

This page intentionally left blank

P E A R L S O F F U N C T I O NA L A L G O R I T H M D E S I G N

In Pearls of Functional Algorithm Design Richard Bird takes a radically new
approach to algorithm design, namely design by calculation. The body of the text
is divided into 30 short chapters, called pearls, each of which deals with a partic-
ular programming problem. These problems, some of which are completely new,
are drawn from sources as diverse as games and puzzles, intriguing combinatorial
tasks and more familiar algorithms in areas such as data compression and string
matching.

Each pearl starts with the statement of the problem expressed using the
functional programming language Haskell, a powerful yet succinct language for
capturing algorithmic ideas clearly and simply. The novel aspect of the book is that
each solution is calculated from the problem statement by appealing to the laws of
functional programming.

Pearls of Functional Algorithm Design will appeal to the aspiring functional
programmer, students and teachers interested in the principles of algorithm design,
and anyone seeking to master the techniques of reasoning about programs in an
equational style.

RICHARD BIRD is Professor of Computer Science at Oxford University and Fellow
of Lincoln College, Oxford.

PEARLS OF FUNCTIONAL
ALGORITHM DESIGN

R I C H A R D B I R D
University of Oxford

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-51338-8

ISBN-13 978-0-511-90044-0

© Cambridge University Press 2010

2010

Information on this title: www.cambridge.org/9780521513388

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

Hardback

Dedicated to my wife, Norma.

Contents

Preface page ix

1 The smallest free number 1

2 A surpassing problem 7

3 Improving on saddleback search 12

4 A selection problem 21

5 Sorting pairwise sums 27

6 Making a century 33

7 Building a tree with minimum height 41

8 Unravelling greedy algorithms 50

9 Finding celebrities 56

10 Removing duplicates 64

11 Not the maximum segment sum 73

12 Ranking suffixes 79

13 The Burrows–Wheeler transform 91

14 The last tail 102

15 All the common prefixes 112

16 The Boyer–Moore algorithm 117

17 The Knuth–Morris–Pratt algorithm 127

18 Planning solves the Rush Hour problem 136

19 A simple Sudoku solver 147

20 The Countdown problem 156

21 Hylomorphisms and nexuses 168

22 Three ways of computing determinants 180

23 Inside the convex hull 188

vii

viii Contents

24 Rational arithmetic coding 198

25 Integer arithmetic coding 208

26 The Schorr–Waite algorithm 221

27 Orderly insertion 231

28 Loopless functional algorithms 242

29 The Johnson–Trotter algorithm 251

30 Spider spinning for dummies 258
Index 275

Preface

In 1990, when the Journal of Functional Programming (JFP) was in the
stages of being planned, I was asked by the then editors, Simon Peyton
Jones and Philip Wadler, to contribute a regular column to be called Func-
tional Pearls. The idea they had in mind was to emulate the very successful
series of essays that Jon Bentley had written in the 1980s under the title
“Programming Pearls” in the Communications of the ACM. Bentley wrote
about his pearls:

Just as natural pearls grow from grains of sand that have irritated oysters, these
programming pearls have grown from real problems that have irritated program-
mers. The programs are fun, and they teach important programming techniques
and fundamental design principles.

I think the editors had asked me because I was interested in the specific task
of taking a clear but inefficient functional program, a program that acted
as a specification of the problem in hand, and using equational reasoning to
calculate a more efficient one. One factor that stimulated growing interest
in functional languages in the 1990s was that such languages were good for
equational reasoning. Indeed, the functional language GOFER, invented by
Mark Jones, captured this thought as an acronym. GOFER was one of the
languages that contributed to the development of Haskell, the language on
which this book is based. Equational reasoning dominates everything in this
book.

In the past 20 years, some 80 pearls have appeared in the JFP, together
with a sprinkling of pearls at conferences such as the International Confer-
ence of Functional Programming (ICFP) and the Mathematics of Program
Construction Conference (MPC). I have written about a quarter of them,
but most have been written by others. The topics of these pearls include
interesting program calculations, novel data structures and small but elegant
domain-specific languages embedded in Haskell and ML for particular
applications.

ix

x Preface

My interest has always been in algorithms and their design. Hence the
title of this book is Pearls of Functional Algorithm Design rather than the
more general Functional Pearls. Many, though by no means all, of the pearls
start with a specification in Haskell and then go on to calculate a more
efficient version. My aim in writing these particular pearls is to see to what
extent algorithm design can be cast in a familiar mathematical tradition of
calculating a result by using well-established mathematical principles, the-
orems and laws. While it is generally true in mathematics that calculations
are designed to simplify complicated things, in algorithm design it is usually
the other way around: simple but inefficient programs are transformed into
more efficient versions that can be completely opaque. It is not the final
program that is the pearl; rather it is the calculation that yields it. Other
pearls, some of which contain very few calculations, are devoted to trying to
give simple explanations of some interesting and subtle algorithms. Explain-
ing the ideas behind an algorithm is so much easier in a functional style than
in a procedural one: the constituent functions can be more easily separated,
they are brief and they capture powerful patterns of computation.

The pearls in this book that have appeared before in the JFP and other
places have been polished and repolished. In fact, many do not bear much
resemblance to the original. Even so, they could easily be polished more.
The gold standard for beauty in mathematics is Proofs from The Book by
Aigner and Ziegler (third edition, Springer, 2003), which contains some per-
fect proofs for mathematical theorems. I have always had this book in mind
as an ideal towards which to strive.

About a third of the pearls are new. With some exceptions, clearly indi-
cated, the pearls can be read in any order, though the chapters have been
arranged to some extent in themes, such as divide and conquer, greedy algor-
ithms, exhaustive search and so on. There is some repetition of material in
the pearls, mostly concerning the properties of the library functions that we
use, as well as more general laws, such as the fusion laws of various folds.
A brief index has been included to guide the reader when necessary.

Finally, many people have contributed to the material. Indeed, several
pearls were originally composed in collaboration with other authors. I would
like to thank Sharon Curtis, Jeremy Gibbons, Ralf Hinze, Geraint Jones and
Shin-Cheng Mu, my co-authors on these pearls, for their kind generosity in
allowing me to rework the material. Jeremy Gibbons read the final draft
and made numerous useful suggestions for improving the presentation. Some
pearls have also been subject to close scrutiny at meetings of the Algebra of
Programming research group at Oxford. While a number of flaws and errors
have been removed, no doubt additional ones have been introduced. Apart

Preface xi

from those mentioned above, I would like to thank Stephen Drape, Tom
Harper, Daniel James, Jeffrey Lake, Meng Wang and Nicholas Wu for many
positive suggestions for improving presentation. I would also like to thank
Lambert Meertens and Oege de Moor for much fruitful collaboration over
the years. Finally, I am indebted to David Tranah, my editor at Cambridge
University Press, for encouragement and support, including much needed
technical advice in the preparation of the final copy.

Richard Bird

1

The smallest free number

Introduction

Consider the problem of computing the smallest natural number not in a
given finite set X of natural numbers. The problem is a simplification of a
common programming task in which the numbers name objects and X is
the set of objects currently in use. The task is to find some object not in
use, say the one with the smallest name.

The solution to the problem depends, of course, on how X is represented.
If X is given as a list without duplicates and in increasing order, then the
solution is straightforward: simply look for the first gap. But suppose X is
given as a list of distinct numbers in no particular order. For example,

[08, 23, 09, 00, 12, 11, 01, 10, 13, 07, 41, 04, 14, 21, 05, 17, 03, 19, 02, 06]

How would you find the smallest number not in this list?
It is not immediately clear that there is a linear-time solution to the

problem; after all, sorting an arbitrary list of numbers cannot be done in
linear time. Nevertheless, linear-time solutions do exist and the aim of this
pearl is to describe two of them: one is based on Haskell arrays and the other
on divide and conquer.

An array-based solution

The problem can be specified as a function minfree, defined by

minfree :: [Nat] → Nat
minfree xs = head ([0 ..] \\ xs)

The expression us \\ vs denotes the list of those elements of us that remain
after removing any elements in vs:

(\\) :: Eq a ⇒ [a]→ [a]→ [a]
us \\ vs = filter (�∈ vs) us

1

2 Pearls of Functional Algorithm Design

The function minfree is executable but requires Θ(n2) steps on a list of
length n in the worst case. For example, evaluating minfree [n−1,n−2 .. 0]
requires evaluating i /∈ [n−1,n−2 .. 0] for 0 ≤ i ≤ n, and thus n(n + 1)/2
equality tests.

The key fact for both the array-based and divide and conquer solutions
is that not every number in the range [0 .. length xs] can be in xs. Thus the
smallest number not in xs is the smallest number not in filter (≤ n)xs, where
n = length xs. The array-based program uses this fact to build a checklist
of those numbers present in filter (≤ n) xs. The checklist is a Boolean array
with n +1 slots, numbered from 0 to n, whose initial entries are everywhere
False. For each element x in xs and provided x ≤ n we set the array element
at position x to True. The smallest free number is then found as the position
of the first False entry. Thus, minfree = search · checklist , where

search :: Array Int Bool → Int
search = length · takeWhile id · elems

The function search takes an array of Booleans, converts the array into a list
of Booleans and returns the length of the longest initial segment consisting
of True entries. This number will be the position of the first False entry.

One way to implement checklist in linear time is to use the function
accumArray in the Haskell library Data.Array . This function has the rather
daunting type

Ix i ⇒ (e → v → e) → e → (i , i)→ [(i , v)] → Array i e

The type constraint Ix i restricts i to be an Index type, such as Int or
Char , for naming the indices or positions of the array. The first argument is
an “accumulating” function for transforming array entries and values into
new entries, the second argument is an initial entry for each index, the third
argument is a pair naming the lower and upper indices and the fourth is
an association list of index–value pairs. The function accumArray builds
an array by processing the association list from left to right, combining
entries and values into new entries using the accumulating function. This
process takes linear time in the length of the association list, assuming the
accumulating function takes constant time.

The function checklist is defined as an instance of accumArray :

checklist :: [Int] → Array Int Bool
checklist xs = accumArray (∨) False (0,n)

(zip (filter (≤ n) xs) (repeat True))
where n = length xs

The smallest free number 3

This implementation does not require the elements of xs to be distinct, but
does require them to be natural numbers.

It is worth mentioning that accumArray can be used to sort a list of
numbers in linear time, provided the elements of the list all lie in some
known range (0,n). We replace checklist by countlist , where

countlist :: [Int] → Array Int Int
countlist xs = accumArray (+) 0 (0,n) (zip xs (repeat 1))

Then sort xs = concat [replicate k x | (x , k)← countlist xs]. In fact, if we use
countlist instead of checklist , then we can implement minfree as the position
of the first 0 entry.

The above implementation builds the array in one go using a clever library
function. A more prosaic way to implement checklist is to tick off entries step
by step using a constant-time update operation. This is possible in Haskell
only if the necessary array operations are executed in a suitable monad, such
as the state monad. The following program for checklist makes use of the
library Data.Array .ST :

checklist xs = runSTArray (do
{a ← newArray (0,n) False;
sequence [writeArray a x True | x ← xs, x ≤ n];
return a})

where n = length xs

This solution would not satisfy the pure functional programmer because it
is essentially a procedural program in functional clothing.

A divide and conquer solution

Now we turn to a divide and conquer solution to the problem. The idea is
to express minfree (xs ++ys) in terms of minfree xs and minfree ys. We begin
by recording the following properties of \\:

(as ++ bs) \\ cs = (as \\ cs) ++ (bs \\ cs)
as \\ (bs ++ cs) = (as \\ bs) \\ cs
(as \\ bs) \\ cs = (as \\ cs) \\ bs

These properties reflect similar laws about sets in which set union ∪ replaces
++ and set difference \ replaces \\. Suppose now that as and vs are disjoint,
meaning as \\ vs = as, and that bs and us are also disjoint, so bs \\ us = bs.
It follows from these properties of ++ and \\ that

(as ++ bs) \\ (us ++ vs) = (as \\ us) ++ (bs \\ vs)

4 Pearls of Functional Algorithm Design

Now, choose any natural number b and let as = [0 .. b−1] and bs = [b..].
Furthermore, let us = filter (< b) xs and vs = filter (≥ b) xs. Then as and
vs are disjoint, and so are bs and us. Hence

[0 ..] \\ xs = ([0 .. b−1] \\ us) ++ ([b ..] \\ vs)
where (us, vs) = partition (< b) xs

Haskell provides an efficient implementation of a function partition p that
partitions a list into those elements that satisfy p and those that do not.
Since

head (xs ++ ys) = if null xs then head ys else head xs

we obtain, still for any natural number b, that

minfree xs = if null ([0 .. b−1] \\ us)
then head ([b ..] \\ vs)
else head ([0 ..] \\ us)
where (us, vs) = partition (< b) xs

The next question is: can we implement the test null ([0 .. b−1] \\ us) more
efficiently than by direct computation, which takes quadratic time in the
length of us? Yes, the input is a list of distinct natural numbers, so is us.
And every element of us is less than b. Hence

null ([0 .. b−1] \\ us ≡ length us b

Note that the array-based solution did not depend on the assumption that
the given list did not contain duplicates, but it is a crucial one for an efficient
divide and conquer solution.

Further inspection of the above code for minfree suggests that we should
generalise minfree to a function, minfrom say, defined by

minfrom :: Nat → [Nat]→ Nat
minfrom a xs = head ([a ..] \\ xs)

where every element of xs is assumed to be greater than or equal to a.
Then, provided b is chosen so that both length us and length vs are less than
length xs, the following recursive definition of minfree is well-founded:

minfree xs = minfrom 0 xs
minfrom a xs | null xs = a

| length us b − a = minfrom b vs
| otherwise = minfrom a us

where (us, vs) = partition (< b) xs

The smallest free number 5

It remains to choose b. Clearly, we want b > a. And we would also like to
choose b so that the maximum of the lengths of us and vs is as small as
possible. The right choice of b to satisfy these requirements is

b = a + 1 + n div 2

where n = length xs. If n �= 0 and length us < b − a, then

length us ≤ n div 2 < n

And, if length us = b − a, then

length vs = n − n div 2− 1 ≤ n div 2

With this choice the number of steps T (n) for evaluating minfrom 0 xs
when n = length xs satisfies T (n) = T (n div 2) + Θ(n), with the solution
T (n) = Θ(n).

As a final optimisation we can avoid repeatedly computing length with a
simple data refinement, representing xs by a pair (length xs, xs). That leads
to the final program

minfree xs = minfrom 0 (length xs, xs)
minfrom a (n, xs) | n 0 = a

| m b − a = minfrom b (n −m, vs)
| otherwise = minfrom a (m, us)

where (us, vs) = partition (< b) xs
b = a + 1 + n div 2
m = length us

It turns out that the above program is about twice as fast as the incremental
array-based program, and about 20% faster than the one using accumArray .

Final remarks

This was a simple problem with at least two simple solutions. The second
solution was based on a common technique of algorithm design, namely
divide and conquer. The idea of partitioning a list into those elements less
than a given value, and the rest, arises in a number of algorithms, most
notably Quicksort. When seeking a Θ(n) algorithm involving a list of n
elements, it is tempting to head at once for a method that processes each
element of the list in constant time, or at least in amortized constant time.
But a recursive process that performs Θ(n) processing steps in order to
reduce the problem to another instance of at most half the size is also good
enough.

6 Pearls of Functional Algorithm Design

One of the differences between a pure functional algorithm designer and
a procedural one is that the former does not assume the existence of arrays
with a constant-time update operation, at least not without a certain amount
of plumbing. For a pure functional programmer, an update operation takes
logarithmic time in the size of the array.1 That explains why there sometimes
seems to be a logarithmic gap between the best functional and procedural
solutions to a problem. But sometimes, as here, the gap vanishes on a closer
inspection.

1 To be fair, procedural programmers also appreciate that constant-time indexing and updating
are only possible when the arrays are small.

2

A surpassing problem

Introduction

In this pearl we solve a small programming exercise of Martin Rem (1988a).
While Rem’s solution uses binary search, our solution is another application
of divide and conquer. By definition, a surpasser of an element of an array
is a greater element to the right, so x [j] is a surpasser of x [i] if i < j
and x [i] < x [j]. The surpasser count of an element is the number of its
surpassers. For example, the surpasser counts of the letters of the string
GENERATING are given by

G E N E R A T I N G
5 6 2 5 1 4 0 1 0 0

The maximum surpasser count is six. The first occurrence of letter E has six
surpassers, namely N, R, T, I, N and G. Rem’s problem is to compute the
maximum surpasser count of an array of length n > 1 and to do so with an
O(n log n) algorithm.

Specification

We will suppose that the input is given as a list rather than an array. The
function msc (short for maximum surpasser count) is specified by

msc :: Ord a ⇒ [a]→ Int
msc xs = maximum [scount z zs | z : zs ← tails xs]
scount x xs = length (filter (x <) xs)

The value of scount x xs is the surpasser count of x in the list xs and tails
returns the nonempty tails of a nonempty list in decreasing order of length:1

tails [] = []
tails (x : xs) = (x : xs) : tails xs

The definition of msc is executable but takes quadratic time.
1 Unlike the standard Haskell function of the same name, which returns the possibly empty tails

of a possibly empty list.

7

8 Pearls of Functional Algorithm Design

Divide and conquer

Given the target complexity of O(n log n) steps, it seems reasonable to head
for a divide and conquer algorithm. If we can find a function join so that

msc (xs ++ ys) = join (msc xs) (msc ys)

and join can be computed in linear time, then the time complexity T (n) of
the divide and conquer algorithm for computing msc on a list of length n
satisfies T (n) = 2T (n/2)+O(n), with solution T (n) = O(n log n). But it is
fairly obvious that no such join can exist: too little information is provided
by the single number msc xs for any such decomposition.

The minimal generalisation is to start out with the table of all surpasser
counts:

table xs = [(z , scount z zs) | z : zs ← tails xs]

Then msc = maximum · map snd · table. Can we find a linear-time join to
satisfy

table (xs ++ ys) = join (table xs) (table ys)

Well, let us see. We will need the following divide and conquer property of
tails:

tails (xs ++ ys) = map (++ys) (tails xs) ++ tails ys

The calculation goes as follows:

table (xs ++ ys)

= {definition}
[(z , scount z zs) | z : zs ← tails (xs ++ ys)]

= {divide and conquer property of tails}
[(z , scount z zs) | z : zs ←map (++ys) (tails xs) ++ tails ys]

= {distributing ← over ++}
[(z , scount z (zs ++ ys)) | z : zs ← tails xs] ++
[(z , scount z zs) | z : zs ← tails ys])

= {since scount z (zs ++ ys) = scount z zs + scount z ys}
[(z , scount z zs + scount z ys) | z : zs ← tails xs] ++
[(z , scount z zs) | z : zs ← tails ys])

= {definition of table and ys = map fst (table ys)}
[(z , c + scount z (map fst (table ys))) | (z , c)← table xs] ++ table ys

A surpassing problem 9

Hence join can be defined by

join txs tys = [(z , c + tcount z tys) | (z , c)← txs] ++ tys
tcount z tys = scount z (map fst tys)

The problem with this definition, however, is that join txs tys does not take
linear time in the length of txs and tys.

We could improve the computation of tcount if tys were sorted in
ascending order of first component. Then we can reason:

tcount z tys

= {definition of tcount and scount}
length (filter (z <) (map fst tys))

= {since filter p ·map f = map f · filter (p · f)}
length (map fst (filter ((z <) · fst) tys))

= {since length ·map f = length}
length (filter ((z <) · fst) tys)

= {since tys is sorted on first argument}
length (dropWhile ((z ≥) · fst) tys)

Hence

tcount z tys = length (dropWhile((z ≥) · fst) tys) (2.1)

This calculation suggests it would be sensible to maintain table in ascending
order of first component:

table xs = sort [(z , scount z zs) | z : zs ← tails xs]

Repeating the calculation above, but for the sorted version of table, we find
that

join txs tys = [(x , c + tcount x tys) | (x , c)← txs] ∧∧ tys (2.2)

where ∧∧ merges two sorted lists. Using this identity we can now calculate
a more efficient recursive definition of join. One of the base cases, namely
join [] tys = tys, is immediate. The other base case, join txs [] = txs, follows
because tcount x [] = 0. For the recursive case we simplify

join txs@((x , c) : txs ′) tys@((y , d) : tys ′) (2.3)

by comparing x and y . (In Haskell, the @ sign introduces a synonym, so txs
is a synonym for (x , c) : txs ′; similarly for tys.) Using (2.2), (2.3) reduces to

((x , c + tcount x tys) : [(x , c + tcount x tys) | (x , c)← txs ′]) ∧∧ tys

10 Pearls of Functional Algorithm Design

To see which element is produced first by ∧∧ we need to compare x and y . If
x < y , then it is the element on the left and, since tcount x tys = length tys
by (2.1), expression (2.3) reduces to

(x , c + length tys) : join txs ′ tys

If x = y , we need to compare c + tcount x tys and d . But d = tcount x tys ′

by the definition of table and tcount x tys = tcount x tys ′ by (2.1), so (2.3)
reduces to (y , d) : join txs tys ′. This is also the result in the final case x > y .

Putting these results together, and introducing length tys as an additional
argument to join in order to avoid repeating length calculations, we arrive
at the following divide and conquer algorithm for table:

table [x] = [(x , 0)]
table xs = join (m − n) (table ys) (table zs)

where m = length xs
n = m div 2
(ys, zs) = splitAt n xs

join 0 txs [] = txs
join n [] tys = tys
join n txs@((x , c) : txs ′) tys@((y , d) : tys ′)

| x < y = (x , c + n) : join n txs ′ tys
| x ≥ y = (y , d) : join (n−1) txs tys ′

Since join takes linear time, table is computed in O(n log n) steps, and so
is msc.

Final remarks

It is not possible to do better than an O(n log n) algorithm for computing
table. The reason is that if xs is a list of distinct elements, then table xs pro-
vides enough information to determine the permutation of xs that sorts xs.
Moreover, no further comparisons between list elements are required. In fact,
table xs is related to the inversion table of a permutation of n elements;
see Knuth (1998): table xs is just the inversion table of reverse xs. Since
comparison-based sorting of n elements requires Ω(n log n) steps, so does
the computation of table.

As we said in the Introduction for this pearl, the solution in Rem (1998b)
is different, in that it is based on an iterative algorithm and uses binary
search. A procedural programmer could also head for a divide and conquer
algorithm, but would probably prefer an in-place array-based algorithm
simply because it consumes less space.

A surpassing problem 11

References
Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Sorting and

Searching, second edition. Reading, MA: Addison-Wesley.
Rem, M. (1988a). Small programming exercises 20. Science of Computer Program-

ming 10 (1), 99–105.
Rem, M. (1998b). Small programming exercises 21. Science of Computer Program-

ming 10 (3), 319–25.

3

Improving on saddleback search

The setting is a tutorial on functional algorithm design. There are four
students: Anne, Jack, Mary and Theo.

Teacher: Good morning class. Today I would like you design a function
invert that takes two arguments: a function f from pairs of natural numbers
to natural numbers, and a natural number z . The value invert f z is a list
of all pairs (x , y) satisfying f (x , y) = z . You can assume that f is strictly
increasing in each argument, but nothing else.

Jack: That seems an easy problem. Since f is a function on naturals and
is increasing in each argument, we know that f (x , y) = z implies x ≤ z and
y ≤ z . Hence we can define invert by a simple search of all possible pairs of
values:

invert f z = [(x , y) | x ← [0 .. z], y ← [0 .. z], f (x , y) z]

Doesn’t this solve the problem?

Teacher: Yes it does, but your solution involves (z + 1)2 evaluations of f .
Since f may be very expensive to compute, I would like a solution with as
few evaluations of f as possible.

Theo: Well, it is easy to halve the evaluations. Since f (x , y) ≥ x + y if f is
increasing, the search can be confined to values on or below the diagonal of
the square:

invert f z = [(x , y) | x ← [0 .. z], y ← [0 .. z − x], f (x , y) z]

Come to think of it, you can replace the two upper bounds by z − f (0, 0)
and z − x − f (0, 0). Then if z < f (0, 0) the search terminates at once.

Anne: Assuming it doesn’t matter in which order the solutions are found,
I think you can do better still. Jack’s method searches a square of size z +1

12

Improving on saddleback search 13

from the origin at the bottom left, and proceeds upwards column by column.
We can do better if we start at the top-left corner (0, z) of the square. At any
stage the search space is constrained to be a rectangle with top-left corner
(u, v) and bottom-right corner (z , 0). Here is the picture:

(0, 0)

(0, z) (z , z)

(z , 0)

(u, v)

Let me define

find (u, v) f z = [(x , y) | x ← [u .. z], y ← [v , v − 1 .. 0], f (x , y) z]

so that invert f z = find (0, z) f z . It is now easy enough to calculate a more
efficient implementation of find .

First of all, if u > z or v < 0, then, clearly, find (u, v) f z = []. Otherwise,
we carry out a case analysis on the value f (u, v). If f (u, v) < z , then
the rest of column u can be eliminated, since f (u, v ′) < f (u, v) < z for
v ′ < v . If f (u, v) > z , we can similarly eliminate, the rest of row v . Finally,
if f (u, v) = z , then we can record (u, v) and eliminate the rest of both
column u and row v .

Here is my improved version of invert :

invert f z = find (0, z) f z
find (u, v) f z

| u > z ∨ v < 0 = []
| z ′ < z = find (u+1, v) f z
| z ′ z = (u, v) : find (u+1, v−1) f z
| z ′ > z = find (u, v−1) f z

where z ′ = f (u, v)

In the worst case, when find traverses the perimeter of the square from the
top-left corner to the bottom-right corner, it performs 2z + 1 evaluations
of f . In the best case, when find proceeds directly to either the bottom or
rightmost boundary, it requires only z + 1 evaluations.

Theo: You can reduce the search space still further because the initial
square with top-left corner (0, z) and bottom-right corner (z , 0) is an overly

14 Pearls of Functional Algorithm Design

generous estimate of where the required values lie. Suppose we first compute
m and n, where

m = maximum (filter (λy → f (0, y) ≤ z) [0 .. z])
n = maximum (filter (λx → f (x , 0) ≤ z) [0 .. z])

Then we can define invert f z = find (0,m) f z , where find has exactly the
same form that Anne gave, except that the first guard becomes u > n∨v < 0.
In other words, rather than search a (z+1)× (z+1) square we can get away
with searching an (m+1)× (n+1) rectangle.

The crucial point is that we can compute m and n by binary search.
Let g be an increasing function on the natural numbers and suppose x ,
y and z satisfy g x ≤ z < g y . To determine the unique value m, where
m = bsearch g (x , y)z , in the range x ≤ m < y such that gm ≤ z < g (m+1)
we can maintain the invariants g a ≤ z < g b and x ≤ a < b ≤ y . This leads
to the program

bsearch g (a, b) z
| a+1 b = a
| g m ≤ z = bsearch g (m, b) z
| otherwise = bsearch g (a,m) z

where m = (a + b) div 2

Since a+1 < b ⇒ a < m < y it follows that neither g x nor g y are evaluated
by the algorithm, so they can be fictitious values. In particular, we have

m = bsearch (λy → f (0, y)) (−1, z + 1) z
n = bsearch (λx → f (x , 0)) (−1, z + 1) z

where we extend f with fictitious values f (0,−1) = 0 and f (−1, 0) = 0.
This version of invert takes about 2 log z + m + n evaluations of f in the

worst case and 2 log z + m minn in the best case. Since m or n may be
substantially less than z , for example when f (x , y) = 2x + 3y , we can end
up with an algorithm that takes only O(log z) steps in the worst case.

Teacher: Congratulations, Anne and Theo, you have rediscovered an
important search strategy, dubbed saddleback search by David Gries; see
Backhouse (1986), Dijkstra (1985) and Gries (1981). I imagine Gries called
it that because the shape of the three-dimensional plot of f , with the small-
est element at the bottom left, the largest at the top right and two wings,
is a bit like a saddle. The crucial idea, as Anne has spotted, is to start the
search at the tip of one of the wings rather than at the smallest or high-
est value. In his treatment of the problem, Dijkstra (1985) also mentioned
the advantage of using a logarithmic search to find the appropriate starting
rectangle.

Improving on saddleback search 15

Mary: What happens if we go for a divide and conquer solution? I mean,
why not look at the middle element of the rectangle first? Surely it is
reasonable to investigate the two-dimensional analogue of binary search.

Suppose we have confined the search to a rectangle with top-left corner
(u, v) and bottom-right corner (r , s). Instead of looking at f (u, v), why not
inspect f (p, q), where p = (u + r) div 2 and q = (v + s) div 2? Here is the
picture:

(u, s)

(u, v) (r , v)

(r , s)

(p, q)

A

B

If f (p, q) < z , then we can throw away all elements of the lower-left rectangle
A. Similarly, if f (p, q) > z , then we can throw away the upper-right rectangle
B . And if f (p, q) = z , then we can throw away both.

I know that this strategy does not maintain Anne’s property that the
search space is always a rectangle; instead, we have two rectangles or an
L-shape. But we are functional programmers and don’t have to confine our-
selves to simple loops: a divide and conquer algorithm is as easy for us to
implement as an iterative one because both have to be expressed recursively.

Jack: You have to deal with the L-shape though. You can split an L-shape
into two rectangles of course. In fact you can do it in two ways, either with
a horizontal cut or a vertical one. Let me do a rough calculation. Consider
an m × n rectangle and let T (m,n) denote the number of evaluations of f
required to search it. If m = 0 or n = 0 then there is nothing to search. If
m = 1 or n = 1 we have

T (1,n) = 1 + T (1, n/2�)
T (m, 1) = 1 + T (m/2�, 1)

Otherwise, when m ≥ 2 and n ≥ 2, we can throw away a rectangle of size
at least �m/2� × �n/2�. If we make a horizontal cut, then we are left with
two rectangles, one of size �m/2� × n/2� and the other of size m/2� × n.
Hence

T (m,n) = 1 + T (�m/2�, n/2�) + T (m/2�,n)

If we make a vertical cut, then we have

T (m,n) = 1 + T (m/2�, �n/2�) + T (m, n/2�)

I don’t immediately see the solutions to these recurrence relations.

16 Pearls of Functional Algorithm Design

Theo: If you make both a horizontal and a vertical cut, you are left with
three rectangles, so when m ≥ 2 and n ≥ 2 we have

T (m,n) = 1 + T (m/2�, �n/2�) + T (m/2�, n/2�) + T (�m/2�, n/2�)

I can solve this recurrence. Set U (i , j) = T (2i , 2j), so

U (i , 0) = i
U (0, j) = j
U (i + 1, j + 1) = 1 + 3U (i , j)

The solution is U (i , j) = 3k (|j − i |+ 1/2)− 1/2, where k = i min j , as one
can check by induction. Hence, if m ≤ n we have

T (m,n) ≤ 3log m log(2n/m) = m1·59 log(2n/m)

That’s better than m + n when m is much smaller than n.

Jack: I don’t think the three-rectangle solution is as good as the two-
rectangle one. Following your approach, Theo, let me set U (i , j) = T (2i , 2j).
Supposing i ≤ j and making a horizontal cut, we have

U (0, j) = j
U (i + 1, j + 1) = 1 + U (i , j) + U (i , j + 1)

The solution is U (i , j) = 2i(j − i/2 + 1)− 1, as one can check by induction.
Hence

T (m,n) ≤ m log(2n/
√

m)

If i ≥ j we should make a vertical cut rather than a horizontal one; then we
get an algorithm with at most n log(2m/

√
n) evaluations of f . In either case,

if one of m or n is much smaller than the other we get a better algorithm
than saddleback search.

Anne: While you two have been solving recurrences I have been thinking
of a lower bound on the complexity of invert . Consider the different possible
outputs when we have an m × n rectangle to search. Suppose there are
A(m,n) different possible answers. Each test of f (x , y) against z has three
possible outcomes, so the height h of the ternary tree of tests has to satisfy
h ≥ log3 A(m,n). Provided we can estimate A(m,n) this gives us a lower
bound on the number of tests that have to be performed. The situation is
the same with sorting n items by binary comparisons; there are n! possible
outcomes, so any sorting algorithm has to make at least log2 n! comparisons
in the worst case.

Improving on saddleback search 17

It is easy to estimate A(m,n): each list of pairs (x , y) in the range 0 ≤
x < n and 0 ≤ y < m with f (x , y) = z is in a one-to-one correspondence
with a step shape from the top-left corner of the m × n rectangle to the
bottom-right corner, in which the value z appears at the inner corners of
the steps. Of course, this step shape is not necessarily the one traced by the
function find . The number of such paths is

(m+n
n

)
, so that is the value of

A(m,n).
Another way to see this result is to suppose there are k solutions. The

value z can appear in k rows in exactly
(

m
k

)
ways, and for each way there

are
(

n
k

)
possible choices for the columns. Hence

A(m,n) =
m∑

k=0

(
m
k

) (
n
k

)
=

(
m + n

n

)

since the summation is an instance of Vandermonde’s convolution; see
Graham et al. (1989). Taking logarithms, we obtain the lower bound

log A(m,n) = Ω(m log(1 + n/m) + n log(1 + m/n))

This estimate shows that when m = n we cannot do better than Ω(m + n)
steps. But if m ≤ n then m ≤ n log(1 + m/n), since x ≤ log(1 + x) if
0 ≤ x ≤ 1. Thus A(m,n) = Ω(m log(n/m)). Jack’s solution does not quite
achieve this bound because he obtains only an O(m log(n/

√
m)) algorithm

in the case m ≤ n.

Mary: I don’t think that Jack’s divide and conquer solution is really necess-
ary; there are other ways of using binary search to solve the problem. One
is simply to carry out m binary searches, one on each row. That gives an
O(m log n) solution. But I think we can do better and achieve the optimal
asymptotic O(m log(n/m)) bound, assuming m ≤ n.

Suppose, as before, we have confined the search to a rectangle with top-left
corner (u, v) and bottom-right corner (r , s). Thus, there are r − u columns
and s − v rows. Furthermore, assume v − s ≤ r − u, so there at least as
many columns as rows. Suppose we carry out a binary search along the
middle row, q = (v+s) div 2, in order to determine a p such that f (p, q) ≤
z < f (p+1, q). If f (p, q) < z , then we need continue the search only on the
two rectangles ((u, v), (p, q+1)) and ((p+1, q−1), (r , s)). If f (p, q) = z then
we can cut out column p and can continue the search only on the rectangles
((u, v), (p−1, q+1)) and ((p+1, q−1), (r , s)). The reasoning is dual if there
are more rows than columns. As a result, we can eliminate about half the
elements of the array with a logarithmic number of probes.

18 Pearls of Functional Algorithm Design

find (u, v) (r , s) f z
| u > r ∨ v < s = []
| v−s ≤ r−u = rfind (bsearch (λx → f (x , q)) (u−1, r+1) z)
| otherwise = cfind (bsearch (λy → f (p, y)) (s−1, v+1) z)

where
p = (u+r) div 2
q = (v+s) div 2
rfind p = (if f (p, q) = z then (p, q) : find (u, v) (p−1, q+1) f z

else find (u, v) (p, q+1) f z) ++
find (p+1, q−1) (r , s) f z

cfind q = find (u, v) (p−1, q+1) f z ++
(if f (p, q) = z then(p, q) : find (p+1, q−1) (r , s) f z
else find (p+1, q) (r , s) f z)

Fig. 3.1 The revised definition of find

Here is the algorithm I have in mind: we implement invert by

invert f z = find (0,m) (n, 0) f z
where m = bsearch (λy → f (0, y)) (−1, z+1) z

n = bsearch (λx → f (x , 0)) (−1, z+1) z

where find (u, v) (r , s) f z , given in Figure 3.1, searches a rectangle with
top-left corner (u, v) and bottom-right corner (r , s).

As to the analysis, again let T (m,n) denote the number of evaluations
required to search an m×n rectangle. Suppose m ≤ n. In the best case, when
for example each binary search on a row returns the leftmost or rightmost
element, we have T (m,n) = log n + T (m/2,n) with solution T (m,n) =
O(log m × log n). In the worst case, when each binary search returns the
middle element, we have

T (m,n) = log n + 2T (m/2,n/2)

To solve this, set U (i , j) = T (2i , 2j). Then we have

U (i , j) =
i−1∑
k=0

2k (j − k) = O(2i(j − i))

Hence T (m,n) = O(m log(n/m)). This is asymptotically optimal by Anne’s
lower bound.

Teacher: Well done the four of you! It is surprising that in the 25 years or so
that saddleback search has been presented as a paradigm of formal program
construction nobody has seemed to notice that it is not asymptotically the
best algorithm for searching.

Improving on saddleback search 19

Algorithm f 0 f 1 f 2 f 3 f 4

Anne 7501 5011 6668 5068 9989
Theo 2537 38 1749 157 5025
Mary 121 42 445 181 134

Fig. 3.2 Number of evaluations

Algorithm f 0 f 1 f 2 f 3 f 4

Anne 0.42 0.40 0.17 0.15 0.54
Theo 0.06 0.01 0.05 0.01 0.15
Mary 0.01 0.01 0.02 0.02 0.01

Fig. 3.3 Absolute running times

Afterword

The real story behind this pearl was that I decided to use saddleback search
as an exercise when interviewing candidates for entry to Oxford. They were
given a two-dimensional array of numbers, increasing along each row and
up each column and asked for a systematic way to spot all occurrences of
a given number. My aim was to get them to realise that searching from
the top-left or bottom-right was a good strategy. But those candidates who
had done some computing at school kept wanting to use binary search,
either by going for the middle of each row or for the middle element of the
rectangle. Thinking that saddleback search was the gold standard for this
problem, I steered them away from pursuing the thought. Only afterwards
did I wonder whether they might have had a point.

Apart from describing a new algorithm for an old problem, I think that
two other methodological aspects are worthy of note. First, formal program
calculation is heavily influenced by the available computational methods of
the target language. While nobody would say it was elegant, Mary’s final
program is simple enough, given recursion and list concatenation as basic
constructs, but would be more difficult to express with just arrays and loops.
Second, as algorithm designers fully appreciate, formal program calculation
has to be supplemented by insight into possible directions for improving
efficiency. Such insight is provided, in part, by solving recurrence relations
and determining lower bounds.

This pearl originally appeared in Bird (2006). One of the referees of the
original paper wrote:

Complexity brings with it its own efficiency overheads, which are so often neglected
in the sort of analyses included in the paper. If the author really wants to convince

20 Pearls of Functional Algorithm Design

us that his algorithms are better than Gries’s, then he should show some concrete
evidence. Run the algorithm for specific functions on specific data, and compare
the results.

Figures 3.2 and 3.3 provide such evidence. Five functions were chosen
almost at random:

f0 (x , y) = 2y(2x + 1)− 1
f1 (x , y) = x2x + y2y + 2x + y
f2 (x , y) = 3x + 27y + y2

f3 (x , y) = x 2 + y2 + x + y
f4 (x , y) = x + 2y + y − 1

Figure 3.2 lists the exact number of evaluations of fi required in the
computation of invert fi 5000 using Anne’s initial version of saddleback
search, Theo’s version (with binary search to compute the boundaries) and
Mary’s final version. Figure 3.3 lists absolute running times in seconds
under GHCi. The close correspondence with the first table shows that the
number of evaluations is a reasonable guide to absolute running time.

References
Backhouse, R. (1986). Program Construction and Verification. International Series

in Computer Science. Prentice Hall.
Bird, R. (2006). Improving saddleback search: a lesson in algorithm design.

Mathematics of Program Construction, LNCS 4014, pp. 82–9.
Dijkstra, E. W. (1985). The saddleback search. EWD-934.

http://www.cs.utexas.edu/users/EWD/index09xx.html.
Gries, D. (1981). The Science of Programming. Springer-Verlag.
Graham, R. L., Knuth, D. E. and Patashnik, O. (1989). Concrete Mathematics.

Reading, MA: Addison-Wesley.

4

A selection problem

Introduction

Let X and Y be two finite disjoint sets of elements over some ordered type
and of combined size greater than k . Consider the problem of computing
the kth smallest element of X ∪ Y . By definition, the kth smallest ele-
ment of a set is one for which there are exactly k elements smaller than it,
so the zeroth smallest is the smallest. How long does such a computation
take?

The answer depends, of course, on how the sets X and Y are represented.
If they are both given as sorted lists, then O(|X |+ |Y |) steps are sufficient.
The two lists can be merged in linear time and the kth smallest can be
found at position k in the merged list in a further O(k) steps. In fact, the
total time is O(k) steps, since only the first k + 1 elements of the merged
list need be computed. But if the two sets are given as sorted arrays, then –
as we show below – the time can further be reduced to O(log |X |+ log |Y |)
steps. This bound depends on arrays having a constant-time access function.
The same bound is attainable if both X and Y are represented by balanced
binary search trees, despite the fact that two such trees cannot be merged
in less than linear time.

The fast algorithm is another example of divide and conquer, and the
proof that it works hinges on a particular relationship between merging and
selection. Our aim in this pearl is to spell out the relationship, calculate the
list-based divide and conquer algorithm and then implement it for the array
representation of lists.

Formalisation and first steps

In terms of two sorted disjoint lists xs and ys, the problem is to compute

smallest :: Ord a ⇒ Int → ([a], [a])→ a
smallest k (xs, ys) = union (xs, ys) !! k

21

22 Pearls of Functional Algorithm Design

The value of xs !! k is the element of xs at position k , counting from zero.
The function union :: Ord a ⇒ ([a], [a])→ [a] for merging two disjoint lists,
each in increasing order, is defined by

union (xs, []) = xs
union ([], ys) = ys
union (x : xs, y : ys) | x < y = x : union (xs, y : ys)

| x > y = y : union (x : xs, ys)

Our aim is to derive a divide and conquer algorithm for smallest , so we need
some decomposition rules for !! and union. For the former, abbreviating
length xs to |xs|, we have

(xs ++ ys) !! k = if k < |xs| then xs !! k else ys !! (k−|xs|) (4.1)

The straightforward proof is omitted. For union we have the following
property. Suppose xs ++ ys and us ++ vs are two sorted disjoint lists such
that

union (xs, vs) = xs ++ vs and union (us, ys) = us ++ ys

In other words, no element of xs is greater than or equal to any element of
vs; similarly for us and ys. Then

union (xs ++ ys, us ++ vs) = union (xs, us) ++ union (ys, vs) (4.2)

It is instructive to rewrite (4.2) using an infix symbol ∪ for union:

(xs ++ ys) ∪ (us ++ vs) = (xs ∪ us) ++ (ys ∪ vs)

Compare this with the similar identity1 involving list difference \\:

(xs ++ ys) \\ (us ++ vs) = (xs \\ us) ++ (ys \\ vs)

which holds when xs \\ vs = xs and ys \\ us = ys. When two operators,
++ and ∪, or ++ and \\, interact in this way, they are said to abide2 with
one another. The abides property (4.2) of ++ and ∪ is, we hope, sufficiently
clear that we can omit a formal proof.

In what follows, the condition union (xs, ys) = xs ++ ys is abbreviated to
xs � ys. Thus, xs � ys if x < y for all elements x of xs and y of ys. Note
that, restricted to nonempty lists, � is a transitive relation.

1 Used in Pearl 1: “The smallest free number”.
2 “Abide” is a contraction of above-beside, in analogy with two operations on picture objects, one

placing two equal-height pictures beside one another, and the other placing two equal-width
pictures one above the other.

A selection problem 23

Divide and conquer

The aim of this section is to decompose the expression

smallest k (xs ++ [a] ++ ys, us ++ [b] ++ vs)

We deal only with the case a < b, since the case a > b, is entirely dual.
The key point is that (xs ++ [a]) � ([b] ++ vs) if a < b because all lists are in
increasing order.

Assume first that k < |xs ++[a]++us|, which is equivalent to k ≤ |xs ++us].
We calculate:

smallest k (xs ++ [a] ++ ys, us ++ [b] ++ vs)

= {definition}
union (xs ++ [a] ++ ys, us ++ [b] ++ vs) !! k

= {choose ys1 and ys2 so that ys = ys1 ++ ys2 and
(xs ++ [a] ++ ys1) � ([b] ++ vs) and us � ys2}

union (xs ++ [a] ++ ys1 ++ ys2, us ++ [b] ++ vs) !! k

= {abides property of ++ and ∪ and choice of ys1 and ys2}
(union (xs ++ [a] ++ ys1, us) ++ union (ys2, [b] ++ vs)) !! k

= {using (4.1) and assumption that k < |xs ++ [a] ++ us|}
union (xs ++ [a] ++ ys1, us) !! k

= {using (4.1) again}
(union (xs ++ [a] ++ ys1, us) ++ union (ys2, []) !! k

= {abides property again, since xs ++ [a] ++ ys1 � []}
union (xs ++ [a] ++ ys1 ++ ys2, us ++ []) !! k

= {definition of ys and smallest}
smallest k (xs ++ [a] ++ ys, us)

Next, assume that k ≥ |xs ++ [a] ++ us|. A symmetric argument gives

smallest k (xs ++ [a] ++ ys, us ++ [b] ++ vs)

= {definition}
union (xs ++ [a] ++ ys, us ++ [b] ++ vs) !! k

= {choose us1 and us2 so that us = us1 ++ us2 and
us1 � ys and (xs ++ [a]) � (us2 ++ [b] ++ vs)}

union (xs ++ [a] ++ ys, us1 ++ us2 ++ [b] ++ vs) !! k

= {abides property of ++ and ∪ and choice of us1 and us2}
(union (xs ++ [a], us1) ++ union (ys, us2 ++ [b] ++ vs)) !! k

24 Pearls of Functional Algorithm Design

= {using (4.1) and assumption that k ≥ |xs ++ [a] ++ us|}
union (ys, us2 ++ [b] ++ vs) !! (k − |xs ++ [a] ++ us1|)

= {using (4.1) again}
(union ([], us1) ++ union (ys, us2 ++ [b] ++ vs)) !! (k − |xs ++ [a]|)

= {as before}
smallest (k − |xs ++ [a]|) (ys, us ++ [b] ++ vs)

Summarising, we have that if a < b, then

smallest k (xs ++ [a] ++ ys, us ++ [b] ++ vs)
| k ≤ p+q = smallest k (xs ++ [a] ++ ys, us)
| k > p+q = smallest (k−p−1) (ys, us ++ [b] ++ vs)

where (p, q) = (length xs, length us)

Entirely dual reasoning in the case a > b yields

smallest k (xs ++ [a] ++ ys, us ++ [b] ++ vs)
| k ≤ p+q = smallest k (xs, us ++ [b] ++ vs)
| k > p+q = smallest (k−q−1) (xs ++ [a] ++ ys, vs)

where (p, q) = (length xs, length us)

To complete the divide and conquer algorithm for smallest we have to
consider the base cases when one or other of the argument lists is empty.
This is easy, and we arrive at the following program:

smallest k ([],ws) = ws !! k
smallest k (zs, []) = zs !! k
smallest k (zs,ws) =

case (a < b, k ≤ p+q) of
(True,True) → smallest k (zs, us)
(True,False) → smallest (k−p−1) (ys,ws)
(False,True) → smallest k (xs,ws)
(False,False) → smallest (k−q−1) (zs, vs)

where p = (length zs) div 2
q = (length ws) div 2
(xs, a : ys) = splitAt p zs
(us, b : vs) = splitAt q ws

The running time of smallest k (xs, ys) is linear in the lengths of the lists xs
and ys, so the divide and conquer algorithm is no faster than the specification.
The payoff comes when xs and ys are given as sorted arrays rather than lists.
Then the program can be modified to run in logarithmic time in the sizes of

A selection problem 25

search k (lx , rx) (ly ry)
| lx rx = ya ! k
| ly ry = xa ! k
| otherwise = case (xa ! mx < ya ! my , k ≤ mx+my) of

(True,True) → search k (lx , rx) (ly ,my)
(True,False) → search (k−mx−1) (mx , rx) (ly , ry)
(False,True) → search k (lx ,mx) (ly , ry)
(False,False) → search (k−my−1) (lx , rx) (my , ry)
where mx = (lx+rx) div 2; my = (ly+ry) div 2

Fig. 4.1 Definition of search

the arrays. Instead of repeatedly splitting the two lists, everything can be
done with array indices. More precisely, a list xs is represented by an array
xa and two indices (lx , rx) under the abstraction xs = map (xa!) [lx .. rx−1],
where (!) is the array indexing operator in the Haskell library Data.Array .
This library provides efficient operations on immutable arrays, arrays that
are constructed in one go. In particular, (!) takes constant time. A list xs
can be converted into an array xa indexed from zero by

xa = listArray (0, length xs − 1) xs

We can now define

smallest :: Int → (Array Int a,Array Int a) → a
smallest k (xa, ya) = search k (0,m+1) (0,n+1)

where (0,m) = bounds xa
(0,n) = bounds ya

The function bounds returns the lower and upper bounds on an array, here
indexed from zero. Finally, the function search, which is local to smallest
because it refers to the arrays xa and ya, is given in Figure 4.1.

There is a constant amount of work at each recursive call, and each call
halves one or other of the two intervals, so the running time of search is
logarithmic.

Final remarks

Although we have phrased the problem in terms of disjoint sets represented
by lists in increasing order, there is a variation on the problem in which
the lists are not necessarily disjoint and are only in weakly increasing
order. Such lists represents multisets or bags. Consider the computation

26 Pearls of Functional Algorithm Design

of merge (xs, ys) !! k , where merge merges two lists in ascending order, so
merge = uncurry (∧∧):

merge ([], ys) = ys
merge (xs, []) = xs
merge (x : xs, y : ys) | x ≤ y = x : merge (xs, y : ys)

| x ≥ y = y : merge (x : xs, ys)

Thus, merge has the same definition as union except that < and > are
replaced by ≤ and ≥. Of course, the result is no longer necessarily the kth
smallest element of the combined lists. Furthermore, provided we replace �
by �, where xs � ys if merge (xs, ys) = xs ++ ys, and equivalently if x ≤ y
for all x in xs and y in ys, then the calculation recorded above remains valid
provided the cases a < b and a > b are weakened to a ≤ b and a ≥ b.

As a final remark, this pearl originally appeared, under a different title,
in Bird (1997). But do not look at it, because it made heavy weather of the
crucial relationship between merging and selection. Subsequently, Jeremy
Gibbons (1997) spotted a much simpler way to proceed, and it is really his
calculation that has been recorded above.

References
Bird, R. S. (1997). On merging and selection. Journal of Functional Programming

7 (3), 349–54.
Gibbons, J. (1997). More on merging and selection. Technical Report CMS-TR-

97-08, Oxford Brookes University, UK.

5

Sorting pairwise sums

Introduction

Let A be some linearly ordered set and (⊕) :: A→ A→ A some monotonic
binary operation on A, so x ≤ x ′ ∧ y ≤ y ′ ⇒ x ⊕ y ≤ x ′ ⊕ y ′. Consider the
problem of computing

sortsums :: [A]→ [A]→ [A]
sortsums xs ys = sort [x ⊕ y | x ← xs, y ← ys]

Counting just comparisons, and supposing xs and ys have the same length
n, how long does sortsums xs ys take?

Certainly O(n2 log n) comparisons are sufficient. There are n2 sums and
sorting a list of length n2 can be done with O(n2 log n) comparisons. This
upper bound does not depend on⊕ being monotonic. In fact, without further
information about⊕ and A this bound is also a lower bound. The assumption
that ⊕ is monotonic does not reduce the asymptotic complexity, only the
constant factor.

But now suppose we know more about ⊕ and A: specifically that (⊕,A)
is an Abelian group. Thus, ⊕ is associative and commutative, with identity
element e and an operation negate :: A → A such that x ⊕ negate x = e.
Given this extra information, Jean-Luc Lambert (1992) proved that sortsums
can be computed with O(n2) comparisons. However, his algorithm also
requires Cn2 log n additional operations, where C is quite large. It remains
an open problem, some 35 years after it was first posed by Harper et al.
(1975), as to whether the total cost of computing sortsums can be reduced
to O(n2) comparisons and O(n2) other steps.

Lambert’s algorithm is another nifty example of divide and conquer.
Our aim in this pearl is just to present the essential ideas and give an
implementation in Haskell.

27

28 Pearls of Functional Algorithm Design

Lambert’s algorithm

Let’s first prove the Ω(n2 log n) lower bound on sortsums when the only
assumption is that (⊕) is monotonic. Suppose xs and ys are both sorted
into increasing order and consider the n × n matrix

[[x ⊕ y | y ← ys] | x ← xs]

Each row and column of the matrix is therefore in increasing order. The
matrix is an example of a standard Young tableau, and it follows from
Theorem H of Section 5.1.4 of Knuth (1998) that there are precisely

E (n) = (n2)!
/(

(2n−1)!
(n−1)!

(2n−2)!
(n−2)!

· · · n!
0!

)

ways of assigning the values 1 to n2 to the elements of the matrix, and so
exactly E (n) potential permutations that sort the input. Using the fact that
log E (n) = Ω(n2 log n), we conclude that at least this number of comparisons
is required.

Now for the meat of the exercise. Lambert’s algorithm depends on two
simple facts. Define the subtraction operation (�) :: A → A → A by
x � y = x ⊕ negate y . Then:

x ⊕ y = x � negate y (5.1)

x � y ≤ x ′ � y ′ ≡ x � x ′ ≤ y � y ′ (5.2)

Verification of (5.1) is easy, but (5.2), which we leave as an exercise, requires
all the properties of an Abelian group. In effect, (5.1) says that the problem
of sorting sums can be reduced to the problem of sorting subtractions and
(5.2) says that the latter problem is, in turn, reducible to the problem of
sorting subtractions over a single list.

Here is how (5.1) and (5.2) are used. Consider the list subs xs ys of labelled

subtractions defined by

subs :: [A] → [A]→ [Label A]
subs xs ys = [(x � y , (i , j)) | (x , i)← zip xs [1..], (y , j)← zip ys [1..]]

where Label a is a synonym for (a, (Int , Int)). Thus, each term x � y is
labelled with the position of x in xs and y in ys. Labelling information will
be needed later on. The first fact (5.1) gives

sortsums xs ys = map fst (sortsubs xs (map negate ys))
sortsubs xs ys = sort (subs xs ys)

The sums are sorted by sorting the associated labelled subtractions and
throwing away the labels.

Sorting pairwise sums 29

The next step is to exploit (5.2) to show how to compute sortsubs xs ys
with a quadratic number of comparisons. Construct the list table by

table :: [A]→ [A]→ [(Int , Int , Int)]
table xs ys = map snd (map (tag 1) xxs ∧∧map (tag 2) yys)

where xxs = sortsubs xs xs
yys = sortsubs ys ys

tag i (x , (j , k)) = (x , (i , j , k))

Here, ∧∧ merges two sorted lists. In words, table is constructed by merging
the two sorted lists xxs and yys after first tagging each list in order to be
able to determine the origin of each element in the merged list. According
to (5.2), table contains sufficient information to enable sortsubs xs ys to be
computed with no comparisons over A. For suppose that x�y has label (i , j)
and x ′�y ′ has label (k , �). Then x�y ≤ x ′�y ′ if and only if (1, i , k) precedes
(2, j , �) in table. No comparisons of elements of A are needed beyond those
required to construct table.

To implement the idea we need to be able to compute precedence
information quickly. This is most simply achieved by converting table into a
Haskell array:

mkArray xs ys = array b (zip (table xs ys) [1..])
where b = ((1, 1, 1), (2, p, p))

p = max (length xs) (length ys)

The definition of mkArray makes use of the library Data.Array of Haskell
arrays. The first argument b of array is a pair of bounds, the lowest and high-
est indices in the array. The second argument of array is an association list
of index–value pairs. With this representation, (1, i , k) precedes (2, j , �) in
table if a !(1, i , k) < a !(2, j , �), where a = mkArray xs ys. The array indexing
operation (!) takes constant time, so a precedence test takes constant time.
We can now compute sortsubs xs ys using the Haskell utility function sortBy :

sortsubs xs ys = sortBy (cmp (mkArray xs ys)) (subs xs ys)
cmp a (x , (i , j)) (y , (k , �))

= compare (a ! (1, i , k)) (a ! (2, j , �))

The function compare is a method in the type class Ord . In particular,
sort = sortBy compare and (∧∧) = mergeBy compare. We omit the divide
and conquer definition of sortBy in terms of mergeBy .

The program so far is summarised in Figure 5.1. It is complete apart from
the definition of sortsubs ′, where sortsubs ′ xs = sortsubs xs xs. However, this
definition cannot be used in sortsums because the recursion would not be

30 Pearls of Functional Algorithm Design

sortsums xs ys = map fst (sortsubs xs (map negate ys))
sortsubs xs ys = sortBy (cmp (mkArray xs ys)) (subs xs ys)

subs xs ys = [(x � y , (i , j)) | (x , i)← zip xs [1..], (y , j)← zip ys [1..]]

cmp a (x , (i , j)) (y , (k , �) = compare (a ! (1, i , k)) (a ! (2, j , �))

mkArray xs ys = array b (zip (table xs ys) [1..])
where b = ((1, 1, 1), (2, p, p))

p = max (length xs) (length ys)
table xs ys = map snd (map (tag 1) xxs ∧∧map (tag 2) yys)

where xxs = sortsubs ′ xs
yys = sortsubs ′ ys

tag i (x , (j , k)) = (x , (i , j , k))

Fig. 5.1 The complete code for sortsums, except for sortsubs ′

well founded. Although computing sortsubs xs ys takes O(mn log mn) steps,
it uses no comparisons on A beyond those needed to construct table. And
table needs only O(m2 + n2) comparisons plus those comparisons needed
to construct sortsubs ′ xs and sortsubs ′ ys. What remains is to show how to
compute sortsubs ′ with a quadratic number of comparisons.

Divide and conquer

Ignoring labels for the moment and writing xs�ys for [x�y |x←xs, y←ys],
the key to a divide and conquer algorithm is the identity

(xs ++ ys)� (xs ++ ys)
= (xs � xs) ++ (xs � ys) ++ (ys � xs) ++ (ys � ys)

Hence, to sort the list on the left, we can sort the four lists on the right
and merge them together. The presence of labels complicates the divide and
conquer algorithm slightly because the labels have to be adjusted correctly.
The labelled version reads

subs (xs ++ ys) (xs ++ ys)
= subs xs xs ++ map (incr m) (subs xs ys) ++

map (incl m) (subs ys xs) ++ map (incb m) (subs ys ys)

where m = length xs and

incl m (x , (i , j)) = (x , (m+i , j))
incr m (x , (i , j)) = (x , (i ,m+j))
incb m (x , (i , j)) = (x , (m+i ,m+j))

Sorting pairwise sums 31

sortsubs ′ [] = []
sortsubs ′ [w] = [(w � w , (1, 1))]
sortsubs ′ ws = foldr1 (∧∧) [xxs,map (incr m) xys,

map (incl m) yxs,map (incb m) yys]
where xxs = sortsubs ′ xs

xys = sortBy (cmp (mkArray xs ys)) (subs xs ys)
yxs = map switch (reverse xys)
yys = sortsubs ′ ys
(xs, ys) = splitAt m ws
m = length ws div 2

incl m (x , (i , j)) = (x , (m + i , j))
incr m (x , (i , j)) = (x , (i ,m + j))
incb m (x , (i , j)) = (x , (m + i ,m + j))

switch (x , (i , j)) = (negate x , (j , i))

Fig. 5.2 The code for sortsubs ′

To compute sortsubs ′ws we split ws into two equal halves xs and ys. The lists
sortsubs ′ xs and sortsubs ′ ys are computed recursively. The list sortsubs xs ys
is computed by applying the algorithm of the previous section. We can also
compute sortsubs ys xs in the same way, but an alternative is simply to
reverse sortsubs xs ys and negate its elements:

sortsubs ys xs = map switch (reverse (sortsubs xs ys)
switch (x , (i , j)) = (negate x , (j , i))

The program for sortsubs ′ is given in Figure 5.2. The number C (n) of
comparisons required to compute sortsubs ′ on a list of length n satisfies
the recurrence C (n) = 2C (n/2) + O(n2) with solution C (n) = O(n2).
That means sortsums can be computed with O(n2) comparisons. However,
the total time T (n) satisfies T (n) = 2T (n/2) + O(n2 log n) with solution
T (n) = O(n2 log n). The logarithmic factor can be removed from T (n) if
sortBy cmp can be computed in quadratic time, but this result remains
elusive. In any case, the additional complexity arising from replacing com-
parisons by other operations makes the algorithm very inefficient in practice.

Final remarks

The problem of sorting pairwise sums is given as Problem 41 in the Open
Problems Project (Demaine et al., 2009), a web resource devoted to record-
ing open problems of interest to researchers in computational geometry and
related fields. The earliest known reference to the problem is Fedman (1976),

32 Pearls of Functional Algorithm Design

who attributes the problem to Elwyn Berlekamp. All these references
consider the problem in terms of numbers rather than Abelian groups, but
the idea is the same.

References
Demaine, E. D., Mitchell, J. S. B. and O’Rourke, J. (2009). The Open Problems

Project. http://mave,smith.edu/∼orourke/TOPP/.
Fedman, M. L. (1976). How good is the information theory lower bound in sorting?

Theoretical Computer Science 1, 355–61.
Harper, L. H., Payne, T. H., Savage, J. E. and Straus, E. (1975). Sorting X + Y .

Communications of the ACM 18 (6), 347–9.
Knuth, D. E. (1998). The Art of Computer Programming: Volume 3, Sorting and

Searching, second edition. Reading, MA: Addison-Wesley.
Lambert, J.-L. (1992). Sorting the sums (xi +yj) in O(n2) comparisons. Theoretical

Computer Science 103, 137–41.

6

Making a century

Introduction

The problem of making a century is to list all the ways the operations +
and × can be inserted into the list of digits [1 .. 9] so as to make a total of
100. Two such ways are:

100 = 12 + 34 + 5×6 + 7 + 8 + 9
100 = 1 + 2×3 + 4 + 5 + 67 + 8 + 9

Note that no parentheses are allowed in expressions and× binds more tightly
than +. The only way to solve the problem seems to be by searching through
all possible expressions, in other words to carry out an exhaustive search.
The primary aim of this pearl is to examine a little of the theory of exhaustive
search in order to identify any features that can improve its performance.
The theory is then applied to the problem of making a century.

A little theory

We begin with the three types Data, Candidate and Value and three
functions:

candidates :: Data → [Candidate]
value :: Candidate → Value
good :: Value → Bool

These three functions are be used to construct a function solutions:

solutions :: Data → [Candidate]
solutions = filter (good · value) · candidates

The function solutions carries out an exhaustive search through the list of
candidates to find all those having good value. No special steps have to be
taken if only one answer is required because lazy evaluation will ensure that
only the work needed to evaluate the first solution will be performed. Apart

33

34 Pearls of Functional Algorithm Design

from this general remark about the benefits of lazy evaluation, nothing much
more can be said about solutions unless we make some assumptions about
the ingredients.

The first assumption is that Data is a list of values, say [Datum], and that
candidates :: [Datum]→ [Candidate] takes the form

candidates = foldr extend [] (6.1)

where extend :: Datum → [Candidate] → [Candidate] is some function
that builds a list of extended candidates from a given datum and a list of
candidates.

The second assumption is in two parts. First, there is a predicate ok such
that every good value is necessarily an ok value, so good v ⇒ ok v for all v .
Hence

filter (good · value) = filter (good · value) · filter (ok · value) (6.2)

The second part is that candidates with ok values are the extensions of
candidates with ok values:

filter (ok · value) · extend x

= filter (ok · value) · extend x · filter (ok · value) (6.3)

Using these assumptions, we calculate:

solutions

= {definition of solutions}
filter (good · value) · candidates

= {equation (6.1)}
filter (good · value) · foldr extend []

= {equation (6.2)}
filter (good · value) · filter (ok · value) · foldr extend []

= {with extend ′ x = filter (ok · value) · extend x ; see below}
filter (good · value) · foldr extend ′ []

The last step in this calculation is an appeal to the fusion law of foldr . Recall
that this laws states that f · foldr g a = foldr h b provided three conditions
are satisfied: (i) f is a strict function; (ii) f a = b; (iii) f (g x y) = h x (f y)
for all x and y . In particular, taking f = filter (ok · value) and g = extend ,
we have that (i) is satisfied, (ii) holds for a = b = [] and (iii) is just (6.3)
with h = extend ′.

Making a century 35

We have shown that

solutions = filter (good · value) · foldr extend ′ []

The new version of solutions is better than the previous one, as a potentially
much smaller list of candidates is constructed at each stage, namely only
those with an ok value. On the other hand, the function value is recomputed
at each evaluation of extend ′.

We can avoid recomputing value with the help of yet a third assumption:

map value · extend x = modify x ·map value (6.4)

Assumption (6.4) states that the values of an extended set of candidates
can be obtained by modifying the values of the candidates out of which the
extensions are built.

Suppose we redefine candidates to read

candidates = map (fork (id , value)) · foldr extend ′ []

where fork (f , g)x = (f x , g x). The new version of candidates returns a list of
pairs of candidates and their values. The form of the new definition suggests
another appeal to the fusion law of foldr . For the main fusion condition we
have to find a function, expand say, satisfying

map (fork (id , value)) · extend ′ x = expand x ·map (fork (id , value))

Then we obtain candidates = foldr expand [].
We are going to use simple equational reasoning to discover expand . In

order to do so, we need a number of combinatorial laws about fork , laws
that are used in many program calculations. The first law is that

fst · fork (f , g) = f and snd · fork (f , g) = g (6.5)

The second law is a simple fusion law:

fork (f , g) · h = fork (f · h, g · h) (6.6)

For the third law, define cross by cross (f , g) (x , y) = (f x , g y). Then we
have

fork (f · h, g · k) = cross (f , g) · fork (h, k) (6.7)

The next two laws relate fork to two functions, zip and unzip. The function
unzip is defined by

unzip :: [(a, b)]→ ([a], [b])
unzip = fork (map fst ,map snd)

36 Pearls of Functional Algorithm Design

and zip :: ([a], [b]) → [(a, b)] is specified by the condition zip · unzip = id .1

In particular, we can reason:

unzip ·map (fork (f , g))

= {definition of unzip}
fork (map fst ,map snd) ·map (fork (f , g))

= {(6.6) and map (f · g) = map f ·map g}
fork (map (fst · fork (f , g)),map (snd · fork (f , g)))

= {(6.5)}
fork (map f ,map g)

Hence

fork (map f ,map g) = unzip ·map (fork (f , g)) (6.8)

Using zip · unzip = id we have from (6.8) that

map (fork (f , g)) = zip · fork (map f ,map g) (6.9)

The final law relates fork to filter :

map (fork (f , g)) · filter (p · g)

= filter (p · snd) ·map (fork (f , g)) (6.10)

Evaluating the expression on the right is more efficient than evaluating the
expression on the left because g is evaluated just once for each element of
the argument list.

Having identified the various plumbing combinators and the rules that
relate them, we are ready for the final calculation:

map (fork (id , value)) · extend ′ x

= {definition of extend ′}
map (fork (id , value)) · filter (ok · value) · extend x

= {(6.10)}
filter (ok · snd) ·map (fork (id , value)) · extend x

We now focus on the second two terms, and continue:

map (fork (id , value)) · extend x

= {(6.9) and map id = id}
zip · fork (id ,map value) · extend x

1 The Haskell function zip :: [a] → [b] → [(a, b)] is defined as a curried function.

Making a century 37

= {(6.6)}
zip · fork (extend x ,map value · extend x)

= {(6.4)}
zip · fork (extend x ,modify x ·map value)

= {(6.7)}
zip · cross (extend x ,modify x) · fork (id ,map value)

= {(6.8)}
zip · cross (extend x ,modify x) · unzip ·map (fork (id , value))

Putting the two calculations together, we arrive at

solutions = map fst · filter (good · snd) · foldr expand []
expand x = filter (ok · snd) · zip · cross (extend x ,modify x) · unzip

This is our final version of solutions. It depends only on the definitions
of good , ok , extend and modify . The term foldr expand [] builds a list of
candidates along with their values, and solutions picks those candidates
whose values satisfy good . The function expand x builds an extended list
of candidates, maintaining the property that all extended candidates have
values that satisfy ok .

Making a century

Let us now return to the problem in hand, which was to list all the ways
the operations + and × can be inserted into the list of digits [1 .. 9] so as to
make a total of 100.

Candidate solutions are expressions built from + and ×. Each expression
is the sum of a list of terms, each term is the product of a list of factors and
each factor is a list of digits. That means we can define expressions, terms
and factors just with the help of suitable type synonyms:

type Expression = [Term]
type Term = [Factor]
type Factor = [Digit]
type Digit = Int

Thus, Expression is synonymous with [[[Int]]].
The value of an expression is given by a function valExpr , defined by

valExpr :: Expression → Int
valExpr = sum ·map valTerm

38 Pearls of Functional Algorithm Design

valTerm :: Term → Int
valTerm = product ·map valFact

valFact :: Factor → Int
valFact = foldl1 (λn d → 10 ∗ n + d)

A good expression is one whose value is 100:

good :: Int → Bool
good v = (v 100)

To complete the formulation we need to define a function expressions that
generates a list of all possible expressions that can be built out of a given list
of digits. We can do this in two ways. One is to invoke the standard function
partitions of type [a] → [[[a]]] that partitions a list into one or more sublists
in all possible ways. If we apply partitions to a list of digits xs we get a list
of all possible ways of splitting xs into a list of factors. Then, by applying
partitions again to each list of factors, we obtain a list of all possible ways
a list of factors can be split into lists of terms. Hence

expressions :: [Digit]→ [Expression]
expressions = concatMap partitions · partitions

Alternatively, we can define expressions by expressions = foldr extend [],
where

extend :: Digit → [Expression]→ [Expression]
extend x [] = [[[[x]]]]
extend x es = concatMap (glue x) es

glue :: Digit → Expression → [Expression]
glue x ((xs : xss) : xsss) = [((x : xs) : xss) : xsss,

([x] : xs : xss) : xsss,
[[x]] : (xs : xss) : xsss]

To explain these definitions, observe that only one expression can be built
from a single digit x , namely [[[x]]]. This justifies the first clause of extend .
An expression built from more than one digit can be decomposed into a
leading factor (a list of digits, xs say), a leading term (a list of factors, xss
say) and a remaining expression (a list of terms, xsss say). A new digit x can
be inserted into an expression in exactly three different ways: by extending
the current factor on the left with the new digit, by starting a new factor
or by starting a new term. This justifies the second clause of extend and
the definition of glue. One advantage of the second definition is that it is
immediate that there are 6561 = 38 expressions one can build using the
digits [1 .. 9]; indeed, 3n−1 expressions for a list of n digits.

Making a century 39

Evaluating filter (good · valExpr) · expressions and displaying the results
in a suitable fashion, yields the seven possible answers:

100 = 1×2×3 + 4 + 5 + 6 + 7 + 8×9
100 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8×9
100 = 1×2×3×4 + 5 + 6 + 7×8 + 9
100 = 12 + 3×4 + 5 + 6 + 7×8 + 9
100 = 1 + 2×3 + 4 + 5 + 67 + 8 + 9
100 = 1×2 + 34 + 5 + 6×7 + 8 + 9
100 = 12 + 34 + 5×6 + 7 + 8 + 9

The computation does not take too long because there are only 6561
possibilities to check. But on another day the input might consist of a differ-
ent target value and many more digits, so it is worth spending a little time
seeing whether the search can be improved.

According to the little theory of exhaustive search given above, we have to
find some definition of ok such that all good expressions are ok expressions,
and such that ok expressions are necessarily constructed out of ok sub-
expressions. Given that good v = (v c), where c is the target value, the
only sensible definition of ok is ok v = (v ≤ c). Since the only operations
are + and ×, every expression with a target value c has to be built out of
subexpressions with target values at most c.

We also have to find a definition of modify so that

map valExpr · extend x = modify x ·map valExpr

Here we run into a small difficulty, because not all the values of expressions
in glue x e can be determined simply from the value of e: we need the values
of the leading factor and leading term as well. So we define value not to be
valExpr but

value ((xs : xss) : xsss) = (10n , valFact xs, valTerm xss, valExpr xsss)

where n = length xs

The extra first component 10n is included simply to make the evaluation of
valFact (x : xs) more efficient. Now we obtain

modify x (k , f , t , e)
= [(10∗k , k∗x+f , t , e), (10, x , f ∗t , e), (10, x , 1, f ∗t+e)]

Accordingly, the definitions of good and ok are revised to read:

good c (k , f , t , e) = (f ∗t + e c)
ok c (k , f , t , e) = (f ∗t + e ≤ c)

40 Pearls of Functional Algorithm Design

Installing these definitions in the definition of expand gives a faster exhaust-
ive search:

solutions c = map fst · filter (good c · snd) · foldr (expand c) []
expand c x = filter (ok c · snd) · zip · cross (extend x ,modify x) · unzip

The definition of expand can be simplified to read:

expand c x [] = [([[[x]]], (10, x , 1, 0))]
expand c x evs = concat (map (filter (ok c · snd) · glue x) evs)

glue x ((xs : xss) : xsss, (k , f , t , e)) =
[(((x : xs) : xss) : xsss, (10∗k , k∗x + f , t , e)),
(([x] : xs : xss) : xsss, (10, x , f ∗t , e)),
([[x]] : (xs : xss) : xsss, (10, x , 1, f ∗t + e))]

The result is a program for solutions c that is many times faster than the
first version. As just one experimental test, taking c = 1000 and the first
14 digits of π as input, the second version was over 200 times faster.

Final remarks

The problem of making a century is discussed in Exercise 122 of Knuth
(2006), which also considers other variants of the problem, such as allowing
parentheses and other arithmetical operators; see also the Countdown pearl
later in the book (Pearl 20). One moral of the exercise is that, when seeking
candidates whose value satisfies some criterion, it is a good idea to combine
the generation of the candidates with the generation of their values. That
way, we can avoid recomputing values. Usually, it is clear enough how to
do this directly without formally instantiating the recipe described above,
but it is nice to know that a recipe does exist. The other moral is that it
is useful to see whether or not a good value can be weakened to some kind
of ok value that can be maintained for all candidates. That way, the set of
candidates that have to be considered is reduced in size.

References
Knuth, D. E. (2006). The Art of Computer Programming, Volume 4, Fascicle 4:

Generating All Trees. Reading, MA: Addison-Wesley.

7

Building a tree with minimum height

Introduction

Consider the problem of building a leaf-labelled tree of minimum height with
a given list of integers as fringe. Leaf-labelled trees are defined by

data Tree = Leaf Int | Fork Tree Tree

and the fringe of a tree is the list of labels at the leaves in left-to-right order.
There are two well-known algorithms for this problem, both of which can
be implemented in linear time. One is recursive, or top-down, and works by
splitting the list into two equal halves, recursively building a tree for each
half, and then combining the two results with a Fork . The other method is
iterative, or bottom-up, and works by first turning the fringe into a list of
leaves and then repeatedly combining all adjacent pairs until just one tree
remains. The two methods will lead to different trees, but in each case the
result is a tree with minimum height.

The form of the bottom-up algorithm suggests an intriguing generalisa-
tion: given an arbitrary list of trees together with their heights, is there a
linear-time algorithm to combine them into a single tree of minimum height?
The restriction, of course, is that the trees should appear as subtrees of the
final tree in the same order as they appear in the list. In the special case that
the input is a list of leaves, the problem reduces to the one above, but there
is no immediate reason why the more general problem should be solvable in
linear time. Nevertheless, our aim in this pearl is to derive precisely such an
algorithm.

First steps

An alternative, but equivalent, version of the problem is to ask: given a
sequence xs = [x1, x2, . . . , xn] of natural numbers (representing the heights
of the given trees), can one find a linear-time algorithm to build a tree with
fringe xs that minimises cost , where

41

42 Pearls of Functional Algorithm Design

cost (Leaf x) = x
cost (Fork u v) = 1 + (cost u max cost v)

Thus, cost has the same definition as height except that the “height” of
Leaf x is x rather than zero.

Formulated in this way, the problem is to compute

mincostTree = minBy cost · trees

where trees builds all possible trees with a given fringe and minBy cost
selects one with minimum cost. A constructive definition of trees can be
formulated in a number of ways, following either a top-down or bottom-
up scheme. However, we are going for a third option, namely an inductive
algorithm:

trees :: [Int]→ [Tree]
trees [x] = [Leaf x]
trees (x : xs) = concatMap (prefixes x) (trees xs)

The Haskell function concatMap f abbreviates concat · map f . The value
prefixes x t is a list of all the ways x can be inserted as a leftmost leaf in the
tree t :

prefixes :: Int → Tree → [Tree]
prefixes x t@(Leaf y) = [Fork (Leaf x) t]
prefixes x t@(Fork u v) = [Fork (Leaf x) t] ++

[Fork u ′ v | u ′← prefixes x u]

We could have taken trees [] = [], and so defined trees as an instance of
foldr . But minBy cost is not defined on an empty set of trees and it is best to
restrict the input to nonempty lists. Haskell does not provide a general fold
function on nonempty lists (the function foldr1 is not quite general enough),
but if we define foldrn by

foldrn :: (a → b → b)→ (a → b) → [a]→ b
foldrn f g [x] = g x
foldrn f g (x : xs) = f x (foldrn f g xs)

then trees can be expressed as an instance of foldrn:

trees = foldrn (concatMap · prefixes) (wrap · Leaf)
wrap x = [x]

Wherever there are trees there are also forests, and many definitions
involving the former can be phrased, often more cleanly, in terms of the
latter. So it is with trees. A cleaner definition is obtained by first building a
list of forests (where a forest is itself a list of trees) and then rolling up each
forest into a tree:

Building a tree with minimum height 43

trees = map rollup · forests
forests = [Int] → [Forest]
forests = foldrn (concatMap · prefixes) (wrap · wrap · Leaf)

prefixes :: Int → Forest → [Forest]
prefixes x ts = [Leaf x : rollup (take k ts) : drop k ts

| k ← [1 .. length ts]]

rollup :: Forest → Tree
rollup = foldl1 Fork

In this version of trees each forest represents the left spine of a tree; that
is, the sequence of right subtrees along the path from leftmost leaf to the
root. The first element in the spine is the leftmost leaf itself. Rolling up the
spine gives the tree. We prefer the second definition of prefixes to the first
because it reveals more clearly what is going on in building the final trees.
We will come back to this definition of trees later on.

It remains to define minBy cost :: [Tree] → Tree. The requirement is that
it should return some tree with minimum cost:

minBy cost ts ∈ ts ∧ (∀t ∈ ts : cost (minBy cost ts) ≤ cost t)

The output is not determined uniquely by this specification, so minBy cost
is a nondeterministic function. One can implement it by defining

minBy f = foldl1 (cmp f)
cmp f u v = if f u ≤ f v then u else v

But this implementation selects the first tree in ts with minimum cost, and
so depends on the order in which the trees appear in ts. An unbiased but
deterministic implementation can be obtained by inventing a total linear
ordering � that respects cost , so u � v ⇒ cost u ≤ cost v , and replacing
cmp f by cmp, where

cmp u v = if u � v then u else v

But this definition depends on the invention of � and is again too specific.
So we will leave minBy cost as a nondeterministic function.

Fusion

Implemented directly, minBy cost · trees takes exponential time, and the
obvious way to make it faster is to appeal to the fusion law of foldrn. In its
simplest form the fusion law states

h (foldrn f g xs) = foldrn f ′ g ′ xs

44 Pearls of Functional Algorithm Design

for all finite nonempty lists xs provided h (g x) = g ′x and h (f x y) = f ′x (h y)
for all x and y . However, asking for equality of both terms when h is a
nondeterministic function is unreasonable: we need only that the right-hand
term is a refinement of the left-hand one. Suppose we define f x � g x to
mean that the set of possible outputs of f x includes the (nonempty) set of
possible outputs of g x . In particular, if g is a normal deterministic function,
then f x � g x means that g x is a possible output of f x . A weaker statement
of fusion is that

h (foldrn f g xs) � foldrn f ′ g ′ xs

for all finite nonempty lists xs provided h (g x) � g ′ x for all x , and h y � y ′

implies h (f x y) � f ′ x y ′ for all x , y and y ′.
Since minBy cost · wrap = id , we obtain on appeal to fusion that

minBy cost (foldrn (concatMap · prefixes) (wrap · Leaf) xs)
� foldrn insert Leaf xs

provided a function insert can be defined to satisfy the fusion condition

minBy cost ts � t

⇒ minBy cost (concatMap (prefixes x) ts) � insert x t (7.1)

Suppose we specify insert by the condition

minBy cost · prefixes x � insert x

In words, insert x t returns some minimum cost tree in prefixes x t . Then
we claim that (7.1) holds if the following does:

minBy cost ts � t

⇒ minBy cost (map (insert x) ts) � insert x t (7.2)

For the proof we need the fact that

minBy cost · concat = minBy cost ·map minBy cost

over nonempty lists of nonempty lists. In words, every possible result of
the left-hand side is a possible result of the right-hand side and vice versa.
Now we argue

minBy cost (concatMap (prefixes x) ts)

= {expanding concatMap}
minBy cost (concat (map (prefixes x) ts))

Building a tree with minimum height 45

= {above fact}
minBy cost (map (minBy cost · prefixes x) ts)

� {since f � f ′ implies map f � map f ′ and g · f � g · f ′}
minBy cost (map (insert x) ts)

The fusion condition (7.2) holds provided that

cost u ≤ cost v ⇒ cost (insert x u) ≤ cost (insert x v) (7.3)

for all trees u and v with the same fringe. However (7.3) does not hold.
Consider the trees u and v given by

10

9

5

6 7

9

10

8

7

5 6

7

9

In each tree the left spines have been labelled with cost information, so the
cost of both trees is 10. Inserting 8 into the left tree u gives a tree with
minimum cost 11, but inserting 8 into the right tree v gives a tree with cost
10. So (7.3) fails.

But notice that the costs [10, 8, 7, 5] reading downwards along the left
spine of v are lexicographically less than the costs [10, 9, 5] along the left
spine of u. What we can establish is the monotonicity condition

cost ′ u ≤ cost ′ v ⇒ cost ′ (insert x u) ≤ cost ′ (insert x v) (7.4)

where

cost ′ = map cost · reverse · spine

The function spine is the inverse of rollup, so spine · rollup = id . Minimising
cost ′ also minimises cost , since xs ≤ ys ⇒ head xs ≤ head ys. As we will
show in a moment, (7.4) implies that

minBy cost ′ ·map(insert x) � insert x ·minBy cost ′

Since spines have appeared on the scene it is sensible to make use of the
definition of trees in terms of spines and summarise the calculation so far in
the following way:

minBy cost · trees
� {refinement}

46 Pearls of Functional Algorithm Design

minBy cost ′ · trees
= {definition of trees in terms of forests}

minBy cost ′ ·map rollup ·
foldrn (concatMap · prefixes) (wrap · wrap · Leaf)

= {defining costs = map cost · reverse}
minBy (costs · spine) ·map rollup ·
foldrn (concatMap · prefixes) (wrap · wrap · Leaf)

= {claim: see below}
rollup ·minBy costs ·
foldrn (concatMap · prefixes) (wrap · wrap · Leaf)

� {fusion, with minBy costs · prefixes x � insert x}
rollup · foldrn insert (wrap · Leaf)

The claim is that

minBy (costs · spine) ·map rollup = rollup ·minBy costs

This follows from the definition of minBy and the fact that spine and rollup
are each other’s inverse.

It remains to implement insert , to show that (7.4) holds and to prove that
it leads to a linear-time program.

Optimal insertion

Consider the two trees of Figure 7.1. The tree on the left has spine ts, where
ts = [t1, t2, . . . , tn]. The one on the right has spine Leaf x : rollup (take j ts) :
drop j ts. Each spine is also labelled with cost information: ck is defined for
2 ≤ k ≤ n by

ck = 1 + (ck−1 max cost tk)

and c1 is the value at the leaf t1. A similar equation defines c′k for k in the
range j+1 ≤ k ≤ n. Note that c′j > cj and c′k ≥ ck for j+1 ≤ k ≤ n.
Bearing (7.4) in mind, we want to choose some j in the range 1 ≤ j ≤ n
that minimises

[c′n , c′n−1, . . . , c
′
j+1, c

′
j , x]

We claim that the minimum is obtained by choosing j to be the smallest
value in the range 1 ≤ j < n, if it exists, such that

1 + (x max cj) < cj+1 (7.5)

Building a tree with minimum height 47

cn

cn−1

c2

t1 t2

tn−1

tn

c′n

c′j+1

c′j

x cj

t1 tj

tj+1

tn

Fig. 7.1 Inserting x into a tree

Otherwise, choose j = n. To prove the claim, observe that if (7.5) holds,
then

c′j = 1 + (x max cj) < cj+1

and so c′k = ck for j+1 ≤ k ≤ n. Moreover, if (7.5) also holds for i < j , then

[c′n , c′n−1, . . . , c
′
i+1, c

′
i , x]

= {because c′k = ck for i+1 ≤ k ≤ n and i < j}
[cn , cn−1, . . . , cj+1, cj , . . . ci+1, c′i , x]

< {because cj < c′j }
[cn , cn−1, . . . , cj+1, c′j , x]

= {because c′k = ck for j+1 ≤ k ≤ n}
[c′n , c′n−1, . . . , c

′
j+1, c

′
j , x]

So, the smaller the j to satisfy (7.5) the better. If (7.5) does not hold for j ,
then c′j+1 > cj+1 and c′k ≥ ck for j+2 ≤ k ≤ n, so the cost is worse.

Next we prove the monotonicity condition (7.4). Let u and v be two trees
with costs cost ′ u and cost ′ v . Clearly, if these costs are equal, then so are
the costs of inserting an arbitrary x in either of them. Otherwise, suppose

cost ′ u = [cn , cn−1, . . .] < [dm , dm−1, . . . , d1] = cost ′ v

Removing the common prefix of these costs, say one of length k , we are left
with [cn−k , . . . , c1] and [dm−k , . . . , d1], where cn−k < dm−k . But inserting x
into the corresponding subtree of u gives a tree with no larger costs than
inserting x into the corresponding subtree of v .

48 Pearls of Functional Algorithm Design

Finally, since (7.5) is equivalent to x maxcj < cost tj+1, we can implement
insert by

insert x ts = Leaf x : split x ts
split x [u] = [u]
split x (u : v : ts) = if x max cost u < cost v then u : v : ts

else split x (Fork u v : ts)

Cost computations can be eliminated by a simple data refinement in which
each tree t is represented by a pair (cost t , t), leading to the final algorithm

mincostTree = foldl1 Fork ·map snd · foldrn insert (wrap · leaf)
insert x ts = leaf x : split x ts
split x [u] = [u]
split x (u : v : ts) = if x max fst u < fst v then u : v : ts

else split x (fork u v : ts)
leaf x = (x ,Leaf x)
fork (a, u) (b, v) = (1 + a max b,Fork u v)

The smart constructors leaf and fork each construct a pair consisting of a
cost and a tree.

It remains to time the program, which we can do by counting the calls to
split . By induction we prove that foldrn insert (wrap · leaf) applied to a list
of length n and returning a forest of length m involves at most 2n −m calls
to split . The base case, n = 1 and m = 1, is obvious. For the induction step,
note that split applied to a list of length m ′ and returning a list of length
m is called m ′ −m times. And since 2(n − 1)−m ′ + m ′ −m + 1 ≤ 2n −m,
the induction is established. Hence the algorithm takes linear time.

Final remarks

The minimum-cost tree problem and its derivation is an exercise in
constructing a greedy algorithm. Greedy algorithms are tricky, not so much
because the final algorithm is opaque, but because of the delicate reasoning
required to prove that they work. First, one usually has to invent a
strengthening of the cost function and to minimise that at each step. Here,
the monotonicity condition (7.4) is crucial to the success of the enterprise.
Second, in dealing with most optimisation problems there is a need to bring
relations, or nondeterministic functions, into the derivation. The outcome
of the derivation is not equivalent to the initial specification, but a refine-
ment of it. Our treatment of relations has been “light touch”, and relied
on Haskell-like notation for carrying the derivation forward. In Bird and

Building a tree with minimum height 49

de Moor (1997), the treatment of relations and their use in program deriva-
tion is made much more systematic.

Finally, it is worth mentioning that another way to solve the minimum-
cost tree problem is by using, the Hu–Tucker (or the more modern version,
the Garsia–Wachs) algorithm; see Hu (1982) or Knuth (1998). The Hu–
Tucker algorithm applies because cost is a regular cost function in the sense
of Hu (1982). But the best implementation of that algorithm has a running
time of Θ(n log n).

References
Bird, R. S. and de Moor, O. (1997). Algebra of Programming. Hemel Hempstead:

Prentice Hall.
Hu, T. C. (1982). Combinatorial Algorithms. Reading, MA: Addison-Wesley.
Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Searching

and Sorting, second edition. Reading, MA: Addison-Wesley.

8

Unravelling greedy algorithms

Make you to ravel all this matter out.
Hamlet, Act 3, Scene 4

Introduction

As we said in the previous pearl, greedy algorithms are tricky things. So
the subject deserves a second example. Here is another problem that can
be solved by a greedy algorithm, and the path to the solution has much in
common with the previous one.

An unravel1 of a sequence xs is a bag of nonempty subsequences of xs
that when shuffled together can give back xs. For example, the letters of
“accompany” can be unravelled into three lists: “acm”, “an” and “copy”.
The order of these lists is not important, but duplications do matter; for
example, “peptet” can be unravelled into two copies of “pet”. Thus, an
unravel is essentially a bag of sequences, not a set or a list.

An unravel is called an upravel if all its component sequences are weakly
increasing. Since each of “acm”, “an” and “copy” is increasing, they give an
upravel of “accompany”, and so do “aany”, “ccmp” and “o”. Each nonempty
sequence has at least one upravel, namely the upravel consisting of just
singleton sequences. However, of all possible upravels, we want to determine
one with shortest size.

Specification

Here is the specification of the function supravel (short for shortest upravel):

supravel :: Ord a ⇒ [a] → [[a]]
supravel = minBy length · filter (all up) · unravels

1 By the way, “to unravel” and “to ravel” mean the same thing, just as “to unloose” and “to
loose”. The prefix “un-” serves both to negate an action and to emphasize it.

50

Unravelling greedy algorithms 51

We represent the bag of sequences in a shortest upravel by a list. The func-
tion minBy f is the non-deterministic function introduced in the previous
pearl and specified by

minBy f xs ∈ xs ∧ (∀x ∈ xs : f (minBy f xs) ≤ f x)

The predicate up, whose definition is omitted, determines whether its
argument is in ascending order. The function unravels returns all unravels
of a sequence and can be defined inductively by

unravels :: [a]→ [[[a]]]
unravels = foldr (concatMap · prefixes) [[]]
prefixes x [] = [[[x]]]
prefixes x (xs : xss) = [(x : xs) : xss] ++ map (xs :) (prefixes x xss)

The function prefixes x adds x as a new first element to an unravel by
prefixing it in all possible ways to each sequence in the unravel.

Derivation

The first step is to employ the fusion law of foldr to fuse filter (all up) and
unravels. Define upravels by

upravels = filter (all up) · unravels

An easy application of the fusion law of foldr gives the following definition
of upravels:

upravels :: Ord a ⇒ [a]→ [[[a]]]
upravels = foldr (concatMap · uprefixes) [[]]
uprefixes x [] = [[[x]]]
uprefixes x (xs : xss) = if x ≤ head xs then

[(x : xs) : xss] ++ map (xs :) (uprefixes x xss)
else map (xs :) (uprefixes x xss)

Here, uprefixes x adds x as a new first element to an unravel by prefixing it
in all possible ways to each sequence in the unravel whose first element is at
least x .

Now we have arrived at the nub of the problem, which is how to fuse
minBy length with upravels. Recall from the previous pearl the meaning
of the refinement relation �: for non-deterministic function f and normal
deterministic function g we have that f � g if for all x the result of g x is
a possible result of f x . Suppose the function insert is specified by

minBy length · uprefixes x � insert x

52 Pearls of Functional Algorithm Design

Thus, insert x ur returns some shortest possible way of inserting x into
the upravel ur . By appealing to the weaker fusion law of foldr in terms of
refinement rather than equality, we then obtain

minBy length (upravels xs) � foldr insert [] xs

for all finite lists xs, provided the fusion condition

minBy length urs � ur
⇒ minBy length (map (insert x) urs) � insert x ur

holds for all upravels urs of a list. And, in turn, the fusion condition holds if

length ur ≤ length vr

⇒ length (insert x ur) ≤ length (insert x vr) (8.1)

for any two upravels ur and vr of the same list.
Unfortunately, (8.1) does not hold. Take the two equal-length upravels

[“ad”, “a”] and [“aa”, “d”] of “ada”. Inserting “c” in the first upravel gives
the best possible upravel [“ad”, “a”, “c”], but [“aa”, “cd”] is a better upravel
of the second.

The conclusion is that, just as in the problem of finding a minimum cost
tree, we have to strengthen the cost function being minimised. It is fairly
clear that the length of insert x ur depends only on x and the first element
of each sequence in ur . Suppose we define heads by

heads :: Ord a ⇒ [[a]]→ [a]
heads = sort ·map head

Informally, the larger (lexicographically speaking) that heads ur is, the more
likely it is that x can be prefixed to some sequence in ur , thereby ensuring
insert x ur is no longer than ur . The problem with replacing minBy length
by maxBy heads is that

heads ur ≥ heads vr �⇒ length ur ≤ length vr

even for upravels ur and vr of the same sequence. So, we need something
else.

One way out is to abandon the lexicographic ordering and consider instead
the partial preorder �, defined by

ur � vr = heads ur � heads yr

where [x1, x2, . . . , xm] � [y1, y2, . . . , yn] if m ≤ n and xj ≥ yj for all j in the
range 1 ≤ j ≤ n. Thus, ur � vr if length ur ≤ length vr and the elements

Unravelling greedy algorithms 53

of heads ur are pointwise no smaller than those of heads vr . Since � clearly
respects length, we can replace minBy length by minWith (�), where

minWith (�) urs ∈ urs and (∀ur ∈ urs : minWith (�) urs � ur)

and establish the monotonicity condition

ur � vr ⇒ insert x ur � insert x vr (8.2)

where insert x is some refinement of minWith (�) · uprefixes x . Condition
(8.2) then gives

minWith (�) · upravels � foldr insert []

However, there is a slight technical difficulty with partial orderings: in
general there is no guarantee that minimum, as distinct from minimal, ele-
ments exist. An element is minimum if it is smaller than all other candidates,
but minimal only if there is no candidate smaller than it. For example,
the set {{a, b}, {a, c}, {a, b, c}} has no minimum elements under ⊆, but
two minimal elements, namely {a, b} and {a, c}. So we have to check that
minWith (�)(upravels xs) is inhabited. But this is easily proved by induction
on xs, given that minWith (�) · uprefixes x � insert x and (8.2).

Let us next show how to construct insert x . Suppose

heads ur = [x1, x2, . . . , xm]

so xi ≤ xj for 1 ≤ i ≤ j ≤ m. Define k by the condition xk < x ≤ xk+1,
where we can set xm+1 =∞. Then

heads (uprefixes x ur) = map ([x1, x2, . . . , xk , x]++) xss

where xss are the lists

[xk+2, xk+3, . . . , xm]
[xk+1, xk+3, . . . , xm]
· · ·
[xk+1, xk+2, . . . , xm−1]
[xk+1, xk+2, . . . , xm−1, xm]

Of these, the first list is pointwise largest (though not necessarily the only
one that is) and hence a minimum under �. In words, we can minimise �
by prefixing x to a sequence whose first element is the shortest one greater
than or equal to x . In fact we can define insert by

insert x [] = [[x]]
insert x (xs : xss) = if x ≤ head xs then (x : xs) : xss

else xs : insert x xss

54 Pearls of Functional Algorithm Design

It is an invariant on insert x ur that map head ur is in strictly increasing
order. Hence the best way to insert x is by prefixing x to the first sequence
in ur whose head is at least x . The definition of insert x ur takes linear
time in the length of ur , but the complexity can be reduced to logarithmic
time either by representing upravels as arrays of lists and employing binary
search, or by making use of balanced trees. We omit further details and just
claim that foldr insert [] can be implemented to run in O(n log n) steps.

Let us now turn to the proof of (8.2). Let heads ur = [x1, x2, . . . , xm] and
heads vr = [y1, y2, . . . , yn], so m ≤ n and yi ≤ xi for 1 ≤ i ≤ m. As we saw
above:

heads (insert x ur) = [x1, x2, . . . , xk , x , xk+2, xk+3, . . . , xm]
heads (insert x vr) = [y1, y2, . . . , y�, x , x�+2, x�+3, . . . , yn]

where xk < x ≤ xk+1 and y� < x ≤ y�+1. But yk ≤ xk , so k ≤ �. Lining up
the two lists, as in

[x1, x2, . . . , xk , x , xk+2, . . . , x�, x�+1, x�+2, . . . , xm]
[y1, y2, . . . , yk , yk+1, yk+2, . . . , y�, x , y�+2, . . . , ym]

we see that the first is pointwise larger than the second because yk+1 ≤ x
and x ≤ xl+1.

In summary, the problem of computing the shortest upravel of a given
list can be solved by a greedy algorithm that takes O(n log n) steps in the
length of the list.

Final remarks

The problem of the shortest upravel was first posed and solved by Lambert
Meertens in September 1984, at a meeting of IFIP Working Group 2.1 in
Pont-à-Mousson, France (Meertens, 1984). Subsequently, Kaldewaij (1985)
published a quite different solution. Kaldewaij’s (one-page!) solution was
based on a constructive proof of a specialisation of Dilworth’s theorem: the
size of a shortest upravel of xs is equal to the length of the longest decreasing
subsequence of xs. This fact can be combined with a well-known algorithm
for finding the length of a longest decreasing subsequence in O(n log n)
steps to produce an algorithm for the shortest upravel with the same time
complexity. The present pearl is based on Bird (1992), which also considers
another greedy algorithm that starts off with the following definition of
unravels:

unravels [] = [[]]
unravels xs = [ys : yss | ys ← subseqs xs, not (null ys),

yss ← unravels (xs \\ ys)]

Unravelling greedy algorithms 55

A shortest upravel can then obtained by extracting the rightmost maximal

upsequence at each stage, computed by rmu = foldr op [], where

op x [] = [x]
op x (y : ys) = if x ≤ y then x : y : ys else y : ys

The derivation of the alternative algorithm is left as an exercise.

References
Bird, R. S. (1992). The smallest upravel. Science of Computer Programming 18,

281–92.
Kaldewaij, A. (1985). On the decomposition of sequences into ascending sub-

sequences. Information Processing Letters 21, 69.
Meertens, L. G. L. T. (1984). Some more examples of algorithmic developments.

IFIP WG2.1 Working Paper, Pont-à-Mousson, France. See also An Abstracto
Reader prepared for IFIP WG 2.1. Technical Report CWI Note CS-N8702,
Centrum voor Wiskunde en Informatica, April 1987.

9

Finding celebrities

The setting is a tutorial on functional algorithm design. There are four
students: Anne, Jack, Mary and Theo.

Teacher: Good morning class. Today I would like you to solve the following
problem. Imagine a set P of people at a party. Say a subset C of P forms
a celebrity clique if C is nonempty, everybody at the party knows every
member of C , but members of C know only each other. Assuming there is
such a clique at the party, your problem is to write a functional program for
finding it. As data for the problem you are given a binary predicate knows
and the set P as a list ps not containing duplicates.

Jack: Just to be clear, does every member of a celebrity clique actually
know everyone else in the clique? And does everyone know themselves?

Teacher: As to the first question, yes, it follows from the definition:
everyone in the clique is known by everyone at the party. As to the second
question, the answer is not really relevant to the problem, so ask a philo-
sopher. If it simplifies things to assume that x knows x for all x , then go
ahead and do so.

Theo: This is going to be a hard problem, isn’t it? I mean, the problem of
determining whether there is a clique of size k in a party of n people will
take Ω(nk) steps, so we are looking at an exponential time algorithm.

Anne: That doesn’t follow, since being a celebrity clique is a much stronger
property than being a clique. In a directed graph, a clique is a set of nodes
in which each pair of nodes has an arc in both directions between them,
but a celebrity clique also requires an arc from every node in the graph to
every node in the clique, and no arcs from the clique to nodes outside the
clique.

56

Finding celebrities 57

Mary: Yes, while there can be many cliques in a graph, there is at most
one celebrity clique. Suppose that C1 and C2 are two celebrity cliques.
Pick any c1 in C1 and c2 in C2. We have that c1 knows c2 from the fact
that everybody in the clique C2 is known by everybody at the party. But
since clique members know only other members of the clique, it follows
that c2 ∈ C1. Since c2 was arbitrary, we have C2 ⊆ C1 and, by symmetry,
C1 ⊆ C2.

Theo: Agreed, they are different problems. Let me formalise the problem.
To simplify matters I am going to suppose that x knows x is true for all x .
By definition C is a celebrity clique of P if ∅ ⊂ C ⊆ P and

(∀x ∈ P , y ∈ C :: x knows y ∧ (y knows x ⇒ x ∈ C))

Let me abbreviate this last condition to C � P . Given lists ps and cs rep-
resenting P and C respectively, we can translate the condition into a list
comprehension:

cs � ps = and [x knows y ∧ (y knows x ⇒ x ∈ cs) | x ← ps, y ← cs]

Now define cclique ps = head (filter (�ps) (subseqs ps)), where subseqs ps is
a list of all subsequences of ps:

subseqs [] = [[]]
subseqs (x : xs) = map (x :) (subseqs xs) ++ subseqs xs

Since subseqs ps generates subsequences in descending order of length, the
value of cclique ps is either the empty list if there is no celebrity clique, or
the unique celebrity clique.

Jack: Theo’s exhaustive search program seems a reasonable place to start
I would say. Clearly, the way to achieve greater efficiency is to fuse the
filtering with the generation of subsequences. For the base case when there
are no people at the party we have filter (� []) (subseqs []) = [[]] since
cs � [] = True. For the inductive case we can reason

filter (�(p : ps)) (subseqs (p : ps))

= {definition of subseqs}
filter (� (p : ps)) (map (p:) (subseqs ps) ++ subseqs ps)

= {since filter distributes over ++}
filter (� (p : ps)) (map (p:) (subseqs ps)) ++
filter (� (p : ps)) (subseqs ps)

What next?

58 Pearls of Functional Algorithm Design

Anne: We have to simplify (p : cs) � (p : ps) and cs � (p : ps) when cs is a
subsequence of ps and p is not in cs. Let us deal with the second case first.
The definition of � gives that cs�(p :ps) just in the case that cs�ps, that no
celebrity in cs knows p and that p knows every celebrity in cs. In symbols:

cs � (p : ps) = cs � ps ∧ nonmember p cs

where

nonmember p cs = and [p knows c ∧ not (c knows p) | c← cs]

Now we can reason

filter (� (p : ps)) (subseqs ps)

= {above simplification of cs � (p : ps)}
filter (λcs → cs � ps ∧ nonmember p cs) (subseqs ps)

= {since filter (λx → p x ∧ q x) = filter q · filter p}
filter (nonmember p) (filter (�ps) (subseqs ps))

Now for the other case. We have that (p : cs)� (p : ps) holds just in the case
that cs � ps, and p is a new celebrity, meaning that everyone knows p and
p knows all and only members of cs. In symbols:

(p : cs) � (p : ps) = cs � ps ∧member p ps cs

where

member p ps cs = and [x knows p ∧ (p knows x ⇔ x ∈ cs) | x ← ps]

A similar calculation to the one above now gives

filter (� (p : ps)) (map (p:) (subseqs ps))
= map (p:) (filter (member p ps) (filter (�ps) (subseqs ps)))

Putting the two pieces together, we have cclique = head · ccliques, where

ccliques [] = [[]]
ccliques (p : ps) = map (p:) (filter (member p ps) css) ++

filter (nonmember p) css
where css = ccliques ps

The predicates member and nonmember can be evaluated in linear time and,
as ccliques returns at most two lists, a proper celebrity clique and an empty
list, we have reduced an exponential algorithm to a quadratic one.

Finding celebrities 59

Theo: Well, you can’t do better than a quadratic algorithm, at least in the
worst case. Suppose there was a sub-quadratic one, so at least one entry in
the knows matrix is not inspected. Suppose, furthermore, that all entries are
true, so everyone knows everyone else and the celebrity clique is the whole
party. Now change the non-inspected entry, knows x y say, to false. Then y
is no longer a celebrity. But everyone apart from x still knows y , so they
cannot be celebrities. That leaves x as the only possible celebrity; but unless
x and y are the only people at the party, there is some non-celebrity that x
knows, so x is not a celebrity either. That means there is no celebrity clique
at the modified party, and the sub-quadratic algorithm returns the wrong
answer. So, in the worst case, every element of the knows matrix has to be
inspected to arrive at the correct answer.

Teacher: Very good, Theo, and quite correct, but the problem was not to
determine whether or not there was a celebrity clique. All I asked for was to
identify a celebrity clique assuming one exists. In your scenario the answer
ps will suffice for both cases: in the first case it is the correct answer and in
the second case there is no celebrity clique, so any answer will do.

There is a pause while the class digests this information.

Mary: I have an idea. Anne’s reasoning shows that for all xs

xs � (p : ps) ⇒ (xs \\ [p]) � ps

where \\ denotes list difference. In other words, if cs � ps and p is someone
new who joins the party ps, then the only possible values of xs satisfying
xs � (p : ps) are [], [p], cs, or p : cs. I think this gives us another way of
solving the problem. Suppose first that cs is empty, so the only possible
celebrity clique of p : ps is [p]. In symbols:

null (cclique ps) ⇒ cclique (p : ps) ∈ {[], [p]}

On the other hand, suppose cs is not empty and contains some celebrity
c. What are the possible outcomes when a new person p joins the party?
Well, assume first that p does not know c. Then c is no longer a celebrity
in the extended party, and neither is any other member of cs because they
all know c. Hence

c ∈ cclique ps ∧ not (p knows c) ⇒ cclique (p : ps)) ∈ {[], [p]}

60 Pearls of Functional Algorithm Design

Assume next that p does know c but c does not know p. In this case cs is
also the celebrity clique of the extended party:

c ∈ cclique ps ∧ p knows c ∧ not (c knows p)
⇒ cclique (p : ps) = cclique ps

Finally, if p and c know each other, then the only celebrity clique of p : ps
is p : cs; in symbols:

c ∈ cclique ps ∧ p knows c ∧ c knows p
⇒ cclique (p : ps) ∈ {[], p : cs}

Theo: While I agree that your reasoning is correct, Mary, I do not see how
it leads to a solution. All you have shown is that if we know the value of
cclique ps and if the party p : ps contains a celebrity clique, then we can
quickly determine it. But how do we know the value of cclique ps in the first
place? You seem to be suggesting that if we define cclique ′ by

cclique ′ = foldr op []
op p cs | null cs = [p]

| not (p knows c) = [p]
| not (c knows p) = cs
| otherwise = p : cs

where c = head cs

then

not (null (cclique ps)) ⇒ cclique ps = cclique ′ ps (9.1)

But I don’t see how your reasoning proves (9.1).

Mary: Let me try again then. I will prove (9.1) by induction on ps. There
are two cases:
Case []. We have cclique [] = [], so (9.1) is true by default.
Case p : ps. Assume cclique (p : ps) is not empty. There are two subcases,
depending on whether cclique ps is empty or not. If not, then cclique ps =
cclique ′ ps by induction. We then have

cclique (p : ps)

= {my previous reasoning and definition of op}
op p (cclique ps)

= {since cclique ps = cclique ′ ps}
op p (cclique ′ ps)

= {definition of cclique ′}
cclique ′ (p : ps)

Finding celebrities 61

If, on the other hand, cclique ps is empty, then

cclique (p : ps)

= {assumption that cclique (p : ps) is not empty,
and first case of my previous reasoning}

[p]

= {p is the unique celebrity,
so not (p knows c) for any c ∈ cclique ′ ps}

op p (cclique ′ ps)

= {as before}
cclique ′ (p : ps)

This establishes the case and the induction.

Anne: That’s amazing, a simple linear-time algorithm! But we have only
arrived at the solution because of Mary’s cleverness. I still want a formal
derivation of cclique ′ from some suitable fusion law.

Teacher: Thank you, Anne, it’s good to have you in the class.

Anne: We can write subseqs using foldr :

subseqs = foldr add [[]]
add x xss = map (x :) xss ++ xss

So it appears that we are appealing to some fusion law of foldr . The textbook
statement of the fusion law for foldr states that f · foldr g a = foldr h b pro-
vided f is strict, f a = b, and f (gx y) = hx (f y) for all x and y . The strictness
condition is not needed if we want only to assert that f (foldr g a xs) =
foldr h b xs for all finite lists xs. This fusion rule does not apply directly to
the celebrity clique problem, namely filter (�ps) (subseqs ps), first because
filter (�ps) has ps as a parameter and second because we want something
more general than the equality of both sides.

Theo: The first restriction is not really a problem. We can always define a
version of subseqs that returns both the subsequences of a list and the list
itself. Suppose we define

subseqs ′ = foldr step ([], [[]])
step x (xs, xss) = (x : xs,map (x :) xss ++ xss)

Then cclique = f ·subseqs ′, where f (ps, css) = head (filter (�ps)css). In this
way the additional parameter is eliminated.

62 Pearls of Functional Algorithm Design

Mary: The textbook statement of the fusion rule is not general enough for
the problem. Let � be some relation on values; I don’t care what. Then it
is easy to show by induction that

f (foldr g a xs) � foldr h b xs

for all finite lists xs provided f a � b and f y � z ⇒ f (g x y) � h x z for
all x , y and z .

Jack: Yes, that’s it. We want to define xs � ys by

xs � ys = not (null xs) ⇒ xs = ys

Then the conditions we have to establish are first that

head (filter (� []) [[]]) � []

and second that

head (filter (� ps) css) � cs
⇒ head (filter (�(p : ps))(map (p:) css ++ css)) � op p cs

Mary’s reasoning establishes exactly these conditions.

Teacher: Yes. The more general statement of fusion is the one provided by
parametricity in Wadler’s (1989) “Theorems for free!” paper. It is nice to see
an example where the more general statement is needed. What is interesting
about the problem is that it is the first example I have seen in which it is
asymptotically more efficient to find a solution assuming one exists than
to check that it actually is a solution. A similar problem is the majority

voting problem – see, for example, Morgan (1994), Chapter 18 – in which
one is given a list xs and it is required to determine whether there is a value
in xs that occurs strictly greater than �length xs/2� times. It is easier to
first compute a putative majority and then check whether it is actually a
majority afterwards. But checking for a majority takes linear time rather
than quadratic time, so there is no asymptotic gap.

Afterword

The true story of the celebrity clique problem was as follows. I was giving
a course of lectures on Formal Program Design, in an imperative rather
than functional framework, and thought of the problem as a generalisation
of the one in Kaldewaij’s (1990) book. But despite a day of struggling with
loop invariants, I could not produce a sufficiently simple solution to present
to the class, so I set it as a challenge. I also talked about it at a research

Finding celebrities 63

meeting the following Friday. Over the weekend, Sharon Curtis produced a
simple linear-time algorithm and Julian Tibble, a second-year undergradu-
ate, provided a good way to reason about the problem.

In the belief that whatever can be done with loops and invariants can also
be done at least as easily using the laws of functional program derivation, the
problem was translated into a functional setting and the dialogue above was
composed. Afterwards, the problem was tried out at a WG2.1 meeting in
Nottingham in September, 2004. Gratifyingly, the actual discussion followed
the early part of the dialogue quite closely. On repeatedly being urged to
try harder, Andres Löh and Johan Jeuring came up a day later with the
linear-time solution.

References
Kaldewaij, A. (1990). Programming the Derivation of Algorithms. Hemel

Hempstead: Prentice Hall.
Morgan, C. (1994). Programming from Specifications, 2nd edition. Hemel

Hempstead: Prentice Hall.
Wadler, P. (1989). Theorems for free! Fourth International Symposium on

Functional Programming Languages and Computer Architecture. ACM
Press, pp. 347–59.

10

Removing duplicates

Introduction

The Haskell library function nub removes duplicates from a list:

nub :: Eq a ⇒ [a] → [a]
nub [] = []
nub (x : xs) = x : nub (xs \\ [x])

The value xs \\ys is what remains of xs after all the elements in ys have been
deleted. For example, nub “calculus” = “calus”. Evaluation of nub on a list
of length n takes Θ(n2) steps. This is the best one can hope for, since any
algorithm for the problem requires Ω(n2) equality tests in the worst case.
With the definition above, nub xs returns a list of the distinct elements in
xs in the order in which they first appear in xs. In other words, the position
of nub xs as a subsequence of xs is lexicographically the least among the
positions of all possible solutions.

Let us now change the problem and ask that nub :: Ord a ⇒ [a] → [a]
simply returns the lexicographically least solution. Note the subtle differ-
ence: before it was the position of the subsequence that was lexicographi-
cally the least; now it is the subsequence itself. For example, nub“calculus” =
“aclus” under the second definition. The change of type of nub is necessary
to make the new problem meaningful. Changing the type of nub changes
the lower bound complexity: only Ω(n log n) comparison tests are needed in
the worst case. A pretty proof of this claim is given by Bloom and Wright
(2003). Can we find an Θ(n log n) program for the new version of nub? The
answer turns out to be yes, but the algorithm is not obvious and calculating
it requires some work. So, be prepared.

A first version

We begin with the specification

nub = minimum · longest · filter nodups · subseqs

64

Removing duplicates 65

In words, compute all possible subsequences of the given list (subseqs),
filter this list of subsequences for just those that do not contain duplicates
(filter nodups), compute all the longest ones (longest) and finally select the
smallest one (minimum).

It is not too difficult to calculate the following recursive definition of nub
from the specification:

nub [] = []
nub (x : xs) = if x /∈ xs then x : nub xs else

(x : nub (xs \\ [x])) min (nub xs)

We omit the details, leaving them as an exercise for the interested reader.
Anyway, the recursive version is reasonably intuitive: in the case x :xs, either
x does not appear in xs, so there is no choice, or it does, in which case the
result is the smaller of two alternatives, choosing x now or later on.

The problem with the recursive definition of nub is that it can take expo-
nential time because the number of recursive calls can double at each step.
We therefore have some work to do in reaching an Θ(n log n) algorithm.

A generalisation

The first thought, given the target time complexity, is a divide and conquer
algorithm, seeking a function join for which

nub (xs ++ ys) = join (nub xs) (nub ys) (10.1)

But no such function can exist. For instance, (10.1) requires

join “bca” “c” = join (nub “bca”) (nub “c”) = nub “bcac” = “bac”

But also (10.1) requires

join “bca” “c” = join (nub “bcab”) (nub “c”) = nub “bcabc” = “abc”

This example also shows that nub cannot be expressed as an instance of
foldl . It is also easy to construct an example to show that nub cannot be
expressed as an instance of foldr .

We therefore need some generalisation of nub. To see what it might be,
consider a list of the form x : y : xs with x ∈ xs and y ∈ xs and x �= y .
Unfolding the definition of nub(x :y :xs), and exploiting both the associativity
of min and the fact that (x :) distributes through min, we find

66 Pearls of Functional Algorithm Design

nub (x : y : xs) = x : y : nub (xs \\ [x , y]) min
x : nub (xs \\ [x])) min
y : nub (xs \\ [y]) min
nub xs

Now suppose that x < y , so the second term is lexicographically smaller
than the third. That means the third term can be dropped:

nub (x : y : xs) = x : y : nub (xs \\ [x , y]) min
x : nub (xs \\ [x])) min
nub xs

If, on the other hand, x > y , then the first two terms can be dropped:

nub (x : y : xs) = y : nub (xs \\ [y]) min
nub xs

The forms of these two expressions suggest our generalisation, which we will
call hub. To help keep expressions reasonably short, abbreviate minimum to
min in all that follows. The definition of hub is

hub ws xs = min [is ++ nub (xs \\ is) | is ← inits ws] (10.2)

where ws is a list in strictly increasing order. The standard function inits
returns a list of all the initial segments, or prefixes, of a list. The example
above now reads

nub (x : y : xs) = if x < y then hub [x , y] xs else hub [y] xs

The function hub generalises nub, for inits [] = [[]] and xs \\ [] = xs, so
nub xs = hub [] xs. Two other immediate facts about hub are that hub ws xs
begins with a prefix of ws, and that hub ws xs ≤ nub xs since the empty list
is a prefix of every list.

The aim now is to derive an inductive definition of hub. For the base case
we reason

hub ws []

= {definition}
min [is ++ nub ([] \\ is) | is ← inits ws]

= {since [] \\ is = [] and nub [] = []}
min [is | is ← inits ws]

= {since [] is the lexicographically least list in inits ws}
[]

Removing duplicates 67

Hence hub ws [] = []. For the inductive case, (10.2) gives

hub ws (x : xs) = min [is ++ nub ((x : xs) \\ is) | is ← inits ws] (10.3)

To simplify the right-hand side we need to know whether or not x ∈ ws, so
we start by splitting ws into two lists, us and vs, defined by

(us, vs) = (takeWhile (< x) ws, dropWhile (< x) ws)

More briefly, (us, vs) = span (< x) ws, where span is a standard Haskell
library function. Since ws = us ++ vs and ws is in increasing order, both us
and vs are also in increasing order. Moreover, if x ∈ ws, then x = head vs;
if not, then either vs is empty or x < head vs.

The following property of inits is key to the simplification of (10.3):

inits (us ++ vs) = inits us ++ map (us++) (inits+ vs) (10.4)

where inits+ vs returns the list of nonempty prefixes of vs. Using this
expression for inits in (10.3) and splitting the comprehension into two parts,
we obtain that hub ws (x : xs) = A min B , where

A = min [is++nub ((x : xs) \\ is) | is ← inits us] (10.5)

B = min [us++is++nub ((x : xs) \\ (us++is)) | is ← inits+ vs] (10.6)

To discover A min B we deal with A first, distinguishing the two cases x /∈ xs
and x ∈ xs. In the first case, x /∈ xs, we argue:

A

= {definition (10.5)}
min [is ++ nub ((x : xs) \\ is) | is ← inits us]

= {recursive definition of nub since x /∈ xs and x /∈ us}
min [is ++ [x] ++ nub (xs \\ is) | is ← inits us]

= {since us < is ++ [x] for is ∈ inits us}
us ++ [x] ++ nub (xs \\ us)

= {since nub xs = hub [] xs}
us ++ [x] ++ hub [] (xs \\ us)

In the second case, x ∈ xs, we argue:

A

= {recursive definition of nub since x ∈ xs and x /∈ us}
min [is ++ ([x] ++ nub (xs \\ (is ++ [x])) min nub (xs \\ is))

| is ← inits us]

68 Pearls of Functional Algorithm Design

= {taking min outside the comprehension}
min [is ++ [x] ++ nub (xs \\ (is ++ [x])) | is ← inits us] min
min [is ++ nub (xs \\ is) | is ← inits us]

= {since us < is ++ [x] for is ∈ inits us}
(us ++ [x] ++ nub (xs \\ (us ++ [x]))) min
min [is ++ nub (xs \\ is) | is ← inits us]

= {since inits (us ++ [x]) = inits us ++ [us ++ [x]]}
min [is ++ nub (xs \\ is) | is ← inits (us ++ [x])]

= {definition (10.2)}
hub (us ++ [x]) xs

Summarising, A equals

if x ∈ xs then hub (us++[x]) xs else us++[x]++hub [] (xs \\ us)

Now we turn to B . According to (10.6), if vs is empty (so inits+vs is empty),
then B is the fictitious value min []. Otherwise, we reason:

B

= {definition (10.6)}
min [us++is++nub ((x : xs) \\ (us++is)) | is ← inits+ (v : vs ′)]

= {since inits+ (v : vs ′) = map (v :) (inits vs ′)}
min [us++[v]++is++nub ((x : xs) \\ (us++[v]++is)) | is ← inits vs ′]

= {since min ·map (ys++) = (ys++) ·min}
us++[v]++min [is++nub ((x : xs) \\ (us++[v]++is)) | is ← inits vs ′]

In particular, B begins with us ++ [v]. Without going further we now have
enough information to determine hub ws (x : xs) in the case x /∈ ws. In this
case, either vs is empty, so A < B , or vs is not empty and begins with v
where x < v . In the latter situation we again have A < B because A begins
with a prefix of us ++ [x] and us ++ [x] < us ++ [v]. Hence

x /∈ ws ⇒ hub ws (x : xs) = A

It remains to deal with the case x ∈ ws, so x = v . In this case B simplifies to

us++[x]++min [is++nub (xs \\ (us++[x]++is)) | is ← inits vs ′]

Now we need a final case analysis. Assume first that x /∈ xs. We calculate:

B

= {above}
us++[x]++min [is++nub (xs \\ (us++[x]++is)) | is ← inits vs ′]

Removing duplicates 69

nub = hub []
hub ws [] = []
hub ws (x : xs) = case (x ∈ xs, x ∈ ws) of

(False,False) → us++[x]++hub [] (xs \\ us)
(False,True) → us++[x]++hub (tail vs) (xs \\ us)
(True,False) → hub (us++[x]) xs
(True,True) → hub ws xs

where (us, vs) = span (< x) ws

Fig. 10.1 Second definition of nub

= {since xs \\ (us++[x]++is) = xs \\ (us++is) = (xs \\ us) \\ is}
us++[x]++min [is++nub ((xs \\ us) \\ is) | is ← inits vs ′]

= {definition (10.2)}
us++[x]++hub vs ′ (xs \\ us)

Hence:

hub ws (x : xs)

= {expressions for A and B , assuming x /∈ xs}
(us++[x]++nub (xs \\ us)) min (us++[x]++hub vs ′ (xs \\ us))

= {since hub vs ′ (xs \\ us) ≤ nub (xs \\ us)}
us++[x]++hub vs ′ (xs \\ us)

In the final case x ∈ xs we can reason:

hub ws (x : xs)

= {expressions for A and B , assuming x ∈ xs}
hub (us++[x]) xs min
us++[x]++min [is++nub (xs \\ (us++[x]++is)) | is ← inits vs ′]

= {since ws = us++[x]++vs ′ and (10.4)}
min [is++nub (xs \\ is) | is ← inits ws]

= {definition of hub}
hub ws xs

The result of these calculations is summarised in Figure 10.1. Each member-
ship test, list difference operation and evaluation of span takes linear time,
so evaluation of hub takes linear time at each recursive call and quadratic
time in total.

70 Pearls of Functional Algorithm Design

Introducing sets

The final step is to introduce an efficient representation of sets to reduce the
complexity of the subsidiary operations from linear to logarithmic. Rather
than program the set operations ourselves, we can invoke the Haskell
library Data.Set . This library provides a data type Set a and the following
operations (among others):

empty :: Set a
member :: Ord a ⇒ a → Set a → Bool
insert :: Ord a ⇒ a → Set a → Set a
split :: Ord a ⇒ a → Set a → (Set a,Set a)
elems :: Ord a ⇒ Set a → [a]

The value empty denotes the empty set, member is the membership test,
insert x xs inserts a new element x into the set xs, while split x splits a set
into those elements less than x and those greater than x , and elems returns
the elements of a set in increasing order. As to the costs, empty takes con-
stant time, member , insert and split take O(log n) steps on a set of size n,
while elems takes O(n) steps.

In order to introduce sets into the definition of nub we need a preprocessing
phase that associates with each element x of xs the set of elements that come
after it. That is, we need to compute

(x1, {x2, x3, . . . xn}), (x2, {x3, . . . , xn}), . . . (xn , {})

This list can be computed using the Haskell function scanr :

preprocess :: Ord a ⇒ [a]→ [(a,Set a)]
preprocess xs = zip xs (tail (scanr insert empty xs))

The expression scanr insert empty [x1, x2, . . . xn] returns the list

[{x1, x2, . . . , xn}, {x2, . . . , xn}, . . . , {xn}, {}]

and takes O(n log n) steps to do so.
The result of installing sets in Figure 10.1 is given in Figure 10.2. Unfor-

tunately, its running time is not O(n log n). To see why, let us estimate the
costs of the various operations. Each membership test contributes O(log n)
steps to the cost at each recursive call. So does split . Let m be the size of
us. Since elems takes O(m) steps, as does concatenating the result with the
rest of the list, and there are at most n elements in the final list, the total
contribution of elems and ++ to the final cost is O(n) steps. However, the

Removing duplicates 71

nub = hub empty · preprocess
preprocess xs = zip xs (tail (scanr insert empty xs))
hub ws [] = []
hub ws ((x , xs) : xss) =

case (member x xs,member x ws) of
(False,False) → eus++[x]++hub empty yss
(False,True) → eus++[x]++hub vs yss
(True,False) → hub (insert x us) xss
(True,True) → hub ws xss

where (us, vs) = split x ws
eus = elems us
yss = [(x , xs) | (x , xs)← xss,not (member x us)]

Fig. 10.2 Introducing sets

cost of computing yss is Ω(n log m) steps at each call, and summing this
cost gives Ω(n2) steps. As a specific example, consider the input

[1 .. n] ++ [j | j ← [1 .. n], j mod 3 �= 0]

The output is [1 .. n]. Each multiple of 3 causes the program to flush two
elements from the set ws, namely [1, 2], [4, 5], [7, 8] and so on, and the total
cost of computing yss is quadratic in n.

One way to solve this problem is to introduce an additional argument ps
into hub, defining hub ′ by

hub ′ :: Set a → Set a → [(a,Set a)] → [a]
hub′ ps ws xss = hub ws [(x , xs) | (x , xs)← xss, x /∈ ps]

Then we obtain the program of Figure 10.3. The cost of computing qs is
O(m log n), where m is the size of us, rather than the O(n log m) cost of
computing yss in the previous version. Since the combined size of the sets
us for which this operation is performed is at most n, the total running time
is O(n log n) steps.

Final remarks

It was quite a lot of work to achieve the result, and the final algorithm is
neither pretty nor intuitive. A nagging doubt remains that there might be
a much simpler solution to such a simply stated problem. But so far I have
not been able to find one. The main calculation turned out to be quite
intricate and bedevilled by case analysis. Nevertheless, the battle plan is
common enough: obtain a recursive formulation of the problem and then

72 Pearls of Functional Algorithm Design

nub = hub′ empty empty · preprocess
preprocess xs = zip xs (tail (scanr insert empty xs))
hub′ ps ws [] = []
hub′ ps ws ((x , xs) : xss) =

if member x ps then hub′ ps ws xss else
case (member x xs,member x ws) of

(False,False) → eus++[x]++hub′ qs empty xss
(False,True) → eus++[x]++hub′ qs vs xss
(True,False) → hub′ ps (insert x us) xss
(True,True) → hub′ ps ws xss

where (us, vs) = split x ws
eus = elems us
qs = foldr insert ps eus

Fig. 10.3 The final version

seek a generalised version that can be implemented efficiently. The same
plan arises in the derivation of many efficient algorithms.

References
Bloom, S. L. and Wright, R. S. (2003). Some lower bounds on comparison-based

algorithms. Unpublished research paper. Department of Computer Science,
Steven’s Institute of Technology, Hoboken, NJ, USA.

11

Not the maximum segment sum

Introduction

The maximum segment sum problem enjoyed a burst of popularity at the
end of the 1980s, mostly as a showcase for programmers to illustrate their
favourite style of program development or their particular theorem prover.
The problem is to compute the maximum of the sums of all possible segments
of a list of integers, positive or negative. But this pearl is not about the
maximum segment sum. Instead, it is about the maximum non-segment

sum. A segment of a list is a contiguous subsequence, while a non-segment
is a subsequence that is not a segment. For example,

[−4,−3,−7, +2, +1,−2,−1,−4]

has maximum segment sum 3 (from the segment [+2, +1]) and maximum
non-segment sum 2 (from the non-segment [+2, +1,−1]). There are no non-
segments of a list with two or fewer elements. While there are Θ(n2) segments
of a list of length n, there are Θ(2n) subsequences, and so many more non-
segments than segments. Can one compute the maximum non-segment sum
in linear time? Yes. There is a simple linear-time algorithm, and the aim of
this pearl is to calculate it.

Specification

Here is the specification of mnss, the maximum non-segment sum:

mnss :: [Int] → Int
mnss = maximum ·map sum · nonsegs

The function nonsegs returns a list of all non-segments of a list. To define
this function we can mark each element of the list with a Boolean value: True
to signify it is to be included in the non-segment and False to indicate it
is not. We mark in all possible ways, filter the markings for those that
correspond to non-segments and then extract those non-segments whose

73

74 Pearls of Functional Algorithm Design

elements are marked True. The function markings returns all possible
markings:

markings :: [a]→ [[(a,Bool)]]
markings xs = [zip xs bs | bs ← booleans (length xs)]

booleans 0 = [[]]
booleans (n+1) = [b : bs | b ← [True,False], bs ← booleans n]

Markings are in one-to-one correspondence with subsequences. We can now
define

nonsegs :: [a] → [[a]]
nonsegs = extract · filter nonseg ·markings

extract :: [[(a,Bool)]]→ [[a]]
extract = map (map fst · filter snd)

The function nonseg :: [(a,Bool)] → Bool returns True on a list xms if and
only if map snd xms describes a non-segment marking. The Boolean list ms
is a non-segment marking if and only if it is an element of the set represented
by the regular expression

F ∗T+F+T (T + F)∗

in which True is abbreviated to T and False to F . The regular expression
identifies the leftmost gap T+F+T that makes the sequence a non-segment.

The finite automaton for recognising members of the corresponding
regular set needs four states:

data State = E | S | M | N

State E (for Empty) is the starting state; when the automaton is in state
E , markings only in the set F ∗ have been recognised. State S (for Suffix) is
when the automaton has processed one or more T s, so indicates markings
in the set F ∗T+, a non-empty suffix of T s. State M (for Middle) is to
indicate markings in the set F ∗T+F+, a middle segment, and state N (for
Non-segment) for non-segment markings. We can now define

nonseg = (N) · foldl step E ·map snd

where the middle term foldl stepE executes the steps of the finite automaton:

step E False = E step M False = M
step E True = S step M True = N
step S False = M step N False = N
step S True = S step N True = N

Not the maximum segment sum 75

Finite automata process their input from left to right, which explains the use
of foldl . We could equally as well have processed lists from right to left, and
looked for the rightmost gap, but why break with convention unnecessarily?
Notice also that there is nothing special here about the nonseg property:
any property of markings that can be recognised by a finite-state automaton
yields to exactly the same treatment.

Derivation

Here is the definition of mnss again:

mnss = maximum ·map sum · extract · filter nonseg ·markings
extract = map (map fst · filter snd)
nonseg = (N) · foldl step E ·map snd

Our plan of attack is to express extract · filter nonseg ·markings as an inst-
ance of foldl and then to apply the fusion law of foldl to complete the passage
to a better algorithm. To this end, define pick by

pick :: State → [a] → [[a]]
pick q = extract · filter ((q) · foldl step E ·map snd) ·markings

In particular, nonsegs = pickN . We claim that the following seven equations
hold:

pick E xs = [[]]
pick S [] = []
pick S (xs ++ [x]) = map (++[x]) (pick S xs ++ pick E xs)
pick M [] = []
pick M (xs ++ [x]) = pick M xs ++ pick S xs
pick N [] = []
pick N (xs ++ [x]) = pick N xs ++

map (++[x]) (pick N xs ++ pick M xs)

The pukka way to derive these equations is through due process of calcu-
lation from the definition of pick q , but the steps are tedious and we will
not bother. Instead, each equation can be justified by appeal to step. For
example, the equation for pick E is justified because step returns E only on
empty subsequences. Similarly for pick S , because step returns S only when
x is marked True and preceded either by an element of pick E or pick S . The
other definitions can be justified in a similar way. Again, there is nothing
specific to non-segments: any finite automaton with k states that recog-
nises correct markings can be systematically transformed into essentially k
functions that operate directly on the given input.

76 Pearls of Functional Algorithm Design

The next step is to recast the definition of pick as an instance of foldl .
Consider the function pickall , specified by

pickall xs = (pick E xs, pick S xs, pick M xs, pick N xs)

The following definition of pickall as an instance of foldl follows from the
definitions above:

pickall = foldl step ([[]], [], [], [])
step (ess,nss,mss, sss) x = (ess,

map (++[x]) (sss ++ ess),
mss ++ sss,
nss ++ map (++[x]) (nss ++ mss))

Our problem now takes the form

mnss = maximum ·map sum · fourth · pickall

where fourth returns the fourth element of a quadruple. We can move the
fourth to the front of the expression on the right by introducing

tuple f (w , x , y , z) = (f w , f x , f y , f z)

Then we have

maximum ·map sum · fourth = fourth · tuple (maximum ·map sum)

so mnss = fourth · tuple (maximum ·map sum) · pickall .
As hoped for, we are now in a position to apply the fusion law of foldl .

This law states that f (foldl g a xs) = foldl h b xs for all finite lists xs provided
that f a = b and f (g x y) = h (f x) y for all x and y . In our problem we
have the instantiations

f = tuple (maximum ·map sum)
g = step
a = ([[]], [], [], [])

It remains to find h and b to satisfy the fusion conditions. First:

tuple (maximum ·map sum) ([[]], [], [], []) = (0,−∞,−∞,−∞)

because the maximum of an empty set of numbers is −∞. This gives the
definition of b. For h we need to satisfy the equation

tuple (maximum ·map sum) (step (ess, sss,mss,nss) x)
= h (tuple (maximum ·map sum) (ess, sss,mss,nss)) x

Not the maximum segment sum 77

To derive h we look at each component in turn. To keep expressions short,
abbreviate maximum to max . For the fourth component we reason:

max (map sum (nss ++ map (++[x]) (nss ++ mss)))

= {definition of map}
max (map sum nss ++ map (sum · (++[x])) (nss ++ mss))

= {since sum · (++[x]) = (+x) · sum}
max (map sum nss ++ map ((+x) · sum) (nss ++ mss))

= {since max (xs ++ ys) = (max xs) max (max ys)}
max (map sum nss) max max (map ((+x) · sum) (nss ++ mss))

= {since max ·map (+x) = (+x) ·max}
max (map sum nss) max (max (map sum (nss ++ mss)) + x)

= {introducing n = max (map sum nss) and
m = max (map sum mss)}

n max ((n max m) + x)

The other three components are treated similarly, and we arrive at

h (e, s,m,n) x
= (e, (s max e) + x ,m max s,n max ((n max m) + x))

and mnss = fourth · foldl h (0,−∞,−∞,−∞).
That, basically, is it. Well, we still have to deal with the fictitious −∞

values. Perhaps the best method is to eliminate them entirely by considering
the first three elements of the list separately:

mnss xs = fourth (foldl h (start (take 3 xs)) (drop 3 xs))
start [x , y , z] = (0,max [x+y+z , y+z , z],max [x , x+y , y], x+z)

Not quite as pretty, but more effective.

Final remarks

The origins of the maximum segment sum problem go back to about 1975,
and its history is described in one of Bentley’s (1987) programming pearls.
For a derivation using invariant assertions, see Gries (1990); for an algebraic
approach, see Bird (1989). The problem refuses to go away, and variations are
still an active topic for algorithm designers because of potential applications
in data-mining and bioinformatics; see Mu (2008) for recent results.

The interest in the non-segment problem is what it tells us about any
maximum marking problem in which the marking criterion can be formulated

78 Pearls of Functional Algorithm Design

as a regular expression. For instance, it is immediate that there is an O(nk)
algorithm for computing the maximum at-least-length-k segment problem
because F ∗TnF ∗ (n ≥ k) can be recognised by a k -state automaton.
And even non-regular conditions such as F ∗T nF ∗T nF ∗ (n ≥ 0), whose
recogniser requires an unbounded number of states, is susceptible to the
same method. What is more, the restriction to lists is not necessary either;
one can solve maximum marking problems about a whole variety of data
types in a similar way.

References
Bentley, J. R. (1987). Programming Pearls. Reading, MA: Addison-Wesley.
Bird, R. S. (1989). Algebraic identities for program calculation. Computer Journal

32 (2), 122–6.
Gries, D. (1990). The maximum segment sum problem. In Formal Development of

Programs and Proofs, ed. E. W. Dijkstra et al. University of Texas at Austin
Year of Programming Series. Menlo Park. Addison-Wesley, pp. 43–5.

Mu, S.-C. (2008). The maximum segment sum is back. Partial Evaluation and
Program Manipulation (PEPM ’08), pp. 31–9.

12

Ranking suffixes

Introduction

The idea of ranking the elements of a list crops up frequently. An element
x is assigned rank r if there are exactly r elements of the list less than
x . For example, rank [51, 38, 29, 51, 63, 38] = [3, 1, 0, 3, 5, 1]. This scheme
ranks from 0 and from lowest to highest, but one can also rank from 1
and from highest to lowest, as when ranking candidates by their marks in
an examination. Rankings are distinct if and only if the list does not contain
duplicates, in which case rank xs is a permutation of [0 .. length xs − 1].

In this pearl we consider the problem of ranking the suffixes of a list
rather than the list itself. It takes Θ(n log n) steps to rank a list of length
n, assuming a test x < y takes constant time. Since in the worst case it
takes Θ(n) such tests to make one lexicographic comparison between two
suffixes of a list of length n, it seems that ranking the suffixes of a list
should require Θ(n2 log n) basic comparisons. The point of this pearl is to
show that only Θ(n log n) steps are necessary. Asymptotically speaking, it
takes no more time to rank the suffixes of a list than it does to rank the list
itself. Surprising but true.

Specification

In Haskell the suffixes of a list are called its tails, and henceforth we will
refer to tails rather than suffixes. The function tails returns the nonempty

tails of a list in decreasing order of length:

tails :: [a]→ [[a]]
tails [] = []
tails xs = xs : tails (tail xs)

This definition of tails differs from the standard Haskell function of the same
name, which returns all the tails, including the empty tail. The function rank
can be specified by

79

80 Pearls of Functional Algorithm Design

rank :: Ord a ⇒ [a] → [Int]
rank xs = map (λx → length (filter (< x) xs)) xs

This definition takes Θ(n2) steps on a list of length n, but rank can be
improved to take Θ(n log n) steps, something we will take up later on.

The required function, ranktails say, can now be defined by

ranktails :: Ord a ⇒ [a]→ [Int]
ranktails = rank · tails

Our task is to implement ranktails to take Θ(n log n) steps.

Properties of rank

We will need various properties of rank , the most important of which is that
rank maintains order: if we know only rank xs, then we know everything
about the relative order of the elements of xs, though nothing about the
nature of the elements themselves. Suppose we define xs ≈ ys to mean
rank xs = rank ys. Then xs ≈ ys if the elements in xs have the same relative
order as the elements in ys. As two examples among many:

xs ≈ zip xs xs and zip (zip xs ys) zs ≈ zip xs (zip ys zs)

We will also need the following property of rank . Let select :: [a] → [a]
be any function such that:

(i) every element in select xs is in xs;
(ii) select ·map f = map f · select for any f .

Then

rank · select · rank = rank · select (12.1)

In particular, taking select = id we have rank · rank = rank , and taking
select = tail , we have rank · tail · rank = rank · tail . The proof of (12.1) is
left as an instructive exercise to the interested reader.

Finally, a useful idea associated with ranking is that of refining one
ranking by another one. Suppose we define the operation �, pronounced
“refined by”, by

xs � ys = rank (zip xs ys) (12.2)

For example, [3, 1, 3, 0, 1] � [2, 0, 3, 4, 0] = [2, 1, 3, 0, 1]. Thus, equal ranks
in xs may be refined to distinct ranks in xs � ys. The operation � is

Ranking suffixes 81

associative. Here is the proof:

(xs � ys)� zs

= {(12.2)}
rank (zip (rank (zip xs ys)) zs)

= {since zip us vs ≈ zip (rank us) vs}
rank (zip (zip xs ys) zs)

= {since zip (zip xs ys) zs ≈ zip xs (zip ys zs)}
rank (zip xs (zip ys zs))

= {as before}
xs � (ys � zs)

Observe also that if a ranking xs consists of distinct elements, and therefore
is a permutation of [0 .. n−1], where n = length xs, then xs � ys = xs for
any ys of the same length as xs. In words, once a ranking is a permutation
it cannot be further refined.

A better algorithm

One obvious approach to improving the performance of ranktails, given its
target complexity, is to look for a divide and conquer solution based on the
decomposition

tails (xs ++ ys) = map (++ys) (tails xs) ++ tails ys

But this does not seem to lead anywhere. Instead, we take another approach
and first generalise ranktails to a function rats by replacing the lexicographic
comparison test (<) with (<k), where xs <k ys = take k xs < take k ys.
In other words, we rank the tails of a list by looking only at the first k
elements of each tail. Define rats by

rats k = rank ·map (take k) · tails (12.3)

We have ranktails xs = rats (length xs) xs, so rats is a generalisation of
ranktails. The main reason for the name rats, apart from being a compression
of both rank and tails, is that it is pronounceable and short enough to avoid
lengthy expressions in calculations.

The key to the derivation of a faster algorithm for ranktails is the following
property of rats:

rats (2∗k) xs = rats k xs � shiftBy k (rats k xs) (12.4)

82 Pearls of Functional Algorithm Design

We will prove this, and also give the definition of shiftBy , later on. Since
xs ≈ map (take 1) (tails xs) we have rats 1 = rank . The idea is to use (12.4)
to successively rank map (take 2) (tails xs), map (take 4) (tails xs) and so on
until we reach a permutation. Thus, we propose the following algorithm for
ranktails:

ranktails = applyUntil isperm rerankings · rank
rerankings = map rerank (iterate (∗2) 1)
rerank k rs = rs � shiftBy k rs

The function applyUntil is a variant of the standard function until and is
defined by

applyUntil :: (a → Bool) → [a → a]→ a → a
applyUntil p (f : fs) x = if p x then x else applyUntil p fs (f x)

The function isperm tests whether a ranking is a permutation and can be
defined using a Haskell array:1

isperm :: [Int]→ Bool
isperm is = and (elems

(accumArray (∨) False (0,n−1) (zip is (repeat True))))
where n = length is

This definition of isperm takes linear time.
In words, ranktails first ranks the elements of the input and then succes-

sively applies rerank 1, rerank 2, rerank 4 and so on until the result is a
permutation. Note that it is only the very first ranking that inspects the
input; the remaining rerankings deal exclusively with ranks; that is, lists of
integers. At worst, ranktails xs requires log n rerankings where n = length xs.
Assuming rank takes Θ(n log n) steps and shiftBy takes Θ(n) steps, the new
version of ranktails takes Θ(n log2 n) steps. Better than Θ(n2 log n), but not
yet at our target complexity of Θ(n log n).

Proof

Now we prove (12.4), and at the same time discover a definition of shiftBy .
We are going to need a number of additional properties involving lists, tails
and rankings, the first of which is that

all (not · null) xss ⇒ xss = zipWith (:) (map head xss) (map tail xss)

1 An almost identical program was used in the pearl “The smallest free number”; see pearl 1.

Ranking suffixes 83

To reduce the parenthesis count in expressions we rewrite the consequent in
the form

id = zipWith (:) · fork (map head ,map tail) (12.5)

where fork (f , g) x = (f x , g x) and zipWith (:) is quietly assumed to be
non-curried. Proofs of this and other properties are omitted.

We start by calculating

rats (k+1)

= {(12.3)}
rank ·map (take (k+1)) · tails

= {(12.5) since all (not · null) ·map (take (k+1)) · tails}
rank · zipWith (:) · fork (map head ,map tail) ·
map (take (k+1)) · tails

Now, fork (f , g) · h = fork (f · h, g · h) and

map head ·map (take (k+1)) · tails = id
map tail ·map (take (k+1)) · tails = snoc [] · tail ·map (take k) · tails

where snoc x xs = xs ++ [x]. Hence we can continue:

rank · zipWith (:) · fork (map head ,map tail) ·
map (take (k+1)) · tails

= {above}
rank · zipWith (:) · fork (id , snoc [] · tail ·map (take k) · tails)

The next step is to see that zipWith (:) xs xss ≈ zip xs xss, or, more briefly,
zipWith (:) ≈ zip, where zip is also quietly assumed to be non-curried. Hence
we obtain

rats (k+1) = rank · zip · fork (id , snoc [] · tail ·map (take k) · tails)

Now rank · zip = (�) by (12.2). And since xs � ys = xs � rank ys, that
gets us to

rats (k+1) = (�) · fork (id , rank · snoc [] · tail ·map (take k) · tails)

Now rank · snoc [] = lift · rank , where lift = snoc 0 ·map (+1), so

rats (k+1) = (�) · fork (id , lift · rank · tail ·map (take k) · tails)

Next we claim that lift · rank · tail ≈ lift · tail · rank . Here is the proof:

lift (rank (tail xs)) ≈ lift (tail (rank xs))

84 Pearls of Functional Algorithm Design

⇐ {since xs ≈ ys implies lift xs ≈ lift ys}
rank (tail xs) ≈ tail (rank xs)

≡ {definition of ≈}
rank (rank (tail xs)) = rank (tail (rank xs))

⇐ {using (12.1) twice, once for subseq = id
and once for subseq = tail}

true

Hence rats (k+1) = (�) · fork (id , lift · tail · rats k). Equivalently:

rats (k+1) xs = rank xs � shift (rats k xs) (12.6)

where shift = lift · tail and lift is = map (+1) is ++ [0].
The next step is to exploit the fact that

shift (is � js) = shift is � shift js

and the associativity of �. Then we obtain from (12.6) that

rats k xs = rs � shift rs � shift2 rs � · · · � shiftk−1 rs

where rs = rank xs and shiftk is the k -fold composition of shift with itself.
It is now easy to group terms in this series expansion for rats to obtain

rats (2∗k) xs = rats k xs � shiftk (rats k xs)

Finally, we can set shiftBy k = shiftk to establish (12.4). In fact, we have

shiftBy k rs = map (+k) (drop k rs) ++ [k−1, k−2 .. 0]

Evaluation of shiftBy k rs takes Θ(n) steps where n = length rs.

A better rank

We turn next to a better method for computing rank . As every examiner
knows, the way to rank a list of candidate–mark pairs, given in candidate
order, is first to partition the candidates by sorting them according to their
marks, and placing candidates with equal marks into groups. Then each
candidate in the first group receives rank 0, each candidate in the second
group receives rank g0, where g0 is the size of the first group, each candidate
in the third group receives rank g0 + g1, where g1 is the size of the second
group, and so on. The result is then resorted in the original candidate order.
This method is formalised by

rank = resort · concat · label · psort · zip [0..]

Ranking suffixes 85

psort :: Ord b ⇒ [(a, b)] → [[a]]
psort xys = pass xys []

pass [] xss = xss
pass (e@(x , y) : xys) xss = step xys [] [x] [] xss

where
step [] as bs cs xss = pass as (bs : pass cs xss)
step (e@(x , y ′) : xys) as bs cs xss | y ′ < y = step xs (e : as) bs cs xss

| y ′ = y = step xs as (x : bs) cs xss
| y ′ > y = step xs as bs (e : cs) xss

Fig. 12.1 Partition sorting

The function psort , short for partition sort, partitions a list of candidate–
mark pairs by sorting by mark and grouping candidates with equal marks
into runs. The marks, having served their purpose, are discarded. One way
of implementing psort is presented in Figure 12.1. The method used is a
version of ternary quicksort in which the head of a list is chosen as the pivot
in the partitioning step. As a consequence, psort takes Θ(n2) steps in the
worst case. Choosing the pivot to be the median element brings the cost
down to Θ(n log n) steps.

The function label is defined by

label :: [[a]]→ [[(a, Int)]]
label xss = zipWith tag xss (scanl (+) 0 (map length xss))
tag xs k = [(x , k) | x ← xs]

Finally, resort can be implemented by using a Haskell array:

resort :: [(Int , Int)] → [Int]
resort ijs = elems (array (0, length ijs − 1) ijs)

The value array (0,n−1) ijs builds an array indexed from 0 to n−1 whose
index–value pairs are given by the association list ijs. The first components
of ijs have to be a permutation of [0 ..n−1] for the result to be well defined.
Both array and elems take linear time, so resort takes linear time.

The final algorithm

The revised implementation of rank leads to an alternative implementation
of ranktails in which ranking is subordinated to partitioning. Suppose we
introduce

partition :: Ord a ⇒ [a]→ [[Int]]
partition = psort · zip [0..]

86 Pearls of Functional Algorithm Design

Then rank = resort · concat · label · partition. Furthermore, � can be
expressed in terms of partition because it is expressed in terms of rank .
That means we can regroup terms and express ranktails in terms of partition
rather than rank . One advantage of doing so is that rank returns a permuta-
tion if and only if partition returns a list all of whose elements are singletons,
so isperm can be replaced by all single, where single determines whether its
argument is a singleton list. Installing these changes leads to

ranktails = resort · concat · label ·
applyUntil (all single) repartitions · partition

repartitions = map repartition (iterate (∗2) 1)
repartition k iss = partition(zip rs (shiftBy k rs))

where rs = resort (concat (label iss))

This version has the same time complexity as the previous one, but it opens
up the route for further optimisation. In fact, we are now just two steps
away from our goal of a Θ(n log n) algorithm for ranktails.

The first of these is to make use of the identity

partition (zip xs ys)

= concatMap (psort ·map (install ys)) (partition xs) (12.7)

where

install ys i = (i , ys !! i) (12.8)

In words, one can partition a list of pairs by first partitioning with respect
to first components and refining the result using the second components.
The correct second components can be installed in each run because each
run is a list of positions. After installation, each run is partition sorted and
the results concatenated.

To be accurate, (12.7) holds only if psort is a stable sorting algorithm
and the implementation in Figure 12.1 is not stable. If psort is not stable
then the elements in each run will appear in a different order in the left-
and right-hand sides. But (12.7) does hold if we interpret equality of two
partitions to mean equal up to some permutation of the elements in each
run. Since the computation of ranktails does not depend on the precise order
of the elements in a run, that is all that is required.

We are now ready to rewrite repartition:

repartition k iss

= {definition, setting rs = resort (concat (label iss))}
partition(zip rs (shiftBy k rs))

Ranking suffixes 87

= {(12.7)}
concatMap (psort ·map (install (shiftBy k rs))) (partition rs)

= {since iss = partition xs implies rs = rank xs
and partition · rank = partition}

concatMap (psort ·map (install (shiftBy k rs))) iss

Hence

repartition k iss = concatMap (psort ·map (install rs)) iss
where rs = shiftBy k (resort (concat (label iss)))

We are nearly there, but (12.8) gives an inefficient way of computing install
because it uses list-indexing (!!) which is not constant time. Better is to
use array-indexing (!) which does take constant time. The final step is to
rewrite install :

(shiftBy k (resort (concat (label iss)))) !! i

= {definition of shiftBy}
(map (+k) (drop k (resort (concat (label iss)))) ++
[k−1, k−2 .. 0]) !! i

= {arithmetic, with n = length(concat (label iss)) and j = i+k}
if j < n then k + (resort (concat (label iss))) !! j else n−i−1

= {definition of resort and elems a !! i = a ! i}
if j < n then k + array (0,n−1) (concat (label iss)))) ! j
else n−i−1

The final program for ranktails is recorded in Figure 12.2. The length of the
input is computed once and passed to the various subsidiary functions that
need it.

Analysis

It remains to time ranktails. We will do this by estimating the total number
of comparisons T (n, k) required to carry out k repartitions on a list of
length n. The key to the analysis is to appreciate that the computation of
ranktails is essentially the same as partition sorting a list of n vectors, each
of dimension k , by sorting on each dimension in turn. The first components
of these vectors consist of the elements of the input, but each subsequent
component is an integer which is determined dynamically from the result of
sorting with respect to previous components. Unlike the implementation of
psort given in Figure 12.1 we will suppose that each partition step chooses

88 Pearls of Functional Algorithm Design

ranktails :: Ord a ⇒ [a] → [Int]
ranktails xs = (resort n · concat · label ·

applyUntil (all single) (repartitions n) ·
psort · zip [0..]) xs
where n = length xs

resort n = elems · array (0,n−1)
label iss = zipWith tag iss (scanl (+) 0 (map length iss))
tag is j = [(i , j) | i ← is]
repartitions n = map (repartition n) (iterate (∗2) 1)
repartition n k iss = concatMap (psort ·map install) iss

where install i = (i , if j < n then k + a ! j else n−i−1)
a = array (0,n−1) (concat (label iss))

Fig. 12.2 The final algorithm for ranktails

a pivot that is the median of the possible pivots. For example, in sorting
on the first component, a pivot p is chosen so that some positive number,
say x , of elements of the list have first components equal to p and an equal
number, namely (n−x)/2, of elements whose first components are less than
p, and elements whose second components are greater than p. The run of x
elements are sorted on first component, so it remains to sort them on the
remaining components. But the other two lists have still to be sorted on all
components. Since partitioning n elements requires n−1 comparisons, we
can define T (n, k) by the recurrence relation

T (0, k) = 0
T (n, 0) = 0
T (n, k) = (max x : 1 ≤ x ≤ n : n−1+T (x , k−1)+2T ((n−x)/2, k))

We now show that T (n, k) ≤ n(log n + k). By induction, this inequality
follows if

n−1+x (log x+k−1)+(n−x)[log(n−x)+k−1] ≤ n(log n + k)

for 1 ≤ x ≤ n. This inequality can be established by high-school calculus.
Finally, since k = log n, we have that the number of comparisons required
to evaluate ranktails on a list of length n is at most 2n log n, and the total
running time is Θ(n log n) steps.

Experimental results

That was quite a lot of calculational effort to obtain the final algorithm,
but is it actually better in practice than the naive one? We profiled three
versions of the algorithm:

Ranking suffixes 89

File Size Chars AlgA1 AlgB1 AlgC1 AlgA2 AlgB2 AlgC2

dna 10424 5 0.08 0.10 0.08 0.04 0.08 0.16
ps 367639 87 2.76 10.96 2.32 3.18 22.50 3.54
txt 148480 72 0.48 3.08 0.72 0.86 6.06 1.28
ptt5 513216 159 − 136.38 8.70 611.3 37.78 6.32
alla 1000 1 2.96 0.10 0.02 0.18 0.06 0.02

Fig. 12.3 Running times of three versions for various files

(A) the specification of ranktails but with the definition of rank based on
partition sorting;

(B) the improved algorithm that used repeated rerankings;
(C) the final program of Figure 12.2.

All algorithms were run with the implementation of psort described in
Figure 12.1 (AlgA1, AlgB1 and AlgC1), and then with a guaranteed
Θ(n log n) algorithm based on mergesort (AlgA2, AlgB2 and AlgC2). The
programs were compiled with GHC. Five different kinds of input were used:
(i) a DNA file; (ii) a postscript file; (iii) the file alice29.txt from the
Canterbury corpus and containing the text of Alice in Wonderland; (iv) a
picture file ptt5 from the same corpus; and (v) a text file containing 1000
occurrences of the letter “a”. Running times in Figure 12.3 are in seconds.
The second column gives the number of characters in the file and the third
column the number of distinct characters. The entry for AlgA1 in the ptt5
row is blank because the computation was abandoned after 12 hours. High-
lighted entries show the best performance for each row.

The figures reveal a complicated picture. First, as expected, the AlgB1
and AlgB2 variants showed no advantage over either the naive or superior
versions. But, apart from the last two rows, the naive algorithms performed
about as well as the superior ones. Moreover, the algorithms based on ternary
quicksort were roughly twice as fast as those based on mergesort. But the
picture changes with ptt5, a file that mostly contains null characters, and
with alla, the file that contains just the letter “a”. Here, the superior algo-
rithm is much better. Although not better than the others in all situations,
AlgC1 seems to be the best overall.

Final remarks

Our final algorithm for ranktails is closely related to an algorithm for sorting
the suffixes of a list proposed by Larsson and Sadakane (1999). Indeed, the

90 Pearls of Functional Algorithm Design

whole pearl was inspired by their work. Ranking a list and sorting a list are
closely related operations and each can be computed quickly from the other.
In particular, the function sorttails that returns the unique permutation
that sorts the tails of a list can be obtained from the final program for
ranktails simply by replacing resort ·concat · label in the first line of ranktails
by concat . The function sorttails is needed as a preliminary step in the
Burrows–Wheeler algorithm for data compression, a problem we will take
up in the following pearl. The problem of sorting the suffixes of a string has
been treated extensively in the literature because it has other applications
in string matching and bioinformatics; a good source is Gusfield (1997).

This pearl was rewritten a number of times. Initially we started out with
the idea of computing perm, a permutation that sorts a list. But perm is too
specific in the way it treats duplicates: there is more than one permutation
that sorts a list containing duplicate elements. One cannot get very far with
perm unless one generalises to either rank or partition. We reformulated the
problem in terms of rank , but ended up with the idea of partitioning a list
rather than ranking it. Nevertheless, rank entered the picture again for the
final optimisation step.

References
Larsson, N. J. and Sadakane, K. (1999). Faster suffix sorting. Research Report

LU-CS-TR-99-214, Department of Computer Science, Lund University,
Sweden.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge, UK:
Cambridge University Press.

13

The Burrows–Wheeler transform

Introduction

The Burrows–Wheeler transform (BWT) is a method for permuting a list
with the aim of bringing repeated elements together. Its main use is as a
preprocessing step in data compression. Lists with many repeated adjacent
elements can be encoded compactly using simple schemes such as run length
or move-to-front encoding. The result can then be fed into more advanced
compressors, such as Huffman or arithmetic coding,1 to compress the input
even more.

Clearly, the best way of bringing repeated elements together is just to sort
the list. But the idea has a major flaw as a preliminary to compression: there
is no way to recover the original list unless the complete sorting permutation
is also produced as part of the output. Without the ability to recover the
original input, data compression is pointless; and if a permutation has to be
produced as well, then compression is ineffective. Instead, the BWT achieves
a more modest permutation, one that brings some but not all repeated
elements into adjacent positions. The main advantage of the BWT is that
the transform can be inverted using a single additional piece of information,
namely an integer k in the range 0 ≤ k < n, where n is the length of
the (nonempty) input list. In this pearl we describe the BWT, identify the
fundamental reason why inversion is possible, and use it to derive the inverse
transform from its specification.

Defining the BWT

Applied to a list xs the BWT sorts the rotations of xs, producing a matrix
of rotated lists, and then returns the last column of the sorted matrix
together with the position of xs in the matrix. As an illustration, consider
the string yokohama. The rotations and the sorted rotations are pictured in

1 Arithmetic coding is considered in two subsequent pearls; see Pearls 24 and 25.

91

92 Pearls of Functional Algorithm Design

0 y o k o h a m a 0 a m a y o k o h
1 o k o h a m a y 1 a y o k o h a m
2 k o h a m a y o 2 h a m a y o k o
3 o h a m a y o k 3 k o h a m a y o
4 h a m a y o k o 4 m a y o k o h a
5 a m a y o k o h 5 o h a m a y o k
6 m a y o k o h a 6 o k o h a m a y
7 a y o k o h a m 7 y o k o h a m a

Fig. 13.1 Rotations and sorted rotations

Figure 13.1. The output of the transform is the string hmooakya, the last
column of the second matrix, and the number 7 because row 7 is the position
of yokohama in the second matrix.

It is straightforward to specify the BWT:

transform :: Ord a ⇒ [a]→ ([a], Int)
transform xs = (map last xss, position xs xss)

where xss = sort (rots xs)

The position of row xs in the matrix xss is defined by

position xs xss = length (takeWhile (�= xs) xss)

and the rotations of a nonempty list by

rots :: [a]→ [[a]]
rots xs = take (length xs) (iterate lrot xs)

where lrot (x : xs) = xs ++ [x]

The subsidiary function lrot performs a single left rotation. The code for
transform is not efficient, but we will ignore that problem for now.2

The function transform is helpful for compression because, applied to
a text, it brings together characters with a common context. To give a
brief illustration, an English text will contain many occurrences of words
such as “this”, “the”, “that” and so on, as well as many occurrences of
“where”, “which”, “when” and so on. Consequently, many of the rotations
beginning with “h” will end with either a “t” or a “w”. As a contrived
example, transforming "this, that or the other" produces

(te,rshhhtttth oeia or, 22)

In this example all but one of the “t”s have been brought together.
2 We will also ignore the fact that transform [] = ([], 0) and consider only nonempty lists as valid

arguments to transform.

The Burrows–Wheeler transform 93

The inverse untransform :: Ord a ⇒ ([a], Int) → [a] is, naturally enough,
specified (over nonempty lists) by

untransform · transform = id

The problem is how to compute untransform. The obvious method, if it can
be made to work, is to use the first component of the result of transform
to recreate the sorted matrix of rotations and then to use the second
component to select the appropriate row. Fleshing out the idea, suppose
recreate :: Ord a ⇒ [a]→ [[a]] can be constructed to satisfy

recreate ·map last · sort · rots = sort · rots

Then we can define untransform (ys, k) = (recreate ys) !! k , where (!!) is the
list-indexing operator. But can we really recreate the whole matrix of sorted
rotations simply by knowing its last column? Yes we can, and the derivation
of recreate is a fascinating exercise in program calculation.

Recreational calculation

Suppose in all that follows that the input to recreate is a list of length n, so
recreate has to recreate an n × n matrix. The idea is to recreate the matrix
column by column. Define takeCols by

takeCols :: Int → [[a]]→ [[a]]
takeCols j = map (take j)

Thus, takeCols j takes the first j columns of an n × n matrix. In particular,
takeCols n is the identity function. We therefore replace recreate with the
function recreate n, specified by the property

recreate j ·map last · sort · rots = takeCols j · sort · rots (13.1)

Thus, recreate j recreates the first j columns of the sorted matrix of rotations
from its last column.

The plan of attack is to construct an inductive definition of recreate. The
base case is easy:

recreate 0 = map (const [])

Applied to a list ys of length n, the result of recreate 0 is a column of n
empty lists. Since takeCols 0 applied to any n × n matrix also produces n
empty lists, (13.1) is established for the case j = 0.

94 Pearls of Functional Algorithm Design

The fun begins with the inductive case. We will need three additional
ingredients to make up the recipe. The first ingredient is a function rrot for
performing a single right rotation:

rrot :: [a] → [a]
rrot xs = [last xs] ++ init xs

Equivalently, rrot (xs ++ [x]) = [x] ++ xs. The crucial property of rrot is

map rrot · rots = rrot · rots (13.2)

Here is a proof:

map rrot (rots xs)

= {definition of rots}
map rrot [xs, lrot xs, lrot2 xs, . . . , lrotn−1 xs]

= {definition of map, using rrot · lrot = id}
[rrot xs, xs, lrot xs, . . . , lrotn−2 xs]

= {definition of rrot}
rrot [xs, lrot xs, . . . , lrotn−2 xs, rrot xs]

= {since rrot xs = lrotn−1 xs}
rrot [xs, lrot xs, . . . , lrotn−2 xs, lrotn−1 xs]

= {definition of rots}
rrot (rots xs)

The second ingredient is a function hdsort that sorts a matrix on its first
column. We can define hdsort using the Haskell function sortBy :

hdsort :: Ord a ⇒ [[a]]→ [[a]]
hdsort = sortBy cmp where cmp (x : xs) (y : ys) = compare x y

The third ingredient is a function consCol that adds a new column to a
matrix:

consCol :: ([a], [[a]])→ [[a]]
consCol (xs, xss) = zipWith (:) xs xss

The ingredients above satisfy various identities that we will need in cooking
up a constructive definition of recreate to satisfy (13.1). First of all, for j < n
we have

takeCols (j+1) ·map rrot = consCol · fork (map last , takeCols j)(13.3)

where fork (f , g) x = (f x , g x). The right-hand side describes the operation
of placing the last column of a matrix at the front of the first j columns; the

The Burrows–Wheeler transform 95

left-hand side describes the operation of performing a single right rotation
on each row and then taking the first j+1 columns. The identity expresses
the fact that these two operations give the same result.

The second identity is

takeCols (j+1) · hdsort = hdsort · takeCols (j+1) (13.4)

In words, sorting an n × n matrix on its first column and then taking a
positive number of columns of the result yields exactly the same result as
first taking the same number of columns and then sorting on the first column.

The third identity, the key one, is not so obvious:

hdsort ·map rrot · sort · rots = sort · rots (13.5)

In words, the following transformation on a matrix of sorted rotations is the
identity: move the last column to the front and then resort the rows on the
new first column. In fact, (13.5) is true only if hdsort is a stable sorting
algorithm, meaning that columns with the same first element appear in
the output in the same order that they appeared in the input. Under this
assumption we have, applied to an n × n matrix, that

sort = (hdsort ·map rrot)n

This identity states that one can sort an n × n matrix (in fact, an arbitrary
list of lists all of which have length n) by repeating n times the operation of
rotating the last column into first position and then stably sorting according
to the first column only. Since it captures essentially the operation of
radix sort, we will call it the radix sort property. It can be proved by
induction on n, but we omit details. It leads, with a little help, to the proof
of (13.5):

hdsort ·map rrot · sort · rots
= {radix sort property}

(hdsort ·map rrot)n+1 · rots
= {composition}

(hdsort ·map rrot)n · hdsort ·map rrot · rots
= {radix sort property}

sort · hdsort ·map rrot · rots
= {identity (13.2)}

sort · hdsort · rrot · rots
= {since sort · hdsort = sort}

96 Pearls of Functional Algorithm Design

sort · rrot · rots
= {since sort · rrot = sort}

sort · rots

The two identities used in the last two steps generalise to sort · perm = sort
for any permutation perm of the input.

We are now ready to deal with recreate. Writing sr = sort ·rots for brevity,
we calculate:

recreate (j+1) ·map last · sr
= {specification (13.1)}

takeCols (j+1) · sr
= {property (13.5)}

takeCols (j+1) · hdsort ·map rrot · sr
= {property (13.4)}

hdsort · takeCols (j+1) ·map rrot · sr
= {property (13.3)}

hdsort · consCol · fork (map last , takeCols j) · sr
= {specification (13.1)}

hdsort · consCol · fork (map last , recreate j ·map last) · sr
= {since fork (f · h, g · h) = fork (f , g) · h}

hdsort · consCol · fork (id , recreate j) ·map last · sr

Hence, recreate (j+1) = hdsort · consCol · fork (id , recreate j).

A faster algorithm

But, and it is a big but, the idea of recreating the complete matrix of sorted
rotations before selecting one particular row leads to an unacceptably in-
efficient method for computing untransform. Recreating an n × n matrix
takes Ω(n2) steps and a quadratic time algorithm for untransform is simply
no good. In fact, the above definition of recreate n takes Ω(n2 log n) steps
because hdsort is computed a total of n times. In this section we show how
to compute untransform in Θ(n log n) steps.

In order to calculate a better algorithm for untransform, we need yet
more ingredients. First of all, note that head-sorting a list of singletons is
equivalent to sorting a list:

hdsort ·map wrap = map wrap · sort

The Burrows–Wheeler transform 97

Here, wrap x = [x]. Second, it is not necessary to apply hdsort repeat-
edly, since each sort involves one and the same permutation. More precisely,
suppose

sort ys = apply p ys

where p, which depends on ys, is a permutation of [0 .. n−1] and apply
applies a permutation to a list. The permutation p is defined by

p = map snd (sort (zip ys [0 .. n−1]))

and apply by

apply p xs = [xs !! (p !! i) | i ← [0 .. n−1]]

The first fact about apply is that for any permutation p

apply p · consCol = consCol · pair (apply p) (13.6)

where pair f (x , y) = (f x , f y). More generally, if beside (M ,N) denotes the
operation of placing matrix M beside matrix N , then

apply p · beside = beside · pair (apply p)

Property (13.6) is the special case in which M is a 1 × n matrix. Using
(13.6), we reason:

recreate (j+1)

= {definition}
hdsort · consCol · fork (id , recreate j)

= {taking hdsort = apply p, where p is as defined above}
apply p · consCol · fork (id , recreate j)

= {(13.6)}
consCol · pair (apply p) · fork (id , recreate j)

= {since pair f · fork (g , h) = fork (f · g , f · h)}
consCol · fork (apply p, apply p · recreate j)

Hence, recreate satisfies

recreate 0 = map (const [])
recreate (j+1) = consCol · fork (apply p, apply p · recreate j)

In this version of recreate, repeated applications of hdsort are replaced by
repeated applications of apply p.

98 Pearls of Functional Algorithm Design

The next step is to use this recursive definition of recreate to find an
alternative definition of recreate. In a word, we solve the recursion. We are
going to show that

recreate j = tp · take j · tail · iterate (apply p) (13.7)

is just such a solution. The new ingredient is a function tp, short for
transpose, a standard Haskell function that transposes a matrix. We will
need three properties of tp:

tp · take 0 = map (const []) (13.8)

tp · take (j+1) = consCol · fork (head , tp · take j · tail) (13.9)

apply p · tp = tp ·map (apply p) (13.10)

Property (13.8) says in effect that the transpose of a 0×n matrix is an n×0
matrix. The transpose of an empty list, a list containing no lists of length
n, is a list of length n of empty lists. Property (13.9) says that to transpose
a (j+1) × n matrix one can prefix the first row as a new first column to
the transpose of a j × n matrix formed from the remaining rows. Finally,
(13.10), which can be phrased in the equivalent form

apply p = tp ·map (apply p) · tp

says that one can apply a permutation to the rows of a matrix by transposing
the matrix, applying the permutation to each column and then transposing
back again.

Property (13.8) immediately justifies (13.7) in the case j = 0. For the
inductive step we start with

recreate (j+1) = consCol · fork (apply p, apply p · recreate j)

and reason:

fork (apply p, apply p · recreate j)

= {assuming (13.7)}
fork (apply p, apply p · tp · take j · tail · iterate (apply p))

= {(13.10)}
fork (apply p, tp ·map (apply p) · take j · tail · iterate (apply p))

= {since map f · take j = take j ·map f and
map f · tail = tail ·map f }

fork (apply p, tp · take j · tail ·map (apply p) · iterate (apply p))

= {since map f · iterate f = tail · iterate f }
fork (apply p, tp · take j · tail · tail · iterate (apply p))

The Burrows–Wheeler transform 99

= {since f = head · tail · iterate f and
fork (f · h, g · h) = fork (f , g) · h}

fork (head , tp · take j · tail) · tail · iterate (apply p)

Now we use (13.9) to obtain

recreate (j+1) = tp · take (j+1) · tail · iterate (apply p)

This completes the proof of (13.7).
We are ready for our last calculation. Recall that

untransform (ys, k) = (recreate n ys) !! k

where n = length ys. We reason:

(!!k) · recreate n

= {(13.7)}
(!!k) · tp · take n · tail · iterate (apply p)

= {since (!!k) · tp = map (!!k)}
map (!!k) · take n · tail · iterate (apply p)

= {since map f · take n = take n ·map f and
map f · tail = tail ·map f }

take n · tail ·map (!!k) · iterate (apply p)

For the final step we need a law of iterate, namely

map (⊕y) (iterate f x) = map (x⊕) (iterate g y)

provided that f x ⊕y = x ⊕ g y . The proof uses induction on n to show that
f n x ⊕ y = x ⊕ gn y ; details are left to the reader.

Since (apply p ys) !! k = ys !! (p !! k), the above law gives

map (!!k) (iterate (apply p ys)) = map (ys!!) (iterate (p!!) k)

In summary, untransform (ys, k) is computed by

take (length ys) (tail (map (ys!!) (iterate (p!!) k)))

If only (!!) were a constant-time operation, this computation would take
linear time. But (!!) is not constant time, so the dish is not quite ready to
leave the kitchen. The very last step is to bring in Haskell arrays:

untransform (ys, k) = take n (tail (map (ya!) (iterate (pa!) k)))
where n = length ys

ya = listArray (0,n−1) ys
pa = listArray (0,n−1) (map snd (sort (zip ys [0..])))

100 Pearls of Functional Algorithm Design

The revised definition of untransform makes use of the library Data.Array
of Haskell arrays. The expression listArray (0,n−1) ys builds an array with
bounds 0 to n−1 whose values are the elements of ys. This function
takes linear time. Unlike the list-indexing operation (!!), the array-indexing
operation (!) takes constant time. The computation of pa takes Θ(n log n)
steps, but the rest of the computation takes Θ(n) steps.

Transform revisited

Finally, let us revisit transform to see whether we can improve its perfor-
mance too. The key fact is that sorting the rotations of a list can be expressed
in terms of sorting the suffixes of a related list. Suppose tag xs = xs ++[eof],
where eof (short for “end of file”) is some element guaranteed not to be in
the list xs. For example, when xs is a string, we can take eof to be the null
character; and when xs is a list of natural numbers, we can take x = −1.
Because eof is different from all other elements of xs, the permutation that
sorts the first n suffixes of tag xs is the same permutation that sorts the n
rotations of xs. Hence:

sort (rots xs) = apply p (rots xs)

where

p = map snd (sort (zip (tails (tag xs)) [0 .. n−1]))

The standard function tails returns the suffixes or tail segments of a list in
decreasing order of length. Now we reason:

map last · sort · rots
= {with above definition of p}

map last · apply p · rots
= {since map f · apply p = apply p ·map f }

apply p ·map last · rots
= {since map last · rots = rrot}

apply p · rrot

Hence, map last · sort · rots = apply p · rrot . Moreover:

position xs (sort (rots xs))

= {with above definition of p}
position xs (apply p (rots xs))

The Burrows–Wheeler transform 101

= {since position xs (rots xs) = 0}
position 0 p

Hence:

transform xs = ([xa ! (pa ! i) | i ← [0 · ·n−1]], k)
where n = length ys

k = length (takeWhile (�= 0) ps)
xa = listArray (0,n−1) (rrot xs)
pa = listArray (0,n−1) ps
ps = map snd (sort (zip (tails (tag xs))[0 .. n−1]))

The bottleneck in this algorithm is the computation of ps; apart from that,
the rest of the computation takes Θ(n) steps. As we saw in the previous
pearl, finding the permutation that sorts the tails of a list of length n can
be done in Θ(n log n) steps. In fact, if the list is a list of elements over a
fixed finite alphabet, then one can sort its suffixes in linear time by building
a suffix tree; see Gusfield (1997).

Final remarks

The BWT was first described by Burrows and Wheeler (1994), though the
algorithm was actually discovered by Wheeler in 1983. Nelson (1996), in
writing the article that brought the BWT to the world’s attention, showed
that the resulting compression algorithm could outperform many commercial
programs available at the time. The BWT has now been integrated into a
high-performance utility bzip2, available from www.bzip.org. Radix sort
is treated in Gibbons (1999), where it is derived using pointless calculation
from tree sort.

References
Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression

algorithm. Research report 124, Digital Systems Research Center, Palo Alto,
USA.

Gibbons, J. (1999). A pointless derivation of radix sort. Journal of Functional
Programming 9 (3) 339–46.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge
University Press, Cambridge, UK.

Nelson, M. (1996). Data compression with the Burrows–Wheeler transform.
Dr. Dobb’s Journal, September.

14

The last tail

Introduction

Suppose the tails of a list are sorted into dictionary order. What tail comes
last? For example, the last tail of “introduction” is “uction” but the last tail
of “tomato” is “tomato” itself, since “to” precedes “tomato” in dictionary
order. It follows from an earlier pearl on ranking and sorting suffixes (see
Pearl 12) that this problem can be solved in Θ(n log n) steps for a list of
length n. But can we compute the last tail in Θ(n) steps? The answer
turns out to be yes, but the algorithm is surprisingly complicated for such a
simply stated problem, and its derivation seems to require substantial effort.
So, be warned.

An inductive definition

Our problem is to compute

maxtail :: Ord a ⇒ [a]→ [a]
maxtail = maximum · tails

Here, tails is the standard Haskell function that returns the possibly empty
tails of a possibly empty list, so maxtail [] = []. The function maximum
returns the largest list in lexicographic order. Direct execution of maxtail
takes quadratic time in the worst case, for example when the list consists of
n repetitions of the same value.

Our strategy for doing better is to head for an inductive definition of
maxtail . That is, we aim to express maxtail on a list of length n+1 in
terms of maxtail on a list of length n. Since maxtail [] = [], the base
case is immediate. For the inductive case the two options are to express
maxtail (x : xs) in terms of x and maxtail xs, or to express maxtail (xs ++[x])
in such terms. But, for instance, the maximum suffix of “zebra”, namely
“zebra” itself, cannot be expressed in terms of “z” and the maximum suffix
of “ebra”, namely “ra”. Hence, we will look for an operation op such that

102

The last tail 103

maxtail (xs ++ [x]) = op (maxtail xs) x (14.1)

In other words, we seek an op so that maxtail = foldl op [].
To this end, let maxtail xs = ys and maxtail (xs ++ [x]) = zs ++ [x]. To

satisfy (14.1) we have to show that zs ∈ tails ys. Since both ys and zs are
tails of xs we have zs ≤ ys and ys ++ [x] ≤ zs ++ [x] by the definition of
maxtail . But these inequalities imply that zs is a prefix of ys; in symbols,
zs ys. Suppose zs ≤ ys but zs is not a prefix of ys. Let us be the longest
common prefix of zs and ys. Then us ++ [z] zs and us ++ [y] ys, where
z < y . In such a case zs ++ [x] < ys ++ [x].

Thus, zs is a prefix of ys. But both are tails of xs, so zs is both a prefix
and a suffix of ys. Consequently, op can be defined in two ways:

op ys x = maximum [zs ++ [x] | zs ← tails ys]

op ys x = maximum [zs ++ [x] | zs ← tails ys, zs ys] (14.2)

The first step has been accomplished, though neither definition provides a
linear-time algorithm.

Borders

Definition (14.2) of op has more structure than its companion and so merits
further investigation. Consider the function borders, defined by

borders xs = [ys | ys ← tails xs, ys xs] (14.3)

In “stringology” (Crochemore and Rytter, 2003), the borders of a list are
those suffixes that are also prefixes. Two examples are

borders “7412741274” = [“7412741274”, “741274”, “74”, “”]
borders “mammam” = [“mammam”, “mam”, “m”, “”]

Rather than define border by (14.3) we can also define

borders [] = [[]]
borders xs = xs : borders (border xs)

where border xs is the longest proper common prefix and suffix of xs. The
second definition has the same form as that of tails:

tails [] = [[]]
tails xs = xs : tails (tail ys)

Restated in terms of borders, (14.2) now reads:

op ys x = maximum [zs ++ [x] | zs ← borders ys]

104 Pearls of Functional Algorithm Design

Suppose borders ys = [zs0, zs1, . . . , zsn], so zs0 = ys and zsi+1 = border zsi
for 0 ≤ i < n and zsn = []. Let us see what information we can extract
about the value of op ys x from these ingredients.

First, for 0 ≤ i < j ≤ n we have

zsi ++ [x] ≥ zsj ++ [x] ≡ head (zsi ↓ zsj) ≥ x (14.4)

where us ↓ vs (pronounced “us after vs”) is specified by (xs ++ ys) ↓ xs = ys.
The proof of (14.4) is:

zsi ++ [x] ≥ zsj ++ [x]

≡ {definition of lexicographic order since zsj zsi}
(zsi ↓ zsj) ++ [x] ≥ [x]

≡ {since zsi ↓ zsj is nonempty if i < j}
head (zsi ↓ zsj) ≥ x

Second, in the case ys = maxtail xs for some xs, we have, for 0 < i < j ≤ n,
that

head (zsi−1 ↓ zsi) ≤ head (zsj−1 ↓ zsj) (14.5)

The proof is:

head (zsi−1 ↓ zsi) ≤ head (zsj−1 ↓ zsj)

= {since 0 < k implies head (zsk−1 ↓ zsk) = head (ys ↓ zsk)}
head (ys ↓ zsi) ≤ head (ys ↓ zsj)

⇐ {lexicographic ordering}
zsj ++ (ys ↓ zsi) ≤ zsj ++ (ys ↓ zsj)

≡ {since ys = zsk ++ (ys ↓ zsk) for any k}
zsj ++ (ys ↓ zsi) ≤ ys

⇐ {since ys is a maximum suffix}
zsj ++ (ys ↓ zsi) ∈ tails ys

≡ {since ys = zsi ++ (ys ↓ zsi) and zsj ∈ tails zsi}
true

It follows from (14.4) and (14.5) that op ys x = zsi ++ [x], where i is the
smallest i in the range 0 ≤ i < n satisfying head (zsi ↓ zsi+1) ≥ x , if such an
i exists. If it does not, then op ys x = [x]. A straightforward implementation
of the search yields

The last tail 105

op ys x | null ys = [x]
| head (ys ↓ zs) ≥ x = ys ++ [x]
| otherwise = op zs x

where zs = border ys

To complete this definition of op we need to derive a definition of border .

Border

Recall that border ys is the longest proper common prefix and suffix of
ys. The value border ys is defined only for nonempty ys. Heading for an
inductive definition, it is clear that border [x] = []. For the inductive case,
border (ys ++ [x]), we need the following property of the prefix ordering:

zs ++ [x] ys ++ [x] ≡ zs ys ∧ (zs �= ys ⇒ x = head (ys ↓ zs))

We now reason, for nonempty ys:

borders (ys ++ [x])

= {(14.3)}
[zs | zs ← tails (ys++[x]), zs ys++[x]]

= {since tails (ys ++ [x]) = map (++[x]) (tails ys) ++ [[]]}
[zs++[x] | zs ← tails ys, zs++[x] ys++[x]]++[[]]

= {above property}
[zs++[x] | zs ← tails ys, zs ys, zs �= ys ⇒ x = head (ys ↓ zs)]++
[[]]

= {(14.3)}
[zs++[x] | zs ← borders ys, zs �= ys ⇒ x = head (ys ↓ zs)]++[[]]

Hence, since border = head · tail · borders and head · borders = id , we
obtain

border (ys++[x])
= head ([zs++[x] | zs ← tail (borders ys), x = head (ys ↓ zs)]++[[]])

This list comprehension can be replaced by an explicit search:

border (ys ++ [x]) | head (ys ↓ zs) x = zs ++ [x]
| otherwise = border (zs ++ [x])

where zs = border ys

106 Pearls of Functional Algorithm Design

Under the assumption that ys = maxtail xs for some xs, we can appeal to
(14.5) and optimize the search:

border (ys ++ [x]) | head (ys ↓ zs) < x = border (zs ++ [x])
| head (ys ↓ zs) x = zs ++ [x]
| head (ys ↓ zs) > x = []

where zs = border ys

The recursive definitions of maxtail and border have turned out to be similar,
so logically the next step is to combine them into one function.

Cocktail

Consider the function cocktail (a combination of two ingredients!) defined by

cocktail xs = if null xs then ([], []) else
(border (maxtail xs),maxtail xs ↓ border (maxtail xs))

In particular, maxtail = uncurry (++) · cocktail .
We now derive a recursive definition of cocktail , using the recursive

definitions of maxtail and border . Setting cocktail xs = (zs,ws), we compute
cocktail (xs ++ [x]) by a case analysis.

Case ws = []. In this case xs = ys = zs = [], so

cocktail (xs ++ [x]) = ([], [x])

In the remaining cases, where ws �= [], we have ys = maxtail xs, where
ys = zs ++ ws, and zs = border ys, so ws = ys ↓ zs.

Case head ws < x . In this case the definition maxtail gives

maxtail (xs ++ [x]) = maxtail (zs ++ [x])

so cocktail (xs ++ [x]) = cocktail (zs ++ [x]).

Case head ws = x . In this case

maxtail (xs ++ [x]) = ys ++ [x]
border (ys ++ [x]) = zs ++ [x]

Since (ys ++ [x]) ↓ (zs ++ [x]) = tail ws ++ [x], we have

cocktail (xs ++ [x]) = (zs ++ [x], tail ws ++ [x])

Case head ws > x . In this case

maxtail (xs ++ [x]) = ys ++ [x]
border (ys ++ [x]) = []

so cocktail (xs ++ [x]) = ([], ys ++ [x]).

The last tail 107

In summary, we have shown that

maxtail = uncurry (++) · cocktail
cocktail = foldl op ([], [])

op (zs,ws) x | null ws = ([], [x])
| w < x = cocktail (zs ++ [x])
| w x = (zs ++ [x], tail ws ++ [x])
| w > x = ([], zs ++ ws ++ [x])

where w = head ws

So far, so good, but the new version of maxtail still takes quadratic time.
One reason is that (++) is not a constant-time operation. But even assuming
it were, the computation would still be quadratic. Consider an input of the
form 1n2, where 1n denotes n repetitions of 1. After n steps the computation
of cocktail 1n2 reduces to evaluation of op (1n−1, 1) 2. Since 1 < 2, the
next step is to evaluate cocktail 1n−12. Hence, the total computation takes
quadratic time.

The problem lies with the call cocktail (zs ++ [x]). If we could somehow
restrict the length of zs to be at most half the length of the current max-
imum tail ys = zs ++ws, then computation of cocktail would take linear time
(ignoring the cost of the ++ operations). Spending a linear amount of
time to reduce a problem to one of at most half the size leads to a linear-
time algorithm. Fortunately, as we will now show, the length of zs can be
so restricted.

Reducing the problem size

Let cocktail xs = (zs,ws), so ys = zs ++ ws is the maximum tail of xs and
zs = border ys. Suppose |zs| ≥ |ws|, where |xs| denotes the length of xs.
In this case ws is a tail of zs. For example, if ys = “7412741274”, then
zs = “741274” and ws = “1274”.

Define zs ′ by zs = zs ′ ++ ws. Then zs ′ is both a prefix and a tail of zs and
hence also a prefix and tail of ys. In the example above, zs ′ = “74”. The
reasoning can be repeated if |zs ′| ≥ |ws|. It follows that if we define q and
r by

(q , r) = (|zs| div |ws|, |zs|mod |ws|)

and set zs ′ = take r zs, then zs ′ ∈ borders ys and zs = zs ′ ++ wsq , where
wsq is the concatenation of q copies of ws. Furthermore, since |zs ′| < |ws|
we have that zs ′ is a tail of ws (so zs ′ = drop (|ws| − r) ws, a fact we will
exploit below) and each of zs ′ ++ wsp for 1 ≤ p < q are also borders of zs.

108 Pearls of Functional Algorithm Design

But (zs ′ ++ wsp) ↓ (zs ′ ++ wsp−1) = ws, so in the case head ws < x none
of these borders need be inspected in the computation of op (zs,ws) x .
It follows that we can replace op by

op (zs,ws) x | null ws = ([], [x])
| w < x = cocktail (take r zs ++ [x])
| w x = (zs ++ [x], tail ws ++ [x])
| w > x = ([], zs ++ ws ++ [x])

where w = head ws
r = (length zs) mod (length ws)

Moreover, 2r < |zs ++ ws|, since r ≤ |zs| and r < |ws|. Armed with this
fact we can show that computation of cocktail xs involves a total of at most
2n −m calls to op, where n = |xs| and m = |maxtail xs|.

The proof is by induction. In the case n = 0 we have m = 0 and there are
no calls to op. When n = 1 we have m = 1 and there is one call to op. This
establishes the base cases.

For the inductive case, consider the computation of cocktail (xs ++ [x]),
which first evaluates cocktail xs and then computes op (cocktail xs)x . Assume
by induction that cocktail xs involves 2n−m calls of op and returns (zs,ws),
where |zs++ws| = m and headws = w . If w ≥ x there are no more calls of op,
so the total count is 2n−m +1. But in this case the resulting maximum tail
has length m+1, and as 2n−m+1 = 2(n+1)−(m+1) the case is established.
If w < x , then we have to add in the count for cocktail (take r zs ++ [x]). By
induction, this is 2(r +1)−m ′, where m ′ is the length of the final maximum
tail. The total, therefore, is 2n − m + 1 + 2(r + 1) − m ′, which is at most
2(n + 1)−m ′ since 2r + 1 ≤ m.

Hence, ignoring the cost of length and ++ operations, the computation of
cocktail and maxtail take linear time. It remains to eliminate the length and
++ operations.

Final optimisations

We first eliminate the length calculations in the definition of op, together
with the first ++ in the final clause. This is achieved by a data refinement
in which the state (zs,ws) is replaced by a quadruple (p, q , ys,ws) in which
ys = zs ++ ws and p = length zs and q = length ws. The reason we can drop
the argument zs is that take r zs = drop (q − r) ws. We need, however, to
retain the length of zs. Installing this change is easy and we omit details. It
leads to the program of Figure 14.1, in which cocktail now names the refined
version and thd selects the third component of a quadruple.

The last tail 109

maxtail = thd · cocktail
cocktail = foldl op (0, 0, [], [])

op (p, q , ys,ws) x
| q 0 = (0, 1, [x], [x])
| w < x = cocktail (drop (q−r) ws ++ [x])
| w x = (p+1, q , ys ++ [x], tail ws ++ [x])
| otherwise = (0, p+q+1, ys ++ [x], ys ++ [x])

where w = head ws
r = p mod q

Fig. 14.1 The result of data refinement

Now we are left only with (++[x]) operations. One way to ensure that
(++[x]) takes constant time is to convert all the lists into queues and to use
an efficient implementation of queues that guarantees insertion at the rear
of the queue as well as that removal from the front takes constant time.
But another method is suggested by the observation that each of the lists
ys and ws arising during the computation of cocktail xs is a tail of xs. The
operation op constructs these tails step by step, but a more efficient method
is to construct them all at once. The way to do this is to convert what we
have into an iterative algorithm.

More precisely, suppose we define step by

step (p, q , ys ′,ws ′, xs) = thd (foldl op (p, q , ys ′ ↑ xs,ws ′ ↑ xs) xs)

where us ↑ vs (pronounced “us before vs”) is what remains when the tail vs
of us is removed from us. Thus, us = (us ↑ vs) ++ vs. In particular:

maxtail (x : xs) = thd (foldl op (0, 1, [x], [x]) xs)
= thd (foldl op (0, 1, (x : xs) ↑ xs, (x : xs) ↑ xs) xs)
= step (0, 1, x : xs, x : xs, xs)

Next we derive a recursion for step (p, q , ys ′,ws ′, xs). Since us ↑ [] = us we
obtain

step (p, q , ys ′,ws ′, []) = ys ′

In the case that xs is not empty (so neither of ys ′ or ws ′ is empty) we have

step (p, q , ys ′,ws ′, x : xs)
= thd (foldl op (p, q , ys ′ ↑ (x : xs),ws ′ ↑ (x : xs)) (x : xs))
= thd (foldl op (op (p, q , ys ′ ↑ (x : xs),ws ′ ↑ (x : xs)) x) xs)

Now we need a case analysis.

110 Pearls of Functional Algorithm Design

Case head (ws ′ ↑ (x : xs)) < x . In this case

op (p, q , ys ′ ↑ (x : xs),ws ′ ↑ (x : xs)) x =
cocktail ′ (drop (q−r) (ws ′ ↑ (x : xs)) ++ [x])

where r = p mod q . Abbreviating drop (q−r) (ws ′ ↑ (x : xs)) to vs, we
argue

step (p, q , ys ′,ws ′, x : xs)

= {definition and case assumption}
thd (foldl op (cocktail ′ (vs ++ [x])) xs)

= {definition of cocktail ′}
thd (foldl op (foldl op (0, 0, [], [], []) (vs ++ [x])) xs)

= {since foldl f (foldl f e xs) ys = foldl f e (xs ++ ys)}
thd (foldl op ([], [], []) (vs ++ x : xs))

= {since drop (q−r) (ws ′ ↑ (x : xs)) ++ x : xs = drop (q−r) ws ′}
thd (foldl op ([], [], []) (drop (q−r) ws ′))

= {definition of maxtail}
maxtail (drop (q−r) ws ′)

Case head (ws ′ ↑ (x : xs)) = x . In this case

op (p, q , ys ′ ↑ (x : xs),ws ′ ↑ (x : xs)) x =
(p+1, q , ys ′ ↑ (x : xs) ++ [x], tail (ws ′ ↑ (x : xs)) ++ [x])

= (p+1, q , ys ′ ↑ xs, tail (ws ′ ↑ xs))

Hence, step (p, q , ys ′,ws ′, x : xs) = (p+1, q , ys ′, tail ws ′, xs).

Case head (ws ′ ↑ (x : xs)) > x . In this case

op (p, q , ys ′ ↑ (x : xs),ws ′ ↑ (x : xs)) x =
(0, p+q+1, ys ′ ↑ (x : xs) ++ [x], ys ′ ↑ (x : xs) ++ [x])

= (0, p+q+1, ys ′ ↑ xs, ys ′ ↑ xs)

Hence, step (p, q , ys ′,ws ′, x : xs) = (0, p+q+1, ys ′, ys ′, xs).
Summarising all the above, we have arrived at our final program:

maxtail [] = []
maxtail (x : xs) = step (0, 1, x : xs, x : xs, xs)

The last tail 111

step (p, q , ys,ws, []) = ys
step (p, q , ys,w : ws, x : xs)
| w < x = maxtail (drop (q−r) (w : ws))
| w x = step (p+1, q , ys,ws, xs)
| w > x = step (0, p+q+1, ys, ys, xs)

where r = p mod q

Final remarks

It is very easy to turn the final version of maxtail into a simple while loop.
Perhaps this is not surprising, because we set out with the intention of deriv-
ing an inductive definition, and the form we were led to, namely an instance
of foldl , is essentially a while loop in functional clothing. Nevertheless, the
final algorithm has a very imperative feel, and it would be interesting to
see a derivation in a procedural style using loop invariants. Our derivation
was quite long and involved some fairly subtle reasoning, basically because
a good deal of underlying structure is inherent in the problem. But maybe
there is a simpler solution to what must be the shortest specification in this
book.

References
Crochemore, M. and Rytter, W. (2003). Jewels of Stringology. Hong Kong: World

Scientific.

15

All the common prefixes

Introduction

Let llcp xs ys denote the length of the longest common prefix of two lists
xs and ys. For example llcp “common” “computing” = 3. Now consider the
function allcp, short for all the common prefixes, defined by

allcp xs = map (llcp xs) (tails xs)

where tails xs returns the nonempty tails of xs. For example:

xs a b a c a b a c a b
allcp xs 10 0 1 0 6 0 1 0 2 0

The first element of allcp xs is, of course, length xs. Executed directly, the
definition of allcp gives a quadratic-time algorithm. But can it be done in
linear time? Yes it can, and the aim of this pearl is to show how. The function
allcp is an important component of the Boyer–Moore algorithm for string
matching, a problem we will take up in the following pearl, so a linear-time
solution is of practical as well as theoretical interest.

A key property

The key property of llcp on which the fast algorithm rests is the following
one. Let us, vs and ws be any three lists. Then, with llcp us vs = m and
llcp vs ws = n, we have

llcp us ws =
{

min m n if m �= n
m + llcp (drop m us) (drop m ws) if m = n

(15.1)

For the proof, observe that the first min m n elements are common to all
three lists. If m < n, then the next element of us (if any) is different
from the next element of vs, while the next element of vs is the same as
the next element of ws. Hence llcp us ws = m. The reasoning is dual if
m > n. Finally, if m = n, then matching has to continue with drop m us
and drop m ws.

112

All the common prefixes 113

To use (15.1), take i and j in the range 1 ≤ i , j < n, where n = length xs,
and let

p = llcp xs (drop i xs)
q = llcp xs (drop j xs)

In other words, the elements at positions i and j in allcp xs are p and q
respectively. Furthermore, suppose j ≤ p. Then, by definition of llcp, we
have

p = j + llcp (drop j xs) (drop (i + j) xs)

Setting us = xs, vs = drop j xs and ws = drop k xs, where k = i + j , (15.1)
now gives

llcp xs (drop k xs) =
{

min (p−j) q if q �= p−j
q + llcp (drop q xs) (drop (q+k) xs) if q = p−j

In other words, we can determine the kth entry in allcp xs from the ith and
j th entries with either no extra work (the first clause) or with maybe a little
extra work (the second clause). Of course, work is avoided only if 1 < i < k
and j = k−i < p because the second clause gives no computational shortcut
if j = p. In particular, the cases k = 0 and k = 1 have to be calculated
directly.

Here is how we use this information to compute the kth entry of allcp in
the order k = 1, 2, . . . ,n. Suppose at each step we choose i by the condition
that i + p is as large as possible subject to 1 ≤ i < k . If k < i + p, then
the shortcut above applies with j = k − i . If k ≥ i + p, then there is no
alternative but to calculate llcp xs (drop k xs) directly. We can start off with
(i , p) = (0, 0) to ensure the case k = 1 is computed directly, and thereafter
update (i , p) whenever a better choice is found.

All that leads to the program of Figure 15.1, which takes the form of a
simple loop. To check that i and p are updated correctly, observe in the first
clause of step that k ≥ i+p ⇒ k+a ≥ i+p, and in the third clause that
k+b ≥ k+q = k+r = i+p.

We claim that this program takes linear time under the assumption that
each snoc, !! and drop operation takes constant time. To prove the claim it
suffices to show that the total number of equality comparisons in llcp is linear
in n. Such comparisons result in True (a match) or False (a mismatch).
Each call of step ends with at most one mismatch, so there are at most
n − 1 mismatches. To bound the number of matches, observe that in any
step in which m matches occur, so a = m or b = m, the value of i+p is
increased by m at least. Since i+p ≤ n, the total number of matches is at
most n.

114 Pearls of Functional Algorithm Design

allcp xs = fst4 (until (done n) (step xs) ([n], 0, 0, 1))
where n = length xs

done n (as, i , p, k) = k n

step xs (as , i , p, k)
| k ≥ i + p = (snoc as a, k , a, k + 1)
| q �= r = (snoc as (min q r), i , p, k + 1)
| q r = (snoc as b, k , b, k + 1)

where q = as !! (k − i)
r = p − (k − i)
a = llcp xs (drop k xs)
b = q + llcp (drop q xs) (drop (q + k) xs)

fst4 (a, b, c, d) = a
snoc xs x = xs ++ [x]

llcp xs [] = 0
llcp [] ys = 0
llcp (x : xs) (y : ys) = if x y then 1 + llcp xs ys else 0

Fig. 15.1 The initial program

Data refinement

However, snoc, (!!), and drop do not take constant time. The remainder of the
development is just data refinement to ensure that they can be implemented
by constant-time operations.

Let us deal with drop first. The idea is to bring in the library Data.Array of
Haskell arrays and replace llcp by another version that uses index operations
on a (global) array xa = listArray (0,n − 1) xs, where n = length xs:

llcp ′ j k | j n ∨ k n = 0
| xa ! j xa ! k = 1 + llcp ′ (j + 1) (k + 1)
| otherwise = 0

That means we can replace the definitions of a and b in step by

a = llcp ′ 0 k
b = q + llcp′ q (q + k)

It remains to deal with the snoc and (!!) operations. The obvious step is
again to use an array. However, adding an element to the end of an array
is only a constant-time operation if we embed the whole computation in a
suitable monad, and that is something we choose to avoid. Another option
is to use Haskell’s Data.Sequence library. This library provides a constant-
time snoc, but only a logarithmic-time indexing operation. Good enough in

All the common prefixes 115

allcp xs = extract (until done step (as, empty , 0, 1)))
where
extract (as , qs, h, k) = elems as
done (as, qs, h, k) = (k n)
n = length xs
as = insert empty n
xa = listArray (0,n−1) xs
step (as , qs, h, k) | k ≥ h = (insert as a, insert as ′ a, k + a, k + 1)

| q �= r = (insert as m, insert qs ′ m, h, k + 1)
| q r = (insert as b, insert as ′ b, k + b, k + 1)

where as ′ = snd (remove as)
(q , qs ′) = remove qs
r = h − k
m = min q r
a = llcp′ 0 k
b = q + llcp′ q (q + k)

llcp′ j k | j n ∨ k n = 0
| xa ! j xa ! k = 1 + llcp (j + 1) (k + 1)
| otherwise = 0

Fig. 15.2 The final program

practice, but we promised a linear-time solution, so we have to work a little
harder.

Our solution is to use a queue, in fact two of them. Chris Okasaki’s im-
plementation of queues (Okasaki, 1995) provides a type Queue a with the
following four operations:

insert :: Queue a → a → Queue a
remove :: Queue a → (a,Queue a)
empty :: Queue a
elems :: Queue a → [a]

The function insert inserts a new element at the rear of the queue, remove
returns the first element and the remaining elements of a nonempty queue,
empty gives an empty queue, and elems returns the list of elements in a
queue. The first three operations take constant time, while elems takes time
proportional to the length of the queue.

We replace the component as in the argument of step with a queue, also
called as, and add in a second queue qs, representing the suffix drop(k−i)as.
Then q = as !! (k − i) is the first element of qs. There is no need to maintain
argument i , so we can remove it and replace p by h = i +p. Installing these
changes is straightforward and leads to the final program of Figure 15.2.

116 Pearls of Functional Algorithm Design

Final remarks

The problem of computing allcp is identified as the fundamental prepro-
cessing step of string matching by Gusfield (1997), where it is called “the
Z algorithm”. The same problem is dealt with by Crochemore and Rytter,
under the name “table of prefixes”. Our treatment follows Gusfield quite
closely, except for the identification of (15.1) as the key property of llcp that
enables everything to work, and the use of queues to make the snoc and !!
operations efficient.

References
Crochemore, M. and Rytter, W. (2003). Jewels of Stringology. Hong Kong: World

Scientific.
Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge, UK:

Cambridge University Press.
Okasaki, C. (1995). Simple and efficient purely functional queues and deques. Jour-

nal of Functional Programming, 5 (4), 583–92.

16

The Boyer–Moore algorithm

Introduction

The problem of string matching consists of finding all occurrences of one
nonempty string, called the pattern, in another string, called the text. Here
is the specification:

matches :: Eq a ⇒ [a] → [a]→ [Int]
matches ws = map length · filter (endswith ws) · inits

The function inits returns a list of the prefixes of the text in order of
increasing length. The expression endswith ws xs tests whether the pattern
ws is a suffix of xs. The value matches ws xs is a list of integers p such that
ws is a suffix of take p xs. For example:

matches “abcab” “ababcabcab” = [7, 10]

In other words, matches ws xs returns a list integers p such that ws appears
in xs ending at position p (counting positions from 1).

The function matches is polymorphic, so any algorithm for the problem
has to rely only on an equality test () :: a → a → Bool for information
about the elements of the two lists. Polymorphic string matching rules out
any algorithm that depends upon a being finite. Assuming it takes constant
time to carry out an equality test, the running time of matches ws xs is
Θ(mn) steps in the worst case, where m = length ws and n = length xs.
Our aim in this pearl is to derive the famous Boyer–Moore (BM) algorithm
for string matching, which reduces the time to Θ(m + n) steps. In the
following pearl we will derive the equally famous Knuth–Morris–Pratt (KMP)
algorithm for the same problem with the same complexity. And the trick is
simply to apply appropriate efficiency-improving laws dictated by the form
of the expression under manipulation.

117

118 Pearls of Functional Algorithm Design

The scan lemma

For string matching, indeed for any problem involving the function inits,
the most important law is known as the scan lemma:

map (foldl op e) · inits = scanl op e

The expression on the left is evaluated on a list of length n with Θ(n2)
evaluations of op, while the equivalent expression in terms of the standard
Haskell function scanl requires only Θ(n) evaluations.

Although there is a map in the definition of matches, there is also a filter ,
so the first step in transforming matches is to rewrite the specification using
another law:

map f · filter p = map fst · filter snd ·map (fork (f , p)) (16.1)

where fork (f , p) x = (f x , p x). The law is used simply to bring a map next
to inits in preparation for applying the scan lemma. Use of (16.1) leads to

matches ws
= map fst · filter snd ·map (fork (length, endswith ws)) · inits

The next question to ask is: can fork (length, endswith ws) be cast as an
instance of foldl? Certainly, length = foldl count 0 where count n x = n + 1.
Suppose for the moment that we can also find e and op, both of which will
depend on ws, so that

endswith ws = foldl op e (16.2)

Then we are in a position to apply another standard law: the tupling law
for foldl . This law states that

fork (foldl op1 e1, foldl op2 e2) = foldl op (e1, e2)

where op (a, b) x = (op1 a x , op2 b x). Use of the tupling law results in

fork (length, endswith ws) = foldl step (0, e)
step (n, x) y = (n + 1, op x y)

Finally, we can apply the scan lemma to arrive at

matches ws = map fst · filter snd · scanl step (0, e)

If op takes constant time, or at least amortized constant time, then so does
step, and the result is a linear-time program. That, in a nutshell, is the
genesis of all efficient polymorphic string-matching algorithms.

The problem is that there is no op and e to satisfy (16.2). The function
endswithws returns a single Boolean value and this is insufficient information

The Boyer–Moore algorithm 119

to express it as an instance of foldl . The next best thing is to express
endswith ws as a composition

endswith ws = p · foldl op e (16.3)

The form of (16.3) is dictated solely by the desire to apply the scan lemma.
Instead of (16.1) we can use a slight generalisation:

map f · filter (p · g) = map fst · filter (p · snd) ·map (fork (f , g)) (16.4)

Then we obtain

matches ws = map fst · filter (p · snd) · scanl step (0, e)

Provided p and op take amortized constant time, matches will still take
linear time.

What remains is to find p, op and e to satisfy (16.3). But we have not yet
defined endswith formally. Here are two reasonable definitions:

endswith ws xs = reverse ws reverse xs
endswith ws xs = ws ∈ tails xs

In the first definition, us vs if us is a prefix of vs. It is clear that ws is a
suffix of xs if and only if the reverse of ws is a prefix of the reverse of xs.
The prefix relation is easier to implement than the suffix relation:

[] vs = True
(u : us) [] = False
(u : us) (v : vs) = (u v ∧ us vs)

Although both definitions of endswith define the same function, they have
different forms. And, since it is form rather than function that dictates
the course of development, we are at a crossroads. As we will see, taking the
first path leads to the BM algorithm, while taking the second leads to
the KMP algorithm. In the rest of this pearl we will take the first path.
In the following pearl we will explore the second path.

The Boyer–Moore algorithm

The first definition of endswith can be restated as a composition:

endswith ws = (reverse ws) · reverse

120 Pearls of Functional Algorithm Design

Consequently, appeal to (16.4) leads to

matches ws
= map fst · filter ((sw) · snd) ·map (fork (length, reverse)) · inits

where sw = reverse ws

But reverse = foldl (flip (:)) [], so we can again make use of the tupling law
of foldl , followed by the scan lemma, to obtain

matches ws = map fst · filter ((sw) · snd) · scanl step (0, [])
where sw = reverse ws

step (n, sx) x = (n + 1, x : sx)

This is the basic form of the BM algorithm. Application of scanl generates
successive “windows” of the text together with their position. Each window
contains the reversal of some initial segment of the text, with successive
windows differing in just one position, so there is a “shift” of length one
at each stage. The terms “window” and “shift” are from Lecroq (2003),
which contains a very readable introduction to string matching. Each of
these windows is processed by matching against the pattern ws from right
to left.

Shifting

As it stands, the BM algorithm still takes Ω(mn) steps in the worst case
because the test (sw) can take Ω(m) steps (in all that follows we fix
m = length ws and assume m �= 0). For example, one worst case arises when
the pattern is a list of m repetitions of a single value and the text is a list
of n repetitions of the same value. The way to make the worst case better is
to see if we can shift over some windows because they cannot be candidates
for matching. Such shifts depend on how much of a match there is at the
current window.

Let llcp sw sx denote the length of the longest common prefix of sw and
sx . We encountered this function in the previous pearl. Clearly, sw sx if
and only if m = llcp sw sx . Given i = llcp sw sx for the current window
(n, sx), can we put a lower bound on the position n + k of the next window
at which there can be a match? Certainly, we must have 0 < k ≤ m or we
might miss a match. Suppose the next window has the form (n +k , ys ++sx),
where k = length ys. If there is a match at this window, so sw ys ++ sx ,
then take k sw = ys and drop k sw sx .

Using this information and setting i = llcp sw sx , we can now show that

llcp sw (drop k sw) = min i (m−k) (16.5)

The Boyer–Moore algorithm 121

First, assume i < m−k . Then

take i (drop k sw)

= {since drop k sw sx implies drop k sw = take (m−k) sx}
take i (take (m−k) sx)

= {since i ≤ m−k}
take i sx

= {since i = llcp sw sx}
take i sw

Similar reasoning gives

take (i+1) (drop k sw) �= take (i+1) sw

In other words, if i < m−k , then llcp sw (drop k sw) = i . In the other case,
i ≥ m−k , we reason:

drop k sw

= {since length (drop k sw) = m−k ≤ i}
take i (drop k sw)

 {since drop k sw sx}
take i sx

= {since i = llcp sw sx}
take i sw

 {definition of }
sw

But drop k sw sw ≡ llcp sw (drop k sw) = m−k , establishing (16.5).
Now, given any i in the range 0 ≤ i ≤ m, let k be the smallest positive

value in the range 1 ≤ k ≤ m satisfying (16.5). Provided m �= 0, the value
k = m satisfies (16.5) if nothing smaller does. It follows that we can skip
the next k−1 windows without missing a match. The value k is specified as
k = shift sw i , where

shift sw i = head [k | k ← [1 .. m], llcp sw (drop k sw) min i (m−k)]

This is not a very good way to compute shift sw i , as the computation can
take Ω(m2) steps in the worst case. In the following section we will show
how to compute map (shift sw) [0 .. m] in O(m) steps.

In summary, after a match of length i at the current window (n, sx), the
next shift sw i windows can safely be ignored without missing any additional

122 Pearls of Functional Algorithm Design

matches. That means we can redefine matches to read

matches ws = test · scanl step (0, [])
where
test [] = []
test ((n, sx) : nxs) = if i m

then n : test (drop (k−1) nxs)
else test (drop (k−1) nxs)
where i = llcp sw sx

k = shift sw i
(sw ,m) = (reverse ws, length ws)

Note that two versions of matches are equivalent only if m �= 0.

A final improvement

There is one final improvement we can make. As before, let i = llcpsw sx and
k = shift sw i . Furthermore, suppose m−k ≤ i , so llcp sw (dropk sw) = m−k .
That means that drop k sw is a prefix of sw . Since m−k ≤ i , it follows that
llcp (drop k sw) sx = m−k .

Now, the next window to be tried is (n+k , ys ++ sx), where length ys = k .
We reason:

llcp sw (ys ++ sx)

= {setting i ′ = llcp sw ys, so i ′ ≤ k}
if i ′ k then k + llcp (drop k sw) sx else i ′

= {above, since llcp (drop k sw) sx = m−k if m−k ≤ i}
if i ′ k then m else i ′

Hence, provided m−k ≤ i , the length of the longest common prefix of sw
and the text at the next window can be computed by comparing only the
first k elements. If m−k > i , then there is no saving and the next window
may require up to m comparisons.

The improvement can be implemented by equipping the function test
with an additional parameter j , indicating how much of the next candidate
window to check. Installing this final refinement, we obtain the program of
Figure 16.1, which is complete except for the definitions of llcp and shift .
This program is Galil’s (1979) version of the BM algorithm. Ignoring the
time to compute shift , the running time of matches is O(m + n) steps
for a text of length n. For a proof of this claim, which is non-trivial, see
Theorem 3.2.3 of Gusfield (1997).

The Boyer–Moore algorithm 123

matches ws = test m · scanl step (0, [])
where
test j [] = []
test j ((n, sx) : nxs) | i m = n : test k (drop (k−1) nxs)

| m−k ≤ i = test k (drop (k−1) nxs)
| otherwise = test m (drop (k−1) nxs)

where i ′ = llcp sw (take j sx)
i = if i ′ j then m else i ′
k = shift sw i

(sw ,m) = (reverse ws, length ws)

Fig. 16.1 The final program

Computing shifts

The definition of shift sw given in the previous section leads to a cubic-time
algorithm for computing shifts sw = map (shift sw) [0 .. m]: computation
of shift sw i can take quadratic time and there are m+1 values of i . If we
can compute shifts sw in linear time and store the result in an array a, then
replacing shift sw i by a !i gives a linear-time algorithm for matches. The aim
of this section is to show how to compute shifts sw in linear time. Arguably,
this is the most subtle aspect of the BM algorithm.

First of all, set f (k) = llcp sw (drop k sw) for brevity. Note that f (m) = 0
and f (k) ≤ m−k . We first reason, for any i in the range 0 ≤ i ≤ m:

shift sw i

= {definition}
minimum [k | k ← [1 .. m], f (k) min i (m−k)]

= {case analysis on min}
minimum ([k | k ← [1 .. m−i], f (k) i] ++

[k | k ← [m−i+1 .. m], f (k)+k m])

= {since f (k) = i ⇒ k ≤ m−i}
minimum ([k | k ← [1 .. m], f (k) i] ++

[k | k ← [m−i+1 .. m], f (k)+k m])

Next we bring in the Haskell library Data.Array and, in particular, the
function accumArray . This function first made an appearance in Pearl 1.
The following fact about accumArray is immediate from its definition:

(accumArray op e (0,m) vks) ! i = foldl op e [k | (v , k)← vks, v i]

124 Pearls of Functional Algorithm Design

for all i in the range 0 ≤ i ≤ m, provided map fst vks ⊆ [0 ..m]. The proviso
is necessary because accumArray is undefined if any index is out of the given
range. In particular, with

a = accumArray min m (0,m) vks
vks = [(f (k), k) | k ← [1 .. m]]

we have

a ! i = minimum ([k | k ← [1 .. m], f (k) i] ++ [m])

for 0 ≤ i ≤ m. That deals with the first term in the definition of shift sw i .
We now have to factor in the second term. The idea is to replace a by

a = accumArray min m (0,m) (vks ++ vks ′)

where the list vks ′ is any convenient permutation of

[(i ,minimum [k | k ← [m−i+1 .. m], f (k)+k m]) | i ← [1 .. m]]

Then we have shift sw i = a ! i .
We claim that the following definition of vks ′, which computes the list

above in reverse order, does the job:

vks ′ = zip [m,m−1 .. 1] (foldr op [] vks)
vks = [(f (k), k) | k ← [1 .. m]]
op (v , k) ks = if v + k m then k : ks else head ks : ks

Note that op (f (m),m) [] = [m] because f (m) = 0 and so f (m) + m = m.
For example, with xs = foldr op [] vks we have

f 2 4 0 5 2 3 0 2 0
k 1 2 3 4 5 6 7 8 9
xs 4 4 4 4 6 6 9 9 9

The ith element of xs (counting from 0) is the smallest k > i such that
f (k)+k = m. In vks ′ the index m−i is paired with xs !! i ; equivalently, i is
paired with xs !! (m−i), which is just what is required.

As the final step, recall the function allcp from the previous pearl:

allcp xs = [llcp xs (drop k xs) | k ← [0 .. length xs − 1]]

There we showed how to compute allcp in linear time. For present purposes
we need a variant of allcp xs in which the first element is dropped and an
additional element llcp xs [] is added at the end. This additional value is
zero, so we define

allcp ′ xs = tail (allcp xs) ++ [0]

The Boyer–Moore algorithm 125

Finally, we can reason:

[(f (k), k) | k ← [1 .. m]]

= {definition of f }
[(llcp sw (drop k sw), k) | k ← [1 .. m]]

= {definition of zip}
zip [llcp sw (drop k sw) | k ← [1 .. m]] [1 .. m]

= {definition of allcp′}
zip (allcp′ sw) [1 .. m]

Putting these pieces together, we obtain

a = accumArray min m (0,m) (vks ++ vks ′)
where
m = length sw
vks = zip (allcp ′ sw) [1 .. m]
vks ′ = zip [m,m−1 .. 1] (foldr op [] vks)
op (v , k) ks = if v + k m then k : ks else head ks : ks

Replacing shift sw i by a ! i in Figure 16.1 gives a linear-time algorithm for
matches.

Final remarks

The BM algorithm was first described in Boyer and Moore (1977); see also
Cormen et al. (2001), Crochemore and Rytter (2003) and Gusfield (1997) for
further exploration and discussion of the method. Most often the algorithm
is explained in terms of two rules, the bad character rule and the good

suffix rule, neither of which appear explicitly above. Our derivation of the
BM algorithm, at least in its basic form, was a simple exercise in symbolic
manipulation, applying appropriate efficiency-improving laws dictated solely
by the form of the expressions being considered. Chief among these laws were
the scan lemma and the tupling law of foldl . Moreover, the key idea of the
BM algorithm, namely the idea of matching the pattern to the text in right-
to-left order, emerged simply as the consequence of one very reasonable way
to define endswith. Subsequent optimisations depended more on the content
of the expressions than their form, but this is to be expected in any algorithm
containing subtle ideas.

References
Boyer, R. S. and Moore, J. S. (1977). A fast string searching algorithm. Commu-

nications of the ACM 20, 762–72.

126 Pearls of Functional Algorithm Design

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001). Introduction
to Algorithms, second edition. Cambridge, MA: The MIT Press.

Crochemore, M. and Rytter, W. (2003). Jewels of Stringology. Hong Kong: World
Scientific.

Galil, Z. (1979). On improving the worst cast of the Boyer–Moore string matching
algorithm. Communications of the ACM 22 (9), 505–8.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge, UK:
Cambridge University Press.

Lecroq, T. (2003). Experimental results on string matching algorithms. Software –
Practice and Experience 25 (7), 727–65.

17

The Knuth–Morris–Pratt algorithm

Introduction

In this pearl we continue with the problem of string matching and take the
other fork in the road, the one that begins with the following definition of
endswith:

endswith ws xs = ws ∈ tails xs

The path turns out to lead to the KMP algorithm. Remember, the goal is
to find functions p and op, and value e, so that endswith ws = p · foldl op e.
Then we have

matches :: Eq a ⇒ [a] → [a]→ [Int]
matches ws = map fst · filter (p · snd) · scanl step (0, e)
step (n, x) y = (n + 1, op x y)

The value of matches ws xs is a list of integers n for which the pattern ws
appears in the text xs ending at position n. Provided p and op take constant
time, or at least amortized constant time, the computation of matches takes
Θ(m + n) steps on a pattern of length m and a text of length n.

First steps

One way of writing endswith ws as a composition is

endswith ws = not · null · filter (= ws) · tails

But filter (= ws) · tails cannot be defined as an instance of foldl because
it returns either an empty list or [ws], and this is insufficient information
to define the function inductively. More promising is filter (ws) · tails.
Applied to xs, this function returns in decreasing order of length all tails of
xs that are prefixes of ws. The first element of this list is ws if and only if
endswith ws xs. Thus:

endswith ws = (= ws) · head · filter (ws) · tails

127

128 Pearls of Functional Algorithm Design

Of course, the first function (= ws) is no longer a constant-time test. That
problem is solved by generalising filter (ws) · tails to a function split ,
defined by

split ws xs = head [(us,ws ↓ us) | us ← tails xs, us ws]

The operation ↓ is defined by (us ++ vs) ↓ us = vs. Hence, split ws xs splits
ws into two lists us and vs so that us ++ vs = ws. The value of us is the
longest suffix of xs that is a prefix of ws. For example:

split “endnote” “append” = (“end”, “note”)

Now we have endswith ws = null · snd · split ws. It remains to find op
and e so that split ws = foldl op e. Equivalently, we want e and op to
satisfy

split ws [] = e
split ws (xs ++ [x]) = op (split ws xs) x

We have split ws [] = ([],ws), which gives us e, so it remains to discover op.
The crucial observation is that

split ws xs = (us, vs) ⇒ split ws (xs ++ [x]) = split ws (us ++ [x])

In words, the longest suffix of xs ++ [x] that is a prefix of ws is a suffix of
us ++ [x]. It cannot be a longer suffix, for that would mean there is a longer
suffix of xs than us that is a prefix of ws, contradicting the definition of us
as the longest such suffix.

To discover op we first express split recursively:

split ws xs = if xs ws then (xs,ws ↓ xs) else split ws (tail xs)

Now, setting split ws xs = (us, vs), so ws = us ++ vs, we reason:

split ws (xs ++ [x])

= {observation above}
split ws (us ++ [x])

= {recursive definition of split}
if us ++ [x] ws then (us ++ [x],ws ↓ (us ++ [x]))
else split ws (tail (us ++ [x]))

= {since ws = us ++ vs and definitions of and ↓}
if [x] vs then (us ++ [x], tail vs)
else split ws (tail (us ++ [x]))

The Knuth–Morris–Pratt algorithm 129

= {case analysis on us}
if [x] vs then (us ++ [x], tail vs)
else if null us then ([],ws)
else split ws (tail us ++ [x])

This calculation gives us our definition of op:

op (us, vs) x | [x] vs = (us ++ [x], tail vs)
| null us = ([],ws)
| otherwise = op (split ws (tail us)) x

Summarising where we are at this point:

matches ws = map fst · filter (null · snd · snd) ·
scanl step (0, ([],ws))

step (n, (us, vs)) x = (n + 1, op (us, vs) x)

This is the basic form of the KMP algorithm: each step maintains a current
split (us, vs) of the pattern ws in which us is the longest prefix of ws match-
ing some suffix of the current portion of the text. Positions for which vs = []
are those where the pattern matches exactly and are recorded.

The problem with op is that it is inefficient: the third clause requires
computation of split ws (tail us), which in turn may involve computing and
possibly recomputing split ws zs for an arbitrary substring zs of ws. Clearly,
op does too much work and we need something better.

Data refinement

One way to improve efficiency is to seek a change of representation of the
first argument to op, namely the current split (us, vs) of the pattern ws.
Specifically, suppose abs and rep are functions with types

abs :: Rep ([a], [a])→ ([a], [a])
rep :: ([a], [a])→ Rep ([a], [a])

for some data type Rep. The function rep is the representation function,
while abs is the abstraction function. The terminology is standard in data
refinement. We also want abs · rep = id , so abs is left-inverse to rep. This
condition states that the abstract value can be recovered from any rep-
resentation of it. The other direction rep · abs = id will only hold if the
change of representation is a bijection, which is not normally the case in
data refinement.

If we can find the necessary ingredients to ensure

foldl op ([],ws) = abs · foldl op′ (rep ([],ws)) (17.1)

130 Pearls of Functional Algorithm Design

as well as ensure that abs and op ′ take constant time, then we can redefine
matches to read

matches ws = map fst · filter (null · snd · abs · snd) ·
scanl step (0, rep ([],ws))

step (n, r) x = (n + 1, op′ r x)

To find abs, op′ and rep satisfying (17.1) we appeal to the fusion law of
foldl .This laws states the f · foldl g a = foldl h b provided three conditions
are met: (i) f is a strict function; (ii) f a = b; and (iii) f (g y x) = h (f y) x
for all x and y . The first condition is not needed if we want to assert that
the fusion law holds only for all finite lists. The twist here is that we want
to apply the law in the anti-fusion or fission direction, splitting a fold into
two parts.

The second fusion condition is immediate: abs (rep ([],ws)) = ([],ws).
And there is an obvious definition of op ′ that satisfies the third fusion
condition, namely

op ′ r = rep · op (abs r) (17.2)

Then we have

abs (op ′ r x) = abs (rep (op (abs r) x)) = op (abs r) x

Installing the definition of op in (17.2) we obtain

op ′ r x | [x] vs = rep (us ++ [x], tail vs)
| null us = rep ([],ws)
| otherwise = op ′ (rep (split ws (tail us))) x

where (us, vs) = abs r

It remains to choose Rep and the two functions abs and rep.

Trees

In functional programming, practically all efficient representations involve a
tree of some kind, and this one is no different. We define

data Rep a = Null |Node a (Rep a) (Rep a)

So Rep is a binary tree. The function abs is defined by

abs (Node (us, vs) � r) = (us, vs) (17.3)

and clearly takes constant time. The function rep is defined by

rep (us, vs) = Node (us, vs) (left us vs) (right us vs) (17.4)

The Knuth–Morris–Pratt algorithm 131

where

left [] vs = Null
left (u : us) vs = rep (split ws us)

right us [] = Null
right us (v : vs) = rep (us ++ [v], vs)

The reason for choosing rep in the above way is that op′ takes the simple
form

op ′ (Node (us, vs) � r) x | [x] vs = r
| null us = root
| otherwise = op ′ � x

where root = rep ([],ws). For instance, the first clause is justified by

op′ (Node (us, vs) � r) x

= {definition of op ′ in the case [x] vs}
rep (us ++ [x], tail vs)

= {definition of right and x = head vs}
right us vs

= {definition of rep}
r

The other clauses are similar. If we also set op ′ Null x = root , then op ′ takes
an even simpler form:

op ′ Null x = root
op ′ (Node (us, vs) � r) x | [x] vs = r

| otherwise = op ′ � x

Although op ′ does not take constant time, it does take amortized constant
time. The tree root has height m, the length of the pattern; taking a right
branch decreases the height of the current tree by exactly one, while taking
a left-branch increases the height, possibly by more than one. A standard
amortization argument now shows that evaluating foldl op ′ root on a list of
length n involves at most 2m + n calls of op ′.

What remains is to show how to compute rep efficiently. It is here that a
final standard technique of program transformation enters the picture: use
of an accumulating parameter. The idea is to specify a generalised version,
grep say, of rep by

rep (us, vs) = grep (left us vs) (us, vs)

132 Pearls of Functional Algorithm Design

and then to derive a direct definition of grep. From (17.4) we have

grep � (us, vs) = Node (us, vs) � (right us vs)

Now, by the definition of right , we have right us [] = Null and

right us (v : vs) = rep (us ++ [v], vs)
= grep (left (us ++ [v]) vs) (us ++ [v], vs)

To simplify left (us ++ [v]) vs we need a case analysis on us. In the case
us = [] we reason:

left ([] ++ [v]) vs

= {definition of left}
rep (split ws [])

= {definition of split}
rep ([],ws)

= {definition of root}
root

In the inductive case u : us we reason:

left (u : us ++ [v]) vs

= {definition of left}
rep (split ws (us ++ [v]))

= {definition of split}
rep (op (split ws us) v)

= {definition (17.2) of op ′}
op ′ (rep (split ws us)) v

= {definition of left}
op ′ (left (u : us) vs) v

Summarising this calculation:

left (us ++ [v]) vs = if null us then root else op ′ (left us vs) v

Hence, grep can be defined by

grep � (us, []) = Node (us, []) � Null
grep � (us, v : vs) = Node (us, v : vs) �

(grep (op ′ � v) (us ++ [v], vs))

The Knuth–Morris–Pratt algorithm 133

matches ws = map fst · filter (ok · snd) · scanl step (0, root)
where
ok (Node vs � r) = null vs
step (n, t) x = (n + 1, op t x)
op Null x = root
op (Node [] � r) x = op � x
op (Node (v : vs) � r) x = if v x then r else op � x
root = grep Null ws
grep � [] = Node [] � Null
grep � (v : vs) = Node (v : vs) � (grep (op � v) vs)

Fig. 17.1 The final program for matches

Let us now put all the pieces together. We have

matches ws = map fst · filter (ok · snd) · scanl step (0, root)

where

ok (Node (us, vs) � r) = null vs
step (n, t) x = (n + 1, op t x)
root = grep Null ([],ws)

The function op (which is op ′ renamed) is defined by

op Null x = root
op (Node (us, []) � r) x = op � x
op (Node (us, v : vs) � r) x = if v x then r else op � x

and the function grep by

grep � (us, []) = Node (us, []) � Null
grep � (us, v : vs) = Node (us, v : vs) � (grep (op � v) (us ++ [v], vs))

Inspection of the right-hand sides of these definitions shows that the first
component us of the pair (us, vs) plays no part in the algorithm, as its
value is never used. Hence, we simply drop us and obtain our final program,
recorded in Figure 17.1.

The tree root is cyclic: left subtrees point backwards to earlier nodes in
the tree, or to Null . This tree encapsulates the failure function of the KMP
algorithm as a cyclic graph. The operation op takes amortized constant time,
assuming the cost of an equality test is constant. The time to compute root
is Θ(m) steps, where m = length ws. Hence, matches takes Θ(m) steps to
build root and thereafter Θ(n) steps, where n is the length of the text, to
compute the occurrences of the pattern in the text.

134 Pearls of Functional Algorithm Design

The program above is not quite the full KMP algorithm, but corresponds
to what is known as the Morris–Pratt algorithm. The full KMP algorithm
contains an extra wrinkle. Suppose we introduce a function next , defined by

next Null x = Null
next (Node [] � r) x = Node [] � r
next (Node (v : vs) � r) x = if v x then next � x

else Node (v : vs) � r

Essentially, next t x replaces the tree t with the first tree on the list of left
subtrees of t whose associated label does not begin with x . The point about
next is that, as can be seen from the definition of op, we have

op (Node (v : vs) � r) x = op (Node (v : vs) (next � v) r) x

It follows that evaluation of op can be made more efficient by replacing each
node Node (v : vs) � r in the tree with a new node Node (v : vs) (next � v) r .
But we won’t go into further details.

Final remarks

The KMP algorithm was first described in Knuth et al. (1977). However,
many other descriptions of the algorithm exist (e.g. Gusfield, 1997; Cormen
et al., 2001; Crochemore and Rytter, 2002). In fact, there are over a hun-
dred papers devoted to string matching in general, and the KMP and BM
algorithms in particular. In fact, we have written two previous papers about
the KMP ourselves (Bird, 1977; Bird et al., 1989), one over 30 years ago,
before the laws of functional programming were firmly established. The above
presentation of the KMP algorithm is a more polished and revised version
of the one contained in Bird et al. (1989). Recently, Olivier Danvy and his
colleagues at BRICS have written a number of papers showing how to obtain
the KMP and BM algorithms by partial evaluation. For example, Ager et al.
(2003) uses similar ideas to those in Bird (1977) to solve a long-outstanding
open problem in partial evaluation, namely how to obtain the KMP from
a naive algorithm by a process of partial evaluation that takes linear time.
And Danvy and Rohde (2005) present a derivation of the search phase of
the BM algorithm using partial evaluation, by identifying the bad character
rule as a binding-time improvement.

References
Ager, M. S., Danvy, O. and Rohde, H. K. (2003). Fast partial evaluation of pattern

matching in strings. BRICS Report Series, RS-03-11, University of Aarhus,
Denmark.

The Knuth–Morris–Pratt algorithm 135

Bird, R. S. (1977). Improving programs by the introduction of recursion. Commu-
nications of the ACM 20 (11), 856–63.

Bird, R. S., Gibbons, J. and Jones, G. (1989). Formal derivation of a pattern match-
ing algorithm. Science of Computer Programming 12, 93–104.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001). Introduction
to Algorithms, second edition. Cambridge, MA: MIT Press.

Crochemore, M. and Rytter, W. (2002). Jewels of Stringology. Hong Kong: World
Scientific.

Danvy, O. and Rohde, H. K. (2005). On obtaining the Boyer–Moore string-matching
algorithm by partial evaluation. BRICS Research Report RS-05-14, University
of Aarhus, Denmark.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge, UK:
Cambridge University Press.

Knuth, D. E., Morris, J. H. and Pratt, V. B. (1977). Fast pattern matching in
strings. SIAM Journal on Computing 6, 323–50.

18

Planning solves the Rush Hour problem

Introduction

Rush Hour is an intriguing sliding-block puzzle, invented some years ago by
the celebrated puzzlist Nob Yoshigahara and marketed by Think Fun.1 It is
played on a 6× 6 grid and can be solved in reasonable time by a brute-force
breadth-first search. The generalised version – played on an n × n grid –
is known to be PSPACE-complete, so a better than exponential-time solver
is very unlikely. Still, with the help of a suitable planning algorithm, it is
possible to improve significantly on the brute-force approach, and the aim
of this pearl is to show how. Further details of how Rush Hour is played are
postponed until later, because we want to start out with a more abstract
formulation of puzzles, breadth-first search and planning.

Puzzles

Consider an abstract puzzle defined in terms of two finite sets, a set of states
and a set of moves. Given are three functions

moves :: State → [Move]
move :: State → Move → State
solved :: State → Bool

The function moves determines the legal moves that can be made in a
given state and move returns the new state that results when a given move
is made. The function solved determines which states are a solution to
the puzzle. Described in this way, a puzzle is essentially a deterministic
finite automaton. Solving the puzzle means finding some sequence of moves,
preferably a shortest such sequence, that leads from a given initial state to
some solved state:

solve :: State → Maybe [Move]

1 Rush Hour is obtainable from http://www.puzzles.com/products/rushhour.htm.

136

Planning solves the Rush Hour problem 137

The value of solve q is Nothing if there is no sequence of moves beginning
in state q that leads to a solved state and returns Just ms otherwise, where
ms satisfies solved (foldl move q ms).

We can implement solve by carrying out either a breadth-first or a depth-
first search. In either case the key idea is to introduce the synonyms

type Path = ([Move],State)
type Frontier = [Path]

A path consists of a sequence of moves made in some given starting state,
together with the resulting state. A frontier is a list of paths waiting to be
explored further. Then, a breadth-first search can be defined by

bfsearch :: [State]→ Frontier → Maybe [Move]
bfsearch qs [] = Nothing
bfsearch qs (p@(ms, q) : ps)

| solved q = Just ms
| q ∈ qs = bfsearch qs ps
| otherwise = bfsearch (q : qs) (ps ++ succs p)

where

succs :: Path → [Path]
succs (ms, q) = [(ms ++ [m],move q m) | m ←moves q]

The first component qs of bfsearch represents the set of analysed states.
In a breadth-first search the frontier is managed as a queue, so paths at
the same distance from the starting state are analysed before their suc-
cessors. Analysing a path means accepting it if the final state is a solved
state, rejecting it if the final state has already been analysed, and otherwise
adding its successors to the end of the current frontier for future exploration.
A breadth-first search will find a shortest solution if a solution exists.

With one change, the definition of depth-first search is exactly the same as
that of breadth-first search. The change is to replace the term ps ++ succs p
by succs p ++ps. In a depth-first search the frontier is maintained as a stack,
so the successors of a path are analysed before any other path at the same
level. A depth-first search will find a solution if one exists, but it probably
won’t be the shortest.

Under breadth-first search the current frontier can be exponentially longer
than under depth-first search. Consequently, as defined above, bfsearch takes
much more time than dfsearch. The reason is that evaluation of ps ++succs p
takes time proportional to the length of the frontier ps. One way to make the

138 Pearls of Functional Algorithm Design

code faster, though it does not reduce the space complexity, is to introduce
an accumulating parameter, defining bfsearch ′ by

bfsearch ′ qs pss ps = bfsearch qs (ps ++ concat (reverse pss))

Then, after some simple calculation which we omit, we obtain

bfsearch ′ :: [State]→ [Frontier] → Frontier → Maybe [Move]
bfsearch ′ qs [] [] = Nothing
bfsearch ′ qs pss [] = bfsearch ′ qs [] (concat (reverse pss))
bfsearch ′ qs pss (p@(ms, q) : ps)
| solved q = Just ms
| q ∈ qs = bfsearch ′ qs pss ps
| otherwise = bfsearch ′ (q : qs) (succs p : pss) ps

In fact, there is a simpler version of bfsearch ′ in which the accumulating
parameter is of type Frontier rather than [Frontier]:

bfsearch ′ :: [State]→ Frontier → Frontier → Maybe [Move]
bfsearch ′ qs [] [] = Nothing
bfsearch ′ qs rs [] = bfsearch ′ qs [] rs
bfsearch ′ qs rs (p@(ms, q) : ps)
| solved q = Just ms
| q ∈ qs = bfsearch ′ qs rs ps
| otherwise = bfsearch ′ (q : qs) (succs p ++ rs) ps

This version of bfsearch ′ has a different behaviour than the previous one in
that successive frontiers are traversed alternately from left to right and from
right to left, but a shortest solution will still be found if a solution exists.

We can now define

bfsolve q = bfsearch ′ [] [] [([], q)]

The function bfsolve implements solve using a breadth-first search.

Planning

But what we have got so far is simply the strategy of trying every possible
sequence of moves until finding one that works. That is not the way humans
solve puzzles. Instead they make plans. For our purposes a plan is a sequence
of moves that, if the moves can be carried out, leads to a solved state. Thus:

type Plan = [Move]

Plans have to consist of non-repeated moves, otherwise the plan cannot be
carried out. If, in order to make move m, a plan requires move m to be made

Planning solves the Rush Hour problem 139

first, then clearly the plan cannot be implemented. An empty plan means
success. Otherwise, suppose the first move in the current plan is move m. If
move m can be carried out in the current state, then it is made. If it cannot,
then we make use of a function premoves :: State → Move → [[Move]] such
that, for each alternative pms in premoves q m, the move m can be made
provided the preparatory moves pms are made first. In turn, moves in pms
may require further preparatory moves, so we have to form new, extended
plans by iterating premoves:

newplans :: State → Plan → [Plan]
newplans q ms = mkplans ms
where
mkplans ms | null ms = []

| m ∈ qms = [ms]
| otherwise = concat [mkplans (pms ++ ms) |

pms ← premoves q m,

all (/∈ms) pms]
where m = head ms; qms = moves q

The result of newplans q ms is a possibly empty list of nonempty plans,
the first move of each of which can be made in state q . To kick-start the
planning process we assume that a puzzle in state q can be solved by making
the moves in goalmoves q , where goalmoves :: State → Plan.

Using just the two new functions goalmoves and premoves we can now
formulate an alternative search process based on the idea of an augmented
path and frontier:

type APath = ([Move],State,Plan)
type AFrontier = [APath]

An augmented path consists of moves already made from some starting
state, the state that results and a plan for the remaining moves. The search
consists of exploring augmented paths in order until either one plan succeeds
or all plans fail:

psearch :: [State]→ AFrontier → Maybe [Move]
psearch qs [] = Nothing
psearch qs (p@(ms, q , plan) : ps)
| solved q = Just ms
| q ∈ qs = psearch qs ps
| otherwise = psearch (q : qs) (asuccs p ++ ps ++ bsuccs p)

140 Pearls of Functional Algorithm Design

where

asuccs, bsuccs :: APath → [APath]
asuccs (ms, q , plan)

= [(ms++[m],move q m, plan ′) | m : plan ′← newplans q plan]
bsuccs (ms, q ,)

= [(ms++[m], q ′, goalmoves q ′) | m ←moves q , let q ′ = move q m]

In psearch qs ps all the plans in the frontier ps are tried first in a depth-first
manner. If all of them fail, then we add in further plans, each of which con-
sists of making some legal move and starting over with a new goal. These
additional plans, expressed by the term bsuccs, are necessary for complete-
ness. Simple puzzles may be solvable by suitable planning, but plans may
fail even though there is a solution. This is a consequence of the fact that
plans are executed greedily and moves that can be made are made. To ensure
a complete strategy we have to be willing to make additional plans at each
stage.

As with a breadth-first search, we can make psearch faster by introducing
an accumulating parameter:

psearch ′ :: [State]→ AFrontier → AFrontier → Maybe [Move]
psearch ′ qs [] [] = Nothing
psearch ′ qs rs [] = psearch ′ qs [] rs
psearch ′ qs rs (p@(ms, q , plan) : ps)
| solved q = Just (reverse ms)
| q ∈ qs = psearch ′ qs rs ps
| otherwise = psearch ′ (q : qs) (bsuccs p ++ rs) (asuccs p ++ ps)

The function psolve can now be defined by

psolve :: State → Maybe [Move]
psolve q = psearch ′ [] [] [([], q , goalmoves q)]

The function psolve implements solve using planning. It is possible to define
a variation of psearch that explores plans in a breadth-first manner, but we
will leave details to the reader. Note that psearch will find a solution if one
exists, but not necessarily the shortest one.

Rush Hour

Let us now apply the above ideas to Rush Hour. As mentioned before, this
is a puzzle consisting of a 6× 6 grid of 36 cells. Covering some of these cells
are vehicles. Each vehicle is either vertical or horizontal and occupies either
two cells or three cells, depending on whether the vehicle is a car or truck.

Planning solves the Rush Hour problem 141

� � � � � �

� � � � � �

� � � � � �

� � � � � � � � �

� � � � � �

� � � � � �

� ��

�

�

�

�

�

�

�

� � �

�

�

�

�

�

� � �

�

� � �

� � � �

Fig. 18.1 A Rush Hour grid

Horizontal vehicles can move left or right, while vertical vehicles can move
up or down. One fixed cell, three places down along the right vertical side
of the grid, is special and is called the exit cell. One vehicle is special: it is
horizontal and occupies cells to the left of the exit cell. The object of the
puzzle is simply to move the special vehicle to the exit cell. An example
starting grid is pictured in Figure 18.1.

There are various ways to represent the grid, of which the most obvious is
to name each cell by a pair of Cartesian coordinates. A more space-efficient
alternative (a useful consideration with breadth-first search) is to number
the cells as follows:

1 2 3 4 5 6
8 9 10 11 12 13
15 16 17 18 19 20
22 23 24 25 26 27
29 30 31 32 33 34
36 37 38 39 40 41

The left and right borders are cells divisible by 7, the top border consists of
cells with negative numbers and the bottom border has cells greater than
42. The exit cell is cell 20. A grid state can be defined as a list of pairs of
cells, each pair being the rear and front cells occupied by a single vehicle.
The vehicles in the grid are named implicitly by their positions in the list,
with the special vehicle being vehicle 0, so the first pair represents the cells
occupied by the special vehicle. For example, the grid of Figure 18.1 is
represented by

g1 = [(17, 18), (1, 15), (2, 9), (3, 10), (4, 11), (5, 6), (12, 19),
(13, 27), (24, 26), (31, 38), (33, 34), (36, 37), (40, 41)]

142 Pearls of Functional Algorithm Design

This representation is captured by introducing the synonyms

type Cell = Int
type Grid = [(Cell ,Cell)]
type Vehicle = Int
type Move = (Vehicle,Cell)
type State = Grid

The list of occupied cells can be constructed in increasing order by filling in
the intervals associated with each vehicle and merging the results:

occupied :: Grid → [Cell]
occupied = foldr (merge · fillcells) []

fillcells (r , f) = if r > f−7 then [r .. f] else [r , r+7 .. f]

A vehicle occupying the cells in the interval (r , f), where r is the rear and f
is the front, is horizontal if r > f−7 and vertical if r ≤ f−7. The free cells
of a grid are now defined by

freecells :: Grid → [Cell]
freecells g = allcells \\ occupied g

where allcells = [c | c← [1 ..41], c mod7 �= 0]. We omit the standard definit-
ions of merge and the ordered list difference operator \\.

The function moves is implemented by

moves :: Grid → [Move]
moves g = [(v , c) | (v , i)← zip [0..] g , c← adjs i , c ∈ fs]

where fs = freecells g

adjs (r , f) = if r > f−7 then [f +1, r−1] else [f +7, r−7]

A move (v , c) is legal if and only if cell c is unoccupied and adjacent, along
the appropriate axis, to the cells currently occupied by v . Note that a move
consists of moving a vehicle exactly one step on the grid.

The function move is implemented by

move g (v , c) = g1 ++ adjust i c : g2
where (g1, i : g2) = splitAt v g

and adjust by

adjust (r , f) c
| r > f−7 = if c > f then (r+1, c) else (c, f−1)
| otherwise = if c < r then (c, f−7) else (r+7, c)

The arithmetic here is fairly self-explanatory and justification is omitted.

Planning solves the Rush Hour problem 143

A grid is solved if the front of vehicle 0 is at the exit cell:

solved :: Grid → Bool
solved g = snd (head g) = 20

We can now implement the breadth-first strategy by

bfsolve :: Grid → Maybe [Move]
bfsolve g = bfsearch ′ [] [] [([], g)]

where bfsearch ′ is as defined in the previous section.
To implement psearch we need to define the two additional functions

goalmoves and premoves. The former is easy:

goalmoves :: Grid → Plan
goalmoves g = [(0, c) | c← [snd (head g) + 1 .. 20]]

That is, goalmoves is the list of moves required to step the special vehicle 0
forward to the exit.

We need to define premoves g m only when m is a move with a target cell
c that is currently occupied. In such a case there is a unique pair (v , i) in
zip [0..] g with interval i containing c. The function blocker discovers this
pair:

blocker :: Grid → Cell → (Vehicle, (Cell ,Cell))
blocker g c = search (zip [0..] g) c

search ((v , i) : vis) c = if covers c i then (v , i) else search vis c

covers c (r , f) = r ≤ c ∧ c ≤ f ∧ (r > f−7 ∨ (c−r) mod 7 = 0)

The blocking vehicle v , occupying the interval i = (r , f), has to be moved
out of the way so as to free the cell c; this is achieved by moving v left
or right if horizontal, or down or up if vertical, an appropriate number of
moves. These moves are computed with the function freeingmoves:

freeingmoves :: Cell → (Vehicle, (Cell ,Cell))→ [[Move]]
freeingmoves c (v , (r , f))
| r > f−7 = [[(v , j) | j ← [f +1 .. c+n]] | c+n < k+7] ++

[[(v , j) | j ← [r−1, r−2 .. c−n]] | c−n > k]
| otherwise = [[(v , j) | j ← [r−7, r−14 .. c−m]] | c−m > 0] ++

[[(v , j) | j ← [f +7, f +14 .. c+m]] | c+m < 42]
where (k ,m,n) = (f−f mod 7, f−r + 7, f−r+1)

If v is horizontal, so r > f−7, then its length is n = f−r+1 and, in order to
free the cell c, we have to move v either rightwards to cell c+n or leftwards
to cell c−n, provided these cells are on the grid. If v is vertical, then its

144 Pearls of Functional Algorithm Design

length is n = (f − r) div 7 + 1 and we have to move v either upwards to cell
c−7n or downwards to cell c+7n, again provided these cells are on the grid.
The value of m in this case is m = 7× n.

Now we can define premoves by

premoves :: Grid → Move → [[Move]]
premoves g (v , c) = freeingmoves c (blocker g c)

However, the definition of newplans given in the previous section needs to be
modified in order to work with Rush Hour. To see why, imagine the current
plan consists of the goal moves [(0, 19), (0, 20)] where vehicle 0 occupies the
cells [17, 18] on the opening grid. Suppose the first move (0, 19) is not possible
until the preparatory moves pms are made. Now it is perfectly possible that
one of the moves in pms is (0, 16), moving vehicle 0 one place to the left.
After executing pms in preparation for the move (0, 19) we see that (0, 19)
is no longer a well-defined move in the resulting grid because it requires 0 to
move two steps forward, and so has first to be expanded to the single-step
moves [(0, 18), (0, 19)]. Hence, we need to modify newplans to read

newplans :: Grid → Plan → [Plan]
newplans g [] = []
newplans g (m : ms) = mkplans (expand g m ++ ms)
where mkplans ms = if m ∈ gms then [ms] else

concat [mkplans (pms ++ ms) |
pms ← premoves g m,

all (/∈ ms) pms]
where m = head ms; gms = moves g

The new function expand , which expands a possibly invalid move into a
sequence of valid moves, is defined by

expand :: Grid → Move → [Move]
expand g (v , c)
| r > f−7 = if c > f then [(v , p) | p ← [f +1 .. c]]

else [(v , p) | p ← [r−1, r−2 .. c]]
| otherwise = if c > f then [(v , p) | p ← [f +7, f +14 .. c]]

else [(v , p) | p ← [r−7, r−14 .. c]]
where (r , f) = g !! v

We can now implement the planning algorithm by

psolve :: Grid → Maybe [Move]
psolve g = psearch ′ [] [] [([], g , goalmoves g)]

Planning solves the Rush Hour problem 145

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� ��

�

�

�

�

�

�

�

� � �

�

�

�

�

�

� � �

�

� � �

� � � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� �

�

� � � �

� �

�

�

�

�

�

�

�

�

� � �

� � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� ��

�

�

�

� � � �

�

�

� � � �

�

�

�

� � � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� ��

�

� � �

�

�

�

�

�

�

�

�

�

� � �

�

�

�

� � �

� � � �

Fig. 18.2 Four Rush Hour problems

Table 18.1. Solution times to solve four Rush Hour problems

Puzzle bfsolve Moves psolve Moves dfsolve Moves

1 9.11 34 0.23 38 3.96 1228
2 4.71 18 0.04 27 3.75 2126
3 1.70 55 0.91 75 0.97 812
4 9.84 81 2.36 93 2.25 1305

where psearch ′ is as defined in the previous section except for the revised
definition of newplans.

Results

So, how much better is psolve than bfsolve? We took four Rush Hour puz-
zles from Nick Baxter’s puzzleworld site www.puzzleworld.org/SlidingBlock
Puzzles/rushhour.htm, pictured in Figure 18.2. These were solved on a
Pentium 3, 1000MHz computer, using GHCi. The results (times are in
seconds) are shown in Table 18.1. As can be seen from Table 18.1, psolve is
significantly faster than bfsolve, varying from a factor of 100 to a factor of 2.
On the other hand, psolve may make unnecessary moves. For comparison,
the times and move counts for dfsolve are also included in the table.

Final remarks

The PSPACE-completeness result for Rush Hour can be found in Flake and
Baum (2002). I learned about Rush Hour at the 2008 Advanced Functional

146 Pearls of Functional Algorithm Design

Programming Summer School (Jones, 2008), where Mark Jones presented a
series of lectures about the benefits of thinking functionally about problems.
He gave a breadth-first solution, but he also challenged participants at the
summer school to come up with a faster solution. This pearl was composed
in response to Jones’ challenge.

References
Flake, G. W. and Baum, E. B. (2002). Rush Hour is PSPACE-complete, or “Why

you should generously tip parking lot attendants”. Theoretical Computer
Science 270 (1), 895–911.

Jones, M. P. (2008). Functional thinking. Advanced Functional Programming
Summer School, Boxmeer, The Netherlands.

19

A simple Sudoku solver

How to play: Fill in the grid so that every row, every column and every 3 × 3
box contains the digits 1–9. There’s no maths involved. You solve the puzzle with
reasoning and logic.

Advice on how to play Sudoku, The Independent Newspaper

Introduction

The game of Sudoku is played on a 9× 9 grid. Given a matrix, such as that
in Figure 19.1, the idea is to fill in the empty cells with the digits 1 to 9
so that each row, column and 3 × 3 box contains the numbers 1 to 9. In
general there may be one, none or many solutions, though in a good Sudoku
puzzle there should always be a unique solution. Our aim in this pearl is
to construct a Haskell program to solve Sudoku puzzles. Specifically, we
will define a function solve for computing all the ways a given grid may
be completed. If only one solution is wanted, then we can take the head
of the list. Lazy evaluation means that only the first result will then be
computed. We begin with a specification, then use equational reasoning to
calculate a more efficient version. There is no maths involved, just reasoning
and logic!

Specification

We begin with some basic data types, starting with matrices:

type Matrix a = [Row a]
type Row a = [a]

An m×n matrix is a list of m rows in which each row has the same length n.
A grid is a 9× 9 matrix of digits:

type Grid = Matrix Digit
type Digit = Char

147

148 Pearls of Functional Algorithm Design

4

7
3

2
6

6
5

4

1
3

4
8

6
2

9
5

9

4
7

5
9

6
3

8

Fig. 19.1 A Sudoku grid

The valid digits are 1 to 9 with 0 standing for a blank:

digits = [‘1’ .. ‘9’]
blank = (‘0’)

We suppose that a given grid contains only digits and blanks. We also sup-
pose that the input grid is valid, meaning that no digit is repeated in any
row, column or box.

Now for the specification. The aim is to write down the simplest and
clearest specification of solve without regard to how efficient the result might
be. One possibility is first to construct a list of all correctly completed grids,
and then to test the given grid against them to identify those whose non-
blank entries match the given ones. Another possibility, and the one we will
adopt, is to start with the given grid and to install all possible choices for the
blank entries. Then we compute all the grids that arise from making every
possible choice and filter the result for the valid ones. This specification is
formalised by

solve = filter valid · expand · choices

The subsidiary functions have types

choices :: Grid → Matrix Choices
expand :: Matrix Choices → [Grid]
valid :: Grid → Bool

The simplest choice of Choices is type Choices = [Digit]. Then we have

choices :: Grid → Matrix Choices
choices = map (map choice)
choice d = if blank d then digits else [d]

A simple Sudoku solver 149

If the cell is blank, then all digits are installed as possible choices; otherwise
there is no choice and a singleton is returned.

Next, expansion is just matrix Cartesian product:

expand :: Matrix Choices → [Grid]
expand :: cp ·map cp

The Cartesian product of a list of lists is given by

cp :: [[a]]→ [[a]]
cp [] = [[]]
cp (xs : xss) = [x : ys | x ← xs, ys ← cp xss]

For example, cp [[1, 2], [3], [4, 5]] = [[1, 3, 4], [1, 3, 5], [2, 3, 4], [2, 3, 5]]. Thus,
map cp returns a list of all possible choices for each row and cp · map cp
installs each choice for the rows in all possible ways.

Finally, we deal with valid . A valid grid is one in which no row, column
or box contains duplicates:

valid :: Grid → Bool
valid g = all nodups (rows g) ∧

all nodups (cols g) ∧
all nodups (boxs g)

The standard function all p applied to a finite list xs returns True if all
elements of xs satisfy p and False otherwise. The function nodups can be
defined by

nodups :: Eq a ⇒ [a]→ Bool
nodups [] = True
nodups (x : xs) = all (�= x) xs ∧ nodups xs

The function nodups takes quadratic time. As an alternative we could sort
the list of digits and check that it is strictly increasing. Sorting can be
done in Θ(n log n) steps. However, with n = 9 it is not clear that sorting
the digits is worthwhile. What would you prefer: 2n2 steps or 100n log2 n
steps?

It remains to define rows, cols and boxs. If a matrix is given by a list of
its rows, then rows is just the identity function on matrices:

rows :: Matrix a → Matrix a
rows = id

150 Pearls of Functional Algorithm Design

The function cols computes the transpose of a matrix. One possible def-
inition is

cols :: Matrix a → Matrix a
cols [xs] = [[x] | x ← xs]
cols (xs : xss) = zipWith (:) xs (cols xss)

The function boxs is a little more interesting:

boxs :: Matrix a → Matrix a
boxs = map ungroup · ungroup ·map cols · group ·map group

The function group splits a list into groups of three:

group :: [a]→ [[a]]
group [] = []
group xs = take 3 xs : group (drop 3 xs)

The function ungroup takes a grouped list and ungroups it:

ungroup :: [[a]]→ [a]
ungroup = concat

The action of boxs in the 4× 4 case, when group splits a list into groups of
two, is illustrated by⎛

⎜⎜⎝
a b c d
e f g h
i j k l
m n o p

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

(
ab cd
ef gh

)
(

ij kl
mn op

)
⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

(
ab ef
cd gh

)
(

ij mn
kl op

)
⎞
⎟⎟⎠

The function group ·map group produces a list of matrices; transposing each
matrix and ungrouping yields the boxes.

Observe that instead of thinking about matrices in terms of indices, and
doing arithmetic on indices to identify the rows, columns and boxes, we have
gone for definitions of these functions that treat the matrix as a complete
entity in itself. Geraint Jones has aptly called this style wholemeal program-

ming. Wholemeal programming is good for you: it helps to prevent a disease
called indexitis and encourages lawful program construction.

For example, here are three laws that are valid on 9× 9 Sudoku grids, in
fact on arbitrary N 2 ×N 2 matrices:

rows · rows = id
cols · cols = id
boxs · boxs = id

Equivalently, all three functions are involutions. Two are easy to prove,
but one is more difficult. The difficult law is not the one about boxs, as

A simple Sudoku solver 151

you might expect, but the involution property of cols. Though intuitively
obvious, proving it from the definition of cols is slightly tricky. The involution
property of boxs is an easy calculation using the involution property of cols,
simple properties of map and the fact that group · ungroup = id .

Here are three more laws, valid on N 2 ×N 2 matrices of choices:

map rows · expand = expand · rows (19.1)

map cols · expand = expand · cols (19.2)

map boxs · expand = expand · boxs (19.3)

We will make use of these laws in a short while.

Pruning the matrix of choices

Though executable in theory, the specification of solve is hopeless in practice.
Assuming about a half of the 81 entries are fixed initially (a generous esti-
mate), there are about 940, or

147 808 829 414 345 923 316 083 210 206 383 297 601

grids to check! We therefore need a better approach. To make a more
efficient solver, a good idea is to remove any choices from a cell c that
already occur as singleton entries in the row, column and box contain-
ing c. A singleton entry corresponds to a fixed choice. We therefore seek a
function

prune :: Matrix Choices → Matrix Choices

so that

filter valid · expand = filter valid · expand · prune

How can we define prune? Well, since a matrix is a list of rows, a good
place to start is by pruning a single row. The function pruneRow is
defined by

pruneRow :: Row Choices → Row Choices
pruneRow row = map (remove fixed) row

where fixed = [d | [d]← row]

The function remove removes choices from any choice that is not fixed:

remove xs ds = if singleton ds then ds else ds \\ xs

The function pruneRow satisfies

filter nodups · cp = filter nodups · cp · pruneRow (19.4)

The proof is left as an exercise.

152 Pearls of Functional Algorithm Design

We are now nearly ready for a calculation that will determine the function
prune. Nearly, but not quite, because we are going to need two laws about
filter . The first is that if f · f = id , then

filter (p · f) = map f · filter p ·map f (19.5)

Equivalently, filter (p · f) ·map f = map f · filter p. The second law is that

filter (all p) · cp = cp ·map (filter p) (19.6)

Proofs of (19.5) and (19.6) are again left as exercises.
Now for the calculation. The starting point is to rewrite filtervalid ·expand :

filter valid · expand = filter (all nodups · boxs) ·
filter (all nodups · cols) ·
filter (all nodups · rows) · expand

The order in which the filters appear on the right is not important. The
plan of attack is to send each of these filters into battle with expand . For
example, in the boxs case we argue:

filter (all nodups · boxs) · expand

= {(19.5), since boxs · boxs = id}
map boxs · filter (all nodups) ·map boxs · expand

= {(19.3)}
map boxs · filter (all nodups) · expand · boxs

= {definition of expand}
map boxs · filter (all nodups) · cp ·map cp · boxs

= {(19.6) and map f ·map g = map (f · g)}
map boxs · cp ·map (filter nodups · cp) · boxs

= {(19.4)}
map boxs · cp ·map (filter nodups · cp · pruneRow) · boxs

= {(19.6)}
map boxs · filter (all nodups) · cp ·map cp ·map pruneRow · boxs

= {definition of expand}
map boxs · filter (all nodups) · expand ·map pruneRow · boxs

= {(19.5) in the form map f · filter p = filter (p · f) ·map f }
filter (all nodups · boxs) ·map boxs · expand ·map pruneRow · boxs

= {(19.3)}
filter (all nodups · boxs) · expand · boxs ·map pruneRow · boxs

A simple Sudoku solver 153

We have shown that

filter (all nodups · boxs) · expand
= filter (all nodups · boxs) · expand · pruneBy boxs

where pruneBy f = f · map pruneRow · f . Repeating the same calculation
for rows and cols, we obtain

filter valid · expand = filter valid · expand · prune

where

prune = pruneBy boxs · pruneBy cols · pruneBy rows

In conclusion, the previous definition of solve can be replaced with a
new one:

solve = filter valid · expand · prune · choices

In fact, rather than just one prune, we can have as many prunes as we like.
This is sensible, because after one round of pruning some choices may be
resolved into singleton choices and another round of pruning may remove
still more impossible choices. The simplest Sudoku problems are solved just
by repeatedly pruning the matrix of choices until only singleton choices
are left.

Single-cell expansion

For more devious puzzles we can combine pruning with another idea:
expanding the choices for a single cell only. While expand installed all
possible choices in all cells on the grid in one go, single-cell expansion
picks on one cell and installs all the choices for that cell only. The hope is
that mixing prunes with single-cell expansions can lead to a solution more
quickly.

Therefore, we construct a function expand1 that expands the choices for
one cell only. This function is required to satisfy the property that, up to
some permutation of the answer:

expand = concat ·map expand · expand1 (19.7)

A good choice of cell on which to perform expansion is one with the small-
est number of choices (not equal to one of course). A cell with no choices
means that the puzzle is unsolvable, so identifying such a cell quickly is
a good idea. Think of cell containing cs choices as sitting in the middle
of a row row , so row = row1 ++ [cs] ++ row2, in the matrix of choices,

154 Pearls of Functional Algorithm Design

with rows rows1 above this row and rows rows2 below it. Then we can
define

expand1 :: Matrix Choices → [Matrix Choices]
expand1 rows = [rows1 ++ [row1 ++ [c] : row2] ++ rows2 | c← cs]
where (rows1, row : rows2) = break (any smallest) rows

(row1, cs : row2) = break smallest row
smallest cs = length cs n
n = minimum (counts rows)

counts = filter (�= 1) ·map length · concat

The value n is the smallest number of choices, not equal to one, in any cell
of the matrix of choices. If the matrix of choices contains only singleton
choices, then n is the minimum of the empty list, which is not defined. The
standard function break p splits a list into two:

break p xs = (takeWhile (not · p) xs, dropWhile (not · p) xs)

Thus, break (any smallest) rows breaks the matrix into two lists of rows
with the head of the second list being some row that contains a cell with
the smallest number of choices. A second appeal to break then breaks this
row into two sub-rows, with the head of the second being the element cs
with the smallest number of choices. Each possible choice is installed and
the matrix reconstructed. If there are zero choices, then expand1 returns an
empty list.

It follows from the definition of n that (19.7) holds only when applied to
matrices with at least one non-singleton choice. Say a matrix is complete

if all choices are singletons and unsafe if the singleton choices in any row,
column or box contain duplicates. Incomplete and unsafe matrices can never
lead to valid grids. A complete and safe matrix of choices determines a unique
valid grid. These two tests can be implemented by

complete = all (all single)

where single is the test for a singleton list, and

safe m = all ok (rows m) ∧ all ok (cols m) ∧ all ok (boxs m)

where ok row = nodups [d | [d]← row].
Assuming a matrix is safe but incomplete, we can calculate:

filter valid · expand

= {since expand = concat ·map expand · expand1
on incomplete matrices}

A simple Sudoku solver 155

filter valid · concat ·map expand · expand1

= {since filter p · concat = concat ·map (filter p)}
concat ·map (filter valid · expand) · expand1

= {since filter valid · expand = filter valid · expand · prune}
concat ·map(filter valid · expand · prune) · expand1

Introducing search = filter valid · expand · prune, we therefore have, on safe
but incomplete matrices, that

search · prune = concat ·map search · expand1

And now we can replace solve by a third version:

solve = search · choices
search m | not (safe m) = []

| complete m ′ = [map (map head) m ′]
| otherwise = concat (map search (expand1 m ′))
| where m ′ = prune m

This is our final simple Sudoku solver.

Final remarks

We tested the solver on 36 puzzles recorded at the website http://haskell.org/
haskellwiki/Sudoku. It solved them in 8.8 s (on a 1GHz Pentium 3 PC). We
also tested them on six minimal puzzles (each with 17 non-blank entries)
chosen randomly from the 32 000 given at the site. It solved them in 111.4 s.
There are about a dozen different Haskell Sudoku solvers at the site. All of
these, including a very nice solver by Lennart Augustsson, deploy coordi-
nate calculations. Many use arrays and most use monads. Ours is about
twice as slow as Augustsson’s on the nefarious puzzle (a particularly hard
puzzle with the minimum 17 non-blank entries), but about 30 times faster
than Yitz Gale’s solver on easy puzzles. We also know of solvers that reduce
the problem to Boolean satisfiability, constraint satisfaction, model checking
and so on. I would argue that the one presented above is certainly one of
the simplest and shortest. And at least it was derived, in part, by equational
reasoning.

20

The Countdown problem

Introduction

Countdown is the name of a game from a popular British television
programme; in France it is called Le Conte est Bon. Contestants are given
six source numbers, not necessarily all different, and a target number, all of
which are positive integers. The aim is to use some of the source numbers
to build an arithmetic expression whose value is as close to the target as
possible. Expressions are constructed using only the four basic operations of
addition, subtraction, multiplication and division. Contestants are allowed
30 s thinking time. For example, with source numbers [1, 3, 7, 10, 25, 50] and
target 831 there is no exact solution; one expression that comes closest
is 7 + (1 + 10) × (25 + 50) = 832. Our aim in this pearl is to describe
various programs for solving Countdown, all based in one way or another
on exhaustive search. Countdown is attractive as a case study in exhaus-
tive search because the problem is simply stated and the different solutions
illustrate the space and time trade-offs that have to be taken into account
in comparing functional programs.

A simple program

Here is a straightforward program for Countdown:

countdown1 :: Int → [Int] → (Expr ,Value)
countdown1 n = nearest n · concatMap mkExprs · subseqs

First of all, the source numbers are given as a list; the order of the elements
is unimportant, but duplicates do matter. We will suppose that the list
is in ascending order, a fact that is exploited later on. Each selection is
therefore represented by a nonempty subsequence. For each subsequence
xs, all possible arithmetic expressions that can be constructed from xs are

156

The Countdown problem 157

determined, along with their values.1 The results are concatenated and one
nearest the target is selected.

The ingredients making up countdown1 are defined as follows. First,
subseqs returns a list of all the nonempty subsequences of a nonempty list:

subseqs [x] = [[x]]
subseqs (x : xs) = xss ++ [x] : map (x :) xss

where xss = subseqs xs

Next, the data types of expressions and values can be declared by

data Expr = Num Int | App Op Expr Expr
data Op = Add | Sub | Mul | Div
type Value = Int

The value of an expression is computed by

value :: Expr → Value
value (Num x) = x
value (App op e1 e2) = apply op (value e1) (value e2)

where applyAdd = (+), applySub = (−) and so on. However, not all possible
expressions are valid in Countdown. For instance, the result of a subtraction
should be a positive integer, and division is valid only when the divisor
divides the dividend exactly. An expression is valid if its subexpressions are,
and if the operation at the root passes the test legal , where

legal :: Op → Value → Value → Bool
legal Add v1 v2 = True
legal Sub v1 v2 = (v2 < v1)
legal Mul v1 v2 = True
legal Div v1 v2 = (v1 mod v2 0)

The next ingredient is mkExpr , which creates a list of all legal expressions
that can be built using the given subsequence:

mkExprs :: [Int] → [(Expr ,Value)]
mkExprs [x] = [(Num x , x)]
mkExprs xs = [ev | (ys, zs)← unmerges xs,

ev1←mkExprs ys,
ev2←mkExprs zs,
ev ← combine ev1 ev2]

1 Logically there is no need to return both expressions and values as the latter can be determined
from the former. But, as we have seen in the pearl “Making a century” (Pearl 6), it is a good
idea to avoid computing values more than once, so this optimisation has been incorporated from
the outset.

158 Pearls of Functional Algorithm Design

Given an ordered list xs of length greater than one, unmerges xs is a list of
all pairs (ys, zs) of nonempty lists such that merge ys zs = xs, where merge
merges two ordered lists into one (it is in the specification of unmerges that
we exploit the fact that inputs are ordered). One way of defining unmerges
is as follows:

unmerges :: [a]→ [([a], [a])]
unmerges [x , y] = [([x], [y]), ([y], [x])]
unmerges (x : xs) = [([x], xs), (xs, [x])] ++

concatMap (add x) (unmerges xss)
where add x (ys, zs) = [(x : ys, zs), (ys, x : zs)]

It is an instructive exercise to calculate this definition of unmerges from its
specification, but we will leave that pleasure to the reader.

The function combine is defined by

combine :: (Expr ,Value) → (Expr ,Value)→ [(Expr ,Value)]
combine (e1, v1) (e2, v2)

= [(App op e1 e2, apply op v1 v2) | op ← ops, legal op v1 v2]

where ops = [Add ,Sub,Mul ,Div].
Finally, the function nearest n takes a nonempty list of expressions and

returns some expression in the list whose value is nearest the target n. We
also want to stop searching the list if and when an expression is found whose
value matches the target exactly:

nearest n ((e, v) : evs) = if d 0 then (e, v)
else search n d (e, v) evs
where d = abs (n − v)

search n d ev [] = ev
search n d ev ((e, v) : evs) | d ′ 0 = (e, v)

| d ′ < d = search n d ′ (e, v) evs
| d ′ ≥ d = search n d ev evs

where d ′ = abs (n − v)

For example, under GHCi (version 6.8.3 running on a 2394MHz laptop under
Windows XP) we have

> display (countdown1 831 [1,3,7,10,25,50])
(7+((1+10)*(25+50))) = 832
(42.28 secs, 4198816144 bytes)
> length $ concatMap mkExprs $ subseqs [1,3,7,10,25,50]
4672540

The Countdown problem 159

So countdown1 takes about 42 s to determine and analyse about 4.5 million
expressions, about 100 000 expressions per second. This is not within the
30 s limit, so is not good enough.

Two optimisations

There are two simple optimisations that can help improve matters. The first
concerns the legality test. There are about 33 million expressions that can be
built from six numbers, of which, depending on the input, between 4 million
and 5 million are legal. But there is a great deal of redundancy. For example,
each of the following pairs of expressions is essentially the same:

x + y and y + x , x ∗ y and y ∗ x , (x − y) + z and (x + z)− y

A stronger legality test is provided by

legal Add v1 v2 = (v1 ≤ v2)
legal Sub v1 v2 = (v2 < v1)
legal Mul v1 v2 = (1 < v1) ∧ (v1 ≤ v2)
legal Div v1 v2 = (1 < v2) ∧ (v1 mod v2 0)

This stronger test takes account of the commutativity of + and ∗ by requir-
ing that arguments be in numerical order, and the identity properties of ∗
and / by requiring that their arguments be non-unitary. This test reduces
the number of legal expressions to about 300 000. One can go further and
strengthen the legality test yet more, but we will leave that to the next
section.

The second optimisation concerns unmerges and combine. As defined
above, unmerges xs returns all pairs (ys, zs) such that merge ys zs = xs,
and that means each pair is generated twice, once in the form (ys, zs) and
once in the form (zs, ys). There is no need to double the work, and we can
redefine unmerges so that it returns only the essentially distinct pairs:

unmerges [x , y] = [([x], [y])]
unmerges (x : xs) = [([x], xs)] ++ concatMap (add x) (unmerges xss)

where add x (ys, zs) = [(x : ys, zs), (ys, x : zs)]

The function combine can be easily modified to take account of the new
unmerges:

combine (e1, v1) (e2, v2)
= [(App op e1 e2, apply op v1 v2) | op ← ops, legal op v1 v2] ++

[(App op e2 e1, apply op v2 v1) | op ← ops, legal op v2 v1]

160 Pearls of Functional Algorithm Design

comb1 (e1, v1) (e2, v2)
= [(App Add e1 e2, v1 + v2), (App Sub e2 e1, v2− v1)] ++

if 1 < v1 then
[(App Mul e1 e2, v1 ∗ v2)] ++ [(App Div e2 e1, q) | r = 0]
else []
where (q , r) = divMod v2 v1

comb2 (e1, v1) (e2, v2)
= [(App Add e1 e2, v1 + v2)] ++

if 1 < v1 then
[(App Mul e1 e2, v1 ∗ v2), (App Div e1 e2, 1)]
else []

Fig. 20.1 Definitions of comb1 and comb2

However, a faster method is to incorporate the stronger legality test directly
into the definition of combine:

combine (e1, v1) (e2, v2)
| v1 < v2 = comb1 (e1, v1) (e2, v2)
| v1 v2 = comb2 (e1, v1) (e2, v2)
| v1 > v2 = comb1 (e2, v2) (e1, v1)

The function comb1 is used when the first expression has a value strictly less
than the second, and comb2 when the two values are equal. Their definitions
are given in Figure 20.1. Installing these changes leads to countdown2, whose
definition is otherwise the same as countdown1. For example:

> display (countdown2 831 [1,3,7,10,25,50])
(7+((1+10)*(25+50))) = 832
(1.77 secs, 168447772 bytes)
> length $ concatMap mkExprs $ subseqs [1,3,7,10,25,50]
240436

This is better, in that it takes only about 2 s to determine and analyse about
250 000 expressions, but there is still room for improvement.

An even stronger legality test

In an attempt to restrict still further the number of expressions that have
to be considered, let us say that an expression is in normal form if it is a
sum of the form

[(e1 + e2) + · · ·+ em]− [(f1 + f2) + · · ·+ fn]

The Countdown problem 161

where m ≥ 1 and n ≥ 0, both e1, e2, . . . and f1, f2, . . . are in ascending order
of value, and each ej and fj is a product of the form

[(g1 ∗ g2) ∗ · · · ∗ gp]/[(h1 ∗ h2) ∗ · · · ∗ hq]

where p ≥ 1 and q ≥ 0, both g1, g2, . . . and h1, h2, . . . are in ascending order
of value and each gj and hj is either a single number or an expression in
normal form.

Up to rearrangements of subexpressions with equal values, each expression
has a unique normal form. Of the 300 000 expressions over six numbers that
are legal according to the earlier definition, only about 30 000 to 70 000
are in normal form. However, normal form does not eliminate redundancy
completely. For example, the expressions 2 + 5 + 7 and 2 ∗ 7 have the same
value, but the latter is built out of numbers that are a subsequence of the
former. There is, therefore, no need to build the former. But we will not
explore the additional optimisation of “thinning” a list of expressions to
retain only the really essential ones. Experiments show that thinning turns
out to be not worth the candle: the savings made in analysing only the
really essential expressions are outweighed by the amount of effort needed
to determine them.

We can capture normal forms by strengthening the legality test, but this
time we have to consider expressions as well as values. First let us define
non by

non :: Op → Expr → Bool
non op (Num x) = True
non op1 (App op2 e1 e2) = op1 �= op2

Then the stronger legality test is implemented by

legal :: Op → (Expr ,Value) → (Expr ,Value) → Bool
legal Add (e1, v1) (e2, v2)

= (v1 ≤ v2) ∧ non Sub e1 ∧ non Add e2 ∧ non Sub e2
legal Sub (e1, v1) (e2, v2)

= (v2 < v1) ∧ non Sub e1 ∧ non Sub e2
legal Mul (e1, v1) (e2, v2)

= (1 < v1 ∧ v1 ≤ v2) ∧ non Div e1 ∧ non Mul e2 ∧ non Div e2
legal Div (e1, v1) (e2, v2)

= (1 < v2 ∧ v1 mod v2 = 0) ∧ non Div e1 ∧ non Div e2

Just as before, we can incorporate the above legality test into a modified
definition of combine. It is necessary only to change comb1 and comb2. The
revised definitions are given in Figure 20.2.

162 Pearls of Functional Algorithm Design

comb1 (e1, v1) (e2, v2)
= (if non Sub e1 ∧ non Sub e2 then

[(App Add e1 e2, v1 + v2) | non Add e2] ++ [(App Sub e2 e1, v2− v1)]
else []) ++
(if 1 < v1 ∧ non Div e1 ∧ non Div e2 then
[(App Mul e1 e2, v1 ∗ v2) | non Mul e2] ++ [(App Div e2 e1, q) | r 0]
else [])
where (q , r) = divMod v2 v1

comb2 (e1, v1) (e2, v2)
= [(App Add e1 e2, v1 + v2) | non Sub e1, non Add e2, non Sub e2] ++

(if 1 < v1 ∧ non Div e1 ∧ non Div e2 then
[(App Mul e1 e2, v1 ∗ v2) | non Mul e2] ++ [(App Div e1 e2, 1)]
else [])

Fig. 20.2 New definitions of comb1 and comb2

Calling the result of installing these changes countdown3, we have

> display (countdown3 831 [1,3,7,10,25,50])
(7+((1+10)*(25+50))) = 832
(1.06 secs, 88697284 bytes)
> length $ concatMap mkExprs $ subseqs [1,3,7,10,25,50]
36539

Now it takes only 1 s to determine and analyse about 36 000 expressions,
which is roughly double the speed of countdown2.

Memoisation

Even ignoring the redundancy in the set of expressions being determined,
computations are repeated because every subsequence is treated as an
independent problem. For instance, given the source numbers [1 .. 6],
expressions with basis [1 .. 5] will be computed twice, once for the subse-
quence [1 .. 5] and once for [1 .. 6]. Expressions with basis [1 .. 4] will be
computed four times, once for each of the subsequences

[1, 2, 3, 4], [1, 2, 3, 4, 5], [1, 2, 3, 4, 6], [1, 2, 3, 4, 5, 6]

In fact, expressions with a basis of k numbers out of n source numbers will
be computed 2n−k times.

One way to avoid repeated computations is to memoise the computa-
tion of mkExprs. In memoisation, the top-down structure of mkExprs is
preserved but computed results are remembered and stored in a memo table

The Countdown problem 163

for subsequent retrieval. To implement memoisation we need a data type
Memo on which the following operations are supported:

empty :: Memo
fetch :: Memo → [Int] → [(Expr ,Value)]
store :: [Int] → [(Expr ,Value)]→ Memo → Memo

The value empty defines an empty memo table, fetch takes a list of source
numbers and looks up the computed expressions for the list, while store
takes a similar list together with the expressions that can be built from
them, and stores the result in the memo table.

We can now rewrite mkExprs to read

mkExprs :: Memo → [Int]→ [(Expr ,Value)]
mkExprs memo [x] = [(Num x , x)]
mkExprs memo xs = [ev | (ys, zs)← unmerges xs,

ev1← fetch memo ys,
ev2← fetch memo zs,
ev ← combine ev1 ev2]

This code assumes that for any given subsequence xs of the input, all the
arithmetic expressions for ys and zs for each possible split of xs have already
been computed and stored in the memo table. This assumption is valid if we
list and process the subsequences of the source numbers in such a way that if
xs and ys are both subsequences of these numbers, and xs is a subsequence
of ys, then xs appears before ys in the list of subsequences. Fortunately, the
given definition of subseqs does possess exactly this property. We can now
define

countdown4 :: Int → [Int] → (Expr ,Value)
countdown4 n = nearest n · extract ·memoise · subseqs

where memoise is defined by

memoise :: [[Int]]→ Memo
memoise = foldl insert empty
insert memo xs = store xs (mkExprs memo xs) memo

The function extract flattens a memo table, returning a list of all the
expressions in it. This function is defined below when we fix on the structure
of Memo.

One possible structure for Memo is a trie:

data Trie a = Node a [(Int ,Trie a)]
type Memo = Trie [(Expr ,Value)]

164 Pearls of Functional Algorithm Design

A trie is a Rose tree whose branches are labelled, in this case with an integer.
The empty memo table is defined by empty = Node [] []. We search a memo
table by following the labels on the branches:

fetch :: Memo → [Int] → [(Expr ,Value)]
fetch (Node es xms) [] = es
fetch (Node es xms) (x : xs) = fetch (follow x xms) xs

follow :: Int → [(Int ,Memo)]→ Memo
follow x xms = head [m | (x ′,m)← xms, x x ′]

Note that searching a table for an entry with label xs returns an undefined
result (the head of an empty list) if there is no path in the trie whose
branches are labelled with xs. But this is not a problem, because the defini-
tion of subseqs guarantees that entries are computed in the right order, so
all necessary entries will be present.

Here is how we store new entries:

store :: [Int] → [(Expr ,Value)]→ Memo → Memo
store [x] es (Node fs xms) = Node fs ((x ,Node es []) : xms)
store (x : xs) es (Node fs xms)

= Node fs (yms ++ (x , store xs es m) : zms)
where (yms, (z ,m) : zms) = break (equals x) xms

equals x (z ,m) = (x z)

The definition of store assumes that if an entry for xs ++[x] is new, then the
entries for xs are already present in the table. The Haskell function break p
was defined in the previous pearl.

Finally, we can extract all entries from a memo table by

extract :: Memo → [(Expr ,Value)]
extract (Node es xms) = es ++ concatMap (extract · snd) xms

Now we have, for example:

> display (countdown4 831 [1,3,7,10,25,50])
(10*((1+7)+(3*25))) = 830
(0.66 secs, 55798164 bytes)

The computation returns a different expression, owing to the different order
in which expressions are analysed, but at a cost of about half that of
countdown3.

The Countdown problem 165

Skeleton trees

Memoisation of countdown comes at a cost: building the memo table makes
heavy demands on the heap and much time is spent in garbage collec-
tion. How can we keep the advantage of memoisation while reducing space
requirements?

Suppose we ignore the operators in an expression, focusing only on the
parenthesis structure. How many different oriented binary trees can we
build? In an oriented tree the order of the subtrees is not taken into account.
We exploited this idea in an “oriented” definition of unmerges. It turns out
that there are only 1881 oriented binary trees with a basis included in six
given numbers. An oriented binary tree may also be called a skeleton tree.
For an algorithm that is economical in its use of space we could, therefore,
build these trees first, and only afterwards insert the operators.

Pursuing this idea, consider the following type of tip-labelled binary
tree:

data Tree = Tip Int | Bin Tree Tree

Instead of memoising expressions we can memoise trees:

type Memo = Trie [Tree]

We can build trees in exactly the same way as we built expressions:

mkTrees :: Memo → [Int] → [Tree]
mkTrees memo [x] = [Tip x]
mkTrees memo xs = [Bin t1 t2 | (ys, zs)← unmerges xs,

t1← fetch memo ys,
t2← fetch memo zs]

We can convert a tree into a list of expressions by inserting operators in all
legal ways:

toExprs :: Tree → [(Expr ,Value)]
toExprs (Tip x) = [(Num x , x)]
toExprs (Bin t1 t2) = [ev | ev1← toExprs t1, ev2← toExprs t2,

ev ← combine ev1 ev2]

Now we have

countdown5 n
= nearest n · concatMap toExprs · extract ·memoise · subseqs

166 Pearls of Functional Algorithm Design

File countdown1 countdown2 countdown3 countdown4 countdown5
Total GC Total GC Total GC Total GC Total GC

d6 1.56 0.78 0.19 0.08 0.09 0.05 0.08 0.02 0.05 0.00
d7 77.6 36.9 2.03 1.19 0.44 0.09 0.53 0.30 0.33 0.02
d8 − − 99.8 57.2 13.8 7.30 16.9 9.02 7.22 0.31

Fig. 20.3 Running times of countdown for inputs of six, seven and eight source
numbers

where memoise is defined by

memoise :: [[Int]]→ Memo
memoise = foldl insert empty
insert memo xs = store xs (mkTrees memo xs) memo

Running our standard example yields

> display (countdown5 831 [1,3,7,10,25,50])
(10*((1+7)+(3*25))) = 830
(1.06 secs, 88272332 bytes)

So it seems on the evidence of this single test that memoising skeleton trees
rather than expressions may not have been such a good idea. But the situ-
ation merits a closer look.

A further experiment

Let us see how the five versions of countdown described above perform with
an optimising compiler. We compiled the five programs under GHC, version
6.8.3, with the −O2 flag set. The statistics were gathered using GHC’s
run-time system with the −s flag. There were three files, d6, d7 and d8
containing six, seven and eight source numbers respectively. In each case we
ensured there was no exact match, so the full space of possible expressions
was explored. The statistics are provided in Figure 20.3. Shown are the total
time and the time spent in garbage collection; all times are in seconds. The
program countdown1 was not run on d8.

Three main conclusions can be drawn from the experiment. First and most
obviously, compilation gives a substantial improvement over interpretation.
Second, for six or seven source numbers, there is not much difference between
countdown3 (the version with the strong legality test), countdown4 (the
version with both the strong legality test and memoisation) and countdown5
(the version with the strong legality test and memoisation of skeleton trees

The Countdown problem 167

rather than expressions). But for eight source numbers, the final version
countdown5 has begun to pull away, running about twice as fast as the
others, mostly owing to the reduced time spent in garbage collection, in fact
about 5% of the total time, compared with about 50% for countdown3 and
countdown4.

Final remarks

This pearl has been based on material extracted and modified from Bird and
Mu (2005), which presents the specification of Countdown in a relational
setting, and goes on to calculate a number of programs using the algebraic
laws of fold and unfold. None of these calculations has been recorded above.
Countdown was first studied in an earlier pearl (Hutton, 2002) as an illus-
tration of how to prove that functional programs meet their specification.
Hutton’s aim was not to derive the best possible algorithm, but to present
one whose correctness proof required only simple induction. Essentially,
Hutton’s proof dealt with the correctness of countdown2.

References
Bird, R. S. and Mu, S.-C. (2005). Countdown: a case study in origami programming.

Journal of Functional Programming 15 (6), 679–702.
Hutton, G. (2002). The Countdown problem. Journal of Functional Programming

12 (6), 609–16.

21

Hylomorphisms and nexuses

Introduction

It was Erik Meijer who coined the name hylomorphism to describe a
computation that consists of a fold after an unfold. The unfold produces
a data structure and the fold consumes it. The intermediate data structure
can be eliminated from the computation, a process called deforestation. The
result is a pattern of recursion that fits most of the recursive definitions one
is likely to meet in practice. Nevertheless, the intermediate data structure
has its uses. It defines the call-tree of the hylomorphism, and can be made
the workhorse of an alternative, and sometimes faster, implementation of
the hylomorphism. Improvements in speed are possible when the call-tree
contains shared nodes, nodes with more than one incoming edge. A tree with
shared nodes is called a nexus and a nexus arises with any recursion whose
recursive subproblems overlap, as is typical with dynamic programming.
Our aim in this pearl is to illustrate how to build nexuses by considering
two or three particularly interesting examples.

Folds, unfolds and hylomorphisms

Rather than discuss ideas in an abstract setting, we will consider just one
example of an intermediate data structure, namely the following kind of
leaf-labelled tree:

data Tree a = Leaf a | Node [Tree a]

The fold and unfold functions for Tree a depend on the isomorphism

Tree a ≈ Either a [Tree a]

To fold over a tree one has to supply an accumulating function with type
Either a [b]→ b, and to unfold into a tree one has to supply a function with
type b → Either a [b]. More precisely:

168

Hylomorphisms and nexuses 169

fold :: (Either a [b]→ b) → Tree a → b
fold f t = case t of

Leaf x → f (Left x)
Node ts → f (Right (map (fold f) ts)

unfold :: (b → Either a [b])→ b → Tree a
unfold g x = case g x of

Left y → Leaf y
Right xs → Node (map (unfold g) xs)

Defining hylo f g = fold f · unfold g and deforesting, we obtain

hylo f g x = case g x of
Left y → f (Left y)
Right xs → f (Right (map (hylo f g) xs))

The pattern of this recursive definition is less familiar than it might be,
mostly because the presence of the type Either obscures what is going on.
So, let us simplify a little, while maintaining full generality. A function with
type Either a [b] → b can be unpacked into two component functions and
fold can be expressed in the alternative form

fold :: (a → b) → ([b] → b) → Tree a → b
fold f g (Leaf x) = f x
fold f g (Node ts) = g (map (fold f g) ts)

Similarly, a function with type b → Either a [b] can be unpacked into three
simpler functions, and unfold can be expressed in the alternative form

unfold :: (b → Bool)→ (b → a) → (b → [b])→ b → Tree a
unfold p v h x = if p x then Leaf (v x) else

Node (map (unfold p v h) (h x))

With these new definitions, hylo = fold f g · unfold p v h can be deforested
to read

hylo x = if p x then f (v x) else g (map hylo (h x))

This is better than before, but now we see that the function v is redundant
since its effect can be absorbed into a modified definition of f . Removing it
gives

hylo x = if p x then f x else g (map hylo (h x)) (21.1)

as the general form of a hylomorphism over Tree a. In words, if the argument
x is basic (p x), then compute the result f x directly; otherwise decom-
pose x into subproblems (h x), compute the result of each subproblem

170 Pearls of Functional Algorithm Design

(map hylo (h x)) and assemble the results with g . At last, this seems a
very familiar form of recursion.

Definition (21.1) is the deforested version of fold f g · unfold p id h. As
the opposite of deforestation there is the idea of annotation, in which the
tree structure is maintained to the end of the computation, but labels are
attached to each node that carries the value of the hylomorphism for the
subtree defined by the node. More precisely, define the labelled variant LTree
of Tree by

data LTree a = LLeaf a | LNode a [LTree a]

Now define fill by

fill :: (a → b) → ([b]→ b) → Tree a → LTree b
fill f g = fold (lleaf f) (lnode g)

where the smart constructors lleaf and lnode are defined by

lleaf f x = LLeaf (f x)
lnode g ts = LNode (g (map label ts)) ts

and label by

label (LLeaf x) = x
label (LNode x ts) = x

The function fill consumes a tree, but it produces a labelled tree with
exactly the same structure in which each label is the result of folding the
subtree rooted there. The label at the root of the tree gives the value of the
hylomorphism, so

hylo = label · fill f g · unfold p id h

With this definition we have arrived at the central idea of the pearl. Suppose
that the tree unfold p id h is a genuine nexus, and suppose we can apply
fill f g to it without destroying sharing. Then hylo can be computed more
efficiently than by the recursive method of (21.1).

It remains to see how the idea works out in practice. In all the examples to
come we are going to restrict (21.1) to the case where x is a nonempty list and
p is the test for a singleton list. Thus, our examples are all hylomorphisms
of the form

hylo :: ([a]→ b)→ ([b]→ b) → ([a]→ [[a]])→ [a] → b
hylo f g h = fold f g ·mkTree h

where mkTree h = unfold single id h and single is the test for singletons.
In particular, h takes a list of length at least two as argument and returns
a list of nonempty lists.

Hylomorphisms and nexuses 171

abcde

abcd bcde

abc bcd cde

ab bc cd de

a b c d e

Fig. 21.1 A nexus

Three examples

For our first example, take h = split , where

split xs = [take n xs , drop n xs] where n = length xs div 2

Restricted to lists xs of length 2n , the result of mkTree split xs is a perfect
binary tree with 2n − 1 nodes and 2n leaves, each labelled with singleton
lists, one for each element of xs. There is no sharing, so the nexus also has
this number of nodes and leaves. As a concrete instance, hylo id merge split
is the standard divide and conquer algorithm for mergesort restricted to
lists whose lengths are a power of 2. Contrast this with our second example,
in which we take h = isegs, where

isegs xs = [init xs, tail xs]

For example, isegs “abcde” = [“abcd”, “bcde”]. The function isegs is so
named because it returns the two immediate segments of a list of length at
least 2. The result of mkTree isegs xs is a perfect binary tree whose leaves
are again labelled with singletons. The tree has size 2n − 1 nodes where
n = length xs, so it takes at least this time to build it. However, unlike
our first example, subtrees can be shared, giving us a genuine nexus. An
example is pictured in Figure 21.1. The nexus has been labelled with the
distinct nonempty segments of abcde. More precisely, it has been filled with
fill id recover , where

recover :: [[a]]→ [a]
recover xss = head (head xss) : last xss

172 Pearls of Functional Algorithm Design

abcde

abcd abce abde acde bcde

abc abd acd bcd abe ace bce ade bde cde

ab ac bc ad bd cd ae be ce de

a b c d e

Fig. 21.2 Another nexus

The function recover satisfies recover · isegs = id . The nexus has n(n +1)/2
nodes for an input of length n, so sharing gives a significant reduction in
size.

For our third example, take h = minors, where

minors [x , y] = [[x], [y]]
minors (x : xs) = map (x :) (minors xs) ++ [xs]

For example, minors “abcde” = [“abcd”, “abce”, “abde”, “acde”, “bcde”].
The function minors returns those subsequences of its argument in which
just one element is dropped.1 The result returned by mkTree minors xs,
where xs is a nonempty list, is once again a tree labelled with singletons. For
an input of length n the tree has size S (n), where S (0) = 0 and S (n+1) =
1 + (n+1)S (n). Solving this recurrence gives

S (n) = n!
n∑

k=1

1
k !

so S (n) is between n! and en!2 Again, there is potential for sharing, and
one nexus is pictured in Figure 21.2. The nexus has been labelled with
the distinct nonempty subsequences of abcde; more precisely, it has been
filled by fill id recover , where recover is the same as in our second example.
The nexus has only 2n − 1 nodes, which is a substantial reduction over the
tree.
1 The function minors appears again in the following two pearls in connection with matrices.
2 The sequence appears as A002627 in Sloane’s integer sequences, which gives S(n) = �(e−1)n!�.

Hylomorphisms and nexuses 173

Building a nexus

We now turn to the problem of how to build a nexus and how to fill it
without destroying sharing. In all our examples the nexus has its leaves at
the same depth, so one obvious idea is to build the nexus fill f g ·mkTree h
layer by layer from bottom to top. Building stops when we have a singleton
layer. It also seems obvious that each layer should be a list of labelled trees,
i.e. [LTree a], but this decision is premature. Instead, we postulate a type
Layer a, so that each layer is an element of Layer (LTree a). The general
bottom-up scheme for constructing the nexus of fill f g ·mkTree h for various
h is then implemented by

mkNexus f g = label · extractL · until singleL (stepL g) · initialL f

where the subsidiary functions have the following types:

initialL :: ([a]→ b) → [a]→ Layer (LTree b)
stepL :: ([b]→ b) → Layer (LTree b) → Layer (LTree b)
singleL :: Layer (LTree b)→ Bool
extractL :: Layer (LTree b)→ LTree b

Our aim is to find implementations of these four functions for each of the
three instantiations, h = split , h = isegs and h = minors.

The first two, h = split and h = isegs, are easy because we can get away
with choosing Layer a = [a] and defining

initialL f = map (lleaf f · wrap)
singleL = single
extractL = head

where wrap x = [x]. Thus, the initial layer is a list of leaves. The definition
of stepL for h = split is

stepL g = map (lnode g) · group

where group :: [a] → [[a]] groups a list into pairs and is defined by

group [] = []
group (x : y : xs) = [x , y] : group xs

With these definitions we have, for example, that mkNexus id merge xs,
where xs is a list whose length is a power of 2, is a bottom-up definition of
mergesort in which elements are merged in pairs, then merged in fourths,
and so on.

174 Pearls of Functional Algorithm Design

For h = isegs we just have to change the definition of group to read

group [x] = []
group (x : y : xs) = [x , y] : group (y : xs)

Thus, group xs now returns a list of the adjacent pairs of elements of xs.
This choice is a fairly obvious one, as can be appreciated by referring to
Figure 21.1, and we omit a formal proof.

As might be expected, the case h = minors is considerably more difficult.
We have to find some way of grouping the trees at one level for assembly
into the trees at the next level. Let us begin slowly by seeing what happens
to the bottom layer, a list of leaves. We have to pair up the leaves, and one
way of doing so is illustrated for five leaves a, b, c, d and e by

(ab ac ad ae) (bc bd be) (cd ce) (de)

Here, ab abbreviates [a, b] and so on. Ignoring the parenthetical information,
the second layer is obtained by redefining group to read

group [x] = []
group (x : xs) = map(bind x) xs ++ group xs

where bind x y = [x , y]

At the next level we have to combine pairs into triples, and the way to do
this is to exploit the grouping structure implicit in the second layer: pair up
the elements in the first group and combine each pair with the corresponding
element in the remaining groups. Then carry out the tripling procedure with
the remaining groups. This leads to the third layer

((abc abd abe) (acd ace) (ade)) ((bcd bce) (bde)) ((cde))

in which abc abbreviates [[a, b], [a, c], [b, c]], and so on. The fourth layer,
namely a grouping of quadruples,

(((abcd abce) (abde)) ((acde))) (((bcde)))

can be computed in the same fashion: this time triple up the first group and
combine each triple with the corresponding triple in the remaining groups
and then repeat the quadrupling for the remaining groups.

The necessary grouping information can be captured by representing each
layer as a list of trees; in other words, a forest. The forest has shape con-
straints and is determined by two numbers, its length n and the common
depth d of its component trees. A forest with depth 0 consists of a list of
n leaves. A forest of length n and depth d+1 consists of a list of n trees in
which the children of the first tree are a forest of length n and depth d , the

Hylomorphisms and nexuses 175

children of the second tree are a forest of length n−1 and depth d , and so on,
down to the final tree whose children are a forest of length 1 and depth d .
The bottom layer of our nexus is a forest of length n and depth 0, the next
layer a forest of length n−1 and depth 1, and so on, with the top layer being
a forest of length n and depth n−1. As a data type, a forest is an element
of [Tree a], so we define Layer a = [Tree a]. The fact that we started out
the pearl with the type Tree a is purely fortuitous; we would have had to
declare the type Tree a anyway to define forests.

Here are the implementations of initialL, singleL and extractL for building
a nexus with h = minors:

initialL f = map (Leaf · lleaf f · wrap)
singleL = single
extractL = extract · head

where extract (Leaf x) = x
extract (Node [t]) = extract t

The function initialL constructs a forest of depth 0 whose labels are the
leaves of a labelled tree (an element of LTree a). The function extractL takes
a forest of length 1 and some depth d and extracts its label. It is a bit mind-
boggling that the computation of mkNexus is carried out in terms of a data
structure of type [Tree (LTree a)], a list of trees of labelled trees.

It remains to define stepL, which is given by

stepL g = map (mapTree (lnode g)) · group

where mapTree is the map function for Tree a and

group :: [Tree a]→ [Tree [a]]
group [t] = []
group (Leaf x : vs)

= Node [Leaf [x , y] | Leaf y ← vs] : group vs
group (Node us : vs)

= Node (zipWith combine (group us) vs) : group vs

combine (Leaf xs) (Leaf x) = Leaf (xs ++ [x])
combine (Node us) (Node vs) = Node (zipWith combine us vs)

These definitions formalise the verbal description of the process given earlier.
To justify them we have to prove that

mkNexus f g = fill f g ·mkTree minors

However, the proof is rather long and we omit it.

176 Pearls of Functional Algorithm Design

Why build the nexus?

A good question. Everything we have said above about building a nexus
bottom up and layer by layer applies equally well if we throw away the
nexus and just retain the labelling information. Take the case h = isegs and
consider solve, where

solve :: [a] → b)→ ([b]→ b)→ [a] → b
solve f g = head · until single (map g · group) ·map (f · wrap)

and group is the function associated with isegs. The function solve f g imple-
ments the hylomorphism hylo f g isegs without building a nexus. Similarly,
consider solve, where

solve f g = extractL · until singleL (step g) ·map (Leaf · f · wrap)
step g = map (mapTree g) · group

and extractL, singleL and group are the functions associated with minors.
Again, solve f g implements the hylomorphism hylo f g minors without
building a nexus.

The answer to the question is that the nexus is useful when we want to
consider problems that are variants of the ones discussed above. For example,
a standard problem involving segments is the problem of optimal bracketing,
in which one seeks to bracket an expression x1 ⊕ x2 ⊕ · · · ⊕ xn in the best
possible way. It is assumed that ⊕ is an associative operation, so the way in
which the brackets are inserted does not affect the value. However, different
bracketings may have different costs. The cost of computing x ⊕ y depends
on the sizes of x and y , and the recursive solution makes use not of isegs
but the function uncats, where

uncats [x , y] = [([x], [y])
uncats (x : xs) = ([x], xs) : map (cons x) (uncats xs)

where cons x (ys, zs) = (x : ys, zs)

For example, uncats “abcde” is

[(“a”, “bcde”), (“ab”, “cde”), (“abc”, “de”), (“abcd”, “e”)]

Each of these pairs represents a possible initial bracketing, and a minimum
cost solution is obtained by recursively computing the cost and sizes of each
component in each pair and then taking a minimum of the costs of combining
them.

Using uncats in place of isegs does not give us an element of Tree a but a
more complicated kind of tree in which each “subtree” is a list of pairs of sub-
trees. Nevertheless, we can solve the bracketing problem by computing the

Hylomorphisms and nexuses 177

nexus for isegs, provided we replace the definition of the smart constructor
lnode with another one:

lnode g [u, v] = LNode (g (zip (lspine u) (rspine v))) [u, v]

The functions lspine, rspine :: LTree a → [a] are defined by

lspine (LLeaf x) = [x]
lspine (LNode x [u, v]) = lspine u ++ [x]
rspine (LLeaf x) = [x]
rspine (LNode x [u, v]) = [x] ++ rspine r

For example, the left and right spines of the two subtrees of the tree of
Figure 21.1 are [a, ab, abc, abcd] and [bcde, cde, de, e]. Zipping them together
gives uncats abcde. The definition of lspine takes quadratic time, but it is
easy to make it take linear time with the help of an accumulating parameter.

As a second example, consider the nexus of subsequences in Figure 21.2.
One example of a problem involving subsequences is the Countdown example
considered in the previous pearl. In that problem we made use of a function
unmerges defined by

unmerges [x , y] = [([x], [y])]
unmerges (x : xs) = [([x], xs)] ++ concatMap (add x) (unmerges xss)

where add x (ys, zs) = [(x : ys, zs), (ys, x : zs)]

For example, unmerges “abcd” is

[(“a”, “bcd”), (“ab”, “cd”), (“b”, “acd”), (“abc”, “d”),
(“bc”, “ad”), (“ac”, “bd”), (“c”, “abd”)]

The order in which the pairs of subsequences appear in this list is not
important, and neither is the order within each pair. What is important
is that each subsequence is paired with its complement. In Countdown, the
set of possible expressions one can build from a list xs of integers in ascend-
ing order is computed by recursively building the expressions for each list in
each component of unmerges xs and then combining results.

Using unmerges in place of minors does not give us an element of Tree a,
but rather a more complicated data structure. Nevertheless, just as before,
we can solve Countdown by computing the nexus for minors provided we
replace the definition of the smart constructor lnode with another one. What
we have to do, in effect, is to find some way of extracting unmerges from
the labels of the nexus associated with a node. That means retrieving every

178 Pearls of Functional Algorithm Design

abcd

abc

ab

a b

ac

c

bc

abd

ad

d

bd

acd

cd

bcd

Fig. 21.3 A binomial spanning tree

label of the nexus. In principle this can be done by carrying out a breadth-

first traversal of the nexus. For example, the breadth-first traversal of the
nexus associated with abcd in Figure 21.2, minus its first element, is

abc, abd , acd , bcd , ab, ac, bc, ad , bd , cd , a, b, c, d

If we split this list into two halves and zip the first half with the reverse of
the second half, we arrive at unmerges “abcd”, though the pairs appear in
a different order, as do the components of each pair.

However, any traversal of a graph requires us to keep track of nodes visited,
and this is not possible with a nexus because two nodes cannot be checked
for equality. The alternative is first to construct a spanning tree of the nexus
and then to traverse its subtrees in breadth-first order. Traversing a forest
is implemented by

traverse :: [LTree a]→ [a]
traverse [] = []
traverse ts = map label ts ++ traverse (concatMap subtrees ts)

subtrees (LLeaf x) = []
subtrees (LNode x ts) = ts

One spanning tree of the nexus associated with abcd in Figure 21.2 is
pictured in Figure 21.3. This tree is a binomial tree of rank 4. Binomial
trees are close cousins of the trees in the forest used to construct the nexus.
A binomial tree of rank n has n children, which are, in order, binomial trees
of ranks n−1,n−2, . . . , 0. To construct the binomial spanning tree of the
nexus, we have to drop children, none from the first subtree, one from the
second subtree and so on. The same recipe has to be applied recursively to
the children. Thus, for the kth child we have to drop k children from its first

Hylomorphisms and nexuses 179

child, k + 1 children from its second child and so on. The function forest k ,
defined by

forest k (LLeaf x : ts) = LLeaf x : ts
forest k (LNode x us : vs)

= LNode x (forest k (drop k us)) : forest (k + 1) vs

carries out this pruning. Now we can define

lnode g ts = LNode (g (zip xs) (reverse ys)) ts
where (xs, ys) = halve (traverse (forest 0 ts))

where halve xs = splitAt (length xs div 2) xs.

Final remarks

The name hylomorphism first appeared in Meijer (1992); see also Meijer
et al. (1991). The material in this pearl has been drawn from two main
sources. Nexus building was described first in Bird and Hinze (2003), where
another way of building the nexus for minors was given, one that used a
cyclic tree with up and down pointers. Later on, in Bird (2008), it was shown
that for some problems, admittedly of a fairly restricted class, the essential
function group for building each layer of the nexus could be expressed as the
transpose of the decomposition function h of the hylomorphism.

References
Bird, R. S. and Hinze, R. (2003). Trouble shared is trouble halved. ACM SIGPLAN

Haskell Workshop, Uppsala, Sweden.
Bird, R. S. (2008). Zippy tabulations of recursive functions. In LNCS 5133:

Proceedings of the Ninth International Conference on the Mathematics of
Program Construction, ed. P. Audebaud and C. Paulin-Mohring. pp. 92–109.

Meijer, E. (1992). Calculating compilers. PhD thesis, Nijmegen University, The
Netherlands.

Meijer, E., Fokkinga, M. and Paterson, R. (1991). Functional programming with
bananas, lenses, envelopes and barbed wire. Proceedings of the 5th ACM
Conference on Functional Programming Languages and Computer Architec-
ture. New York, NY: Springer-Verlag, pp. 124–44.

22

Three ways of computing determinants

Introduction

The determinant, det(A), or |A|, of an n×n matrix A = (aij) can be defined
by the Leibniz formula

|A| =
∑

π

sign (π)
∏

1≤j≤n

ajπ(j)

The sum is taken over all permutations π of [1 ..n] and sign (π) = 1 for even
permutations (those that have an even number of inversions), and −1 for
odd ones. Executed directly, the computation of |A| takes Θ(n × n!) steps.
One way to reduce the time to Θ(n3) is to convert the matrix to upper
triangular form using Gaussian elimination. Gaussian elimination brings in
division as an additional operation, so if A is an integer matrix and the
determinant has to be computed exactly, then the result of each division has
to be exact. That means using rational division. Rational division involves
normalising numerators and denominators, so time is spent computing the
greatest common divisor of two integers.

One method that avoids rational division is known as Chió’s pivotal

condensation algorithm. This is essentially a variant of Gaussian elimination
that uses integer division only. Chió’s method requires Θ(n3) multiplications
but only Θ(n) divisions (and exponentiations). The downside is that the size
of the intermediate results grows exponentially. However, there is a variant
of the algorithm in which the intermediate results are kept reasonably small,
but the number of integer divisions goes up to Θ(n3).

Finally, there are methods for computing the determinant reasonably
quickly that avoid division altogether. One is based on iterated matrix multi-
plication. The size of the intermediate results is small, but the operation
count goes up to Θ(n4). Since we will need to calculate determinants
in the following pearl, we devote this pearl to describing and comparing
these three kinds of algorithm.

180

Three ways of computing determinants 181

The school-book method

As a warm-up let us first implement the school-book method of computing
determinants. This involves recursively computing the determinant of the
minors of the matrix. For example:∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣ + a31

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣
With matrices represented as a list of rows, the school-book method is
implemented by

det :: [[Integer]]→ Integer
det [[x]] = x
det xss = foldr1 (−) (zipWith (∗) col1 (map det (minors cols)))

where col1 = map head xss
cols = map tail xss

The 1 × 1 case is computed directly. Otherwise, each element of the first
column is multiplied by the determinant of the corresponding minor of the
remaining columns and the results are combined with an alternating sum.
The function minors, which made an appearance in the previous pearl, is
defined by

minors :: [a] → [[a]]
minors [] = []
minors (x : xs) = xs : map (x :) (minors xs)

For example, minors “abcd” = [“bcd”, “acd”, “abd”, “abc”].
Although the definition of det is short and sweet, the associated compu-

tation takes exponential time. The recurrence relation for T (n), the number
of steps needed to compute the determinant of an n × n matrix, satisfies
T (n) = nT (n−1) + Θ(n), with solution T (n) = Θ(n!). Nevertheless, it is
good enough when n = 2 or n = 3.

Using rational division

Gaussian elimination depends on the fact that adding any multiple of one
row to any other row does not change the value of the determinant. Assuming
the leading entry of the first row is not zero, we can add suitable multiples
of the first row to the other rows to reduce the elements in the first column
to zero. Repeating this process on the submatrix formed by eliminating
the first row and column reduces the matrix to upper triangular form. The

182 Pearls of Functional Algorithm Design

determinant of an upper triangular matrix is the product of the elements on
the diagonal.

The process is complicated by the fact that the leading entry of the matrix
may be zero. In such a case we have to find an appropriate row whose first
entry, the pivot, is not zero. The function det is defined by

det :: [[Ratio Integer]]→ Ratio Integer
det [[x]] = x
det xss =
case break ((�= 0) · head) xss of
(yss, []) → 0
(yss, zs : zss) → let x = head zs ∗ det (reduce zs (yss ++ zss))

in if even (length yss) then x else − x

The expression break ((�= 0) · head) xss breaks a matrix into two parts
(yss, zss) in which either zss is empty or the head of its first row zs is
not zero. In the former case the matrix is singular and its determinant is
zero. In the latter case the remaining rows (yss ++ zss) are reduced to an
(n−1)× (n−1) matrix by adding a suitable multiple of zs to each row and
discarding the first column:

reduce xs yss = map (reduce1 xs) yss
reduce1 (x : xs) (y : ys) = zipWith(λa b → b − d ∗ a) xs ys

where d = y/x

Finally, the determinant of the reduced matrix is negated if the parity of the
position of the pivotal row in the matrix is odd. Division (/) is implemented
as rational division.

Using integer division

Another way to compute |A| is based on the following fact. Define the matrix
X by setting xjk = a11 ∗ ajk − a1k ∗ aj1 for 2 ≤ j , k ≤ n. Equivalently,

xjk =
∣∣∣∣ a11 a1k

aj1 ajk

∣∣∣∣
So X is an (n−1)× (n−1) matrix. Then |A| = |X |/an−2

11 provided a11 �= 0.
This is Chió’s identity. The determinant of an n × n matrix is expressed in
terms of the determinant of a “condensed” (n−1)× (n−1) whose entries are
the determinants of 2× 2 matrices. Although Chió’s identity also makes use
of division, the division is exact and can be implemented as integer division.
Note the assumption that the leading entry a11 is not zero. If it is, then, just

Three ways of computing determinants 183

as in Gaussian elimination, we have to look for a suitable non-zero pivot.
The row containing the pivot can be swapped with the first row. Swapping
two rows changes the sign of the determinant if the pivotal row is moved an
odd number of places. That leads to the following algorithm for det :

det :: [[Integer]]→ Integer
det [[x]] = x
det xss =
case break ((�= 0) · head) xss of
(yss, []) → 0
(yss, zs : zss) → let x = det (condense (zs : yss ++ zss))

d = head zs ↑ (length xss − 2)
y = x div d

in if even (length yss) then y else − y

Here, (↑) denotes exponentiation. The function condense is defined by

condense = map (map det · pair · uncurry zip) · pair
where pair (x : xs) = map ((,) x) xs

det ((a, b), (c, d)) = a ∗ d − b ∗ c

The first row of the matrix is paired with each other row. Each pair of rows,
say ([a1, a2, . . . , an], [b1, b2, . . . , bn]), is then zipped and paired, yielding

[((a1, b1), (a2, b2)), ((a1, b1), (a3, b3)), . . . ((a1, b1), (an , bn))]

Finally, the 2× 2 determinant of each pair of pairs is computed.
As to the complexity, condensing an n × n matrix takes Θ(n2) steps, so

the recurrence relation for T (n) satisfies T (n) = T (n − 1) + Θ(n2), with
solution T (n) = Θ(n3). Although rational division is avoided, the integers
get big very quickly. It would be much better if the divisions were not all
performed at the end of the process, but interleaved with each condensation
step.

Interleaving

Interleaving of condensation and division is possible owing to one of the
many curious properties of determinants. Let X be the condensed matrix
obtained from A and let Y be the condensed matrix obtained from X . Thus,
Y is an (n−2) × (n−2) matrix. Then, assuming a11 �= 0, each element of
Y is divisible by a11. We leave the proof as an exercise. That means we
can eliminate the factor 1/an−2

11 in Chió’s method by dividing each element

184 Pearls of Functional Algorithm Design

of the doubly condensed matrix by a11. That leads to the implementation
det = det ′ 1, where

det ′ :: Integer → [[Integer]]→ Integer
det ′ k [[x]] = x
det ′ k xss =
case break ((�= 0) · head) xss of
(yss, []) → 0
(yss, zs : zss) → let x = det ′ (head zs) (cd k (zs : yss ++ zss))

in if even (length yss) then x else − x

where cd (short for condense and divide) is defined by

cd k = map (map det · pair · uncurry zip) · pair
where pair (x : xs) = map ((,) x) xs

det ((a, b), (c, d)) = (a ∗ d − b ∗ c) div k

Of course, in this version the number of integer divisions goes up to Θ(n3).

Using no division

Finally, we present one other method of computing det that avoids division
altogether. The method appears somewhat magical and we are not going to
justify it. For an n × n matrix X = (xij) define MUT(X) (short for make
upper triangular) by

MUT(X) =

⎛
⎜⎜⎜⎝
−

∑n
j=2 xjj x12 . . . x1n

0 −
∑n

j=3 xjj . . . x2n

· · ·
0 0 . . . −

∑n
j=n+1 xjj

⎞
⎟⎟⎟⎠

Thus, the entries of X below the diagonal are made zero, those above the
diagonal are left unchanged and each diagonal entry is replaced by the negated
sum of the elements of the diagonal below it. Note that

∑n
j=n+1 xjj = 0.

Next, let FA(X) = MUT(X) × A and set B = F n−1
A A′, where A′ = A

if n is odd and A′ = −A if n is even. In words, apply FA to A′ a total of
(n−1) times. Then B is the everywhere zero matrix except for its first entry
b11, which equals |A|. Computing MUT(X)×A takes Θ(n3) steps and, since
this computation is repeated n − 1 times, the total time for computing |A|
is Θ(n4) steps.

Three ways of computing determinants 185

The following implementation follows the prescription faithfully:

det :: [[Integer]]→ Integer
det ass = head (head bss)

where
bss = foldl (matmult ·mut) ass ′ (replicate (n − 1) ass)
ass ′ = if odd n then ass else map (map negate) ass
n = length ass

The function mut implements MUT:

mut xss
= zipWith (++) zeros (zipWith (:) ys (zipWith drop [1..] xss))

where ys = map negate (tail (scanr (+) 0 (diagonal xss)))

The value zeros is an infinite lower triangular matrix of zeros, beginning
with an empty row:

zeros = [take j (repeat 0) | j ← [0..]]

The function diagonal returns the elements along the diagonal:

diagonal [] = []
diagonal (xs : xss) = head xs : diagonal (map tail xss)

Finally, matmult implements matrix multiplication:

matmult xss yss = zipWith (map · dp) xss (repeat (transpose yss))
dp xs ys = sum (zipWith (∗) xs ys)

The function dp implements the dot product of two vectors.
However, note that MUT(X) does not depend on the entries below the

diagonal of X . Under lazy evaluation they are never computed by mut .
Nevertheless, it is more efficient to recast the definition of mut in terms of
a special matrix multiplication operation trimult that multiplies an upper
triangular matrix with an arbitrary matrix to give another upper triangular
matrix. Suppose xss is the list of rows of an upper triangular matrix and
yss is an arbitrary matrix. Then

trimult xss yss = zipWith (map · dp) xss (submats (transpose yss))

produces an upper triangular matrix. The function submats returns a list of
the principal submatrices:

submats :: [[a]]→ [[[a]]]
submats [[x]] = [[[x]]]
submats xss = xss : submats (map tail (tail xss))

186 Pearls of Functional Algorithm Design

For upper triangular matrices xss the definition of mut xss simplifies to

mut xss = zipWith (:) ys (map tail xss))
where ys = map negate (tail (scanr (+) 0 (map head xss)))

The diagonal of an upper triangular matrix xss is map head xss and the
elements above the diagonal are map tail xs.

We can now rewrite det in the form

det :: [[Integer]]→ Integer
det ass = head (head bss)

where
bss = foldl (trimult ·mut) ass ′ (replicate (n − 1) ass)
ass ′ = if odd n then upper ass

else map (map negate) (upper ass)
n = length ass

where upper = zipWith drop [0..].

A brief comparison

So, which of the three methods described above is best? Rational divi-
sion (Gaussian elimination), integer division (two versions, one using Chió’s
identity and one using condense and divide) or no division (by iterated
matrix multiplication)?

We carried out a brief comparison of the methods, using random matrices
for various sizes of n, each with entries in the range (−20, 20). As might
be expected, the original Chió version was hopeless, but the second version
that combined condensation steps and division was the clear winner. For
n = 150, Gaussian elimination took about 30 s, the modified Chió version
took 10 s and the iterated multiplication method took 40 s.

Final remarks

Chió’s method, which goes back 150 years, is described at http://math
world.wolfram.com/ChioPivotalCondensation.html. The modified version is
really due to Bareiss (1968), who based its justification on Sylvester’s iden-
tity, a more general version of Chió’s identity. However, the history of the
iterated multiplication method is more obscure. The main fact on which it
depends still awaits a purely algebraic proof. We extracted it from an algo-
rithm of Mahajan and Vinay (1997) that was based on the idea of clow

sequences. The word clow is an acronym for “closed walk”, and a clow
sequence is a generalisation of the cycle decomposition of a permutation in

Three ways of computing determinants 187

which each cycle can contain repetitions of intermediate elements; hence, a
closed walk. Mahajan and Vinay showed that all the signed matrix terms for
clow sequences that do not correspond to permutations cancel each other
out, leaving just those terms a1π(1)a2π(2) · · · anπ(n) that do correspond to
permutations. But their proof is not trivial. The signed matrix term corre-
sponding to a clow sequence can be expressed as a path in a layered directed
acyclic graph to one of two endpoints and the computation of the sum of
such factors computed as a path problem. By recasting the associated recur-
sive definition directly back into matrix operations, the identity described
above was discovered. Although we cannot find any reference to it in the
literature, it is almost certainly not new.

One point not emphasised in the narrative was that no Haskell arrays
were harmed in the description of the algorithms, immutable or otherwise.
Instead, each matrix was quietly represented as a list of its rows. That
enabled each algorithm to be expressed fairly concisely. But perhaps a better
alternative is to define a suitable abstract type for matrices in which the
necessary operations, first column, first row, diagonal, principal submatrices
and so on, are provided as primitives.

References
Bareiss, E. H. (1968). Sylvester’s identity and multi-step integer preserving

Gaussian elimination. Mathematics of Computation 22 (103), 565–78.
Mahajan, M. and Vinay, V. (1997). Determinant: combinatorics, algorithms and

complexity. Chicago Journal of Theoretical Computer Science, Article 5.

23

Inside the convex hull

Introduction

The problem of computing the convex hull of a set of points is central to
many tasks in computational geometry and has been much studied. Finding
the hull makes sense in any finite dimension d , but most textbooks focus
primarily on the cases d = 2 and d = 3. Our aim in this pearl is simply
to specify the d dimensional form of the problem and then to describe a
straightforward incremental algorithm for computing the hull. The incre-
mental algorithm is well known and a number of sophisticated improvements
have been proposed, but we deal only with the basic idea. We will not derive
the algorithm, but instead show how to test it using the Claessen and Hughes
QuickCheck library. In fact, testing revealed an error in the code, an error
we have deliberately left in to see if the reader can spot it.

Background

Many geometric algorithms fall apart when the arithmetic is not exact, so
it is a good idea to stay within the realm of integer arithmetic and confine
attention to the subset Q(d) of d -dimensional Euclidean space E (d) con-
sisting of those points whose Cartesian coordinates are rational numbers.
A point in Q(d) can be represented by a list of d+1 integers [x0, x1, . . . , xd]
in which xd �= 0; this list represents the d rational Cartesian coordinates
[x0/xd , x1/xd , . . . , xd−1/xd]. Hence, we define Point = [Integer]. The dimen-
sion of a point is given by

dimension :: Point → Int
dimension ps = length ps − 1

By definition, a d -simplex is a list of d+1 points in Q(d) together with a
value, +1 or −1, indicating the orientation of the simplex that arises from
the way the points are listed:

type Simplex = ([Point], Int)

188

Inside the convex hull 189

��
�

�
�

�
�

�
�

���

�

x

z

y

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

a

b

c

d

Fig. 23.1 A positively oriented tetrahedron, with a, b and c in the (x , y) plane and
d above.

The points, or vertices, of a d -simplex have to be in “general position”, mean-
ing that no two points are identical, no three points are collinear, no four
points are coplanar and so on. A 1-simplex in Q(1) is an edge, a 2-simplex
in Q(2) is a triangle, and a 3-simplex in Q(3) is a tetrahedron. Formally,
points [v0, v1, . . . , vd], where vj has coordinates [xj0, xj1, . . . , xjd], are in gen-
eral position if the determinant of the matrix X = (xij) is non-zero. The
value of the determinant is proportional to the signed volume of the simplex
and the orientation is, by definition, the sign of the determinant:1

orientation :: [Point]→ Int
orientation = fromIntegral · signum · det

Even permutations of the points leave the orientation unchanged, while odd
permutations invert it. In Q(1), an edge [a, b] has positive orientation if
a > b, negative orientation if a < b and zero orientation if a = b. In Q(2), a
triangle [a, b, c] has positive orientation if the order [a, b, c] is anticlockwise
round the triangle, negative orientation if the order goes clockwise and zero
orientation if a, b and c are collinear. In Q(3), and with the standard right-
handed orientation of the x , y and z axes, a tetrahedron [a, b, c, d] has
positive orientation if the triangle [b, c, d] when viewed from point a has
positive orientation. Such a tetrahedron is pictured in Figure 23.1.

Each d -simplex smp determines a convex region CS (smp) of space in
Q(d), namely the rational points inside smp or on its boundary. To deter-
mine whether a point lies in CS (smp) we first compute the facets of smp.
1 Definitions of det were given in the previous pearl.

190 Pearls of Functional Algorithm Design

A facet of a d -simplex is a list of d points, together with an associated orien-
tation derived from the simplex. The facets of an edge are its two endpoint
vertices, the facets of a triangle are its three edges and so on. The facets of
a simplex and the associated orientations are defined by

facets :: Simplex → [Facet]
facets (us, b) = zip (minors us) (cycle [b,−b])

minors :: [a] → [[a]]
minors [] = []
minors (x : xs) = xs : map (x :) (minors xs)

where Facet = ([Point], Int). The minors of a list is a list of subsequences.
For example, minors “abcd” = [“bcd”, “acd”, “abd”, “abc”]. We met this
function in the two previous pearls. For an edge [a, b] in Q(1) with positive
orientation the facets are the 0-simplexes [b] and [a] with associated orien-
tations +1 and −1 respectively. A point p is strictly inside the region of the
simplex [a, b] if the simplex [p, b] has the same orientation as [b] has, namely
+1, and [p, a] has the same orientation as [a], namely −1. In other words,
b < p < a. The same reasoning holds in higher dimensions. Thus, in Q(2),
a triangle [a, b, c] with positive orientation has the three facets

([b, c], +1), ([a, c],−1), ([a, b], +1)

and a point p is strictly inside [a, b, c] if the three simplexes [p, b, c], [p, a, c]
and [p, a, b] have orientations +1, −1 and +1, implying that p is to the left
of the edge from b to c, to the right of the edge from a to c and to the left
of the edge from a to b.

The region CS (smp) of those points strictly inside smp or on its boundary
is defined by a predicate:

insideCS :: Simplex → Point → Bool
insideCS smp p

= and [0 ≤ b ∗ orientation (p : us) | (us, b)← facets smp]

A point p is strictly inside CS (smp) if b = orientation (p : us) for each facet
(us, b) of smp and on the boundary of smp if orientation (p : us) = 0 for at
least one facet (us, b) of smp.

Convex hulls

The convex hull CH (vs) of a set of points vs in Q(d) is a region of Q(d).
It can be defined in a number of mathematically equivalent ways, including
the following: CH (vs) is the union of the sets CS (smp) for all d -simplexes

Inside the convex hull 191

smp determined by points of vs. For example, in Q(2) the convex hull of vs
is the union of the regions determined by all triangles whose vertices are in
vs. The set CH (vs) can therefore be characterised by a predicate:

insideCH :: [Point] → Point → Bool
insideCH vs p = or [insideCS smp p | smp ← simplexes vs]

where simplexes vs lists the simplexes of vs:

simplexes :: [Point]→ [Simplex]
simplexes vs = [(us, b) | us ← tuples (d + 1) vs,

let b = orientation us, b �= 0]
where d = dimension (head vs)

The value of tuples n vs is a list of all n-tuples of vs; that is, all subsequences
of vs of length n. The definition of tuples is left as an exercise.

According to the above definition of insideCH , the set CH (vs) is empty
if vs has no simplexes. A set of points vs in Q(1) has no 1-simplexes if the
points are coincident, in Q(2) if they are collinear and in Q(3) if they are
coplanar. It is possible to define the convex hull for such sets of points by
reducing the dimension, but we will leave the specification as it is.

An incremental algorithm

There are Ω(nd+1) possible d -simplexes among n points, so evaluating the
expression insideCH vs p takes Ω(nd+1) steps. Most of these simplexes over-
lap, indeed some may coincide, and it is necessary only to consider some
subset that covers the hull without overlap. Therefore, a more efficient al-
gorithm is obtained by replacing simplexes with another function partition,
with the same type, that partitions the hull. Then we can replace insideCH
by insideCH ′, where

insideCH ′ :: [Point]→ Point → Bool
insideCH ′ vs p = or [insideCS smp p | smp ← partition vs]

The function partition can be defined by a process that starts with a single
simplex and then adds new simplexes as each additional point outside the
current hull is inspected:

partition :: [Point]→ [Simplex]
partition vs

= case findSimplex vs of
Nothing → []
Just [smp] → foldl update [smp] (vs \\ vertices smp)

192 Pearls of Functional Algorithm Design

The vertices of a simplex are listed by

vertices :: Simplex → [Point]
vertices = sort · fst

The vertices are listed in order; so, if vs is maintained as a sorted list, then
\\ can be implemented efficiently as ordered list difference. The function
findSimplex finds a simplex if there is one. If there is not one, then there is
no partition and an empty hull. Otherwise the simplex is used as a starting
point and its vertices are removed from the list of additional points that
need to be considered. It remains to define findSimplex and update. We deal
with these functions separately.

Finding a simplex

One obvious way of defining findSimplex is

findSimplex vs = if null smps then Nothing else Just (head smps)
where smps = simplexes vs

But in the worst case the cost of findSimplex vs is Ω(nd+1) steps, which
rather undercuts the aim of finding a more efficient algorithm. The worst
case is unlikely in practice, so the above definition is probably good enough,
but there is an alternative method. The idea is to start with the first point
v0 of vs and then to carry out a single search of the rest of vs to find the
remaining points. First, a second point v1 is found so that v0 and v1 are not
coincident. Then the search continues with the elements of vs after v1 to find
a third point v2 that is not collinear with v0 and v1, and so on until d + 1
points are found that are in general position. The tricky aspect is not the
search but the fact that the non-degeneracy of k + 1 points in Q(d) cannot
be determined by a simple determinant test: the associated matrix of point
coordinates has size (k+1)× (d+1), which is not square if k < d .

Instead we need to consider square submatrices. Consider the matrix X
of size (k+1)× (d+1) obtained from the first k+1 vertices and the subma-
trices of size (k+1)× (k+1) formed by taking every possible combination of
k columns from the first d columns, together with the last column (the de-
nominators of the rational coordinates of the vertices). Then the k+1 points
are degenerate if the determinants of all these square submatrices are zero.
The degeneracy test is implemented by

degenerate k = all (0) ·map det · submatrices k · transpose
submatrices k vs = map (++[last vs]) (tuples k (init vs))

Inside the convex hull 193

The function transpose transposes a matrix, so submatrices selects columns
of a matrix by selecting rows of the transposed matrix. The determinant of a
matrix is the determinant of its transpose. Since there are O(dk) submatrices
of the transposed matrix, and computing the determinant takes O(k3) steps,
the computation of degenerate k vs for a list of k+1 points vs in Q(d), where
k ≤ d , takes O(k3dk) = O(dd+3) steps.

The function findSimplex is now implemented by

findSimplex :: [Point]→ Maybe Simplex
findSimplex [] = Nothing
findSimplex (v : vs) = search (length v − 1) 1 [v] vs

where the function search is defined by

search d k us vs
| k d + 1 = Just (us, orientation us)
| null vs = Nothing
| degenerate k (v : us) = search d k us (tail vs)
| otherwise = search d (k + 1) (v : us) (tail vs)

where v = head vs

The running time of findSimplex vs, where vs has n points, is O(dd+3n)
steps, which is linear in n, though with a large constant factor.

Update

In order to define the remaining function update, consider a set smps of sim-
plexes that partition the convex hull for the points considered so far. The
facets of these simplexes are of two kinds: the internal facets – those that oc-
cur exactly twice (with opposite orientations); and the external facets – those
that occur exactly once. For example, take the vertices of a square [a, b, c, d]
in Q(2). There are two possible triangulations: the triangles [a, b, c] and
[c, d , a], or [a, b, d] and [b, c, d]. In the first triangulation the edge [a, c] is
internal and in the second the edge [b, d] is internal. The external facets are
computed by

external :: [Simplex]→ [Facet]
external = foldr op [] · sort · concatMap facets

where

op smp [] = []
op smp (smp′ : smps) = if vertices smp vertices smp ′ then smps

else smp : smp ′ : smps

194 Pearls of Functional Algorithm Design

The cost of computing external smps is O(dS log dS), where S is size of
smps, since the dominating time is the time to sort the facets of smps and
there are O(dS) of them.

Each new point v splits the external facets into two: the visible facets
and the invisible ones. Imagine a light-bulb situated at v ; this light-bulb
illuminates just the visible facets. A facet (us, b) is visible to v if v is strictly
outside it, meaning that orientation (v : us) has opposite sign to b:

visible :: Point → [Facet]→ [Facet]
visible v fs = [(us, b) | (us, b)← fs, b ∗ orientation (v : us) < 0]

There are no visible facets if v is inside or on the current hull. In particular,
if v is a copy of one of the vertices processed so far, then the current hull
will be unchanged, so it does not matter if vs contains repeated points (and
it does not matter if we do not remove the vertices of the starting simplex
from the starting points).

To update the hull we add to smps a new simplex for each visible facet:

newSimplex :: Point → Facet → Simplex
newSimplex v (us, b) = (v : us,−b)

The orientation assigned to the new simplex is correct because if (us, b) is
visible to v , then b∗orientation(v : us) < 0, and so orientation(v : us) = −b.

Now we can define update by

update :: [Simplex]→ Point → [Simplex]
update smps v

= smps ++ map (newSimplex v) (visible v (external smps))

The time to compute update smps is dominated by the time to compute the
visible facets, and this takes O(dS log dS) steps, where S is the size of smps.
The complexity of insideCH ′ as a function of n, the number of points in vs,
is therefore O(dnS log dS), where S is the maximum number of simplexes
maintained at each stage. It is known that S = O(ne), where e = �d/2�,
so evaluating insideCH ′ vs takes O(ne+1 log n) steps. This is better than
insideCH , but we can improve insideCH ′ yet further.

An improvement

As described above, the incremental algorithm computes a set of simplexes
that partition the hull. At each stage the external facets of the hull are
determined in order to discover those that are visible to a new point, and new
simplexes are then added to the hull. It is clearly more sensible to maintain

Inside the convex hull 195

the external facets of the simplexes rather than the simplexes themselves.
If we set faces = external · partition, then we can replace insideCH ′ by
insideCH ′′, where

insideCH ′′ vs p = and [0 ≤ b ∗ orientation (p : us) | (us, b)← faces vs]

The function faces has type [Point] → [Facet]. In computational geometry
one of the usual ways of describing a convex hull is by listing its external
facets.

An efficient computation of faces can be derived by appealing to the fusion
law of foldl . We need to find update ′ :: [Facet]→ Point → [Facet], so that

external (update smps v) = update ′ (external smps) v

Since the external facets of a single simplex are all its facets we then obtain

faces vs
= case findSimplex vs of

Nothing → []
Just [smp] → foldl update ′ (facets smp) (vs \\ vertices vs)

We will not go into the derivation of update ′ but just state the result:

update ′ fs v = (fs \\ fs ′) ++ map (newFacet v) (external fs ′)
where fs ′ = visible v fs

newFacet v (us, b) = (v : us, b)

In words, the facets visible to the new point are removed from the current
set of facets and new facets are added. The visible facets form a connected
set and their boundary is the set of their external sub-facets, namely a set of
(d−2)-simplexes that occur exactly once. For example, in Q(3) the facets are
triangles and the external sub-facets of a visible set of connected triangles
are the set of edges that form its boundary. The orientation assigned to each
new facet is just the orientation of the associated sub-facet. To appreciate
this last point, consider an edge ([a, b], +1) in Q(2) that is visible to a point
c and in which b is a boundary point (so the following edge beginning with
b is not visible). The 0-simplex associated with b has positive orientation
and the new edge [c, b] has to be directed towards b, so also has positive
orientation.

The running time of faces is dominated by the time to discover the facets
visible to a new point. In order to find these facets, every single facet of
the hull is inspected; that is clearly an inefficient method, since the visible
facets form a small locally connected set. It is here that more sophisticated

196 Pearls of Functional Algorithm Design

algorithms, such as the Bulldozer algorithm of Blelloch et al. (2001), enter
the picture, but we will not go into further details.

QuickCheck

Koen Claessen and John Hughes have produced a very useful suite of func-
tions, called QuickCheck , for testing Haskell programs; see Claessen and
Hughes (2000). It would take up too much space to explain the details of
QuickCheck , but we briefly show how to use the functions in the suite to
check the two versions of the convex hull algorithm described above.

First we need a generator for generating a point in Q(d):

point :: Int → Gen [Integer]
point d = do {xs ← vector d ; return (xs ++ [1])}

The utility vector d returns a randomly generated list of d values, here
integers. The result of point d is a generator that returns a list of d+1
integers in which the last integer is 1.

Next we need a generator for generating a list of n points:

points :: Int → Int → Gen [[Integer]]
points d 0 = return []
points d (n + 1) = do {p ← point d ; ps ← points d n;

return (p : ps)}
Now we can define a property prop Hull that checks the incremental algo-
rithm against the specification:

prop Hull :: Int → Int → Property
prop Hull d n = forAll (points d n) $ λvs →

forAll (point d) $ λv →
insideCH vs v insideCH ′ vs v

For example, evaluating quickCheck (prop Hull 3 10) produces the output

OK, passed 100 tests.

However, replacing insideCH ′ by insideCH ′′ in prop Hull reveals an error:

Main> quickCheck (prop_Hull 2 4)
Falsifiable, after 2 tests:
[[0,0,1],[0,0,1],[0,0,1],[-1,-1,1]]
[1,0,1]

Oh dear, what has gone wrong? Well, the problem is that the four points are
collinear, so there is no partition and no faces. While insideCH vs correctly

Inside the convex hull 197

returns False when vs are collinear points in Q(2), the test insideCH ′′ vs
returns True. We need to rewrite insideCH ′′ to read

insideCH ′′ vs v = if null fs then False else
and [0 ≤ b ∗ orientation (v : us) | (us, b)← fs]
where fs = faces vs

Then QuickCheck is happy. Did you spot the error?

Final remarks

There are numerous textbooks on computational geometry that deal with
convex-hull algorithms; O’Rourke (1998) and Preparata and Shamos (1985)
are just two of them. In particular, O’Rourke’s excellent book devotes two
carefully crafted chapters to the topic, and his bibliography contains refer-
ences to most of the literature, though Dijkstra’s (1976) treatment of the
three-dimensional case is missing. This particular pearl arose as a result of
trying to come to grips with the details of Karimipour and Frank (2009),
but the details differ significantly. I would like to thank Irina Voiculescu
for a number of profitable discussions about the convex hull and how to
compute it.

References
Claessen, K. and Hughes, J. (2000). QuickCheck: a lightweight tool for random

testing of Haskell programs. ACM SIGPLAN International Conference of
Functional Programming, Montreal, Canada, pp. 268–79. See also http://www.
cs.chalmers.se/∼rjmh/QuickCheck/.

Blelloch, G., Burch, H., Crary, K., et al. (2001). Persistent triangulations. Journal
of Functional Programming 11 (5), 441–66.

Dijkstra, E. W. (1976). A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall.

Karimipour, F. and Frank, A. U. (2009). A dimension independent convex hull
algorithm. Unpublished.

O’Rourke, J. (1998). Computational Geometry, second edition. Cambridge, UK:
Cambridge University Press.

Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry. New York,
NY: Springer-Verlag.

24

Rational arithmetic coding

Introduction

This pearl, and the one following, is all about arithmetic coding, a way
of doing data compression. Unlike other methods, arithmetic coding does
not represent each individual symbol of the text as an integral number of
bits; instead, the text as a whole is encoded as a binary fraction in the
unit interval. Although the idea can be traced back much earlier, it was not
until the publication of an “accessible implementation” by Witten, Neal and
Cleary in 1987 that arithmetic coding became a serious competitor in the
world of data compression. Over the past two decades the method has been
refined and its advantages and disadvantages over rival schemes have been
elucidated. Arithmetic coding can be more effective at compression than
rivals such as Huffman coding, or Shannon–Fano coding, and is well suited
to take account of the statistical properties of the symbols in a text. On the
other hand, coding and decoding times are longer than with other methods.

Arithmetic coding has a well-deserved reputation for being tricky to
implement; nevertheless, our aim in these two pearls is to give a formal devel-
opment of the basic algorithms. In the present pearl, coding and decoding
are implemented in terms of arbitrary-precision rational arithmetic. This
implementation is simple and elegant, though expensive in time and space.
In the following pearl, coding and decoding are reimplemented in terms of
finite-precision integers. This is where most of the subtleties of the problem
reside.

Arithmetic coding with rational arithmetic

The basic idea behind arithmetic coding is to:

(i) Break the source text into symbols, where a symbol is some logical
grouping of characters such as a word, or perhaps just a single char-
acter. For simplicity, we assume that the number of possible symbols
is finite.

198

Rational arithmetic coding 199

(ii) Associate each distinct symbol with a semi-open interval of the unit
interval [0, 1). Such an association is provided by a model.

(iii) Successively narrow the unit interval by an amount determined by
the interval associated with each symbol in the text.

(iv) Choose some suitably short fraction in the final interval.

We can capture the basic data types in Haskell by defining

type Fraction = Ratio Integer
type Interval = (Fraction,Fraction)

A fraction is represented by the ratio of two arbitrary-precision integers
(elements of Integer) and an interval by two fractions. A proper fraction f
is one in which 0 ≤ f < 1. The unit interval is represented by (0, 1) and we
write f ∈ (�, r) to mean � ≤ f < r , so intervals are closed on the left and
open on the right. We also write i ⊆ j to mean that i is a subinterval of j .

Narrowing

The value i � j narrows an interval i by an interval j , returning a subinterval
k of i such that k is in the same relationship to i as j is to the unit interval:

(�) :: Interval → Interval → Interval
(�1, r1) � (�2, r2) = (�1+(r1−�1)∗�2, �1+(r1−�1)∗r2)

The operation � is associative with (0, 1) as unit, a good reason to denote it
with an infix symbol. It is easy to check that if f ∈ i � j , then f ∈ i . Hence,
i � j ⊆ i . Also, if f ∈ i � j then (f � i) ∈ j , where the operation (�) widens a
fraction:

(�) :: Fraction → Interval → Fraction
f � (�, r) = (f − �)/(r − �)

In summary:

f ∈ i � j ⇒ f ∈ i ∧ (f � i) ∈ j (24.1)

In fact, (24.1) is an equivalence. Furthermore, if we extend � to an operation
on intervals by defining (�, r) � j = (� � j , r � j), then (i � j) � i = j , so � has
all the properties of a mathematical group.

Models

In order to encode a text, each possible symbol has to be associated with
a given interval. For our purposes, Model is an abstract type representing

200 Pearls of Functional Algorithm Design

a finite mapping from a finite set of Symbols to Intervals with associated
functions:

interval :: Model → Symbol → Interval
symbol :: Model → Fraction → Symbol

Thus, intervalmx is the interval associated with symbol x in model m, while
symbol m f is the symbol associated with the unique interval containing the
proper fraction f . We suppose that the intervals associated with symbols
partition the unit interval, so

x = symbol m f ≡ f ∈ interval m x (24.2)

for every model m and proper fraction f .
As an important practical refinement on the basic idea, the model is

allowed to change as each symbol of the text is read. Such a scheme is called
adaptive encoding. For instance, one can begin with a simple model in which
all symbols are associated with intervals of the same width and then let the
model adapt by widening the intervals associated with the more frequently
occurring symbols in the text. The wider an interval is, the more scope there
is for finding a short fraction within it. More sophisticated adaptations are
also possible. For example, in English the letter “q” is nearly always followed
by a “u”. Therefore, on encountering a symbol “q”, the interval for “u” can
be widened in the expectation that the next symbol is a “u”.

It is not our purpose to study model adaptation in detail. Instead, we will
just suppose the existence of an additional function

adapt :: Model → Symbol → Model

The function intervals :: Model → [Symbol]→ [Interval] is now defined by

intervals m [] = []
intervals m (x : xs) = interval m x : intervals (adapt m x) xs

Each symbol of the text is converted into an interval by applying interval
to a succession of models. As long as the decoder knows the initial model
and adapt , it can perform the necessary adaptations to the model as each
symbol is reconstructed. Crucially, there is no need to transmit the various
models along with the text.

Encoding

Having defined the relevant data types and auxiliary operations, we can now
specify the function encode:

Rational arithmetic coding 201

encode :: Model → [Symbol]→ Fraction
encode m = pick · foldl (�) (0, 1) · intervals m

where pick i ∈ i . The intervals associated with the symbols of the text are
used to narrow the unit interval to some final interval, from which some
fraction is chosen.

Here is a simple example. Suppose m is a static model that contains five
symbols with intervals given by

[(e, (0, 3/8)), (g , (3/8, 1/2)), (n, (1/2, 5/8)), (r , (5/8, 7/8)), (v , (7/8, 1))]

Then
encode m “evergreen”

= pick((0, 1) � (0, 3/8) � (7/8, 1) · · · � (1/2, 5/8))
= pick(11445828/225, 11445909/225)

The best choice for pick returns (89 421/218), the unique fraction in this
interval with the shortest binary expansion, namely 010101110101001101.
So the nine characters of “evergreen” can be encoded as 18 bits, or three
characters. In fact, since the numerator of a shortest fraction has to be odd,
the last bit is always 1 and can be omitted, so only the first 17 bits need
be output. The best that Huffman encoding can achieve is 19 bits. We will
return to an appropriate choice of pick later on; for now we assume only
that pick i ∈ i .

Decoding

The obvious way to specify decode is by the condition

xs = decode m (encode m xs)

for all finite lists of symbols xs. However, for reasons given in a moment, the
specification is weakened to require only that

xs decode m (encode m xs) (24.3)

where is the prefix relation on lists, so xs ys if ys = xs ++zs for some zs.
Thus, decode is left-inverse to encode, in that it is required to produce the
sequence of symbols that encode encodes but is not required to stop after
producing them.

To define decode, let the input to encode be xs = [x0, x1, . . . , xn−1]. Let
m0 be the initial model and j0 = (0, 1) the initial interval. Define

mk+1 = adapt mk xk

ik = interval mk xk

jk+1 = jk � ik+1

202 Pearls of Functional Algorithm Design

for 0 ≤ k < n. Thus, by definition of encode, if f = encode m0 xs then f ∈ jn .
Now we can reason for n > 0:

f ∈ jn
≡ {definition of jn}

f ∈ (jn−1 � in)

⇒ {(24.1)}
f ∈ jn−1 ∧ (f � jn−1) ∈ in

≡ {definition of in}
f ∈ jn−1 ∧ (f � jn−1) ∈ interval mn xn

≡ {(24.2)}
f ∈ jn−1 ∧ xn = symbol mn (f � jn−1)

Hence, by induction, we can compute

xk = symbol mk (f � jk−1) (24.4)

in the order k = n−1,n−2, . . . , 0. Equally well, (24.4) can used to compute
the symbols in the order k = 0, 1, . . . ,n−1. However, since the decoder
does not know the number of symbols, it will continue to produce more
symbols indefinitely. Note that the associativity of � was not exploited in
the reasoning above.

We implement decoding using the Haskell function unfoldr , defined by

unfoldr :: (b → Maybe (a, b))→ b → [a]
unfoldr f b = case f b of

Just (a, b ′) → a : unfoldr f b′

Nothing → []

The function decode is defined by

decode :: Model → Fraction → [Symbol]
decode m f = unfoldr step (m, (0, 1), f)
step (m, i , f) = Just (x , (adapt m x , i � interval m x , f))

where x = symbol m (f � i)

The proof that this definition of decode satisfies (24.3) is by induction on
xs. The details add nothing to the informal description above and we omit
them.

That leaves the problem of termination. There are two possible methods
for dealing with termination. Provided the number of symbols in the text is
known beforehand, this number can be transmitted prior to encoding. Then
decode can be stopped after producing the required number of symbols.

Rational arithmetic coding 203

The second method is to use a special end-of-file symbol EOF, appended to
the end of each text. Then decode is stopped when this special symbol is
generated. The second method is the one usually adopted in practice, but
has the disadvantage of forcing each model to allocate an interval, however
small, for EOF, thereby restricting the total width of the intervals available
for the other symbols.

Incremental encoding and decoding

Simple and elegant as the above definitions of encode and decode are, they
produce and consume fractions. And the denominators of fractions get big
very quickly. We would prefer coding and decoding to produce and consume
lists of bits, not least because it opens up the possibility of producing some
output before consuming all the input and reducing denominator size.

To this end we decompose pick into two functions, toBits :: Interval →
[Bit] and toFrac :: [Bit] → Fraction, so that pick = toFrac · toBits. The
definitions of encode and decode are revised to read:

encode :: Model → [Symbol]→ [Bit]
encode m = toBits · foldl (�) (0, 1) · intervals m

decode :: Model → [Bit]→ [Symbol]
decode m bs = unfoldr step (m, (0, 1), toFrac bs)
step (m, i , f) = Just (x , (adapt m x , i � interval m x , f))

where x = symbol m (f � i)

The new version of encode consumes symbols and produces bits, while decode
consumes bits and produces symbols. The functions toBits and toFrac have
yet to be determined, but as long as toFrac (toBits i) ∈ i for all intervals i
we are guaranteed that (24.3) is satisfied.

The new definition of encode consumes all its input before delivering any
output. We first show how to make encode incremental, because it will sug-
gest appropriate definitions of toBits and toFrac.

Streaming

Consider the function stream defined by

stream f g s xs = unfoldr step (s, xs)
where step (s, xs) = case f s of

Just (y , s ′) → Just (y , (s ′, xs))
Nothing → case xs of

x : xs ′ → step (g s x , xs ′)
[] → Nothing

204 Pearls of Functional Algorithm Design

This function describes a process that alternates between producing output
and consuming input. Starting in state s, control is initially passed to the
producer function f , which delivers output until no more can be produced.
Control is then passed to the consumer process g , which consumes the next
input x and delivers a new state. The cycle then continues until the input
is exhausted.

The following theorem, called the streaming theorem, relates stream to
the composition of an unfoldr with a foldl .

Theorem 24.1 Suppose f and g satisfy the streaming condition

f s = Just (y , s ′) ⇒ f (g s x) = Just (y , g s ′ x)

for all s and x . Then unfoldr f (foldl g s xs) = stream f g s xs for all s and
all finite lists xs.

The proof of the streaming theorem is postponed to the Appendix. To
apply it to encode, suppose toBits = unfoldr bit for some function bit
satisfying

bit i = Just (b, ib) ⇒ bit (i � j) = Just (b, ib � j) (24.5)

Then we have

encode m = stream bit (�) (0, 1) · intervals m

The result is an incremental algorithm for encode.
In order to satisfy (24.5) we need a suitable definition of bit . We also

have to satisfy toFrac (toBits i) ∈ i . Observe that (24.5) demands that,
whenever bit i produces a bit b, the same bit has to be produced by bit i ′

for any subinterval i ′ of i . This severely constrains the definition of bit . One
possibility is to take

bit (�, r) | r ≤ 1/2 = Just (0, (2∗�, 2∗r))
| 1/2 ≤ � = Just (1, (2∗�−1, 2∗r−1))
| otherwise = Nothing

Thus, bit i produces nothing if i strictly straddles 1/2; otherwise it produces
a 0 if i ⊆ (0, 1/2) and a 1 if i ⊆ (1/2, 1). This choice is reasonable, since
fractions in (0, 1/2) have binary expansions that begin with a zero, while
fractions in (1/2, 1) have expansions that begin with a one.

If bit i does produce a bit b, then so does bit i ′ for any subinterval i ′ of i ,
including i � j . Furthermore:

(2∗�, 2∗r) = (0, 2) � (�, r)
(2∗�−1, 2∗r−1) = (−1, 1) � (�, r)

Rational arithmetic coding 205

Hence, if bit i does produce a bit b, then bit i = Just (b, jb � i), where
j0 = (0, 2) and j1 = (−1, 1). And jb � (i � j) = (jb � i)� j since � is associative.
Therefore, (24.5) is satisfied with ib = jb � i .

The length of toBits i is finite; in fact

length (toBits (�, r)) ≤ �log2 1/(r−�)�

For the proof, note that toBits applied to an interval of width greater than
1/2 yields the empty sequence of bits, since such an interval strictly strad-
dles 1/2. Moreover, each evaluation of bit is on an interval of double the
width of its predecessor. Hence, if 1/2k+1 < r − � ≤ 1/2k , equivalently if
k = �log2[1/(r−�)]�, then termination is guaranteed after at most k bits
have been produced.

With the above choice of toBits the companion function toFrac is
defined by

toFrac = foldr (λ b f → (b+f)/2) (1/2)

Equivalently, toFrac bs = foldr (λb f → (b+f)/2)0(bs ++[1]). Thus, toFrac bs
in effect appends a 1 bit to the end of bs and converts the result into a fraction
in the usual way. It is easy to check that toFrac bs = (2n+1)/2k+1, where
k = length bs and n = toInt bs, the binary integer represented by bs.

To show that pick i ∈ i , where pick = toFrac · toBits, observe that pick
is the composition of a function that consumes a list with a function that
produces a list. The intermediate list can be eliminated, giving a direct
definition

pick (�, r) | r ≤ 1/2 = pick (2∗�, 2∗r)/2
| 1/2 ≤ � = (1 + pick (2∗�−1, 2∗r−1))/2
| otherwise = 1/2

The proof that pick i ∈ i (indeed, pick i is strictly contained in i) now follows
by fixpoint induction. In a fixpoint induction the hypothesis is assumed and
then shown to hold under recursive calls. Thus, a fixpoint induction proof
is essentially a proof by induction on the depth of recursion. Further details
are left as an exercise.

That leaves the problem of how to implement decoding incrementally.
It is possible to get decode to work incrementally, but we will not go into
details because the work would be wasted: the reimplementation of encode
and decode in terms of finite-precision integers to come in the next pearl
requires a completely different approach.

206 Pearls of Functional Algorithm Design

Final remarks

The material in these two pearls is drawn from Bird and Gibbons (2003)
and Stratford (2005). Witten et al. (1987) described “accessible implementa-
tion”. For details of Huffman and Shannon–Fano coding, see Huffman (1952)
and Fano (1961). For recent perspectives on the subject of arithmetic coding,
see Moffat et al. (1998) and Mackay (2003). The streaming theorem is new,
and was created specifically for the purposes of formulating an incremental
version of encoding, but it has other applications; see Gibbons (2007). A
good example of practice leading to new theory.

References
Bird, R. S. and Gibbons, J. (2003). Arithmetic coding with folds and unfolds.

Advanced Functional Programming 4, Volume 2638 of Lecture Notes in
Computer Science, ed. J. Jeuring and S. Peyton Jones. Springer-Verlag,
pp. 1–26.

Fano, R. M. (1961). Transmission of Information. Cambridge, MA/New York, NY:
MIT Press/Wiley.

Gibbons, J. (2007). Metamorphisms: streaming representation-changers. Science of
Computer Programming 65, 108–39.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy
codes. Proceedings of the Institute of Radio Engineers 40 (9), 1098–101.

Mackay, D. (2003). Information Theory, Learning and Inference Algorithms.
Cambridge, UK: Cambridge University Press.

Moffat, A., Neal, R. M. and Witten, I. H. (1998). Arithmetic coding revisited. ACM
Transactions on Information Systems 16 (3), 256–94.

Stratford, B. (2005). A formal treatment of lossless data compression. DPhil thesis,
Oxford University Computing Laboratory, Oxford, UK.

Witten, I. H., Neal, R. M. and Cleary, J. G. (1987). Arithmetic coding for data
compression. Communications of the ACM 30 (6), 520–40.

Appendix

The streaming theorem can be proved by appealing to a more general
theorem about unfoldr . This theorem states that unfoldr f · g = unfoldr h
provided two conditions are satisfied:

h x = Nothing ⇒ f (g x) = Nothing
h x = Just (y , x ′) ⇒ f (g x) = Just (y , g x ′)

This result is known as the fusion law of unfoldr . In particular, the fusion
conditions for

unfoldr step (s, xs) = unfoldr f (foldl g s xs)

where xs is restricted to be a finite list and

Rational arithmetic coding 207

step (s, xs) = case f s of
Just (y , s ′) → Just (y , (s ′, xs))
Nothing → case xs of

x : xs → step (g s x , xs)
[] → Nothing

come down to

step (s, xs) = Nothing ⇒ f (foldl g s xs) = Nothing

and

step (s, xs) = Just (y , (s ′, xs ′))
⇒ f (foldl g s xs) = Just (y , foldl g s ′ xs ′)

for all finite lists xs. The first condition is easy to verify and the second
condition follows from

f s = Just (y , s ′) ⇒ f (foldl g s xs) = Just (y , foldl g s ′ xs)

for all finite lists xs, which can be proved by induction on xs, given that the
streaming condition holds for f and g .

25

Integer arithmetic coding

Introduction

This pearl continues the study of arithmetic coding begun in the previous
one. The aim is to replace rational arithmetic with integer arithmetic. The
basic idea is to represent the interval being narrowed by a pair of limited-
precision integers (�, r), where 0 ≤ � < r ≤ 2e and e is a fixed integer;
this pair represents the subinterval (�/2e , r/2e) of the unit interval. The
intervals supplied by models are represented in exactly the same way but
with a different integer d . As we will see below, d and e have to satisfy
d ≤ e−2, so they cannot be the same. The values of e and d , assumed to be
global constants in what follows, are chosen to be sufficiently small that all
calculations can be done with limited-precision integers, for example with
the Haskell type Int .

New definitions

We now take Interval = (Int , Int), so interval m x returns a pair (p, q)
of limited-precision integers, representing the interval (p/2d , q/2d). The
function symbol m takes an integer n in the range 0 ≤ n < 2d and
returns a symbol x . As before, x = symbolmn if and only if n ∈ intervalmx ,
except that n is now an integer.

Next, we change the definition of narrowing by replacing � with �,
defined by

(�) :: Interval → Interval → Interval
(�, r) � (p, q) = (�+�(r−�)∗p/2d�, �+�(r−�)∗q/2d�)

The largest integer that can arise in evaluations of � is 2e+d (because
(r−�)∗q can be that big) and, provided this integer is in Int , all interval
calculations can now be done with Int .

Next, recall the function toBits of the previous pearl. This function con-
verted a fractional interval into a list of bits. We have toBits = unfoldr bit ,
where

208

Integer arithmetic coding 209

bit (�, r) | r ≤ 1/2 = Just (0, (2∗�, 2∗r))
| 1/2 ≤ � = Just (1, (2∗�−1, 2∗r−1))
| otherwise = Nothing

For integer encoding, bit is replaced by ibit , so that ibit too uses limited-
precision integer arithmetic:

ibit (�, r) | r ≤ 2e−1 = Just (0, (2∗�, 2∗r))
| 2e−1 ≤ � = Just (1, (2∗�−2e , 2∗r−2e))
| otherwise = Nothing

The function ibit is a version of bit that works on intervals scaled by 2e , so
satisfies 2e ∗ toFrac (unfoldr ibit i) ∈ i .

Installing the above revisions leads to a new definition of encode, namely

encode1 m = unfoldr ibit · foldl (�) (0, 2e) · intervals m (25.1)

In words, symbols of the text are converted into intervals which are then
used to narrow the interval (0, 2e) to some final interval i from which a bit
string is produced that, when converted to a fraction and scaled by 2e , gives
a number in i . It all seems straightforward.

The problem with (25.1), however, is that it just simply does not work!
Narrowing with � will eventually collapse an interval to the empty interval,
something that cannot happen with �. To illustrate, take e = 5, d = 3 and
suppose m associates the interval (3, 5) with the letter “a” and (5, 6) with
the letter “b”. With adapt m x = m, so m is a static model, we have

encode1 m“bba”
= foldl (�) (0, 32) [(5, 6), (5, 6), (3, 5)]
= foldl (�) (20, 24) [(5, 6), (3, 5)]
= foldl (�) (22, 23) [(3, 5)]
= (22, 22)

Moreover, unfoldr ibit (22, 22) generates infinite garbage. Whoops!

Incremental encoding and interval expansion

What saves the day is a combination of two ideas: incremental encoding and
interval expansion. First, suppose we replace (25.1) by

encode2 m = stream ibit (�) (0, 2e) · intervals m (25.2)

The operations ibit and � do not satisfy the streaming condition because
� is not an associative operation and encode2 �= encode1. Indeed, revisiting
the example above, we have

210 Pearls of Functional Algorithm Design

encode2 m “bba”
= stream ibit (�) (0, 32) [(5, 6), (5, 6), (3, 5)]
= stream ibit (�) (20, 24) [(5, 6), (3, 5)]
= 101 : stream ibit (�) (0, 32) [(5, 6), (3, 5)]
= 101101 : stream ibit (�) (0, 32) [(3, 5)]
= 101101 : stream ibit (�) (12, 20) []
= 101101

Interval collapse is avoided. That is the good news. On the other hand:

encode2 m “aab”
= stream ibit (�) (0, 32) [(3, 5), (3, 5), (5, 6)]
= stream ibit (�) (12, 20) [(3, 5), (5, 6)]
= stream ibit (�) (15, 17) [(5, 6)]
= stream ibit (�) (16, 16) []
= 0111 . . .

Interval collapse is not avoided because each intermediate interval straddles
16, the midpoint, and ibit returns Nothing on such intervals.

The conclusion is that incremental encoding alone is not quite enough to
avoid interval collapse. The problem is with intervals straddling 2e−1, and
the purpose of the second idea, interval expansion, is to increase the width
of such intervals to at least 2e−2. A narrowed interval (�, r) � (p, q) will not
collapse if

�(r−�) ∗ p/2d� < �(r−�) ∗ q/2d�

for all p < q , equivalently if �(r−�) ∗ p/2d� < �(r−�) ∗ (p+1)/2d� for all p.
Since �x� < �y� provided x + 1 ≤ y , this condition is satisfied if 2d ≤ r−�.
Hence, collapse is avoided provided r−� ≤ 2e−2 and so if d ≤ e−2.

Interval expansion

Interval expansion is a data refinement in which an interval (�, r) is
represented by a triple of the form (n, (�′, r ′)), where �′ = widen n � and
r ′ = widen n r and

widen n x = 2n(x − 2e−1) + 2e−1

A fully expanded interval is one in which n is as large as possible, subject to
the bounds 0 ≤ �′ < r ′ ≤ 2e . For example, taking e = 5, the interval (13, 17)
of width 4 can be represented by the fully expanded interval (2, (4, 20)) of
width 16.

Integer arithmetic coding 211

The function expand takes an interval and fully expands it. To define
expand , and to avoid writing fractions and exponentials in what follows,
define the four integers ei for 1 ≤ i ≤ 4 by ei = (i/4)2e . Observe that

0 ≤ 2 ∗ (�−e2) + e2 ≡ e1 ≤ �

2 ∗ (r−e2) + e2 ≤ e4 ≡ r ≤ e3

Hence, we can further expand (n, (�, r)) if e1 ≤ � and r ≤ e3. This leads to
the definition of expand in terms of a subsidiary function extend :

expand i = extend (0, i)
extend (n, (�, r))
| e1 ≤ � ∧ r ≤ e3 = extend (n+1, 2∗�−e2, 2∗r−e2)
| otherwise = (n, (�, r))

The converse of expand is contract , defined by

contract (n, (�, r)) = (shorten n �, shorten n r)

where shorten n x = (x −e2)/2n +e2. We have shorten n ·widen n = id , from
which follows contract · expand = id , but, in general, expand · contract �= id .
This is the usual situation with the abstraction and representation functions
of a data refinement.

Next, define enarrow , short for extend and narrow, by

enarrow :: (Int , Interval) → Interval → (Int , Interval)
enarrow ei j = (n, i � j) where (n, i) = extend ei

Thus, enarrow takes a partially expanded interval, fully expands it and then
narrows the result with �. Consequently, (�, r) is narrowed only when � < e1

or e3 < r . If, in addition, � < e2 < r , then either � < e1 and e2 < r , or � < e2

and e3 < r . In either case, e1 < r−�, which is exactly what is required.

A new definition

We now replace (25.2) by yet a third, completely new definition:

encode3 m = stream ebit enarrow (0, (0, 2e)) · intervals m (25.3)

The function ebit is a counterpart to ibit that works on expanded intervals,
and is specified by the property

unfoldr ebit = unfoldr ibit · contract (25.4)

where ibit was defined above. An explicit definition of ebit is developed
below. The function ebit will return Nothing on intervals that straddle e2,

212 Pearls of Functional Algorithm Design

so encode3 ensures that an interval is narrowed by � only if its width is at
least e1, thereby avoiding interval collapse if d ≤ e−2.

The function encode3 is different from all previous versions of encode.
That means we are back to square one with the problem of how to define
decode. We postpone discussion of the relationship between encode3 m xs
and xs until after constructing an explicit definition of ebit .

Equation (25.4) suggests appeal to the fusion law of unfoldr . This law
(which was used in the Appendix of the previous pearl) states that

unfoldr h = unfoldr f · g

provided the following two fusion conditions are satisfied:

h x = Nothing ⇒ f (g x) = Nothing
h x = Just (y , x ′) ⇒ f (g x) = Just (y , g x ′)

Taking h = ebit , f = ibit and g = contract , we have to show

ebit x = Nothing ⇒ ibit (contract x) = Nothing
ebit x = Just (y , x ′) ⇒ ibit (contract x) = Just (y , contract x ′)

Here is the definition of ebit that satisfies these conditions:

ebit (0, (�, r))
| r ≤ e2 = Just (0, (0, (2∗�, 2∗r)))
| e2 ≤ � = Just (1, (0, (2∗�−e4, 2∗r−e4)))
| otherwise = Nothing

ebit (n+1, (�, r))
| r ≤ e2 = Just (0, (n, (�+2n∗e2, r+2n∗e2)))
| e2 ≤ � = Just (1, (n, (�−2n∗e2, r−2n∗e2)))
| otherwise = Nothing

This definition will be simplified shortly. Setting contract (n, (�, r)) = (�′, r ′)
it is easy to check that r ≤ e2 ≡ r ′ ≤ e2 and e2 ≤ � ≡ e2 ≤ �′, so the
first fusion condition is satisfied. The second condition is immediate in
the case n = 0, since contract (0, i) = i . The remaining case comes down to
the identity

2∗shorten (n+1) x − e4∗b = shorten n (x + (1−2b)∗2n∗e2)

for b = 0 and b = 1, and is easily verified.
The definition of ebit is inefficient as well as clumsy, but it can be

improved. Observe that e2 ≤ � + 2ne2 and r − 2ne2 ≤ e2 for all n ≥ 0.
Thus, in the case r ≤ e2 the computation of unfoldr ebit (n, (�, r)) proceeds

Integer arithmetic coding 213

unfoldr ebit (n, (�, r))
= 0 : unfoldr ebit (n−1, (�+2n−1e2, r+2n−1e2))
= 01 : unfoldr ebit (n−2, (�+2n−2e2, r+2n−2e2))
= . . .

= 01n−1 : unfoldr ebit (0, (�+e2, r+e2))
= 01n : unfoldr ebit (0, (2�, 2r))

where 01n denotes a zero followed by n ones. Similarly, if e2 ≤ �, then

unfoldr ebit (n, (�, r)) = 10n : unfoldr ebit (0, (2�−e4, 2r − e4))

Hence, unfoldr ebit = concat · unfoldr ebits, where

ebits (n, (�, r))
| r ≤ e2 = Just (bits n 0, (0, (2∗�, 2∗r)))
| e2 ≤ � = Just (bits n 1, (0, (2∗�−e4, 2∗r−e4)))
| otherwise = Nothing

and bits n b = b : replicate n (1− b) returns a b followed by n copies of 1− b.
It follows that we can replace (25.3) by the equivalent but more efficient
version

encode3 m

= concat · stream ebits enarrow (0, (0, 2e)) · intervals m (25.5)

Definition (25.5) is our final program for encode.

A crucial question

But, what does encode3 actually do? How is its output related to its input?
The version of encode in the previous pearl satisfied

toFrac (encode m xs) ∈ foldl (�) (0, 1) (intervals m xs)

But this cannot be the case with encode3.
To answer this crucial question, define the variant encode ′3 of encode3 that

includes the starting interval as an extra argument, something we could have
done from the outset:

encode ′3 m ei = concat · stream ebits enarrow ei · intervals m

Then we have

2e ∗ toFrac (encode ′3 m ei xs) ∈ contract ei (25.6)

for all models m, expanded intervals ei and lists of symbols xs. Property
(25.6), whose proof is given in the Appendix, is crucial for implementing
decode.

214 Pearls of Functional Algorithm Design

A final problem

Unfortunately, (25.5) is not guaranteed to give a version of encode that
works with limited-precision arithmetic in all cases. The problem is with the
number n in a fully expanded interval (n, i). It is conceivable that n can
be very large, so large that it is not representable by an element of Int . For
example, imagine narrowing (0, e4) a very large number of times with an
interval such as (3/8, 5/8). The narrowed interval strictly straddles e2, so
the output of encode is the empty list of bits. But interval expansion applied
at each step will produce an expanded interval of the form (n, (0, e4)), where
n can exceed the upper limit of a limited-precision integer. Of course, the
situation is extremely unlikely in practice, but it is logically possible. The
plain fact of the matter is that no version of arithmetic coding is guaranteed
to work with any form of limited-precision arithmetic. If the situation above
does arise, then the two options are either to abort encoding with a suitable
error message or to switch back to rational arithmetic coding.

Inverting streams

Now we tackle the problem of decoding. The function decode is specified by
the condition xs decode m (encode m xs). With (25.3), or the equivalent
(25.5), as the definition of encode, the only way to satisfy this condition is
to show how to invert streams. To this end we will make use of a function
destream defined by

destream f g h s ys = unfoldr step (s, ys)
where step (s, ys) = case f s of

Just (y , s ′) → step (s ′, ys ↓ [y])
Nothing → Just (x , (g s x , ys))
where x = h s ys

The operation ↓ is defined by (us ++ vs) ↓ us = vs. The function destream is
dual to stream: when f s produces some output y , then y is removed from
the head of the input ys; when f s returns nothing, an element of the output
is produced using the “helper” function h.

The relationship between stream and destream is given by the following
theorem, called the destreaming theorem, whose proof is also given in the
Appendix.

Theorem 25.1 Suppose stream f g s xs returns a finite list and h satisfies
h s (stream f g s (x : xs)) = x if f s = Nothing. Under these assumptions we
have xs destream f g h s (stream f g s xs)

Integer arithmetic coding 215

To apply the destreaming theorem to encode, take f = ebit , g = enarrow
and s = ei . Then we have

decode m = destream ebit enarrow h (m, (0, (0, e4)))

provided that the helper function h satisfies

h (m, ei) (encode ′3 m ei (x : xs)) = x (25.7)

for all intervals ei that straddle e2.
Just as (25.3) can be improved to (25.5) by replacing ebit with ebits, so

can the above definition of decode. The result is

decode m bs = unfoldr step (m, (0, (0, e4)), bs)
step (m, (n, (�, r)), bs)
| r ≤ e2 = step (m, (0, (2∗�, 2∗r)), bs ↓ bits n 0)
| e2 ≤ � = step (m, (0, (2∗�−e4, 2∗r−e4)), bs ↓ bits n 1)
| otherwise = Just (x , (adapt m x ,

enarrow (n, (�, r)) (interval m x), bs))
where x = h (m, (n, (�, r))) bs

It remains to discover the helper function h.

The helper function

We begin with a calculation that produces a definition of �, the operation
that plays the same role for � as � did for �. Recall that

f � (�, r) = (f − �)/(r − �)

and f ∈ i � j ≡ (f � i) ∈ j . The calculation exploits an important property
known as the rule of floors: n ≤ f ≡ n ≤ �f � for all integers n and reals f .
Let k , �, r , p and q be any numbers. We calculate:

k ∈ (�, r) � (p, q)

≡ {definition of �}
�+�(r−�)∗p/2d� ≤ k < �+�(r−�)∗q/2d�

≡ {arithmetic}
�(r−�)∗p/2d� < k − � + 1 ≤ �(r−�)∗q/2d�

≡ {rule of floors}
(r−�)∗p/2d < k − � + 1 ≤ (r−�)∗q/2d

≡ {arithmetic}
p ≤ ((k − � + 1)∗2d − 1)/(r − �) < q

216 Pearls of Functional Algorithm Design

≡ {rule of floors}
p ≤ �((k − � + 1)∗2d − 1)/(r − �)� < q

Hence, k ∈ (i � j) ≡ (k � i) ∈ j , where

(�) :: Int → Interval → Int
k � (�, r) = ((k − � + 1)∗2d − 1) div (r − �)

Next, recall property (25.6) from the previous section: for all ei and xs

2e ∗ toFrac (encode ′3 m ei xs) ∈ contract ei

Equivalently, using the definition of contract and widen, we have

widen n (2e∗toFrac (encode ′3 m (n, i) xs)) ∈ i

Assuming the interval i has integer bounds and using the rule of floors again,
the above is equivalent to

�widen n (2e∗toFrac (encode ′3 m (n, i) xs))� ∈ i

Next, take (n, i) to be a fully expanded interval straddling e2, so

encode ′3 m (n, i) (x : xs)
= encode ′3 (adapt m x) (n, i � interval m x) xs

Then we obtain

�widen n (2e∗toFrac (encode ′3 m (n, i) (x : xs)))� ∈ i � interval m xs

Finally, recall the relationship between symbol and interval , namely that
x = symbol m n if and only if n ∈ interval m x . It follows that h can be
defined by

h (m, ei) bs = symbol m (�widen n (2e ∗ toFrac bs)�� i)
where (n, i) = extend ei

Incremental decoding

The current definition of decode has a number of deficiencies: it uses rational
arithmetic (in the computation of h, since toFrac bs is a fraction), it is not
incremental and it is very inefficient. The computation of extend is
duplicated both in evaluation of h and enarrow , the function toFrac is
re-evaluated for every output symbol and widen n involves exponentiation,
an expensive operation. All in all, decode sucks. But by making decode
incremental we can overcome all these deficiencies.

Integer arithmetic coding 217

We make decode incremental in three stages. First, we eliminate all
dependency on the function extend by including the relevant computation
in a revision to step:

step (m, (n, (�, r)), bs)
| r ≤ e2 = step (m, (0, (2∗�, 2∗r)), bs ↓ bits n 0)
| e2 ≤ � = step (m, (0, (2∗�−e4, 2∗r−e4)), bs ↓ bits n 1)
| e1 ≤ � ∧ r ≤ e3 = step (m, (n+1, (2∗�−e2, 2∗r−e2)), bs)
| otherwise = Just (x ,

(adapt m x , (n, (�, r) � interval m x), bs))
where x = symbol m (�widen n (e4∗toFrac bs)�� (�, r))

The point is that, when step (m, ei , bs) returns something, ei will now be a
fully expanded interval, so enarrow can be replaced by �.

Next, we show how to avoid repeated computations of toFrac. Define f
and step ′ by

f n bs = widen n (e4∗toFrac bs)
step ′ (m, (n, i), f n bs) = step (m, (n, i), bs)

Here the idea is to maintain f n bs rather than bs as the third argument of
step, where n is the expansion factor in the second argument. We leave it
as an exercise to show that

f 0 (bs ↓ bits n b) = 2∗f n bs − e4∗b
f (n+1) bs = 2∗f n bs − e2

This leads to the following version of decode, in which step ′ is renamed step
again:

decode m bs = unfoldr step (m, (0, (0, e4)), e4∗toFrac bs) (25.8)

where

step (m, (n, (�, r)), f)
| r ≤ e2 = step (m, (0, (2∗�, 2∗r)), 2∗f)
| e2 ≤ � = step (m, (0, (2∗�−e4, 2∗r−e4)), 2∗f−e4)
| e1 ≤ � ∧ r ≤ e3 = step (m, (n+1, (2∗�−e2, 2∗r−e2)), 2∗f−e2)
| otherwise = Just (x ,

(adapt m x , (n, (�, r) � interval m x), f))
where x = symbol m (�f �� (�, r))

218 Pearls of Functional Algorithm Design

decode m bs = unfoldr step (m, (0, e4), toInt (take e bs ′), drop e bs ′)
where bs ′ = bs ++ 1 : repeat 0

step (m, (�, r),n, b : bs)
| r ≤ e2 = step (m, (2∗�, 2∗r), 2∗n+b, bs)
| e2 ≤ � = step (m, (2∗�−e4, 2∗r−e4), 2∗n−e4 + b, bs)
| e1 ≤ � ∧ r ≤ e3 = step (m, (2∗�−e2, 2∗r−e2), 2∗n−e2 + b, bs)
| otherwise = Just (x ,

(adapt m x , (�, r) � interval m x ,n, b : bs))
where x = symbol m (n � (�, r))

Fig. 25.1 The final version of decode

Now we see that n is a redundant variable, so we can drop it:

step (m, (�, r), f)
| r ≤ e2 = step (m, (2∗�, 2∗r), 2∗f)
| e2 ≤ � = step (m, (2∗�−e4, 2∗r−e4), 2∗f−e4)
| e1 ≤ � ∧ r ≤ e3 = step (m, (2∗�−e2, 2∗r−e2), 2∗f−e2)
| otherwise = Just (x ,

(adapt m x , (�, r) � interval m x , f))
where x = symbol m (�f �� (�, r))

Finally, we are ready for incremental computation. Observe in (25.8) that,
because e4 = 2e , the term �e4∗toFracbs� depends only on the first e elements
of bs. In fact

�e4∗toFrac bs� = toInt (take e (bs ++ 1 : repeat 0))

where toInt = foldl (λn b → 2∗n + b) 0 converts a bit string into an integer.
The string bs has to be extended with sufficient elements of 1 : repeat 0
to ensure that the total length of the result is a least e. Moreover, with
bs ′ = bs ++ 1 : repeat 0 we have

�2∗e4∗toFrac bs� = toInt (take (e+1) bs ′)
= 2∗toInt (take e bs ′) + head (drop e bs ′)

That means we can replace the third argument f in the definition of step
by a pair (n, ds), where n = toInt (take e bs ′) and ds = drop e bs ′ and
bs ′ = bs ++1 : repeat 0. And this leads to our final version of decode recorded
in Figure 25.1

Integer arithmetic coding 219

Final remarks

The reader who has followed us to the bitter end will appreciate that there
is rather a lot of arithmetic in arithmetic coding, and that includes the
arithmetic of folds and unfolds as well as numbers. As we said in the previ-
ous pearl, arithmetic coding is a simple idea, but one that requires care to
implement with limited-precision integer arithmetic.

Appendix

The proof of Theorem 25.1 depends on the following two properties, both
of which are easy consequences of the definitions of stream and destream:

f s = Nothing ⇒
stream f g s (x : xs) = stream f g (g s x) xs ∧
destream f g h s ys = x : destream f g h (g s x) ys

f s = Just (y , s ′) ⇒
stream f g s xs = y : stream f g s ′ xs ∧
destream f g h s (y : ys) = destream f g h s ′ ys

In the first property x is defined by x = h s ys. We now prove

xs destream f g h s (stream f g s xs)

by a double induction on xs and n, where n is the length of stream f g s xs.

Case []: Immediate since [] is a prefix of every list.

Case x : xs: First consider the subcase f s = Nothing . The first property
above gives

destream f g h s (stream f g s (x : xs))
= x : destream f g h (g z x) (stream f g (g z x) xs)

Since x : xs x : xs ′ if and only if xs xs ′, an appeal to induction establishes
the case.

In the case f s = Just (y , s ′) the second property above gives

destream f g h s (stream f g s (x : xs))
= destream f g h s ′ (stream f g s ′ (x : xs))

But since length (stream f g z ′ (x : xs)) = n − 1 in this case, we can again
appeal to induction to establish the case and complete the proof.

The final task is to prove that e4∗toFrac (encode ′3 m ei xs) ∈ contract ei .

220 Pearls of Functional Algorithm Design

The proof is by a double induction on xs and n, where n is the length of
encode ′3 m ei xs.

Case []: In this case encode ′3 m ei [] = concat (unfoldr ebits ei). Now

e4∗(toFrac (concat (unfoldr ebits ei))) ∈ contract ei

≡ {definition of ebit}
e4∗(toFrac (unfoldr ebit ei)) ∈ contract ei

≡ {since unfoldr ebit = unfoldr ibit · contract}
e4∗(toFrac (unfoldr ibit (contract ei))) ∈ contract ei

⇐ {definition of ibit}
true

This establishes the case.

Case x : xs: In this case we need the following alternative definition of
encode ′3:

encode ′3 m (n, (�, r)) (x : xs)
| r ≤ e2 = bits n 0 ++ encode ′3 m (0, (2�, 2r)) (x : xs)
| e2 ≤ � = bits n 1 ++ encode ′3 m (0, (2�−e4, 2r−e4)) (x : xs)
| otherwise = encode ′3 (adapt m x) ej xs

where ej = enarrow (n, (�, r)) (interval m x)

By induction we have encode ′3 (adapt m x) ej xs ∈ contract ej . But

contract (enarrow ei j) ⊆ contract (extend ei) = contract ei

This establishes the case for the third clause of encode ′3.
For the remaining two clauses, observe that the length of

encode ′3 m (0, (2�−be4, 2r−be4)) (x : xs)

is less than n. Hence, by induction, we have

e4∗toFrac (encode ′3 m (0, (2�−be4, 2r−be4)) (x : xs))
∈ (2�−b∗e4, 2r−be4)

Finally, since toFrac (bits n b ++ bs) = (2n + (b−1) + toFrac bs)/2n+1, an
easy calculation shows that e4∗toFrac bs ∈ (2�−be4, 2r−be4) if and only if

e4∗toFrac (bits n b ++ bs) ∈ contract (n, (�, r))

establishing the case and completing the proof.

26

The Schorr–Waite algorithm

Introduction

The Schorr–Waite algorithm is a method for marking the nodes of a directed
graph reachable from a given starting node. The graph is restricted to have
out-degree 2. The algorithm consists of an iterative loop that carries out
a depth-first traversal of the graph, but does not use an explicit stack to
control the traversal. Instead, it simulates the stack by modifying the graph,
taking care to restore the graph to its initial state at the end of the marking
process. The algorithm is fairly subtle. Morris (1982) described it as “that
most recalcitrant algorithm” and Bornat (2000) as “the first mountain that
any formalism for pointer aliasing should climb”.

The aim of this pearl is to present the Schorr–Waite algorithm as an
exercise in explaining an algorithm by program transformation. We begin
with a simple version of the marking algorithm and then describe three trans-
formations that result in the final algorithm. Each transformation describes
a different representation of the stack, culminating in a representation as a
linked list embedded in the graph.

Specification

In Schorr and Waite’s formulation of the problem, the graph represents a
McCarthy S-expression McCarthy (1960) and so has out-degree 2. Nodes
are represented by positive integers. Thus, we declare

type Node = Int
type Graph = Node → (Node,Node)

The operations left , right :: Graph → Node → Node extract the information
associated with a given node and

setl , setr :: Graph → Node → Node → Graph

update the information associated with a node. So left (setl g x y)x = y , and
similarly for setr .

221

222 Pearls of Functional Algorithm Design

The marking function mark takes a graph g and a starting node root
and returns a Boolean-valued function m so that m x = True if and only
if node x is reachable from root . We will implement mark g as a function
that returns both g and m. The reason is that the final algorithm modifies
g during the course of execution; so, by showing that the various versions of
mark are equivalent, we guarantee that not only is the final value of m the
same for each version, but also the final value of g . Thus, mark has type

mark :: Graph → Node → (Graph,Node → Bool)

A perfectly reasonable alternative is to embed the marking function in the
graph, so that a graph becomes a mapping from nodes to triples. Then mark
needs only return the final graph. But the present arrangement of keeping
the marking function separate is both clearer and easier to reason about.

The function mark is implemented with a standard stack-based algorithm
that carries out a depth-first search of the graph:

mark g root = seek0 (g , const False) [root]

seek0 (g ,m) [] = (g ,m)
seek0 (g ,m) (x : xs)
| not (m x) = seek0 (g , set m x) (left g x : right g x : xs)
| otherwise = seek0 (g ,m) xs

The functions set and unset (needed later) are defined by

set , unset :: (Node → Bool) → Node → (Node → Bool)
set f x = λy → if y x then True else f y
unset f x = λy → if y x then False else f y

This definition of mark is our starting point.

Safe replacement

When reasoning about any algorithm that involves the manipulation of
pointers, one sooner or later comes up against the problem of safe replace-

ment. To illustrate, define the function replace by

replace :: Eq a → (a → b) → a → b → (a → b)
replace f x y = λz → if z = x then y else f z

Thus, replace is a generalised version of the function set introduced above.
When is it safe to use replace? For instance, when do the identities

map f xs = map (replace f x y) xs
filter p xs = filter (replace p x y) xs

The Schorr–Waite algorithm 223

hold? The answer is not surprising: it is when x is not on the list xs. The
other answer, when y = f x or y = p x , is also correct but not interesting.
Also not interesting is the proof of the correctness of the first answer. We
will see a number of appeals to safe replacement below, all signified with the
hint “safe replacement”.

Eliminating duplicate entries

Returning to the problem in hand, the stack is eliminated in stages by
transforming mark into successively different but equivalent versions. The
aim of the first transformation is to eliminate duplicate entries on the stack
by using it to store only those nodes that have been marked. This transfor-
mation sets things up for later appeals to safe replacements. The function
seek0 is converted into a new function seek1, defined by

seek1 (g ,m) x xs = seek0 (g ,m) (x : map (right g) xs)

and subject to the invariant clean m xs = all m xs ∧ nodups xs. Synthesizing
a direct definition of seek1 is straightforward and leads to the following
replacement for mark :

mark g root = seek1 (g , const False) root []
seek1 (g ,m) x xs
| not (m x) = seek1 (g , set m x) (left g x) (x : xs)
| null xs = (g ,m)
| otherwise = seek1 (g ,m) (right g (head xs)) (tail xs)

Since x is added to the stack only when x is marked, and nodes are marked
at most once, the new version of the stack is a clean one.

Threading the stack

The second transformation is designed to ensure that, in addition to being
clean, the stack is threaded, meaning that for each pair x , y of adjacent
entries, either x = left g y or x = right g y . This is not the case with seek1.
Consider the expression seek1 (g ,m) (left g x) (x : y : xs), in which left g x is
marked but right g x is not. Then seek1 replaces x on the stack with right g x ,
which is not in general the left-value or right-value of y . If, however, we can
contrive to leave x on the stack, flagging it in some way to avoid processing
it twice, then adding right g x to the top will maintain the constraint. The
element x is removed later when all of its offspring have been marked.

224 Pearls of Functional Algorithm Design

This effect is achieved with the help of a second marking function p. Define
seek2 by

seek2 (g ,m) p x xs = seek1 (g ,m) x (filter p xs)

subject to the invariant threaded g m p x xs on the arguments of seek2, where

threaded g m p x xs = clean m xs ∧
and [link u v | (u, v)← zip (x : xs) xs]

where link u v = if p v then u = left g v else u = right g v

Below we refer to the following fact with the hint “threadedness”: provided
m x and x /∈ xs, we have

threaded g m p x xs ⇒ threaded g m (set p x) (left g x) (x : xs) ∧
threaded g m (unset p x) (right g x) (x : xs)

We now synthesise a new version of mark based on seek2. It is clear that

mark g x = seek2 (g , const False) (const False) x []

so it remains to calculate a direct definition of seek2. In the case not (m x)
we reason:

seek2 (g ,m) p x xs

= {definition}
seek1 (g ,m) x (filter p xs)

= {case assumption not (m x)}
seek1 (g , set m x) (left g x) (x : filter p xs)

= {safe replacement, since x /∈ xs}
seek1 (g , set m x) (left g x) (x : filter (set p x) xs)

= {since set p x x = True}
seek1 (g , set m x) (left g x) (filter (set p x) (x : xs))

= {definition of seek2, and threadedness}
seek2 (g , set m x) (set p x) (left g x) (x : xs)

Hence, seek2 (g ,m) p x xs = seek2 (g , set m x) (set p x) (left g x) (x : xs).
In the case m x we have to search for the first element on the stack

satisfying p because that is the next element to be processed. We therefore
introduce a function find2, defined by

find2 (g ,m) p xs = seek1 (g ,m) x (filter p xs)

The Schorr–Waite algorithm 225

for any marked node x and then derive a direct definition of find2 that does
not depend on seek1. In the case xs is empty we have

find2 (g ,m) p [] = (g ,m)

In the case xs = y : ys and not (p y), we have

find2 (g ,m) p (y : ys) = find2 (g ,m) p ys

In the remaining case p y , we reason:

find2 (g ,m) p (y : ys)

= {definition of find2 and seek1 in the case p y}
seek1 (g ,m) (right g y) (filter p ys)

= {safe replacement since y /∈ ys}
seek1 (g ,m) (right g y) (filter (unset p y) ys)

= {since unset p v v = False}
seek1 (g ,m) (right g y) (filter (unset p y) (y : ys))

= {definition of seek2, and threadedness}
seek2 (g ,m) (unset p y) (right g y) (y : ys)

We have shown that

mark g root = seek2 (g , const False) (const False) root []
seek2 (g ,m) p x xs
| not (m x) = seek2 (g , set m x) (set p x) (left g x) (x : xs)
| otherwise = find2 (g ,m) p xs

find2 (g ,m) p [] = (g ,m)
find2 (g ,m) p (y : ys)
| not (p y) = find2 (g ,m) p ys
| otherwise = seek2 (g ,m) (unset p y) (right g y) (y : ys)

The two mutually recursive functions seek2 and find2 are both tail-recursive
and can be implemented in an imperative style as a simple loop.

Representing the stack by a linked list

The final transformation is to represent the stack by a linked list. The
cunning idea of Schorr and Waite is to store the links in the graph. Although
the result is no faster than the initial version, it does use less space. The
linked representation of the stack uses no separate linking function. Instead,
there is an additional marking function p which, along with m, occupies just
2 bits of storage for each node in the graph.

226 Pearls of Functional Algorithm Design

To prepare for the final transformation, we need two pieces of information.
The first is the abstraction function stack that extracts the stack from its
linked representation:

stack :: Graph → (Node → Bool)→ Node → [Node]
stack g p x | x 0 = []

| p x = x : stack g p (left g x)
| not (p x) = x : stack g p (right g x)

The node 0 is a new, special node that acts as a list terminator. Here is how
to add a new node x �= 0 to the stack:

x : stack g p y = stack (setl g x y) (set p x) x (26.1)

The proof of (26.1) is

stack (setl g x y) (set p x) x

= {definition of stack since set p x x = True}
x : stack (setl g x y) (set p x) (left (setl g x y) x)

= {since left (setl g x y) x = y}
x : stack (setl g x y) (set p x) y

= {safe replacement, as x /∈ stack (setl g x y) (set p x) y}
x : stack g p y

The second piece of information is a function restore, defined by

restore :: Graph → (Node → Bool) → Node → [Node]→ Graph
restore g p x [] = g
restore g p x (y : ys) | p y = restore (setl g y x) p y ys

| not (p y) = restore (setr g y x) p y ys

The function restore is used to restore the graph to its initial state at
the end of the marking process. The motivation for the definition is that
restore g p x xs = g if threaded g p x xs, a claim we will leave as an exercise.

Having defined stack and restore, we can now define seek3 and find3:

seek3 (g ,m) p x y = seek2 (restore g p x xs ,m) p x xs
where xs = stack g p y

find3 (g ,m) p x y = find2 (restore g p x xs ,m) p xs
where xs = stack g p y

Synthesising a definition of mark in terms of seek3 and find3 is where the
hard work begins. The first step is easy enough:

The Schorr–Waite algorithm 227

mark g root

= {current definition of mark}
seek2 (g , const False) (const False) root []

= {since restore g p x [] = g}
seek2 (restore g p root [], const False) (const False) root []

= {definition of seek3 and stack}
seek3 (g , const False) (const False) root 0

Hence, mark g root = seek3 (g , const False) (const False) root 0.
Now to define seek3 (g ,m) p x y directly. Suppose first that not (m x).

We reason:

seek3 (g ,m) p x y

= {setting xs = stack g p y and g ′ = restore g p x xs}
seek2 (g ′,m) p x xs

= {case not (m x)}
seek2 (g ′, set m x) (set p x) (left g ′ x) (x : xs)

= {safe replacement as x /∈ xs}
seek2 (g ′, set m x) (set p x) (left g x) (x : xs)

= {claim: see below}
seek2 (restore (setl g x y) (set p x)(left g x) (x : xs), set m x)

(set p x) (left g x) (x : xs)

= {(26.1) and definition of seek3}
seek3 (setl g x y , set m x) (set p x) (left g x) x

Hence, seek3 (g ,m) p x y = seek3 (setl g x y , set m x) (set p x) (left g x) x .
The claim is that

restore g p x xs = restore (setl g x y) (set p x) (left g x) (x : xs)

For the proof we reason:

restore (setl g x y) (set p x) (left g x) (x : xs)

= {definition of restore since set p x x = True}
restore (setl (setl g x y) x (left g x)) (set p x) x xs

= {definition of setl}
restore g (set p x) x xs

= {safe replacement as x /∈ xs}
restore g p x xs

228 Pearls of Functional Algorithm Design

In the case m x we have

seek3 (g ,m) p x y

= {as above, with xs = stack g p y and g ′ = restore g p x xs}
seek2 (g ′,m) p x xs

= {case m x}
find2 (g ′,m) p xs

= {definition of find3}
find3 (g ,m) p x y

We tackle find3 by cases. First, find3 (g ,m)p x 0 = (g ,m). In the case y �= 0
and not (p y), we argue:

find3 (g ,m) p x y

= {definition of find3 and stack , with ys = stack g p (right g y)}
find2 (restore g p x (y : ys),m) p (y : ys)

= {definition of restore in case not (p y)}
find2 (restore (setr g y x) p y ys,m) p (y : ys)

= {definition of find2 in the case not (p y)}
find2 (restore (setr g y x) p y ys,m) p ys

= {safe replacement: ys = stack (setr g y x) p (right g y)}
find3 (setr g y x ,m) p y (right g y)

Hence, find3 (g ,m) p x y = find3 (setr g y x ,m) p y (right g y).
Finally, in the most complicated case y �= 0 and p y , we argue:

find3 (g ,m) p x y

= {definition of find3 and stack , with ys = stack g p (left g y)}
find2 (restore g p x (y : ys),m) p (y : ys)

= {definition of restore in case p y}
find2 (restore (setl g y x) p y ys,m) p (y : ys)

= {definition of find2 in the case p y}
seek2 (restore (setl g y x) p y ys,m) (unset p y) (right g y) (y : ys)

= {claim (see below): with
swing g y x = setr (setl g y x) y (left g y)}

seek2 (restore (swing g y x) (unset p y) (right g y) (y : ys),m)
(unset p y) (right g y) (y : ys)

The Schorr–Waite algorithm 229

= {safe replacement: y : ys = stack (swing g y x) (unset p y) y}
seek3 (swing g y x ,m) (unset p y) (right g y) y

Hence, find3 (g ,m) p x y = seek3 (swing g y x ,m) (unset p y) (right g y) y .
The claim in the penultimate step is that

restore (setl g y x) p y ys
= restore (swing g y x) (unset p y) (right g y) (y : ys)

where swing g y x = setr (setl g y x) y (left g y). Here is the proof:

restore (swing g y x) (unset p y) (right g y) (y : ys)

= {definition of restore since unset p y y = False}
restore (setr (swing g y x) y (right g y)) (unset p y) y ys

= {since setr (swing g y x) y (right g y) = setl g y x}
restore (setl g y x) (unset p y) y ys

= {safe replacement as y /∈ ys}
restore (setl g y x) p y ys

In summary:

mark g root = seek3 (g , const False) (const False) root 0
seek3 (g ,m) p x y
| not (m x) = seek3 (setl g x y , set m x) (set p x) (left g x) x
| otherwise = find3 (g ,m) p x y

find3 (g ,m) p x y
| y 0 = (g ,m)
| p y = seek3 (swing g y x ,m) (unset p y) (right g y) y
| otherwise = find3 (setr g y x ,m) p y (right g y)

where swing g y x = setr (setl g y x) y (left g y)

This is the Schorr–Waite marking algorithm.

Final remarks

The Schorr–Waite algorithm was first described in Schorr and Waite (1967).
Formal reasoning about the algorithm using loop invariants includes Bornat
(2000), Butler (1999), Gries (1979), Morris (1982) and Topor (1979), but
this list is not exhaustive. Möller (1997, 1999) used relations and relational
algebras to reason about the algorithm, while Mason (1988) used Lisp and
mutable update functions.

Any treatment of the Schorr–Waite algorithm is bound to be fairly detailed,
and the present one is no different. Particularly important is the need for

230 Pearls of Functional Algorithm Design

various safe replacement properties. An alternative approach to safe replace-
ment using separation logic is presented by O’Hearn et al. (2004). We do
claim, however, that each definition of seek in terms of previous versions
has a coherent motivation, is reasonably simple to understand and is a good
way to present the algorithm.

References
Bornat, R. (2000). Proving pointer programs in Hoare logic. LNCS 1837: 5th

Mathematics of Program Construction Conference, pp. 102–26.
Butler, M. (1999). Calculational derivation of pointer algorithms from tree

operations. Science of Computer Programming 33 (3), 221–60.
Gries, D. (1979). The Schorr–Waite graph marking algorithm. Acta Informatica

11, 223–32.
McCarthy, J. (1960). Recursive functions of symbolic expressions and their

computation by machine. Communications of the ACM 3, 184.
Mason, I. A. (1988). Verification of programs that destructively manipulate data.

Science of Computer Programming 10 (2), 177–210.
Möller, B. (1997). Calculating with pointer structures. IFIP TC2/WG2.1

Working Conference on Algorithmic Languages and Calculi. Chapman and
Hall, pp. 24–48.

Möller, B. (1999). Calculating with acyclic and cyclic lists. Information Sciences
119, 135–54.

Morris, J. M. (1982). A proof of the Schorr–Waite algorithm. Proceedings of the
1981 Marktoberdorf Summer School, ed. M. Broy and G. Schmidt. Reidel,
pp. 25–51.

O’Hearn, P. W., Yang, H. and Reynolds, J. C. (2004). Separation and information
hiding. 31st Principles of Programming Languages Conference. ACM Publica-
tions, pp. 268–80.

Schorr, H. and Waite, W. M. (1967). An efficient machine-independent procedure
for garbage collection in various list structures. Communications of the ACM
10, 501–6.

Topor, R. W. (1979). The correctness of the Schorr–Waite marking algorithm. Acta
Informatica 11, 211–21.

27

Orderly insertion

Introduction

Consider the problem of inserting the elements of a list of N distinct elements
of some ordered type A one by one into an initially empty array of size N in
such a way that at each stage the inserted elements are in increasing order,
though possibly with gaps between them. If you like, think of the list as
a big pile of books on the floor in some jumbled order and the array as a
bookshelf divided into slots. At each stage the books on the shelf have to be
in alphabetical order. You pick up the topmost book on the pile and place it
on the shelf. In general, that can only be done by moving some of the books
already on the shelf to make room. The object of the exercise is to minimise
the total number of moves – the distance of the move is not relevant. For
example, with A = Char , one way of inserting the elements of the string
“PEARLS” into an array of size 6 is given by

1 2 3 4 5 6 Moves

– – – P – – 0
– E – P – – 0
A – – E – P 2
A – – E P R 1
A E L – P R 1
A E L P R S 2

with a total number of six moves. Our aim in this pearl is to construct a
function that does the job with a total of Θ(N log3 N) moves, which has
been conjectured to be the best possible. The algorithm is not derived, but
establishing the time bound involves some subtle calculation.

231

232 Pearls of Functional Algorithm Design

A naive algorithm

Let us begin by recording the minimum number m(N) of moves necessary
to insert any list of N elements into an array of size N for 1 ≤ N ≤ 12:

N = 1 2 3 4 5 6 7 8 9 10 11 12
m(N) = 0 1 2 4 6 8 11 14 17 21 24 29

It is an interesting diversion to find a strategy which guarantees that any
list of six elements can be inserted in an array of size six with at most eight
moves (just because PEARLS can be inserted with six moves does not mean
that all six-letter words can be). No asymptotic formula for m(N) is known,
though there is strong evidence that m(N) = Θ(N log3 N).

There is one obvious algorithm for the problem, though it has a poor
worst-case performance. Insert the first element in the first position and
insert subsequent elements by shifting previously inserted elements just
enough spaces to make room. So, if the kth element is smaller than all
previous values, the k−1 previously inserted elements have each to be shifted
up one position. This naive algorithm requires N (N−1)/2 moves in the worst
case.

Slightly better, but not by much, is the strategy of inserting each element
in the middle of the available free slots, if any. The first �log N � elements
can then be inserted without any moves. However, after half the elements
have been inserted, the moves begin to build up, leading once again to a
quadratic-time worst-case performance.

One reasonable refinement on the basic strategy is periodically to insert
some elements in such a way as to leave an even distribution of free slots
for those that follow. Suppose we choose some integer M and call elements
numbered iM , where 1 ≤ i ≤ k and kM ≤ N < (k + 1)M , the special

elements. A special element iM is inserted by moving every inserted element
to leave an even spread, and therefore may require iM −1 moves. This gives
a total cost of at most

k∑
i=1

(iM − 1) = Θ(N 2/M)

moves for inserting all special elements.
When special element iM has been inserted, suppose the N −iM free slots

are evenly distributed with, roughly, Ci = iM /(N − iM) elements on either
side of each free slot. The naive algorithm for inserting the next M−1 (or
fewer if i = k) non-special elements can then force at most

Orderly insertion 233

M−1∑
j=1

(jCi + j − 1) = Θ(CiM 2)

moves. The total number of moves for inserting all the non-special elements
is then

Θ

⎛
⎝N/M∑

i=1

CiM 2

⎞
⎠ = Θ

⎛
⎝M 2

N/M∑
i=1

iM
N − iM

⎞
⎠ = Θ(MN log N)

Now, if we choose M so that N 2/M ≈ MN log N so M ≈
√

N / log N ,
the total number of moves is Θ(

√
N 3 log N), which is a little worse than

Θ(N 1·5).

An improved algorithm

The strategy of the previous section can be improved in two ways: we
can choose a different sequence of special elements and we can choose a
better method for inserting the non-special ones. The two improvements are
independent, but we will need both in order to meet the required asymptotic
bound.

Instead of having special elements evenly spaced, suppose we allow more
of them as the slots fill up. More specifically, let the special elements be those
numbered n1,n2, . . . ,nk , where n1 = �N /2�, n2 = �3N /4�, n3 = �7N /8� and
so on up to nk = �(2k−1)N /2k�, where 2k−1 < N ≤ 2k , so k = log N �. For
example, when N = 1000 the special elements are

500, 750, 875, 937, 968, 984, 992, 996, 998, 999

The final element is inserted with at most N−1 moves. Since k = log N �,
the total cost for inserting special elements is at most

k∑
i=1

(ni − 1) ≤
k∑

i=1

N = Θ(N log N)

Now we must deal with the non-special elements. Consider non-special
element numbered n in phase i , meaning ni−1 < n < ni , where n0 = 0.
Suppose this element needs to be inserted after the element at position
p − 1 but before the element at position q ; in other words, in the interval
[p, q). If p < q , so there are free slots, the element can be inserted at index
�(p + q)/2�. If p = q , so there are no free slots, the elements in some region
surrounding p have to be moved to make room. The crunch question is:
what region should be selected?

234 Pearls of Functional Algorithm Design

The answer, reasonably enough, is in a region that is not too densely
occupied. Imagine the N slots are arranged as the leaves of a size-balanced
tree. For example, with N = 11 one possible tree is

[0 . . . 10]							

[0 . . . 4]
���

���
[0, 1]

��
[0]

[0]

[1]

[1]

[2, 3, 4]
����

[2]

[2]

[3, 4]
��

[3] [4]

[5 . . . 10]
����

����
[5, 6, 7]

����
[5]

[5]

[6, 7]
��

[6] [7]

[8, 9, 10]
����

[8]

[8]

[9, 10]
����

[9] [10]

Each insertion point p determines a unique sequence v0, v1, . . . , vk of intervals,
where v0 = [p], along the path from p to the root of the tree. Let L(vj) be
the length of interval vj and S (vj) the number of currently occupied slots.
The method for inserting element n in phase i is to insert n in the interval
vj , where j is the smallest integer satisfying the density condition

S (vj) < δ(i , j)L(vj)

where

δ(i , j) =
(

2i − 1
2i

)j/k

Moreover, element n and the S (vj) inserted elements are redistributed evenly
across vj , for a cost of S (vj) moves. Note that 1 = δ(i , 0) and δ(i , j) > δ(i , k)
for j < k . Note also that the density condition holds at the root:

S (vk) < ni ≤
(

2i − 1
2i

)
N = δ(i , k)L(vk)

So there is always an interval that satisfies the density condition. If the
density condition is satisfied, then S (vj) < L(vj), since δ(i , j) ≤ 1. So there
is always an empty slot in vj . Finally, note that the density condition holds
for a leaf v0 whenever S (v0) = 0, so the slot at the desired insertion point is
unoccupied.

As a specific example, the result of inserting the nine letters of DANGER-
OUS into an array of size 9 is pictured in Figure 27.1.

As to the analysis of the total cost, suppose C elements are inserted
during phase i , so C ≤ N /2i . In the worst case, each of these elements has
the same insertion point, so require insertion in some interval along some

Orderly insertion 235

1 2 3 4 5 6 7 8 9 Moves

– – – – D – – – – 0
– – A – D – – – – 0
– – A – D – – N – 0
– A – D – G – N – 2
– A – D E G – N – 0
– A D E – G N – R 3
– A D E G N O – R 2
A D E G N O R – U 7
A D E G N O R S U 0

Fig. 27.1 A DANGEROUS insertion

fixed path v0, v1, . . . , vk from the insertion point to the root. Say element p,
where 1 ≤ p ≤ C , forces a shuffle in interval vjp . Let S0(vjp) be the number
of occupied slots just after the last redistribution involving the whole of vjp

(which may have been when the last special element was inserted), and let
Δ(vjp) = S (vjp)− S0(vjp), so Δ(vjp) ≥ 0.

The proofs of the following two estimates are given in the next section:

S (vjp) < 4k2i(Δ(vjp) + 1) (27.1)
C∑

p=1

Δ(vjp) ≤ kC (27.2)

Since C ≤ N /2i , properties (27.1) and (27.2) give

C∑
p=1

S (vjp) <

C∑
p=1

4k2i(Δ(vjp) + 1) ≤ 4k2i(k+1)C ≤ 4k(k+1)N

The total cost for seating all non-special elements is then at most

k∑
i=1

4k(k+1)N = 4k2(k+1)N = Θ(N log3 N)

Recalling that the total cost for inserting the special elements is Θ(N log N),
we obtain the bound Θ(N log3 N) for the total cost. In fact, the analysis
proves somewhat more: the first N /2 elements can be inserted with at most
4N log2 N moves, the first 3N /4 elements with at most 8N log2 N moves
and so on. Putting it another way, if the array had size (1 + ε)N rather
than exactly N , then N elements can be inserted with Θ((N log2 N)/ε)
moves.

236 Pearls of Functional Algorithm Design

Proofs

Abbreviating jp to j , claim (27.1) is that S (vj) < 4k2i(Δ(vj) + 1). Recall
that Δ(vj) = S (vj)− S0(vj), that S (vj) is the number of currently occupied
slots in the interval vj and S0(vj) was the number of occupied slots in interval
vj just after the previous distribution of some interval containing vj . Here
are the relevant properties on which the proof depends:

(i) S (vj) < δ(i , j)L(vj) and S (vj−1) ≥ δ(i , j−1)L(vj−1), because vj is
the smallest interval satisfying the density condition.

(ii) 2L(vj−1) ≥ L(vj)− 1, because the tree is balanced.
(iii) 2S0(vj−1) ≤ S0(vj)+1, because the previous distribution of an interval

containing vj resulted in an even spread.
(iv) Δ(vj) ≥ Δ(vj−1), because vj−1 is a subinterval of vj .

Using these facts we calculate:

2Δ(vj)

≥ {since Δ(vj) ≥ Δ(vj−1) and definition of Δ}
2S (vj−1)− 2S0(vj−1)

≥ {since 2S0(vj−1) ≤ S0(vj) + 1 ≤ S (vj) + 1}
2S (vj−1)− S (vj)− 1

≥ {since S (vj−1) ≥ δ(i , j−1)L(vj−1)}
2δ(i , j−1)L(vj−1)− S (vj)− 1

≥ {since 2L(vj−1) ≥ L(vj)− 1}
δ(i , j−1)(L(vj)− 1)− S (vj)− 1

> {since δ(i , j)L(vj) > S (vj) and δ(i , j) ≤ 1}
(δ(i , j−1)/δ(i , j)− 1)S (vj)− 2

Hence:

Δ(vj) + 1 >
1
2

(
δ(i , j−1)
δ(i , j)

− 1
)
S (vj)

From the definition of δ(i , j) we obtain

δ(i , j−1)
δ(i , j)

− 1 =
(

2i

2i − 1

)1/k

− 1

Since x 1/k = 2(1/k) log x and 2y − 1 ≥ y/2 for 0 < y < 1, we then obtain

δ(i , j−1)
δ(i , j)

− 1 ≥ 1
2k

log
(

2i

2i − 1

)

Orderly insertion 237

�

a q p

Δ(vjp) = 3

b

jq
jp

�

sum 2
sum 1

a b−d b

d
jb

Fig. 27.2 Decomposition of P(a, b, k) into two sums

Finally, since 2i log[2i/(2i − 1)] ≥ 1, we get 4k2i(Δ(vj) + 1) > S (vj), which
is (27.1).

Claim (27.2) is that
∑C

p=1 Δ(vjp) ≤ kC . More generally, we show that

b∑
p=a

Δ(vjp) ≤ k(b−a+1)

for 1 ≤ a ≤ b ≤ C . Let P(a, b, k) denote the sum on the left, where we
have made the dependency on k , the height of the tree, explicit. Consider
the sequence of points ja , . . . , jb , where 0 ≤ jp ≤ k . Each point denotes the
interval in which an element is inserted. The value Δ(vjp) is the number of
elements in the interval vjp that have been inserted since the last redistri-
bution at an interval containing vjp , say at jq , and is therefore equal to the
number of points between q and p. The situation is depicted in the first
diagram of Figure 27.2.

To estimate P(a, b, k), suppose Δ(vjb) = d , so 0 ≤ d ≤ b−a. Then P
can be decomposed into two sums, as shown in Figure 27.2: the sum from a
up to b−d−1 and the sum from b−d to b−1, where we know in the second
sum that the maximum j value is jb − 1. This leads to the estimate that
P(a, b, k) is at most

(max d : 0 ≤ d ≤ b−a : P(a, b−d−1, k) + P(b−d , b−1, jb−1) + d)

Since jb ≤ k and P is monotonic in its third argument, we have that
P(a, b, k) is at most

(max d : 0 ≤ d ≤ b−a : P(a, b−d−1, k) + P(b−d , b−1, k−1) + d)

238 Pearls of Functional Algorithm Design

Now P(a, b, k) = 0 if b−a ≤ 1 or if k = 0, and a simple induction argument
yields P(a, b, k) ≤ k(b−a+1) as required.

Implementation

Implementing the algorithm in Haskell is mostly straightforward; the only
complicating factor is that various values have to be carried around. In
particular, the phase number i and the size n of the array are needed in
a number of calculations. The former is handled by labelling elements with
their phase numbers and the latter by including n as an additional argument
to certain functions.

An array is implemented as a simple association list of index–value pairs:

type Array a = [(Int , a)]

The invariant on Array a is that each index i is in the range 0 ≤ i < n
and the values are stored in increasing order. The main insertion function
is defined by

insertAll n = scanl (insert n) [] · label n

The function insert n carries out one insertion and label n labels elements
with phase numbers. The result of insertAll n is a list of arrays, which can
be used subsequently for display purposes and for counting moves.

The code for label involves determining the special elements. Special
elements are assigned a phase number 0 and non-special elements a phase
number i , where i > 0. The special elements are given by specials n, where

specials :: Int → [Int]
specials n = scanl1 (+) (halves n)
halves n = if n 1 then [] else m : halves(n −m)

where m = n div 2

For example, specials 11 = [5, 8, 9, 10]. The function label is then defined by

label :: Int → [a] → [(Int , a)]
label n xs = replace 1 (zip [1..] xs) (specials n)

where replace replaces positions by phase numbers:

replace i [] ns = []
replace i ((k , x) : kxs) ns
| null ns = [(0, x)]
| k < n = (i , x) : replace i kxs ns
| k n = (0, x) : replace (i+1) kxs (tail ns)

where n = head ns

Orderly insertion 239

For example, label 11 [1 .. 11] produces the list

[(1, 1), (1, 2), (1, 3), (1, 4), (0, 5), (2, 6), (2, 7), (0, 8), (0, 9), (0, 10), (0, 11)]

Next we deal with insert n, which is implemented by

insert :: Ord a ⇒ Int → Array a → (Int , a) → Array a
insert n as (i , x) = if i 0

then relocate (0,n) x as
else relocate (�, r) x as
where (�, r) = ipick n as (i , x)

If element x is special, so its phase number is 0, then x is inserted by relo-
cating x and all the elements in the array in the interval (0,n). If x is not
special, then ipick selects the interval (�, r) in which the relocation takes
place.

The function relocate is defined by

relocate :: Ord a ⇒ (Int , Int) → a → Array a → Array a
relocate (�, r) x as = distribute (add x (entries (�, r) as)) (�, r) as

where entries returns the (ordered) list of entries in the specified interval
and add inserts x in this list. These two functions are defined by

entries (�, r) as = [x | (i , x)← as, l ≤ i ∧ i < r]
add x xs = takeWhile (< x) xs ++ [x] ++ dropWhile (< x) xs

The function distribute takes an ordered list, an interval and an array and
distributes the elements of the list evenly across the interval:

distribute :: [a] → (Int , Int) → Array a → Array a
distribute xs (�, r) as = takeWhile (λ(i , x) → i < �) as ++

spread xs (�, r) ++
dropWhile (λ(i , x) → i < r) as

One way of defining spread is to divide both the list and interval into equal
halves and recursively distribute the left half across the left interval and the
right half across the right interval:

spread :: [a]→ (Int , Int) → Array a
spread xs (�, r) | null xs = []

| n 0 = [(m, head xs)]
| n > 0 = spread ys (�,m) ++ spread zs (m, r)

where (n,m) = (length xs div 2, (� + r) div 2)
(ys, zs) = splitAt n xs

240 Pearls of Functional Algorithm Design

The next function to tackle is ipick . The definition is

ipick :: Ord a ⇒ Int → Array a → (Int , a) → (Int , Int)
ipick n as (i , x) = if p < q then (p, q) else

head [(�, r) | (j , (�, r))← zip [0..] (ipath n p),
let s = length (entries (�, r) as),
densityTest i j n s (r − �)]

where (p, q) = ipoint n x as

First, the insertion point for element x is determined by ipoint . The result
is an interval (p, q) containing no elements. If p < q , so the interval is not
empty, then the result of ipick is (p, q). Subsequent relocation with (p, q)
will ensure that x is placed in the middle of the interval. If p = q , so the
interval is empty, then the path of intervals from the insertion point p to
the root of the virtual tree is computed by ipath. The first interval satisfying
the density test densityTest is then selected.

The function ipoint is implemented by

ipoint :: Ord a ⇒ Int → a → Array a → (Int , Int)
ipoint n x as = search (0,n) as
where search (p, q) [] = (p, q)

search (p, q) ((i , y) : as) = if x < y then (p, i)
else search (i+1, q) as

The value ipath n p is computed by reversing the path from the root (0,n)
to p:

ipath n p = reverse (intervals (0,n) p)

where

intervals (�, r) p | � + 1 r = [(�, r)]
| p < m = (�, r) : intervals (�,m) p
| m ≤ p = (�, r) : intervals (m, r) p

where m = (l + r) div 2

It remains to deal with the density test, for which we use arbitrary-precision
integer arithmetic rather than real arithmetic. All five arguments of the
function densityTest are limited-precision integers, so they have to be
converted to arbitrary precision:

densityTest i ′ j ′ n s ′ w ′ = 2 ↑ (i ∗ j) ∗ s ↑ k < (2 ↑ i − 1) ↑ j ∗ w ↑ k
where (i , j , s,w) = convert toInteger (i ′, j ′, s ′,w ′)

k = toInteger (ceiling (logBase 2 (fromIntegral n)))

The function convert is defined by convert f (a, b, c, d) = (f a, f b, f c, f d).

Orderly insertion 241

Final remarks

The problem of inserting elements of an ordered list of length N into an
array of size N is a restricted version of a more general problem known as
online list labelling (Bender et al., 2002), in which the aim is to maintain a
mapping from a dynamic set of M elements (so elements can be deleted as
well as inserted in the array) from some linearly ordered set to integers in the
range 0 to N − 1 such that the order of the labels matches the order of the
corresponding elements. The primary use of online list labelling is in a related
problem known as order maintenance. This problem involves maintaining
a list, initially consisting of a single base element, subject to insertions,
deletions and order queries. Insertions take the form insert(x , y), mean-
ing inserting a new element x into the list immediately after the (existing)
element y . The delete(x) operation deletes x from the list and query(x , y)
returns true or false, depending on whether x precedes y in the list. Although
order maintenance does not require that labels be attached to each element,
most solutions do indeed use online labelling as a component.

The interest in the algorithm lies not, of course, in the Haskell implementa-
tion, but in the intriguing choice of density function and the analysis of why
the Θ(N log3 N) behaviour is obtained. No-one knows whether Ω(N log3 N)
is a lower bound on the problem, although Zhang (1993) proves that this is a
lower bound for any algorithm that restricts movements to result always in
a position in which the free slots are evenly spaced. The algorithm above is
“smooth” in this sense, and it seems unlikely that a non-smooth algorithm
could achieve fewer movements, but it appears difficult to rule such an
algorithm out.

Finally, this pearl has been adapted from Bird and Sadnicki (2007), where
further references to the literature of the problem can be found.

References
Bender, M. A., Cole, R., Demaine, E. D., Frach-Colton, M. and Zito, J. (2002).

Two simplified algorithms for maintaining order in a list. Lecture Notes in
Computer Science, Volume 2461. Springer-Verlag, pp. 139–51.

Bird, R. S. and Sadnicki, S. (2007). Minimal on-line labelling. Information Process-
ing Letters 101 (1), 41–5.

Zhang, J. (1993). Density control and on-line labeling problems. Technical Report
481 and PhD thesis, Computer Science Department, University of Rochester,
New York, USA.

28

Loopless functional algorithms

Introduction

Imagine a program for generating combinatorial patterns of some kind,
patterns such as the subsequences or permutations of a list. Suppose that
each pattern is obtained from its predecessor by a single transition. For sub-
sequences a transition i could mean “insert or delete the element at position
i”. For permutations a transition i could mean “swap the item in position
i with the one in position i − 1”. An algorithm for generating all patterns
is called loopless if the first transition is produced in linear time and each
subsequent transition in constant time. Note that it is the transitions that
are produced in constant time, not the patterns; writing out a pattern is not
usually possible in constant time.

Loopless algorithms were formulated in a procedural setting, and many
clever tricks, such as the use of focus pointers, doubly linked lists and corou-
tines, have been used to construct them. This pearl and the following two
explore what a purely functional approach can bring to the subject. We
will calculate loopless functional versions of the Johnson–Trotter algorithm
for producing permutations, the Koda–Ruskey algorithm for generating all
prefixes of a forest and its generalisation to Knuth’s spider spinning algo-
rithm for generating all bit strings satisfying given inequality constraints.
These novel functional algorithms rely on nothing more fancy than lists, trees
and queues. The present pearl is mostly devoted to exploring the topic and
giving some warm-up exercises. Bear in mind, though, that loopless algo-
rithms are not necessarily faster than their non-loopless counterparts. To
quote from Knuth (2001):

The extra contortions that we need to go through in order to achieve looplessness
are usually ill-advised, because they actually cause the total execution time to be
longer than it would be with a more straightforward algorithm. But hey, looplessness
carries an academic cachet. So we might as well treat this task as a challenging
exercise that might help us to sharpen our algorithmic wits.

242

Loopless functional algorithms 243

Change the penultimate word to “calculational” and you will appreciate the
real point of the exercise.

Loopless algorithms

We formulate the idea of a loopless algorithm in terms of the standard
function unfoldr , defined by

unfoldr :: (b → Maybe (a, b))→ b → [a]
unfoldr step b = case step b of

Just (a, b ′) → a : unfoldr step b ′

Nothing → []

By definition a loopless algorithm is one that is expressed in the form

unfoldr step · prolog

where step takes constant time and prolog x takes O(n) steps, where n is
some suitable measure of the size of x . Every loopless algorithm has to be
of the above form, with these constraints on the ingredients.

There is a slightly tricky problem about our formulation of looplessness.
In the framework of a lazy functional language such as Haskell our definition
of a loopless program will not, in general, give a loopless computation with
constant delay between each output. In a lazy language, the work done by
prolog is distributed throughout the computation, not concentrated all at
once at the beginning. Therefore, we should really interpret the composition
operator (·) between unfoldr step and prolog as being fully strict, meaning
that prolog is evaluated fully before the unfolding begins. Although it is not
possible to define a general fully strict composition operator in Haskell, we
will take pains to ensure that prolog and step take linear and constant time
under a strict as well as a lazy semantics.

Four warm-up exercises

The simplest warm-up exercise is the identity function on lists. Following
the required recipe to the letter, we have

id :: [a] → [a]
id = unfoldr uncons · prolog

prolog :: [a] → [a]
prolog = id

244 Pearls of Functional Algorithm Design

uncons :: [a]→ Maybe (a, [a])
uncons [] = Nothing
uncons (x : xs) = Just (x , xs)

That was very easy, so now let us consider the function reverse that reverses
a finite list. In Haskell this function is defined by

reverse :: [a] → [a]
reverse = foldl (flip (:)) []

The combinator flip is defined by flip f x y = f y x . The above definition
reverses a finite list in linear time. A loopless program for reversing a list is
now given by

reverse = unfoldr uncons · foldl (flip (:)) []

Of course, all the real work is done in the prologue.
For the next warm-up exercise, consider the function concat that concate-

nates a list of lists. Here is a loopless version, discussed below:

concat :: [[a]]→ [a]
concat = unfoldr step · filter (not · null)

step :: [[a]]→ Maybe (a, [[a]])
step [] = Nothing
step ((x : xs) : xss) = Just (x , consList xs xss)

consList :: [a]→ [[a]]→ [[a]]
consList xs xss = if null xs then xss else xs : xss

The prologue filters out nonempty lists from the input and takes linear time
in the length of the list. The function step maintains the invariant that it
takes and returns a list of nonempty lists. Empty lists have to be filtered
out of the input, otherwise step would not take constant time. For example,
consider an input of the form [[1], [], [], . . . , [], [2]] in which there are n
empty sequences between the first and last singleton lists. After producing
the first element 1, it takes n steps to produce the second element 2 of the
final list.

Eagle-eyed readers might complain that this definition of concat is overkill,
since the alternative

concat = unfoldr uncons · foldr (++) []

is also loopless. Here, the real work is done in the prologue, which takes
linear time in the total size of the input, namely the sum of the lengths of
the component lists. At issue here is the precise measure of size being used.

Loopless functional algorithms 245

Since we are not going to go as far as coding every conceivable input as a
string in some finite alphabet, we leave the definition of size informal and
accept both definitions of concat as being loopless.

For the fourth and final warm-up consider the preorder traversal of a forest
of rose trees:

type Forest a = [Rose a]
data Rose a = Node a (Forest a)

The preorder traversal of a forest can be defined by

preorder :: Forest a → [a]
preorder [] = []
preorder (Node x xs : ys) = x : preorder (xs ++ ys)

Furthermore, preorder = unfoldr step, where

step :: Forest a → Maybe (a,Forest a)
step [] = Nothing
step (Node x xs : ys) = Just (x , xs ++ ys)

The function step is not constant time because ++ is not, but we can make
it so with a change of type. Instead of taking a forest as argument, we can
make step take a list of forests, revising its definition to read

step :: [Forest a]→ Maybe (a, [Forest a])
step [] = Nothing
step ((Node x xs : ys) : zss) = Just (x , consList xs (consList ys zss))

This is essentially the same trick as we performed for concat . Now we have

preorder = unfoldr step · wrapList

where wrapList xs = consList xs []. This is a loopless algorithm for preorder .
Of course, it suffers from the same defect as concat ; since the length of the
output is proportional to the size of the input, we could equally well have
done all the work in the prologue.

Boustrophedon product

Many combinatorial generation algorithms involve running up and down one
list in between generating successive elements of another list, rather like the
shuttle on a loom or an ox ploughing a field. Indeed, Knuth uses the name
boustrophedon product for essentially this operation. We will call it box, and

246 Pearls of Functional Algorithm Design

denote it with an infix symbol �, because the name is short, pronounceable,
and contains an “ox”. Here is the definition:

(�) :: [a]→ [a]→ [a]
[] � ys = ys
(x : xs) � ys = ys ++ [x] ++ (xs � reverse ys)

For example:

[3, 4] � [0, 1, 2] = [0, 1, 2, 3, 2, 1, 0, 4, 0, 1, 2]

The definition of � leads to an inefficient computation, since ys is reversed
at each step. Better is the following version, which reverses ys only once:

xs � ys = mix xs (ys, reverse ys)
mix [] (ys, sy) = ys
mix (x : xs) (ys, sy) = ys ++ [x] ++ mix xs (sy , ys)

The operation � is associative with the empty list as identity element, a good
reason to denote it with an infix symbol. We leave the proof of associativity
to the reader, but it depends on two subsidiary identities that we will spell
out now, as they are used later on:

(xs ++ [y] ++ ys) � zs = (xs � zs) ++ [y] ++ (ys � zs ′) (28.1)

reverse (xs � ys) = (reverse xs) � ys ′ (28.2)

where zs ′ and ys ′ are defined by

zs ′ = if even (length xs) then reverse zs else zs
ys ′ = if even (length xs) then reverse ys else ys

Thus, both (28.1) and (28.2) depend on parity information about the length
of xs.

Just as concat distributes ++ over a list of lists, so boxall distributes �
over a list of lists:

boxall :: [[a]]→ [a]
boxall = foldr (�) []

For a list of length n of lists each of length m the output of boxall has length
(m +1)n −1, which is exponential in mn, the total length of the input. Now
we can state our final exercise, which is to make boxall loopless.

Tupling

Since boxall (xs : xss) = xs � (boxall xss) and the definition of xs � ys
involves reverse ys, it is clear that as well as computing boxall we also need

Loopless functional algorithms 247

to compute reverse · boxall . That suggests it is sensible to construct both
boxall and reverse · boxall at the same time. To do so we make use of the
tupling law of foldr . This law states that

(foldr f a xs, foldr g b xs) = foldr h (a, b) xs

where h x (y , z) = (f x y , g x z).
Suppose we can find an operation � so that

reverse · boxall = foldr (�) []

Then the tupling law of foldr gives

(boxall xs, reverse (boxall xs)) = foldr op ([], []) xs

where

op xs (ys, sy) = (xs � ys, xs � sy) (28.3)

The sequences ys and sy are each the reverse of the other, hence their names.
To discover � we appeal to the fusion law of foldr . This law states that

f (foldr g a xs) = foldr h b xs for all finite lists xs provided f a = b and
f (g x y) = h x (f y) for all x and y . We have reverse [] = [], so it remains
to find a definition of � satisfying

reverse (xs � ys) = xs � (reverse ys)

Since reverse (reverse xs) = xs for all finite lists xs, we can define

xs � sy = reverse (xs � (reverse sy))

We can also give a direct, recursive definition of �:

[] � sy = sy
(x : xs) � sy = (xs � (reverse sy)) ++ [x] ++ sy

Alternatively, we can express � by appealing to (28.2):

xs � sy = if even (length xs) then (reverse xs) � (reverse sy)
else (reverse xs) � sy

Using (28.3) and the definition of �, the first recursive definition of � leads
to the following definition of op, renamed as op1:

op1 [] (ys, sy) = (ys, sy)
op1 (x : xs) (ys, sy) = (ys ++ [x] ++ zs, sz ++ [x] ++ sy)

where (zs, sz) = op1 xs (sy , ys)

248 Pearls of Functional Algorithm Design

Using (28.3) and the definition of � in terms of mix , the second definition
of � leads to the following definition of op, renamed as op2:

op2 xs (ys, sy) = if even (length xs)
then (mix xs (ys, sy),mix (reverse xs) (sy , ys))
else (mix xs (ys, sy),mix (reverse xs) (ys, sy))

The difference between op1 and op2 is that the latter uses reverse explicitly
while the former does not. Ignoring the cost of ++ operations, evaluation of
either op1 xs or op2 xs takes time proportional to the length of xs, so both
foldr op1([], []) and foldr op2([], []) take time proportional to the total size
of the input. We keep both definitions, op1 and op2, in play because they
lead to two different loopless versions of boxall .

Trees and queues

The final step is to eliminate the expensive ++ operations. This is achieved
in two stages, the first of which is to represent lists by forests of rose trees
under the abstraction function preorder . Then we have

boxall = preorder · fst · foldr op1′ ([], [])
boxall = preorder · fst · foldr op2′ ([], [])

where op1′ is specified by

pair preorder (op1′ xs (ys, sy)) = op1 xs (preorder ys, preorder sy)

and pair f (x , y) = (f x , f y). Similarly for op2′ and op2. We know from the
warm-ups how to make preorder loopless, so provided op1′ xs and op2′ xs
take time proportional to the length of xs, either of the above is a loopless
program for boxall .

The definitions of op1′ and op2′ can be calculated formally, but the results
are sufficiently clear that we will not go into details. First:

op1′ :: [a]→ (Forest a,Forest a) → (Forest a,Forest a)
op1′ [] (ys, sy) = (ys, sy)
op1′ (x : xs) (ys, sy) = (ys ++ [Node x zs], sz ++ [Node x sy])

where (zs, sz) = op1′ xs (sy , ys)

Second, with a new version of mix :

op2′ xs (ys, sy) = if even (length xs)
then (mix xs (ys, sy),mix (reverse xs) (sy , ys))
else (mix xs (ys, sy),mix (reverse xs) (ys, sy))

Loopless functional algorithms 249

3

4

1

4 3 2

3

4

and 4 3 2

3

4

1

4 3

Fig. 28.1 Two forests produced by foldr op1′ ([], []) [[1, 2], [3, 4]]

3

4

1

4

3

2

3

4

and 4

3

2

3

4

1

4

3

Fig. 28.2 Two forests produced by foldr op2′ ([], []) [[1, 2], [3, 4]]

mix [] (ys, sy) = ys
mix (x : xs) (ys, sy) = ys ++ [Node x (mix xs (sy , ys))]

The definitions of op1′ and op2′ lead to different pairs of forests. For example,
see Figures 28.1 and 28.2. In each case the preorders of the pair of forests
are the same, so either definition will serve.

We are still not quite out of the wood yet, for appending a tree to the
end of a forest is not a constant-time operation. Obvious ideas for solving
this problem, such as turning appends into cons operations by reversing the
forest, or bringing in an accumulating parameter, do not work. The most
direct method, and one we will exploit for other purposes in subsequent
pearls, is to introduce queues, redefining a forest to be a queue of trees rather
than a list. Okasaki’s implementation of queues provides a type Queue a,
for which the following operations all take constant time:

insert :: Queue a → a → Queue a
remove :: Queue a → (a,Queue a)
empty :: Queue a
isempty :: Queue a → Bool

250 Pearls of Functional Algorithm Design

To install queues, we redeclare the type Forest to read

type Forest a = Queue (Rose a)
data Rose a = Node a (Forest a)

The functions op1′ and op2′ are the same as before except that expressions
of the form as ++ [Node x bs] are replaced by insert as (Node x bs). Now we
have

boxall = unfoldr step · wrapQueue · fst · foldr op1′ (empty , empty)
boxall = unfoldr step · wrapQueue · fst · foldr op2′ (empty , empty)

where

step :: [Forest a]→ Maybe (a, [Forest a])
step [] = Nothing
step (zs : zss) = Just (x , consQueue xs (consQueue ys zss))

where (Node x xs, ys) = remove zs

consQueue :: Queue a → [Queue a] → [Queue a]
consQueue xs xss = if isempty xs then xss else xs : xss

wrapQueue :: Queue a → [Queue a]
wrapQueue xs = consQueue xs []

Both definitions of boxall are loopless.

Final remarks

The term loopless was coined by Ehrlich (1973). A number of loopless algo-
rithms for generating combinatorial patterns appear in Knuth’s published
drafts of three sections of Volume 4 of The Art of Computer Program-

ming (Knuth, 2005). These fascicles contain references to much of the lit-
erature on looplessness. The quote from Knuth appears in Knuth (2001).
Okasaki’s implementation of queues can be found in Okasaki (1995).

References
Ehrlich, G. (1973). Loopless algorithms for generating permutations, combinations,

and other combinatorial configurations. Journal of the ACM 20, 500–13.
Knuth, D. E. (2001). SPIDERS: a program downloadable from

www-cs-faculty.stanford.edu/∼knuth/programs.html.
Knuth, D. E. (2005). The Art of Computer Programming, Volume 4, Fascicles 2,3,4.

Reading, MA: Addison-Wesley.
Okasaki, C. (1995). Simple and efficient purely functional queues and deques.

Journal of Functional Programming 5 (4), 583–92.

29

The Johnson–Trotter algorithm

Introduction

The Johnson–Trotter algorithm is a method for producing all the permuta-
tions of a given list in such a way that the transition from one permutation
to the next is accomplished by a single transposition of adjacent elements.
In this pearl we calculate a loopless version of the algorithm. The main idea
is to make use of one of the loopless programs for the generalised boustro-
phedon product boxall developed in the previous pearl.

A recursive formulation

In the Johnson–Trotter permutation algorithm the transitions for a list of
length n of length greater than one are defined recursively in terms of the
transitions for a list of length n−1. Label the elements of the list with posi-
tions 0 through n−1 and let the list itself be denoted by xs ++[x]. Begin with
a downward run [n−1,n−2, . . . , 1], where transition i means “interchange
the element at position i with the element at position i−1”. The effect is to
move x from the last position to the first, resulting in the final permutation
[x] ++ xs. For example, the transitions [3, 2, 1] applied to the string “abcd”
result in the three permutations “abdc”, “adbc” and “dabc”. Next, suppose
the transitions generating the permutations of xs are [j1, j2, . . .]. Apply the
transition j1+1 to the current permutation [x] ++ xs. We have to increase j1
by one because xs is now one position to the right of the “runner” x . Next,
run x upwards again to the last position by applying the transition sequence
[1, 2, . . . ,n−1]. This results in a final permutation ys ++ [x], where ys is the
result of applying transition j1 to xs. For example, the transitions [3, 1, 2, 3]
applied to “dabc” result in four more permutations “dacb”, “adcb”, “acdb”
and “acbd”. For the next step, apply the second transition j2 for xs and run
x down again. We do not have to modify the transition j2 after upward runs
because the relevant permutation is to the left of x . Continue in the same
fashion, interleaving runs of x downwards and upwards, with the transitions
for n−1.

251

252 Pearls of Functional Algorithm Design

The above description codes quite easily using the boustrophedon product
(�) defined in the previous pearl:

jcode :: Int → [Int]
jcode 1 = []
jcode n = (bumpBy 1 (jcode (n−1))) � [n−1,n−2 .. 1]

The function bumpBy k adds k to every item in even position:

bumpBy k [] = []
bumpBy k [a] = [a + k]
bumpBy k (a : b : as) = (a + k) : b : bumpBy k as

Our task is to make jcode loopless.

The plan

The general plan is to express jcode in terms of boxall , the generalised bous-
trophedon product defined in the previous pearl, and then to appeal to the
loopless algorithm for boxall . To do so we need to generalise jcode. Consider
the function code, defined by

code (k ,n) = bumpBy k (jcode n)

Clearly, jcode n = code (0,n). We reason for an odd positive integer n that

code (k ,n)

= {definition}
bumpBy k (jcode n)

= {definition of jcode}
bumpBy k (bumpBy 1 (jcode (n−1)) � [n−1,n−2 .. 1])

= {claim, see below}
bumpBy (k+1) (jcode (n−1)) � bumpBy k [n−1,n−2 .. 1]

= {definition of code and bumpDn (see below)}
code (k+1,n−1) � bumpDn (k ,n)

where bumpDn (pronounced “bump down”) is defined by

bumpDn (k ,n) = bumpBy k [n−1,n−2 .. 1] (29.1)

The first claim is that

bumpBy k (xs � ys)
= if even (length ys) then bumpBy k xs � bumpBy k ys

else xs � bumpBy k ys

The Johnson–Trotter algorithm 253

The claim can be proved from the definition of � and the fact that

bumpBy k (xs ++ [y] ++ ys)
= if even (length xs) then bumpBy k xs ++ bumpBy k ([y] ++ ys)

else bumpBy k xs ++ [y] ++ bumpBy k ys

The easy details are left as an exercise.
The case when n is even is treated similarly, and we arrive at the following

definition of code:

code (k , 1) = []
code (k ,n) = code (k ′,n−1) � bumpDn (k ,n)

where k ′ = if odd n then k+1 else 1

For example, bearing in mind that � is associative, we have

code (0, 4) = bumpDn (2, 2) � bumpDn (1, 3) � bumpDn (0, 4)

Recalling that boxall = foldr (�) [], we can now rewrite code in the form

code = boxall ·map bumpDn · pairs

where

pairs :: (Int , Int) → [(Int , Int)]
pairs (k , 1) = []
pairs (k ,n) = pairs (k ′,n−1) ++ [(k ,n)]

where k ′ = if odd n then k+1 else 1

Again, the easy details are left as an exercise. Evaluating pairs (k ,n) takes
Θ(n2) steps, but this can be reduced to Θ(n) steps with the help of an
accumulating parameter. Define addpair by

addpair (k ,n) ps = pairs (k ,n) ++ ps

Synthesizing a direct definition of addpair leads to

pairs (k ,n) = addpair (k ,n) []
addpair (k , 1) ps = ps
addpair (k ,n) ps = addpair (k ′,n−1) ((k ,n) : ps)

where k ′ = if odd n then k+1 else 1

Hence, since jcode n = code (0,n), we obtain

jcode = boxall ·map bumpDn · pairs
where pairs n = addpair (0,n) []

Since we know how to make boxall loopless, this definition of jcode is a
loopless algorithm. Or is it?

254 Pearls of Functional Algorithm Design

A loopless algorithm

No, it is not: part of the prologue is map bumpDn (pairs n), and this takes
Θ(n2) steps. The rules of the game only allow a prologue that takes Θ(n)
steps.

What we really need to do is make boxall ·map bumpDn loopless. It is easy
to make bumpDn loopless, so let us first do that. Recall definition (29.1):

bumpDn (k ,n) = bumpBy k [n−1,n−2 .. 1]

To make bumpDn loopless we can set up a state consisting of a quadruple
(j , k ,m,n) in which the first component j begins with k and then flips
alternately between 0 and k , the second and fourth components k and n do
not change and the third component m counts down from n−1 to 1. Then
we have

bumpDn = unfoldr stepDn · prologDn
prologDn (k ,n) = (k , k ,n−1, 1)
stepDn (j , k ,m,n) = if m < n then Nothing

else Just (m + j , (k−j , k ,m−1,n))

Similarly, we can make reverse · bumpDn loopless:

reverse · bumpDn = unfoldr stepUp · prologUp
prologUp (k ,n) = (if even n then k else 0, k , 1,n−1)
stepUp (j , k ,m,n) = if m > n then Nothing

else Just (m + j , (k−j , k ,m+1,n))

The functions stepDn and stepUp can be unified as one function, bump say
(we need the name step for another purpose later on), by adding in a fifth
component i , taking i = −1 for a down-step and i = 1 for an up-step. That
gives

bumpDn = unfoldr bump · prologDn
reverse · bumpDn = unfoldr bump · prologUp

where

bump (i , j , k ,m,n) = if i ∗ (n−m) < 0 then Nothing
else Just (m + j , (i , k−j , k ,m+i ,n))

prologDn (k ,n) = (−1, k , k ,n−1, 1)
prologUp (k ,n) = (1, if even n then k else 0, k , 1,n−1)

Next, recall from the previous pearl that one loopless definition of boxall
takes the form boxall = unfoldr step · prolog , where

prolog = wrapQueue · fst · foldr op (empty , empty)

The Johnson–Trotter algorithm 255

The function op was defined by

op xs (ys, sy) = if even (length xs)
then (mix xs (ys, sy),mix (reverse xs) (sy , ys))
else (mix xs (ys, sy),mix (reverse xs) (ys, sy))

mix [] (ys, sy) = ys
mix (x : xs) (ys, sy) = insert ys (Node x (mix xs (sy , ys)))

The function step was defined by

step [] = Nothing
step (zs : zss) = Just (x , consQueue xs (consQueue ys zss))

where (Node x xs, ys) = remove zs

consQueue :: Queue a → [Queue a] → [Queue a]
consQueue xs xss = if isempty xs then xss else xs : xss

wrapQueue :: Queue a → [Queue a]
wrapQueue xs = consQueue xs []

We reason:

jcode

= {definition of jcode in terms of boxall}
boxall ·map bumpDn · pairs

= {loopless definition of boxall}
unfoldr step · wrapQueue · fst · foldr op (empty , empty) ·
map bumpDn · pairs

= {fold-map fusion}
unfoldr step · wrapQueue · fst · foldr op′ (empty , empty) · pairs

where

op′ (k ,n) (ys, sy) = op (bumpDn (k ,n)) (ys, sy)

Unfolding this definition, and using the fact that bumpDn (k ,n) has even
length if n is odd, together with the definitions of prologDn and prologUp,
we find

op ′ (k ,n) (ys, sy)
= if odd n

then (mix (unfoldr bump (−1, k , k ,n−1, 1)) (ys, sy),
mix (unfoldr bump (1, 0, k , 1,n−1)) (sy , ys))

else (mix (unfoldr bump (−1, k , k ,n−1, 1)) (ys, sy),
mix (unfoldr bump (1, k , k , 1,n−1)) (ys, sy))

256 Pearls of Functional Algorithm Design

The function op ′ (k ,n) takes Θ(n) steps, so foldr op ′ (empty , empty) takes
quadratic time. We can make op ′ less busy by taking unfoldr bump out of
its definition and letting a modified version of step do all the work. In effect,
we delay the evaluation of the first argument of mix . We will need a new
data type to represent delayed evaluations, and we take

type Forest a = Queue (Rose a)
data Rose a = Node a (Forest a,Forest a)

The new definition of a rose tree has a pair of forests as offspring rather
than a single forest. Now consider a new version of step, defined by

type State = (Int , Int , Int , Int , Int)
type Pair a = (a, a)

step :: [Forest (Int ,State)] → Maybe (Int , [Forest (Int ,State)])
step [] = Nothing
step(zs : zss)

= Just (x , consQueue (mix q (sy , ys)) (consQueue zs ′ zss))
where (Node (x , q) (ys, sy), zs ′) = remove zs

where mix is modified to read

mix :: State → Pair (Forest (Int ,State)) → Forest (Int ,State)
mix (i , j , k ,m,n) (ys, sy)

= if i ∗ (n−m) < 0 then ys
else insert ys (Node (m+j , (i , k−j , k ,m+i ,n)) (ys, sy))

The function step generates the next transition x and passes the state q (a
quintuple) to mix , which computes the next transition, if there is one, and
a new state. We now claim that

jcode = unfoldr step · wrapQueue · fst · foldr op′ (empty , empty) · pairs

where op′ is redefined to read

op ′ :: (Int , Int) → Pair (Forest (Int ,State))
→ Pair (Forest (Int ,State))

op ′ (k ,n) (ys, sy) = if odd n
then (mix (−1, k , k ,n−1, 1) (ys, sy),

mix (1, 0, k , 1,n−1) (sy , ys))
else (mix (−1, k , k ,n−1, 1) (ys, sy),

mix (1, k , k , 1,n−1) (ys, sy))

Once again, details are left as an exercise. The rather long prologue

prolog = wrapQueue · fst · foldr op′ (empty , empty) · pairs

The Johnson–Trotter algorithm 257

takes Θ(n) steps when applied to n, and step takes constant time, so this
finally is a genuine 24-carat loopless program for jcode.

Final remarks

If it were not for the very picky requirement that the prologue had to take
linear time, we could have stopped calculating as soon as we had reached
the definition

jcode = boxall ·map bumpDn · pairs

What this definition really shows is the usefulness of the generalised boustro-
phedon product function boxall in the generation of many kinds of
combinatorial patterns. We will see more uses in the final pearl.

The Johnson–Trotter algorithm was described independently in Johnson
(1963) and Trotter (1962). As mentioned in the previous pearl, Ehrlich
(1973), which introduced the concept of a loopless algorithm, was mainly
devoted to describing a loopless program for the Johnson–Trotter algorithm.

References
Ehrlich, G. (1973). Loopless algorithms for generating permutations, combinations,

and other combinatorial configurations. Journal of the ACM 20, 500–13.
Johnson, S. M. (1963). Generation of permutations by adjacent transpositions.

Mathematics of Computation 17, 282–5.
Trotter, A. F. (1962). Perm (Algorithm 115). Communications of the ACM 5,

434–5.

30

Spider spinning for dummies

Oh what a tangled web we weave
when first we practise to derive.

(With apologies to Sir Walter Scott)

Introduction

Consider the problem of generating all bit strings a1a2 . . . an of length n
satisfying given constraints of the form ai ≤ aj for various i and j . The gen-
eration is to be in Gray path order, meaning that exactly one bit changes
from one bit string to the next. The transition code is a list of integers
naming the bit that is to be changed at each step. For example, with
n = 3, consider the constraints a1 ≤ a2 and a3 ≤ a2. One possible Gray
path is 000, 010, 011, 111, 110 with transition code [2, 3, 1, 3] and starting
string 000.

The snag is that the problem does not always have a solution. For example,
with n = 4 and the constraints a1 ≤ a2 ≤ a4 and a1 ≤ a3 ≤ a4, the six
possible bit strings, namely 0000, 0001, 0011, 0101, 0111 and 1111, cannot
be permuted into a Gray path. There are four strings of even weight (the
numbers of 1s) and two of odd weight, and in any Gray path the parity of
the weights has to alternate.

Constraints of the form ai ≤ aj on bit strings of length n can be repre-
sented by a digraph with n nodes in which a directed edge i←j is associated
with a constraint ai ≤ aj . Knuth and Ruskey showed how to construct a
Gray path provided the digraph was totally acyclic, meaning that the undi-
rected graph obtained by dropping the directions on the edges is acyclic.
They called a connected totally acyclic digraph a spider, because when an
edge i ← j is drawn with i below j the digraph can be made to look like an
arachnid (see Figure 30.1 for a three-legged spider). They called a totally
acyclic digraph a tad, but, since its connected components are spiders, we
will continue the arachnid metaphor and call it a nest of spiders.

258

Spider spinning for dummies 259

1

2 5

3

6

7

4

Fig. 30.1 A three-legged spider

Knuth named the problem of generating the associated bit strings in Gray
path order spider squishing. The more formal rendering of the task is: “gen-
erating all ideals1 of a totally acyclic poset in Gray path order”. Since spiders
are good for the environment and should never be squished, we will call it
spider spinning instead.

A useful way to think of the problem of spider spinning is in terms of
colourings. Think of the nodes of the spider of Figure 30.1 as being coloured
black if the associated bit is 1 and coloured white if the bit is 0. Thus, every
descendant of a white node has to be white. For example, if node 1 is white,
then nodes 2 and 5 have to be white as well. The problem of spider spinning
is then to enumerate all legal colourings by starting with one such colouring
and changing the colour of exactly one node at each step. As we will see, the
initial colouring cannot in general be chosen to be the all-white or all-black
colouring.

Our aim in this pearl is to derive a loopless algorithm for spider spin-
ning. Knuth and Ruskey gave an algorithm for spider spinning, but it was
not loopless. There is a program, SPIDERS, on Knuth’s website that does
perform loopless spider spinning. It is quite complicated, as Knuth readily
admits:

But I apologize at the outset that the algorithm seems to be rather subtle, and I
have not been able to think of any way to explain it to dummies.

Hence our title. Our aim in this pearl is to calculate a loopless algorithm
for spider spinning. I have no idea if my algorithm bears any relationship to
Knuth’s algorithm, since I can’t explain his algorithm either.

Spider spinning with tree spiders

Let us first consider the simpler problem of spider spinning when each spider
is just a tree, so all spiders’ legs are directed downwards. This special case
1 By an ideal of a poset S is meant a subset I of S such that if x ∈ I and x ≤ y , then y ∈ I .

260 Pearls of Functional Algorithm Design

1

2 3 4

5

6

7

8

9

Fig. 30.2 A nest of two tree spiders

of spider spinning was considered by Koda and Ruskey. The relevant data
type declarations are

type Nest = [Spider]
data Spider = Node Int Nest

A nest of two tree spiders is pictured in Figure 30.2. We will suppose that
the labels of nodes in a nest of spiders of size n are the elements of [1 ..n] in
some order. We can define ncode and scode, the transition codes for a nest of
spiders and a single spider respectively, using the generalised boustrophedon
product function boxall :

ncode :: Nest → [Int]
ncode = boxall ·map scode

scode :: Spider → [Int]
scode (Node a xs) = a : ncode xs

The transition code for a single spider consists of an initial transition to
change the colour of the root node (in fact, from white to black), followed by
a complete list of the transitions for the nest of its subspiders. The definition
of ncode is short and sweet, but not loopless.

A loopless program

The first step on the path to looplessness is dictated solely by the form of
the definition of ncode. Recalling that boxall = foldr (�) [], an application
of the map-fusion law of foldr yields

ncode = foldr ((�) · scode) []

The focus now is on the function (�) · scode. We calculate:

scode (Node a xs) � bs

= {definition of scode}
(a : ncode xs) � bs

Spider spinning for dummies 261

= {definition of �}
bs ++ [a] ++ (ncode xs � (reverse bs))

= {initial definition of ncode}
bs ++ [a] ++ (boxall (map scode xs) � (reverse bs))

The third term of this expression takes the form

(foldr (�) [] ass) � cs

in which ass = map scode xs and cs = reverse bs. This suggests the use
of the fold-fusion law of foldr . Setting f as = as � cs, we have that f is
strict and f [] = cs, since [] is the identity of �. Hence, the fold-fusion law
gives

(foldr (�) [] ass) � cs = foldr h cs ass

provided we can find an h such that (as � bs) � cs = h as (bs � cs). But �
is associative, so we can take h = (�).

Putting these calculations together, we obtain:

scode (Node a xs) � bs

= {above}
bs ++ [a] ++ (boxall (map scode xs) � (reverse bs))

= {fold fusion}
bs ++ [a] ++ foldr (�) (reverse bs) (map scode xs)

= {map fusion}
bs ++ [a] ++ foldr ((�) · scode) (reverse bs) xs

Hence, setting op = (�) · scode, we have calculated that

ncode = foldr op []
op (Node a xs) bs = bs ++ [a] ++ foldr op (reverse bs) xs

The remaining steps are to eliminate reverse by computing both ncode and
reverse · ncode at the same time, and to represent each of their results by a
queue of rose trees under the abstraction function preorder . Rose trees are
here declared by

type Forest a = Queue (Rose a)
data Rose a = Fork a (Forest a)

262 Pearls of Functional Algorithm Design

1

2 5

3

6

7

4

5

1

2

3

6

7

4

Fig. 30.3 A spider and an associated tree

We have performed these steps with the derivation of a loopless program for
boxall , so we will just state the result:

ncode = unfoldr step · wrapQueue · fst · foldr op (empty , empty)
op (Node a xs) (bs, sb)

= (insert bs (Fork a cs), insert sc (Fork a sb))
where (cs, sc) = foldr op (sb, bs) xs

The remaining functions step and wrapQueue are exactly as they were
defined in the loopless algorithm for boxall . Since foldr op (empty , empty)
takes linear time in the size of the nest, this is a loopless program for ncode.

Spider spinning with general spiders

Now we are ready to tackle the general spider-spinning problem. First,
observe that by picking a spider up by one of its nodes we get a tree with
directed edges, such as that shown in Figure 30.3. Different trees arise
depending on which node is picked up, but they all represent the same
constraints. It follows that we can model general spiders with the type
declarations

type Nest = [Spider]
data Spider = Node Int [Leg]
data Leg = Dn Spider | Up Spider

A spider has legs, not edges. A spider’s leg points upwards or downwards to
another spider.

There is one complication when dealing with general spiders that does
not arise with simpler species: the starting bit string is not necessarily a
string consisting of all 0s. For example, with n = 3 and the constraints
a1 ≥ a2 ≤ a3, the five possible bit strings, namely 000, 001, 100, 101 and
111, can only be arranged in Gray path order by starting with one of the
odd-weight strings: 001, 100, or 111. However, we postpone consideration of

Spider spinning for dummies 263

the function seed :: Nest → [Bit] for determining the starting string until
later on.

As with tree spiders, we can define

ncode :: Nest → [Int]
ncode = boxall ·map scode

We define scode to be the concatenation of two lists, a white code and a
black code:

scode :: Spider → [Int]
scode (Node a legs) = wcode legs ++ [a] ++ bcode legs

The white code, wcode, for a spider Node a legs is a valid transition sequence
when the head node a is coloured white (corresponding to a 0 bit) and the
black code is a valid sequence when a is coloured black (corresponding to a
1 bit). Thus, scode is defined as the sequence that goes through the white
code, changes the colour of a from white to black and then goes through
the black code. Note that when the spiders are tree spiders, so all legs point
downwards, the white code is the empty sequence.

For scode to be correct, the final spider colouring after executing wcode legs
has to be the initial colouring on which bcode legs starts. In order for the
colourings to match up we need to define wcode in terms of a variant of �,
which we will denote by ♦ and pronounce “cox”.2 The operation ♦ is the
conjugate of �:

as ♦ bs = reverse ((reverse as) � (reverse bs))

Whereas as � bs begins with as and ends with either bs or reverse bs
depending on whether as has even length, as ♦ bs ends with bs and begins
with either bs or reverse bs. For example:

[2, 3, 4] � [0, 1] = [0, 1, 2, 1, 0, 3, 0, 1, 4, 1, 0]
[2, 3, 4] ♦ [0, 1] = [1, 0, 2, 0, 1, 3, 1, 0, 4, 0, 1]

We can express � in terms of ♦ by conjugation, but there is another way:

as � bs

= if even (length as) then as ♦ bs else as ♦ (reverse bs) (30.1)

A similar equation defines ♦ in terms of �. Equation (30.1) will be needed
below.
2 By the way, “to box and cox” means “to take turns”, which is certainly what both operations

do and is the real reason for their names. The term comes from the comic play Box and Cox –
A Romance of Real Life in One Act, by John Maddison Morton. Box and Cox were two lodgers
who shared their rooms – one occupying them by day and the other by night.

264 Pearls of Functional Algorithm Design

The operation ♦ is associative with the empty sequence as identity element.
The proof is left as an exercise, but it depends on the fact that

(as ++ [b] ++ bs) ♦ cs = (as ♦ cs ′) ++ [b] ++ (bs ♦ cs)

where cs ′ = if even (length bs) then reverse cs else cs. A similar property
was needed to prove � was associative.

Setting coxall = foldr (♦) [], we can now define

wcode, bcode :: [Leg] → [Int]
wcode = coxall ·map wc
bcode = boxall ·map bc

where wc, bc :: Leg → [Int] are yet to be defined. Use of coxall in the
definition of wcode ensures that the final colouring after executing wcode
will be the union of the final colourings generated by the wc transitions, and
use of boxall in the definition of bcode means that this colouring will also be
the union of the colourings on which the bc transitions start.

It remains to define wc and bc. Given the choices above, the following
definitions are forced:

wc (Up (Node a legs)) = wcode legs ++ [a] ++ bcode legs
wc (Dn (Node a legs)) = reverse (wcode legs)
bc (Up (Node a legs)) = reverse (bcode legs)
bc (Dn (Node a legs)) = wcode legs ++ [a] ++ bcode legs

Look first at wc (Upx). When the head of the mother spider of x is white and
is connected to x by an upwards edge, there are no constraints on wc (Up x),
so we can define it to be either scode x or its reverse. But the subsequent
transitions affecting x are those in the list bc (Up x), and the only way to
match up the final colouring of the former with the initial colouring of the
latter is with the definitions above. The reasoning is dual with bc (Dn x) and
wc (Dn x).

Finally, we show that ncode can be expressed in terms of bcode:

ncode xs

= {definition of ncode}
boxall (map scode xs)

= {definition of scode and bc}
boxall [bc (Dn x) | x ← xs]

= {definition of bcode}
bcode [(Dn x) | x ← xs]

Spider spinning for dummies 265

ncode :: Nest → [Int]
ncode = bcode ·map Dn

bcode,wcode :: [Leg] → [Int]
bcode = boxall ·map bc
wcode = coxall ·map wc

bc,wc :: Leg → [Int]
bc (Up (Node a legs)) = reverse (bcode legs)
bc (Dn (Node a legs)) = wcode legs ++ [a] ++ bcode legs
wc (Up (Node a legs)) = wcode legs ++ [a] ++ bcode legs
wc (Dn (Node a legs)) = reverse (wcode legs)

Fig. 30.4 The starting program for ncode

The complete program for ncode, apart from boxall and coxall , is listed in
Figure 30.4. Our task is to make ncode loopless.

A loopless algorithm

The transformation to loopless form follows the same path as the simpler
problem of a nest of tree spiders. Specifically, we are going to:

(i) Eliminate boxall and coxall from the definition of ncode by appeal to
map fusion and fold fusion.

(ii) Eliminate reverse by appeal to tupling.
(iii) Eliminate the remaining complexity by introducing queues.

It is the appeal to fold fusion in the first step that is the trickiest. As an
easy first step we apply map fusion to the definitions of wcode and bcode,
obtaining

bcode = foldr ((�) · bc) []
wcode = foldr ((♦) · wc) []

The focus of attention now is on the terms (�) · bc and (♦) ·wc. Everything
we discover about the first will apply to the second with the obvious changes.
We will follow the path of the tree-spider calculation as closely as possible.

There are two clauses in the definition of bc and we consider them in turn.
First we have

bc (Up (Node a legs)) � cs

= {definition of bc}
reverse (bcode legs) � cs

= {definition of bcode}
reverse (boxall (map bc legs)) � cs

266 Pearls of Functional Algorithm Design

As in the case of tree spiders, the next step is an appeal to the fold-fusion
law: if a function h can be found so that

reverse (as � bs) � cs = h as ((reverse bs) � cs) (30.2)

then

reverse (boxall (map bc legs)) � cs = foldr h cs (map bc legs)

The trouble is that there is no such h to satisfy (30.2). The reason is that
� is not an injective function; for example

“abab” � “aaaba” = “ab” � “aaabaaaba”

If h existed to satisfy (30.2), then we would require

reverse (as � “baba”) � “aaaba”
= reverse (as � “ba”) � “aaabaaaba”

for all as. But the above equation is false: take for instance as = “c”.
What we can do is find an h such that

reverse (as � bs) ♦ cs = h as ((reverse bs) ♦ cs) (30.3)

Equation (30.3) has the same form as (30.2) except that the last � on either
side has been changed into a ♦. To discover h we reason:

reverse (as � bs) ♦ cs

= {definition of ♦}
(reverse as ♦ reverse bs) ♦ cs

= {since ♦ is associative}
reverse as ♦ (reverse bs ♦ cs)

Hence, we can take h as bs = reverse as ♦bs. Appeal to fold fusion then gives

reverse (boxall (map bc legs)) ♦ cs = foldr h cs (map bc legs)

But all this helps only if we can change a � into a ♦. Fortunately, (30.1)
comes to the rescue. Setting

cs ′ = if even (length (bcode legs)) then cs else reverse cs

we can reason:

bc (Up (Node a legs)) � cs

= {above}
reverse (boxall (map bc legs)) � cs

= {using (30.1)}
reverse (boxall (map bc legs)) ♦ cs ′

Spider spinning for dummies 267

= {fold fusion}
foldr ((♦) · reverse) cs ′ (map bc legs)

Having transformed � into ♦ we now transform ♦ back into � with another
application of fold fusion. The fusion condition

reverse ((reverse as) ♦ cs) = as � (reverse cs)

is just the conjugate property of � and ♦ and it leads to

reverse · foldr((♦) · reverse) cs ′ = foldr (�) (reverse cs ′)

Thus:

bc (Up (Node a legs)) � cs

= {above}
foldr ((♦) · reverse) cs ′ (map bc legs)

= {fold fusion}
reverse (foldr ((�) · bc) (reverse cs ′) legs)

Introducing bop = (�) · bc, we have shown that bcode = foldr bop [], where

bop (Up (Node a legs)) cs = reverse (foldr bop cs ′ legs)
where cs ′ = if even (length (bcode legs))

then reverse cs else cs

Entirely dual reasoning with wop = (♦)·wc establishes wcode = foldr wop [],
where

wop (Dn (Node a legs)) cs = reverse (foldr wop cs ′ legs)
where cs ′ = if even (length (wcode legs))

then reverse cs else cs

That was quite a bit of effort, but it disposes of only two clauses, so more
work remains. We now tackle the clause bc (Dn (Node a legs))� cs and start
off by reasoning:

bc (Dn (Node a legs)) � cs

= {definition of bc}
(wcode legs ++ [a] ++ bcode legs) � cs

= {distributing ++ over �}
(wcode legs � cs) ++ [a] ++ (bcode legs � cs ′)

where

cs ′ = if even (length (wcode legs)) then reverse cs else cs

268 Pearls of Functional Algorithm Design

The rule for distributing ++ over � was given in the first pearl on
looplessness:

(xs ++ [y] ++ ys) � zs = (xs � zs) ++ [y] ++ (ys � zs ′)
where zs ′ = if even (length xs) then reverse zs else zs

We tackle each of the terms bcode legs � cs ′ and wcode legs � cs in turn.
First:

bcode legs � cs ′

= {definition of bcode}
foldr (�) [] (map bc legs) � cs ′

= {fold fusion (exercise)}
foldr (�) cs ′ (map bc legs)

= {map fusion and definition of bop}
foldr bop cs ′ legs

Second:

wcode legs � cs

= {using (30.1)}
wcode legs ♦ reverse cs ′

= {definition of wcode}
foldr (♦) [](map wc legs) ♦ reverse cs ′

= {fold fusion (exercise)}
foldr (♦) (reverse cs ′) (map bc legs)

= {map fusion and definition of wop}
foldr wop (reverse cs ′) legs

Hence, we have derived

bop (Dn (Node a legs)) cs = foldr wop (reverse cs ′) legs ++ [a] ++
foldr bop cs ′ legs

where cs ′ = if even (length (wcode legs)) then reverse cs else cs

Dual reasoning establishes a similar result for wop (Up (Node a legs)) cs and
leads to the program summarised in Figure 30.5. It is not very attractive and
certainly not efficient, mostly on account of the repeated need to compute
parity information.

Spider spinning for dummies 269

ncode :: Nest → [Int]
ncode = foldr bop [] ·map Dn
bop,wop :: Leg → [Int] → [Int]
bop (Up (Node a legs)) cs = reverse (foldr bop cs ′ legs)
where cs ′ = if even (length (foldr bop [] legs)) then reverse cs else cs
bop (Dn (Node a legs)) cs = foldr wop (reverse cs ′) legs ++ [a] ++

foldr bop cs ′ legs
where cs ′ = if even (length (foldr wop [] legs)) then reverse cs else cs
wop (Up (Node a legs)) cs = foldr wop cs ′ legs ++ [a] ++

foldr bop (reverse cs ′) legs
where cs ′ = if even (length (foldr bop [] legs)) then reverse cs else cs
wop (Dn (Node a legs)) cs = reverse (foldr wop cs ′ legs)
where cs ′ = if even (length (foldr wop [] legs)) then reverse cs else cs

Fig. 30.5 The code after eliminating � and ♦

Parity spiders

Instead of repeatedly computing parity information we will install this
information in a parity spider, a spider in which each node is equipped
with two Boolean values:

data Spider ′ = Node ′ (Bool ,Bool) Int [Leg ′]
data Leg ′ = Dn ′ Spider ′ | Up ′ Spider ′

The invariant on a parity spider Node ′ (w , b) a legs is that

w = even (length (wcode legs))
b = even (length (bcode legs))

where wcode and bcode return the white code and black code on parity
spiders.

Parity information can be installed in an ordinary spider by decorating it:

decorate :: Spider → Spider ′

decorate (Node a legs) = node ′ a (map (mapLeg decorate) legs)

mapLeg f (Up x) = Up ′ (f x)
mapLeg f (Dn x) = Dn ′ (f x)

The smart constructor node ′ is defined by

node ′ a legs = Node ′ (foldr op (True,True) legs) a legs

where op :: Leg ′ → (Bool ,Bool)→ (Bool ,Bool) is defined by

op (Up′ (Node ′ (w , b))) (w ′, b ′) = ((w �= b) ∧ w ′, b ∧ b ′)
op (Dn ′ (Node ′ (w , b))) (w ′, b ′) = (w ∧ w ′, (w �= b) ∧ b ′)

270 Pearls of Functional Algorithm Design

bop,wop :: Leg ′ → [Int]→ Int
bop (Up′ (Node ′ (w , b) a legs)) cs

= reverse (foldr bop (revif b cs) legs)
bop (Dn ′ (Node ′ (w , b) a legs)) cs

= foldr wop (revif (not w) cs) legs ++ [a] ++ foldr bop (revif w cs) legs
wop (Up′ (Node ′ (w , b) a legs)) cs

= foldr wop (revif b cs) legs ++ [a] ++ foldr bop (revif (not b) cs) legs
wop (Dn ′ (Node ′ (w , b) a legs)) cs

= reverse (foldr wop (revif w cs) legs)

revif b cs = if b then reverse cs else cs

Fig. 30.6 Spinning with parity spiders

To justify this definition of op, abbreviate even · length to el . We reason:

el (wcode (leg : legs))

= {definition of wcode (on parity spiders)}
el (wc leg ♦ wcode legs)

= {since el (as ♦ bs) = el as ∧ el bs}
el (wc leg) ∧ el (wcode legs)

= {assuming leg = Up ′ (Node ′ a legs ′)}
el (wcode legs ′ ++ [a] ++ bcode legs ′) ∧ el (wcode legs)

But as ++ [a] ++ bs has even parity if and only if as and bs have opposite
parity. Similar reasoning justifies the other values of op.

Installing parity information takes linear time in the size of a spider and
leads to the slightly simpler and much more efficient definitions of bop and
wop given in Figure 30.6.

The remaining steps

The final steps are to eliminate reverse by tupling and to represent each
component of the pair of results returned by bop and wop by the preorder
traversal of a queue of rose trees, just as in the case of tree spiders. To
eliminate reverse we represent a sequence as by a pair (as, sa), where sa =
reverse as. Concatenation of pairs is implemented by

cat a (ws, sw) (bs, sb) = (ws ++ [a] ++ bs, sb ++ [a] ++ sw)

Reversal is then implemented by swapping the two lists. Next, each com-
ponent is represented by a queue of rose trees in a way we have seen twice

Spider spinning for dummies 271

ncode = unfoldr step · prolog
prolog = wrapQueue · fst · foldr bop (empty , empty) ·map (Dn ′ · decorate)

bop (Up′ (Node ′ (w , b) a legs)) ps
= swap (foldr bop (swapif b ps) legs)

bop (Dn ′ (Node ′ (w , b) a legs)) ps
= cat a (foldr wop (swapif (not w) ps) legs) (foldr bop (swapif w ps) legs)

wop (Up′ (Node ′ (w , b) a legs)) ps
= cat a (foldr wop (swapif b ps) legs) (foldr bop (swapif (not b) ps) legs)

wop (Dn ′ (Node ′ (w , b) a legs)) ps
= swap (foldr wop (swapif w ps) legs)

cat a (ws, sw) (bs, sb)
= (insert ws (Fork a bs), insert sb (Fork a sw))

swap (xs, ys) = (ys, xs)
swapif b (xs, ys) = if b then (ys, xs) else (xs, ys)

Fig. 30.7 The final loopless program

before. The result of these manoeuvres gives our final loopless program,
summarised in Figure 30.7

Even though the prologue is now a four-act play, involving characters
such as spiders, lists, queues and trees, and strange actions like swapping
and folding, it nevertheless takes linear time in the size of the nest; so this
finally is a loopless program for spider spinning.

The initial state

One task remains, namely to define seed :: Nest → [Bit], the function that
returns the starting bit string a1a2 . . . an for a nest of spiders whose labels are
[1 ..n] in some order. We will just sketch the reasoning behind the definition
of seed . We will need the Haskell library Data.Map of finite mappings for
representing colourings. This library provides a type Mapk a for representing
finite mappings from keys (k) to values (a) and includes the following four
functions:

empty :: Map k a
insert :: Ord k ⇒ k → a → Map k a → Map k a
union :: Ord k → Map k a → Map k a → Map k a
elems :: Map k a

The value empty denotes the empty mapping, insert inserts a new binding
into a mapping, union unions two mappings and elems returns the range of
values in a mapping in increasing key order. We define a spider’s state to be

272 Pearls of Functional Algorithm Design

a mapping from the integer node labels of the spider to bits, integers taking
the values 0 and 1:

type State = Map.Map Int Bit
type Bit = Int

To avoid name clashes with similarly named functions in Queue, we define

install :: Int → Bit → State → State
install = Map.insert

union :: State → State → State
union = Map.union

start :: State
start = Map.empty

The function seed is defined in terms of two functions

wseed , bseed :: [Leg ′] → (State,State)

Both functions take a list of directed parity spiders and return a pair of
states; wseed returns the initial state on which wcode operates and the fi-
nal state that results. Similarly for bseed . We need both initial and final
states and we need parity spiders because parity information plays a part in
determining the correct initial state. We define seed by

seed = elems · fst · bseed ·map (Dn ′ · decorate)

This function takes a nest of spiders, converts it into a list of downwards-
directed parity spiders, computes the initial and final states associated with
bcode, extracts the first component and returns a list of bits, the starting
string for a1a2 . . . an .

We define bseed and wseed by following the code of Figure 30.4, except
that we compute states rather than transitions. First:

bseed = foldr bsp (start , start) ·map bs
wseed = foldr wsp (start , start) ·map ws

The function bs returns the initial and final states for the transitions bc;
similarly for ws. In fact, bs returns a triple, the first component of which is
parity information needed for the computation of bsp. The function

foldr bsp (start , start)

returns the initial and final states for boxall , and foldr wsp (start , start) is a
similar function for coxall .

Spider spinning for dummies 273

Here is the program for bs:

bs (Up ′ (Node ′ (w , b) a legs)) = (b, install a 1 fs, install a 1 is)
where (is, fs) = bseed legs

bs (Dn ′ (Node ′ (w , b) a legs)) = (b, install a 0 is, install a 1 fs)
where is = fst (wseed legs)

fs = snd (bseed legs)

Recalling that bc (Up (Node a legs)) = reverse (bcode legs), we see that the
initial and final states of bseed legs have to be reversed in computing bs.
Moreover, since we are considering the black code, the value associated with
label a is 1, so this information is installed in the state. The parity informa-
tion provided by b is also returned.

For the second clause, recall that

bc (Dn (Node a legs)) = wcode legs ++ [a] ++ bcode legs

Here, the initial state corresponding to wcode legs and the final state
corresponding to bcode legs are the correct initial and final states to choose.
Moreover, the label a starts off being associated with a 0 bit and ends up
being associated with a 1 bit.

The definition of ws is similar. It remains to consider bsp and wsp, whose
definitions are

bsp (b, ia, fa) (ib, fb) = (union ia ib, union fa (if b then fb else ib))
wsp (w , ia, fa) (ib, fb) = (union ia (if w then ib else fb), union fa fb)

Recall that as � bs begins with bs and ends with bs if as has even length, or
ends with reverse bs if as has odd length. Hence, the initial state is the union
of the two initial states associated with as and bs, but the final state is the
union of the initial state associated with as and either the final or initial
state associated with bs, depending on the parity of as. In the definition
of bsp the Boolean b determines the parity. The complete code for seed is
summarised in Figure 30.8.

Final remarks

The Knuth and Ruskey (2003) non-loopless algorithm for spider spinning
made heavy use of coroutines. Knuth’s (2001) loopless version is on his
website. The simpler problem of spinning with tree spiders was first
considered in Koda and Ruskey (1993). A non-loopless algorithm based on
continuations appeared as a Functional Pearl in Filliâtre and Pottier (2003).

274 Pearls of Functional Algorithm Design

seed = elems · fst · bseed ·map (Dn ′ · decorate)
bseed = foldr bsp (start , start) ·map bs
wseed = foldr wsp (start , start) ·map ws
bs (Up′ (Node ′ (w , b) a legs)) = (b, install a 1 fs, install a 1 is)

where (is, fs) = bseed legs
bs (Dn ′ (Node ′ (w , b) a legs)) = (b, install a 0 is, install a 1 fs)

where is = fst (wseed legs)
fs = snd (bseed legs)

ws (Up′ (Node ′ (w , b) a legs)) = (w , install a 0 is, install a 1 fs)
where is = fst (wseed legs)

fs = snd (bseed legs)
ws (Dn ′ (Node ′ (w , b) a legs)) = (w , install a 0 fs, install a 0 is)

where (is, fs) = wseed legs

bsp (b, ia, fa) (ib, fb) = (union ia ib, union fa (if b then fb else ib))
wsp (w , ia, fa) (ib, fb) = (union ia (if w then ib else fb), union fa fb)

Fig. 30.8 The function seed

References
Filliâtre, J.-C., and Pottier, F. (2003). Producing all ideals of a forest, functionally.

Journal of Functional Programming 13 (5), 945–56.
Knuth, D. E. (2001). SPIDERS: a program downloadable from

www-cs-faculty.stanford.edu/∼knuth/programs.html.
Knuth, D. E. and Ruskey, F. (2003). Efficient coroutine generation of constrained

Gray sequences (aka deconstructing coroutines). Object-Orientation to Formal
Methods: Dedicated to The Memory of Ole-Johan Dahl. LNCS 2635. Springer-
Verlag.

Koda, Y. and Ruskey, R. (1993). A Gray code for the ideals of a forest poset.
Journal of Algorithms 15, 324–40.

Index

Data.Array, 2, 25, 29, 100, 114, 123
Data.Array.ST , 3
Data.Map, 271
Data.Sequence, 114
Data.Set , 70
Either , 168
Ix , 2
Queue, 115, 249
QuickCheck , 188, 196
Ratio, 182, 199
↓ – after, 128
↑ – before, 109
\\ – list difference, 1, 3, 22, 59, 64,

142, 192
↑ – exponentiation, 183
∧∧ – merge, 9, 10, 29
!! – list index, 87, 93, 100
! – array index, 25, 29, 87, 100
 – prefix, 103, 119, 127
accumArray, 2, 5, 82, 123
applyUntil , 82
array, 29, 85
bounds, 25
break , 154, 164, 182
compare, 29
concatMap, 42
elems, 85
foldrn – fold over nonempty lists, 42
fork , 35, 83, 94, 118
inits, 66, 67, 117
listArray, 25, 100
minors, 172
nodups, 149
nub, 64
partition, 4
partitions, 38
reverse, 119, 244
scanl , 118, 238
scanr , 70
sort , 28, 95
sortBy, 29, 94
span, 67
subseqs, 57, 65, 157, 163
tails, 7, 79, 100, 102
transpose, 98, 150, 193
unfoldr , 202, 243

zip, 35, 83
zipWith, 83

Abelian group, 27
abides property, 3, 22
abstraction function, 129, 211, 226
accumulating function, 2
accumulating parameter, 131, 138, 140,

177, 253
adaptive encoding, 200
amortised time, 5, 118, 131, 133
annotating a tree, 170
arithmetic decoding, 201
arithmetic expressions, 37, 156
array update operation, 3, 6
arrays, 1, 2, 21, 29, 85, 99
association list, 29, 238
asymptotic complexity, 27

bags, 25, 50, 51
balanced trees, 21, 54, 234
Bareiss algorithm, 186
bijection, 129
binary search, 7, 10, 14, 15, 19, 54
binomial trees, 178
bioinformatics, 77, 90
Boolean satisfiability, 155
borders of a list, 103
bottom-up algorithm, 41
boustrophedon product, 245, 251, 260
breadth-first search, 136, 137, 178
Bulldozer algorithm, 196
bzip2, 101

call-tree, 168
Cartesian coordinates, 141, 155
Cartesian product, 149
celebrity clique, 56
Chió’s identity, 182
clique, 56
combinatorial patterns, 242
comparison-based sorting, 10, 16, 27
computaional geometry, 188
conjugate, 263
constraint satisfaction, 155
continuations, 273
coroutines, 273

275

276 Index

cost function, 41, 48, 52
cyclic structures, 133, 179

data compression, 91, 198
data mining, 77
data refinement, 5, 48, 108, 114, 129, 210
deforestation, 168
depth-first search, 137, 221, 222
destreaming, 214
destreaming theorem, 214
Dilworth’s theorem, 54
divide and conquer, 1, 3, 5, 7, 8, 15, 21–23,

27, 29, 30, 65, 81, 171
dot product, 185
dynamic programming, 168

EOF (end-of-file symbol), 203
exhaustive search, 12, 33, 39, 57, 148, 156

facets, 190
failure function, 133
fictitious values, 14, 77
finite automaton, 74, 136
fission law of foldl , 130
fixpoint induction, 205
forests, 42, 174
fringe of a tree, 41
frontier, 137
fully strict composition, 243
fusion law of foldl , 76, 130, 195
fusion law of foldr , 34, 51, 52, 61, 247, 260,

261, 265
fusion law of foldrn, 43
fusion law of fork , 35
fusion law of unfoldr , 206, 212

Galil’s algorithm, 122
garbage collection, 165, 166
Garsia–Wachs algorithm, 49
Gaussian elimination, 180
graph traversal, 178, 221
Gray path order, 258
greedy algorithms, 41, 48, 50, 140
Gusfield’s Z algorithm, 116

Hu–Tucker algorithm, 49
Huffman coding, 91, 198, 201

immutable arrays, 25
incremental algorithm, 188, 191, 204
incremental decoding, 216
incremental encoding, 203, 209
indexitis, 150
inductive algorithm, 42, 93, 102
integer arithmetic, 182, 198, 208
integer division, 182
intermediate data structure, 168
interval expansion, 209, 210
inversion table, 10
inverting a function, 12, 93
involution, 150
iterative algorithm, 10, 82, 109, 113

Knuth and Ruskey algorithm, 258
Knuth’s spider spinning algorithm, 242
Koda–Ruskey algorithm, 242

law of iterate, 99
laws of filter , 118, 152
laws of fork , 35
lazy evaluation, 33, 147, 185, 243
leaf-labelled trees, 41, 165, 168
left spines, 43, 45, 177
left-inverse, 129
Leibniz formula, 180
lexicographic ordering, 45, 52, 64, 102, 104
linear ordering, 43
linked list, 225
longest common prefix, 103, 112, 120
longest decreasing subsequence, 54
loop invariants, 62, 111
lower bounds, 16, 27, 28, 64

Mahajan and Vinay’s algorithm, 186
majority voting problem, 62
matrices, 147, 181
matrix Cartesian product, 149
maximum marking problems, 77
maximum non-segment sum, 73
maximum segment sum, 73
maximum surpasser count, 7
McCarthy S-expression, 221
memo table, 163
memoisation, 162
merge, 26, 142, 158
mergesort, 29, 89, 171, 173
minimal element, 53
minimum cost tree, 44
minimum element, 53
minors, 181
model checking, 155
monads, 3, 114, 155
monotonicity condition, 48, 53
move-to-front encoding, 91
multisets, 25

narrowing, 199
nondeterministic functions, 43, 51
normal form, 160

online list labelling, 241
Open Problems Project, 31
optimal bracketing, 176
optimisation problems, 48, 176
order-maintenance problem, 241
overflow, 214

parametricitiy, 62
partial evaluation, 134
partial ordering, 53
partial preorder, 52
partition sort, 85
partition sorting, 87
perfect binary trees, 171

Index 277

permutations, 79, 90, 91, 96, 97, 180,
189, 242, 251

planning algorithm, 136, 138
plumbing combinators, 36
prefix, 66
prefix ordering, 103, 105, 119
preorder traversal, 245, 270
principal submatrices, 185
program transformation, 221
PSPACE completeness, 136

queues, 109, 137, 248, 249
Quicksort, 5, 85, 89

radix sort, 95, 101
ranking a list, 79
rational arithmetic, 180, 188, 198
rational division, 181
recurrence relations, 15, 31, 88
refinement, 44, 48, 51–53, 80
regular cost function, 49
regular expression, 74
relations, 48, 167, 229
representation function, 129, 211
right spines, 177
Rose trees, 164, 245
rotations of a list, 91
rule of floors, 215
run-length encoding, 91

saddleback search, 14
safe replacement, 222
scan lemma, 118, 125
segments, 73, 171
Shannon–Fano coding, 198
sharing, 168, 173
shortest upravel, 50
simplex, 188
skeleton trees, 165
sliding-block puzzle, 136
smart constructors, 48, 170, 177

smooth algorithms, 241
solving a recursion, 98
sorting, 9, 10, 16, 91, 149
sorting numbers, 1, 3
sorting permutation, 10
space/time trade-offs, 156
spanning tree, 178
stable sorting algorithm, 86, 95
stacks, 137, 221, 222
streaming, 203, 214
streaming theorem, 204
string matching, 112, 117, 127
stringology, 103
subsequences, 50, 64, 74, 162,

177, 242
suffix tree, 101
suffixes, 79, 100
Sylvester’s identity, 186

thinning algorithm, 161
top-down algorithm, 41
totally acyclic digraph, 258
transitions, 242
trees, 130, 165, 248
tries, 163
tupling law of foldl , 118, 125
tupling law of foldr , 247

unfolds, 168
unmerges, 158, 159, 165
unravel, 50
upper triangular matrix, 185

Vandermonde’s convolution, 17

well-founded recursion, 4, 30
while loop, 111, 113
wholemeal programming, 150
windows of a text, 120

Young tableau, 28

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Content
	Preface
	1 The smallest free number
	Introduction

	An array-based solution
	A divide and conquer solution
	Final remarks

	2 A surpassing problem
	Introduction
	Specification
	Divide and conquer
	Final remarks
	References

	3 Improving on saddleback search
	Afterword
	References

	4 A selection problem
	Introduction
	Formalisation and first steps
	Divide and conquer
	Final remarks
	References

	5 Sorting pairwise sums
	Introduction
	Lambert’s algorithm
	Divide and conquer
	Final remarks
	References

	6 Making a century
	Introduction
	A little theory
	Making a century
	Final remarks
	References

	7 Building a tree with minimum height
	Introduction
	First steps
	Fusion
	Optimal insertion
	Final remarks
	References

	8 Unravelling greedy algorithms
	Introduction
	Specification
	Derivation
	Final remarks
	References

	9 Finding celebrities
	Afterword
	References

	10 Removing duplicates
	Introduction
	A first version
	A generalisation
	Introducing sets
	Final remarks
	References

	11 Not the maximum segment sum
	Introduction
	Specification
	Derivation
	Final remarks
	References

	12 Ranking suffixes
	Introduction
	Specification
	Properties of rank
	A better algorithm
	Proof
	A better rank
	The final algorithm
	Analysis
	Experimental results
	Final remarks
	References

	13 The Burrows—Wheeler transform
	Introduction
	Defining the BWT
	Recreational calculation
	A faster algorithm
	Transform revisited
	Final remarks
	References

	14 The last tail
	Introduction
	An inductive definition
	Borders
	Border
	Cocktail
	Reducing the problem size
	Final optimisations
	Final remarks
	References

	15 All the common prefixes
	Introduction
	A key property
	Dara Refinement
	Final remarks
	References

	16 The Boyer--Moore algorithm
	Introduction
	The scan lemma
	The Boyer-Moore algorithm
	Shifting
	A final improvement
	Computing shifts
	Final remarks
	References

	17 The Knuth–Morris–Pratt algorithm
	Introduction
	First steps
	Data refinement
	Trees
	Final remarks
	References

	18 Planning solves the Rush Hour problem
	Introduction
	Puzzles
	Planning
	Rush Hour
	Results
	Final remarks
	References

	19 A simple Sudoku solver
	Introduction
	Specification
	Pruning the matrix of choices
	Single-cell expansion
	Final remarks

	20 The Countdown problem
	Introduction
	A simple program
	Two optimisations
	An even stronger logality test
	Memoisation
	Skeleton trees
	A further experiment
	Final remarks
	References

	21 Hylomorphisms and nexuses
	Introduction
	Folds, unfolds and hylomorphisms
	Three examples
	Building a nexus
	Why build the nexus?
	Final remarks
	References

	22 Three ways of computing determinants
	Introduction
	The school-book method
	Using rational division
	Using integer division
	Interleaving
	Using no division
	A brief comparison
	Final remarks
	References

	23 Inside the convex hull
	Introduction
	Background
	Convex hulls
	An incremental algorithm
	Finding a simplex
	Updates
	An inprovement
	Quick
Check
	Final remarks
	References

	24 Rational arithmetic coding
	Introduction
	Arithematic coding with rational arithemetic
	Narrowing
	Models
	Encoding
	Decoding
	Incremental encoding and decoding
	Streaming
	Final remarks
	References
	Appendix

	25 Integer arithmetic coding
	Introduction
	New definitions
	Incremental encoding and interval expansion
	Interval expansion
	A new difinition
	A crucial question
	A final problem
	Inverting streams
	The helper function
	Incremental decoding
	Final remarks
	Appendix

	26 The Schorr–Waite algorithm
	Introduction
	Specification
	Safe replacement
	Eliminating duplicate entries
	Threading the stack
	Representing the stack by a linked list
	Final remarks
	References

	27 Orderly insertion
	Introduction
	A naive algorithm
	An improved algorithm
	Proofs
	Implementation
	Final remarks
	References

	28 Loopless functional algorithms
	Introduction
	Loopless algorithms
	Four warm-up exercises
	Boustrophedon product
	Tupling
	Trees and queues
	Final remarks
	References

	29 The Johnson–Trotter algorithm
	Introduction
	A recursive formulation
	The plan
	A loopless algorithm
	Final remarks
	References

	30 Spider spinning for dummies
	Introduction
	A loopless program
	Spider spinning with general spiders
	A loopless algorithm
	Parity spiders
	The remaining steps
	The initial state
	Final remarks
	References

	Index

