law relates fork to filter:

$$
\begin{align*}
& \operatorname{map}(\text { fork }(f, g)) \cdot \text { filter }(p \cdot g) \\
& \quad=\quad \text { filter }(p \cdot \text { snd }) \cdot \operatorname{map}(\text { fork }(f, g)) \tag{6.10}
\end{align*}
$$

Evaluating the expression on the right is more efficient than evaluating the expression on the left because g is evaluated just once for each element of the argument list.

Having identified the various plumbing combinators and the rules that relate them, we are ready for the final calculation:

```
    map (fork (id,value)) \cdot extend' x
= {definition of extend'}
    map (fork (id,value)) · filter (ok value) | extend x
= {(6.10)}
    filter (ok | snd) · map (fork (id,value)) \cdot extend x
```

We now focus on the second two terms, and continue:

$$
\begin{aligned}
& \operatorname{map}(\text { fork }(\text { id, value })) \cdot \text { extend } x \\
=\quad & \{(6.9) \text { and map id }=i d\} \\
& \text { zip } \cdot \text { fork }(\text { id, map value }) \cdot \text { extend } x
\end{aligned}
$$

[^3]\[

$$
\begin{aligned}
= & \{(6.6)\} \\
& \text { zip } \cdot \text { fork }(\text { extend } x, \text { map value } \cdot \text { extend } x) \\
= & \quad\{(6.4)\} \\
& \text { zip } \cdot \text { fork }(\text { extend } x, \text { modify } x \cdot \text { map value }) \\
= & \quad\{(6.7)\} \\
& \text { zip } \cdot \text { cross }(\text { extend } x, \text { modify } x) \cdot \text { fork }(\text { id }, \text { map value }) \\
= & \quad\{(6.8)\} \\
& \text { zip } \cdot \text { cross }(\text { extend } x, \text { modify } x) \cdot \text { unzip } \cdot \text { map }(\text { fork }(\text { id }, \text { value }))
\end{aligned}
$$
\]

Putting the two calculations together, we arrive at

```
solutions = map fst.filter (good \cdotsnd)\cdotfoldr expand []
expand x = filter (ok}\cdot\mathrm{ snd )}\cdot\mathrm{ zip }\cdot\mathrm{ cross (extend x,modify x)}\cdot\mathrm{ unzip
```

This is our final version of solutions. It depends only on the definitions of good, ok, extend and modify. The term foldr expand [] builds a list of candidates along with their values, and solutions picks those candidates whose values satisfy good. The function expand x builds an extended list of candidates, maintaining the property that all extended candidates have values that satisfy $o k$.

Making a century

Let us now return to the problem in hand, which was to list all the ways the operations + and \times can be inserted into the list of digits $[1 . .9]$ so as to make a total of 100 .

Candidate solutions are expressions built from + and \times. Each expression is the sum of a list of terms, each term is the product of a list of factors and each factor is a list of digits. That means we can define expressions, terms and factors just with the help of suitable type synonyms:

$$
\begin{array}{ll}
\text { type Expression } & =[\text { Term }] \\
\text { type Term } & =[\text { Factor }] \\
\text { type Factor } & =[\text { Digit }] \\
\text { type Digit } & =\text { Int }
\end{array}
$$

Thus, Expression is synonymous with [[[Int]]].
The value of an expression is given by a function valExpr, defined by

$$
\begin{aligned}
\text { valExpr } & :: \text { Expression } \rightarrow \text { Int } \\
\text { valExpr } & =\text { sum } \cdot \text { map valTerm }
\end{aligned}
$$

$$
\begin{aligned}
& \text { valTerm } \quad:: \quad \text { Term } \rightarrow \text { Int } \\
& \text { valTerm }=\text { product } \cdot \text { map valFact } \\
& \text { valFact }:: \quad \text { Factor } \rightarrow \text { Int } \\
& \text { valFact }=\text { foldll }(\lambda n d \rightarrow 10 * n+d)
\end{aligned}
$$

A good expression is one whose value is 100 :

$$
\begin{array}{ll}
\text { good } & :: \quad \text { Int } \rightarrow \text { Bool } \\
\text { good } v & =(v==100)
\end{array}
$$

To complete the formulation we need to define a function expressions that generates a list of all possible expressions that can be built out of a given list of digits. We can do this in two ways. One is to invoke the standard function partitions of type $[a] \rightarrow[[[a]]]$ that partitions a list into one or more sublists in all possible ways. If we apply partitions to a list of digits $x s$ we get a list of all possible ways of splitting $x s$ into a list of factors. Then, by applying partitions again to each list of factors, we obtain a list of all possible ways a list of factors can be split into lists of terms. Hence

```
expressions :: [Digit] }->\mathrm{ [Expression ]
expressions = concatMap partitions \cdotpartitions
```

Alternatively, we can define expressions by expressions $=$ foldr extend [], where

$$
\begin{array}{rll}
\text { extend } & :: & \text { Digit } \rightarrow \\
\text { extend } x[] & = & {[[[[x]]]]} \\
\text { extend } x \text { es } & = & \text { concatMap }(\text { glue } x) \text { es } \\
\text { glue } & :: & \text { Digit } \rightarrow \text { Expression } \rightarrow[\text { Expressionsion }] \\
\text { glue } x((x s: x s s): \text { xsss })= & {[((x: x s): \text { xss }): \text { xsss },} \\
& ([x]: x s: x s s): \text { xsss }, \\
& & [[x]]:(x s: x s s): x s s s]
\end{array}
$$

To explain these definitions, observe that only one expression can be built from a single digit x, namely $[[[x]]]$. This justifies the first clause of extend. An expression built from more than one digit can be decomposed into a leading factor (a list of digits, $x s$ say), a leading term (a list of factors, xss say) and a remaining expression (a list of terms, xsss say). A new digit x can be inserted into an expression in exactly three different ways: by extending the current factor on the left with the new digit, by starting a new factor or by starting a new term. This justifies the second clause of extend and the definition of glue. One advantage of the second definition is that it is immediate that there are $6561=3^{8}$ expressions one can build using the digits [1..9]; indeed, 3^{n-1} expressions for a list of n digits.

Evaluating filter (good \cdot valExpr $) \cdot$ expressions and displaying the results in a suitable fashion, yields the seven possible answers:

$$
\begin{aligned}
& 100=1 \times 2 \times 3+4+5+6+7+8 \times 9 \\
& 100=1+2+3+4+5+6+7+8 \times 9 \\
& 100=1 \times 2 \times 3 \times 4+5+6+7 \times 8+9 \\
& 100=12+3 \times 4+5+6+7 \times 8+9 \\
& 100=1+2 \times 3+4+5+67+8+9 \\
& 100=1 \times 2+34+5+6 \times 7+8+9 \\
& 100=12+34+5 \times 6+7+8+9
\end{aligned}
$$

The computation does not take too long because there are only 6561 possibilities to check. But on another day the input might consist of a different target value and many more digits, so it is worth spending a little time seeing whether the search can be improved.

According to the little theory of exhaustive search given above, we have to find some definition of $o k$ such that all good expressions are ok expressions, and such that $o k$ expressions are necessarily constructed out of ok subexpressions. Given that good $v=(v==c)$, where c is the target value, the only sensible definition of $o k$ is $o k v=(v \leq c)$. Since the only operations are + and \times, every expression with a target value c has to be built out of subexpressions with target values at most c.

We also have to find a definition of modify so that

```
map valExpr \cdot extend x = modify x map valExpr
```

Here we run into a small difficulty, because not all the values of expressions in glue x e can be determined simply from the value of e : we need the values of the leading factor and leading term as well. So we define value not to be valExpr but

$$
\begin{aligned}
\text { value }((x s: x s s): x s s s)= & \left(10^{n}, \text { valFact } x s, \text { valTerm xss, valExpr xsss }\right) \\
& \text { where } n=\text { length } x s
\end{aligned}
$$

The extra first component 10^{n} is included simply to make the evaluation of valFact ($x: x s$) more efficient. Now we obtain

$$
\begin{aligned}
& \text { modify } x(k, f, t, e) \\
& \quad=[(10 * k, k * x+f, t, e),(10, x, f * t, e),(10, x, 1, f * t+e)]
\end{aligned}
$$

Accordingly, the definitions of good and $o k$ are revised to read:

$$
\begin{array}{ll}
\text { good } c(k, f, t, e) & =(f * t+e==c) \\
\text { ok } c(k, f, t, e) & =(f * t+e \leq c)
\end{array}
$$

Installing these definitions in the definition of expand gives a faster exhaustive search:
solutions $c=$ map fst \cdot filter $($ good $c \cdot$ snd $) \cdot$ foldr $($ expand $c)[]$
expand c $x=$ filter $(o k c \cdot s n d) \cdot$ zip \cdot cross $($ extend x, modify $x) \cdot$ unzip
The definition of expand can be simplified to read:

```
expand c \(x[]=[([[[x]]],(10, x, 1,0))]\)
expand \(c x\) evs \(=\operatorname{concat}(\operatorname{map}(\) filter \((o k c \cdot\) snd \() \cdot\) glue \(x)\) evs \()\)
glue \(x((x s: x s s): x s s s,(k, f, t, e))=\)
    \([(((x: x s): x s s): x s s s,(10 * k, k * x+f, t, e))\),
    \((([x]: x s: x s s): x s s s,(10, x, f * t, e))\),
    \(([[x]]:(x s: x s s): x s s s,(10, x, 1, f * t+e))]\)
```

The result is a program for solutions c that is many times faster than the first version. As just one experimental test, taking $c=1000$ and the first 14 digits of π as input, the second version was over 200 times faster.

Final remarks

The problem of making a century is discussed in Exercise 122 of Knuth (2006), which also considers other variants of the problem, such as allowing parentheses and other arithmetical operators; see also the Countdown pearl later in the book (Pearl 20). One moral of the exercise is that, when seeking candidates whose value satisfies some criterion, it is a good idea to combine the generation of the candidates with the generation of their values. That way, we can avoid recomputing values. Usually, it is clear enough how to do this directly without formally instantiating the recipe described above, but it is nice to know that a recipe does exist. The other moral is that it is useful to see whether or not a good value can be weakened to some kind of $o k$ value that can be maintained for all candidates. That way, the set of candidates that have to be considered is reduced in size.

References

Knuth, D. E. (2006). The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees. Reading, MA: Addison-Wesley.

Building a tree with minimum height

Introduction

Consider the problem of building a leaf-labelled tree of minimum height with a given list of integers as fringe. Leaf-labelled trees are defined by

$$
\text { data Tree }=\text { Leaf Int } \mid \text { Fork Tree Tree }
$$

and the fringe of a tree is the list of labels at the leaves in left-to-right order. There are two well-known algorithms for this problem, both of which can be implemented in linear time. One is recursive, or top-down, and works by splitting the list into two equal halves, recursively building a tree for each half, and then combining the two results with a Fork. The other method is iterative, or bottom-up, and works by first turning the fringe into a list of leaves and then repeatedly combining all adjacent pairs until just one tree remains. The two methods will lead to different trees, but in each case the result is a tree with minimum height.

The form of the bottom-up algorithm suggests an intriguing generalisation: given an arbitrary list of trees together with their heights, is there a linear-time algorithm to combine them into a single tree of minimum height? The restriction, of course, is that the trees should appear as subtrees of the final tree in the same order as they appear in the list. In the special case that the input is a list of leaves, the problem reduces to the one above, but there is no immediate reason why the more general problem should be solvable in linear time. Nevertheless, our aim in this pearl is to derive precisely such an algorithm.

First steps

An alternative, but equivalent, version of the problem is to ask: given a sequence $x s=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of natural numbers (representing the heights of the given trees), can one find a linear-time algorithm to build a tree with fringe $x s$ that minimises cost, where

```
\(\operatorname{cost}(\) Leaf \(x)=x\)
\(\operatorname{cost}(\) Fork \(u v)=1+(\operatorname{cost} u \max \operatorname{cost} v)\)
```

Thus, cost has the same definition as height except that the "height" of Leaf x is x rather than zero.

Formulated in this way, the problem is to compute

$$
\text { mincostTree }=\text { minBy cost } \cdot \text { trees }
$$

where trees builds all possible trees with a given fringe and minBy cost selects one with minimum cost. A constructive definition of trees can be formulated in a number of ways, following either a top-down or bottomup scheme. However, we are going for a third option, namely an inductive algorithm:

$$
\begin{array}{ll}
\text { trees } & ::[\text { Int }] \rightarrow[\text { Tree }] \\
\text { trees }[x] & =[\text { Leaf } x] \\
\text { trees }(x: x s) & =\text { concatMap (prefixes } x)(\text { trees } x s)
\end{array}
$$

The Haskell function concatMap f abbreviates concat • map f. The value prefixes $x t$ is a list of all the ways x can be inserted as a leftmost leaf in the tree t :

$$
\begin{array}{ll}
\begin{array}{ll}
\text { prefixes } & :: \\
\text { prefixes } x & \text { Int } \rightarrow \text { Tree } \rightarrow[\text { Treaf } y) \\
\text { prefixes } x & =
\end{array}[\text { Fork }(\text { Leaf } x) t] \\
& =[\text { Fork } u v)= \\
& {[\text { Fork }(\text { Leaf } x) t]+} \\
& {\left[\text { Fork } u^{\prime} v \mid u^{\prime} \leftarrow \text { prefixes } x u\right]}
\end{array}
$$

We could have taken trees [] = [], and so defined trees as an instance of foldr. But minBy cost is not defined on an empty set of trees and it is best to restrict the input to nonempty lists. Haskell does not provide a general fold function on nonempty lists (the function foldr 1 is not quite general enough), but if we define foldrn by

$$
\begin{array}{ll}
\text { foldrn } & ::(a \rightarrow b \rightarrow b) \rightarrow(a \rightarrow b) \rightarrow[a] \rightarrow b \\
\text { foldrn } \mathrm{f} g[x] & =g x \\
\text { foldrn } \mathrm{f} g(x: x s) & =f x(\text { foldrn f } g x s)
\end{array}
$$

then trees can be expressed as an instance of foldrn:

$$
\begin{aligned}
& \text { trees }=\text { foldrn (concatMap • prefixes })(\text { wrap } \cdot \text { Leaf }) \\
& \text { wrap } x=[x]
\end{aligned}
$$

Wherever there are trees there are also forests, and many definitions involving the former can be phrased, often more cleanly, in terms of the latter. So it is with trees. A cleaner definition is obtained by first building a list of forests (where a forest is itself a list of trees) and then rolling up each forest into a tree:

```
trees \(\quad=\quad\) map rollup \(\cdot\) forests
forests \(\quad=[\) Int \(] \rightarrow[\) Forest \(]\)
forests \(\quad=\) foldrn (concatMap \(\cdot\) prefixes) \((\) wrap \(\cdot\) wrap \(\cdot\) Leaf \()\)
prefixes \(\quad:: \quad\) Int \(\rightarrow\) Forest \(\rightarrow\) [Forest \(]\)
prefixes \(x\) ts \(=[\) Leaf \(x\) : rollup (take \(k\) ts) : drop \(k t s\)
        \(\mid k \leftarrow[1\).. length ts \(]\) ]
rollup \(\quad:: \quad\) Forest \(\rightarrow\) Tree
rollup \(=\) foldl1 Fork
```

In this version of trees each forest represents the left spine of a tree; that is, the sequence of right subtrees along the path from leftmost leaf to the root. The first element in the spine is the leftmost leaf itself. Rolling up the spine gives the tree. We prefer the second definition of prefixes to the first because it reveals more clearly what is going on in building the final trees. We will come back to this definition of trees later on.

It remains to define minBy cost $::[$ Tree $] \rightarrow$ Tree. The requirement is that it should return some tree with minimum cost:

```
minBy cost ts \ints ^ (\forallt\ints: cost (minBy cost ts )\leq cost t)
```

The output is not determined uniquely by this specification, so minBy cost is a nondeterministic function. One can implement it by defining

$$
\begin{aligned}
\min B y f & =\text { foldl } 1(c m p f) \\
c m p f u v & =\text { if } f u \leq f v \text { then } u \text { else } v
\end{aligned}
$$

But this implementation selects the first tree in $t s$ with minimum cost, and so depends on the order in which the trees appear in $t s$. An unbiased but deterministic implementation can be obtained by inventing a total linear ordering \preceq that respects cost, so $u \preceq v \Rightarrow$ cost $u \leq \operatorname{cost} v$, and replacing $c m p f$ by $c m p$, where

$$
c m p u v=\text { if } u \preceq v \text { then } u \text { else } v
$$

But this definition depends on the invention of \preceq and is again too specific. So we will leave minBy cost as a nondeterministic function.

Fusion

Implemented directly, minBy cost \cdot trees takes exponential time, and the obvious way to make it faster is to appeal to the fusion law of foldrn. In its simplest form the fusion law states

$$
h(\text { foldrn } f g x s)=\text { foldrn } f^{\prime} g^{\prime} x s
$$

for all finite nonempty lists $x s$ provided $h(g x)=g^{\prime} x$ and $h(f x y)=f^{\prime} x(h y)$ for all x and y. However, asking for equality of both terms when h is a nondeterministic function is unreasonable: we need only that the right-hand term is a refinement of the left-hand one. Suppose we define $f x \rightsquigarrow g x$ to mean that the set of possible outputs of $f x$ includes the (nonempty) set of possible outputs of $g x$. In particular, if g is a normal deterministic function, then $f x \rightsquigarrow g x$ means that $g x$ is a possible output of $f x$. A weaker statement of fusion is that

$$
h(\text { foldrn } f g x s) \rightsquigarrow \text { foldrn } f^{\prime} g^{\prime} x s
$$

for all finite nonempty lists $x s$ provided $h(g x) \rightsquigarrow g^{\prime} x$ for all x, and $h y \rightsquigarrow y^{\prime}$ implies $h(f x y) \rightsquigarrow f^{\prime} x y^{\prime}$ for all x, y and y^{\prime}.

Since minBy cost \cdot wrap $=i d$, we obtain on appeal to fusion that minBy cost (foldrn (concatMap \cdot prefixes) (wrap \cdot Leaf) xs)
\rightsquigarrow foldrn insert Leaf xs
provided a function insert can be defined to satisfy the fusion condition

```
minBy cost ts \rightsquigarrowt
    minBy cost (concatMap (prefixes x) ts) \rightsquigarrow insert x t
```

Suppose we specify insert by the condition
$\min B y$ cost \cdot prefixes $x \rightsquigarrow$ insert x
In words, insert $x t$ returns some minimum cost tree in prefixes $x t$. Then we claim that (7.1) holds if the following does:

$$
\begin{align*}
& \min B y \text { cost } t s \rightsquigarrow t \\
& \quad \Rightarrow \quad \min B y \operatorname{cost}(\operatorname{map}(\text { insert } x) t s) \rightsquigarrow \text { insert } x t \tag{7.2}
\end{align*}
$$

For the proof we need the fact that

$$
\min B y \text { cost } \cdot \text { concat }=\min B y \operatorname{cost} \cdot \operatorname{map} \min B y \operatorname{cost}
$$

over nonempty lists of nonempty lists. In words, every possible result of the left-hand side is a possible result of the right-hand side and vice versa. Now we argue

$$
\begin{aligned}
& \min B y \text { cost }(\text { concatMap }(\text { prefixes } x) t s) \\
=\quad & \{\text { expanding concatMap }\} \\
& \min B y \operatorname{cost}(\text { concat }(\text { map }(\text { prefixes } x) \text { ts }))
\end{aligned}
$$

```
\(=\{\) above fact \(\}\)
    minBy cost (map (minBy cost \(\cdot\) prefixes \(x) t s)\)
\(\rightsquigarrow \quad\left\{\right.\) since \(f \rightsquigarrow f^{\prime}\) implies map \(f \rightsquigarrow \operatorname{map} f^{\prime}\) and \(\left.g \cdot f \rightsquigarrow g \cdot f^{\prime}\right\}\)
    minBy cost (map (insert \(x\) ) ts)
```

The fusion condition (7.2) holds provided that

$$
\begin{equation*}
\operatorname{cost} u \leq \operatorname{cost} v \Rightarrow \operatorname{cost}(\text { insert } x u) \leq \operatorname{cost}(\text { insert } x v) \tag{7.3}
\end{equation*}
$$

for all trees u and v with the same fringe. However (7.3) does not hold. Consider the trees u and v given by

In each tree the left spines have been labelled with cost information, so the cost of both trees is 10 . Inserting 8 into the left tree u gives a tree with minimum cost 11 , but inserting 8 into the right tree v gives a tree with cost 10. So (7.3) fails.

But notice that the costs $[10,8,7,5]$ reading downwards along the left spine of v are lexicographically less than the costs $[10,9,5]$ along the left spine of u. What we can establish is the monotonicity condition

$$
\begin{equation*}
\operatorname{cost}^{\prime} u \leq \operatorname{cost}^{\prime} v \Rightarrow \operatorname{cost}^{\prime}(\text { insert } x u) \leq \operatorname{cost}^{\prime}(\text { insert } x v) \tag{7.4}
\end{equation*}
$$

where

$$
\text { cost }^{\prime}=\text { map cost } \cdot \text { reverse } \cdot \text { spine }
$$

The function spine is the inverse of rollup, so spine \cdot rollup $=i d$. Minimising cost $^{\prime}$ also minimises cost, since $x s \leq y s \Rightarrow h e a d x s \leq h e a d y s$. As we will show in a moment, (7.4) implies that

```
minBy cost'}\cdot\operatorname{map}(\mathrm{ insert }x)\rightsquigarrow insert x minBy cost'
```

Since spines have appeared on the scene it is sensible to make use of the definition of trees in terms of spines and summarise the calculation so far in the following way:

$$
\begin{aligned}
& \text { minBy cost } \cdot \text { trees } \\
& \rightsquigarrow \quad\{\text { refinement }\}
\end{aligned}
$$

minBy cost ${ }^{\prime} \cdot$ trees
$=\quad\{$ definition of trees in terms of forests\}
minBy cost ${ }^{\prime}$ map rollup .
foldrn (concatMap • prefixes) (wrap \cdot wrap \cdot Leaf)
$=\quad\{$ defining costs $=$ map cost \cdot reverse $\}$
minBy (costs • spine) • map rollup .
foldrn (concatMap • prefixes) (wrap \cdot wrap \cdot Leaf)
$=\quad\{$ claim: see below $\}$
rollup $\cdot \operatorname{minBy}$ costs \cdot
foldrn (concatMap • prefixes) (wrap • wrap \cdot Leaf)
$\rightsquigarrow \quad$ \{fusion, with minBy costs \cdot prefixes $x \rightsquigarrow$ insert $x\}$
rollup \cdot foldrn insert (wrap \cdot Leaf)
The claim is that

$$
\min B y(\text { costs } \cdot \text { spine }) \cdot \text { map rollup }=\text { rollup } \cdot \min B y \text { costs }
$$

This follows from the definition of minBy and the fact that spine and rollup are each other's inverse.

It remains to implement insert, to show that (7.4) holds and to prove that it leads to a linear-time program.

Optimal insertion

Consider the two trees of Figure 7.1. The tree on the left has spine $t s$, where $t s=\left[t_{1}, t_{2}, \ldots, t_{n}\right]$. The one on the right has spine Leaf x : rollup (take $\left.j t s\right):$ drop j ts. Each spine is also labelled with cost information: c_{k} is defined for $2 \leq k \leq n$ by

$$
c_{k}=1+\left(c_{k-1} \max \operatorname{cost} t_{k}\right)
$$

and c_{1} is the value at the leaf t_{1}. A similar equation defines c_{k}^{\prime} for k in the range $j+1 \leq k \leq n$. Note that $c_{j}^{\prime}>c_{j}$ and $c_{k}^{\prime} \geq c_{k}$ for $j+1 \leq k \leq n$. Bearing (7.4) in mind, we want to choose some j in the range $1 \leq j \leq n$ that minimises

$$
\left[c_{n}^{\prime}, c_{n-1}^{\prime}, \ldots, c_{j+1}^{\prime}, c_{j}^{\prime}, x\right]
$$

We claim that the minimum is obtained by choosing j to be the smallest value in the range $1 \leq j<n$, if it exists, such that

$$
\begin{equation*}
1+\left(x \max c_{j}\right)<c_{j+1} \tag{7.5}
\end{equation*}
$$

Fig. 7.1 Inserting x into a tree

Otherwise, choose $j=n$. To prove the claim, observe that if (7.5) holds, then

$$
c_{j}^{\prime}=1+\left(x \max c_{j}\right)<c_{j+1}
$$

and so $c_{k}^{\prime}=c_{k}$ for $j+1 \leq k \leq n$. Moreover, if (7.5) also holds for $i<j$, then

$$
\begin{aligned}
& {\left[c_{n}^{\prime}, c_{n-1}^{\prime}, \ldots, c_{i+1}^{\prime}, c_{i}^{\prime}, x\right] } \\
= & \quad\left\{\text { because } c_{k}^{\prime}=c_{k} \text { for } i+1 \leq k \leq n \text { and } i<j\right\} \\
< & {\left[c_{n}, c_{n-1}, \ldots, c_{j+1}, c_{j}, \ldots c_{i+1}, c_{i}^{\prime}, x\right] }
\end{aligned} \quad\left\{\text { because } c_{j}<c_{j}^{\prime}\right\},
$$

So, the smaller the j to satisfy (7.5) the better. If (7.5) does not hold for j, then $c_{j+1}^{\prime}>c_{j+1}$ and $c_{k}^{\prime} \geq c_{k}$ for $j+2 \leq k \leq n$, so the cost is worse.

Next we prove the monotonicity condition (7.4). Let u and v be two trees with costs cost $^{\prime} u$ and $\operatorname{cost}^{\prime} v$. Clearly, if these costs are equal, then so are the costs of inserting an arbitrary x in either of them. Otherwise, suppose

$$
\operatorname{cost}^{\prime} u=\left[c_{n}, c_{n-1}, \ldots\right]<\left[d_{m}, d_{m-1}, \ldots, d_{1}\right]=\operatorname{cost}^{\prime} v
$$

Removing the common prefix of these costs, say one of length k, we are left with $\left[c_{n-k}, \ldots, c_{1}\right]$ and $\left[d_{m-k}, \ldots, d_{1}\right]$, where $c_{n-k}<d_{m-k}$. But inserting x into the corresponding subtree of u gives a tree with no larger costs than inserting x into the corresponding subtree of v.

Finally, since (7.5) is equivalent to $x \max c_{j}<\operatorname{cost}_{t_{j+1}}$, we can implement insert by

$$
\begin{aligned}
\text { insert } x \text { ts } & =\text { Leaf } x: \text { split } x \text { ts } \\
\text { split } x[u] & = \\
\text { split } x(u: v: t s)= & \text { if } x \max \text { cost } u<\text { cost } v \text { then } u: v: t s \\
& \text { else split } x(\text { Fork } u v: t s)
\end{aligned}
$$

Cost computations can be eliminated by a simple data refinement in which each tree t is represented by a pair (cost t, t), leading to the final algorithm

```
mincostTree \(=\) foldl1 Fork \(\cdot\) map snd \(\cdot\) foldrn insert (wrap \(\cdot\) leaf)
insert \(x\) ts \(=\) leaf \(x:\) split \(x\) ts
split \(x[u]=[u]\)
split \(x(u: v: t s)=\) if \(x \max f s t u<f s t v\) then \(u: v: t s\)
    else split \(x\) (fork \(u v: t s)\)
leaf \(x \quad=(x\), Leaf \(x)\)
fork \((a, u)(b, v)=(1+a \max b\), Fork \(u v)\)
```

The smart constructors leaf and fork each construct a pair consisting of a cost and a tree.

It remains to time the program, which we can do by counting the calls to split. By induction we prove that foldrn insert (wrap • leaf) applied to a list of length n and returning a forest of length m involves at most $2 n-m$ calls to split. The base case, $n=1$ and $m=1$, is obvious. For the induction step, note that split applied to a list of length m^{\prime} and returning a list of length m is called $m^{\prime}-m$ times. And since $2(n-1)-m^{\prime}+m^{\prime}-m+1 \leq 2 n-m$, the induction is established. Hence the algorithm takes linear time.

Final remarks

The minimum-cost tree problem and its derivation is an exercise in constructing a greedy algorithm. Greedy algorithms are tricky, not so much because the final algorithm is opaque, but because of the delicate reasoning required to prove that they work. First, one usually has to invent a strengthening of the cost function and to minimise that at each step. Here, the monotonicity condition (7.4) is crucial to the success of the enterprise. Second, in dealing with most optimisation problems there is a need to bring relations, or nondeterministic functions, into the derivation. The outcome of the derivation is not equivalent to the initial specification, but a refinement of it. Our treatment of relations has been "light touch", and relied on Haskell-like notation for carrying the derivation forward. In Bird and
de Moor (1997), the treatment of relations and their use in program derivation is made much more systematic.

Finally, it is worth mentioning that another way to solve the minimumcost tree problem is by using, the Hu-Tucker (or the more modern version, the Garsia-Wachs) algorithm; see Hu (1982) or Knuth (1998). The Hu Tucker algorithm applies because cost is a regular cost function in the sense of Hu (1982). But the best implementation of that algorithm has a running time of $\Theta(n \log n)$.

References

Bird, R. S. and de Moor, O. (1997). Algebra of Programming. Hemel Hempstead: Prentice Hall.
Hu, T. C. (1982). Combinatorial Algorithms. Reading, MA: Addison-Wesley.
Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Searching and Sorting, second edition. Reading, MA: Addison-Wesley.

8

Unravelling greedy algorithms

> Make you to ravel all this matter out.
> Hamlet, Act 3, Scene 4

Introduction

As we said in the previous pearl, greedy algorithms are tricky things. So the subject deserves a second example. Here is another problem that can be solved by a greedy algorithm, and the path to the solution has much in common with the previous one.

An unravel ${ }^{1}$ of a sequence $x s$ is a bag of nonempty subsequences of $x s$ that when shuffled together can give back $x s$. For example, the letters of "accompany" can be unravelled into three lists: "acm", "an" and "copy". The order of these lists is not important, but duplications do matter; for example, "peptet" can be unravelled into two copies of "pet". Thus, an unravel is essentially a bag of sequences, not a set or a list.

An unravel is called an upravel if all its component sequences are weakly increasing. Since each of "acm", "an" and "copy" is increasing, they give an upravel of "accompany", and so do "aany", "ccmp" and "o". Each nonempty sequence has at least one upravel, namely the upravel consisting of just singleton sequences. However, of all possible upravels, we want to determine one with shortest size.

Specification

Here is the specification of the function supravel (short for shortest upravel):

```
supravel \(:: \quad\) Ord \(a \Rightarrow[a] \rightarrow[[a]]\)
supravel \(=\) minBy length \(\cdot\) filter \((\) all up \() \cdot\) unravels
```

[^4]We represent the bag of sequences in a shortest upravel by a list. The function $\min B y f$ is the non-deterministic function introduced in the previous pearl and specified by

$$
\min B y f x s \in x s \quad \wedge(\forall x \in x s: f(\min B y f x s) \leq f x)
$$

The predicate $u p$, whose definition is omitted, determines whether its argument is in ascending order. The function unravels returns all unravels of a sequence and can be defined inductively by

$$
\begin{array}{ll}
\text { unravels } & ::[a] \rightarrow[[[a]]] \\
\text { unravels } & =\text { foldr }(\text { concatMap } \cdot \text { prefixes })[[]] \\
\text { prefixes } x[] & =[[[x]]] \\
\text { prefixes } x(x s: x s s) & =[(x: x s): x s s]+\operatorname{map}(x s:)(\text { prefixes } x \text { xss })
\end{array}
$$

The function prefixes x adds x as a new first element to an unravel by prefixing it in all possible ways to each sequence in the unravel.

Derivation

The first step is to employ the fusion law of foldr to fuse filter (all up) and unravels. Define upravels by

$$
\text { upravels }=\text { filter }(\text { all up }) \cdot \text { unravels }
$$

An easy application of the fusion law of foldr gives the following definition of upravels:

$$
\begin{aligned}
\begin{array}{ll}
\text { upravels } & : \\
\text { upravels } & \text { Ord } a \Rightarrow[a] \rightarrow[[[a]]] \\
\text { uprefixes } x[] & \\
\text { upoldr }(\text { concatMap } \cdot \text { uprefixes })[[]] \\
\text { uprefixes } x(x s: x s s)= & {[[[x]]]} \\
& \text { if } x \leq \text { head xs then } \\
& {[(x: x s): x s s]+\text { map }(x s:)(\text { uprefixes } x \text { xss })} \\
& \text { else map }(x s:)(\text { uprefixes } x \text { xss })
\end{array}
\end{aligned}
$$

Here, uprefixes x adds x as a new first element to an unravel by prefixing it in all possible ways to each sequence in the unravel whose first element is at least x.

Now we have arrived at the nub of the problem, which is how to fuse minBy length with upravels. Recall from the previous pearl the meaning of the refinement relation \rightsquigarrow : for non-deterministic function f and normal deterministic function g we have that $f \rightsquigarrow g$ if for all x the result of $g x$ is a possible result of $f x$. Suppose the function insert is specified by

```
minBy length · uprefixes x }\rightsquigarrow \mathrm{ insert }
```

Thus, insert x ur returns some shortest possible way of inserting x into the upravel ur. By appealing to the weaker fusion law of foldr in terms of refinement rather than equality, we then obtain

```
minBy length (upravels xs) \rightsquigarrow foldr insert [] xs
```

for all finite lists $x s$, provided the fusion condition

```
minBy length urs }\rightsquigarrowu
    m minBy length (map (insert x) urs) }\rightsquigarrow\mathrm{ insert x ur
```

holds for all upravels urs of a list. And, in turn, the fusion condition holds if

$$
\begin{align*}
& \text { length } u r \leq \text { length } v r \\
& \quad \Rightarrow \quad \text { length }(\text { insert } x \text { ur }) \leq \text { length }(\text { insert } x \text { vr }) \tag{8.1}
\end{align*}
$$

for any two upravels $u r$ and $v r$ of the same list.
Unfortunately, (8.1) does not hold. Take the two equal-length upravels ["ad", "a"] and ["aa", "d"] of "ada". Inserting "c" in the first upravel gives the best possible upravel ["ad", "a", "c"], but ["aa", "cd"] is a better upravel of the second.

The conclusion is that, just as in the problem of finding a minimum cost tree, we have to strengthen the cost function being minimised. It is fairly clear that the length of insert x ur depends only on x and the first element of each sequence in ur. Suppose we define heads by

$$
\begin{aligned}
\text { heads } & :: \text { Ord } a \Rightarrow[[a]] \rightarrow[a] \\
\text { heads } & =\text { sort } \cdot \text { map head }
\end{aligned}
$$

Informally, the larger (lexicographically speaking) that heads ur is, the more likely it is that x can be prefixed to some sequence in $u r$, thereby ensuring insert x ur is no longer than ur. The problem with replacing minBy length by maxBy heads is that
heads ur \geq heads vr \nRightarrow length ur \leq length vr
even for upravels $u r$ and $v r$ of the same sequence. So, we need something else.

One way out is to abandon the lexicographic ordering and consider instead the partial preorder \preceq, defined by

$$
u r \preceq v r=h e a d s u r \unlhd h e a d s y r
$$

where $\left[x_{1}, x_{2}, \ldots, x_{m}\right] \unlhd\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ if $m \leq n$ and $x_{j} \geq y_{j}$ for all j in the range $1 \leq j \leq n$. Thus, ur $\preceq v r$ if length ur \leq length $v r$ and the elements
of heads ur are pointwise no smaller than those of heads vr. Since \preceq clearly respects length, we can replace minBy length by minWith (\preceq), where

$$
\operatorname{minWith}(\preceq) \text { urs } \in \text { urs } \quad \text { and } \quad(\forall u r \in \operatorname{urs}: \min W i t h ~(\preceq) \text { urs } \preceq u r)
$$

and establish the monotonicity condition

$$
\begin{equation*}
u r \preceq v r \Rightarrow \text { insert } x \text { ur } \preceq \text { insert } x \text { vr } \tag{8.2}
\end{equation*}
$$

where insert x is some refinement of \min With $(\preceq) \cdot$ uprefixes x. Condition (8.2) then gives

```
minWith (\preceq)}\cdot\mp@code{upravels }\rightsquigarrow foldr insert []
```

However, there is a slight technical difficulty with partial orderings: in general there is no guarantee that minimum, as distinct from minimal, elements exist. An element is minimum if it is smaller than all other candidates, but minimal only if there is no candidate smaller than it. For example, the set $\{\{a, b\},\{a, c\},\{a, b, c\}\}$ has no minimum elements under \subseteq, but two minimal elements, namely $\{a, b\}$ and $\{a, c\}$. So we have to check that \min With $(\preceq)($ upravels $x s)$ is inhabited. But this is easily proved by induction on $x s$, given that minWith $(\preceq) \cdot$ uprefixes $x \rightsquigarrow$ insert x and (8.2).

Let us next show how to construct insert x. Suppose

$$
\text { heads ur }=\left[x_{1}, x_{2}, \ldots, x_{m}\right]
$$

so $x_{i} \leq x_{j}$ for $1 \leq i \leq j \leq m$. Define k by the condition $x_{k}<x \leq x_{k+1}$, where we can set $x_{m+1}=\infty$. Then
heads $($ uprefixes x ur $)=\operatorname{map}\left(\left[x_{1}, x_{2}, \ldots, x_{k}, x\right]+\right) x s s$
where xss are the lists

$$
\begin{aligned}
& {\left[x_{k+2}, x_{k+3}, \ldots, x_{m}\right]} \\
& {\left[x_{k+1}, x_{k+3}, \ldots, x_{m}\right]} \\
& \ldots \\
& {\left[x_{k+1}, x_{k+2}, \ldots, x_{m-1}\right]} \\
& {\left[x_{k+1}, x_{k+2}, \ldots, x_{m-1}, x_{m}\right]}
\end{aligned}
$$

Of these, the first list is pointwise largest (though not necessarily the only one that is) and hence a minimum under \unlhd. In words, we can minimise \preceq by prefixing x to a sequence whose first element is the shortest one greater than or equal to x. In fact we can define insert by

```
insert x [] = [[x]]
insert x (xs:xss) = if x\leqhead xs then (x:xs):xss
    else xs : insert x xss
```

It is an invariant on insert x ur that map head ur is in strictly increasing order. Hence the best way to insert x is by prefixing x to the first sequence in ur whose head is at least x. The definition of insert x ur takes linear time in the length of ur, but the complexity can be reduced to logarithmic time either by representing upravels as arrays of lists and employing binary search, or by making use of balanced trees. We omit further details and just claim that foldr insert [] can be implemented to run in $O(n \log n)$ steps.

Let us now turn to the proof of (8.2). Let heads ur $=\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ and heads $v r=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$, so $m \leq n$ and $y_{i} \leq x_{i}$ for $1 \leq i \leq m$. As we saw above:

$$
\begin{aligned}
\text { heads }(\text { insert x ur }) & =\left[x_{1}, x_{2}, \ldots, x_{k}, x, x_{k+2}, x_{k+3}, \ldots, x_{m}\right] \\
\text { heads }(\text { insert x vr }) & =\left[y_{1}, y_{2}, \ldots, y_{\ell}, x, x_{\ell+2}, x_{\ell+3}, \ldots, y_{n}\right]
\end{aligned}
$$

where $x_{k}<x \leq x_{k+1}$ and $y_{\ell}<x \leq y_{\ell+1}$. But $y_{k} \leq x_{k}$, so $k \leq \ell$. Lining up the two lists, as in

$$
\begin{aligned}
& {\left[x_{1}, x_{2}, \ldots, x_{k}, x, \quad x_{k+2}, \ldots, x_{\ell}, x_{\ell+1}, x_{\ell+2}, \ldots, x_{m}\right]} \\
& {\left[y_{1}, y_{2}, \ldots, y_{k}, y_{k+1}, y_{k+2}, \ldots, y_{\ell}, x, \quad y_{\ell+2}, \ldots, y_{m}\right]}
\end{aligned}
$$

we see that the first is pointwise larger than the second because $y_{k+1} \leq x$ and $x \leq x_{l+1}$.

In summary, the problem of computing the shortest upravel of a given list can be solved by a greedy algorithm that takes $O(n \log n)$ steps in the length of the list.

Final remarks

The problem of the shortest upravel was first posed and solved by Lambert Meertens in September 1984, at a meeting of IFIP Working Group 2.1 in Pont-à-Mousson, France (Meertens, 1984). Subsequently, Kaldewaij (1985) published a quite different solution. Kaldewaij's (one-page!) solution was based on a constructive proof of a specialisation of Dilworth's theorem: the size of a shortest upravel of $x s$ is equal to the length of the longest decreasing subsequence of $x s$. This fact can be combined with a well-known algorithm for finding the length of a longest decreasing subsequence in $O(n \log n)$ steps to produce an algorithm for the shortest upravel with the same time complexity. The present pearl is based on Bird (1992), which also considers another greedy algorithm that starts off with the following definition of unravels:

$$
\begin{aligned}
\text { unravels }[]= & {[[]] } \\
\text { unravels } x s= & {[y s: y s s \mid y s \leftarrow \text { subseqs } x s, \text { not }(\text { null ys }),} \\
& \\
& y s s \leftarrow \text { unravels }(x s \backslash y s)]
\end{aligned}
$$

A shortest upravel can then obtained by extracting the rightmost maximal upsequence at each stage, computed by $r m u=$ foldr op [], where

```
op \(x[] \quad=\quad[x]\)
op \(x(y: y s)=\) if \(x \leq y\) then \(x: y: y s\) else \(y: y s\)
```

The derivation of the alternative algorithm is left as an exercise.

References

Bird, R. S. (1992). The smallest upravel. Science of Computer Programming 18, 281-92.
Kaldewaij, A. (1985). On the decomposition of sequences into ascending subsequences. Information Processing Letters 21, 69.
Meertens, L. G. L. T. (1984). Some more examples of algorithmic developments. IFIP WG2.1 Working Paper, Pont-à-Mousson, France. See also An Abstracto Reader prepared for IFIP WG 2.1. Technical Report CWI Note CS-N8702, Centrum voor Wiskunde en Informatica, April 1987.

9

Finding celebrities

The setting is a tutorial on functional algorithm design. There are four students: Anne, Jack, Mary and Theo.

Teacher: Good morning class. Today I would like you to solve the following problem. Imagine a set P of people at a party. Say a subset C of P forms a celebrity clique if C is nonempty, everybody at the party knows every member of C, but members of C know only each other. Assuming there is such a clique at the party, your problem is to write a functional program for finding it. As data for the problem you are given a binary predicate knows and the set P as a list $p s$ not containing duplicates.

Jack: Just to be clear, does every member of a celebrity clique actually know everyone else in the clique? And does everyone know themselves?

Teacher: As to the first question, yes, it follows from the definition: everyone in the clique is known by everyone at the party. As to the second question, the answer is not really relevant to the problem, so ask a philosopher. If it simplifies things to assume that x knows x for all x, then go ahead and do so.

Theo: This is going to be a hard problem, isn't it? I mean, the problem of determining whether there is a clique of size k in a party of n people will take $\Omega\left(n^{k}\right)$ steps, so we are looking at an exponential time algorithm.

Anne: That doesn't follow, since being a celebrity clique is a much stronger property than being a clique. In a directed graph, a clique is a set of nodes in which each pair of nodes has an arc in both directions between them, but a celebrity clique also requires an arc from every node in the graph to every node in the clique, and no arcs from the clique to nodes outside the clique.

Mary: Yes, while there can be many cliques in a graph, there is at most one celebrity clique. Suppose that C_{1} and C_{2} are two celebrity cliques. Pick any c_{1} in C_{1} and c_{2} in C_{2}. We have that c_{1} knows c_{2} from the fact that everybody in the clique C_{2} is known by everybody at the party. But since clique members know only other members of the clique, it follows that $c_{2} \in C_{1}$. Since c_{2} was arbitrary, we have $C_{2} \subseteq C_{1}$ and, by symmetry, $C_{1} \subseteq C_{2}$.

Theo: Agreed, they are different problems. Let me formalise the problem. To simplify matters I am going to suppose that x knows x is true for all x. By definition C is a celebrity clique of P if $\emptyset \subset C \subseteq P$ and

$$
(\forall x \in P, y \in C:: x \text { knows } y \wedge(y \text { knows } x \Rightarrow x \in C))
$$

Let me abbreviate this last condition to $C \triangleleft P$. Given lists $p s$ and $c s$ representing P and C respectively, we can translate the condition into a list comprehension:

$$
c s \triangleleft p s=\text { and }[x \text { knows } y \wedge(y \text { knows } x \Rightarrow x \in c s) \mid x \leftarrow p s, y \leftarrow c s]
$$

Now define cclique $p s=$ head $($ filter $(\triangleleft p s)($ subseqs $p s)$), where subseqs $p s$ is a list of all subsequences of $p s$:

$$
\begin{array}{ll}
\text { subseqs }[] & =[[]] \\
\text { subseqs }(x: x s) & =\operatorname{map}(x:)(\text { subseqs } x s)+\text { subseqs } x s
\end{array}
$$

Since subseqs ps generates subsequences in descending order of length, the value of cclique $p s$ is either the empty list if there is no celebrity clique, or the unique celebrity clique.

Jack: Theo's exhaustive search program seems a reasonable place to start I would say. Clearly, the way to achieve greater efficiency is to fuse the filtering with the generation of subsequences. For the base case when there are no people at the party we have filter $(\triangleleft[])$ (subseqs []) $=[[]]$ since $c s \triangleleft[]=$ True. For the inductive case we can reason

$$
\begin{aligned}
& \quad \text { filter }(\triangleleft(p: p s))(\text { subseqs }(p: p s)) \\
= & \{\text { definition of subseqs }\} \\
& \quad \text { filter }(\triangleleft(p: p s))(\text { map }(p:)(\text { subseqs } p s)+\text { subseqs } p s) \\
= & \{\text { since } \text { filter } \text { distributes over }+\} \\
& \quad \text { filter }(\triangleleft(p: p s))(\text { map }(p:)(\text { subseqs } p s))+ \\
& \text { filter }(\triangleleft(p: p s))(\text { subseqs } p s)
\end{aligned}
$$

What next?

Anne: We have to simplify $(p: c s) \triangleleft(p: p s)$ and $c s \triangleleft(p: p s)$ when $c s$ is a subsequence of $p s$ and p is not in $c s$. Let us deal with the second case first. The definition of \triangleleft gives that $c s \triangleleft(p: p s)$ just in the case that $c s \triangleleft p s$, that no celebrity in $c s$ knows p and that p knows every celebrity in $c s$. In symbols:

$$
c s \triangleleft(p: p s)=c s \triangleleft p s \wedge \text { nonmember } p c s
$$

where

$$
\text { nonmember } p \text { cs }=\text { and }[p \text { knows } c \wedge \text { not }(c \text { knows } p) \mid c \leftarrow c s]
$$

Now we can reason

$$
\begin{aligned}
& \text { filter }(\triangleleft(p: p s))(\text { subseqs } p s) \\
= & \{\text { above simplification of } c s \triangleleft(p: p s)\} \\
& \text { filter }(\lambda c s \rightarrow c s \triangleleft p s \wedge \text { nonmember } p \text { cs })(\text { subseqs } p s) \\
= & \{\text { since filter }(\lambda x \rightarrow p x \wedge q x)=\text { filter } q \cdot \text { filter } p\} \\
& \text { filter }(\text { nonmember } p)(\text { filter }(\triangleleft p s)(\text { subseqs } p s))
\end{aligned}
$$

Now for the other case. We have that $(p: c s) \triangleleft(p: p s)$ holds just in the case that $c s \triangleleft p s$, and p is a new celebrity, meaning that everyone knows p and p knows all and only members of $c s$. In symbols:

$$
(p: c s) \triangleleft(p: p s)=c s \triangleleft p s \wedge \text { member } p p s c s
$$

where

$$
\text { member } p \text { ps cs }=\text { and }[x \text { knows } p \wedge(p \text { knows } x \Leftrightarrow x \in c s) \mid x \leftarrow p s]
$$

A similar calculation to the one above now gives

$$
\begin{aligned}
& \text { filter }(\triangleleft(p: p s))(\operatorname{map}(p:)(\text { subseqs } p s)) \\
& \quad=\operatorname{map}(p:)(\text { filter }(\text { member } p \text { ps })(\text { filter }(\triangleleft p s)(\text { subseqs } p s)))
\end{aligned}
$$

Putting the two pieces together, we have cclique $=$ head \cdot ccliques, where

$$
\begin{aligned}
\text { ccliques }[]= & {[[]] } \\
\text { ccliques }(p: p s)= & \text { map }(p:)(\text { filter }(\text { member } p \text { ps }) \text { css })+ \\
& \text { filter }(\text { nonmember } p) \text { css } \\
& \text { where } \text { css }=\text { ccliques } p s
\end{aligned}
$$

The predicates member and nonmember can be evaluated in linear time and, as ccliques returns at most two lists, a proper celebrity clique and an empty list, we have reduced an exponential algorithm to a quadratic one.

Theo: Well, you can't do better than a quadratic algorithm, at least in the worst case. Suppose there was a sub-quadratic one, so at least one entry in the knows matrix is not inspected. Suppose, furthermore, that all entries are true, so everyone knows everyone else and the celebrity clique is the whole party. Now change the non-inspected entry, knows $x y$ say, to false. Then y is no longer a celebrity. But everyone apart from x still knows y, so they cannot be celebrities. That leaves x as the only possible celebrity; but unless x and y are the only people at the party, there is some non-celebrity that x knows, so x is not a celebrity either. That means there is no celebrity clique at the modified party, and the sub-quadratic algorithm returns the wrong answer. So, in the worst case, every element of the knows matrix has to be inspected to arrive at the correct answer.

Teacher: Very good, Theo, and quite correct, but the problem was not to determine whether or not there was a celebrity clique. All I asked for was to identify a celebrity clique assuming one exists. In your scenario the answer $p s$ will suffice for both cases: in the first case it is the correct answer and in the second case there is no celebrity clique, so any answer will do.

There is a pause while the class digests this information.

Mary: I have an idea. Anne's reasoning shows that for all $x s$

$$
x s \triangleleft(p: p s) \quad \Rightarrow \quad(x s \backslash \backslash p]) \triangleleft p s
$$

where $\backslash \backslash$ denotes list difference. In other words, if $c s \triangleleft p s$ and p is someone new who joins the party $p s$, then the only possible values of $x s$ satisfying $x s \triangleleft(p: p s)$ are [], $[p], c s$, or $p: c s$. I think this gives us another way of solving the problem. Suppose first that $c s$ is empty, so the only possible celebrity clique of $p: p s$ is $[p]$. In symbols:

$$
\text { null }(\text { cclique } p s) \Rightarrow \text { cclique }(p: p s) \in\{[],[p]\}
$$

On the other hand, suppose $c s$ is not empty and contains some celebrity c. What are the possible outcomes when a new person p joins the party? Well, assume first that p does not know c. Then c is no longer a celebrity in the extended party, and neither is any other member of cs because they all know c. Hence

$$
c \in \operatorname{cclique} p s \wedge \operatorname{not}(p \text { knows } c) \Rightarrow \operatorname{cclique}(p: p s)) \in\{[],[p]\}
$$

Assume next that p does know c but c does not know p. In this case $c s$ is also the celebrity clique of the extended party:

$$
\begin{aligned}
& c \in \text { cclique ps } \wedge p \text { knows } c \wedge \text { not }(c \text { knows } p) \\
& \quad \Rightarrow \quad \text { cclique }(p: p s)=\text { cclique } p s
\end{aligned}
$$

Finally, if p and c know each other, then the only celebrity clique of $p: p s$ is $p: c s$; in symbols:

$$
\begin{aligned}
& c \in \text { cclique } p s \wedge p \text { knows } c \wedge c \text { knows } p \\
& \quad \Rightarrow \quad \text { cclique }(p: p s) \in\{[], p: c s\}
\end{aligned}
$$

Theo: While I agree that your reasoning is correct, Mary, I do not see how it leads to a solution. All you have shown is that if we know the value of cclique $p s$ and if the party $p: p s$ contains a celebrity clique, then we can quickly determine it. But how do we know the value of cclique ps in the first place? You seem to be suggesting that if we define cclique by

```
cclique \({ }^{\prime}=\) foldr op []
op \(p\) cs \(\quad\) null \(c s \quad=\quad[p]\)
        \(\operatorname{not}(p\) knows \(c)=[p]\)
        not \((c\) knows \(p)=c s\)
        otherwise \(=p: c s\)
        where \(c=\) head \(c s\)
```

then

$$
\begin{equation*}
\text { not }(\text { null }(\text { cclique } p s)) \Rightarrow \text { cclique } p s=c c l i q u e ́ s s \tag{9.1}
\end{equation*}
$$

But I don't see how your reasoning proves (9.1).
Mary: Let me try again then. I will prove (9.1) by induction on $p s$. There are two cases:
Case []. We have cclique [] = [], so (9.1) is true by default.
Case $p: p s$. Assume cclique ($p: p s$) is not empty. There are two subcases, depending on whether cclique ps is empty or not. If not, then cclique $p s=$ cclique ${ }^{\prime} p s$ by induction. We then have

```
    cclique ( }p:ps
= {my previous reasoning and definition of op}
    op p(cclique ps)
= {since cclique ps=cclique' ps}
    op p(cclique' ps)
= {definition of cclique'}
    cclique' ( }p:ps
```

If, on the other hand, cclique $p s$ is empty, then

$$
\begin{aligned}
& \text { cclique (} p: p s \text {) } \\
& =\text { \{assumption that cclique }(p: p s) \text { is not empty, } \\
& \text { and first case of my previous reasoning\} }
\end{aligned}
$$

This establishes the case and the induction.

Anne: That's amazing, a simple linear-time algorithm! But we have only arrived at the solution because of Mary's cleverness. I still want a formal derivation of cclique ${ }^{\prime}$ from some suitable fusion law.

Teacher: Thank you, Anne, it's good to have you in the class.

Anne: We can write subseqs using foldr:

$$
\begin{array}{ll}
\text { subseqs } & =\text { foldr add }[[]] \\
a d d x x s s & =\operatorname{map}(x:) x s s+x s s
\end{array}
$$

So it appears that we are appealing to some fusion law of foldr. The textbook statement of the fusion law for foldr states that $f \cdot$ foldr $g a=$ foldr $h b$ provided f is strict, $f a=b$, and $f(g x y)=h x(f y)$ for all x and y. The strictness condition is not needed if we want only to assert that f (foldr g a $x s$) $=$ foldr $h b x s$ for all finite lists $x s$. This fusion rule does not apply directly to the celebrity clique problem, namely filter $(\triangleleft p s)$ (subseqs ps), first because filter $(\triangleleft p s)$ has $p s$ as a parameter and second because we want something more general than the equality of both sides.

Theo: The first restriction is not really a problem. We can always define a version of subseqs that returns both the subsequences of a list and the list itself. Suppose we define

$$
\begin{array}{ll}
\text { subseqs }^{\prime} & =\text { foldr step }([],[[]]) \\
\text { step } x(x s, x s s) & =(x: x s, \operatorname{map}(x:) x s s+x s s)
\end{array}
$$

Then cclique $=f \cdot$ subseqs $^{\prime}$, where $f(p s, c s s)=$ head $($ filter $(\triangleleft p s) c s s)$. In this way the additional parameter is eliminated.

Mary: The textbook statement of the fusion rule is not general enough for the problem. Let \rightsquigarrow be some relation on values; I don't care what. Then it is easy to show by induction that
$f(f o l d r g a x s) \rightsquigarrow \quad$ foldr $h b x s$
for all finite lists $x s$ provided $f a \rightsquigarrow b$ and $f y \rightsquigarrow z \Rightarrow f(g x y) \rightsquigarrow h x z$ for all x, y and z.

Jack: Yes, that's it. We want to define $x s \rightsquigarrow y s$ by

$$
x s \rightsquigarrow y s=n o t(\text { null } x s) \Rightarrow x s=y s
$$

Then the conditions we have to establish are first that

```
head (filter (\triangleleft []) [[ ]]) }\rightsquigarrow[
```

and second that

```
head (filter (\triangleleftps) css) \rightsquigarrowcs
    head (filter (\triangleleft(p:ps))(map (p:)css + css))\rightsquigarrowop p cs
```

Mary's reasoning establishes exactly these conditions.

Teacher: Yes. The more general statement of fusion is the one provided by parametricity in Wadler's (1989) "Theorems for free!" paper. It is nice to see an example where the more general statement is needed. What is interesting about the problem is that it is the first example I have seen in which it is asymptotically more efficient to find a solution assuming one exists than to check that it actually is a solution. A similar problem is the majority voting problem - see, for example, Morgan (1994), Chapter 18 - in which one is given a list $x s$ and it is required to determine whether there is a value in $x s$ that occurs strictly greater than \lfloor length $x s / 2\rfloor$ times. It is easier to first compute a putative majority and then check whether it is actually a majority afterwards. But checking for a majority takes linear time rather than quadratic time, so there is no asymptotic gap.

Afterword

The true story of the celebrity clique problem was as follows. I was giving a course of lectures on Formal Program Design, in an imperative rather than functional framework, and thought of the problem as a generalisation of the one in Kaldewaij's (1990) book. But despite a day of struggling with loop invariants, I could not produce a sufficiently simple solution to present to the class, so I set it as a challenge. I also talked about it at a research
meeting the following Friday. Over the weekend, Sharon Curtis produced a simple linear-time algorithm and Julian Tibble, a second-year undergraduate, provided a good way to reason about the problem.

In the belief that whatever can be done with loops and invariants can also be done at least as easily using the laws of functional program derivation, the problem was translated into a functional setting and the dialogue above was composed. Afterwards, the problem was tried out at a WG2.1 meeting in Nottingham in September, 2004. Gratifyingly, the actual discussion followed the early part of the dialogue quite closely. On repeatedly being urged to try harder, Andres Löh and Johan Jeuring came up a day later with the linear-time solution.

References

Kaldewaij, A. (1990). Programming the Derivation of Algorithms. Hemel Hempstead: Prentice Hall.
Morgan, C. (1994). Programming from Specifications, 2nd edition. Hemel Hempstead: Prentice Hall.
Wadler, P. (1989). Theorems for free! Fourth International Symposium on Functional Programming Languages and Computer Architecture. ACM Press, pp. 347-59.

10

Removing duplicates

Introduction

The Haskell library function nub removes duplicates from a list:

$$
\begin{array}{ll}
n u b & :: E q a \Rightarrow[a] \rightarrow[a] \\
\operatorname{nub}[] & =[] \\
\operatorname{nub}(x: x s) & =x: \operatorname{nub}(x s \backslash \backslash[x])
\end{array}
$$

The value $x s \backslash \backslash y s$ is what remains of $x s$ after all the elements in $y s$ have been deleted. For example, nub "calculus" = "calus". Evaluation of nub on a list of length n takes $\Theta\left(n^{2}\right)$ steps. This is the best one can hope for, since any algorithm for the problem requires $\Omega\left(n^{2}\right)$ equality tests in the worst case. With the definition above, nub xs returns a list of the distinct elements in $x s$ in the order in which they first appear in $x s$. In other words, the position of nub xs as a subsequence of $x s$ is lexicographically the least among the positions of all possible solutions.

Let us now change the problem and ask that nub :: Ord $a \Rightarrow[a] \rightarrow[a]$ simply returns the lexicographically least solution. Note the subtle difference: before it was the position of the subsequence that was lexicographically the least; now it is the subsequence itself. For example, nub "calculus" = "aclus" under the second definition. The change of type of nub is necessary to make the new problem meaningful. Changing the type of nub changes the lower bound complexity: only $\Omega(n \log n)$ comparison tests are needed in the worst case. A pretty proof of this claim is given by Bloom and Wright (2003). Can we find an $\Theta(n \log n)$ program for the new version of $n u b$? The answer turns out to be yes, but the algorithm is not obvious and calculating it requires some work. So, be prepared.

A first version

We begin with the specification

$$
\text { nub }=\text { minimum } \cdot \text { longest } \cdot \text { filter nodups } \cdot \text { subseqs }
$$

In words, compute all possible subsequences of the given list (subseqs), filter this list of subsequences for just those that do not contain duplicates (filter nodups), compute all the longest ones (longest) and finally select the smallest one (minimum).

It is not too difficult to calculate the following recursive definition of $n u b$ from the specification:

$$
\begin{aligned}
n u b[]= & {[] } \\
n u b(x: x s)= & \text { if } x \notin x s \text { then } x: n u b x s \text { else } \\
& (x: n u b(x s \backslash \backslash x])) \min (n u b x s)
\end{aligned}
$$

We omit the details, leaving them as an exercise for the interested reader. Anyway, the recursive version is reasonably intuitive: in the case $x: x s$, either x does not appear in $x s$, so there is no choice, or it does, in which case the result is the smaller of two alternatives, choosing x now or later on.

The problem with the recursive definition of $n u b$ is that it can take exponential time because the number of recursive calls can double at each step. We therefore have some work to do in reaching an $\Theta(n \log n)$ algorithm.

A generalisation

The first thought, given the target time complexity, is a divide and conquer algorithm, seeking a function join for which

$$
\begin{equation*}
n u b(x s+y s)=j o i n(n u b x s)(n u b y s) \tag{10.1}
\end{equation*}
$$

But no such function can exist. For instance, (10.1) requires

$$
\text { join "bca" "c" }=\text { join }(n u b \text { "bca" })(n u b " c ")=n u b " b c a c "=" b a c "
$$

But also (10.1) requires

$$
\text { join "bca" "c" }=\text { join }(n u b " b c a b ")(n u b " c ")=n u b " b c a b c "=" a b c "
$$

This example also shows that nub cannot be expressed as an instance of foldl. It is also easy to construct an example to show that nub cannot be expressed as an instance of foldr.

We therefore need some generalisation of $n u b$. To see what it might be, consider a list of the form $x: y: x s$ with $x \in x s$ and $y \in x s$ and $x \neq y$. Unfolding the definition of $n u b(x: y: x s)$, and exploiting both the associativity of min and the fact that $(x:)$ distributes through min, we find

$$
\begin{aligned}
n u b(x: y: x s)= & x: y: n u b(x s \backslash \backslash x, y]) \min \\
& x: \operatorname{nub}(x s \backslash \backslash x])) \min \\
& y: n u b(x s \backslash \backslash y]) \min \\
& n u b x s
\end{aligned}
$$

Now suppose that $x<y$, so the second term is lexicographically smaller than the third. That means the third term can be dropped:

$$
\begin{aligned}
\operatorname{nub}(x: y: x s)= & x: y: n u b(x s \backslash \backslash x, y]) \min \\
& x: \operatorname{nub}(x s \backslash \backslash x])) \min \\
& n u b \text { xs }
\end{aligned}
$$

If, on the other hand, $x>y$, then the first two terms can be dropped:

$$
\begin{aligned}
\operatorname{nub}(x: y: x s)= & y: n u b(x s \backslash \backslash[y]) \min \\
& n u b x s
\end{aligned}
$$

The forms of these two expressions suggest our generalisation, which we will call hub. To help keep expressions reasonably short, abbreviate minimum to \min in all that follows. The definition of hub is

$$
\begin{equation*}
\text { hub ws } x s=\min [i s+\operatorname{nub}(x s \backslash \backslash i s) \mid \text { is } \leftarrow \text { inits ws }] \tag{10.2}
\end{equation*}
$$

where $w s$ is a list in strictly increasing order. The standard function inits returns a list of all the initial segments, or prefixes, of a list. The example above now reads

$$
n u b(x: y: x s)=\text { if } x<y \text { then hub }[x, y] \text { xs else hub }[y] x s
$$

The function hub generalises nub, for inits [] = [[]] and $x s ~ \ \backslash[]=x s$, so nub $x s=h u b[] x s$. Two other immediate facts about hub are that hub ws xs begins with a prefix of $w s$, and that hub ws $x s \leq n u b$ xs since the empty list is a prefix of every list.

The aim now is to derive an inductive definition of hub. For the base case we reason

```
        hub ws []
= {definition}
    min [is + nub ([] \\ is)| is \leftarrow inits ws]
= {since []\\is=[] and nub[] = []}
    min [is | is \leftarrow inits ws]
= {since [] is the lexicographically least list in inits ws}
[]
```

Hence hub ws [] = []. For the inductive case, (10.2) gives

$$
\begin{equation*}
\text { hub ws }(x: x s)=\min [\text { is }+\operatorname{nub}((x: x s) \backslash \backslash i s) \mid \text { is } \leftarrow \text { inits ws }] \tag{10.3}
\end{equation*}
$$

To simplify the right-hand side we need to know whether or not $x \in w s$, so we start by splitting ws into two lists, us and $v s$, defined by

$$
(u s, v s)=(\text { takeWhile }(<x) \text { ws, drop While }(<x) w s)
$$

More briefly, $(u s, v s)=\operatorname{span}(<x) w s$, where span is a standard Haskell library function. Since $w s=u s+v s$ and $w s$ is in increasing order, both us and $v s$ are also in increasing order. Moreover, if $x \in w s$, then $x=$ head vs; if not, then either $v s$ is empty or $x<$ head $v s$.

The following property of inits is key to the simplification of (10.3):

$$
\begin{equation*}
\text { inits }(u s+v s)=\text { inits us }+\operatorname{map}(u s+)\left(\text { inits }^{+} v s\right) \tag{10.4}
\end{equation*}
$$

where inits ${ }^{+}$vs returns the list of nonempty prefixes of vs. Using this expression for inits in (10.3) and splitting the comprehension into two parts, we obtain that hub ws $(x: x s)=A \min B$, where

$$
\begin{align*}
A & =\min [i s+n u b((x: x s) \backslash \backslash i s) \mid i s \leftarrow \text { inits us }] \tag{10.5}\\
B & =\min \left[u s+i s+n u b((x: x s) \backslash \backslash(u s+i s)) \mid i s \leftarrow \text { inits }^{+} v s\right] \tag{10.6}
\end{align*}
$$

To discover A min B we deal with A first, distinguishing the two cases $x \notin x s$ and $x \in x s$. In the first case, $x \notin x s$, we argue:

$$
\begin{aligned}
& \text { A } \\
& =\quad\{\text { definition (10.5) }\} \\
& \min [i s+\operatorname{nub}((x: x s) \backslash \backslash i s) \mid i s \leftarrow i n i t s u s] \\
& =\quad \text { \{recursive definition of nub since } x \notin x s \text { and } x \notin u s\} \\
& \min [i s+[x]+n u b(x s \backslash \backslash i s) \mid i s \leftarrow \text { inits } u s] \\
& =\quad\{\text { since } u s<i s+[x] \text { for is } \in \text { inits us }\} \\
& \text { us }+[x]+\operatorname{nub}(x s \backslash \backslash u s) \\
& =\quad\{\text { since nub } x s=h u b[] x s\} \\
& u s+[x]+h u b[](x s \backslash \backslash s)
\end{aligned}
$$

In the second case, $x \in x s$, we argue:
A
$=\quad\{$ recursive definition of nub since $x \in x s$ and $x \notin u s\}$ $\min [i s+([x]+n u b(x s \backslash \backslash(i s+[x])) \min n u b(x s \backslash \backslash i s))$ \mid is \leftarrow inits us]

$$
\begin{aligned}
= & \{\text { taking min outside the comprehension }\} \\
& \min [\text { is }+[x]+n u b(x s \backslash \backslash(\text { is }+[x])) \mid \text { is } \leftarrow \text { inits us }] \mathrm{min} \\
& \min [\text { is }+ \text { nub }(x s \backslash \backslash i s) \mid \text { is } \leftarrow \text { inits us }] \\
= & \{\text { since } u s<\text { is }+[x] \text { for is } \in \text { inits us }\} \\
& (u s+[x]+\text { nub }(x s \backslash \backslash(u s+[x]))) \min \\
& \min [\text { is }+ \text { nub }(x s \backslash \text { is }) \mid \text { is } \leftarrow \text { inits us }] \\
= & \{\text { since inits }(u s+[x])=\text { inits us }+[u s+[x]]\} \\
& \min [\text { is }+ \text { nub }(x s \backslash \backslash i s) \mid \text { is } \leftarrow \text { inits }(u s+[x])] \\
= & \{\text { definition }(10.2)\} \\
& h u b(u s+[x]) x s
\end{aligned}
$$

Summarising, A equals

$$
\text { if } x \in x s \text { then } h u b(u s \#[x]) x s \text { else } u s \#[x] \# h u b[](x s \backslash u s)
$$

Now we turn to B. According to (10.6), if $v s$ is empty (so inits ${ }^{+} v s$ is empty), then B is the fictitious value $\min []$. Otherwise, we reason:

$$
\begin{aligned}
& B \\
= & \{\text { definition }(10.6)\} \\
= & \min \left[u s+i s+n u b((x: x s) \backslash \backslash(u s+i s)) \mid \text { is } \leftarrow \text { inits }^{+}\left(v: v s^{\prime}\right)\right] \\
& \left\{\text { since } \text { inits }^{+}\left(v: v s^{\prime}\right)=\operatorname{map}(v:)(\text { inits vs })\right\} \\
= & \min \left[u s+[v]+\text { is }+n u b((x: x s) \backslash \backslash(u s+[v]+i s)) \mid \text { is } \leftarrow \text { inits } v s^{\prime}\right] \\
= & \{\text { since } \min \cdot \operatorname{map}(y s+)=(y s+) \cdot \min \} \\
& u s+[v]+\min \left[\text { is }+n u b((x: x s) \backslash \backslash(u s+[v]+i s)) \mid \text { is } \leftarrow \text { inits } v s^{\prime}\right]
\end{aligned}
$$

In particular, B begins with us $+[v]$. Without going further we now have enough information to determine hub ws ($x: x s$) in the case $x \notin w s$. In this case, either $v s$ is empty, so $A<B$, or $v s$ is not empty and begins with v where $x<v$. In the latter situation we again have $A<B$ because A begins with a prefix of $u s+[x]$ and $u s+[x]<u s \#[v]$. Hence

$$
x \notin w s \Rightarrow h u b w s(x: x s)=A
$$

It remains to deal with the case $x \in w s$, so $x=v$. In this case B simplifies to

$$
u s+[x] \# \min \left[i s+n u b(x s \backslash \backslash(u s+[x] \# i s)) \mid \text { is } \leftarrow \text { inits } v s^{\prime}\right]
$$

Now we need a final case analysis. Assume first that $x \notin x s$. We calculate:

$$
\begin{aligned}
& B \\
& \{\text { above }\} \\
& u s+[x]+\min \left[i s+n u b(x s \backslash \backslash(u s+[x]+i s)) \mid i s \leftarrow \text { inits } v s^{\prime}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { nub } \quad=\text { hub [] } \\
& \text { hub ws [] }=\text { [] } \\
& \text { hub ws (} x: x s \text {) }=\text { case }(x \in x s, x \in w s) \text { of } \\
& \text { (False, False) } \rightarrow \text { us }+[x]+h u b[](x s \backslash \backslash u s) \\
& \text { (False, True) } \rightarrow \text { us }+[x]+h u b(\text { tail vs) }(x s \backslash u s) \\
& \text { (True, False) } \rightarrow \text { hub (us }+[x]) x s \\
& \text { (True, True) } \rightarrow \text { hub ws xs } \\
& \text { where }(u s, v s)=\operatorname{span}(<x) \text { ws }
\end{aligned}
$$

Fig. 10.1 Second definition of $n u b$

$$
\begin{aligned}
& =\quad\{\text { since } x s \backslash \backslash(u s+[x]+i s)=x s \backslash \backslash(u s+i s)=(x s \backslash u s) \backslash i s\} \\
& =\quad u s+[x]+\min [i s+n u b((x s \backslash u s) \backslash \backslash i s) \mid \text { is } \leftarrow \text { inits vs }] \\
& =\quad\{\text { definition }(10.2)\} \\
& \\
& u s+[x]+h u b v s^{\prime}(x s \backslash \backslash u s)
\end{aligned}
$$

Hence:

$$
\begin{aligned}
& h u b \text { ws }(x: x s) \\
= & \{\operatorname{expressions} \text { for } A \text { and } B, \text { assuming } x \notin x s\} \\
& (u s+[x]+n u b(x s \backslash \backslash u s)) \min \left(u s+[x]+h u b v s^{\prime}(x s \backslash u s)\right) \\
=\quad & \left\{\text { since } h u b v s^{\prime}(x s \backslash u s) \leq n u b(x s \backslash \backslash u s)\right\} \\
& u s+[x]+h u b v s^{\prime}(x s \backslash u s)
\end{aligned}
$$

In the final case $x \in x s$ we can reason:

$$
\begin{aligned}
& h u b \text { ws }(x: x s) \\
= & \{\operatorname{expressions} \text { for } A \text { and } B, \text { assuming } x \in x s\} \\
& h u b(u s+[x]) \text { xs min } \\
& u s+[x]+\min \left[i s+n u b(x s \backslash \backslash(u s+[x]+i s)) \mid i s \leftarrow{\text { inits } \left.v s^{\prime}\right]}=\quad \quad\left\{\text { since } w s=u s+[x]+v s^{\prime} \text { and }(10.4)\right\}\right. \\
= & \min [\text { is }+n u b(x s \backslash i s) \mid i s \leftarrow \text { inits ws }] \\
= & \{\text { definition of } h u b\} \\
& h u b \text { ws xs }
\end{aligned}
$$

The result of these calculations is summarised in Figure 10.1. Each membership test, list difference operation and evaluation of span takes linear time, so evaluation of hub takes linear time at each recursive call and quadratic time in total.

Introducing sets

The final step is to introduce an efficient representation of sets to reduce the complexity of the subsidiary operations from linear to logarithmic. Rather than program the set operations ourselves, we can invoke the Haskell library Data.Set. This library provides a data type Set a and the following operations (among others):

$$
\begin{array}{ll}
\text { empty } & :: \text { Set } a \\
\text { member } & :: \\
\text { Ord } a \Rightarrow a \rightarrow \text { Set } a \rightarrow \text { Bool } \\
\text { insert } & :: \text { Ord } a \Rightarrow a \rightarrow \text { Set } a \rightarrow \text { Set } a \\
\text { split } & :: \text { Ord } a \Rightarrow a \rightarrow \text { Set } a \rightarrow(\text { Set } a, \text { Set } a) \\
\text { elems } & :: \text { Ord } a \Rightarrow \text { Set } a \rightarrow[a]
\end{array}
$$

The value empty denotes the empty set, member is the membership test, insert x xs inserts a new element x into the set $x s$, while split x splits a set into those elements less than x and those greater than x, and elems returns the elements of a set in increasing order. As to the costs, empty takes constant time, member, insert and split take $O(\log n)$ steps on a set of size n, while elems takes $O(n)$ steps.

In order to introduce sets into the definition of $n u b$ we need a preprocessing phase that associates with each element x of $x s$ the set of elements that come after it. That is, we need to compute

$$
\left(x_{1},\left\{x_{2}, x_{3}, \ldots x_{n}\right\}\right),\left(x_{2},\left\{x_{3}, \ldots, x_{n}\right\}\right), \ldots\left(x_{n},\{ \}\right)
$$

This list can be computed using the Haskell function scanr:

```
preprocess \(\quad::\) Ord \(a \Rightarrow[a] \rightarrow[(a\), Set \(a)]\)
preprocess xs \(=\) zip xs (tail (scanr insert empty xs))
```

The expression scanr insert empty $\left[x_{1}, x_{2}, \ldots x_{n}\right]$ returns the list

$$
\left[\left\{x_{1}, x_{2}, \ldots, x_{n}\right\},\left\{x_{2}, \ldots, x_{n}\right\}, \ldots,\left\{x_{n}\right\},\{ \}\right]
$$

and takes $O(n \log n)$ steps to do so.
The result of installing sets in Figure 10.1 is given in Figure 10.2. Unfortunately, its running time is not $O(n \log n)$. To see why, let us estimate the costs of the various operations. Each membership test contributes $O(\log n)$ steps to the cost at each recursive call. So does split. Let m be the size of us. Since elems takes $O(m)$ steps, as does concatenating the result with the rest of the list, and there are at most n elements in the final list, the total contribution of elems and + to the final cost is $O(n)$ steps. However, the

```
nub \(\quad=\) hub empty \(\cdot\) preprocess
preprocess xs \(=\) zipxs (tail (scanr insert empty xs))
hub ws [] \(=\) []
hub ws \(((x, x s): x s s)=\)
    case (member \(x\) xs, member \(x\) ws) of
        (False, False) \(\rightarrow\) eus \(+[x]+\) hub empty yss
        (False, True) \(\rightarrow\) eus \(+[x]+h u b\) vs yss
        (True, False) \(\rightarrow\) hub (insert \(x\) us) xss
        (True, True) \(\rightarrow\) hub ws xss
    where (us,vs) \(=\) split \(x\) ws
        eus \(=\) elems us
        \(y s s \quad=[(x, x s) \mid(x, x s) \leftarrow x s s\), not \((\) member \(x u s)]\)
```

Fig. 10.2 Introducing sets
cost of computing yss is $\Omega(n \log m)$ steps at each call, and summing this cost gives $\Omega\left(n^{2}\right)$ steps. As a specific example, consider the input

$$
[1 . . n]+[j \mid j \leftarrow[1 . . n], j \bmod 3 \neq 0]
$$

The output is $[1 \ldots n]$. Each multiple of 3 causes the program to flush two elements from the set $w s$, namely $[1,2],[4,5],[7,8]$ and so on, and the total cost of computing yss is quadratic in n.

One way to solve this problem is to introduce an additional argument $p s$ into $h u b$, defining $h u b^{\prime}$ by

$$
\begin{array}{ll}
h u b^{\prime} & :: \quad \text { Set } a \rightarrow \text { Set } a \rightarrow[(a, \text { Set } a)] \rightarrow[a] \\
h u b^{\prime} \text { ps ws xss } & =\text { hub ws }[(x, x s) \mid(x, x s) \leftarrow x s s, x \notin p s]
\end{array}
$$

Then we obtain the program of Figure 10.3. The cost of computing $q s$ is $O(m \log n)$, where m is the size of $u s$, rather than the $O(n \log m)$ cost of computing yss in the previous version. Since the combined size of the sets $u s$ for which this operation is performed is at most n, the total running time is $O(n \log n)$ steps.

Final remarks

It was quite a lot of work to achieve the result, and the final algorithm is neither pretty nor intuitive. A nagging doubt remains that there might be a much simpler solution to such a simply stated problem. But so far I have not been able to find one. The main calculation turned out to be quite intricate and bedevilled by case analysis. Nevertheless, the battle plan is common enough: obtain a recursive formulation of the problem and then

```
nub \(\quad=\) hub \({ }^{\prime}\) empty empty \(\cdot\) preprocess
preprocess xs \(=\) zip xs (tail (scanr insert empty xs))
\(h u b^{\prime}\) ps ws [] \(=\) []
\(h u b^{\prime}\) ps ws \(((x, x s): x s s)=\)
    if member \(x\) ps then hub ps ws xss else
    case (member \(x\) xs, member \(x\) ws) of
        (False, False) \(\rightarrow\) eus \(+[x]+h u b^{\prime}\) qs empty \(x s s\)
        (False, True) \(\rightarrow\) eus \(+[x]+h u b^{\prime}\) qs vs xss
        (True, False) \(\rightarrow\) hub' ps (insert \(x u s\) ) xss
        (True, True) \(\quad \rightarrow \quad\) hub \({ }^{\prime}\) ps ws xss
    where \((u s, v s)=\) split \(x\) ws
        eus \(=\) elems us
        \(q s \quad=\) foldr insert ps eus
```

Fig. 10.3 The final version
seek a generalised version that can be implemented efficiently. The same plan arises in the derivation of many efficient algorithms.

References

Bloom, S. L. and Wright, R. S. (2003). Some lower bounds on comparison-based algorithms. Unpublished research paper. Department of Computer Science, Steven's Institute of Technology, Hoboken, NJ, USA.

11

Not the maximum segment sum

Introduction

The maximum segment sum problem enjoyed a burst of popularity at the end of the 1980 s, mostly as a showcase for programmers to illustrate their favourite style of program development or their particular theorem prover. The problem is to compute the maximum of the sums of all possible segments of a list of integers, positive or negative. But this pearl is not about the maximum segment sum. Instead, it is about the maximum non-segment sum. A segment of a list is a contiguous subsequence, while a non-segment is a subsequence that is not a segment. For example,

$$
[-4,-3,-7,+2,+1,-2,-1,-4]
$$

has maximum segment sum 3 (from the segment $[+2,+1]$) and maximum non-segment sum 2 (from the non-segment $[+2,+1,-1]$). There are no nonsegments of a list with two or fewer elements. While there are $\Theta\left(n^{2}\right)$ segments of a list of length n, there are $\Theta\left(2^{n}\right)$ subsequences, and so many more nonsegments than segments. Can one compute the maximum non-segment sum in linear time? Yes. There is a simple linear-time algorithm, and the aim of this pearl is to calculate it.

Specification

Here is the specification of mnss, the maximum non-segment sum:

$$
\begin{aligned}
\text { mnss } & :: \quad[\text { Int }] \rightarrow \text { Int } \\
\text { mnss } & =\text { maximum } \cdot \text { map sum } \cdot \text { nonsegs }
\end{aligned}
$$

The function nonsegs returns a list of all non-segments of a list. To define this function we can mark each element of the list with a Boolean value: True to signify it is to be included in the non-segment and False to indicate it is not. We mark in all possible ways, filter the markings for those that correspond to non-segments and then extract those non-segments whose
elements are marked True. The function markings returns all possible markings:

$$
\begin{array}{ll}
\text { markings } & ::[a] \rightarrow[[(a, \text { Bool })]] \\
\text { markings xs } & =[\text { zip xs bs } \mid \text { bs } \leftarrow \text { booleans }(\text { length } x s)] \\
\text { booleans } 0 & =[[]] \\
\text { booleans }(n+1) & =[b: b s \mid b \leftarrow[\text { True }, \text { False }], \text { bs } \leftarrow \text { booleans } n]
\end{array}
$$

Markings are in one-to-one correspondence with subsequences. We can now define

$$
\begin{aligned}
\text { nonsegs } & :: \quad[a] \rightarrow[[a]] \\
\text { nonsegs } & =\text { extract } \cdot \text { filter nonseg } \cdot \text { markings } \\
\text { extract } & :: \quad[[(\text { a, Bool })]] \rightarrow[[a]] \\
\text { extract } & =\text { map }(\text { map fst } \cdot \text { filter snd })
\end{aligned}
$$

The function nonseg :: $[(a, B o o l)] \rightarrow$ Bool returns True on a list $x m s$ if and only if map snd $x m s$ describes a non-segment marking. The Boolean list $m s$ is a non-segment marking if and only if it is an element of the set represented by the regular expression

$$
F^{*} T^{+} F^{+} T(T+F)^{*}
$$

in which True is abbreviated to T and False to F. The regular expression identifies the leftmost gap $T^{+} F^{+} T$ that makes the sequence a non-segment.

The finite automaton for recognising members of the corresponding regular set needs four states:

$$
\text { data State }=E|S| M \mid N
$$

State E (for Empty) is the starting state; when the automaton is in state E, markings only in the set F^{*} have been recognised. State S (for Suffix) is when the automaton has processed one or more $T \mathrm{~s}$, so indicates markings in the set $F^{*} T^{+}$, a non-empty suffix of $T \mathrm{~s}$. State M (for Middle) is to indicate markings in the set $F^{*} T^{+} F^{+}$, a middle segment, and state N (for Non-segment) for non-segment markings. We can now define

$$
\text { nonseg }=(==N) \cdot \text { foldl step } E \cdot \text { map snd }
$$

where the middle term foldlstep E executes the steps of the finite automaton:

$$
\begin{array}{ll}
\text { step } E \text { False }=E & \text { step } M \text { False }=M \\
\text { step } E \text { True }=S & \text { step } M \text { True }=N \\
\text { step S False }=M & \text { step } N \text { False }=N \\
\text { step S True }=S & \text { step True }=N
\end{array}
$$

Finite automata process their input from left to right, which explains the use of foldl. We could equally as well have processed lists from right to left, and looked for the rightmost gap, but why break with convention unnecessarily? Notice also that there is nothing special here about the nonseg property: any property of markings that can be recognised by a finite-state automaton yields to exactly the same treatment.

Derivation

Here is the definition of mnss again:

$$
\begin{aligned}
& \text { mnss }=\text { maximum } \cdot \text { map sum } \cdot \text { extract } \cdot \text { filter nonseg } \cdot \text { markings } \\
& \text { extract }=\operatorname{map}(\text { map fst } \cdot \text { filter snd }) \\
& \text { nonseg }=(==N) \cdot \text { foldl step } E \cdot \text { map snd }
\end{aligned}
$$

Our plan of attack is to express extract • filter nonseg • markings as an instance of foldl and then to apply the fusion law of foldl to complete the passage to a better algorithm. To this end, define pick by

$$
\begin{array}{lll}
\text { pick } & :: & \text { State } \rightarrow[a] \rightarrow[[a]] \\
\text { pick } q & = & \text { extract } \cdot \text { filter }((==q) \cdot \text { foldl step } E \cdot \text { map snd }) \cdot \text { markings }
\end{array}
$$

In particular, nonsegs $=$ pick N. We claim that the following seven equations hold:

```
pick E xs \(\quad=[[]]\)
pick \(S[] \quad=\quad[]\)
pick \(S(x s+[x])=\operatorname{map}(+[x])(\) pick \(S x s+\) pick \(E x s)\)
pick \(M[] \quad=\quad[]\)
pick \(M(x s+[x])=\) pick \(M x s+\) pick \(S x s\)
pick \(N[]=\) []
pick \(N(x s+[x])=\) pick \(N x s+\)
    map \((+[x])(\) pick \(N x s+\) pick \(M x s)\)
```

The pukka way to derive these equations is through due process of calculation from the definition of pick q, but the steps are tedious and we will not bother. Instead, each equation can be justified by appeal to step. For example, the equation for pick E is justified because step returns E only on empty subsequences. Similarly for pick S, because step returns S only when x is marked True and preceded either by an element of pick E or pick S. The other definitions can be justified in a similar way. Again, there is nothing specific to non-segments: any finite automaton with k states that recognises correct markings can be systematically transformed into essentially k functions that operate directly on the given input.

The next step is to recast the definition of pick as an instance of foldl. Consider the function pickall, specified by

$$
\text { pickall xs }=(\text { pick Exs, pick } S x s, \text { pick } M x s, \text { pick } N x s)
$$

The following definition of pickall as an instance of foldl follows from the definitions above:

$$
\begin{aligned}
\text { pickall }= & \text { foldl step }([[]],[],[],[]) \\
\text { step }(\text { ess, nss, mss, sss })= & (\text { ess }, \\
& \operatorname{map}(+[x])(\text { sss }+ \text { ess }), \\
& m s s+\text { sss } \\
& n s s+\operatorname{map}(+[x])(n s s+m s s))
\end{aligned}
$$

Our problem now takes the form

$$
\text { mnss }=\text { maximum } \cdot \text { map sum } \cdot \text { fourth } \cdot \text { pickall }
$$

where fourth returns the fourth element of a quadruple. We can move the fourth to the front of the expression on the right by introducing

$$
\text { tuple } f(w, x, y, z)=(f w, f x, f y, f z)
$$

Then we have

$$
\text { maximum } \cdot \text { map sum } \cdot \text { fourth }=\text { fourth } \cdot \text { tuple }(\text { maximum } \cdot \text { map sum })
$$

so mnss $=$ fourth \cdot tuple $($ maximum \cdot map sum $) \cdot$ pickall.
As hoped for, we are now in a position to apply the fusion law of foldl. This law states that $f($ foldl $g a x s)=$ foldlh $b x s$ for all finite lists $x s$ provided that $f a=b$ and $f(g x y)=h(f x) y$ for all x and y. In our problem we have the instantiations

$$
\begin{aligned}
f & =\text { tuple }(\text { maximum } \cdot \text { map sum }) \\
g & =\text { step } \\
a & =([[]],[],[],[])
\end{aligned}
$$

It remains to find h and b to satisfy the fusion conditions. First:

$$
\text { tuple }(\text { maximum } \cdot \text { map sum })([[]],[],[],[])=(0,-\infty,-\infty,-\infty)
$$

because the maximum of an empty set of numbers is $-\infty$. This gives the definition of b. For h we need to satisfy the equation

$$
\begin{aligned}
& \text { tuple (maximum } \cdot \text { map sum })(\text { step }(\text { ess, sss, mss, nss }) x) \\
& \quad=\quad h(\text { tuple }(\text { maximum } \cdot \text { map sum })(e s s, s s s, m s s, n s s)) x
\end{aligned}
$$

To derive h we look at each component in turn. To keep expressions short, abbreviate maximum to max. For the fourth component we reason:

```
        \(\max (\operatorname{map} \operatorname{sum}(n s s+\operatorname{map}(+[x])(n s s+m s s)))\)
\(=\quad\{\) definition of \(m a p\}\)
        \(\max (\) map sum nss \(+\operatorname{map}(\operatorname{sum} \cdot(+[x]))(n s s+m s s))\)
\(=\quad\{\) since sum \(\cdot(+[x])=(+x) \cdot\) sum \(\}\)
    \(\max (\) map sum nss \(+\operatorname{map}((+x) \cdot\) sum \()(n s s+m s s))\)
\(=\quad\{\) since \(\max (x s+y s)=(\max x s) \max (\max y s)\}\)
    \(\max (\operatorname{map}\) sum nss) max \(\max (\operatorname{map}((+x) \cdot s u m)(n s s+m s s))\)
\(=\quad\{\) since \(\max \cdot \operatorname{map}(+x)=(+x) \cdot \max \}\)
    \(\max (\operatorname{map} \operatorname{sum} n s s) \max (\max (\operatorname{map} \operatorname{sum}(n s s+\operatorname{mss}))+x)\)
\(=\quad\{\) introducing \(n=\max (\) map sum nss \()\) and
    \(m=\max (\) map sum mss) \(\}\)
    \(n \max ((n \max m)+x)\)
```

The other three components are treated similarly, and we arrive at

$$
\begin{aligned}
& h(e, s, m, n) x \\
& \quad=(e,(s \max e)+x, m \max s, n \max ((n \max m)+x))
\end{aligned}
$$

and mnss $=$ fourth \cdot foldl $h(0,-\infty,-\infty,-\infty)$.
That, basically, is it. Well, we still have to deal with the fictitious $-\infty$ values. Perhaps the best method is to eliminate them entirely by considering the first three elements of the list separately:

```
mnss xs = fourth (foldl h (start (take 3xs)) (drop 3 xs))
start [x,y,z] = (0, max [x+y+z,y+z,z],\operatorname{max }[x,x+y,y],x+z)
```

Not quite as pretty, but more effective.

Final remarks

The origins of the maximum segment sum problem go back to about 1975, and its history is described in one of Bentley's (1987) programming pearls. For a derivation using invariant assertions, see Gries (1990); for an algebraic approach, see Bird (1989). The problem refuses to go away, and variations are still an active topic for algorithm designers because of potential applications in data-mining and bioinformatics; see Mu (2008) for recent results.

The interest in the non-segment problem is what it tells us about any maximum marking problem in which the marking criterion can be formulated
as a regular expression. For instance, it is immediate that there is an $O(n k)$ algorithm for computing the maximum at-least-length- k segment problem because $F^{*} T^{n} F^{*}(n \geq k)$ can be recognised by a k-state automaton. And even non-regular conditions such as $F^{*} T^{n} F^{*} T^{n} F^{*}(n \geq 0)$, whose recogniser requires an unbounded number of states, is susceptible to the same method. What is more, the restriction to lists is not necessary either; one can solve maximum marking problems about a whole variety of data types in a similar way.

References

Bentley, J. R. (1987). Programming Pearls. Reading, MA: Addison-Wesley.
Bird, R. S. (1989). Algebraic identities for program calculation. Computer Journal 32 (2), 122-6.
Gries, D. (1990). The maximum segment sum problem. In Formal Development of Programs and Proofs, ed. E. W. Dijkstra et al. University of Texas at Austin Year of Programming Series. Menlo Park. Addison-Wesley, pp. 43-5.
Mu, S.-C. (2008). The maximum segment sum is back. Partial Evaluation and Program Manipulation (PEPM '08), pp. 31-9.

12

Ranking suffixes

Introduction

The idea of ranking the elements of a list crops up frequently. An element x is assigned rank r if there are exactly r elements of the list less than x. For example, $\operatorname{rank}[51,38,29,51,63,38]=[3,1,0,3,5,1]$. This scheme ranks from 0 and from lowest to highest, but one can also rank from 1 and from highest to lowest, as when ranking candidates by their marks in an examination. Rankings are distinct if and only if the list does not contain duplicates, in which case rank $x s$ is a permutation of $[0$.. length $x s-1]$.

In this pearl we consider the problem of ranking the suffixes of a list rather than the list itself. It takes $\Theta(n \log n)$ steps to rank a list of length n, assuming a test $x<y$ takes constant time. Since in the worst case it takes $\Theta(n)$ such tests to make one lexicographic comparison between two suffixes of a list of length n, it seems that ranking the suffixes of a list should require $\Theta\left(n^{2} \log n\right)$ basic comparisons. The point of this pearl is to show that only $\Theta(n \log n)$ steps are necessary. Asymptotically speaking, it takes no more time to rank the suffixes of a list than it does to rank the list itself. Surprising but true.

Specification

In Haskell the suffixes of a list are called its tails, and henceforth we will refer to tails rather than suffixes. The function tails returns the nonempty tails of a list in decreasing order of length:

```
tails \(\quad:: \quad[a] \rightarrow[[a]]\)
tails [] \(=\) []
tails \(x s=x s:\) tails (tail xs)
```

This definition of tails differs from the standard Haskell function of the same name, which returns all the tails, including the empty tail. The function rank can be specified by
rank $\quad:: \quad$ Ord $a \Rightarrow[a] \rightarrow[$ Int $]$
rank xs $=\operatorname{map}(\lambda x \rightarrow$ length $($ filter $(<x) x s)) x s$
This definition takes $\Theta\left(n^{2}\right)$ steps on a list of length n, but rank can be improved to take $\Theta(n \log n)$ steps, something we will take up later on.

The required function, ranktails say, can now be defined by

$$
\begin{aligned}
\text { ranktails } & :: \text { Ord } a \Rightarrow[a] \rightarrow[\text { Int }] \\
\text { ranktails } & =\text { rank } \cdot \text { tails }
\end{aligned}
$$

Our task is to implement ranktails to take $\Theta(n \log n)$ steps.

Properties of rank

We will need various properties of rank, the most important of which is that rank maintains order: if we know only rank $x s$, then we know everything about the relative order of the elements of $x s$, though nothing about the nature of the elements themselves. Suppose we define $x s \approx y s$ to mean $\operatorname{rank} x s=\operatorname{rank} y s$. Then $x s \approx y s$ if the elements in $x s$ have the same relative order as the elements in $y s$. As two examples among many:

$$
x s \approx z i p x s x s \quad \text { and } \quad z i p(z i p x s y s) z s \approx z i p x s(z i p y s z s)
$$

We will also need the following property of rank. Let select :: $[a] \rightarrow[a]$ be any function such that:
(i) every element in select $x s$ is in $x s$;
(ii) select $\cdot \operatorname{map} f=\operatorname{map} f \cdot$ select for any f.

Then

$$
\begin{equation*}
\text { rank } \cdot \text { select } \cdot \text { rank }=\text { rank } \cdot \text { select } \tag{12.1}
\end{equation*}
$$

In particular, taking select $=i d$ we have rank \cdot rank $=$ rank, and taking select $=$ tail, we have rank \cdot tail \cdot rank $=$ rank \cdot tail. The proof of (12.1) is left as an instructive exercise to the interested reader.

Finally, a useful idea associated with ranking is that of refining one ranking by another one. Suppose we define the operation \ll, pronounced "refined by", by

$$
\begin{equation*}
x s \ll y s=\operatorname{rank}(z i p x s y s) \tag{12.2}
\end{equation*}
$$

For example, $[3,1,3,0,1] \ll[2,0,3,4,0]=[2,1,3,0,1]$. Thus, equal ranks in $x s$ may be refined to distinct ranks in $x s \ll y s$. The operation \ll is
associative. Here is the proof:

$$
\begin{aligned}
& (x s \ll y s) \ll z s \\
=\quad & \{(12.2)\} \\
& \quad \operatorname{rank}(\text { zip }(\text { rank }(\text { zip xs ys })) z s) \\
=\quad & \{\text { since zip us vs } \approx \text { zip }(\text { rank us }) v s\} \\
& \operatorname{rank}(\text { zip }(\text { zip xs ys }) z s) \\
=\quad & \{\text { since zip }(\text { zip xs ys }) z s \approx z i p x s(\text { zip ys zs })\} \\
& \operatorname{rank}(\text { zip xs }(\text { zip ys zs })) \\
=\quad & \{\text { as before }\} \\
& x s \ll(y s \ll z s)
\end{aligned}
$$

Observe also that if a ranking $x s$ consists of distinct elements, and therefore is a permutation of $[0 . . n-1]$, where $n=$ length $x s$, then $x s \ll y s=x s$ for any $y s$ of the same length as $x s$. In words, once a ranking is a permutation it cannot be further refined.

A better algorithm

One obvious approach to improving the performance of ranktails, given its target complexity, is to look for a divide and conquer solution based on the decomposition

$$
\text { tails }(x s+y s)=\operatorname{map}(+y s)(\text { tails } x s)+\text { tails } y s
$$

But this does not seem to lead anywhere. Instead, we take another approach and first generalise ranktails to a function rats by replacing the lexicographic comparison test $(<)$ with $\left(<_{k}\right)$, where $x s<_{k}$ ys $=$ take k xs $<$ take k ys. In other words, we rank the tails of a list by looking only at the first k elements of each tail. Define rats by

$$
\begin{equation*}
\text { rats } k=\text { rank } \cdot \operatorname{map}(\text { take } k) \cdot \text { tails } \tag{12.3}
\end{equation*}
$$

We have ranktails $x s=$ rats (length $x s$) $x s$, so rats is a generalisation of ranktails. The main reason for the name rats, apart from being a compression of both rank and tails, is that it is pronounceable and short enough to avoid lengthy expressions in calculations.

The key to the derivation of a faster algorithm for ranktails is the following property of rats:

$$
\begin{equation*}
\text { rats }(2 * k) x s=\text { rats } k x s \ll \text { shiftBy } k(\text { rats } k x s) \tag{12.4}
\end{equation*}
$$

We will prove this, and also give the definition of shiftBy, later on. Since $x s \approx \operatorname{map}($ take 1$)($ tails $x s)$ we have rats $1=$ rank. The idea is to use (12.4) to successively rank map (take 2) (tails xs), map (take 4) (tails xs) and so on until we reach a permutation. Thus, we propose the following algorithm for ranktails:

```
ranktails = applyUntil isperm rerankings rank
rerankings = map rerank(iterate (*2) 1)
rerank krs = rs<<shiftBy krs
```

The function applyUntil is a variant of the standard function until and is defined by

$$
\begin{array}{ll}
\text { applyUntil } & :: \quad(a \rightarrow B o o l) \rightarrow[a \rightarrow a] \rightarrow a \rightarrow a \\
\text { applyUntil } p(f: f s) x & =\text { if } p x \text { then } x \text { else applyUntil } p f s(f x)
\end{array}
$$

The function isperm tests whether a ranking is a permutation and can be defined using a Haskell array: ${ }^{1}$

$$
\begin{aligned}
\text { isperm }:: & {[\text { Int }] \rightarrow \text { Bool } } \\
\text { isperm is }= & \text { and }(\text { elems } \\
& (\text { accumArray }(\vee) \text { False }(0, n-1)(\text { zip is }(\text { repeat True })))) \\
& \text { where } n=\text { length is }
\end{aligned}
$$

This definition of isperm takes linear time.
In words, ranktails first ranks the elements of the input and then successively applies rerank 1 , rerank 2 , rerank 4 and so on until the result is a permutation. Note that it is only the very first ranking that inspects the input; the remaining rerankings deal exclusively with ranks; that is, lists of integers. At worst, ranktails xs requires $\log n$ rerankings where $n=$ length xs. Assuming rank takes $\Theta(n \log n)$ steps and shiftBy takes $\Theta(n)$ steps, the new version of ranktails takes $\Theta\left(n \log ^{2} n\right)$ steps. Better than $\Theta\left(n^{2} \log n\right)$, but not yet at our target complexity of $\Theta(n \log n)$.

Proof

Now we prove (12.4), and at the same time discover a definition of shiftBy. We are going to need a number of additional properties involving lists, tails and rankings, the first of which is that

$$
\text { all }(\text { not } \cdot \text { null }) x s s \Rightarrow \text { sss }=\text { zipWith }(:)(\text { map head xss })(\text { map tail xss })
$$

[^5]To reduce the parenthesis count in expressions we rewrite the consequent in the form

$$
\begin{equation*}
\text { id }=\text { zipWith }(:) \cdot \text { fork (map head, map tail) } \tag{12.5}
\end{equation*}
$$

where fork $(f, g) x=(f x, g x)$ and zipWith (:) is quietly assumed to be non-curried. Proofs of this and other properties are omitted.

We start by calculating

```
        rats (k+1)
= {(12.3)}
    rank · map (take (k+1)) - tails
={(12.5) since all (not \cdot null) \cdot map (take (k+1)) \cdottails}
    rank · zipWith (:) · fork (map head, map tail) ·
    map (take (k+1)) - tails
```

Now, fork $(f, g) \cdot h=\operatorname{fork}(f \cdot h, g \cdot h)$ and

```
map head \(\cdot\) map \((\) take \((k+1)) \cdot\) tails \(=i d\)
map tail \(\cdot\) map \((\) take \((k+1)) \cdot\) tails \(=\) snoc [] tail \(\cdot\) map \((\) take \(k) \cdot\) tails
```

where snoc x xs $=x s+[x]$. Hence we can continue:

```
        rank · zipWith (:) · fork (map head, map tail) ·
        map (take (k+1)) · tails
= {above}
    rank · zipWith (:) · fork (id, snoc [ ] · tail · map (take k) · tails)
```

The next step is to see that zipWith (:) xs xss \approx zip xs xss, or, more briefly, $z i p$ With (:) $\approx z i p$, where $z i p$ is also quietly assumed to be non-curried. Hence we obtain

$$
\text { rats }(k+1)=\text { rank } \cdot \text { zip } \cdot \text { fork }(\text { id, snoc }[] \cdot \text { tail } \cdot \operatorname{map}(\text { take } k) \cdot \text { tails })
$$

Now rank $\cdot z i p=(\ll)$ by (12.2). And since $x s \ll y s=x s \ll r a n k y s$, that gets us to

```
rats (k+1)=(<<)\cdotfork (id, rank \cdotsnoc [] · tail \cdotmap (take k) 'tails)
```

Now rank $\cdot \operatorname{snoc}[]=$ lift \cdot rank, where lift $=\operatorname{snoc} 0 \cdot \operatorname{map}(+1)$, so

$$
\text { rats }(k+1)=(\ll) \cdot \text { fork }(\text { id, lift } \cdot \text { rank } \cdot \text { tail } \cdot \text { map }(\text { take } k) \cdot \text { tails })
$$

Next we claim that lift \cdot rank \cdot tail \approx lift \cdot tail \cdot rank. Here is the proof:

$$
\operatorname{lift}(\operatorname{rank}(\operatorname{tail} x s)) \approx \operatorname{lift}(\operatorname{tail}(\operatorname{rank} x s))
$$

$$
\begin{aligned}
& \Leftarrow \quad\{\text { since } x s \approx y s \text { implies lift } x s \approx \text { lift ys }\} \\
& \quad \operatorname{rank}(\text { tail xs }) \approx \text { tail }(\text { rank } x s) \\
& \equiv \quad\{\text { definition of } \approx\} \\
& \quad \operatorname{rank}(\text { rank }(\text { tail } x s))=\operatorname{rank}(\text { tail }(\text { rank } x s)) \\
& \Leftarrow \quad \\
& \quad \begin{array}{c}
\text { using }(12.1) \text { twice, once for subseq }=\text { id } \\
\text { and once for } \text { subseq }=\text { tail }\}
\end{array}
\end{aligned}
$$

true
Hence rats $(k+1)=(\ll) \cdot$ fork $(i d$, lift \cdot tail \cdot rats $k)$. Equivalently:

$$
\begin{equation*}
\text { rats }(k+1) x s=\operatorname{rank} x s \ll \operatorname{shift}(\text { rats } k x s) \tag{12.6}
\end{equation*}
$$

where shift $=$ lift \cdot tail and lift is $=\operatorname{map}(+1)$ is $+[0]$.
The next step is to exploit the fact that

$$
\text { shift }(i s \ll j s)=\text { shift is } \ll \text { shift js }
$$

and the associativity of \ll. Then we obtain from (12.6) that

$$
\text { rats } k x s=r s \ll \text { shift } r s \ll \text { shift }^{2} r s \ll \cdots \ll s h i f t^{k-1} r s
$$

where $r s=$ rank xs and shift ${ }^{k}$ is the k-fold composition of shift with itself. It is now easy to group terms in this series expansion for rats to obtain

$$
\text { rats }(2 * k) x s=\text { rats } k x s \ll \operatorname{shift}^{k} \text { (rats } k x s \text {) }
$$

Finally, we can set shiftBy $k=$ shift k to establish (12.4). In fact, we have

$$
\text { shiftBy } k \text { rs }=\operatorname{map}(+k)(\text { drop } k r s)+[k-1, k-2 . .0]
$$

Evaluation of shiftBy k rs takes $\Theta(n)$ steps where $n=$ length rs.

A better rank

We turn next to a better method for computing rank. As every examiner knows, the way to rank a list of candidate-mark pairs, given in candidate order, is first to partition the candidates by sorting them according to their marks, and placing candidates with equal marks into groups. Then each candidate in the first group receives rank 0 , each candidate in the second group receives rank g_{0}, where g_{0} is the size of the first group, each candidate in the third group receives rank $g_{0}+g_{1}$, where g_{1} is the size of the second group, and so on. The result is then resorted in the original candidate order. This method is formalised by

$$
\text { rank }=\text { resort } \cdot \text { concat } \cdot \text { label } \cdot \text { psort } \cdot \text { zip }[0 . .]
$$

```
psort \(\quad:: \quad\) Ord \(b \Rightarrow[(a, b)] \rightarrow[[a]]\)
psort xys \(\quad=\) pass xys []
pass [] xss \(=\) xss
pass \((e @(x, y):\) xys \()\) xss \(=\) step \(x y s[][x][]\) xss
    where
    step [] as bs cs xss \(=\) pass as (bs : pass cs xss)
    step \(\left(e @\left(x, y^{\prime}\right): x y s\right)\) as bs cs xss \(\quad \mid \quad y^{\prime}<y=\) step \(x s(e: a s) b s\) cs xss
    \(y^{\prime}=y=\) step xs as \((x: b s)\) cs xss
| \(y^{\prime}>y=\) step \(x s\) as bs \((e: c s) x s s\)
```

Fig. 12.1 Partition sorting

The function psort, short for partition sort, partitions a list of candidatemark pairs by sorting by mark and grouping candidates with equal marks into runs. The marks, having served their purpose, are discarded. One way of implementing psort is presented in Figure 12.1. The method used is a version of ternary quicksort in which the head of a list is chosen as the pivot in the partitioning step. As a consequence, psort takes $\Theta\left(n^{2}\right)$ steps in the worst case. Choosing the pivot to be the median element brings the cost down to $\Theta(n \log n)$ steps.

The function label is defined by

$$
\begin{array}{ll}
\text { label } & :: \quad[[a]] \rightarrow[[(a, \text { Int })]] \\
\text { label xss } & =\text { zipWith tag xss }(\text { scanl }(+) 0(\text { map length xss })) \\
\text { tag xs } k & =[(x, k) \mid x \leftarrow x s]
\end{array}
$$

Finally, resort can be implemented by using a Haskell array:

$$
\begin{array}{ll}
\text { resort } & ::[(\text { Int }, \text { Int })] \rightarrow[\text { Int }] \\
\text { resort ijs } & =\text { elems }(\text { array }(0, \text { length ijs }-1) \text { ijs })
\end{array}
$$

The value array $(0, n-1)$ ijs builds an array indexed from 0 to $n-1$ whose index-value pairs are given by the association list ijs. The first components of $i j s$ have to be a permutation of $[0 . . n-1]$ for the result to be well defined. Both array and elems take linear time, so resort takes linear time.

The final algorithm

The revised implementation of rank leads to an alternative implementation of ranktails in which ranking is subordinated to partitioning. Suppose we introduce

$$
\begin{aligned}
& \text { partition }:: \text { Ord } a \Rightarrow[a] \rightarrow[[\text { Int }]] \\
& \text { partition }
\end{aligned}=\text { psort } \cdot \text { zip }[0 . .] \$
$$

Then rank $=$ resort \cdot concat \cdot label \cdot partition. Furthermore, \ll can be expressed in terms of partition because it is expressed in terms of rank. That means we can regroup terms and express ranktails in terms of partition rather than rank. One advantage of doing so is that rank returns a permutation if and only if partition returns a list all of whose elements are singletons, so isperm can be replaced by all single, where single determines whether its argument is a singleton list. Installing these changes leads to

```
ranktails = resort . concat . label.
    applyUntil (all single) repartitions \cdot partition
repartitions = map repartition(iterate (*2) 1)
repartition k iss = partition(zip rs (shiftBy k rs))
    where rs = resort (concat (label iss))
```

This version has the same time complexity as the previous one, but it opens up the route for further optimisation. In fact, we are now just two steps away from our goal of a $\Theta(n \log n)$ algorithm for ranktails.

The first of these is to make use of the identity

```
partition (zip xs ys)
    = concatMap (psort \cdot map (install ys)) (partition xs)
```

where

$$
\begin{equation*}
\text { install ys } i=(i, y s!!i) \tag{12.8}
\end{equation*}
$$

In words, one can partition a list of pairs by first partitioning with respect to first components and refining the result using the second components. The correct second components can be installed in each run because each run is a list of positions. After installation, each run is partition sorted and the results concatenated.

To be accurate, (12.7) holds only if psort is a stable sorting algorithm and the implementation in Figure 12.1 is not stable. If psort is not stable then the elements in each run will appear in a different order in the leftand right-hand sides. But (12.7) does hold if we interpret equality of two partitions to mean equal up to some permutation of the elements in each run. Since the computation of ranktails does not depend on the precise order of the elements in a run, that is all that is required.

We are now ready to rewrite repartition:
repartition k iss
$=\quad\{$ definition, setting rs $=$ resort $($ concat $($ label iss $))\}$ partition(zip rs (shiftBy krs))

$$
\begin{aligned}
= & \{(12.7)\} \\
& \text { concatMap }(\text { psort } \cdot \text { map }(\text { install }(\text { shiftBy } k \text { rs })))(\text { partition rs }) \\
= & \{\text { since iss }=\text { partition xs implies } r s=\text { rank xs } \\
& \text { and partition } \cdot \text { rank }=\text { partition }\} \\
& \text { concatMap }(\text { psort } \cdot \text { map }(\text { install }(\text { shiftBy } k r s))) \text { iss }
\end{aligned}
$$

Hence

```
repartition \(k\) iss \(=\) concatMap \((\) psort \(\cdot \operatorname{map}(\) install rs \())\) iss
where \(r s=\) shiftBy \(k\) (resort \((\) concat (label iss) \()\) )
```

We are nearly there, but (12.8) gives an inefficient way of computing install because it uses list-indexing (!!) which is not constant time. Better is to use array-indexing (!) which does take constant time. The final step is to rewrite install:

$$
\begin{aligned}
& (\text { shiftBy } k(\text { resort }(\text { concat }(\text { label iss }))))!!i \\
= & \{\text { definition of shiftBy }\} \\
& (\text { map }(+k)(\text { drop } k(\text { resort }(\text { concat }(\text { label iss }))))+ \\
= & \{k-1, k-2 \ldots 0])!!i
\end{aligned} \quad\{\text { arithmetic, with } n=\text { length }(\text { concat }(\text { label iss })) \text { and } j=i+k\}
$$

The final program for ranktails is recorded in Figure 12.2. The length of the input is computed once and passed to the various subsidiary functions that need it.

Analysis

It remains to time ranktails. We will do this by estimating the total number of comparisons $T(n, k)$ required to carry out k repartitions on a list of length n. The key to the analysis is to appreciate that the computation of ranktails is essentially the same as partition sorting a list of n vectors, each of dimension k, by sorting on each dimension in turn. The first components of these vectors consist of the elements of the input, but each subsequent component is an integer which is determined dynamically from the result of sorting with respect to previous components. Unlike the implementation of psort given in Figure 12.1 we will suppose that each partition step chooses

```
ranktails \(\quad:: \quad\) Ord \(a \Rightarrow[a] \rightarrow[\) Int \(]\)
ranktails xs
\(=(\) resort \(n \cdot\) concat \(\cdot\) label .
    applyUntil (all single) (repartitions \(n\) ).
    psort - zip [0..]) xs
    where \(n=\) length \(x s\)
resort \(n=\) elems \(\cdot\) array \((0, n-1)\)
label iss \(\quad=\quad\) zipWith tag iss \((\operatorname{scanl}(+) 0(\) map length iss \())\)
tag is \(j=[(i, j) \mid i \leftarrow i s]\)
repartitions \(n=\operatorname{map}(\) repartition \(n)(\) iterate \((* 2) 1)\)
repartition \(n k\) iss \(=\) concatMap (psort. map install) iss
    where install \(i=(i\), if \(j<n\) then \(k+a!j\) else \(n-i-1)\)
        \(a \quad=\quad \operatorname{array}(0, n-1)(\) concat (label iss \())\)
```

Fig. 12.2 The final algorithm for ranktails
a pivot that is the median of the possible pivots. For example, in sorting on the first component, a pivot p is chosen so that some positive number, say x, of elements of the list have first components equal to p and an equal number, namely $(n-x) / 2$, of elements whose first components are less than p, and elements whose second components are greater than p. The run of x elements are sorted on first component, so it remains to sort them on the remaining components. But the other two lists have still to be sorted on all components. Since partitioning n elements requires $n-1$ comparisons, we can define $T(n, k)$ by the recurrence relation

$$
\begin{aligned}
& T(0, k)=0 \\
& T(n, 0)=0 \\
& T(n, k)=(\max x: 1 \leq x \leq n: n-1+T(x, k-1)+2 T((n-x) / 2, k))
\end{aligned}
$$

We now show that $T(n, k) \leq n(\log n+k)$. By induction, this inequality follows if

$$
n-1+x(\log x+k-1)+(n-x)[\log (n-x)+k-1] \leq n(\log n+k)
$$

for $1 \leq x \leq n$. This inequality can be established by high-school calculus. Finally, since $k=\log n$, we have that the number of comparisons required to evaluate ranktails on a list of length n is at most $2 n \log n$, and the total running time is $\Theta(n \log n)$ steps.

Experimental results

That was quite a lot of calculational effort to obtain the final algorithm, but is it actually better in practice than the naive one? We profiled three versions of the algorithm:

File	Size	Chars	AlgA1	AlgB1	AlgC1	AlgA2	AlgB2	AlgC2
dna	10424	5	0.08	0.10	0.08	$\mathbf{0 . 0 4}$	0.08	0.16
ps	367639	87	2.76	10.96	$\mathbf{2 . 3 2}$	3.18	22.50	3.54
txt	148480	72	$\mathbf{0 . 4 8}$	3.08	0.72	0.86	6.06	1.28
ptt5	513216	159	-	136.38	8.70	611.3	37.78	$\mathbf{6 . 3 2}$
alla	1000	1	2.96	0.10	$\mathbf{0 . 0 2}$	0.18	0.06	$\mathbf{0 . 0 2}$

Fig. 12.3 Running times of three versions for various files
(A) the specification of ranktails but with the definition of rank based on partition sorting;
(B) the improved algorithm that used repeated rerankings;
(C) the final program of Figure 12.2.

All algorithms were run with the implementation of psort described in Figure 12.1 ($\mathrm{AlgA} 1, \mathrm{AlgB} 1$ and $\mathrm{AlgC1}$), and then with a guaranteed $\Theta(n \log n)$ algorithm based on mergesort (AlgA2, AlgB2 and AlgC2). The programs were compiled with GHC. Five different kinds of input were used: (i) a DNA file; (ii) a postscript file; (iii) the file alice29.txt from the Canterbury corpus and containing the text of Alice in Wonderland; (iv) a picture file ptt5 from the same corpus; and (v) a text file containing 1000 occurrences of the letter "a". Running times in Figure 12.3 are in seconds. The second column gives the number of characters in the file and the third column the number of distinct characters. The entry for AlgA1 in the ptt5 row is blank because the computation was abandoned after 12 hours. Highlighted entries show the best performance for each row.

The figures reveal a complicated picture. First, as expected, the AlgB1 and AlgB2 variants showed no advantage over either the naive or superior versions. But, apart from the last two rows, the naive algorithms performed about as well as the superior ones. Moreover, the algorithms based on ternary quicksort were roughly twice as fast as those based on mergesort. But the picture changes with ptt5, a file that mostly contains null characters, and with alla, the file that contains just the letter "a". Here, the superior algorithm is much better. Although not better than the others in all situations, $\mathrm{AlgC1}$ seems to be the best overall.

Final remarks

Our final algorithm for ranktails is closely related to an algorithm for sorting the suffixes of a list proposed by Larsson and Sadakane (1999). Indeed, the
whole pearl was inspired by their work. Ranking a list and sorting a list are closely related operations and each can be computed quickly from the other. In particular, the function sorttails that returns the unique permutation that sorts the tails of a list can be obtained from the final program for ranktails simply by replacing resort• concat• label in the first line of ranktails by concat. The function sorttails is needed as a preliminary step in the Burrows-Wheeler algorithm for data compression, a problem we will take up in the following pearl. The problem of sorting the suffixes of a string has been treated extensively in the literature because it has other applications in string matching and bioinformatics; a good source is Gusfield (1997).

This pearl was rewritten a number of times. Initially we started out with the idea of computing perm, a permutation that sorts a list. But perm is too specific in the way it treats duplicates: there is more than one permutation that sorts a list containing duplicate elements. One cannot get very far with perm unless one generalises to either rank or partition. We reformulated the problem in terms of rank, but ended up with the idea of partitioning a list rather than ranking it. Nevertheless, rank entered the picture again for the final optimisation step.

References

Larsson, N. J. and Sadakane, K. (1999). Faster suffix sorting. Research Report LU-CS-TR-99-214, Department of Computer Science, Lund University, Sweden.
Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge, UK: Cambridge University Press.

13

The Burrows-Wheeler transform

Introduction

The Burrows-Wheeler transform (BWT) is a method for permuting a list with the aim of bringing repeated elements together. Its main use is as a preprocessing step in data compression. Lists with many repeated adjacent elements can be encoded compactly using simple schemes such as run length or move-to-front encoding. The result can then be fed into more advanced compressors, such as Huffman or arithmetic coding, ${ }^{1}$ to compress the input even more.

Clearly, the best way of bringing repeated elements together is just to sort the list. But the idea has a major flaw as a preliminary to compression: there is no way to recover the original list unless the complete sorting permutation is also produced as part of the output. Without the ability to recover the original input, data compression is pointless; and if a permutation has to be produced as well, then compression is ineffective. Instead, the BWT achieves a more modest permutation, one that brings some but not all repeated elements into adjacent positions. The main advantage of the BWT is that the transform can be inverted using a single additional piece of information, namely an integer k in the range $0 \leq k<n$, where n is the length of the (nonempty) input list. In this pearl we describe the BWT, identify the fundamental reason why inversion is possible, and use it to derive the inverse transform from its specification.

Defining the BWT

Applied to a list $x s$ the BWT sorts the rotations of $x s$, producing a matrix of rotated lists, and then returns the last column of the sorted matrix together with the position of $x s$ in the matrix. As an illustration, consider the string yokohama. The rotations and the sorted rotations are pictured in

[^6]| y o k o h a ma | 0 a may 0 k 0 h |
| :---: | :---: |
| 1 ok o h a m a y | $1 \mathrm{a} y$ ○ $\mathrm{k} \circ \mathrm{ham}$ |
| $2 \mathrm{k} \circ \mathrm{ham} \mathrm{m}$ y o | 2 ham a y oko |
| 3 o h a m a y ok | $3 \mathrm{k} \circ \mathrm{ham} \mathrm{m}$ y o |
| 4 ham a y ok o | $4 \mathrm{~m} a \mathrm{y} \circ \mathrm{k} \circ \mathrm{ha}$ |
| 5 a m a y okoh | 5 o h a m a y o k |
| $6 \mathrm{~m} a \mathrm{y}$ ok o h a | 6 okoh a may |
| a y okoh a m | 7 y ○ k ○ h a m |

Fig. 13.1 Rotations and sorted rotations

Figure 13.1. The output of the transform is the string hmooakya, the last column of the second matrix, and the number 7 because row 7 is the position of yokohama in the second matrix.

It is straightforward to specify the BWT:

$$
\begin{aligned}
\text { transform } & :: \quad \text { Ord } a \Rightarrow[a] \rightarrow([a], \text { Int }) \\
\text { transform } x s= & \text { (map last xss, position xs xss }) \\
& \text { where } x s s=\text { sort }(\text { rots xs })
\end{aligned}
$$

The position of row $x s$ in the matrix $x s s$ is defined by

$$
\text { position xs xss }=\text { length }(\text { take While }(\neq x s) \text { xss })
$$

and the rotations of a nonempty list by

$$
\begin{array}{rlr}
\text { rots }: & {[a] \rightarrow[[a]]} \\
\text { rots } x s= & \text { take }(\text { length } x s)(\text { iterate lrot } x s) \\
& \text { where } \operatorname{lrot}(x: x s)=x s+[x]
\end{array}
$$

The subsidiary function lrot performs a single left rotation. The code for transform is not efficient, but we will ignore that problem for now. ${ }^{2}$

The function transform is helpful for compression because, applied to a text, it brings together characters with a common context. To give a brief illustration, an English text will contain many occurrences of words such as "this", "the", "that" and so on, as well as many occurrences of "where", "which", "when" and so on. Consequently, many of the rotations beginning with "h" will end with either a "t" or a "w". As a contrived example, transforming "this, that or the other" produces
(te,rshhhtttth oeia or, 22)
In this example all but one of the "t"s have been brought together.

[^7]The inverse untransform $::$ Ord $a \Rightarrow([a]$, Int $) \rightarrow[a]$ is, naturally enough, specified (over nonempty lists) by

$$
\text { untransform } \cdot \text { transform }=\text { id }
$$

The problem is how to compute untransform. The obvious method, if it can be made to work, is to use the first component of the result of transform to recreate the sorted matrix of rotations and then to use the second component to select the appropriate row. Fleshing out the idea, suppose recreate $::$ Ord $a \Rightarrow[a] \rightarrow[[a]]$ can be constructed to satisfy

```
recreate}\cdot\mathrm{ map last sort rots = sort rots
```

Then we can define untransform $(y s, k)=($ recreate $y s)!!k$, where (!!) is the list-indexing operator. But can we really recreate the whole matrix of sorted rotations simply by knowing its last column? Yes we can, and the derivation of recreate is a fascinating exercise in program calculation.

Recreational calculation

Suppose in all that follows that the input to recreate is a list of length n, so recreate has to recreate an $n \times n$ matrix. The idea is to recreate the matrix column by column. Define takeCols by

$$
\begin{array}{ll}
\text { takeCols } & :: \text { Int } \rightarrow[[a]] \rightarrow[[a]] \\
\text { takeCols } j & =\text { map }(\text { take } j)
\end{array}
$$

Thus, takeCols j takes the first j columns of an $n \times n$ matrix. In particular, takeCols n is the identity function. We therefore replace recreate with the function recreate n, specified by the property

$$
\begin{equation*}
\text { recreate } j \cdot \text { map last } \cdot \text { sort } \cdot \text { rots }=\text { takeCols } j \cdot \text { sort } \cdot \text { rots } \tag{13.1}
\end{equation*}
$$

Thus, recreate j recreates the first j columns of the sorted matrix of rotations from its last column.

The plan of attack is to construct an inductive definition of recreate. The base case is easy:

$$
\text { recreate } 0=\text { map (const []) }
$$

Applied to a list ys of length n, the result of recreate 0 is a column of n empty lists. Since takeCols 0 applied to any $n \times n$ matrix also produces n empty lists, (13.1) is established for the case $j=0$.

The fun begins with the inductive case. We will need three additional ingredients to make up the recipe. The first ingredient is a function rrot for performing a single right rotation:

$$
\begin{array}{ll}
\text { rrot } & :: \quad[a] \rightarrow[a] \\
\text { rrot xs } & =[\text { last xs }]+\text { init xs }
\end{array}
$$

Equivalently, $\operatorname{rrot}(x s+[x])=[x]+x s$. The crucial property of rrot is

$$
\begin{equation*}
\mathrm{map} \mathrm{rrot} \cdot \text { rots }=\mathrm{rrot} \cdot \text { rots } \tag{13.2}
\end{equation*}
$$

Here is a proof:

$$
\begin{aligned}
& \text { map rrot (rots xs) } \\
& =\{\text { definition of rots }\} \\
& \text { map rrot }\left[x s \text {, lrot } x s, \text { lrot }^{2} x s, \ldots, \text { lrot }^{n-1} x s\right] \\
& =\quad\{\text { definition of map, using rrot } \cdot \text { lrot }=i d\} \\
& \text { [rrot } \left.x s, x s, \text { lrot } x s, \ldots, \text { lrot }^{n-2} x s\right] \\
& =\quad\{\text { definition of } r r o t\} \\
& \text { rrot }\left[x s, \text { lrot } x s, \ldots, \text { lrot }^{n-2} \text { xs, rrot } x s\right] \\
& =\left\{\text { since rrot } x s=\text { lrot }^{n-1} x s\right\} \\
& \operatorname{rrot}\left[x s, l \text { rot } x s, \ldots, \text { lrot }^{n-2} x s, \operatorname{lrot}^{n-1} x s\right] \\
& =\{\text { definition of rots }\} \\
& \text { rrot (rots xs) }
\end{aligned}
$$

The second ingredient is a function hdsort that sorts a matrix on its first column. We can define hdsort using the Haskell function sortBy:

$$
\begin{aligned}
& \text { hdsort }:: \text { Ord } a \Rightarrow[[a]] \rightarrow[[a]] \\
& \text { hdsort }=\text { sortBy cmp where cmp }(x: x s)(y: y s)=\text { compare } x y
\end{aligned}
$$

The third ingredient is a function consCol that adds a new column to a matrix:

$$
\begin{array}{lll}
\text { consCol } & ::([a],[[a]]) \rightarrow[[a]] \\
\text { consCol }(x s, x s s) & = & \text { zipWith }(:) \text { xs xss }
\end{array}
$$

The ingredients above satisfy various identities that we will need in cooking up a constructive definition of recreate to satisfy (13.1). First of all, for $j<n$ we have

$$
\text { takeCols }(j+1) \cdot \text { map rrot }=\text { consCol } \cdot \text { fork }(\text { map last, takeCols } j)(13.3)
$$

where fork $(f, g) x=(f x, g x)$. The right-hand side describes the operation of placing the last column of a matrix at the front of the first j columns; the
left-hand side describes the operation of performing a single right rotation on each row and then taking the first $j+1$ columns. The identity expresses the fact that these two operations give the same result.

The second identity is

$$
\begin{equation*}
\text { takeCols }(j+1) \cdot \text { hdsort }=\text { hdsort } \cdot \text { takeCols }(j+1) \tag{13.4}
\end{equation*}
$$

In words, sorting an $n \times n$ matrix on its first column and then taking a positive number of columns of the result yields exactly the same result as first taking the same number of columns and then sorting on the first column.

The third identity, the key one, is not so obvious:

$$
\begin{equation*}
\text { hdsort } \cdot \text { map rrot } \cdot \text { sort } \cdot \text { rots }=\text { sort } \cdot \text { rots } \tag{13.5}
\end{equation*}
$$

In words, the following transformation on a matrix of sorted rotations is the identity: move the last column to the front and then resort the rows on the new first column. In fact, (13.5) is true only if hdsort is a stable sorting algorithm, meaning that columns with the same first element appear in the output in the same order that they appeared in the input. Under this assumption we have, applied to an $n \times n$ matrix, that

$$
\text { sort }=(h d s o r t \cdot \text { map rrot })^{n}
$$

This identity states that one can sort an $n \times n$ matrix (in fact, an arbitrary list of lists all of which have length n) by repeating n times the operation of rotating the last column into first position and then stably sorting according to the first column only. Since it captures essentially the operation of radix sort, we will call it the radix sort property. It can be proved by induction on n, but we omit details. It leads, with a little help, to the proof of (13.5):

```
        hdsort . map rrot · sort . rots
= {radix sort property}
    (hdsort - map rrot)}\mp@subsup{}{}{n+1}\cdot\mathrm{ rots
= {composition}
    (hdsort · map rrot) }\mp@subsup{}{}{n}\cdothdsort \cdot map rrot \cdot rot
= {radix sort property}
    sort · hdsort · map rrot · rots
= {identity (13.2)}
    sort · hdsort - rrot · rots
= {since sort }\cdot\mathrm{ hdsort = sort }
```

```
    sort \cdot rrot \cdot rots
= {since sort }\cdot\mathrm{ rrot = sort }
    sort - rots
```

The two identities used in the last two steps generalise to sort \cdot perm $=$ sort for any permutation perm of the input.

We are now ready to deal with recreate. Writing $s r=s o r t \cdot r o t s$ for brevity, we calculate:

```
            recreate (j+1) | map last \cdotsr
= {specification (13.1)}
    takeCols (j+1) · sr
= {property (13.5)}
    takeCols (j+1) · hdsort · map rrot · sr
= {property (13.4)}
    hdsort · takeCols (j+1) · map rrot · sr
= {property (13.3)}
    hdsort · consCol · fork (map last, takeCols j) · sr
= {specification (13.1)}
    hdsort · consCol · fork (map last, recreate j · map last) · sr
= {since fork (f\cdoth,g\cdoth)=fork (f,g)\cdoth}
    hdsort · consCol · fork (id, recreate j) · map last · sr
```

Hence, recreate $(j+1)=h d s o r t \cdot$ consCol \cdot fork $(i d$, recreate $j)$.

A faster algorithm

But, and it is a big but, the idea of recreating the complete matrix of sorted rotations before selecting one particular row leads to an unacceptably inefficient method for computing untransform. Recreating an $n \times n$ matrix takes $\Omega\left(n^{2}\right)$ steps and a quadratic time algorithm for untransform is simply no good. In fact, the above definition of recreate n takes $\Omega\left(n^{2} \log n\right)$ steps because hdsort is computed a total of n times. In this section we show how to compute untransform in $\Theta(n \log n)$ steps.

In order to calculate a better algorithm for untransform, we need yet more ingredients. First of all, note that head-sorting a list of singletons is equivalent to sorting a list:

$$
\text { hdsort } \cdot \text { map wrap }=\text { map wrap } \cdot \text { sort }
$$

Here, wrap $x=[x]$. Second, it is not necessary to apply hdsort repeatedly, since each sort involves one and the same permutation. More precisely, suppose

$$
\text { sort ys }=\text { apply } p \text { ys }
$$

where p, which depends on $y s$, is a permutation of $[0 . . n-1]$ and apply applies a permutation to a list. The permutation p is defined by

$$
p=\operatorname{map} \operatorname{snd}(\operatorname{sort}(z i p \text { ys }[0 . . n-1]))
$$

and apply by

$$
\text { apply } p x s=[x s!!(p!!i) \mid i \leftarrow[0 . . n-1]]
$$

The first fact about apply is that for any permutation p

$$
\begin{equation*}
\text { apply } p \cdot \text { consCol }=\text { consCol } \cdot \text { pair }(\text { apply } p) \tag{13.6}
\end{equation*}
$$

where pair $f(x, y)=(f x, f y)$. More generally, if beside (M, N) denotes the operation of placing matrix M beside matrix N, then

$$
\text { apply } p \cdot \text { beside }=\text { beside } \cdot \text { pair }(\text { apply } p)
$$

Property (13.6) is the special case in which M is a $1 \times n$ matrix. Using (13.6), we reason:

```
        recreate (j+1)
= {definition}
        hdsort · consCol · fork (id, recreate j)
= {taking hdsort = apply p, where p is as defined above}
        apply p consCol · fork (id, recreate j)
= {(13.6)}
        consCol · pair (apply p) · fork (id, recreate j)
= {since pair f fork (g,h)=fork (f\cdotg,f\cdoth)}
        consCol · fork (apply p, apply p recreate j)
```

Hence, recreate satisfies

```
recreate 0 = map (const [])
recreate (j+1) = consCol fork (apply p, apply p . recreate j)
```

In this version of recreate, repeated applications of hdsort are replaced by repeated applications of apply p.

The next step is to use this recursive definition of recreate to find an alternative definition of recreate. In a word, we solve the recursion. We are going to show that

$$
\begin{equation*}
\text { recreate } j=t p \cdot \text { take } j \cdot \text { tail } \cdot \text { iterate }(\text { apply } p) \tag{13.7}
\end{equation*}
$$

is just such a solution. The new ingredient is a function $t p$, short for transpose, a standard Haskell function that transposes a matrix. We will need three properties of $t p$:

$$
\begin{align*}
t p \cdot \text { take } 0 & =\operatorname{map}(\text { const }[]) \tag{13.8}\\
\text { tp } \cdot \text { take }(j+1) & =\text { consCol } \cdot \text { fork }(\text { head }, \text { tp } \cdot \text { take } j \cdot \text { tail }) \tag{13.9}\\
\text { apply } p \cdot t p & =\text { tp } \cdot \operatorname{map}(\text { apply } p) \tag{13.10}
\end{align*}
$$

Property (13.8) says in effect that the transpose of a $0 \times n$ matrix is an $n \times 0$ matrix. The transpose of an empty list, a list containing no lists of length n, is a list of length n of empty lists. Property (13.9) says that to transpose a $(j+1) \times n$ matrix one can prefix the first row as a new first column to the transpose of a $j \times n$ matrix formed from the remaining rows. Finally, (13.10), which can be phrased in the equivalent form

$$
\text { apply } p=t p \cdot \operatorname{map}(\text { apply } p) \cdot t p
$$

says that one can apply a permutation to the rows of a matrix by transposing the matrix, applying the permutation to each column and then transposing back again.

Property (13.8) immediately justifies (13.7) in the case $j=0$. For the inductive step we start with

$$
\text { recreate }(j+1)=\text { consCol } \cdot \text { fork }(\text { apply } p, \text { apply } p \cdot \text { recreate } j)
$$

and reason:

$$
\begin{aligned}
& \text { fork }(\text { apply } p, \text { apply } p \cdot \text { recreate } j) \\
= & \quad\{\text { assuming }(13.7)\} \\
& \text { fork }(\text { apply } p, \text { apply } p \cdot \text { tp } \cdot \text { take } j \cdot \text { tail } \cdot \text { iterate }(\text { apply } p)) \\
=\quad & \{(13.10)\} \\
& \text { fork }(\text { apply } p, \text { tp } \cdot \text { map }(\text { apply } p) \cdot \text { take } j \cdot \text { tail } \cdot \text { iterate }(\text { apply } p)) \\
=\quad & \{\text { since map } f \cdot \text { take } j=\text { take } j \cdot \text { map } f \text { and } \\
& \text { map } f \cdot \text { tail }=\text { tail } \cdot \text { map } f\} \\
& \text { fork }(\text { apply } p, \text { tp } \cdot \text { take } j \cdot \text { tail } \cdot \text { map }(\text { apply } p) \cdot \text { iterate }(\text { apply } p)) \\
=\quad & \{\text { since map } f \cdot \text { iterate } f=\text { tail } \cdot \text { iterate } f\} \\
& \text { fork }(\text { apply } p, \text { tp } \cdot \text { take } j \cdot \text { tail } \cdot \text { tail } \cdot \text { iterate }(\text { apply } p))
\end{aligned}
$$

$=\quad\{$ since $f=$ head \cdot tail \cdot iterate f and
\quad fork $(f \cdot h, g \cdot h)=$ fork $(f, g) \cdot h\}$
fork $($ head, tp \cdot take $j \cdot$ tail $) \cdot$ tail \cdot iterate $($ apply $p)$

Now we use (13.9) to obtain

$$
\text { recreate }(j+1)=\text { tp } \cdot \text { take }(j+1) \cdot \text { tail } \cdot \text { iterate }(\text { apply } p)
$$

This completes the proof of (13.7).
We are ready for our last calculation. Recall that
untransform $(y s, k)=$ (recreate $n y s)!!k$
where $n=$ length $y s$. We reason:

$$
\begin{aligned}
& (!!k) \cdot \text { recreate } n \\
= & \{(13.7)\} \\
& (!!k) \cdot \text { tp } \cdot \text { take } n \cdot \text { tail } \cdot \text { iterate }(\text { apply } p) \\
=\quad & \{\text { since }(!!k) \cdot \text { tp }=\text { map }(!!k)\} \\
& \text { map }(!!k) \cdot \text { take } n \cdot \text { tail } \cdot \text { iterate }(\text { apply } p) \\
=\quad & \{\text { since map } f \cdot \text { take } n=\text { take } n \cdot \operatorname{map} f \text { and } \\
& \quad \text { map } f \cdot \text { tail }=\text { tail } \cdot \text { map } f\} \\
& \text { take } n \cdot \text { tail } \cdot \text { map }(!!!k) \cdot \text { iterate }(\text { apply } p)
\end{aligned}
$$

For the final step we need a law of iterate, namely

$$
\operatorname{map}(\oplus y)(\text { iterate } f x)=\operatorname{map}(x \oplus)(\text { iterate } g y)
$$

provided that $f x \oplus y=x \oplus g y$. The proof uses induction on n to show that $f^{n} x \oplus y=x \oplus g^{n} y$; details are left to the reader.

Since (apply pys)!! $k=y s!!(p!!k)$, the above law gives

$$
\operatorname{map}(!!k)(\text { iterate }(\text { apply } p y s))=\operatorname{map}(y s!!)(\text { iterate }(p!!) k)
$$

In summary, untransform $(y s, k)$ is computed by

$$
\text { take (length ys) (tail (map (ys!!) (iterate }(p!!) k)))
$$

If only (!!) were a constant-time operation, this computation would take linear time. But (!!) is not constant time, so the dish is not quite ready to leave the kitchen. The very last step is to bring in Haskell arrays:

```
untransform (ys,k)=take n (tail (map (ya!) (iterate (pa!)k)))
where n = lengthys
    ya=listArray (0,n-1) ys
    pa=listArray (0, n-1) (map snd (sort (zip ys [0..])))
```

The revised definition of untransform makes use of the library Data.Array of Haskell arrays. The expression listArray $(0, n-1)$ ys builds an array with bounds 0 to $n-1$ whose values are the elements of $y s$. This function takes linear time. Unlike the list-indexing operation (!!), the array-indexing operation (!) takes constant time. The computation of pa takes $\Theta(n \log n)$ steps, but the rest of the computation takes $\Theta(n)$ steps.

Transform revisited

Finally, let us revisit transform to see whether we can improve its performance too. The key fact is that sorting the rotations of a list can be expressed in terms of sorting the suffixes of a related list. Suppose tag xs $=x s+[e o f]$, where eof (short for "end of file") is some element guaranteed not to be in the list $x s$. For example, when $x s$ is a string, we can take eof to be the null character; and when $x s$ is a list of natural numbers, we can take $x=-1$. Because eof is different from all other elements of $x s$, the permutation that sorts the first n suffixes of $\operatorname{tag} x s$ is the same permutation that sorts the n rotations of $x s$. Hence:

$$
\text { sort }(\text { rots } x s)=\text { apply } p(\text { rots } x s)
$$

where

$$
p=\operatorname{map} \operatorname{snd}(\operatorname{sort}(z i p(\text { tails }(\operatorname{tag} x s))[0 . . n-1]))
$$

The standard function tails returns the suffixes or tail segments of a list in decreasing order of length. Now we reason:

$$
\begin{aligned}
& \text { map last } \cdot \text { sort } \cdot \text { rots } \\
= & \{\text { with above definition of } p\} \\
& \text { map last } \cdot \text { apply } p \cdot \text { rots } \\
= & \{\text { since map } f \text { apply } p=\text { apply } p \cdot \text { map } f\} \\
& \text { apply } p \cdot \text { map last } \cdot \text { rots } \\
= & \quad\{\text { since map last } \cdot \text { rots }=\text { rrot }\} \\
& \text { apply } p \cdot \text { rrot }
\end{aligned}
$$

Hence, map last \cdot sort \cdot rots $=$ apply $p \cdot$ rrot. Moreover: position xs (sort (rots xs))
$=\quad\{$ with above definition of $p\}$ position xs (apply p (rots xs))

$$
\begin{aligned}
& =\quad\{\text { since position } x s(\text { rots } x s)=0\} \\
& \text { position } 0 p
\end{aligned}
$$

Hence:

```
transform xs \(=([x a!(p a!i) \mid i \leftarrow[0 \cdots n-1]], k)\)
where \(n=\) length ys
    \(k=\) length (takeWhile \((\neq 0) p s)\)
    \(x a=\operatorname{listArray}(0, n-1)(\operatorname{rrot} x s)\)
    \(p a=\) listArray \((0, n-1) p s\)
    \(p s=\operatorname{map} \operatorname{snd}(\operatorname{sort}(z i p(\) tails \((\operatorname{tag} x s))[0 . . n-1]))\)
```

The bottleneck in this algorithm is the computation of $p s$; apart from that, the rest of the computation takes $\Theta(n)$ steps. As we saw in the previous pearl, finding the permutation that sorts the tails of a list of length n can be done in $\Theta(n \log n)$ steps. In fact, if the list is a list of elements over a fixed finite alphabet, then one can sort its suffixes in linear time by building a suffix tree; see Gusfield (1997).

Final remarks

The BWT was first described by Burrows and Wheeler (1994), though the algorithm was actually discovered by Wheeler in 1983. Nelson (1996), in writing the article that brought the BWT to the world's attention, showed that the resulting compression algorithm could outperform many commercial programs available at the time. The BWT has now been integrated into a high-performance utility bzip2, available from www.bzip.org. Radix sort is treated in Gibbons (1999), where it is derived using pointless calculation from tree sort.

References

Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm. Research report 124, Digital Systems Research Center, Palo Alto, USA.
Gibbons, J. (1999). A pointless derivation of radix sort. Journal of Functional Programming 9 (3) 339-46.
Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge University Press, Cambridge, UK.
Nelson, M. (1996). Data compression with the Burrows-Wheeler transform. Dr. Dobb's Journal, September.

14

The last tail

Introduction

Suppose the tails of a list are sorted into dictionary order. What tail comes last? For example, the last tail of "introduction" is "uction" but the last tail of "tomato" is "tomato" itself, since "to" precedes "tomato" in dictionary order. It follows from an earlier pearl on ranking and sorting suffixes (see Pearl 12) that this problem can be solved in $\Theta(n \log n)$ steps for a list of length n. But can we compute the last tail in $\Theta(n)$ steps? The answer turns out to be yes, but the algorithm is surprisingly complicated for such a simply stated problem, and its derivation seems to require substantial effort. So, be warned.

An inductive definition

Our problem is to compute

```
maxtail :: Ord a m [a] ->[a]
maxtail = maximum }\cdot\mathrm{ tails
```

Here, tails is the standard Haskell function that returns the possibly empty tails of a possibly empty list, so maxtail [] = []. The function maximum returns the largest list in lexicographic order. Direct execution of maxtail takes quadratic time in the worst case, for example when the list consists of n repetitions of the same value.

Our strategy for doing better is to head for an inductive definition of maxtail. That is, we aim to express maxtail on a list of length $n+1$ in terms of maxtail on a list of length n. Since maxtail [] = [], the base case is immediate. For the inductive case the two options are to express maxtail ($x: x s$) in terms of x and maxtail $x s$, or to express maxtail ($x s+[x]$) in such terms. But, for instance, the maximum suffix of "zebra", namely "zebra" itself, cannot be expressed in terms of "z" and the maximum suffix of "ebra", namely "ra". Hence, we will look for an operation op such that

$$
\begin{equation*}
\operatorname{maxtail}(x s+[x])=o p(\text { maxtail } x s) x \tag{14.1}
\end{equation*}
$$

In other words, we seek an op so that maxtail = foldl op [].
To this end, let maxtail $x s=y s$ and maxtail $(x s+[x])=z s+[x]$. To satisfy (14.1) we have to show that $z s \in$ tails ys. Since both $y s$ and $z s$ are tails of $x s$ we have $z s \leq y s$ and $y s+[x] \leq z s+[x]$ by the definition of maxtail. But these inequalities imply that $z s$ is a prefix of $y s$; in symbols, $z s \sqsubseteq y s$. Suppose $z s \leq y s$ but $z s$ is not a prefix of $y s$. Let $u s$ be the longest common prefix of $z s$ and $y s$. Then $u s+[z] \sqsubseteq z s$ and $u s+[y] \sqsubseteq y s$, where $z<y$. In such a case $z s+[x]<y s+[x]$.

Thus, $z s$ is a prefix of $y s$. But both are tails of $x s$, so $z s$ is both a prefix and a suffix of $y s$. Consequently, op can be defined in two ways:

$$
\begin{align*}
& \text { op ys } x=\text { maximum }[z s+[x] \mid z s \leftarrow \text { tails ys }] \\
& \text { op ys } x=\text { maximum }[z s+[x] \mid z s \leftarrow \text { tails ys, zs } \sqsubseteq y s] \tag{14.2}
\end{align*}
$$

The first step has been accomplished, though neither definition provides a linear-time algorithm.

Borders

Definition (14.2) of op has more structure than its companion and so merits further investigation. Consider the function borders, defined by

$$
\begin{equation*}
\text { borders } x s=[y s \mid y s \leftarrow \text { tails } x s, y s \sqsubseteq x s] \tag{14.3}
\end{equation*}
$$

In "stringology" (Crochemore and Rytter, 2003), the borders of a list are those suffixes that are also prefixes. Two examples are

$$
\begin{aligned}
& \text { borders" } 7412741274 "=[" 7412741274 ", " 741274 ", " 74 ", " "] \\
& \text { borders "mammam" }=[" m a m m a m ", " m a m ", " \mathrm{~m} ", "]
\end{aligned}
$$

Rather than define border by (14.3) we can also define

```
borders [] = [[ ]]
borders xs = xs:borders (border xs)
```

where border $x s$ is the longest proper common prefix and suffix of $x s$. The second definition has the same form as that of tails:

```
tails [] = [[ ]]
tails xs = xs :tails (tail ys)
```

Restated in terms of borders, (14.2) now reads:

$$
\text { op ys } x=\text { maximum }[z s+[x] \mid z s \leftarrow \text { borders } y s]
$$

Suppose borders ys $=\left[z s_{0}, z s_{1}, \ldots, z s_{n}\right]$, so $z s_{0}=y s$ and $z s_{i+1}=$ border $z s_{i}$ for $0 \leq i<n$ and $z s_{n}=[]$. Let us see what information we can extract about the value of op ys x from these ingredients.

First, for $0 \leq i<j \leq n$ we have

$$
\begin{equation*}
z s_{i}+[x] \geq z s_{j}+[x] \equiv \operatorname{head}\left(z s_{i} \downarrow z s_{j}\right) \geq x \tag{14.4}
\end{equation*}
$$

where $u s \downarrow v s$ (pronounced "us after $v s$ ") is specified by $(x s+y s) \downarrow x s=y s$. The proof of (14.4) is:

```
    \(z s_{i}+[x] \geq z s_{j}+[x]\)
\(\equiv \quad\left\{\right.\) definition of lexicographic order since \(\left.z s_{j} \sqsubseteq z s_{i}\right\}\)
    \(\left(z s_{i} \downarrow z s_{j}\right)+[x] \geq[x]\)
\(\equiv \quad\left\{\right.\) since \(z s_{i} \downarrow z s_{j}\) is nonempty if \(\left.i<j\right\}\)
    head \(\left(z s_{i} \downarrow z s_{j}\right) \geq x\)
```

Second, in the case $y s=$ maxtail $x s$ for some $x s$, we have, for $0<i<j \leq n$, that

$$
\begin{equation*}
\text { head }\left(z s_{i-1} \downarrow z s_{i}\right) \leq \operatorname{head}\left(z s_{j-1} \downarrow z s_{j}\right) \tag{14.5}
\end{equation*}
$$

The proof is:

$$
\begin{aligned}
& \text { head }\left(z s_{i-1} \downarrow z s_{i}\right) \leq h e a d\left(z s_{j-1} \downarrow z s_{j}\right) \\
& =\quad\left\{\text { since } 0<k \text { implies head }\left(z s_{k-1} \downarrow z s_{k}\right)=\text { head }\left(y s \downarrow z s_{k}\right)\right\} \\
& \text { head }\left(y s \downarrow z s_{i}\right) \leq h e a d\left(y s \downarrow z s_{j}\right) \\
& \Leftarrow \quad \text { \{lexicographic ordering\} } \\
& z s_{j} \#\left(y s \downarrow z s_{i}\right) \leq z s_{j} \#\left(y s \downarrow z s_{j}\right) \\
& \equiv \quad\left\{\text { since } y s=z s_{k}+\left(y s \downarrow z s_{k}\right) \text { for any } k\right\} \\
& z s_{j} \#\left(y s \downarrow z s_{i}\right) \leq y s \\
& \Leftarrow \quad\{\text { since } y s \text { is a maximum suffix }\} \\
& z s_{j}+\left(y s \downarrow z s_{i}\right) \in \text { tails ys } \\
& \equiv \quad\left\{\text { since } y s=z s_{i}+\left(y s \downarrow z s_{i}\right) \text { and } z s_{j} \in \text { tails } z s_{i}\right\} \\
& \text { true }
\end{aligned}
$$

It follows from (14.4) and (14.5) that op ys $x=z s_{i}+[x]$, where i is the smallest i in the range $0 \leq i<n$ satisfying head $\left(z s_{i} \downarrow z s_{i+1}\right) \geq x$, if such an i exists. If it does not, then op ys $x=[x]$. A straightforward implementation of the search yields

```
op ys \(x \left\lvert\, \begin{array}{ll}\text { null ys } & =[x]\end{array}\right.\)
    head \((y s \downarrow z s) \geq x=y s+[x]\)
    otherwise \(\quad=\quad o p z s x\)
        where \(z s=\) border \(y s\)
```

To complete this definition of $o p$ we need to derive a definition of border.

Border

Recall that border ys is the longest proper common prefix and suffix of $y s$. The value border ys is defined only for nonempty ys. Heading for an inductive definition, it is clear that border $[x]=[]$. For the inductive case, border (ys $+[x]$), we need the following property of the prefix ordering:

$$
z s+[x] \sqsubseteq y s+[x] \equiv z s \sqsubseteq y s \wedge(z s \neq y s \Rightarrow x=h e a d(y s \downarrow z s))
$$

We now reason, for nonempty $y s$:

$$
\begin{aligned}
& \text { borders }(y s+[x]) \\
= & \{(14.3)\} \\
= & {[z s \mid z s \leftarrow \text { tails }(y s+[x]), z s \sqsubseteq y s+[x]] } \\
= & \{\text { since tails }(y s+[x])=\operatorname{map}(+[x])(\text { tails ys })+[[]]\} \\
= & {[z s+[x] \mid z s \leftarrow \text { tails ys, zs }+[x] \sqsubseteq y s+[x]]+[[]] } \\
& \{\text { above property }\} \\
& {[z s+[x] \mid z s \leftarrow \text { tails ys, zs } \sqsubseteq y s, z s \neq y s \Rightarrow x=\text { head }(y s \downarrow z s)]+} \\
= & {[[]] } \\
& \{(14.3)\} \\
& {[z s+[x] \mid z s \leftarrow \text { borders } y s, z s \neq y s \Rightarrow x=\text { head }(y s \downarrow z s)]+[[]] }
\end{aligned}
$$

Hence, since border $=$ head \cdot tail \cdot borders and head \cdot borders $=i d$, we obtain

$$
\begin{aligned}
& \text { border }(y s+[x]) \\
& \quad=\text { head }([z s+[x] \mid z s \leftarrow \text { tail }(\text { borders } y s), x=\text { head }(y s \downarrow z s)]+[[]])
\end{aligned}
$$

This list comprehension can be replaced by an explicit search:

$$
\begin{aligned}
\operatorname{border}(y s+[x]) \quad & \text { head }(y s \downarrow z s)=x=z s+[x] \\
& \text { otherwise }=\operatorname{border}(z s+[x]) \\
& \text { where } z s=\text { border ys }
\end{aligned}
$$

Under the assumption that $y s=$ maxtail $x s$ for some $x s$, we can appeal to (14.5) and optimize the search:

$$
\begin{array}{l|l}
\operatorname{border}(y s+[x]) & \text { head }(y s \downarrow z s)<x=\operatorname{border}(z s+[x]) \\
& \text { head }(y s \downarrow z s)=x=z s+[x] \\
\text { head }(y s \downarrow z s)>x=[] \\
& \text { where } z s=\text { border ys }
\end{array}
$$

The recursive definitions of maxtail and border have turned out to be similar, so logically the next step is to combine them into one function.

Cocktail

Consider the function cocktail (a combination of two ingredients!) defined by

$$
\begin{aligned}
\operatorname{cocktail} x s= & \text { if null } x s \text { then }([],[]) \text { else } \\
& (\text { border }(\text { maxtail } x s), \text { maxtail } x s \downarrow \text { border }(\text { maxtail } x s))
\end{aligned}
$$

In particular, maxtail $=$ uncurry $(\#) \cdot$ cocktail.
We now derive a recursive definition of cocktail, using the recursive definitions of maxtail and border. Setting cocktail $x s=(z s, w s)$, we compute cocktail (xs $\#[x])$ by a case analysis.
Case $w s=[]$. In this case $x s=y s=z s=[]$, so

$$
\operatorname{cocktail}(x s+[x])=([],[x])
$$

In the remaining cases, where $w s \neq[]$, we have $y s=$ maxtail $x s$, where $y s=z s+w s$, and $z s=$ border $y s$, so $w s=y s \downarrow z s$.
Case head ws $<x$. In this case the definition maxtail gives

$$
\operatorname{maxtail}(x s+[x])=\text { maxtail }(z s+[x])
$$

so cocktail $(x s+[x])=\operatorname{cocktail}(z s+[x])$.
Case head ws $=x$. In this case
maxtail $(x s+[x])=y s+[x]$
$\operatorname{border}(y s+[x])=z s+[x]$
Since $(y s+[x]) \downarrow(z s+[x])=$ tail ws $\mathbb{H}[x]$, we have
cocktail $(x s+[x])=(z s+[x]$, tail ws $+[x])$
Case head ws $>x$. In this case

$$
\begin{array}{ll}
\operatorname{maxtail}(x s+[x]) & =y s+[x] \\
\operatorname{border}(y s+[x]) & =[]
\end{array}
$$

so cocktail $(x s+[x])=([], y s+[x])$.

In summary, we have shown that

$$
\begin{aligned}
& \begin{array}{l}
\text { maxtail }=\text { uncurry }(+) \cdot \text { cocktail } \\
\text { cocktail }=\text { foldl op }([],[]) \\
\text { op }(z s, w s) x \\
\end{array} \left\lvert\, \begin{array}{l}
\text { null ws }=([],[x]) \\
w<x=\text { cocktail }(z s+[x]) \\
w=x=(z s+[x], \text { tail ws }+[x]) \\
w>x=([], z s+w s+[x]) \\
\\
\\
\\
\text { where } w=\text { head ws }
\end{array}\right.
\end{aligned}
$$

So far, so good, but the new version of maxtail still takes quadratic time. One reason is that $(+)$ is not a constant-time operation. But even assuming it were, the computation would still be quadratic. Consider an input of the form $1^{n} 2$, where 1^{n} denotes n repetitions of 1 . After n steps the computation of cocktail $1^{n} 2$ reduces to evaluation of op $\left(1^{n-1}, 1\right) 2$. Since $1<2$, the next step is to evaluate cocktail $1^{n-1} 2$. Hence, the total computation takes quadratic time.

The problem lies with the call cocktail ($z s+[x]$). If we could somehow restrict the length of $z s$ to be at most half the length of the current maximum tail $y s=z s+w s$, then computation of cocktail would take linear time (ignoring the cost of the H operations). Spending a linear amount of time to reduce a problem to one of at most half the size leads to a lineartime algorithm. Fortunately, as we will now show, the length of $z s$ can be so restricted.

Reducing the problem size

Let cocktail $x s=(z s, w s)$, so $y s=z s+w s$ is the maximum tail of $x s$ and $z s=$ border $y s$. Suppose $|z s| \geq|w s|$, where $|x s|$ denotes the length of $x s$. In this case $w s$ is a tail of $z s$. For example, if $y s=$ " 7412741274 ", then $z s=" 741274 "$ and $w s=" 1274 "$.

Define $z s^{\prime}$ by $z s=z s^{\prime}+w s$. Then $z s^{\prime}$ is both a prefix and a tail of $z s$ and hence also a prefix and tail of $y s$. In the example above, $z s^{\prime}=" 74 "$. The reasoning can be repeated if $\left|z s^{\prime}\right| \geq|w s|$. It follows that if we define q and r by

$$
(q, r)=(|z s| \operatorname{div}|w s|,|z s| \bmod |w s|)
$$

and set $z s^{\prime}=$ take $r z s$, then $z s^{\prime} \in$ borders ys and $z s=z s^{\prime} \# w s^{q}$, where $w s^{q}$ is the concatenation of q copies of $w s$. Furthermore, since $\left|z s^{\prime}\right|<|w s|$ we have that $z s^{\prime}$ is a tail of $w s$ (so $z s^{\prime}=\operatorname{drop}(|w s|-r) w s$, a fact we will exploit below) and each of $z s^{\prime}+w s^{p}$ for $1 \leq p<q$ are also borders of $z s$.

But $\left(z s^{\prime}+w s^{p}\right) \downarrow\left(z s^{\prime}+w s^{p-1}\right)=w s$, so in the case head ws $<x$ none of these borders need be inspected in the computation of op (zs,ws) x. It follows that we can replace op by

$$
\begin{aligned}
& \begin{array}{l|l}
o p(z s, w s) x & \text { null ws }=([],[x])
\end{array} \\
& w<x=\text { cocktail (take r zs }+[x] \text {) } \\
& w=x=(z s+[x] \text {, tail ws }+[x]) \\
& w>x=([], z s+w s+[x]) \\
& \text { where } w=\text { head ws } \\
& r=(\text { length } z s) \bmod (\text { length ws) }
\end{aligned}
$$

Moreover, $2 r<|z s+w s|$, since $r \leq|z s|$ and $r<|w s|$. Armed with this fact we can show that computation of cocktail xs involves a total of at most $2 n-m$ calls to $o p$, where $n=|x s|$ and $m=\mid$ maxtail $x s \mid$.

The proof is by induction. In the case $n=0$ we have $m=0$ and there are no calls to $o p$. When $n=1$ we have $m=1$ and there is one call to $o p$. This establishes the base cases.

For the inductive case, consider the computation of cocktail ($x s+[x]$), which first evaluates cocktailxs and then computes op (cocktailxs) x. Assume by induction that cocktail $x s$ involves $2 n-m$ calls of op and returns ($z s, w s$), where $|z s+w s|=m$ and head $w s=w$. If $w \geq x$ there are no more calls of $o p$, so the total count is $2 n-m+1$. But in this case the resulting maximum tail has length $m+1$, and as $2 n-m+1=2(n+1)-(m+1)$ the case is established. If $w<x$, then we have to add in the count for cocktail (take $r z s+[x]$). By induction, this is $2(r+1)-m^{\prime}$, where m^{\prime} is the length of the final maximum tail. The total, therefore, is $2 n-m+1+2(r+1)-m^{\prime}$, which is at most $2(n+1)-m^{\prime}$ since $2 r+1 \leq m$.

Hence, ignoring the cost of length and + operations, the computation of cocktail and maxtail take linear time. It remains to eliminate the length and + operations.

Final optimisations

We first eliminate the length calculations in the definition of $o p$, together with the first + in the final clause. This is achieved by a data refinement in which the state $(z s, w s)$ is replaced by a quadruple $(p, q, y s, w s)$ in which $y s=z s+w s$ and $p=$ length $z s$ and $q=$ length ws. The reason we can drop the argument $z s$ is that take $r z s=\operatorname{drop}(q-r)$ ws. We need, however, to retain the length of $z s$. Installing this change is easy and we omit details. It leads to the program of Figure 14.1, in which cocktail now names the refined version and thd selects the third component of a quadruple.

```
maxtail \(=\) thd \(\cdot\) cocktail
cocktail \(=\) foldl op \((0,0,[],[])\)
op ( \(p, q, y s, w s) x\)
    \(q=0 \quad=\quad(0,1,[x],[x])\)
    \(w<x \quad=\quad\) cocktail (drop \((q-r)\) ws \(+[x])\)
    \(w=x \quad=\quad(p+1, q, y s+[x]\), tail ws \(\mathbb{H}[x])\)
    otherwise \(=(0, p+q+1, y s+[x], y s+[x])\)
    where \(w=\) head ws
        \(r=p \bmod q\)
```

Fig. 14.1 The result of data refinement

Now we are left only with $(\mathbb{H}[x])$ operations. One way to ensure that $(+[x])$ takes constant time is to convert all the lists into queues and to use an efficient implementation of queues that guarantees insertion at the rear of the queue as well as that removal from the front takes constant time. But another method is suggested by the observation that each of the lists $y s$ and ws arising during the computation of cocktail $x s$ is a tail of $x s$. The operation $o p$ constructs these tails step by step, but a more efficient method is to construct them all at once. The way to do this is to convert what we have into an iterative algorithm.

More precisely, suppose we define step by

$$
\text { step }\left(p, q, y s^{\prime}, w s^{\prime}, x s\right)=\text { thd }\left(\text { foldl op }\left(p, q, y s^{\prime} \uparrow x s, w s^{\prime} \uparrow x s\right) x s\right)
$$

where $u s \uparrow v s$ (pronounced "us before $v s$ ") is what remains when the tail vs of $u s$ is removed from $u s$. Thus, us $=(u s \uparrow v s)+v s$. In particular:

$$
\begin{aligned}
\operatorname{maxtail}(x: x s) & =\text { thd }(\text { foldl op }(0,1,[x],[x]) x s) \\
& =\operatorname{thd}(\text { foldl op }(0,1,(x: x s) \uparrow x s,(x: x s) \uparrow x s) x s) \\
& =\text { step }(0,1, x: x s, x: x s, x s)
\end{aligned}
$$

Next we derive a recursion for step $\left(p, q, y s^{\prime}, w s^{\prime}, x s\right)$. Since $u s \uparrow[]=u s$ we obtain

$$
\operatorname{step}\left(p, q, y s^{\prime}, w s^{\prime},[]\right)=y s^{\prime}
$$

In the case that $x s$ is not empty (so neither of $y s^{\prime}$ or $w s^{\prime}$ is empty) we have

$$
\begin{aligned}
& \text { step }\left(p, q, y s^{\prime}, w s^{\prime}, x: x s\right) \\
& \quad=\text { thd }\left(\text { foldl op }\left(p, q, y s^{\prime} \uparrow(x: x s), w s^{\prime} \uparrow(x: x s)\right)(x: x s)\right) \\
& \left.=\text { thd (foldl op }\left(o p\left(p, q, y s^{\prime} \uparrow(x: x s), w s^{\prime} \uparrow(x: x s)\right) x\right) x s\right)
\end{aligned}
$$

Now we need a case analysis.

Case head $\left(w s^{\prime} \uparrow(x: x s)\right)<x$. In this case

$$
\begin{aligned}
& o p\left(p, q, y s^{\prime} \uparrow(x: x s), w s^{\prime} \uparrow(x: x s)\right) x= \\
& \quad \operatorname{cocktail}^{\prime}\left(\operatorname{drop}(q-r)\left(w s^{\prime} \uparrow(x: x s)\right)+[x]\right)
\end{aligned}
$$

where $r=p \bmod q$. Abbreviating $\operatorname{drop}(q-r)\left(w s^{\prime} \uparrow(x: x s)\right)$ to $v s$, we argue

```
    step ( }p,q,y\mp@subsup{s}{}{\prime},w\mp@subsup{s}{}{\prime},x:xs
= {definition and case assumption}
    thd (foldl op (cocktail' (vs # [x])) xs)
= {definition of cocktail'}
    thd (foldl op (foldl op (0, 0, [ ], [ ], []) (vs + [x])) xs)
= {since foldl f(foldl f e xs) ys = foldl fe(xs + ys)}
    thd (foldl op ([ ], [ ], [ ]) (vs + x : xs))
= {since drop (q-r) (ws'\uparrow (x:xs)) +x:xs=drop (q-r)ws'}
    thd (foldl op ([ ], [ ], [ ]) (drop (q-r)ws'))
= {definition of maxtail}
    maxtail (drop (q-r)ws')
```

Case head $\left(w s^{\prime} \uparrow(x: x s)\right)=x$. In this case

$$
\begin{aligned}
o p & \left(p, q, y s^{\prime} \uparrow(x: x s), w s^{\prime} \uparrow(x: x s)\right) x= \\
& \left(p+1, q, y s^{\prime} \uparrow(x: x s)+[x], \operatorname{tail}\left(w s^{\prime} \uparrow(x: x s)\right)+[x]\right) \\
= & \left(p+1, q, y s^{\prime} \uparrow x s, \operatorname{tail}\left(w s^{\prime} \uparrow x s\right)\right)
\end{aligned}
$$

Hence, step $\left(p, q, y s^{\prime}, w s^{\prime}, x: x s\right)=\left(p+1, q, y s^{\prime}\right.$, tail $\left.w s^{\prime}, x s\right)$.
Case head $\left(w s^{\prime} \uparrow(x: x s)\right)>x$. In this case

$$
\begin{aligned}
o p & \left(p, q, y s^{\prime} \uparrow(x: x s), w s^{\prime} \uparrow(x: x s)\right) x= \\
& \left(0, p+q+1, y s^{\prime} \uparrow(x: x s)+[x], y s^{\prime} \uparrow(x: x s)+[x]\right) \\
= & \left(0, p+q+1, y s^{\prime} \uparrow x s, y s^{\prime} \uparrow x s\right)
\end{aligned}
$$

Hence, step $\left(p, q, y s^{\prime}, w s^{\prime}, x: x s\right)=\left(0, p+q+1, y s^{\prime}, y s^{\prime}, x s\right)$.
Summarising all the above, we have arrived at our final program:

```
maxtail [] = []
maxtail (x:xs) = step (0,1,x:xs,x:xs,xs)
```

```
step \((p, q, y s, w s,[])=y s\)
step \((p, q, y s, w: w s, x: x s)\)
    \(\mid w<x=\) maxtail \((\operatorname{drop}(q-r)(w: w s))\)
    | \(w=x=\operatorname{step}(p+1, q, y s, w s, x s)\)
    \(w>x=\operatorname{step}(0, p+q+1, y s, y s, x s)\)
        where \(r=p \bmod q\)
```


Final remarks

It is very easy to turn the final version of maxtail into a simple while loop. Perhaps this is not surprising, because we set out with the intention of deriving an inductive definition, and the form we were led to, namely an instance of foldl, is essentially a while loop in functional clothing. Nevertheless, the final algorithm has a very imperative feel, and it would be interesting to see a derivation in a procedural style using loop invariants. Our derivation was quite long and involved some fairly subtle reasoning, basically because a good deal of underlying structure is inherent in the problem. But maybe there is a simpler solution to what must be the shortest specification in this book.

References

Crochemore, M. and Rytter, W. (2003). Jewels of Stringology. Hong Kong: World Scientific.

15

All the common prefixes

Introduction

Let llcp xs ys denote the length of the longest common prefix of two lists $x s$ and $y s$. For example llcp "common" "computing" $=3$. Now consider the function allcp, short for all the common prefixes, defined by

$$
\text { allcp } x s=\operatorname{map}(l l c p x s)(\text { tails } x s)
$$

where tails xs returns the nonempty tails of $x s$. For example:

xs	a	b	a	c	a	b	a	c	a	b
allcp $x s$	10	0	1	0	6	0	1	0	2	0

The first element of allcp xs is, of course, length xs. Executed directly, the definition of allcp gives a quadratic-time algorithm. But can it be done in linear time? Yes it can, and the aim of this pearl is to show how. The function allcp is an important component of the Boyer-Moore algorithm for string matching, a problem we will take up in the following pearl, so a linear-time solution is of practical as well as theoretical interest.

A key property

The key property of llcp on which the fast algorithm rests is the following one. Let $u s$, vs and $w s$ be any three lists. Then, with llcp us $v s=m$ and llcp vs ws $=n$, we have

$$
l l c p \text { us ws }= \begin{cases}\min m n & \text { if } m \neq n \tag{15.1}\\ m+l l c p(\text { drop } m u s)(\text { drop } m w s) & \text { if } m=n\end{cases}
$$

For the proof, observe that the first $\min m n$ elements are common to all three lists. If $m<n$, then the next element of $u s$ (if any) is different from the next element of $v s$, while the next element of $v s$ is the same as the next element of $w s$. Hence llcp us ws $=m$. The reasoning is dual if $m>n$. Finally, if $m=n$, then matching has to continue with drop m us and drop m ws.

To use (15.1), take i and j in the range $1 \leq i, j<n$, where $n=$ length $x s$, and let

$$
\begin{aligned}
p & =\text { llcp } x s(\operatorname{drop} i x s) \\
q & =\text { llcp } x s(\text { drop } j x s)
\end{aligned}
$$

In other words, the elements at positions i and j in allcp $x s$ are p and q respectively. Furthermore, suppose $j \leq p$. Then, by definition of $l l c p$, we have

$$
p=j+l l c p(\operatorname{drop} j x s)(\operatorname{drop}(i+j) x s)
$$

Setting $u s=x s, v s=d r o p j x s$ and $w s=d r o p k x s$, where $k=i+j,(15.1)$ now gives

$$
\text { llcp xs }(\operatorname{drop} k x s)= \begin{cases}\min (p-j) q & \text { if } q \neq p-j \\ q+\operatorname{llcp}(\operatorname{drop} q x s)(\operatorname{drop}(q+k) x s) & \text { if } q=p-j\end{cases}
$$

In other words, we can determine the k th entry in allcp $x s$ from the i th and j th entries with either no extra work (the first clause) or with maybe a little extra work (the second clause). Of course, work is avoided only if $1<i<k$ and $j=k-i<p$ because the second clause gives no computational shortcut if $j=p$. In particular, the cases $k=0$ and $k=1$ have to be calculated directly.

Here is how we use this information to compute the k th entry of allcp in the order $k=1,2, \ldots, n$. Suppose at each step we choose i by the condition that $i+p$ is as large as possible subject to $1 \leq i<k$. If $k<i+p$, then the shortcut above applies with $j=k-i$. If $k \geq i+p$, then there is no alternative but to calculate llcp xs (drop $k x s$) directly. We can start off with $(i, p)=(0,0)$ to ensure the case $k=1$ is computed directly, and thereafter update (i, p) whenever a better choice is found.

All that leads to the program of Figure 15.1, which takes the form of a simple loop. To check that i and p are updated correctly, observe in the first clause of step that $k \geq i+p \Rightarrow k+a \geq i+p$, and in the third clause that $k+b \geq k+q=k+r=i+p$.

We claim that this program takes linear time under the assumption that each snoc, !! and drop operation takes constant time. To prove the claim it suffices to show that the total number of equality comparisons in llcp is linear in n. Such comparisons result in True (a match) or False (a mismatch). Each call of step ends with at most one mismatch, so there are at most $n-1$ mismatches. To bound the number of matches, observe that in any step in which m matches occur, so $a=m$ or $b=m$, the value of $i+p$ is increased by m at least. Since $i+p \leq n$, the total number of matches is at most n.

```
allcp \(x s=f s t 4(\) until \((\) done \(n)(\) step \(x s)([n], 0,0,1))\)
    where \(n=\) length \(x s\)
done \(n(\) as \(, i, p, k)=k==n\)
step xs (as, \(i, p, k)\)
        \(k \geq i+p=(\) snoc as a, \(k, a, k+1)\)
        \(q \neq r=(\operatorname{snoc}\) as \((\min q r), i, p, k+1)\)
        \(q=r \quad=\quad(\) snoc as \(b, k, b, k+1)\)
        where \(q=\) as !! \((k-i)\)
            \(r=p-(k-i)\)
            \(a=\) llcp xs (drop \(k x s)\)
            \(b=q+\operatorname{llcp}(\operatorname{drop} q x s)(\operatorname{drop}(q+k) x s)\)
fst4 \((a, b, c, d)=a\)
snoc xs \(x=x s+[x]\)
llcp \(x s[] \quad=0\)
llcp [] ys \(=0\)
\(\operatorname{llcp}(x: x s)(y: y s)=\) if \(x==y\) then \(1+l l c p x s\) ys else 0
```

Fig. 15.1 The initial program

Data refinement

However, snoc, (!!), and drop do not take constant time. The remainder of the development is just data refinement to ensure that they can be implemented by constant-time operations.

Let us deal with drop first. The idea is to bring in the library Data.Array of Haskell arrays and replace llcp by another version that uses index operations on a (global) array $x a=\operatorname{listArray}(0, n-1) x s$, where $n=$ length $x s$:

$$
\begin{aligned}
& l l c p^{\prime} j k
\end{aligned} \left\lvert\, \begin{aligned}
& j==n \vee k==n=0 \\
& x a!j==x a!k=1+l l c p^{\prime}(j+1)(k+1) \\
& \text { otherwise }=0
\end{aligned}\right.
$$

That means we can replace the definitions of a and b in step by

$$
\begin{aligned}
& a=l l c p^{\prime} 0 k \\
& b=q+l l c p^{\prime} q(q+k)
\end{aligned}
$$

It remains to deal with the snoc and (!!) operations. The obvious step is again to use an array. However, adding an element to the end of an array is only a constant-time operation if we embed the whole computation in a suitable monad, and that is something we choose to avoid. Another option is to use Haskell's Data.Sequence library. This library provides a constanttime snoc, but only a logarithmic-time indexing operation. Good enough in

```
allcp xs \(\quad=\quad\) extract \((\) until done step \((\) as empty \(, 0,1))\) )
    where
    extract (as, qs, \(h, k)=\) elems as
    done \((\) as, \(q s, h, k)=(k==n)\)
    \(n \quad=\) length \(x s\)
    as \(\quad=\) insert empty \(n\)
    xa \(\quad=\quad\) listArray \((0, n-1) x s\)
    step \((a s, q s, h, k) \quad \mid \quad k \geq h=\left(\right.\) insert as \(a\), insert as \(\left.{ }^{\prime} a, k+a, k+1\right)\)
    \(q \neq r=\left(\right.\) insert as \(m\), insert \(\left.q s^{\prime} m, h, k+1\right)\)
    \(q==r=\left(\right.\) insert as \(b\), insert \(\left.a s^{\prime} b, k+b, k+1\right)\)
    where \(a s^{\prime} \quad=\) snd (remove as)
        \(\left(q, q s^{\prime}\right)=\) remove \(q s\)
        \(r=h-k\)
        \(m \quad=\min q r\)
        \(a \quad=\quad l l c p^{\prime} 0 k\)
        \(b=q+l l c p^{\prime} q(q+k)\)
    llcp \({ }^{\prime} j k \quad \mid \quad j==n \vee k==n=0\)
    \(x a!j==x a!k=1+\operatorname{llcp}(j+1)(k+1)\)
    otherwise \(=0\)
```

Fig. 15.2 The final program
practice, but we promised a linear-time solution, so we have to work a little harder.

Our solution is to use a queue, in fact two of them. Chris Okasaki's implementation of queues (Okasaki, 1995) provides a type Queue a with the following four operations:

```
insert :: Queue \(a \rightarrow a \rightarrow\) Queue \(a\)
remove :: Queue \(a \rightarrow(a\), Queue \(a)\)
empty :: Queue a
elems :: Queue \(a \rightarrow[a]\)
```

The function insert inserts a new element at the rear of the queue, remove returns the first element and the remaining elements of a nonempty queue, empty gives an empty queue, and elems returns the list of elements in a queue. The first three operations take constant time, while elems takes time proportional to the length of the queue.

We replace the component as in the argument of step with a queue, also called $a s$, and add in a second queue $q s$, representing the suffix $d r o p(k-i)$ as. Then $q=a s!!(k-i)$ is the first element of $q s$. There is no need to maintain argument i, so we can remove it and replace p by $h=i+p$. Installing these changes is straightforward and leads to the final program of Figure 15.2.

Final remarks

The problem of computing allcp is identified as the fundamental preprocessing step of string matching by Gusfield (1997), where it is called "the Z algorithm". The same problem is dealt with by Crochemore and Rytter, under the name "table of prefixes". Our treatment follows Gusfield quite closely, except for the identification of (15.1) as the key property of llcp that enables everything to work, and the use of queues to make the snoc and !! operations efficient.

References

Crochemore, M. and Rytter, W. (2003). Jewels of Stringology. Hong Kong: World Scientific.
Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge, UK: Cambridge University Press.
Okasaki, C. (1995). Simple and efficient purely functional queues and deques. Journal of Functional Programming, 5 (4), 583-92.

16

The Boyer-Moore algorithm

Introduction

The problem of string matching consists of finding all occurrences of one nonempty string, called the pattern, in another string, called the text. Here is the specification:

$$
\begin{array}{ll}
\text { matches } & :: E q a \Rightarrow[a] \rightarrow[a] \rightarrow[\text { Int }] \\
\text { matches ws } & =\text { map length } \cdot \text { filter }(\text { endswith ws }) \cdot \text { inits }
\end{array}
$$

The function inits returns a list of the prefixes of the text in order of increasing length. The expression endswith ws xs tests whether the pattern $w s$ is a suffix of $x s$. The value matches ws xs is a list of integers p such that $w s$ is a suffix of take $p x s$. For example:

$$
\text { matches "abcab" "ababcabcab" }=[7,10]
$$

In other words, matches ws xs returns a list integers p such that $w s$ appears in $x s$ ending at position p (counting positions from 1).

The function matches is polymorphic, so any algorithm for the problem has to rely only on an equality test $(==):: a \rightarrow a \rightarrow$ Bool for information about the elements of the two lists. Polymorphic string matching rules out any algorithm that depends upon a being finite. Assuming it takes constant time to carry out an equality test, the running time of matches ws xs is $\Theta(m n)$ steps in the worst case, where $m=$ length $w s$ and $n=$ length $x s$. Our aim in this pearl is to derive the famous Boyer-Moore (BM) algorithm for string matching, which reduces the time to $\Theta(m+n)$ steps. In the following pearl we will derive the equally famous Knuth-Morris-Pratt (KMP) algorithm for the same problem with the same complexity. And the trick is simply to apply appropriate efficiency-improving laws dictated by the form of the expression under manipulation.

The scan lemma

For string matching, indeed for any problem involving the function inits, the most important law is known as the scan lemma:

$$
\operatorname{map}(\text { foldl op e }) \cdot \text { inits }=\text { scanl op e }
$$

The expression on the left is evaluated on a list of length n with $\Theta\left(n^{2}\right)$ evaluations of $o p$, while the equivalent expression in terms of the standard Haskell function scanl requires only $\Theta(n)$ evaluations.

Although there is a map in the definition of matches, there is also a filter, so the first step in transforming matches is to rewrite the specification using another law:

$$
\begin{equation*}
\operatorname{map} f \cdot \text { filter } p=\operatorname{map} f s t \cdot \text { filter snd } \cdot \operatorname{map}(\operatorname{fork}(f, p)) \tag{16.1}
\end{equation*}
$$

where fork $(f, p) x=(f x, p x)$. The law is used simply to bring a map next to inits in preparation for applying the scan lemma. Use of (16.1) leads to

matches ws

$=$ map fst \cdot filter snd $\cdot \operatorname{map}($ fork $($ length, endswith ws $)) \cdot$ inits
The next question to ask is: can fork (length, endswith ws) be cast as an instance of foldl? Certainly, length $=$ foldl count 0 where count $n x=n+1$. Suppose for the moment that we can also find e and $o p$, both of which will depend on $w s$, so that

$$
\begin{equation*}
\text { endswith ws }=\text { foldl op e } \tag{16.2}
\end{equation*}
$$

Then we are in a position to apply another standard law: the tupling law for foldl. This law states that

$$
\text { fork }(\text { foldl op } 1 \text { e } 1, \text { foldl op } 2 e 2)=\text { foldl op }(e 1, e 2)
$$

where $o p(a, b) x=(o p 1 a x, o p 2 b x)$. Use of the tupling law results in

$$
\begin{aligned}
\text { fork }(\text { length, endswith ws }) & =\text { foldl step }(0, e) \\
\text { step }(n, x) y & =(n+1, \text { op } x y)
\end{aligned}
$$

Finally, we can apply the scan lemma to arrive at

$$
\text { matches ws }=\text { map fst } \cdot \text { filter snd } \cdot \text { scanl step }(0, e)
$$

If $o p$ takes constant time, or at least amortized constant time, then so does step, and the result is a linear-time program. That, in a nutshell, is the genesis of all efficient polymorphic string-matching algorithms.

The problem is that there is no op and e to satisfy (16.2). The function endswith ws returns a single Boolean value and this is insufficient information
to express it as an instance of foldl. The next best thing is to express endswith ws as a composition

$$
\begin{equation*}
\text { endswith } w s=p \cdot \text { foldl op } e \tag{16.3}
\end{equation*}
$$

The form of (16.3) is dictated solely by the desire to apply the scan lemma. Instead of (16.1) we can use a slight generalisation:

$$
\begin{equation*}
\operatorname{map} f \cdot \operatorname{filter}(p \cdot g)=\operatorname{map} f s t \cdot \operatorname{filter}(p \cdot \operatorname{snd}) \cdot \operatorname{map}(\operatorname{fork}(f, g)) \tag{16.4}
\end{equation*}
$$

Then we obtain

$$
\text { matches ws }=\text { map fst } \cdot \text { filter }(p \cdot \text { snd }) \cdot \text { scanl step }(0, e)
$$

Provided p and op take amortized constant time, matches will still take linear time.

What remains is to find $p, o p$ and e to satisfy (16.3). But we have not yet defined endswith formally. Here are two reasonable definitions:

$$
\begin{aligned}
& \text { endswith ws xs }=\text { reverse ws } \sqsubseteq \text { reverse xs } \\
& \text { endswith ws xs }=\text { ws tails } x s
\end{aligned}
$$

In the first definition, $u s \sqsubseteq v s$ if $u s$ is a prefix of $v s$. It is clear that $w s$ is a suffix of $x s$ if and only if the reverse of $w s$ is a prefix of the reverse of $x s$. The prefix relation is easier to implement than the suffix relation:

$$
\begin{array}{ll}
{[] \sqsubseteq v s} & =\text { True } \\
(u: u s) \sqsubseteq[] & =\text { False } \\
(u: u s) \sqsubseteq(v: v s) & =(u==v \wedge u s \sqsubseteq v s)
\end{array}
$$

Although both definitions of endswith define the same function, they have different forms. And, since it is form rather than function that dictates the course of development, we are at a crossroads. As we will see, taking the first path leads to the BM algorithm, while taking the second leads to the KMP algorithm. In the rest of this pearl we will take the first path. In the following pearl we will explore the second path.

The Boyer-Moore algorithm

The first definition of endswith can be restated as a composition:

$$
\text { endswith ws }=(\text { reverse ws } \sqsubseteq) \cdot \text { reverse }
$$

Consequently, appeal to (16.4) leads to
matches ws
$=\operatorname{map} f s t \cdot$ filter $((s w \sqsubseteq) \cdot s n d) \cdot \operatorname{map}($ fork $($ length, reverse $)) \cdot$ inits where $s w=$ reverse ws

But reverse $=$ foldl $($ flip $(:))[$, so we can again make use of the tupling law of foldl, followed by the scan lemma, to obtain

$$
\begin{aligned}
\text { matches ws }= & \operatorname{map} f s t \cdot f i l t e r ~ \\
& \text { where sw }((s w) \cdot \text { snd }) \cdot \text { scanerse ws step }(0,[]) \\
\text { step }(n, s x) x= & (n+1, x: s x)
\end{aligned}
$$

This is the basic form of the BM algorithm. Application of scanl generates successive "windows" of the text together with their position. Each window contains the reversal of some initial segment of the text, with successive windows differing in just one position, so there is a "shift" of length one at each stage. The terms "window" and "shift" are from Lecroq (2003), which contains a very readable introduction to string matching. Each of these windows is processed by matching against the pattern ws from right to left.

Shifting

As it stands, the BM algorithm still takes $\Omega(m n)$ steps in the worst case because the test ($s w \sqsubseteq$) can take $\Omega(m)$ steps (in all that follows we fix $m=$ length ws and assume $m \neq 0$). For example, one worst case arises when the pattern is a list of m repetitions of a single value and the text is a list of n repetitions of the same value. The way to make the worst case better is to see if we can shift over some windows because they cannot be candidates for matching. Such shifts depend on how much of a match there is at the current window.

Let llcp sw sx denote the length of the longest common prefix of $s w$ and $s x$. We encountered this function in the previous pearl. Clearly, $s w \sqsubseteq s x$ if and only if $m=l l c p s w s x$. Given $i=l l c p s w s x$ for the current window ($n, s x$), can we put a lower bound on the position $n+k$ of the next window at which there can be a match? Certainly, we must have $0<k \leq m$ or we might miss a match. Suppose the next window has the form $(n+k, y s+s x)$, where $k=$ length $y s$. If there is a match at this window, so $s w \sqsubseteq y s+s x$, then take $k s w=y s$ and $d r o p ~ k s w \sqsubseteq s x$.

Using this information and setting $i=l l c p s w s x$, we can now show that

$$
\begin{equation*}
l l c p \text { sw }(\text { drop } k s w)=\min i(m-k) \tag{16.5}
\end{equation*}
$$

First, assume $i<m-k$. Then

$$
\begin{aligned}
& \text { take } i(\text { drop } k s w) \\
= & \quad\{\text { since drop } k s w \sqsubseteq s x \text { implies drop } k \text { sw }=\text { take }(m-k) s x\} \\
& \text { take } i(\text { take }(m-k) s x) \\
=\quad & \{\text { since } i \leq m-k\} \\
& \text { take } i \text { sx } \\
=\quad & \quad\{\text { since } i=l l c p \text { sw } s x\} \\
& \text { take } i \text { sw }
\end{aligned}
$$

Similar reasoning gives

$$
\text { take }(i+1)(\text { drop } k s w) \neq \text { take }(i+1) \text { sw }
$$

In other words, if $i<m-k$, then llcp sw $($ drop $k s w)=i$. In the other case, $i \geq m-k$, we reason:
drop $k s w$
$=\quad\{$ since length $($ drop $k s w)=m-k \leq i\}$
take $i(d r o p k s w)$
$\sqsubseteq \quad\{$ since $d r o p k s w \sqsubseteq s x\}$
take i sx
$=\quad\{$ since $i=l l c p s w s x\}$
take isw
$\sqsubseteq \quad\{$ definition of $\sqsubseteq\}$
But drop $k s w \sqsubseteq s w \equiv l l c p s w(d r o p k s w)=m-k$, establishing (16.5).
Now, given any i in the range $0 \leq i \leq m$, let k be the smallest positive value in the range $1 \leq k \leq m$ satisfying (16.5). Provided $m \neq 0$, the value $k=m$ satisfies (16.5) if nothing smaller does. It follows that we can skip the next $k-1$ windows without missing a match. The value k is specified as $k=$ shift sw i, where

$$
\text { shift sw } i=\text { head }[k \mid k \leftarrow[1 . . m] \text {, llcp sw }(\text { drop } k \text { sw })==\min i(m-k)]
$$

This is not a very good way to compute shift sw i, as the computation can take $\Omega\left(m^{2}\right)$ steps in the worst case. In the following section we will show how to compute map (shift sw) [0 .. m] in $O(m)$ steps.

In summary, after a match of length i at the current window $(n, s x)$, the next shift sw i windows can safely be ignored without missing any additional
matches. That means we can redefine matches to read

```
matches ws \(\quad=\quad\) test \(\cdot\) scanl step \((0,[])\)
where
test []\(=\) [ ]
test \(((n, s x): n x s)=\) if \(i==m\)
    then \(n\) : test (drop \((k-1) n x s)\)
        else test (drop \((k-1) n x s)\)
        where \(i=\) llcp sw \(s x\)
        \(k=\) shift swi
\((s w, m)=(\) reverse \(w s\), length \(w s)\)
```

Note that two versions of matches are equivalent only if $m \neq 0$.

A final improvement

There is one final improvement we can make. As before, let $i=l l c p s w s x$ and $k=$ shift swi. Furthermore, suppose $m-k \leq i$, so llcp sw $(d r o p k s w)=m-k$. That means that $d r o p k s w$ is a prefix of $s w$. Since $m-k \leq i$, it follows that llcp (drop k sw) $s x=m-k$.

Now, the next window to be tried is $(n+k, y s+s x)$, where length $y s=k$. We reason:

$$
\begin{aligned}
& l l c p s w(y s+s x) \\
= & \left\{\text { setting } i^{\prime}=l l c p s w y s, \text { so } i^{\prime} \leq k\right\} \\
& \text { if } i^{\prime}=k \text { then } k+l l c p(d r o p k s w) s x \text { else } i^{\prime} \\
= & \{\text { above, since } l l c p(d r o p k s w) s x=m-k \text { if } m-k \leq i\} \\
& \text { if } i^{\prime}=k \text { then } m \text { else } i^{\prime}
\end{aligned}
$$

Hence, provided $m-k \leq i$, the length of the longest common prefix of $s w$ and the text at the next window can be computed by comparing only the first k elements. If $m-k>i$, then there is no saving and the next window may require up to m comparisons.

The improvement can be implemented by equipping the function test with an additional parameter j, indicating how much of the next candidate window to check. Installing this final refinement, we obtain the program of Figure 16.1, which is complete except for the definitions of llcp and shift. This program is Galil's (1979) version of the BM algorithm. Ignoring the time to compute shift, the running time of matches is $O(m+n)$ steps for a text of length n. For a proof of this claim, which is non-trivial, see Theorem 3.2.3 of Gusfield (1997).

```
matches ws \(\quad=\) test \(m \cdot\) scanl step \((0,[])\)
where
```


Fig. 16.1 The final program

Computing shifts

The definition of shift sw given in the previous section leads to a cubic-time algorithm for computing shifts sw = map (shift sw) [0 .. m]: computation of shift sw i can take quadratic time and there are $m+1$ values of i. If we can compute shifts $s w$ in linear time and store the result in an array a, then replacing shift sw i by $a!i$ gives a linear-time algorithm for matches. The aim of this section is to show how to compute shifts $s w$ in linear time. Arguably, this is the most subtle aspect of the BM algorithm.

First of all, set $f(k)=l l c p s w(d r o p k s w)$ for brevity. Note that $f(m)=0$ and $f(k) \leq m-k$. We first reason, for any i in the range $0 \leq i \leq m$:

Next we bring in the Haskell library Data.Array and, in particular, the function accumArray. This function first made an appearance in Pearl 1. The following fact about accumArray is immediate from its definition:

$$
\text { (accumArray op e }(0, m) v k s)!i=\text { foldl op e }[k \mid(v, k) \leftarrow v k s, v==i]
$$

for all i in the range $0 \leq i \leq m$, provided map fst $v k s \subseteq[0 . . m]$. The proviso is necessary because accumArray is undefined if any index is out of the given range. In particular, with

$$
\begin{aligned}
a & =\operatorname{accumArray} \min m(0, m) v k s \\
v k s & =[(f(k), k) \mid k \leftarrow[1 \ldots m]]
\end{aligned}
$$

we have

$$
a!i=\operatorname{minimum}([k \mid k \leftarrow[1 \ldots m], f(k)==i]+[m])
$$

for $0 \leq i \leq m$. That deals with the first term in the definition of shift sw i. We now have to factor in the second term. The idea is to replace a by

$$
a=\text { accumArray } \min m(0, m)\left(v k s+v k s^{\prime}\right)
$$

where the list $v k s^{\prime}$ is any convenient permutation of

$$
[(i, \text { minimum }[k \mid k \leftarrow[m-i+1 . . m], f(k)+k==m]) \mid i \leftarrow[1 . . m]]
$$

Then we have shift sw $i=a!i$.
We claim that the following definition of $v k s^{\prime}$, which computes the list above in reverse order, does the job:

$$
\begin{array}{ll}
v k s^{\prime} & =\operatorname{zip}[m, m-1 \ldots 1](\text { foldr op }[] v k s) \\
v k s & =[(f(k), k) \mid k \leftarrow[1 . . m]] \\
o p(v, k) k s & =\text { if } v+k==m \text { then } k: k s \text { else head } k s: k s
\end{array}
$$

Note that op $(f(m), m)[]=[m]$ because $f(m)=0$ and so $f(m)+m=m$. For example, with $x s=$ foldr op [] vks we have

f	2	4	0	5	2	3	0	2	0
k	1	2	3	4	5	6	7	8	9
$x s$	4	4	4	4	6	6	9	9	9

The i th element of $x s$ (counting from 0) is the smallest $k>i$ such that $f(k)+k=m$. In $v k s^{\prime}$ the index $m-i$ is paired with $x s!!i$; equivalently, i is paired with $x s!!(m-i)$, which is just what is required.

As the final step, recall the function allcp from the previous pearl:

$$
\text { allcp } x s=[\text { llcp } x s(\text { drop } k x s) \mid k \leftarrow[0 . . \text { length } x s-1]]
$$

There we showed how to compute allcp in linear time. For present purposes we need a variant of allcp $x s$ in which the first element is dropped and an additional element llcp $x s$ [] is added at the end. This additional value is zero, so we define

$$
\text { allcp }^{\prime} x s=\text { tail (allcp xs) }+[0]
$$

Finally, we can reason:

$$
\left.\begin{array}{rl}
& {[(f(k), k) \mid k \leftarrow[1 . . m]]} \\
= & \{\text { definition of } f\} \\
= & {[(l l c p \text { sw }(\text { drop } k s w), k) \mid k \leftarrow[1 . . m]]} \\
= & \{\text { definition of zip }\} \\
& \text { zip }[\text { llcp sw }(\text { drop } k \text { sw }) \mid k \leftarrow[1 . . m]][1 . . m] \\
= & \{\text { definition of allcp }\}
\end{array}\right\}
$$

Putting these pieces together, we obtain

a	$=$ accumArray min $m(0, m)\left(v k s+v k s^{\prime}\right)$
where	$=$ length sw
m	$=$ zip $\left(\right.$ allcp $^{\prime}$ sw $)[1 . . m]$
$v k s$	$=$ zip $[m, m-1 . .1]($ foldr op []$v k s)$
$v k s^{\prime}$	$=$ if $v+k==m$ then $k: k s$ else head $k s: k s$
$o p(v, k) k s$	$=1$

Replacing shift sw i by $a!i$ in Figure 16.1 gives a linear-time algorithm for matches.

Final remarks

The BM algorithm was first described in Boyer and Moore (1977); see also Cormen et al. (2001), Crochemore and Rytter (2003) and Gusfield (1997) for further exploration and discussion of the method. Most often the algorithm is explained in terms of two rules, the bad character rule and the good suffix rule, neither of which appear explicitly above. Our derivation of the BM algorithm, at least in its basic form, was a simple exercise in symbolic manipulation, applying appropriate efficiency-improving laws dictated solely by the form of the expressions being considered. Chief among these laws were the scan lemma and the tupling law of foldl. Moreover, the key idea of the BM algorithm, namely the idea of matching the pattern to the text in right-to-left order, emerged simply as the consequence of one very reasonable way to define endswith. Subsequent optimisations depended more on the content of the expressions than their form, but this is to be expected in any algorithm containing subtle ideas.

References

Boyer, R. S. and Moore, J. S. (1977). A fast string searching algorithm. Communications of the ACM 20, 762-72.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001). Introduction to Algorithms, second edition. Cambridge, MA: The MIT Press.
Crochemore, M. and Rytter, W. (2003). Jewels of Stringology. Hong Kong: World Scientific.
Galil, Z. (1979). On improving the worst cast of the Boyer-Moore string matching algorithm. Communications of the ACM 22 (9), 505-8.
Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge, UK: Cambridge University Press.
Lecroq, T. (2003). Experimental results on string matching algorithms. Software Practice and Experience 25 (7), 727-65.

17

The Knuth-Morris-Pratt algorithm

Introduction

In this pearl we continue with the problem of string matching and take the other fork in the road, the one that begins with the following definition of endswith:

$$
\text { endswith ws } x s=w s \in \text { tails } x s
$$

The path turns out to lead to the KMP algorithm. Remember, the goal is to find functions p and $o p$, and value e, so that endswith $w s=p \cdot$ foldl op e. Then we have

$$
\begin{array}{ll}
\text { matches } & :: \text { Eq } a \Rightarrow[a] \rightarrow[a] \rightarrow[\text { Int }] \\
\text { matches ws } & =\text { map fst } \cdot \text { filter }(p \cdot \text { snd }) \cdot \text { scanl step }(0, e) \\
\text { step }(n, x) y & =(n+1, \text { op } x y)
\end{array}
$$

The value of matches ws $x s$ is a list of integers n for which the pattern ws appears in the text $x s$ ending at position n. Provided p and $o p$ take constant time, or at least amortized constant time, the computation of matches takes $\Theta(m+n)$ steps on a pattern of length m and a text of length n.

First steps

One way of writing endswith ws as a composition is

$$
\text { endswith ws }=\text { not } \cdot \text { null } \cdot \text { filter }(=\text { ws }) \cdot \text { tails }
$$

But filter $(=w s) \cdot$ tails cannot be defined as an instance of foldl because it returns either an empty list or $[w s]$, and this is insufficient information to define the function inductively. More promising is filter (\sqsubseteq ws) • tails. Applied to $x s$, this function returns in decreasing order of length all tails of $x s$ that are prefixes of $w s$. The first element of this list is $w s$ if and only if endswith ws x. Thus:

$$
\text { endswith } w s=(=w s) \cdot \text { head } \cdot \text { filter }(\sqsubseteq w s) \cdot \text { tails }
$$

Of course, the first function $(=w s)$ is no longer a constant-time test. That problem is solved by generalising filter ($\sqsubseteq w s) \cdot$ tails to a function split, defined by

$$
\text { split ws } x s=\text { head }[(u s, w s \downarrow u s) \mid u s \leftarrow \text { tails } x s, u s \sqsubseteq w s]
$$

The operation \downarrow is defined by $(u s+v s) \downarrow u s=v s$. Hence, split ws xs splits $w s$ into two lists $u s$ and $v s$ so that $u s+v s=w s$. The value of $u s$ is the longest suffix of $x s$ that is a prefix of $w s$. For example:

$$
\text { split "endnote" "append" }=(\text { "end", "note") }
$$

Now we have endswith $w s=n u l l \cdot s n d \cdot$ split $w s$. It remains to find op and e so that split $w s=$ foldl $o p e$. Equivalently, we want e and $o p$ to satisfy

```
split ws [] \(=e\)
split ws \((x s+[x])=o p(\) split ws \(x s) x\)
```

We have split $w s[]=([], w s)$, which gives us e, so it remains to discover $o p$.
The crucial observation is that

$$
\text { split ws } x s=(u s, v s) \Rightarrow \text { split } w s(x s+[x])=\text { split } w s(u s+[x])
$$

In words, the longest suffix of $x s \mathbb{H}[x]$ that is a prefix of $w s$ is a suffix of $u s+[x]$. It cannot be a longer suffix, for that would mean there is a longer suffix of $x s$ than $u s$ that is a prefix of $w s$, contradicting the definition of $u s$ as the longest such suffix.

To discover op we first express split recursively:
split ws $x s=$ if $x s \sqsubseteq w s$ then $(x s, w s \downarrow x s)$ else split $w s(t a i l x s)$
Now, setting split ws $x s=(u s, v s)$, so $w s=u s+v s$, we reason:

```
        split ws (xs \(+[x])\)
\(=\quad\{\) observation above \(\}\)
        split ws (us \(+[x]\) )
\(=\quad\{\) recursive definition of split \(\}\)
    if \(u s+[x] \sqsubseteq w s\) then \((u s+[x]\), ws \(\downarrow(u s+[x]))\)
    else split ws (tail (us \(+[x])\) )
\(=\quad\{\) since \(w s=u s+v s\) and definitions of \(\sqsubseteq\) and \(\downarrow\}\)
    if \([x] \sqsubseteq v s\) then (us \(+[x]\), tail vs)
    else split ws (tail (us \(+[x])\) )
```

$$
\begin{aligned}
&=\{\text { case analysis on } u s\} \\
& \text { if }[x] \sqsubseteq \text { vs then }(u s+[x], \text { tail vs) } \\
& \text { else if null us then }([], w s) \\
&\text { else split ws (tail us }+[x])
\end{aligned}
$$

This calculation gives us our definition of op:

$$
\begin{array}{l|ll}
o p(u s, v s) x & {[x] \sqsubseteq v s} & =(u s+[x], \text { tail vs }) \\
& \text { null us } & =([], \text { ws }) \\
\text { otherwise } & =o p(\text { split ws }(\text { tail us })) x
\end{array}
$$

Summarising where we are at this point:

$$
\begin{aligned}
\text { matches ws }= & \text { map fst } \cdot \text { filter }(\text { null } \cdot \text { snd } \cdot \text { snd }) \cdot \\
& \text { scanl step }(0,([], \text { ws })) \\
\text { step }(n,(u s, v s)) x= & (n+1, \text { op }(u s, v s) x)
\end{aligned}
$$

This is the basic form of the KMP algorithm: each step maintains a current split ($u s, v s$) of the pattern $w s$ in which $u s$ is the longest prefix of ws matching some suffix of the current portion of the text. Positions for which $v s=[]$ are those where the pattern matches exactly and are recorded.

The problem with op is that it is inefficient: the third clause requires computation of split ws (tail us), which in turn may involve computing and possibly recomputing split ws zs for an arbitrary substring zs of ws. Clearly, $o p$ does too much work and we need something better.

Data refinement

One way to improve efficiency is to seek a change of representation of the first argument to $o p$, namely the current split (us, vs) of the pattern ws. Specifically, suppose $a b s$ and rep are functions with types

$$
\begin{array}{lll}
a b s & :: & \operatorname{Rep}([a],[a]) \rightarrow([a],[a]) \\
\text { rep } & :: & ([a],[a]) \rightarrow \operatorname{Rep}([a],[a])
\end{array}
$$

for some data type Rep. The function rep is the representation function, while $a b s$ is the abstraction function. The terminology is standard in data refinement. We also want $a b s \cdot r e p=i d$, so $a b s$ is left-inverse to rep. This condition states that the abstract value can be recovered from any representation of it. The other direction rep $\cdot a b s=i d$ will only hold if the change of representation is a bijection, which is not normally the case in data refinement.

If we can find the necessary ingredients to ensure

$$
\begin{equation*}
\text { foldl op }([], w s)=a b s \cdot \text { foldl } o p^{\prime}(\operatorname{rep}([], w s)) \tag{17.1}
\end{equation*}
$$

as well as ensure that $a b s$ and $o p^{\prime}$ take constant time, then we can redefine matches to read

$$
\begin{aligned}
\text { matches } w s= & \text { map fst } \cdot \text { filter }(\text { null } \cdot \text { snd } \cdot \text { abs } \cdot \text { snd }) \cdot \\
& \text { } s \text { canl step }(0, \text { rep }([], \text { ws })) \\
\text { step }(n, r) x= & \left(n+1, o p^{\prime} r x\right)
\end{aligned}
$$

To find $a b s, o p^{\prime}$ and rep satisfying (17.1) we appeal to the fusion law of foldl.This laws states the $f \cdot$ foldl $g a=$ foldl $h b$ provided three conditions are met: (i) f is a strict function; (ii) $f a=b$; and (iii) $f(g y x)=h(f y) x$ for all x and y. The first condition is not needed if we want to assert that the fusion law holds only for all finite lists. The twist here is that we want to apply the law in the anti-fusion or fission direction, splitting a fold into two parts.

The second fusion condition is immediate: abs (rep ([],ws)) = ([], ws). And there is an obvious definition of $o p^{\prime}$ that satisfies the third fusion condition, namely

$$
\begin{equation*}
o p^{\prime} r=r e p \cdot o p(a b s r) \tag{17.2}
\end{equation*}
$$

Then we have

$$
a b s\left(o p^{\prime} r x\right)=a b s(r e p(o p(a b s r) x))=o p(a b s r) x
$$

Installing the definition of $o p$ in (17.2) we obtain

$$
\begin{array}{l|ll}
o p^{\prime} r x & {[x] \sqsubseteq v s=r e p(u s+[x], \text { tail vs })} \\
& \text { null us }=r e p([], \text { ws }) \\
& \text { otherwise }=o p^{\prime}(\text { rep }(\text { split ws }(\text { tail us }))) x \\
& \text { where }(u s, v s)=\text { abs } r
\end{array}
$$

It remains to choose Rep and the two functions $a b s$ and rep.

Trees

In functional programming, practically all efficient representations involve a tree of some kind, and this one is no different. We define

$$
\text { data Rep } a=\text { Null } \mid \text { Node } a(\operatorname{Rep} a)(\text { Rep } a)
$$

So Rep is a binary tree. The function $a b s$ is defined by

$$
\begin{equation*}
\text { abs }(\text { Node }(u s, v s) \ell r)=(u s, v s) \tag{17.3}
\end{equation*}
$$

and clearly takes constant time. The function rep is defined by

$$
\begin{equation*}
\text { rep }(u s, v s)=\text { Node }(u s, v s)(\text { left us vs })(\text { right us vs }) \tag{17.4}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\text { left }[] v s & =\text { Null } \\
\text { left }(u: u s) v s & =\operatorname{rep}(\text { split ws us }) \\
\text { right us }[] & =\text { Null } \\
\text { right us }(v: v s) & =\operatorname{rep}(u s+[v], v s)
\end{array}
$$

The reason for choosing rep in the above way is that $o p^{\prime}$ takes the simple form

$$
\begin{array}{l|ll}
o p^{\prime}(\text { Node }(u s, v s) \ell r) x & {[x] \sqsubseteq v s} & =r \\
& \text { null us } & =\text { root } \\
\text { otherwise } & =o p^{\prime} \ell x
\end{array}
$$

where root $=\operatorname{rep}([], w s)$. For instance, the first clause is justified by

$$
\begin{aligned}
& o p^{\prime}(\text { Node }(u s, v s) \ell r) x \\
= & \left\{\text { definition of } o p^{\prime} \text { in the case }[x] \sqsubseteq v s\right\} \\
& \quad r e p(u s+[x], \text { tail } v s) \\
= & \{\text { definition of right and } x=\text { head } v s\} \\
& \text { right us vs } \\
= & \{\text { definition of rep }\} \\
& r
\end{aligned}
$$

The other clauses are similar. If we also set $o p^{\prime} N u l l x=$ root, then $o p^{\prime}$ takes an even simpler form:

$$
\begin{array}{lll}
o p^{\prime} \text { Null } x & = & \text { root } \\
o p^{\prime}(\text { Node }(u s, v s) \ell r) x & {[x] \sqsubseteq v s} & =r \\
& \left\lvert\, \begin{array}{ll}
\text { otherwise } & =
\end{array} o p^{\prime} \ell x\right.
\end{array}
$$

Although $o p^{\prime}$ does not take constant time, it does take amortized constant time. The tree root has height m, the length of the pattern; taking a right branch decreases the height of the current tree by exactly one, while taking a left-branch increases the height, possibly by more than one. A standard amortization argument now shows that evaluating foldl op root on a list of length n involves at most $2 m+n$ calls of $o p^{\prime}$.

What remains is to show how to compute rep efficiently. It is here that a final standard technique of program transformation enters the picture: use of an accumulating parameter. The idea is to specify a generalised version, grep say, of rep by

$$
\text { rep }(u s, v s)=\text { grep }(\text { left us vs })(u s, v s)
$$

and then to derive a direct definition of grep. From (17.4) we have

$$
\operatorname{grep} \ell(u s, v s)=N o d e(u s, v s) \ell(\text { right us vs })
$$

Now, by the definition of right, we have right us [] = Null and

$$
\begin{aligned}
\text { right us }(v: v s) & =\operatorname{rep}(u s+[v], v s) \\
& =\operatorname{grep}(\text { left }(u s+[v]) v s)(u s+[v], v s)
\end{aligned}
$$

To simplify left (us $+[v])$ vs we need a case analysis on $u s$. In the case $u s=[]$ we reason:

$$
\begin{aligned}
& \text { left }([]+[v]) \text { vs } \\
=\quad & \{\text { definition of left }\} \\
= & \operatorname{rep}(\text { split ws []) } \\
& \{\text { definition of split }\} \\
= & \operatorname{rep}([], \text { ws }) \\
& \{\text { definition of root }\} \\
& \operatorname{root}
\end{aligned}
$$

In the inductive case $u: u s$ we reason:

$$
\begin{aligned}
& \text { left }(u: u s+[v]) v s \\
= & \{\text { definition of left }\} \\
= & \operatorname{rep}(\text { split ws }(u s+[v])) \\
= & \{\text { definition of split }\} \\
= & \text { rep }(\text { op }(\text { split ws us) } v) \\
& \left\{\text { definition }(17.2) \text { of } o p^{\prime}\right\} \\
= & o p^{\prime}(\text { rep }(\text { split ws us)) } v \\
& \{\text { definition of left }\} \\
& o p^{\prime}(\text { left }(u: u s) v s) v
\end{aligned}
$$

Summarising this calculation:

$$
\text { left }(u s+[v]) v s=\text { if null us then root else } o p^{\prime}(l e f t u s \text { vs) } v
$$

Hence, grep can be defined by

$$
\begin{aligned}
\operatorname{grep} \ell(u s,[])= & \text { Node }(u s,[]) \ell \text { Null } \\
\operatorname{grep} \ell(u s, v: v s)= & \text { Node }(u s, v: v s) \ell \\
& \left(\operatorname{grep}\left(o p^{\prime} \ell v\right)(u s+[v], v s)\right)
\end{aligned}
$$

```
matches ws \(\quad=\) map fst \(\cdot\) filter \((\) ok \(\cdot\) snd \() \cdot\) scanl step \((0\), root \()\)
where
ok (Node vs \(\ell r)=\) null vs
step \((n, t) x=(n+1\), op \(t x)\)
op Null x \(=\) root
\(o p\) (Node [] \(\ell r\) ) \(x=o p \ell x\)
\(o p\) (Node \((v: v s) \ell r) x=\) if \(v==x\) then \(r\) else \(o p \ell x\)
root \(\quad=\) grep Null ws
grep \(\ell[]=\) Node [] \(\ell\) Null
\(\operatorname{grep} \ell(v: v s)=\operatorname{Node}(v: v s) \ell(\) grep \((o p \ell v) v s)\)
```

Fig. 17.1 The final program for matches

Let us now put all the pieces together. We have

$$
\text { matches ws }=\text { map fst } \cdot \text { filter }(\text { ok } \cdot \text { snd }) \cdot \text { scanl step }(0, \text { root })
$$

where

$$
\begin{aligned}
\text { ok }(\text { Node }(u s, v s) \ell r) & =\text { null vs } \\
\text { step }(n, t) x & =(n+1, \text { op } t x) \\
\text { root } & =\text { grep Null }([], w s)
\end{aligned}
$$

The function $o p$ (which is $o p^{\prime}$ renamed) is defined by

$$
\begin{array}{ll}
\text { op Null } x & =\text { root } \\
o p(N o d e(u s,[]) \ell r) x & =o p \ell x \\
o p(N o d e(u s, v: v s) \ell r) x & =\text { if } v=x \text { then } r \text { else } \text { op } \ell x
\end{array}
$$

and the function grep by

$$
\begin{array}{ll}
\operatorname{grep} \ell(u s,[]) & =\text { Node }(u s,[]) \ell N u l l \\
\operatorname{grep} \ell(u s, v: v s) & =N o d e(u s, v: v s) \ell(\operatorname{grep}(\text { op } \ell v)(u s+[v], v s))
\end{array}
$$

Inspection of the right-hand sides of these definitions shows that the first component $u s$ of the pair ($u s, v s$) plays no part in the algorithm, as its value is never used. Hence, we simply drop us and obtain our final program, recorded in Figure 17.1.

The tree root is cyclic: left subtrees point backwards to earlier nodes in the tree, or to Null. This tree encapsulates the failure function of the KMP algorithm as a cyclic graph. The operation op takes amortized constant time, assuming the cost of an equality test is constant. The time to compute root is $\Theta(m)$ steps, where $m=$ length ws. Hence, matches takes $\Theta(m)$ steps to build root and thereafter $\Theta(n)$ steps, where n is the length of the text, to compute the occurrences of the pattern in the text.

The program above is not quite the full KMP algorithm, but corresponds to what is known as the Morris-Pratt algorithm. The full KMP algorithm contains an extra wrinkle. Suppose we introduce a function next, defined by

$$
\begin{aligned}
& \text { next Null } x=\text { Null } \\
& \text { next (Node [] } \ell r \text {) } \quad=\text { Node [] } \ell r \\
& \text { next (Node }(v: v s) \ell r) x=\text { if } v==x \text { then next } \ell x \\
& \text { else Node (} v: v s) \ell r
\end{aligned}
$$

Essentially, next $t x$ replaces the tree t with the first tree on the list of left subtrees of t whose associated label does not begin with x. The point about next is that, as can be seen from the definition of $o p$, we have

$$
o p(N o d e(v: v s) \ell r) x=o p(N o d e(v: v s)(n e x t \ell v) r) x
$$

It follows that evaluation of $o p$ can be made more efficient by replacing each node $\operatorname{Node}(v: v s) \ell r$ in the tree with a new node Node $(v: v s)(n e x t \ell v) r$. But we won't go into further details.

Final remarks

The KMP algorithm was first described in Knuth et al. (1977). However, many other descriptions of the algorithm exist (e.g. Gusfield, 1997; Cormen et al., 2001; Crochemore and Rytter, 2002). In fact, there are over a hundred papers devoted to string matching in general, and the KMP and BM algorithms in particular. In fact, we have written two previous papers about the KMP ourselves (Bird, 1977; Bird et al., 1989), one over 30 years ago, before the laws of functional programming were firmly established. The above presentation of the KMP algorithm is a more polished and revised version of the one contained in Bird et al. (1989). Recently, Olivier Danvy and his colleagues at BRICS have written a number of papers showing how to obtain the KMP and BM algorithms by partial evaluation. For example, Ager et al. (2003) uses similar ideas to those in Bird (1977) to solve a long-outstanding open problem in partial evaluation, namely how to obtain the KMP from a naive algorithm by a process of partial evaluation that takes linear time. And Danvy and Rohde (2005) present a derivation of the search phase of the BM algorithm using partial evaluation, by identifying the bad character rule as a binding-time improvement.

References

Ager, M. S., Danvy, O. and Rohde, H. K. (2003). Fast partial evaluation of pattern matching in strings. BRICS Report Series, RS-03-11, University of Aarhus, Denmark.

Bird, R. S. (1977). Improving programs by the introduction of recursion. Communications of the ACM 20 (11), 856-63.
Bird, R. S., Gibbons, J. and Jones, G. (1989). Formal derivation of a pattern matching algorithm. Science of Computer Programming 12, 93-104.
Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001). Introduction to Algorithms, second edition. Cambridge, MA: MIT Press.
Crochemore, M. and Rytter, W. (2002). Jewels of Stringology. Hong Kong: World Scientific.
Danvy, O. and Rohde, H. K. (2005). On obtaining the Boyer-Moore string-matching algorithm by partial evaluation. BRICS Research Report RS-05-14, University of Aarhus, Denmark.
Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge, UK: Cambridge University Press.
Knuth, D. E., Morris, J. H. and Pratt, V. B. (1977). Fast pattern matching in strings. SIAM Journal on Computing 6, 323-50.

18

Planning solves the Rush Hour problem

Introduction

Rush Hour is an intriguing sliding-block puzzle, invented some years ago by the celebrated puzzlist Nob Yoshigahara and marketed by Think Fun. ${ }^{1}$ It is played on a 6×6 grid and can be solved in reasonable time by a brute-force breadth-first search. The generalised version - played on an $n \times n$ grid is known to be PSPACE-complete, so a better than exponential-time solver is very unlikely. Still, with the help of a suitable planning algorithm, it is possible to improve significantly on the brute-force approach, and the aim of this pearl is to show how. Further details of how Rush Hour is played are postponed until later, because we want to start out with a more abstract formulation of puzzles, breadth-first search and planning.

Puzzles

Consider an abstract puzzle defined in terms of two finite sets, a set of states and a set of moves. Given are three functions

```
moves :: State }->\mathrm{ [Move]
move :: State }->\mathrm{ Move }->\mathrm{ State
solved :: State }->\mathrm{ Bool
```

The function moves determines the legal moves that can be made in a given state and move returns the new state that results when a given move is made. The function solved determines which states are a solution to the puzzle. Described in this way, a puzzle is essentially a deterministic finite automaton. Solving the puzzle means finding some sequence of moves, preferably a shortest such sequence, that leads from a given initial state to some solved state:

$$
\text { solve }:: \quad \text { State } \rightarrow \text { Maybe [Move] }
$$

[^8]The value of solve q is Nothing if there is no sequence of moves beginning in state q that leads to a solved state and returns Just $m s$ otherwise, where $m s$ satisfies solved (foldl move q ms).

We can implement solve by carrying out either a breadth-first or a depthfirst search. In either case the key idea is to introduce the synonyms

```
type Path \(=([\) Move \(]\), State \()\)
type Frontier \(=\) [Path]
```

A path consists of a sequence of moves made in some given starting state, together with the resulting state. A frontier is a list of paths waiting to be explored further. Then, a breadth-first search can be defined by

$$
\begin{aligned}
& \text { bfsearch }:: \quad[\text { State }] \rightarrow \text { Frontier } \rightarrow \text { Maybe [Move] } \\
& \text { bfsearch qs [] = Nothing } \\
& \text { bfsearch qs }(p @(m s, q): p s) \\
& \text { | solved } q=\text { Just ms } \\
& \mid q \in q s \quad=\quad \text { bfsearch } q s p s \\
& \text { otherwise }=b f s e a r c h(q: q s)(p s+\text { succs } p)
\end{aligned}
$$

where

$$
\begin{array}{lll}
\text { succs } & :: \quad \text { Path } \rightarrow[\text { Path }] \\
\operatorname{succs}(m s, q) & = & {[(m s \rightarrow[m], \text { move } q m) \mid m \leftarrow \text { moves } q]}
\end{array}
$$

The first component $q s$ of bfsearch represents the set of analysed states. In a breadth-first search the frontier is managed as a queue, so paths at the same distance from the starting state are analysed before their successors. Analysing a path means accepting it if the final state is a solved state, rejecting it if the final state has already been analysed, and otherwise adding its successors to the end of the current frontier for future exploration. A breadth-first search will find a shortest solution if a solution exists.

With one change, the definition of depth-first search is exactly the same as that of breadth-first search. The change is to replace the term ps + succs p by succs $p+p s$. In a depth-first search the frontier is maintained as a stack, so the successors of a path are analysed before any other path at the same level. A depth-first search will find a solution if one exists, but it probably won't be the shortest.

Under breadth-first search the current frontier can be exponentially longer than under depth-first search. Consequently, as defined above, bfsearch takes much more time than $d f s e a r c h$. The reason is that evaluation of $p s+$ succs p takes time proportional to the length of the frontier $p s$. One way to make the
code faster, though it does not reduce the space complexity, is to introduce an accumulating parameter, defining bfsearch ${ }^{\prime}$ by

$$
b f s e a r c h^{\prime} q s ~ p s s ~ p s=b f s e a r c h ~ q s ~(p s+\text { concat }(\text { reverse pss }))
$$

Then, after some simple calculation which we omit, we obtain

```
bfsearch \({ }^{\prime}::[\) State \(] \rightarrow[\) Frontier \(] \rightarrow\) Frontier \(\rightarrow\) Maybe [Move \(]\)
bfsearch' qs [][] = Nothing
bfsearch \({ }^{\prime}\) qs pss [] \(=\) bfsearch \(^{\prime} q s[](\) concat (reverse pss))
bfsearch \({ }^{\prime}\) qs pss \((p @(m s, q): p s)\)
    | solved \(q=\) Just ms
    \(\mid q \in q s=\quad\) bfsearch \({ }^{\prime}\) qs pss ps
    \(\mid\) otherwise \(=b \operatorname{search}^{\prime}(q: q s)(s u c c s p: p s s) p s\)
```

In fact, there is a simpler version of bfsearch' in which the accumulating parameter is of type Frontier rather than [Frontier]:

```
bfsearch \({ }^{\prime}::[\) State \(] \rightarrow\) Frontier \(\rightarrow\) Frontier \(\rightarrow\) Maybe \([\) Move \(]\)
bfsearch' qs [][] = Nothing
bfsearch' qs rs [] = bfsearch' qs [] rs
bfsearch' qs rs \((p @(m s, q): p s)\)
        | solved \(q=\) Just ms
    \(q \in q s=\quad\) bfsearch \({ }^{\prime}\) qs rs ps
    otherwise \(=b \operatorname{ssearch}^{\prime}(q: q s)(\) succs \(p+r s) p s\)
```

This version of bfsearch ${ }^{\prime}$ has a different behaviour than the previous one in that successive frontiers are traversed alternately from left to right and from right to left, but a shortest solution will still be found if a solution exists.

We can now define

$$
\text { bfsolve } q=\text { bfsearch }{ }^{\prime}[][][([], q)]
$$

The function bfsolve implements solve using a breadth-first search.

Planning

But what we have got so far is simply the strategy of trying every possible sequence of moves until finding one that works. That is not the way humans solve puzzles. Instead they make plans. For our purposes a plan is a sequence of moves that, if the moves can be carried out, leads to a solved state. Thus:

type Plan $=$ [Move $]$

Plans have to consist of non-repeated moves, otherwise the plan cannot be carried out. If, in order to make move m, a plan requires move m to be made
first, then clearly the plan cannot be implemented. An empty plan means success. Otherwise, suppose the first move in the current plan is move m. If move m can be carried out in the current state, then it is made. If it cannot, then we make use of a function premoves $::$ State \rightarrow Move \rightarrow [[Move $]]$ such that, for each alternative $p m s$ in premoves $q m$, the move m can be made provided the preparatory moves $p m s$ are made first. In turn, moves in $p m s$ may require further preparatory moves, so we have to form new, extended plans by iterating premoves:

```
newplans \(::\) State \(\rightarrow\) Plan \(\rightarrow[\) Plan \(]\)
newplans \(q \mathrm{~ms}=\) mkplans ms
where
mkplans ms \(\mid\) null \(m s=[]\)
    \(m \in q m s=[m s]\)
    otherwise \(=\) concat \([m k p l a n s(p m s+m s)\)
    \(p m s \leftarrow\) premoves \(q m\),
    all ( \(\notin m s) p m s]\)
```

 where \(m=\) head \(m s ; q m s=\) moves \(q\)
 The result of newplans $q m s$ is a possibly empty list of nonempty plans, the first move of each of which can be made in state q. To kick-start the planning process we assume that a puzzle in state q can be solved by making the moves in goalmoves q, where goalmoves :: State \rightarrow Plan.

Using just the two new functions goalmoves and premoves we can now formulate an alternative search process based on the idea of an augmented path and frontier:

$$
\begin{array}{ll}
\text { type APath } & =([\text { Move }], \text { State, Plan }) \\
\text { type AFrontier } & =[\text { APath }]
\end{array}
$$

An augmented path consists of moves already made from some starting state, the state that results and a plan for the remaining moves. The search consists of exploring augmented paths in order until either one plan succeeds or all plans fail:

```
psearch \(::[\) State \(] \rightarrow\) AFrontier \(\rightarrow\) Maybe [Move]
psearch qs [] = Nothing
psearch qs \((p @(m s, q, p l a n): p s)\)
    | solved \(q=\) Just \(m s\)
    \(\mid q \in q s \quad=\quad\) psearch \(q s p s\)
    \(\mid\) otherwise \(=\operatorname{psearch}(q: q s)(\) asuccs \(p+p s+\) bsuccs \(p)\)
```

where

```
asuccs, bsuccs \(::\) APath \(\rightarrow[\) APath \(]\)
asuccs ( \(m s, q, p l a n\) )
    \(=\left[\left(m s+[m]\right.\right.\), move \(q\) m, plan \(\left.{ }^{\prime}\right) \mid m:\) plan \(^{\prime} \leftarrow\) newplans \(q\) plan \(]\)
bsuccs ( \(m s, q,-\) )
    \(=\left[\left(m s+[m], q^{\prime}\right.\right.\), goalmoves \(\left.q^{\prime}\right) \mid m \leftarrow\) moves \(q\), let \(q^{\prime}=\) move \(\left.q m\right]\)
```

In $p s e a r c h ~ q s ~ p s$ all the plans in the frontier $p s$ are tried first in a depth-first manner. If all of them fail, then we add in further plans, each of which consists of making some legal move and starting over with a new goal. These additional plans, expressed by the term bsuccs, are necessary for completeness. Simple puzzles may be solvable by suitable planning, but plans may fail even though there is a solution. This is a consequence of the fact that plans are executed greedily and moves that can be made are made. To ensure a complete strategy we have to be willing to make additional plans at each stage.

As with a breadth-first search, we can make psearch faster by introducing an accumulating parameter:

```
psearch \({ }^{\prime}::[\) State \(] \rightarrow\) AFrontier \(\rightarrow\) AFrontier \(\rightarrow\) Maybe \([\) Move \(]\)
psearch \({ }^{\prime}\) qs [][] \(=\) Nothing
psearch' qs rs [] \(=\) psearch \({ }^{\prime} q s[] r s\)
psearch \({ }^{\prime}\) qs rs ( \(\left.p @(m s, q, p l a n): p s\right)\)
    \(\mid\) solved \(q=\) Just (reverse ms)
    \(\mid q \in q s=\) psearch \(^{\prime}\) qs rs ps
        otherwise \(=\operatorname{psearch}^{\prime}(q: q s)(b s u c c s p+r s)(\) asuccs \(p+p s)\)
```

The function psolve can now be defined by

```
psolve :: State }->\mathrm{ Maybe [Move]
psolve q = psearch'[][][([], q, goalmoves q)]
```

The function psolve implements solve using planning. It is possible to define a variation of psearch that explores plans in a breadth-first manner, but we will leave details to the reader. Note that psearch will find a solution if one exists, but not necessarily the shortest one.

Rush Hour

Let us now apply the above ideas to Rush Hour. As mentioned before, this is a puzzle consisting of a 6×6 grid of 36 cells. Covering some of these cells are vehicles. Each vehicle is either vertical or horizontal and occupies either two cells or three cells, depending on whether the vehicle is a car or truck.

Fig. 18.1 A Rush Hour grid

Horizontal vehicles can move left or right, while vertical vehicles can move up or down. One fixed cell, three places down along the right vertical side of the grid, is special and is called the exit cell. One vehicle is special: it is horizontal and occupies cells to the left of the exit cell. The object of the puzzle is simply to move the special vehicle to the exit cell. An example starting grid is pictured in Figure 18.1.

There are various ways to represent the grid, of which the most obvious is to name each cell by a pair of Cartesian coordinates. A more space-efficient alternative (a useful consideration with breadth-first search) is to number the cells as follows:

1	2	3	4	5	6
8	9	10	11	12	13
15	16	17	18	19	20
22	23	24	25	26	27
29	30	31	32	33	34
36	37	38	39	40	41

The left and right borders are cells divisible by 7 , the top border consists of cells with negative numbers and the bottom border has cells greater than 42. The exit cell is cell 20. A grid state can be defined as a list of pairs of cells, each pair being the rear and front cells occupied by a single vehicle. The vehicles in the grid are named implicitly by their positions in the list, with the special vehicle being vehicle 0 , so the first pair represents the cells occupied by the special vehicle. For example, the grid of Figure 18.1 is represented by

$$
\begin{aligned}
g 1= & {[(17,18),(1,15),(2,9),(3,10),(4,11),(5,6),(12,19)} \\
& (13,27),(24,26),(31,38),(33,34),(36,37),(40,41)]
\end{aligned}
$$

This representation is captured by introducing the synonyms

type Cell	$=$ Int
type Grid	$=[($ Cell, Cell $)]$
type Vehicle	$=$ Int
type Move	$=($ Vehicle, Cell $)$
type State	$=$ Grid

The list of occupied cells can be constructed in increasing order by filling in the intervals associated with each vehicle and merging the results:

```
occupied :: Grid }->[\mathrm{ Cell]
occupied = foldr (merge}\cdot\mathrm{ fillcells)[]
fillcells (r,f)= if r>f-7 then [r..f] else [r,r+7..f]
```

A vehicle occupying the cells in the interval (r, f), where r is the rear and f is the front, is horizontal if $r>f-7$ and vertical if $r \leq f-7$. The free cells of a grid are now defined by

$$
\begin{array}{lll}
\text { freecells } & :: & \text { Grid } \rightarrow[\text { Cell }] \\
\text { freecells } g & = & \text { allcells } \backslash \backslash \text { occupied } g
\end{array}
$$

where allcells $=[c \mid c \leftarrow[1 . .41], c \bmod 7 \neq 0]$. We omit the standard definitions of merge and the ordered list difference operator $\backslash \backslash$.

The function moves is implemented by

$$
\begin{array}{ll}
\text { moves }: & \text { Grid } \rightarrow[\text { Move }] \\
\text { moves } g= & {[(v, c) \mid(v, i) \leftarrow \text { zip }[0 . .] g, c \leftarrow \text { adjs } i, c \in f s]} \\
& \text { where } f s=\text { freecells } g \\
\text { adjs }(r, f)= & \text { if } r>f-7 \text { then }[f+1, r-1] \text { else }[f+7, r-7]
\end{array}
$$

A move (v, c) is legal if and only if cell c is unoccupied and adjacent, along the appropriate axis, to the cells currently occupied by v. Note that a move consists of moving a vehicle exactly one step on the grid.

The function move is implemented by

$$
\begin{aligned}
\text { move } g(v, c)= & g 1+\text { adjust } i c: g 2 \\
& \text { where }(g 1, i: g 2)=\text { splitAt } v g
\end{aligned}
$$

and adjust by

```
adjust (r,f)c
    | r>f-7 = if c>f then (r+1,c) else (c,f-1)
    | otherwise = if c<r then (c,f-7) else (r+7,c)
```

The arithmetic here is fairly self-explanatory and justification is omitted.

A grid is solved if the front of vehicle 0 is at the exit cell:

$$
\begin{array}{ll}
\text { solved } & :: \quad \text { Grid } \rightarrow \text { Bool } \\
\text { solved } g & = \\
\text { snd }(\text { head } g)=20
\end{array}
$$

We can now implement the breadth-first strategy by

```
bfsolve :: Grid }->\mathrm{ Maybe [Move]
bfsolve g= bfsearch'[][][([],g)]
```

where bfsearch' is as defined in the previous section.
To implement psearch we need to define the two additional functions goalmoves and premoves. The former is easy:

$$
\begin{array}{ll}
\text { goalmoves } & :: \quad \text { Grid } \rightarrow \text { Plan } \\
\text { goalmoves } g & =[(0, c) \mid c \leftarrow[\text { snd }(\text { head } g)+1 . .20]]
\end{array}
$$

That is, goalmoves is the list of moves required to step the special vehicle 0 forward to the exit.

We need to define premoves $g m$ only when m is a move with a target cell c that is currently occupied. In such a case there is a unique pair (v, i) in zip [0..] g with interval i containing c. The function blocker discovers this pair:

$$
\begin{aligned}
& \begin{array}{l}
\text { blocker }:: \quad \text { Grid } \rightarrow \text { Cell } \rightarrow(\text { Vehicle },(\text { Cell, Cell })) \\
\text { blocker } g c=\text { search }(z i p[0 . .] g) c \\
\text { search }((v, i): \text { vis }) c=\text { if covers } c i \text { then }(v, i) \text { else search vis } c \\
\text { covers } c(r, f)=r \leq c \wedge c \leq f \wedge(r>f-7 \vee(c-r) \bmod 7=0)
\end{array}
\end{aligned}
$$

The blocking vehicle v, occupying the interval $i=(r, f)$, has to be moved out of the way so as to free the cell c; this is achieved by moving v left or right if horizontal, or down or up if vertical, an appropriate number of moves. These moves are computed with the function freeingmoves:

$$
\begin{aligned}
& \text { freeingmoves }:: \text { Cell } \rightarrow(\text { Vehicle },(\text { Cell, Cell })) \rightarrow[[\text { Move }]] \\
& \text { freeingmoves } c(v,(r, f)) \\
& \qquad \quad r>f-7=[[(v, j) \mid j \leftarrow[f+1 . . c+n]] \mid c+n<k+7]+ \\
& \\
& \\
& \quad[[(v, j) \mid j \leftarrow[r-1, r-2 \ldots c-n]] \mid c-n>k] \\
& \mid \quad \text { otherwise }= \\
& \quad[[(v, j) \mid j \leftarrow[r-7, r-14 . . c-m]] \mid c-m>0]+ \\
& \\
& \text { where }(k, m, n)=([(v, j) \mid j \leftarrow[f+7, f+14 \ldots c+m]] \mid c+m<42] \\
& =(f-f \bmod 7, f-r+7, f-r+1)
\end{aligned}
$$

If v is horizontal, so $r>f-7$, then its length is $n=f-r+1$ and, in order to free the cell c, we have to move v either rightwards to cell $c+n$ or leftwards to cell $c-n$, provided these cells are on the grid. If v is vertical, then its
length is $n=(f-r) \operatorname{div} 7+1$ and we have to move v either upwards to cell $c-7 n$ or downwards to cell $c+7 n$, again provided these cells are on the grid. The value of m in this case is $m=7 \times n$.
Now we can define premoves by

$$
\begin{array}{lll}
\text { premoves } & :: \quad \text { Grid } \rightarrow \text { Move } \rightarrow[[\text { Move }]] \\
\text { premoves } g(v, c) & = & \text { freeingmoves } c(\text { blocker } g c)
\end{array}
$$

However, the definition of newplans given in the previous section needs to be modified in order to work with Rush Hour. To see why, imagine the current plan consists of the goal moves $[(0,19),(0,20)]$ where vehicle 0 occupies the cells $[17,18]$ on the opening grid. Suppose the first move $(0,19)$ is not possible until the preparatory moves $p m s$ are made. Now it is perfectly possible that one of the moves in pms is $(0,16)$, moving vehicle 0 one place to the left. After executing $p m s$ in preparation for the move $(0,19)$ we see that $(0,19)$ is no longer a well-defined move in the resulting grid because it requires 0 to move two steps forward, and so has first to be expanded to the single-step moves $[(0,18),(0,19)]$. Hence, we need to modify newplans to read

```
newplans }\quad::\quad\mathrm{ Grid }->\mathrm{ Plan }->[Plan
newplans g[] = []
newplans g(m:ms) = mkplans(expand gm+ms)
where mkplans ms = if m\ingms then [ms] else
    concat [mkplans (pms + ms)|
                                    pms}\leftarrow\mathrm{ premoves g m,
                                    all ( }\not=\textrm{ms})\textrm{pms}
    where m=head ms; gms = moves g
```

The new function expand, which expands a possibly invalid move into a sequence of valid moves, is defined by

```
expand \(::\) Grid \(\rightarrow\) Move \(\rightarrow[\) Move \(]\)
expand \(g(v, c)\)
    \(r>f-7 \quad=\) if \(c>f\) then \([(v, p) \mid p \leftarrow[f+1 . . c]]\)
    else \([(v, p) \mid p \leftarrow[r-1, r-2 . . c]]\)
    otherwise \(=\) if \(c>f\) then \([(v, p) \mid p \leftarrow[f+7, f+14 \ldots c]]\)
    else \([(v, p) \mid p \leftarrow[r-7, r-14 . . c]]\)
    where \((r, f)=g!!v\)
```

We can now implement the planning algorithm by

```
psolve :: Grid }->\mathrm{ Maybe [Move]
psolve g = psearch'[][][([], g, goalmoves g)]
```


Fig. 18.2 Four Rush Hour problems

Table 18.1. Solution times to solve four Rush Hour problems

Puzzle	bfsolve	Moves	p solve	Moves	dfsolve	Moves
1	9.11	34	0.23	38	3.96	1228
2	4.71	18	0.04	27	3.75	2126
3	1.70	55	0.91	75	0.97	812
4	9.84	81	2.36	93	2.25	1305

where psearch ${ }^{\prime}$ is as defined in the previous section except for the revised definition of newplans.

Results

So, how much better is psolve than bfsolve? We took four Rush Hour puzzles from Nick Baxter's puzzleworld site www.puzzleworld.org/SlidingBlock Puzzles/rushhour.htm, pictured in Figure 18.2. These were solved on a Pentium 3, 1000 MHz computer, using GHCi. The results (times are in seconds) are shown in Table 18.1. As can be seen from Table 18.1, psolve is significantly faster than bfsolve, varying from a factor of 100 to a factor of 2 . On the other hand, psolve may make unnecessary moves. For comparison, the times and move counts for dfsolve are also included in the table.

Final remarks

The PSPACE-completeness result for Rush Hour can be found in Flake and Baum (2002). I learned about Rush Hour at the 2008 Advanced Functional

Programming Summer School (Jones, 2008), where Mark Jones presented a series of lectures about the benefits of thinking functionally about problems. He gave a breadth-first solution, but he also challenged participants at the summer school to come up with a faster solution. This pearl was composed in response to Jones' challenge.

References

Flake, G. W. and Baum, E. B. (2002). Rush Hour is PSPACE-complete, or "Why you should generously tip parking lot attendants". Theoretical Computer Science 270 (1), 895-911.
Jones, M. P. (2008). Functional thinking. Advanced Functional Programming Summer School, Boxmeer, The Netherlands.

19

A simple Sudoku solver

How to play: Fill in the grid so that every row, every column and every 3×3 box contains the digits $1-9$. There's no maths involved. You solve the puzzle with reasoning and logic.

Advice on how to play Sudoku, The Independent Newspaper

Introduction

The game of Sudoku is played on a 9×9 grid. Given a matrix, such as that in Figure 19.1, the idea is to fill in the empty cells with the digits 1 to 9 so that each row, column and 3×3 box contains the numbers 1 to 9 . In general there may be one, none or many solutions, though in a good Sudoku puzzle there should always be a unique solution. Our aim in this pearl is to construct a Haskell program to solve Sudoku puzzles. Specifically, we will define a function solve for computing all the ways a given grid may be completed. If only one solution is wanted, then we can take the head of the list. Lazy evaluation means that only the first result will then be computed. We begin with a specification, then use equational reasoning to calculate a more efficient version. There is no maths involved, just reasoning and logic!

Specification

We begin with some basic data types, starting with matrices:
type Matrix a $=[$ Row $a]$
type Row a $=[a]$
An $m \times n$ matrix is a list of m rows in which each row has the same length n. A grid is a 9×9 matrix of digits:
type Grid $=$ Matrix Digit
type Digit $=$ Char

		4			5	7		
					9	4		
3	6							8
7	2			6				
			4		2			
				8			9	3
4							5	6
		5	3					
		6	1			9		

Fig. 19.1 A Sudoku grid

The valid digits are 1 to 9 with 0 standing for a blank:

$$
\begin{aligned}
\text { digits } & =\left[{ }^{\prime} 1 ' . . ' 9 '\right] \\
\text { blank } & =\left(=={ }^{\prime} 0^{\prime}\right)
\end{aligned}
$$

We suppose that a given grid contains only digits and blanks. We also suppose that the input grid is valid, meaning that no digit is repeated in any row, column or box.

Now for the specification. The aim is to write down the simplest and clearest specification of solve without regard to how efficient the result might be. One possibility is first to construct a list of all correctly completed grids, and then to test the given grid against them to identify those whose nonblank entries match the given ones. Another possibility, and the one we will adopt, is to start with the given grid and to install all possible choices for the blank entries. Then we compute all the grids that arise from making every possible choice and filter the result for the valid ones. This specification is formalised by

```
solve = filter valid · expand \cdot choices
```

The subsidiary functions have types

$$
\begin{array}{lll}
\text { choices } & :: & \text { Grid } \rightarrow \text { Matrix Choices } \\
\text { expand } & :: & \text { Matrix Choices } \rightarrow[\text { Grid }] \\
\text { valid } & :: & \text { Grid } \rightarrow \text { Bool }
\end{array}
$$

The simplest choice of Choices is type Choices $=[$ Digit $]$. Then we have

```
choices :: Grid \(\rightarrow\) Matrix Choices
choices \(=\) map (map choice)
choice \(d=\) if blank \(d\) then digits else \([d]\)
```

If the cell is blank, then all digits are installed as possible choices; otherwise there is no choice and a singleton is returned.

Next, expansion is just matrix Cartesian product:

```
expand :: Matrix Choices }->[\mathrm{ Grid }
expand :: cp}\cdotmap c
```

The Cartesian product of a list of lists is given by

$$
\begin{array}{ll}
c p & :: \\
c p[a]] \rightarrow[[a]] \\
c p[] & = \\
c p(x s: x s s) & =[x: y s \mid x \leftarrow x s, y s \leftarrow c p x s s]
\end{array}
$$

For example, $c p[[1,2],[3],[4,5]]=[[1,3,4],[1,3,5],[2,3,4],[2,3,5]]$. Thus, map cp returns a list of all possible choices for each row and $c p \cdot m a p c p$ installs each choice for the rows in all possible ways.

Finally, we deal with valid. A valid grid is one in which no row, column or box contains duplicates:

$$
\begin{aligned}
\text { valid }:: & \text { Grid } \rightarrow \text { Bool } \\
\text { valid } g= & \text { all nodups }(\text { rows } g) \wedge \\
& \text { all nodups }(\text { cols } g) \wedge \\
& \text { all nodups }(\text { boxs } g)
\end{aligned}
$$

The standard function all p applied to a finite list $x s$ returns True if all elements of $x s$ satisfy p and False otherwise. The function nodups can be defined by

$$
\begin{array}{ll}
\text { nodups } & :: \text { Eq } a \Rightarrow[a] \rightarrow \text { Bool } \\
\text { nodups }[] & =\text { True } \\
\text { nodups }(x: x s) & =\text { all }(\neq x) x s \wedge \text { nodups } x s
\end{array}
$$

The function nodups takes quadratic time. As an alternative we could sort the list of digits and check that it is strictly increasing. Sorting can be done in $\Theta(n \log n)$ steps. However, with $n=9$ it is not clear that sorting the digits is worthwhile. What would you prefer: $2 n^{2}$ steps or $100 n \log _{2} n$ steps?

It remains to define rows, cols and boxs. If a matrix is given by a list of its rows, then rows is just the identity function on matrices:

```
rows :: Matrix a }->\mathrm{ Matrix a
rows = id
```

The function cols computes the transpose of a matrix. One possible definition is

```
cols :: Matrix a M Matrix a
cols[xs] = [[x]|x\leftarrowxs]
cols (xs:xss) = zipWith (:) xs (cols xss)
```

The function boxs is a little more interesting:

```
boxs :: Matrix a M Matrix a
boxs = map ungroup \cdotungroup \cdot map cols \cdot group \cdot map group
```

The function group splits a list into groups of three:

$$
\begin{array}{ll}
\text { group } & ::[a] \rightarrow[[a]] \\
\text { group }[] & =[] \\
\text { group } x s & =\text { take } 3 x s: \text { group }(\text { drop } 3 x s)
\end{array}
$$

The function ungroup takes a grouped list and ungroups it:

```
ungroup \(\quad:: \quad[[a]] \rightarrow[a]\)
ungroup \(=\) concat
```

The action of boxs in the 4×4 case, when group splits a list into groups of two, is illustrated by

$$
\left(\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right) \rightarrow\binom{\left(\begin{array}{cc}
a b & c d \\
e f & g h
\end{array}\right)}{\left(\begin{array}{cc}
i j & k l \\
m n & o p
\end{array}\right)} \rightarrow\binom{\left(\begin{array}{cc}
a b & e f \\
c d & g h
\end{array}\right)}{\left(\begin{array}{cc}
i j & m n \\
k l & o p
\end{array}\right)}
$$

The function group • map group produces a list of matrices; transposing each matrix and ungrouping yields the boxes.

Observe that instead of thinking about matrices in terms of indices, and doing arithmetic on indices to identify the rows, columns and boxes, we have gone for definitions of these functions that treat the matrix as a complete entity in itself. Geraint Jones has aptly called this style wholemeal programming. Wholemeal programming is good for you: it helps to prevent a disease called indexitis and encourages lawful program construction.

For example, here are three laws that are valid on 9×9 Sudoku grids, in fact on arbitrary $N^{2} \times N^{2}$ matrices:

$$
\begin{array}{ll}
\text { rows } \cdot \text { rows } & =i d \\
\text { cols } \cdot \text { cols } & =i d \\
\text { boxs } \cdot \text { boxs } & =i d
\end{array}
$$

Equivalently, all three functions are involutions. Two are easy to prove, but one is more difficult. The difficult law is not the one about boxs, as
you might expect, but the involution property of cols. Though intuitively obvious, proving it from the definition of cols is slightly tricky. The involution property of boxs is an easy calculation using the involution property of cols, simple properties of map and the fact that group \cdot ungroup $=i d$.

Here are three more laws, valid on $N^{2} \times N^{2}$ matrices of choices:

$$
\begin{align*}
\text { map rows } \cdot \text { expand } & =\text { expand } \cdot \text { rows } \tag{19.1}\\
\text { map cols } \cdot \text { expand } & =\text { expand } \cdot \text { cols } \tag{19.2}\\
\text { map boxs } \cdot \text { expand } & =\text { expand } \cdot \text { boxs } \tag{19.3}
\end{align*}
$$

We will make use of these laws in a short while.

Pruning the matrix of choices

Though executable in theory, the specification of solve is hopeless in practice. Assuming about a half of the 81 entries are fixed initially (a generous estimate), there are about 9^{40}, or

147808829414345923316083210206383297601
grids to check! We therefore need a better approach. To make a more efficient solver, a good idea is to remove any choices from a cell c that already occur as singleton entries in the row, column and box containing c. A singleton entry corresponds to a fixed choice. We therefore seek a function

$$
\text { prune }:: \quad \text { Matrix Choices } \rightarrow \text { Matrix Choices }
$$

so that

$$
\text { filter valid } \cdot \text { expand }=\text { filter valid } \cdot \text { expand } \cdot \text { prune }
$$

How can we define prune? Well, since a matrix is a list of rows, a good place to start is by pruning a single row. The function pruneRow is defined by

$$
\begin{array}{rll}
\text { pruneRow } & :: & \text { Row Choices } \rightarrow \text { Row Choices } \\
\text { pruneRow row }= & \text { map (remove fixed) row } \\
& \text { where fixed }=[d \mid[d] \leftarrow \text { row }]
\end{array}
$$

The function remove removes choices from any choice that is not fixed:

$$
\text { remove } x s d s=\text { if singleton } d s \text { then } d s \text { else } d s \backslash \backslash x s
$$

The function pruneRow satisfies

$$
\begin{equation*}
\text { filter nodups } \cdot c p=\text { filter nodups } \cdot c p \cdot \text { pruneRow } \tag{19.4}
\end{equation*}
$$

The proof is left as an exercise.

We are now nearly ready for a calculation that will determine the function prune. Nearly, but not quite, because we are going to need two laws about filter. The first is that if $f \cdot f=i d$, then

$$
\begin{equation*}
\text { filter }(p \cdot f)=\operatorname{map} f \cdot \text { filter } p \cdot \operatorname{map} f \tag{19.5}
\end{equation*}
$$

Equivalently, filter $(p \cdot f) \cdot \operatorname{map} f=\operatorname{map} f \cdot$ filter p. The second law is that

$$
\begin{equation*}
\text { filter }(\text { all } p) \cdot c p=c p \cdot \operatorname{map}(\text { filter } p) \tag{19.6}
\end{equation*}
$$

Proofs of (19.5) and (19.6) are again left as exercises.
Now for the calculation. The starting point is to rewrite filtervalid•expand:

$$
\begin{aligned}
\text { filter valid } \cdot \text { expand }= & \text { filter }(\text { all nodups } \cdot \text { boxs }) \cdot \\
& \text { filter }(\text { all nodups } \cdot \text { cols }) \cdot \\
& \text { filter }(\text { all nodups } \cdot \text { rows }) \cdot \text { expand }
\end{aligned}
$$

The order in which the filters appear on the right is not important. The plan of attack is to send each of these filters into battle with expand. For example, in the boxs case we argue:

$$
\left.\begin{array}{rl}
& \text { filter }(\text { all nodups } \cdot \text { boxs }) \cdot \text { expand } \\
= & \quad\{(19.5) \text { since boxs } \cdot \text { boxs }=\text { id }\}
\end{array}\right\}
$$

$$
\text { filter }(\text { all nodups } \cdot \text { boxs }) \cdot \text { expand } \cdot \text { boxs } \cdot \text { map pruneRow } \cdot \text { boxs }
$$

We have shown that
filter (all nodups • boxs) • expand
$=$ filter (all nodups \cdot boxs) \cdot expand \cdot pruneBy boxs
where pruneBy $f=f \cdot$ map pruneRow $\cdot f$. Repeating the same calculation for rows and cols, we obtain
filter valid \cdot expand $=$ filter valid \cdot expand \cdot prune
where
prune $=$ pruneBy boxs \cdot pruneBy cols \cdot pruneBy rows
In conclusion, the previous definition of solve can be replaced with a new one:

```
solve = filter valid}\cdot\mathrm{ expand }\cdot\mathrm{ prune.choices
```

In fact, rather than just one prune, we can have as many prunes as we like. This is sensible, because after one round of pruning some choices may be resolved into singleton choices and another round of pruning may remove still more impossible choices. The simplest Sudoku problems are solved just by repeatedly pruning the matrix of choices until only singleton choices are left.

Single-cell expansion

For more devious puzzles we can combine pruning with another idea: expanding the choices for a single cell only. While expand installed all possible choices in all cells on the grid in one go, single-cell expansion picks on one cell and installs all the choices for that cell only. The hope is that mixing prunes with single-cell expansions can lead to a solution more quickly.
Therefore, we construct a function expand 1 that expands the choices for one cell only. This function is required to satisfy the property that, up to some permutation of the answer:

$$
\begin{equation*}
\text { expand }=\text { concat } \cdot \text { map expand } \cdot \text { expand } 1 \tag{19.7}
\end{equation*}
$$

A good choice of cell on which to perform expansion is one with the smallest number of choices (not equal to one of course). A cell with no choices means that the puzzle is unsolvable, so identifying such a cell quickly is a good idea. Think of cell containing cs choices as sitting in the middle of a row row, so row $=$ row $1+[c s]+$ row 2 , in the matrix of choices,
with rows rows 1 above this row and rows rows 2 below it. Then we can define

```
expand \(1 \quad::\) Matrix Choices \(\rightarrow[\) Matrix Choices \(]\)
expand 1 rows \(=[\) rows \(1+[\) row \(1+[c]:\) row 2\(]+\) rows \(2 \mid c \leftarrow c s]\)
where (rows 1 , row : rows 2 ) \(=\) break (any smallest) rows
    (row 1, cs: row 2\()=\) break smallest row
    smallest \(c s \quad=\) length \(c s==n\)
    \(n \quad=\) minimum (counts rows)
counts \(\quad=\) filter \((\neq 1) \cdot\) map length \(\cdot\) concat
```

The value n is the smallest number of choices, not equal to one, in any cell of the matrix of choices. If the matrix of choices contains only singleton choices, then n is the minimum of the empty list, which is not defined. The standard function break p splits a list into two:

```
break pxs=(takeWhile (not p p)xs,dropWhile (not \cdot p)xs)
```

Thus, break (any smallest) rows breaks the matrix into two lists of rows with the head of the second list being some row that contains a cell with the smallest number of choices. A second appeal to break then breaks this row into two sub-rows, with the head of the second being the element cs with the smallest number of choices. Each possible choice is installed and the matrix reconstructed. If there are zero choices, then expand 1 returns an empty list.

It follows from the definition of n that (19.7) holds only when applied to matrices with at least one non-singleton choice. Say a matrix is complete if all choices are singletons and unsafe if the singleton choices in any row, column or box contain duplicates. Incomplete and unsafe matrices can never lead to valid grids. A complete and safe matrix of choices determines a unique valid grid. These two tests can be implemented by

$$
\text { complete }=\text { all (all single) }
$$

where single is the test for a singleton list, and

$$
\text { safe } m=\text { all ok }(\text { rows } m) \wedge \text { all ok }(\text { cols } m) \wedge \text { all ok }(\text { boxs } m)
$$

where ok row $=$ nodups $[d \mid[d] \leftarrow$ row $]$.
Assuming a matrix is safe but incomplete, we can calculate:
filter valid \cdot expand
$=\quad\{$ since expand $=$ concat \cdot map expand \cdot expand 1
on incomplete matrices $\}$
filter valid • concat \cdot map expand \cdot expand 1
$=\quad\{$ since filter $p \cdot$ concat $=$ concat $\cdot \operatorname{map}($ filter $p)\}$ concat $\cdot \operatorname{map}$ (filter valid \cdot expand) \cdot expand 1
$=\quad\{$ since filter valid \cdot expand $=$ filter valid \cdot expand \cdot prune $\}$ concat $\cdot \operatorname{map}($ filter valid \cdot expand \cdot prune $) \cdot$ expand 1

Introducing search $=$ filter valid \cdot expand \cdot prune, we therefore have, on safe but incomplete matrices, that
search \cdot prune $=$ concat \cdot map search \cdot expand 1
And now we can replace solve by a third version:

```
solve \(=\) search \(\cdot\) choices
search \(m \quad \operatorname{not}(\) safe \(m) \quad=\quad[]\)
    complete \(m^{\prime}=\left[\operatorname{map}(\right.\) map head \(\left.) m^{\prime}\right]\)
    otherwise \(\quad=\operatorname{concat}\left(\right.\) map search \(\left.\left(\operatorname{expand} 1 m^{\prime}\right)\right)\)
        where \(m^{\prime}=\) prune \(m\)
```

This is our final simple Sudoku solver.

Final remarks

We tested the solver on 36 puzzles recorded at the website http:/ /haskell.org/ haskellwiki/Sudoku. It solved them in 8.8 s (on a 1 GHz Pentium 3 PC). We also tested them on six minimal puzzles (each with 17 non-blank entries) chosen randomly from the 32000 given at the site. It solved them in 111.4 s . There are about a dozen different Haskell Sudoku solvers at the site. All of these, including a very nice solver by Lennart Augustsson, deploy coordinate calculations. Many use arrays and most use monads. Ours is about twice as slow as Augustsson's on the nefarious puzzle (a particularly hard puzzle with the minimum 17 non-blank entries), but about 30 times faster than Yitz Gale's solver on easy puzzles. We also know of solvers that reduce the problem to Boolean satisfiability, constraint satisfaction, model checking and so on. I would argue that the one presented above is certainly one of the simplest and shortest. And at least it was derived, in part, by equational reasoning.

20

The Countdown problem

Introduction

Countdown is the name of a game from a popular British television programme; in France it is called Le Conte est Bon. Contestants are given six source numbers, not necessarily all different, and a target number, all of which are positive integers. The aim is to use some of the source numbers to build an arithmetic expression whose value is as close to the target as possible. Expressions are constructed using only the four basic operations of addition, subtraction, multiplication and division. Contestants are allowed 30 s thinking time. For example, with source numbers $[1,3,7,10,25,50]$ and target 831 there is no exact solution; one expression that comes closest is $7+(1+10) \times(25+50)=832$. Our aim in this pearl is to describe various programs for solving Countdown, all based in one way or another on exhaustive search. Countdown is attractive as a case study in exhaustive search because the problem is simply stated and the different solutions illustrate the space and time trade-offs that have to be taken into account in comparing functional programs.

A simple program

Here is a straightforward program for Countdown:

$$
\begin{array}{ll}
\text { countdown } 1 & :: \text { Int } \rightarrow[\text { Int }] \rightarrow(\text { Expr, Value }) \\
\text { countdown } 1 n & = \\
\text { nearest } n \cdot \text { concatMap mkExprs } \cdot \text { subseqs }
\end{array}
$$

First of all, the source numbers are given as a list; the order of the elements is unimportant, but duplicates do matter. We will suppose that the list is in ascending order, a fact that is exploited later on. Each selection is therefore represented by a nonempty subsequence. For each subsequence $x s$, all possible arithmetic expressions that can be constructed from $x s$ are
determined, along with their values. ${ }^{1}$ The results are concatenated and one nearest the target is selected.

The ingredients making up countdown 1 are defined as follows. First, subseqs returns a list of all the nonempty subsequences of a nonempty list:

$$
\begin{aligned}
\text { subseqs }[x]= & {[[x]] } \\
\text { subseqs }(x: x s)= & x s s+[x]: \operatorname{map}(x:) x s s \\
& \text { where } x s s=\text { subseqs } x s
\end{aligned}
$$

Next, the data types of expressions and values can be declared by

```
data Expr = Num Int | App Op Expr Expr
data Op = Add | Sub | Mul | Div
type Value = Int
```

The value of an expression is computed by

```
value :: Expr }->\mathrm{ Value
value (Num x) =
value (App op e1e2)=apply op (value e1) (value e 2)
```

where apply $A d d=(+)$, apply $S u b=(-)$ and so on. However, not all possible expressions are valid in Countdown. For instance, the result of a subtraction should be a positive integer, and division is valid only when the divisor divides the dividend exactly. An expression is valid if its subexpressions are, and if the operation at the root passes the test legal, where

```
legal \(\quad:: \quad O p \rightarrow\) Value \(\rightarrow\) Value \(\rightarrow\) Bool
legal Add v1 v2 = True
legal Sub v1 v2 \(=(v 2<v 1)\)
legal Mul v1 v2 \(=\) True
legal Div \(v 1 v 2=(v 1 \bmod v 2==0)\)
```

The next ingredient is $m k E x p r$, which creates a list of all legal expressions that can be built using the given subsequence:

$$
\begin{array}{lll}
\text { mkExprs } & :: & {[\text { Int }] \rightarrow[(\text { Expr }, \text { Value })]} \\
\text { mkExprs }[x]= & {[(N u m x, x)]} \\
m k E x p r s x s: & {[e v \mid(y s, z s) \leftarrow \text { unmerges } x s,} \\
& e v 1 \leftarrow m k E x p r s \text { ys }, \\
& e v 2 \leftarrow m k \text { Exprs } z s, \\
& e v \leftarrow \text { combine ev } 1 \text { ev } 2]
\end{array}
$$

[^9]Given an ordered list $x s$ of length greater than one, unmerges $x s$ is a list of all pairs ($y s, z s$) of nonempty lists such that merge $y s z s=x s$, where merge merges two ordered lists into one (it is in the specification of unmerges that we exploit the fact that inputs are ordered). One way of defining unmerges is as follows:

$$
\begin{aligned}
\text { unmerges }: & :[a] \rightarrow[([a],[a])] \\
\text { unmerges }[x, y]= & {[([x],[y]),([y],[x])] } \\
\text { unmerges }(x: x s)= & {[([x], x s),(x s,[x])]+} \\
& \text { concatMap }(\text { add } x)(\text { unmerges } x s s) \\
& \text { where } \text { add } x(y s, z s)=[(x: y s, z s),(y s, x: z s)]
\end{aligned}
$$

It is an instructive exercise to calculate this definition of unmerges from its specification, but we will leave that pleasure to the reader.

The function combine is defined by

```
combine :: (Expr,Value) }->\mathrm{ (Expr, Value ) }->[(\mathrm{ Expr,Value )]
combine (e1,v1) (e2,v2)
    = [(App op e1 e2, apply op v1 v2)|op\leftarrowops, legal op v1 v2]
```

where ops $=[$ Add, Sub, Mul, Div $]$.
Finally, the function nearest n takes a nonempty list of expressions and returns some expression in the list whose value is nearest the target n. We also want to stop searching the list if and when an expression is found whose value matches the target exactly:

$$
\begin{aligned}
& \text { nearest } n((e, v): \text { evs }) \quad=\text { if } d=0 \text { then }(e, v) \\
& \text { else search } n d(e, v) \text { evs } \\
& \text { where } d=a b s(n-v) \\
& \begin{array}{l}
\text { search ndev[] } \\
\text { search ndev }((e, v): \text { evs })
\end{array} \\
& =e v \\
& d^{\prime}=0 \quad=(e, v) \\
& d^{\prime}<d=\text { search } n d^{\prime}(e, v) \text { evs } \\
& d^{\prime} \geq d=\text { search } n d \text { ev evs } \\
& \text { where } d^{\prime}=a b s(n-v)
\end{aligned}
$$

For example, under GHCi (version 6.8.3 running on a 2394 MHz laptop under Windows XP) we have
> display (countdown1 831 [1,3,7,10,25,50])
$(7+((1+10) *(25+50)))=832$
(42.28 secs, 4198816144 bytes)
> length \$ concatMap mkExprs \$ subseqs [1,3,7,10,25,50]
4672540

So countdown 1 takes about 42 s to determine and analyse about 4.5 million expressions, about 100000 expressions per second. This is not within the 30 s limit, so is not good enough.

Two optimisations

There are two simple optimisations that can help improve matters. The first concerns the legality test. There are about 33 million expressions that can be built from six numbers, of which, depending on the input, between 4 million and 5 million are legal. But there is a great deal of redundancy. For example, each of the following pairs of expressions is essentially the same:

$$
x+y \text { and } y+x, \quad x * y \text { and } y * x, \quad(x-y)+z \text { and }(x+z)-y
$$

A stronger legality test is provided by

$$
\begin{aligned}
\text { legal Add } v 1 v 2 & =(v 1 \leq v 2) \\
\text { legal Sub } v 1 v 2 & =(v 2<v 1) \\
\text { legal Mul } v 1 v 2 & =(1<v 1) \wedge(v 1 \leq v 2) \\
\text { legal Div } v 1 v 2 & =(1<v 2) \wedge(v 1 \bmod v 2==0)
\end{aligned}
$$

This stronger test takes account of the commutativity of + and $*$ by requiring that arguments be in numerical order, and the identity properties of $*$ and / by requiring that their arguments be non-unitary. This test reduces the number of legal expressions to about 300000 . One can go further and strengthen the legality test yet more, but we will leave that to the next section.

The second optimisation concerns unmerges and combine. As defined above, unmerges $x s$ returns all pairs $(y s, z s)$ such that merge ys $z s=x s$, and that means each pair is generated twice, once in the form $(y s, z s)$ and once in the form $(z s, y s)$. There is no need to double the work, and we can redefine unmerges so that it returns only the essentially distinct pairs:

$$
\begin{aligned}
\text { unmerges }[x, y]= & {[([x],[y])] } \\
\text { unmerges }(x: x s)= & {[([x], x s)]+\text { concatMap }(\text { add } x)(\text { unmerges } x s s) } \\
& \text { where } \text { add } x(y s, z s)=[(x: y s, z s),(y s, x: z s)]
\end{aligned}
$$

The function combine can be easily modified to take account of the new unmerges:

$$
\left.\begin{array}{l}
\text { combine }(e 1, v 1)(e 2, v 2) \\
=\quad[(\text { App op e } 1 e 2, \text { apply op } v 1 v 2) \mid \text { op } \leftarrow \text { ops, legal op } v 1 v 2]+ \\
\quad[(\text { App op e } 2 \text { e } 1, \text { apply op } v 2 v 1)
\end{array} \text { op } \leftarrow \text { ops, legal op } v 2 v 1\right]\left[\begin{array}{l}
\text { ap }
\end{array}\right.
$$

```
\(\operatorname{comb1}(e 1, v 1)(e 2, v 2)\)
    \(=[(\) App Add e1 e2, v1 + v2), (App Sub e2e1, v2-v1)] +
        if \(1<v 1\) then
        \([(\) App Mul e1e2,v1*v2)] + [(App Div e2e1,q)|r=0]
        else []
        where \((q, r)=\operatorname{divMod} v 2 v 1\)
comb2 (e1, v1) (e2, v2)
    \(=[(A p p\) Add e1 e2, v1 + v2)] +
        if \(1<v 1\) then
        [(App Mul e1 e2, v1*v2), (App Div e1 e2, 1)]
        else []
```

Fig. 20.1 Definitions of comb1 and comb2

However, a faster method is to incorporate the stronger legality test directly into the definition of combine:

```
combine (e1,v1) (e2,v2)
    | v1<v2 = comb1 (e1,v1) (e2,v2)
    | v1 == v2 = comb2 (e1,v1) (e2,v2)
    | v1>v2 = comb1 (e2,v2)(e1,v1)
```

The function comb1 is used when the first expression has a value strictly less than the second, and comb2 when the two values are equal. Their definitions are given in Figure 20.1. Installing these changes leads to countdown2, whose definition is otherwise the same as countdown1. For example:

```
> display (countdown2 831 [1,3,7,10,25,50])
(7+((1+10)*(25+50))) = 832
(1.77 secs, 168447772 bytes)
> length $ concatMap mkExprs $ subseqs [1,3,7,10,25,50]
240436
```

This is better, in that it takes only about 2 s to determine and analyse about 250000 expressions, but there is still room for improvement.

An even stronger legality test

In an attempt to restrict still further the number of expressions that have to be considered, let us say that an expression is in normal form if it is a sum of the form

$$
\left[\left(e_{1}+e_{2}\right)+\cdots+e_{m}\right]-\left[\left(f_{1}+f_{2}\right)+\cdots+f_{n}\right]
$$

where $m \geq 1$ and $n \geq 0$, both e_{1}, e_{2}, \ldots and f_{1}, f_{2}, \ldots are in ascending order of value, and each e_{j} and f_{j} is a product of the form

$$
\left[\left(g_{1} * g_{2}\right) * \cdots * g_{p}\right] /\left[\left(h_{1} * h_{2}\right) * \cdots * h_{q}\right]
$$

where $p \geq 1$ and $q \geq 0$, both g_{1}, g_{2}, \ldots and h_{1}, h_{2}, \ldots are in ascending order of value and each g_{j} and h_{j} is either a single number or an expression in normal form.

Up to rearrangements of subexpressions with equal values, each expression has a unique normal form. Of the 300000 expressions over six numbers that are legal according to the earlier definition, only about 30000 to 70000 are in normal form. However, normal form does not eliminate redundancy completely. For example, the expressions $2+5+7$ and $2 * 7$ have the same value, but the latter is built out of numbers that are a subsequence of the former. There is, therefore, no need to build the former. But we will not explore the additional optimisation of "thinning" a list of expressions to retain only the really essential ones. Experiments show that thinning turns out to be not worth the candle: the savings made in analysing only the really essential expressions are outweighed by the amount of effort needed to determine them.

We can capture normal forms by strengthening the legality test, but this time we have to consider expressions as well as values. First let us define non by

```
non :: Op }->\mathrm{ Expr }->\mathrm{ Bool
non op (Num x) = True
non op1(App op2e1e2)=op1\not=op2
```

Then the stronger legality test is implemented by

```
legal \(:: \quad\) Op \(\rightarrow(\) Expr, Value \() \rightarrow(\) Expr, Value \() \rightarrow\) Bool
legal Add \((e 1, v 1)(e 2, v 2)\)
    \(=(v 1 \leq v 2) \wedge\) non Sub \(e 1 \wedge\) non Add \(e 2 \wedge\) non Sub \(e 2\)
legal Sub \((e 1, v 1)(e 2, v 2)\)
    \(=(v 2<v 1) \wedge\) non Sub e \(1 \wedge\) non Sub e 2
legal \(\operatorname{Mul}(e 1, v 1)(e 2, v 2)\)
    \(=(1<v 1 \wedge v 1 \leq v 2) \wedge\) non Div e \(1 \wedge\) non Mul \(e 2 \wedge\) non Div \(e 2\)
legal Div \((e 1, v 1)(e 2, v 2)\)
    \(=(1<v 2 \wedge v 1 \bmod v 2=0) \wedge\) non Div e \(1 \wedge\) non Div e 2
```

Just as before, we can incorporate the above legality test into a modified definition of combine. It is necessary only to change comb1 and comb2. The revised definitions are given in Figure 20.2.

```
\(\operatorname{comb1}(e 1, v 1)(e 2, v 2)\)
    \(=\) (if non Sub e1 \(\wedge\) non Sub \(e 2\) then
        \([(\) App Add e1 e2, v1 + v2) | non Add e2] \(+[(A p p\) Sub e2e1, v2-v1)]
        else []) \#
        (if \(1<v 1 \wedge\) non Div e \(1 \wedge\) non Div e 2 then
            [(App Mul e1 e2, v1*v2)| non Mul e2] + [(App Div e2e1,q)|r==0]
            else [])
            where \((q, r)=\) divMod \(v 2 v 1\)
\(\operatorname{comb} 2(e 1, v 1)(e 2, v 2)\)
    \(=[(\) App Add e1 e2, v1 + v2) | non Sub e1, non Add e2, non Sub e2] +
        (if \(1<v 1 \wedge\) non Div \(e 1 \wedge\) non Div e 2 then
        \([(\) App Mul e1 e2, v1*v2)| non Mul e2] \(+[(\) App Div e1 e2,1)]
        else [])
```

Fig. 20.2 New definitions of comb1 and comb2

Calling the result of installing these changes countdown3, we have

```
> display (countdown3 831 [1,3,7,10,25,50])
(7+((1+10)*(25+50))) = 832
(1.06 secs, }88697284 bytes
> length $ concatMap mkExprs $ subseqs [1,3,7,10,25,50]
36539
```

Now it takes only 1 s to determine and analyse about 36000 expressions, which is roughly double the speed of countdown 2 .

Memoisation

Even ignoring the redundancy in the set of expressions being determined, computations are repeated because every subsequence is treated as an independent problem. For instance, given the source numbers [1 .. 6], expressions with basis $[1 . .5]$ will be computed twice, once for the subsequence $[1 . .5]$ and once for $[1 . .6]$. Expressions with basis $[1 . .4]$ will be computed four times, once for each of the subsequences

$$
[1,2,3,4], \quad[1,2,3,4,5], \quad[1,2,3,4,6], \quad[1,2,3,4,5,6]
$$

In fact, expressions with a basis of k numbers out of n source numbers will be computed 2^{n-k} times.

One way to avoid repeated computations is to memoise the computation of mkExprs. In memoisation, the top-down structure of mkExprs is preserved but computed results are remembered and stored in a memo table
for subsequent retrieval. To implement memoisation we need a data type Memo on which the following operations are supported:

```
empty :: Memo
fetch :: Memo }->[\mathrm{ Int ] }->[(Expr, Value)
store :: [Int] ->[(Expr,Value)]-> Memo }->\mathrm{ Memo
```

The value empty defines an empty memo table, fetch takes a list of source numbers and looks up the computed expressions for the list, while store takes a similar list together with the expressions that can be built from them, and stores the result in the memo table.

We can now rewrite mkExprs to read

$$
\begin{array}{lcc}
\text { mkExprs } & :: & \text { Memo } \rightarrow[\text { Int }] \rightarrow[(\text { Expr }, \text { Value })] \\
\text { mkExprs memo }[x]= & {[(\text { Num } x, x)]} \\
\text { mkExprs memo xs }= & {[\text { ev } \mid(y s, z s) \leftarrow \text { unmerges } x s,} \\
& e v 1 \leftarrow \text { fetch memo } y s, \\
& e v 2 \leftarrow \text { fetch memo zs, } \\
& e v \leftarrow \text { combine ev } 1 \text { ev } 2]
\end{array}
$$

This code assumes that for any given subsequence $x s$ of the input, all the arithmetic expressions for $y s$ and $z s$ for each possible split of $x s$ have already been computed and stored in the memo table. This assumption is valid if we list and process the subsequences of the source numbers in such a way that if $x s$ and $y s$ are both subsequences of these numbers, and $x s$ is a subsequence of $y s$, then $x s$ appears before $y s$ in the list of subsequences. Fortunately, the given definition of subseqs does possess exactly this property. We can now define

```
countdown \(4 \quad:: \quad\) Int \(\rightarrow[\) Int \(] \rightarrow(\) Expr, Value \()\)
countdown \(4 n=\) nearest \(n \cdot\) extract \(\cdot\) memoise \(\cdot\) subseqs
```

where memoise is defined by

```
memoise :: [[Int]] }->\mathrm{ Memo
memoise = foldl insert empty
insert memo xs = store xs (mkExprs memo xs) memo
```

The function extract flattens a memo table, returning a list of all the expressions in it. This function is defined below when we fix on the structure of Memo.

One possible structure for Memo is a trie:

```
data Trie a = Node a [(Int,Trie a)]
type Memo = Trie [(Expr,Value)]
```

A trie is a Rose tree whose branches are labelled, in this case with an integer. The empty memo table is defined by empty $=$ Node [][]. We search a memo table by following the labels on the branches:

fetch	$::$ Memo $\rightarrow[$ Int $] \rightarrow[($ Expr, Value $)]$
fetch $($ Node es $x m s)[]$	$=$ es
fetch $($ Node es $x m s)(x: x s)$	$=$ fetch $($ follow x xms $)$ xs
follow	$::$ Int $\rightarrow[($ Int, Memo $)] \rightarrow$ Memo
follow x xms	$=$ head $\left[m \mid\left(x^{\prime}, m\right) \leftarrow x m s, x==x^{\prime}\right]$

Note that searching a table for an entry with label $x s$ returns an undefined result (the head of an empty list) if there is no path in the trie whose branches are labelled with $x s$. But this is not a problem, because the definition of subseqs guarantees that entries are computed in the right order, so all necessary entries will be present.

Here is how we store new entries:

$$
\begin{aligned}
& \text { store }::[\text { Int }] \rightarrow[(\text { Expr, Value })] \rightarrow \text { Memo } \rightarrow \text { Memo } \\
& \text { store }[x] \text { es } \text { (Node fs xms })=\text { Node fs }((x, \text { Node es }[]): \text { xms }) \\
& \text { store }(x: \text { xs }) \text { es }(\text { Node fs xms }) \\
& =\text { Node fs }(\text { yms }+(x, \text { store xs es } m): \text { zms }) \\
& \text { where }(\text { yms },(z, m): \text { zms })=\text { break (equals } x) \text { xms } \\
& \text { equals } x(z, m) \quad=(x=z)
\end{aligned}
$$

The definition of store assumes that if an entry for $x s+[x]$ is new, then the entries for $x s$ are already present in the table. The Haskell function break p was defined in the previous pearl.

Finally, we can extract all entries from a memo table by

$$
\begin{array}{ll}
\text { extract } & :: \text { Memo } \rightarrow[(\text { Expr, Value })] \\
\text { extract }(\text { Node es xms }) & =\text { es }+ \text { concatMap }(\text { extract } \cdot \text { snd }) \text { xms }
\end{array}
$$

Now we have, for example:

```
> display (countdown4 831 [1,3,7,10,25,50])
(10*((1+7)+(3*25))) = 830
(0.66 secs, 55798164 bytes)
```

The computation returns a different expression, owing to the different order in which expressions are analysed, but at a cost of about half that of countdown3.

Skeleton trees

Memoisation of countdown comes at a cost: building the memo table makes heavy demands on the heap and much time is spent in garbage collection. How can we keep the advantage of memoisation while reducing space requirements?

Suppose we ignore the operators in an expression, focusing only on the parenthesis structure. How many different oriented binary trees can we build? In an oriented tree the order of the subtrees is not taken into account. We exploited this idea in an "oriented" definition of unmerges. It turns out that there are only 1881 oriented binary trees with a basis included in six given numbers. An oriented binary tree may also be called a skeleton tree. For an algorithm that is economical in its use of space we could, therefore, build these trees first, and only afterwards insert the operators.

Pursuing this idea, consider the following type of tip-labelled binary tree:

```
data Tree = Tip Int | Bin Tree Tree
```

Instead of memoising expressions we can memoise trees:

$$
\text { type Memo }=\text { Trie }[\text { Tree }]
$$

We can build trees in exactly the same way as we built expressions:

$$
\begin{array}{lll}
\begin{array}{ll}
m k \text { Trees } & :: \\
\text { mkTrees memo }[x]= & \text { Memo } \rightarrow[\text { Int }] \rightarrow[\text { Tree }] \\
\text { mkTrees memo } x s= & {[\text { Bin } t 1 t 2 \mid}
\end{array} \\
& (y s, z s) \leftarrow \text { unmerges } x s, \\
& t 1 \leftarrow \text { fetch memo ys }, \\
& t 2 \leftarrow \text { fetch memo zs }]
\end{array}
$$

We can convert a tree into a list of expressions by inserting operators in all legal ways:

```
toExprs :: Tree }->[(Expr,Value)
toExprs(Tip x) = [(Num x, x)]
toExprs(Bin t1 t2)=[ev | ev1\leftarrowtoExprs t1, ev2\leftarrowtoExprs t2,
    ev}\leftarrowcombine ev1 ev2
```

Now we have

```
countdown5 n
    = nearest n}\cdot\mathrm{ concatMap toExprs }\cdot\mathrm{ extract }\cdot\mathrm{ memoise }\cdot\mathrm{ subseqs
```

File	countdown1		countdown2		countdown3				countdown4			countdown5	
	Total	GC											
d6	1.56	0.78	0.19	0.08	0.09	0.05	0.08	0.02	0.05	0.00			
d7	77.6	36.9	2.03	1.19	0.44	0.09	0.53	0.30	0.33	0.02			
d8	-	-	99.8	57.2	13.8	7.30	16.9	9.02	7.22	0.31			

Fig. 20.3 Running times of countdown for inputs of six, seven and eight source numbers
where memoise is defined by

| memoise | $::[[$ Int $]] \rightarrow$ Memo |
| :--- | :--- | :--- |
| memoise | $=$ foldl insert empty |
| insert memo xs | $=$ store $x s(m k T r e e s ~ m e m o ~ x s) ~ m e m o ~$ |

Running our standard example yields

```
> display (countdown5 831 [1,3,7,10,25,50])
(10*((1+7)+(3*25))) = 830
(1.06 secs, 88272332 bytes)
```

So it seems on the evidence of this single test that memoising skeleton trees rather than expressions may not have been such a good idea. But the situation merits a closer look.

A further experiment

Let us see how the five versions of countdown described above perform with an optimising compiler. We compiled the five programs under GHC, version 6.8.3, with the $-O 2$ flag set. The statistics were gathered using GHC's run-time system with the $-s$ flag. There were three files, $d 6, d 7$ and $d 8$ containing six, seven and eight source numbers respectively. In each case we ensured there was no exact match, so the full space of possible expressions was explored. The statistics are provided in Figure 20.3. Shown are the total time and the time spent in garbage collection; all times are in seconds. The program countdown 1 was not run on $d 8$.

Three main conclusions can be drawn from the experiment. First and most obviously, compilation gives a substantial improvement over interpretation. Second, for six or seven source numbers, there is not much difference between countdown 3 (the version with the strong legality test), countdown 4 (the version with both the strong legality test and memoisation) and countdown 5 (the version with the strong legality test and memoisation of skeleton trees
rather than expressions). But for eight source numbers, the final version countdown 5 has begun to pull away, running about twice as fast as the others, mostly owing to the reduced time spent in garbage collection, in fact about 5% of the total time, compared with about 50% for countdown 3 and countdown4.

Final remarks

This pearl has been based on material extracted and modified from Bird and Mu (2005), which presents the specification of Countdown in a relational setting, and goes on to calculate a number of programs using the algebraic laws of fold and unfold. None of these calculations has been recorded above. Countdown was first studied in an earlier pearl (Hutton, 2002) as an illustration of how to prove that functional programs meet their specification. Hutton's aim was not to derive the best possible algorithm, but to present one whose correctness proof required only simple induction. Essentially, Hutton's proof dealt with the correctness of countdown 2 .

References

Bird, R. S. and Mu, S.-C. (2005). Countdown: a case study in origami programming. Journal of Functional Programming 15 (6), 679-702.
Hutton, G. (2002). The Countdown problem. Journal of Functional Programming 12 (6), 609-16.

21

Hylomorphisms and nexuses

Introduction

It was Erik Meijer who coined the name hylomorphism to describe a computation that consists of a fold after an unfold. The unfold produces a data structure and the fold consumes it. The intermediate data structure can be eliminated from the computation, a process called deforestation. The result is a pattern of recursion that fits most of the recursive definitions one is likely to meet in practice. Nevertheless, the intermediate data structure has its uses. It defines the call-tree of the hylomorphism, and can be made the workhorse of an alternative, and sometimes faster, implementation of the hylomorphism. Improvements in speed are possible when the call-tree contains shared nodes, nodes with more than one incoming edge. A tree with shared nodes is called a nexus and a nexus arises with any recursion whose recursive subproblems overlap, as is typical with dynamic programming. Our aim in this pearl is to illustrate how to build nexuses by considering two or three particularly interesting examples.

Folds, unfolds and hylomorphisms

Rather than discuss ideas in an abstract setting, we will consider just one example of an intermediate data structure, namely the following kind of leaf-labelled tree:

```
data Tree a = Leaf a | Node[Tree a]
```

The fold and unfold functions for Tree a depend on the isomorphism
Tree $a \approx$ Either $a[$ Tree $a]$
To fold over a tree one has to supply an accumulating function with type Either $a[b] \rightarrow b$, and to unfold into a tree one has to supply a function with type $b \rightarrow$ Either $a[b]$. More precisely:

$$
\begin{aligned}
& \text { fold } \quad:: \quad(\text { Either } a[b] \rightarrow b) \rightarrow \text { Tree } a \rightarrow b \\
& \text { fold } f t=\text { case } t \text { of } \\
& \text { Leaf } x \rightarrow f(\text { Left } x) \\
& \text { Node ts } \rightarrow f(\text { Right }(\operatorname{map}(\text { fold } f) t s) \\
& \text { unfold } \quad:: \quad(b \rightarrow \text { Either } a[b]) \rightarrow b \rightarrow \text { Tree } a \\
& \text { unfold } g x=\text { case } g x \text { of } \\
& \text { Left } y \quad \rightarrow \quad \text { Leaf } y \\
& \text { Right } x s \rightarrow \text { Node (map (unfold } g \text {) xs) }
\end{aligned}
$$

Defining hylo $f g=$ fold $f \cdot$ unfold g and deforesting, we obtain

$$
\begin{aligned}
\text { hylo } f g x=\text { case } g x \text { of } & \\
\text { Left } y & \rightarrow f(\text { Left } y) \\
\text { Right } x s & \rightarrow f(\text { Right }(\text { map }(\text { hylo } f g) x s))
\end{aligned}
$$

The pattern of this recursive definition is less familiar than it might be, mostly because the presence of the type Either obscures what is going on. So, let us simplify a little, while maintaining full generality. A function with type Either $a[b] \rightarrow b$ can be unpacked into two component functions and fold can be expressed in the alternative form

$$
\begin{array}{ll}
\text { fold } & ::(a \rightarrow b) \rightarrow([b] \rightarrow b) \rightarrow \text { Tree } a \rightarrow b \\
\text { fold } f g(\text { Leaf } x) & =f x \\
\text { fold } f g(\text { Node ts }) & =g(\operatorname{map}(\text { fold } f g) t s)
\end{array}
$$

Similarly, a function with type $b \rightarrow$ Either $a[b]$ can be unpacked into three simpler functions, and unfold can be expressed in the alternative form

$$
\begin{array}{ll}
\text { unfold } & ::(b \rightarrow \text { Bool }) \rightarrow(b \rightarrow a) \rightarrow(b \rightarrow[b]) \rightarrow b \rightarrow \text { Tree } a \\
\text { unfold } p v h x= & \text { if } p x \text { then Leaf }(v x) \text { else } \\
& \text { Node }(\operatorname{map}(\text { unfold } p v h)(h x))
\end{array}
$$

With these new definitions, hylo $=$ fold $f g \cdot$ unfold $p v h$ can be deforested to read

$$
\text { hylo } x=\text { if } p x \text { then } f(v x) \text { else } g(\text { map hylo }(h x))
$$

This is better than before, but now we see that the function v is redundant since its effect can be absorbed into a modified definition of f. Removing it gives

$$
\begin{equation*}
\text { hylo } x=\text { if } p x \text { then } f x \text { else } g(\text { map hylo }(h x)) \tag{21.1}
\end{equation*}
$$

as the general form of a hylomorphism over Tree a. In words, if the argument x is basic $(p x)$, then compute the result $f x$ directly; otherwise decompose x into subproblems $(h x)$, compute the result of each subproblem
(map hylo $(h x)$) and assemble the results with g. At last, this seems a very familiar form of recursion.

Definition (21.1) is the deforested version of fold $f g \cdot$ unfold $p i d h$. As the opposite of deforestation there is the idea of annotation, in which the tree structure is maintained to the end of the computation, but labels are attached to each node that carries the value of the hylomorphism for the subtree defined by the node. More precisely, define the labelled variant LTree of Tree by

$$
\text { data LTree } a=\text { LLeaf } a \mid \text { LNode } a[\text { LTree } a]
$$

Now define fill by

$$
\begin{array}{ll}
\text { fill }::(a \rightarrow b) \rightarrow([b] \rightarrow b) \rightarrow \text { Tree } a \rightarrow \text { LTree } b \\
\text { fill } f g=\text { fold }(\text { lleaf } f)(\text { lnode } g)
\end{array}
$$

where the smart constructors lleaf and lnode are defined by

$$
\begin{aligned}
& \text { lleaf } f x=\text { LLeaf }(f x) \\
& \text { lnode } g \text { ts }=\text { LNode }(g(\text { map label } t s)) t s
\end{aligned}
$$

and label by

$$
\begin{array}{ll}
\text { label (LLeaf x) } & =x \\
\text { label (LNode x ts) } & =x
\end{array}
$$

The function fill consumes a tree, but it produces a labelled tree with exactly the same structure in which each label is the result of folding the subtree rooted there. The label at the root of the tree gives the value of the hylomorphism, so

$$
\text { hylo }=\text { label } \cdot \text { fill } f g \cdot \text { unfold } p \text { id } h
$$

With this definition we have arrived at the central idea of the pearl. Suppose that the tree unfold $p i d h$ is a genuine nexus, and suppose we can apply fill $f g$ to it without destroying sharing. Then hylo can be computed more efficiently than by the recursive method of (21.1).

It remains to see how the idea works out in practice. In all the examples to come we are going to restrict (21.1) to the case where x is a nonempty list and p is the test for a singleton list. Thus, our examples are all hylomorphisms of the form

$$
\begin{array}{ll}
\text { hylo } & ::([a] \rightarrow b) \rightarrow([b] \rightarrow b) \rightarrow([a] \rightarrow[[a]]) \rightarrow[a] \rightarrow b \\
\text { hylo } f g h & =\text { fold } f g \cdot m k \text { Tree } h
\end{array}
$$

where $m k$ Tree $h=$ unfold single id h and single is the test for singletons. In particular, h takes a list of length at least two as argument and returns a list of nonempty lists.

Fig. 21.1 A nexus

Three examples

For our first example, take $h=$ split, where

$$
\text { split } x s=[\text { take } n x s, \text { drop } n x s] \quad \text { where } n=\text { length } x s \operatorname{div} 2
$$

Restricted to lists $x s$ of length 2^{n}, the result of mkTree split $x s$ is a perfect binary tree with $2^{n}-1$ nodes and 2^{n} leaves, each labelled with singleton lists, one for each element of $x s$. There is no sharing, so the nexus also has this number of nodes and leaves. As a concrete instance, hylo id merge split is the standard divide and conquer algorithm for mergesort restricted to lists whose lengths are a power of 2 . Contrast this with our second example, in which we take $h=$ isegs, where

$$
\text { isegs } x s=[\text { init } x s, \text { tail } x s]
$$

For example, isegs "abcde" = ["abcd", "bcde"]. The function isegs is so named because it returns the two immediate segments of a list of length at least 2 . The result of $m k$ Tree isegs $x s$ is a perfect binary tree whose leaves are again labelled with singletons. The tree has size $2^{n}-1$ nodes where $n=$ length $x s$, so it takes at least this time to build it. However, unlike our first example, subtrees can be shared, giving us a genuine nexus. An example is pictured in Figure 21.1. The nexus has been labelled with the distinct nonempty segments of $a b c d e$. More precisely, it has been filled with fill id recover, where

$$
\begin{array}{lll}
\text { recover } & :: & {[[a]] \rightarrow[a]} \\
\text { recover xss } & = & \text { head (head xss) : last xss }
\end{array}
$$

Fig. 21.2 Another nexus

The function recover satisfies recover \cdot isegs $=i d$. The nexus has $n(n+1) / 2$ nodes for an input of length n, so sharing gives a significant reduction in size.

For our third example, take $h=$ minors, where

$$
\begin{array}{ll}
\operatorname{minors}[x, y] & =[[x],[y]] \\
\operatorname{minors}(x: x s) & =\operatorname{map}(x:)(\text { minors } x s)+[x s]
\end{array}
$$

For example, minors "abcde" = ["abcd", "abce", "abde", "acde", "bcde"]. The function minors returns those subsequences of its argument in which just one element is dropped. ${ }^{1}$ The result returned by mkTree minors xs, where $x s$ is a nonempty list, is once again a tree labelled with singletons. For an input of length n the tree has size $S(n)$, where $S(0)=0$ and $S(n+1)=$ $1+(n+1) S(n)$. Solving this recurrence gives

$$
S(n)=n!\sum_{k=1}^{n} \frac{1}{k!}
$$

so $S(n)$ is between $n!$ and $e n!^{2}$ Again, there is potential for sharing, and one nexus is pictured in Figure 21.2. The nexus has been labelled with the distinct nonempty subsequences of $a b c d e$; more precisely, it has been filled by fill id recover, where recover is the same as in our second example. The nexus has only $2^{n}-1$ nodes, which is a substantial reduction over the tree.

[^10]
Building a nexus

We now turn to the problem of how to build a nexus and how to fill it without destroying sharing. In all our examples the nexus has its leaves at the same depth, so one obvious idea is to build the nexus fill $f g \cdot m k$ Tree h layer by layer from bottom to top. Building stops when we have a singleton layer. It also seems obvious that each layer should be a list of labelled trees, i.e. $[L T$ Tree $a]$, but this decision is premature. Instead, we postulate a type Layer a, so that each layer is an element of Layer (LTree a). The general bottom-up scheme for constructing the nexus of fill $f g \cdot m k$ Tree h for various h is then implemented by

$$
m k N e x u s f g=\text { label } \cdot \text { extractL } \cdot \text { until singleL }(\text { step } L g) \cdot \text { initialL } f
$$

where the subsidiary functions have the following types:

$$
\begin{array}{lll}
\text { initialL } & :: & ([a] \rightarrow b) \rightarrow[a] \rightarrow \text { Layer }(\text { LTree } b) \\
\text { stepL } & :: & ([b] \rightarrow b) \rightarrow \text { Layer }(\text { LTree } b) \rightarrow \text { Layer }(\text { LTree } b) \\
\text { singleL } & :: & \text { Layer }(\text { LTree } b) \rightarrow \text { Bool } \\
\text { extractL } & :: & \text { Layer }(\text { LTree } b) \rightarrow \text { LTree } b
\end{array}
$$

Our aim is to find implementations of these four functions for each of the three instantiations, $h=$ split, $h=$ isegs and $h=$ minors.

The first two, $h=$ split and $h=$ isegs, are easy because we can get away with choosing Layer $a=[a]$ and defining

$$
\begin{aligned}
\text { initialL } f & =\operatorname{map}(\text { lleaf } f \cdot \text { wrap }) \\
\text { singleL } & =\text { single } \\
\text { extractL } & =\text { head }
\end{aligned}
$$

where wrap $x=[x]$. Thus, the initial layer is a list of leaves. The definition of step L for $h=$ split is

$$
\text { step } L g=\operatorname{map}(\text { lnode } g) \cdot \text { group }
$$

where group $::[a] \rightarrow[[a]]$ groups a list into pairs and is defined by

$$
\begin{array}{ll}
\operatorname{group}[] & =[] \\
\operatorname{group}(x: y: x s) & =[x, y]: \text { group } x s
\end{array}
$$

With these definitions we have, for example, that mkNexus id merge xs, where $x s$ is a list whose length is a power of 2 , is a bottom-up definition of mergesort in which elements are merged in pairs, then merged in fourths, and so on.

For $h=i s e g s$ we just have to change the definition of group to read

$$
\begin{array}{ll}
\operatorname{group}[x] & =[] \\
\operatorname{group}(x: y: x s) & =[x, y]: \operatorname{group}(y: x s)
\end{array}
$$

Thus, group xs now returns a list of the adjacent pairs of elements of $x s$. This choice is a fairly obvious one, as can be appreciated by referring to Figure 21.1, and we omit a formal proof.

As might be expected, the case $h=$ minors is considerably more difficult. We have to find some way of grouping the trees at one level for assembly into the trees at the next level. Let us begin slowly by seeing what happens to the bottom layer, a list of leaves. We have to pair up the leaves, and one way of doing so is illustrated for five leaves a, b, c, d and e by

$$
\left(\begin{array}{llll}
a b & a c & a d & a e
\end{array}\right) \quad(b c \quad b d \quad b e) \quad\left(\begin{array}{lll}
c d & c e
\end{array}\right) \quad(d e)
$$

Here, $a b$ abbreviates $[a, b]$ and so on. Ignoring the parenthetical information, the second layer is obtained by redefining group to read

$$
\begin{aligned}
\operatorname{group}[x]= & {[] } \\
\operatorname{group}(x: x s)= & \operatorname{map}(\text { bind } x) x s+\text { group } x s \\
& \text { where bind } x y=[x, y]
\end{aligned}
$$

At the next level we have to combine pairs into triples, and the way to do this is to exploit the grouping structure implicit in the second layer: pair up the elements in the first group and combine each pair with the corresponding element in the remaining groups. Then carry out the tripling procedure with the remaining groups. This leads to the third layer

$$
((a b c \quad a b d \quad a b e) \quad(a c d \quad a c e) \quad(a d e)) \quad((b c d \quad b c e) \quad(b d e)) \quad((c d e))
$$

in which $a b c$ abbreviates $[[a, b],[a, c],[b, c]]$, and so on. The fourth layer, namely a grouping of quadruples,

$$
(((a b c d \quad a b c e) \quad(a b d e)) \quad((a c d e))) \quad(((b c d e)))
$$

can be computed in the same fashion: this time triple up the first group and combine each triple with the corresponding triple in the remaining groups and then repeat the quadrupling for the remaining groups.

The necessary grouping information can be captured by representing each layer as a list of trees; in other words, a forest. The forest has shape constraints and is determined by two numbers, its length n and the common depth d of its component trees. A forest with depth 0 consists of a list of n leaves. A forest of length n and depth $d+1$ consists of a list of n trees in which the children of the first tree are a forest of length n and depth d, the
children of the second tree are a forest of length $n-1$ and depth d, and so on, down to the final tree whose children are a forest of length 1 and depth d. The bottom layer of our nexus is a forest of length n and depth 0 , the next layer a forest of length $n-1$ and depth 1 , and so on, with the top layer being a forest of length n and depth $n-1$. As a data type, a forest is an element of [Tree a], so we define Layer $a=[$ Tree $a]$. The fact that we started out the pearl with the type Tree a is purely fortuitous; we would have had to declare the type Tree a anyway to define forests.

Here are the implementations of initialL, singleL and extractL for building a nexus with $h=$ minors:

```
initialLf = map(Leaf.lleaf f * wrap)
singleL = single
extractL = extract.head
    where extract (Leaf x) = x
        extract (Node [t]) = extract t
```

The function initialL constructs a forest of depth 0 whose labels are the leaves of a labelled tree (an element of LTree a). The function extract L takes a forest of length 1 and some depth d and extracts its label. It is a bit mindboggling that the computation of mkNexus is carried out in terms of a data structure of type [Tree (LTree a)], a list of trees of labelled trees.

It remains to define step L, which is given by

$$
\text { stepL } g=\operatorname{map}(\text { mapTree }(\text { lnode } g)) \cdot \text { group }
$$

where mapTree is the map function for Tree a and

```
group :: [Tree a] }->[\mathrm{ Tree [a]]
group [t] = []
group (Leaf x:vs)
    = Node [Leaf [x,y]| Leaf y\leftarrowvs]:group vs
group (Node us : vs)
    = Node (zip With combine (group us) vs) : group vs
combine (Leaf xs)(Leaf x) = Leaf (xs # [x])
combine (Node us)(Node vs)=Node(zipWith combine us vs)
```

These definitions formalise the verbal description of the process given earlier. To justify them we have to prove that

$$
m k N e x u s f g=\text { fill } f g \cdot m k \text { Tree minors }
$$

However, the proof is rather long and we omit it.

Why build the nexus?

A good question. Everything we have said above about building a nexus bottom up and layer by layer applies equally well if we throw away the nexus and just retain the labelling information. Take the case $h=$ isegs and consider solve, where

$$
\begin{array}{ll}
\text { solve } & :: \quad[a] \rightarrow b) \rightarrow([b] \rightarrow b) \rightarrow[a] \rightarrow b \\
\text { solve } f g & =\text { head } \cdot \text { until single }(\text { map } g \cdot \text { group }) \cdot \text { map }(f \cdot \text { wrap })
\end{array}
$$

and group is the function associated with isegs. The function solve f implements the hylomorphism hylo of g isegs without building a nexus. Similarly, consider solve, where

$$
\begin{aligned}
\text { solve } f g & =\text { extractL } \cdot \text { until singleL }(\text { step } g) \cdot \operatorname{map}(\text { Leaf } \cdot f \cdot \text { wrap }) \\
\text { step } g & =\text { map }(\text { mapTree } g) \cdot \text { group }
\end{aligned}
$$

and extractL, singleL and group are the functions associated with minors. Again, solve $f g$ implements the hylomorphism hylo $f g$ minors without building a nexus.

The answer to the question is that the nexus is useful when we want to consider problems that are variants of the ones discussed above. For example, a standard problem involving segments is the problem of optimal bracketing, in which one seeks to bracket an expression $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$ in the best possible way. It is assumed that \oplus is an associative operation, so the way in which the brackets are inserted does not affect the value. However, different bracketings may have different costs. The cost of computing $x \oplus y$ depends on the sizes of x and y, and the recursive solution makes use not of isegs but the function uncats, where

$$
\begin{aligned}
\text { uncats }[x, y]= & {[([x],[y])} \\
\text { uncats }(x: x s)= & ([x], x s): \text { map }(\text { cons } x)(\text { uncats } x s) \\
& \text { where cons } x(y s, z s)=(x: y s, z s)
\end{aligned}
$$

For example, uncats "abcde" is
[("a", "bcde"), ("ab", "cde"), ("abc", "de"), ("abcd", "e")]

Each of these pairs represents a possible initial bracketing, and a minimum cost solution is obtained by recursively computing the cost and sizes of each component in each pair and then taking a minimum of the costs of combining them.

Using uncats in place of isegs does not give us an element of Tree a but a more complicated kind of tree in which each "subtree" is a list of pairs of subtrees. Nevertheless, we can solve the bracketing problem by computing the
nexus for isegs, provided we replace the definition of the smart constructor lnode with another one:

$$
\text { lnode } g[u, v]=\text { LNode }(g(\text { zip }(\text { lspine } u)(\text { rspine } v)))[u, v]
$$

The functions lspine, rspine $::$ LTree $a \rightarrow[a]$ are defined by

```
lspine (LLeaf \(x)=[x]\)
lspine \((\) LNode \(x[u, v])=\) lspine \(u+[x]\)
rspine (LLeaf \(x)=[x]\)
rspine \((\) LNode \(x[u, v])=[x]+\) rspine \(r\)
```

For example, the left and right spines of the two subtrees of the tree of Figure 21.1 are $[a, a b, a b c, a b c d]$ and $[b c d e, c d e, d e, e]$. Zipping them together gives uncats abcde. The definition of lspine takes quadratic time, but it is easy to make it take linear time with the help of an accumulating parameter.

As a second example, consider the nexus of subsequences in Figure 21.2. One example of a problem involving subsequences is the Countdown example considered in the previous pearl. In that problem we made use of a function unmerges defined by

$$
\begin{aligned}
\text { unmerges }[x, y]= & {[([x],[y])] } \\
\text { unmerges }(x: x s)= & {[([x], x s)]+\text { concatMap }(\text { add } x)(\text { unmerges } x s s) } \\
& \text { where } \text { add } x(y s, z s)=[(x: y s, z s),(y s, x: z s)]
\end{aligned}
$$

For example, unmerges "abcd" is

$$
\begin{aligned}
& {[(\text { "a", "bcd"), ("ab", "cd"), ("b", "acd"), ("abc", "d"), }} \\
& \text { ("bc", "ad"), ("ac", "bd"), ("c", "abd")] }
\end{aligned}
$$

The order in which the pairs of subsequences appear in this list is not important, and neither is the order within each pair. What is important is that each subsequence is paired with its complement. In Countdown, the set of possible expressions one can build from a list $x s$ of integers in ascending order is computed by recursively building the expressions for each list in each component of unmerges $x s$ and then combining results.

Using unmerges in place of minors does not give us an element of Tree a, but rather a more complicated data structure. Nevertheless, just as before, we can solve Countdown by computing the nexus for minors provided we replace the definition of the smart constructor lnode with another one. What we have to do, in effect, is to find some way of extracting unmerges from the labels of the nexus associated with a node. That means retrieving every

Fig. 21.3 A binomial spanning tree
label of the nexus. In principle this can be done by carrying out a breadthfirst traversal of the nexus. For example, the breadth-first traversal of the nexus associated with $a b c d$ in Figure 21.2, minus its first element, is

$$
a b c, a b d, a c d, b c d, a b, a c, b c, a d, b d, c d, a, b, c, d
$$

If we split this list into two halves and zip the first half with the reverse of the second half, we arrive at unmerges "abcd", though the pairs appear in a different order, as do the components of each pair.

However, any traversal of a graph requires us to keep track of nodes visited, and this is not possible with a nexus because two nodes cannot be checked for equality. The alternative is first to construct a spanning tree of the nexus and then to traverse its subtrees in breadth-first order. Traversing a forest is implemented by

```
traverse \(::[\) LTree \(a] \rightarrow[a]\)
traverse [] \(=\) []
traverse \(t s=\) map label ts + traverse (concatMap subtrees \(t s\) )
```

```
subtrees (LLeaf x) = []
subtrees(LNode x ts) = ts
```

One spanning tree of the nexus associated with $a b c d$ in Figure 21.2 is pictured in Figure 21.3. This tree is a binomial tree of rank 4. Binomial trees are close cousins of the trees in the forest used to construct the nexus. A binomial tree of rank n has n children, which are, in order, binomial trees of ranks $n-1, n-2, \ldots, 0$. To construct the binomial spanning tree of the nexus, we have to drop children, none from the first subtree, one from the second subtree and so on. The same recipe has to be applied recursively to the children. Thus, for the k th child we have to drop k children from its first
child, $k+1$ children from its second child and so on. The function forest k, defined by

```
forest \(k(\) LLeaf \(x: t s)=\) LLeaf \(x: t s\)
forest \(k\) (LNode x us : vs)
    \(=\) LNode \(x\) (forest \(k\) (drop \(k\) us)) : forest \((k+1)\) vs
```

carries out this pruning. Now we can define

$$
\begin{aligned}
\text { lnode } g t s= & \text { LNode }(g(z i p x s)(\text { reverse ys })) t s \\
& \text { where }(x s, y s)=\text { halve }(\text { traverse }(\text { forest } 0 t s))
\end{aligned}
$$

where halve $x s=$ splitAt $($ length $x s \operatorname{div} 2) x s$.

Final remarks

The name hylomorphism first appeared in Meijer (1992); see also Meijer et al. (1991). The material in this pearl has been drawn from two main sources. Nexus building was described first in Bird and Hinze (2003), where another way of building the nexus for minors was given, one that used a cyclic tree with up and down pointers. Later on, in Bird (2008), it was shown that for some problems, admittedly of a fairly restricted class, the essential function group for building each layer of the nexus could be expressed as the transpose of the decomposition function h of the hylomorphism.

References

Bird, R. S. and Hinze, R. (2003). Trouble shared is trouble halved. ACM SIGPLAN Haskell Workshop, Uppsala, Sweden.
Bird, R. S. (2008). Zippy tabulations of recursive functions. In LNCS 5133: Proceedings of the Ninth International Conference on the Mathematics of Program Construction, ed. P. Audebaud and C. Paulin-Mohring. pp. 92-109. Meijer, E. (1992). Calculating compilers. PhD thesis, Nijmegen University, The Netherlands.
Meijer, E., Fokkinga, M. and Paterson, R. (1991). Functional programming with bananas, lenses, envelopes and barbed wire. Proceedings of the 5th ACM Conference on Functional Programming Languages and Computer Architecture. New York, NY: Springer-Verlag, pp. 124-44.

22

Three ways of computing determinants

Introduction

The determinant, $\operatorname{det}(A)$, or $|A|$, of an $n \times n$ matrix $A=\left(a_{i j}\right)$ can be defined by the Leibniz formula

$$
|A|=\sum_{\pi} \operatorname{sign}(\pi) \prod_{1 \leq j \leq n} a_{j \pi(j)}
$$

The sum is taken over all permutations π of $[1 . . n]$ and $\operatorname{sign}(\pi)=1$ for even permutations (those that have an even number of inversions), and -1 for odd ones. Executed directly, the computation of $|A|$ takes $\Theta(n \times n!)$ steps. One way to reduce the time to $\Theta\left(n^{3}\right)$ is to convert the matrix to upper triangular form using Gaussian elimination. Gaussian elimination brings in division as an additional operation, so if A is an integer matrix and the determinant has to be computed exactly, then the result of each division has to be exact. That means using rational division. Rational division involves normalising numerators and denominators, so time is spent computing the greatest common divisor of two integers.

One method that avoids rational division is known as Chiós pivotal condensation algorithm. This is essentially a variant of Gaussian elimination that uses integer division only. Chió's method requires $\Theta\left(n^{3}\right)$ multiplications but only $\Theta(n)$ divisions (and exponentiations). The downside is that the size of the intermediate results grows exponentially. However, there is a variant of the algorithm in which the intermediate results are kept reasonably small, but the number of integer divisions goes up to $\Theta\left(n^{3}\right)$.

Finally, there are methods for computing the determinant reasonably quickly that avoid division altogether. One is based on iterated matrix multiplication. The size of the intermediate results is small, but the operation count goes up to $\Theta\left(n^{4}\right)$. Since we will need to calculate determinants in the following pearl, we devote this pearl to describing and comparing these three kinds of algorithm.

The school-book method

As a warm-up let us first implement the school-book method of computing determinants. This involves recursively computing the determinant of the minors of the matrix. For example:

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{21}\left|\begin{array}{cc}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{31}\left|\begin{array}{cc}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|
$$

With matrices represented as a list of rows, the school-book method is implemented by

$$
\begin{aligned}
& \operatorname{det}::: \\
&\operatorname{det}[[x]]]= x \\
&\operatorname{det} \text { xsteger }]] \rightarrow \text { Integer } \\
&=\text { foldr } 1(-)(\text { zip With }(*) \text { col } 1 \text { (map det (minors cols }))) \\
& \quad \text { where col } 1=\text { map head xss } \\
& \quad \operatorname{cols}=\text { map tail xss }
\end{aligned}
$$

The 1×1 case is computed directly. Otherwise, each element of the first column is multiplied by the determinant of the corresponding minor of the remaining columns and the results are combined with an alternating sum. The function minors, which made an appearance in the previous pearl, is defined by

$$
\begin{array}{ll}
\text { minors } & ::[a] \rightarrow[[a]] \\
\text { minors }[] & =[] \\
\text { minors }(x: x s) & =x s: \operatorname{map}(x:)(\text { minors } x s)
\end{array}
$$

For example, minors "abcd" = ["bcd", "acd", "abd", "abc"].
Although the definition of det is short and sweet, the associated computation takes exponential time. The recurrence relation for $T(n)$, the number of steps needed to compute the determinant of an $n \times n$ matrix, satisfies $T(n)=n T(n-1)+\Theta(n)$, with solution $T(n)=\Theta(n!)$. Nevertheless, it is good enough when $n=2$ or $n=3$.

Using rational division

Gaussian elimination depends on the fact that adding any multiple of one row to any other row does not change the value of the determinant. Assuming the leading entry of the first row is not zero, we can add suitable multiples of the first row to the other rows to reduce the elements in the first column to zero. Repeating this process on the submatrix formed by eliminating the first row and column reduces the matrix to upper triangular form. The
determinant of an upper triangular matrix is the product of the elements on the diagonal.
The process is complicated by the fact that the leading entry of the matrix may be zero. In such a case we have to find an appropriate row whose first entry, the pivot, is not zero. The function det is defined by

```
det \(\quad:: \quad[[\) Ratio Integer \(]] \rightarrow\) Ratio Integer
\(\operatorname{det}[[x]]=x\)
det xss =
    case break \(((\neq 0) \cdot\) head \()\) xss of
    (yss,[]) \(\rightarrow 0\)
    (yss,zs:zss) \(\rightarrow\) let \(x=\) head \(z s * \operatorname{det}(\) reduce \(z s(y s s+z s s))\)
    in if even (length yss) then \(x\) else \(-x\)
```

The expression break $((\neq 0) \cdot$ head $)$ xss breaks a matrix into two parts (yss,zss) in which either zss is empty or the head of its first row $z s$ is not zero. In the former case the matrix is singular and its determinant is zero. In the latter case the remaining rows (yss + zss) are reduced to an $(n-1) \times(n-1)$ matrix by adding a suitable multiple of $z s$ to each row and discarding the first column:

$$
\begin{aligned}
\left.\begin{array}{rl}
\text { reduce xs yss } & = \\
\text { reduce } 1(x: x s)(y: y s)= & \text { zap }(\text { reduce } 1 \text { xs }) \text { yss } \\
& \text { where } d=y / x
\end{array}\right)
\end{aligned}
$$

Finally, the determinant of the reduced matrix is negated if the parity of the position of the pivotal row in the matrix is odd. Division (/) is implemented as rational division.

Using integer division

Another way to compute $|A|$ is based on the following fact. Define the matrix X by setting $x_{j k}=a_{11} * a_{j k}-a_{1 k} * a_{j 1}$ for $2 \leq j, k \leq n$. Equivalently,

$$
x_{j k}=\left|\begin{array}{ll}
a_{11} & a_{1 k} \\
a_{j 1} & a_{j k}
\end{array}\right|
$$

So X is an $(n-1) \times(n-1)$ matrix. Then $|A|=|X| / a_{11}^{n-2}$ provided $a_{11} \neq 0$. This is Chio's identity. The determinant of an $n \times n$ matrix is expressed in terms of the determinant of a "condensed" $(n-1) \times(n-1)$ whose entries are the determinants of 2×2 matrices. Although Chió's identity also makes use of division, the division is exact and can be implemented as integer division. Note the assumption that the leading entry a_{11} is not zero. If it is, then, just
as in Gaussian elimination, we have to look for a suitable non-zero pivot. The row containing the pivot can be swapped with the first row. Swapping two rows changes the sign of the determinant if the pivotal row is moved an odd number of places. That leads to the following algorithm for det:

```
det \(\quad:: \quad[[\) Integer \(]] \rightarrow\) Integer
\(\operatorname{det}[[x]]=x\)
det xss =
case break \(((\neq 0) \cdot h e a d)\) xss of
    (yss,[]) \(\rightarrow 0\)
\((y s s, z s: z s s) \rightarrow\) let \(x=\operatorname{det}(\operatorname{condense}(z s: y s s+z s s))\)
    \(d=\) head \(z s \uparrow\) (length xss -2 )
        \(y=x \operatorname{div} d\)
in if even (length yss) then \(y\) else \(-y\)
```

Here, (\uparrow) denotes exponentiation. The function condense is defined by

$$
\begin{aligned}
\text { condense }= & \text { map (map det } \cdot \text { pair } \cdot \text { uncurry zip }) \cdot \text { pair } \\
& \text { where pair }(x: x s) \\
& =\operatorname{map}((,) x) x s \\
\operatorname{det}((a, b),(c, d)) & =a * d-b * c
\end{aligned}
$$

The first row of the matrix is paired with each other row. Each pair of rows, say $\left(\left[a_{1}, a_{2}, \ldots, a_{n}\right],\left[b_{1}, b_{2}, \ldots, b_{n}\right]\right)$, is then zipped and paired, yielding

$$
\left[\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right),\left(\left(a_{1}, b_{1}\right),\left(a_{3}, b_{3}\right)\right), \ldots\left(\left(a_{1}, b_{1}\right),\left(a_{n}, b_{n}\right)\right)\right]
$$

Finally, the 2×2 determinant of each pair of pairs is computed.
As to the complexity, condensing an $n \times n$ matrix takes $\Theta\left(n^{2}\right)$ steps, so the recurrence relation for $T(n)$ satisfies $T(n)=T(n-1)+\Theta\left(n^{2}\right)$, with solution $T(n)=\Theta\left(n^{3}\right)$. Although rational division is avoided, the integers get big very quickly. It would be much better if the divisions were not all performed at the end of the process, but interleaved with each condensation step.

Interleaving

Interleaving of condensation and division is possible owing to one of the many curious properties of determinants. Let X be the condensed matrix obtained from A and let Y be the condensed matrix obtained from X. Thus, Y is an $(n-2) \times(n-2)$ matrix. Then, assuming $a_{11} \neq 0$, each element of Y is divisible by a_{11}. We leave the proof as an exercise. That means we can eliminate the factor $1 / a_{11}^{n-2}$ in Chió's method by dividing each element
of the doubly condensed matrix by a_{11}. That leads to the implementation det $=\operatorname{det}^{\prime} 1$, where

```
det \(^{\prime} \quad:: \quad\) Integer \(\rightarrow[[\) Integer \(]] \rightarrow\) Integer
\(\operatorname{det}^{\prime} k[[x]]=x\)
det \(^{\prime} k\) xss \(=\)
    case break \(((\neq 0) \cdot\) head \()\) xss of
    (yss,[]) \(\rightarrow 0\)
    \((y s s, z s: z s s) \rightarrow\) let \(x=\operatorname{det}^{\prime}(\) head \(z s)(c d k(z s: y s s+z s s))\)
                        in if even (length yss) then \(x\) else \(-x\)
```

where $c d$ (short for condense and divide) is defined by

$$
\begin{aligned}
& c d k=\operatorname{map}(\text { map det } \cdot \text { pair } \cdot \text { uncurry zip }) \cdot \text { pair } \\
& \text { where pair }(x: x s)=\operatorname{map}((,) x) x s \\
& \operatorname{det}((a, b),(c, d))=(a * d-b * c) \operatorname{div} k
\end{aligned}
$$

Of course, in this version the number of integer divisions goes up to $\Theta\left(n^{3}\right)$.

Using no division

Finally, we present one other method of computing det that avoids division altogether. The method appears somewhat magical and we are not going to justify it. For an $n \times n$ matrix $X=\left(x_{i j}\right)$ define $\operatorname{MUT}(X)$ (short for make upper triangular) by

$$
\operatorname{MUT}(X)=\left(\begin{array}{cccc}
-\sum_{j=2}^{n} x_{j j} & x_{12} & \cdots & x_{1 n} \\
0 & -\sum_{j=3}^{n} x_{j j} & \cdots & x_{2 n} \\
\cdots & & & \\
0 & 0 & \cdots & -\sum_{j=n+1}^{n} x_{j j}
\end{array}\right)
$$

Thus, the entries of X below the diagonal are made zero, those above the diagonal are left unchanged and each diagonal entry is replaced by the negated sum of the elements of the diagonal below it. Note that $\sum_{j=n+1}^{n} x_{j j}=0$.

Next, let $F_{A}(X)=\operatorname{MUT}(X) \times A$ and set $B=F_{A}^{n-1} A^{\prime}$, where $A^{\prime}=A$ if n is odd and $A^{\prime}=-A$ if n is even. In words, apply F_{A} to A^{\prime} a total of $(n-1)$ times. Then B is the everywhere zero matrix except for its first entry b_{11}, which equals $|A|$. Computing $\operatorname{MUT}(X) \times A$ takes $\Theta\left(n^{3}\right)$ steps and, since this computation is repeated $n-1$ times, the total time for computing $|A|$ is $\Theta\left(n^{4}\right)$ steps.

The following implementation follows the prescription faithfully:

```
det :: [[Integer ]] }->\mathrm{ Integer
det ass = head (head bss)
    where
    bss = foldl (matmult \cdotmut) ass' (replicate ( }n-1)\mathrm{ ass)
    ass' = if odd n then ass else map (map negate) ass
    n = length ass
```

The function mut implements MUT:

```
mut xss
    = zipWith(+)zeros (zipWith (:) ys (zipWith drop [1..] xss))
        where ys = map negate (tail (scanr (+) 0 (diagonal xss)))
```

The value zeros is an infinite lower triangular matrix of zeros, beginning with an empty row:

```
zeros}=[\mathrm{ take j(repeat 0) | j}[0..]
```

The function diagonal returns the elements along the diagonal:

```
diagonal [] = []
diagonal (xs:xss) = head xs : diagonal (map tail xss)
```

Finally, matmult implements matrix multiplication:

```
matmult xss yss = zipWith (map}\cdotdp)xss(repeat (transpose yss))
dp xs ys = sum (zipWith (*) xs ys)
```

The function $d p$ implements the dot product of two vectors.
However, note that $\operatorname{MUT}(X)$ does not depend on the entries below the diagonal of X. Under lazy evaluation they are never computed by mut. Nevertheless, it is more efficient to recast the definition of mut in terms of a special matrix multiplication operation trimult that multiplies an upper triangular matrix with an arbitrary matrix to give another upper triangular matrix. Suppose xss is the list of rows of an upper triangular matrix and $y s s$ is an arbitrary matrix. Then

```
trimult xss yss = zipWith (map \cdotdp) xss (submats (transpose yss))
```

produces an upper triangular matrix. The function submats returns a list of the principal submatrices:

```
submats \(\quad:: \quad[[a]] \rightarrow[[[a]]]\)
submats \([[x]]=[[[x]]]\)
submats xss \(=\) xss : submats (map tail (tail xss))
```

For upper triangular matrices xss the definition of mut xss simplifies to

```
mut xss \(=\) zipWith (:) ys (map tail xss))
    where \(y s=\) map negate \((\) tail \((\) scanr \((+) 0(\) map head xss \()))\)
```

The diagonal of an upper triangular matrix xss is map head xss and the elements above the diagonal are map tail xs.

We can now rewrite det in the form

```
det \(\quad:: \quad[[\) Integer \(]] \rightarrow\) Integer
det ass \(=\) head (head bss)
    where
    bss \(\quad=\) foldl (trimult \(\cdot\) mut) ass \({ }^{\prime}\) (replicate \((n-1)\) ass \()\)
    ass \(^{\prime}=\) if odd \(n\) then upper ass
        else map (map negate) (upper ass)
    \(n \quad=\) length ass
```

where upper $=$ zipWith drop [0..].

A brief comparison

So, which of the three methods described above is best? Rational division (Gaussian elimination), integer division (two versions, one using Chió's identity and one using condense and divide) or no division (by iterated matrix multiplication)?

We carried out a brief comparison of the methods, using random matrices for various sizes of n, each with entries in the range ($-20,20$). As might be expected, the original Chió version was hopeless, but the second version that combined condensation steps and division was the clear winner. For $n=150$, Gaussian elimination took about 30 s , the modified Chió version took 10 s and the iterated multiplication method took 40 s .

Final remarks

Chió's method, which goes back 150 years, is described at http://math world.wolfram.com/ChioPivotalCondensation.html. The modified version is really due to Bareiss (1968), who based its justification on Sylvester's identity, a more general version of Chió's identity. However, the history of the iterated multiplication method is more obscure. The main fact on which it depends still awaits a purely algebraic proof. We extracted it from an algorithm of Mahajan and Vinay (1997) that was based on the idea of clow sequences. The word clow is an acronym for "closed walk", and a clow sequence is a generalisation of the cycle decomposition of a permutation in
which each cycle can contain repetitions of intermediate elements; hence, a closed walk. Mahajan and Vinay showed that all the signed matrix terms for clow sequences that do not correspond to permutations cancel each other out, leaving just those terms $a_{1 \pi(1)} a_{2 \pi(2)} \cdots a_{n \pi(n)}$ that do correspond to permutations. But their proof is not trivial. The signed matrix term corresponding to a clow sequence can be expressed as a path in a layered directed acyclic graph to one of two endpoints and the computation of the sum of such factors computed as a path problem. By recasting the associated recursive definition directly back into matrix operations, the identity described above was discovered. Although we cannot find any reference to it in the literature, it is almost certainly not new.

One point not emphasised in the narrative was that no Haskell arrays were harmed in the description of the algorithms, immutable or otherwise. Instead, each matrix was quietly represented as a list of its rows. That enabled each algorithm to be expressed fairly concisely. But perhaps a better alternative is to define a suitable abstract type for matrices in which the necessary operations, first column, first row, diagonal, principal submatrices and so on, are provided as primitives.

References

Bareiss, E. H. (1968). Sylvester's identity and multi-step integer preserving Gaussian elimination. Mathematics of Computation 22 (103), 565-78.
Mahajan, M. and Vinay, V. (1997). Determinant: combinatorics, algorithms and complexity. Chicago Journal of Theoretical Computer Science, Article 5.

23

Inside the convex hull

Introduction

The problem of computing the convex hull of a set of points is central to many tasks in computational geometry and has been much studied. Finding the hull makes sense in any finite dimension d, but most textbooks focus primarily on the cases $d=2$ and $d=3$. Our aim in this pearl is simply to specify the d dimensional form of the problem and then to describe a straightforward incremental algorithm for computing the hull. The incremental algorithm is well known and a number of sophisticated improvements have been proposed, but we deal only with the basic idea. We will not derive the algorithm, but instead show how to test it using the Claessen and Hughes QuickCheck library. In fact, testing revealed an error in the code, an error we have deliberately left in to see if the reader can spot it.

Background

Many geometric algorithms fall apart when the arithmetic is not exact, so it is a good idea to stay within the realm of integer arithmetic and confine attention to the subset $Q(d)$ of d-dimensional Euclidean space $E(d)$ consisting of those points whose Cartesian coordinates are rational numbers. A point in $Q(d)$ can be represented by a list of $d+1$ integers $\left[x_{0}, x_{1}, \ldots, x_{d}\right]$ in which $x_{d} \neq 0$; this list represents the d rational Cartesian coordinates $\left[x_{0} / x_{d}, x_{1} / x_{d}, \ldots, x_{d-1} / x_{d}\right]$. Hence, we define Point $=[$ Integer $]$. The dimension of a point is given by

$$
\begin{array}{lll}
\text { dimension } & :: \text { Point } \rightarrow \text { Int } \\
\text { dimension ps } & =\text { length ps }-1
\end{array}
$$

By definition, a d-simplex is a list of $d+1$ points in $Q(d)$ together with a value, +1 or -1 , indicating the orientation of the simplex that arises from the way the points are listed:

$$
\text { type Simplex }=([\text { Point }], \text { Int })
$$

Fig. 23.1 A positively oriented tetrahedron, with a, b and c in the (x, y) plane and d above.

The points, or vertices, of a d-simplex have to be in "general position", meaning that no two points are identical, no three points are collinear, no four points are coplanar and so on. A 1-simplex in $Q(1)$ is an edge, a 2-simplex in $Q(2)$ is a triangle, and a 3 -simplex in $Q(3)$ is a tetrahedron. Formally, points $\left[v_{0}, v_{1}, \ldots, v_{d}\right]$, where v_{j} has coordinates $\left[x_{j 0}, x_{j 1}, \ldots, x_{j d}\right]$, are in general position if the determinant of the matrix $X=\left(x_{i j}\right)$ is non-zero. The value of the determinant is proportional to the signed volume of the simplex and the orientation is, by definition, the sign of the determinant: ${ }^{1}$

$$
\begin{array}{lll}
\text { orientation } & :: \quad[\text { Point }] \rightarrow \text { Int } \\
\text { orientation } & = & \text { fromIntegral } \cdot \text { signum } \cdot \operatorname{det}
\end{array}
$$

Even permutations of the points leave the orientation unchanged, while odd permutations invert it. In $Q(1)$, an edge $[a, b]$ has positive orientation if $a>b$, negative orientation if $a<b$ and zero orientation if $a=b$. In $Q(2)$, a triangle $[a, b, c]$ has positive orientation if the order $[a, b, c]$ is anticlockwise round the triangle, negative orientation if the order goes clockwise and zero orientation if a, b and c are collinear. In $Q(3)$, and with the standard righthanded orientation of the x, y and z axes, a tetrahedron $[a, b, c, d]$ has positive orientation if the triangle $[b, c, d]$ when viewed from point a has positive orientation. Such a tetrahedron is pictured in Figure 23.1.

Each d-simplex $s m p$ determines a convex region $C S(s m p)$ of space in $Q(d)$, namely the rational points inside $s m p$ or on its boundary. To determine whether a point lies in $C S(s m p)$ we first compute the facets of $s m p$.

[^11]A facet of a d-simplex is a list of d points, together with an associated orientation derived from the simplex. The facets of an edge are its two endpoint vertices, the facets of a triangle are its three edges and so on. The facets of a simplex and the associated orientations are defined by

```
facets \(\quad::\) Simplex \(\rightarrow\) [Facet \(]\)
facets \((u s, b)=\) zip (minors us) \((\) cycle \([b,-b])\)
minors \(\quad:: \quad[a] \rightarrow[[a]]\)
minors [] \(\quad=\) []
\(\operatorname{minors}(x: x s)=x s: \operatorname{map}(x:)(\) minors \(x s)\)
```

where Facet $=([$ Point $]$, Int $)$. The minors of a list is a list of subsequences. For example, minors "abcd" = ["bcd", "acd", "abd", "abc"]. We met this function in the two previous pearls. For an edge $[a, b]$ in $Q(1)$ with positive orientation the facets are the 0 -simplexes $[b]$ and $[a]$ with associated orientations +1 and -1 respectively. A point p is strictly inside the region of the simplex $[a, b]$ if the simplex $[p, b]$ has the same orientation as $[b]$ has, namely +1 , and $[p, a]$ has the same orientation as $[a]$, namely -1 . In other words, $b<p<a$. The same reasoning holds in higher dimensions. Thus, in $Q(2)$, a triangle $[a, b, c]$ with positive orientation has the three facets

$$
([b, c],+1), \quad([a, c],-1), \quad([a, b],+1)
$$

and a point p is strictly inside $[a, b, c]$ if the three simplexes $[p, b, c],[p, a, c]$ and $[p, a, b]$ have orientations $+1,-1$ and +1 , implying that p is to the left of the edge from b to c, to the right of the edge from a to c and to the left of the edge from a to b.

The region $C S(s m p)$ of those points strictly inside $s m p$ or on its boundary is defined by a predicate:

```
insideCS :: Simplex \(\rightarrow\) Point \(\rightarrow\) Bool
insideCS smp \(p\)
    \(=\) and \([0 \leq b *\) orientation \((p: u s) \mid(u s, b) \leftarrow\) facets smp \(]\)
```

A point p is strictly inside $C S(s m p)$ if $b=\operatorname{orientation}(p: u s)$ for each facet $(u s, b)$ of $s m p$ and on the boundary of $s m p$ if orientation $(p: u s)=0$ for at least one facet $(u s, b)$ of $s m p$.

Convex hulls

The convex hull $C H(v s)$ of a set of points $v s$ in $Q(d)$ is a region of $Q(d)$. It can be defined in a number of mathematically equivalent ways, including the following: $C H(v s)$ is the union of the sets $C S(s m p)$ for all d-simplexes
$s m p$ determined by points of $v s$. For example, in $Q(2)$ the convex hull of $v s$ is the union of the regions determined by all triangles whose vertices are in $v s$. The set $\mathrm{CH}(v s)$ can therefore be characterised by a predicate:

$$
\begin{array}{lll}
\text { insideCH } & :: \quad[\text { Point }] \rightarrow \text { Point } \rightarrow \text { Bool } \\
\text { insideCH vs } p & =\text { or }[\text { insideCS smp } p \mid \text { smp } \leftarrow \text { simplexes vs }]
\end{array}
$$

where simplexes vs lists the simplexes of $v s$:

$$
\begin{aligned}
\text { simplexes } \begin{aligned}
:: & {[\text { Point }] \rightarrow[\text { Simplex }] } \\
\text { simplexes vs }= & {[(u s, b) \mid \text { us tuples }(d+1) v s,} \\
& \text { let } b=\text { orientation us, } b \neq 0] \\
& \text { where } d=\text { dimension }(\text { head vs })
\end{aligned}
\end{aligned}
$$

The value of tuples $n v s$ is a list of all n-tuples of $v s$; that is, all subsequences of $v s$ of length n. The definition of tuples is left as an exercise.

According to the above definition of inside CH , the set $\mathrm{CH}(v s)$ is empty if $v s$ has no simplexes. A set of points $v s$ in $Q(1)$ has no 1 -simplexes if the points are coincident, in $Q(2)$ if they are collinear and in $Q(3)$ if they are coplanar. It is possible to define the convex hull for such sets of points by reducing the dimension, but we will leave the specification as it is.

An incremental algorithm

There are $\Omega\left(n^{d+1}\right)$ possible d-simplexes among n points, so evaluating the expression insideCH vs p takes $\Omega\left(n^{d+1}\right)$ steps. Most of these simplexes overlap, indeed some may coincide, and it is necessary only to consider some subset that covers the hull without overlap. Therefore, a more efficient algorithm is obtained by replacing simplexes with another function partition, with the same type, that partitions the hull. Then we can replace insideCH by inside CH^{\prime}, where

```
insideCH \(\quad:: \quad[\) Point \(] \rightarrow\) Point \(\rightarrow\) Bool
insideCH' vs \(p=\) or [insideCS smp \(p \mid s m p \leftarrow\) partition vs]
```

The function partition can be defined by a process that starts with a single simplex and then adds new simplexes as each additional point outside the current hull is inspected:

```
partition :: [Point] }->\mathrm{ [Simplex]
partition vs
    = case findSimplex vs of
    Nothing }->\mathrm{ []
    Just [smp] }->\mathrm{ foldl update [smp] (vs \\ vertices smp)
```

The vertices of a simplex are listed by

$$
\begin{aligned}
\text { vertices } & :: \text { Simplex } \rightarrow[\text { Point }] \\
\text { vertices } & =\text { sort } \cdot \text { fst }
\end{aligned}
$$

The vertices are listed in order; so, if $v s$ is maintained as a sorted list, then
can be implemented efficiently as ordered list difference. The function findSimplex finds a simplex if there is one. If there is not one, then there is no partition and an empty hull. Otherwise the simplex is used as a starting point and its vertices are removed from the list of additional points that need to be considered. It remains to define findSimplex and update. We deal with these functions separately.

Finding a simplex

One obvious way of defining findSimplex is

$$
\begin{aligned}
\text { findSimplex vs }= & \text { if null smps } \text { then Nothing else Just (head smps) } \\
& \text { where } \text { smps }=\text { simplexes vs }
\end{aligned}
$$

But in the worst case the cost of findSimplex vs is $\Omega\left(n^{d+1}\right)$ steps, which rather undercuts the aim of finding a more efficient algorithm. The worst case is unlikely in practice, so the above definition is probably good enough, but there is an alternative method. The idea is to start with the first point v_{0} of $v s$ and then to carry out a single search of the rest of $v s$ to find the remaining points. First, a second point v_{1} is found so that v_{0} and v_{1} are not coincident. Then the search continues with the elements of $v s$ after v_{1} to find a third point v_{2} that is not collinear with v_{0} and v_{1}, and so on until $d+1$ points are found that are in general position. The tricky aspect is not the search but the fact that the non-degeneracy of $k+1$ points in $Q(d)$ cannot be determined by a simple determinant test: the associated matrix of point coordinates has size $(k+1) \times(d+1)$, which is not square if $k<d$.

Instead we need to consider square submatrices. Consider the matrix X of size $(k+1) \times(d+1)$ obtained from the first $k+1$ vertices and the submatrices of size $(k+1) \times(k+1)$ formed by taking every possible combination of k columns from the first d columns, together with the last column (the denominators of the rational coordinates of the vertices). Then the $k+1$ points are degenerate if the determinants of all these square submatrices are zero. The degeneracy test is implemented by
degenerate $k=$ all $(==0) \cdot$ map det \cdot submatrices $k \cdot$ transpose
submatrices $k v s=\operatorname{map}(+[$ last vs $])($ tuples $k($ init $v s))$

The function transpose transposes a matrix, so submatrices selects columns of a matrix by selecting rows of the transposed matrix. The determinant of a matrix is the determinant of its transpose. Since there are $O\left(d^{k}\right)$ submatrices of the transposed matrix, and computing the determinant takes $O\left(k^{3}\right)$ steps, the computation of degenerate $k v s$ for a list of $k+1$ points $v s$ in $Q(d)$, where $k \leq d$, takes $O\left(k^{3} d^{k}\right)=O\left(d^{d+3}\right)$ steps.

The function findSimplex is now implemented by

$$
\begin{array}{lll}
\text { findSimplex } & :: & {[\text { Point }] \rightarrow \text { Maybe Simplex }} \\
\text { findSimplex }[] & = & \text { Nothing } \\
\text { findSimplex }(v: v s) & = & \text { search }(\text { length } v-1) 1[v] v s
\end{array}
$$

where the function search is defined by
search $d k$ us vs

$$
\begin{array}{|ll}
k==d+1 & =\text { Just }(u s, \text { orientation us) } \\
\text { null vs } & =\text { Nothing } \\
\text { degenerate } k(v: u s) & =\text { search } d k \text { us }(\text { tail vs }) \\
\text { otherwise } & =\text { search } d(k+1)(v: u s) \text { (tail vs) } \\
\text { where } v=\text { head vs } &
\end{array}
$$

The running time of findSimplex vs, where vs has n points, is $O\left(d^{d+3} n\right)$ steps, which is linear in n, though with a large constant factor.

Update

In order to define the remaining function update, consider a set smps of simplexes that partition the convex hull for the points considered so far. The facets of these simplexes are of two kinds: the internal facets - those that occur exactly twice (with opposite orientations); and the external facets - those that occur exactly once. For example, take the vertices of a square $[a, b, c, d]$ in $Q(2)$. There are two possible triangulations: the triangles $[a, b, c]$ and $[c, d, a]$, or $[a, b, d]$ and $[b, c, d]$. In the first triangulation the edge $[a, c]$ is internal and in the second the edge $[b, d]$ is internal. The external facets are computed by

```
external :: [Simplex] }->\mathrm{ [Facet]
external = foldr op []. sort }\cdot\mathrm{ concatMap facets
```

where

```
op smp [ ] \(\quad=\) [ ]
op \(s m p\left(s m p^{\prime}: s m p s\right)=\) if vertices smp \(==\) vertices \(s m p^{\prime}\) then \(s m p s\)
                                else \(s m p\) : \(s m p^{\prime}\) : smps
```

The cost of computing external smps is $O(d S \log d S)$, where S is size of smps, since the dominating time is the time to sort the facets of smps and there are $O(d S)$ of them.

Each new point v splits the external facets into two: the visible facets and the invisible ones. Imagine a light-bulb situated at v; this light-bulb illuminates just the visible facets. A facet $(u s, b)$ is visible to v if v is strictly outside it, meaning that orientation ($v: u s$) has opposite sign to b :

$$
\begin{array}{lll}
\text { visible } & :: & \text { Point } \rightarrow[\text { Facet }] \rightarrow[\text { Facet }] \\
\text { visible } v f_{s} & = & {\left[(u s, b) \mid(u s, b) \leftarrow f_{s}, b * \text { orientation }(v: u s)<0\right]}
\end{array}
$$

There are no visible facets if v is inside or on the current hull. In particular, if v is a copy of one of the vertices processed so far, then the current hull will be unchanged, so it does not matter if $v s$ contains repeated points (and it does not matter if we do not remove the vertices of the starting simplex from the starting points).

To update the hull we add to smps a new simplex for each visible facet:

$$
\begin{array}{ll}
\text { newSimplex } & :: \quad \text { Point } \rightarrow \text { Facet } \rightarrow \text { Simplex } \\
\text { newSimplex } v(u s, b) & =(v: u s,-b)
\end{array}
$$

The orientation assigned to the new simplex is correct because if $(u s, b)$ is visible to v, then $b * \operatorname{orientation}(v: u s)<0$, and so $\operatorname{orientation}(v: u s)=-b$.

Now we can define update by

$$
\begin{aligned}
& \text { update }::[\text { Simplex }] \rightarrow \text { Point } \rightarrow[\text { Simplex }] \\
& \text { update smps } v \\
& \quad=\text { smps }+ \text { map }(\text { newSimplex } v)(\text { visible } v(\text { external smps }))
\end{aligned}
$$

The time to compute update smps is dominated by the time to compute the visible facets, and this takes $O(d S \log d S)$ steps, where S is the size of smps. The complexity of inside CH^{\prime} as a function of n, the number of points in $v s$, is therefore $O(d n S \log d S)$, where S is the maximum number of simplexes maintained at each stage. It is known that $S=O\left(n^{e}\right)$, where $e=\lfloor d / 2\rfloor$, so evaluating insideCH' vs takes $O\left(n^{e+1} \log n\right)$ steps. This is better than inside CH , but we can improve inside CH^{\prime} yet further.

An improvement

As described above, the incremental algorithm computes a set of simplexes that partition the hull. At each stage the external facets of the hull are determined in order to discover those that are visible to a new point, and new simplexes are then added to the hull. It is clearly more sensible to maintain
the external facets of the simplexes rather than the simplexes themselves. If we set faces $=$ external \cdot partition, then we can replace inside CH^{\prime} by inside $C H^{\prime \prime}$, where

$$
\text { inside } C H^{\prime \prime} \text { vs } p=\text { and }[0 \leq b * \text { orientation }(p: u s) \mid(u s, b) \leftarrow \text { faces vs }]
$$

The function faces has type [Point $] \rightarrow$ [Facet $]$. In computational geometry one of the usual ways of describing a convex hull is by listing its external facets.

An efficient computation of faces can be derived by appealing to the fusion law of foldl. We need to find update ${ }^{\prime}::[$ Facet $] \rightarrow$ Point $\rightarrow[$ Facet $]$, so that

$$
\text { external }(\text { update smps } v)=\text { update }{ }^{\prime}(\text { external smps }) v
$$

Since the external facets of a single simplex are all its facets we then obtain

faces vs

$$
\begin{aligned}
&=\text { case findSimplex vs of } \\
& \text { Nothing } \rightarrow[] \\
& \text { Just }[s m p] \rightarrow \text { foldl update }{ }^{\prime}(\text { facets smp })(\text { vs } \backslash \text { vertices } v s)
\end{aligned}
$$

We will not go into the derivation of update ${ }^{\prime}$ but just state the result:

$$
\begin{aligned}
\text { update } f s v= & \left(f s \backslash \backslash s^{\prime}\right)+\operatorname{map}(\text { newFacet } v)\left(\text { external } f s^{\prime}\right) \\
& \text { where } f s^{\prime}=\text { visible } v f s \\
\text { newFacet } v(u s, b)= & (v: u s, b)
\end{aligned}
$$

In words, the facets visible to the new point are removed from the current set of facets and new facets are added. The visible facets form a connected set and their boundary is the set of their external sub-facets, namely a set of ($d-2$)-simplexes that occur exactly once. For example, in $Q(3)$ the facets are triangles and the external sub-facets of a visible set of connected triangles are the set of edges that form its boundary. The orientation assigned to each new facet is just the orientation of the associated sub-facet. To appreciate this last point, consider an edge $([a, b],+1)$ in $Q(2)$ that is visible to a point c and in which b is a boundary point (so the following edge beginning with b is not visible). The 0 -simplex associated with b has positive orientation and the new edge $[c, b]$ has to be directed towards b, so also has positive orientation.

The running time of faces is dominated by the time to discover the facets visible to a new point. In order to find these facets, every single facet of the hull is inspected; that is clearly an inefficient method, since the visible facets form a small locally connected set. It is here that more sophisticated
algorithms, such as the Bulldozer algorithm of Blelloch et al. (2001), enter the picture, but we will not go into further details.

QuickCheck

Koen Claessen and John Hughes have produced a very useful suite of functions, called QuickCheck, for testing Haskell programs; see Claessen and Hughes (2000). It would take up too much space to explain the details of QuickCheck, but we briefly show how to use the functions in the suite to check the two versions of the convex hull algorithm described above.

First we need a generator for generating a point in $Q(d)$:

$$
\begin{array}{ll}
\text { point } & :: \text { Int } \rightarrow \text { Gen }[\text { Integer }] \\
\text { point } d & =\text { do }\{x s \leftarrow \text { vector } d ; \text { return }(x s+[1])\}
\end{array}
$$

The utility vector d returns a randomly generated list of d values, here integers. The result of point d is a generator that returns a list of $d+1$ integers in which the last integer is 1 .

Next we need a generator for generating a list of n points:

\[

\]

Now we can define a property prop_Hull that checks the incremental algorithm against the specification:

$$
\begin{array}{rll}
\text { prop_Hull }:: & \text { Int } \rightarrow \text { Int } \rightarrow \text { Property } \\
\text { prop_Hull d } n= & \text { forAll (points } d n) \$ \lambda v s \rightarrow \\
& \text { forAll (point d) } \lambda v \rightarrow \\
& \text { insideCH vs } v==\text { insideCH' vs } v
\end{array}
$$

For example, evaluating quickCheck (prop_Hull 3 10) produces the output

```
OK, passed 100 tests.
```

However, replacing inside $C H^{\prime}$ by inside $\mathrm{CH}^{\prime \prime}$ in prop_Hull reveals an error:

```
Main> quickCheck (prop_Hull 2 4)
Falsifiable, after 2 tests:
[[0,0,1],[0,0,1],[0,0,1],[-1,-1,1]]
[1,0,1]
```

Oh dear, what has gone wrong? Well, the problem is that the four points are collinear, so there is no partition and no faces. While insideCH vs correctly
returns False when vs are collinear points in $Q(2)$, the test inside $\mathrm{CH}^{\prime \prime}$ vs returns True. We need to rewrite inside $\mathrm{CH}^{\prime \prime}$ to read

$$
\begin{aligned}
\text { inside } C H^{\prime \prime} \text { vs } v= & \text { if null } f s \text { then False else } \\
& \text { and }[0 \leq b * \text { orientation }(v: u s) \mid(u s, b) \leftarrow f s] \\
& \text { where } f s=\text { faces vs }
\end{aligned}
$$

Then QuickCheck is happy. Did you spot the error?

Final remarks

There are numerous textbooks on computational geometry that deal with convex-hull algorithms; O'Rourke (1998) and Preparata and Shamos (1985) are just two of them. In particular, O'Rourke's excellent book devotes two carefully crafted chapters to the topic, and his bibliography contains references to most of the literature, though Dijkstra's (1976) treatment of the three-dimensional case is missing. This particular pearl arose as a result of trying to come to grips with the details of Karimipour and Frank (2009), but the details differ significantly. I would like to thank Irina Voiculescu for a number of profitable discussions about the convex hull and how to compute it.

References

Claessen, K. and Hughes, J. (2000). QuickCheck: a lightweight tool for random testing of Haskell programs. ACM SIGPLAN International Conference of Functional Programming, Montreal, Canada, pp. 268-79. See also http://www. cs.chalmers.se/ \sim rjmh/QuickCheck/.
Blelloch, G., Burch, H., Crary, K., et al. (2001). Persistent triangulations. Journal of Functional Programming 11 (5), 441-66.
Dijkstra, E. W. (1976). A Discipline of Programming. Englewood Cliffs, NJ: Prentice-Hall.
Karimipour, F. and Frank, A. U. (2009). A dimension independent convex hull algorithm. Unpublished.
O'Rourke, J. (1998). Computational Geometry, second edition. Cambridge, UK: Cambridge University Press.
Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry. New York, NY: Springer-Verlag.

24

Rational arithmetic coding

Introduction

This pearl, and the one following, is all about arithmetic coding, a way of doing data compression. Unlike other methods, arithmetic coding does not represent each individual symbol of the text as an integral number of bits; instead, the text as a whole is encoded as a binary fraction in the unit interval. Although the idea can be traced back much earlier, it was not until the publication of an "accessible implementation" by Witten, Neal and Cleary in 1987 that arithmetic coding became a serious competitor in the world of data compression. Over the past two decades the method has been refined and its advantages and disadvantages over rival schemes have been elucidated. Arithmetic coding can be more effective at compression than rivals such as Huffman coding, or Shannon-Fano coding, and is well suited to take account of the statistical properties of the symbols in a text. On the other hand, coding and decoding times are longer than with other methods.

Arithmetic coding has a well-deserved reputation for being tricky to implement; nevertheless, our aim in these two pearls is to give a formal development of the basic algorithms. In the present pearl, coding and decoding are implemented in terms of arbitrary-precision rational arithmetic. This implementation is simple and elegant, though expensive in time and space. In the following pearl, coding and decoding are reimplemented in terms of finite-precision integers. This is where most of the subtleties of the problem reside.

Arithmetic coding with rational arithmetic

The basic idea behind arithmetic coding is to:
(i) Break the source text into symbols, where a symbol is some logical grouping of characters such as a word, or perhaps just a single character. For simplicity, we assume that the number of possible symbols is finite.
(ii) Associate each distinct symbol with a semi-open interval of the unit interval $[0,1)$. Such an association is provided by a model.
(iii) Successively narrow the unit interval by an amount determined by the interval associated with each symbol in the text.
(iv) Choose some suitably short fraction in the final interval.

We can capture the basic data types in Haskell by defining

```
type Fraction = Ratio Integer
type Interval = (Fraction,Fraction)
```

A fraction is represented by the ratio of two arbitrary-precision integers (elements of Integer) and an interval by two fractions. A proper fraction f is one in which $0 \leq f<1$. The unit interval is represented by $(0,1)$ and we write $f \in(\ell, r)$ to mean $\ell \leq f<r$, so intervals are closed on the left and open on the right. We also write $i \subseteq j$ to mean that i is a subinterval of j.

Narrowing

The value $i \triangleright j$ narrows an interval i by an interval j, returning a subinterval k of i such that k is in the same relationship to i as j is to the unit interval:

$$
\begin{array}{lll}
(\triangleright) & :: \quad \text { Interval } \rightarrow \text { Interval } \rightarrow \text { Interval } \\
\left(\ell_{1}, r_{1}\right) \triangleright\left(\ell_{2}, r_{2}\right) & = & \left(\ell_{1}+\left(r_{1}-\ell_{1}\right) * \ell_{2}, \ell_{1}+\left(r_{1}-\ell_{1}\right) * r_{2}\right)
\end{array}
$$

The operation \triangleright is associative with $(0,1)$ as unit, a good reason to denote it with an infix symbol. It is easy to check that if $f \in i \triangleright j$, then $f \in i$. Hence, $i \triangleright j \subseteq i$. Also, if $f \in i \triangleright j$ then $(f \triangleleft i) \in j$, where the operation (\triangleleft) widens a fraction:

$$
\begin{array}{lll}
(\triangleleft) & :: \quad \text { Fraction } \rightarrow \text { Interval } \rightarrow \text { Fraction } \\
f \triangleleft(\ell, r) & = & (f-\ell) /(r-\ell)
\end{array}
$$

In summary:

$$
\begin{equation*}
f \in i \triangleright j \Rightarrow f \in i \wedge(f \triangleleft i) \in j \tag{24.1}
\end{equation*}
$$

In fact, (24.1) is an equivalence. Furthermore, if we extend \triangleleft to an operation on intervals by defining $(\ell, r) \triangleleft j=(\ell \triangleleft j, r \triangleleft j)$, then $(i \triangleright j) \triangleleft i=j$, so \triangleright has all the properties of a mathematical group.

Models

In order to encode a text, each possible symbol has to be associated with a given interval. For our purposes, Model is an abstract type representing
a finite mapping from a finite set of Symbols to Intervals with associated functions:

$$
\begin{array}{lll}
\text { interval }:: & \text { Model } \rightarrow \text { Symbol } \rightarrow \text { Interval } \\
\text { symbol } & :: & \text { Model } \rightarrow \text { Fraction } \rightarrow \text { Symbol }
\end{array}
$$

Thus, interval $m x$ is the interval associated with symbol x in model m, while symbol $m f$ is the symbol associated with the unique interval containing the proper fraction f. We suppose that the intervals associated with symbols partition the unit interval, so

$$
\begin{equation*}
x=\text { symbol } m f \equiv f \in \text { interval } m x \tag{24.2}
\end{equation*}
$$

for every model m and proper fraction f.
As an important practical refinement on the basic idea, the model is allowed to change as each symbol of the text is read. Such a scheme is called adaptive encoding. For instance, one can begin with a simple model in which all symbols are associated with intervals of the same width and then let the model adapt by widening the intervals associated with the more frequently occurring symbols in the text. The wider an interval is, the more scope there is for finding a short fraction within it. More sophisticated adaptations are also possible. For example, in English the letter " q " is nearly always followed by a " u ". Therefore, on encountering a symbol " q ", the interval for " u " can be widened in the expectation that the next symbol is a " u ".

It is not our purpose to study model adaptation in detail. Instead, we will just suppose the existence of an additional function

$$
\text { adapt }:: \quad \text { Model } \rightarrow \text { Symbol } \rightarrow \text { Model }
$$

The function intervals :: Model $\rightarrow[$ Symbol $] \rightarrow[$ Interval $]$ is now defined by

$$
\begin{array}{ll}
\text { intervals } m[] & =[] \\
\text { intervals } m(x: x s) & =\text { interval } m x: \text { intervals }(\text { adapt } m x) x s
\end{array}
$$

Each symbol of the text is converted into an interval by applying interval to a succession of models. As long as the decoder knows the initial model and adapt, it can perform the necessary adaptations to the model as each symbol is reconstructed. Crucially, there is no need to transmit the various models along with the text.

Encoding

Having defined the relevant data types and auxiliary operations, we can now specify the function encode:
encode $\quad:: \quad$ Model $\rightarrow[$ Symbol $] \rightarrow$ Fraction
encode $m=$ pick \cdot foldl $(\triangleright)(0,1) \cdot$ intervals m
where pick $i \in i$. The intervals associated with the symbols of the text are used to narrow the unit interval to some final interval, from which some fraction is chosen.

Here is a simple example. Suppose m is a static model that contains five symbols with intervals given by

$$
[(e,(0,3 / 8)),(g,(3 / 8,1 / 2)),(n,(1 / 2,5 / 8)),(r,(5 / 8,7 / 8)),(v,(7 / 8,1))]
$$

Then

$$
\begin{aligned}
& \text { encode m"evergreen" } \\
= & \operatorname{pick}((0,1) \triangleright(0,3 / 8) \triangleright(7 / 8,1) \cdots \triangleright(1 / 2,5 / 8)) \\
= & \operatorname{pick}\left(11445828 / 2^{25}, 11445909 / 2^{25}\right)
\end{aligned}
$$

The best choice for pick returns ($89421 / 2^{18}$), the unique fraction in this interval with the shortest binary expansion, namely 010101110101001101. So the nine characters of "evergreen" can be encoded as 18 bits, or three characters. In fact, since the numerator of a shortest fraction has to be odd, the last bit is always 1 and can be omitted, so only the first 17 bits need be output. The best that Huffman encoding can achieve is 19 bits. We will return to an appropriate choice of pick later on; for now we assume only that pick $i \in i$.

Decoding

The obvious way to specify decode is by the condition

$$
x s=\text { decode } m(\text { encode } m x s)
$$

for all finite lists of symbols $x s$. However, for reasons given in a moment, the specification is weakened to require only that
$x s \quad \sqsubseteq$ decode m (encode mxs)
where \sqsubseteq is the prefix relation on lists, so $x s \sqsubseteq y s$ if $y s=x s+z s$ for some $z s$. Thus, decode is left-inverse to encode, in that it is required to produce the sequence of symbols that encode encodes but is not required to stop after producing them.

To define decode, let the input to encode be $x s=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$. Let m_{0} be the initial model and $j_{0}=(0,1)$ the initial interval. Define

$$
\begin{array}{ll}
m_{k+1} & =\text { adapt } m_{k} x_{k} \\
i_{k} & =\text { interval } m_{k} x_{k} \\
j_{k+1} & =j_{k} \triangleright i_{k+1}
\end{array}
$$

for $0 \leq k<n$. Thus, by definition of encode, if $f=$ encode $m_{0} x s$ then $f \in j_{n}$. Now we can reason for $n>0$:

$$
\begin{aligned}
& f \in j_{n} \\
& \equiv \quad\left\{\text { definition of } j_{n}\right\} \\
& f \in\left(j_{n-1} \triangleright i_{n}\right) \\
& \Rightarrow \quad\{(24.1)\} \\
& f \in j_{n-1} \wedge\left(f \triangleleft j_{n-1}\right) \in i_{n} \\
& \equiv \quad\left\{\text { definition of } i_{n}\right\} \\
& f \in j_{n-1} \wedge\left(f \triangleleft j_{n-1}\right) \in \text { interval } m_{n} x_{n} \\
& \equiv \quad\{(24.2)\} \\
& f \in j_{n-1} \wedge x_{n}=\text { symbol } m_{n}\left(f \triangleleft j_{n-1}\right)
\end{aligned}
$$

Hence, by induction, we can compute

$$
\begin{equation*}
x_{k}=\text { symbol } m_{k}\left(f \triangleleft j_{k-1}\right) \tag{24.4}
\end{equation*}
$$

in the order $k=n-1, n-2, \ldots, 0$. Equally well, (24.4) can used to compute the symbols in the order $k=0,1, \ldots, n-1$. However, since the decoder does not know the number of symbols, it will continue to produce more symbols indefinitely. Note that the associativity of \triangleright was not exploited in the reasoning above.

We implement decoding using the Haskell function unfoldr, defined by

$$
\begin{array}{lccc}
\begin{array}{ll}
\text { unfoldr } & :: \\
\text { unfoldr } f b & = \\
\text { case } f \text { Maybe }(a, b)) & \rightarrow b \rightarrow[a] \\
& \\
& \\
& \text { Just }\left(a, b^{\prime}\right)
\end{array} \rightarrow a: \text { unfoldr } f b^{\prime} \\
& & \rightarrow[]
\end{array}
$$

The function decode is defined by

$$
\begin{array}{lll}
\text { decode } & :: \quad \text { Model } \rightarrow \text { Fraction } \rightarrow[\text { Symbol }] \\
\text { decode } m f & = & \text { unfoldr step }(m,(0,1), f) \\
\text { step }(m, i, f)= & \text { Just }(x,(\text { adapt } m x, i \triangleright \text { interval } m x, f)) \\
& \text { where } x=\text { symbol } m(f \triangleleft i)
\end{array}
$$

The proof that this definition of decode satisfies (24.3) is by induction on $x s$. The details add nothing to the informal description above and we omit them.

That leaves the problem of termination. There are two possible methods for dealing with termination. Provided the number of symbols in the text is known beforehand, this number can be transmitted prior to encoding. Then decode can be stopped after producing the required number of symbols.

The second method is to use a special end-of-file symbol EOF, appended to the end of each text. Then decode is stopped when this special symbol is generated. The second method is the one usually adopted in practice, but has the disadvantage of forcing each model to allocate an interval, however small, for EOF, thereby restricting the total width of the intervals available for the other symbols.

Incremental encoding and decoding

Simple and elegant as the above definitions of encode and decode are, they produce and consume fractions. And the denominators of fractions get big very quickly. We would prefer coding and decoding to produce and consume lists of bits, not least because it opens up the possibility of producing some output before consuming all the input and reducing denominator size.

To this end we decompose pick into two functions, toBits :: Interval \rightarrow [Bit] and toFrac :: [Bit] \rightarrow Fraction, so that pick $=$ toFrac \cdot toBits. The definitions of encode and decode are revised to read:

$$
\begin{array}{lll}
\text { encode } & :: \quad \text { Model } \rightarrow[\text { Symbol }] \rightarrow[\text { Bit }] \\
\text { encode } m & = & \text { toBits } \cdot \text { foldl }(\triangleright)(0,1) \cdot \text { intervals } m \\
\text { decode } & :: & \text { Model } \rightarrow[\text { Bit }] \rightarrow[\text { Symbol }] \\
\text { decode } m \text { bs }= & \text { unfoldr step }(m,(0,1), \text { toFrac bs }) \\
\text { step }(m, i, f)= & \text { Just }(x,(\text { adapt } m, i \triangleright \text { interval } m x, f)) \\
& \text { where } x=\text { symbol } m(f \triangleleft i)
\end{array}
$$

The new version of encode consumes symbols and produces bits, while decode consumes bits and produces symbols. The functions toBits and toFrac have yet to be determined, but as long as toFrac (toBits i) $\in i$ for all intervals i we are guaranteed that (24.3) is satisfied.

The new definition of encode consumes all its input before delivering any output. We first show how to make encode incremental, because it will suggest appropriate definitions of toBits and toFrac.

Streaming

Consider the function stream defined by

$$
\begin{aligned}
& \text { stream } f g \text { s xs }=\text { unfoldr step }(s, x s) \\
& \text { where step }(s, x s)=\begin{array}{cll}
\text { case } f s \text { of } \\
& \text { Just }\left(y, s^{\prime}\right) & \rightarrow \\
\text { Just }\left(y,\left(s^{\prime}, x s\right)\right) \\
& \text { Nothing } & \rightarrow \\
& \text { case } x s \text { of } \\
& & x: x s^{\prime}
\end{array} \rightarrow \text { step }\left(g s x, x s^{\prime}\right) \\
&
\end{aligned}
$$

This function describes a process that alternates between producing output and consuming input. Starting in state s, control is initially passed to the producer function f, which delivers output until no more can be produced. Control is then passed to the consumer process g, which consumes the next input x and delivers a new state. The cycle then continues until the input is exhausted.

The following theorem, called the streaming theorem, relates stream to the composition of an unfoldr with a foldl.

Theorem 24.1 Suppose f and g satisfy the streaming condition

$$
f s=\operatorname{Just}\left(y, s^{\prime}\right) \Rightarrow f(g s x)=\operatorname{Just}\left(y, g s^{\prime} x\right)
$$

for all s and x. Then unfoldr $f($ foldl $g s x s)=\operatorname{stream~} f g s x$ for all s and all finite lists $x s$.

The proof of the streaming theorem is postponed to the Appendix. To apply it to encode, suppose toBits $=$ unfoldr bit for some function bit satisfying

$$
\begin{equation*}
\text { bit } i=\operatorname{Just}\left(b, i_{b}\right) \Rightarrow \operatorname{bit}(i \triangleright j)=\operatorname{Just}\left(b, i_{b} \triangleright j\right) \tag{24.5}
\end{equation*}
$$

Then we have

$$
\text { encode } m=\text { stream bit }(\triangleright)(0,1) \cdot \text { intervals } m
$$

The result is an incremental algorithm for encode.
In order to satisfy (24.5) we need a suitable definition of bit. We also have to satisfy toFrac (toBits $i) \in i$. Observe that (24.5) demands that, whenever bit i produces a bit b, the same bit has to be produced by bit i^{\prime} for any subinterval i^{\prime} of i. This severely constrains the definition of bit. One possibility is to take

$$
\text { bit }(\ell, r) \left\lvert\, \begin{array}{ll}
r \leq 1 / 2 & =\text { Just }(0,(2 * \ell, 2 * r)) \\
1 / 2 \leq \ell & =\text { Just }(1,(2 * \ell-1,2 * r-1)) \\
& \text { otherwise }
\end{array}=\right.\text { Nothing } \quad \text {. }
$$

Thus, bit i produces nothing if i strictly straddles $1 / 2$; otherwise it produces a 0 if $i \subseteq(0,1 / 2)$ and a 1 if $i \subseteq(1 / 2,1)$. This choice is reasonable, since fractions in $(0,1 / 2)$ have binary expansions that begin with a zero, while fractions in $(1 / 2,1)$ have expansions that begin with a one.

If bit i does produce a bit b, then so does bit i^{\prime} for any subinterval i^{\prime} of i, including $i \triangleright j$. Furthermore:

$$
\begin{array}{ll}
(2 * \ell, 2 * r) & =(0,2) \triangleright(\ell, r) \\
(2 * \ell-1,2 * r-1) & =(-1,1) \triangleright(\ell, r)
\end{array}
$$

Hence, if bit i does produce a bit b, then bit $i=\operatorname{Just}\left(b, j_{b} \triangleright i\right)$, where $j_{0}=(0,2)$ and $j_{1}=(-1,1)$. And $j_{b} \triangleright(i \triangleright j)=\left(j_{b} \triangleright i\right) \triangleright j$ since \triangleright is associative. Therefore, (24.5) is satisfied with $i_{b}=j_{b} \triangleright i$.

The length of toBits i is finite; in fact

$$
\text { length }(\text { toBits }(\ell, r)) \leq\left\lfloor\log _{2} 1 /(r-\ell)\right\rfloor
$$

For the proof, note that toBits applied to an interval of width greater than $1 / 2$ yields the empty sequence of bits, since such an interval strictly straddles $1 / 2$. Moreover, each evaluation of bit is on an interval of double the width of its predecessor. Hence, if $1 / 2^{k+1}<r-\ell \leq 1 / 2^{k}$, equivalently if $k=\left\lfloor\log _{2}[1 /(r-\ell)]\right\rfloor$, then termination is guaranteed after at most k bits have been produced.

With the above choice of toBits the companion function toFrac is defined by

$$
\text { toFrac }=\text { foldr }(\lambda b f \rightarrow(b+f) / 2)(1 / 2)
$$

Equivalently, toFrac bs foldr $(\lambda b f \rightarrow(b+f) / 2) 0(b s+[1])$. Thus, toFrac bs in effect appends a 1 bit to the end of $b s$ and converts the result into a fraction in the usual way. It is easy to check that toFrac bs $=(2 n+1) / 2^{k+1}$, where $k=$ length $b s$ and $n=$ toInt $b s$, the binary integer represented by $b s$.

To show that pick $i \in i$, where pick $=$ toFrac \cdot toBits, observe that pick is the composition of a function that consumes a list with a function that produces a list. The intermediate list can be eliminated, giving a direct definition

$$
\text { pick }(\ell, r) \left\lvert\, \begin{array}{ll}
r \leq 1 / 2 & =\text { pick }(2 * \ell, 2 * r) / 2 \\
1 / 2 \leq \ell & =(1+\operatorname{pick}(2 * \ell-1,2 * r-1)) / 2 \\
& \text { otherwise }
\end{array}\right.
$$

The proof that picki$i \in i$ (indeed, pick i is strictly contained in i) now follows by fixpoint induction. In a fixpoint induction the hypothesis is assumed and then shown to hold under recursive calls. Thus, a fixpoint induction proof is essentially a proof by induction on the depth of recursion. Further details are left as an exercise.

That leaves the problem of how to implement decoding incrementally. It is possible to get decode to work incrementally, but we will not go into details because the work would be wasted: the reimplementation of encode and decode in terms of finite-precision integers to come in the next pearl requires a completely different approach.

Final remarks

The material in these two pearls is drawn from Bird and Gibbons (2003) and Stratford (2005). Witten et al. (1987) described "accessible implementation". For details of Huffman and Shannon-Fano coding, see Huffman (1952) and Fano (1961). For recent perspectives on the subject of arithmetic coding, see Moffat et al. (1998) and Mackay (2003). The streaming theorem is new, and was created specifically for the purposes of formulating an incremental version of encoding, but it has other applications; see Gibbons (2007). A good example of practice leading to new theory.

References

Bird, R. S. and Gibbons, J. (2003). Arithmetic coding with folds and unfolds. Advanced Functional Programming 4, Volume 2638 of Lecture Notes in Computer Science, ed. J. Jeuring and S. Peyton Jones. Springer-Verlag, pp. 1-26.
Fano, R. M. (1961). Transmission of Information. Cambridge, MA/New York, NY: MIT Press/Wiley.
Gibbons, J. (2007). Metamorphisms: streaming representation-changers. Science of Computer Programming 65, 108-39.
Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the Institute of Radio Engineers 40 (9), 1098-101.
Mackay, D. (2003). Information Theory, Learning and Inference Algorithms. Cambridge, UK: Cambridge University Press.
Moffat, A., Neal, R. M. and Witten, I. H. (1998). Arithmetic coding revisited. ACM Transactions on Information Systems 16 (3), 256-94.
Stratford, B. (2005). A formal treatment of lossless data compression. DPhil thesis, Oxford University Computing Laboratory, Oxford, UK.
Witten, I. H., Neal, R. M. and Cleary, J. G. (1987). Arithmetic coding for data compression. Communications of the ACM 30 (6), 520-40.

Appendix

The streaming theorem can be proved by appealing to a more general theorem about unfoldr. This theorem states that unfoldr $f \cdot g=$ unfoldr h provided two conditions are satisfied:

$$
\begin{array}{ll}
h x=\text { Nothing } & \Rightarrow f(g x)=\text { Nothing } \\
h x=\operatorname{Just}\left(y, x^{\prime}\right) & \Rightarrow f(g x)=\operatorname{Just}\left(y, g x^{\prime}\right)
\end{array}
$$

This result is known as the fusion law of unfoldr. In particular, the fusion conditions for

$$
\text { unfoldr step }(s, x s)=\text { unfoldr } f(\text { foldl } g \text { s } x s)
$$

where $x s$ is restricted to be a finite list and

$$
\begin{aligned}
\operatorname{step}(s, x s)= & \text { case } f s \text { of } \\
& \\
& \text { Just }\left(y, s^{\prime}\right)
\end{aligned} \rightarrow \quad \text { Just }\left(y,\left(s^{\prime}, x s\right)\right)
$$

come down to

$$
\text { step }(s, x s)=\text { Nothing } \Rightarrow f(\text { foldl } g s x s)=\text { Nothing }
$$

and

$$
\begin{aligned}
\operatorname{step}(s, x s)= & \text { Just }\left(y,\left(s^{\prime}, x s^{\prime}\right)\right) \\
& \Rightarrow \quad f(\text { foldl } g \text { s } x s)=\text { Just }\left(y, \text { foldl } g s^{\prime} x s^{\prime}\right)
\end{aligned}
$$

for all finite lists $x s$. The first condition is easy to verify and the second condition follows from

$$
f s=\operatorname{Just}\left(y, s^{\prime}\right) \Rightarrow f(\text { foldl } g s x s)=\operatorname{Just}\left(y, \text { foldl } g s^{\prime} x s\right)
$$

for all finite lists $x s$, which can be proved by induction on $x s$, given that the streaming condition holds for f and g.

25

Integer arithmetic coding

Introduction

This pearl continues the study of arithmetic coding begun in the previous one. The aim is to replace rational arithmetic with integer arithmetic. The basic idea is to represent the interval being narrowed by a pair of limitedprecision integers (ℓ, r), where $0 \leq \ell<r \leq 2^{e}$ and e is a fixed integer; this pair represents the subinterval $\left(\ell / 2^{e}, r / 2^{e}\right)$ of the unit interval. The intervals supplied by models are represented in exactly the same way but with a different integer d. As we will see below, d and e have to satisfy $d \leq e-2$, so they cannot be the same. The values of e and d, assumed to be global constants in what follows, are chosen to be sufficiently small that all calculations can be done with limited-precision integers, for example with the Haskell type Int.

New definitions

We now take Interval $=($ Int, Int $)$, so interval $m x$ returns a pair (p, q) of limited-precision integers, representing the interval $\left(p / 2^{d}, q / 2^{d}\right)$. The function symbol m takes an integer n in the range $0 \leq n<2^{d}$ and returns a symbol x. As before, $x=$ symbol m if and only if $n \in$ interval $m x$, except that n is now an integer.

Next, we change the definition of narrowing by replacing \triangleright with \downarrow, defined by

$$
\begin{array}{lll}
(>) & :: \quad \text { Interval } \rightarrow \text { Interval } \rightarrow \text { Interval } \\
(\ell, r)>(p, q) & = & \left(\ell+\left\lfloor(r-\ell) * p / 2^{d}\right\rfloor, \ell+\left\lfloor(r-\ell) * q / 2^{d}\right\rfloor\right)
\end{array}
$$

The largest integer that can arise in evaluations of is 2^{e+d} (because $(r-\ell) * q$ can be that big) and, provided this integer is in Int, all interval calculations can now be done with Int.

Next, recall the function toBits of the previous pearl. This function converted a fractional interval into a list of bits. We have toBits $=u n f o l d r$ bit, where

$$
\text { bit }(\ell, r) \left\lvert\, \begin{array}{ll}
r \leq 1 / 2 & =\operatorname{Just}(0,(2 * \ell, 2 * r)) \\
1 / 2 \leq \ell & =\operatorname{Just}(1,(2 * \ell-1,2 * r-1)) \\
\text { otherwise } & =\text { Nothing }
\end{array}\right.
$$

For integer encoding, bit is replaced by ibit, so that ibit too uses limitedprecision integer arithmetic:

$$
\text { ibit }(\ell, r) \left\lvert\, \begin{aligned}
& r \leq 2^{e-1}=\operatorname{Just}(0,(2 * \ell, 2 * r)) \\
& 2^{e-1} \leq \ell=\text { Just }\left(1,\left(2 * \ell-2^{e}, 2 * r-2^{e}\right)\right) \\
& \text { otherwise }=\text { Nothing }
\end{aligned}\right.
$$

The function $i b i t$ is a version of bit that works on intervals scaled by 2^{e}, so satisfies $2^{e} *$ toFrac (unfoldr ibit i) $\in i$.

Installing the above revisions leads to a new definition of encode, namely

$$
\begin{equation*}
\text { encode }_{1} m=\text { unfoldr ibit } \cdot \text { foldl }(\downarrow)\left(0,2^{e}\right) \cdot \text { intervals } m \tag{25.1}
\end{equation*}
$$

In words, symbols of the text are converted into intervals which are then used to narrow the interval $\left(0,2^{e}\right)$ to some final interval i from which a bit string is produced that, when converted to a fraction and scaled by 2^{e}, gives a number in i. It all seems straightforward.

The problem with (25.1), however, is that it just simply does not work! Narrowing with will eventually collapse an interval to the empty interval, something that cannot happen with \triangleright. To illustrate, take $e=5, d=3$ and suppose m associates the interval $(3,5)$ with the letter "a" and $(5,6)$ with the letter "b". With adapt $m x=m$, so m is a static model, we have

$$
\begin{aligned}
& \text { encode }_{1} \mathrm{~m}^{\text {"bba" }} \\
= & \text { foldl }(>)(0,32)[(5,6),(5,6),(3,5)] \\
= & \text { foldl }(>)(20,24)[(5,6),(3,5)] \\
= & \text { foldl } \gg(22,23)[(3,5)] \\
= & (22,22)
\end{aligned}
$$

Moreover, unfoldr ibit $(22,22)$ generates infinite garbage. Whoops!

Incremental encoding and interval expansion

What saves the day is a combination of two ideas: incremental encoding and interval expansion. First, suppose we replace (25.1) by

$$
\begin{equation*}
\text { encode }_{2} m=\text { stream ibit }(>)\left(0,2^{e}\right) \cdot \text { intervals } m \tag{25.2}
\end{equation*}
$$

The operations ibit and do not satisfy the streaming condition because - is not an associative operation and encode $_{2} \neq$ encode $_{1}$. Indeed, revisiting the example above, we have

```
        encode 2 m"bba"
= stream ibit (>) (0,32)[(5,6),(5,6), (3,5)]
= stream ibit ( ) (20,24)[(5,6), (3,5)]
= 101: stream ibit ( ) (0,32)[(5,6), (3,5)]
= 101101:stream ibit (>) (0,32)[(3,5)]
= 101101 : stream ibit (>) (12, 20) []
= 101101
```

Interval collapse is avoided. That is the good news. On the other hand:

```
    encode\mp@subsup{e}{2}{}m"aab"
= stream ibit (>) (0,32)[(3,5),(3,5), (5,6)]
= stream ibit (>) (12,20)[(3,5),(5,6)]
= stream ibit (>) (15,17)[(5,6)]
= stream ibit (>) (16,16) []
= 0111...
```

Interval collapse is not avoided because each intermediate interval straddles 16, the midpoint, and ibit returns Nothing on such intervals.

The conclusion is that incremental encoding alone is not quite enough to avoid interval collapse. The problem is with intervals straddling 2^{e-1}, and the purpose of the second idea, interval expansion, is to increase the width of such intervals to at least 2^{e-2}. A narrowed interval $(\ell, r)>(p, q)$ will not collapse if

$$
\left\lfloor(r-\ell) * p / 2^{d}\right\rfloor<\left\lfloor(r-\ell) * q / 2^{d}\right\rfloor
$$

for all $p<q$, equivalently if $\left\lfloor(r-\ell) * p / 2^{d}\right\rfloor<\left\lfloor(r-\ell) *(p+1) / 2^{d}\right\rfloor$ for all p. Since $\lfloor x\rfloor<\lfloor y\rfloor$ provided $x+1 \leq y$, this condition is satisfied if $2^{d} \leq r-\ell$. Hence, collapse is avoided provided $r-\ell \leq 2^{e-2}$ and so if $d \leq e-2$.

Interval expansion

Interval expansion is a data refinement in which an interval (ℓ, r) is represented by a triple of the form $\left(n,\left(\ell^{\prime}, r^{\prime}\right)\right.$), where $\ell^{\prime}=$ widen $n \ell$ and $r^{\prime}=$ widen $n r$ and

$$
\text { widen } n x=2^{n}\left(x-2^{e-1}\right)+2^{e-1}
$$

A fully expanded interval is one in which n is as large as possible, subject to the bounds $0 \leq \ell^{\prime}<r^{\prime} \leq 2^{e}$. For example, taking $e=5$, the interval $(13,17)$ of width 4 can be represented by the fully expanded interval $(2,(4,20))$ of width 16.

The function expand takes an interval and fully expands it. To define expand, and to avoid writing fractions and exponentials in what follows, define the four integers e_{i} for $1 \leq i \leq 4$ by $e_{i}=(i / 4) 2^{e}$. Observe that

$$
\begin{aligned}
& 0 \leq 2 *\left(\ell-e_{2}\right)+e_{2} \quad \equiv e_{1} \leq \ell \\
& 2 *\left(r-e_{2}\right)+e_{2} \leq e_{4} \equiv r \leq e_{3}
\end{aligned}
$$

Hence, we can further expand $(n,(\ell, r))$ if $e_{1} \leq \ell$ and $r \leq e_{3}$. This leads to the definition of expand in terms of a subsidiary function extend:

```
expand \(i=\) extend \((0, i)\)
extend \((n,(\ell, r))\)
    \(e_{1} \leq \ell \wedge r \leq e_{3}=\quad\) extend \(\left(n+1,2 * \ell-e_{2}, 2 * r-e_{2}\right)\)
    otherwise \(\quad=(n,(\ell, r))\)
```

The converse of expand is contract, defined by

$$
\operatorname{contract}(n,(\ell, r))=(\text { shorten } n \ell, \text { shorten } n r)
$$

where shorten $n x=\left(x-e_{2}\right) / 2^{n}+e_{2}$. We have shorten $n \cdot$ widen $n=i d$, from which follows contract \cdot expand $=i d$, but, in general, expand \cdot contract $\neq i d$. This is the usual situation with the abstraction and representation functions of a data refinement.

Next, define enarrow, short for extend and narrow, by

$$
\begin{array}{ll}
\text { enarrow } & ::(\text { Int }, \text { Interval }) \rightarrow \text { Interval } \rightarrow(\text { Int, Interval }) \\
\text { enarrow ei } j & =(n, i>j) \quad \text { where }(n, i)=\text { extend } e i
\end{array}
$$

Thus, enarrow takes a partially expanded interval, fully expands it and then narrows the result with \downarrow. Consequently, (ℓ, r) is narrowed only when $\ell<e_{1}$ or $e_{3}<r$. If, in addition, $\ell<e_{2}<r$, then either $\ell<e_{1}$ and $e_{2}<r$, or $\ell<e_{2}$ and $e_{3}<r$. In either case, $e_{1}<r-\ell$, which is exactly what is required.

A new definition

We now replace (25.2) by yet a third, completely new definition:

$$
\begin{equation*}
\text { encode }_{3} m=\text { stream ebit enarrow }\left(0,\left(0,2^{e}\right)\right) \cdot \text { intervals } m \tag{25.3}
\end{equation*}
$$

The function ebit is a counterpart to ibit that works on expanded intervals, and is specified by the property

$$
\begin{equation*}
\text { unfoldr ebit }=\text { unfoldr ibit } \cdot \text { contract } \tag{25.4}
\end{equation*}
$$

where ibit was defined above. An explicit definition of ebit is developed below. The function ebit will return Nothing on intervals that straddle e_{2},
so encode e_{3} ensures that an interval is narrowed by only if its width is at least e_{1}, thereby avoiding interval collapse if $d \leq e-2$.

The function encode e_{3} is different from all previous versions of encode. That means we are back to square one with the problem of how to define decode. We postpone discussion of the relationship between encode $e_{3} m x s$ and $x s$ until after constructing an explicit definition of ebit.

Equation (25.4) suggests appeal to the fusion law of unfoldr. This law (which was used in the Appendix of the previous pearl) states that

$$
\text { unfoldr } h=\text { unfoldr } f \cdot g
$$

provided the following two fusion conditions are satisfied:

$$
\begin{array}{ll}
h x=\text { Nothing } & \Rightarrow f(g x)=\text { Nothing } \\
h x=\operatorname{Just}\left(y, x^{\prime}\right) & \Rightarrow f(g x)=\operatorname{Just}\left(y, g x^{\prime}\right)
\end{array}
$$

Taking $h=e b i t, f=$ ibit and $g=$ contract, we have to show

$$
\begin{array}{ll}
\text { ebit } x=\text { Nothing } & \Rightarrow \quad \text { ibit }(\operatorname{contract} x)=\text { Nothing } \\
\text { ebit } x=\operatorname{Just}\left(y, x^{\prime}\right) & \Rightarrow \quad \text { ibit }(\operatorname{contract} x)=\operatorname{Just}\left(y, \text { contract } x^{\prime}\right)
\end{array}
$$

Here is the definition of ebit that satisfies these conditions:

```
ebit \((0,(\ell, r))\)
    \(\mid r \leq e_{2}=\operatorname{Just}(0,(0,(2 * \ell, 2 * r)))\)
    \(\mid e_{2} \leq \ell=\operatorname{Just}\left(1,\left(0,\left(2 * \ell-e_{4}, 2 * r-e_{4}\right)\right)\right)\)
    | otherwise \(=\) Nothing
ebit \((n+1,(\ell, r))\)
    \(r \leq e_{2} \quad=\quad \operatorname{Just}\left(0,\left(n,\left(\ell+2^{n} * e_{2}, r+2^{n} * e_{2}\right)\right)\right)\)
    \(e_{2} \leq \ell \quad=\quad \operatorname{Just}\left(1,\left(n,\left(\ell-2^{n} * e_{2}, r-2^{n} * e_{2}\right)\right)\right)\)
    otherwise \(=\) Nothing
```

This definition will be simplified shortly. Setting contract $(n,(\ell, r))=\left(\ell^{\prime}, r^{\prime}\right)$ it is easy to check that $r \leq e_{2} \equiv r^{\prime} \leq e_{2}$ and $e_{2} \leq \ell \equiv e_{2} \leq \ell^{\prime}$, so the first fusion condition is satisfied. The second condition is immediate in the case $n=0$, since contract $(0, i)=i$. The remaining case comes down to the identity

$$
2 * \operatorname{shorten}(n+1) x-e_{4} * b=\text { shorten } n\left(x+(1-2 b) * 2^{n} * e_{2}\right)
$$

for $b=0$ and $b=1$, and is easily verified.
The definition of ebit is inefficient as well as clumsy, but it can be improved. Observe that $e_{2} \leq \ell+2^{n} e_{2}$ and $r-2^{n} e_{2} \leq e_{2}$ for all $n \geq 0$. Thus, in the case $r \leq e_{2}$ the computation of unfoldr ebit $(n,(\ell, r))$ proceeds

```
    unfoldr ebit ( }n,(\ell,r)
= 0:unfoldr ebit (n-1,(\ell+2 n-1 }\mp@subsup{e}{2}{},r+\mp@subsup{2}{}{n-1}\mp@subsup{e}{2}{})
= 01:unfoldr ebit (n-2,(\ell+2 2-2 e}\mp@subsup{e}{2}{},r+\mp@subsup{2}{}{n-2}\mp@subsup{e}{2}{})
= ...
= 01 n-1 : unfoldr ebit (0, (\ell+\mp@subsup{e}{2}{},r+\mp@subsup{e}{2}{}))
= 01 n}:\mathrm{ unfoldr ebit (0, (2 , 2r))
```

where 01^{n} denotes a zero followed by n ones. Similarly, if $e_{2} \leq \ell$, then

$$
\text { unfoldr ebit }(n,(\ell, r))=10^{n}: \text { unfoldr ebit }\left(0,\left(2 \ell-e_{4}, 2 r-e_{4}\right)\right)
$$

Hence, unfoldr ebit $=$ concat \cdot unfoldr ebits, where

$$
\begin{aligned}
& \text { ebits }(n,(\ell, r)) \\
& \left\lvert\, \begin{array}{ll}
r \leq e_{2} & = \\
\left\lvert\, \begin{array}{l}
\text { Just } \\
e_{2} \leq \ell \\
\text { otherwise }
\end{array}\right. & =\text { Just }(\text { bits } n 1,(0,(2 * \ell, 2 * r))) \\
& =\text { Nothing }
\end{array}\right.
\end{aligned}
$$

and bits $n b=b$: replicate $n(1-b)$ returns a b followed by n copies of $1-b$. It follows that we can replace (25.3) by the equivalent but more efficient version
encode $_{3} m$

$$
\begin{equation*}
=\text { concat } \cdot \text { stream ebits enarrow }\left(0,\left(0,2^{e}\right)\right) \cdot \text { intervals } m \tag{25.5}
\end{equation*}
$$

Definition (25.5) is our final program for encode.

A crucial question

But, what does $e^{n} c o d e_{3}$ actually do? How is its output related to its input? The version of encode in the previous pearl satisfied
toFrac (encode mxs) \in foldl $(\triangleright)(0,1)$ (intervals $m x s)$
But this cannot be the case with encode e_{3}.
To answer this crucial question, define the variant encode 3_{3}^{\prime} of encode e_{3} that includes the starting interval as an extra argument, something we could have done from the outset:

$$
\text { encode }{ }_{3}^{\prime} m \text { ei }=\text { concat } \cdot \text { stream ebits enarrow ei } \cdot \text { intervals } m
$$

Then we have

$$
\begin{equation*}
2^{e} * \text { toFrac }\left(\text { encode } e_{3}^{\prime} \text { m ei xs }\right) \in \text { contract ei } \tag{25.6}
\end{equation*}
$$

for all models m, expanded intervals $e i$ and lists of symbols $x s$. Property (25.6), whose proof is given in the Appendix, is crucial for implementing decode.

A final problem

Unfortunately, (25.5) is not guaranteed to give a version of encode that works with limited-precision arithmetic in all cases. The problem is with the number n in a fully expanded interval (n, i). It is conceivable that n can be very large, so large that it is not representable by an element of Int. For example, imagine narrowing $\left(0, e_{4}\right)$ a very large number of times with an interval such as $(3 / 8,5 / 8)$. The narrowed interval strictly straddles e_{2}, so the output of encode is the empty list of bits. But interval expansion applied at each step will produce an expanded interval of the form $\left(n,\left(0, e_{4}\right)\right)$, where n can exceed the upper limit of a limited-precision integer. Of course, the situation is extremely unlikely in practice, but it is logically possible. The plain fact of the matter is that no version of arithmetic coding is guaranteed to work with any form of limited-precision arithmetic. If the situation above does arise, then the two options are either to abort encoding with a suitable error message or to switch back to rational arithmetic coding.

Inverting streams

Now we tackle the problem of decoding. The function decode is specified by the condition $x s \sqsubseteq$ decode m (encode $m x s$). With (25.3), or the equivalent (25.5), as the definition of encode, the only way to satisfy this condition is to show how to invert streams. To this end we will make use of a function destream defined by

```
destream \(f g h s y s=u n f o l d r\) step \((s, y s)\)
where step \((s, y s)=\) case \(f s\) of
    \(J u s t\left(y, s^{\prime}\right) \rightarrow \operatorname{step}\left(s^{\prime}, y s \downarrow[y]\right)\)
    Nothing \(\rightarrow\) Just \((x,(g s x, y s))\)
    where \(x=h\) s ys
```

The operation \downarrow is defined by $(u s+v s) \downarrow u s=v s$. The function destream is dual to stream: when $f s$ produces some output y, then y is removed from the head of the input $y s$; when $f s$ returns nothing, an element of the output is produced using the "helper" function h.

The relationship between stream and destream is given by the following theorem, called the destreaming theorem, whose proof is also given in the Appendix.

Theorem 25.1 Suppose stream $f g s x s$ returns a finite list and h satisfies $h s($ stream $f g s(x: x s))=x$ if $f s=$ Nothing. Under these assumptions we have $x s \sqsubseteq$ destream $f g h s($ stream $f g s x s)$

To apply the destreaming theorem to encode, take $f=$ ebit, $g=$ enarrow and $s=e i$. Then we have

```
decode m= destream ebit enarrow h(m,(0,(0, e4)))
```

provided that the helper function h satisfies

$$
\begin{equation*}
h(m, e i)\left(e n c o d e_{3}^{\prime} m e i(x: x s)\right)=x \tag{25.7}
\end{equation*}
$$

for all intervals $e i$ that straddle e_{2}.
Just as (25.3) can be improved to (25.5) by replacing ebit with ebits, so can the above definition of decode. The result is

```
decode \(m\) bs unfoldr step \(\left(m,\left(0,\left(0, e_{4}\right)\right), b s\right)\)
step \((m,(n,(\ell, r)), b s)\)
    \(\mid r \leq e_{2}=\operatorname{step}(m,(0,(2 * \ell, 2 * r)), b s \downarrow\) bits \(n 0)\)
    \(e_{2} \leq \ell=\operatorname{step}\left(m,\left(0,\left(2 * \ell-e_{4}, 2 * r-e_{4}\right)\right)\right.\), bs \(\downarrow\) bits \(\left.n 1\right)\)
    otherwise \(=\operatorname{Just}(x,(\) adapt \(m x\),
                                enarrow \((n,(\ell, r))(\) interval \(m x), b s))\)
    where \(x=h(m,(n,(\ell, r))) b s\)
```

It remains to discover the helper function h.

The helper function

We begin with a calculation that produces a definition of $\boldsymbol{4}$, the operation that plays the same role for \downarrow as \triangleleft did for \triangleright. Recall that

$$
f \triangleleft(\ell, r)=(f-\ell) /(r-\ell)
$$

and $f \in i \triangleright j \equiv(f \triangleleft i) \in j$. The calculation exploits an important property known as the rule of floors: $n \leq f \equiv n \leq\lfloor f\rfloor$ for all integers n and reals f. Let k, ℓ, r, p and q be any numbers. We calculate:

$$
\begin{array}{ll}
& k \in(\ell, r)>(p, q) \\
\equiv & \{\text { definition of }\} \\
& \ell+\left\lfloor(r-\ell) * p / 2^{d}\right\rfloor \leq k<\ell+\left\lfloor(r-\ell) * q / 2^{d}\right\rfloor \\
\equiv & \{\text { arithmetic }\} \\
& \left\lfloor(r-\ell) * p / 2^{d}\right\rfloor<k-\ell+1 \leq\left\lfloor(r-\ell) * q / 2^{d}\right\rfloor \\
\equiv & \{\text { rule of floors }\} \\
& (r-\ell) * p / 2^{d}<k-\ell+1 \leq(r-\ell) * q / 2^{d} \\
\equiv & \{\text { arithmetic }\}
\end{array}
$$

$$
\begin{aligned}
& \equiv \quad \text { } \quad \text { rrule of floors }\} \\
& \quad p \leq\left\lfloor\left((k-\ell+1) * 2^{d}-1\right) /(r-\ell)\right\rfloor<q
\end{aligned}
$$

Hence, $k \in(i>j) \equiv(k \triangleleft i) \in j$, where

$$
\begin{array}{lll}
(\mathbb{4}) & :: \quad \text { Int } \rightarrow \text { Interval } \rightarrow \text { Int } \\
k \longleftarrow(\ell, r) & = & \left((k-\ell+1) * 2^{d}-1\right) \operatorname{div}(r-\ell)
\end{array}
$$

Next, recall property (25.6) from the previous section: for all $e i$ and $x s$

$$
2^{e} * \operatorname{toFrac}\left(\text { encode } e_{3}^{\prime} m \text { ei xs }\right) \in \text { contract ei }
$$

Equivalently, using the definition of contract and widen, we have

$$
\text { widen } n\left(2^{e} * \operatorname{toFrac}\left(e n c o d e e_{3}^{\prime} m(n, i) x s\right)\right) \in i
$$

Assuming the interval i has integer bounds and using the rule of floors again, the above is equivalent to

$$
\left\lfloor\text { widen } n\left(2^{e} * \text { toFrac }\left(\text { encode } e_{3}^{\prime} m(n, i) x s\right)\right)\right\rfloor \in i
$$

Next, take (n, i) to be a fully expanded interval straddling e_{2}, so

$$
\begin{aligned}
& \text { encode } e_{3}^{\prime} m(n, i)(x: x s) \\
& \quad=\quad \text { encode } e_{3}^{\prime}(\text { adapt } m x)(n, i>\text { interval } m x) x s
\end{aligned}
$$

Then we obtain

$$
\left\lfloor\text { widen } n\left(2^{e} * \text { toFrac }\left(\text { encode } e_{3}^{\prime} m(n, i)(x: x s)\right)\right)\right\rfloor \in i \triangleright \text { interval } m x s
$$

Finally, recall the relationship between symbol and interval, namely that $x=$ symbol $m n$ if and only if $n \in$ interval $m x$. It follows that h can be defined by

$$
\begin{aligned}
h(m, e i) b s= & \text { symbol } m\left(\left\lfloor\text { widen } n\left(2^{e} * \text { toFrac } b s\right)\right\rfloor \triangleleft i\right) \\
& \text { where }(n, i)=\text { extend ei }
\end{aligned}
$$

Incremental decoding

The current definition of decode has a number of deficiencies: it uses rational arithmetic (in the computation of h, since toFrac bs is a fraction), it is not incremental and it is very inefficient. The computation of extend is duplicated both in evaluation of h and enarrow, the function toFrac is re-evaluated for every output symbol and widen n involves exponentiation, an expensive operation. All in all, decode sucks. But by making decode incremental we can overcome all these deficiencies.

We make decode incremental in three stages. First, we eliminate all dependency on the function extend by including the relevant computation in a revision to step:

```
step \((m,(n,(\ell, r)), b s)\)
    \(r \leq e_{2} \quad=\operatorname{step}(m,(0,(2 * \ell, 2 * r)), b s \downarrow\) bits \(n 0)\)
    \(e_{2} \leq \ell \quad=\operatorname{step}\left(m,\left(0,\left(2 * \ell-e_{4}, 2 * r-e_{4}\right)\right)\right.\), bs \(\downarrow\) bits \(\left.n 1\right)\)
    \(e_{1} \leq \ell \wedge r \leq e_{3}=\operatorname{step}\left(m,\left(n+1,\left(2 * \ell-e_{2}, 2 * r-e_{2}\right)\right), b s\right)\)
    otherwise \(\quad=\) Just ( \(x\),
                                (adapt \(m x,(n,(\ell, r)\) interval \(m x), b s)\) )
    where \(x=\) symbol \(m\left(\left\lfloor\right.\right.\) widen \(n\left(e_{4} *\right.\) toFrac \(\left.\left.\left.b s\right)\right\rfloor \boldsymbol{\iota}(\ell, r)\right)\)
```

The point is that, when step ($m, e i, b s$) returns something, ei will now be a fully expanded interval, so enarrow can be replaced by -

Next, we show how to avoid repeated computations of toFrac. Define f and $s t e p^{\prime}$ by

$$
\begin{array}{ll}
\begin{array}{ll}
f n b s & = \\
\text { step }^{\prime}(m,(n, i), f n b s) & =\text { widen } n\left(e_{4} * \text { toFrac } b s\right) \\
& (m,(n, i), b s)
\end{array}
\end{array}
$$

Here the idea is to maintain $f n b s$ rather than $b s$ as the third argument of step, where n is the expansion factor in the second argument. We leave it as an exercise to show that

$$
\begin{array}{ll}
f 0(b s \downarrow \text { bits } n b) & =2 * f n b s-e_{4} * b \\
f(n+1) b s & =2 * f n b s-e_{2}
\end{array}
$$

This leads to the following version of decode, in which step ${ }^{\prime}$ is renamed step again:

$$
\begin{equation*}
\text { decode } m b s=\text { unfoldr step }\left(m,\left(0,\left(0, e_{4}\right)\right), e_{4} * \text { toFrac } b s\right) \tag{25.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { step }(m,(n,(\ell, r)), f) \\
& \mid r \leq e_{2}=\operatorname{step}(m,(0,(2 * \ell, 2 * r)), 2 * f) \\
& e_{2} \leq \ell \quad=\operatorname{step}\left(m,\left(0,\left(2 * \ell-e_{4}, 2 * r-e_{4}\right)\right), 2 * f-e_{4}\right) \\
& e_{1} \leq \ell \wedge r \leq e_{3}=\operatorname{step}\left(m,\left(n+1,\left(2 * \ell-e_{2}, 2 * r-e_{2}\right)\right), 2 * f-e_{2}\right) \\
& \text { otherwise }=\text { Just (} x \text {, } \\
& (\text { adapt } m x,(n,(\ell, r) \text { interval } m x), f)) \\
& \text { where } x=\text { symbol } m(\lfloor f\rfloor \triangleleft(\ell, r))
\end{aligned}
$$

```
decode \(m b s=\) unfoldr step \(\left(m,\left(0, e_{4}\right)\right.\), toInt (take e bs \(\left.s^{\prime}\right)\), drop e bs \(\left.s^{\prime}\right)\)
where \(b s^{\prime}=b s+1\) : repeat 0
```

```
step \((m,(\ell, r), n, b: b s)\)
    \(r \leq e_{2} \quad=\operatorname{step}(m,(2 * \ell, 2 * r), 2 * n+b, b s)\)
    \(e_{2} \leq \ell \quad=\operatorname{step}\left(m,\left(2 * \ell-e_{4}, 2 * r-e_{4}\right), 2 * n-e_{4}+b, b s\right)\)
    \(e_{1} \leq \ell \wedge r \leq e_{3}=\) step \(\left(m,\left(2 * \ell-e_{2}, 2 * r-e_{2}\right), 2 * n-e_{2}+b, b s\right)\)
    otherwise \(=\) Just ( \(x\),
    \((\) adapt \(m x,(\ell, r)\) interval \(m x, n, b: b s))\)
    where \(x=\) symbol \(m(n \longleftarrow(\ell, r))\)
```

Fig. 25.1 The final version of decode

Now we see that n is a redundant variable, so we can drop it:

```
step \((m,(\ell, r), f)\)
    \(r \leq e_{2} \quad=\operatorname{step}(m,(2 * \ell, 2 * r), 2 * f)\)
    \(e_{2} \leq \ell \quad=\operatorname{step}\left(m,\left(2 * \ell-e_{4}, 2 * r-e_{4}\right), 2 * f-e_{4}\right)\)
    \(e_{1} \leq \ell \wedge r \leq e_{3}=\operatorname{step}\left(m,\left(2 * \ell-e_{2}, 2 * r-e_{2}\right), 2 * f-e_{2}\right)\)
    otherwise \(\quad=\quad \operatorname{Just}(x\),
    (adapt \(m x,(\ell, r)\) interval \(m x, f)\) )
where \(x=\) symbol \(m(\lfloor f\rfloor \leftharpoonup(\ell, r))\)
```

Finally, we are ready for incremental computation. Observe in (25.8) that, because $e_{4}=2^{e}$, the term $\left\lfloor e_{4} *\right.$ toFrac $\left.b s\right\rfloor$ depends only on the first e elements of $b s$. In fact

$$
\left\lfloor e_{4} * \text { toFrac bs }\right\rfloor=\text { toInt }(\text { take e }(\text { bs }+1 \text { : repeat } 0))
$$

where toInt $=$ foldl $(\lambda n b \rightarrow 2 * n+b) 0$ converts a bit string into an integer. The string $b s$ has to be extended with sufficient elements of 1 : repeat 0 to ensure that the total length of the result is a least e. Moreover, with $b s^{\prime}=b s+1:$ repeat 0 we have

$$
\begin{aligned}
\left\lfloor 2 * e_{4} * \text { toFrac } b s\right\rfloor & =\text { toInt }\left(\text { take }(e+1) b s^{\prime}\right) \\
& =2 * \text { toInt }\left(\text { take e bs } s^{\prime}\right)+\text { head }\left(\text { drop e bs } s^{\prime}\right)
\end{aligned}
$$

That means we can replace the third argument f in the definition of step by a pair $(n, d s)$, where $n=$ toInt (take ebs') and $d s=d r o p e b s^{\prime}$ and $b s^{\prime}=b s+1:$ repeat 0 . And this leads to our final version of decode recorded in Figure 25.1

Final remarks

The reader who has followed us to the bitter end will appreciate that there is rather a lot of arithmetic in arithmetic coding, and that includes the arithmetic of folds and unfolds as well as numbers. As we said in the previous pearl, arithmetic coding is a simple idea, but one that requires care to implement with limited-precision integer arithmetic.

Appendix

The proof of Theorem 25.1 depends on the following two properties, both of which are easy consequences of the definitions of stream and destream:

$$
\begin{aligned}
& f s=\text { Nothing } \Rightarrow \\
& \quad \text { stream } f g s(x: x s)=\text { stream } f g(g s x) x s \wedge \\
& \quad \text { destream } f g h s y s=x: \text { destream } f g h(g s x) y s \\
& f s=\text { Just }\left(y, s^{\prime}\right) \Rightarrow \\
& \quad \text { stream } f g \text { s xs }=y: \text { stream } f g s^{\prime} x s \wedge \\
& \quad \text { destream } f g h s(y: y s)=\text { destream } f g h s^{\prime} y s
\end{aligned}
$$

In the first property x is defined by $x=h s y s$. We now prove

$$
x s \sqsubseteq \text { destream } f g h s(\text { stream } f g s x s)
$$

by a double induction on $x s$ and n, where n is the length of stream $f g s x s$.

Case []: Immediate since [] is a prefix of every list.

Case $x: x s$: First consider the subcase $f s=$ Nothing. The first property above gives

```
destream fghs(stream f g s (x:xs))
    = x: destreamfgh(gzx) (stream fg(gzx)xs)
```

Since $x: x s \sqsubseteq x: x s^{\prime}$ if and only if $x s \sqsubseteq x s^{\prime}$, an appeal to induction establishes the case.

In the case $f s=\operatorname{Just}\left(y, s^{\prime}\right)$ the second property above gives

$$
\begin{aligned}
& \text { destream } f g h s(\text { stream } f g s(x: x s)) \\
& \quad=\quad \text { destream } f g h s^{\prime}\left(\text { stream } f g s^{\prime}(x: x s)\right)
\end{aligned}
$$

But since length $\left(\operatorname{stream} f g z^{\prime}(x: x s)\right)=n-1$ in this case, we can again appeal to induction to establish the case and complete the proof.

The final task is to prove that $e_{4} * \operatorname{toFrac}\left(\right.$ encode $_{3}^{\prime} m$ ei xs $) \in$ contract ei.

The proof is by a double induction on $x s$ and n, where n is the length of encodé m ei x.

Case []: In this case encode ${ }_{3}^{\prime} m$ ei [] = concat (unfoldr ebits ei). Now

$$
\left.\begin{array}{ll}
& e_{4} *(\text { toFrac }(\text { concat }(\text { unfoldr ebits ei }))) \in \text { contract ei } \\
\equiv & \{\text { definition of } \text { ebit }\} \\
& e_{4} *(\text { toFrac }(\text { unfoldr ebit ei) }) \in \text { contract ei }
\end{array}\right\}
$$

This establishes the case.
Case x : xs: In this case we need the following alternative definition of encodés:

```
encode \(e_{3}^{\prime} m(n,(\ell, r))(x: x s)\)
    \(\mid r \leq e_{2}=\) bits \(n 0+\) encode \(_{3}^{\prime} m(0,(2 \ell, 2 r))(x: x s)\)
    \(e_{2} \leq \ell=\) bits \(n 1+\) encode \(e_{3}^{\prime} m\left(0,\left(2 \ell-e_{4}, 2 r-e_{4}\right)\right)(x: x s)\)
    otherwise \(=\) encode \(_{3}^{\prime}(\) adapt \(m x)\) ej xs
    where \(e j=\) enarrow \((n,(\ell, r))(\) interval \(m x)\)
```

By induction we have encodé (adapt $m x$) ej $x s \in$ contract ej. But

$$
\operatorname{contract~}(\text { enarrow ei } j) \subseteq \text { contract }(\text { extend ei) }=\text { contract e } i
$$

This establishes the case for the third clause of encode ${ }_{3}^{\prime}$.
For the remaining two clauses, observe that the length of

$$
\operatorname{encode}_{3}^{\prime} m\left(0,\left(2 \ell-b e_{4}, 2 r-b e_{4}\right)\right)(x: x s)
$$

is less than n. Hence, by induction, we have

$$
\begin{aligned}
& e_{4} * \text { toFrac }\left(\text { encode } e_{3}^{\prime} m\left(0,\left(2 \ell-b e_{4}, 2 r-b e_{4}\right)\right)(x: x s)\right) \\
& \quad \in\left(2 \ell-b * e_{4}, 2 r-b e_{4}\right)
\end{aligned}
$$

Finally, since toFrac (bits $n b+b s)=\left(2^{n}+(b-1)+\right.$ toFrac bs $) / 2^{n+1}$, an easy calculation shows that $e_{4} * t o F r a c ~ b s \in\left(2 \ell-b e_{4}, 2 r-b e_{4}\right)$ if and only if

$$
e_{4} * \text { toFrac }(\text { bits } n b+b s) \in \operatorname{contract}(n,(\ell, r))
$$

establishing the case and completing the proof.

26

The Schorr-Waite algorithm

Introduction

The Schorr-Waite algorithm is a method for marking the nodes of a directed graph reachable from a given starting node. The graph is restricted to have out-degree 2 . The algorithm consists of an iterative loop that carries out a depth-first traversal of the graph, but does not use an explicit stack to control the traversal. Instead, it simulates the stack by modifying the graph, taking care to restore the graph to its initial state at the end of the marking process. The algorithm is fairly subtle. Morris (1982) described it as "that most recalcitrant algorithm" and Bornat (2000) as "the first mountain that any formalism for pointer aliasing should climb".

The aim of this pearl is to present the Schorr-Waite algorithm as an exercise in explaining an algorithm by program transformation. We begin with a simple version of the marking algorithm and then describe three transformations that result in the final algorithm. Each transformation describes a different representation of the stack, culminating in a representation as a linked list embedded in the graph.

Specification

In Schorr and Waite's formulation of the problem, the graph represents a McCarthy S-expression McCarthy (1960) and so has out-degree 2. Nodes are represented by positive integers. Thus, we declare

$$
\begin{aligned}
& \text { type Node }=\text { Int } \\
& \text { type Graph }=\text { Node } \rightarrow(\text { Node }, \text { Node })
\end{aligned}
$$

The operations left, right $::$ Graph \rightarrow Node \rightarrow Node extract the information associated with a given node and

$$
\text { setl, setr } \quad:: \quad \text { Graph } \rightarrow \text { Node } \rightarrow \text { Node } \rightarrow \text { Graph }
$$

update the information associated with a node. So left $(\operatorname{setl} g x y) x=y$, and similarly for setr.

The marking function mark takes a graph g and a starting node root and returns a Boolean-valued function m so that $m x=$ True if and only if node x is reachable from root. We will implement mark g as a function that returns both g and m. The reason is that the final algorithm modifies g during the course of execution; so, by showing that the various versions of mark are equivalent, we guarantee that not only is the final value of m the same for each version, but also the final value of g. Thus, mark has type

$$
\text { mark } \quad:: \quad \text { Graph } \rightarrow \text { Node } \rightarrow(\text { Graph, Node } \rightarrow \text { Bool })
$$

A perfectly reasonable alternative is to embed the marking function in the graph, so that a graph becomes a mapping from nodes to triples. Then mark needs only return the final graph. But the present arrangement of keeping the marking function separate is both clearer and easier to reason about.

The function mark is implemented with a standard stack-based algorithm that carries out a depth-first search of the graph:

```
mark \(g\) root \(=\operatorname{seek} 0(g\), const False \()[\) root \(]\)
\(\operatorname{seek} 0(g, m)[]=(g, m)\)
seek \(0(g, m)(x: x s)\)
    \(\mid \operatorname{not}(m x)=\operatorname{seek} 0(g\), set \(m x)(\) left \(g x:\) right \(g x: x s)\)
    \(\mid\) otherwise \(=\operatorname{seek} 0(g, m) x s\)
```

The functions set and unset (needed later) are defined by

$$
\begin{array}{ll}
\text { set, unset } & ::(\text { Node } \rightarrow \text { Bool }) \rightarrow \text { Node } \rightarrow(\text { Node } \rightarrow \text { Bool }) \\
\text { set } f x & =\lambda y \rightarrow \text { if } y=x \text { then True else } f y \\
\text { unset } f x & =\lambda y \rightarrow \text { if } y=x \text { then False else } f y
\end{array}
$$

This definition of mark is our starting point.

Safe replacement

When reasoning about any algorithm that involves the manipulation of pointers, one sooner or later comes up against the problem of safe replacement. To illustrate, define the function replace by

$$
\begin{array}{ll}
\text { replace } & :: E q a \rightarrow(a \rightarrow b) \rightarrow a \rightarrow b \rightarrow(a \rightarrow b) \\
\text { replace } f x y & =\lambda z \rightarrow \text { if } z=x \text { then } y \text { else } f z
\end{array}
$$

Thus, replace is a generalised version of the function set introduced above. When is it safe to use replace? For instance, when do the identities

$$
\begin{aligned}
\text { map } f x s & =\operatorname{map}(\text { replace } f x y) x s \\
\text { filter } p x s & =\text { filter (replace } p x y) x s
\end{aligned}
$$

hold? The answer is not surprising: it is when x is not on the list $x s$. The other answer, when $y=f x$ or $y=p x$, is also correct but not interesting. Also not interesting is the proof of the correctness of the first answer. We will see a number of appeals to safe replacement below, all signified with the hint "safe replacement".

Eliminating duplicate entries

Returning to the problem in hand, the stack is eliminated in stages by transforming mark into successively different but equivalent versions. The aim of the first transformation is to eliminate duplicate entries on the stack by using it to store only those nodes that have been marked. This transformation sets things up for later appeals to safe replacements. The function seek 0 is converted into a new function seek 1 , defined by

$$
\operatorname{seek} 1(g, m) x x s=\operatorname{seek} 0(g, m)(x: \operatorname{map}(\text { right } g) x s)
$$

and subject to the invariant clean $m x s=$ all $m x s \wedge$ nodups $x s$. Synthesizing a direct definition of seek 1 is straightforward and leads to the following replacement for mark:

$$
\begin{aligned}
& \text { mark } g \text { root }=\text { seek } 1(g, \text { const False }) \text { root }[] \\
& \text { seek } 1(g, m) x \text { xs } \\
& \begin{aligned}
\text { not }(m x) & =\text { seek } 1(g, \text { set } m x)(\text { left } g x)(x: x s) \\
\mid \text { null } x s & =(g, m) \\
\text { otherwise } & =\operatorname{seek} 1(g, m)(\text { right } g(\text { head } x s))(\text { tail xs })
\end{aligned}
\end{aligned}
$$

Since x is added to the stack only when x is marked, and nodes are marked at most once, the new version of the stack is a clean one.

Threading the stack

The second transformation is designed to ensure that, in addition to being clean, the stack is threaded, meaning that for each pair x, y of adjacent entries, either $x=$ left $g y$ or $x=$ right $g y$. This is not the case with seek 1 . Consider the expression seek $1(g, m)($ left $g x)(x: y: x s)$, in which left $g x$ is marked but rightg x is not. Then seek 1 replaces x on the stack with right $g x$, which is not in general the left-value or right-value of y. If, however, we can contrive to leave x on the stack, flagging it in some way to avoid processing it twice, then adding right $g x$ to the top will maintain the constraint. The element x is removed later when all of its offspring have been marked.

This effect is achieved with the help of a second marking function p. Define seek 2 by

$$
\operatorname{seek} 2(g, m) p x x s=\operatorname{seek} 1(g, m) x(\text { filter } p x s)
$$

subject to the invariant threaded $g m p x x s$ on the arguments of seek2, where

```
threaded gmpxxs = clean mxs^
    and [link uv | (u,v)\leftarrowzip (x:xs)xs]
where link uv=if pv then u=left gv else u= right gv
```

Below we refer to the following fact with the hint "threadedness": provided $m x$ and $x \notin x s$, we have

$$
\begin{aligned}
\text { threaded } g m p x x s \Rightarrow & \text { threaded } g m(\text { set } p x)(\text { left } g x)(x: x s) \wedge \\
& \text { threaded } g m(\text { unset } p x)(\text { right } g x)(x: x s)
\end{aligned}
$$

We now synthesise a new version of mark based on seek 2 . It is clear that

```
mark gx = seek2(g, const False)(const False) x []
```

so it remains to calculate a direct definition of seek2. In the case not ($m x$) we reason:

```
        seek2 (g,m) p x xs
= {definition}
    seek1 (g,m)x (filter p xs)
= {case assumption not (mx)}
    seek1 (g, set m x) (left g x) (x: filter p xs)
= {safe replacement, since }x\not\inxs
    seek1 (g, set m x) (left g x) (x: filter (set p x) xs)
= {since set pxx=True}
    seek 1 (g, set mx) (left g x) (filter (set px) (x:xs))
= {definition of seek2, and threadedness}
    seek2 (g, set m x ) (set p x) (left g x) (x:xs)
```

Hence, seek $2(g, m) p x x s=\operatorname{seek} 2(g$, set $m x)(\operatorname{set} p x)(l e f t g x)(x: x s)$.
In the case $m x$ we have to search for the first element on the stack satisfying p because that is the next element to be processed. We therefore introduce a function find 2 , defined by

$$
\text { find } 2(g, m) p x s=\operatorname{seek} 1(g, m) x(\text { filter } p x s)
$$

for any marked node x and then derive a direct definition of find 2 that does not depend on seek1. In the case $x s$ is empty we have

$$
\operatorname{find} 2(g, m) p[]=(g, m)
$$

In the case $x s=y: y s$ and $\operatorname{not}(p y)$, we have

$$
\operatorname{find} 2(g, m) p(y: y s)=\operatorname{find} 2(g, m) p y s
$$

In the remaining case $p y$, we reason:

$$
\begin{aligned}
& f i n d 2(g, m) p(y: y s) \\
= & \{\text { definition of find } 2 \text { and seek } 1 \text { in the case } p y\} \\
& \text { seek } 1(g, m)(\text { right } g y)(\text { filter } p y s) \\
= & \{\text { safe replacement since } y \notin y s\} \\
& \text { seek } 1(g, m)(\text { right } g y)(\text { filter }(\text { unset } p y) y s) \\
=\quad & \{\text { since unset } p v=\text { False }\} \\
& \text { seek } 1(g, m)(\text { right } g y)(\text { filter }(\text { unset } p y)(y: y s)) \\
=\quad & \{\text { definition of seek } 2, \text { and threadedness }\} \\
& \operatorname{seek} 2(g, m)(\text { unset } p y)(\text { right } g y)(y: y s)
\end{aligned}
$$

We have shown that

```
mark g root = seek2(g, const False) (const False) root [ ]
seek2 (g,m) p x xs
    | not (mx) = seek2 (g, set mx) (set px)(left gx) (x:xs)
    | otherwise = find2 (g,m)pxs
find2 (g,m)p[]=(g,m)
find2 (g,m) p (y:ys)
    | not (py) = find2 (g,m)pys
    | otherwise = seek2 (g,m)(unset p y)(right gy)(y:ys)
```

The two mutually recursive functions seek 2 and find 2 are both tail-recursive and can be implemented in an imperative style as a simple loop.

Representing the stack by a linked list

The final transformation is to represent the stack by a linked list. The cunning idea of Schorr and Waite is to store the links in the graph. Although the result is no faster than the initial version, it does use less space. The linked representation of the stack uses no separate linking function. Instead, there is an additional marking function p which, along with m, occupies just 2 bits of storage for each node in the graph.

To prepare for the final transformation, we need two pieces of information. The first is the abstraction function stack that extracts the stack from its linked representation:

$$
\begin{aligned}
& \text { stack } \quad:: \quad \text { Graph } \rightarrow(\text { Node } \rightarrow \text { Bool }) \rightarrow \text { Node } \rightarrow[\text { Node }] \\
& \text { stack g px | } \quad x=0 \quad=\text { [] } \\
& p x=x: \text { stack } g p(\text { left } g x) \\
& \operatorname{not}(p x)=x: \text { stack } g p(\text { right } g x)
\end{aligned}
$$

The node 0 is a new, special node that acts as a list terminator. Here is how to add a new node $x \neq 0$ to the stack:

$$
\begin{equation*}
x: \text { stack } g \text { p } y=\text { stack }(\operatorname{setl} g x y)(\text { set } p x) x \tag{26.1}
\end{equation*}
$$

The proof of (26.1) is

$$
\begin{aligned}
& \quad \text { stack }(\text { setl } g x y)(\text { set } p x) x \\
=\quad & \quad\{\text { definition of stack since set } p x x=\text { True }\} \\
& x: \text { stack }(\text { setl } g x y)(\text { set } p x)(\text { left }(\text { setl } g x y) x) \\
=\quad & \quad\{\text { since left }(\text { setl } g x y) x=y\} \\
& x: \text { stack }(\text { setl } g x y)(\text { set } p x) y \\
=\quad & \quad \text { safe replacement, as } x \notin \text { stack }(\text { setl } g x y)(\text { set } p x) y\} \\
& x: \text { stack } g p y
\end{aligned}
$$

The second piece of information is a function restore, defined by

$$
\begin{aligned}
& \text { restore :: Graph } \rightarrow \text { (Node } \rightarrow \text { Bool }) \rightarrow \text { Node } \rightarrow[\text { Node }] \rightarrow \text { Graph } \\
& \text { restore } g \text { } p x[] \quad=g \\
& \text { restore } g \text { px }(y: y s) \quad \mid \quad p y \quad=\text { restore }(\operatorname{setl} g y x) p y y s \\
& \text { not }\left(\begin{array}{l}
p y)
\end{array}=\text { restore }(\operatorname{setr} g y x) p y y s\right.
\end{aligned}
$$

The function restore is used to restore the graph to its initial state at the end of the marking process. The motivation for the definition is that restore $g p x x s=g$ if threaded $g p x x s$, a claim we will leave as an exercise.

Having defined stack and restore, we can now define seek 3 and find3:

$$
\begin{aligned}
& \text { seek } 3(g, m) p x y=\operatorname{seek} 2(\text { restore } g p x x s, m) p x x s \\
& \text { where } x s=\text { stack } g p y \\
& \text { find } 3(g, m) p x y=\text { find } 2(\text { restore } g p x x s, m) p x s \\
& \text { where } x s=\text { stack } g p y
\end{aligned}
$$

Synthesising a definition of mark in terms of seek3 and find 3 is where the hard work begins. The first step is easy enough:
mark g root
$=\quad\{$ current definition of mark $\}$
seek 2 (g, const False) (const False) root []
$=\quad\{$ since restore $g p x[]=g\}$
seek 2 (restore g proot [], const False) (const False) root []
$=\quad\{$ definition of seek 3 and stack $\}$
seek3 (g, const False) (const False) root 0
Hence, mark g root $=$ seek $3(g$, const False $)($ const False $)$ root 0.
Now to define seek3 $(g, m) p x y$ directly. Suppose first that not $(m x)$. We reason:

$$
\begin{aligned}
& \text { seek } 3(g, m) p x y \\
& =\quad\left\{\text { setting } x s=\text { stack } g p y \text { and } g^{\prime}=\text { restore } g \text { p } x x s\right\} \\
& \operatorname{seek} 2\left(g^{\prime}, m\right) p x x s \\
& =\{\text { case } \operatorname{not}(m x)\} \\
& \operatorname{seek} 2\left(g^{\prime} \text {, set } m x\right)(\text { set } p x)\left(\text { left } g^{\prime} x\right)(x: x s) \\
& =\quad\{\text { safe replacement as } x \notin x s\} \\
& \operatorname{seek} 2\left(g^{\prime}, \text { set } m x\right)(\operatorname{set} p x)(\text { left } g x)(x: x s) \\
& =\{\text { claim: see below }\} \\
& \text { seek } 2(\text { restore }(\operatorname{setl} g x y)(\text { set } p x)(\text { left } g x)(x: x s) \text {, set } m x) \\
& (\text { set } p x)(\text { left } g x)(x: x s) \\
& =\quad\{(26.1) \text { and definition of seek } 3\} \\
& \text { seek } 3(\text { setl } g x y \text {, set } m x)(\operatorname{set} p x)(\text { left } g x) x
\end{aligned}
$$

Hence, $\operatorname{seek} 3(g, m) p x y=\operatorname{seek} 3(\operatorname{setl} g x y$, set $m x)(\operatorname{set} p x)($ left $g x) x$. The claim is that

```
restore g pxxs=restore (setl g x y) (set px)(left gx) (x:xs)
```

For the proof we reason:

$$
\begin{aligned}
& \text { restore }(\text { setl } g x y)(\text { set } p x)(\text { left } g x)(x: x s) \\
&=\quad\{\text { definition of restore since set } p x x=\operatorname{True}\} \\
&= \text { restore }(\text { setl }(\text { setl } g x y) x(\text { left } g x))(\text { set } p x) x x s \\
&=\{\text { definition of setl }\} \\
& \text { restore } g(\text { set } p x) x x s \\
&=\quad\{\text { safe replacement as } x \notin x s\} \\
& \text { restore } g p x x s
\end{aligned}
$$

In the case $m x$ we have

$$
\begin{aligned}
& \operatorname{seek} 3(g, m) p x y \\
= & \quad\left\{\text { as above, with } x s=\text { stack } g p y \text { and } g^{\prime}=\text { restore } g p x x s\right\} \\
& \operatorname{seek} 2\left(g^{\prime}, m\right) p x x s \\
= & \quad\{\text { case } m x\} \\
& \quad \operatorname{find} 2\left(g^{\prime}, m\right) p x s \\
=\quad & \quad\{\text { definition of find } 3\} \\
& \quad \operatorname{find} 3(g, m) p x y
\end{aligned}
$$

We tackle $f i n d 3$ by cases. First, find $3(g, m) p x 0=(g, m)$. In the case $y \neq 0$ and not ($p y$), we argue:
find $3(g, m) p x y$
$=\quad\{$ definition of find3 and stack, with ys $=$ stack $g p($ right $g y)\}$ find $2($ restore $g p x(y: y s), m) p(y: y s)$
$=\{$ definition of restore in case not $(p y)\}$ find 2 (restore $(\operatorname{setr} g y x) p y y s, m) p(y: y s)$
$=\quad\{$ definition of find 2 in the case $\operatorname{not}(p y)\}$
find2 (restore (setr $g y x) p y y s, m) p$ ys
$=\quad\{$ safe replacement: ys $=\operatorname{stack}(\operatorname{setr} g y x) p($ right $g y)\}$ find3 $(\operatorname{setr} g y x, m) p y($ right $g y)$

Hence, find $3(g, m) p x y=f i n d 3(\operatorname{setr} g y x, m) p y($ right $g y)$.
Finally, in the most complicated case $y \neq 0$ and $p y$, we argue:

```
        find3 (g,m) p x y
= {definition of find3 and stack, with ys = stack g p (left g y)}
    find2(restore g px (y:ys),m) p(y:ys)
= {definition of restore in case py}
    find2 (restore (setl g y x) p y ys,m) p (y:ys)
= {definition of find2 in the case py}
        seek2(restore (setl g y x) p y ys,m) (unset py)(right g y) (y:ys)
= {claim (see below): with
            swing g y x = setr (setl g y x) y (left g y)}
        seek2(restore (swing g y x) (unset p y) (right g y) (y:ys),m)
                (unset p y) (right g y) (y:ys)
```

$$
\begin{aligned}
& =\quad\{\text { safe replacement: } y: y s=\text { stack }(\text { swing } g y x)(\text { unset } p y) y\} \\
& \text { seek } 3(\text { swing } g y x, m)(\text { unset } p y)(\text { right } g y) y
\end{aligned}
$$

Hence, find $3(g, m) p x y=\operatorname{seek} 3(\operatorname{swing} g y x, m)($ unset $p y)($ right $g y) y$. The claim in the penultimate step is that

```
restore (setl g y x) p y ys
    = restore (swing g y x)(unset py)(right g y) (y:ys)
```

where swing $g y x=\operatorname{setr}(\operatorname{setl} g y x) y(l e f t g y)$. Here is the proof:

```
        restore (swing g y x) (unset p y) (right g y) (y:ys)
= {definition of restore since unset p y y=False}
        restore (setr (swing g y x) y (right g y)) (unset p y) y ys
= {since setr (swing g y x) y (right g y) = setl g y x}
        restore (setl g y x) (unset p y) y ys
= {safe replacement as }y\not\inys
    restore (setl g y x) p y ys
```

In summary:

```
mark \(g\) root \(=\) seek \(3(g\), const False \()(\) const False \()\) root 0
seek \(3(g, m) p x y\)
    \(\mid \operatorname{not}(m x)=\operatorname{seek} 3(\operatorname{setl} g x y\), set \(m x)(\operatorname{set} p x)(\) left \(g x) x\)
    \(\mid\) otherwise \(=\operatorname{find} 3(g, m) p x y\)
find \(3(g, m) p x y\)
    | \(y=0=(g, m)\)
    \(p y \quad=\operatorname{seek} 3(\operatorname{swing} g y x, m)(\) unset \(p y)(\) right \(g y) y\)
    \(\mid\) otherwise \(=\operatorname{find} 3(\operatorname{setr} g y x, m) p y(\) right \(g y)\)
        where swing \(g y x=\operatorname{setr}(\operatorname{setl} g y x) y(l e f t g y)\)
```

This is the Schorr-Waite marking algorithm.

Final remarks

The Schorr-Waite algorithm was first described in Schorr and Waite (1967). Formal reasoning about the algorithm using loop invariants includes Bornat (2000), Butler (1999), Gries (1979), Morris (1982) and Topor (1979), but this list is not exhaustive. Möller $(1997,1999)$ used relations and relational algebras to reason about the algorithm, while Mason (1988) used Lisp and mutable update functions.

Any treatment of the Schorr-Waite algorithm is bound to be fairly detailed, and the present one is no different. Particularly important is the need for
various safe replacement properties. An alternative approach to safe replacement using separation logic is presented by O'Hearn et al. (2004). We do claim, however, that each definition of seek in terms of previous versions has a coherent motivation, is reasonably simple to understand and is a good way to present the algorithm.

References

Bornat, R. (2000). Proving pointer programs in Hoare logic. LNCS 1837: 5th Mathematics of Program Construction Conference, pp. 102-26.
Butler, M. (1999). Calculational derivation of pointer algorithms from tree operations. Science of Computer Programming 33 (3), 221-60.
Gries, D. (1979). The Schorr-Waite graph marking algorithm. Acta Informatica 11, 223-32.
McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by machine. Communications of the ACM 3, 184.
Mason, I. A. (1988). Verification of programs that destructively manipulate data. Science of Computer Programming 10 (2), 177-210.
Möller, B. (1997). Calculating with pointer structures. IFIP TC2/WG2.1 Working Conference on Algorithmic Languages and Calculi. Chapman and Hall, pp. 24-48.
Möller, B. (1999). Calculating with acyclic and cyclic lists. Information Sciences 119, 135-54.
Morris, J. M. (1982). A proof of the Schorr-Waite algorithm. Proceedings of the 1981 Marktoberdorf Summer School, ed. M. Broy and G. Schmidt. Reidel, pp. 25-51.
O'Hearn, P. W., Yang, H. and Reynolds, J. C. (2004). Separation and information hiding. 31st Principles of Programming Languages Conference. ACM Publications, pp. 268-80.
Schorr, H. and Waite, W. M. (1967). An efficient machine-independent procedure for garbage collection in various list structures. Communications of the ACM 10, 501-6.
Topor, R. W. (1979). The correctness of the Schorr-Waite marking algorithm. Acta Informatica 11, 211-21.

27

Orderly insertion

Introduction

Consider the problem of inserting the elements of a list of N distinct elements of some ordered type A one by one into an initially empty array of size N in such a way that at each stage the inserted elements are in increasing order, though possibly with gaps between them. If you like, think of the list as a big pile of books on the floor in some jumbled order and the array as a bookshelf divided into slots. At each stage the books on the shelf have to be in alphabetical order. You pick up the topmost book on the pile and place it on the shelf. In general, that can only be done by moving some of the books already on the shelf to make room. The object of the exercise is to minimise the total number of moves - the distance of the move is not relevant. For example, with $A=$ Char, one way of inserting the elements of the string "PEARLS" into an array of size 6 is given by

1	2	3	4	5	6	Moves
-	-	-	P	-	-	0
-	E	-	P	-	-	0
A	-	-	E	-	P	2
A	-	-	E	P	R	1
A	E	L	-	P	R	1
A	E	L	P	R	S	2

with a total number of six moves. Our aim in this pearl is to construct a function that does the job with a total of $\Theta\left(N \log ^{3} N\right)$ moves, which has been conjectured to be the best possible. The algorithm is not derived, but establishing the time bound involves some subtle calculation.

A naive algorithm

Let us begin by recording the minimum number $m(N)$ of moves necessary to insert any list of N elements into an array of size N for $1 \leq N \leq 12$:

$$
\begin{array}{llllllllrrrrrr}
N & = & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
m(N) & = & 0 & 1 & 2 & 4 & 6 & 8 & 11 & 14 & 17 & 21 & 24 & 29
\end{array}
$$

It is an interesting diversion to find a strategy which guarantees that any list of six elements can be inserted in an array of size six with at most eight moves (just because PEARLS can be inserted with six moves does not mean that all six-letter words can be). No asymptotic formula for $m(N)$ is known, though there is strong evidence that $m(N)=\Theta\left(N \log ^{3} N\right)$.

There is one obvious algorithm for the problem, though it has a poor worst-case performance. Insert the first element in the first position and insert subsequent elements by shifting previously inserted elements just enough spaces to make room. So, if the k th element is smaller than all previous values, the $k-1$ previously inserted elements have each to be shifted up one position. This naive algorithm requires $N(N-1) / 2$ moves in the worst case.
Slightly better, but not by much, is the strategy of inserting each element in the middle of the available free slots, if any. The first $\lfloor\log N\rfloor$ elements can then be inserted without any moves. However, after half the elements have been inserted, the moves begin to build up, leading once again to a quadratic-time worst-case performance.

One reasonable refinement on the basic strategy is periodically to insert some elements in such a way as to leave an even distribution of free slots for those that follow. Suppose we choose some integer M and call elements numbered $i M$, where $1 \leq i \leq k$ and $k M \leq N<(k+1) M$, the special elements. A special element $i M$ is inserted by moving every inserted element to leave an even spread, and therefore may require $i M-1$ moves. This gives a total cost of at most

$$
\sum_{i=1}^{k}(i M-1)=\Theta\left(N^{2} / M\right)
$$

moves for inserting all special elements.
When special element $i M$ has been inserted, suppose the $N-i M$ free slots are evenly distributed with, roughly, $C_{i}=i M /(N-i M)$ elements on either side of each free slot. The naive algorithm for inserting the next $M-1$ (or fewer if $i=k$) non-special elements can then force at most

$$
\sum_{j=1}^{M-1}\left(j C_{i}+j-1\right)=\Theta\left(C_{i} M^{2}\right)
$$

moves. The total number of moves for inserting all the non-special elements is then

$$
\Theta\left(\sum_{i=1}^{N / M} C_{i} M^{2}\right)=\Theta\left(M^{2} \sum_{i=1}^{N / M} \frac{i M}{N-i M}\right)=\Theta(M N \log N)
$$

Now, if we choose M so that $N^{2} / M \approx M N \log N$ so $M \approx \sqrt{N / \log N}$, the total number of moves is $\Theta\left(\sqrt{N^{3} \log N}\right)$, which is a little worse than $\Theta\left(N^{1.5}\right)$.

An improved algorithm

The strategy of the previous section can be improved in two ways: we can choose a different sequence of special elements and we can choose a better method for inserting the non-special ones. The two improvements are independent, but we will need both in order to meet the required asymptotic bound.

Instead of having special elements evenly spaced, suppose we allow more of them as the slots fill up. More specifically, let the special elements be those numbered $n_{1}, n_{2}, \ldots, n_{k}$, where $n_{1}=\lfloor N / 2\rfloor, n_{2}=\lfloor 3 N / 4\rfloor, n_{3}=\lfloor 7 N / 8\rfloor$ and so on up to $n_{k}=\left\lfloor\left(2^{k}-1\right) N / 2^{k}\right\rfloor$, where $2^{k-1}<N \leq 2^{k}$, so $k=\lceil\log N\rceil$. For example, when $N=1000$ the special elements are
$500,750,875,937,968,984,992,996,998,999$
The final element is inserted with at most $N-1$ moves. Since $k=\lceil\log N\rceil$, the total cost for inserting special elements is at most

$$
\sum_{i=1}^{k}\left(n_{i}-1\right) \leq \sum_{i=1}^{k} N=\Theta(N \log N)
$$

Now we must deal with the non-special elements. Consider non-special element numbered n in phase i, meaning $n_{i-1}<n<n_{i}$, where $n_{0}=0$. Suppose this element needs to be inserted after the element at position $p-1$ but before the element at position q; in other words, in the interval $[p, q)$. If $p<q$, so there are free slots, the element can be inserted at index $\lfloor(p+q) / 2\rfloor$. If $p=q$, so there are no free slots, the elements in some region surrounding p have to be moved to make room. The crunch question is: what region should be selected?

The answer, reasonably enough, is in a region that is not too densely occupied. Imagine the N slots are arranged as the leaves of a size-balanced tree. For example, with $N=11$ one possible tree is

Each insertion point p determines a unique sequence $v_{0}, v_{1}, \ldots, v_{k}$ of intervals, where $v_{0}=[p]$, along the path from p to the root of the tree. Let $L\left(v_{j}\right)$ be the length of interval v_{j} and $S\left(v_{j}\right)$ the number of currently occupied slots. The method for inserting element n in phase i is to insert n in the interval v_{j}, where j is the smallest integer satisfying the density condition

$$
S\left(v_{j}\right)<\delta(i, j) L\left(v_{j}\right)
$$

where

$$
\delta(i, j)=\left(\frac{2^{i}-1}{2^{i}}\right)^{j / k}
$$

Moreover, element n and the $S\left(v_{j}\right)$ inserted elements are redistributed evenly across v_{j}, for a cost of $S\left(v_{j}\right)$ moves. Note that $1=\delta(i, 0)$ and $\delta(i, j)>\delta(i, k)$ for $j<k$. Note also that the density condition holds at the root:

$$
S\left(v_{k}\right)<n_{i} \leq\left(\frac{2^{i}-1}{2^{i}}\right) N=\delta(i, k) L\left(v_{k}\right)
$$

So there is always an interval that satisfies the density condition. If the density condition is satisfied, then $S\left(v_{j}\right)<L\left(v_{j}\right)$, since $\delta(i, j) \leq 1$. So there is always an empty slot in v_{j}. Finally, note that the density condition holds for a leaf v_{0} whenever $S\left(v_{0}\right)=0$, so the slot at the desired insertion point is unoccupied.

As a specific example, the result of inserting the nine letters of DANGEROUS into an array of size 9 is pictured in Figure 27.1.

As to the analysis of the total cost, suppose C elements are inserted during phase i, so $C \leq N / 2^{i}$. In the worst case, each of these elements has the same insertion point, so require insertion in some interval along some

1	2	3	4	5	6	7	8	9	Moves
-	-	-	-	D	-	-	-	-	0
-	-	A	-	D	-	-	-	-	0
-	-	A	-	D	-	-	N	-	0
-	A	-	D	-	G	-	N	-	2
-	A	-	D	E	G	-	N	-	0
-	A	D	E	-	G	N	-	R	3
-	A	D	E	G	N	O	-	R	2
A	D	E	G	N	O	R	-	U	7
A	D	E	G	N	O	R	S	U	0

Fig. 27.1 A DANGEROUS insertion
fixed path $v_{0}, v_{1}, \ldots, v_{k}$ from the insertion point to the root. Say element p, where $1 \leq p \leq C$, forces a shuffle in interval $v_{j_{p}}$. Let $S_{0}\left(v_{j_{p}}\right)$ be the number of occupied slots just after the last redistribution involving the whole of $v_{j_{p}}$ (which may have been when the last special element was inserted), and let $\Delta\left(v_{j_{p}}\right)=S\left(v_{j_{p}}\right)-S_{0}\left(v_{j_{p}}\right)$, so $\Delta\left(v_{j_{p}}\right) \geq 0$.

The proofs of the following two estimates are given in the next section:

$$
\begin{align*}
S\left(v_{j_{p}}\right) & <4 k 2^{i}\left(\Delta\left(v_{j_{p}}\right)+1\right) \tag{27.1}\\
\sum_{p=1}^{C} \Delta\left(v_{j_{p}}\right) & \leq k C \tag{27.2}
\end{align*}
$$

Since $C \leq N / 2^{i}$, properties (27.1) and (27.2) give

$$
\sum_{p=1}^{C} S\left(v_{j_{p}}\right)<\sum_{p=1}^{C} 4 k 2^{i}\left(\Delta\left(v_{j_{p}}\right)+1\right) \leq 4 k 2^{i}(k+1) C \leq 4 k(k+1) N
$$

The total cost for seating all non-special elements is then at most

$$
\sum_{i=1}^{k} 4 k(k+1) N=4 k^{2}(k+1) N=\Theta\left(N \log ^{3} N\right)
$$

Recalling that the total cost for inserting the special elements is $\Theta(N \log N)$, we obtain the bound $\Theta\left(N \log ^{3} N\right)$ for the total cost. In fact, the analysis proves somewhat more: the first $N / 2$ elements can be inserted with at most $4 N \log ^{2} N$ moves, the first $3 N / 4$ elements with at most $8 N \log ^{2} N$ moves and so on. Putting it another way, if the array had size $(1+\epsilon) N$ rather than exactly N, then N elements can be inserted with $\Theta\left(\left(N \log ^{2} N\right) / \epsilon\right)$ moves.

Proofs

Abbreviating j_{p} to j, claim (27.1) is that $S\left(v_{j}\right)<4 k 2^{i}\left(\Delta\left(v_{j}\right)+1\right)$. Recall that $\Delta\left(v_{j}\right)=S\left(v_{j}\right)-S_{0}\left(v_{j}\right)$, that $S\left(v_{j}\right)$ is the number of currently occupied slots in the interval v_{j} and $S_{0}\left(v_{j}\right)$ was the number of occupied slots in interval v_{j} just after the previous distribution of some interval containing v_{j}. Here are the relevant properties on which the proof depends:
(i) $S\left(v_{j}\right)<\delta(i, j) L\left(v_{j}\right)$ and $S\left(v_{j-1}\right) \geq \delta(i, j-1) L\left(v_{j-1}\right)$, because v_{j} is the smallest interval satisfying the density condition.
(ii) $2 L\left(v_{j-1}\right) \geq L\left(v_{j}\right)-1$, because the tree is balanced.
(iii) $2 S_{0}\left(v_{j-1}\right) \leq S_{0}\left(v_{j}\right)+1$, because the previous distribution of an interval containing v_{j} resulted in an even spread.
(iv) $\Delta\left(v_{j}\right) \geq \Delta\left(v_{j-1}\right)$, because v_{j-1} is a subinterval of v_{j}.

Using these facts we calculate:

$$
\begin{array}{ll}
& 2 \Delta\left(v_{j}\right) \\
\geq & \left\{\text { since } \Delta\left(v_{j}\right) \geq \Delta\left(v_{j-1}\right) \text { and definition of } \Delta\right\} \\
& 2 S\left(v_{j-1}\right)-2 S_{0}\left(v_{j-1}\right) \\
\geq & \left\{\text { since } 2 S_{0}\left(v_{j-1}\right) \leq S_{0}\left(v_{j}\right)+1 \leq S\left(v_{j}\right)+1\right\} \\
& 2 S\left(v_{j-1}\right)-S\left(v_{j}\right)-1 \\
\geq \quad & \left\{\text { since } S\left(v_{j-1}\right) \geq \delta(i, j-1) L\left(v_{j-1}\right)\right\} \\
& 2 \delta(i, j-1) L\left(v_{j-1}\right)-S\left(v_{j}\right)-1 \\
\geq \quad & \left\{\text { since } 2 L\left(v_{j-1}\right) \geq L\left(v_{j}\right)-1\right\} \\
& \delta(i, j-1)\left(L\left(v_{j}\right)-1\right)-S\left(v_{j}\right)-1 \\
> & \left\{\text { since } \delta(i, j) L\left(v_{j}\right)>S\left(v_{j}\right) \text { and } \delta(i, j) \leq 1\right\} \\
& (\delta(i, j-1) / \delta(i, j)-1) S\left(v_{j}\right)-2
\end{array}
$$

Hence:

$$
\Delta\left(v_{j}\right)+1>\frac{1}{2}\left(\frac{\delta(i, j-1)}{\delta(i, j)}-1\right) S\left(v_{j}\right)
$$

From the definition of $\delta(i, j)$ we obtain

$$
\frac{\delta(i, j-1)}{\delta(i, j)}-1=\left(\frac{2^{i}}{2^{i}-1}\right)^{1 / k}-1
$$

Since $x^{1 / k}=2^{(1 / k) \log x}$ and $2^{y}-1 \geq y / 2$ for $0<y<1$, we then obtain

$$
\frac{\delta(i, j-1)}{\delta(i, j)}-1 \geq \frac{1}{2 k} \log \left(\frac{2^{i}}{2^{i}-1}\right)
$$

Fig. 27.2 Decomposition of $P(a, b, k)$ into two sums

Finally, since $2^{i} \log \left[2^{i} /\left(2^{i}-1\right)\right] \geq 1$, we get $4 k 2^{i}\left(\Delta\left(v_{j}\right)+1\right)>S\left(v_{j}\right)$, which is (27.1).

Claim (27.2) is that $\sum_{p=1}^{C} \Delta\left(v_{j_{p}}\right) \leq k C$. More generally, we show that

$$
\sum_{p=a}^{b} \Delta\left(v_{j_{p}}\right) \leq k(b-a+1)
$$

for $1 \leq a \leq b \leq C$. Let $P(a, b, k)$ denote the sum on the left, where we have made the dependency on k, the height of the tree, explicit. Consider the sequence of points j_{a}, \ldots, j_{b}, where $0 \leq j_{p} \leq k$. Each point denotes the interval in which an element is inserted. The value $\Delta\left(v_{j_{p}}\right)$ is the number of elements in the interval $v_{j_{p}}$ that have been inserted since the last redistribution at an interval containing $v_{j_{p}}$, say at j_{q}, and is therefore equal to the number of points between q and p. The situation is depicted in the first diagram of Figure 27.2.

To estimate $P(a, b, k)$, suppose $\Delta\left(v_{j_{b}}\right)=d$, so $0 \leq d \leq b-a$. Then P can be decomposed into two sums, as shown in Figure 27.2: the sum from a up to $b-d-1$ and the sum from $b-d$ to $b-1$, where we know in the second sum that the maximum j value is $j_{b}-1$. This leads to the estimate that $P(a, b, k)$ is at most

$$
\left(\max d: 0 \leq d \leq b-a: P(a, b-d-1, k)+P\left(b-d, b-1, j_{b}-1\right)+d\right)
$$

Since $j_{b} \leq k$ and P is monotonic in its third argument, we have that $P(a, b, k)$ is at most

$$
(\max d: 0 \leq d \leq b-a: P(a, b-d-1, k)+P(b-d, b-1, k-1)+d)
$$

Now $P(a, b, k)=0$ if $b-a \leq 1$ or if $k=0$, and a simple induction argument yields $P(a, b, k) \leq k(b-a+1)$ as required.

Implementation

Implementing the algorithm in Haskell is mostly straightforward; the only complicating factor is that various values have to be carried around. In particular, the phase number i and the size n of the array are needed in a number of calculations. The former is handled by labelling elements with their phase numbers and the latter by including n as an additional argument to certain functions.

An array is implemented as a simple association list of index-value pairs:

```
type Array a = [(Int,a)]
```

The invariant on Array a is that each index i is in the range $0 \leq i<n$ and the values are stored in increasing order. The main insertion function is defined by

$$
\text { insertAll } n=\text { scanl (insert } n)[] \cdot \text { label } n
$$

The function insert n carries out one insertion and label n labels elements with phase numbers. The result of insertAll n is a list of arrays, which can be used subsequently for display purposes and for counting moves.

The code for label involves determining the special elements. Special elements are assigned a phase number 0 and non-special elements a phase number i, where $i>0$. The special elements are given by specials n, where

```
specials :: Int }->\mathrm{ [Int]
specials n = scanl1 (+)(halves n)
halves n = if n== 1 then [] else m:halves( }n-m\mathrm{ )
        where m=n div 2
```

For example, specials $11=[5,8,9,10]$. The function label is then defined by

```
label :: Int }->[a]->[(\mathrm{ Int,a)]
label n xs = replace 1 (zip [1..] xs)(specials n)
```

where replace replaces positions by phase numbers:

```
replace \(i[] n s=[]\)
replace \(i((k, x): k x s) n s\)
    null \(n s=[(0, x)]\)
    \(k<n=(i, x):\) replace \(i k x s\) ns
    \(k==n=(0, x):\) replace \((i+1) k x s\) (tail ns)
    where \(n=\) head \(n s\)
```

For example, label 11 [1.. 11] produces the list

$$
[(1,1),(1,2),(1,3),(1,4),(0,5),(2,6),(2,7),(0,8),(0,9),(0,10),(0,11)]
$$

Next we deal with insert n, which is implemented by

$$
\begin{aligned}
\begin{array}{l}
\text { insert } \\
\text { insert } n \text { as }(i, x):
\end{array} \quad & \text { Ord } a \Rightarrow \text { Int } \rightarrow \text { Array } a \rightarrow(\text { Int }, a) \rightarrow \text { Array a } \\
& \text { if } i==0 \\
& \text { then relocate }(0, n) x \text { as } \\
& \text { else relocate }(\ell, r) x \text { as } \\
& \text { where }(\ell, r)=\text { ipick } n \text { as }(i, x)
\end{aligned}
$$

If element x is special, so its phase number is 0 , then x is inserted by relocating x and all the elements in the array in the interval $(0, n)$. If x is not special, then ipick selects the interval (ℓ, r) in which the relocation takes place.

The function relocate is defined by

$$
\begin{array}{ll}
\text { relocate } & :: \quad \text { Ord } a \Rightarrow(\text { Int }, \text { Int }) \rightarrow a \rightarrow \text { Array } a \rightarrow \text { Array a } \\
\text { relocate }(\ell, r) x \text { as }= & \text { distribute }(\text { add } x(\text { entries }(\ell, r) \text { as }))(\ell, r) \text { as }
\end{array}
$$

where entries returns the (ordered) list of entries in the specified interval and add inserts x in this list. These two functions are defined by

$$
\begin{array}{ll}
\text { entries }(\ell, r) \text { as } & =[x \mid(i, x) \leftarrow a s, l \leq i \wedge i<r] \\
\text { add } x x s & =\text { takeWhile }(<x) x s+[x]+\text { dropWhile }(<x) x s
\end{array}
$$

The function distribute takes an ordered list, an interval and an array and distributes the elements of the list evenly across the interval:

$$
\begin{aligned}
\text { distribute }:: & {[a] \rightarrow(\text { Int }, \text { Int }) \rightarrow \text { Array } a \rightarrow \text { Array a } } \\
\text { distribute } x s(\ell, r) \text { as }= & \text { takeWhile }(\lambda(i, x) \rightarrow i<\ell) \text { as }+ \\
& \text { spread xs }(\ell, r)+ \\
& \text { dropWhile }(\lambda(i, x) \rightarrow i<r) \text { as }
\end{aligned}
$$

One way of defining spread is to divide both the list and interval into equal halves and recursively distribute the left half across the left interval and the right half across the right interval:

$$
\begin{aligned}
& \text { spread } \quad:: \quad[a] \rightarrow(\text { Int }, \text { Int }) \rightarrow \text { Array } a \\
& \text { spread xs }(\ell, r) \quad \mid \quad \text { null } x s=[] \\
& n=0=[(m, \text { head } x s)] \\
& n>0=\text { spread ys }(\ell, m)+\operatorname{spread} z s(m, r) \\
& \text { where }(n, m)=(\text { length } x s \operatorname{div} 2,(\ell+r) \operatorname{div} 2) \\
& (y s, z s)=\text { splitAt } n x s
\end{aligned}
$$

The next function to tackle is ipick. The definition is

$$
\begin{aligned}
& \text { ipick } \quad:: \quad \text { Ord } a \Rightarrow \text { Int } \rightarrow \text { Array } a \rightarrow \text { (Int, } a) \rightarrow \text { (Int, Int) } \\
& \text { ipick } n \text { as }(i, x)=\text { if } p<q \text { then }(p, q) \text { else } \\
& \text { head }[(\ell, r) \mid(j,(\ell, r)) \leftarrow \text { zip }[0 . .] \text { (ipath n } p) \text {, } \\
& \text { let } s=\text { length (entries }(\ell, r) \text { as), } \\
& \text { densityTest ijns(r-l)] } \\
& \text { where }(p, q)=\text { ipoint } n x \text { as }
\end{aligned}
$$

First, the insertion point for element x is determined by ipoint. The result is an interval (p, q) containing no elements. If $p<q$, so the interval is not empty, then the result of ipick is (p, q). Subsequent relocation with (p, q) will ensure that x is placed in the middle of the interval. If $p=q$, so the interval is empty, then the path of intervals from the insertion point p to the root of the virtual tree is computed by ipath. The first interval satisfying the density test densityTest is then selected.

The function ipoint is implemented by

$$
\begin{array}{lll}
\text { ipoint } & :: \quad \text { Ord } a \Rightarrow \text { Int } \rightarrow a \rightarrow \text { Array } a \rightarrow(\text { Int, Int }) \\
\text { ipoint } n x \text { as }= & \text { search }(0, n) \text { as } & \\
\text { where } \operatorname{search}(p, q)[] & (p, q) \\
\operatorname{search}(p, q)((i, y): a s)= & \text { if } x<y \operatorname{then}(p, i) \\
& \text { else } \operatorname{search}(i+1, q) \text { as }
\end{array}
$$

The value ipath $n p$ is computed by reversing the path from the root $(0, n)$ to p :

$$
\text { ipath } n p=\text { reverse }(\text { intervals }(0, n) p)
$$

where

```
intervals \((\ell, r) p \quad \mid \quad \ell+1==r=[(\ell, r)]\)
        \(p<m \quad=\quad(\ell, r):\) intervals \((\ell, m) p\)
        \(m \leq p=(\ell, r):\) intervals \((m, r) p\)
        where \(m=(l+r) \operatorname{div} 2\)
```

It remains to deal with the density test, for which we use arbitrary-precision integer arithmetic rather than real arithmetic. All five arguments of the function densityTest are limited-precision integers, so they have to be converted to arbitrary precision:

```
densityTest i' j}\mp@subsup{j}{}{\prime}n\mp@subsup{s}{}{\prime}\mp@subsup{w}{}{\prime}=2\uparrow(i*j)*s\uparrowk<(2\uparrowi-1)\uparrowj*w\uparrow
where (i,j,s,w)= convert toInteger ( }\mp@subsup{i}{}{\prime},\mp@subsup{j}{}{\prime},\mp@subsup{s}{}{\prime},\mp@subsup{w}{}{\prime}
    k= toInteger (ceiling (logBase 2(fromIntegral n)))
```

The function convert is defined by convert $f(a, b, c, d)=(f a, f b, f c, f d)$.

Final remarks

The problem of inserting elements of an ordered list of length N into an array of size N is a restricted version of a more general problem known as online list labelling (Bender et al., 2002), in which the aim is to maintain a mapping from a dynamic set of M elements (so elements can be deleted as well as inserted in the array) from some linearly ordered set to integers in the range 0 to $N-1$ such that the order of the labels matches the order of the corresponding elements. The primary use of online list labelling is in a related problem known as order maintenance. This problem involves maintaining a list, initially consisting of a single base element, subject to insertions, deletions and order queries. Insertions take the form $\operatorname{insert}(x, y)$, meaning inserting a new element x into the list immediately after the (existing) element y. The delete (x) operation deletes x from the list and query (x, y) returns true or false, depending on whether x precedes y in the list. Although order maintenance does not require that labels be attached to each element, most solutions do indeed use online labelling as a component.

The interest in the algorithm lies not, of course, in the Haskell implementation, but in the intriguing choice of density function and the analysis of why the $\Theta\left(N \log ^{3} N\right)$ behaviour is obtained. No-one knows whether $\Omega\left(N \log ^{3} N\right)$ is a lower bound on the problem, although Zhang (1993) proves that this is a lower bound for any algorithm that restricts movements to result always in a position in which the free slots are evenly spaced. The algorithm above is "smooth" in this sense, and it seems unlikely that a non-smooth algorithm could achieve fewer movements, but it appears difficult to rule such an algorithm out.

Finally, this pearl has been adapted from Bird and Sadnicki (2007), where further references to the literature of the problem can be found.

References

Bender, M. A., Cole, R., Demaine, E. D., Frach-Colton, M. and Zito, J. (2002). Two simplified algorithms for maintaining order in a list. Lecture Notes in Computer Science, Volume 2461. Springer-Verlag, pp. 139-51.
Bird, R. S. and Sadnicki, S. (2007). Minimal on-line labelling. Information Processing Letters 101 (1), 41-5.
Zhang, J. (1993). Density control and on-line labeling problems. Technical Report 481 and PhD thesis, Computer Science Department, University of Rochester, New York, USA.

28

Loopless functional algorithms

Introduction

Imagine a program for generating combinatorial patterns of some kind, patterns such as the subsequences or permutations of a list. Suppose that each pattern is obtained from its predecessor by a single transition. For subsequences a transition i could mean "insert or delete the element at position i ". For permutations a transition i could mean "swap the item in position i with the one in position $i-1$ ". An algorithm for generating all patterns is called loopless if the first transition is produced in linear time and each subsequent transition in constant time. Note that it is the transitions that are produced in constant time, not the patterns; writing out a pattern is not usually possible in constant time.

Loopless algorithms were formulated in a procedural setting, and many clever tricks, such as the use of focus pointers, doubly linked lists and coroutines, have been used to construct them. This pearl and the following two explore what a purely functional approach can bring to the subject. We will calculate loopless functional versions of the Johnson-Trotter algorithm for producing permutations, the Koda-Ruskey algorithm for generating all prefixes of a forest and its generalisation to Knuth's spider spinning algorithm for generating all bit strings satisfying given inequality constraints. These novel functional algorithms rely on nothing more fancy than lists, trees and queues. The present pearl is mostly devoted to exploring the topic and giving some warm-up exercises. Bear in mind, though, that loopless algorithms are not necessarily faster than their non-loopless counterparts. To quote from Knuth (2001):

The extra contortions that we need to go through in order to achieve looplessness are usually ill-advised, because they actually cause the total execution time to be longer than it would be with a more straightforward algorithm. But hey, looplessness carries an academic cachet. So we might as well treat this task as a challenging exercise that might help us to sharpen our algorithmic wits.

Change the penultimate word to "calculational" and you will appreciate the real point of the exercise.

Loopless algorithms

We formulate the idea of a loopless algorithm in terms of the standard function unfoldr, defined by

$$
\begin{aligned}
& \text { unfoldr } \quad:: \quad(b \rightarrow \text { Maybe }(a, b)) \rightarrow b \rightarrow[a] \\
& \text { unfoldr step } b=\text { case step } b \text { of } \\
& \text { Just }\left(a, b^{\prime}\right) \rightarrow a: \text { unfoldr step } b^{\prime} \\
& \text { Nothing } \rightarrow \text { [] }
\end{aligned}
$$

By definition a loopless algorithm is one that is expressed in the form

unfoldr step • prolog

where step takes constant time and prolog x takes $O(n)$ steps, where n is some suitable measure of the size of x. Every loopless algorithm has to be of the above form, with these constraints on the ingredients.

There is a slightly tricky problem about our formulation of looplessness. In the framework of a lazy functional language such as Haskell our definition of a loopless program will not, in general, give a loopless computation with constant delay between each output. In a lazy language, the work done by prolog is distributed throughout the computation, not concentrated all at once at the beginning. Therefore, we should really interpret the composition operator (\cdot) between unfoldr step and prolog as being fully strict, meaning that prolog is evaluated fully before the unfolding begins. Although it is not possible to define a general fully strict composition operator in Haskell, we will take pains to ensure that prolog and step take linear and constant time under a strict as well as a lazy semantics.

Four warm-up exercises

The simplest warm-up exercise is the identity function on lists. Following the required recipe to the letter, we have

$$
\begin{array}{lll}
\text { id }:: & {[a] \rightarrow[a]} \\
\text { id }= & \text { unfoldr uncons • prolog } \\
\text { prolog } & :: & {[a] \rightarrow[a]} \\
\text { prolog } & = & \text { id }
\end{array}
$$

$$
\begin{array}{lll}
\text { uncons } & :: & {[a] \rightarrow \text { Maybe }(a,[a])} \\
\text { uncons }[] & = & \text { Nothing } \\
\text { uncons }(x: x s) & = & \operatorname{Just}(x, x s)
\end{array}
$$

That was very easy, so now let us consider the function reverse that reverses a finite list. In Haskell this function is defined by

```
reverse :: [a]->[a]
reverse = foldl (flip (:))[]
```

The combinator flip is defined by flip $f x y=f y x$. The above definition reverses a finite list in linear time. A loopless program for reversing a list is now given by

```
reverse = unfoldr uncons foldl (flip (:))[]
```

Of course, all the real work is done in the prologue.
For the next warm-up exercise, consider the function concat that concatenates a list of lists. Here is a loopless version, discussed below:

```
concat \(\quad:: \quad[[a]] \rightarrow[a]\)
concat \(\quad=\) unfoldr step \(\cdot\) filter \((\) not \(\cdot\) null \()\)
step \(\quad:: \quad[[a]] \rightarrow\) Maybe \((a,[[a]])\)
step [] \(=\) Nothing
step \(((x: x s): x s s)=\) Just \((x\), consList xs xss \()\)
consList \(\quad:: \quad[a] \rightarrow[[a]] \rightarrow[[a]]\)
consList xs xss \(\quad=\quad\) if null xs then xss else \(x s: x s s\)
```

The prologue filters out nonempty lists from the input and takes linear time in the length of the list. The function step maintains the invariant that it takes and returns a list of nonempty lists. Empty lists have to be filtered out of the input, otherwise step would not take constant time. For example, consider an input of the form [[1], [], [],..., [], [2]] in which there are n empty sequences between the first and last singleton lists. After producing the first element 1 , it takes n steps to produce the second element 2 of the final list.

Eagle-eyed readers might complain that this definition of concat is overkill, since the alternative

$$
\text { concat }=\text { unfoldr uncons } \cdot \text { foldr }(\#)[]
$$

is also loopless. Here, the real work is done in the prologue, which takes linear time in the total size of the input, namely the sum of the lengths of the component lists. At issue here is the precise measure of size being used.

Since we are not going to go as far as coding every conceivable input as a string in some finite alphabet, we leave the definition of size informal and accept both definitions of concat as being loopless.

For the fourth and final warm-up consider the preorder traversal of a forest of rose trees:

```
type Forest a = [Rose a]
data Rose a = Node a (Forest a)
```

The preorder traversal of a forest can be defined by

```
preorder :: Forest }a->[a
preorder [] = []
preorder (Node x xs:ys) = x: preorder (xs + ys)
```

Furthermore, preorder $=$ unfoldr step, where

```
step :: Forest a Maybe (a,Forest a)
step [] = Nothing
step (Node x xs :ys) = Just (x,xs + ys)
```

The function step is not constant time because + is not, but we can make it so with a change of type. Instead of taking a forest as argument, we can make step take a list of forests, revising its definition to read

$$
\begin{array}{lll}
\text { step } & :: & {[\text { Forest } a] \rightarrow \text { Maybe }(a,[\text { Forest a] })} \\
\text { step }[] & = & \text { Nothing } \\
\text { step }((\text { Node } x x s: y s): z s s) & =\text { Just }(x, \text { consList xs }(\text { consList ys zss }))
\end{array}
$$

This is essentially the same trick as we performed for concat. Now we have

$$
\text { preorder }=\text { unfoldr step } \cdot \text { wrapList }
$$

where wrapList $x s=$ consList xs []. This is a loopless algorithm for preorder. Of course, it suffers from the same defect as concat; since the length of the output is proportional to the size of the input, we could equally well have done all the work in the prologue.

Boustrophedon product

Many combinatorial generation algorithms involve running up and down one list in between generating successive elements of another list, rather like the shuttle on a loom or an ox ploughing a field. Indeed, Knuth uses the name boustrophedon product for essentially this operation. We will call it box, and
denote it with an infix symbol \square, because the name is short, pronounceable, and contains an "ox". Here is the definition:

```
\((\square) \quad:: \quad[a] \rightarrow[a] \rightarrow[a]\)
[]\(\square y s \quad=\quad y s\)
\((x: x s) \square y s=y s+[x]+(x s \square\) reverse \(y s)\)
```

For example:

$$
[3,4] \square[0,1,2]=[0,1,2,3,2,1,0,4,0,1,2]
$$

The definition of \square leads to an inefficient computation, since $y s$ is reversed at each step. Better is the following version, which reverses $y s$ only once:

```
xs}\squareys=m\quadmix xs (ys,reverse ys
mix [](ys,sy) = ys
mix (x:xs) (ys,sy) = ys + [x] + mix xs (sy,ys)
```

The operation \square is associative with the empty list as identity element, a good reason to denote it with an infix symbol. We leave the proof of associativity to the reader, but it depends on two subsidiary identities that we will spell out now, as they are used later on:

$$
\begin{align*}
(x s+[y]+y s) \square z s & =(x s \square z s)+[y]+\left(y s \square z s^{\prime}\right) \tag{28.1}\\
\text { reverse }(x s \square y s) & =(\text { reverse } x s) \square y s^{\prime} \tag{28.2}
\end{align*}
$$

where $z s^{\prime}$ and $y s^{\prime}$ are defined by

$$
\begin{aligned}
z s^{\prime} & =\text { if even }(\text { length } x s) \text { then reverse } z s \text { else } z s \\
y s^{\prime} & =\text { if even }(\text { length } x s) \text { then reverse ys else } y s
\end{aligned}
$$

Thus, both (28.1) and (28.2) depend on parity information about the length of $x s$.

Just as concat distributes + over a list of lists, so boxall distributes \square over a list of lists:

```
boxall :: [[a]] }->[a
boxall = foldr (\square)[]
```

For a list of length n of lists each of length m the output of boxall has length $(m+1)^{n}-1$, which is exponential in $m n$, the total length of the input. Now we can state our final exercise, which is to make boxall loopless.

Tupling

Since boxall (xs : xss) $=x s \square$ (boxall xss) and the definition of $x s \square y s$ involves reverse $y s$, it is clear that as well as computing boxall we also need
to compute reverse • boxall. That suggests it is sensible to construct both boxall and reverse • boxall at the same time. To do so we make use of the tupling law of foldr. This law states that
$($ foldr f a xs, foldr $g b x s)=$ foldr $h(a, b) x s$
where $h x(y, z)=(f x y, g x z)$.
Suppose we can find an operation \boxtimes so that

$$
\text { reverse } \cdot \text { boxall }=\text { foldr }(\boxtimes)[]
$$

Then the tupling law of foldr gives

$$
(\text { boxall } x s \text {, reverse }(\text { boxall } x s))=\text { foldr op }([],[]) x s
$$

where

$$
\begin{equation*}
o p x s(y s, s y)=(x s \square y s, x s \boxtimes s y) \tag{28.3}
\end{equation*}
$$

The sequences $y s$ and $s y$ are each the reverse of the other, hence their names.
To discover \boxtimes we appeal to the fusion law of foldr. This law states that $f($ foldr $g a x s)=$ foldr $h b x s$ for all finite lists $x s$ provided $f a=b$ and $f(g x y)=h x(f y)$ for all x and y. We have reverse []$=[]$, so it remains to find a definition of \boxtimes satisfying

$$
\text { reverse }(x s \square y s) \quad=\quad x s \boxtimes(\text { reverse } y s)
$$

Since reverse $($ reverse $x s)=x s$ for all finite lists $x s$, we can define

$$
x s \boxtimes s y=\text { reverse }(x s \square(\text { reverse sy }))
$$

We can also give a direct, recursive definition of \boxtimes :

$$
\begin{array}{ll}
{[] \boxtimes s y} & =s y \\
(x: x s) \boxtimes s y & =(x s \boxtimes(\text { reverse } s y))+[x]+s y
\end{array}
$$

Alternatively, we can express \boxtimes by appealing to (28.2):

$$
\begin{aligned}
x s \boxtimes s y= & \text { if even }(\text { length } x s) \text { then }(\text { reverse } x s) \square(\text { reverse sy }) \\
& \text { else }(\text { reverse } x s) \square s y
\end{aligned}
$$

Using (28.3) and the definition of \square, the first recursive definition of \boxtimes leads to the following definition of $o p$, renamed as $o p 1$:

$$
\begin{aligned}
o p 1[](y s, s y)= & (y s, s y) \\
o p 1(x: x s)(y s, s y)= & (y s+[x]+z s, s z+[x]+s y) \\
& \text { where }(z s, s z)=o p 1 x s(s y, y s)
\end{aligned}
$$

Using (28.3) and the definition of \square in terms of mix, the second definition of \boxtimes leads to the following definition of $o p$, renamed as $o p 2$:

$$
\begin{aligned}
o p 2 x s(y s, s y)= & \text { if even }(\text { length } x s) \\
& \text { then }(\text { mix } x s(y s, s y), \text { mix }(\text { reverse } x s)(s y, y s)) \\
& \text { else }(\text { mix } x s(y s, s y), \text { mix }(\text { reverse } x s)(y s, s y))
\end{aligned}
$$

The difference between op1 and op2 is that the latter uses reverse explicitly while the former does not. Ignoring the cost of + operations, evaluation of either op $1 x s$ or op $2 x s$ takes time proportional to the length of $x s$, so both foldr op 1 ([], []) and foldr op $2([],[])$ take time proportional to the total size of the input. We keep both definitions, op1 and op2, in play because they lead to two different loopless versions of boxall.

Trees and queues

The final step is to eliminate the expensive + operations. This is achieved in two stages, the first of which is to represent lists by forests of rose trees under the abstraction function preorder. Then we have

$$
\begin{aligned}
\text { boxall } & =\text { preorder } \cdot f s t \cdot \text { foldr op } 1^{\prime}([],[]) \\
\text { boxall } & =\text { preorder } \cdot f s t \cdot \text { foldr op } 2^{\prime}([],[])
\end{aligned}
$$

where $o p 1^{\prime}$ is specified by

$$
\text { pair preorder }\left(o p 1^{\prime} x s(y s, s y)\right)=o p 1 x s(\text { preorder ys, preorder sy })
$$

and pair $f(x, y)=(f x, f y)$. Similarly for op 2^{\prime} and op 2 . We know from the warm-ups how to make preorder loopless, so provided op 1^{\prime} xs and op $2^{\prime} x s$ take time proportional to the length of $x s$, either of the above is a loopless program for boxall.

The definitions of $o p 1^{\prime}$ and $o p 2^{\prime}$ can be calculated formally, but the results are sufficiently clear that we will not go into details. First:

$$
\begin{aligned}
& o p 1^{\prime}::[a] \rightarrow(\text { Forest } a, \text { Forest } a) \rightarrow(\text { Forest } a, \text { Forest } a) \\
& o p 1^{\prime}[](y s, s y)=(y s, s y) \\
& o p 1^{\prime}(x: x s)(y s, s y)=(y s+[\text { Node } x z s], s z+[\text { Node } x s y]) \\
& \text { where }(z s, s z)=o p 1^{\prime} x s(s y, y s)
\end{aligned}
$$

Second, with a new version of mix:

$$
\begin{aligned}
o p 2^{\prime} x s(y s, s y)= & \text { if even }(\text { length } x s) \\
& \text { then }(\text { mix } x s(y s, s y), \text { mix }(\text { reverse } x s)(s y, y s)) \\
& \text { else }(\text { mix } x s(y s, s y), \text { mix }(\text { reverse } x s)(y s, s y))
\end{aligned}
$$

Fig. 28.1 Two forests produced by foldr op $1^{\prime}([],[])[[1,2],[3,4]]$

Fig. 28.2 Two forests produced by foldr op $2^{\prime}([],[])[[1,2],[3,4]]$

$$
\begin{array}{ll}
\operatorname{mix}[](y s, s y) & =y s \\
\operatorname{mix}(x: x s)(y s, s y) & =y s+[\text { Node } x(\operatorname{mix} x s(s y, y s))]
\end{array}
$$

The definitions of $o p 1^{\prime}$ and $o p 2^{\prime}$ lead to different pairs of forests. For example, see Figures 28.1 and 28.2. In each case the preorders of the pair of forests are the same, so either definition will serve.

We are still not quite out of the wood yet, for appending a tree to the end of a forest is not a constant-time operation. Obvious ideas for solving this problem, such as turning appends into cons operations by reversing the forest, or bringing in an accumulating parameter, do not work. The most direct method, and one we will exploit for other purposes in subsequent pearls, is to introduce queues, redefining a forest to be a queue of trees rather than a list. Okasaki's implementation of queues provides a type Queue a, for which the following operations all take constant time:

```
insert :: Queue a->a->Queue a
remove :: Queue }a->(a,Queue a
empty :: Queue a
isempty :: Queue a }->\mathrm{ Bool
```

To install queues, we redeclare the type Forest to read

```
type Forest a = Queue (Rose a)
data Rose a = Node a (Forest a)
```

The functions op 1^{\prime} and $o p 2^{\prime}$ are the same as before except that expressions of the form as $+[$ Node $x b s]$ are replaced by insert as (Node $x b s$). Now we have

$$
\begin{aligned}
\text { boxall } & =\text { unfoldr step } \cdot \text { wrapQueue } \cdot f s t \cdot \text { foldr op } 1^{\prime}(\text { empty, empty }) \\
\text { boxall } & =\text { unfoldr step } \cdot \text { wrapQueue } \cdot f s t \cdot \text { foldr op } 2^{\prime}(\text { empty }, \text { empty })
\end{aligned}
$$

where

```
step \(\quad:: \quad[\) Forest \(a] \rightarrow\) Maybe \((a,[\) Forest \(a])\)
step [] \(=\) Nothing
step (zs:zss) \(=\) Just ( \(x\), consQueue xs (consQueue ys zss))
        where \((\) Node \(x\) xs, ys) \()=\) remove zs
consQueue \(\quad::\) Queue \(a \rightarrow[\) Queue \(a] \rightarrow[\) Queue a]
consQueue xs xss \(=\) if isempty xs then xss else xs :xss
wrapQueue \(\quad:: \quad\) Queue \(a \rightarrow[\) Queue \(a]\)
wrapQueue xs \(\quad=\) consQueue xs []
```

Both definitions of boxall are loopless.

Final remarks

The term loopless was coined by Ehrlich (1973). A number of loopless algorithms for generating combinatorial patterns appear in Knuth's published drafts of three sections of Volume 4 of The Art of Computer Programming (Knuth, 2005). These fascicles contain references to much of the literature on looplessness. The quote from Knuth appears in Knuth (2001). Okasaki's implementation of queues can be found in Okasaki (1995).

References

Ehrlich, G. (1973). Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. Journal of the ACM 20, 500-13.
Knuth, D. E. (2001). SPIDERS: a program downloadable from www-cs-faculty.stanford.edu/~knuth/programs.html.
Knuth, D. E. (2005). The Art of Computer Programming, Volume 4, Fascicles 2,3,4. Reading, MA: Addison-Wesley.
Okasaki, C. (1995). Simple and efficient purely functional queues and deques. Journal of Functional Programming 5 (4), 583-92.

29

The Johnson-Trotter algorithm

Introduction

The Johnson-Trotter algorithm is a method for producing all the permutations of a given list in such a way that the transition from one permutation to the next is accomplished by a single transposition of adjacent elements. In this pearl we calculate a loopless version of the algorithm. The main idea is to make use of one of the loopless programs for the generalised boustrophedon product boxall developed in the previous pearl.

A recursive formulation

In the Johnson-Trotter permutation algorithm the transitions for a list of length n of length greater than one are defined recursively in terms of the transitions for a list of length $n-1$. Label the elements of the list with positions 0 through $n-1$ and let the list itself be denoted by $x s+[x]$. Begin with a downward run $[n-1, n-2, \ldots, 1]$, where transition i means "interchange the element at position i with the element at position $i-1$ ". The effect is to move x from the last position to the first, resulting in the final permutation $[x]+x s$. For example, the transitions $[3,2,1]$ applied to the string "abcd" result in the three permutations "abdc", "adbc" and "dabc". Next, suppose the transitions generating the permutations of $x s$ are $\left[j_{1}, j_{2}, \ldots\right]$. Apply the transition $j_{1}+1$ to the current permutation $[x]+x s$. We have to increase j_{1} by one because $x s$ is now one position to the right of the "runner" x. Next, run x upwards again to the last position by applying the transition sequence $[1,2, \ldots, n-1]$. This results in a final permutation $y s+[x]$, where $y s$ is the result of applying transition j_{1} to $x s$. For example, the transitions [3, 1, 2, 3] applied to "dabc" result in four more permutations "dacb", "adcb", "acdb" and "acbd". For the next step, apply the second transition j_{2} for $x s$ and run x down again. We do not have to modify the transition j_{2} after upward runs because the relevant permutation is to the left of x. Continue in the same fashion, interleaving runs of x downwards and upwards, with the transitions for $n-1$.

The above description codes quite easily using the boustrophedon product (\square) defined in the previous pearl:

```
jcode \(\quad:: \quad\) Int \(\rightarrow[\) Int \(]\)
jcode \(1=\) []
jcode \(n=(\) bumpBy \(1(\) jcode \((n-1))) \square[n-1, n-2 . .1]\)
```

The function bumpBy k adds k to every item in even position:

```
bumpBy \(k[] \quad=[]\)
bumpBy \(k[a]=[a+k]\)
bumpBy \(k(a: b: a s)=(a+k): b: b u m p B y k\) as
```

Our task is to make jcode loopless.

The plan

The general plan is to express jcode in terms of boxall, the generalised boustrophedon product defined in the previous pearl, and then to appeal to the loopless algorithm for boxall. To do so we need to generalise jcode. Consider the function code, defined by

$$
\text { code }(k, n)=\text { bumpBy } k(j \text { code } n)
$$

Clearly, jcode $n=\operatorname{code}(0, n)$. We reason for an odd positive integer n that

$$
\begin{aligned}
& \text { code (} k, n \text {) } \\
& =\{\text { definition }\} \\
& \text { bumpBy } k \text { (jcode } n \text {) } \\
& =\quad\{\text { definition of } j \text { code }\} \\
& \text { bumpBy } k \text { (bumpBy } 1 \text { (jcode }(n-1)) \square[n-1, n-2 \text {.. 1]) } \\
& =\{\text { claim, see below }\} \\
& \text { bumpBy }(k+1) \text { (jcode }(n-1)) \square \text { bumpBy } k[n-1, n-2 \text {.. 1] } \\
& =\{\text { definition of code and bumpDn (see below) }\} \\
& \text { code (} k+1, n-1 \text {) } \square \text { bumpDn }(k, n)
\end{aligned}
$$

where bumpDn (pronounced "bump down") is defined by

$$
\begin{equation*}
\text { bumpDn }(k, n)=\text { bumpBy } k[n-1, n-2 . .1] \tag{29.1}
\end{equation*}
$$

The first claim is that

```
bumpBy \(k\) ( \(x s \square y s\) )
    \(=\) if even (length ys) then bumpBy \(k\) xs \(\square\) bumpBy \(k\) ys
    else \(x s \square b u m p B y k y s\)
```

The claim can be proved from the definition of \square and the fact that

$$
\begin{aligned}
& \text { bumpBy } k(x s+[y]+y s) \\
& =\text { if even (length xs) then bumpBy } k \text { xs }+ \text { bumpBy } k([y]+y s) \\
& \quad \text { else bumpBy } k \text { xs }+[y]+\text { bumpBy } k y s
\end{aligned}
$$

The easy details are left as an exercise.
The case when n is even is treated similarly, and we arrive at the following definition of code:

$$
\begin{aligned}
\operatorname{code}(k, 1)= & {[] } \\
\operatorname{code}(k, n)= & \operatorname{code}\left(k^{\prime}, n-1\right) \square \operatorname{bump} D n(k, n) \\
& \text { where } k^{\prime}=\text { if odd } n \text { then } k+1 \text { else } 1
\end{aligned}
$$

For example, bearing in mind that \square is associative, we have

$$
\text { code }(0,4)=\text { bumpDn }(2,2) \square b u m p D n(1,3) \square b u m p D n(0,4)
$$

Recalling that boxall $=$ foldr $(\square)[]$, we can now rewrite code in the form

$$
\text { code }=\text { boxall } \cdot \text { map bumpDn } \cdot \text { pairs }
$$

where

$$
\begin{aligned}
\text { pairs }: & :(\text { Int, Int }) \rightarrow[(\text { Int, Int })] \\
\text { pairs }(k, 1)= & {[] } \\
\text { pairs }(k, n)= & \text { pairs }\left(k^{\prime}, n-1\right)+[(k, n)] \\
& \text { where } k^{\prime}=\text { if odd } n \text { then } k+1 \text { else } 1
\end{aligned}
$$

Again, the easy details are left as an exercise. Evaluating pairs (k, n) takes $\Theta\left(n^{2}\right)$ steps, but this can be reduced to $\Theta(n)$ steps with the help of an accumulating parameter. Define addpair by

$$
\operatorname{addpair}(k, n) p s=\operatorname{pairs}(k, n)+p s
$$

Synthesizing a direct definition of addpair leads to

$$
\begin{aligned}
\text { pairs }(k, n)= & \text { addpair }(k, n)[] \\
\text { addpair }(k, 1) p s= & \text { ps } \\
\text { addpair }(k, n) \text { ps }= & \text { addpair }\left(k^{\prime}, n-1\right)((k, n): p s) \\
& \text { where } k^{\prime}=\text { if odd } n \text { then } k+1 \text { else } 1
\end{aligned}
$$

Hence, since j code $n=\operatorname{code}(0, n)$, we obtain

$$
\begin{aligned}
\text { jcode }= & \text { boxall } \cdot \text { map bumpD } n \cdot \text { pairs } \\
& \text { where pairs } n=\operatorname{addpair}(0, n)[]
\end{aligned}
$$

Since we know how to make boxall loopless, this definition of jcode is a loopless algorithm. Or is it?

A loopless algorithm

No, it is not: part of the prologue is map bumpDn (pairs n), and this takes $\Theta\left(n^{2}\right)$ steps. The rules of the game only allow a prologue that takes $\Theta(n)$ steps.

What we really need to do is make boxall \cdot map bump $D n$ loopless. It is easy to make bumpDn loopless, so let us first do that. Recall definition (29.1):

$$
\text { bumpDn }(k, n)=\text { bumpBy } k[n-1, n-2 . .1]
$$

To make bumpDn loopless we can set up a state consisting of a quadruple (j, k, m, n) in which the first component j begins with k and then flips alternately between 0 and k, the second and fourth components k and n do not change and the third component m counts down from $n-1$ to 1 . Then we have

$$
\begin{aligned}
\begin{array}{l}
\text { bumpDn } \\
\text { prologDn }(k, n)= \\
\text { stepDn }(j, k, m, n)=
\end{array} & \text { unfoldr stepDn } \cdot \text { prologDn } \\
& \text { if } m<n, n-1,1) \\
& \text { else } \operatorname{Just}(m+j,(k-j, k, m-1, n))
\end{aligned}
$$

Similarly, we can make reverse \cdot bumpDn loopless:

$$
\begin{aligned}
\text { reverse } \cdot \text { bumpDn }= & \text { unfoldr stepUp } \cdot \text { prologUp } \\
\text { prolog } U p(k, n)= & \text { (if even } n \text { then } k \text { else } 0, k, 1, n-1) \\
\text { step } U p(j, k, m, n)= & \text { if } m>n \text { then Nothing } \\
& \text { else } \operatorname{Just}(m+j,(k-j, k, m+1, n))
\end{aligned}
$$

The functions stepDn and step $U p$ can be unified as one function, bump say (we need the name step for another purpose later on), by adding in a fifth component i, taking $i=-1$ for a down-step and $i=1$ for an up-step. That gives

$$
\begin{array}{ll}
\text { bumpDn } & =\text { unfoldr bump } \cdot \text { prologDn } \\
\text { reverse } \cdot \text { bumpDn } & =\text { unfoldr bump } \cdot \text { prologUp }
\end{array}
$$

where

$$
\begin{aligned}
\operatorname{bump}(i, j, k, m, n)= & \text { if } i *(n-m)<0 \text { then Nothing } \\
& \text { else Just }(m+j,(i, k-j, k, m+i, n)) \\
\operatorname{prolog} D n(k, n)= & (-1, k, k, n-1,1) \\
\operatorname{prolog} U p(k, n)= & (1, \text { if even } n \text { then } k \text { else } 0, k, 1, n-1)
\end{aligned}
$$

Next, recall from the previous pearl that one loopless definition of boxall takes the form boxall $=$ unfoldr step \cdot prolog, where

$$
\text { prolog }=\text { wrapQueue } \cdot \text { fst } \cdot \text { foldr op (empty, empty })
$$

The function $o p$ was defined by

```
op \(x s(y s, s y)=\) if even (length \(x s)\)
    then (mix xs (ys, sy), mix (reverse xs) (sy,ys))
    else (mix xs (ys, sy), mix (reverse xs) (ys, sy))
\(\operatorname{mix}[](y s, s y)=y s\)
\(\operatorname{mix}(x: x s)(y s, s y)=\) insert ys \((\) Node \(x(\) mix \(x s(s y, y s)))\)
```

The function step was defined by

```
step [] \(=\) Nothing
step (zs:zss) \(=\) Just (x, consQueue xs (consQueue ys zss))
        where \((\) Node \(x\) xs, ys) \()=\) remove zs
consQueue \(\quad:: \quad\) Queue \(a \rightarrow[\) Queue a] \(\rightarrow[\) Queue \(a]\)
consQueue xs xss \(=\) if isempty xs then xss else xs :xss
wrapQueue \(\quad::\) Queue \(a \rightarrow[\) Queue \(a]\)
wrapQueue xs \(=\) consQueue \(x s[]\)
```

We reason:

jcode

$=\quad\{$ definition of j code in terms of boxall $\}$
boxall • map bumpDn • pairs
$=\{$ loopless definition of boxall $\}$
unfoldr step • wrapQueue \cdot fst \cdot foldr op (empty, empty) . map bumpDn • pairs
$=\quad$ \{fold-map fusion $\}$
unfoldr step • wrapQueue •fst •foldr op ${ }^{\prime}$ (empty, empty) • pairs
where

$$
o p^{\prime}(k, n)(y s, s y)=o p(b u m p D n(k, n))(y s, s y)
$$

Unfolding this definition, and using the fact that bumpDn (k, n) has even length if n is odd, together with the definitions of prologDn and prolog $U p$, we find

$$
\begin{aligned}
& o p^{\prime}(k, n)(y s, s y) \\
& =\text { if odd } n \\
& \text { then (mix (unfoldr bump }(-1, k, k, n-1,1))(y s, s y), \\
& \quad \text { mix (unfoldr bump }(1,0, k, 1, n-1))(s y, y s)) \\
& \quad \text { else }(\text { mix (unfoldr bump }(-1, k, k, n-1,1))(y s, s y), \\
& \quad \text { mix (unfoldr bump }(1, k, k, 1, n-1))(y s, s y))
\end{aligned}
$$

The function op ${ }^{\prime}(k, n)$ takes $\Theta(n)$ steps, so foldr op ${ }^{\prime}$ (empty, empty) takes quadratic time. We can make $o p^{\prime}$ less busy by taking unfoldr bump out of its definition and letting a modified version of step do all the work. In effect, we delay the evaluation of the first argument of mix. We will need a new data type to represent delayed evaluations, and we take

```
type Forest a = Queue(Rose a)
data Rose a = Node a (Forest a,Forest a)
```

The new definition of a rose tree has a pair of forests as offspring rather than a single forest. Now consider a new version of step, defined by

```
type State \(=(\) Int, Int, Int, Int, Int \()\)
type Pair \(a=(a, a)\)
step \(\quad:: \quad[\) Forest (Int, State) \(] \rightarrow\) Maybe (Int, \([\) Forest (Int, State) \(]\) )
step [] \(=\) Nothing
step (zs : zss)
    \(=\) Just \((x\), consQueue \((\) mix \(q(s y, y s))(\) consQueue zs' zss \())\)
        where \(\left(\operatorname{Node}(x, q)(y s, s y), z s^{\prime}\right)=\) remove \(z s\)
```

where mix is modified to read

```
mix :: State }->\mathrm{ Pair (Forest (Int, State)) }->\mathrm{ Forest (Int, State)
mix (i,j,k,m,n) (ys,sy)
    = if i*(n-m)<0 then ys
        else insert ys (Node (m+j,(i,k-j,k,m+i,n)) (ys,sy))
```

The function step generates the next transition x and passes the state q (a quintuple) to mix, which computes the next transition, if there is one, and a new state. We now claim that
jcode $=$ unfoldr step \cdot wrapQueue $\cdot f s t \cdot$ foldr op ${ }^{\prime}($ empty, empty $) \cdot$ pairs
where $o p^{\prime}$ is redefined to read

$$
\begin{aligned}
& \left.o p^{\prime} \quad:: \quad(\text { Int }, \text { Int }) \rightarrow \text { Pair (Forest (Int, State) }\right) \\
& \rightarrow \text { Pair (Forest (Int, State)) } \\
& o p^{\prime}(k, n)(y s, s y)=\text { if odd } n \\
& \text { then (mix }(-1, k, k, n-1,1)(y s, s y) \text {, } \\
& \text { mix }(1,0, k, 1, n-1)(s y, y s)) \\
& \text { else }(\operatorname{mix}(-1, k, k, n-1,1)(y s, s y) \text {, } \\
& \text { mix }(1, k, k, 1, n-1)(y s, s y))
\end{aligned}
$$

Once again, details are left as an exercise. The rather long prologue prolog $=$ wrapQueue $\cdot f s t \cdot$ foldr op ${ }^{\prime}($ empty, empty $) \cdot$ pairs
takes $\Theta(n)$ steps when applied to n, and step takes constant time, so this finally is a genuine 24-carat loopless program for j code.

Final remarks

If it were not for the very picky requirement that the prologue had to take linear time, we could have stopped calculating as soon as we had reached the definition

$$
\text { jcode }=\text { boxall } \cdot \text { map bumpDn } \cdot \text { pairs }
$$

What this definition really shows is the usefulness of the generalised boustrophedon product function boxall in the generation of many kinds of combinatorial patterns. We will see more uses in the final pearl.

The Johnson-Trotter algorithm was described independently in Johnson (1963) and Trotter (1962). As mentioned in the previous pearl, Ehrlich (1973), which introduced the concept of a loopless algorithm, was mainly devoted to describing a loopless program for the Johnson-Trotter algorithm.

References

Ehrlich, G. (1973). Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. Journal of the ACM 20, 500-13.
Johnson, S. M. (1963). Generation of permutations by adjacent transpositions. Mathematics of Computation 17, 282-5.
Trotter, A. F. (1962). Perm (Algorithm 115). Communications of the ACM 5, 434-5.

30

Spider spinning for dummies

Oh what a tangled web we weave when first we practise to derive. (With apologies to Sir Walter Scott)

Introduction

Consider the problem of generating all bit strings $a_{1} a_{2} \ldots a_{n}$ of length n satisfying given constraints of the form $a_{i} \leq a_{j}$ for various i and j. The generation is to be in Gray path order, meaning that exactly one bit changes from one bit string to the next. The transition code is a list of integers naming the bit that is to be changed at each step. For example, with $n=3$, consider the constraints $a_{1} \leq a_{2}$ and $a_{3} \leq a_{2}$. One possible Gray path is $000,010,011,111,110$ with transition code $[2,3,1,3]$ and starting string 000 .

The snag is that the problem does not always have a solution. For example, with $n=4$ and the constraints $a_{1} \leq a_{2} \leq a_{4}$ and $a_{1} \leq a_{3} \leq a_{4}$, the six possible bit strings, namely $0000,0001,0011,0101,0111$ and 1111 , cannot be permuted into a Gray path. There are four strings of even weight (the numbers of 1 s) and two of odd weight, and in any Gray path the parity of the weights has to alternate.

Constraints of the form $a_{i} \leq a_{j}$ on bit strings of length n can be represented by a digraph with n nodes in which a directed edge $i \leftarrow j$ is associated with a constraint $a_{i} \leq a_{j}$. Knuth and Ruskey showed how to construct a Gray path provided the digraph was totally acyclic, meaning that the undirected graph obtained by dropping the directions on the edges is acyclic. They called a connected totally acyclic digraph a spider, because when an edge $i \leftarrow j$ is drawn with i below j the digraph can be made to look like an arachnid (see Figure 30.1 for a three-legged spider). They called a totally acyclic digraph a tad, but, since its connected components are spiders, we will continue the arachnid metaphor and call it a nest of spiders.

Fig. 30.1 A three-legged spider

Knuth named the problem of generating the associated bit strings in Gray path order spider squishing. The more formal rendering of the task is: "generating all ideals ${ }^{1}$ of a totally acyclic poset in Gray path order". Since spiders are good for the environment and should never be squished, we will call it spider spinning instead.

A useful way to think of the problem of spider spinning is in terms of colourings. Think of the nodes of the spider of Figure 30.1 as being coloured black if the associated bit is 1 and coloured white if the bit is 0 . Thus, every descendant of a white node has to be white. For example, if node 1 is white, then nodes 2 and 5 have to be white as well. The problem of spider spinning is then to enumerate all legal colourings by starting with one such colouring and changing the colour of exactly one node at each step. As we will see, the initial colouring cannot in general be chosen to be the all-white or all-black colouring.

Our aim in this pearl is to derive a loopless algorithm for spider spinning. Knuth and Ruskey gave an algorithm for spider spinning, but it was not loopless. There is a program, SPIDERS, on Knuth's website that does perform loopless spider spinning. It is quite complicated, as Knuth readily admits:

But I apologize at the outset that the algorithm seems to be rather subtle, and I have not been able to think of any way to explain it to dummies.

Hence our title. Our aim in this pearl is to calculate a loopless algorithm for spider spinning. I have no idea if my algorithm bears any relationship to Knuth's algorithm, since I can't explain his algorithm either.

Spider spinning with tree spiders

Let us first consider the simpler problem of spider spinning when each spider is just a tree, so all spiders' legs are directed downwards. This special case

[^12]

Fig. 30.2 A nest of two tree spiders
of spider spinning was considered by Koda and Ruskey. The relevant data type declarations are

```
type Nest = [Spider]
data Spider = Node Int Nest
```

A nest of two tree spiders is pictured in Figure 30.2. We will suppose that the labels of nodes in a nest of spiders of size n are the elements of [1.. $n]$ in some order. We can define ncode and scode, the transition codes for a nest of spiders and a single spider respectively, using the generalised boustrophedon product function boxall:

ncode	$::$ Nest $\rightarrow[$ Int $]$
ncode	$=$ boxall \cdot map scode
scode	$:: \quad$ Spider $\rightarrow[$ Int $]$
scode (Node a xs)	$=a:$ ncode $x s$

The transition code for a single spider consists of an initial transition to change the colour of the root node (in fact, from white to black), followed by a complete list of the transitions for the nest of its subspiders. The definition of ncode is short and sweet, but not loopless.

A loopless program

The first step on the path to looplessness is dictated solely by the form of the definition of ncode. Recalling that boxall $=$ foldr $(\square)[]$, an application of the map-fusion law of foldr yields

$$
\text { ncode }=\text { foldr }((\square) \cdot \text { scode })[]
$$

The focus now is on the function (\square) scode. We calculate:

$$
=\begin{gathered}
\text { scode }(\text { Node a xs }) \square b s \\
=\quad\{\text { definition of scode }\} \\
(a: \text { ncode } x s) \square b s
\end{gathered}
$$

$$
\begin{array}{cc}
= & \{\text { definition of } \square\} \\
& b s+[a]+(\text { ncode } x s \square(\text { reverse } b s)) \\
= & \{\text { initial definition of ncode }\} \\
& b s+[a]+(\text { boxall (map scode } x s) \square(\text { reverse } b s))
\end{array}
$$

The third term of this expression takes the form

$$
(\text { foldr }(\square)[] \text { ass }) \square c s
$$

in which ass $=$ map scode $x s$ and $c s=$ reverse bs. This suggests the use of the fold-fusion law of foldr. Setting f as $=a s \square c s$, we have that f is strict and $f[]=c s$, since [] is the identity of \square. Hence, the fold-fusion law gives
$($ foldr $(\square)[]$ ass $) \square c s=$ foldr h cs ass
provided we can find an h such that $(a s \square b s) \square c s=h a s(b s \square c s)$. But \square is associative, so we can take $h=(\square)$.

Putting these calculations together, we obtain:

$$
\begin{aligned}
& \text { scode (Node a xs) } \square b s \\
= & \{\text { above }\} \\
& b s+[a]+(\text { boxall (map scode } x s) \square(\text { reverse } b s)) \\
= & \{\text { fold fusion }\} \\
& b s+[a]+\text { foldr }(\square)(\text { reverse } b s)(\text { map scode } x s) \\
= & \{\text { map fusion }\} \\
& b s+[a]+\text { foldr }((\square) \cdot \text { scode })(\text { reverse } b s) x s
\end{aligned}
$$

Hence, setting op $=(\square) \cdot$ scode, we have calculated that

$$
\begin{array}{ll}
\text { ncode } & =\text { foldr op }[] \\
o p(\text { Node a xs) bs } & =b s+[a]+\text { foldr op }(\text { reverse bs) xs }
\end{array}
$$

The remaining steps are to eliminate reverse by computing both ncode and reverse \cdot ncode at the same time, and to represent each of their results by a queue of rose trees under the abstraction function preorder. Rose trees are here declared by

$$
\begin{aligned}
& \text { type Forest } a=\text { Queue }(\text { Rose } a) \\
& \text { data Rose } a=\text { Fork } a(\text { Forest } a)
\end{aligned}
$$

Fig. 30.3 A spider and an associated tree

We have performed these steps with the derivation of a loopless program for boxall, so we will just state the result:

```
ncode = unfoldr step \cdotwrapQueue .fst f foldr op (empty, empty)
op (Node a xs) (bs,sb)
    = (insert bs (Fork a cs), insert sc (Fork a sb))
        where (cs,sc) = foldr op (sb,bs) xs
```

The remaining functions step and wrapQueue are exactly as they were defined in the loopless algorithm for boxall. Since foldr op (empty, empty) takes linear time in the size of the nest, this is a loopless program for ncode.

Spider spinning with general spiders

Now we are ready to tackle the general spider-spinning problem. First, observe that by picking a spider up by one of its nodes we get a tree with directed edges, such as that shown in Figure 30.3. Different trees arise depending on which node is picked up, but they all represent the same constraints. It follows that we can model general spiders with the type declarations

```
type Nest \(=[\) Spider \(]\)
data Spider \(=\) Node Int \([L e g]\)
data Leg \(=\) Dn Spider \(\mid\) Up Spider
```

A spider has legs, not edges. A spider's leg points upwards or downwards to another spider.

There is one complication when dealing with general spiders that does not arise with simpler species: the starting bit string is not necessarily a string consisting of all 0 s . For example, with $n=3$ and the constraints $a_{1} \geq a_{2} \leq a_{3}$, the five possible bit strings, namely $000,001,100,101$ and 111, can only be arranged in Gray path order by starting with one of the odd-weight strings: 001,100 , or 111 . However, we postpone consideration of
the function seed $::$ Nest \rightarrow [Bit] for determining the starting string until later on.

As with tree spiders, we can define

$$
\begin{aligned}
\text { ncode } & :: \quad \text { Nest } \rightarrow[\text { Int }] \\
\text { ncode } & =\text { boxall } \cdot \text { map scode }
\end{aligned}
$$

We define scode to be the concatenation of two lists, a white code and a black code:

$$
\begin{array}{ll}
\text { scode } & :: \quad \text { Spider } \rightarrow[\text { Int }] \\
\text { scode (Node a legs }) & =\quad \text { wcode legs }+[a]+\text { bcode legs }
\end{array}
$$

The white code, wcode, for a spider Node a legs is a valid transition sequence when the head node a is coloured white (corresponding to a 0 bit) and the black code is a valid sequence when a is coloured black (corresponding to a 1 bit). Thus, scode is defined as the sequence that goes through the white code, changes the colour of a from white to black and then goes through the black code. Note that when the spiders are tree spiders, so all legs point downwards, the white code is the empty sequence.

For scode to be correct, the final spider colouring after executing wcode legs has to be the initial colouring on which bcode legs starts. In order for the colourings to match up we need to define wcode in terms of a variant of \square, which we will denote by \diamond and pronounce "cox". ${ }^{2}$ The operation \diamond is the conjugate of \square :

$$
\text { as } \diamond b s=\text { reverse }((\text { reverse as }) \square(\text { reverse } b s))
$$

Whereas as $\square b s$ begins with as and ends with either $b s$ or reverse bs depending on whether as has even length, as $\diamond b s$ ends with $b s$ and begins with either $b s$ or reverse $b s$. For example:

$$
\begin{aligned}
{[2,3,4] \square[0,1] } & =[0,1,2,1,0,3,0,1,4,1,0] \\
{[2,3,4] \diamond[0,1] } & =[1,0,2,0,1,3,1,0,4,0,1]
\end{aligned}
$$

We can express \square in terms of \diamond by conjugation, but there is another way:

$$
\begin{align*}
& a s \square b s \\
& \quad=\text { if even (length as) then as } \diamond b s \text { else } a s \diamond(\text { reverse } b s) \tag{30.1}
\end{align*}
$$

A similar equation defines \diamond in terms of \square. Equation (30.1) will be needed below.

[^13]The operation \diamond is associative with the empty sequence as identity element. The proof is left as an exercise, but it depends on the fact that

$$
(a s+[b]+b s) \diamond c s=\left(a s \diamond c s^{\prime}\right)+[b]+(b s \diamond c s)
$$

where $c s^{\prime}=$ if even (length $b s$) then reverse cs else $c s$. A similar property was needed to prove \square was associative.

Setting coxall $=$ foldr $(\diamond)[]$, we can now define

$$
\begin{array}{ll}
\text { wcode, bcode } & :: \quad[\text { Leg }] \rightarrow[\text { Int }] \\
\text { wcode } & =\text { coxall } \cdot \text { map wc } \\
\text { bcode } & =\text { boxall } \cdot \text { map bc }
\end{array}
$$

where $w c, b c::$ Leg $\rightarrow[$ Int $]$ are yet to be defined. Use of coxall in the definition of wcode ensures that the final colouring after executing wcode will be the union of the final colourings generated by the wc transitions, and use of boxall in the definition of bcode means that this colouring will also be the union of the colourings on which the $b c$ transitions start.

It remains to define $w c$ and $b c$. Given the choices above, the following definitions are forced:

$$
\begin{aligned}
w c(U p(\text { Node a legs })) & =\text { wcode legs }+[a]+\text { bcode legs } \\
w c(D n(\text { Node a legs })) & =\text { reverse (wcode legs) } \\
b c(U p(\text { Node a legs })) & =\text { reverse (bcode legs }) \\
b c(D n(\text { Node a legs })) & =\text { wcode legs }+[a]+\text { bcode legs }
\end{aligned}
$$

Look first at $w c(U p x)$. When the head of the mother spider of x is white and is connected to x by an upwards edge, there are no constraints on $w c(U p x)$, so we can define it to be either scode x or its reverse. But the subsequent transitions affecting x are those in the list $b c(U p x)$, and the only way to match up the final colouring of the former with the initial colouring of the latter is with the definitions above. The reasoning is dual with $b c(\operatorname{Dn} x)$ and $w c(D n x)$.

Finally, we show that ncode can be expressed in terms of bcode:

$$
\begin{aligned}
& \text { ncode xs } \\
= & \{\text { definition of } n c o d e\} \\
& \text { boxall (map scode } x s) \\
= & \{\text { definition of scode and } b c\} \\
& \text { boxall }[b c(D n x) \mid x \leftarrow x s] \\
= & \{\text { definition of bcode }\} \\
& \text { bcode }[(D n x) \mid x \leftarrow x s]
\end{aligned}
$$

```
ncode \(\quad:: \quad\) Nest \(\rightarrow[\) Int \(]\)
ncode \(\quad=\quad\) bcode \(\cdot\) map Dn
bcode, wcode \(\quad:: \quad[\mathrm{Leg}] \rightarrow[\) Int \(]\)
bcode \(\quad=\) boxall \(\cdot\) map bc
wcode \(\quad=\) coxall \(\cdot\) map wc
\(b c, w c \quad:: \quad\) Leg \(\rightarrow[\) Int \(]\)
\(b c(U p(\) Node a legs \())=\) reverse (bcode legs)
\(b c(\) Dn (Node a legs \())=\) wcode legs \(+[a]+\) bcode legs
\(w c(U p(\) Node a legs \())=\) wcode legs \(+[a]+\) bcode legs
\(w c(D n(\) Node a legs \())=\) reverse (wcode legs)
```

Fig. 30.4 The starting program for ncode

The complete program for ncode, apart from boxall and coxall, is listed in Figure 30.4. Our task is to make ncode loopless.

A loopless algorithm

The transformation to loopless form follows the same path as the simpler problem of a nest of tree spiders. Specifically, we are going to:
(i) Eliminate boxall and coxall from the definition of ncode by appeal to map fusion and fold fusion.
(ii) Eliminate reverse by appeal to tupling.
(iii) Eliminate the remaining complexity by introducing queues.

It is the appeal to fold fusion in the first step that is the trickiest. As an easy first step we apply map fusion to the definitions of wcode and bcode, obtaining

$$
\begin{aligned}
\text { bcode } & =\text { foldr }((\square) \cdot b c)[] \\
\text { wcode } & =\text { foldr }((\diamond) \cdot w c)[]
\end{aligned}
$$

The focus of attention now is on the terms $(\square) \cdot b c$ and $(\diamond) \cdot w c$. Everything we discover about the first will apply to the second with the obvious changes. We will follow the path of the tree-spider calculation as closely as possible.

There are two clauses in the definition of $b c$ and we consider them in turn. First we have

$$
\begin{aligned}
& b c(\text { Up }(\text { Node a legs })) \square c s \\
= & \{\text { definition of } b c\} \\
& \text { reverse (bcode legs) } \square c s \\
= & \{\text { definition of } b c o d e\} \\
& \text { reverse (boxall (map bc legs)) } \square c s
\end{aligned}
$$

As in the case of tree spiders, the next step is an appeal to the fold-fusion law: if a function h can be found so that

$$
\begin{equation*}
\text { reverse }(a s \square b s) \square c s=h \text { as }((\text { reverse } b s) \square c s) \tag{30.2}
\end{equation*}
$$

then
reverse (boxall (map bc legs)) $\square c s=$ foldr h cs (map bc legs)
The trouble is that there is no such h to satisfy (30.2). The reason is that \square is not an injective function; for example

$$
\text { "abab" } \square \text { "aaaba" = "ab" } \square \text { "aaabaaaba" }
$$

If h existed to satisfy (30.2), then we would require
reverse (as \square "baba") \square "aaaba"
$=$ reverse (as \square "ba") \square "aaabaaaba"
for all $a s$. But the above equation is false: take for instance $a s=$ " c ".
What we can do is find an h such that

$$
\begin{equation*}
\text { reverse }(\text { as } \square b s) \diamond c s=h \text { as }((\text { reverse } b s) \diamond c s) \tag{30.3}
\end{equation*}
$$

Equation (30.3) has the same form as (30.2) except that the last \square on either side has been changed into a \diamond. To discover h we reason:

$$
\begin{aligned}
& \quad \text { reverse }(\text { as } \square b s) \diamond c s \\
=\quad & \{\text { definition of } \diamond\} \\
\quad & (\text { reverse as } \diamond \text { reverse } b s) \diamond c s \\
=\quad & \quad \text { since } \diamond \text { is associative }\} \\
& \text { reverse as } \diamond(\text { reverse bs } \diamond c s)
\end{aligned}
$$

Hence, we can take h as $b s=$ reverse as $\diamond b s$. Appeal to fold fusion then gives reverse (boxall (map bc legs)) $\Delta c s=$ foldr hcs (map bc legs)
But all this helps only if we can change a \square into a \diamond. Fortunately, (30.1) comes to the rescue. Setting

$$
c s^{\prime}=\text { if even }(\text { length }(\text { bcode legs })) \text { then } c s \text { else reverse cs }
$$

we can reason:

$$
\begin{aligned}
& b c(U p(\text { Node a legs })) \square c s \\
= & \{\text { above }\} \\
& \text { reverse (boxall (map bc legs)) } \square c s \\
= & \quad\{\text { using }(30.1)\} \\
& \text { reverse }(\text { boxall (map bc legs })) \diamond c s^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =\quad\{\text { fold fusion }\} \\
& \\
& \quad \text { foldr }((\diamond) \cdot \text { reverse }) c s^{\prime}(\text { map bc legs })
\end{aligned}
$$

Having transformed \square into \diamond we now transform \diamond back into \square with another application of fold fusion. The fusion condition

$$
\text { reverse }((\text { reverse as }) \diamond c s)=a s \square(\text { reverse } c s)
$$

is just the conjugate property of \square and \diamond and it leads to

$$
\text { reverse } \cdot \text { foldr }((\diamond) \cdot \text { reverse }) c s^{\prime}=\text { foldr }(\square)\left(\text { reverse } c s^{\prime}\right)
$$

Thus:

$$
\begin{aligned}
& b c(\text { Up }(\text { Node a legs })) \square c s \\
= & \{\text { above }\} \\
& \text { foldr }((\diamond) \cdot \text { reverse }) c s^{\prime}(\text { map bc legs }) \\
= & \quad\{\text { fold fusion }\} \\
& \text { reverse }\left(\text { foldr }((\square) \cdot b c)\left(\text { reverse } c s^{\prime}\right) \text { legs }\right)
\end{aligned}
$$

Introducing bop $=(\square) \cdot b c$, we have shown that bcode $=$ foldr bop [], where bop $(U p(N o d e ~ a ~ l e g s)) c s=r e v e r s e(f o l d r$ bop cs legs)
where $c s^{\prime}=$ if even (length (bcode legs))
then reverse cs else cs
Entirely dual reasoning with $w o p=(\diamond) \cdot w c$ establishes wcode $=$ foldr wop [] , where

```
wop (Dn(Node a legs))cs = reverse(foldr wop cs' legs)
    where cs' = if even(length (wcode legs))
        then reverse cs else cs
```

That was quite a bit of effort, but it disposes of only two clauses, so more work remains. We now tackle the clause $b c(D n($ Node a legs $)) \square c s$ and start off by reasoning:

$$
\begin{aligned}
& b c(\text { Dn (Node a legs })) \square c s \\
= & \{\text { definition of } b c\} \\
& (\text { wcode legs }+[a]+\text { bcode legs }) \square c s \\
= & \quad\{\text { distributing }+ \text { over } \square\} \\
& (\text { wcode legs } \square c s)+[a]+\left(\text { bcode legs } \square c s^{\prime}\right)
\end{aligned}
$$

where

$$
c s^{\prime}=\mathbf{i f} \text { even }(\text { length }(w \operatorname{code} \text { legs })) \text { then reverse } c s \text { else } c s
$$

The rule for distributing + over \square was given in the first pearl on looplessness:

$$
\begin{aligned}
& (x s+[y]+y s) \square z s=(x s \square z s)+[y]+\left(y s \square z s^{\prime}\right) \\
& \text { where } z s^{\prime}=\text { if } \text { even }(\text { length } x s) \text { then reverse } z s \text { else } z s
\end{aligned}
$$

We tackle each of the terms bcode legs $\square c s^{\prime}$ and wcode legs $\square c s$ in turn. First:

```
    bcode legs }\squarec\mp@subsup{s}{}{\prime
= {definition of bcode}
    foldr (\square) [] (map bc legs) \squarecs'
= {fold fusion (exercise)}
    foldr (\square) cs' (map bc legs)
= {map fusion and definition of bop}
    foldr bop cs' legs
```

Second:

```
    wcode legs }\squarec
= {using (30.1)}
    wcode legs }\diamond\mathrm{ reverse cs'
= {definition of wcode}
    foldr (\diamond)[](map wc legs) \diamond reverse cs'
= {fold fusion (exercise)}
    foldr (\diamond) (reverse cs') (map bc legs)
= {map fusion and definition of wop}
    foldr wop (reverse cs') legs
```

Hence, we have derived

$$
\begin{aligned}
\text { bop }(\text { Dn (Node a legs })) \text { cs }= & \text { foldr wop (reverse cs') legs }+[a]+ \\
& \text { foldr bop cs' legs }
\end{aligned}
$$

where $c s^{\prime}=\mathbf{i f}$ even (length (wcode legs)) then reverse cs else cs
Dual reasoning establishes a similar result for wop (Up (Node a legs)) cs and leads to the program summarised in Figure 30.5. It is not very attractive and certainly not efficient, mostly on account of the repeated need to compute parity information.

```
ncode :: Nest }->[\mathrm{ Int]
ncode = foldr bop [].map Dn
bop, wop :: Leg }->[\mathrm{ [nt] }->[\mathrm{ Int]
bop (Up (Node a legs)) cs = reverse (foldr bop cs' legs)
where cs' = if even (length (foldr bop [] legs)) then reverse cs else cs
bop (Dn(Node a legs))cs= foldr wop(reverse cs') legs # [a] #
                                foldr bop cs' legs
where cs' = if even (length (foldr wop [] legs)) then reverse cs else cs
wop(Up(Node a legs)) cs = foldr wop cs' legs + [a] H
                                foldr bop (reverse cs') legs
where cs' = if even (length (foldr bop [] legs)) then reverse cs else cs
wop (Dn (Node a legs)) cs = reverse(foldr wop cs' legs)
where cs' = if even (length (foldr wop [] legs)) then reverse cs else cs
```

Fig. 30.5 The code after eliminating \square and \diamond

Parity spiders

Instead of repeatedly computing parity information we will install this information in a parity spider, a spider in which each node is equipped with two Boolean values:

$$
\left.\begin{array}{ll}
\text { data Spider }{ }^{\prime} & =\text { Node }^{\prime}(\text { Bool, Bool }) \text { Int }\left[\text { Leg }^{\prime}\right] \\
\text { data } \text { Leg }^{\prime} & =\text { Dn }^{\prime} \text { Spider }
\end{array} \right\rvert\, \text { Up }^{\prime} \text { Spider }{ }^{\prime} \text {. }
$$

The invariant on a parity spider $\operatorname{Node}^{\prime}(w, b)$ a legs is that

$$
\begin{aligned}
w & =\text { even }(\text { length }(\text { wcode legs })) \\
b & =\text { even }(\text { length }(\text { bcode legs }))
\end{aligned}
$$

where wcode and bcode return the white code and black code on parity spiders.

Parity information can be installed in an ordinary spider by decorating it:

$$
\begin{array}{ll}
\text { decorate } & :: \text { Spider } \rightarrow \text { Spider }^{\prime} \\
\text { decorate }(\text { Node a legs }) & =\text { node }^{\prime} \text { a (map (mapLeg decorate) legs) } \\
\text { mapLeg } f(U p x) & =U p^{\prime}(f x) \\
\text { mapLeg } f(D n x) & =D n^{\prime}(f x)
\end{array}
$$

The smart constructor node ${ }^{\prime}$ is defined by

$$
\text { node' a legs }=\text { Node }{ }^{\prime}(\text { foldr op }(\text { True }, \text { True }) \text { legs }) \text { a legs }
$$

where op $::$ Leg $^{\prime} \rightarrow($ Bool, Bool $) \rightarrow($ Bool, Bool $)$ is defined by

$$
\begin{aligned}
& o p\left(U p^{\prime}\left(N_{\text {ode }}(w, b) \ldots\right)\right)\left(w^{\prime}, b^{\prime}\right)=\left((w \neq b) \wedge w^{\prime}, b \wedge b^{\prime}\right) \\
& o p\left(D^{\prime}\left(\operatorname{Node}^{\prime}(w, b) \ldots\right)\right)\left(w^{\prime}, b^{\prime}\right)=\left(w \wedge w^{\prime},(w \neq b) \wedge b^{\prime}\right)
\end{aligned}
$$

```
bop, wop :: \(\mathrm{Leg}^{\prime} \rightarrow[\) Int \(] \rightarrow\) Int
bop (Up \({ }^{\prime}\left(N_{0}{ }^{\prime}(w, b)\right.\) a legs \(\left.)\right) c s\)
    \(=\) reverse (foldr bop (revif bcs) legs)
bop ( Dn \(^{\prime}\left(\right.\) Node \(^{\prime}(w, b)\) a legs \()\) ) cs
    \(=\) foldr wop (revif (not w) cs) legs \(+[a]+\) foldr bop (revif \(w\) cs) legs
    wop (Up' (Node' \((w, b)\) a legs)) cs
    \(=\) foldr wop (revif b cs) legs \(+[a]+\) foldr bop (revif (not b) cs) legs
    wop ( \(D^{\prime}{ }^{\prime}\left(N_{0 d e}(w, b)\right.\) a legs \(\left.)\right) c s\)
        \(=\) reverse (foldr wop (revif wcs) legs)
    revif \(b c s=\) if \(b\) then reverse cs else cs
```

Fig. 30.6 Spinning with parity spiders

To justify this definition of $o p$, abbreviate even \cdot length to el. We reason:

```
        el (wcode (leg : legs))
= {definition of wcode (on parity spiders)}
        el (wc leg}\diamond\mathrm{ wcode legs)
= {since el (as\diamondbs)=el as\wedge el bs}
        el (wc leg)}\wedge el (wcode legs
= {assuming leg = Up' (Node' a legs')}
        el (wcode legs' + [a] # bcode legs')}^^\mathrm{ el (wcode legs)
```

But $a s+[a]+b s$ has even parity if and only if $a s$ and $b s$ have opposite parity. Similar reasoning justifies the other values of op.

Installing parity information takes linear time in the size of a spider and leads to the slightly simpler and much more efficient definitions of bop and wop given in Figure 30.6.

The remaining steps

The final steps are to eliminate reverse by tupling and to represent each component of the pair of results returned by bop and wop by the preorder traversal of a queue of rose trees, just as in the case of tree spiders. To eliminate reverse we represent a sequence $a s$ by a pair $(a s, s a)$, where $s a=$ reverse as. Concatenation of pairs is implemented by

$$
\text { cat } a(w s, s w)(b s, s b)=(w s+[a]+b s, s b+[a]+s w)
$$

Reversal is then implemented by swapping the two lists. Next, each component is represented by a queue of rose trees in a way we have seen twice

```
ncode \(=\) unfoldr step \(\cdot\) prolog
prolog \(=\) wrapQueue \(\cdot f s t \cdot\) foldr bop (empty, empty \() \cdot\) map \(\left(D n^{\prime} \cdot\right.\) decorate \()\)
bop (Up' (Node' \((w, b)\) a legs \()) ~ p s\)
    \(=\operatorname{swap}\) (foldr bop (swapif b ps) legs)
bop (Dn' (Node' \((w, b)\) a legs)) ps
    \(=\) cat a (foldr wop (swapif (not w) ps) legs) (foldr bop (swapif w ps) legs)
wop (Up' (Node \({ }^{\prime}(w, b)\) a legs \()\) ) ps
    \(=\) cat a (foldr wop (swapif b ps) legs) (foldr bop (swapif (not b) ps) legs)
wop (Dn' (Node \({ }^{\prime}(w, b)\) a legs)) ps
    \(=\) swap (foldr wop (swapif \(w\) ps) legs)
cat \(a(w s, s w)(b s, s b)\)
    \(=(\) insert ws \((\) Fork a bs), insert sb (Fork a sw))
\(\operatorname{swap}(x s, y s)=(y s, x s)\)
swapif \(b(x s, y s)=\) if \(b\) then \((y s, x s)\) else \((x s, y s)\)
```

Fig. 30.7 The final loopless program
before. The result of these manoeuvres gives our final loopless program, summarised in Figure 30.7

Even though the prologue is now a four-act play, involving characters such as spiders, lists, queues and trees, and strange actions like swapping and folding, it nevertheless takes linear time in the size of the nest; so this finally is a loopless program for spider spinning.

The initial state

One task remains, namely to define seed $::$ Nest \rightarrow [Bit], the function that returns the starting bit string $a_{1} a_{2} \ldots a_{n}$ for a nest of spiders whose labels are [1..n] in some order. We will just sketch the reasoning behind the definition of seed. We will need the Haskell library Data.Map of finite mappings for representing colourings. This library provides a type Mapka for representing finite mappings from keys (k) to values (a) and includes the following four functions:

$$
\begin{array}{ll}
\text { empty } & :: ~ M a p k a \\
\text { insert } & :: \\
\text { Ord } k \Rightarrow k \rightarrow a \rightarrow M a p k a \rightarrow M a p k a \\
\text { union } & :: \\
\text { elems } k \rightarrow \text { Map } k a \rightarrow M a p k a \rightarrow M a p k a \\
& :: ~ M a p k a
\end{array}
$$

The value empty denotes the empty mapping, insert inserts a new binding into a mapping, union unions two mappings and elems returns the range of values in a mapping in increasing key order. We define a spider's state to be
a mapping from the integer node labels of the spider to bits, integers taking the values 0 and 1 :

```
type State = Map.Map Int Bit
type Bit = Int
```

To avoid name clashes with similarly named functions in Queue, we define

$$
\begin{array}{ll}
\text { install } & :: \text { Int } \rightarrow \text { Bit } \rightarrow \text { State } \rightarrow \text { State } \\
\text { install } & =\text { Map.insert } \\
\text { union } & :: \text { State } \rightarrow \text { State } \rightarrow \text { State } \\
\text { union } & =\text { Map.union } \\
\text { start } & :: \text { State } \\
\text { start } & =\text { Map.empty }
\end{array}
$$

The function seed is defined in terms of two functions

$$
\text { wseed, bseed } \quad:: \quad\left[\text { Leg }^{\prime}\right] \rightarrow(\text { State, State })
$$

Both functions take a list of directed parity spiders and return a pair of states; wseed returns the initial state on which wcode operates and the final state that results. Similarly for bseed. We need both initial and final states and we need parity spiders because parity information plays a part in determining the correct initial state. We define seed by

```
seed = elems }\cdotf\mathrm{ st }\cdot\mathrm{ bseed }\cdot\mathrm{ map (Dn'}\cdot\mathrm{ decorate )
```

This function takes a nest of spiders, converts it into a list of downwardsdirected parity spiders, computes the initial and final states associated with bcode, extracts the first component and returns a list of bits, the starting string for $a_{1} a_{2} \ldots a_{n}$.

We define bseed and wseed by following the code of Figure 30.4, except that we compute states rather than transitions. First:

```
bseed = foldr bsp (start, start)}\cdot\mathrm{ map bs
wseed = foldr wsp (start, start)}\cdot\mp@code{map ws
```

The function $b s$ returns the initial and final states for the transitions $b c$; similarly for $w s$. In fact, $b s$ returns a triple, the first component of which is parity information needed for the computation of $b s p$. The function
foldr bsp (start, start)
returns the initial and final states for boxall, and foldr wsp (start, start) is a similar function for coxall.

Here is the program for $b s$:

$$
\begin{aligned}
b s\left(U p^{\prime}\left(\text { Node }^{\prime}(w, b) \text { a legs }\right)\right)= & (b, \text { install a } 1 f s, \text { install a } 1 \text { is }) \\
& \text { where }(\text { is }, f s)=\text { bseed legs } \\
b s\left(\text { Dn }^{\prime}\left(\text { Node }^{\prime}(w, b) \text { a legs }\right)\right)= & (b, \text { install a } 0 \text { is, install a } 1 \text { fs }) \\
& \text { where is }=\text { fst (wseed legs }) \\
& f s=\text { snd (bseed legs) }
\end{aligned}
$$

Recalling that $b c(U p$ (Node a legs $))=$ reverse (bcode legs), we see that the initial and final states of bseed legs have to be reversed in computing $b s$. Moreover, since we are considering the black code, the value associated with label a is 1 , so this information is installed in the state. The parity information provided by b is also returned.

For the second clause, recall that

$$
b c(\text { Dn }(\text { Node a legs }))=\text { wcode legs }+[a]+\text { bcode legs }
$$

Here, the initial state corresponding to wcode legs and the final state corresponding to bcode legs are the correct initial and final states to choose. Moreover, the label a starts off being associated with a 0 bit and ends up being associated with a 1 bit.

The definition of $w s$ is similar. It remains to consider $b s p$ and $w s p$, whose definitions are

$$
\begin{aligned}
& b s p(b, i a, f a)(i b, f b)=(\text { union ia ib, union } f a(\text { if } b \text { then } f b \text { else } i b)) \\
& w s p(w, i a, f a)(i b, f b)=(\text { union ia }(\text { if } w \text { then } i b \text { else } f b) \text {, union } f a f b)
\end{aligned}
$$

Recall that $a s \square b s$ begins with $b s$ and ends with $b s$ if $a s$ has even length, or ends with reverse bs if as has odd length. Hence, the initial state is the union of the two initial states associated with as and bs, but the final state is the union of the initial state associated with as and either the final or initial state associated with $b s$, depending on the parity of $a s$. In the definition of $b s p$ the Boolean b determines the parity. The complete code for seed is summarised in Figure 30.8.

Final remarks

The Knuth and Ruskey (2003) non-loopless algorithm for spider spinning made heavy use of coroutines. Knuth's (2001) loopless version is on his website. The simpler problem of spinning with tree spiders was first considered in Koda and Ruskey (1993). A non-loopless algorithm based on continuations appeared as a Functional Pearl in Filliâtre and Pottier (2003).

Fig. 30.8 The function seed

References

Filliâtre, J.-C., and Pottier, F. (2003). Producing all ideals of a forest, functionally. Journal of Functional Programming 13 (5), 945-56.
Knuth, D. E. (2001). SPIDERS: a program downloadable from
www-cs-faculty.stanford.edu/~knuth/programs.html.
Knuth, D. E. and Ruskey, F. (2003). Efficient coroutine generation of constrained
Gray sequences (aka deconstructing coroutines). Object-Orientation to Formal
Methods: Dedicated to The Memory of Ole-Johan Dahl. LNCS 2635. SpringerVerlag.
Koda, Y. and Ruskey, R. (1993). A Gray code for the ideals of a forest poset. Journal of Algorithms 15, 324-40.

Index

Data.Array, 2, 25, 29, 100, 114, 123
Data.Array.ST, 3
Data.Map, 271
Data.Sequence, 114
Data.Set, 70
Either, 168
Ix, 2
Queue, 115, 249
QuickCheck, 188, 196
Ratio, 182, 199
\downarrow - after, 128
\uparrow - before, 109

 - list difference, $1,3,22,59,64$, 142, 192
\uparrow - exponentiation, 183
M - merge, 9, 10, 29
!! - list index, 87, 93, 100
! - array index, 25, 29, 87, 100
$\sqsubseteq-$ prefix, 103, 119, 127
accumArray, 2, 5, 82, 123
applyUntil, 82
array, 29, 85
bounds, 25
break, 154, 164, 182
compare, 29
concatMap, 42
elems, 85
foldrn - fold over nonempty lists, 42
fork, 35, 83, 94, 118
inits, 66, 67, 117
listArray, 25, 100
minors, 172
nodups, 149
nub, 64
partition, 4
partitions, 38
reverse, 119, 244
scanl, 118, 238
scanr, 70
sort, 28, 95
sortBy, 29, 94
span, 67
subseqs, 57, 65, 157, 163
tails, 7, 79, 100, 102
transpose, 98, 150, 193
unfoldr, 202, 243
zip, 35, 83
zipWith, 83
Abelian group, 27
abides property, 3,22
abstraction function, 129, 211, 226
accumulating function, 2
accumulating parameter, 131, 138, 140, 177, 253
adaptive encoding, 200
amortised time, 5, 118, 131, 133
annotating a tree, 170
arithmetic decoding, 201
arithmetic expressions, 37, 156
array update operation, 3, 6
arrays, 1, 2, 21, 29, 85, 99
association list, 29, 238
asymptotic complexity, 27
bags, 25, 50, 51
balanced trees, 21, 54, 234
Bareiss algorithm, 186
bijection, 129
binary search, $7,10,14,15,19,54$
binomial trees, 178
bioinformatics, 77, 90
Boolean satisfiability, 155
borders of a list, 103
bottom-up algorithm, 41
boustrophedon product, 245, 251, 260
breadth-first search, 136, 137, 178
Bulldozer algorithm, 196
bzip2, 101
call-tree, 168
Cartesian coordinates, 141, 155
Cartesian product, 149
celebrity clique, 56
Chió's identity, 182
clique, 56
combinatorial patterns, 242
comparison-based sorting, 10, 16, 27
computaional geometry, 188
conjugate, 263
constraint satisfaction, 155
continuations, 273
coroutines, 273
cost function, 41, 48, 52
cyclic structures, 133, 179
data compression, 91, 198
data mining, 77
data refinement, 5, 48, 108, 114, 129, 210
deforestation, 168
depth-first search, 137, 221, 222
destreaming, 214
destreaming theorem, 214
Dilworth's theorem, 54
divide and conquer, $1,3,5,7,8,15,21-23$, $27,29,30,65,81,171$
dot product, 185
dynamic programming, 168
EOF (end-of-file symbol), 203
exhaustive search, $12,33,39,57,148,156$
facets, 190
failure function, 133
fictitious values, 14, 77
finite automaton, 74, 136
fission law of foldl, 130
fixpoint induction, 205
forests, 42, 174
fringe of a tree, 41
frontier, 137
fully strict composition, 243
fusion law of foldl, 76, 130, 195
fusion law of foldr, 34, 51, 52, 61, 247, 260, 261, 265
fusion law of foldrn, 43
fusion law of fork, 35
fusion law of unfoldr, 206, 212
Galil's algorithm, 122
garbage collection, 165, 166
Garsia-Wachs algorithm, 49
Gaussian elimination, 180
graph traversal, 178, 221
Gray path order, 258
greedy algorithms, 41, 48, 50, 140
Gusfield's Z algorithm, 116
Hu-Tucker algorithm, 49
Huffman coding, 91, 198, 201
immutable arrays, 25
incremental algorithm, 188, 191, 204
incremental decoding, 216
incremental encoding, 203, 209
indexitis, 150
inductive algorithm, 42, 93, 102
integer arithmetic, 182, 198, 208
integer division, 182
intermediate data structure, 168
interval expansion, 209, 210
inversion table, 10
inverting a function, 12, 93
involution, 150
iterative algorithm, 10, 82, 109, 113

Knuth and Ruskey algorithm, 258
Knuth's spider spinning algorithm, 242
Koda-Ruskey algorithm, 242
law of iterate, 99
laws of filter, 118, 152
laws of fork, 35
lazy evaluation, 33, 147, 185, 243
leaf-labelled trees, 41, 165, 168
left spines, $43,45,177$
left-inverse, 129
Leibniz formula, 180
lexicographic ordering, 45, 52, 64, 102, 104
linear ordering, 43
linked list, 225
longest common prefix, 103, 112, 120
longest decreasing subsequence, 54
loop invariants, 62, 111
lower bounds, 16, 27, 28, 64
Mahajan and Vinay's algorithm, 186
majority voting problem, 62
matrices, 147, 181
matrix Cartesian product, 149
maximum marking problems, 77
maximum non-segment sum, 73
maximum segment sum, 73
maximum surpasser count, 7
McCarthy S-expression, 221
memo table, 163
memoisation, 162
merge, 26, 142, 158
mergesort, 29, 89, 171, 173
minimal element, 53
minimum cost tree, 44
minimum element, 53
minors, 181
model checking, 155
monads, 3, 114, 155
monotonicity condition, 48, 53
move-to-front encoding, 91
multisets, 25
narrowing, 199
nondeterministic functions, 43,51
normal form, 160
online list labelling, 241
Open Problems Project, 31
optimal bracketing, 176
optimisation problems, 48, 176
order-maintenance problem, 241
overflow, 214
parametricitiy, 62
partial evaluation, 134
partial ordering, 53
partial preorder, 52
partition sort, 85
partition sorting, 87
perfect binary trees, 171
permutations, $79,90,91,96,97,180$, 189, 242, 251
planning algorithm, 136, 138
plumbing combinators, 36
prefix, 66
prefix ordering, 103, 105, 119
preorder traversal, 245, 270
principal submatrices, 185
program transformation, 221
PSPACE completeness, 136
queues, 109, 137, 248, 249
Quicksort, 5, 85, 89
radix sort, 95, 101
ranking a list, 79
rational arithmetic, 180, 188, 198
rational division, 181
recurrence relations, 15, 31, 88
refinement, 44, 48, 51-53, 80
regular cost function, 49
regular expression, 74
relations, 48, 167, 229
representation function, 129, 211
right spines, 177
Rose trees, 164, 245
rotations of a list, 91
rule of floors, 215
run-length encoding, 91
saddleback search, 14
safe replacement, 222
scan lemma, 118, 125
segments, 73,171
Shannon-Fano coding, 198
sharing, 168, 173
shortest upravel, 50
simplex, 188
skeleton trees, 165
sliding-block puzzle, 136
smart constructors, 48, 170, 177
smooth algorithms, 241
solving a recursion, 98
sorting, 9, 10, 16, 91, 149
sorting numbers, 1,3
sorting permutation, 10
space/time trade-offs, 156
spanning tree, 178
stable sorting algorithm, 86, 95
stacks, 137, 221, 222
streaming, 203, 214
streaming theorem, 204
string matching, 112, 117, 127
stringology, 103
subsequences, $50,64,74,162$, 177, 242
suffix tree, 101
suffixes, 79, 100
Sylvester's identity, 186
thinning algorithm, 161
top-down algorithm, 41
totally acyclic digraph, 258
transitions, 242
trees, 130, 165, 248
tries, 163
tupling law of foldl, 118, 125
tupling law of foldr, 247
unfolds, 168
unmerges, 158, 159, 165
unravel, 50
upper triangular matrix, 185
Vandermonde's convolution, 17
well-founded recursion, 4, 30
while loop, 111, 113
wholemeal programming, 150
windows of a text, 120
Young tableau, 28

[^0]: 1 To be fair, procedural programmers also appreciate that constant-time indexing and updating are only possible when the arrays are small.

[^1]: 1 Unlike the standard Haskell function of the same name, which returns the possibly empty tails of a possibly empty list.

[^2]: 1 Used in Pearl 1: "The smallest free number".
 2 "Abide" is a contraction of above-beside, in analogy with two operations on picture objects, one placing two equal-height pictures beside one another, and the other placing two equal-width pictures one above the other.

[^3]: 1 The Haskell function zip :: $[a] \rightarrow[b] \rightarrow[(a, b)]$ is defined as a curried function.

[^4]: 1 By the way, "to unravel" and "to ravel" mean the same thing, just as "to unloose" and "to loose". The prefix "un-" serves both to negate an action and to emphasize it.

[^5]: 1 An almost identical program was used in the pearl "The smallest free number"; see pearl 1.

[^6]: 1 Arithmetic coding is considered in two subsequent pearls; see Pearls 24 and 25.

[^7]: 2 We will also ignore the fact that transform [] $=([], 0)$ and consider only nonempty lists as valid arguments to transform.

[^8]: 1 Rush Hour is obtainable from http://www.puzzles.com/products/rushhour.htm.

[^9]: ${ }^{1}$ Logically there is no need to return both expressions and values as the latter can be determined from the former. But, as we have seen in the pearl "Making a century" (Pearl 6), it is a good idea to avoid computing values more than once, so this optimisation has been incorporated from the outset.

[^10]: 1 The function minors appears again in the following two pearls in connection with matrices.
 2 The sequence appears as A002627 in Sloane's integer sequences, which gives $S(n)=\lfloor(e-1) n!\rfloor$.

[^11]: 1 Definitions of det were given in the previous pearl.

[^12]: ${ }^{1}$ By an ideal of a poset S is meant a subset I of S such that if $x \in I$ and $x \leq y$, then $y \in I$.

[^13]: ${ }^{2}$ By the way, "to box and cox" means "to take turns", which is certainly what both operations do and is the real reason for their names. The term comes from the comic play Box and Cox A Romance of Real Life in One Act, by John Maddison Morton. Box and Cox were two lodgers who shared their rooms - one occupying them by day and the other by night.

