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Preface

This volume presents the revised lecture notes of selected talks given at the fifth Central
European Functional Programming School, CEFP 2013, held during July 8–20 in Cluj-
Napoca, Romania at Babeş-Bolyai University, Faculty of Mathematics and Informatics.

The summer school was organized in the spirit of the advanced programming
schools. CEFP involves an ever-growing number of students, researchers, and teachers
from whole Europe, providing opportunities especially for students from Central- and
Eastern-European countries.

The intensive programme offered a creative, inspiring environment for presenta-
tions, and for the exchange of ideas on new specific programming topics. The lectures
covered a wide range of domain-specific and functional programming subjects.

We are very grateful to the lecturers and researchers for the time and effort they
devoted to their talks and lecture notes. The lecture notes were each carefully checked
by reviewers selected from experts. The papers were revised by the lecturers based on
reviews. This revision process guaranteed that only high-quality papers were accepted
for the volume.

The last five papers in the volume are selected papers of the Ph.D. Workshop
organized for the participants of the summer school.

We would like to express our gratitude for the work of all the members of the
Programme Committee and the Organizing Committee.

The web-page for the summer school can be found at: http://dsl2013.math.ubbcluj.ro.

December 2014 Viktória Zsók
Zoltán Horváth

Lehel Csató

http://dsl2013.math.ubbcluj.ro
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CEFP 2013 was organized by Babeş-Bolyai University, Cluj-Napoca, Romania in
collaboration with Eötvös Loránd University, Budapest, Hungary.
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The summer school was supported by the Erasmus Intensive Programme (IP) Project
and the CEEPUS programme via the CEEPUS CII-HU-19 Network.
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Functional Programming for Domain-Specific
Languages

Jeremy Gibbons(B)

Department of Computer Science, University of Oxford, Oxford, UK
jeremy.gibbons@cs.ox.ac.uk

http://www.cs.ox.ac.uk/jeremy.gibbons/

Abstract. Domain-specific languages are a popular application area for
functional programming; and conversely, functional programming is a
popular implementation vehicle for domain-specific languages—at least,
for embedded ones. Why is this? The appeal of embedded domain-specific
languages is greatly enhanced by the presence of convenient lightweight
tools for defining, implementing, and optimising new languages; such
tools represent one of functional programming’s strengths. In these lec-
tures we discuss functional programming techniques for embedded domain-
specific languages; we focus especially on algebraic datatypes and higher-
order functions, and their influence on deep and shallow embeddings.

1 Introduction

In his book [1], Fowler defines a domain-specific language (DSL) as

a computer programming language of limited expressiveness focussed on
a particular domain

A DSL is targetted at a specific class of programming tasks; it may indeed
not be Turing-complete. By restricting scope to a particular domain, one can
tailor the language specifically for that domain. Common concepts or idioms
in the domain can be made more easily and directly expressible—even at the
cost of making things outside the intended domain more difficult to write. The
assumptions common to the domain may be encoded within the language itself,
so that they need not be repeated over and over for each program within the
domain—and again, those assumptions may be inconsistent with applications
outside the domain.

The term ‘DSL’ is rather more recent than its meaning; DSLs have per-
vaded the history of computing. As Mernik et al. [2] observe, DSLs have in
the past been called ‘application-oriented’, ‘special-purpose’, ‘specialised’, ‘task-
specific’, and ‘application’ languages, and perhaps many other things too. The
‘fourth-generation languages’ (4GLs) popular in the 1980s were essentially DSLs
for database-oriented applications, and were expected at the time to supercede
general-purpose 3GLs such as Pascal and C. One might even say that Fortran
and Cobol were domain-specific languages, focussed on scientific and business
c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 1–28, 2015.
DOI: 10.1007/978-3-319-15940-9 1



2 J. Gibbons

applications respectively, although they are both Turing-complete. Bentley [3]
wrote influentially in his Programming Pearls column about the ‘little languages’
constituting the philosophy and much of the functionality of the Unix operating
system: tools for programmers such as the shell, regular expressions, lex and
yacc, and tools for non-programmers such as the Pic language for line drawings
and a language for specifying surveys.

There are two main approaches to implementing DSLs. The historically
prevalent approach has been to build standalone languages, with their own cus-
tom syntax. Standard compilation techniques are used to translate programs
written in the DSL into a general-purpose language (GPL), or to interpret them,
for execution. The syntax of the DSL can be designed specifically for the intended
users, and need bear no relation to that of the host language—indeed, there may
be many different host languages, as there are for SQL, or the DSL ‘syntax’ may
be diagrammatic rather than textual.

However, implementing a new standalone DSL is a significant undertaking,
involving a separate parser and compiler, and perhaps an interactive editor too.
Moreover, the more the DSL is a kind of ‘programming’ language, the more
likely it is that it shares some features with most GPLs—variables, definitions,
conditionals, etc—which will have to be designed and integrated with the DSL.
In the process of reducing repetition and raising the level of abstraction for
the DSL programmer, we have introduced repetition and lowered the level of
abstraction for the DSL implementer. That may well be a rational compromise.
But is there a way of getting the best of both worlds?

The second approach to implementing DSLs attempts exactly that: to retain
as much as possible of the convenient syntax and raised level of abstraction
that a DSL provides, without having to go to the trouble of defining a separate
language. Instead, the DSL is embedded within a host language, essentially as
a library of definitions written in the host GPL (although it is debatable to
what extent ‘library’ and ‘language’ coincide: we return to this point in Sect. 2.1
below). All the existing facilities and infrastructure of the host environment can
continue to be used, and familiarity with the syntactic conventions of the host
can be carried over to the DSL.

However, there are some downsides to embedding a DSL in a host language.
DSL programs have to be written in the syntax of the host language; this may be
clumsy if the host syntax is rigid, and daunting to non-programmer domain spe-
cialists if the host syntax is obscure. It can be difficult to preserve the abstraction
boundary between the DSL its host: naive users may unwittingly invoke sophis-
ticated language features, and error messages may be reported unhelpfully in
terms of the host language rather than the DSL. Needless to say, these issues
are hot research topics among those working on embedded DSLs.

Fowler [1] calls the standalone and embedded approaches ‘external’ and
‘internal’ respectively. He does this not least because ‘embedded’ suggests mis-
leadingly that specialised code written in a DSL is quoted verbatim within a host
program written in a GPL, with the whole being expressed in a hybrid language
that is neither the DSL nor the GPL; for example, JavaServer Pages ‘programs’
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are hybrids, consisting of HTML markup with embedded fragments of Java. (In
fact, Fowler calls such hybrids ‘fragmentary’, and uses the term ‘standalone’ for
pure-bred DSLs, in which any program is written in just one language, whether
internal or external.) That objection notwithstanding, we will stick in this article
to the terms ‘standalone’ and ‘embedded’.

We will concentrate on embedded DSLs, only briefly making the connection
back to standalone DSLs. Again, there are two main approaches to embedded
DSLs, which are conventionally called deep and shallow embedding [4]. With
a deep embedding, terms in the DSL are implemented simply to construct an
abstract syntax tree; this tree is subsequently transformed for optimisation and
traversed for evaluation. With a shallow embedding, terms in the DSL are imple-
mented directly as the values to which they evaluate, bypassing the intermediate
AST and its traversal. We explore this distinction in Sect. 2.4.

It turns out that functional programming languages are particularly well
suited for hosting embedded DSLs. Language features such as algebraic datatypes,
higher-order functions, lazy evaluation, and rich type systems supporting type
inference all contribute. We discuss these factors in more detail in Sect. 3.

The syntax of the host language is another factor, albeit a relatively minor
one: functional languages often have lightweight syntax, for example favouring
the use of whitespace and layout rather than punctuation for expressing program
structure, and strongly supporting orthogonality of naming in the sense that both
symbolic as well as alphabetic identifiers may be used in definitions. Both of these
features improve flexibility, so that an embedded DSL can have a syntax close to
what one might provide for a corresponding standalone DSL. Of course, there
are functional languages with noisy syntactic conventions, and non-functional
languages with quiet ones, so this factor does not map precisely onto the language
paradigm. We make no more of it in this article, simply using Haskell syntax for
convenience.

We use a number of little examples of embedded DSLs throughout the first
part of the article. We conclude in Sect. 4, with a more detailed study of one
particular embedded DSL, namely Yorgey’s Diagrams package [5].

2 Exploring the Design Space

In the interests of focussing on the essence of DSLs, we start with a very simple
example: a DSL for finite sets of integers. This consists of a representation of
sets, and a number of operations manipulating that representation:

type IntegerSet = ...

empty :: IntegerSet
insert :: Integer → IntegerSet → IntegerSet
delete :: Integer → IntegerSet → IntegerSet
member :: Integer → IntegerSet → Bool
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For example, one might evaluate the expression

member 3 (insert 1 (delete 3 (insert 2 (insert 3 empty))))

and get the result False (assuming the usual semantics of these operations).

2.1 Libraries

The first approach one might take to implementing this characterisation of inte-
ger sets might be as a library, that is, as a collection of related functions. For
example, one might represent the set as a list, possibly with duplicates and
treating order as insignificant:

type IntegerSet = [Integer ] -- unsorted, duplicates allowed

empty :: IntegerSet
empty = [ ]

insert :: Integer → IntegerSet → IntegerSet
insert x xs = x : xs

delete :: Integer → IntegerSet → IntegerSet
delete x xs = filter (�≡ x ) xs

member :: Integer → IntegerSet → Bool
member x xs = any (≡ x ) xs

(Here, the standard library function any p = foldr ((∨) ◦ p) False determines
whether any element of a list satisfies predicate p.)

We have been writing code in this style—that is, collections of types and
related functions—from the earliest days of computing. Indeed, compilers are so
called because they ‘compile’ (collect and assemble the pieces for) an executable
by linking together the programmer’s main program with the necessary functions
from the library. The problem with this style is that there is no encapsulation
of the data representation: it is evident to all clients of the abstraction that
the representation uses lists, and client code may exploit this knowledge by
using other list functions on the representation. The representation is public
knowledge, and it becomes very difficult to change it later.

2.2 Modules

The realisation that libraries expose data representations prompted the notion
of modular programming, especially as advocated by Parnas [6]: code should be
partitioned into modules, and in particular, the modules should be chosen so
that each hides a design decision (such as, but not necessarily, a choice of data
representation) from all the others, allowing that decision subsequently to be
changed.

The modular style that Parnas espouses presupposes mutable state: the mod-
ule hides a single data structure, and operations query and modify the value of



Functional Programming for Domain-Specific Languages 5

that data structure. Because of this dependence on mutable state, it is a little
awkward to write in the Parnas style in a pure functional language like Haskell.
To capture this behaviour using only pure features, one adapts the operations
so that each accepts the ‘current’ value of the data structure as an additional
argument, and returns the ‘updated’ value as an additional result. Thus, an
impure function of type a → b acting statefully on a data structure of type s
can be represented as a pure function of type (a, s) → (b, s), or equivalently by
currying, a → (s → (b, s)). The return part s → (b, s) of this is an instance of
the state monad, implemented in the Haskell standard library as a type State s b.
Then the set module can be written as follows:

module SetModule (Set , runSet , insert , delete,member) where

type IntegerSet = [Integer ]
newtype Set a = S {runS :: State IntegerSet a }
instanceMonad Set where

return a = S (return a)
m >>= k = S (runS m >>= (runS ◦ k))

runSet :: Set a → a
runSet x = evalState (runS x ) [ ]

insert :: Integer → Set ()
insert x = S $ do {modify (x :)}
delete :: Integer → Set ()
delete x = S $ do {modify (filter (�≡ x ))}
member :: Integer → Set Bool
member x = S $ do {xs ← get ; return (any (≡ x ) xs)}

Here, the type Set of stateful operations on the set is abstract: the representation
is not exported from the module, only the type and an observer function runSet
are. The operations insert , delete, and member are also exported; they may be
sequenced together to construct larger computations on the set. But the only
way of observing this larger computation is via runSet , which initialises the set
to empty before running the computation. Haskell’s do notation conveniently
hides the plumbing required to pass the set representation from operation to
operation:

runSet $ do {insert 3; insert 2; delete 3; insert 1;member 3}

(To be precise, this stateful programming style does not really use mutable state:
all data is still immutable, and each operation that ‘modifies’ the set in fact
constructs a fresh data structure, possibly sharing parts of the original. Haskell
does support true mutable state, with imperative in-place modifications; but to
do this with the same interface as above requires the use of unsafe features, in
particular unsafePerformIO .)
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2.3 Abstract Datatypes

Parnas’s approach to modular programming favours modules that hide a sin-
gle data structure; the attentive reader will note that it is easy to add a union
operation to the library, but difficult to add one to the module. A slightly dif-
ferent approach is needed to support data abstractions that encompass multiple
data structures—abstract datatypes. In this case, the module exports an abstract
type, which specifies the hidden representation, together with operations to cre-
ate, modify and observe elements of this type.

module SetADT (IntegerSet , empty , insert , delete,member) where

newtype IntegerSet = IS [Integer ]

empty :: IntegerSet
empty = IS [ ]

insert :: IntegerSet → Integer → IntegerSet
insert (IS xs) x = IS (x : xs)

delete :: IntegerSet → Integer → IntegerSet
delete (IS xs) x = IS (filter (�≡ x ) xs)

member :: IntegerSet → Integer → Bool
member (IS xs) x = any (≡ x ) xs

Note that in addition to the three operations insert , delete and member exported
by SetModule, we now export the operation empty to create a new set, and
the abstract type IntegerSet so that we can represent its result, but not the
constructor IS that would allow us to deconstruct sets and to construct them
by other means than the provided operations. Note also that we can revert to a
purely functional style; there is no monad, and ‘modifiers’ manifestly construct
new sets—this was not an option when there was only one set. Finally, note that
we have rearranged the order of arguments of the three operations, so that the
source set is the first argument; this gives the feeling of an object-oriented style,
whereby one ‘sends the insert message to an IntegerSet object’:

((((empty ‘insert ‘ 3) ‘insert ‘ 2) ‘delete‘ 3) ‘insert ‘ 1) ‘member ‘ 3

2.4 Languages

One might, in fact, think of the abstract datatype SetADT as a DSL for sets,
and the set expression above as a term in this DSL—there is at best a fuzzy line
between ADTs and embedded DSLs. If one were to make a formal distinction
between ‘languages’ and ‘libraries’, it would presumably be that a ‘language’
privileges one particular datatype whose elements represent terms in the lan-
guage, with constructors that compose terms, and observers that analyse terms;
a ‘library’, on the other hand, is just a collection of related functions, and may
have no one such privileged datatype.

The SetADT implementation above can be seen as an intermediate point
on the continuum between two extreme approaches to implementing embedded
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DSLs: deep and shallow embedding. In a deep embedding, the operations that
construct elements of the abstraction do as little work as possible—they simply
preserve their arguments in an abstract syntax tree.

module SetLangDeep (IntegerSet (Empty , Insert ,Delete),member) where

data IntegerSet :: ∗ where
Empty :: IntegerSet
Insert :: IntegerSet → Integer → IntegerSet
Delete :: IntegerSet → Integer → IntegerSet

member :: IntegerSet → Integer → Bool
member Empty y = False
member (Insert xs x ) y = (y ≡ x ) ∨ member xs y
member (Delete xs x ) y = (y �≡ x ) ∧ member xs y

Now we declare and export an algebraic datatype IntegerSet as the implementa-
tion of the three operations that yield a set; we have used Haskell’s generalised
algebraic datatype notation to emphasise their return types, even though we
make no use of the extra expressive power of GADTs. The member operation,
on the other hand, is implemented as a traversal over the terms of the language,
and is not itself part of the language.

((((Empty ‘Insert ‘ 3) ‘Insert ‘ 2) ‘Delete‘ 3) ‘Insert ‘ 1) ‘member ‘ 3

Whereas in a deep embedding the constructors do nothing and the observers
do all the work, in a shallow embedding it is the other way round: the observers
are trivial, and all the computation is in the constructors. Given that the sole
observer in our set abstraction is the membership function, the shallow embed-
ding represents the set directly as this membership function:

module SetLangShallow (IntegerSet , empty , insert , delete,member) where

newtype IntegerSet = IS (Integer → Bool)

empty :: IntegerSet
empty = IS (λy → False)

insert :: IntegerSet → Integer → IntegerSet
insert (IS f ) x = IS (λy → (y ≡ x ) ∨ f y)

delete :: IntegerSet → Integer → IntegerSet
delete (IS f ) x = IS (λy → (y �≡ x ) ∧ f y)

member :: IntegerSet → Integer → Bool
member (IS f ) = f

It is used in exactly the same way as the SetADT definition:

((((empty ‘insert ‘ 3) ‘insert ‘ 2) ‘delete‘ 3) ‘insert ‘ 1) ‘member ‘ 3
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We have only a single observer, so the shallow embedding is as precisely that
observer, and the observer itself is essentially the identity function. More gener-
ally, there may be multiple observers; then the embedding would be as a tuple
of values, and the observers would be projections.

In a suitable sense, the deep embedding can be seen as the most abstract
implementation possible of the given interface, and the shallow embedding as
the most concrete: there are transformations from the deep embedding to any
intermediate implementation, such as SetADT—roughly,

elements :: SetLangDeep.IntegerSet → SetADT .IntegerSet
elements Empty = [ ]
elements (Insert xs x ) = x : elements xs
elements (Delete xs x ) = filter (�≡ x ) (elements xs)

and from this to the shallow embedding—roughly,

membership :: SetADT .IntegerSet → SetLangShallow .IntegerSet
membership xs = λx → any (≡ x ) xs

Expressed categorically, there is a category of implementations and transforma-
tions between them, and in this category the deep embedding is the initial object
and the shallow embedding the final object [7]. The shallow embedding arises by
deforesting the abstract syntax tree that forms the basis of the deep embedding.

Kamin [8] calls deep and shallow embedding operational and denotational
domain modelling, respectively, and advocates the latter in preference to the
former. Erwig and Walkingshaw [9] call shallow embedding semantics-driven
design, and also favour it over what they might call syntax-driven design.

Deep embedding makes it easier to extend the DSL with new observers, such
as new analyses of programs in the language: just define a new function by
induction over the abstract syntax. But it is more difficult to extend the syntax
of the language with new operators, because each extension entails revisiting the
definitions of all existing observers. Conversely, shallow embedding makes new
operators easier to add than new observers. This dichotomy is reminiscent of that
between OO programs structured around the Visitor pattern [10] and those in
the traditional OO style with methods attached to subclasses of an abstract
Node class [11]. The challenge of getting the best of both worlds—extensibility
in both dimensions at once—has been called the expression problem [12].

2.5 Embedded and Standalone

All the approaches described above have been for embedded DSLs, of one kind
or another: ‘programs’ in the DSL are simply expressions in the host language.
An alternative approach is given by standalone DSLs. As the name suggests,
a standalone DSL is quite independent of its implementation language: it may
have its own syntax, which need bear no relation to that of the implementation
language—indeed, the same standalone DSL may have many implementations,
in many different languages, which need have little in common with each other.
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Of course, being standalone, the DSL cannot depend on any of the features of
any of its implementation languages; everything must be build independently,
using more or less standard compiler technology: lexer, parser, optimiser, code
generator, etc.

Fortunately, there is a shortcut. It turns out that a standalone DSL can
share much of the engineering of the embedded DSL—especially if one is not
so worried about absolute performance, and is more concerned about ease of
implementation. The standalone DSL can be merely a frontend for the embedded
DSL; one only needs to write a parser converting strings in the standalone DSL
to terms in the embedded DSL. (In fact, Parnas made a similar point over
forty years ago [6]: he found that many of the design decisions—and hence the
modules—could be shared between a compiler and an interpreter for the same
language, in his case for Markov processes.)

For example, suppose that we are given a type Parser a of parsers reading
values of type a

type Parser a = ...

and an observer that applies a parser to a string and returns either a value or
an error message:

runParser :: Parser a → String → Either a String

Then one can write a parser program :: Parser Bool for little set programs in a
special syntax; perhaps “{}+3+2-3+1?3” should equate to the example expres-
sions above, with “{}” denoting the empty set, “+” and “-” the insertion and
deletion operations, and “?” the membership test. Strings recognised by program
are interpreted in terms of insert , delete etc., using one of the various implemen-
tations of sets described above. Then a simple wrapper program reads a string
from the command line, tries to parse it, and writes out the Boolean result or
an error message:

main :: IO ()
main = do

ss ← getArgs
case ss of

[s ] → case runParser program s of -- single arg
Left b → putStrLn ("OK: " ++ show b) -- parsed
Right s → putStrLn ("Failed: " ++ s) -- not parsed
→ do -- zero or multiple args
n ← getProgName
putStrLn ("Usage: " ++ n ++ " <set-expr>")

Thus, from the command line:

> ./sets "{}+3+2-3+1?3"
OK: False

Of course, parsers can be expressed as another DSL; We will return to this
example in Sect. 3.3.
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3 Functional Programming for Embedded DSLs

Having looked around the design space a little, we now step back to consider
what it is about functional programming that makes it particularly convenient
for implementing embedded DSLs. After all, a good proportion of the work on
DSLs expressed in the functional paradigm focusses on embedded DSLs; and
conversely, most work on DSLs in other (such as OO) paradigms focusses on
standalone DSLs. Why is that? We contend that there are three main aspects of
modern functional programming that play a part: they are both useful for imple-
menting embedded DSLs, and absent from most other programming paradigms.
These are algebraic datatypes, higher-order functions, and (perhaps to a lesser
extent) lazy evaluation. We discuss each in turn, and illustrate with more simple
examples of embedded DSLs. Some parts are left as exercises.

3.1 Algebraic Datatypes

The deep embedding approach depends crucially on algebraic datatypes, which
are used to represent abstract syntax trees for programs in the language. Without
a lightweight mechanism for defining and manipulating new tree-like datatypes,
this approach becomes unworkably tedious.

Algebraic datatypes are extremely convenient for representing abstract syn-
tax trees within the implementation of a DSL. Operations and observers typi-
cally have simple recursive definitions, inductively defined over the structure of
the tree; optimisations and transformations are often simple rearrangements of
the tree—for example, rotations of tree nodes to enforce right-nesting of asso-
ciative operators.

In addition to this, algebraic datatypes are also extremely convenient for
making connections outside the DSL implementation. Often the DSL is one
inhabitant of a much larger software ecosystem; while an embedded implemen-
tation within a functional programming language may be the locally optimal
choice for this DSL, it may have to interface with other inhabitants of the ecosys-
tem, which for legacy reasons or because of other constraints require completely
different implementation paradigms. (For example, one might have a DSL for
financial contracts, interfacing with Microsoft Excel at the front end for ease
of use by domain specialists, and with monolithic C++ pricing engines at the
back end for performance.) Algebraic datatypes form a very useful marshalling
format for integration, parsed from strings as input and pretty-printed back to
strings as output.

Consider a very simple language of arithmetic expressions, involving integer
constants and addition. As a deeply embedded DSL, this can be captured by the
following algebraic datatype:

data Expr = Val Integer
| Add Expr Expr



Functional Programming for Domain-Specific Languages 11

Some people call this datatype Hutton’s Razor, because Graham Hutton has
been using it for years as a minimal vehicle for exploring many aspects of com-
pilation [13].

Exercises

1. Write an observer for the expression language, evaluating expressions as inte-
gers.

eval :: Expr → Integer

2. Write another observer, printing expressions as strings.

print :: Expr → String

3. Reimplement the expression language using a shallow embedding, such that
the interpretation is that of evaluations.

type Expr = Integer
val :: Integer → Expr
add :: Expr → Expr → Expr

4. Reimplement the expression language via a shallow embedding again, but
this time such that the interpretation is that of printing.

type Expr = String
val :: Integer → Expr
add :: Expr → Expr → Expr

5. Reimplement via a shallow embedding again, such that the interpretation
provides both evaluation and printing.

6. What interpretation of the shallow embedding provides the deep embedding?
Conversely, given the deep embedding, what additional computation is needed
to obtain the various interpretations we have used as shallow embeddings?

7. What if you wanted a third interpretation, say computing the size of an
expression? What if you wanted to allow ten different interpretations? What
about allowing for unforeseen future interpretations?

3.2 Generalised Algebraic Datatypes

The Expr DSL above is untyped, or rather “unityped”: there is only a single
type involved, namely integer expressions. Suppose that we want to represent
both integer- and Boolean-valued expressions:

data Expr = ValI Integer
| Add Expr Expr
| ValB Boolean
| And Expr Expr
| EqZero Expr
| If Expr Expr Expr
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The idea is that EqZero yields a Boolean value (whether its argument evaluates
to zero), and If should take a Boolean-valued expression as its first argument.
But what can we do for the evaluation function? Sometimes it should return an
integer, sometimes a Boolean. One simple solution is to make it return an Either
type:

eval :: Expr → Either Integer Bool
eval (ValI n) = Left n
eval (Add x y) = case (eval x , eval y) of (Left m,Left n) → Left (m + n)
eval (ValB b) = Right b
eval (And x y) = case (eval x , eval y) of (Right a,Right b) → Right (a ∧ b)
eval (EqZero x ) = case eval x of Left n → Right (n ≡ 0)
eval (If x y z ) = case eval x of Right b → if b then eval y else eval z

This is rather clumsy. For one thing, eval has become a partial function; there
are improper values of type Expr such as EqZero (ValB True) on which eval is
undefined. For a second, all the tagging and untagging of return types is a source
of inefficiency. Both of these problems are familiar symptoms of dynamic type
checking; if we could statically check the types instead, then we could rule out
ill-typed programs, and also abolish the runtime tags—a compile-time proof of
well-typedness prevents the former and eliminates the need for the latter.

A more sophisticated solution, and arguably The Right Way, is to use depen-
dent types, as discussed by Edwin Brady elsewhere in this Summer School. There
are various techniques one might use; for example, one might tuple values with
value-level codes for types, provide an interpretation function from codes to the
types they stand for, and carry around “proofs” that values do indeed inhabit
the type corresponding to their type code.

Haskell provides an intermediate, lightweight solution in the form of type
indexing, through so-called generalised algebraic datatypes or GADTs. Let us
rewrite the Expr datatype in an equivalent but slightly more repetitive form:

data Expr :: ∗ where
ValI :: Integer → Expr
Add :: Expr → Expr → Expr
ValB :: Bool → Expr
And :: Expr → Expr → Expr
EqZero :: Expr → Expr
If :: Expr → Expr → Expr → Expr

This form lists the signatures of each of the constructors; of course, they are all
constructors for the datatype Expr , so they all repeat the same return type Expr .
But this redundancy allows us some flexibility: we might allow the constructors
to have different return types. Specifically, GADTs allow the constructors of a
polymorphic datatype to have return types that are instances of the type being
returned, rather than the full polymorphic type.

In this case, we make Expr a polymorphic type, but only provide constructors
for values of type Expr Integer and Expr Bool , and not for other instances of the
polymorphic type Expr a.
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data Expr :: ∗ → ∗ where
ValI :: Integer → Expr Integer
Add :: Expr Integer → Expr Integer → Expr Integer
ValB :: Bool → Expr Bool
And :: Expr Bool → Expr Bool → Expr Bool
EqZero :: Expr Integer → Expr Bool
If :: Expr Bool → Expr a → Expr a → Expr a

We use the type parameter as an index: a term of type Expr a is an expression
that evaluates to a value of type a. Evaluation becomes much simpler:

eval :: Expr a → a
eval (ValI n) = n
eval (Add x y) = eval x + eval y
eval (ValB b) = b
eval (And x y) = eval x ∧ eval y
eval (EqZero x ) = eval x ≡ 0
eval (If x y z ) = if eval x then eval y else eval z

As well as being simpler, it is also safer (there is no possibility of ill-typed
expressions, and eval is a total function again) and swifter (there are no runtime
Left and Right tags to manipulate any more).

Exercises

8. The type parameter a in Expr a is called a phantom type: it does not represent
contents, as the type parameter in a container datatype such as List a does,
but some other property of the type. Indeed, there need be no Boolean inside
an expression of type Expr Bool ; give an expression of type Expr Bool that
contains no Bools. Is there always an Integer inside an expression of type
Expr Integer?

9. How do Exercises 2–7 work out in terms of GADTs?

3.3 Higher-Order Functions

Deep embeddings lean rather heavily on algebraic datatypes. Conversely, shallow
embeddings depend on higher-order functions—functions that accept functions
as arguments or return them as results—and more generally on functions as first-
class citizens of the host language. A simple example where this arises is if we
were to extend the Expr DSL to allow for let bindings and variable references:

val :: Integer → Expr
add :: Expr → Expr → Expr
var :: String → Expr
bnd :: (String ,Expr) → Expr → Expr

The idea is that bnd represents let-bindings and var represents variable refer-
ences, so that
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bnd ("x", val 3) (add (var "x") (var "x"))

corresponds to the Haskell expression let x = 3 in x + x . The standard structure
of an evaluator for languages with such bindings is to pass in and manipulate
an environment of bindings from variables to values (not to expressions):

type Env = [(String , Integer)]
eval :: Expr → Env → Integer

The environment is initially empty, but is augmented when evaluating the body
of a let expression. With a shallow embedding, the interpretation is the evalu-
ation function:

type Expr = Env → Integer

That is, expressions are represented not as integers, or strings, or pairs, but as
functions (from environments to values).

Exercises

10. Complete the definition of the Expr DSL with let bindings, via a shallow
embedding whose interpretation provides evaluation in an environment.

11. Look again at Exercise 7: can we define a shallow embedding that allows for
unforeseen future interpretations? Hint: consider a ‘generic’ or ‘parametrised’
interpretation, as a higher-order function, which can be instantiated to yield
evaluation, or printing, or any of a number of other concrete interpretations.
What is common to the evaluation and printing interpretations above, and
what is specific? What kinds of function is it sensible to consider as ‘inter-
pretations’, and what should be ruled out?

A larger and very popular example of shallow embeddings with functional
interpretations is given by parser combinators. Recall the type Parsera of parsers
recognising values of type a from Sect. 2.5; such a parser is roughly a function
of type String → a. But we will want to combine parsers sequentially, so it is
important that a parser also returns the remainder of the string after recognising
a chunk; so it would be better to use functions of type String → (a,String). But
we will also want to allow parsers that fail to match, so that we can try a series of
alternatives until one matches, and more generally parsers that match in multiple
ways; so it is better still to return a list of results:

type Parser a = String → [(a,String)]

(Technically, these are more than just parsers, because they combine semantic
actions with recognising and extracting structure from strings. But the termi-
nology is well established.)

The runParser function introduced in Sect. 2.5 takes such a parser and an
input string, and returns either a successful result or an error message:

runParser :: Parser a → String → Either a String
runParser p s = case p s of
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[(a, s)] → if all isSpace s then Left a
else Right ("Leftover input: " ++ s)

[ ] → Right "No parse"
x → Right ("Ambiguous, with leftovers " ++ show (map snd x ))

If the parser yields a single match, and any leftover input is all whitespace,
we return that value; if there is a nontrivial remainder, no match, or multiple
matches, we return an error message.

Such parsers can be assembled from the following small set of combinators:

success :: a → Parser a
failure :: Parser a
(〈∗〉) :: Parser (a → b) → Parser a → Parser b
(〈|〉) :: Parser a → Parser a → Parser a
match :: (Char → Bool) → Parser Char

In other words, these are the operators of a small DSL for parsers. The intention
is that: parser success x always succeeds, consumes no input, and returns x ;
failure always fails; p〈∗〉q is a kind of sequential composition, matching according
to p (yielding a function) and then on the remaining input to q (yielding an
argument), and applying the function to the argument; p 〈|〉q is a kind of choice,
matching according to p or to q ; and match b matches the single character at
the head of the input, if this satisfies b, and fails if the input is empty or the
head does not satisfy.

We can implement the DSL via a shallow embedding, such that the interpre-
tation is the type Parser a. Each operator has a one- or two-line implementation:

success :: a → Parser a
success x s = [(x , s)]

failure :: Parser a
failure s = [ ]

(〈∗〉) :: Parser (a → b) → Parser a → Parser b
(p 〈∗〉 q) s = [(f a, s ′′) | (f , s ′) ← p s, (a, s ′′) ← q s ′ ]

(〈|〉) :: Parser a → Parser a → Parser a
(p 〈|〉 q) s = p s ++ q s

match :: (Char → Bool) → Parser Char
match q [ ] = [ ]
match q (c : s) = if q c then [(c, s)] else [ ]

From the basic operators above, we can derive many more, without depending
any further on the representation of parsers as functions. In each of the following
exercises, the answer is another one- or two-liner.
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Exercises

12. Implement two variations of sequential composition, in which the first (respe-
ctively, the second) recognised value is discarded. These are useful when one
of the recognised values is mere punctuation.

(∗〉) :: Parser a → Parser b → Parser b
(〈∗) :: Parser a → Parser b → Parser a

13. Implement iteration of parsers, so-called Kleene plus (some) and Kleene star
(many), which recognise one or more (respectively, zero or more) occurrences
of what their argument recognises.

some,many :: Parser a → Parser [a ]

14. Implement a whitespace parser, which recognises a non-empty section of
whitespace characters (you might find the Haskell standard library function
Data.Char .isSpace helpful). Implement a variation ows for which the whites-
pace is optional. For both of these, we suppose that the actual nature of the
whitespace is irrelevant, and should be discarded.

whitespace, ows :: Parser ()

15. Implement a parser token, which takes a string and recognises exactly and
only that string at the start of the input. Again, we assume that the string
so matched is irrelevant, since we know precisely what it will be.

token :: String → Parser ()

16. Now implement the parser program from Sect. 2.5, which recognises a “set
program”. A set program starts with the empty set {}, has zero or more
insert (+) and delete (-) operations, and a mandatory final member (?) oper-
ation. Each operation is followed by an integer argument. Optional whites-
pace is allowed in all sensible places.

program :: Parser Bool

3.4 Lazy Evaluation

A third aspect of modern functional programming that lends itself to embedded
DSLs—albeit, perhaps, less important than algebraic datatypes and higher-order
functions—is lazy evaluation. Under this strategy, evaluation is demand-driven,
and function arguments are not evaluated until their value is needed to determine
the next step (for example, to determine which of multiple clauses of a definition
to apply); and moreover, once an argument is evaluated, that value is preserved
and reused rather than being discarded and recomputed for subsequent uses.

One nice consequence of lazy evaluation is that infinite data structures work
just as well as finite ones: as long as finite parts of the result of a function can
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be constructed from just finite parts of the input, the complete infinite data
structure may not need ever to be constructed. This is sometimes convenient for
a shallow embedding, allowing one to use a datatype of infinite data structures
for the domain of interpretation. This can lead to simpler programs than would
be the case if one were restricted to finite data structures—in the latter case,
some terminating behaviour has to be interwoven with the generator, whereas
in the former, the two can be quite separate. But we will not study infinite data
structures further in this article.

A second consequence of lazy evaluation manifests itself even in finite data:
if one component of a result is not used anywhere, it is not evaluated. This is
very convenient for shallow embeddings of DSLs with multiple observers. The
interpretation is then as a tuple containing all the observations of a term; but if
some of those observations are not used, they need not be computed.

Exercises

17. Review Exercise 5, which was to define a shallow embedding interpreted as a
pair, providing both evaluation and printing. Convince yourself that if only
one component of the pair is demanded, only that component gets computed.

18. Here is an alternative technique for allowing for multiple observers with a
shallow embedding. It is presented here using Haskell type classes; but the
general idea is about having a data abstraction with an interface and a
choice of implementations, and doing abstract interpretation in one of those
implementations. For simplicity, let us return to Hutton’s Razor

type Expr = ...
val :: Integer → Expr
add :: Expr → Expr → Expr

with two desired observers

eval :: Expr → Integer
print :: Expr → String

The trick is to define Expr as a type class, the class of those types suitable as
representations of expressions according to this little DSL. What operations
must a type support, if it is to be suitable for representing expressions? It
needs to have at least the val and add operations:

class Expr a where
val :: Integer → a
add :: a → a → a

Of course, it is easy to define these two operations on integers:

instance Expr Integer where
val n = n
add x y = x + y
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It is also easy to define them on strings:

instance Expr String where
val n = show n
add x y = "(" ++ x ++ "+" ++ y ++ ")"

Now, a term in the expression DSL has a polymorphic type: it can be inter-
preted in any type in the type class Expr .

expr :: Expr a ⇒ a
expr = add (val 3) (val 4)

Then evaluating and printing expressions amounts to interpreting the poly-
morphic type at the appropriate instance:

eval Expr :: Integer
eval Expr = expr

print Expr :: String
print Expr = expr

Try this approach out. (You will find that you need some language extensions
for the String instance, but the Haskell type checker should guide you in the
right direction.) It is a bit of an idiosyncratic way of implementing data
abstraction: the implementation is chosen implicitly by fixing a type, rather
than explicitly by passing a parameter. This is a slight problem, if you want
two different interpretations on the same type, such as compact and verbose
printings. What can you do to work around that?

4 An Extended Example: Diagrams

We now turn to a larger example of an embedded DSL, inspired by Brent
Yorgey’s diagrams project [5] for two-dimensional diagrams. That project imple-
ments a very powerful language which Yorgey does not name, but which we will
call Diagrams. But it is also rather a large language, so we will not attempt to
cover the whole thing; instead, we build a much simpler language in the same
spirit. The diagrams project does, however, provide a useful backend to output
Scalable Vector Graphics (SVG) files, which we will borrow to save ourselves
from having to reinvent one.

4.1 Shapes, Styles, and Pictures

The basics of our diagram DSL can be expressed in three simpler sublanguages,
for shapes, styles, and pictures. We express them first via deep embedding. First,
there are primitive shapes—as a language, these are not very interesting, because
they are non-recursive.
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data Shape
= Rectangle Double Double
| Ellipse Double Double
| Triangle Double

The parameters of a Rectangle specify its width and height; those of an Ellipse
its x- and y-radii. A Triangle is equilateral, with its lowest edge parallel to the
x-axis; the parameter is the length of the side.

Then there are drawing styles. A StyleSheet is a (possibly empty) sequence
of stylings, each of which specifies fill colour, stroke colour, or stroke width. (The
defaults are for no fill, and very thin black strokes.)

type StyleSheet = [Styling ]
data Styling

= FillColour Col
| StrokeColour Col
| StrokeWidth Double

Here, colours are defined in an external library, which among other things pro-
vides a large number of colour constants named according to the W3C SVG
Recommendation [14, Sect. 4.4].

type Col = ...
red , blue, green, yellow , brown, black ... ::Col

Finally, pictures are arrangements of shapes: individual shapes, with styling; or
one picture above another, or one beside another. For simplicity, we specify that
horizontal and vertical alignment of pictures is by their centres.

data Picture
= Place StyleSheet Shape
| Above Picture Picture
| Beside Picture Picture

For example, here is a little stick figure of a woman in a red dress and blue
stockings.

figure :: Picture
figure = Place [StrokeWidth 0.1,FillColour bisque ] (Ellipse 3 3) ‘Above‘

Place [FillColour red ,StrokeWidth 0] (Rectangle 10 1) ‘Above‘
Place [FillColour red ,StrokeWidth 0] (Triangle 10) ‘Above‘
(Place [FillColour blue,StrokeWidth 0] (Rectangle 1 5) ‘Beside‘
Place [StrokeWidth 0] (Rectangle 2 5) ‘Beside‘
Place [FillColour blue,StrokeWidth 0] (Rectangle 1 5)) ‘Above‘

(Place [FillColour blue,StrokeWidth 0] (Rectangle 2 1) ‘Beside‘
Place [StrokeWidth 0] (Rectangle 2 1) ‘Beside‘
Place [FillColour blue,StrokeWidth 0] (Rectangle 2 1))
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The intention is that it should be drawn like this:

(Note that blank spaces can be obtained by rectangles with zero stroke width.)

4.2 Transformations

In order to arrange pictures, we will need to be able to translate them. Later on,
we will introduce some other transformations too; with that foresight in mind,
we introduce a simple language of transformations—the identity transformation,
translations, and compositions of these.

type Pos = Complex Double

data Transform
= Identity
| Translate Pos
| Compose Transform Transform

For simplicity, we borrow the Complex type from the Haskell libraries to repre-
sent points in the plane; the point with coordinates (x, y) is represented by the
complex number x :+y . Complex is an instance of the Num type class, so we get
arithmetic operations on points too. For example, we can apply a Transform to
a point:

transformPos :: Transform → Pos → Pos
transformPos Identity = id
transformPos (Translate p) = (p+)
transformPos (Compose t u) = transformPos t ◦ transformPos u

Exercises

19. Transform is represented above via a deep embedding, with a separate
observer function transformPos. Reimplement Transform via a shallow
embedding, with this sole observer.
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4.3 Simplified Pictures

As it happens, we could easily translate the Picture language directly into
Diagrams: it has equivalents of Above and Beside, for example. But if we were
“executing” our pictures in a less sophisticated setting—for example, if we had
to implement the SVG backend from first principles—we would eventually have
to simplify recursively structured pictures into a flatter form.

Here, we flatten the hierarchy into a non-empty sequence of transformed
styled shapes:

typeDrawing = [(Transform,StyleSheet ,Shape)]

In order to simplify alignment by centres, we will arrange that each simplified
Drawing is itself centred: that is, the combined extent of all translated shapes
will be centred on the origin. Extents are represented as pairs of points, for the
lower left and upper right corners of the orthogonal bounding box.

type Extent = (Pos,Pos)

The crucial operation on extents is to compute their union:

unionExtent :: Extent → Extent → Extent
unionExtent (llx1 :+ lly1, urx 1 :+ ury1) (llx 2 :+ lly2, urx 2 :+ ury2)

= (min llx1 llx2 :+ min lly1 lly2,max urx1 urx 2 :+ max ury1 ury2)

Now, the extent of a drawing is the union of the extents of each of its translated
shapes, where the extent of a translated shape is the translation of the two
corners of the extent of the untranslated shape:

drawingExtent :: Drawing → Extent
drawingExtent = foldr1 unionExtent ◦ map getExtent where

getExtent (t , , s) = let (ll , ur) = shapeExtent s
in (transformPos t ll , transformPos t ur)

(You might have thought initially that since all Drawings are kept centred,
one point rather than two serves to define the extent. But this does not work:
in computing the extent of a whole Picture, of course we have to translate
its constituent Drawings off-centre.) The extents of individual shapes can be
computed using a little geometry:

shapeExtent :: Shape → Extent
shapeExtent (Ellipse xr yr) = (−(xr :+ yr), xr :+ yr)
shapeExtent (Rectangle w h) = (−(w/2 :+ h/2), w/2 :+ h/2)
shapeExtent (Triangle s) = (−(s/2 :+

√
3 × s/4), s/2 :+

√
3 × s/4)

Now to simplify Pictures into Drawings, via a straightforward traversal over
the structure of the Picture.



22 J. Gibbons

drawPicture :: Picture → Drawing
drawPicture (Place u s) = drawShape u s
drawPicture (Above p q) = drawPicture p ‘aboveD ‘ drawPicture q
drawPicture (Beside p q) = drawPicture p ‘besideD ‘ drawPicture q

All the work is in the individual operations. drawShape constructs an atomic
styled Drawing , centred on the origin.

drawShape :: StyleSheet → Shape → Drawing
drawShape u s = [(Identity , u, s)]

aboveD and besideD both work by forming the “union” of the two child Drawings,
but first translating each child by the appropriate amount—an amount calcu-
lated so as to ensure that the resulting Drawing is again centred on the origin.

aboveD , besideD :: Drawing → Drawing → Drawing
pd ‘aboveD ‘ qd = transformDrawing (Translate (0 :+ qury)) pd ++

transformDrawing (Translate (0 :+ plly)) qd where
(pllx :+ plly , pur) = drawingExtent pd
(qll , qurx :+ qury) = drawingExtent qd

pd ‘besideD ‘ qd = transformDrawing (Translate (qllx :+ 0)) pd ++
transformDrawing (Translate (purx :+ 0)) qd where

(pll , purx :+ pury) = drawingExtent pd
(qllx :+ qlly , qur) = drawingExtent qd

This involves transforming the child Drawings; but that is easy, given our rep-
resentation.

transformDrawing :: Transform → Drawing → Drawing
transformDrawing t = map (λ(t ′, u, s) → (Compose t t ′, u, s))

Exercises

20. Add Square and Circle to the available Shapes; for simplicity, you can imple-
ment these using rect and ellipseXY .

21. Add Blank to the available shapes; implement this as a rectangle with stroke
width zero.

22. Centring and alignment, as described above, are only approximations,
because we do not take stroke width into account. How would you do so?

23. Add InFrontOf ::Picture → Picture → Picture as an operator to the Picture
language, for placing one Picture in front of (that is, on top of) another.
Using this, you can draw a slightly less childish-looking stick figure, with
the “arms” overlaid on the “body”:
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24. Add FlipV ::Picture → Picture as an operator to the Picture language, for
flipping a Picture vertically (that is, from top to bottom, about a horizontal
axis). Then you can draw this chicken:

You will need to add a corresponding operator ReflectY to the Transform
language; you might note that the conjugate function on complex numbers
takes x :+ y to x :+ (−y). Be careful in computing the extent of a flipped
picture!

25. Picture is represented above via a deep embedding, with a separate observer
function drawPicture. Reimplement Picture via a shallow embedding, with
this sole observer.

4.4 Generating SVG

The final step is to assemble our simplified Drawing into some expression in the
Diagrams language. What we need are the following:

– A type for representing diagrams.

typeDiagramSVG = ...

(This is actually a synonym for a specialisation of a more flexible Diagrams
type from Yorgey’s library.)

– Primitives of type DiagramSVG :

rect :: Double → Double → DiagramSVG
ellipseXY :: Double → Double → DiagramSVG
eqTriangle :: Double → DiagramSVG
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– An operator for superimposing diagrams:

atop :: DiagramSVG → DiagramSVG → DiagramSVG

– Transformations on diagrams:

translate ◦ r2 :: (Double,Double) → DiagramSVG → DiagramSVG
reflectY :: DiagramSVG → DiagramSVG

(The latter is needed for Exercise 24.)
– Functions for setting fill colour, stroke colour, and stroke width attributes:

fc :: Col → DiagramSVG → DiagramSVG
lc :: Col → DiagramSVG → DiagramSVG
lw :: Double → DiagramSVG → DiagramSVG

– A wrapper function that writes a diagram out in SVG format to a specified
file:

writeSVG :: FilePath → DiagramSVG → IO ()

Then a Drawing can be assembled into a DiagramSVG by laying one translated
styled shape on top of another:

assemble :: Drawing → DiagramSVG
assemble = foldr1 atop ◦ map draw where
draw (t , u, s) = transformDiagram t (diagramShape u s)

Note that Shapes earlier in the list appear “in front” of those later; you will need
to use this fact in solving Exercise 23.

A StyleSheet represents a sequence of functions, which are composed into one
styling function:

applyStyleSheet :: StyleSheet → (DiagramSVG → DiagramSVG)
applyStyleSheet = foldr (◦) id ◦ map applyStyling

applyStyling :: Styling → DiagramSVG → DiagramSVG
applyStyling (FillColour c) = fc c
applyStyling (StrokeColour c) = lc c
applyStyling (StrokeWidth w) = lw w

A single styled shape is drawn by applying the styling function to the corre-
sponding atomic diagram:

diagramShape :: StyleSheet → Shape → DiagramSVG
diagramShape u s = shape (applyStyleSheet u) s where

shape f (Ellipse xr yr) = f (ellipseXY xr yr)
shape f (Rectangle w h) = f (rect w h)
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shape f (Triangle s) = f (translate (r2 (0,−y)) (eqTriangle s))
where y = s ×

√
3/12

(The odd translation of the triangle is because we place triangles by their centre,
but Diagrams places them by their centroid.)

A transformed shape is drawn by transforming the diagram of the underlying
shape.

transformDiagram :: Transform → DiagramSVG → DiagramSVG
transformDiagram Identity = id
transformDiagram (Translate (x :+ y)) = translate (r2 (x , y))
transformDiagram (Compose t u) = transformDiagram t ◦

transformDiagram u

And that is it! (You can look at the source file Shapes.lhs for the definition of
writeSVG , and some other details.)

Exercises

26. In Exercise 19, we reimplemented Transform as a shallow embedding, with
the sole observer being to transform a point. This does not allow us to
apply the same transformations to DiagramSVG objects, as required by
the function transformDiagram above. Extend the shallow embedding of
Transform so that it has two observers, for transforming both points and
diagrams.

27. A better solution to Exercise 26 would be to represent Transform via a shal-
low embedding with a single parametrised observer, which can be instanti-
ated at least to the two uses we require. What are the requirements on such
instantiations?

28. Simplifying a Picture into a Drawing is a bit inefficient, because we have
to continually recompute extents. A more efficient approach would be to
extend the Drawing type so that it caches the extent, as well as storing the
list of shapes. Try this.

29. It can be a bit painful to specify a complicated Picture with lots of Shapes all
drawn in a common style—for example, all blue, with a thick black stroke—
because those style settings have to be repeated for every single Shape.
Extend the Picture language so that Pictures too may have StyleSheets;
styles should be inherited by children, unless they are overridden.

30. Add an operator Tile to the Shape language, for square tiles with markings
on. It should take a Double parameter for the length of the side, and a list
of lists of points for the markings; each list of points has length at least
two, and denotes a path of straight-line segments between those points. For
example, here is one such pattern of markings:

markingsP :: [[Pos ]]
markingsP = [[(4 :+ 4), (6 :+ 0)],

[(0 :+ 3), (3 :+ 4), (0 :+ 8), (0 :+ 3)],
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[(4 :+ 5), (7 :+ 6), (4 :+ 10), (4 :+ 5)],
[(11 :+ 0), (10 :+ 4), (8 :+ 8), (4 :+ 13), (0 :+ 16)],
[(11 :+ 0), (14 :+ 2), (16 :+ 2)],
[(10 :+ 4), (13 :+ 5), (16 :+ 4)],
[(9 :+ 6), (12 :+ 7), (16 :+ 6)],
[(8 :+ 8), (12 :+ 9), (16 :+ 8)],
[(8 :+ 12), (16 :+ 10)],
[(0 :+ 16), (6 :+ 15), (8 :+ 16), (12 :+ 12), (16 :+ 12)],
[(10 :+ 16), (12 :+ 14), (16 :+ 13)],
[(12 :+ 16), (13 :+ 15), (16 :+ 14)],
[(14 :+ 16), (16 :+ 15)]
]

In Shapes.lhs, you will find this definition plus three others like it. They
yield tile markings looking like this:

You can draw such tiles via the function

tile :: [[Pos ]] → DiagramSVG

provided for you. Also add operators to the Picture and Transform lan-
guages to support scaling by a constant factor and rotation by a quarter-
turn anticlockwise, both centred on the origin. You can implement these on
the DiagramSVG type using two Diagrams operators:

scale :: Double → DiagramSVG → DiagramSVG
rotateBy (1/4) :: DiagramSVG → DiagramSVG

Then suitable placements, rotations, and scalings of the four marked tiles
will produce a rough version of Escher’s “Square Limit” print, as shown in
the left-hand image below:
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This construction was explored by Peter Henderson in a famous early paper
on functional geometry [15,16]; I have taken the data for the markings
from a note by Frank Buß [17]. The image on the right is the real “Square
Limit” [18].

31. Morally, “Square Limit” is a fractal image: the recursive decomposition
can be taken ad infinitum. Because Haskell uses lazy evaluation, that is
not an insurmountable obstacle. The datatype Picture includes also infinite
terms; and because Diagrams is an embedded DSL, you can use a recursive
Haskell definition to define an infinite Picture. You cannot render it directly
to SVG, though; that would at best yield an infinite SVG file. But still,
you can prune the infinite picture to a finite depth, and then render the
result. Construct the infinite Picture. (You will probably need to refactor
some code. Note that you cannot compute the extent of an infinite Picture
either—how can you get around that problem?)
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Abstract. FastFlow is an open source, structured parallel programming
framework originally conceived to support highly efficient stream par-
allel computation while targeting shared memory multi cores. Its effi-
ciency mainly comes from the optimized implementation of the base
communication mechanisms and from its layered design. FastFlow even-
tually provides the parallel applications programmers with a set of ready-
to-use, parametric algorithmic skeletons modeling the most common
parallelism exploitation patterns. The algorithmic skeleton provided by
FastFlow may be freely nested to model more and more complex paral-
lelism exploitation patterns. This tutorial describes the “core” FastFlow,
that is the set of skeletons supported since version 1.0 in FastFlow, and
outlines the recent advances aimed at (i) introducing new, higher level
skeletons and (ii) targeting networked multi cores, possibly equipped
with GPUs, in addition to single multi/many core processing elements.

1 Introduction

FastFlow is an algorithmic skeleton (see Fig. 1) programming environment devel-
oped and maintained by researchers at the Dept. of Computer Science of the
Univ. of Pisa and Univ. of Torino [1]. A number of different papers and tech-
nical reports discuss the different features of this programming environment
[3,11,16], the kind of results achieved while parallelizing different applications
[4,12,14,15,22] and the usage of FastFlow as software accelerator, i.e. as a mech-
anisms suitable to exploit unused cores of a multi core architecture to speedup
execution of sequential code [7,8]. This work represents instead a tutorial aimed
at instructing programmers in the usage of the FastFlow skeletons and in the
typical FastFlow programming techniques.

Therefore, after recalling the FastFlow design principles in Sect. 2, in Sect. 3
we describe the (trivial) installation procedure. Then, in Sects. 4 to 9 we intro-
duce the main features of the FastFlow programming framework: how to imple-
ment a simple “hello world” program (Sect. 4), how to manage streams (Sect. 5),
how to wrap sequential code (Sect. 6), how to use explicit sharing (Sect. 7) and
how to use pipelines and farm (Sects. 8 and 9). Then Sect. 10 deals with Fast-
Flow usage as software accelerator, Sect. 11 discusses how FastFlow skeletons

This work has been partially supported by FP7 STREP project “ParaPhrase”
(www.paraphrase-ict.eu).

c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 29–75, 2015.
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Fig. 1. Algorithmic skeletons

may be nested and Sect. 12 discusses how to use “cyclic” skeletons. Eventually
Sect. 13 outlines the main FastFlow RTS accessory routines and Sect. 15 out-
lines the major improvements to the “core” FastFlow currently being designed
and implemented (high level patterns, targeting heterogeneous and distributed
architectures, refactoring parallel programs).

2 Design Principles

FastFlow1 has been designed to provide programmers with efficient parallelism
exploitation patterns suitable to implement (fine grain) stream parallel applica-
tions. In particular, FastFlow has been designed

– to promote high-level parallel programming, and in particular skeletal pro-
gramming (i.e. pattern-based explicit parallel programming), and

– to promote efficient programming of applications for multi-core.

1 See also the FastFlow home page at http://mc-fastflow.sourceforge.net.

http://mc-fastflow.sourceforge.net
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Fig. 2. Layered FastFlow design

The whole programming framework has been incrementally developed according
to a layered design on top of Pthread/C++ standard programming framework
and targets shared memory multi core architectures (see Fig. 2).

A first layer, the Simple streaming networks layer, provides very efficient
lock-free Single Producers Single Consumer (SPSC) queues on top of the Pthread
standard threading model [9].

A second layer, the Arbitrary streaming networks layer, provides lock-
free implementations for Single Producer Multiple Consumer (SPMC), Multiple
Producer Single Consumer (MPSC) and Multiple Producer Multiple Consumer
(MPMC) queues on top of the SPSC implemented in the first layer.

Eventually, the third layer, the Streaming Networks Patterns layer, pro-
vides common stream parallel patterns. The primitive patterns include pipeline
and farms. Simple specialization of these patterns may be used to implement
more complex patterns, such as divide and conquer, map and reduce patterns.

Parallel application programmers are assumed to use FastFlow directly exploit-
ing the parallel patterns available in the Streaming Network Patterns level. In
particular:

– defining sequential concurrent activities, by sub classing a proper FastFlow
class, the ff node class, and

– building complex stream parallel patterns by hierarchically composing sequen-
tial concurrent activities, pipeline patterns, farm patterns and their “special-
ized” versions implementing more complex parallel patterns.

The ff node sequential concurrent activity abstraction provides suitable ways
to define a sequential activity that (a) processes data items appearing on a
single input channel and (b) delivers the related results onto a single output
channel. Particular cases of ff nodes may be simply implemented with no input
channel or no output channel. The former is used to install a concurrent activity
generating an output stream (e.g. from data items read from keyboard or from
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a disk file); the latter to install a concurrent activity consuming an input stream
(e.g. to present results on a video or to store them on disk).

The pipeline pattern may be used to implement sequences of streaming net-
works S1 → . . . → Sk with Si receiving input from Si−1 and delivering outputs
to Si+1. The generic stage Si may be either a sequential activity or another
parallel pattern. When the pipeline is used standalone (i.e. not as component
of another skeleton) S1 must be a stream generator activity and Sk a stream
consuming one.

The farm pattern models different embarrassingly (stream) parallel con-
structs. In its simplest form, it models a master/worker pattern with workers
producing no stream data items. Rather the worker consolidate results directly
in memory. More complex forms including either an emitter, or a collector of
both an emitter and a collector implement more sophisticated patterns:
– by adding an emitter, the user may specify policies, different from the default

round robin one, to schedule tasks from the farm input stream to the workers;
– by adding a collector, the user may use workers producing some output values,

which are gathered and delivered to the farm output stream by the collector
component. Different policies may be implemented on the collector to gather
data from the worker and deliver them to the output stream.

In addition, a feedback channel may be added to a farm, moving output results
back from the collector (or from the collection of workers in case no collector is
specified) back to the emitter input channel.

Specialized versions of the farm may be used to implement more complex
patterns, such as:
– divide and conquer, using a farm with feedback loop and proper stream items

tagging (input tasks, subtask results, results)
– MISD (multiple instruction single data, that is something computing f1(xi),

. . . , fk(xi) out of each xi appearing onto the input stream) pattern, using a
farm with an emitter implementing a broadcast scheduling policy

– map, using an emitter partitioning an input collection and scheduling one
partition per worker, and a collector gathering sub-partitions results from the
workers and delivering a collection made out of all these results to the output
stream.

Actually, in the new versions of FastFlow—built on top of the “core FastFlow”
described here—the divide&conquer and the map skeletons have been imple-
mented in proper classes and they are provided to the application programmers
as high level skeletons. It is worth pointing out the different usage of the core
FastFlow skeletons. On the one hand, when using plain pipeline and farms (with
or without emitters and collectors) to model staged or embarrassingly paral-
lel computations actually these programming abstractions may be classified as
“skeletons” according to the traditional definition of algorithmic skeletons. When
using specialized versions of the farm streaming network to implement different
parallel patterns, instead, the core FastFlow farm should be considered a kind fo
“pattern template”, being used to build new patterns rather than to provided a
primitive skeletons.
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2.1 FastFlow Usage Models

Concerning the usage of FastFlow to support parallel application development
on shared memory multi cores, the framework provides two abstractions of struc-
tured parallel computation:

– a skeleton program abstraction used to implement applications completely
modeled according to the algorithmic skeleton concepts. When using this
abstraction, the programmer writes a parallel application by providing the
business logic code, wrapped into proper ff node subclasses, a skeleton (com-
position) modeling the parallelism exploitation pattern of the application and
a single command starting the skeleton computation and awaiting for its ter-
mination.

– an accelerator abstraction used to parallelize (and therefore accelerate) only
some parts of an existing application. In this case, the programmer provides
a skeleton (composition) which is run on the “spare” cores of the architec-
ture and implements a parallel version of part of the business logic of the
application, e.g. the one computing a given f(x). The skeleton (composition)
will have its own input and output channels. When an f(xj) has actually to
be computed within the application, rather than writing proper code to call
to the sequential f code, the programmer may insert code asynchronously
“offloading” xj to the accelerator skeleton. Later on, when the result of f(xj)
is to be used, some code “reading” accelerator result may be used to retrieve
the accelerator computed values.

This second abstraction fully implements the “minimal disruption” principle
stated by Cole in his skeleton manifesto [20], as the programmer using the accel-
erator is only required to program a couple of offload/get result primitives
in place of the single . . . = f(x) function call statement (see Sect. 10).

3 Installation

Before entering the details of how FastFlow may be used to implement efficient
stream parallel (and not only) programs on shared memory multi core architec-
tures, let’s have a look at how FastFlow may be installed2. FastFlow is provided
as a set of header files. Therefore the installation process is trivial, as it only
requires to download the last version of the FastFlow source code from Source-
Forge (http://sourceforge.net/projects/mc-fastflow/) by using svn:

svn co https://svn.code.sf.net/p/mc-fastflow/code/fastflow

Once the code has been downloaded, the directory containing the ff subdirectory
with the FastFlow header files should be named in the -I flag of g++, such that
the header files may be correctly found.
2 We only detail instructions needed to install FastFlow on Linux/Unix/BSD machines

here. A Windows port of FastFlow exist, that requires slightly different steps for the
installation.

http://sourceforge.net/projects/mc-fastflow/
https://svn.code.sf.net/p/mc-fastflow/code/fastflow
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Take into account that, being FastFlow provided as a set of .hpp source files,
the -O3 switch is fundamental to obtain good performances. Compiling with
no -O3 compiler flag will lead to poor performances because the run-time code
will not be optimized by the compiler. Also, remember that the correct com-
pilation of FastFlow programs requires to link the pthread library (-lpthread
flag). Sample makefiles are provided both within the $FF ROOT/tests and the
$FF ROOT/examples directories in the source distribution.

4 Hello World in FastFlow

As all programming frameworks tutorials, we start with a Hello world code,
that is a program simply printing a string onto the screen. We first discuss how
to implement it sequentially, then we introduce a pipeline skeleton and we show
how two stages may be used to print the components of a string in parallel.

In order to implement our sequential Hello world program, we use the fol-
lowing code, that uses a single stage pipeline:

1 #include <iostream>
2 #include < f f / p i p e l i n e . hpp>
3
4 using namespace f f ;
5
6 class Stage1 : public f f n od e {
7 public :
8
9 void ∗ svc (void ∗ task ) {

10 std: : cout << ”He l lo world ” << std: : endl ;
11 return NULL;
12 }
13 } ;
14
15 int main ( int argc , char ∗ argv [ ] ) {
16
17 f f p i p e l i n e pipe ;
18 pipe . add stage (new Stage1 ( ) ) ;
19
20 i f ( pipe . run and wait end ( )<0) {
21 e r r o r ( ” running p i p e l i n e \n” ) ;
22 return −1;
23 }
24
25 return 0 ;
26 }

Line 2 includes all what’s needed to compile a FastFlow program just using a
pipeline pattern and line 4 instructs the compiler to resolve names looking (also)
in the ff namespace. Lines 6 to 13 host the application business logic code,
wrapped into a class sub classing ff node. The void * svc(void *) method3

wraps the body of the concurrent activity. It is called every time the concurrent
activity is given a new data item from its input stream. The input stream data
item is passed through the svc input void * parameter. The result of the single
invocation of the concurrent activity body is passed back to the FastFlow runtime
returning the void * result. In case a NULL is returned, the concurrent activity
3 We use the term svc as a shortcut for “service”.
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actually terminates itself. The application main only hosts the code needed to
setup the FastFlow streaming network and to start the skeleton (composition)
computation: lines 17 and 18 declare a pipeline pattern (line 17) and insert
a single stage (line 18) in the pipeline. Line 20 starts the computation of the
skeleton program and awaits for skeleton computation termination. In case of
errors the run and wait end() call returns a negative number (according to the
Unix/Linux syscall conventions).

When the program is run, the FastFlow RTS accomplishes to start the pipeline.
In turn the first stage is started. When the stage svc returns a NULL, the FastFlow
RTS immediately terminates it and the whole program terminates.

If we compile and run the program, we get the following output:

1 f f s r c $ g++ −I $FF ROOT he l lowor ldS imple . cpp −o h e l l o −lp thread
2 f f s r c $ . / h e l l o
3 He l lo world
4 f f s r c $

There is nothing parallel here, however. The single pipeline stage is run just once
and there is nothing else, from the programmer viewpoint, running in parallel.

A more interesting Hello World program may be implemented using a two
stage pipeline where the first stage prints the “Hello” and the second one, after
getting the results of the computation of the first one, prints “world”. In order
to implement this behavior, we have to write two sequential concurrent activities
and to use them as stages in a pipeline. Additionally, we have to send something
out as a result from the first stage to the second stage. Let’s assume we just send
the string with the word to be printed. The code may be written as follows:
1 #include <iostream>
2 #include < f f / p i p e l i n e . hpp>
3
4 using namespace f f ;
5
6 class Stage1 : public f f n od e {
7 public :
8
9 void ∗ svc (void ∗ task ) {

10 std: : cout << ”He l lo ” << std: : endl ;
11 char ∗ p = new char [ 1 0 ] ;
12 s t r cpy (p , ”World” ) ;
13 s l e ep (1) ;
14 return ( ( void ∗)p) ;
15 }
16 } ;
17
18 class Stage2 : public f f n od e {
19 public :
20
21 void ∗ svc (void ∗ task ) {
22 std: : cout << ( ( char ∗) task ) << std: : endl ;
23 delete [ ] ( char∗) task ;
24 return GO ON;
25 }
26 } ;
27
28 int main ( int argc , char ∗ argv [ ] ) {
29
30 f f p i p e l i n e pipe ;
31 pipe . add stage (new Stage1 ( ) ) ;
32 pipe . add stage (new Stage2 ( ) ) ;
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33
34 i f ( pipe . run and wait end ( )<0) {
35 e r r o r ( ” running p i p e l i n e \n” ) ;
36 return −1;
37 }
38
39 return 0 ;
40 }

We define two sequential stages. The first one (lines 6–16) prints the “Hello”
message on the screen, then allocates some memory buffer storing the “World”
message in the buffer and sending the buffer pointer to the output stream (return
command on line 14). The sleep on line 13 is here just for making more evident
the FastFlow scheduling of concurrent activities. The second one (lines 18–26)
just prints whatever it gets on the input stream (the data item stored after the
void * task pointer of svc header on line 21), frees the allocated memory and
then returns a GO ON mark. This mark is interpreted by the FastFlow framework
as something indicating: I finished processing the current task, I give you no
result to be delivered onto the output stream, but please keep me alive ready to
receive another input task. The main on lines 28–40 is almost identical to the
one of the previous version but for the fact we add two stages to the pipeline
pattern. Implicitly, this sets up a streaming network with Stage1 connected by
a stream to Stage2. Items delivered on the output stream by Stage1 will be
read on the input stream by Stage2. The concurrent activity graph is therefore:

If we compile and run the program, however, we get a kind of unexpected result:

1 f f s r c $ g++ −I $FF ROOT he l l o 2 s t a g e s . cpp −o h e l l o 2 s t a g e s −lp thread
2 f f s r c $ . / h e l l o 2 s t a g e s
3 He l lo
4 WorldHello
5
6 He l lo World
7
8 He l lo World
9

10 He l lo World
11
12 ˆC
13 f f s r c $

First of all, the program keeps running printing an “Hello world” every sec-
ond. We in fact terminate the execution through a CONTROL-C. Second, the
initial sequence of strings is a little bit strange4.

The “infinite run” is related to way FastFlow implements concurrent activi-
ties. Each ff node is run as many times as the number of the input data items
appearing onto the output stream, unless the svc method returns a NULL. There-
fore, if the method returns either a task (pointer) to be delivered onto the con-
current activity output stream, or the GO ON mark (no data output to the output

4 And depending on the actual number of cores of your machine and on the kind of
scheduler used in the operating system, the sequence may vary a little bit.
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Fig. 3. Legal return values in ff nodes

stream but continue execution), it is re-executed as soon as there is some input
available (the different legal return values from an ff node are summarized in
Fig. 3). The first stage, which has no associated input stream, is re-executed up to
the moment it terminates the svc with a NULL. In order to have the program
terminating, we may use the following code for Stage1:
1 class Stage1 : public f f n od e {
2 public :
3 void ∗ svc (void ∗ task ) {
4 i f ( task==NULL) {
5 std : : cout << ”He l lo ” << std : : endl ;
6 char ∗ p = new char [ 1 0 ] ;
7 s t r cpy (p , ”World” ) ;
8 s l e ep (1) ;
9 f i r s t = fa l se ;

10 return ( ( void ∗)p) ;
11 }
12 return NULL;
13 }
14 } ;

If we compile and execute the program with this modified Stage1 stage, we’ll
get an output such as:
1 f f s r c $ g++ −I $FF ROOT he l l o2 t e rm ina t e . cpp −o he l l o2 t e rm ina t e −lp thread

2 f f s r c $ . / he l l o2 t e rm ina t e

3 He l lo

4 World

5 f f s r c $

that is the program terminates after a single run of the two stages. Now the
question is: why the second stage terminated, although the svc method return
value states that more work is to be done? The answer is in the stream seman-
tics implemented by FastFlow. FastFlow streaming networks automatically man-
age end-of-streams. That is, as soon as an ff node returns a NULL–implicitly
declaring he wants to terminate its output stream, the information is propa-
gated to the node consuming the output stream. This nodes will therefore also
terminate execution–without actually executing its svc method–and the end of
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stream will be propagated onto its output stream, if any. This is why Stage2
terminates immediately after the termination of Stage1.

The other problem, namely the appearing of the initial 2 “Hello” strings
apparently related to just one “world” string is related to the fact that FastFlow
does not guarantee any scheduling semantics of the ff node svc executions.
The first stage delivers a string to the second stage, then it is executed again
and again. The sleep inserted in the first stage prevents to accumulate too
much “hello” strings on the output stream delivered to the second stage. If we
remove the sleep statement, in fact, the output is much more different: we will
see on the input a large number of “hello” strings followed by another large
number of “world” strings. This because the first stage is enabled to send on its
output stream as much data items as of the capacity of the SPSC queue used to
implement the stream between the two pipeline stages.

5 Generating a Stream

In order to achieve a better idea of how streams are managed within FastFlow,
we slightly change our HelloWorld code in such a way the first stage in the
pipeline produces on the output stream n integer data items and then terminates.
The second stage prints a “world -i-” message upon receiving each i item onto
the input stream.

Recalling the already discussed role of the return value of the svc method,
a first version of this program may be implemented using the following code:
1 #include <iostream>
2 #include < f f / p i p e l i n e . hpp>
3
4 using namespace f f ;
5
6 class Stage1 : public f f n od e {
7 public :
8
9 Stage1 ( int n) : s treamlen (n) , cur rent (0 ) {}

10
11 void ∗ svc (void ∗ task ) {
12 i f ( cur rent < streamlen ) {
13 cur rent++;
14 std: : cout << ”He l lo number ” << cur rent << ” ” << std: : endl ;
15 int ∗ p = new int ( cur rent ) ;
16 s l e ep (1) ;
17 return ( ( void ∗)p) ;
18 }
19 return NULL;
20 }
21 private :
22 int streamlen , cur rent ;
23 } ;
24
25 class Stage2 : public f f n od e {
26 public :
27
28 void ∗ svc (void ∗ task ) {
29 int ∗ i = ( int ∗) task ;
30 std: : cout << ”World −” << ∗ i << ”− ” << std: : endl ;
31 delete task ;
32 return GO ON;
33 }
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34 } ;
35
36 int main ( int argc , char ∗ argv [ ] ) {
37
38 f f p i p e l i n e pipe ;
39 pipe . add stage (new Stage1 ( a t o i ( argv [ 1 ] ) ) ) ;
40 pipe . add stage (new Stage2 ( ) ) ;
41
42 i f ( pipe . run and wait end ( )<0) {
43 e r r o r ( ” running p i p e l i n e \n” ) ;
44 return −1;
45 }
46
47 return 0 ;
48 }

The output we get is the following one:
1 f f s r c $ g++ −I$FF ROOT hel loStream . cpp −o he l loStream −lp thread
2 f f s r c $ . / he l loStream 5
3 He l lo number 1
4 He l lo number 2World − 1−
5
6 He l lo number World −32 −
7
8 World −3− Hel lo number
9 4

10 He l lo number 5World − 4−
11
12 World −5−
13 f f s r c $

However, there is another way we can use to generate the stream, which
is a little bit more “programmatic”. FastFlow makes available an ff send out
method in the ff node class, which can be used to direct a data item onto the
concurrent activity output stream, without actually using the svc return way.

In this case, we could have written the Stage1 code as follows:
1 class Stage1 : public f f n od e {
2 public :
3
4 Stage1 ( int n) : s treamlen (n) , cur rent (0 ) {}
5
6 void ∗ svc (void ∗ task ) {
7 while ( cur rent < streamlen ) {
8 cur rent++;
9 std: : cout << ”He l lo number ” << cur rent << ” ” << std: : endl ;

10 int ∗ p = new int ( cur rent ) ;
11 s l e ep (1) ;
12 f f s e nd ou t (p) ;
13 }
14 return NULL;
15 }
16 private :
17 int streamlen , cur rent ;
18 } ;

In this case, the Stage1 is run just once (as it immediately returns a NULL.
However, during the single run the svc while loop delivers the intended data
items on the output stream through the ff send out method. In case the sends
fill up the SPSC queue used to implement the stream, the ff send out will block
up to the moment Stage2 consumes some items and consequently frees space in
the SPSC buffers.
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6 More on ff node

The ff node class actually defines three distinct virtual methods:
1 public :
2 virtual void∗ svc (void ∗ task ) = 0 ;
3 virtual int s v c i n i t ( ) { return 0 ; } ;
4 virtual void svc end ( ) {}

The first one is the one defining the behavior of the node while processing
the input stream data items. The other two methods are automatically invoked
once and for all by the FastFlow RTS when the concurrent activity represented
by the node is started (svc init) and right before it is terminated (svc end).

These virtual methods may be overwritten in the user supplied ff node sub-
classes to implement initialization code and finalization code, respectively. The
svc method must be overwritten as it is defined as a pure virtual method.

We illustrate the usage of the two methods with another program, computing
the Sieve of Eratosthenes. The sieve uses a number of stages in a pipeline. Each
stage stores the first integer it got on the input stream. Then it cycles passing
onto the output stream only the input stream items which are not multiple of
the stored integer. An initial stage injects in the pipeline the sequence of integers
starting at 2, up to n. Upon completion, each stage has stored a prime number.

We can implement the Eratosthenes sieve in FastFlow as follows:
1 #include <iostream>

2 #include < f f / p i p e l i n e . hpp>

3

4 using namespace f f ;

5

6 class Sieve : public f f n od e {
7 public :

8

9 S ieve ( ) : f i l t e r (0 ) {}
10

11 void ∗ svc (void ∗ task ) {
12 unsigned int ∗ t = (unsigned int ∗) task ;

13

14 i f ( f i l t e r == 0) {
15 f i l t e r = ∗ t ;

16 return GO ON;

17 } else {
18 i f (∗ t % f i l t e r == 0)

19 return GO ON;

20 else

21 return task ;

22 }
23 }
24

25 void svc end ( ) {
26 std: : cout << ”Prime ( ” << f i l t e r << ” )\n” ;

27 return ;

28 }
29

30

31 private :

32 int f i l t e r ;

33 } ;

34

35 class Generate : public f f n od e {
36 public :

37
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38 Generate ( int n) : streamlen (n) , task (2) {
39 std: : cout << ”Generate ob j e c t c reated ” << std: : endl ;

40 return ;

41 }
42

43

44 int s v c i n i t ( ) {
45 std: : cout << ” S ieve s t a r t ed . Generating a stream of ” << streamlen <<

46 ” elements , s t a r t i n g with ” << task << std: : endl ;

47 return 0 ;

48 }
49

50 void ∗ svc (void ∗ t t ) {
51 unsigned int ∗ t = (unsigned int ∗) t t ;

52

53 i f ( task < streamlen ) {
54 int ∗ x i = new int ( task++) ;

55 return x i ;

56 }
57 return NULL;

58 }
59 private :

60 int streamlen ;

61 int task ;

62 } ;

63

64 class Pr in t e r : public f f n od e {
65

66 int s v c i n i t ( ) {
67 std: : cout << ” Pr in t e r s t a r t ed ” << std: : endl ;

68 f i r s t = 0 ;

69 }
70

71 void ∗ svc (void ∗ t ) {
72 int ∗ x i = ( int ∗) t ;

73 i f ( f i r s t == 0) {
74 f i r s t = ∗ x i ;

75 }
76 return GO ON;

77 }
78

79 void svc end ( ) {
80 std: : cout << ” S ieve terminat ing , prime numbers found up to ” << f i r s t

81 << std: : endl ;

82 }
83

84 private :

85 int f i r s t ;

86 } ;

87

88 int main ( int argc , char ∗ argv [ ] ) {
89 i f ( argc !=3) {
90 std: : c e r r << ”use : ” << argv [ 0 ] << ” nstages streamlen \n” ;

91 return −1;

92 }
93

94 f f p i p e l i n e pipe ;

95 int nstages = a to i ( argv [ 1 ] ) ;

96 pipe . add stage (new Generate ( a t o i ( argv [ 2 ] ) ) ) ;

97 for ( int j =0; j<nstages ; j++)

98 pipe . add stage (new Sieve ( ) ) ;

99 pipe . add stage (new Pr in t e r ( ) ) ;

100

101 ffTime (START TIME) ;

102 i f ( pipe . run and wait end ( )<0) {
103 e r r o r ( ” running p i p e l i n e \n” ) ;

104 return −1;

105 }
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106 ffTime (STOP TIME) ;

107

108 std: : c e r r << ”DONE, pipe time= ” << pipe . f fTime ( ) << ” (ms)\n” ;

109 std: : c e r r << ”DONE, t o t a l time= ” << f fTime (GET TIME) << ” (ms)\n” ;

110 pipe . f f S t a t s ( std: : c e r r ) ;

111 return 0 ;

112 }

The Generate stage at line 35–62 generates the integer stream, from 2 up to
a value taken from the command line parameters. It uses an svc init just to
point out when the concurrent activity is started. The creation of the object
used to represent the concurrent activity is instead evidenced by the message
printed in the constructor.

The Sieve stage (lines 6–33) defines the generic pipeline stage. This stores
the initial value got from the input stream on lines 14–16 and then goes on
passing the inputs not multiple of the stored values on lines 18–21. The svc end
method is executed right before terminating the concurrent activity and prints
out the stored value, which happen to be the prime number found in that node.

The Printer stage is used as the last stage in the pipeline (the pipeline built
at lines 94–99 in the program main) and just discards all the received values
but the first one, which is kept to remember the point where we arrived storing
prime numbers. It defines both an svc init method (to print a message when
the concurrent activity is started) and an svc end method, which is used to print
the first integer received, representing the upper bound (non included in) of the
sequence of prime numbers discovered with the pipeline stages. The concurrent
activity graph of the program is the following one:

The program output, when run with 7 Sieve stages on a stream from 2 to
30, is the following one:
1 f f s r c $ . / s i e v e 7 30
2 Generate ob j e c t c reated
3 Pr in t e r s t a r t ed
4 S ieve s t a r t ed . Generating a stream of 30 elements , s t a r t i n g with 2
5 Prime (2)
6 Prime (3)
7 Prime (5)
8 Prime (7)
9 Prime (Prime ( S ieve terminat ing , prime numbers found up to 1317)

10 )
11 19
12 Prime (11)
13 DONE, pipe time= 0.275 (ms)
14 DONE, t o t a l time= 25.568 (ms)
15 FastFlow t rac e not enabled
16 f f s r c $

showing that the prime numbers up to 19 (excluded) has been found.
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7 Managing Access to Shared Objects

Shared objects may be accessed within FastFlow programs using the classical
pthread concurrency control mechanisms. The FastFlow program is actually a
multithreaded code using the pthread library, in fact.

As an example, in order to avoid mixing parts of the strings output by dif-
ferent ff nodes in a FastFlow program, we may wrap each output to the cout
file descriptor with proper locks to a pthread mutex variable. Therefore, after
declaring the mutex
1 #include <pthread . h>
2 stat ic pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

we may explicitly wrap each statement printing to the console in our source code
with a lock and an unlock call to the mutex:
1 pthread mutex lock(& lock ) ;
2 std: : cout << . . . << std: : endl ;
3 pthread mutex unlock(& lock ) ;

In other cases, a viable alternative consists in wrapping the calls operating on
the shared state in properly synchronized functions. As an example, if we need to
update a shared state represented by an integer value by adding or subtracting
values, we may use a function:
1 pthread mutex t s t a t e l o c k = PTHREAD MUTEX INITIALIZER;
2 int s t a t e v a r = 0 ;
3 int update ( int amount ) {
4 pthread mutex lock(& s t a t e l o c k ) ;
5 s t a t e v a r += amount ;
6 pthread mutex lock(& s t a t e l o c k ) ;
7 return ( s t a t e v a r ) ;
8 }

or we may consider using new C++11 features such as the std::lock guard
supporting kind of more “automatic” locking, e.g.
1 int update ( int amount ) {
2 std: : lock guard<std: : mutex> l o ck ( state mutex ) ;
3 state mutex++;
4 s t a t e v a r += amount ;
5 return ( s t a t e v a r ) ;
6 }

This requires compiling with the proper -std=c++11 but the lock is automati-
cally release at the end of the scope of the state mutex variable.

It is worth pointing out that any additional synchronization mechanism
inserted in a FastFlow program interacts with the primitive, optimized synchro-
nizations of the framework. In particular, the FastFlow programmer must be
aware that:

– FastFlow ensures correct access sequences to the shared object used to imple-
ment the streaming networks (the graph of concurrent activities), such as the
SPSC queues used to implement the streams, for instance.

– FastFlow stream semantics guarantees correct sequencing of activation of the
concurrent activities modeled through ff nodes and connected through
streams. The stream implementation actually ensures pure data flow semantics.
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– passing data from concurrent activity A to concurrent activity B (e.g. when
stagei svc method returns a void * pointer which is passed as input para-
meter to the svc method of stagei+1 in a pipeline) conceptually transfers the
capability to operate on the pointed data from one concurrent activity to the
other one.

– any access to any user defined shared data structure must be protected with
either the primitive mechanisms provided by FastFlow (see above) or the prim-
itives provided within the pthread library.

but also that

– any synchronization mechanism added in the user code may impair the effi-
ciency achieved by the FastFlow runtime in the orchestration of the parallel
activities defined by the FastFlow skeletons used in the parallel application.

8 More Skeletons: The FastFlow Farm

In the previous sections, we used only pipeline skeletons in the sample code.
Here we introduce the other primitive skeleton provided in FastFlow, namely the
farm skeleton.

The simplest way to define a farm skeleton in FastFlow is by declaring a
farm object and adding a vector of worker concurrent activities to the farm. An
excerpt of the needed code is the following one:
1 #include < f f / farm . hpp>
2
3 using namespace f f ;
4
5 int main ( int argc , char ∗ argv [ ] ) {
6
7 . . .
8 f f f a rm<> myFarm;
9 std: : vector<f f n od e ∗> w;

10 for ( int i =0; i<nworkers;++ i )
11 w. push back (new Worker ) ;
12 myFarm . add workers (w) ;
13 . . .

This code basically defines a farm with nworkers workers processing the data
items appearing onto the farm input stream and delivering results onto the farm
output stream. The default scheduling policy used to send input tasks to workers
is the round robin one. Workers are implemented by the ff node Worker objects.
These objects may represent sequential concurrent activities as well as further
skeletons, that is either pipeline or farm instances.

However, this farm may not be used alone. There is no way to provide an
input stream to a FastFlow streaming network but having the first component
in the network generating the stream. To this purpose, FastFlow supports two
options:

– we can use the farm defined with a code similar to the one described above
as the second stage of a pipeline whose first stage generates the input stream
according to one of the techniques discussed in Sect. 5. This means we will use
the farm writing a code such as:
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1 . . .
2 f f p i p e l i n e myPipe ;
3
4 myPipe . add stage (new GeneratorStage ( ) ) ;
5 myPipe . add stage (myFarm) ;

– or we can provide an emitter and a collector to the farm, specialized in
such a way they can be used to produce the input stream and consume the
output stream of the farm, respectively, while inheriting the default scheduling
and gathering policies.

The former case is simple. We only have to understand why adding the farm
to the pipeline as a pipeline stage works. This will discussed in detail in Sect. 11.
The latter case is simple as well, but we discuss it through some more code.

8.1 Farm with Emitter and Collector

First, let us see what kind of objects we have to build to provide the farm an
emitter and a collector. Both emitter and collector must be supplied as
ff node subclass objects. If we implement the emitter just providing the svc
method, the tasks delivered by the svc on the output stream—either using a
ff send out or returning the proper pointer with the svc return statement—
will be dispatched to the available workers according to the default round robin
scheduling. An example of emitter node, generating the stream of integer tasks
eventually processed by the farm workers is the following one:
1 class Emitter : public f f n od e {
2 public :
3 Emitter ( int n) : s treamlen (n) , task (0) {}
4
5 void ∗ svc (void ∗) {
6 s l e ep (1) ;
7 task++;
8 int ∗ t = new int ( task ) ;
9 i f ( task<streamlen )

10 return t ;
11 else
12 return NULL;
13 }
14
15 private :
16 int streamlen ;
17 int task ;
18 } ;

In this case, the node svc actually does not take into account any input stream
item (the input parameter name is omitted on line 8). Rather, each time the
node is activated, it returns a task to be computed using the internal tasks
value. The task is directed to the “next” worker by the FastFlow farm run time
support.

In order to provide a collector, we can use again a ff node. In case the
results need further processing, they can be directed to the next node in the
streaming network using the mechanisms detailed in Sect. 5. Otherwise, they can
be processed within the svc method of the ff node subclass used to instantiate
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the collector. As an example, a collector just printing the tasks/results it gets
from the workers may be programmed as follows:
1 class Co l l e c t o r : public f f n od e {
2 public :
3 void ∗ svc (void ∗ task ) {
4 int ∗ t = ( int ∗) task ;
5 std: : cout << ” Co l l e c t o r got ” << ∗ t << std: : endl ;
6 return GO ON;
7 }
8 } ;

With these Emitter and Collector classes defined and assuming to have a
worker defined by the class:
1 class Worker : public f f n od e {
2 public :
3 void ∗ svc (void ∗ task ) {
4 int ∗ t = ( int ∗) task ;
5 (∗ t )++;
6 return task ;
7 }
8 } ;

we can define a program processing a stream of integers by increasing each one
of them with a farm as follows:
1 int main ( int argc , char ∗ argv [ ] ) {
2 int nworkers=a to i ( argv [ 1 ] ) ;
3 int streamlen=a to i ( argv [ 2 ] ) ;
4
5 f f f a rm<> farm ;
6
7 Emitter E( streamlen ) ;
8 farm . add emitter (&E) ;
9

10 std: : vector<f f n od e ∗> w;
11 for ( int i =0; i<nworkers;++ i )
12 w. push back (new Worker ) ;
13 farm . add workers (w) ;
14
15 Co l l e c t o r C;
16 farm . add c o l l e c t o r (&C) ;
17
18 i f ( farm . run and wait end ( )<0) {
19 e r r o r ( ” running farm\n” ) ;
20 return −1;
21 }
22 return 0 ;
23 }

The concurrent activity graph in this case is the following one:
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When run with the first argument specifying the number of workers to be
used and the second one specifying the length of the input stream generated in
the collector node, we get the expected output:
1 f f s r c $ . / a . out 2 10
2 Co l l e c t o r got 2
3 Co l l e c t o r got 3
4 Co l l e c t o r got 4
5 Co l l e c t o r got 5
6 Co l l e c t o r got 6
7 Co l l e c t o r got 7
8 Co l l e c t o r got 8
9 Co l l e c t o r got 9

10 Co l l e c t o r got 10
11 f f s r c $

8.2 Farm with No Collector

We move on considering a further case: a farm with emitter but no collector.
Having no collector the workers may not deliver results: all the results computed
by the workers must be consolidated in memory. The following code implements
a farm where a stream of tasks of type TASK with an integer tag i and an integer
value t are processed by the worker of the farm by:

– computing t++ and
– storing the result in a global array at the position given by the tag i.

Writes to the global result array need not to be synchronized as each worker
writes different positions in the array (the TASK tags are unique, the array is
managed according a “single owner computes” rule).
1 #include <vector>
2 #include <iostream>
3 #include < f f / farm . hpp>
4
5 stat ic int ∗ r e s u l t s ;
6
7 struct t a s k t {
8 t a s k t ( int i , int t ) : i ( i ) , t ( t ) {}
9 int i ;

10 int t ;
11 } ;
12
13 using namespace f f ;
14
15 class Worker : public f f n od e {
16 public :
17 void ∗ svc (void ∗ task ) {
18 TASK ∗ t = (TASK ∗) task ;
19 r e s u l t s [ t−>i ] = ++(t−>t ) ;
20 return GO ON;
21 }
22 } ;
23
24 class Emitter : public f f n od e {
25 public :
26 Emitter ( int n) : s treamlen (n) , task (0) {}
27
28 void ∗ svc (void ∗) {
29 task++;
30 t a s k t ∗ t = new t a s k t ( task , task ∗ task ) ;
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31 i f ( task<streamlen ) return t ;
32 return NULL;
33 }
34 private :
35 int streamlen ;
36 int task ;
37 } ;
38
39 int main ( int argc , char ∗ argv [ ] ) {
40
41 int nworkers=a to i ( argv [ 1 ] ) ;
42 int streamlen=a to i ( argv [ 2 ] ) ;
43 r e s u l t s = ( int ∗) c a l l o c ( streamlen , s izeof ( int ) ) ;
44
45 f f f a rm<> farm ;
46
47 Emitter E( streamlen ) ;
48 farm . add emitter (&E) ;
49
50 std: : vector<f f n od e ∗> w;
51 for ( int i =0; i<nworkers;++ i )
52 w. push back (new Worker ) ;
53 farm . add workers (w) ;
54
55 std: : cout << ”Before s t a r t i n g computation” << std: : endl ;
56 for ( int i =0; i<streamlen ; i++)
57 std: : cout << i << ” : ” << r e s u l t s [ i ] << std: : endl ;
58 i f ( farm . run and wait end ( )<0) {
59 e r r o r ( ” running farm\n” ) ;
60 return −1;
61 }
62 std: : cout << ”After computation” << std: : endl ;
63 for ( int i =0; i<streamlen ; i++)
64 std: : cout << i << ” : ” << r e s u l t s [ i ] << std: : endl ;
65 return 0 ;
66 }

The Worker code at lines 15–22 defines an svc method that returns a GO ON.
Therefore no results are directed to the collector (non existing, see lines 45–
53: they define the farm but they do not contain any add collector in the
program main). Rather, the results computed by the worker code at line 19 are
directly stored in the global array. In this case the concurrent activity graph is
the following:

The main program prints the results vector before calling the FastFlow

start and wait end()

and after the call, and you can easily verify the results are actually computed
and stored in the correct place in the vector:
1 f f s r c $ farmNoC 2 10
2 Before s t a r t i n g computation
3 0 : 0
4 1 : 0
5 2 : 0
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6 3 : 0
7 4 : 0
8 5 : 0
9 6 : 0

10 7 : 0
11 8 : 0
12 9 : 0
13 After computation
14 0 : 0
15 1 : 2
16 2 : 5
17 3 : 10
18 4 : 17
19 5 : 26
20 6 : 37
21 7 : 50
22 8 : 65
23 9 : 82
24 f f s r c $

Besides demonstrating how a farm without collector may compute useful
results, the program of the last listing also demonstrates how complex task data
structures can be delivered and retrieved to and from the FastFlow streaming
network streams via svc void * parameters.

8.3 Specializing the Scheduling Strategy in a Farm

In order to select the worker where an incoming input task has to be directed,
the FastFlow farm uses an internal ff loadbalancer that provides a method
int selectworker() returning the index in the worker array corresponding to
the worker where the next task has to be directed. This method cannot be
overwritten, actually. But the programmer may subclass the ff loadbalancer
and provide his own selectworker() method and pass the new load balancer to
the farm emitter, therefore implementing a farm with a user defined scheduling
policy.

The steps to performed in this case are exemplified with the following, rele-
vant portions of code. First, we subclass the ff loadbalancer and we provide
our own selectworker() method:

1 class my loadbalancer : public f f l o a db a l a n c e r {
2 protected :

3 // implement your po l i c y . . .

4 in l ine int s e l e c two rke r ( ) { return vict im ; }
5

6 public :

7 // the f f l o a db a l a n c e r r e qu i r e s the maximum number o f workers

8 my loadbalancer ( int max num workers ) : f f l o a db a l a n c e r (max num workers )

{}
9

10 void s e t v i c t im ( int v ) { vict im=v ;}
11 private :

12 int vict im ;

13 } ;

Then we create a farm specifying the new load balancer class as a type parameter:
1 f f f a rm<my loadbalancer> myFarm ( . . . ) ;

Please note that the class ff loadbalancer needs to know the maximum num-
ber of worker threads it has to manage. Eventually, we create an emitter that
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within its svc method invokes the set victim method right before outputting
a task towards the worker string, either with a ff send out(task) or with a
return(task). The emitter is declared as:
1 class myEmitter : public f f n od e {
2
3 myEmitter ( my loadbalancer ∗ lb ) : lb ( lb ) {}
4
5 . . .
6
7 void ∗ svc (void ∗ task ) {
8 . . .
9 workerToBeUsed = somePolicy ( . . . ) ;

10 lb−>s e t v i c t im (workerToBeUsed ) ;
11 . . .
12 f f s e nd ou t ( task ) ;
13 return GO ON;
14 }
15
16 . . .
17 private :
18 my loadbancer ∗ lb ;
19 }

and it is inserted in the farm with the code
1 myEmitter emi t t e r (myFarm. ge t l b ( ) ) ;
2 myFarm. add emitter ( emi t t e r ) ;

Another simpler option for scheduling tasks directly in the svc method of
the farm emitter is to use the ff send out to method of the ff loadbalancer
class. In this case what is needed is to pass the default load balancer object to
the emitter thread and to use the ff loadbalancer::ff send out to method
instead of ff node::ff send out method for sending out tasks.

What we get is a farm where the worker to be used to execute the task
appearing onto the input stream is decided by the programmer through the
proper implementation of my loadbalancer rather than being decided by the
current FastFlow implementation.

Two particular cases specializing the scheduling policy in different way by
using FastFlow predefined code are illustrated in the following two subsections.

8.4 Broadcasting a Task to all Workers

FastFlow supports the possibility to direct a task to all the workers in a farm.
It is particularly useful if we want to process the task by workers implementing
different functions. The broadcasting is achieved through the declaration of a
specialized load balancer, in a way very similar to what we illustrated in Sect. 8.3.

The following code implements a farm whose input tasks are broadcasted
to all the workers, and whose workers compute different functions on the input
tasks, and therefore deliver different results on the output stream.

1 #include <iostream>

2 #include < f f / farm . hpp>

3 #include < f f /node . hpp>

4 #include <cmath>

5

6 using namespace std ;
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7 using namespace f f ;

8

9

10 // should be g l oba l to be a c c e s s i b l e from workers

11 #define MAX 4

12 int x [MAX] ;

13

14 class WorkerPlus : public f f n od e {
15 int s v c i n i t ( ) {
16 cout << ”Worker i n i t i a l i z e d ” << endl ;

17 return 0 ;

18 }
19

20 void ∗ svc (void ∗ in ) {
21 int ∗ i = ( ( int ∗) in ) ;

22 int i i = ∗ i ;

23 ∗ i++;

24 cout << ”WorkerPLus got ” << i i << ” and computed ” << ∗ i << endl ;

25 return in ;

26 }
27 } ;

28

29 class WorkerMinus : public f f n od e {
30 int s v c i n i t ( ) {
31 cout << ”Worker i n i t i a l i z e d ” << endl ;

32 return 0 ;

33 }
34

35 void ∗ svc (void ∗ in ) {
36 int ∗ i = ( ( int ∗) in ) ;

37 int i i = ∗ i ;

38 ∗ i −−;

39 cout << ”WorkerMinus got ” << i i << ” and computed ” << ∗ i << endl ;

40 return in ;

41 }
42 } ;

43

44 class my loadbalancer : public f f l o a db a l a n c e r {
45 public :

46 // t h i s i s nece s sa ry because f f l o a db a l a n c e r has non de f au l t parameters

. . . .

47 my loadbalancer ( int max num workers ) : f f l o a db a l a n c e r (max num workers )

{}
48

49 void broadcast (void ∗ task ) {
50 f f l o a db a l a n c e r : : b roadcas t ta sk ( task ) ;

51 }
52 } ;

53

54 class Emitter : public f f n od e {
55 public :

56 Emitter ( my loadbalancer ∗ const lb ) : lb ( lb ) {}
57 void ∗ svc (void ∗ task ) {
58 lb−>broadcast ( task ) ;

59 return GO ON;

60 }
61 private :

62 my loadbalancer ∗ lb ;

63 } ;

64

65 class Co l l e c t o r : public f f n od e {
66 public :

67 Co l l e c t o r ( int i ) {}
68 void ∗ svc (void ∗ task ) {
69 cout << ”Got r e s u l t ” << ∗ ( ( int ∗) task ) << endl ;

70 return GO ON;

71 }
72
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73

74 } ;

75

76

77

78 #define NW 2

79

80 int main ( int argc , char ∗ argv [ ] )

81 {
82 ffTime (START TIME) ;

83

84 cout << ” i n i t ” << argc << endl ;

85 int nw = ( argc==1 ? NW : a to i ( argv [ 1 ] ) ) ;

86

87 cout << ” us ing ” << nw << ” workers ” << endl ;

88

89 // i n i t input ( fake )

90 for ( int i =0; i<MAX; i++) {
91 x [ i ] = ( i ∗10) ;

92 }
93 cout << ” Se t t ing up farm” << endl ;

94 // c r ea t e the farm ob j e c t

95 f f f a rm<my loadbalancer> farm ( true , nw) ;

96 // c r ea t e and add emit te r ob j e c t to the farm

97 Emitter E( farm . ge t l b ( ) ) ;

98 farm . add emitter (&E) ;

99 cout << ” emit te r ok ”<< endl ;

100

101

102 std: : vector<f f n od e ∗> w; // prepare workers

103 w. push back (new WorkerPlus ) ;

104 w. push back (new WorkerMinus ) ;

105 farm . add workers (w) ; // add them to the farm

106 cout << ”workers ok ”<< endl ;

107

108 Co l l e c t o r C(1) ;

109 farm . add c o l l e c t o r (&C) ;

110 cout << ” c o l l e c t o r ok ”<< endl ;

111

112 farm . run th en f r e e z e ( ) ; // run farm asynchronous ly

113

114 cout << ”Sending ta sks . . . ” << endl ;

115 int ta sks [MAX] ;

116 for ( int i =0; i<MAX; i++) {
117 tasks [ i ]= i ;

118 farm . o f f l o a d ( ( void ∗) &tasks [ i ] ) ;

119 }
120 farm . o f f l o a d ( ( void ∗) FF EOS) ;

121

122 cout << ”Waiting terminat ion ” << endl ;

123 farm . wait ( ) ;

124

125 cout << ”Farm terminated a f t e r computing f o r ” << farm . ffTime ( ) << endl ;

126

127 ffTime (STOP TIME) ;

128 cout << ”Spent o v e r a l l ” << f fTime (GET TIME) << endl ;

129

130 }

At lines 44–52 a ff loadbalancer is defined providing a broadcast method.
The method is implemented in terms of an ff loadbalancer internal method.
This new loadbalancer class is used as in the case of other user defined sched-
ulers (see Sect. 8.3) and the emitter eventually uses the load balancer broadcast
method instead of delivering the task to the output stream (i.e. directly to the
string of the workers). This is done through the svc code at lines 57–60. Lines
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103 and 104 are used to add two different workers to the farm. The rest of the
program is standard, but for the fact the resulting farm is used as an accelerator
(lines 112–123, see Sect. 10).

8.5 Using Autoscheduling

FastFlow provides suitable tools to implement farms with “auto scheduling”,
that is farms where the workers “ask” for something to be computed rather
than accepting tasks sent by the emitter (explicit or implicit) according to some
scheduling policy. This scheduling behaviour may be simply implemented by
using the ff farm method set scheduling ondemand(), as follows:
1 f f f a rm<> myFarm ( . . . ) ;
2 myFarm. set schedul ing ondemand ( ) ;
3 . . .
4 farm . add emitter ( . . . ) ;
5 . . .

The scheduling policy implemented in this case is an approximation of the auto
scheduling, indeed. The emitter simply checks the length of the SPSC queues
connecting the emitter to the workers, and delivers the task to the first worker
whose queue length is less or equal to 1. To be more precise, FastFlow should
have implemented a request queue where the workers may write tasks requests
tagged with the worker id and the emitter may read such request to choose the
worker where the incoming tasks is to be directed. This is not possible as of
FastFlow 1.1 because it still doesn’t allow to read from multiple SPSC queues
preserving the FIFO order.

8.6 Ordered Farm

Tasks passing through a task-farm can be subjected to reordering because of
different execution times in the worker threads. To overcome the problem of
sending packets in a different order with respect to input, tasks can be reordered
after collection from the workers, although this solution might introduce extra
latency mainly because reordering checks have to be executed even if the packets
already arrive at the farm collector in the correct order.

The default round-robin and auto scheduling policies are not order preserv-
ing, for this reason a specialized version of the FastFlow farm has been introduced
which enforce the ordering of the packets.

The ordered farm may be introduced by using the ff ofarm skeleton. The
following code sketches how to use the it as a middle stage of a 3-stage pipeline:
1 . . .
2 f f p i p e l i n e pipe ;
3 pipe . add stage (new Fi r s tS tage ( . . . ) ) ;
4
5 f f o f a rm ofarm ; // d e f i n e s an order−pre s e rv ing farm
6 std: : vector<f f n od e ∗> w;
7 for ( int i =0; i<nworkers;++ i ) w. push back (new Worker ) ;
8 ofarm . add workers (w) ;
9

10 pipe . add stage (&ofarm ) ; // adds the farm as 2nd stage
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11 pipe . add stage (new LastStage ( . . . ) ) ;
12
13 pipe . run and wait end ( ) ;

8.7 Simplified Ways to Create Farms Using C++11

In order to simplify the creation of farm objects—and especially for simple
cases—some new constructors have been introduced in the latest release of Fast-
Flow.

Using these new features, the simplest way to create a farm in FastFlow is to
create a function F having the signature T* F(T*, ff node*const) where T is
a generic type, and then use this function to create the workers of the farm. As
an example, in the following code excerpt a farm with 5 workers, each executing
the function F, is declared and run:
1 f f f a rm<> farm ( ( std: : funct ion<T∗(T∗ , f f n od e ∗const )>)F , 5) ;
2 farm . run and wait end ( ) ;

With this code, the default emitter and collector nodes and the default round-
robin scheduling and gathering policy are automatically instantiated. As different
features of the new C++11 standard are used in the implementation of this farm,
to compile the example above the correct flags to used with the g++ command
are:
1 −std=c++11 −DHAS CXX11 VARIADIC TEMPLATES

Another way to create a task-farm skeleton in FastFlow is to pass the vector of
ff nodes, the Emitter and Collector nodes (if both exist) directly as parameters
of the farm constructor as in the following simple examples:
1 #include <vector>
2 #include < f f / farm . hpp>
3
4 using namespace f f ;
5 int main ( ) {
6 struct MyWorker : f f n od e {
7 void ∗ svc (void ∗ t ) {
8 p r i n t f ( ”worker %d got one task \n” , get my id ( ) ) ;
9 return t ;

10 }
11 } ;
12 // Emitter
13 struct Emitter : public f f n od e {
14 std: : funct ion<void ∗ ( )> F;
15 Emitter ( std: : funct ion<void ∗ ( )> F) :F(F) {}
16 void ∗ svc (void∗) { return F( ) ; }
17 } ;
18 const int K = 20 ; // stream length
19 const int nw = 7 ; // n . o f workers
20 // func t i on executed in the Emitter node
21 auto F = [K] ( ) −> void∗ {
22 stat ic int k = 0 ;
23 i f ( k++ == K) return NULL;
24 return new int ( k ) ;
25 } ;
26 std: : vector<f f n od e∗> W;
27 for ( int i =0; i<nw;++ i ) W. push back (new MyWorker) ;
28
29 // farm with s p e c i a l i z e d Emitter and without c o l l e c t o r
30 f f f a rm<> farm (W, new Emitter (F) ) ;
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31 farm . run and wait end ( ) ;
32
33 return 0 ;
34 }

9 More on ff pipeline

Pipeline skeletons can be easily instantiated using the new C++11-based con-
structors available in the latest release of FastFlow.

The simplest way to create a pipeline of n-stage in FastFlow is to create a num-
ber of functions with signature T* (*F) (T*,ff node*const) and/or ff node
objects and then to pass them in the correct order to the ff pipe constructor5.
As an example consider the following 3-stage pipeline:
1 struct myTask { . . . . } ; // t h i s i s my input /output type
2
3 myTask∗ F1(myTask ∗ in , f f n od e ∗const node ) { . . . } // 1 s t func t i on
4 struct F2 : f f n od e { // 2nd stage
5 void ∗ svc (void ∗ t ) { . . . }
6 } F2 ;
7 myTask∗ F3(myTask ∗ in , f f n od e ∗const node ) { . . . } // 3 rd func t i on
8
9 f f p i p e<myTask> pipe (F1,&F2 , F3) ;

10 pipe . run and wait end ( ) ;
11 } ;

Here 2 functions getting a myTask pointer as input and return type are used as
first and third stage of the pipeline whereas an ff node object is used as middle
stage. To compile the above snippet of code, the command to use is:
1 f f s r c $ g++ −std=c++0x −DHAS CXX11 VARIADIC TEMPLATES −I $FF ROOT t e s t .

cpp −o t e s t −lp thread

that is the same switches needed to use the new farm syntax outlined in Sect. 8.7
are needed.

Since ff pipe accepts both functions and ff node, it is possible to easily
build “complex” streaming networks using just few commands as in the following
example where ff pipe and ff farm skeletons are mixed together:
1 std: : vector<f f n od e∗> W;

2 W. push back (new f f p i p e <myTask>(&F2 , F3) ) ; // 2−s tage p ipe l i n e , 1 s t worker

3 W. push back (new f f p i p e <myTask>(&F2 , F3) ) ; // 2−s tage p ipe l i n e , 2nd worker

4

5 f f p i p e <myTask> pipe (F1 , new f f f a rm <>(W) ) ; // 2−s tage p ipe l i n e , seq+farm

6

7 pipe . run and wait end ( ) ;

8 } ;

10 FastFlow as a Software Accelerator

Up to know we just showed how to use FastFlow to write a “complete skeleton
application”, that is an application whose complete flow of control is defined
through skeletons. In this case the main of the C++ program written by the
user is basically providing the structure of the parallel application by defining a

5 The class ff pipe is a wrapper of the class ff pipeline.
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Fig. 4. FastFlow accelerator

proper FastFlow skeleton nesting and the commands to start the computation of
the skeleton program and to wait its termination. All the business logic of the
application is embedded in the skeleton parameters.

Now we want to discuss the second kind of usage which is supported by
FastFlow, namely the FastFlow accelerator mode. The term “accelerator” is
used the way it is used when dealing with hardware accelerators. An hardware
accelerator—a GPU or an FPGA or even a more “general purpose” accelerator
such as Tilera 64 core chips, Intel Many Core or IBM WireSpeed/PowerEN—is a
device that can be used to compute particular kind of code faster that the CPU.
FastFlow accelerator is a “software device” that can be used to speedup portions
of code using the cores left unused by the main application. In other words, it’s a
way FastFlow supports to accelerate particular computation by using a skeleton
program and offloading to the skeleton program tasks to be computed.

The FastFlow accelerator will use n−1 cores of the n core machine, assuming
that the calling code is not parallel and will try to ensure a n−1 fold speedup is
achieved in the computation of the tasks offloaded to the accelerator, provided
a sufficient number of tasks to be computed are given.

Using FastFlow accelerator mode is not that different from using FastFlow to
write an application only using skeletons (see Fig. 4). In particular, the following
steps must be followed:

– A skeleton program has to be written, using the FastFlow skeletons computing
the tasks that will be given to the accelerator. The skeleton program used to
program the accelerator is supposed to have an input stream, used to offload
the tasks to the accelerator.

– Then, the skeleton program must be run using a particular method, different
from the run and wait end we have already seen, that is a run then freeze()
method. This method will start the accelerator skeleton program, consuming
the input stream items to produce either output stream items or to consoli-
date (partial) results in memory. When we want to stop the accelerator, we
will deliver and end-of-stream mark to the input stream.

– Eventually, we must wait the computation of the accelerator is terminated.
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A simple program using FastFlow accelerator mode is shown below:
1 #include <vector>
2 #include <iostream>
3 #include <ctime>
4 #include < f f / farm . hpp>
5
6 using namespace f f ;
7
8 int ∗ x ;
9 int nworkers = 0 ;

10
11 class Worker : public f f n od e {
12 public :
13
14 Worker ( int i ) {
15 my id = i ;
16 }
17
18 void ∗ svc (void ∗ task ) {
19 int ∗ t = ( int ∗) task ;
20 x [ my id ] = ∗ t ;
21 return GO ON;
22 }
23 private :
24 int my id ;
25 } ;
26
27 int main ( int argc , char ∗ argv [ ] ) {
28
29 i f ( argc<3) {
30 std: : c e r r << ”use : ”
31 << argv [ 0 ]
32 << ” nworkers streamlen \n” ;
33 return −1;
34 }
35
36 nworkers=a to i ( argv [ 1 ] ) ;
37 int streamlen=a to i ( argv [ 2 ] ) ;
38
39 x = new int [ nworkers ] ;
40 for ( int i =0; i<nworkers ; i++)
41 x [ i ] = 0 ;
42
43 f f f a rm<> a c c e l e r a t o r ( true ) ;
44
45 std: : vector<f f n od e ∗> w;
46 for ( int i =0; i<nworkers;++ i )
47 w. push back (new Worker ( i ) ) ;
48 a c c e l e r a t o r . add workers (w) ;
49
50 i f ( a c c e l e r a t o r . r un th en f r e e z e ( )<0) {
51 e r r o r ( ” running farm\n” ) ;
52 return −1;
53 }
54
55 for ( int i =0; i<=streamlen ; i++) {
56 int ∗ task = new int ( i ) ;
57 a c c e l e r a t o r . o f f l o a d ( task ) ;
58 }
59 a c c e l e r a t o r . o f f l o a d ( ( void ∗) FF EOS) ;
60 a c c e l e r a t o r . wait ( ) ;
61
62 for ( int i =0; i<nworkers ; i++)
63 std: : cout << i << ” : ” << x [ i ] << std: : endl ;
64
65 return 0 ;
66 }
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We use a farm accelerator. The accelerator is declared at line 43. The “true”
parameter is the one telling FastFlow this farm has to be used as an accelerator.
Workers are added at lines 45–48. Each worker is given its id as a constructor
parameters. This is the very same code as the one used in plain FastFlow appli-
cations. Line 50 starts the skeleton code in accelerator mode. Lines 55 to 58
offload tasks to be computed to the accelerator. These lines could be part of any
larger C++ program, indeed. The idea is that whenever we have a task ready
to be submitted to the accelerator, we simply “offload” it to the accelerator.
When we have no more tasks to offload, we send and end-of-stream (line 59)
and eventually we wait for the completion of the computation of tasks in the
accelerator (line 60).

This kind of interaction with an accelerator without output stream is intended
to model those computations than consolidate results directly in memory. We
can also assume that results are awaited from the accelerator through its output
stream. In this case, we first have to write the skeleton code of the accelerator
in such a way an output stream is supported. In the new version the accelera-
tor sample program below, we add a collector to the accelerator farm (line 45).
The collector simply merges the results from workers to the output stream (lines
18–24 in the code listing below). Once the tasks have been offloaded to the
accelerator, rather than waiting for accelerator completion, we can ask com-
puted results as delivered to the accelerator output stream through the bool
load result(void **) method (see lines 59–61).
1 #include <vector>
2 #include <iostream>
3 #include <ctime . h>
4 #include < f f / farm . hpp>
5
6 using namespace f f ;
7
8 class Worker : public f f n od e {
9 public :

10
11 void ∗ svc (void ∗ task ) {
12 int ∗ t = ( int ∗) task ;
13 (∗ t )++;
14 return task ;
15 }
16 } ;
17
18 class Co l l e c t o r : public f f n od e {
19 public :
20 void ∗ svc (void ∗ task ) {
21 int ∗ t = ( int ∗) task ;
22 return task ;
23 }
24 } ;
25
26
27 int main ( int argc , char ∗ argv [ ] ) {
28
29 i f ( argc<3) {
30 std: : c e r r << ”use : ”
31 << argv [ 0 ]
32 << ” nworkers streamlen \n” ;
33 return −1;
34 }
35
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36 int nworkers=a to i ( argv [ 1 ] ) ;
37 int streamlen=a to i ( argv [ 2 ] ) ;
38
39 f f f a rm<> a c c e l e r a t o r ( true ) ;
40
41 std: : vector<f f n od e ∗> w;
42 for ( int i =0; i<nworkers;++ i )
43 w. push back (new Worker ( ) ) ;
44 a c c e l e r a t o r . add workers (w) ;
45 a c c e l e r a t o r . a dd c o l l e c t o r (new Co l l e c t o r ( ) ) ;
46
47 i f ( a c c e l e r a t o r . r un th en f r e e z e ( )<0) {
48 e r r o r ( ” running farm\n” ) ;
49 return −1;
50 }
51
52 for ( int i =0; i<=streamlen ; i++) {
53 int ∗ task = new int ( i ) ;
54 a c c e l e r a t o r . o f f l o a d ( task ) ;
55 }
56 a c c e l e r a t o r . o f f l o a d ( ( void ∗) FF EOS) ;
57
58 void ∗ r e s u l t ;
59 while ( a c c e l e r a t o r . l o a d r e s u l t (& r e s u l t ) ) {
60 std: : cout << ”Got r e s u l t : : ”<< (∗ ( ( int ∗) r e s u l t ) ) << std: : endl ;
61 }
62 a c c e l e r a t o r . wait ( ) ;
63
64 return 0 ;
65 }

The bool load result(void **) methods synchronously await for one item
being delivered on the accelerator output stream. If such item is available, the
method returns “true” and stores the item pointer in the parameter. If no other
items will be available, the method returns “false”. An asynchronous method is
also available with signature bool load\ results\ nb(void **) If no result is
available at the moment the method is called, it returns a “false” value, and you
should retry later on to see whether a result may be retrieved.

It is worth pointing out that the usage of FastFlow to build accelerators
applies to both C++ and pure C sequential programs. In the latter case, the
resulting program must be compiled using the C++ tool chain, of course, but
eventually the code gets accelerated exactly as if the original sequential code was
written in C++. This is because all the C++ part is confined in the FastFlow
accelerator part and because the accelerator “interface” methods (the offloading
and result retrieval methods) perfectly work with pure C parameters.

11 Skeleton Nesting

In FastFlow skeletons may be arbitrarily nested. Taking into account just farms
and pipelines this means that farms may be used as pipeline stages, and pipelines
may be used as farm workers.

As an example, you can define a farm with pipeline workers as follows:
1 f f f a rm<> myFarm;
2
3 std: : vector<f f n od e ∗> w;
4 for ( int i =0; i<NW; i++)
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5 f f p i p e l i n e ∗ p = new f f p i p e l i n e ;
6 p−>add stage (new S1 ( ) ) ;
7 p−>add stage (new S2 ( ) ) ;
8 w. push back (p) ;
9 }

10 myFarm . addWorkers (w) ;

or we can use a farm as a pipeline stage by using a code such as:
1 f f p i p e l i n e ∗ p = new f f p i p e l i n e ;
2 f f f a rm <> f = new f f f a rm ;
3
4 . . .
5
6 f . addWorkers (w) ;
7
8 . . .
9

10 p−>add stage (new SeqWorkerA ( ) ) ;
11 p−>add stage ( f ) ;
12 p−>add stage (new SeqWorkerB ( ) ) ;

The concurrent activity graph in this case will be the following one:

while in the former case it will be such as

As a general rule, any skeleton may be used in any place where a ff node
is required. As more and more skeletons are added in FastFlow, more and more
complex composite skeleton structures may be used.

12 Feedback Channels

There are cases where it is useful to have the possibility to route back some
results to the streaming network input stream for further computation. For
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example, this possibility may be exploited to implement divide&conquer pat-
tern using the task-farm: tasks injected in the farm are split by the scheduler to
the workers and the resulting tasks are routed back to the scheduler to evaluate
if further splitting is needed. Tasks that can be computed using the base case
code, are computed by the workers and their results are used for the conquer
phase, usually performed in memory.

The feedback channel in a farm or pipeline may be introduced by the wrap
around() method on the interested skeleton. In case our applications uses a farm
pattern as the outermost skeleton, we may therefore add the method call after
instantiating the farm object:
1 f f f a rm<> myFarm;
2 . . .
3 myFarm . add emitter (&e ) ;
4 myFarm . add c o l l e c t o r (&c ) ;
5 myFarm . add workers (w) ;
6
7 myFarm . wrap aroud ( ) ;
8 . . .

and this will lead to the concurrent activity graph

The same if parallelism is expressed by using a pipeline as the outermost skeleton:
1 f f p i p e l i n e myPipe ;
2
3 myPipe . add stage ( s1 ) ;
4 myPipe . add stage ( s2 ) ;
5 myPipe . add stage ( s3 ) ;
6 . . .
7 myPipe . wrap around ( ) ;
8 . . .

leading to the concurrent activity graph:

As of FastFlow 1.1, the only possibility to use the feedback channel provided
by the wrap around method is relative to the outermost skeleton, that is the one
with no input stream. Starting with version 2.0.0, this limitation has been relaxed
such that it is possible to use feedback channels (for some particular skeleton
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cases) where the wrap around method can be called not only in the outmost
skeleton but also to the last stage of a pipeline composing the application. Some
of these possible cases are sketched in Fig. 5.

As an example, in the following we provide the code needed to create a 2-
stage pipeline where the second stage is a farm with feedback channels between
each worker and the farm emitter:
1 f f f a rm<> farm (F, 8) ; // farm of the func t i on F us ing 8 workers
2 farm . r emove co l l e c t o r ( ) ; // removes the d e f au l t c o l l e c t o r
3 // the s chedu l e r ge t s in input the i n t e r n a l load−ba lancer
4 farm . add emitter (new Sched ( farm . ge t l b ( ) ) ) ;
5 // adds feedback channe l s between each worker and the s chedu l e r
6 farm . wrap around ( ) ;
7
8 f f p i p e<myTask> pipe ( seq , &farm ) ; // c r e a t e s the p i p e l i n e
9 pipe . run and wait end ( ) ;

In this case the emitter node of the farm receives tasks both from the first
stage of the pipeline and from farm’s workers. The emitter non-deterministically
processes input tasks giving priority to the tasks coming back from workers.

Fig. 5. Some possible FastFlow schemas with feedback channels.

13 Run Time Routines

Several utility routines are defined in the FastFlow runtime. We recall here the
main ones.

– virtual int get my id()
returns a virtual id of the node where the concurrent activity (its svc method)
is being computed.

– const int ff numCores()3
returns the number of cores in the target architecture.

– int ff mapThreadToCpu(int cpu id, int priority level=0)
pins the current thread to cpu id. A priority may be set as well, but you need
root rights in general, and therefore this should non be specified by normal
users.
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– void error(const char * str, ...)
is used to print error messages.

– virtual bool ff send out(void * task,
unsigned intretry=((unsigned int)-1),
unsigned int ticks=(TICKS2WAIT))
delivers an item onto the output stream, possibly retrying upon failure a given
number of times, after waiting a given number of clock ticks.

– double ffTime()
returns the time spent in the computation of a farm or of pipeline, including
the svc init and svc end time. This is a method of both pipeline and farm
classes.

– double ffwTime()
returns the time spent in the computation of a farm or of pipeline, in the svc
method only.

– double ffTime(int tag)
is used to measure time in portions of code. The tag may be: START TIME,
STOP TIME or GET TIME. A ff ffTime(GET TIME) returns the time elapsed in
between two consecutive calls to ffTime() with parameter START TIME and
STOP TIME, respectively.

– void ffStats(std::ostream & out)
prints the statistics collected while using FastFlow. The program must be
compiled with TRACE FASTFLOW defined, however.

14 Threads Mapping

FastFlow performance can significantly depend on the mapping of concurrent
activities to existing cores. Which is the best mapping depends on many factors of
the underlying architecture at hand. Here we describe the low-level mechanisms
provided by FastFlow that can be used to devise suitable mapping policies.

In FastFlow there are basically two main ways to pin a ff node thread to a
core:

– at thread creation time. This feature is supported via a gcc intrinsic operations
that make it possible to create the thread implementing a FastFlow ff node
directly on a specific core;

– at any time during the run, by using the ff mapThreadToCpu and ff getMyCpu
functions.

By default, all threads implementing sequential and parallel nodes of the
skeleton tree are pinned to available cores according to a linear static mapping.
For example, considering a 3-stage pipeline where the first and last stages are
sequential ff nodes whereas the middle stage of the pipeline is a farm node
having 2 workers that are both pipeline of 2 sequential stages. In this case,
we have in total 8 threads (with ids in the range (0–7)), including the farm
emitter and collector threads. Such threads will be automatically pinned on the
first 8 cores (supposing there are at least 8 cores available) of the underlying
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architecture. In particular the first pipeline stage will be pinned to core 0, the
emitter of the farm to core 1, the two stages of the first worker to cores 2 and 3,
the two stages of the second worker to cores 4 and 5, the collector to core 6 and
the last stage to core 7.

To control the initial placement of the threads on the cores the FastFlow
programmer may use the class threadMapper. The threadMapper gets in input
a string (lets say mapstring) of comma-separated core-ids. At thread creation
time, the FastFlow run-time will try to pin the thread with id tid in the core
id specified in the corresponding position of the mapping string (modulo the
number of core-ids in the string). Considering the 3-stage example described
above and the following mapping string setup:
1 const char worker mapping [ ] = ”0 , 2 , 4 , 6 , 8” ;
2 threadMapper: : i n s t ance ( )−>setMappingList ( worker mapping ) ;
3 . . . .
4 myprogram . run and wait end ( ) ;

The emitter of the farm is placed on core 2, the first sequential stages of the two
pipelines in the farm on core 4 and 8, respectively.

In order to re-map threads after they have been created or during the compu-
tation, the function ff mapThreadToCpu may be used. In the following there is
an example of the usage of this function in the svc init method of the ff node
class:
1 class myNode : public f f n od e {
2 . . . .
3
4 int s v c i n i t ( ) {
5 p r i n t f ( ”Thread cu r r en t l y running on CPU %d\n” , ff getMyCpu ( ) ) ;
6 i f ( ff mapThreadToCpu (mapThreads ( get my id ) ) != 0)
7 p r i n t f ( ”Cannot map thread %d ( l o c a l id %d) on CPU %d\n” ,

getTid ( ) , get my id ( ) ,
8 mapThreads ( getTid ( ) ) ) ;
9 return 0 ;

10 }
11 . . .

The mapThreads function is a user defined function which gets in input the
thread id and returns the core id in which the thread has to be pinned.

FastFlow also provides the possibility of not sticking concurrent activities to a
particular core, and leaving instead to the operating system the full responsibility
of the thread (dynamic) mapping. This possibility may be exploited by compiling
the FastFlow program with the NO DEFAULT MAPPING symbol defined:
1 f f s r c $ g++ −DNO DEFAULT MAPPING −I $FF ROOT . . .

Under Linux, this allows threads to be moved between cores by the Linux sched-
uler. In most cases, this means threads are migrated with a substantial cache
migration overhead, however.

15 Advanced Features

The skeletons and features discussed in the previous sections—apart from the
C++11 related mechanisms of Sects. 8.7 and 9—are relative to the “core” Fast-
Flow implementation, that is to the framework provided since version 1.0.
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Fig. 6. Skeletons available in FastFlow (as of December 2013)

More recently, within the activities of the EU FP7 STREP project “Para-
Phrase” the FastFlow framework has been extended in several ways to accomplish
different necessities from the application programmers. In particular:

– different high level patterns have been added,
– facilities to support coordinated execution of FastFlow program on internet-

worked multi core machines have been added,
– support for execution of new data parallel patterns on GPUs have been added

as well,
– refactoring tools suitable to automatically introduce and refactor FastFlow

skeletons in application code have been developed, and
– last but not least, a theoretical framework has been developed showing how the

“core” FastFlow customizable components may be used to implement basically
any kind of parallel pattern.

In this Section, we briefly outline these features.

15.1 High Level Patterns

FastFlow has been extended with new skeletons modeling general purpose and
high level patterns. The table in Fig. 6 summarizes the skeletons provided so far,
including the “core” ones. In particular, the following skeletons have been added
to the “core” ones:

– The map skeleton applies the same computation to all the elements of an
input collection (array) producing an output collection. The skeleton may be
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specialized to target GPU instead of CPU, if present, using either OpenCL
or CUDA. The only difference between the instantiation of a map skeleton
targeting CPU cores and the same skeleton targeting GPU is in the way used
to provide the “worker” code, as in the latter case, OpenCL or CUDA kernels
are needed.

– The reduce skeleton “sums up” using a commutative and associative binary
operator all the elements in a collection (array) producing a single scalar value.
As for the map skeleton, two different implementations of the reduce pattern
exist targeting CPU or GPU.

– The divide and conquer skeleton implements the classical divide et impera
computations, only targeting CPU, at the moment.

– The stencil skeleton applies the same computation to all the elements in an
input collection (array) to produce an output collection, as in the map case.
However, in case of the stencil, the computation of the single item depends not
only on the value of that item in the input collection (as in map skeleton) but
also on the values of a set of “neighboring” elements in the input collection.
Moreover, the computation is iterative, that is more iterations are performed
up to a given “termination condition”.

– The workflow interpreter skeleton computes a statically or dynamically
generated macro data flow graph over input data. It is usually instantiated
to compute numerical code—possibly including calls to optimized numerical
libraries—with maximum efficiency.

– The pool evolution skeleton iteratively computes the evolution of a set of
“individuals” in a population by repeatedly (i) selecting a subset of individu-
als, (ii) “evolving” the selected individuals in new individuals, (iii) selecting a
subset of the new individuals to be included in the original population and (iv)
checking if the resulting population satisfies a given termination condition.

All these skeletons are provided to application programmers as FastFlow classes
that may be instantiated and used in their programs. As an example, a stencil
computation expressed by the following sequential code:
1 while (k<=maxit && e r r o r > to t ) {
2 /∗ copy new so l u t i o n in to o ld matrix ∗/
3 for ( int j =0; j<m; j++)
4 for ( int i =0; i<n;++ i ) uold [ i+m∗ j ]=u [ i+m∗ j ] ;
5 /∗ computes the s t e n c i l and r e s i d u a l ∗/
6 for ( int j =1; j<(m−1);++j )
7 for ( int i =1; i <(n−1);++ i ) {
8 r e s i d = compute res id ( f , i , j , uold , ax , ay ) ;
9 /∗ updates s o l u t i o n ∗/

10 u [ i + m∗ j ] = uold [ i + m∗ j ] − omega ∗ r e s i d ;
11 /∗ accumulates r e s i d u a l e r r o r ∗/
12 e r r o r =e r r o r + r e s i d ∗ r e s i d ;
13 }
14 e r r o r = sq r t ( e r r o r ) / (n∗m) ; k++;
15 }

may be implemented using a simple stencil skeleton instantiation such as:
1 // i n s t a n t i a t e s t e n c i l pattern
2 stenc i l2D<double> s t e n c i l (u , uold ,m, n , n ,NUMTHREADS,1 , 1 , fa l se ) ;
3
4 s t e n c i l −>in i t InFunc ( in i tU ) ;
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5 s t e n c i l −>initOutFunc ( in i tUo ld ) ;
6
7 s t e n c i l −>computeFunc ( s t enc i lF , 1 ,m−1 ,1 , 1 ,n−1 ,1) ;
8 s t e n c i l −>reduceFunc ( condF , maxit , reduceOp , 0 . 0 ) ;
9

10 s t e n c i l −>run and wait end ( ) ;

where:

– initU initializes the single cell of the u matrix. The function is called in a
parallel loop in order to execute the initialization phase in parallel;

– initUold initializes the single cell of the uold matrix as in the previous case;
– computeFunc executes the stencil for each pair (i, j) updating the u matrix

and reading values from the uold matrix;
– reduceFunc reduction function used to evaluate the error and for terminating

the computation;
– run and wait end starts the stencil computation and wait for termination.

More details on the new skeletons provided may be found in [32,34].

15.2 Targeting Distributed Machines

ff nodes model the concurrent activities in FastFlow. They are assumed to be
independent threads, orchestrated by FastFlow in such a way they have a input
channel (stream) providing input tasks to be computed and an output channel
(stream) where the results computed out of the input tasks have to be delivered.
The whole management of the input and output channels is in charge of the
FastFlow run time support, rather than of the application programmer, as evident
from the previous sections. These channel are implemented in “core” FastFlow
by means of shared memory lock free queues.

Recently, a ff dnode class has been added supporting the possibility to have
one of the input and output channels implemented by means of transport layer
on top of TCP/IP. The d node class therefore supports communications between
FastFlow threads running on different machines.

ff dnodes may be used in any place where an ff node may be used, that
is as pipeline stages, farm workers, etc. They still define proper svc methods
modeling the local computation of the thread. However, they have additional
methods that allow to bind the input or output channel defined as distributed
rather than local to an 〈IP, port〉 pair and to provide proper serialization (mar-
shalling and un-marshalling) procedures for the tasks exchanged with the remote
FastFlow node. Default serialization methods are provided in case tasks/results
to be transmitted are represented within a single, contiguous memory region.
Additional programming effort is required to accomplish non contiguous data
serialization. In particular, in order to serialize non contiguous data, the pro-
grammer must implement a prepare method such as:
1 void prepare ( svector<iovec>& v , void∗ ptr , const int sender=−1) {
2 struct i ovec iov={ptr , t a skS i z e ∗ t a skS i z e ∗ s izeof (double ) } ;
3 v . push back ( iov ) ;
4 }



68 M. Danelutto and M. Torquati

where a svector<iovec> is filled with struct iovec pairs hosting the pointer
and the length of the different memory areas used to represent the complex data
structure to be serialized.

The distributed channels implemented on top of the TCP/IP stack6 support
the implementation of different channels, including one-to-one channels as well as
one-to-n, n-to-n channels implementing different distribution (scatter, multicast,
broadcast) and collection (gather, gatherall) policies. By using d nodes and the
associate channels FastFlow currently supports the implementation of farms with
remote workers, pipeline with remote stages targeting both clusters of Linux
workstations and cloud nodes [18].

15.3 Targeting GPUs

In the last versions of FastFlow, the execution of FastFlow data parallel patterns
such as the ff map may be directed to GPU cores rather than to CPU cores.
A ff mapCUDA (ff mapOCL) map skeleton may be used in place of a simple ff map
to use (possibly existing) CUDA (OpenCL) kernels to map the same application
onto all the elements of a collection (array). Apart from the specific syntax details
needed to pass the CUDA (OpenCL) kernel to the constructor of the ff mapXXX
skeleton, the two skeletons implement all the necessary steps to execute the
kernel on the GPU, including all the data transfers needed to move input data
to the device memory and results back to the CPU main memory. Additional
macros has been defined that simplify the writing of kernel code as well as of
the full map skeleton. In particular, the kernel code may be provided through a
proper macro taking as arguments the name of the kernel, the type of the input
parameter and of the result, the name of the input (formal) parameter and the
body of the kernel function. As an example, the code:
1 FFMAPFUNC(mapf , f loat , elem , return ( elem+1.0) ) ;

defines a kernel named mapf taking a float elem parameter and returning the
float elem+1.0 value.

Using this kernel a farm with map workers targeting GPU may be defined
as follows:
1 f f f a rm<> farm ;
2 Emitter E( streamlen , i npu t s i z e ) ;
3 Co l l e c t o r C( i npu t s i z e ) ;
4 farm . add emitter (&E) ;
5 farm . add c o l l e c t o r (&C) ;
6
7 std: : vector<f f n od e ∗> w;
8 for ( int i =0; i<nworkers;++ i )
9 w. push back (NEWMAPONSTREAM( oclTask<f loat >, mapf ) ) ;

10 farm . add workers (w) ;
11 farm . run and wait end ( ) ;

The NEWMAPONSTREAM macro on line 9 defines a map targeting GPU through
CUDA or OpenCL—depending on the macro defined in the preamble (ff CUDA
or ff OCL)—and computing the mapf kernel on float arrays provided through

6 We currently use the zeroMQ library to support the distributed channels ().
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a stream7. More details on the FastFlow skeletons targeting GPUs may be found
in [33]. Reference [38] discusses how a FastFlow module may be implemented
automatically splitting map tasks among CPU and GPU cores, such that the
overall execution time is optimized.

15.4 Refactoring

Programs using skeletons may be rewritten in such a way the functional seman-
tics is preserved while the non-functional semantics (the aspects relative to per-
formance or power consumption, as an example) is possibly changed.

Different rewriting rules hold, including8:

farm(Δ,nw) ≡ Δ a farm with nw workers is equivalent to
the computation of the worker alone

pipeline(Δ1,Δ1) ≡ a pipeline of two stages is equivalent to
comp(Δ1,Δ2) the sequential composition of the two

stages
pipe(map(Δ1),map(Δ2)) map promotion: two maps in a pipeline
≡ map(pipe(Δ1,Δ2)) are equivalent to a map with a pipeline

worker

These rules have obvious impact on performances. In [6] we have shown that
any stream parallel skeleton composition involving farms and pipelines eventu-
ally may be substituted by a single farm of sequential workers derived applying
the rules listed above and sporting a better or similar—with respect to the
original composition—service time. As a further example, a pipeline with two
unbalances stages pipe(Stage1, Stage2) may be rewritten with much better per-
formance applying the first rewriting rule in the table above “right-to-left” to
obtain a pipe(Stage1, farm(Stage2, nw)) in case the second stage has a latency
nw times the latency of the first stage.

Therefore, if our original pipeline is implemented through the code:
1 . . .
2 f f p i p e l i n e pipe ;
3 pipe . add stage (new Stage1 ( ) ) ;
4 pipe . add stage (new Stage2 ( ) ) ;
5 . . .
6 pipe . run and wait end ( ) ;

we can easily apply the rewriting rule introducing the farm obtaining a refactored
program such as:
1 . . .
2 f f p i p e l i n e pipe ;
3 pipe . add stage (new Stage1 ( ) ) ;
4
5 f f f a rm<> farm ;

7 The map itself works on a single input task to produce a single output result, by
default.

8 Δ represents any skeleton composition, in this case.
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6 std: : vector<f f n od e∗> w;
7 for ( int i =0; i<nw; i++) w. push back (new Stage2 ( ) ) ;
8 farm . add workers (w) ;
9

10 pipe . add stage (&farm ) ;
11 . . .
12 pipe . run and wait end ( ) ;

It is worth pointing out the negligible programming effort required to refactor
the program according to the “logical” rewrite rule listed in the table, especially
compared to the effort required when refactoring in the same way programs
written with parallel programming frameworks not supporting skeleton/parallel
patterns (e.g. MPI). Assuming the latencies of Stage1 and Stage2 were respec-
tively of 100 and 300 ms (per task), and that the program computes 1000 tasks,
the completion time of the first version would have been around 300 s, while
the one relative to the second version could have been around 100 s, with a 3x
speedup.

Within ParaPhrase a refactorer tool supporting rewriting of FastFlow skele-
tons according to a set of rules including the ones listed above is being developed
on top of Eclipse [35].

15.5 RISC-pbb

Last but not least, the FastFlow components used to implement the “core” skele-
tons, namely the emitter, collector, string of workers, etc. may be considered a
sort of “RISC” set of parallel building blocks suitable to be used to build a
number of different skeletons implementing a variety of parallel patterns: sim-
ple general purpose parallel patterns, domain specific parallel patterns and high
level parallel patterns implementing parallel programming models as well. In [23]
we define the RISC-pbb set of parallel building blocks corresponding to the base
components of FastFlow and in [2] we show:

– how these building blocks may be used to implement high level parallel models
(e.g. BSP or Google mapreduce)

– that they are suitable to implement domain specific parallel patterns
(e.g. from soft computing/genetic algorithms or from numerical applications)

– that a set of rewriting rules stating equivalences among building block expres-
sions exist, such that they may be used to refactor building block expressions
to (i) improve performances and (ii) to target different parallel architectures.

16 Related Work

FastFlow aims at providing programmers of parallel applications with suitable
tools enhancing their productivity while designing, developing and tuning par-
allel applications. In particular, it aims at supporting both the parallelization
of existing applications–e.g. exploiting the accelerator facilities of FastFlow–and
the development ex novo of parallel applications.
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In this respect, FastFlow naturally competes with more famous and widely
used parallel programming frameworks targeting the same kind of shared mem-
ory architectures such as OpenMP or Intel TBB.

OpenMP (http://openmp.org/wp/) naturally and seamlessly supports data
parallel patterns, especially those expressed as parallelization of loops. It also
supports the implementation of more complex, task parallel patterns, but this
requires much more programming effort. In fact, different extensions (e.g. [36,37])
have been developed to increase the possibilities offered to parallelize applica-
tions with more complex task parallel patterns in OpenMP. Overall, even if the
programming effort may by slightly larger in terms of lines of code, FastFlow still
offers more–primitive or composite–patterns than OpenMP, with a comparable
efficiency level and with better composition features.

Intel TBB (https://www.threadingbuildingblocks.org/) provides more primi-
tive mechanisms with respect to both OpenMP and FastFlow. These mechanisms
may be used to implement different patterns with different amounts of program-
ming effort. However, the lower–with respect to FastFlow–level of abstraction
provided to the parallel programmer by Intel TBB has a notable impact on both
development and tuning time of parallel applications.

A number of different parallel programming environments from the algo-
rithmic skeleton community have been developed and are currently maintained
that directly compete with FastFlow. Muesli [25], Sketo [31], SKEPU [24], OSL
[29], Skandium [30], just to mention some of them, all provide a set of par-
allel patterns as algorithmic skeletons suitable to be instantiated–alone or in
composition–with business code parameters to implement parallel applications.
Some of these frameworks only provide data parallel skeletons (e.g. SKEPU and
Sketo). Other use different “host languages” (e.g. Skandium, which is provided
as a Java library). In the former case, FastFlow offers a more structured and
comprehensive parallel pattern set. In the latter case, the efficiency related to
the usage of C++ rather than Java may represent a sensible advantage for Fast-
Flow. Some of these programming frameworks also target clusters/networks of
workstations (e.g. Muesli) or GPUs (e.g. Meusli and SKEPU). As explained in
Sects. 15.2 and 15.3 FastFlow extensions may be used to orchestrate parallel com-
putations on clusters of multi cores [5] and to direct data parallel computation
to GPUs (using either CUDA or OpenCL kernels) or to a mix of GPU and CPU
cores (using OpenCL) [26,38].

Different research teams participated to the development of FastFlow in dif-
ferent ways. Szũgyi and Pataki [39] developed a version of FastFlow fully exploit-
ing the template mechanisms provided by C++ that eventually demonstrates
good performances and much better type checking than the original FastFlow.
Collins designed advanced tools suitable to automatically configure implemen-
tation parameters of FastFlow such that optimal performances may be auto-
matically achieved [21]. Boob et al. [17] developed tools to distribute FastFlow
computations on cloud resource exploiting typical virtual machine technologies.
Goli and Gonzalèz-Velez demonstrated combined exploitation of CPU and GPU
cores with FastFlow [26,27].

http://openmp.org/wp/
https://www.threadingbuildingblocks.org/
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Last but not least, different groups are using FastFlow to implement dif-
ferent kinds of parallel applications and frameworks, including business transac-
tion frameworks (http://fix8.org/), deep packet inspection tools (https://github.
com/DanieleDeSensi/Peafowl) and rewriting-based calculus for the represen-
tation and simulation of biological systems (http://sourceforge.net/projects/
cwcsimulator/).

17 Conclusions

We have introduced the basic features of the structured parallel programming
framework FastFlow. We discussed this features by illustrating simple sample
code and pointing at relevant papers and manuals hosting more detailed descrip-
tion of syntax and usage best practices for FastFlow.

FastFlow has been demonstrated to be very efficient in the execution of
structured parallel applications, especially when fine grain parallelism has to
be exploited. Different published papers show that the performances achieved
with FastFlow applications/kernels on state-of-the-art multi core and distributed
architectures are comparable or even better than the performances achieved exe-
cuting the same applications/kernels using different, more traditional program-
ming frameworks such as OpenMP or the Intel TBB library [10,13,15].

FastFlow is currently being adopted within two FP7 projects, ParaPhrase9

and Repara10. In ParaPhrase, a methodology supporting the development of par-
allel applications where FastFlow parallel patterns are introduced through semi
automatic refactoring of existing code is being developed. Preliminary results on
industrial use cases show that the approach is feasible, FastFlow achieves compa-
rable or slightly better performances that OpenMP and, last but not least, that
the combined usage of refactoring and FastFlow technology greatly simplifies the
development of efficient parallel applications, thus improving the time-to-market
of parallel applications. Within Repara (just stared at the moment being), Fast-
Flow is being adopted as the run time system orchestrating the execution of
parallel applications on heterogeneous architectures including multicore CPUs,
GPUs, FPGAs and DSPs.

FastFlow is an open source framework licensed under LGPL and available
at SourceForge11. At the moment being the downloads from SourceForge are
in the range of thousands. Different researchers and programmers are using it
especially in those cases where fine grain parallelism needs to be exploited with
the maximum efficiency.
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Abstract. Domain specific language integration has to provide the right
balance between the expressive power of the DSL and the implementa-
tion and maintenance cost of the applied integration techniques. In this
paper we discuss a DSL integration technique for the C++ programming
language. The solution is based on compile-time parsing of the DSL code
using the C++ template metaprogramming library called Metaparse.
The parser generator is the C++ template metaprogram reimplementa-
tion of a runtime Haskell parser generator library. The full parsing phase
is executed when the host program is compiled. The library uses only
standard C++ language features, thus our solution is highly portable.
As a demonstration of the power of this approach, we present a highly
efficient and type-safe version of printf and the way it can be constructed
using our library. Despite the well known syntactical difficulties of C++
template metaprograms, building embedded languages using Metaparse
leads to self-documenting maintenable C++ source code.

1 DSL Integration

Although domain specific languages are indispensable in their domain, the vast
majority of the programs execute most of their actions out of that domain.
As an example, SQL might be a perfect solution for describing operations related
to relational databases, but database servers will create threads, open network
connections, communicate with the operating system in the means of a general
purpose programming language. The usual solution is that the desired domain-
specific language or languages are used together with a general purpose pro-
gramming language. In most cases the integration of these languages happens
by embedding the DSL(s) into the general purpose language with or without
some syntactical quotation. However, this integration should add minimal syn-
tactical, semantic and maintenance overhead to the project.

Two fundamental approaches exist when a DSL is about to be integrated
into a host language. In one approach some external tool or framework is used
to identify, parse, syntactically and semantically check the domain specific lan-
guage and generate the code integrated into the host language. As an alterna-
tive way one can use internal solutions, that do not require other tools than the
infrastructure of the host language. Although many of the recent DSL integration
approaches focus on the application of external tools [11,16,18,26,29], in modern
c© Springer International Publishing Switzerland 2015
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programming languages, like Scala [4] and Haskell [15] there are vital examples
for using the internal method. In the case of C++ one of the primary candidates
is template metaprogramming [1,3,6,7], in which one can define multi-staged
compilation steps using only the C++ compiler.

Regular expression is one of the commonly used domain specific language
in modern generic purpose programming languages. They are used for a very
special purpose: text manipulation, and have a specific, usually implementation-
independent syntax. Regular expressions are mostly implemented as libraries.
Classical regular expression libraries, like stl::regex from the C++11 standard
[17], are powerful and flexible. Patterns are represented as strings which are
specified at run-time. In this case a syntax error in the regular expression, such
as unbalanced parenthesis, can be detected only at run-time.

The Boost.Xpressive is an advanced, object-oriented regular expression
library for C++ [30]. The provides two ways for defining a regular expression.
Regular expressions in Boost.Xpressive can either be dynamically bound and
specified at run-time or statically bound, hard-coded and syntax-checked by the
compiler. These regular expressions can refer to each other recursively.

1. Dynamic Regex. We can call the sregex::compile method in runtime
to create a regular expression we specified as a string. This method doesn’t
provide compile time syntax check for the regex, although it retains the well-
known syntax.

2. Static Regex. We can build a regex from overloaded C++ expressions, so
called expression templates. Thus Boost.Xpressive library allows an alterna-
tive way for embedding regular expressions as DSL: they can be defined using
expression templates and thus they are checked at compilation time. Unfor-
tunately, this comes with high syntactical overhead. For example a regular
expression in dynamic regex "(\\w+) (\\w+)!" looks like this in static regex:

(s1= + w) >> ’ ’ >> (s2= + w) >> ’!’

Most of the current C++ template metaprogramming development suffers from
similar unmaintenable syntax. The syntax of Boost.Xpressive and Boost.Proto
[13] as examples, are seriously restricted by the fact that C++ expression tem-
plates should conform to the syntax of valid C++ expressions [24,25]. This is
in sharp contrast with the flexibility of dynamic regular expressions where the
expressions are placed in run-time strings without any restrictions.

Our goal is to combine the best of the two approaches and give a method
where we can specify a regex as a string without restrictions but keeping the
possibility of compile time syntax checking. This way we could achieve seam-
less integration without syntactical overhead, thus we don’t need to escape the
domain of regular expressions when we want to use them in C++.

We will achieve this goal with the help of the Metaparse library [22,23].
Metaparse is a C++ template metaprogram library which implements a full-
featured parser infrastructure to parse the domain specific code and translate it
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to native C++ [7]. When implementing the parser we followed L. Andersson’s
description on the construction of a parser generator in Haskell [2], but leveraged
the well known connection between functional programming languages and C++
template metaprogramming. Our parser is executed as a metaprogram during
the compilation of the C++ source using no other tool than the standard C++
compiler. Metaparse is the only library the authors are aware of, which supports
parsing a string at compile-time and the generation of types as the result of
parsing. Further details on Metaparse can be found in [6].

With the help of Metaparse we are able to translate regular expressions in
arbitrary syntax to the required input syntax of Boost.Xpressive. We implement
these translation by writing simpler parsers and combining them to build a
more complex parser. To identify the needed parsers we will write a grammar
for regular expressions. These individual parsers are metafunctions with a scope
of parsing one element from the grammar. They can process different regex
pieces like [abc] or (xyz). We can combine them as described in Sect. 2, thus
we can parse ([abc]xyz) too without writing a new parser for this expression.
We will show a working library which can parse arbitrary complicated regular
expressions and create the respective static Xpressive regular expressions for
them using C++ compiler only.

To build a complex parser like this, we need to clearly describe how the
possible regular expression pieces can be used together. The parser needs to
know the expected order of the pieces, and how they can be embedded within
each other. The different expressions need to be categorised and ranked according
to their precedence. A grammar can express these relations.

The Xpressive User’s guide contains a table which shows line-by-line the
Perl regular expression syntax and the corresponding static Xpressive expres-
sion. We can use this table as a starting point to determine the elements the
parser needs to interpret and convert into static Xpressive objects. Note, the
POSIX [5] character classes like [:alnum:] should be written as [[:alnum:]], if
we want to comply with the Perl syntax.

It is challenging to identify the main grammatical elements which are based
on the precedence of the expressions. We can try to draw syntax trees for concrete
expressions to identify what kind of elements we would need in the grammar to
build it up.

As we can see on Fig. 1, a regular expression (reg exp) consists of seq ele-
ments. These sequences consist of arbitrary number of unary item expressions
which are items with their possible repetitions. It is necessary to differentiate
items and set items, because the latter has only those expressions of the gram-
mar which can be used within square brackets. Arbitrary number of set item
can be joined with a set element which contains the closing ’]’ character.
A character group like [abc] can be called group in our grammar and its rule
can be that it starts with ’[’ and then it continues with a set or a range
expression (range exp).
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Fig. 1. The syntax tree of the ^([abc][1-5])?x$ regular expression

We can also identify that anything can be put in a bracket expression, so we
allow our head element to be used between ’(’ and ’)’. With different examples
we can gradually identify the use-cases of the elements, and deduce the suitable
grammar elements. The final version of our grammar can be seen in AppendixA.

2 Parsing Basic Regular Expressions

After we have the grammar, we can commence building up the parsers. Let’s
start with the less complicated ones, which are at the bottom of our syntax
tree. The very first parser we’ll build is for the caret character (’ˆ’), which has
a special meaning in regular expressions. We can put it as the first character of
a sequence, which means that the following regular expression elements should
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match a string from its beginning. The code of this bos (beginning of sequence)
parser is as follows:

The parser is built using a typedef. We can use lit c<’^’> to identify a
caret character. The always parser can be used to replace this character with
our build bos metafunction class. This class has a type, as every metafunction
class should, and a static run method. This method can be used to return the
desired static Xpressive object, which is in our case a boost::xpressive::bos
object. The eos and any elements have been created the same way.

struct bu i l d bo s
{

typedef bu i l d bo s type ;
stat ic xp r e s s i v e : : s r egex run ( ) {

return xp r e s s i v e : : bos ;
}

} ;
typedef metaparse : : always<

metaparse : : l i t c < ’ ˆ ’>, x l x p r e s s i v e : : bu i l d bo s
> bos ;

So far so good, but how can we use this as a regular expression? We have the
’ˆ’ character identified by lit c. Our bos parser returns the build bos meta-
function class, because we use the always parser. To get the static Xpressive
object we can call the run method through type, since it is static.

We have the parser we’d like to test, so we just need to give it the input
string from a test case. To do this easily Metaparse provides us a build parser
metafunction. What it does is exactly what we want: it wraps our parser with
a metafunction class which expects an input string, gives it to our parser and
returns its result. If our parser fails, a compilation error will be generated. We
use the entire input parser around our own parser to ensure that we process
the entire input string. So this is how we can use our first simple parser:

typedef metaparse : : bu i l d pa r s e r<
metaparse : : e n t i r e i npu t<x l xp r e s s i v e : : bos>

> r egexp par s e r ;

This can be tested with a simple test case like this:

[ t e s t 1 ]
s t r=
pat=ˆ
f l g=
br0=
[ end ]
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The final step is to create an sregex object. This can be done by applying our
regexp parser on a boost::mpl::string, or we can use the MPLLIBS STRING
macro, if we can leverage the C++11 standard. For our first simple example
here’s how we can do this:

const s r egex re = mpl : : apply wrap1<r egexp parse r ,
MPLLIBS STRING(”ˆ” ) > : : type : : run ( ) ;

To make the whole construct even more usable, we can wrap it with a macro
like REGEX. This way we can simply create our Xpressive regular expression
object (sregex) using this macro, and then we can use it the normal way:

#define REGEX( s ) (mpl : : apply wrap1<r egexp parse r ,
MPLLIBS STRING( s ) > : : type : : run ( ) )

const s r egex re = REGEX(”ˆ” ) ;

As we build our solution further we can add new test cases and change
the actual parser behind regexp parser to the actual top element we have
implemented so far from the grammar. This way we can test the added parser
and ensure that we haven’t broken anything.

When the parser fails compiler error is generated. Reporting errors in a clear,
unambigous way with the correct information about the place of occurrence is
essential for the usability of our approach. The authors investigated the methods
of generating valuable diagnostic messages regarding C++ template metapro-
grams in [9]. In the same paper the authors describe a unit testing framework for
C++ template metaprograms that guarantees the execution of all test cases and
provides proper summary-report with enhanced and portable error reporting.
That method can be used to generate a test framework for the grammar.

3 Combining Regular Expressions

After we have these basic elements we can go up a level on the syntax tree to
see how they fit into the upper element, item in this case. It looks like this in
our grammar:

item ::= set_item|bos|eos|any|bracket_exp|group

We just simply list the acceptable elements. It is important that these ele-
ments are in the order of precedence i.e. if the first clause matches, the others
aren’t evaluated at all. We can do the same using the one of parser:

typedef metaparse : : one of<
x l xp r e s s i v e : : s e t i t em ,
x l x p r e s s i v e : : bos ,
x l x p r e s s i v e : : eos ,
x l x p r e s s i v e : : any ,
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x l xp r e s s i v e : : bracket exp ,
x l x p r e s s i v e : : group

>
item ;

We used typedef again to create a new element of the grammar. This is
a common technique to define our entities in template metaprogramming. As
you can see we’ve listed all the elements we need for a complete item. We will
examine some of them in details later on. The very similar set item can be built
this way too.

The item element with an optional repetition behind it construct our next
target, the unary item.

unary_item ::= item ((’*’|’+’|’?’|repeat) ’?’?)?

This complicated thing after item means that it can be followed by a ’*’,
’+’, ’?’ character or a ’repeat{n, m}’ construct. This is the repetition of item.
The ’?’ character is optional, just like this whole repetition thing itself. Let’s
see what we want to identify and what we want that to be transformed into. On
the left side we have the regular expressions in their common format, how we
use them in Perl and on the right side the respective static Xpressive form can
be seen.

a -> a
a* -> *a
a+ -> +a
a? -> !a
a{n,m} -> repeat<n,m>(a)
a*? -> -*a
a+? -> -+a
a?? -> -!a
a{n,m}? -> -repeat<n,m>(a)

The main problem here is this: we can parse an item and a repetition
separately in a sequence, but how should we give the result of item to the
repetition? Let me show how we can identify these elements one-by-one, and
after that how we can solve this issue. Using a top-to-bottom approach let’s
write what we want first, break the problem into smaller parts and solve these
later on:

typedef metaparse : : transform<
metaparse : : sequence<x l xp r e s s i v e : : item : : type ,

x l xp r e s s i v e : : r e p e t i t i o n >,
x l x p r e s s i v e : : bu i ld unary i t em

>
unary item ;



DSL in C++ Template Metaprogram 83

With sequence we can specify an order between the sub-parsers. We accept a
unary item only, if it consists of an item and then a repetition. The transform
parser will be used many times further on. It is very useful, because it calls the
second template parameter with the result of the parser in its first template para-
meter, which is a sequence in our case. The second parameter is a metafunction
class responsible for the transformation. We need a metafunction class instead
of a simple metafunction, because we need a type here. Metafunction classes
are complete types, so we can pass them as metafunction arguments. They are
wrappers around their publicly-accessible apply metafunction. We have seen
how the item parser can be built up. Let’s create the repetition parser, so
we’re focusing on this part of the grammar now:

((’*’|’+’|’?’|repeat) ’?’?)?
repeat ::= ’{’ (number ’,’ number|’,’ number| number ’,’) ’}’

The pipe separated list is similar to what we have seen at the item element,
so we can use the lit c and one of parser combinators [8,10] again. To specify
the order between this part and the question mark character, a sequence can
be used. The numbers can be identified with the digit val parser, if we want
the int value to be returned. If we want to mark whether we’ve seen an optional
element, like ’?’, or not, we can use the return parser. It simply returns what is
its argument without parsing anything. We can use it with char and int values
in our case.

We have the following structure to be parsed: [*+?{](\d,\d})?’?’?. To
handle the optional parts we use the one of parser this way:

typedef metaparse : : one of<
metaparse : : d i g i t v a l ,
metaparse : : r e turn < mpl : : i n t <−1> >

>
maybe dig i t ;

It can accept a digit or return −1 otherwise. We should do the same thing
for accepting the comma symbol:

typedef metaparse : : one of<
metaparse : : l i t c < ’ , ’>,
metaparse : : r e turn < mpl : : char < ’ x ’> >

>
maybe comma ;

We parse a ’,’ character or return an ’x’. Of course, we can choose any
other character instead of ’x’ to express that we’ve not matched the expected
one. We can define maybe close curly bracket and maybe questionmark the
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same way. We should have a return value in case we don’t have this repetition
part at all. For this we can create a dont repeat type, which can be defined
using a boost::mpl::vector type sequence the following way:

typedef metaparse : : r e turn <
mpl : : vector<

mpl : : char < ’ x ’>,
mpl : : i n t <−1>,
mpl : : char < ’ x ’>,
mpl : : i n t <−1>,
mpl : : char < ’ x ’>,
mpl : : char < ’ x ’>

>
>
dont repeat ;

With these structures we can define repetition in a self-documenting man-
ner like this:

typedef metaparse : : t rans form <
metaparse : : one of<

metaparse : : sequence<
metaparse : : one of<

metaparse : : l i t c < ’ ∗ ’>,
metaparse : : l i t c < ’+ ’>,
metaparse : : l i t c < ’ ? ’>,
metaparse : : l i t c < ’ { ’>

>,
maybe digit ,
maybe comma ,
maybe digit ,
maybe c lo s e cur ly bracke t ,
maybe questionmark

>,
dont repeat

>,
x l x p r e s s i v e : : e v a l r e p e t i t i o n

>
r e p e t i t i o n ;

We’ve wrapped the whole construct with the transform parser combina-
tor again, because we have character and numeric values only and we need to
evaluate them and return the corresponding repetition somehow.
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With eval repetition we want to give back a “metaprogramming data”,
which shows what kind of repetition the user has specified. These are the results
of our repetition parsing and can be declared as structs e.g.:

// when we haven ’ t seen r e p e t i t i o n
struct no repeat { typedef no repeat type ; } ;
// when ’∗ ’ has been i d e n t i f i e d
struct any repeat { typedef any repeat type ; } ;
// when both ’∗ ’ and a f o l l ow i n g ’? ’ have been i d e n t i f i e d
struct any may repeat { typedef any may repeat type ; } ;
// e t c . . .

Let’s just concentrate on any repeat. How can eval repetition return it,
while it has the char and int values only? We can use the template specialization
here, because this way like with pattern matching in functional programming, we
can uniquely choose and return the needed result. eval repetition is a meta-
function class. To do the pattern matching with specialization we can declare a
struct eval repetition impl which has 6 template parameters. We can pass
these parameters to the implementation by processing the sequence we’ve got
from the transform parser. The boost::mpl::at c metafunction can be used
here, since we know the length of the received sequence and we can pass the
index as a constant value:

struct e v a l r e p e t i t i o n
{

template <class Seq>
struct apply :

e v a l r e p e t i t i o n imp l <
mpl : : at c<Seq , 0> : : type : : value ,
mpl : : at c<Seq , 1> : : type : : value ,
mpl : : at c<Seq , 2> : : type : : value ,
mpl : : at c<Seq , 3> : : type : : value ,
mpl : : at c<Seq , 4> : : type : : value ,
mpl : : at c<Seq , 5> : : type : : va lue

> {} ;
} ;

The implementation for any repeat can be seen below. The listed constants
in the template parameters of eval repetition impl show that we’ve special-
ized for the case when the user gave a ’*’ after the item. The inheritance can
be used here as a technique to return our prepared any repeat type.

template <char A, int N, char B, int M, char C, char D>
struct e v a l r e p e t i t i o n imp l ;

template <> struct e v a l r e p e t i t i o n imp l < ’ ∗ ’ , −1, ’ x ’ , −1, ’
x ’ , ’ x ’> : any repeat {} ;
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This is how the item and repetition elements are recognized. However, to
combine them we need to slightly modify the possible results of repetition:

//a∗ −> ∗a
struct any repeat
{

typedef any repeat type ;
stat ic xp r e s s i v e : : s r egex run ( xp r e s s i v e : : s r egex base ) {

return ∗base ;
}

} ;

We added an sregex parameter to the run method, because the repetition
needs to use the item it stands after. In case of any repeat we return the item,
which is called base here, with a ’*’ in front of it.

typedef metaparse : : transform<
metaparse : : sequence<x l xp r e s s i v e : : item : : type ,

x l xp r e s s i v e : : r e p e t i t i o n >,
x l x p r e s s i v e : : bu i ld unary i t em

>
unary item ;

The transform parser of unary item passes the item result and then the
repetition result to build unary item. These wrapped by Seq type sequence
become the template parameter of apply metafunction of build unary item.
The first element of Seq is the result of the item parser, which is a sub-parser’s
builder metafunction class e.g. build bos. The second element is the repetition
data, which has a run method now. This method is the key to solve our pre-
viously described problem, namely how we can pass the previously used item
parser as a parameter of repetition. The result of parsing a repetition, like
any repeat, has a run method now, after the above modification, which has
an sregex argument. The build unary item metafunction class should call the
repetition’s run method with the identified sregex object from item.

struct bu i ld unary i t em
{

template <class Seq>
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( )
{
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return mpl : : back<Seq > : : type : : run (mpl : : f ront<Seq > : :
type : : run ( ) ) ;

}
} ;

} ;

It can call item’s static run method through its type, so this way within the
repetition’s run method we’ll have the actual, preceding sregex extracted
from the item parser.

The idea behind building these separate parsers is that we can call the run
method of our top element, which calls the lower level element’s run method and
so forth. Through these run method call-chains, we can build up more complex
regular expressions from the individual parsers.

Let’s see how this works through a simple example. Suppose we want to use
the ".*" regular expression. We can use the same macro we introduced earlier:
REGEX(".*"). As you may remember this applies the ".*" boost::mpl::string
on the top level parser of our library, which can be the unary item parser now.

Here you can see the call-chain of the run methods of this example:

unary item : : type : : run ( )
−> bu i ld unary i t em : : apply<Seq > : : run ( )
−> return r e p e t i t i o n : : type : : run ( item : : type : : run ( ) ) ;
−> return any repeat : : type : : run ( bu i ld any : : type : : run ( ) ) ;
−> return any repeat : : type : : run (˜ xp r e s s i v e : : n ) ;
−> return ∗˜ xp r e s s i v e : : n ;

Just one thing left here I still owe you, the repeat elements. These differ
from the others, since they need two template parameters beside the item (’a’)
argument:

a{n,m} -> repeat<n,m>(a)
a{n,m}? -> -repeat<n,m>(a)

This is why eval repetition impl has 6 template parameters instead of just 2.
We can pass N and M to the corresponding result type, (range repeat and
may range repeat), using partial template specialization:

template <char A, int N, char B, int M, char C, char D>
struct e v a l r e p e t i t i o n imp l ;

template <int N, int M> struct e v a l r e p e t i t i o n imp l < ’ { ’ ,
N, ’ , ’ , M, ’ } ’ , ’ ? ’> : may range repeat<N, M> {} ;

With this solution, the may range repeat result type can directly pass its
template parameters to a boost::xpressive::repeat instantiation:

//a{n , m}? −> −repeat< n , m>(a )
template < int n , int m>
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struct may range repeat
{

typedef may range repeat type ;
stat ic xp r e s s i v e : : s r egex run ( xp r e s s i v e : : s r egex base )
{

return −xp r e s s i v e : : repeat<n , m>(base ) ;
}

} ;

We can write range repeat the same way.
qexp has been done in a similar way, but there the always parser has been

used, because it has simpler sequences like ”i:”. Another similar parser is bschar
which processes the non-printable characters we write starting with a backslash
like ”\ n”. We need the metaprogramming result expressions there too, but we
don’t need to write a complex evaluator like eval repetition and a builder like
build unary item.

Let’s summarize what parts we have implemented so far from the grammar:

unary_item ::= item ((’*’|’+’|’?’|repeat) ’?’?)?
repeat ::= ’{’ (number ’,’ number|’,’ number| number ’,’) ’}’
item ::= bos|eos|any
bos ::= ’^’
eos ::= ’$’
any ::= ’.’

4 The Top of the Grammar

We continue to climb up the syntax tree, where the only thing left is the seq
element, before we reach the top element reg exp:

seq ::= unary_item*

This is the first expression which is built up from an arbitrary number of com-
ponents. Metaparse gives us an any parser combinator which could be used in
this case, but we need to build up something from the individually processed
unary items. The foldl parser combinator suits our needs better in this case.
If you’re familiar with functional programming, you might already have an idea
what this parser could do. It tries to apply repeatedly its first template parame-
ter, a parser. It uses the second parameter as a starting point and executes its
third argument, which is a metafunction class by giving the existing result and
the next element to that as template parameters. So, we can build something
starting from the second argument and building it using the third argument, the
metafunction which always has the last parsed element from the first argument,
which is our repeated parser.

The parser what we want to apply 0 or more times is the unary item. This
is the first parameter, the repeatedly applied parser, which consumes the input
string. The ”neutral element” of our building process is empty seq. It should
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give back a kind of regular expression which matches everything, so it doesn’t
have any effect on the rest of our built expression. Xpressive doesn’t really
support something like this, but we can use the below solution. It introduces a
problem which I’m going to explain in details a bit later.

struct empty seq
{

typedef empty seq type ;
stat ic xp r e s s i v e : : s r egex run ( )
{

return xp r e s s i v e : : a s xpr ( ”” ) ;
}

} ;

The foldl parser will take this element as its starting state. This means that
its ”builder” metafunction will append all the parsed elements to this, so that
they will look like this: as xpr("")>>as xpr(’a’)>>as xpr(’b’)>>.... We use
as xpr to create a static Xpressive object from the empty string. Otherwise,
it would be a normal string and we would use the usual right shift operator
with it, instead of the overloaded one. When we have an empty input string, our
result will be this empty seq.

Our third parameter is the build seq metafunction class:

struct bu i l d s e q
{

template <class Next , class State>
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( )
{

xp r e s s i v e : : s r egex s = State : : type : : run ( ) ;
return s >> Next : : type : : run ( ) ;

}
} ;

} ;

It gets two template parameters from foldl:

– Next The next parsed element, which is the apply metafunction of the
build unary item, so we can call its run method.

– State The sequence we have built so far. At the beginning, it is the empty
seq. That’s why each sequence starts with as xpr("").
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The built simple parser always succeeds, even if unary item rejects the input
string the very first time:

typedef metaparse : : f o l d l <
x l xp r e s s i v e : : unary item ,
x l x p r e s s i v e : : empty seq ,
x l x p r e s s i v e : : bu i l d s e q

>
seq ;

It iterates through our input string with foldl and processes it with theparser
unary item. After each successful parsing, it calls build seq to assemble the
separate unary items with the ”¿¿” operator. We need to use this operator
for sequences, because in static Xpressive we must use valid, overloaded C++
language constructs to build up our regular expression, that’s the main idea
behind it, hence we cannot just put things like characters next to each other i.e.
we need to convert our simple ab regular expression into as xpr(a)>>b. as xpr
is needed to force the compiler to call the overloaded ”¿¿” operator and not the
one for char types.

By using foldl we’ve got a short and elegant solution, but with the any
parser we’d need to solve where and how to aggregate the sequence, which is
simply built by foldl in this case.

We can use the same technique we’ve seen at seq for our head element,
reg exp.

reg_exp ::= seq (’|’ seq)*

I won’t go into too much details here, but a few things worth mentioning.
For example, we can use foldlp now, because we have at least one element in
the arbitrary long sequence. foldlp does exactly what we need here: it executes
its second argument first, a parser, and if it succeeds, it applies its first argu-
ment repeatedly, which is a parser too, and calls build reg exp to assemble the
expression:

struct reg exp : metaparse : : transform<
metaparse : : f o l d l p<

metaparse : : l a s t o f < metaparse : : l i t c < ’ | ’>,
x l x p r e s s i v e : : seq >,

x l x p r e s s i v e : : seq ,
x l x p r e s s i v e : : bu i l d r e g exp

>,
x l x p r e s s i v e : : e v a l r e g exp

>
{} ;
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5 Bracket Expressions

You might have observed that we’ve declared our top element as a struct and
not used typedef. This is because we need to forward declare reg exp, so that
we can use it in the bracket expressions:

bracket_exp ::= ’(’ (reg_exp|qexp) ’)’
qexp ::= ’?’ (no_back_ref|...) reg_exp

These expressions can have two forms: (...) and (?...). The difference
between them is that the prior is the ”simple” bracket expression which saves
a back-reference for its wrapped regular expression, while the latter with the
starting ’?’ is for a couple special bracket wrapped constructs like (?i...) which
does case-insensitive matching within this bracket expression.

Here are a couple of these question mark prefixed expressions. On the right
side of the arrow we’ve listed what we want to generate for them:

(?i:regex) -> icase(regex)
(?>regex) -> keep(regex)
(?=regex) -> before(regex)
(?!regex) -> ~before(regex)

To handle these two types, we transform them with separate builder meta-
function classes and choose between them with one of. To recognize a bracket
expression we need to identify a qexp or reg exp between opening and closing
brackets. Metaparse gives us a parser called middle of which can be used for
sequences with 3 elements to parse all of them, but return the result of the
second only.

typedef metaparse : : transform<
metaparse : : middle o f<

metaparse : : l i t c < ’ ( ’>,
metaparse : : one of<

metaparse : : transform< x l xp r e s s i v e : : qexp ,
x l x p r e s s i v e : : bu i ld qexp based bracke t exp >,

metaparse : : transform< x l xp r e s s i v e : : reg exp ,
x l x p r e s s i v e : : bu i l d r e g exp ba s ed b ra cke t exp >

>,
metaparse : : l i t c < ’ ) ’>

>,
x l x p r e s s i v e : : e va l b ra cke t exp

>
bracket exp ;

The build qexp based bracket exp and eval bracket exp metafunctions
simply call the passed type’s static run method.
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However, the build reg exp based bracket exp metafunction is a bit more
interesting one. It does exactly what it says on the tin, but to build a sim-
ple bracket expression in static Xpressive, where we should give back back-
references after each bracketed expression, we need to express this intention
explicitly. We cannot simply wrap our reg exp in brackets and return it, because
brackets cannot be overloaded this way. To solve this, Xpressive uses the
s1...s9 so called sub-match placeholders. So, for example to write a regular
expression like (a) in the static Xpressive world, we should do this: (s1=a).

Since we’re translating ”normal” string-based regular expressions into static
Xpressive, we don’t have the actual number of the next sub-match placeholder
which we should return. So, we need to count it ourselves.

The easiest way of doing this, if we introduce a global variable; let’s call it for
example bracket counter. We can increase its value every time when the run
method is called, before we’d return the bracket-wrapped expression. However,
it’s not a good idea to use global variables in a library, so we should come up
with a solution where our counter has local scope.

We could use the counter as a local variable in the run method, if it’s passed
as a parameter. If we take this idea as a starting-point, we’ll find that this can
actually solve our problem, if we pass the counter through the run method call-
chain as a reference. The very first run method which we call when we start the
evaluation of our regular expression is the one in eval reg exp. We introduce
this counter here as a local variable of the parameterless run method which calls
the overloaded one. This way we ensure that the counter will be initialized at
the start of the evaluation and that reg exp can pass an existing value forward,
if we use it in a bracket expression:

struct eva l r e g exp
{

template <class Re>
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( )
{

int bracke t counte r = 0 ;

return Re : : type : : run ( bracke t counte r ) ;
}
stat ic xp r e s s i v e : : s r egex run ( int &bracke t counte r )
{

return Re : : type : : run ( bracke t counte r ) ;
}

} ;
} ;
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To make it work, we need to modify all the previously created parsers, so
that the run method of their build and/or evaluate metafunctions will get the
bracket counter as a reference. The only thing they should do with that is
passing it forward to the underlying parser(s), if they have any at all.

For example here’s how build seq can be modified:

struct bu i l d s e q
{

template <class Next , class State >
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( int &bracke t counte r )
{

xp r e s s i v e : : s r egex s=State : : type : : run (
bracke t counte r ) ;

return s >> Next : : type : : run ( bracke t counte r ) ;
}

} ;
} ;

So every parser will just get and pass the counter without modifying it, except
build reg exp based bracket exp. We can simply increase it here, evaluate the
reg exp and then choose the right sub-match placeholder with a switch-case
construct:

struct bu i l d r e g exp ba s ed b ra cke t exp
{

template <class E>
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( int &bracke t counte r )
{

++bracke t counte r ;
xp r e s s i v e : : s r egex a=E : : type : : run ( bracke t counte r ) ;
xp r e s s i v e : : s r egex r e t ;
switch ( b racke t counte r ) {

case 1 : r e t = ( xp r e s s i v e : : s1= a ) ; break ;
case 2 : r e t = ( xp r e s s i v e : : s2= a ) ; break ;
// case 3 . . 9 are s im i l a r

}
return r e t ;

}
} ;

} ;
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As I mentioned earlier, our solution for seq -where we’ve used the as xpr("")
as a neutral element in empty seq- introduced an issue. This bracket expression
is the parser where we can meet with this. Let me explain it through an example:
let’s assume that we want to use the ”(foo)” regular expression. We can do it
with our new library this way: const sregex = REGEX("(foo)"). It looks OK,
but when we try it out with our search.hpp test utility, which is used to process
each test cases we generate with gen test.pl, we get an interesting result:

success: 1
matching expected success: 1
size_check: 0 | 1 ~ 2
’foo’ VS ’foo’
sub_match: 0
RESULT: 0

It shows that our regular expression matched, and that it has the expected
behaviour. However, the sub match check failed, and this part [0 | 1 ~ 2]
shows that our solution has one less sub-match, than the expected. To find the
root-cause behind this, the best way is to debug the library, level-by-level to see
where it goes wrong. If we do this in our case we can find that at the level of
the seq parser our library doesn’t create what we would manually. This isn’t a
real problem however, but a speciality, caused by the way how we build up our
regular expressions. We should be aware of this when we use the library.

Let’s see what we generate for ”(foo)” to understand this:

sregex(as_xpr("")) >> sregex(s1= as_xpr(’f’) >>
as_xpr(’o’) >>
as_xpr(’o’))

We have an ”empty” regular expression at the front of what the user has
specified. Why this makes a difference can be found in the documentation of
Xpressive [31]. Each sregex need to have its own back-tracking scope. Regard-
ing our solution it means that we cannot iterate through the smatch object after
a regex search, if we want to see what are the sub-matches. Instead of this, we
should call the nested results method on the smatch object which we’ve used
for the search.

Here’s an example how we can do it.

// I f sub match and s i z e c h e c k f a i l e d , t r y to match wi th
nes ted r e s u l t s

i f ( ! sub match && ! s i z e c h e c k && w. n e s t e d r e s u l t s ( ) . s i z e
( ) > 0) {
sub match = true ;
n e s t e d r e s u l t a n a l y z e r nra (m, sub match ) ;
nra = std : : f o r e a ch (

w. n e s t e d r e s u l t s ( ) . begin ( ) ,
w. n e s t e d r e s u l t s ( ) . end ( ) ,
nra ) ;
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s i z e c h e c k = nra . s i z e ( ) == m. s i z e ( ) ;
}

}
A reference implementation can be found in xlxpressive’s source files.

6 Character Groups

In regular expressions we can use character groups like [a-z] or [abc], if we want
to exactly list which characters we accept in a character place. However, we can’t
list any kind of grammar elements between the square brackets e.g. we cannot use a
bracket expression there. That’s why in the grammar we’ve allowed char group,
range exp and set item only. To make it clear let me give you an example of
each, so that we can see the difference between them. On the left side we listed the
grammar elements, while in the middle we can see an example for these elements
as we would write them in a Perl regular expression. The last column shows the
static Xpressive form of the examples from the second column.

char_group [[:alnum:]] alnum
range_exp [0-9] range(’0’,’9’)
set_item [aB%\w7] set[’a’ | ’B’ | _w | ’7’]

As you can see, we differentiate them, because they correspond to different kind
of Xpressive objects. They can be separated by their structure too. Each of
them starts with a ’[’ character, so we first try to parse that. If we succeed, then
according to our grammar, we have two choices: char group or set:

group ::= ’[’ (char_group|’^’? set)
set ::= (range_exp|set_item)+ ’]’
range_exp ::= number set_num|letter set_abc|set_item
set_num ::= ’-’ num_range|set_item
num_range ::= number
set_abc ::= ’-’ abc_range|set_item
abc_range ::= letter

The char group parser is the easier one. We just need to specify the sequences
of the expected letters of the character group names and choose between them
with a one of and always construct. Here’s alnum for example. All the others
have been done the same way:

typedef metaparse : : transform<
metaparse : : sequence<

metaparse : : l i t c < ’ [ ’>,
metaparse : : l i t c < ’ : ’>,
metaparse : : one of<
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keyword<MPLLIBS STRING(”alnum” ) , x l x p r e s s i v e : : alnum
>,

. . .
>,
metaparse : : l i t c < ’ : ’>,
metaparse : : l i t c < ’ ] ’>,
metaparse : : l i t c < ’ ] ’>

>,
x l x p r e s s i v e : : eva l cha r g roup

>
char group ;

As you can see we use a new parser called keyword here. A boost::mpl::string
can be parsed with that, which we specify as its first argument. It returns the
optional second argument, if it succeeds. We use alnum as this second argument,
which is the returned result of our parsing. It looks very much the same as
the ones for unary item we have seen previously, but we don’t need the extra
parameter for the run method.

// [ [ : alnum : ] ] −> alnum
struct alnum
{

typedef alnum type ;
stat ic xp r e s s i v e : : s r egex run ( )
{

return xp r e s s i v e : : alnum ;
}

} ;

The run method of the eval char group metafunction returns whatever the
::type::run() method of the 3rd element of the passed Seq sequence returns,
which is the result of the one of parser. In our case, ::type::run() is called
on the alnum result, so eval char group returns boost::xpressive::alnum.

struct eva l cha r g roup
{

template <class Seq>
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( int &bracke t counte r )
{

return mpl : : at c<Seq , 2> : : type : : run ( ) ;
}

} ;
} ;
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We get the bracket counter argument in this run method, as we introduced
them in Sect. 5, but we don’t pass it forward. This is because the things like
alnum are leaf elements in our syntax tree, so they return the needed objects
and don’t need to do anything with a passed extra argument.

So far so good, let’s continue with set. This grammar element introduces
the most complicated problem we cover in this thesis and needs an advanced
technique to solve it. Let me describe the problem with set first and then show
you what kind of solution we can find in a case like this.

We’ve named this element of the grammar after the construct of Xpressive
we want to generate. We can define a set in multiple ways in static Xpressive:

(set= ’a’,’b’,’c’)
set[ range(’0’,’9’) |(set= ’a’,’b’,’c’) ]
set[ range(’0’,’9’) | ’a’ | ’b’ | ’c’ ]

The last form suits our needs best, because it can hold characters and range exp
elements too. The problem here is that we cannot put the objects of type
boost::xpressive::sregex returned by our parsers directly into this object.
The first thing we might think that, OK, we can try to find out what the exact
type of e.g. range and return that in its run method. Unfortunately, we can’t,
because it is generated with the help of Proto [13]. This means that we should
return a type we cannot know, as it’s known by the compiler only, when it
generates it.

In C++11 we could use the redefined auto keyword [12] to let the constructor
automatically deduce the return type from the expression we return. However,
we’d like to build a C++98 compliant library as much as possible to foster wider
usability.

There is a technique we can use to solve this problem without leaving the
frames of C++98. It is called Continuation-Passing Style (CPS) [14,20]. When
we write functions in CPS we give back the result of the function in its extra
”continuation” argument instead of in the return statement. It’s like we turn
the expression ”inside-out”, as the innermost part will be evaluated first. This
technique is useful in our case, because this extra argument of the function can
have a template type, so that we can let the compiler maintain the type of the
intermediate temporary elements. These are those types, like the type of the
range element, which we couldn’t know in advance of the compilation, because
these are generated by the compiler.

We can build up our set expression by passing the already built part as an
argument and always just appending that to the newly parsed object. To make
it work we always need to have the previous element, so that we can call its run
method with our newly constructed part. Our current parsers don’t have this
kind of functionality, so we will amend them. We need to modify only a subset
of our parsers however, since not every kind of regular expression is grammatical
within set. Based on our grammar, we need to write the range exp parser this
way and modify set item (its sub-parsers actually):
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set ::= (range_exp|set_item)+ ’]’
range_exp ::= number set_num|letter set_abc|set_item
set_num ::= ’-’ num_range|set_item
num_range ::= number
set_abc ::= ’-’ abc_range|set_item
abc_range ::= letter

Each parser which can occur in set will have a common extra ”interface”
called add set item and a new run method, which is overloaded with the
(T after) argument. These methods make us able to iterate through the parsed
elements and call the previous element’s overloaded run method.

template <class T>
stat ic xp r e s s i v e : : s r egex run (T a f t e r )
{

return a f t e r ;
}

template <class Before>
struct add se t i t em {

typedef add se t i t em type ;

template <class T>
stat ic xp r e s s i v e : : s r egex run (T a f t e r ) {

return Before : : type : : run ( [ cur r ent e l ement ] | a f t e r ) ;
}

} ;

add set item is a metafunction getting the previous parsed element as its tem-
plate parameter. In the after parameter its run method gets what has been con-
structed after our current element. As we have what’s before [current element]
and what’s after it, we can put it right in the middle of them with the run
method call on Before. We’ll put these extra methods in the sub-parsers of
set item: bschar, number, letter and non alphabet. range exp won’t have
an argument-less run method, as it cannot be used outside set.

Let’s see how the original letter parser looks like and add the modifications
one-by-one:

struct b u i l d l e t t e r
{

template <class ch> struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( int &bracke t counte r )
{

return xp r e s s i v e : : a s xpr ( char va lue ( ) ) ;
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}
stat ic char char va lue ( )
{

return ch : : va lue ;
}

} ;
} ;
typedef metaparse : : transform< metaparse : : l e t t e r ,

x l x p r e s s i v e : : b u i l d l e t t e r
> l e t t e r ;

We simply return the char value wrapped as a static Xpressive object. We
use a separate method called char value() here, because we’ll need it later on
for the range exp parser. First we add the overloaded run method after our
original one.

template <class T>
stat ic xp r e s s i v e : : s r egex run (T a f t e r )
{

return a f t e r ;
}

After we added this, we should add the add set item structure, which can
call it through the Before parameter.

template <class Before>
struct add se t i t em {

typedef add se t i t em type ;

template <class T>
stat ic xp r e s s i v e : : s r egex run (T a f t e r )
{

return Before : : type : : run ( char va lue ( ) | a f t e r ) ;
}

} ;

We’ve used the overloaded run method, and the add set item, just like how
we’ve sketched. We’ve replaced the placeholder [current element] with method
call char value(), thus we return what the normal run method returns, but
without wrapping it as an Xpressive object. This is how we can add the actually
parsed element in the form we want. In the case of letter we simply pass the
char value.

Let’s build up set. With CPS this is a two way process:

1. We parse the elements left-to-right and creating types which have the previous
state and need an after parameter.
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2. After we’ve parsed the last set item or range exp we have a temporary
construct, which can be evaluated backwards by calling its run method with
a neutral start value. This can be range(’4’, ’2’) as it’s an empty range.

For the iteration we can use foldl1, because we don’t accept an empty set.
This part of the parser is similar to the seq and reg exp parsers in Sect. 4.

typedef metaparse : : transform<
metaparse : : f i r s t o f <

metaparse : : transform<
metaparse : : f o l d l 1<

metaparse : : one of< x l xp r e s s i v e : : range exp ,
x l x p r e s s i v e : : s e t i t em >,

x l x p r e s s i v e : : empty set ,
x l x p r e s s i v e : : b u i l d s e t

>,
x l x p r e s s i v e : : s t a r t b u i l d i n g s e t

>,
metaparse : : l i t c < ’ ] ’>

>,
x l x p r e s s i v e : : e v a l s e t

>
s e t ;

We’ve seen last of and middle of previously, first of is the one which
returns the result of the first parser after accepting a sequence. This way we
can get rid of the ’]’ easily. Let’s see what the first phase of parsing does. With
foldl1 we parse with one of the range exp and set item parsers. We’ll specify
range exp later on, so let’s just concentrate on set item now, moreover we can
just use letter instead of that.

We start building up the set with the empty set metafunction class. On the
backward way this will construct our final object we return, but in this stage
this just has a metafunction which can be called with an after parameter.

struct empty set
{

typedef empty set type ;

template <class T >
stat ic xp r e s s i v e : : s r egex run (T a f t e r )
{

return xp r e s s i v e : : s e t [ a f t e r ] ;
}

} ;
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The build set metafunction class uses the add set item interface of the
actual Next element and passes the current state (State) as its template para-
meter. The run method of add set item is called with the after parameter.
It’s again just a metafunction, like empty set, which has to be evaluated with
an after parameter. It’s like we’re unrolling these generated metafunctions as
a ”wick” after us and when we reach the last element, we’ll light it, that is, we
work it up backward.

struct bu i l d s e t
{

template <class Next , class State>
struct apply
{

typedef apply type ;
template <class T>
stat ic xp r e s s i v e : : s r egex run (T a f t e r )
{

return Next : : template add set i tem< State > : : type : :
run ( a f t e r ) ;

}
} ;

} ;

The ”lighter” for this string of metafunctions, to close this metaphor, is the
start building set metafunction class. The transform parser around foldl1
calls it with the result of our folding, hence we can open it up. We start the
second phase of the parsing with the empty range (e.g. range(4,2)). This is
where the CPS starts working and the method calls build up our expression in
the after argument.

struct s t a r t b u i l d i n g s e t
{

template <class RealSetBui lder>
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( )
{

return RealSetBui lder : : type : : run ( xp r e s s i v e : : range (
’ 4 ’ , ’ 2 ’ ) ) ;

}
} ;

} ;
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The eval set metafunction class is a simple evaluator, which we’ve seen a
couple before. It can call the run method of start building set, because that
doesn’t need any parameter.

The last element of the second phase is the empty set which wraps the built
object and returns our final expression:

return boost::xpressive::set[ after ];

To see how the backward way works, let’s go through the evaluation of a
simple character group: [abc]

struct e v a l s e t
{

template <class Set>
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( int &bracke t counte r )
{

return Set : : type : : run ( ) ;
}

} ;
} ;

On Fig. 2 you can see how start building set commences the backward
build process by calling the run method of the last build set with the
empty range. In each build set the State stores the previously processed
build set from the first phase, the Next parameter is what the current
function can generate, and in the after parameter you can see how we
build up the full expression. With the return Next::template add set item<
State >::type::run(after); line, we call the run method from the
add set item of the current builder e.g. build letter.

In build letter, Before is the passed State from build set. By calling
the run method on Before (e.g. return Before::type::run( char value()
| after );) we jump to the previous build set, but with the extended after
parameter. In the last build letter we have empty set in Before, as we started
the folding with that.

We have seen how char group and set work and how the sub-parsers of
set item should be modified. Let’s see how the range exp parser looks like to
have everything to build the missing group parser.

As mentioned earlier, range exp needs the add set item interface only to be
implemented, because it cannot occur outside set. To parse a range we should
accept two kind of sequences: number - number and letter - letter.
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With one of and sequence we can write this easily.

typedef metaparse : : transform<
metaparse : : one of<

metaparse : : sequence< x l x p r e s s i v e : : number , metaparse : : l i t c
< ’− ’>, x l x p r e s s i v e : : number>,

metaparse : : sequence< x l x p r e s s i v e : : l e t t e r , metaparse : : l i t c
< ’− ’>, x l x p r e s s i v e : : l e t t e r >

>,
x l x p r e s s i v e : : bu i l d range

>
range exp ;

What build range should do is to put together the received results and
return the initialized range object. To extract the results from the sequence
we can use the boost::mpl::at c method again, hence we get the elements
on the 0 and 2 indices. As we only use range within a set we only define its
add set item interface.

struct bu i ld range
{

template <class Seq> struct apply {
typedef apply type ;
template <class T> stat ic s r egex run (T a f t e r ) {

return a f t e r ;
}

Fig. 2. Continuation-passing style
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template <class Before> struct add se t i t em {
typedef add se t i t em type ;
template <class T> stat ic s r egex run (T a f t e r ) {

return Before : : type : : run ( range ( at c<Seq , 0> : :
type : : char va lue ( ) , at c<Seq , 2> : : type : :
char va lue ( ) ) | a f t e r ) ;

}
} ;

} ;
} ;

The newly introduced char value method of build letter and build
number have been used here. We need to do this, because the range Xpressive
object needs two char arguments.

We have written everything now to be able to parse a group. As we did so
far we follow the grammar to compose the parser.

group ::= ’[’ (char_group|’^’? set)

We’ll need a build group metafunction which simply calls the run method
of its parameter.

struct bu i ld group
{

template <class G >
struct apply
{

typedef apply type ;
stat ic xp r e s s i v e : : s r egex run ( int &bracke t counte r )
{

return G: : type : : run ( bracke t counte r ) ;
}

} ;
} ;

To write the group parser itself we need a sequence with the opening square
bracket as first element to be parsed and then a one of to parse either a
char group or a set. The ”’^’?” part expresses that we might negate the
set construct, e.g. [^a] to match any character except ’a’. To handle this we
can use the same technique we used for unary item in Sect. 3: with one of and
lit c we parse the ’ˆ’ character or we just return an ’x’ with the return parser
to express we shouldn’t negate the set. We can name it may negate with an
implementation like this:
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typedef metaparse : : one of<
metaparse : : l i t c < ’ ˆ ’>,
metaparse : : r e turn < mpl : : char < ’ x ’> >

>
may negate ;

It makes the definition of the group parser more readable.

typedef metaparse : : transform<
metaparse : : l a s t o f <

metaparse : : l i t c < ’ [ ’>,
metaparse : : one of<

x l xp r e s s i v e : : char group ,
metaparse : : transform<

metaparse : : sequence<
may negate ,
x l x p r e s s i v e : : s e t

>,
x l x p r e s s i v e : : e v a l s e t s i g n

>
>

>,
x l x p r e s s i v e : : bu i ld group

>
group ;

With eval set sign we can return a positive or a negative set. It makes the
decision based on the passed character (’ˆ’ or ’x’). We can negate a set with the
’~’ operator in Xpressive. We only show the implementation of positive set,
because negative set can be done the same way with the previously described
differences.

// [ . . . ] −> s e t [ . . . ]
template <class S>
struct p o s i t i v e s e t
{

typedef p o s i t i v e s e t type ;
stat ic xp r e s s i v e : : s r egex run ( int &bracke t counte r )
{

return S : : type : : run ( bracke t counte r ) ;
}

} ;
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We simply call the static run method of the received eval set result (S). It
can be this simple, because eval set sign evaluates whether we should return
a set or a negated set.

Let’s see how it can be implemented:

template <char A, class Set> struct e v a l s e t s i g n imp l ;
template <class Set> struct e v a l s e t s i g n imp l < ’ x ’ , Set>

: p o s i t i v e s e t <Set> {} ;

struct e v a l s e t s i g n
{

template <class Seq>
struct apply :

e v a l s e t s i g n imp l <
mpl : : f ront<Seq > : : type : : value ,
mpl : : back<Seq>

> {} ;
} ;

We’ve used the same kind of pattern matching with template specializa-
tion in the case of eval set sign impl what we’ve seen at unary item. In
eval set sign, we call type::value on the first argument of eval set sign impl,
because we want to pass the char value of may negate.

In this chapter we’ve seen how we can implement the parsers for all the main
elements of our grammar. These parsers have been created gradually following
our grammar using a bottom-to-top approach. A few examples have been shown
how these parsers can be used to generate static Xpressive objects through
run method call-chains. We’ve covered some advanced topics too e.g. how the
continuous-passing style can be used in template metaprogramming DSL inte-
gration to build grammar elements with generated types.

7 Test Case Generation

The test cases play a very important role in template metaprogramming. With-
out them, after we’ve written the code and compiled it, we can fix the obvious
syntax errors, but apart from that we haven’t instantiated any template. To test
every newly added element of the grammar we need a test case which makes use
of that element.

In [9] the authors describe a unit testing framework for C++ template
metaprograms that guarantees the execution of all test cases and provides proper
summary-report with enhanced and portable error reporting. The paper also
describes how precise diagnostic messages can be generated for template
metaprograms.

There are many combinations of regular expressions and we have a restriction
on the format of the strings which we can add to our parsers. A Perl script can
be written to generate these test cases. This way we can ensure that whatever we
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match with the built Xpressive object, it would match in Perl too. With the
generated test cases, we can use the following template function for verification:

template <class Regexp>
bool search ( const std : : s t r i n g& s ,

const std : : vector<std : : s t r i ng>& m)
{

const s r egex re = apply wrap1<r egexp parse r , Regexp > : :
type : : run ( ) ;

smatch w;

const bool su c c e s s = reg ex s ea r ch ( s , w, re ) ;
i f ( ( su c c e s s && m. s i z e ( ) == 0) | |

( ! s u c c e s s && m. s i z e ( ) != 0) ) {
return fa l se ;

}
i f (w. s i z e ( ) != m. s i z e ( ) ) { return fa l se ; }
for ( int i = 0 ; i < m. s i z e ( ) ; ++i ) {

i f ( i >= w. s i z e ( ) | | w[ i ] . s t r ( ) != m[ i ] ) {
return fa l se ;

}
}
return true ;

}
A reference implementation can be found in xlxpressive’s source files [28].
We can adapt the format of the libs/xpressive/test/regress.txt file,

which contains Xpressive’s regression tests. Here is an example to show the
structure of a test case:

[ t e s t 37 ]
s t r =2001 foobar
pat=[1−9][0−9]+\\ s ∗ [ ab for ]+$
f l g=
br0=2001 foobar
[ end ]

Each test case starts with its name in square brackets, then it has key-value
pairs and is closed with the [end] tag. The key-value pairs have the below
meaning:

– str The input string.
– pat The regular expression we’re testing.
– flg The behaviour of the Xpressive regular expression algorithm can be

modified with a couple of flags e.g. ’i’ for case insensitive search.
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– br0-n br0 contains the whole matched string. Every other one comes from
the back-referencing of bracket expressions. If a test case doesn’t contain any
br element it means that we expect that the test case will fail.

8 Conclusion

Our goal was to demonstrate how we can use template metaprogramming to
provide smooth DSL embedding. The DSL we’ve chosen was Boost.Xpressive
whom domain is regular expression. It provides an approach called “static regex”
where we can write our regular expressions in the form of C++ expressions.
However, the syntax of static regex is very different than the original regular
expression syntax. Our aim was to provide a new interface for Xpressive which
enables us to write the regular expressions in flexible string format but still
enable compile-time checking.

First, we’ve written a grammar for these regular expressions. Then we’ve used
this grammar to walk through the process how we can build compile time parsers
with the help of the Metaparse library. We’ve successfully built all the parsers
while we’ve encountered and solved more and more advanced problems. The
parsers created following this approach can parse separate grammar elements.
We’ve shown how the run method chain can construct a static Xpressive object.

We have created a working implementation of this library as an open source
project available on github [28]. It contains more than 40 generated test cases
showing what our solution can do at this stage.

As we’ve introduced the REGEX macro earlier, we can do a comparison to
demonstrate what our approach is capable for. The below lines show gram-
matically equivalent regular expressions. The first line is the static Xpressive
example built by hand and the second line shows how it looks like as an input
of our new interface. The \\ characters show extra line-breaks.

(s1= +_w) >> ’’ >> (s2= +_w) >>’!’;
REGEX("(\\w+) (\\w+)!");

’$’ >> +_d >> ’.’ >> _d >> _d;
REGEX("\\$\\d+\\.\\d\\d")));

bos >> set[as_xpr(’a’)|’b’|’c’|’d’] >> range(’3’,’8’) >> \\
’.’ >> ’f’ >> ’o’ >> ’o’ >> eos;

REGEX("^[abcd][3-8]\\.foo$");

bos>>(s1=+range(’0’,’9’)>>!(s2=’.’>>*range(’0’,’9’)))>> \\
(s3=set[as_xpr(’C’)|’F’])>>eos;

REGEX("^([0-9]+(\\.[0-9]*)?)([CF])$");

Our new interface is more readable and natural, while it still ensures compile
time validation. Someone who understands regular expressions should be able to
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use our solution easily at the very first time, while the original interface needs
to be studied much longer.

A similar approach to the one presented in this paper can be used to provide
a human readable syntax for template metaprograms where the metafunctions
written in the DSL can interact with metafunctions defined in a regular way [22].
While the approach used to provide a DSL for template metaprograms focuses
on providing a language for a compile-time domain, the one presented in this
paper focuses on providing a language for a runtime domain.

This paper addresses expressing regular expressions in their orignal syntax as
part of standard C++ code. The usability of the solution presented depends on
being able to provide understandable and readable error messages. Our future
plan is to investigate how to achieve generating useful error messages when the
regular expressions are not valid.

The construction of the parsers preserve the structure of the grammar.
Another interesting area for future research is extracting the grammar from
the parsers and making use of it for automatic test case generation.

As a summary we can say that using C++ template metaprogrammimg is
a good approach for embedding domain specific languages, if we construct our
own parsers with the help of the Metaparse parser combinators. These have been
created in such a way that we can easily combine them to parse our grammar
elements. With their combinations we can tackle complex problems, like the
smooth integration of regular expressions. We’ve also seen that a grammar should
be created first, if we start embedding a DSL and that how important the test
cases are, when we work on template metaprograms.

It can be subject of future works how this approach can be used for embed-
ding other DSLs like SQL expressions or Boost.Spirit parsers.

A The Grammar

reg_exp ::= seq (’|’ seq)*

seq ::= unary_item*

unary_item ::= item ((’*’|’+’|’?’|repeat) ’?’?)?

repeat ::= ’{’ (number ’,’ number|’,’ number| number ’,’) ’}’

item ::= bos|eos|any|bracket_exp|group|set_item

set_item ::= bschar|number|letter|non_alphabet

non_alphabet ::= space|’,’|’;’|’:’|’=’|’~’|’<’|’>’|

’-’|’_’|’!’|’@’|’#’|’%’|’&’|’/’

letter ::= ’A’-’Z’|’a’-’z’

number ::= ’0’-’9’

bos ::= ’^’

eos ::= ’$’

any ::= ’.’

bracket_exp ::= ’(’ (reg_exp|qexp) ’)’

qexp ::= ’?’ (no_back_ref|icase|keep|before|not_before|

after|not_after|mark_tag_create|mark_tag_use) reg_exp

no_back_ref ::= ":"

icase ::= "i:"
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keep ::= ’>’

before ::= ’=’

not_before ::= ’!’

after ::= "<="

not_after ::= "<!"

mark_tag_create ::= "P<" name ’>’

mark_tag_use ::= "P=" name

name ::= letter+

bschar ::= ’\’ (bs_backslash|bs_back_ref|bs_boundary|

bs_digit|bs_word|bs_space|bs_new_line|

bs_caret|bs_dollar|bs_full_stop|bs_plus)

bs_backslash ::= ’\’

bs_back_ref ::= number

bs_boundary ::= ’b’|not_bs_boundary

not_bs_boundary ::= ’B’

bs_digit ::= ’d’|not_bs_digit

not_bs_digit ::= ’D’

bs_word ::= ’w’|not_bs_word

not_bs_word ::= ’W’

bs_space ::= ’s’|not_bs_space

not_bs_space ::= ’S’

bs_new_line ::= "r\n"|’n’

bs_caret ::= ’^’

bs_dollar ::= ’$’

bs_full_stop ::= ’.’

bs_plus ::= ’+’

group ::= ’[’ (char_group|’^’? set)

set ::= (range_exp|set_item)+ ’]’

range_exp ::= number set_num|letter set_abc|set_item

set_num ::= ’-’ num_range|set_item

num_range ::= number

set_abc ::= ’-’ abc_range|set_item

abc_range ::= letter

spaces ::= space*

space ::= ’ ’|’\n’|’\t’|’\r’

char_group ::= "[:" (’a’ set_a|’b’ set_b|’c’ set_c|’d’ set_d|

’g’ set_g|’l’ set_l|’p’ set_p|’s’ set_s|

’u’ set_u|’x’ set_x|set)

set_a ::= ’l’ set_al|set

set_al ::= ’n’ set_aln|’p’ set_alp|set

set_aln ::= ’u’ set_alnu|set

set_alnu ::= ’m’ set_alnum|set

set_alnum ::= ’:’ set_alnumT|set

set_alnumT ::= ’]’ set_alnumX|set

set_alnumX ::= ’]’

set_alp ::= ’h’ set_alph|set

set_alph ::= ’a’ set_alpha|set

set_alpha ::= ’:’ set_alphaT|set

set_alphaT ::= ’]’ set_alphaX|set

set_alphaX ::= ’]’
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set_b ::= ’l’ set_bl|set

set_bl ::= ’a’ set_bla|set

set_bla ::= ’n’ set_blan|set

set_blan ::= ’k’ set_blank|set

set_blank ::= ’:’ set_blankT|set

set_blankT ::= ’]’ set_blankX|set

set_blankX ::= ’]’

set_c ::= ’n’ set_cn|set

set_cn ::= ’t’ set_cnt|set

set_cnt ::= ’r’ set_cntr|set

set_cntr ::= ’l’ set_cntrl|set

set_cntrl ::= ’:’ set_cntrlT|set

set_cntrlT ::= ’]’ set_cntrlX|set

set_cntrlX ::= ’]’

set_d ::= ’i’ set_di|set

set_di ::= ’g’ set_dig|set

set_dig ::= ’i’ set_digi|set

set_digi ::= ’t’ set_digit|set

set_digit ::= ’:’ set_digitT|set

set_digitT ::= ’]’ set_digitX|set

set_digitX ::= ’]’

set_g ::= ’r’ set_gr|set

set_gr ::= ’a’ set_gra|set

set_gra ::= ’p’ set_grap|set

set_grap ::= ’h’ set_graph|set

set_graph ::= ’:’ set_graphT|set

set_graphT ::= ’]’ set_graphX|set

set_graphX ::= ’]’

set_l ::= ’o’ set_lo|set

set_lo ::= ’w’ set_low|set

set_low ::= ’e’ set_lowe|set

set_lowe ::= ’r’ set_lower|set

set_lower ::= ’:’ set_lowerT|set

set_lowerT ::= ’]’ set_lowerX|set

set_lowerX ::= ’]’

set_p ::= ’r’ set_pr|’u’ set_pu|set

set_pr ::= ’i’ set_pri|set

set_pri ::= ’n’ set_prin|set

set_prin ::= ’t’ set_print|set

set_print ::= ’:’ set_printT|set

set_printT ::= ’]’ set_printX|set

set_printX ::= ’]’

set_pu ::= ’n’ set_pun|set

set_pun ::= ’c’ set_punc|set

set_punc ::= ’t’ set_punct|set

set_punct ::= ’:’ set_punctT|set

set_punctT ::= ’]’ set_punctX|set

set_punctX ::= ’]’

set_s ::= ’p’ set_sp|set

set_sp ::= ’a’ set_spa|set
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set_spa ::= ’c’ set_spac|set

set_spac ::= ’e’ set_space|set

set_space ::= ’:’ set_spaceT|set

set_spaceT ::= ’]’ set_spaceX|set

set_spaceX ::= ’]’

set_u ::= ’p’ set_up|set

set_up ::= ’p’ set_upp|set

set_upp ::= ’e’ set_uppe|set

set_uppe ::= ’r’ set_upper|set

set_upper ::= ’:’ set_upperT|set

set_upperT ::= ’]’ set_upperX|set

set_upperX ::= ’]’

set_x ::= ’x’ set_xd|set

set_xd ::= ’d’ set_xdi|set

set_xdi ::= ’i’ set_xdig|set

set_xdig ::= ’g’ set_xdigi|set

set_xdigi ::= ’i’ set_xdigit|set

set_xdigit ::= ’:’ set_xdigitT|set

set_xdigitT ::= ’]’ set_xdigitX|set

set_xdigitX ::= ’]’
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29. The XMF programming language. http://itcentre.tvu.ac.uk/clark/xmf.html
30. The Boost Xpressive library. http://www.boost.org/doc/libs/1 55 0/doc/html/

xpressive.html
31. Xpressive - “Nested Regexes and Sub-Match Scoping” and “Nested Results”.

http://www.boost.org/doc/libs/1 53 0/doc/html/xpressive/user s guide.html#
boost xpressive.user s guide.grammars and nested matches.nested regexes and
sub match scoping

http://itcentre.tvu.ac.uk/clark/xmf.html
http://www.boost.org/doc/libs/1_55_0/doc/html/xpressive.html
http://www.boost.org/doc/libs/1_55_0/doc/html/xpressive.html
http://www.boost.org/doc/libs/1_53_0/doc/html/xpressive/user_s_guide.html#boost_xpressive.user_s_guide.grammars_and_nested_matches.nested_regexes_and_sub_match_scoping
http://www.boost.org/doc/libs/1_53_0/doc/html/xpressive/user_s_guide.html#boost_xpressive.user_s_guide.grammars_and_nested_matches.nested_regexes_and_sub_match_scoping
http://www.boost.org/doc/libs/1_53_0/doc/html/xpressive/user_s_guide.html#boost_xpressive.user_s_guide.grammars_and_nested_matches.nested_regexes_and_sub_match_scoping


The IDRIS Programming Language

Implementing Embedded Domain Specific Languages
with Dependent Types

Edwin Brady(B)

University of St Andrews, Fife KY16 9SX, UK
ecb10@st-andrews.ac.uk

Abstract. Types describe a program’s meaning. Dependent types, which
allow types to be predicated on values, allow a program to be given
a more precise type, and thus a more precise meaning. Typechecking
amounts to verifying that the implementation of a program matches its
intended meaning. In this tutorial, I will describe Idris, a pure func-
tional programming language with dependent types, and show how it
may be used to develop verified embedded domain specific languages
(EDSLs). Idris has several features intended to support EDSL devel-
opment, including syntax extensions, overloadable binders and implicit
conversions. I will describe how these features, along with dependent
types, can be used to capture important functional and extra-functional
properties of programs, how resources such as file handles and network
protocols may be managed through EDSLs, and finally describe a gen-
eral framework for programming and reasoning about side-effects, imple-
mented as an embedded DSL.

1 Introduction

In conventional programming languages, there is a clear distinction between types
and values. For example, in Haskell [13], the following are types, representing
integers, characters, lists of characters, and lists of any value respectively:

– Int, Char, [Char], [a]

Correspondingly, the following values are examples of inhabitants of those types:

– 42, ’a’, "Hello world!", [2,3,4,5,6]

In a language with dependent types, however, the distinction is less clear. Depen-
dent types allow types to “depend” on values — in other words, types are a first
class language construct and can be manipulated like any other value. A canon-
ical first example is the type of lists of a specific length1, Vect n a, where a
is the element type and n is the length of the list and can be an arbitrary term.
1 Typically, and perhaps confusingly, referred to in the dependently typed program-

ming literature as “vectors”.
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When types can contain values, and where those values describe properties
(e.g. the length of a list) the type of a function can describe some of its own prop-
erties. For example, concatenating two lists has the property that the resulting
list’s length is the sum of the lengths of the two input lists. We can therefore
give the following type to the app function, which concatenates vectors:

app : Vect n a -> Vect m a -> Vect (n + m) a

This tutorial introduces Idris, a general purpose functional programming lan-
guage with dependent types, and in particular how to use Idris to implement
Embedded Domain Specific Languages (EDSLs). It includes a brief introduction
to the most important features of the language for EDSL development, and is
aimed at readers already familiar with a functional language such as Haskell
or OCaml. In particular, a certain amount of familiarity with Haskell syntax is
assumed, although most concepts will at least be explained briefly.

1.1 Outline

The tutorial is organised as follows:

– This Section describes how to download and install Idris and build an intro-
ductory program.

– Section 2 introduces the fundamental features of the language: primitive types,
and how to define types and functions.

– Section 3 describes type classes in Idris and gives two specific examples,
Monad and Applicative.

– Section 4 describes dependent pattern matching, in particular views, which
give a means of abstracting over pattern matching.

– Section 5 introduces proofs and theorem proving in Idris, and introduces pro-
visional definitions, which are pattern definitions which require additional
proof obligations.

– Section 6 gives a first example of EDSL implementation, a well-typed inter-
preter

– Section 7 describes how Idris provides support for interactive program devel-
opment, and in particular how this is incorporated into text editors.

– Section 8 introduces syntactic support for EDSL implementation.
– Section 9 gives an extending example of an EDSL, which supports resource

aware programming.
– Section 10 describes how Idris supports side-effecting and stateful programs

with system interaction, by using an EDSL.
– Finally, Sect. 11 concludes and provides references to further reading.

Many of these sections (Sects. 2, 4, 5, 7, 8 and 10) end with exercises to rein-
force your understanding. The tutorial includes several examples, which have
been tested with Idris version 0.9.14. The files are available in the Idris distrib-
ution, so that you can try them out easily2. However, it is strongly recommended
that you type them in yourself, rather than simply loading and reading them.
2 https://github.com/idris-lang/Idris-dev/tree/master/examples.

https://github.com/idris-lang/Idris-dev/tree/master/examples
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1.2 Downloading and Installing

Idris requires an up to date Haskell Platform3. Once this is installed, Idris can
be installed with the following commands:

cabal update
cabal install idris

This will install the latest version released on Hackage, along with any depen-
dencies. If, however, you would like the most up to date development version,
you can find it on GitHub at https://github.com/idris-lang/Idris-dev. You can
also find up to date download instructions at http://idris-lang.org/download.

To check that installation has succeeded, and to write your first Idris pro-
gram, create a file called “hello.idr” containing the following text:

module Main

main : IO ()
main = putStrLn "Hello world"

We will explain the details of how this program works later. For the moment,
you can compile the program to an executable by entering idris hello.idr
-o hello at the shell prompt. This will create an executable called hello,
which you can run:

$ idris hello.idr -o hello
$ ./hello
Hello world

Note that the $ indicates the shell prompt! Some useful options to the idris
command are:

– -o prog to compile to an executable called prog.
– --check type check the file and its dependencies without starting the inter-

active environment.
– --help display usage summary and command line options.

1.3 The Interactive Environment

Entering idris at the shell prompt starts up the interactive environment. You
should see something like Listing 1.

This gives a ghci-style interface which allows evaluation of expressions, as
well as type checking expressions, theorem proving, compilation, editing and
various other operations. :? gives a list of supported commands. Listing 2 shows
an example run in which hello.idr is loaded, the type of main is checked
and then the program is compiled to the executable hello.
3 http://haskell.org/platform.

https://github.com/idris-lang/Idris-dev
http://idris-lang.org/download
http://haskell.org/platform
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Listing 1. Idris prompt

$ idris
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Idris>

Listing 2. Sample Interactive Run

$ idris hello.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Type checking ./hello.idr

*hello> :t main
Main.main : IO ()

*hello> :c hello

*hello> :q
Bye bye
$ ./hello
Hello world

Type checking a file, if successful, creates a bytecode version of the file (in this
case hello.ibc) to speed up loading in future. The bytecode is regenerated on
reloading if the source file changes.

2 Types and Functions

2.1 Primitive Types

Idris defines several primitive types: Int, Integer and Float for numeric
operations, Char and String for text manipulation, and Ptr which represents
foreign pointers. There are also several data types declared in the library, includ-
ing Bool, with values True and False. We can declare some constants with
these types. Enter the following into a file prims.idr and load it into the Idris
interactive environment by typing idris prims.idr:

module prims

x : Int
x = 42
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foo : String
foo = "Sausage machine"

bar : Char
bar = ’Z’

quux : Bool
quux = False

An Idris file consists of a module declaration (here module prims) followed
by an optional list of imports (none here, however Idris programs can consist of
several modules, each of which has its own namespace) and a collection of dec-
larations and definitions. The order of definitions is significant — functions and
data types must be defined before use. Each definition must have a type declara-
tion (here, x : Int, foo : String, etc.). Indentation is significant — a new
declaration begins at the same level of indentation as the preceding declaration.
Alternatively, declarations may be terminated with a semicolon.

A library module prelude is automatically imported by every Idris pro-
gram, including facilities for IO, arithmetic, data structures and various common
functions. The prelude defines several arithmetic and comparison operators,
which we can use at the prompt. Evaluating things at the prompt gives an
answer, and the type of the answer. For example:

*prims> 6*6+6
42 : Integer

*prims> x == 6*6+6
True : Bool

All of the usual arithmetic and comparison operators are defined for the primitive
types (e.g. == above checks for equality). They are overloaded using type classes,
as we will discuss in Sect. 3 and can be extended to work on user defined types.
Boolean expressions can be tested with the if...then...else construct:

*prims> if x == 6 * 6 + 6 then "The answer!"
else "Not the answer"

"The answer!" : String

2.2 Data Types

Data types are defined in a similar way to Haskell data types, with a similar
syntax. Natural numbers and lists, for example, can be declared as follows:

data Nat = Z | S Nat −− Natura l numbers
−− ( zero , s u c c e s s o r )

data List a = Nil | (::) a (List a) −− Polymorphic l i s t s

The above declarations are taken from the standard library. Unary natural num-
bers can be either zero (Z), or the successor of another natural number (S k).
Lists can either be empty (Nil) or a value added to the front of another list
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(x :: xs). In the declaration for List, we used an infix operator ::. New
operators such as this can be added using a fixity declaration, as follows:

infixr 10 ::

Functions, data constructors and type constructors may all be given infix oper-
ators as names. They may be used in prefix form if enclosed in brackets, e.g.
(::). Infix operators can use any of the symbols:

:+-*/=_.?|&><!@$%ˆ˜.

2.3 Functions

Functions are implemented by pattern matching, again using a similar syntax
to Haskell. The main difference is that Idris requires type declarations for all
functions, and that Idris uses a single colon : (rather than Haskell’s double
colon ::). Some natural number arithmetic functions can be defined as follows,
again taken from the standard library:

−− Unary a d d i t i o n

plus : Nat -> Nat -> Nat
plus Z y = y
plus (S k) y = S (plus k y)

−− Unary m u l t i p l i c a t i o n

mult : Nat -> Nat -> Nat
mult Z y = Z
mult (S k) y = plus y (mult k y)

The standard arithmetic operators + and * are also overloaded for use by Nat,
and are implemented using the above functions. Unlike Haskell, there is no
restriction on whether types and function names must begin with a capital let-
ter or not. Function names (plus and mult above), data constructors (Z, S,
Nil and ::) and type constructors (Nat and List) are all part of the same
namespace. As a result, it is not possible to use the same name for a type and
data constructor.

Like arithmetic operations, integer literals are also overloaded using type
classes, meaning that we can test these functions as follows:

Idris> plus 2 2
4 : Nat
Idris> mult 3 (plus 2 2)
12 : Nat

Aside: It is natural to ask why we have unary natural numbers when our com-
puters have integer arithmetic built in to their CPU. The reason is primarily that
unary numbers have a convenient structure which is easy to reason about, and
easy to relate to other data structures, as we will see later. Nevertheless, we do
not want this convenience to be at the expense of efficiency. Idris knows about
the relationship between Nat (and similarly structured types) and numbers, so
optimises the representation and functions such as plus and mult.



The Idris Programming Language 121

where Clauses. Functions can also be defined locally using where clauses.
For example, to define a function which reverses a list, we can use an auxiliary
function which accumulates the new, reversed list, and which does not need to
be visible globally:

reverse : List a -> List a
reverse xs = revAcc [] xs where

revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Indentation is significant — functions in the where block must be indented
further than the outer function.

Scope. Any names which are visible in the outer scope are also visible in the
where clause (unless they have been redefined, such as xs here). A name which
appears only in the type will be in scope in the where clause if it is a parameter
to one of the types, i.e. it is fixed across the entire structure.

As well as functions, where blocks can include local data declarations, such
as the following where MyLT is not accessible outside the definition of foo:

foo : Int -> Int
foo x = case isLT of

Yes => x*2
No => x*4

where
data MyLT = Yes | No

isLT : MyLT
isLT = if x < 20 then Yes else No

In general, functions defined in a where clause need a type declaration just like
any top level function. However, the type declaration for a function f can be
omitted if:

– f appears in the right hand side of the top level definition
– The type of f can be completely determined from its first application

So, for example, the following definitions are legal:

even : Nat -> Bool
even Z = True
even (S k) = odd k where

odd Z = False
odd (S k) = even k

test : List Nat
test = [c (S 1), c Z, d (S Z)]

where c x = 42 + x
d y = c (y + 1 + z y)

where z w = y + w
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2.4 Dependent Types

Vectors. A standard example of a dependent type is the type of “lists with
length”, conventionally called vectors in the dependent type literature. In the
Idris library, vectors are declared as follows:

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that we have used the same constructor names as for List. Ad-hoc name
overloading such as this is accepted by Idris, provided that the names are
declared in different namespaces (in practice, normally in different modules).
Ambiguous constructor names can normally be resolved from context.

This declares a family of types, and so the form of the declaration is rather
different from the simple type declarations earlier. We explicitly state the type
of the type constructor Vect—it takes a Nat and a type as an argument, where
Type stands for the type of types. We say that Vect is indexed over Nat and
parameterised by Type. Each constructor targets a different part of the family
of types. Nil can only be used to construct vectors with zero length, and ::
to construct vectors with non-zero length. In the type of ::, we state explicitly
that an element of type a and a tail of type Vect k a (i.e., a vector of length
k) combine to make a vector of length S k.

We can define functions on dependent types such as Vect in the same way
as on simple types such as List and Nat above, by pattern matching. The type
of a function over Vect will describe what happens to the lengths of the vectors
involved. For example, ++, defined in the library, appends two Vects:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

The type of (++) states that the resulting vector’s length will be the sum of
the input lengths. If we get the definition wrong in such a way that this does
not hold, Idris will not accept the definition. For example:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ xs −− BROKEN

$ idris vbroken.idr --check
vbroken.idr:3:Can’t unify Vect n a with Vect m a

Specifically:
Can’t unify n with m

This error message suggests that there is a length mismatch between two vec-
tors — we needed a vector of length m, but provided a vector of length n.
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Finite Sets. Finite sets, as the name suggests, are sets with a finite number of
elements. They are declared as follows (again, in the prelude):

data Fin : Nat -> Type where
fZ : Fin (S k)
fS : Fin k -> Fin (S k)

For all n : Nat, Fin n is a type containing exactly n possible values: fZ is
the first element of a finite set with S k elements, indexed by zero; fS n is the
n+1th element of a finite set with S k elements. Fin is indexed by a Nat, which
represents the number of elements in the set. Obviously we can’t construct an
element of an empty set, so neither constructor targets Fin Z.

A useful application of the Fin family is to represent bounded natural num-
bers. Since the first n natural numbers form a finite set of n elements, we can
treat Fin n as the set of natural numbers bounded by n.

For example, the following function which looks up an element in a Vect,
by a bounded index given as a Fin n, is defined in the prelude:

index : Fin n -> Vect n a -> a
index fZ (x :: xs) = x
index (fS k) (x :: xs) = index k xs

This function looks up a value at a given location in a vector. The location is
bounded by the length of the vector (n in each case), so there is no need for
a run-time bounds check. The type checker guarantees that the location is no
larger than the length of the vector.

Note also that there is no case for Nil here. This is because it is impossible.
Since there is no element of Fin Z, and the location is a Fin n, then n can not
be Z. As a result, attempting to look up an element in an empty vector would
give a compile time type error, since it would force n to be Z.

Implicit Arguments. Let us take a closer look at the type of index:

index : Fin n -> Vect n a -> a

It takes two arguments, an element of the finite set of n elements, and a vector
with n elements of type a. But there are also two names, n and a, which are not
declared explicitly. These are implicit arguments to index. We could also write
the type of index as:

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

Implicit arguments, given in braces {} in the type declaration, are not given in
applications of index; their values can be inferred from the types of the Fin
n and Vect n a arguments. Any name with a lower case initial letter which
appears as a parameter or index in a type declaration, but which is otherwise
free, will be automatically bound as an implicit argument. Implicit arguments
can still be given explicitly in applications, using {a=value} and {n=value},
for example:

index {a=Int} {n=2} fZ (2 :: 3 :: Nil)
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In fact, any argument, implicit or explicit, may be given a name. We could have
declared the type of index as:

index : (i:Fin n) -> (xs:Vect n a) -> a

It is a matter of taste whether you want to do this — sometimes it can help
document a function by making the purpose of an argument more clear.

“using” Notation. Sometimes it is useful to provide types of implicit argu-
ments, particularly where there is a dependency ordering, or where the implicit
arguments themselves have dependencies. For example, we may wish to state
the types of the implicit arguments in the following definition, which defines a
predicate on vectors:

data Elem : a -> List a -> Type where
Here : {x:a} -> {xs:List a} ->

Elem x (x :: xs)
There : {x,y:a} -> {xs:List a} ->

Elem x xs -> Elem x (y :: xs)

An instance of Elem x xs states that x is an element of xs. We can construct
such a predicate if the required element is Here, at the head of the list, or
There, in the tail of the list. For example:

testList : List Int
testList = 3 :: 4 :: 5 :: 6 :: Nil

inList : Elem 5 testList
inList = There (There Here)

If the same implicit arguments are being used several times, it can make a
definition difficult to read. To avoid this problem, a using block gives the types
and ordering of any implicit arguments which can appear within the block:

using (x:a, y:a, xs:List a)
data Elem : a -> List a -> Type where

Here : Elem x (x :: xs)
There : Elem x xs -> Elem x (y :: xs)

Note: Declaration Order and mutual Blocks. In general, functions and
data types must be declared before use, since dependent types allow functions to
appear as part of types, and their reduction behaviour to affect type checking.
However, this restriction can be relaxed by using a mutual block, which allows
data types and functions to be defined simultaneously:

mutual
even : Nat -> Bool
even Z = True
even (S k) = odd k
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odd : Nat -> Bool
odd Z = False
odd (S k) = even k

In a mutual block, the Idris type checker will first check all of the type decla-
rations in the block, then the function bodies. As a result, none of the function
types can depend on the reduction behaviour of any of the functions in the block.

2.5 I/O

Computer programs are of little use if they do not interact with the user or the
system in some way. The difficulty in a pure language such as Idris — that is, a
language where expressions do not have side-effects — is that I/O is inherently
side-effecting. Therefore in Idris, such interactions are encapsulated in the type
IO:

data IO a −− IO o p e r a t i o n r e t u r n i n g a v a l u e o f t y p e a

We’ll leave the definition of IO abstract, but effectively it describes what the I/O
operations to be executed are, rather than how to execute them. The resulting
operations are executed externally, by the run-time system. We’ve already seen
one IO program:

main : IO ()
main = putStrLn "Hello world"

The type of putStrLn explains that it takes a string, and returns an element
of the unit type () via an I/O action. There is a variant putStr which outputs
a string without a newline:

putStrLn : String -> IO ()
putStr : String -> IO ()

We can also read strings from user input:

getLine : IO String

A number of other I/O operations are defined in the prelude, for example for
reading and writing files, including:

data File −− a b s t r a c t

data Mode = Read | Write | ReadWrite

openFile : String -> Mode -> IO File
closeFile : File -> IO ()

fread : File -> IO String
fwrite : File -> String -> IO ()
feof : File -> IO Bool

readFile : String -> IO String
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2.6 “do” Notation

I/O programs will typically need to sequence actions, feeding the output of one
computation into the input of the next. IO is an abstract type, however, so we
can’t access the result of a computation directly. Instead, we sequence operations
with do notation:

greet : IO ()
greet = do putStr "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

The syntax x <- iovalue executes the I/O operation iovalue, of type IO
a, and puts the result, of type a, into the variable x. In this case, getLine
returns an IO String, so name has type String. Indentation is significant —
each statement in the do block must begin in the same column. The return
operation allows us to inject a value directly into an IO operation:

return : a -> IO a

As we will see later, do notation is more general than this, and can be overloaded.

2.7 Laziness

Normally, arguments to functions are evaluated before the function itself (that
is, Idris uses eager evaluation). However, consider the following function:

boolCase : Bool -> a -> a -> a
boolCase True t e = t
boolCase False t e = e

This function uses one of the t or e arguments, but not both (in fact, this is
used to implement the if...then...else construct as we will see later. We
would prefer if only the argument which was used was evaluated. To achieve
this, Idris provides a Lazy data type, which allows evaluation to be suspended:

data Lazy : Type -> Type where
Delay : (val : a) -> Lazy a

Force : Lazy a -> a

A value of type Lazy a is unevaluated until it is forced by Force. The Idris
type checker knows about the Lazy type, and inserts conversions where neces-
sary between Lazy a and a, and vice versa. We can therefore write boolCase
as follows, without any explicit use of Force or Delay:

boolCase : Bool -> Lazy a -> Lazy a -> a
boolCase True t e = t
boolCase False t e = e
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2.8 Useful Data Types

The Idris prelude includes a number of useful data types and library functions
(see the lib/ directory in the distribution). The functions described here are
imported automatically by every Idris program, as part of Prelude.idr in
the prelude package.

List and Vect. We have already seen the List and Vect data types:

data List a = Nil | (::) a (List a)

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that the constructor names are the same for each — constructor names (in
fact, names in general) can be overloaded, provided that they are declared in dif-
ferent namespaces (in practice, typically different modules), and will be resolved
according to their type. As syntactic sugar, any type with the constructor names
Nil and :: can be written in list form. For example:

– [] means Nil
– [1,2,3] means 1 :: 2 :: 3 :: Nil

The library also defines a number of functions for manipulating these types. map
is overloaded both for List and Vect and applies a function to every element
of the list or vector.

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

map : (a -> b) -> Vect n a -> Vect n b
map f [] = []
map f (x :: xs) = f x :: map f xs

For example, to double every element in a vector of integers, we can define the
following:

intVec : Vect 5 Int
intVec = [1, 2, 3, 4, 5]

double : Int -> Int
double x = x * 2

Then we can use map at the Idris prompt:

map> map double intVec
[2, 4, 6, 8, 10] : Vect 5 Int

For more details of the functions available on List and Vect, look in the
library, in Prelude/List.idr and Prelude/Vect.idr respectively. Func-
tions include filtering, appending, reversing, etc.
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Maybe. Maybe describes an optional value. Either there is a value of the given
type, or there isn’t:

data Maybe a = Just a | Nothing

Maybe is one way of giving a type to an operation that may fail. For example,
indexing a List (rather than a vector) may result in an out of bounds error:

list_lookup : Nat -> List a -> Maybe a
list_lookup _ Nil = Nothing
list_lookup Z (x :: xs) = Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

The maybe function is used to process values of type Maybe, either by applying
a function to the value, if there is one, or by providing a default value:

maybe : Maybe a -> |(def:b) -> (a -> b) -> b

The vertical bar | before the default value is a laziness annotation. Normally
expressions are evaluated eagerly, before being passed to a function. However,
in this case, the default value might not be used and if it is a large expression,
evaluating it will be wasteful. The | annotation tells the compiler not to evaluate
the argument until it is needed.

Tuples. Values can be paired with the following built-in data type:

data Pair a b = MkPair a b

As syntactic sugar, we can write (a, b) which, according to context, means
either Pair a b or MkPair a b. Tuples can contain an arbitrary number of
values, represented as nested pairs:

fred : (String, Int)
fred = ("Fred", 42)

jim : (String, Int, String)
jim = ("Jim", 25, "Cambridge")

Dependent Pairs. Dependent pairs allow the type of the second element of a
pair to depend on the value of the first element:

data Sigma : (A : Type) -> (P : A -> Type) -> Type where
Sg_intro : {P : A -> Type} ->

(a : A) -> P a -> Sigma A P

Again, there is syntactic sugar for this. (a : A ** P) is the type of a depen-
dent pair of A and P, where the name a can occur inside P. ( a ** p )
constructs a value of this type. For example, we can pair a number with a Vect
of a particular length.
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vec : (n : Nat ** Vect n Int)
vec = (2 ** [3, 4])

The type checker can infer the value of the first element from the length of the
vector; we can write an underscore in place of values which we expect the type
checker to fill in, so the above definition could also be written as:

vec : (n : Nat ** Vect n Int)
vec = (_ ** [3, 4])

We might also prefer to omit the type of the first element of the pair, since,
again, it can be inferred:

vec : (n ** Vect n Int)
vec = (_ ** [3, 4])

Without the syntactic sugar, this would be written in full as follows:

vec : Sigma Nat (\n => Vect n Int)
vec = Sg_intro 2 [3,4]

One use for dependent pairs is to return values of dependent types where the
index is not necessarily known in advance. For example, if we filter elements out
of a Vect according to some predicate, we will not know in advance what the
length of the resulting vector will be:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)

If the Vect is empty, the result is easy:

filter p Nil = (_ ** [])

In the :: case, we need to inspect the result of a recursive call to filter to
extract the length and the vector from the result. We use a case expression to
inspect the intermediate value:

filter p (x :: xs)
= case filter p xs of

(_ ** xs’) => if p x then (_ ** x :: xs’)
else (_ ** xs’)

so. The so data type is a predicate on Bool which guarantees that the value
is true:

data so : Bool -> Type where
oh : so True

This is most useful for providing a static guarantee that a dynamic check has
been made. For example, we might provide a safe interface to a function which
draws a pixel on a graphical display as follows, where so (inBounds x y)
guarantees that the point (x,y) is within the bounds of a 640x480 window:
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inBounds : Int -> Int -> Bool
inBounds x y = x >= 0 && x < 640 && y >= 0 && y < 480

drawPoint : (x : Int) -> (y : Int) ->
so (inBounds x y) -> IO ()

drawPoint x y p = unsafeDrawPoint x y

2.9 More Expressions

let Bindings. Intermediate values can be calculated using let bindings:

mirror : List a -> List a
mirror xs = let xs’ = rev xs in

xs ++ xs’

We can do simple pattern matching in let bindings too. For example, we can
extract fields from a record as follows, as well as by pattern matching at the top
level:

data Person = MkPerson String Int

showPerson : Person -> String
showPerson p = let MkPerson name age = p in

name ++ " is " ++ show age ++
" years old"

List Comprehensions. Idris provides comprehension notation as a convenient
shorthand for building lists. The general form is:

[ expression | qualifiers ]

This generates the list of values produced by evaluating the expression,
according to the conditions given by the comma separated qualifiers. For
example, we can build a list of Pythagorean triples as follows:

pythag : Int -> List (Int, Int, Int)
pythag n = [ (x, y, z) | z <- [1..n], y <- [1..z],

x <- [1..y],
x * x + y * y == z * z ]

The [a..b] notation is another shorthand which builds a list of numbers
between a and b. Alternatively [a,b..c] builds a list of numbers between
a and c with the increment specified by the difference between a and b. This
works for any enumerable type.

case Expressions. Another way of inspecting intermediate values of simple
types, as we saw with filter on vectors, is to use a case expression. The
following function, for example, splits a string into two at a given character:
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splitAt : Char -> String -> (String, String)
splitAt c x = case break (== c) x of

(x, y) => (x, strTail y)

break is a library function which breaks a string into a pair of strings at the
point where the given function returns true. We then deconstruct the pair it
returns, and remove the first character of the second string.

Restrictions: The case construct is intended for simple analysis of intermedi-
ate expressions to avoid the need to write auxiliary functions, and is also used
internally to implement pattern matching let and lambda bindings. It will only
work if:

– Each branch matches a value of the same type, and returns a value of the
same type.

– The type of the expression as a whole can be determined without checking
the branches of the case-expression itself. This is because case expressions
are lifted to top level functions by the Idris type checker, and type checking
is type-directed.

2.10 Dependent Records

Records are data types which collect several values (the record’s fields) together.
Idris provides syntax for defining records and automatically generating field
access and update functions. For example, we can represent a person’s name
and age in a record:

record Person : Type where
MkPerson : (name : String) ->

(age : Int) -> Person

fred : Person
fred = MkPerson "Fred" 30

Record declarations are like data declarations, except that they are introduced
by the record keyword, and can only have one constructor. The names of the
binders in the constructor type (name and age) here are the field names, which
we can use to access the field values:

*record> name fred
"Fred" : String

*record> age fred
30 : Int

*record> :t name
name : Person -> String

We can also use the field names to update a record (or, more precisely, produce
a new record with the given fields updated).
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*record> record { name = "Jim" } fred
MkPerson "Jim" 30 : Person

*record> record { name = "Jim", age = 20 } fred
MkPerson "Jim" 20 : Person

The syntax record { field = val, ... } generates a function which
updates the given fields in a record.

Records, and fields within records, can have dependent types. Updates are
allowed to change the type of a field, provided that the result is well-typed, and
the result does not affect the type of the record as a whole. For example:

record Class : Type where
ClassInfo : (students : Vect n Person) ->

(className : String) ->
Class

It is safe to update the students field to a vector of a different length because
it will not affect the type of the record:

addStudent : Person -> Class -> Class
addStudent p c = record { students = p :: students c } c

*record> addStudent fred (ClassInfo [] "CS")
ClassInfo [(MkPerson "Fred" 30)] "CS" : Class

Exercises

1. Write a function repeat : (n : Nat) -> a -> Vect n a which con-
structs a vector of n copies of an item.

2. Consider the following function types:

vtake : (n : Nat) -> Vect (n + m) a -> Vect n a
vdrop : (n : Nat) -> Vect (n + m) a -> Vect m a

Implement these functions. Do the types tell you enough to suggest what they
should do?

3. A matrix is a 2-dimensional vector, and could be defined as follows:

Matrix : Type -> Nat -> Nat -> Type
Matrix a n m = Vect (Vect a m) n

(a) Using repeat, above, and Vect.zipWith, write a function which
transposes a matrix.
Hints: Remember to think carefully about its type first! zipWith for
vectors is defined as follows:

zipWith : (a -> b -> c) ->
Vect a n -> Vect b n -> Vect c n

zipWith f [] [] = []
zipWith f (x::xs) (y::ys) = f x y :: zipWith f xs ys

(b) Write a function to multiply two matrices.
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3 Type Classes

We often want to define functions which work across several different data types.
For example, we would like arithmetic operators to work on Int, Integer and
Float at the very least. We would like == to work on the majority of data
types. We would like to be able to display different types in a uniform way.

To achieve this, we use a feature which has proved to be effective in Haskell,
namely type classes. To define a type class, we provide a collection of overloaded
operations which describe the interface for instances of that class. A simple
example is the Show type class, which is defined in the prelude and provides an
interface for converting values to Strings:

class Show a where
show : a -> String

This generates a function of the following type (which we call a method of the
Show class):

show : Show a => a -> String

We can read this as “under the constraint that a is an instance of Show, take
an a as input and return a String.” An instance of a class is defined with an
instance declaration, which provides implementations of the function for a
specific type. For example, the Show instance for Nat could be defined as:

instance Show Nat where
show Z = "Z"
show (S k) = "s" ++ show k

Idris> show (S (S (S Z)))
"sssZ" : String

Like Haskell, by default only one instance of a class can be given for a type—
instances may not overlap4. Also, type classes and instances may themselves
have constraints, for example:

class Eq a => Ord a where ...
instance Show a => Show (List a) where ...

3.1 Monads and do-Notation

In general, type classes can have any number (greater than 0) of parameters, and
the parameters can have any type. If the type of the parameter is not Type, we
need to give an explicit type declaration. For example:

class Monad (m : Type -> Type) where
return : a -> m a
(>>=) : m a -> (a -> m b) -> m b

4 Named instances are also available, but beyond the scope of this tutorial.
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The Monad class allows us to encapsulate binding and computation, and is the
basis of do-notation introduced in Sect. 2.6. Inside a do block, the following
syntactic transformations are applied:

– x < − v; e becomes v >>= (\x => e)
– v; e becomes v >>= (\ => e)
– let x = v; e becomes let x = v in e

IO is an instance of Monad, defined using primitive functions. We can also define
an instance for Maybe, as follows:

instance Monad Maybe where
return = Just

Nothing >>= k = Nothing
(Just x) >>= k = k x

Using this we can, for example, define a function which adds two Maybe Ints,
using the monad to encapsulate the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = do x’ <- x −− E x t r a c t v a l u e f r om x

y’ <- y −− E x t r a c t v a l u e f r om y

return (x’ + y’) −− Add them

This function will extract the values from x and y, if they are available, or return
Nothing if they are not. Managing the Nothing cases is achieved by the >>=
operator, hidden by the do notation.

*classes> m_add (Just 20) (Just 22)
Just 42 : Maybe Int

*classes> m_add (Just 20) Nothing
Nothing : Maybe Int

3.2 Idiom Brackets

While do notation gives an alternative meaning to sequencing, idioms give an
alternative meaning to application. The notation and larger example in this
section is inspired by Conor McBride and Ross Paterson’s paper “Applicative
Programming with Effects” [12].

First, let us revisit m add above. All it is really doing is applying an operator
to two values extracted from Maybe Ints. We could abstract out the application:

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _ _ = Nothing

Using this, we can write an alternative m add which uses this alternative notion
of function application, with explicit calls to m app:
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m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = m_app (m_app (Just (+)) x) y

Rather than having to insert m app everywhere there is an application, we can
use idiom brackets to do the job for us. To do this, we use the Applicative
class, which captures the notion of application for a data type:

infixl 2 <$>

class Applicative (f : Type -> Type) where
pure : a -> f a
(<$>) : f (a -> b) -> f a -> f b

Maybe is made an instance of Applicative as follows, where < $ > is defined
in the same way as m app above:

instance Applicative Maybe where
pure = Just
(Just f) <$> (Just a) = Just (f a)
_ <$> _ = Nothing

Using idiom brackets we can use this instance as follows, where a function appli-
cation [| f a1 ... an |] is translated into pure f <$> a1 <$> ... <$> an:

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = [| x + y |]

An Error-Handling Interpreter. Idiom brackets are often useful when defin-
ing evaluators for embedded domain specific languages. McBride and Paterson
describe such an evaluator [12], for a small language similar to the following:

data Expr = Var String −− v a r i a b l e s

| Val Int −− v a l u e s

| Add Expr Expr −− a d d i t i o n

Evaluation will take place relative to a context mapping variables (represented
as Strings) to integer values, and can possibly fail. We define a data type Eval
to wrap an evaluation function:

data Eval : Type -> Type where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

We begin by defining a function to retrieve values from the context during
evaluation:

fetch : String -> Eval Int
fetch x = MkEval fetchVal where

fetchVal : List (String, Int) -> Maybe Int
fetchVal [] = Nothing
fetchVal ((v, val) :: xs)

= if (x == v) then Just val
else fetchVal xs
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When defining an evaluator for the language, we will be applying functions in the
context of an Eval, so it is natural to make Eval an instance of Applicative.
Before Eval can be an instance of Applicative it is necessary to make Eval
an instance of Functor:

instance Functor Eval where
fmap f (MkEval g) = MkEval (\e => fmap f (g e))

instance Applicative Eval where
pure x = MkEval (\e => Just x)
(<$>) (MkEval f) (MkEval g)

= MkEval (\x => app (f x) (g x)) where
app : Maybe (a -> b) -> Maybe a -> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ _ = Nothing

Evaluating an expression can now make use of the idiomatic application to handle
errors:

eval : Expr -> Eval Int
eval (Var x) = fetch x
eval (Val x) = [| x |]
eval (Add x y) = [| eval x + eval y |]

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of

MkEval envFn => envFn env

By defining appropriate Monad and Applicative instances, we can overload
notions of binding and application for specific data types, which can give more
flexibility when implementing EDSLs. . . . . . .

4 Views and the “with” Rule

4.1 Dependent Pattern Matching

Since types can depend on values, the form of some arguments can be deter-
mined by the value of others. For example, if we were to write down the implicit
length arguments to (++), we’d see that the form of the length argument was
determined by whether the vector was empty or not:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) {n=Z} [] ys = ys
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys

If n was a successor in the [] case, or zero in the :: case, the definition would
not be well typed.
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4.2 The with Rule — Matching Intermediate Values

Very often, we need to match on the result of an intermediate computation. Idris
provides a construct for this, the with rule, inspired by views in Epigram [11],
which takes account of the fact that matching on a value in a dependently typed
language can affect what we know about the forms of other values —we can
learn the form of one value by testing another. For example, a Nat is either even
or odd. If it’s even it will be the sum of two equal Nats. Otherwise, it is the sum
of two equal Nats plus one:

data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether
it is even or odd and constructs the predicate accordingly.

parity : (n:Nat) -> Parity n

We will return to this function in Sect. 5.5 to complete the definition of parity.
For now, we can use it to write a function which converts a natural number to
a list of binary digits (least significant first) as follows, using the with rule:

natToBin : Nat -> List Bool
natToBin Z = Nil
natToBin k with (parity k)

natToBin (j + j) | even = False :: natToBin j
natToBin (S (j + j)) | odd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result
of parity k depends on k. So, as well as the patterns for the result of the
intermediate computation (even and odd) right of the |, we also write how
the results affect the other patterns left of the |. Note that there is a function
in the patterns (+) and repeated occurrences of j — this is allowed because
another argument has determined the form of these patterns.

4.3 Membership Predicates

We have already seen (in Sect. 2.4) the Elem x xs type, an element of which
is a proof that x is an element of the list xs:

using (x:a, y:a, xs:List a)
data Elem : a -> List a -> Type where

Here : Elem x (x :: xs)
There : Elem x xs -> Elem x (y :: xs)

We have also seen how to construct proofs of this at compile time. However,
data is not often available at compile-time — proofs of list membership may
arise due to user data, which may be invalid and therefore needs to be checked.
What we need, therefore, is a function which constructs such a predicate, taking
into account possible failure. In order to do so, we need to be able to construct
equality proofs.
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Propositional Equality. Idris allows propositional equalities to be declared,
allowing theorems about programs to be stated and proved. Equality is built in,
but conceptually has the following definition:

data (=) : a -> b -> Type where
refl : x = x

Equalities can be proposed between any values of any types, but the only way
to construct a proof of equality is if values actually are equal. For example:

fiveIsFive : 5 = 5
fiveIsFive = refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = refl

Decidable Equality. The library provides a Dec type, with two constructors,
Yes and No. Dec represents decidable propositions, either containing a proof
that a type is inhabited, or a proof that it is not. Here, | represents the empty
type, which we will discuss further in Sect. 5.1:

data Dec : Type -> Type where
Yes : a -> Dec a
No : (a -> _|_) -> Dec a

We can think of this as an informative version of Bool — not only do we know
the truth of a value, we also have an explanation for it. Using this, we can write
a type class capturing types which can not only be compared for equality, but
which also provide a proof of that equality:

class DecEq t where
decEq : (x1 : t) -> (x2 : t) -> Dec (x1 = x2)

Using DecEq, we can construct equality proofs where necessary at run-time.
There are instances defined in the prelude for primitive types, as well as many
of the types defined in the prelude such as Bool, Maybe a, List a, etc.

Now that we can construct equality proofs dynamically, we can implement
the following function, which dynamically constructs a proof that x is contained
in a list xs, if possible:

isElem : DecEq a =>
(x : a) -> (xs : List a) -> Maybe (Elem x xs)

isElem x [] = Nothing
isElem x (y :: xs) with (decEq x y)

isElem x (x :: xs) | (Yes refl) = return Here
isElem x (y :: xs) | (No f) = do p <- isElem x xs

return (There p)

This function works first by checking whether the list is empty. If so, the value
cannot be contained in the list, so it returns Nothing. Otherwise, it uses decEq
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to try to construct a proof that the element is at the head of the list. If it succeeds,
dependent pattern matching on that proof means that x must be at the head of
the list. Otherwise, it searches in the tail of the list.

Exercises

1. The following view describes a pair of numbers as a difference:

data Cmp : Nat -> Nat -> Type where
cmpLT : (y : _) -> Cmp x (x + S y)
cmpEQ : Cmp x x
cmpGT : (x : _) -> Cmp (y + S x) y

(a) Write the function cmp : (n : Nat) -> (m : Nat) -> Cmp n m
which proves that every pair of numbers can be expressed in this way.

(b) Assume you have a vector xs : Vect a n, where n is unknown. How
could you use cmp to construct a suitable input to vtake and vdrop
from xs?

2. You are given the following definition of binary trees:

data Tree a = Leaf | Node (Tree a) a (Tree a)

Define a membership predicate ElemTree and a function elemInTree which
calculates whether a value is in the tree, and a corresponding proof.

data ElemTree : a -> Tree a -> Type where ...

elemInTree : DecEq a =>
(x : a) -> (t : Tree a) -> Maybe (ElemTree x t)

5 Theorem Proving

As we have seen in Sect. 4.3, Idris supports propositional equality:

data (=) : a -> b -> Type where
refl : x = x

We have used this to build membership proofs of Lists, but it is more generally
applicable. In particular, we can reason about equality. The library function
replace uses an equality proof to transform a predicate on one value into a
predicate on another, equal, value:

replace : {P : a -> Type} -> x = y -> P x -> P y
replace refl prf = prf

The library function cong is a function defined in the library which states that
equality respects function application:

cong : {f : t -> u} -> a = b -> f a = f b
cong refl = refl
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Using the equality type, replace, cong and the properties of the type system,
we can write proofs of theorems such as the following, which states that addition
of natural numbers is commutative:

plus_commutes : (n, m : Nat) -> plus n m = plus m n

In this section, we will see how to develop such proofs.

5.1 The Empty Type

There is an empty type, ⊥, which has no constructors. It is therefore impossible
to construct an element of the empty type, at least without using a partially
defined or general recursive function (which will be explained in more detail
in Sect. 5.4). We can therefore use the empty type to prove that something is
impossible, for example zero is never equal to a successor:

disjoint : (n : Nat) -> Z = S n -> _|_
disjoint n p = replace {P = disjointTy} p ()

where
disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = _|_

Here we use replace to transform a value of a type which can exist, the empty
tuple, to a value of a type which can’t, by using a proof of something which
can’t exist. Once we have an element of the empty type, we can prove anything.
FalseElim is defined in the library, to assist with proofs by contradiction.

FalseElim : _|_ -> a

5.2 Simple Theorems

When type checking dependent types, the type itself gets normalised. So imagine
we want to prove the following theorem about the reduction behaviour of plus:

plusReduces : (n:Nat) -> plus Z n = n

We’ve written down the statement of the theorem as a type, in just the same
way as we would write the type of a program. In fact there is no real distinction
between proofs and programs. A proof, as far as we are concerned here, is merely
a program with a precise enough type to guarantee a particular property of
interest.

We won’t go into details here, but the Curry-Howard correspondence [10]
explains this relationship. The proof itself is trivial, because plus Z n nor-
malises to n by the definition of plus:

plusReduces n = refl

It is slightly harder if we try the arguments the other way, because plus is defined
by recursion on its first argument. The proof also works by recursion on the first
argument to plus, namely n.



The Idris Programming Language 141

plusReducesZ : (n:Nat) -> n = plus n Z
plusReducesZ Z = refl
plusReducesZ (S k) = cong (plusReducesZ k)

We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) ->
S (plus n m) = plus n (S m)

plusReducesS Z m = refl
plusReducesS (S k) m = cong (plusReducesS k m)

Even for simple theorems like these, the proofs are a little tricky to construct
directly. When things get even slightly more complicated, it becomes too much
to think about to construct proofs in this ‘batch mode’. Idris therefore provides
an interactive proof mode.

5.3 Interactive Theorem Proving

Instead of writing the proof in one go, we can use Idris’s interactive proof mode.
To do this, we write the general structure of the proof, and use the interactive
mode to complete the details. We’ll be constructing the proof by induction, so
we write the cases for Z and S, with a recursive call in the S case giving the
inductive hypothesis, and insert metavariables for the rest of the definition:

plusReducesZ’ : (n:Nat) -> n = plus n Z
plusReducesZ’ Z = ?plusredZ_Z
plusReducesZ’ (S k) = let ih = plusReducesZ’ k in

?plusredZ_S

On running Idris, two global names are created, plusredZ Z and plusredZ S,
with no definition. We can use the :m command at the prompt to find out which
metavariables are still to be solved (or, more precisely, which functions exist but
have no definitions), then the :t command to see their types and contexts:

*theorems> :m
Global metavariables:

[plusredZ_S,plusredZ_Z]

*theorems> :t plusredZ_Z
--------------------------------------
plusredZ_Z : 0 = 0

*theorems> :t plusredZ_S
k : Nat
ih : k = plus k 0

--------------------------------------
plusredZ_S : S k = S (plus k 0)
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The :p command enters interactive proof mode, which can be used to complete
the missing definitions. This gives us a list of premises (above the line; there are
none here) and the current goal (below the line; named {hole0} here). At the
prompt we can enter tactics to direct the construction of the proof. In this case,
we can normalise the goal with the compute tactic:

-plusredZ_Z> compute

----------------------------- (plusredZ_Z) --------
{hole0} : Z = Z

Now we have to prove that Z equals Z, which is easy to prove by refl. To apply
a function, such as refl, we use refine which introduces subgoals for each of
the function’s explicit arguments (refl has none):

-plusredZ_Z> refine refl
plusredZ_Z: no more goals

Here, we could also have used the trivial tactic, which tries to refine by refl,
and if that fails, tries to refine by each name in the local context. When a proof
is complete, we use the qed tactic to add the proof to the global context, and
remove the metavariable from the unsolved metavariables list. This also outputs
a log of the proof:

-plusredZ_Z> qed
plusredZ_Z = proof

compute
refine refl

*theorems> :m
Global metavariables:

[plusredZ_S]

The :addproof command, at the interactive prompt, will add the proof to
the source file (effectively in an appendix). Let us now prove the other required
lemma, plusredZ S:

*theorems> :p plusredZ_S

----------------------------- (plusredZ_S) --------
{hole0} : (k : Nat) -> (k = plus k 0) -> S k = plus (S k) 0

In this case, the goal is a function type, using k (the argument accessible by
pattern matching) and ih — the local variable containing the result of the
recursive call. We can introduce these as premises using the intro tactic twice
(or intros, which introduces all arguments as premises). This gives:

k : Nat
ih : k = plus k Z

----------------------------- (plusredZ_S) --------
{hole2} : S k = plus (S k) 0
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Since plus is defined is defined by recursion on its first argument, the term plus
(S k) 0 in the goal can be simplified using compute:

k : Nat
ih : k = plus k Z

----------------------------- (plusredZ_S) --------
{hole2} : S k = S (plus k 0)

We know, from the type of ih, that k = plus k 0, so we would like to use
this knowledge to replace plus k 0 in the goal with k. We can achieve this
with the rewrite tactic:

-plusredZ_S> rewrite ih

k : Nat
ih : k = plus k 0

----------------------------- (plusredZ_S) --------
{hole3} : S k = S k

-plusredZ_S>

The rewrite tactic takes an equality proof as an argument, and tries to rewrite
the goal using that proof. Here, it results in an equality which is trivially prov-
able:

-plusredZ_S> trivial
plusredZ_S: no more goals
-plusredZ_S> qed
plusredZ_S = proof

intros
rewrite ih
trivial

Again, we can add this proof to the end of our source file using the :addproof
command at the interactive prompt.

5.4 Totality Checking

If we really want to trust our proofs, it is important that they are defined by
total functions. A total function is a function which is defined for all possible
inputs and is guaranteed to terminate. Otherwise we could construct an element
of the empty type, from which we could prove anything:

−− mak ing u s e o f ’ hd ’ b e i n g p a r t i a l l y d e f i n e d

empty1 : _|_
empty1 = hd [] where

hd : List a -> a
hd (x :: xs) = x
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−− no t t e r m i n a t i n g

empty2 : _|_
empty2 = empty2

Internally, Idris checks every definition for totality, and we can check at the
prompt with the :total command. We see that neither of the above definitions
is total:

*theorems> :total empty1
possibly not total due to: empty1, hd

not total as there are missing cases

*theorems> :total empty2
possibly not total due to recursive path empty2

Note the use of the word “possibly” — a totality check can, of course, never be
certain due to the undecidability of the halting problem. The check is, therefore,
conservative. It is also possible (and indeed advisable, in the case of proofs) to
mark functions as total so that it will be a compile time error for the totality
check to fail:

total empty2 : _|_
empty2 = empty2

Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to
recursive path empty2

Reassuringly, our proof in Sect. 5.1 that the zero and successor constructors are
disjoint is total:

*theorems> :total disjoint
Total

The totality check is, necessarily, conservative. To be recorded as total, a function
f must:

– Cover all possible inputs.
– Be well-founded — i.e. by the time a sequence of (possibly mutually) recursive

calls reaches f again, it must be possible to show that one of its arguments
has decreased.

– Not use any data types which are not strictly positive.
– Not call any non-total functions.

Directives and Compiler Flags for Totality. By default, Idris allows all
definitions, whether total or not. However, it is desirable for functions to be
total as far as possible, as this provides a guarantee that they provide a result
for all possible inputs, in finite time. It is possible to make total functions a
requirement, either:
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– By using the --total compiler flag.
– By adding a %default total directive to a source file. All definitions after

this will be required to be total, unless explicitly flagged as partial.

All functions after a %default total declaration are required to be total. Corre-
spondingly, after a %default partial declaration, the requirement is relaxed.

5.5 Provisional Definitions

Sometimes when programming with dependent types, the type required by the
type checker and the type of the program we have written will be different (in
that they do not have the same normal form), but nevertheless provably equal.
For example, recall the parity function:

data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))

parity : (n:Nat) -> Parity n

We would like to implement this as follows:

parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | even = even {n=S j}
parity (S (S (S (j + j)))) | odd = odd {n=S j}

This simply states that zero is even, one is odd, and recursively, the parity of
k+2 is the same as the parity of k. Explicitly marking the value of n in even and
odd is necessary to help type inference. Unfortunately, the type checker rejects
this:

views.idr:12:Can’t unify Parity (plus (S j) (S j)) with
Parity (S (S (plus j j)))

The type checker is telling us that (j+1)+(j+1) and 2+j+j do not normalise to
the same value. This is because plus is defined by recursion on its first argument,
and in the second value, there is a successor symbol on the second argument, so
this will not help with reduction. These values are obviously equal—how can we
rewrite the program to fix this problem?

Provisional definitions help with this problem by allowing us to defer the
proof details until a later point. There are two main motivations for supporting
provisional definitions:

– When prototyping, it is useful to be able to test programs before finishing
all the details of proofs. This is particularly useful if testing reveals that we
would need to prove something which is untrue!

– When reading a program, it is often much clearer to defer the proof details so
that they do not distract the reader from the underlying algorithm.
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Provisional definitions are written in the same way as ordinary definitions, except
that they introduce the right hand side with a ?= rather than =. We define
parity as follows:

parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | even ?= even {n=S j}
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}

When written in this form, instead of reporting a type error, Idris will insert
a metavariable standing for a theorem which will correct the type error. Idris
tells us we have two proof obligations, with names generated from the module
and function names:

*views> :m
Global metavariables:

[views.parity_lemma_2,views.parity_lemma_1]

The first of these has the following type and context:

*views> :t views.parity_lemma_1
j : Nat
value : Parity (plus (S j) (S j))

--------------------------------------
parity_lemma_1 : Parity (S (S (plus j j)))

The two arguments are j, the variable in scope from the pattern match, and
value, which is the value we gave in the right hand side of the provisional
definition. Our aim is to rewrite the type so that we can use this value. We can
achieve this using the following theorem from the prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)

After starting the theorem prover with :p parity lemma 1 and applying
intro twice, we have:

j : Nat
value : Parity (S (plus j (S j)))

-------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (j + j)))

We need to use compute to unfold the definition of (+).

-views.parity_lemma_1> compute

j : Nat
value : Parity (S (plus j (S j)))

-------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (plus j j)))
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Then we apply the plusSuccRightSucc rewrite rule, symmetrically, to j and
j, giving:

-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j j)

j : Nat
value : Parity (S (plus j (S j)))

-------------------------- (views.parity_lemma_1) --------
{hole3} : Parity (S (plus j (S j)))

sym is a function, defined in the library, which reverses the order of the rewrite:

sym : l = r -> r = l
sym refl = refl

We can complete this proof using the trivial tactic, which finds value in the
premises. The proof of the second lemma proceeds in exactly the same way.

We can now test the natToBin function from Sect. 4.2 at the prompt. The
number 42 is 101010 in binary. The binary digits are reversed:

*views> show (natToBin 42)
"[False, True, False, True, False, True]" : String

5.6 Suspension of Disbelief

Idris requires that proofs be complete before compiling programs (although
evaluation at the prompt is possible without proof details). Sometimes, especially
when prototyping, it is easier not to have to do this. It might even be beneficial
to test programs before attempting to prove things about them — if testing finds
an error, you know you should not waste your time proving something!

Therefore, Idris provides a built-in coercion function, which allows you to
use a value of the incorrect types:

believe_me : a -> b

Obviously, this should be used with caution. It is useful when prototyping, and
can also be appropriate when asserting properties of external code (perhaps in
an external C library). The “proof” of views.parity lemma 1 using this is:

views.parity_lemma_2 = proof
intro
intro
exact believe_me value

The exact tactic allows us to provide an exact value for the proof. In this case,
we assert that the value we gave was correct.

5.7 Example: Binary Numbers

Previously, we implemented conversion to binary numbers using the Parity
view. Here, we show how to use the same view to implement a verified conversion
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to binary. We begin by indexing binary numbers over their Nat equivalent. This
is a common pattern, linking a representation (in this case Binary) with a
meaning (in this case Nat):

data Binary : Nat -> Type where
bEnd : Binary Z
bO : Binary n -> Binary (n + n)
bI : Binary n -> Binary (S (n + n))

bO and bI take a binary number as an argument and effectively shift it one bit
left, adding either a zero or one as the new least significant bit. The index, n
+ n or S (n + n) states the result that this left shift then add will have to
the meaning of the number. This will result in a representation with the least
significant bit at the front.

Now a function which converts a Nat to binary will state, in the type, that
the resulting binary number is a faithful representation of the original Nat:

natToBin : (n:Nat) -> Binary n

The Parity view makes the definition fairly simple — halving the number is
effectively a right shift after all — although we need to use a provisional definition
in the odd case:

natToBin : (n:Nat) -> Binary n
natToBin Z = bEnd
natToBin (S k) with (parity k)

natToBin (S (j + j)) | even = bI (natToBin j)
natToBin (S (S (j + j))) | odd ?= bO (natToBin (S j))

The problem with the odd case is the same as in the definition of parity, and
the proof proceeds in the same way:

natToBin_lemma_1 = proof
intro
intro
rewrite sym (plusSuccRightSucc j j)
trivial

To finish, we’ll implement a main program which reads an integer from the user
and outputs it in binary.

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (natToBin (fromInteger (cast x)))

For this to work, of course, we need a Show instance for Binary n:

instance Show (Binary n) where
show (bO x) = show x ++ "0"
show (bI x) = show x ++ "1"
show bEnd = ""
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Exercises

1. Implement the following functions, which verify some properties of natural
number addition:

plus_nSm : (n : Nat) -> (m : Nat) -> n + S m = S (n + m)
plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_assoc : (n : Nat) -> (m : Nat) -> (p : Nat) ->

n + (m + p) = (n + m) + p

2. One way we have seen to define a reverse function for lists is as follows:

reverse : List a -> List a
reverse xs = revAcc [] xs where
revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Write the equivalent function for vectors,

vect_reverse : Vect n a -> Vect n a

Hint: You can use the same structure as the definition for List, but you will
need to think carefully about the type for revAcc, and may need to do some
theorem proving.

6 EDSL Example 1: The Well-Typed Interpreter

In this section, we will use the features we have seen so far to write a larger
example, an interpreter for a simple functional programming language, imple-
mented as an Embedded Domain Specific Language. The object language (i.e.,
the language we are implementing) has variables, function application, binary
operators and an if...then...else construct. We will use the type system
from the host language (i.e. Idris) to ensure that any programs which can be
represented are well-typed.

First, let us define the types in the language. We have integers, booleans,
and functions, represented by Ty:

data Ty = TyInt | TyBool | TyFun Ty Ty

We can write a function to translate these representations to a concrete Idris
type — remember that types are first class, so can be calculated just like any
other value:

interpTy : Ty -> Type
interpTy TyInt = Int
interpTy TyBool = Bool
interpTy (TyFun A T) = interpTy A -> interpTy T
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We will define a representation of our language in such a way that only well-
typed programs can be represented. We index the representations of expressions
by their type and the types of local variables (the context), which we’ll be using
regularly as an implicit argument, so we define everything in a using block:

using (G:Vect n Ty)

The full representation of expressions is given in Listing 3. They are indexed by
the types of the local variables, and the type of the expression itself:

data Expr : Vect n Ty -> Ty -> Type

Since expressions are indexed by their type, we can read the typing rules of the
language from the definitions of the constructors. Let us look at each constructor
in turn.

Listing 3. Expression representation

data Expr : Vect n Ty -> Ty -> Type where
Var : HasType i G t -> Expr G t
Val : (x : Int) -> Expr G TyInt
Lam : Expr (a :: G) t -> Expr G (TyFun a t)
App : Expr G (TyFun a t) -> Expr G a -> Expr G t
Op : (interpTy a -> interpTy b -> interpTy c) ->

Expr G a -> Expr G b -> Expr G c
If : Expr G TyBool ->

Lazy (Expr G a) -> Lazy (Expr G a) -> Expr G a

We use a nameless representation for variables — they are de Bruijn indexed.
Variables are represented by a proof of their membership in the context, HasType
i G T, which is a proof that variable i in context G has type T. This is defined
as follows:

data HasType : Fin n -> Vect n Ty -> Ty -> Type where
stop : HasType fZ (t :: G) t
pop : HasType k G t -> HasType (fS k) (u :: G) t

We can treat stop as a proof that the most recently defined variable is well-
typed, and pop n as a proof that, if the nth most recently defined variable is
well-typed, so is the n+1th. In practice, this means we use stop to refer to the
most recently defined variable, pop stop to refer to the next, and so on, via
the Var constructor:

Var : HasType i G t -> Expr G t

So, in an expression \x. \y. x y, the variable x would have a de Bruijn index
of 1, represented as pop stop, and y 0, represented as stop. We find these
by counting the number of lambdas between the definition and the use.
A value carries a concrete representation of an integer:

Val : (x : Int) -> Expr G TyInt

A lambda creates a function. In the scope of a function of type a -> t, there
is a new local variable of type a, which is expressed by the context index:
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Listing 4. Intepreter definition

interp : Env G -> Expr G t -> interpTy t
interp env (Var i) = lookup i env
interp env (Val x) = x
interp env (Lam body) = \x => interp (x :: env) body
interp env (App f s) = (interp env f) (interp env s)
interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x

then interp env t
else interp env e

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

Function application produces a value of type t given a function from a to t
and a value of type a:

App : Expr G (TyFun a t) -> Expr G a -> Expr G t

Given these constructors, the expression \x. \y. x y above would be repre-
sented as Lam (Lam (App (Var (pop stop)) (Var stop))).

We also allow arbitrary binary operators, where the type of the operator
informs what the types of the arguments must be:

Op : (interpTy a -> interpTy b -> interpTy c) ->
Expr G a -> Expr G b -> Expr G c

Finally, If expressions make a choice given a boolean. Each branch must have
the same type, and we will evaluate the branches lazily so that only the branch
which is taken need be evaluated:

If : Expr G TyBool ->
Lazy (Expr G a) -> Lazy (Expr G a) -> Expr G a

When we evaluate an Expr, we’ll need to know the values in scope, as well
as their types. Env is an environment, indexed over the types in scope. Since
an environment is just another form of list, albeit with a strongly specified
connection to the vector of local variable types, we use the usual :: and Nil
constructors so that we can use the usual list syntax. Given a proof that a variable
is defined in the context, we can then produce a value from the environment:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup stop (x :: xs) = x
lookup (pop k) (x :: xs) = lookup k xs
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Given this, an interpreter (Listing 4) is a function which translates an Expr into
a concrete Idris value with respect to a specific environment:

interp : Env G -> Expr G t -> interpTy t

To translate a variable, we simply look it up in the environment:

interp env (Var i) = lookup i env

To translate a value, we just return the concrete representation of the value:

interp env (Val x) = x

Lambdas are more interesting. In this case, we construct a function which inter-
prets the scope of the lambda with a new value in the environment. So, a function
in the object language is translated to an Idris function:

interp env (Lam body) = \x => interp (x :: env) body

For an application, we interpret the function and its argument and apply it
directly. We know that interpreting f must produce a function, because of its
type:

interp env (App f s) = (interp env f) (interp env s)

Operators and If expressions are, again, direct translations into the equivalent
Idris constructs. For operators, we apply the function to its operands directly,
and for If, we apply the Idris if...then...else construct directly.

interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x

then interp env t
else interp env e

We can make some simple test functions. Firstly, adding two inputs \x. \y. y + x
is written as follows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var stop) (Var (pop stop))))

More interestingly, we can write a factorial function (i.e. \x. if (x == 0)
then 1 else (fact (x-1) * x)) which is written as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1)
(Op (*)
(App fact (Op (-) (Var stop) (Val 1)))

(Var stop)))

To finish, we write a main program which interprets the factorial function on
user input:

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (interp [] fact (cast x))
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Here, cast is an overloaded function which converts a value from one type to
another if possible. Here, it converts a string to an integer, giving 0 if the input
is invalid. An example run of this program at the Idris interactive environment
is shown in Listing 5.

Aside: cast. The prelude defines a type class Cast which allows conversion
between types:

class Cast from to where
cast : from -> to

It is a multi-parameter type class, defining the source type and object type of
the cast. It must be possible for the type checker to infer both parameters at
the point where the cast is applied. There are casts defined between all of the
primitive types, as far as they make sense.

Listing 5. Running the well-typed interpreter

$ idris interp.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.14.

_/ // /_/ / / / (__ ) http://www.idris-lang.org/
/___/\__,_/_/ /_/____/ Type :? for help

Type checking ./interp.idr

*interp> :exec
Enter a number: 6
720

*interp>

7 Interactive Editing

By now, we have seen several examples of how Idris’ dependent type system
can give extra confidence in a function’s correctness by giving a more precise
description of its intended behaviour in its type. We have also seen an example of
how the type system can help with EDSL development by allowing a programmer
to describe the type system of an object language. However, precise types give
us more than verification of programs — we can also exploit types to help write
programs which are correct by construction.

The Idris REPL provides several commands for inspecting and modifying
parts of programs, based on their types, such as case splitting on a pattern
variable, inspecting the type of a metavariable, and even a basic proof search
mechanism. In this section, we explain how these features can be exploited by
a text editor, and specifically how to do so in Vim5. An interactive mode for
Emacs6 is also available.
5 https://github.com/idris-hackers/idris-vim.
6 https://github.com/idris-hackers/idris-emacs.

https://github.com/idris-hackers/idris-vim
https://github.com/idris-hackers/idris-emacs
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7.1 Editing at the REPL

The REPL provides a number of commands, which we will describe shortly,
which generate new program fragments based on the currently loaded module.
These take the general form

:command [line number] [name]

That is, each command acts on a specific source line, at a specific name, and
outputs a new program fragment. Each command has an alternative form, which
updates the source file in-place:

:command! [line number] [name]

When the REPL is loaded, it also starts a background process which accepts
and responds to REPL commands, using idris --client. For example, if
we have a REPL running elsewhere, we can execute commands such as:

$ idris --client ’:t plus’
Prelude.Nat.plus : Nat -> Nat -> Nat
$ idris --client ’2+2’
4 : Integer

A text editor can take advantage of this, along with the editing commands, in
order to provide interactive editing support.

7.2 Editing Commands

:addclause. The :addclause n f command (abbreviated :ac n f) creates
a template definition for the function named f declared on line n.

For example, if the code beginning on line 94 contains. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

. . . then :ac 94 vzipWith will give:

vzipWith f xs ys = ?vzipWith_rhs

The names are chosen according to hints which may be given by a programmer,
and then made unique by the machine by adding a digit if necessary. Hints can
be given as follows:

%name Vect xs, ys, zs, ws

This declares that any names generated for types in the Vect family should be
chosen in the order xs, ys, zs, ws.

:casesplit. The :casesplit n x command, abbreviated :cs n x, splits the
pattern variable x on line n into the various pattern forms it may take, removing
any cases which are impossible due to unification errors. For example, if the code
beginning on line 94 is. . .
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vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f xs ys = ?vzipWith_rhs

. . . then :cs 96 xs will give:

vzipWith f [] ys = ?vzipWith_rhs_1
vzipWith f (x :: xs) ys = ?vzipWith_rhs_2

That is, the pattern variable xs has been split into the two possible cases []
and x :: xs. Again, the names are chosen according to the same heuristic. If
we update the file (using :cs!) then case split on ys on the same line, we get:

vzipWith f [] [] = ?vzipWith_rhs_3

That is, the pattern variable ys has been split into one case [], Idris having
noticed that the other possible case y :: ys would lead to a unification error.

:addmissing. The :addmissing n f command, abbreviated :am n f, adds
the clauses which are required to make the function f on line n cover all inputs.
For example, if the code beginning on line 94 is. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1

. . . then :am 96 vzipWith gives:

vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

That is, it notices that there are no cases for non-empty vectors, generates
the required clauses, and eliminates the clauses which would lead to unification
errors.

:proofsearch. The :proofsearch nf command, abbreviated :ps nf, attempts
to find a value for the metavariable f on line n by proof search, trying values of
local variables, recursive calls and constructors of the required family. Option-
ally, it can take a list of hints, which are functions it can try applying to solve
the metavariable. For example, if the code beginning on line 94 is. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1
vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

. . . then :ps 96 vzipWith rhs 1 will give

[]

This works because it is searching for a Vect of length 0, of which the empty
vector is the only possibility. Similarly, and perhaps surprisingly, there is only
one possibility if we try to solve :ps 97 vzipWith rhs 2:

f x y :: (vzipWith f xs ys)
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This works because vzipWith has a precise enough type: The resulting vector
has to be non-empty (::); the first element must have type c and the only way
to get this is to apply f to x and y; finally, the tail of the vector can only be
built recursively.

:makewith. The :makewith n f command, abbreviated :mw n f, adds a
with to a pattern clause. For example, recall parity. If line 10 is. . .

parity (S k) = ?parity_rhs

. . . then :mw 10 parity will give:

parity (S k) with (_)
parity (S k) | with_pat = ?parity_rhs

If we then fill in the placeholder with parity k and case split on with pat
using :cs 11 with pat we get the following patterns:

parity (S (plus n n)) | even = ?parity_rhs_1
parity (S (S (plus n n))) | odd = ?parity_rhs_2

Note that case splitting has normalised the patterns here (giving plus rather
than +). In any case, we see that using interactive editing significantly simplifies
the implementation of dependent pattern matching by showing a programmer
exactly what the valid patterns are.

7.3 Interactive Editing in Vim

The editor mode for Vim provides syntax highlighting, indentation and interac-
tive editing support using the commands described above. Interactive editing is
achieved using the following editor commands, each of which update the buffer
directly:

– \d adds a template definition for the name declared on the current line (using
:addclause.)

– \c case splits the variable at the cursor (using :casesplit.)
– \m adds the missing cases for the name at the cursor (using :addmissing.)
– \w adds a with clause (using :makewith.)
– \o invokes a proof search to solve the metavariable under the cursor (using
:proofsearch.)

– \p invokes a proof search with additional hints to solve the metavariable under
the cursor (using :proofsearch.)

There are also commands to invoke the type checker and evaluator:

– \t displays the type of the (globally visible) name under the cursor. In the
case of a metavariable, this displays the context and the expected type.

– \e prompts for an expression to evaluate.
– \r reloads and type checks the buffer.

Corresponding commands are also available in the Emacs mode. Support for
other editors can be added in a relatively straighforward manner by using idris
--client.
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Exercises

Re-implement the following functions using interactive editing mode as far as
possible:

append : Vect n a -> Vect m a -> Vect (n + m) a
vzipWith : (a -> b -> c) ->

Vect n a -> Vect n b -> Vect n b
isElem : DecEq a =>

(x : a) -> (xs : List a) -> Maybe (Elem x xs)
cmp : (n : Nat) -> (m : Nat) -> Cmp n m

When does :proofsearch succeed and when does it fail? How often does it
provide the definition you would expect?

8 Support for EDSL Implementation

Idris supports the implementation of EDSLs in several ways. For example, as
we have already seen, it is possible to extend do notation and idiom brackets.
Another important way is to allow extension of the core syntax. In this section I
describe further support for EDSL development. I introduce syntax rules and
dsl notation [8], and describe how to make programs more concise with implicit
conversions.

8.1 syntax Rules

We have seen if...then...else expressions, but these are not built in —
instead, we define a function in the prelude, using laziness annotations to ensure
that the branches are only evaluated if required. . .

boolElim : (x:Bool) -> |(t : a) -> |(f : a) -> a
boolElim True t e = t
boolElim False t e = e

. . . and extend the core syntax with a syntax declaration:

syntax if [test] then [t] else [e] = boolElim test t e

The left hand side of a syntax declaration describes the syntax rule, and the
right hand side describes its expansion. The syntax rule itself consists of:

– Keywords — here, if, then and else, which must be valid identifiers.
– Non-terminals — included in square brackets, [test], [t] and [e] here,

which stand for arbitrary expressions. To avoid parsing ambiguities, these
expressions cannot use syntax extensions at the top level (though they can be
used in parentheses.)

– Names — included in braces, which stand for names which may be bound
on the right hand side.

– Symbols — included in quotations marks, e.g. ":=". This can also be used
to include reserved words in syntax rules, such as "let" or "in".
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The limitations on the form of a syntax rule are that it must include at least one
symbol or keyword, and there must be no repeated variables standing for non-
terminals. Any expression can be used, but if there are two non-terminals in a
row in a rule, only simple expressions may be used (that is, variables, constants,
or bracketed expressions). Rules can use previously defined rules, but may not
be recursive. The following syntax extensions would therefore be valid:

syntax [var] ":=" [val] = Assign var val
syntax [test] "?" [t] ":" [e] = if test then t

else e
syntax select [x] from [t] where [w] = SelectWhere x t w
syntax select [x] from [t] = Select x t

Syntax rules may also be used to introduce alternative binding forms. For exam-
ple, a for loop binds a variable on each iteration:

forLoop : List a -> (a -> IO ()) -> IO ()
forLoop [] f = return ()
forLoop (x :: xs) f = do f x; forLoop xs f

syntax for {x} "in" [xs] ":" [body]
= forLoop xs (\x => body)

main : IO ()
main = do for x in [1..10]:

putStrLn ("Number " ++ show x)
putStrLn "Done!"

Note that we have used the {x} form to state that x represents a bound variable,
substituted on the right hand side. We have also put "in" in quotation marks
since it is already a reserved word.

8.2 dsl Notation

The well-typed interpreter in Sect. 6 is a simple example of a common program-
ming pattern with dependent types, namely: describe an object language and its
type system with dependent types to guarantee that only well-typed programs
can be represented, then program using that representation. Using this approach
we can, for example, write programs for serialising binary data [2] or running
concurrent processes safely [6].

Unfortunately, the form of object language programs makes it rather hard to
program this way in practice. Recall the factorial program in Expr for example:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1)
(Op (*)
(app fact (Op (-) (Var stop) (Val 1)))

(Var stop)))
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It is hard to expect EDSL users to program in this style! Therefore, Idris pro-
vides syntax overloading [8] to make it easier to program in such object lan-
guages:

dsl expr
lambda = Lam
variable = Var
index_first = stop
index_next = pop

A dsl block describes how each syntactic construct is represented in an object
language. Here, in the expr language, any Idris lambda is translated to a Lam
constructor; any variable is translated to the Var constructor, using pop and
stop to construct the de Bruijn index (i.e., to count how many bindings since
the variable itself was bound). It is also possible to overload let in this way.
We can now write fact as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1)
(Op (*) (app fact (Op (-) x (Val 1))) x))

In this new version, expr declares that the next expression will be overloaded.
We can take this further, using idiom brackets, by declaring:

(<$>) : (f : Expr G (TyFun a t)) -> Expr G a -> Expr G t
(<$>) = App

pure : Expr G a -> Expr G a
pure = id

Note that there is no need for these to be part of an instance of Applicative,
since idiom bracket notation translates directly to the names <$> and pure,
and ad-hoc type-directed overloading is allowed. We can now say:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1)
(Op (*) [| fact (Op (-) x (Val 1)) |] x))

With some more ad-hoc overloading and type class instances, and a new syntax
rule, we can even go as far as:

syntax IF [x] THEN [t] ELSE [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0

THEN 1
ELSE [| fact (x - 1) |] * x)
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8.3 Auto Implicit Arguments

We have already seen implicit arguments, which allows arguments to be omitted
when they can be inferred by the type checker, e.g.

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

In other situations, it may be possible to infer arguments not by type checking
but by searching the context for an appropriate value, or constructing a proof.
For example, the following definition of head which requires a proof that the
list is non-empty:

isCons : List a -> Bool
isCons [] = False
isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = x

If the list is statically known to be non-empty, either because its value is known
or because a proof already exists in the context, the proof can be constructed
automatically. Auto implicit arguments allow this to happen silently. We define
head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: xs) = x

The auto annotation on the implicit argument means that Idris will attempt to
fill in the implicit argument using the trivial tactic, which searches through
the context for a proof, and tries to solve with refl if a proof is not found. Now
when head is applied, the proof can be omitted. In the case that a proof is not
found, it can be provided explicitly as normal:

head xs {p = ?headProof}

More generally, we can fill in implicit arguments with a default value by anno-
tating them with default. The definition above is equivalent to:

head : (xs : List a) ->
{default proof { trivial; }

p : isCons xs = True} -> a
head (x :: xs) = x

8.4 Implicit Conversions

Idris supports the creation of implicit conversions, which allow automatic con-
version of values from one type to another when required to make a term type
correct. This is intended to increase convenience and reduce verbosity. A con-
trived but simple example is the following:
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implicit intString : Int -> String
intString = show

test : Int -> String
test x = "Number " ++ x

In general, we cannot append an Int to a String, but the implicit conversion
function intString can convert x to a String, so the definition of test is
type correct. An implicit conversion is implemented just like any other function,
but given the implicit modifier, and restricted to one explicit argument.

Only one implicit conversion will be applied at a time. That is, implicit
conversions cannot be chained. Implicit conversions of simple types, as above,
are however discouraged! More commonly, an implicit conversion would be used
to reduce verbosity in an embedded domain specific language, or to hide details
of a proof. We will see an example of this in the next section.

Exercises

1. Add a let binding construct to the Expr language from Sect. 6, and extend
the interp function and dsl notation to handle it.

2. Define the following function, which updates the value in a variable:

update : HasType i G t -> Env G -> interpTy t -> Env G

3. Using update and let, you can extend Expr with imperative features. Add
the following constructs:
(a) Sequencing actions
(b) Input and output operations
(c) for loops

Note that you will need to change the type of interp so that it supports IO
and returns an updated environment:

interp : Env G -> Imp G t -> IO (interpTy t, Env G)

For each of these features, how could you use syntax macros, dsl notation,
or any other feature to improve the readability of programs in your language?

9 EDSL Example 2: A Resource Aware Interpreter

In a typical file management API, such as that in Haskell, we might find the
following typed operations:

open : String -> Purpose -> IO File
read : File -> IO String
close : File -> IO ()

Unfortunately, it is easy to construct programs which are well-typed, but never-
theless fail at run-time, for example, if we read from a file opened for writing:
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fprog filename = do h <- open filename Writing
content <- read h
close h

If we make the types more precise, parameterising open files by purpose, fprog
is no longer well-typed, and will therefore be rejected at compile-time.

data Purpose = Reading | Writing

open : String -> (p:Purpose) -> IO (File p)
read : File Reading -> IO String
close : File p -> IO ()

However, there is still a problem. The following program is well-typed, but fails
at run-time — although the file has been closed, the handle h is still in scope:

fprog filename = do h <- open filename Reading
content <- read h
close h
read h

Furthermore, we did not check whether the handle h was created successfully.
Resource management problems such as this are common in systems program-
ming — we need to deal with files, memory, network handles, etc., ensuring that
operations are executed only when valid and errors are handled appropriately.

9.1 Resource Correctness as an EDSL

To tackle this problem, we can implement an EDSL which tracks the state of
resources at any point during program execution in its type, and ensures that
any resource protocol is correctly executed. We begin by categorising resource
operations into creation, update and usage operations, by lifting them from
IO. We illustrate this using Creator; Updater and Reader can be defined
similarly.

data Creator a = MkCreator (IO a)

ioc : IO a -> Creator a
ioc = MkCreator

The MkCreator constructor is left abstract, so that a programmer can lift an
operation into Creator using ioc, but cannot run it directly. IO operations
can be converted into resource operations, tagging them appropriately:

open : String -> (p:Purpose)
-> Creator (Either () (File p))

close : File p -> Updater ()
read : File Reading -> Reader String

Here: open creates a resource, which may be either an error (represented by ()) or
a file handle that has been opened for the appropriate purpose; close updates a
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Listing 6. Resource constructs

data Res : Vect n Ty -> Vect n Ty -> Ty -> Type where

Let : Creator (interpTy a) ->
Res (a :: G) (Val () :: G’) (R t) ->
Res G G’ (R t)

Update : (a -> Updater b) ->
(p : HasType i G (Val a)) ->
Res G (update G p (Val b)) (R ())

Use : (a -> Reader b) -> HasType i G (Val a) ->
Res G G (R b)

...

Listing 7. Control constructs

data Res : Vect Ty n -> Vect Ty n -> Ty -> Type where
...
Lift : IO a -> Res G G (R a)
Check : (p:HasType i G

(Choice (interpTy a) (interpTy b))) ->
Res (update G p a) (update G p c) t ->
Res (update G p b) (update G p c) t ->
Res G (update G p c) t

While : Res G G (R Bool) ->
Res G G (R ()) -> Res G G (R ())

Return : a -> Res G G (R a)
(>>=) : Res G G’ (R a) ->

(a -> Res G’ G’’ (R t)) ->
Res G G’’ (R t)

resource from a File p to a () (i.e., it makes the resource unavailable); and read
accesses a resource (i.e., it reads from it, and the resource remains available). They
are implemented using the relevant (unsafe) IO functions from the Idris library.
Resource operations are executed via a resource management EDSL, Res, with
resource constructs (Listing 6), and control constructs (Listing 7).

As we did with Expr in Sect. 6, we index Res over the variables in scope
(which represent resources), and the type of the expression. This means that
firstly we can refer to resources by de Bruijn indices, and secondly we can express
precisely how operations may be combined. Unlike Expr, however, we allow
types of variables to be updated. Therefore, we index over the input set of
resource states, and the output set:

data Res : Vect Ty n -> Vect Ty n -> Ty -> Type
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We can read Res G G’ T as, “an expression of type T, with input resource
states G and output resource states G’”. Expression types can be resources,
values, or a choice type:

data Ty = R Type | Val Type | Choice Type Type

The distinction between resource types, R a, and value types, Val a, is that
resource types arise from IO operations. A choice type corresponds to Either —
we use Either rather than Maybe as this leaves open the possibility of returning
informative error codes:

interpTy : Ty -> Type
interpTy (R t) = IO t
interpTy (Val t) = t
interpTy (Choice x y) = Either x y

As with the interpreter in Sect. 6, we represent variables by proofs of context
membership:

data HasType : Fin n -> Vect n Ty -> Ty -> Type where
stop : HasType fZ (t :: G) t
pop : HasType k G t -> HasType (fS k) (u :: G) t

As well as a lookup function for retrieving values in an environment corre-
sponding to a context, we also implement an update function:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType G i a -> Env G -> interpTy a
lookup stop (x :: xs) = x
lookup (pop k) (x :: xs) = lookup k xs

update : (G : Vect n Ty) ->
HasType G i b -> Ty -> Vect n Ty

update (x :: xs) stop y = y :: xs
update (x :: xs) (pop k) y = x :: update xs k y

The type of the Let construct explicitly shows that, in the scope of the Let
expression, a new resource of type a is added to the set, having been made by
a Creator operation. Furthermore, by the end of the scope, this resource must
have been consumed (i.e. its type must have been updated to Val ()):

Let : Creator (interpTy a) ->
Res (a :: G) (Val () :: G’) (R t) ->
Res G G’ (R t)

The Update construct applies an Updater operation, changing the type of a
resource in the context. Here, using HasType to represent resource variables
allows us to write the required type of the update operation simply as a ->
Updater b, and put the operation first, rather than the variable.
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Update : (a -> Updater b) ->
(p : HasType G i (Val a)) ->
Res G (update G p (Val b)) (R ())

The Use construct simply executes an operation without updating the context,
provided that the operation is well-typed:

Use : (a -> Reader b) -> HasType G i (Val a) ->
Res G G (R b)

Finally, we provide a small set of control structures: Check, a branching con-
struct that guarantees that resources are correctly defined in each branch; While,
a loop construct that guarantees that there are no state changes during the loop;
Lift, a lifting operator for IO functions, Return to inject pure values into a
Res program, and (>>=) to support do-notation using ad-hoc name overload-
ing. Note that we cannot make Res an instance of the Monad type class to sup-
port do-notation, since the type of >>= here captures updates in the resource
set.

We use dsl-notation to overload the Idris syntax, in particular providing a
let-binding to bind a resource and give it a human-readable name:

dsl res
variable = id
let = Let
index_first = stop
index_next = pop

To further reduce notational overhead, we can make Lifting an IO operation
implicit, using an implicit conversion as described in Sect. 8.4:

implicit ioLift : IO a -> Res G G a
ioLift = Lift

The interpreter for Res is written in continuation-passing style, where each
operation passes on a result and an updated environment (containing resources):

interp : Env G -> Res G G’ t ->
(Env G’ -> interpTy t -> IO u) -> IO u

syntax RES [x] = {G:Vect n Ty} -> Res G G (R x)
syntax run [prog] = interp [] prog (\env, res => res)

The syntax rules provides convenient notations for declaring the type of a
resource aware program, and for running a program in any context. For reference,
the full interpreter is presented in Listing 8.

Listing 8. Resource EDSL Interpreter

interp : Env G -> Res G G’ t ->
(Env G’ -> interpTy t -> IO u) -> IO u

interp env (Let val scope) k =
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do x <- getCreator val
interp (x :: env) scope

(\env’, scope’ => k (envTail env’) scope’)
interp env (Update method x) k =

do x’ <- getUpdater (method (envLookup x env))
k (envUpdateVal x x’ env) (return ())

interp env (Use method x) k =
do x’ <- getReader (method (envLookup x env))

k env (return x’)
interp env (Lift io) k =

k env io
interp env (Check x left right) k =

either (envLookup x env)
(\a => interp (envUpdate x a env) left k)
(\b => interp (envUpdate x b env) right k)

interp env (While test body) k
= interp env test (\env’, result =>

do r <- result
if (not r)

then (k env’ (return ()))
else (interp env’ body (\env’’, body’ =>

do v <- body’
interp env’’ (While test body) k )))

interp env (Return v) k = k env (return v)
interp env (v >>= f) k
= interp env v (\env’, v’ => do n <- v’

interp env’ (f n) k)

9.2 Example: File Management

We can use Res to implement a safe file-management protocol, where each file
must be opened before use, opening a file must be checked, and files must be
closed on exit. We define the following operations for opening, closing, reading
a line7, and testing for the end of file.

open : String -> (p:Purpose)
-> Creator (Either () (File p))

close : File p -> Updater ()
read : File Reading -> Reader String
eof : File Reading -> Reader Bool

Since these operations are now managed by the Res EDSL rather than directly
as IO operations, we should ensure that the programmer cannot use the original
IO operations. Names can be hidden using the %hide directive as follows:
7 Reading a line may fail, but for the purposes of this example, we consider this

harmless and return an empty string.
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%hide openFile
%hide closeFile
...

Returning to our simple example from the beginning of this Section, we now
write the file-reading program as follows:

fprog : String -> RES String
fprog filename =

res do let h = open filename Reading
Check h

putStrLn "File error"
do content <- Use read h

Update close h

This is well-typed because the file is opened for reading, and by the end of the
scope, the file has been closed. Syntax overloading allows us to name the resource
h rather than using a de Bruijn index or context membership proof.

10 An EDSL for Managing Side Effects

The resource aware EDSL presented in the previous section handles an instance
of a more general problem, namely how to deal with side-effects and state in a
pure functional language.

In this section, I describe how to implement effectful programs in Idris using
an EDSL Effects for capturing algebraic effects [1], in such a way that they
are easily composable, and translatable to a variety of underlying contexts using
effect handlers. I will give a collection of example effects (State, Exceptions, File
and Console I/O, random number generation and non-determinism) and their
handlers, and some example programs which combine effects.

The Effects EDSL makes essential use of dependent types, firstly to verify
that a specific effect is available to an effectful program using simple automated
theorem proving, and secondly to track the state of a resource by updating its
type during program execution. In this way, we can use the Effects DSL to
verify implementations of resource usage protocols.

The framework consists of a DSL representation Eff for combining mutable
effects and implementations of several predefined effects. We refer to the whole
framework with the name Effects. Here, we describe how to use Effects;
implementation details are described elsewhere [4].

The Effects library is included as part of the main Idris distribution, but
is not imported by default. In order to use it, you must invoke Idris with the
-p effects flag, and use the following in your programs:

import Effects
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10.1 Programming with Effects

An effectful program f has a type of the following form:

f : (x1 : a1) -> (x2 : a2) -> ... ->
{ eff ==> {result} effs’ } Eff t

That is, the return type gives the effects that f supports (effs, of type List
EFFECT), the effects available after running f (effs’) which may be calculated
using the result of the operation result of type t.

A function which does not update its available effects has a type of the
following form:

f : (x1 : a1) -> (x2 : a2) -> ... -> { eff } Eff t

In fact, the notation { eff } is itself syntactic sugar, in order to make Eff
types more readable. In full, the type of Eff is:

Eff : (x : Type) ->
List EFFECT -> (x -> List EFFECT) -> Type

That is, it is indexed over the type of the computation, the list of input effects
and a function which computes the output effects from the result. With syntax
overloading, we can create syntactic sugar which allows us to write Eff types
as described above:

syntax "{" [inst] "}" [eff] = eff inst (\result => inst)
syntax "{" [inst] "==>" "{" {b} "}" [outst] "}" [eff]

= eff inst (\b => outst)
syntax "{" [inst] "==>" [outst] "}" [eff]

= eff inst (\result => outst)

Side effects are described using the EFFECT type; we will refer to these as
concrete effects. For example:

STATE : Type -> EFFECT
EXCEPTION : Type -> EFFECT
FILE_IO : Type -> EFFECT
STDIO : EFFECT
RND : EFFECT

States are parameterised by the type of the state being carried, and exceptions
are parameterised by a type representing errors. File I/O allows a single file to
be processed, with the type giving the current state of the file (i.e. closed, open
for reading, or open for writing). Finally, STDIO and RND permit console I/O
and random number generation respectively. For example, a program with some
integer state, which performs console I/O and which could throw an exception
carrying some error type Err would have the following type:

example : { [EXCEPTION Err, STDIO, STATE Int] } Eff ()
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First Example: State. In general, an effectful program implemented in the
Eff structure has the look and feel of a monadic program written with do-
notation. To illustrate basic usage, let us implement a stateful function, which
tags each node in a binary tree with a unique integer, depth first, left to right.
We declare trees as follows:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

To tag each node in the tree, we write an effectful program which, for each
node, tags the left subtree, reads and updates the state, tags the right subtree,
then returns a new node with its value tagged. The type expresses that the
program requires an integer state:

tag : Tree a -> { [STATE Int] } Eff (Tree (Int, a))

The implementation traverses the tree, using get and put to manipulate state:

tag Leaf = return Leaf
tag (Node l x r)

= do l’ <- tag l
lbl <- get; put (lbl + 1)
r’ <- tag r
return (Node l’ (lbl, x) r’)

The Effects system ensures, statically, that any effectful functions which
are called (get and put here) require no more effects than are available. The
types of these functions are:

get : { [STATE x] } Eff x
put : x -> { [STATE x] } Eff ()

A program in Eff can call any other function in Eff provided that the calling
function supports at least the effects required by the called function. In this case,
it is valid for tag to call both get and put because all three functions support
the STATE Int effect.

To run a program in Eff, it is evaluated in an appropriate computation
context, using the run or runPure function. The computation context explains
how each effectful operation, such as get and put here, are to be executed in
that context. Using runPure, which runs an effectful program in the identity
context, we can write a runTag function as follows, using put to initialise the
state:

runTag : (i : Int) -> Tree a -> Tree (Int, a)
runTag i x = runPure (do put i

tag x)

Effects and Resources. Each effect is associate with a resource, which is
initialised before an effectful program can be run. For example, in the case of
STATE Int the corresponding resource is the integer state itself. The types of
runPure and run show this (slightly simplified here for illustrative purposes):
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runPure : {env : Env id xs} -> { xs } Eff a -> a
run : Applicative m =>

{env : Env m xs} -> { xs } Eff a -> m a

The env argument is implicit, and initialised automatically where possible using
default values given by instances of the following type class:

class Default a where
default : a

Instances of Default are defined for all primitive types, and many library types
such as List, Vect, Maybe, pairs, etc. However, where no default value exists
for a resource type (for example, you may want a STATE type for which there
is no Default instance) the resource environment can be given explicitly using
one of the following functions:

runPureInit : Env id xs -> { xs } Eff a -> a
runInit : Applicative m =>

Env m xs -> { xs } Eff a -> a

To be well-typed, the environment must contain resources corresponding exactly
to the effects in xs. For example, we could also have implemented runTag by
initialising the state as follows:

runTag : (i : Int) -> Tree a -> Tree (Int, a)
runTag i x = runPureInit [i] (tag x)

As we will see, the particular choice of computation context can be important.
Programs with exceptions, for example, can be run in the context of IO, Maybe
or Either.

Labelled Effects. What if we have more than one state, especially more than
one state of the same type? How would get and put know which state they should
be referring to? For example, how could we extend the tree tagging example such
that it additionally counts the number of leaves in the tree? One possibility would
be to change the state so that it captured both of these values, e.g.:

tag : Tree a ->
{ [STATE (Int, Int)] } Eff (Tree (Int, a))

Doing this, however, ties the two states together throughout (as well as not
indicating which integer is which). It would be nice to be able to call effectful
programs which guaranteed only to access one of the states, for example. In a
larger application, this becomes particularly important.

The Effects library therefore allows effects in general to be labelled so that
they can be referred to explicitly by a particular name. This allows multiple
effects of the same type to be included. We can count leaves and update the tag
separately, by labelling them as follows:

tag : Tree a -> { [’Tag ::: STATE Int,
’Leaves ::: STATE Int] }

Eff (Tree (Int, a))
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The ::: operator allows an arbitrary label to be given to an effect. This label
can be any type—it is simply used to identify an effect uniquely. Here, we have
used a symbol type. In general ’name introduces a new symbol, the only purpose
of which is to disambiguate values8.

When an effect is labelled, its operations are also labelled using the :- oper-
ator. In this way, we can say explicitly which state we mean when using get
and put. The tree tagging program which also counts leaves can be written as
follows:

tag Leaf = do ’Leaves :- update (+1)
pure Leaf

tag (Node l x r)
= do l’ <- tag l

i <- ’Tag :- get
’Tag :- put (i + 1)
r’ <- tag r
pure (Node l’ (i, x) r’)

The update function here is a combination of get and put, applying a function
to the current state.

update : (x -> x) -> { [STATE x] } Eff ()

Finally, our top level runTag function now returns a pair of the number of
leaves, and the new tree. Resources for labelled effects are intialised using the
:= operator (reminiscent of assignment in an imperative language):

runTag : (i : Int) -> Tree a -> (Int, Tree (Int, a))
runTag i x = runPureInit [’Tag := i, ’Leaves := 0]

(do x’ <- treeTagAux x
leaves <- ’Leaves :- get
pure (leaves, x’))

To summarise, we have:

– ::: to convert an effect to a labelled effect.
– :- to convert an effectful operation to a labelled effectful operation.
– := to initialise a resource for a labelled effect.

Or, more formally with their types (slightly simplified to account only for the
situation where available effects are not updated):

(:::) : lbl -> EFFECT -> EFFECT
(:-) : (l : lbl) ->

{ [x] } Eff a -> { [l ::: x] } Eff a
(:=) : (l : lbl) -> res -> LRes l res

8 In practice, ’name simply introduces a new empty type.
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Here, LRes is simply the resource type associated with a labelled effect. Note
that labels are polymorphic in the label type lbl. Hence, a label can be anything—
a string, an integer, a type, etc.

! -Notation. In many cases, using do-notation can make programs unneces-
sarily verbose, particularly in cases where the value bound is used once, imme-
diately. The following program returns the length of the String stored in the
state, for example:

stateLength : { [STATE String] } Eff Nat
stateLength = do x <- get

pure (length x)

This seems unnecessarily verbose, and it would be nice to program in a more
direct style in these cases. Idris provides !-notation to help with this. The above
program can be written instead as:

stateLength : { [STATE String] } Eff Nat
stateLength = pure (length !get)

The notation !expr means that the expression expr should be evaluated and
then implicitly bound. Conceptually, we can think of ! as being a prefix function
with the following type:

(!) : { xs } Eff a -> a

Note, however, that it is not really a function, merely syntax! In practice, a
subexpression !expr will lift expr as high as possible within its current scope,
bind it to a fresh name x, and replace !expr with x. Expressions are lifted depth
first, left to right. In practice, !-notation allows us to program in a more direct
style, while still giving a notational clue as to which expressions are effectful.

For example, the expression. . .

let y = 42 in f !(g !(print y) !x)

. . . is lifted to:

let y = 42 in do y’ <- print y
x’ <- x
g’ <- g y’ x’
f g’

10.2 An Effectful Evaluator

Consider an evaluator for a simple expression language, supporting variables,
integers, addition and random number generation, declared as follows:

data Expr = Var String | Val Integer
| Add Expr Expr | Random Integer
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In order to implement an evaluator for this language, we will need to carry
a state, holding mappings from variables to values, and support exceptions (to
handle variable lookup failure) and random numbers. The environment is simply
a mapping from Strings representing variable names to Integers:

Vars : Type
Vars = List (String, Int)

The evaluator invokes supported effects where needed. We use the following
effectful functions:

get : { [STATE x] } Eff x
raise : a -> { [EXCEPTION a] } Eff b
rndInt : Int -> Int -> { [RND] } Eff Int

The evaluator itself (Listing 9) is written as an instance of Eff, invoking the
required effectful functions with the Effects framework checking that they are
available.

Listing 9. Effectful evaluator

eval : Expr -> { [EXCEPTION String, RND, STATE Vars] } Eff t
eval (Val x) = return x
eval (Var x) = do vs <- get

case lookup x vs of
Nothing => raise ("Error " ++ x)
Just val => return val

eval (Add l r) = [| eval l + eval r |]
eval (Random upper) = rndInt 0 upper

In order to run the evaluator, we must provide initial values for the resources
associated with each effect. Exceptions require the unit resource, random number
generation requires an initial seed, and the state requires an initial environment.
We use Maybe as the computation context to be able to handle exceptions:

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env expr = runInit [(), 123456, env] (eval expr)

Extending the evaluator with a new effect, such as STDIO is a matter of extend-
ing the list of available effects in its type. We could use this, for example, to
print out the generated random numbers:

eval : Expr ->
{ [EXCEPTION String, STDIO,

RND, STATE Vars] } Eff t
...
eval (Random upper) = do num <- rndInt 0 upper

putStrLn (show num)
return num

We can insert the STDIO effect anywhere in the list without difficulty. The
only requirements are that its initial resource is in the corresponding position in
the call to runInit, and that runInit instantiates a context which supports
STDIO, such as IO:
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runEval : List (String, Int) -> Expr -> IO Int
runEval env expr

= runInit [(), (), 123456, env] (eval expr)

10.3 Implementing Effects

In order to implement a new effect, we define a new type (of kind Effect)
and explain how that effect is interpreted in some underlying context m. An
Effect describes an effectful computation, parameterised by the type of the
computation t, an input resource res, and an output resource res’ computed
from the result of the operation.

Effect : Type
Effect = (t : Type) ->

(res : Type) -> (res’ : t -> Type) ->
Type

We describe effects as algebraic data types. To run an effect, we require an
interpretation in a computation context m. To achieve this, we make effects
and contexts instances of a type class, Handler, which has a method handle
explaining this interpretation:

class Handler (e : Effect) (m : Type -> Type) where
handle : (r : res) -> (eff : e t res resk) ->

(k : ((x : t) -> resk x -> m a)) -> m a

Handlers are parameterised by the effect they handle, and the context in which
they handle the effect. This allows several different context-dependent handlers
to be written, e.g. exceptions could be handled differently in an IO setting than
in a Maybe setting. When effects are combined, as in the evaluator example, all
effects must be handled in the context in which the program is run.

An effect e t res res’ updates a resource type res to a resource type
res’, returning a value t. The handler, therefore, implements this update in
a context m which may support side effects. The handler is written in continu-
ation passing style. This is for two reasons: firstly, it returns two values, a new
resource and the result of the computation, which is more cleanly managed in a
continuation than by returning a tuple; secondly, and more importantly, it gives
the handler the flexibility to invoke the continuation any number of times (zero
or more).

An Effect, which is the internal algebraic description of an effect, is pro-
moted into a concrete EFFECT, which is expected by the Eff structure, with
the MkEff constructor:

data EFFECT : Type where
MkEff : Type -> Effect -> EFFECT

MkEff additionally records the resource state of an effect. In the remainder of this
section, we describe how several effects can be implemented in this way: mutable
state; console I/O; exceptions; files; random numbers, and non-determinism.
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State. In general, effects are described algebraically in terms of the operations
they support. In the case of State, the supported effects are reading the state
(Get) and writing the state (Put).

data State : Effect where
Get : { a } State a
Put : b -> { a ==> b } State ()

The resource associated with a state corresponds to the state itself. So, the Get
operation leaves this state intact (with a resource type a on entry and exit) but
the Put operation may update this state (with a resource type a on entry and
b on exit). That is, a Put may update the type of the stored value. Note that
we are using the same syntactic sugar for updating the resource type as we used
earlier for giving lists of effects. In full, State would be written as:

data State : Effect where
Get : State a a (\x => a)
Put : b -> State () a (\x => b)

We can implement a handler for this effect, for all contexts m, as follows:

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k = k n ()

When running Get, the handler passes the current state to the continuation as
both the return value (the second argument of the continuation k) and the new
resource value (the first argument of the continuation). When running Put, the
new state is passed to the continuation as the new resource value.

We then convert the algebraic effect State to a concrete effect usable in an
Effects program using the STATE function, to which we provide the initial
state type as follows:

STATE : Type -> EFFECT
STATE t = MkEff t State

As a convention, algebraic effects, of type Effect, have an initial upper case
letter. Concrete effects, of type EFFECT, are correspondingly in all upper case.

Algebraic effects are promoted to Effects programs with concrete effects
by using a coercion with an implicit, automatically constructed, proof argument:

call : {e : Effect} ->
(eff : e t a b) -> {auto prf : EffElem e a xs} ->
Eff t xs (\v => updateResTy v xs prf eff)

How this function works and how the proof is calculated are beyond the scope of
this tutorial. However, its purpose is to allow a programmer to use an algebraic
effect in an Effects program without any explicit syntax. We can therefore
define get and put as follows:

get : { [STATE x] } Eff x
get = call Get
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put : x -> { [STATE x] } Eff ()
put val = call (Put val)

We may also find it useful to mutate the type of a state, considering that states
may themselves have dependent types (we may, for example, add an element to
a vector in a state). The Put constructor supports this, so we can implement
putM to update the state’s type:

putM : y -> { [STATE x] ==> [STATE y] } Eff ()
putM val = call (Put val)

Finally, it may be useful to combine get and put in a single update:

update : (x -> x) -> { [STATE x] } Eff ()
update f = do val <- get; put (f val)

updateM : (x -> y) -> { [STATE x] ==> [STATE y] } Eff ()
updateM f = do val <- get; putM (f val)

Console I/O. Consider a simplified version of console I/O which supports
reading and writing strings. There is no associated resource, although in an
alternative implementation we may associate it with an abstract world state, or
a pair of handles for stdin/stdout. Algebraically we describe console I/O as
follows:

data StdIO : Effect where
PutStr : String -> { () } StdIO ()
GetStr : { () } StdIO String
PutCh : Char -> { () } StdIO ()
GetCh : { () } StdIO Char

STDIO : EFFECT
STDIO = MkEff () StdIO

The obvious way to handle StdIO is via the IO monad:

instance Handler StdIO IO where
handle () (PutStr s) k = do putStr s; k () ()
handle () GetStr k = do x <- getLine; k x ()
handle () (PutCh c) k = do putChar c; k () ()
handle () GetCh k = do x <- getChar; k x ()

Unlike the State effect, for which the handler worked in all contexts, this han-
dler only applies to effectful programs run in an IO context. We can implement
alternative handlers, and indeed there is no reason that effectful programs in
StdIO must be evaluated in a monadic context. For example, we can define I/O
stream functions:

data IOStream a
= MkStream (List String -> (a, List String))
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instance Handler StdIO IOStream where
...

A handler for StdIO in IOStream context generates a function from a list of
strings (the input text) to a value and the output text. We can build a pure
function which simulates real console I/O:

mkStrFn : Env IOStream xs -> Eff IOStream xs a ->
List String -> (a, List String)

mkStrFn {a} env p input = case mkStrFn’ of
MkStream f => f input

where injStream : a -> IOStream a
injStream v = MkStream (\x => (v, []))
mkStrFn’ : IOStream a
mkStrFn’ = runWith injStream env p

This requires an alternative means of running effectful programs, runWith,
which takes an additional argument explaining how to inject the result of a
computation into the appropriate computation context:

runWith : (a -> m a) ->
Env m xs -> Eff a xs xs’ -> m a

To illustrate this, we write a simple console I/O program:

name : { [STDIO] } Eff ()
name = do putStr "Name? "

n <- getStr
putStrLn ("Hello " ++ show n)

Using mkStrFn, we can run this as a pure function which uses a list of strings
as its input, and gives a list of strings as its output. We can evaluate this at the
Idris prompt:

*name> show $ mkStrFn [()] name ["Edwin"]
((), ["Name?" , "Hello Edwin\n"])

This suggests that alternative, pure, handlers for console I/O, or any I/O effect,
can be used for unit testing and reasoning about I/O programs without executing
any real I/O.

Exceptions. The exception effect supports only one operation, Raise. Excep-
tions are parameterised over an error type e, so Raise takes a single argument
to represent the error. The associated resource is of unit type, and since raising
an exception causes computation to abort, raising an exception can return a
value of any type.
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data Exception : Type -> Effect where
Raise : a -> { () } Exception a b

EXCEPTION : Type -> EFFECT
EXCEPTION e = MkEff () (Exception e)

The semantics of Raise is to abort computation, therefore handlers of exception
effects do not call the continuation k. In any case, this should be impossible since
passing the result to the continuation would require the ability to invent a value
in any arbitrary type b! The simplest handler runs in a Maybe context:

instance Handler (Exception a) Maybe where
handle _ (Raise e) k = Nothing

Exceptions can be handled in any context which supports some representation
of failed computations. In an Either e context, for example, we can use Left
to represent the error case:

instance Handler (Exception e) (Either e) where
handle _ (Raise e) k = Left err

Random Numbers. Random number generation can be implemented as an
effect, with the resource tracking the seed from which the next number will
be generated. The Random effect supports one operation, getRandom, which
requires an Int resource and returns the next number:

data Random : Type -> Type -> Type -> Type where
GetRandom : { Int } Random Int
SetSeed : Int -> { Int } Random ()

RND : EFFECT
RND = MkEff Integer Random

Handling random number generation shows that it is a state effect in disguise,
where the effect updates the seed. This is a simple linear congruential pseudo-
random number generator:

instance Handler Random m where
handle seed GetRandom k

= let seed’ = 1664525 * seed + 1013904223 in
k seed’ seed’

handle seed (SetSeed n) k = k () n

Alternative handlers could use a different, possibly more secure approach. In any
case, we can implement a function which returns a random number between a
lower and upper bound as follows:

rndInt : Int -> Int -> Eff [RND] Int
rndInt lower upper

= do v <- GetRandom
return (v ‘mod‘ (upper - lower) + lower)



The Idris Programming Language 179

Non-determinism. Non-determinism can be implemented as an effect
Selection, in which a Select operation chooses one value non-
deterministically from a list of possible values:

data Selection : Effect where
Select : List a -> { () } Selection a

We can handle this effect in a Maybe context, trying every choice in a list given
to Select until the computation succeeds:

instance Handler Selection Maybe where
handle _ (Select xs) k = tryAll xs where

tryAll [] = Nothing
tryAll (x :: xs) = case k x () of

Nothing => tryAll xs
Just v => Just v

The handler for Maybe produces at most one result, effectively performing a
depth first search of the values passed to Select. The handler runs the contin-
uation for every element of the list until the result of running the continuation
succeeds.

Alternatively, we can find every possible result by handling selection in a
List context:

instance Handler Selection List where
handle r (Select xs) k = concatMap (\x => k x r) xs

We can use the Selection effect to implement search problems by non-
deterministically choosing from a list of candidate solutions. For example, a
solution to the n-queens problem can be implemented as follows. First, we write
a function which checks whether a point on a chess board attacks another if
occupied by a queen:

no_attack : (Int, Int) -> (Int, Int) -> Bool
no_attack (x, y) (x’, y’)

= x /= x’ && y /= y’ && abs (x - x’) /= abs (y - y’)

Then, given a column and a list of queen positions, we find the rows on which a
queen may safely be placed in that column:

rowsIn : Int -> List (Int, Int) -> List Int
rowsIn col qs

= [ x | x <- [1..8], all (no_attack (x, col)) qs ]

Finally, we compute a solution by accumulating a set of queen positions, column
by column, non-deterministically choosing a position for a queen in each column.

addQueens : Int -> List (Int, Int) ->
{ [SELECT] } Eff (List (Int, Int))

addQueens 0 qs = return qs
addQueens col qs

= do row <- select (rowsIn col qs)
addQueens (col - 1) ((row, col) :: qs)



180 E. Brady

We can run this in Maybe context, to retrieve one solution, or in List context,
to retrieve all solutions. In a Maybe context, for example, we can define:

getQueens : Maybe (List (Int, Int))
getQueens = run [()] (addQueens 8 [])

Then to find the first solution, we run getQueens at the REPL:

*Queens> show getQueens
"Just [(4, 1), (2, 2), (7, 3), (3, 4),

(6, 5), (8, 6), (5, 7), (1, 8)]" : String

10.4 Dependent Effects

In the programs we have seen so far, the available effects have remained constant.
Sometimes, however, an operation can change the available effects. The simplest
example occurs when we have a state with a dependent type—adding an element
to a vector also changes its type, for example, since its length is explicit in the
type. In this section, we will see how Effects supports this. Firstly, we will see
how states with dependent types can be implemented. Secondly, we will see how
the effects can depend on the result of an effectful operation. Finally, we will see
how this can be used to implement a type-safe and resource-safe protocol for file
management.

Dependent States. Suppose we have a function which reads input from the
console, converts it to an integer, and adds it to a list which is stored in a STATE.
It might look something like the following:

readInt : { [STATE (List Int), STDIO] } Eff ()
readInt = do let x = trim !getStr

put (cast x :: !get)

But what if, instead of a list of integers, we would like to store a Vect, main-
taining the length in the type?

readInt : { [STATE (Vect n Int), STDIO] } Eff ()
readInt = do let x = trim !getStr

put (cast x :: !get)

This will not type check! Although the vector has length n on entry to readInt,
it has length S n on exit. The Effects DSL allows us to express this as follows:

readInt : { [STATE (Vect n Int), STDIO] ==>
[STATE (Vect (S n) Int), STDIO] } Eff ()

readInt = do let x = trim !getStr
putM (cast x :: !get)

The notation { xs ==> xs’ } Eff a in a type means that the operation
begins with effects xs available, and ends with effects xs’ available. Since the
type is updated, we have used putM to update the state.
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Result-Dependent Effects. Often, whether a state is updated could depend
on the success or otherwise of an operation. In the readInt example, we might
wish to update the vector only if the input is a valid integer (i.e. all digits). As
a first attempt, we could try the following, returning a Bool which indicates
success:

readInt : { [STATE (Vect n Int), STDIO] ==>
[STATE (Vect (S n) Int), STDIO] } Eff Bool

readInt = do let x = trim !getStr
case all isDigit (unpack x) of

False => pure False
True => do putM (cast x :: !get)

pure True

Unfortunately, this will not type check because the vector does not get extended
in both branches of the case!

MutState.idr:18:19:When elaborating right hand side
of Main.case block in readInt:
Unifying n and S n would lead to infinite value

Clearly, the size of the resulting vector depends on whether or not the value read
from the user was valid. We can express this in the type:

readInt : { [STATE (Vect n Int), STDIO] ==>
{ok} if ok

then [STATE (Vect (S n) Int), STDIO]
else [STATE (Vect n Int), STDIO] }

Eff Bool
readInt = do let x = trim !getStr

case all isDigit (unpack x) of
False => with_val False (pure ())
True => do putM (cast x :: !get)

with_val True (pure ())

The notation { xs ==> {res} xs’ } Eff a in a type means that the effects
available are updated from xs to xs’, and the resulting effects xs’ may depend
on the result of the operation res, of type a. Here, the resulting effects are
computed from the result ok—if True, the vector is extended, otherwise it
remains the same. We also use with val to return a result:

with_val : (val : a) ->
({ xs ==> xs’ val } Eff ()) ->
{ xs ==> xs’ } Eff a

We cannot use pure here, as before, since pure does not allow the returned
value to update the effects list. The purpose of with val is to update the effects
before returning. As a shorthand, we can write

pureM val

. . . instead of. . .
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with_val val (pure ())

. . . so our program is:

readInt : { [STATE (Vect n Int), STDIO] ==>
{ok} if ok

then [STATE (Vect (S n) Int), STDIO]
else [STATE (Vect n Int), STDIO] }

Eff Bool
readInt = do let x = trim !getStr

case all isDigit (unpack x) of
False => pureM False
True => do putM (cast x :: !get)

pureM True

When using the function, we will naturally have to check its return value in
order to know what the new set of effects is. For example, to read a set number
of values into a vector, we could write the following:

readN : (n : Nat) ->
{ [STATE (Vect m Int), STDIO] ==>
[STATE (Vect (n + m) Int), STDIO] } Eff IO ()

readN Z = pure ()
readN {m} (S k)

= case !readInt of
True => rewrite plusSuccRightSucc k m in

readN k
False => readN (S k)

The case analysis on the result of readInt means that we know in each
branch whether reading the integer succeeded, and therefore how many values
still need to be read into the vector. What this means in practice is that the
type system has verified that a necessary dynamic check (i.e. whether reading a
value succeeded) has indeed been done.
Aside: Only case will work here. We cannot use if/then/else because
the then and else branches must have the same type. The case construct,
however, abstracts over the value being inspected in the type of each branch.

FileManagement. A practical use for dependent effects is in specifying resource
usage protocols and verifying that they are executed correctly. For example, file
management follows a resource usage protocol with the following (informally
specified) requirements:

– It is necessary to open a file for reading before reading it
– Opening may fail, so the programmer should check whether opening was suc-

cessful
– A file which is open for reading must not be written to, and vice versa
– When finished, an open file handle should be closed
– When a file is closed, its handle should no longer be used
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These requirements can be expressed formally in Effects, by creating a
FILE IO effect parameterised over a file handle state, which is either empty,
open for reading, or open for writing. The FILE IO effect’s definition is given
in Listing 10. Note that this effect is mainly for illustrative purposes—typically
we would also like to support random access files and better reporting of error
conditions.

Listing 10. File I/O Effect

FILE_IO : Type -> EFFECT

data OpenFile : Mode -> Type

open : String -> (m : Mode) ->
{ [FILE_IO ()] ==>

{ok} [FILE_IO (if ok then OpenFile m else ())] }
Eff Bool

close : { [FILE_IO (OpenFile m)] ==> [FILE_IO ()] }
Eff ()

readLine : { [FILE_IO (OpenFile Read)] } Eff String
writeLine : { [FILE_IO (OpenFile Write)] } Eff ()
eof : { [FILE_IO (OpenFile Read)] } Eff Bool

instance Handler FileIO IO

In particular, consider the type of open:

open : String -> (m : Mode) ->
{ [FILE_IO ()] ==>
{ok} [FILE_IO (if ok then OpenFile m else ())] }

Eff Bool

This returns a Bool which indicates whether opening the file was successful.
The resulting state depends on whether the operation was successful; if so, we
have a file handle open for the stated purpose, and if not, we have no file handle.
By case analysis on the result, we continue the protocol accordingly.

Listing 11. Reading a File

readFile : { [FILE_IO (OpenFile Read)] } Eff (List String)
readFile = readAcc [] where

readAcc : List String -> { [FILE_IO (OpenFile Read)] }
Eff (List String)

readAcc acc = if (not !eof)
then readAcc (!readLine :: acc)
else pure (reverse acc)

Given a function readFile (Listing 11) which reads from an open file until
reaching the end, we can write a program which opens a file, reads it, then
displays the contents and closes it, as follows, correctly following the protocol:
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dumpFile : String -> { [FILE_IO (), STDIO] } Eff ()
dumpFile name = case !(open name Read) of

True => do putStrLn (show !readFile)
close

False => putStrLn ("Error!")

The type of dumpFile, with FILE IO () in its effect list, indicates that any
use of the file resource will follow the protocol correctly (i.e. it both begins and
ends with an empty resource). If we fail to follow the protocol correctly (perhaps
by forgetting to close the file, failing to check that open succeeded, or opening
the file for writing) then we will get a compile-time error. For example, changing
open name Read to open name Write yields a compile-time error of the
following form:

FileTest.idr:16:18:When elaborating right hand side
of Main.case block in testFile:
Can’t solve goal

SubList [(FILE_IO (OpenFile Read))]
[(FILE_IO (OpenFile Write)), STDIO]

In other words: when reading a file, we need a file which is open for reading, but
the effect list contains a FILE IO effect carrying a file open for writing.

Exercise

Consider the interpreter you implemented in the Sect. 8 exercises. How could
you use Effects to improve this? For example:

1. What should be the type of interp?
2. Can you separate the imperative parts from the evaluation? What are the

effects required by each?

11 Conclusion

In this tutorial, we have covered the fundamentals of dependently typed pro-
gramming in Idris, and particularly those features which support embedded
domain specific language implementation (EDSL). We have seen several exam-
ples of EDSLs in Idris:

– A well-typed interpreter for the simply typed λ-calculus, which shows how
to implement an EDSL where the type-correctness of programs in the object
language is verified by the host language’s type system.

– An interpreter for a resource-safe EDSL, capturing the state of resources
such as file handles at particular points during program execution, ensuring,
at compile time, that a program can only execute operations which are valid
at those points.

– An EDSL for managing side-effecting programs, which generalises the resource-
safe EDSL and allows several effects and resource to be managed simultane-
ously.
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11.1 Further Reading

Further information about Idris programming, and programming with depen-
dent types in general, can be obtained from various sources:

– The Idris web site (http://idris-lang.org/), which includes links to tutorials,
some lectures and the mailing list. In particular, the Idris tutorial [5] describes
the language in full, including many features not discussed here such as type
providers [9], the foreign function interface, and compiling via Javascript.

– The IRC channel # idris, on chat.freenode.net.
– Examining the prelude and exploring the samples in the distribution.
– Various papers (e.g. [2,3,7,8]), which describe implementation techniques and

programming idioms.

Acknowledgements. I am grateful to the Scottish Informatics and Computer Sci-
ence Alliance (SICSA) for funding this research. I would also like to thank the many
contributors to the Idris system and libraries, as well as the reviewers for their helpful
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Abstract. Task Oriented Programming (or shortly TOP) is a new pro-
gramming paradigm. It is used for developing applications where human
beings closely collaborate on the internet to accomplish a common goal.
The tasks that need to be done to achieve this goal are described on a
very high level of abstraction. This means that one does need to worry
about the technical realization to make the collaboration possible. The
technical realization is generated fully automatically from the abstract
description. TOP can therefore be seen as a model driven approach. The
tasks described form a model from which the technical realization is gen-
erated.

This paper describes the iTask system which supports TOP as an
Embedded Domain Specific Language (EDSL). The host language is the
pure and lazy functional language Clean.

Based on the high level description of the tasks to do, the iTask system
generates a web-service. This web-service offers a web interface to the
end-users for doing their work, it coordinates the tasks being described,
and it provides the end-users with up-to-date information about the sta-
tus of the tasks being performed by others.

Tasks are typed, every task processes a value of a particular type.
Tasks can be calculated dynamically. Tasks can be higher order: the
result of a task may be a newly generated task which can be passed
around and be assigned to some other worker later on. Tasks can be
anything. Also the management of tasks can be expressed as a task.
For example, commonly there will be many tasks assigned to someone.
A task, predefined in the library for convenience, offers the tasks to do to
the end-user much like an email application offers an interface to handle
emails. This enables the end-user to freely choose which tasks to work
on. However, one can define other ways for managing tasks.

A new aspect of the system is that tasks have become reactive: a task
does not deliver one value when the task is done, but, while the work
takes place, it constantly produces updated versions of the task value
reflecting the progress of the work taken place. This current task value
can be observed by others and may influence the things others can see
or do.

c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 187–245, 2015.
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1 The Task-Oriented Programming Paradigm

1.1 Introduction

These lecture notes are about Task-Oriented Programming (TOP). TOP is a
programming paradigm that has been developed to address the challenges soft-
ware developers face when creating interactive, distributed, multi-user applica-
tions. Interactive applications provide their users with an optimal experience and
usage of the application. Programming interactive components in an application
is challenging because it requires deep understanding of GUI toolkits. Addi-
tionally, the program structure (for instance widget-based event handling with
callback functions and state management) makes it hard to figure out what the
application is doing. Distributed applications spread their computational activ-
ities on arbitrarily many computing devices, such as desktop computers, note-
books, tablets, smart phones, each running one operating system or another.
The challenges that you face concern programming the operating systems of
each device, keeping track of the distributed computations in order to coordi-
nate these tasks correctly and effectively, and executing the required communi-
cation protocols. Multi-user applications serve users who work together in order
to achieve common goals. A simple example of a common goal could be to write,
or design something together. In this area the challenges concern keeping track
of users, aiding them with their work, and making sure that they do not get in
each other’s way. More challenging examples are modern health care institutes,
multi-national companies, command and control systems, where thousands of
people do a job in collaboration with many others, and ICT plays an important
role to connect the activities. We have written these lecture notes to show how
contemporary, state-of-art programming language concepts can be used to rise
to the challenge of creating applications in a structured way, using a carefully
balanced mixture of the novel concept of tasks with the proven concepts of types,
type systems, functional and type-indexed programming.

The Internet forms a natural habitat for the kind of applications that TOP
has been designed for (Fig. 1) because its architecture makes TOP applications
available on a wide range of equipment, such as desktop computers, notebooks,
smart phones, and tablets. In addition, it is very natural for a TOP application
to serve more than a single user. TOP applications can deploy web services, or
provide these themselves. Under the hood the application uses a clients-server
architecture. The client sides implement the front-end components of the applica-
tion, running in web browsers or as apps on smart phones and tablets. The server
side runs as a web service and basically implements the back-end coarse grain
coordination and synchronization of the front-end components. During the oper-
ations, it can use other web services, rely on sensor data, use remote procedure
calls, and synchronize data ‘in the cloud’ or back-end database systems.

Unless one can manage to separate the concerns in a well organized manner,
programming this kind of applications is a white-water canoeing experience in
which there is a myriad of rapids to be taken in the form of design issues, imple-
mentation details, operating system limitations, and environment requirements.
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Fig. 1. The Internet habitat of TOP applications

TOP steers the programmer away from these rapids and guides to placid waters.
It forces the programmer to think of the work that the intended processors
(humans and computers) of your applications are required to do, as well as the
structure of the information that is required to coordinate this work properly.
TOP offers a declarative style of programming in which what takes precedence
over how. A TOP program relates to work in a similar way as René Magritte’s
well known painting of a pipe relates to a real pipe (Fig. 2). In a TOP program
tasks are specifications of what work must be performed by the users and com-
puting machinery of an application. How the specification is executed is the con-
cern of the TOP language implementation, taking the rapids. For instance, the
task of obtaining information from users should require only a data model of the

Fig. 2. La Trahison des Images (The Treachery of Images), 1928–1929, by René
Magritte – “This is not a pipe”
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information; the TOP language implementation of this task handles the entire
user interface management. Similarly, the task of coordinating tasks should
require only the data model of the processed data; the TOP language imple-
mentation of this task handles all coordination and communication issues. Often
data models need to be transformed from one format to another. It should be
sufficient to specify the computation that is restricted on the proper domain and
range and trust that the TOP language implementation knows when to invoke
these computations on the proper data values without unexpected side-effects.

It should be clear that types play a pivotal role in TOP: they are used for
modeling information and specify the domains and ranges of computations; the
TOP language implementation uses them to generate and handle user interfaces
and coordinate work implementations.

The TOP language that we have developed and use in this paper is iTask .
Figure 3 gives a bird’s-eye view of the main components of the iTask language.
iTask is a combinator language. Combinator languages emphasize the use of
combinators to construct programs. A combinator is a named programming pat-
tern that in a very precise way states how a new piece of program is assembled
from smaller pieces of programs. iTask is also an example of an embedded lan-
guage. Embedded languages borrow key language aspects from an existing lan-
guage, the host language. In this way they receive the benefits of known language
constructs and, more importantly, do not have to re-invent the wheel. In the case
of iTask the host language is the purely functional programming language Clean.
Consequently, the combinators are expressed as functions, and the model types
can be expressed with the rich type language of Clean. iTask extends its host
language with a library that implements all type-indexed algorithms, web client
handling, server side handling, and much more.

Fig. 3. The iTask language is embedded in the functional language Clean

TOP applications developed in iTask appear as a web service to the rest of the
world and the iTask clients that connect with your application. Figure 4 shows
how iTask applications fit in the Internet habitat. An iTask application acts as a
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Fig. 4. iTask applications are Internet species

web service that can be used by other Internet applications. Users connect with
the application via a standard web browser on a personal computer, or an app
on a smart phone or tablet.

2 TOP Programming with iTasks

In this section we briefly explain how tasks and their signatures are denoted
(Sect. 2.1), and how to set up the code examples in the iTask system (Sect. 2.2).
The syntax of the host language Clean is very similar to Haskell . In AppendixA
we give a brief overview of some Clean specific parts that we use in these lecture
notes. Both the Clean programming environment and the iTask toolkit can be
obtained at wiki.clean.cs.ru.nl.

2.1 Task Signatures

A task has two components: a description of the work that has to be performed,
and the typed interface that determines the type of the task values that are
communicated to the environment in which the work is performed.

Tasks abstract from activities within software systems, regardless whether
these are executed by computer systems or humans, how long they will take,
and what resources are consumed. For instance, a task can describe the job to
interview a particular person without predetermining whether this must be done
with a human interviewer or via an online questionnaire. As another example,

http://wiki.clean.cs.ru.nl
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a task can describe the job that pieces of music must be played without predeter-
mining whether a user starts to play guitar or let some music player application
randomly pick and play a digitized music file from a play list. Work abstraction
is a good thing, because it allows the context in which tasks operate not to
trouble themselves with the way in which tasks are implemented.

Tasks do need to have up-to-date knowledge about each other’s progress.
This is where the type of a task enters the picture. Commonly, tasks process
information, and often the environment would like to know what the current state
is of a task. Other tasks can see how things are going by inspecting the current
value of a task which may change over time. The current value of the information
that is processed by a task is called its task value. The task value may change over
time, but its type remains the same. For instance, during the interviewing task
above, the task value might be the notes that are made by the human interviewer
or the current state of the online questionnaire that is filled in by the interviewee.
During the music playing task, the task value might be information about the
current song that is played or the current recording of the digitized music that
is played. In both examples, the task values change during the task, but their
type remains constant.

Tasks are typed in the following way: if the type of the task value is T, then
the corresponding task has type (Task T). So, a task with name t and task value
type T has signature t :: Task T (see signatures, page 240).

To describe what a task is about you need additional information. In these
lecture notes we describe this in a functional style. A task is represented by a
function which obtains the additional information via the function arguments. If
we require n arguments of consecutive types A1. . . An to describe a named task
t of type (Task T), then this is specified by a task function with signature t
:: A1. . . An -> Task T. Note that if n = 0, then t is the constant function that
defines a task right away. Such a function has signature t :: Task T.

To give you a feeling how to read and write signatures of tasks, we show a
few examples.

– A user who is writing a piece of text is performing a task with a task value
that reflects the current content of that text. Let’s name this task write text.
The text content can be modeled in different ways. As an example, you can
choose a basic string representation, or a structure representation of the text
that includes mark-up information, or a pdf document that tells exactly how
the document should be rendered. Let us defer the decision how to represent
the text exactly, and introduce some opaque type Text. We can define the
signature of the task to write a piece of text as follows:

write_text :: Task Text

Observe that this task requires no further arguments.
– A task to interview a certain person, identified by a value of type User, may

result in a Questionnaire document. Let’s name this task interview. If
we ignore the details of the user identification and questionnaire, then the
signature of this task is:
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interview :: User -> Task Questionnaire

This is an example of a task function with one argument, User.
– A computer that sorts a list of data is performing a computational task that

ultimately returns a list with the sorted data. Let us name this task sort data.
This task requires as argument the list of data that must be sorted. For sorting,
it suffices to know that the list elements possess an ordering relation, so this
task should work for any element type, indicated with a type variable a,
provided that an instance of the type class Ord for a is present. The signature
of the sorting task function is specified by (see overloading, page 240):

sort_data :: [a] -> Task [a] | Ord, iTask a

In a signature, the occurring type class restrictions are enumerated after the |
separator. The type of the task value must always be an instance of the iTask
type class. For this reason, the type class restriction iTask is also included
for values of type a.

– Assume that the task would be to start some given task argument at a given
point in time. Hence, when performing such a task one first needs to wait
until the given moment in time has passed, and then perform the given task
argument. Let us name this task wait to do.

wait_to_do :: Time (Task a) -> Task a | iTask a

Time is a data type that models clock time. Note that wait to do is an exam-
ple of a higher-order task function. A higher-order task function is a task
function that has at least one argument that is itself a task(function).

These examples illustrate that the functional style of programming carries
over to tasks in a natural way.

2.2 Modules and Kick-Start Wrapper Functions

We set up an infrastructure for the TOP examples that are presented in these
lecture notes.

The host language Clean is a modular language. Modules collect task defini-
tions, data types, and functions that are logically related (see modules, page 235).

We have assembled a couple of kickstart wrapper functions and put them
in the module TOPKickstart that can be imported by a TOP main module.
The kickstart wrapper functions are enumerated in Fig. 5. The one– wrapper
functions are intended for a single user and the multi– wrapper functions assume
the existence of a set of registered users. The –App wrapper functions support a
single application only and the –Apps wrapper functions provide infrastructure
to manage several applications.

The corresponding TopKickstart.dcl module is given in Fig. 6. Note that
line 2 makes the entire iTasks api available to your TOP programs if you import
TopKickstart yourself. The signatures of the four kickstart wrapper functions
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one user multi-user

single application oneTOPApp multiTOPApp
multiple applications oneTOPApps multiTOPApps

Fig. 5. The four possible kickstart wrapper functions for iTask examples.

1definition module TOPKickstart
2import iTasks
3

4oneTOPApp :: (Task a) !*World -> *World | iTask a
5multiTOPApp :: (Task a) !*World -> *World | iTask a
6oneTOPApps :: [BoxedTask] !*World -> *World
7multiTOPApps :: [BoxedTask] !*World -> *World
8

9:: BoxedTask = E.a: BoxedTask String String (Task a) & iTask a

Fig. 6. The kickstart module with four wrapper functions.

are given at lines 4–7. The –App wrapper functions expect a single task definition
as argument. The type of this task, (Task a), can be anything provided that it is
an instance of the iTask type class. The –Apps wrapper functions are provided
with arbitrarily many tasks. In order to properly model the fact that these
tasks need not have to have identical types, these are encapsulated within the
BoxedTask type. An explanation of this type can be found in Example 2 (see
algebraic types, page 241).

When developing an application in these notes, we always tell which type of
applications of Fig. 5 we are creating, and thus which kickstart wrapper function
of Fig. 6 is required.

3 User Interaction

Having warmed up, we start our introduction on TOP with the means to interact
with the user. The type-indexed programming foundation of TOP plays a crucial
role. The information that must be displayed or received is modeled using the rich
type language of Clean. The proper interactive tasks are created by instantiating
the existing type-indexed task functions.

3.1 Displaying Information to the User

Many text books on programming languages start with a “Hello, world” pro-
gram, a tradition initiated in the well known C programming book by Kernighan
and Ritchie [1]. We follow this tradition.
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Example 1. ‘Hello, world’ as single application for a single user
We create a main module with the name MyHelloWorldApp:

Just like its host language Clean, for an iTask program the main entry point
is the Start function. Tasks, no matter how small, change the world. This is
reflected in the type of the Start function (line 4). We use the oneTOPApp
kickstart wrapper function (line 5) to create a single TOP application for a
single user. The single TOP application is the task named helloWorld. The sole
purpose of this task is to display the text "hello,�world". Because that is a value
of type String, the type of the helloWorld task is Task String (line 7). At
execution, an output similar to the one displayed to the right of the program
should be produced (see side-effects, page 239). �
The hello, world text in Example 1 is displayed with the task function
viewInformation. Its signature is:

viewInformation :: d [ViewOption m] m -> Task m | descr d & iTask m

It is an overloaded function due to the type class restrictions (| descr d &
iTask m). This task function has three arguments:

– The first argument has type d and is a descriptor to inform the user what she
is looking at. The descr type class supports several data types as instances,
of which in this section we use only two: the basic type String and the iTask
type Title, which is defined as:

:: Title = Title String

In both cases, a (typically short) text is displayed to give guidance to the user.
They only differ in the way they are rendered. In case of a String value, the
text is presented along the task rendering. In case of a Title value, the text
is displayed more prominently in a small title bar above the task rendering.

– The second argument has type [ViewOption m] and can be used to fine-tune
the visualization of the information. However, that does not concern us right
now, so we use an empty list, denoted by [ ].

– The third argument has type m and is the value that must be displayed. The
iTask type class implements the type-indexed generation of tasks from types.
Of course, this is only possible if the concrete type on which you apply this
function is (made) available. How this is done, is explained in Sect. 3.3. For
now you can assume that you can provide viewInformation with values of
almost any conceivable data type.
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Up until Sect. 6 we develop a number of very small tasks (in Sect. 6 we intro-
duce multi-user applications). It is convenient to collect the small tasks using
the kick start wrapper function oneTOPApps.

Example 2. ‘Hello, world’ as multiple applications
We create a new main module, named MyGettingStartedApps.

1module MyGettingStartedApps

2import TOPKickstart
3

4Start :: *World -> *World

5Start world = oneTOPApps apps world

6

7apps = [ BoxedTask (get_started +++ "Hello�world")

8"Hello,�world�in�TOP"

9helloWorld

10]

11where
12top = "TOP/"

13get_started = top +++ "Getting�Started/"

14

15helloWorld :: Task String

16helloWorld = viewInformation "iTasks�says:" [] "hello,�world"

Within any (task) function definition, local definitions can be introduced after
the keyword where. The scope of these definitions extends to the entire right
hand side of the function body (apps in this example). Here, this facility is used
to prepare for future extensions of this example, in which the text fragments top
and get started are shared.

We use the single user, multiple application kickstart wrapper function
oneTOPApps, and provide it with only one boxed task, helloWorld, in lines
7–10. Figure 7 shows how this application is rendered within a browser. The first
argument of this boxed task, the text "TOP/Getting�Started/Hello�world", is used to
generate the task hierarchy that is depicted in the left-top area 1 in Fig. 7 (the
function +++ concatenates its two String arguments). The second argument, the
text "Hello,�world�in�TOP", is depicted in the description area at the left bottom
2 when the task is selected by the user. If it is started, then it appears in the
task list of the user which is the right top area 3. In order to actually work on it,
it can be opened, in which case its current state is rendered in the right bottom
work area 4. In the work area it can be closed and reopened at any later time
without harm. Deleting it in the task list area removes it permanently. �

3.2 Getting Information from the User

The viewInformation task function displays information to the user. The dual
task is getting information from the user. This task is called updateInformation.
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Fig. 7. ‘Hello, world’ as one task in a multi-application context.

updateInformation :: d [UpdateOption m m] m -> Task m | descr d & iTask m

The first argument of this function has exactly the same purpose as the first
argument of viewInformation and informs the user what she is supposed to
do. The second argument is used for fine-tuning purposes, and we ignore it for
the time being, and use the empty list [ ]. The third argument is the initial
value that is rendered to the user in such a way that she can alter its content.

Example 3. What’s your name?
We extend Example 2 with a task to ask for a user’s name.

1module MyGettingStartedApps

2import TOPKickstart
3

4Start :: *World -> *World

5Start world = oneTOPApps apps world

6

7apps = [ BoxedTask (get_started +++ "Hello�world")

8"Hello,�world�in�TOP"

9helloWorld

10, BoxedTask (get_started +++ "Your�name?")

11"Please�give�your�name"

12giveName

13]

14where
15top = "TOP/"

16get_started = top +++ "Getting�Started/"

17

18helloWorld :: Task String

19helloWorld = viewInformation "iTasks�says:" [] "hello,�world"
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20

21giveName :: Task String

22giveName = updateInformation "iTasks�asks:" [] "Dr.�Livingstone?"

The only modifications are lines 10–12 in which a new boxed task is included
in the apps list, and lines 21–22 in which the new task giveName is defined.
Figure 8 shows where the new boxed task can be selected by the user in the task
hierarchy, and how the giveName task is rendered in the work area. �

Fig. 8. Two tasks in a multi-application context.

Example 3 shows how to add a (boxed) task to the multi-application infrastruc-
ture that is created by the wrapper kickstart function oneTOPApps. In the
remainder of these notes we restrict ourselves to discussing only the task functions
that are added as boxed tasks.

3.3 Working with Data Models

Rendering and updating information by means of the functions viewInformation
and updateInformation tasks works for the primitive types (booleans, integers,
reals, characters, strings). Although this is useful, it is not very exciting either.
Fortunately, the rendering mechanism also works for any custom defined type.
The point of type-indexed programming is to encourage you to think in terms of
data models and use generic functions instead of re-implementing similar tasks
over and over again.



An Introduction to Task Oriented Programming 199

Example 4. Editing music tracks
Suppose we own a collection of legally acquired digitized music and want to keep
track of them in. For each piece of music we store the music storage medium (for
instance cd, dvd, blue ray), the name of the album, name of performing artist,
year of appearance, track number on album, track title, track duration, and tags.
One way to model this is with the following types:

1:: Track = { medium :: Medium

2, album :: Name

3, artist :: Name

4, year :: Year

5, track :: TrackNr

6, title :: Name

7, time :: Time

8, tags :: [Tag]

9}

10:: Medium = BlueRay | DVD | CD | MP3 | Cassette | LP | Single | Other String

11:: Name :== String

12:: Year :== Int

13:: TrackNr :== Int

14:: Tag :== String

In this definition, Track and Medium are new types. Track is a record type,
which is a collection of field names (medium, album, and so on) that have types
themselves (Medium, Name, and so on) (see record types, page 242). Medium is
an example of an algebraic type which enumerates alternative data constructors
(BlueRay, DVD, . . . , Other) that may be parameterized (Other is parameterized
with a String) (see algebraic types, page 241). Name, Year, TrackNr, and Tag
merely introduces a synonym type name for another type (see synonym types,
page 243). Although the type Time (line 7) is not a primitive type in the host
language, it happens to be predefined in the iTask toolkit. Just like Track, it is
a record type:

:: Time = { hour :: Int

, min :: Int

, sec :: Int

}

but unlike Track, its rendering differs from the default scheme that the toolkit
provides you with. �

When defining a record value you need to enumerate each and every record field
and provide it with a value. The order of record fields is irrelevant. Record fields
are separated by a comma, and the entire enumeration is delimited by { and }.
Similarly, when defining a list value you enumerate each and every element,
separated by a comma and delimited by [ and ]. As an example, we define a
value of type Track:

track = { medium = CD

, album = "Professor�Satchafunkilus�and�the�musterion�of�rock"



200 P. Achten et al.

, artist = "Joe�Satriani"

, year = 2008

, track = 4

, title = "Professor�Satchafunkilus"

, time = {hour=0, min=4, sec=47}

, tags = ["metal", "guitar", "rock", "instrumental", "guitar�hero"]

}

In order to make the TOP infrastructure available for a custom type t requires
the declaration derive class iTask t in the specification. In our example, this
concerns the new types Track and Medium:

derive class iTask Track, Medium

With the derived generic machinery available, Track values can be displayed
in exactly the same way as done earlier with String values:

viewTrack :: Track -> Task Track

viewTrack x = viewInformation (Title "iTasks�says:") [] x

The viewTrack task function displays any track value that it is provided with.
We can add (viewTrack track) to the list of boxed tasks in Example 2. Select-
ing this task gives the output as displayed in Fig. 9. The type-indexed algorithm
recursively analyzes the structure of the value, guided by its type, and transforms
the found components of its argument value into displays of those values and
assembles them into one large form displaying the entire record value. Observe
how the structure of the record type Track and the structure of the algebraic
type Medium is rendered by the generic algorithm. Because viewInformation is
a task that only displays its argument value, but does not alter it, the task value
of (viewTrack track) is continuously the value track.

Fig. 9. The generated view of an example track.

The same principle of recursively analyzing the structure of a value is applied
by updateInformation. In order to demonstrate this, we define this task
function:
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editTrack :: Track -> Task Track

editTrack x = updateInformation (Title "iTasks�says:") [] x

and add (editTrack track) to the collection of boxed tasks. The output is quite
a different interactive element, as witnessed by Fig. 10. Instead of generating
displays of component values, the algorithm now transforms them into interactive
elements that can be viewed and edited by the user. The data constructors of
the algebraic data type Medium can be selected with a menu, text entries are
rendered as text input fields, numbers appear with increment and decrement
facilities, and list elements can be edited, moved around in the list, deleted, and
new list elements can be added. Initially, the task value of this editor task is
track. With each user interaction, the task value is altered according to the
input. It should be noted that the generated interactive elements are type-safe.
An end-user can only type in values of appropriate type. For instance, entering
the text "four" in the track field is rejected. In most cases it is not possible to
enter illegal values. In other cases, illegal input is rejected, and replaced by the
previous (legal) value.

Fig. 10. The generated editor of an example track.

3.4 Working with Specialization

As mentioned in Example 4, the type Time is predefined in the iTask toolkit.
Figures 9 and 10 illustrate that definitions have been provided to instruct the
generic algorithm how to display and edit values of this type in a way that is
different from the default generic case. This mechanism is called specialization
and plays a significant role in the generic machinery that underlies task oriented
programming because it allows to deviate from the general behavior.
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There are many examples to be found within the iTask toolkit of special-
ized data model types. We do not wish to enumerate them all. For now we turn
our attention to two dual types, Display and Editable (Fig. 11), that interact
nicely with the viewInformation and updateInformation tasks. If x is a model
value of type t, then (Display x) is a model value of type (Display t) but it
is rendered as a display of value x (hence, a user cannot alter its content). Basi-
cally, this is the same rendering as is normally provided by viewInformation.
If x is a model value of type t, then (Editable x) is a model value of type
(Editable t) but it is rendered as an editor of value x (hence, a user can alter
its content). Basically, this is the same rendering as is normally provided by
updateInformation. Using these values within data models allows one to spec-
ify very precisely what subcomponents can only be viewed by the user, and what
subcomponents can be edited.

:: Display a = Display a
:: Editable a = Editable a

fromDisplay :: (Display a) -> a
toDisplay :: a -> Display a

fromEditable :: (Editable a) -> a
toEditable :: a -> Editable a

Fig. 11. Specialized model types for fine-tuning interaction.

3.5 Working with Types

Up until now, we have carefully provided the viewInformation and update
Information task functions with concrete values. The type inference system of
the host language Clean commonly can determine the type of the concrete value,
and hence, it can be decided what instance of the type-driven algorithm should
be used or generated. Commonly, a description of a task obtains sufficient infor-
mation to infer the type of the model value for which either viewInformation
or updateInformation need to be called.

Sometimes this is not possible, and one has to explicitly has to define the
wanted type in the context such that the compiler can deduce the types for the
tasks involved. Given a type, the proper instance can be determined. This is very
useful in situations where it is not possible to conjure up a meaningful value of
the desired type. In the case of interactive tasks, one sometimes does not want to
specify an initial value but instead want to resort to a blank editor for values of
that type, and let the user enter the proper information. This can be done with
the following variant of updateInformation that omits the value to be altered:

enterInformation :: d [EnterOption m] -> Task m | descr d & iTask m
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Just like before, the first argument is the descriptor to tell the user what is
expected of her, and again we ignore the list of rendering options. The signature
of this task function is actually quite odd: the enterInformation task function
can generate a user-interface to produce a value of type m. This can only be done
if it can be statically determined what concrete type m has. In this situation it
becomes paramount to specify the type of the task value that is processed.

Earlier on, we used (editTrack track) to create an interactive task with
the specific initial value track to allow users to alter this value. Alternatively,
and more sensibly, we can specify the following interactive task:

inventTrack :: Task Track

inventTrack = enterInformation (Title "Invent�a�track") []

The generic algorithm, using the type information that a Track value needs to
be analyzed, generates a blank interactive component (Fig. 12).

Fig. 12. The generated editor of a blank track.

The generic algorithm knows how to deal with lists, as is witnessed by cre-
ating views for list-of-tags in the examples. In exactly the same spirit, we can
create viewers, editors, and inventors for list-of-tracks almost effortlessly:

viewTracks :: [Track] -> Task [Track]

viewTracks xs = viewInformation (Title "View�Tracks") [] xs

editTracks :: [Track] -> Task [Track]

editTracks xs = updateInformation (Title "Edit�Tracks") [] xs

inventTracks :: Task [Track]

inventTracks = enterInformation (Title "Invent�Tracks") []

The only thing that has changed is that the function signatures mention [Track]
instead of Track. More interestingly, in case of inventTracks, the specified type
dictates that an interactive element must be generated that handles a list of track
values.
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Exercise 1. “Hello, world”
Compile and run Example 1. Experiment with type class instances of the descr
type class other than String and Title. Recompile and run to see the effect.

Exercise 2. “Hello, worlds”
Compile and run Example 2. Experiment with the arguments of the BoxedTask
container by adding a few other tasks that display messages.

Exercise 3. Entering text
Add the following task to the collection of tasks of Example 2:

helloWorld2 :: Task String

helloWorld2 = updateInformation"iTasks�says:" [] "hello,�world"

Recompile and run to see what the effect is.

Exercise 4. Your favorite collection
Design a data model for your favorite collection (for instance books, movies,
friends, recipes) in a similar way as done in Example 4. Check what it looks like
using viewInformation, updateInformation, and enterInformation.

Exercise 5. Editing your favorite collection
Create tasks to view and edit your favorite collection in the same way as explained
on page 203 for collections of Task values with the functions viewTracks, edit
Tracks, and inventTracks. Recompile and run to see the effect. ��

4 Composition

In the previous section we have shown how a program exchanges information
with the user using interactive tasks. The information is put away in the corre-
sponding task value. Other tasks may need that information to proceed correctly.
In TOP the composition of tasks is specified by means of task combinators. Com-
binators are functions that define how its argument tasks are combined into a
new task. For reasons of readability, they are often specified as operators to allow
an infix style of writing in the way we are used to when dealing with arithmetic
expressions such as +, -, *, and /. In this section we introduce combinators
for sequential and parallel composition, and show that this can be combined
seamlessly with host language features such as choice and recursion.

4.1 Basic Tasks

The interactive task functions to view, update and enter information that are
presented in Sect. 3 (viewInformation, updateInformation, and enter
Information) are all examples of basic tasks. A task(function) is basic if it
cannot be dissected into other task(function)s. An example of a non-interactive
basic task is the return task function (see strictness, page 244):

return :: !a -> Task a | iTask a
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The sole purpose of (return e) is to evaluate expression e to a value x and
stick to that value. It is a task which task value is always x. Despite its apparent
simplistic form, the return task function is actually quite powerful: it allows
one to introduce arbitrary computations in e to calculate a value for further
processing.

Example 5. Sort track tags
We can use return to define a task that makes sure that the tag list of a track
is sorted (see record updates, page 243):

sortTagsOfTrack :: Track -> Task Track

sortTagsOfTrack x = return {x & tags = sort x.tags}

The function sort :: [a] -> [a] | Ord a is a library function of the host
language that sorts a list of values, provided that the ordering operator < (which
is part of the Ord type class) is available for the element types. For tags, which
are of primitive type String, the ordering operator has been defined. �

4.2 Sequential Composition

Näıve sequential composition of tasks simply puts them in succession (see oper-
ators, page 236):

(>>|) infixl 1 :: (Task a) (Task b) -> Task b | iTask a & iTask b

The combinator >>|, pronounced as then, is defined as a left-associative (infixl)
operator of very low priority (1). In (ta >>| tb), first task ta is evaluated. As
soon as it is finished, evaluation proceeds with task tb. The types of the task
values of ta and tb need not be identical. In addition, the type of the task value
of the composite task is the same as tb’s task value type. Indeed, the task value
of the composite task is the task value of tb.

As an example, we first ask the user to provide her name, and then greet her:

greet :: Task String

greet = giveName

>>| helloWorld

We adopt the notational convention to write down the task function names below
each other, as well as the task combinator functions.

The greet task is unsatisfactory, as it does bother the user to enter her name,
but does not use that input to greet her properly. If we inspect the type of the
näıve task combinator >>|, then we can tell that it is impossible for the second
task argument to have access to the result value of the first task argument.

In most cases, follow-up tasks depend on task values produced by preceding
tasks. If we express this dependency by means of a function, we obtain a non-
näıve sequential combinator function, >>=, which is pronounced as bind.

(>>=) infixl 1 :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b
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In (ta >>= tb), first task ta is evaluated. As soon as it is finished, its task
value, x say, is applied to the second argument of bind, which is now a task
function instead of a simple task, thus resulting in the computation (tb x). The
computation can use this value to decide what to do next, which is expressed by
means of a task expression of type (Task b). We can now create an improved
version of the greet task (see lambda-abstractions, page 239):

greet :: Task String

greet = giveName

>>= \name -> viewInformation "iTask�says:" [] ("Hello,�" +++ name)

We extend the notational convention by putting also the task value names below
each other, in the lambda-abstraction after the >>= task combinator. The exam-
ple shows that the second argument of the bind combinator is a (very simple)
computation that prefixes the String value "Hello,�" to the given input of the
user of the first task.

Example 6. Binding two tasks
We bind editTrack and viewTrack and obtain a task that first allows the user
to edit a track value, and when she confirms she is ready, displays the edited
value.

editTask2 :: Track -> Task Track

editTask2 x = editTrack x

>>= \new -> viewTrack new

Note that the editTask2 task function can also be written down slightly shorter
because viewTrack is already a task function of a type that matches with the
second argument of >>=:

// Alternative definition of editTask2:
editTask2 :: Track -> Task Track

editTask2 x = editTrack x

>>= viewTrack

�

The bind combinator >>= profits optimally of the fact that its second argument
is a function that is applied to the information that is transferred from the
first argument task to whatever task is computed by the function. This has the
following advantages: (a) the information is available to all tasks that are created,
and (b) we can compute what follow-up tasks to create, using the information
and the full expressive power of the host language. We illustrate this with a
number of examples.

Example 7. Availability of information
Here is an alternative way of entering a track, by entering the fields in succession.

1enterTrack :: Task Track

2enterTrack
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3= enterInformation "Select�medium:" []

4>>= \medium -> enterInformation "Enter�album:" []

5>>= \album -> enterInformation "Enter�artist:" []

6>>= \artist -> enterInformation "Enter�year:" []

7>>= \year -> enterInformation "Enter�track:" []

8>>= \track -> enterInformation "Enter�title:" []

9>>= \title -> enterInformation "Enter�time:" []

10>>= \time -> enterInformation "Enter�tags:" []

11>>= \tags -> return

12(newTrack medium album artist year track title time tags)

13

14newTrack :: Medium Name Name Year TrackNr Name Time [Tag] -> Track

15newTrack medium album artist year track title time tags

16= { medium = medium, album = album, artist = artist, year = year

17, track = track, title = title, time = time, tags = tags}

This example demonstrates two important aspects:

– the individual task values (medium, album, . . . ) that are retrieved during the
execution can be used later in the sequence of tasks;

– the type-indexed character of the enterInformation task function is driven
by the type of the newTrack function, which in turn is enforced by the type
model of the Track record fields. In the first call of enterInformation it
must yield a task value of type Medium, in the calls on lines 4, 5, and 8 the
task value has type String, in the calls on lines 6 and 7 it is an Int, in line
9 it results in a Time task value, and finally, in line 10 it creates a task value
of type [String].

Example 8. Dependency of information
In Example 7 the user can enter any number for the year field. It is much nicer to
check for the earliest possible year depending on the value of the medium field of
the track that is about to be entered. Suppose that we know of each music storage
medium (except, of course, the Other case) when the first commercially available
products were approximately available (see pattern matching, page 237):

firstYearPossible :: Medium -> Year

firstYearPossible BlueRay = 2006

firstYearPossible DVD = 1996

firstYearPossible MP3 = 1993

firstYearPossible CD = 1981

firstYearPossible Musicassette = 1964

firstYearPossible Single = 1949

firstYearPossible LP = 1948

firstYearPossible other = 0

Using this information, we construct a task that repeatedly asks the user to
enter correct year values. The repetition is expressed recursively. Any entered
value that appears earlier than deemed possible on that particular music storage
medium is rejected.
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1enterYear :: Medium -> Task Year

2enterYear medium

3= updateInformation "Enter�year:" [] first

4>>= \year -> if (year >= first)

5(return year)

6( viewInformation "Incorrect�year:" []

7( medium +++> "s�were�not�available�before�" +++

8year +++> ".�Please�enter�another�year."

9)

10>>| enterYear medium

11)

12where first = firstYearPossible medium

The predefined operator +++> (line 7 and 8) converts its first argument to a
String value and concatenates it with the second argument. A similar operator
<+++ is available in which the arguments are flipped. They can be used for any
type of argument for which the generic iTask system has been generated. Also
note the use of the näıve then combinator >>| on line 10: the task value of the
messaging task is not relevant for asking the user again. �

4.3 Intermezzo: Task Values

Now that we are getting in the business of composing tasks, we need to be
more precise about tasks and task values. During execution, task values can
change. A task can have no task value, e.g. which is initially the case for every
enterInformation task function. A task value can be stable, e.g. which is the
case with the return task. A task value may be unstable and varies over time, e.g.
when the end-user changes information in response to an updateInformation
function. It is entirely well possible that further processing of an unstable value
eliminates the task value, for instance, when the end-user creates blank fields
within the updateInformation task. Stable values, however, remain stable. The
diagram below displays these possible transitions of task values.

Precisely these task values are available by means of the following two alge-
braic data types:

:: TaskValue a = NoValue | Value a Stability

:: Stability = Unstable | Stable
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Task combinator functions can inspect these task values and decide how they
influence the composite behavior of tasks. This is also done by the >>| and >>=
combinators. Both task combinator functions inspect the ‘stability’ of their first
task argument’s task value during execution. As soon as that task produces a
stable task value, the combinators make sure that the second task argument gets
executed. If the first argument task has an unstable task value, then it is left to
the user of the application to decide whether she is happy with that value. Hence,
infrastructure is created to allow her to confirm that the current, unstable, value
is fine to proceed with.

4.4 Parallel Composition

Alongside sequential composition is parallel composition, with which you express
that tasks are available at the same time. We discuss two parallel task combinator
functions that are often very useful. Because of their resemblance with the logical
operators && and ||, their names are written as -&&- and -||- (pronounce as
and, or respectively). Their signatures are:

(-&&-) infixr 4 :: (Task a) (Task b) -> Task (a, b) | iTask a & iTask b

(-||-) infixr 3 :: (Task a) (Task a) -> Task a | iTask a

The purpose of -&&- is to execute its argument tasks in parallel and assemble
their individual task values into a pair. The types of the task values need not be
of the same type, but this is of course allowed. The composite task only has a
stable task value if both argument tasks have a stable task value. If either one
of the argument tasks has no task value, then the composite task also does not
possess one. In the other cases, the composite task has an unstable task value.

The purpose of -||- is to offer the user two alternative ways to produce a
task value. For this reason, the types of its task arguments must be identical.
The only situation in which the composite task does not have a task value is
when both argument tasks have no task value. In any other case, the task value
of the composite task is the task value of the most recently changed or stable
task value.

Example 9. Entering an album with ‘and’
Entering tracks individually is fine for albums with a small number of tracks, or
for single purchases, but it is an inconvenient way of entering albums that have
more than four tracks. We wish to enter the album information (with a task called
enterAlbumInfo) separately from entering the track list (with a task called
enterTracklist). We define the composite task enterAlbum that performs these
tasks in parallel and combines their result with the pure computation newAlbum:

enterAlbum :: Task [Track]

enterAlbum

= enterAlbumInfo -&&- enterTracklist

>>= \(info, tracks) -> return (newAlbum info tracks)
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The distinct task value results of enterAlbumInfo and enterTracklist are
called info and tracks respectively. The function newAlbum is a pure compu-
tation that creates a list of Track values (see list comprehensions, page 238):

newAlbum :: (Medium, Name, Name, Year) [(Name, Time, [Tag])] -> [Track]

newAlbum (medium, album, artist, year) tracks

= [ newTrack medium album artist year nr song t tags

\\ (song, t, tags) <- tracks & nr <- [1..]
]

The two tasks to enter the album information and the track list can proceed
as described earlier. We choose sequential input for the album information, to
allow the input of year values to be checked against the chosen medium value.
The track list is entered as a list of track fields.

enterAlbumInfo :: Task (Medium, Name, Name, Year)

enterAlbumInfo

= enterInformation "Select�medium:" []

>>= \medium -> enterInformation "Enter�album:" []

>>= \album -> enterInformation "Enter�artist:" []

>>= \artist -> enterYear medium

>>= \year -> return (medium, album, artist, year)

enterTracklist :: Task [(Name, Time, [Tag])]

enterTracklist

= enterInformation "Enter�tracks:" []

�

Exercise 6. Edit and view a track
Add (editTask2 track) of Example 6 to your collection of top level tasks
and compile and run your extended application. Manipulate the fields in the
editTrack task and see when the bind combinator >>= allows you to enter the
viewTrack task and when it prohibits you from doing that.

Exercise 7. Edit and sort track tags
Alter the editTask2 task in such a way that before viewing the new track, the
task first sorts the tag list of the new track using sortTagsOfTrack of Example 5.
Hence, after editing a track, the user always sees a tag list in alphabetic order.

Exercise 8. Edit and view a track list
Create a recursive task of signature enterTracks :: [Track] -> Task [Track]
that allows the user to enter tracks in succession. It displays the argument list of
tracks, and appends new tracks to this list until the user decides that the list is
complete. In that case, the accumulated track list is returned.

Exercise 9. Compare ‘and’ with ‘or’
Add the tasks and and or to your collection of top level tasks.
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and = updateInformation "A:" [] 42

-&&- updateInformation "B:" [] 58

>>= \x -> viewInformation "C:" [] x

or = updateInformation "A:" [] 42

-||- updateInformation "B:" [] 58

>>= \x -> viewInformation "C:" [] x

Compile and run your extended application. Explain the difference in behavior
and return values.

5 Environment Interaction

In the previous section we have shown a number of ways to compose tasks. With
these forms of composition communication between co-tasks is organized in a
structured way. However, programs sometimes exhibit ad hoc communication
patterns. This is often the case when interacting with the ‘external world’ and
external tools need to be called, or persistent information is shared using the file
system or databases.

In TOP, ad hoc communication between internal tasks and the external world
is provided by means of shared data sources. A shared data source contains infor-
mation which can be shared between different tasks or with the outside world,
and can be read and written via a typed, abstract interface. Shared data sources
abstract over the way their content is accessed in an analogous manner that tasks
abstract over the way work is performed. We depict this in the following way:

The content of a shared data source can be (part of) the file system, a shared
memory, a clock, a random stream, and so on. A shared data source can be read
from via a typed interface and written to via another typed interface . The
read and write data types need not be the same. For instance, if the shared data
source is a stopwatch, then the write type can represent stopwatch actions such
as resetting, pausing, continuing, and so on, whereas its read type can represent
elapsed time.

We explain how to get access to external resources in Sect. 5.1, and how to
create local shared data sources in Sect. 5.2. Interactive tasks turn out to interact
seamlessly with shared data sources. We integrate them in Sect. 5.3. Finally, we
discuss two subjects that are concerned with the environment: basic file handling
in Sect. 5.4 and basic time handling in Sect. 5.5.

5.1 Basic Environment Interaction

In this section we introduce the basic means to interact with external resources.
We start with an example.
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Example 10. Limiting year input values
Time is an obvious external resource. Let us enhance the enterYear task of
Example 8 (page 207) to also disallow inputs that exceed the current year. To
obtain the current date we use the expression (get currentDate), which is a
task of type (Task Date). Date is a predefined type:

:: Date = { day :: Int // 1..31
, mon :: Int // 1..12
, year :: Int }

We adopt the enterYear task to obtain the current date and use it to compare
it with the user’s input (see disambiguating records, page 242); (see guards, page
236):

1enterYear :: Medium -> Task Year

2enterYear medium

3= get currentDate

4>>= \today -> updateInformation "Enter�year:" [] first

5>>= \year -> if (year >= first && year <= today.Date.year)

6(return year)

7( viewInformation "Incorrect�year:" []

8( message year +++ ".�Please�enter�another�year." )

9>>| enterYear medium

10)

11where
12first = firstYearPossible medium

13message year

14| year < first = medium +++> ("s�were�not�available�before" <+++ year)

15| otherwise = "It�is�not�yet" <+++ year

In line 3 the current date is obtained from the environment. If the user input,
provided in line 4, lies nicely between the two bounds, checked in line 5, then
the input is returned. In the other case we provide the user with a matching
message, defined by the function message, and start over again. �

A shared data source that allows reading values of type r and writing values of
type w is of type ReadWriteShared r w. For the time being, we consider this to
be an opaque type with three access functions:

The get and set access functions are task functions that read and write the
shared data source. A frequently occurring pattern is to get a value x from a
shared data source and immediately set it to (f x). This can be shorthanded
to (update f).

In Example 10, currentDate is a shared data source that allows reading val-
ues of type Date, but it does not allow writing. This is expressed by using the triv-
ial Void type (:: Void = Void) for its write interface type. Hence, currentDate
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has type ReadWriteShared Date Void. For such read only shared data sources,
a synonym type ReadOnlyShared, is introduced to express more clearly that
you can only read values from such an entity. Analogously, for write only shared
data source, the type synonym WriteOnlyShared is introduced. Finally, because
often the read and write type interface is identical, the shorter type synonym
Shared can be used.

:: Shared rw :== ReadWriteShared rw rw

:: ReadOnlyShared r :== ReadWriteShared r Void

:: WriteOnlyShared w :== ReadWriteShared Void w

The currentDate shared data source is an example of a globally available
shared data source. One can imagine many such shared data sources, and in
these lecture notes we encounter a few more. For now, we limit ourselves to
three shared data sources that are concerned with time:

currentDate :: ReadOnlyShared Date

currentTime :: ReadOnlyShared Time

currentDateTime :: ReadOnlyShared DateTime

:: DateTime = DateTime Date Time

Unsurprisingly, currentTime allows you to access the current time. currentDate
Time is just a convenient way to get both the date and time in one go.

5.2 Ad Hoc Data Sharing

As explained above, the iTask toolkit provides you with a number of predefined
shared data sources to ‘connect’ with the external world. You can also create
shared data sources for internal purposes.

sharedStore :: !String !a -> Shared a | JSONEncode{|*|}, JSONDecode{|*|}, TC a

With (sharedStore en ev), a shared data source is created which name is the
result of evaluating en, and which initial content is the result of evaluating
ev. The details of the classes JSONEncode, JSONDecode, and TC do not concern
us right now: basically, they are available whenever you include derive class
iTask . . . for your model data types. The shared data source that you create
with this function can be accessed with the get, set, and update functions of
page 212.

Example 11. A shared Track data source
We define a shared data source that can be used to manipulate a Track value:

trackStore :: Shared Track

trackStore = sharedStore "StoreTrack" track

This creates a shared data source that is identified with the name "StoreTrack"
and that has initial value track (page 199). �
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5.3 Interactive Tasks and Data Sharing

The interactive tasks viewInformation and updateInformation manipulate a
model value. For your convenience, we repeat their signatures:

viewInformation :: d [ViewOption m ] m -> Task m | descr d & iTask m

updateInformation :: d [UpdateOption m m] m -> Task m | descr d & iTask m

These interactive tasks work in isolation on their task value, which is fine for
many situations. However, work situations in which several interactive tasks
view and update the same information require a more general version of these
interactive tasks. Instead of editing the current value of the shared data source,
they manipulate the shared data source directly.

In case of viewing the current value of a shared data source, its current value is
read and displayed. In case of updating the current value of a shared data source,
its current value is also read and displayed, but also written at each update.

Basically, this means that in the signatures above, the value type m must be
replaced by an appropriate shared data source type. When doing this, we obtain
the following, more general, interactive tasks:

viewSharedInformation :: d [ViewOption r ] (ReadWriteShared r w) -> Task r

| descr d

& iTask r

updateSharedInformation :: d [UpdateOption r w] (ReadWriteShared r w) -> Task w

| descr d

& iTask r

& iTask w

These signatures show that the interactive tasks get ‘connected’ with a shared
data source. For viewSharedInformation, this means that a task is created
that displays the current value of the argument shared data source. Hence,
whenever the shared data source obtains a new value, then this is displayed by
the viewSharedInformation task. Because it views a value, its task value type
corresponds with the read value type of the shared data source. The task always
tries to show the current value of that can be read from the shared data source.
Of course, when the shared data source is changed by someone, it may take some
time before a task is informed that a change has happened.

The updateSharedInformation task also gets connected with a shared data
source, but in addition to displaying the current value of the shared data source,
it also allows updating its value. Every time this is done, all other ‘connected’
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tasks refresh their displayed value as well. Because updateSharedInformation
writes a value, its task value type corresponds with the write value type of the
shared data source. Its task value is always the currently written value to the
shared data source.

Viewing and updating tasks that are connected with shared data sources
allows us to create intricate networks of interactive tasks (see Fig. 13).

Fig. 13. Creating networks of interactive tasks via shared data sources

Example 12. Update and view a shared data source
In this example we wish to create two tasks: one that allows the user to view and
alter a Track value, and one that displays the result of these actions. This value
is stored in the shared data source trackStore that was created in Example 11.
Hence we need to combine two interactive tasks, one for viewing and one for
updating a shared data source. We combine them with the ‘and’ operator -&&-:

editAndView :: Task (Track, Track)

editAndView

= viewSharedInformation (Title "View�a�Track") [] trackStore

-&&-

updateSharedInformation (Title "Edit�a�Track") [] trackStore

The resulting task is depicted in Fig. 14. Any user action that is performed in
the editing task is displayed in the viewing task. �

Admittedly, in its current form Example 12 seems silly because the editing task
already allows the user to view the current task value. However, if you imagine
that the viewing task is performed by another user, then this is a sensible way
of arranging work. In Sect. 6 we show how to distribute tasks to users. Never-
theless, also for a single user this pattern can make sense if only the viewing
task processes the value of the shared data source to a more useful format and
renders it accordingly. Up until now we have ignored the option list arguments
of the interactive tasks. It is time to throw some light on this matter.

Viewing and updating tasks that are connected with a shared data source
that reads its values as type r should be allowed to transform them to another
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Fig. 14. Edit and view a shared track value.

domain of some type v using a function f :: r -> v. The tasks then display and
update values of the new domain. Hence, in case of updating tasks, the user
creates a new value of type v that must be placed back into the shared data
store that writes its values as some type w. In general, you need both the new
value of type v and the current read value of the shared data source of type r.
Hence, the new value to be stored in the shared data source is computed by a
function g :: r v -> w.
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We want to associate f with the viewing task by means of a data constructor
(ViewWith f) and the functions f and g with the updating task with data con-
structor (UpdateWith f g). The type definitions of these data constructors are:

:: ViewOption r = E.v: ViewWith (r -> v) & iTask v

:: UpdateOption r w = E.v: UpdateWith (r -> v) (r v -> w) & iTask v

Views need to be created of type v, so generic machinery for them has to be in
place. This is enforced by the iTask v class constraint. The existential encapsu-
lation E.v provides us with full freedom to choose any domain of our liking.

Example 13. Update and view a shared data source, revised
We improve Example 12 by letting the viewing task only display a text message
that informs the viewer what album of which artist is being edited. For this
purpose, we add a viewing option to the viewing task (the rest of Example 12
remains unaltered):

editAndView :: Task (Track, Track)

editAndView

= viewSharedInformation (Title "View�a�Track") [ViewWith view] trackStore

-&&-

updateSharedInformation (Title "Edit�a�Track") [] trackStore

where
view :: Track -> String

view track

= "You�are�editing�album" +++ track.album +++ "�by�" +++ track.artist

The resulting view task is shown in Fig. 15. �

5.4 File Interaction

Every so often, an application is required to access data that is stored in a format
dictated externally. The application must read and write this data. Suppose that
a file is stored at a location identified by the string value filepath. The task
function (importTextFile filepath) obtains the entire content of that file as
a string value, and (exportTextFile filepath str) replaces the entire current
content of that file with str. The signatures of these task functions are:

:: FilePath :== String

importTextFile :: FilePath -> Task String

exportTextFile :: FilePath String -> Task String

Example 14. Retrieving and storing tracks to file
In this example we create two tasks: (a) a named task importTracks that
imports tracks from a text file; and (b) a named task exportTracks that exports
tracks to a text file. The format of the text file uses the newline character to
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Fig. 15. Edit and view a shared track value, revised version.

separate entire entries, and uses the tab character to separate the fields within
an entry. This is a fairly common format for simple databases.

We start with the importing task, naming it importTracks. Given a file
location, it reads the file content and returns a list of Track values. It has
signature:

importTracks :: FilePath -> Task [Track]

The function uses the importTextFile function to read in the entire contents
of the text file. This provides us with a String value. We split the conversion of
this value to a list of Track values into two steps: first, the entries and their fields
are parsed (tabSeparatedEntries), and second, this list of fields is transformed
to a list of track values (toTrackList). The signatures of these two functions
are:

tabSeparatedEntries :: String -> [[String]]

toTrackList :: [[String]] -> [Track]

With these two functions, importTracks can be defined:

importTracks :: FilePath -> Task [Track]

importTracks filepath

= importTextFile filepath

>>= \content -> return (toTrackList (tabSeparatedEntries content))

The two functions that still need to be implemented are pure computations:
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1tabSeparatedEntries :: String -> [[String]]

2tabSeparatedEntries str

3= map (split "\t") (split "\n" str)

4

5toTrackList :: [[String]] -> [Track]

6toTrackList entries

7= [ newTrack (fromString mdm) alb art (fromString yr) (fromString nr) title

8(fromString t)

9(split "," tags)

10\\ [mdm, alb, art, yr, nr, title, t, tags: _] <- entries

11]

The split function takes a separator string and source string and yields all
source fragments that are separated by the separator string. The track tags are
separated by a comma character, and hence, split can be used to create the
list of tags (line 9). The split function is part of the Text module that needs
to be imported explicitly. For converting textual representations of values to the
values themselves, the host language Clean provides a type class fromString:

class fromString a :: !String -> a

For Time values, an instance is already provided in iTask . This is not the case
for Medium values and Int values. Let us start with parsing Medium values:

1fromString "BlueRay" = BlueRay

2fromString "DVD" = DVD

3fromString "MP3" = MP3

4fromString "CD" = CD

5fromString "Musicassette" = Musicassette

6fromString "Single" = Single

7fromString "LP" = LP

8fromString other

9| startsWith prefix other = Other postfix

10where prefix = "Other�"

11postfix = other

12fromString wrong = abort ("unexpected�input�in�fromString:�" +++ wrong)

This is fairly straightforward: the only challenging bit concerns parsing Other
values. The startsWith function from the Text module can be used to check
whether the text starts with the "Other�" text (line 9), and, if this is the case, it
can produce the correct value. In any other case, the text cannot be parsed, and
a runtime error is generated (line 12).

For Int values, the situation is less complicated because the desired function-
ality is already available as the String instance of the toInt type class, which
converts a String value to an Int value. Hence, the implementation of the Int
instance of the fromString type class is trivial:

instance fromString Int where fromString str = toInt str
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The exporting task basically needs to perform the inverse operations of the
parts introduced above for the importing task. For that reason, we build this
task in inverse order as well. Converting values to descriptions of these values is
supported by the host language Clean with the type class toString:

class toString a :: !a -> String

For Time and Int values, instances are already available, but this is not the case
for Medium values. However, because Medium is an instance of the iTask class,
and hence can be serialized, its implementation is easy enough:

instance toString Medium where toString m = "" <+++ m

We proceed by defining the inverse operations of the functions toTrackList
and call it fromTrackList, and tabSeparatedEntries and call it tabSeparated
String. Both functions use the inverse operation of split, which is called join.
The join function takes a glue string and list of strings and concatenates the
list elements, using the glue string between each element.

1fromTrackList :: [Track] -> [[String]]

2fromTrackList tracks

3= [ [ toString medium, album, artist, toString year, toString track, title

4, toString time, join "," tags]

5\\ {medium, album, artist, year, track, title, time, tags} <- tracks

6]

7

8tabSeparatedString :: [[String]] -> String

9tabSeparatedString entries

10= join "\n" (map (join "\t") entries)

The tag list is joined with the comma character (line 4), and the fields and entries
with the tab and newline character respectively (line 10). With these functions,
we can define the exporting tracks task as follows:

exportTracks :: FilePath [Track] -> Task Void

exportTracks filepath tracks

= exportTextFile filepath (tabSeparatedString (fromTrackList tracks))

>>| return Void

�

5.5 Time Interaction

In Sect. 5.1 we have shown how to obtain the current date and time. In many work
situations it is important that tasks start at the right time, or are guaranteed
to terminate within some specified time limit. For this purpose iTask offers a
number of time related task functions:

waitForTime :: !Time -> Task Time

waitForDate :: !Date -> Task Date

waitForDateTime :: !DateTime -> Task DateTime

waitForTimer :: !Time -> Task Time
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The first three task functions wait until the specified time, date, or both has
elapsed. Their task value result is identical to the argument value. The last task
function waits the specified amount of time from the moment this task function
is called. Its return value is the time when the timer went off.

Example 15. Extending tasks with a deadline
In this example we create a new task combinator function that extends any given
task t with a time limit d. The intended signature of this task combinator is:

deadline :: !(Task a) !Time -> Task (Maybe a)

The Maybe type represents an optional value and is defined as:

:: Maybe a = Nothing | Just a

Hence, no value is encoded as Nothing, and a value x as (Just x).
The function (deadline t d) should execute task t. If t returns within time

limit d with a result value x, then the combined task returns (Just x). However,
if t does not terminate within time limit d, then the combined task returns
Nothing. Besides executing t this combinator executes a timing task. The first
task that completes terminates the combined task. Hence, it makes sense to use
the -||- task combinator (Sect. 4.4) for this purpose. It demands that its two
task arguments have task values of the same type. If we let the timing task return
Nothing, then all we need to do is make sure that the original task t returns
(Just x) instead of just x. We create two wrapper functions for that purpose:

just :: !(Task a) -> Task (Maybe a) | iTask a

just t = t >>= \x -> return (Just x)

nothing :: !(Task a) -> Task (Maybe b) | iTask a & iTask b

nothing t = t >>| return Nothing

(just t) executes t, and if it produces a stable task value x, it produces (Just
x). Similarly, (nothing t) also executes t, but after that produces a stable task
value it is ignored, and instead only Nothing is returned.

The timing task can use waitForTimer task function:

timer :: !Time -> Task (Maybe a) | iTask a

timer d = nothing (waitForTimer d)

Hence, this is a task that waits the specified amount of time and then returns
with Nothing. We can now implement the deadline task:

deadline :: !(Task a) !Time -> Task (Maybe a) | iTask a

deadline t d = (just t) -||- (timer d)

The argument task is executed, as well as the timer task. The first task that
terminates determines the result of the combined task. �
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Exercise 10. Limiting year input values
In Example 10, the task function enterYear repeatedly asks the user for a year
value until it lies within a given lower and upper bound value. It so happens
that the iTask toolkit provides a data model for such kind of bounded values:

:: BoundedInt = { min :: Int // the lower bound
, cur :: Int // the current value (min ≤ cur ≤ max)
, max :: Int // the upper bound
}

Use this type to define enterYear in such a way that it asks the user only once
for a proper year value.

Exercise 11. Edit a track list and view information
In Exercise 8 you have created a task that allows the user to successively enter
tracks. Enhance this task in a similar way as shown in Example 13. Display
the number of artists, number of albums, number of tracks, and total playing
time. �

6 Collaboration

Up until this point we have discussed applications that serve a single user. We
now extend this to serve arbitrarily many registered users. For this purpose we
switch to the multiTOPApp or multiTOPApps kickstart wrapper functions (see
Figs. 5 and 6). These wrapper functions add infrastructure to handle an arbitrary
number of users. They use a custom defined module, UserAdmin. It is based on
the core concept of a user. In this section, we use the functionality provided by
the UserAdmin module.

When executing an application created by means of multiTOPApp(s), the
user is first asked to provide account information (see Fig. 16). This is used by
the application to establish who it is serving. The infrastructure allows users to
enter the application anonymously. It is up to the application whether or not
this flaws the user experience. All applications maintain a shared data source
containing information about the accounts and users that can be served by the
application. The first thing to do is set up a collection of users (Sect. 6.1). As soon
as a user base is available, an application can distribute its activities amongst
the members of its user base (Sect. 6.2).

6.1 Employing Users

Employing users is actually not very different from adding tracks to a track
list that is stored in a shared data source. Each application has a shared data
source available that is called userAccounts. The involved type definitions
are given in Fig. 17. Because userAccounts is a shared data source, it can
be read with the task (get userAccounts) and written with the task (set
accounts userAccounts) where accounts is a list of user account values. The



An Introduction to Task Oriented Programming 223

Fig. 16. Entering a multi-user application.

credentials consist of a user name and password. Note that the Password type
is specialized within the iTask toolkit: when an editor is created for it it displays
an edit box in which the user input is cloaked, as shown in Fig. 16. If a title is
provided, then this is used by the application to address the user instead of her
user name. Users can have different roles within an organization. Work can be
assigned to users that have particular roles.

userAccounts :: Shared [UserAccount]

:: UserAccount = { credentials :: Credentials
, title :: Maybe UserTitle
, roles :: [Role]
}

:: Credentials = { username :: Username
, password :: Password
}

:: Password = Password String
:: Username = Username UserId
:: UserId :== String
:: UserTitle :== String
:: Role :== String

Fig. 17. Fragment of module UserAdmin concerning user accounts.

Example 16. The clean company
For illustration purposes, we introduce the fictitious clean company. Its employ-
ees and their roles are displayed in Fig. 18. �

Exercise 12. Employ your users
Create a main module that uses the kickstart wrapper function multiTOPApps
to manage several top level tasks for multiple users. Fill its boxed task list with
a task called employ that adds user accounts to the userAccounts shared data
source. You can use any technique that has been discussed in the preceding
sections or use the dedicated tasks in the UserAdmin module. Compile and run
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Employee Roles

Chris team leader, sales, developer

Lucy developer, system administrator

Emma developer, system tester

Andrew system tester, HMI

Nigel finances, sales, project acquisition

Fig. 18. The clean company employees and their roles.

to sign up all employees of the clean company who are enumerated in Fig. 18.
Choose passwords of your liking. Their user names are identical to their first
names, so they do not require an additional title. �

6.2 Distributing Work

Having a user base available, it is time to assign work to them. Before we explain
how to do this, we first discuss the model types that are related with users and
their properties. They are displayed in Fig. 19.

:: User = AnonymousUser SessionId
| AuthenticatedUser UserId [Role] (Maybe UserTitle)

:: UserConstraint = AnyUser
| UserWithId UserId
| UserWithRole Role

Fig. 19. The user model types.

To an application, a user is either anonymous or belongs to the registered
set of users. In the first case, a user is identified by means of the application’s
session which, for now, we consider to be opaque. Authenticated users are con-
firmed to be part of the collection of users that the application is allowed to
serve. Their attributes originate from the user account details (Fig. 17). The
UserConstraint model is used to define a subset of the authenticated users.
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AnyUser imposes no constraint on this set, and hence, all users are eligible. In
case of (UserWithId uid), the user with username (Username uid) is selected.
In case of (UserWithRole role), any user that has role associated with her can
be chosen.

User, UserId, and UserConstraint values can be used to indicate users to
assign work to. If value u is of either of these types, then the task (u @: t) makes
task t available to all users who belong to u. As soon as one of them decides
to perform task t, it becomes unavailable to the other users. They receive some
notification that task t is being executed by that user. The signature of operator
@: is:

(@:) infix 3 :: user (Task a) -> Task a | iTask a & toUserConstraint user

instance toUserConstraint User

instance toUserConstraint UserId

instance toUserConstraint UserConstraint

Example 17. Addressing the Clean company users
In the Clean company case, AnyUser refers to all employees. (UserWithId
"Lucy") addresses Lucy. All sales persons, Chris and Nigel, are addressed with
the value (UserWithRole "sales"). Hence, (UserWithRole "sales") @:
t makes task t available to Chris and Nigel. The one who is the first to start on
that task can finish it, and the other is informed that the job is being processed.

�

The user model types are ordinary types and therefore can also be used as
values that are manipulated by the iTask type-driven functions. The task (get
currentUser) can be used to find out which current User a task is serving.

Example 18. Update and view a shared data source, distributed
We turn Example 12 into a distributed application. First, we assign the two sub
tasks to two users:

editAndViewDistributed :: (user1, user2) -> Task (Track, Track)

| toUserConstraint user1 & toUserConstraint user2

editAndViewDistributed (user1, user2)

= (user1 @: updateSharedInformation (Title "Edit�a�Track") [] trackStore)

-&&-

(user2 @: viewSharedInformation (Title "View�a�Track") [] trackStore)

Second, we determine who the current user is, and ask who is supposed to
perform the view task while editing a track.

editAndViewTrack :: Task Track

editAndViewTrack

= get currentUser

>>= \me -> updateInformation (Title "Enter�a�user�name") [] "user"

>>= \you -> editAndViewDistributed (me, you)

>>= \(track, _) -> return track
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Fig. 20. Nigel, editing a track.

Suppose Nigel started the application and indicated Lucy to view his editing
actions. Nigel can edit a track to his liking and tell that the sub task has been
delegated to Lucy (Fig. 20). Lucy has received an extra task in her task list to
follow Nigel’s progress (Fig. 21). �

Example 19. Making an appointment
In this example, we create a task to make an appointment with a registered
user.

1appointment :: Task (Date, Time)

2appointment

3= get currentDate

4>>= \today -> get currentTime

5>>= \now -> enterInformation (Title "Who�do�you�wish�to�meet?") []

6>>= \user -> updateInformation (Title "When�to�meet?") [] [(today, now)]
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7>>= \options -> UserWithId user

8@:

9(updateInformation (Title "Select�appropriate�date-time�pairs")

10[] (map toDisplay options)

11>>= return

12)

13>>= \selected -> if (isEmpty selected)

14appointment

15(return (fromDisplay (hd selected)))

Fig. 21. Lucy, viewing Nigel’s progress.

We obtain the current date and time (lines 3 and 4), ask the current user to
choose a registered user (line 5) and create a number of possible date-time
pairs (line 6). Hence, user and options are values of type UserId and [(Date,
Time)] respectively. We ask user to select date-time pairs. Because we do not
want her to alter these values, they are rendered as displays. She can only
alter the order of suggested date-time pairs, and remove pairs. When done,
the original user receives the selection as value selected (line 13). In case all
options were inappropriate, the task starts all over again (line 14), otherwise the
first pair is returned after stripping the Display data constructor of its model
value. �

Exercise 13. Making an appointment
Example 19 defines a task that never terminates in case the requested user con-
sistently removes all suggested date-time pairs, or simply is inactive. Alter the
example in such a way that the original user can decide to abandon this task. �
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7 Managing Work

Within an application, the various tasks need to keep track of each other’s
progress, and be able to change their course of action if necessary. In order
to achieve this, an application needs to have means to detect and signal that
its intended progress is hampered (Sects. 7.1 and 7.2) and it needs to adapt its
behavior to handle new situations (Sect. 7.3).

7.1 Monitoring Work

In Sect. 6.2, we have introduced the task (get currentUser). Shared data
sources such as currentUser prove to be a useful way for TOP applications to
leave their trace by means of model data types that capture meta-information
about their tasks. Before we discuss the model data types in detail, we first
present the shared data sources that play a role in this context:

currentUser :: ReadOnlyShared User

currentTopTask :: ReadOnlyShared TaskId

topLevelTasks :: ReadOnlyShared (TaskList Void)

They are all read-only shared data sources because they are merely a shadow
of the real tasks in progress. Similarly to currentUser, the named shared data
source currentTopTask identifies which task is currently evaluated via an opaque
value of type TaskId. For now, it suffices to know that a TaskId value uniquely
identifies a task. The shared data source topLevelTasks gives access to all
top level tasks that are being worked on. It basically gives you a list of meta-
information values for each task that is being worked on. The TaskId value
serves as key to find more information about a specific task. The meta-task
information is fairly extensive, as displayed in Fig. 22. Right now, we are only
interested in the items field that describes each and every top level task with a
(TaskListItem Void) record value. It gives you its TaskId identification value
and the current task value. The current task value may not seem very interesting
for tasks of type (Task Void), because it can only deliver Void. Still, one can
tell whether or not this value is present, and, if so, whether or not it is stable.
In the iTask system we can obtain a task list for parallel collections of tasks.
The TaskMeta information is a list of key-value pairs that is used for layout
purposes. This does not concern us right now. More interesting for keeping track
of progress are the ManagementMeta and ProgressMeta model types. With this
information, we can learn of a task’s starting time, possible deadline, when it
was last worked on, by whom it was issued, and so on.

Example 20. Monitoring tasks
The easiest way to monitor the current tasks is by adding the following task to
your application:

monitorTaskList :: Task Void

monitorTaskList

= viewSharedInformation (Title "Task�list:") [] topLevelTasks
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>>| return Void

derive class iTask TaskList, TaskListId

:: TaskList a = { listId :: TaskListId a
, items :: [TaskListItem a]
}

:: TaskListItem a = { taskId :: TaskId
, value :: TaskValue a // Section 4.3
, taskMeta :: TaskMeta
, managementMeta :: Maybe ManagementMeta
, progressMeta :: Maybe ProgressMeta
}

:: TaskMeta :== [TaskAttribute]
:: TaskAttribute :== (String, String)
:: ManagementMeta = { title :: Maybe String

, worker :: UserConstraint // Section 6.2
, role :: Maybe Role // Section 6.1
, startAt :: Maybe DateTime // Section 5.1
, completeBefore :: Maybe DateTime
, notifyAt :: Maybe DateTime
, priority :: TaskPriority
}

:: ProgressMeta = { issuedAt :: DateTime
, issuedBy :: User // Section 6.2
, status :: Stability // Section 4.3
, firstEvent :: Maybe DateTime
, latestEvent :: Maybe DateTime
}

:: TaskPriority = HighPriority
| NormalPriority
| LowPriority

Fig. 22. The model types that provide task meta-information.

Using the technique described in Sect. 5.3, it connects a display to the topLevel
Tasks shared data source, thus allowing the end user to keep an up-to-date
view of the set of top level tasks. As soon as the user chooses to continue,
monitorTaskList terminates. �

7.2 Monitoring Data

Interactive tasks can be connected with a shared data source. This is useful, as
demonstrated by Example 20, because it keeps us up-to-date with the current
value of the shared data source. However, sometimes we need to know when a
shared data source is altered. In general, we want to impose a condition on the
read value of a shared data source that acts as a trigger to continue evaluation.
This can be done with the task function wait:
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wait :: d (r -> Bool) (ReadWriteShared r w) -> Task r | descr d & iTask r

Just like interactive tasks, wait receives a description of its purpose that is
displayed to the user. The predicate p of type (r -> Bool) is a condition on the
current read value of the shared data source of type (ReadWriteShared r w).
As soon as the shared data source has a read value x for which (p x) evaluates
to True, then this also results in a stable task value x for the wait task.

Example 21. Monitoring data
Consider this application of the wait task function:

waitForChange :: (ReadWriteShared r w) -> Task r | iTask r

waitForChange rws

= get rws

>>= \current -> wait (Title "Waiting�for�new�value:") ((=!=) current) rws

The task first reads the current value of the shared data source, and then mon-
itors the shared data source until it has a different value. This difference is
determined by the generic unequality operator =!= that is part of the iTask
class. (This is also true for the generic equality operator ===.) �

7.3 Change Course of Action

In the previous two sub sections we have discussed how to monitor tasks and
shared data sources. This can be used to signal deviating or unexpected behavior,
and try to respond to these situations.

For signalling, TOP supports exception handling in a common try-catch style.
We can use the following two task functions for this purpose:

throw :: !e -> Task a | iTask a & iTask e

try :: (Task a) (e -> Task a) -> Task a | iTask a & iTask e

When a task encounters a situation that cannot be handled locally or sufficiently
gracefully, it can throw an exception value, using the task function (throw e),
where e is an arbitrary expression that is completely reduced to a value. The
expression can use the available local information to create some useful model
value. As always, any type is valid, provided that the generic machinery has
been made available for it. In (try t r), task t is evaluated. If it throws no
exceptional value then the task value of t is also the task value of (try t r).
However, if at some point within evaluation of t an exceptional value v is thrown,
then evaluation of t is abandoned. If the type of the exceptional value v can be
unified at run-time with the statically known type e of the exception handler
r, then evaluation continues with (r v). In that case this is also the result of
(try t r). If the two types cannot be unified (typically when an exception is
raised for which this exception handler has not been designed) then (try t r)
itself re-throws the very same exceptional value v, hoping that its context can
handle the exception. Uncaught exceptions that escape all exception handlers
are finally caught at the top-level, and only reported to the user.
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Example 22. File import and export exceptions
In Sect. 5.4 we have introduced the basic file import and export task functions
importTextFile and exportTextFile. Both functions might throw an excep-
tion of type FileException:

:: FileException = FileException !FilePath !FileError

:: FileError = CannotOpen | CannotClose | IOError

Here, FilePath has the same role as in the argument of the two task functions
and is supposed to point to a valid text file. The FileError values provide more
detail about the nature of the exception. In case of CannotOpen, the indicated
file could not be opened, either because it did not exist or because it was locked,
perhaps by another task or application. In case of CannotClose, the indicated
file could not be closed after reading the content. Other errors are report by
means of IOError.

With these exceptions, we can enhance the tasks that were defined in
Example 14, viz. importTracks and exportTracks that both assumed that every-
thing is executed flawlessly. For importTracks, it makes sense to alter the task
result type to a Maybe value that signals that the file was not read properly:

importTracks :: FilePath -> Task (Maybe [Track])

importTracks filepath

= try ( importTextFile filepath

>>= \content -> return (Just (toTrackList (tabSeparatedEntries content)))

) handleFileError

where
handleFileError :: FileException -> Task (Maybe [Track])

handleFileError _ = return Nothing

For exportTracks, we alter the task value type to a Bool to properly report
success or failure:

exportTracks :: FilePath [Track] -> Task Bool

exportTracks filepath tracks

= try ( exportTextFile filepath (tabSeparatedString (fromTrackList tracks))

>>| return True

) handleFileError

where
handleFileError :: FileException -> Task Bool

handleFileError _ = return False

Note how both task functions introduce an exception handler with an explicit
type. This is required by the signature of try, which needs to know for which
type the event handler is defined. �

For responding, TOP allows you to terminate currently running tasks as well as
dynamically create new tasks.
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removeTask :: !TaskId !(ReadOnlyShared (TaskList a))

-> Task Void | iTask a

appendTopLevelTaskFor :: !user !(Task a) -> Task TaskId | iTask a

& toUserConstraint user

(removeTask tid sds) locates the task that is identified by tid within the given
shared data source task list administration sds and stops and removes that
task if found. Note that for argument sds, you can use the shared data source
topLevelTasks that was defined in Sect. 7.1. (appendTopLevelTaskFor u t)
dynamically creates a new task t for (any of the) user(s) u, in a similar way to the
task assignment operator @: (Sect. 6.2). The difference is that appendTopLevel
TaskFor only spawns t and returns with the stable task value that identifies the
spawned task. In contrast, (u @: t) creates a stub in the current task that tells
the current user that task t has been spawned for (any of the) user(s) u, and
that you need to wait for its result task value.

Example 23. Birthday cake at the Clean company
In the Clean company, it is a good habit to celebrate one’s birthday with cake.
We develop a task to select a time of day and invite everybody else for cake. We
get to know our colleagues via the task (get userAccounts) (Fig. 17). From
this list it is easy to obtain all names:

names :: [UserAccount] -> [UserId]

names accounts

= [uid \\ {credentials={username=Username uid}} <- accounts]

To invite everybody (except yourself) and announce your birthday, we need to
obtain our identity with (get currentUser) (Sect. 7.1) and our name.

name :: User -> UserId

name (AuthenticatedUser id _ _) = id name

anonymous = "somebody"

The invitation displays the occasion and time.

cake :: UserId Time -> Task String

cake person time

= viewInformation "Birthday�cake" [] ("To�celebrate�" <+++ person <+++

"’s�birthday,�we�have�cake�at�" <+++ time

)

All that remains to be done is to put these parts in the right order:

1birthdaycake :: Task [TaskId]

2birthdaycake

3= get userAccounts

4>>= \accounts -> get currentUser

5>>= \me -> get currentTime

6>>= \now -> updateInformation (Title "When�to�eat�cake?") [] now

7>>= \time -> let colleagues = removeMembers (names accounts) [name me]
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8invite = cake (name me) time in
9all (map (flip appendTopLevelTaskFor invite) colleagues)

The user accounts are obtained (line 3), the current user is determined (line 4),
as well as the current time (line 5). We think of a suitable time to treat to cake
(line 6) and exclude ourselves from the list of colleagues (line 7). The invitation
task (line 8) is finally sent to every colleague (line 9). The all function is a task
combinator function defined for the occasion: it receives a list of tasks, executes
them all, and collects their resulting task values for further processing:

all :: [Task a] -> Task [a] | iTask a

all [] = return []

all [t:ts] = t

>>= \v -> all ts

>>= \vs -> return [v:vs]

�

Exercise 14. Improved user feedback
In Example 22, the exception handlers do not attempt to inform the user that
anything has gone wrong. Define for both task functions better exception han-
dlers that tell the user what exception has occurred, and remind her of the file
path that was used.

Exercise 15. Remove birthday cake invitations
In Example 23, all users except the initiator receive an extra task. Of course
it is polite to remove these tasks for these users after the event. Extend the
birthdaycake task in such a way that the extra tasks are removed, using the
removeTask function that has been presented in this section.

8 Related Work

The TOP paradigm emerged during continued work on the iTask system. In its
first incarnation [2], iTask1, the notion of tasks was introduced for the specifi-
cation of dedicated workflow management systems. In iTask1 and its successor
iTask2 [3], a task is an opaque unit of work that, once completed, yields a result
from which subsequent tasks can be computed. When deploying these systems
for real-world applications, viz. in telecare [4] and modeling the dynamic task of
coordinating Coast Guard Search and Rescue operations [5,6] it was observed
that this concept of task is not adequate to express the coordination of tasks
where teams constantly need to be informed about the progress made by others.
The search for better abstraction has resulted in the TOP approach and task
concept as introduced in these lecture notes.

Task-Oriented programming touches on two broad areas of research. First
the programming of interactive multi-user (web) applications, and second the
specification of tasks.

There are many languages, libraries and frameworks for programming multi-
user web applications. Some of them are academic, and many more are in the
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open-source and proprietary commercial software markets. Examples from the
academic functional programming community include: the Haskell cgi library [7];
the Curry approach [8]; writing xml applications [9] in SMLserver [10]; WashCGI
[11]; the Hop [12,13] web programming language; Links [14] and formlets [15].
All these solutions address the technical challenges of creating multi-user web
applications. Naturally, these challenges also need to be addressed within the
TOP approach. The principal difference between TOP and these web technolo-
gies is the emphasis on using tasks both as modeling and programming unit to
abstract from these issues, including coordination of tasks that may or may not
have a value.

Tasks are an ambiguous notion used in different fields, such as Workflow
Management Systems (WFMS), human-computer interaction, and ergonomics.
Although the iTask1 system was influenced and partially motivated by the use
of tasks in WFMSs [16], iTask3 has evolved to the more general TOP app-
roach of structuring software systems. As such, it is more similar in spirit to the
WebWorkFlow project [17], which is an object oriented approach that breaks
down the logic into separate clauses instead of functions. Cognitive Task Analy-
sis methods [18] seek to understand how people accomplish tasks. Their results
are useful in the design of software systems, but they are not software devel-
opment methods. In Robotics the notion of task and even the “Task-Oriented
Programming” moniker are also used. In this field it is used to indicate a level
of autonomy at which robots are programmed. To the best of our knowledge,
TOP as a paradigm for interactive multi-user systems, rooted in functional pro-
gramming is a novel approach, distinct from other uses of the notion of tasks in
the fields mentioned above.

9 Conclusions and Future Work

In this paper we introduced Task-Oriented Programming, a paradigm for pro-
gramming interactive web-based multi-user applications in a domain specific
language, embedded in a pure functional language.

The distinguishing feature of TOP is the ability to concisely describe and
implement collaboration and complex interaction of tasks. This is achieved by
four core concepts: (1) Tasks observe intermediate values of other tasks and
react on these values before the other tasks are completely finished. (2) Tasks
running in parallel communicate via shared data sources. Shared data sources
enable useful lightweight communication between related tasks. By restricting
the use of shared data sources we avoid an overly complex semantics. (3) Tasks
interact with users based on arbitrary typed data, the interface required for this
type is derived by type driven generic programming. (4) Tasks are composed to
more complex tasks using a small set of combinators.

Commonly, web applications are heterogeneous, i.e.: they are constructed out
of components that have been developed using different programming languages
and programming tools. An advantage of the TOP approach is that even complex
applications can be defined in one formalism.
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TOP is embedded in Clean by offering a newly developed iTask3 library. We
have used TOP successfully for the development of a prototype implementation
of a Search and Rescue decision support system for the Dutch Coast Guard.
The coordination of such operations requires up-to-date information of subtasks,
which is precisely suited for TOP. The iTask system has also successfully been
used to investigate more efficient ways of working on Navy Vessels. The goal
here is to get a significant reduction of crew members and systems. There are
many application areas where the TOP approach can be of use. With industrial
partners we want to investigate and validate the suitability of the TOP paradigm
to handle complex real world distributed application areas in several domains.

Acknowledgements. The authors wish to thank the reviewers for their constructive
feedback.

A Functional Programming in Clean

This section gives a brief overview of functional programming in Clean [19].
Clean is a pure lazy functional programming language. It has many similarities
with Haskell .

A.1 Clean Nutshells

This section contains a set of brief overviews of topics in Clean. These overviews
should be short enough to read while studying other parts of this paper without
loosing the flow of those parts. The somewhat experienced functional program-
mer is introduced to particular syntax or language constructs in Clean.

Modules. A module with name M is represented physically by two text files
that reside in the same directory: one with file name M.dcl and one with file
name M.icl.

The M.icl file is the implementation module. It contains the (task) functions
and data type definitions of the module. Its first line repeats its name:

implementationmodule M

An implementation module can always use its own definitions. By importing
other modules, it can use the definitions that are made visible by those modules
as well:

import M1, M2, . . ., Mn

The M.dcl file is the definition module. It contains M ’s interface to other
modules. The first line of a definition module also gives its name:

definition module M
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A definition module basically serves two purposes.

– It exports identifiers of its own implementation module by repeating their
signature. Hence, identifiers which signatures are not repeated are cloaked for
other modules.

– It acts as a serving-hatch for identifiers that are exported by other modules
by importing their module names. In this way you can create libraries of large
collections of related identifiers.

Operators. Operators are binary (two arguments) functions that can be writ-
ten in infix style (between its arguments) instead of the normal prefix style
(before its arguments). Operators are used to increase readability of your pro-
grams. With an operator declaration you associate two other attributes as well.
The first attribute is the fixity which indicates in which direction the binding
power works in case of operators with the same precedence. It is expressed by
one of the keywords infixl, infix, and infixr. The second attribute is its
precedence which indicates the binding power of the operator. It is expressed as
an integer value between 0 and 9, in which a higher value indicates a stronger
binding power.

The snapshot below of common operators as defined in the host language
Clean illustrates this.

class (==) infix 4 a :: !a !a -> Bool

class (+) infixl 6 a :: !a !a -> a

class (-) infixl 6 a :: !a !a -> a

class (*) infixl 7 a :: !a !a -> a

class (/) infixl 7 a :: !a !a -> a

class (^) infixr 8 a :: !a !a -> a

(These operators are overloaded to allow you to instantiate them for your own
types.) Due to the lower precedence of ==, the expression x + y == y + x must
be read as (x + y) == (y + x). Due to the fixities, the expression x - y - z must
be read as (x - y) - z, and x ^ y ^ z as x ^ (y ^ z). In case of expressions that
use operators of the same precedence but with conflicting fixities you must work
out the correct order yourself using brackets ( ).

Guards. Pattern matching is an expressive way to perform case distinction
in function alternatives, but it is limited to investigating the structure of func-
tion arguments. Guards extend this with conditional expressions. Here are two
examples.

sign :: !Int -> Int

sign 0 = 0

sign x

| x < 0 = -1

sign x = 1

1instance < Date where
2< x y

3| x.year < y.year = True

4| x.year == y.year

5| x.mon < y.mon = True

6| x.mon == y.mon = x.day < y.day

7| otherwise = False

8| otherwise = False
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In sign, the first alternative matches only if the argument evaluates to the value
0. In that case, sign results in the value 0. The second alternative imposes
no pattern restrictions, but it does have a guard (| x < 0). Even though the
pattern always matches, evaluation of the guard must result in True if the second
alternative of sign is to be chosen. Therefor, the value -1 is returned only if
the argument is a negative number. Finally, the last alternative has neither a
pattern restriction nor a guarded restriction, and therefor matches all remaining
cases, which concern the positive numbers. In those cases, the result is 1.

The implementation of < for Date values illustrates nested guards. In con-
trast with top-level guards, nested guards must be completed with otherwise to
catch any remaining cases. The otherwise keyword can also be used in top-level
guards, as is shown on the last line of the < function. The < function first checks
the guard on line 3 and returns True if the first year field is smaller than the
second year field. If the guard evaluates to False, then the second guard on
line 4 is tested. In case of equal year field values, evaluation continues with the
nested guards on lines 5–7 that inspect the month fields. If the first nested guard
on line 5 evaluates to True, then the comparison also yields True. In case of a
False result, the second nested guard on line 6 is tested. In case of equal month
field values, the comparison of the day values provides the final answer. Finally,
to complete the nested guards, the last case on line 7 concludes that the first
argument is not smaller than the second, a conclusion that is shared by the last
top-level guard on line 8.

ChoiceandPatternMatching. InExample 8 the functionfirstYearPossible
uses pattern matching to relate values of type Medium with year values. The
enterYear function uses if to determine whether or not the user’s input is
valid. Unlike most programming languages, in which an if-then-else construct is
supported in the language, it can be straightforwardly incorporated as a function
in a lazy functional language, using pattern matching as well. Let’s examine the
type and implementation of if:

if :: !Bool a a -> a

if True then else = then

if _ _ else = else

The type tells you that the Bool argument is strict in if: it must always be eval-
uated in order to know whether its result is True or False. The implementation
uses the evaluation strategy of the host language to make the choice effective.
The if function has two alternatives, each indicated by repeating the function
name and its arguments. Alternatives are examined in textual order, from top
to bottom. Up until now the arguments of functions were only variables, but in
fact they are patterns. A pattern p is one of the following.
– A variable, expressed by means of an identifier that starts with a lowercase

character or simply the wildcard symbol in case the variable is not used at all.
A variable identifies and matches any computation without forcing evaluation.
Within the same alternative, the variable identifiers must be different.
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– A constant in the language, such as 0, False, 3.14, ’$’, and "hello,�world".
To match successfully, the argument is evaluated fully to determine whether
it has exactly the same constant value.

– A composite pattern, which is either a tuple (p1, . . . ,pn), a data constructor
(d p1 . . . pn) where n is the arity of d, a record {f1=p1, . . . ,fn=pn}, or a list
[p1, . . . ,pn] or [p1, . . . ,pn : pn+1]. Matching proceeds recursively to each
part that is specified in the pattern. In case of records, only the mentioned
record fields are matched. In case of lists, p1 upto pn are matched with the
first n elements of the list, if present, and pn+1 with the remainder of the list.

Patterns control evaluation of arguments until it is discovered that it either
matches or not. Only if all patterns in the same alternative match, computation
proceeds with the corresponding right-hand side of that alternative; otherwise
computation proceeds with the next alternative.

Hence, in the case of if its second argument is returned if the evaluation of
the first argument results in True. If it results in False the second alternative
is tried. Because it does not impose any restriction, and hence also causes no
further evaluation, it matches, and the third argument is returned.

In firstYearPossible the data constructors are also matched from top to
bottom. The last case always matches, and returns the value 0.

List Comprehensions. Lists are the workhorse of functional programming.
List comprehensions allow you to concisely express list manipulations. Their
simplest form is:

[ e \\ p <- g ]

Generator g is an expression that is or yields a list. (Note that g can also
evaluate to an array. In that case you need to use <-: instead of <- to extract
array elements.) From the generator, values are extracted from the front to the
back. Each value is matched with the pattern p. If this succeeds, then the pattern
variables in p are bound to the corresponding parts of the extracted value, and
expression e, that typically uses these bound pattern variables, yields an element
of the result list. If matching fails, then the next element of the generator is tried.

Besides the pattern p, elements can also be selected using a guarded condition:

[ e \\ p <- g | c ]

Here, c is a boolean expression that can use any of the pattern variables that
are introduced at generator patterns to its left. For each extracted value from
the sequence for which the pattern match succeeds, the guarded condition is
evaluated. Only if the condition also evaluates to True, a list element is added.

It is possible to use several pattern-generator pairs p <- g in one list compre-
hension. They are combined either in parallel with the & symbol or as a cartesian
product with the , symbol.

– In p1 <- g1 & p2 <- g2, values are extracted from g1 and g2 at the same index
positions and matched against p1 and p2 respectively. The shortest generator
determines termination of this value-extraction process.
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– In p1 <- g1 , p2 <- g2, for each extracted value from g1 that matches p1 all
values from g2 are extracted and matched against p2.

Each and every one of the above ways to manipulate lists is already very expres-
sive. However, they can be combined in arbitrary ways. This can be daunting at
times, but once you get used to the expressive power, list comprehensions often
prove to be the best tool for list processing tasks.

λ-Abstractions. Lambda-abstractions \x -> e allow you to introduce anony-
mous functions ‘on the spot’. They typically occur in situations where an ad hoc
function is required, for which it does not make much sense to come up with a
separate function definition. This frees you from thinking of a proper identifier
and perhaps a type signature as well. The bind combinator >>= is an excellent
example of such a situation because in general you need to give a name x to
the task value of the first task, and want to give an expression e that uses x. If
you weren’t interested in x, you would have used the näıve then combinator >>|
instead.

Modelling Side-Effects. In a pure functional programming language all results
must be explicit function results. This implies that a changed state should also
be a function result. The type of the Start function in Example 1 is *World ->
*World, this indicates that it changes the world. There are two things worth
noting at this moment:

– The basic type World is annotated with the uniqueness attribute *. In a function
type any argument can be annotated with this attribute. This enforces the prop-
erty that whenever the function is evaluated, it has the sole reference to the
corresponding argument value. This is useful because it allows the function
implementation to destructively update that value without compromising the
semantics of the functional programming language. This can only be done if the
function body itself does not violate this uniqueness property. This is checked
statically.

– The basic type World represents the ‘external’ environment of a program. If
the Start function has an argument, the language assumes that it is of type
World. The language provides no other means to create a value of type World,
so if an application is to do any interaction with the external environment, it
must have a Start function with a uniquely attributed World argument.

Incorporating side-effects safely in a functional language has received a lot of
attention in the functional language research community. For lazy functional
languages a host of techniques has been proposed. Well-known examples are
monads, continuations, and streams. For eager functional languages, the situa-
tion is less complicated because in these languages programs exhibit an execution
order that is more predictable.
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Signatures. A signature x :: t declares that identifier x has type t. An identifier
x starts with a lowercase or uppercase letter and has no whitespace characters.
The type t can be either of the following forms.

– It is one of the basic types, which are: Bool, Int, Real, Char, String, File,
and World.

– It is a type variable. Their identifiers start with a lowercase character.
– It is a composite type, using one of the language type constructors [ ], { },

(,), and ->.
• If t is a type, then [t] is the list-of-t type.
• If t is a type, then {t} is the array-of-t type.
• If t1 and t2 are types, then (t1,t2) is the tuple-of-t1-and-t2 type. This

generalizes to t1 upto tn with 2 ≤ n ≤ 32, separating each type by ,.
Hence, (t1,t2,t3), (t1,t2,t3,t4) and so on are also tuple types.

• If t1 and t2 are types, then t1 -> t2 is the function-of-t1-to-t2 type. This
generalizes to t1. . . tn -> tn+1, where t1. . . tn are the argument types,
and tn+1 is the result type. The function argument types are separated
by whitespace characters. So, t1 t2 -> t3, t1 t2 t3 -> t4 and so on are also
function types.

– It is a custom defined type, using either an algebraic type or a record type.
Their type names are easily recognized because they always start with an
uppercase character. Examples of algebraic and record types can be found in
Sect. 3.3.

Signatures can be overloaded, in which case they are extended with one or
more overloading constraints, resulting in x :: t | tc1 a1 & . . . & tcn an. A
constraint tci ai is a pair of a type class tci and a type variable ai that must
occur in t. Note that tc1 a & tc2 a & . . . & tcn a can be shorthanded to tc1, tc2,
. . . ,tcn a.

Overloading. Overloading is a common and useful concept in programming
languages that allows you to use the same identifier for different, yet related,
values or computations. In the host language Clean overloading is introduced in
an explicit way: if you wish to reuse a certain identifier x, then you declare it
via a type class:

class x a1 . . . an :: t

with the following properties:

– the type variables a1 . . . an (n > 0) must be different and start with a
lowercase character;

– the type scheme t can be any type that uses the type variables ai.

This declaration introduces the type class x with the single type class mem-
ber x. It is possible to declare a type class x with several type class members x1

. . . xk:
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class x a1 . . . an
where x1 :: t1

...
xk :: tk

It is customary, but not required, that in this case identifier x starts with an
uppercase character. The identifiers xi need to be different, and their types ti
can use any of the type variables ai.

Type classes can be instantiated with concrete types. This must always be
done for all of its type variables and all type class members. The general form
of such an instantiation is:

instance x t′1 . . . t′n | tc1 b1 & . . . & tcm bm
where . . .

with the following properties:

– the types t′1 . . . t′n are substituted for the type variables a1 . . . an of the
type class x. They are not required to be different but they are not allowed
to share type variables;

– the types t′i can be overloaded themselves, in which case their type class con-
straints tci bi are enumerated after | (which is absent in case of no constraints).
The type variable bi must occur in one of the types t′i;

– the where keyword is followed by implementations of all class member func-
tions. Of course, these implementations must adhere to the types that result
after substitution of the corresponding type schemes ti.

Algebraic and ∃-Types. The BoxedTask type in Fig. 6 is an example of
an algebraic type that is existentially quantified. Algebraic types allow you to
introduce new constants in your program, and give them a type at the same
time. The general format of an algebraic type declaration is:

:: t a1 . . . am = d1 t11 . . . t1c1 | . . . | dn tn1 . . . tncn

with the following properties:

– the type constructor t is an identifier that starts with an uppercase character;
– the type variables ai (0 ≤ i ≤ m) must be different and start with a lowercase

character;
– the data constructors di (1 ≤ i ≤ n) must be different and start with an

uppercase character;
– the data constructors can have zero or more arguments. An argument is either

one of the type variables ai or a type that may use the type variables ai.

From these properties it follows that all occurrences of type variables in data
constructors (all right hand side declarations) must be accounted for in the type
constructor (on the left hand side). With existential quantification it is possible
to circumvent this: for each data constructor one can introduce type variables
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that are known only locally to the data constructor. A data constructor can be
enhanced with such local type variables in the following way:

E. b1 . . . bk : di ti1 . . . tici & tc1 x1 & . . . & tcl xl

with the following properties:

– the type variables bj (0 ≤ j ≤ k) must be different and start with a lowercase
character;

– the arguments of the data constructor di can now also use any of the existen-
tially quantified type variables bi;

– the pairs tc x are type class constraints, in which tc indicates a type class and
x is one of the existentially quantified type variables bi.

From these properties it follows that it does not make sense to introduce
an existentially quantified type variable in a data constructor without adding
information how values of that type can be used. There are basically two ways
of doing this. The first is to add functions of the same type that handle these
encapsulated values (in a very similar way to methods in classes in object ori-
ented programming). The second is to constrain the encapsulated type variables
to type classes.

Record Types. Record types are useful to create named collections of data.
The parts of such a collection can be referred to by means of a field name. The
general format of a record type declaration is:

:: t a1 . . . am = { r1 :: t1, . . . , rn :: tn }

with the following properties:

– the type constructor t is an identifier that starts with an uppercase character;
– the type variables ai (0 ≤ i ≤ m) must be different and start with a lowercase

character;
– the pairs ri :: ti (1 ≤ i ≤ n) determine the components of the record type.

The field names ri must be different and start with a lowercase character. The
types ti can use the type variables ai.

Just like algebraic types, record types can also introduce existentially quan-
tified type variables on the right-hand side of the record type. However, unlike
algebraic types, their use can not be constrained by means of type classes. Hence,
if you need to access these encapsulated values afterwards, you need to include
function components within the record type definition.

Disambiguating Records. Within a program record field names are allowed
to occur in several record types (the corresponding field types are allowed to
be different). This helps you to choose proper field names, without worrying
too much about their existence in other records. The consequence of this useful
feature is that once in a while you need to explicit about the record value that is
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created (in case of records with exactly the same set of record field names) and
when using record field selectors (either in a pattern match or with the .field
notation). Type constructor names are required to be unique within a program,
hence they are used to disambiguate these cases.

– When creating a record value, you are obliged to give a value to each and every
record field of that type. If a record has a field with a unique name, then it
is clear which record type is intended. Only if two records have the same set
of field names, you need to include the type constructor name t within the
record value definition.

. . . { t | f1 = e1, . . . , fn = en} . . .
– If a record pattern has at least one field with a unique name, then it is

clear which record type is intended. The record pattern is disambiguated by
including the type constructor name t in the pattern in an analogous way as
described above when creating a record value, except that you do not need
to mention all record fields and that the right hand sides of the fields are
patterns rather than expressions:

. . . { t | f1 = p1, . . . , fn = pn} . . .
– If a record field selection e.f uses a unique field name f , then it is clear

which record type is intended. A record field selection can be disambiguated
by including the type constructor name t as a field selector. Hence, e.t.f
states that field f of record type t must be used.

Record Updates. Record values are defined by enumerating each and every
record field, along with a value. Example 5 shows that new record values can
also be constructed from old record values. If r is a record (or an expression that
yields a record value), then a new record value can be created by specifying only
what record fields are different. The general format of such a record update is:

{ r & f1 = e1, . . . , fn = en}

This expression creates a new record value that is identical to r, except for the
fields fi that have values ei (0 < i ≤ n) respectively. A record field should occur
at most once in this expression.

Synonym Types. Synonym types only introduce a new type constructor name
for another type. The general formal of a type synonym declaration is:

:: t′ a1 . . . an :== t

with the following properties:

– the type constructor t′ is an identifier that starts with an uppercase character;
– the type variables ai (0 ≤ i ≤ n) must be different and start with a lowercase

character;
– the type t can be any type that uses the type variables ai. However, a synonym

type is not allowed to be recursive, either directly or indirectly.

Synonym types are useful for documentation purposes of your model types, as
illustrated in Example 4. Although the name t′ must be new, t′ does not introduce
a new type: it is completely exchangeable with any occurrence of t.
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Strictness. In the signature of the basic task function return the first argument
is provided with a strictness annotation, !. Recall that iTask is embedded in
Clean, which is a lazy language. In a lazy language, computation is driven by
the need to produce a result. As a simple example, consider the function const
that does nothing but return its first argument:

const x y = x

There is absolutely no need for const to evaluate argument y to a value. However,
argument x is returned by const, so its evaluation better produces a result or
otherwise const x y won’t produce a result either.

The more general, and more technical, way of phrasing this is the following.
Suppose we have a function f that has a formal argument x. Let e be a diverging
computation (it either takes infinitely long or aborts without producing a result).
If (f e) also diverges, then argument x is said to be strict in f . Note that
this is a property of the function, and not of the argument. In case of const,
it is no problem that argument y might be a diverging computation because
it is not needed by const to compute its result. The consequence is that with
respect to termination properties, it does not matter if strict function arguments
are evaluated before the function is called. In many cases, this increases the
performance of the application because you do not need to maintain suspended
computations (due to lazy evaluation), but instead can evaluate them to a result
and use that instead.

The strictness property of function arguments is expressed in the function
signature by prefixing the argument that is strict in that function with the !
annotation. In case of const, its signature is:

const :: !a b -> a
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jpf@di.ubi.pt

Abstract. These tutorial notes present a methodology for spreadsheet
engineering. First, we present data mining and database techniques to
reason about spreadsheet data. These techniques are used to compute
relationships between spreadsheet elements (cells/columns/rows), which
are later used to infer a model defining the business logic of the spread-
sheet. Such a model of a spreadsheet data is a visual domain specific
language that we embed in a well-known spreadsheet system.

The embedded model is the building block to define techniques for
model-driven spreadsheet development, where advanced techniques are
used to guarantee the model-instance synchronization. In this model-
driven environment, any user data update has to follow the model-instance
conformance relation, thus, guiding spreadsheet users to introduce cor-
rect data. Data refinement techniques are used to synchronize models and
instances after users update/evolve the model.

These notes briefly describe our model-driven spreadsheet environment,
the MDSheet environment, that implements the presented methodology.
To evaluate both proposed techniques and the MDSheet tool, we have con-
ducted, in laboratory sessions, an empirical study with the summer school
participants. The results of this study are presented in these notes.

1 Introduction

Spreadsheets are one of the most used software systems. Indeed, for a non-
professional programmer, like for example, an accountant, an engineer, a manager,
etc., the programming language of choice is a spreadsheet. These programmers are
often referred to as end-user programmers [53] and their numbers are increasing

This work is part funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) within projects
FCOMP-01-0124-FEDER-010048, and FCOMP-01-0124-FEDER-020532. The first author
was funded by FCT grant SFRH/BPD/73358/2010.

c© Springer International Publishing Switzerland 2015
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rapidly. In fact, they already outnumber professional programmers [68]! The
reasons for the tremendous commercial success that spreadsheets experience
undergoes continuous debate, but it is almost unanimous that two key aspects
are recognized. Firstly, spreadsheets are highly flexible, which inherently guaran-
tees that they are intensively multi-purpose. Secondly, the initial learning effort
associated with the use of spreadsheets is objectively low. These facts suggest that
the spreadsheet is also a significant target for the application of the principles of
programming languages.

As a programming language, and as noticed by Peyton-Jones et al. [45],
spreadsheets can be seen as simple functional programs. For example, the fol-
lowing (spreadsheet) data:

A1 = 44
A2 = (A1-20)* 3/4
A3 = SUM(A1,A2)

is a functional program! If we see spreadsheets as a functional program, then
it is a very simple and flat one, where there are no functions apart from the
built-in ones (for example, the SUM function is a predefined one). A program
is a single collection of equations of the form “variable = formula”, with no
mechanisms (like functions) to structure our code. When compared to modern
(functional) programming languages, spreadsheets lack support for abstraction,
testing, encapsulation, or structured programming. As a result, they are error-
prone: numerous studies have shown that existing spreadsheets contain too many
errors [57,58,62,63].

To overcome the lack of advanced principles of programming languages, and,
consequently the alarming rate of errors in spreadsheets, several researchers
proposed the use of abstraction and structuring mechanisms in spreadsheets:
Peyton-Jones et al. [45] proposed the use of user-defined functions in spread-
sheets. Erwig et al. [29], Hermans et al. [39], and Cunha et al. [19] introduced
and advocate the use of models to abstractly represent the business logic of the
spreadsheet data.

In this tutorial notes, we build upon these results and we present in detail a
Model-Driven Engineering (MDE) approach for spreadsheets. First, we present
the design of a Visual, Domain Specific Language (VDSL). In [29] a domain
specific modeling language, named ClassSheet, was introduced in order to allow
end users to reason about their spreadsheets by looking at a concise, abstract
and simple model, instead of looking into large and complex spreadsheet data.
In fact, ClassSheets offer to end users what API definitions offer to program-
mers and database schemas offer to database experts: an abstract mechanism to
understand and reason about their programs/databases without having to look
into large and complex implementations/data. ClassSheets have both a textual
and visual representation, being the later very much like a spreadsheet! In the
design of the ClassSheet language we follow a well-know approach in a func-
tional setting: the embedding of a domain specific language in a host functional
language [44,70]. To be more precise, we define the embedding of a visual, domain
specific modeling language in a host spreadsheet system.
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Secondly, we present the implementation of this VDSL. To provide a full MDE
environment to end users we use data refinement techniques to express the type-
safe evolution of amodel (after an end-user update) and the automatic co-evolution
of the spreadsheet data (that is, the instance) [28]. This novel implementation of
the VDSL guarantees the model/instance conformance after the model evolves.
Moreover, we also use principles from syntax-based editors [27,30,47] where an
initial spreadsheet instance is generated from the model, that has some knowl-
edge about the business logic off the data. Using such knowledge the spreadsheet
instance guides end users introducing correct data. In fact, in these generated
spreadsheets only updates that conform to the model are allowed.

Finally, we present the results of the empirical study we conducted with
the school participants in order to realize whether the use of MDE approach
is useful for end users, or not. In the laboratory sessions of this tutorial, we
taught participants to use our model-driven spreadsheet environment. Then, the
students were asked to perform a set of model-driven spreadsheet tasks, and to
write small reports about the advantages/disadvantages of our approach when
compared to a regular spreadsheet system.

The remaining of this paper is organized as follows. In Sect. 2 we give a brief
overview of the history of spreadsheets. We also present some horror stories that
recently had social and financial impact. In Sect. 3 we present data mining and
database techniques that are the building blocks of our approach to build mod-
els for spreadsheets. Section 4 presents models for defining the business logic
of a spreadsheet. First, we present in detail ClassSheet models. After that, we
present techniques to automatically infer such a model from (legacy) spread-
sheet data. Next, we show the embedding of the ClassSheet models in a widely
used spreadsheet system. Section 5 presents a framework for the evolution of
model-driven spreadsheets in Haskell. This framework is expressed using data
refinements where by defining a model-to-model transformation we get for free
the forward and backward transformations that map the data (i.e., the instance).
In Sect. 6 we present MDSheet: a MDE environment for spreadsheets. Finally,
in Sect. 7 we present the results of the empirical study with the school partici-
pants where we validate the use of a MDE approach in spreadsheet development.
Section 8 presents the conclusions of the tutorial paper.

2 Spreadsheets: A History of Success?

The use of a tabular-like structure to organize data has been used for many
years. A good example of structuring data in this way is the Plimpton 322
tablet (Fig. 1), dated from around 1800 BC [65]. The Plimpton 322 tablet is an
example of a table containing four columns and fifteen rows with numerical data.
For each column there is a descriptive header, and the fourth column contains
a numbering of the rows from one to fifteen, written in the Babylonian number
system. This tablet contains Pythagorean triples [14], but was more likely built
as a list of regular reciprocal pairs [65].

A tabular layout allows a systematic analysis of the information displayed
and it helps to structure values in order to perform calculations.



Spreadsheet Engineering 249

Fig. 1. Plimpton 322 – a tablet from around 1800 BC (A good explanation of the
Plimpton 322 tablet is available at Bill Casselman’s webpage http://www.math.ubc.
ca/∼cass/courses/m446-03/pl322/pl322.html).

The terms spreadsheet and worksheet originated in accounting even before
electronic spreadsheets existed. Both had the same meaning, but the term work-
sheet was mostly used until 1970 [16]. Accountants used a spreadsheet or work-
sheet to prepare their budgets and other tasks. They would use a pencil and
paper with columns and rows. They would place the accounts in one column,
the corresponding amount in the next column, etc. Then they would manually
total the columns and rows, as in the example shown in Fig. 2. After 1970 the
term spreadsheet became more widely used [16].

This worked fine, except when the accountant needed to make a change to
one of the numbers. This change would result in having to recalculate, by hand,
several totals!

The benefits make (paper) tables applicable to a great variety of domains,
like for example on student inquiries or exams, taxes submission, gathering and

Fig. 2. A hand-written budget spreadsheet.

http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html
http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html
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Fig. 3. Paper spreadsheet for a multiplication table.

Fig. 4. Chess boards have a tabular layout, with letters identifying columns and num-
bers identifying rows.

analysis of sport statistics, or any purpose that requires input of data and/or
performing calculations. An example of such a table used by students is the
multiplication table as displayed in Fig. 3.

This spreadsheet has eleven columns and eleven rows, where the first row
and column work as a header to identify the information, and the actual results
of the multiplication table are shown in the other cells of the table.

Tabular layouts are also common in games. The chess game is a good example
of a tabular layout game as displayed in Fig. 4.

Electronic Spreadsheets. While spreadsheets were very used on paper, they
were not used electronically due to the lack of software solutions. During the
1960s and 1970s most financial software bundles were developed to run on main-
frame computers and time-sharing systems. Two of the main problems of these
software solutions were that they were extremely expensive and required a techni-
cal expertise to operate [16]. All that changed in 1979 when VisiCal was released
for the Apple II system [13]. The affordable price and the easy to use tab-
ular interface made it a tremendous success, mainly because it did not need
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any programming knowledge to be operated. VisiCal was the first spreadsheet
software to include a textual interface composed by cells and established how
the graphical interface of every other spreadsheet software that came after it
would be like. It consisted of a column/row tabulation program with an WYSI-
WYG interface, providing cell references (format A1, A3..A6). Other important
aspect included the fast recalculation of values every time a cell was changed,
as opposed to previous solutions that took hours to compute results under the
same circumstances [16]. VisiCal not only made spreadsheets available to a wider
audience, but also led to make personal computers more popular by introducing
them to the financial and business communities and others.

In 1984, Lotus 1-2-3 was released for MS-DOS with major improvements,
which included graphics generation, better performance, and user friendly inter-
face, which led it to dethrone VisiCal as the number one spreadsheet system.
It was only in 1990, when Microsoft Windows gained significant market share,
that Lotus 1-2-3 lost the position as the most sold spreadsheet software. At that
time only Microsoft Excel1 was compatible with Windows, which raised sales by
a huge amount making it the market leading spreadsheet system [16].

In the mid eighties the free software movement started and soon free open
source alternatives can be used, namely Gnumeric2, OpenOffice Calc3 and deriv-
atives like LibreOffice Calc4.

More recently, web/cloud-based spreadsheet host systems have been devel-
oped, e.g., Google Drive5, Microsoft Office 3656, and ZoHo Sheet7 which are mak-
ing spreadsheets available in different type of mobile devices (from laptops, to
tablets and mobile phones!). These systems are not dependent on any particular
operating system, allow to create and edit spreadsheets in an online collaborative
environment, and provide import/export of spreadsheet files for offline use.

In fact, spreadsheet systems have evolved into powerful systems. However, the
basic features provided by spreadsheet host systems remain roughly the same:

– a spreadsheet is a tabular structure composed by cells, where the columns are
referenced by letters and the rows by numbers;

– cells can contain either values or formulas;
– formulas can have references for other cells (e.g., A1 for the individual cell in

column A and row 1 or A3:B5 for the range of cells starting in cell A3 and
ending in cell B5);

– instant automatic recalculation of formulas when cells are modified;
– ease to copy/paste values, with references being updated automatically.

1 Microsoft Excel: http://office.microsoft.com/en-us/excel.
2 Gnumeric: http://projects.gnome.org/gnumeric.
3 OpenOffice: http://www.openoffice.org.
4 LibreOffice: http://www.libreoffice.org.
5 Google Drive: http://drive.google.com.
6 Microsoft Office 365: http://www.microsoft.com/en-us/office365/online-software.

aspx.
7 ZoHo Sheet: http://sheet.zoho.com.

http://office.microsoft.com/en-us/excel
http://projects.gnome.org/gnumeric
http://www.openoffice.org
http://www.libreoffice.org
http://drive.google.com
http://www.microsoft.com/en-us/office365/online-software.aspx
http://www.microsoft.com/en-us/office365/online-software.aspx
http://sheet.zoho.com
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Spreadsheets are a relevant research topic, as they play a pivotal role in modern
society. Indeed, they are inherently multi-purpose and widely used both by indi-
viduals to cope with simple needs as well as by large companies as integrators of
complex systems and as support for business decisions [40]. Also, their popularity
is still growing, with an almost impossible to estimate but staggering number of
spreadsheets created every year. Spreadsheet popularity is due to characteristics
such as their low entry barrier, their availability on almost any computer and their
simple visual interface. In fact, being a conventional language that is understood
by both professional programmers and end users [53], spreadsheets are many times
used as bridges between these two communities which often face communication
problems. Ultimately, spreadsheets seem to hit the sweet spot between flexibility
and expressiveness.

Spreadsheets have probably passed the point of no return in terms of impor-
tance. There are several studies that show the success of spreadsheets:

– it is estimated that 95 % of all U.S. firms use them for financial reporting [60];
– it is also known that 90 % of all analysts in industry perform calculations in

spreadsheets [60];
– finally, studies show that 50 % of all spreadsheets are the basis for deci-

sions [40].

This importance, however, has not been achieved together with effective
mechanisms for error prevention, as shown by several studies [57,58]. Indeed,
spreadsheets are known to be error-prone, a claim that is supported by the long
list of real problems that were blamed on spreadsheets, which is compiled, avail-
able and frequently updated at the European Spreadsheet Risk Interest Group
(EuSpRIG) web site8.

One particularly sad example in this list involves our country (and other
European countries), which currently undergoes a financial rescue plan based
on intense austerity whose merit was co-justified upon [64]. The authors of that
paper present evidence that GDP growth slows to a snail’s pace once the sov-
ereign debt of a nation exceeds 90 % of GDP, and it was precisely this evidence
that was several times politically used to argue for austerity measures.

Unfortunately, the fact is that the general conclusion of [64] has been pub-
licly questioned given that a formula range error was found in the spreadsheet
supporting the authors’ calculations. While the authors have later re-affirmed
their original conclusions, the public pressure was so intense that a few weeks
later they felt the need to publish an errata of their 2010 paper. It is further-
more unlikely that the concrete social and economical impacts of that particular
spreadsheet error will ever be determined.

Given the massive use of spreadsheets and the their alarming number of
errors, many researcher have been working on this topic. Burnett et al. studied
the use of end-users programming principles to spreadsheets [15,36,66,67], as
well as the use of software engineering techniques [35,37]. Erwig et al. applied

8 This list of horror stories is available at: http://www.eusprig.org/horror-stories.htm.

http://www.eusprig.org/horror-stories.htm
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several techniques from software engineering to spreadsheets, such as testing
and debugging [3,4,7,8], model-driven approaches [5,9,29,32,33,50]. Erwig also
studied the use in spreadsheets of programming languages techniques such as
type systems [1,2,6,34]. Hermans et al. studied how to help users better under-
stand the spreadsheets they use [40–42]. In this context, Cunha et al. proposed a
catalog of smells for spreadsheets [21] and a tool to detect them [22]. Panko et al.
have been developing very interesting work to understand the errors found in
spreadsheets [56–59].

3 Spreadsheet Analysis

Spreadsheets, like other software systems, usually start as simple, single user
software systems and rapidly evolve into complex and large systems developed
by several users [40]. Such spreadsheets become hard to maintain and evolve
because of the large amount of data they contain, the complex dependencies and
formulas used (that very often are poor documented [41]), and finally because
the developers of those spreadsheets may not be available (because they may
have left the company/project). In these cases to understand the business logic
defined in such legacy spreadsheets is a hard and time consuming task [40].

In this section we study techniques to analyze spreadsheet data using tech-
nology from both the data mining and the database realms. This technology is
used to mine the spreadsheet data in order to automatically compute a model
describing the business logic of the underlying spreadsheet data.

3.1 Spreadsheet Data Mining

Before we present these techniques, let us consider the example spreadsheet
modeling an airline scheduling system which we adapted from [51] and illustrated
in Fig. 5.

The labels in the first row have the following meaning: PilotId represents
a unique identification code for each pilot, Pilot-Name is the name of the
pilot, and column labeled Phone contains his phone number. Columns labeled
Depart and Destination contain the departure and destination airports, res-
pectively. The column Date contains the date of the flight and Hours defines
the number of hours of the flight. Next columns define the plain used in the
flight: N-Number is a unique number of the plain, Model is the model of the
plane, and Plane-Name is the name of the plane.

Fig. 5. A spreadsheet representing pilots, planes and flights.
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This spreadsheet defines a valid model to represent the information for sche-
duling flights. However, it contains redundant information. For example, the
displayed data specifies the name of the plane Magalhães twice. This kind of
redundancy makes the maintenance and update of the spreadsheet complex and
error-prone. In fact, two well-known database problems occur when organizing
our data in a non-normalized way [71]:

– Update Anomalies: this problem occurs when we change information in one
tuple but leave the same information unchanged in the others. In our example,
this may happen if we change the name of the plane Magalhães on row 2, but
not on row 3. As a result the data will become inconsistent!

– Deletion Anomalies: problem happens when we delete some tuple and we lose
other information as a side effect. For example, if we delete row 3 in the spread-
sheet all the information concerning the pilot Mike is eliminated.

As a result, a mistake is easily made, for example, by mistyping a name and
thus corrupting the data. The same information can be stored without redun-
dancy. In fact, in the database community, techniques for database normalization
are commonly used to minimize duplication of information and improve data
integrity. Database normalization is based on the detection and exploitation of
functional dependencies inherent in the data [51,72].

Exercise 1. Consider the data in the following table and answer the questions.

movieID title language renterNr renterNm rentStart rentFinished rent totalToPay

mv23 Little Man English c33 Paul 01-04-2010 26-04-2010 0.5 12.50

mv1 The Ohio English c33 Paul 30-03-2010 23-04-2010 0.5 12.00

mv21 Edmond English c26 Smith 02-04-2010 04-04-2010 0.5 1.00

mv102 You, Me, D English c3 Michael 22-03-2010 03-04-2010 0.3 3.60

mv23 Little Man English c26 Smith 02-12-2009 04-04-2010 0.5 61.50

mv23 Little Man English c14 John 12-04-2010 16-04-2010 0.5 2.00

1. Which row(s) can be deleted without causing a deletion anomaly?
2. Identify two attributes that can cause update anomalies when editing the cor-

responding data.

3.2 Databases Technology

In order to infer a model representing the business logic of a spreadsheet data,
we need to analyze the data and define relationships between data entities.
Objects that are contained in a spreadsheet and the relationships between them
are reflected by the presence of functional dependencies between spreadsheet
columns. Informally, a functional dependency between a column C and another
column C ′ means that the values in column C determine the values in column
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C ′, that is, there are no two rows in the spreadsheet that have the same value
in column C but differ in their values in column C ′.

For instance, in our running example the functional dependency between
column A (Pilot-Id) and column B (Pilot-Name) exists, meaning that the identi-
fication number of a pilot determines its name. That is to say that, there are no two
rows with the same id number (column A), but differ in their names (column B).
A similar functional dependency occurs between identifier (i.e., number) of a plane
N-Number and its name Plane-Name.

This idea can be extended to multiple columns, that is, when any two rows
that agree in the values of columns C1, . . . , Cn also agree in their value in columns
C ′

1, . . . , C
′
m, then C ′

1, . . . , C
′
m are said to be functionally dependent on C1, . . . , Cn.

In our running example, the following functional dependencies hold:

Depart ,Destination ⇀ Hours

stating that the departure and destination airports determines the number of
hours of the flight.

Definition 1. A functional dependency between two sets of attributes A and
B, written A ⇀ B, holds in a table if for any two tuples t and t′ in that table
t[A] = t′[A] =⇒ t[B] = t′[B] where t[A] yields the (sub)tuple of values for the
attributes in A. In other words, if the tuples agree in the values for attribute set
A, they agree in the values for attribute set B. The attribute set A is also called
antecedent, and the attribute set B consequent.

Our goal is to use the data in a spreadsheet to identify functional depen-
dencies. Although we use all the data available in the spreadsheet, we con-
sider a particular instance of the spreadsheet domain only. However, there may
exist counter examples to the dependencies found, but these just happen not to
be included in the spreadsheet. Thus, the dependencies we discover are always
an approximation. On the other hand, depending on the data, it can happen
that many “accidental” functional dependencies are detected, that is, functional
dependencies that do not reflect the underlying model.

For instance, in our example we can identify the following dependency that
just happens to be fulfilled for this particular data set, but that does certainly
not reflect a constraint that should hold in general: Model ⇀ Plane Name, that
is to say that the model of a plane determines its name! In fact, the data con-
tained in the spreadsheet example supports over 30 functional dependencies.
Next we list a few more that hold for our example.

Pilot-ID ⇀ Pilot-Name
Pilot-ID ⇀ Phone
Pilot-ID ⇀ Pilot-Name,Phone
Depart ,Destination ⇀ Hours
Hours ⇀ Model
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Exercise 2. Consider the data in the following table.

proj1 John New York 30-03-2010 50000 Long Island Richy 34 USA Mike inst3 36 6

proj1 John New York 30-03-2010 50000 Long Island Tim 33 JP Anthony inst1 24 4

proj1 John New York 30-03-2010 50000 Long Island Mark 30 UK Alfred inst3 36 6

proj2 John Los Angels 02-04-2010 3000 Los Angels Richy 34 USA Mike inst2 30 5

proj3 Paul Chicago 01-01-2009 12000 Chicago Tim 33 JP Anthony inst1 24 4

proj3 Paul Chicago 01-01-2009 12000 Chicago Mark 30 UK Alfred inst1 24 4

Which are the functional dependencies that hold in this case?

Because spreadsheet data may induce too many functional dependencies, the
next step is therefore to filter out as many of the accidental dependencies as pos-
sible and keep the ones that are indicative of the underlying model. The process
of identifying the “valid” functional dependencies is, of course, ambiguous in
general. Therefore, we employ a series of heuristics for evaluating dependencies.

Note that several of these heuristics are possible only in the context of spread-
sheets. This observation supports the contention that end-user software engi-
neering can benefit greatly from the context information that is available in a
specific end-user programming domain. In the spreadsheet domain rich context
is provided, in particular, through the spatial arrangement of cells and through
labels [31].

Next, we describe five heuristics we use to discard accidental functional
dependencies. Each of these heuristics can add support to a functional depen-
dency.

Label semantics. This heuristic is used to classify antecedents in functional depen-
dencies. Most antecedents (recall that antecedents determine the values of conse-
quents) are labeled as “code”, “id”, “nr”, “no”, “number”, or are a combination
of these labels with a label more related to the subject. functional dependency
with an antecedent of this kind receives high support.

For example, in our property renting spreadsheet, we give high support to the
functional dependency N-Number ⇀ Plane-Name than to the Plane-Name ⇀
N-Number one.

Label arrangement. If the functional dependency respects the original order of the
attributes, this counts in favor of this dependency since very often key attributes
appear to the left of non-key attributes.

In our running example, there are two functional dependencies induced by
columns N-Number and Plane-Name, namely N-Number ⇀ Plane-Name and
Plane-Name ⇀ N-Number. Using this heuristic we prefer the former dependency
to the latter.

Antecedent size. Good primary keys often consist of a small number of attributes,
that is, they are based on small antecedent sets. Therefore, the smaller the number
of antecedent attributes, the higher the support for the functional dependency.

Ratio between antecedent and consequent sizes. In general, functional dependen-
cies with smaller antecedents and larger consequents are stronger and thus more
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likely to be a reflection of the underlying data model. Therefore, a functional
dependency receives the more support, the smaller the ratio of the number of
consequent attributes is compared to the number of antecedent attributes.

Single value columns. It sometimes happens that spreadsheets have columns that
contain just one and the same value. In our example, the column labeled country
is like this. Such columns tend to appear in almost every functional dependency’s
consequent, which causes them to be repeated in many relations. Since in almost
all cases, such dependencies are simply a consequence of the limited data (or
represent redundant data entries), they are most likely not part of the underlying
data model and will thus be ignored.

After having gathered support through these heuristics, we aggregate the
support for each functional dependency and sort them from most to least sup-
port. We then select functional dependencies from that list in the order of their
support until all the attributes of the schema are covered.

Based on these heuristics, our algorithm produces the following dependencies
for the flights spreadsheet data:

Pilot-ID ⇀ Pilot-Name,Phone
N-Number ⇀ Model ,Plane-Name
Pilot-ID,N-Number,Depart ,Destination,Date,Hours ⇀ ∅

Exercise 3. Consider the data in the following table and answer the next ques-
tions.

project nr manager location delivery date budget employee name age nationality

proj1 John New York 30-03-2010 50000 Richy 34 USA

proj1 John New York 30-03-2010 50000 Tim 33 JP

proj1 John New York 30-03-2010 50000 Mark 30 UK

proj2 John Los Angels 02-04-2010 3000 Richy 34 USA

proj3 Paul Chicago 01-01-2009 12000 Tim 33 JP

proj3 Paul Chicago 01-01-2009 12000 Mark 30 UK

1. Which are the functional dependencies that hold in this case?
2. Was this exercise easier to complete than Exercise 2? Why do you think this

happened?

Relational Model. Knowledge about the functional dependencies in a spread-
sheet provides the basis for identifying tables and their relationships in the data,
which form the basis for defining models for spreadsheet. The more accurate we
can make this inference step, the better the inferred models will reflect the actual
business models.

It is possible to construct a relational model from a set of observed functional
dependencies. Such a model consists of a set of relation schemas (each given
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by a set of column names) and expresses the basic business model present in
the spreadsheet. Each relation schema of such a model basically results from
grouping functional dependencies together.

For example, for the spreadsheet in Fig. 5 we could infer the following rela-
tional model (underlined column names indicate those columns on which the
other columns are functionally dependent).

Pilots (Pilot-Id, Pilot-Name, Phone)
Planes (N-Number, Model, Plane-Name
Flights (Pilot-ID, N-Number, Depart, Destination, Date, Hours)

The model has three relations: Pilots stores information about pilots; Planes
contains all the information about planes, and Flights stores the information on
flights, that is, for a particular pilot, a specific number of a plane, it stores the
depart and destination airports and the data ans number of hours of the flights.

Note that several models could be created to represent this system. We have
shown that the models our tool automatically generates are comparable in qual-
ity to the ones designed by database experts [19].

Although a relational model is very expressive, it is not quite suitable for
spreadsheets since spreadsheets need to have a layout specification.

In contrast, the ClassSheet modeling framework offers high-level, object-
oriented formal models to specify spreadsheets and thus present a promising
alternative [29].

ClassSheets allow users to express business object structures within a spread-
sheet using concepts from the Unified Modeling Language (UML). A spreadsheet
application consistent with the model can be automatically generated, and thus
a large variety of errors can be prevented.

We therefore employ ClassSheet as the underlying modeling approach for
spreadsheets and transform the inferred relational model into a ClassSheet model.

Exercise 4. Use the HaExcel libraries to infer the functional dependencies from
the data given in Exercise 3.9 For the functional dependencies computed, create
the corresponding relational schema.

4 Model-Driven Spreadsheet Engineering

The use of abstract models to reason about concrete artifacts has successfully
and widespreadly been employed in science and in engineering. In fact, there
are many fields for which model-driven engineering is the default, uncontested
approach to follow: it is a reasonable assumption that, excluding financial or
cultural limitations, no private house, let alone a bridge or a skyscraper, should
be built before a model for it has been created and has been thoroughly analyzed
and evolved.

9 HaExcel can be found at http://ssaapp.di.uminho.pt.

http://ssaapp.di.uminho.pt
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Being itself a considerably more recent scientific field, not many decades
have passed since software engineering has seriously considered the use of mod-
els. In this section, we study model-driven approaches to spreadsheet software
engineering.

4.1 Spreadsheet Models

In an attempt to overcome the issue of spreadsheet errors using model-driven app-
roaches, several techniques have been proposed, namely the creation of spread-
sheet templates [9], the definition of ClassSheet [29] models and the use of class
diagrams to specify spreadsheets [39]. These proposals guarantee that users may
safely perform particular editing steps on their spreadsheets and they introduce
a form of model-driven software development: a spreadsheet business model is
defined from which a customized spreadsheet application is generated guarantee-
ing the consistency of the spreadsheet with the underlying model.

Despite of its huge benefits, model-driven software development is sometimes
difficult to realize in practice. In the context of spreadsheets, for example, the
use of model-driven software development requires that the developer is familiar
both with the spreadsheet domain (business logic) and with model-driven soft-
ware development. In the particular case of the use of templates, a new tool is
necessary to be learned, namely Vitsl [9]. By using this tool, it is possible to
generate a new spreadsheet respecting the corresponding model. This approach,
however, has several drawbacks: first, in order to define a model, spreadsheet
model developers will have to become familiar with a new programming envi-
ronment. Second, and most important, there is no connection between the stand
alone model development environment and the spreadsheet system. As a result,
it is not possible to (automatically) synchronize the model and the spreadsheet
data, that is, the co-evolution of the model and its instance is not possible.

The first contribution of our work is the embedding of ClassSheet spreadsheet
models in spreadsheets themselves. Our approach closes the gap between creat-
ing and using a domain specific language for spreadsheet models and a totally
different framework for actually editing spreadsheet data. Instead, we unify these
operations within spreadsheets: in one worksheet we define the underlying model
while another worksheet holds the actual data, such that the model and the data
are kept synchronized by our framework. A summarized description of this work
has been presented in [23,26], a description that we revise and extend in this
paper, in Sect. 4.5.

ClassSheet Models. ClassSheets are a high-level, object-oriented formalism
to specify the business logic of spreadsheets [29]. This formalism allows users to
express business object structures within a spreadsheet using concepts from the
UML [69].

ClassSheets define (work)sheets (s) containing classes (c) formed by blocks
(b). Both sheets and classes can be expandable, i.e., their instances can be
repeated either horizontally (c→) or vertically (b↓). Classes are identified by
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labels (l). A block can represent in its basic form a spreadsheet cell, or it can
be a composition of other blocks. When representing a cell, a block can contain
a basic value (ϕ, e.g., a string or an integer) or an attribute (a = f), which is
composed by an attribute name (a) and a value (f). Attributes can define three
types of cells: ‘ (1), an input value, where a default value gives that indication,
(2), a named reference to another attribute (n.a, where n is the name of the
class and a the name of the attribute) or (3), an expression built by applying
functions to a varying number of arguments given by a formula (ϕ(f, . . . , f)).

ClassSheets can be represented textually, according to the grammar presented
in Fig. 6 and taken directly from [29], or visually as described further below.

f ∈ Fml ::= ϕ | n.a | ϕ(f, . . . , f) (formulas)
b ∈ Block ::= ϕ | a = f | b|b | bˆb (blocks)
l ∈ Lab ::= h | v | .n (class labels)
h ∈ Hor ::= n | |n (horizontal)
v ∈ V er ::= |n | |n (vertical)

c ∈ Class ::= l : b | l : b↓ | cˆc (classes)
s ∈ Sheet ::= c | c→ | s|s (sheets)

Fig. 6. Syntax of the textual representation of ClassSheets.

Vertically Expandable Tables. In order to illustrate how ClassSheets can
be used in practice we shall consider the example spreadsheet defining a airline
scheduling system as introduced in Sect. 3. In Fig. 7a we present a spreadsheet
containing the pilot’s information only. This table has a title, Pilots, and a row
with labels, one for each of the table’s column: ID represents a unique pilot
identifier, Name represents the pilot’s name and Phone represents the pilot’s
phone contact. Each of the subsequent rows represents a concrete pilot.

(a) Pilots’ table.
(b) Pilots’ visual ClassSheet model.

Pilots : Pilots � � � � ˆ
Pilots : ID � Name � Phone ˆ

Pilots : (id= "" � name= "" � phone= 0)↓

(c) Pilots’ textual ClassSheet model.

Fig. 7. Pilots’ example.
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Tables such as the one presented in Fig. 7a are frequently used within spread-
sheets, and it is fairly simple to create a model specifying them. In fact, Fig. 7b
represents a visual ClassSheet model for this pilot’s table, whilst Fig. 7c shows
the textual ClassSheet representation. In the next paragraphs we explain such a
model. To model the labels we use a textual representation and the exact same
names as in the data sheet (Pilots, ID, Name and Phone). To model the
actual data we abstract concrete column cell values by using a single identifier:
we use the one-worded, lower-case equivalent of the corresponding column label
(id, name, and phone). Next, a default value is associated with each column:
columns A and B hold strings (denoted in the model by the empty string “”
following the = sign), and column C holds integer values (denoted by 0 follow-
ing =). Note that the last row of the model is labeled on the left hand-side with
vertical ellipses. This means that it is possible for the previous block of rows
to expand vertically, that is, the tables that conform to this model can have as
many rows/pilots as needed. The scope of the expansion is between the ellipsis
and the black line (between labels 2 and 3). Note that, by definition, ClassSheets
do not allow for nested expansion blocks, and thus, there is no possible ambiguity
associated with this feature. The instance shown in Fig. 7a has three pilots.

Horizontally Expandable Tables. In the lines of what we described in the
previous section, airline companies must also store information on their airplanes.
This is the purpose of table Planes in the spreadsheet illustrated in Fig. 8a,
which is organized as follows: the first column holds labels that identify each
row, namely, Planes (labeling the table itself), N-Number, Model and Name;
cells in row N-Number (respectively Model and Name) contain the unique
n-number identifier of a plane, (respectively the model of the plane and the name
of the plane). Each of the subsequent columns contains information about one
particular aircraft.

The Planes table can be visually modeled by the illustration in Fig. 8b and
textually by the definition in Fig. 8c. This model may be constructed following
the same strategy as in the previous section, but now swapping columns and

(a) Planes’ table. (b) Planes’ visual ClassSheet model.

⎛
⎜⎜⎝

|Planes: Planes ˆ
⎞
⎟⎟⎠
�

N-Number r̂ebmuN-N:
Model
Name

: Model ˆ
: Name

⎛
⎜⎜⎝

|Planes: � ˆ
⎞
⎟⎟⎠

→
N-Number =rebmun-n: ""̂

Model: model= "" ˆ
Name: name= ""

(c) Planes’ textual ClassSheet model.

Fig. 8. Planes’ example.
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rows: the first column contains the label information and the second one the
names abstracting concrete data values: again, each cell has a name and the
default value of the elements in that row (in this example, all the cells have
as default values empty strings); the third column is labeled not as C but with
ellipses meaning that the immediately previous column is horizontally expand-
able. Note that the instance table has information about three planes.

Relationship Tables. The examples used so far (the tables for pilots and
planes) are useful to store the data, but another kind of table exists and can be
used to relate information, being of more practical interest.

Having pilots and planes, we can set up a new table to store information
from the flights that the pilots make with the planes. This new table is called a
relationship table since it relates two entities, which are the pilots and the planes.
A possible model for this example is presented in Fig. 9, which also depicts an
instance of that model.

(a) Flights’ visual ClassSheet model.

(b) Flights’ table.

Fig. 9. Flights’ table, relating pilots and planes.

The flights’ table contains information from distinct entities. In the model
(Fig. 9a), there is the class Flights that contains all the information, including:

– information about planes (class PlanesKey, columns B to E), namely a ref-
erence to the planes table (cell B2);

– information about pilots (class PilotsKey, rows 3 and 4), namely a reference
to the pilots table (cell A4);

– information about the flights (in the range B3:E4), namely the depart location
(cell B4), the destination (cell C4), the time of departure (cell D4) and the
duration of the flight (cell E4);

– the total hours flown by each pilot (cell F4), and also a grand total (cell F5).
We assume that the same pilot does not appear in two different rows. In fact,
we could use ClassSheet extensions to ensure this [23,25].
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For the first flight stored in the data (Fig. 9b), we know that the pilot has
the identifier pl1, the plane has the n-number N2342, it departed from OPO in
direction to NAT at 14:00 on December 12, 2010, with a duration of 7 h.

Note that we do not show the textual representation of this part of the model
because of its complexity and because it would not improve the understandability
of this document.

Exercise 5. Consider we would like to construct a spreadsheet to handle a
school budget. This budget should consider different categories of expenses such
as personnel, books, maintenance, etc. These different items should be laid along
the rows of the spreadsheet. The budget must also consider the expenses for dif-
ferent years. Each year must have information about the number of items bought,
the price per unit, and the total amount of money spent. Each year should be
created after the previous one in an horizontal displacement.

1. Define a standard spreadsheet that contains data at least for two years and
several expenses.

2. Define now a ClassSheet defining the business logic of the school budget.
Please note that the spreadsheet data defined in the previous item should be
an instance of this model.

Exercise 6. Consider the spreadsheets given in all previous exercises. Define a
ClassSheet that implements the business logic of the spreadsheet data.

4.2 Inferring Spreadsheet Models

In this section we explain in detail the steps to automatically extract a ClassSheet
model from a spreadsheet [19]. Essentially, our method involves the following
steps:

1. Detect all functional dependencies and identify model-relevant functional
dependencies;

2. Determine relational schemas with candidate, foreign, and primary keys;
3. Generate and refactor a relational graph;
4. Translate the relational graph into a ClassSheet.

We have already introduced steps 1 and 2 in Sect. 3. In the following sub-
sections we will explain the steps 3 and 4.

The Relational Intermediate Directed Graph. In this sub-section we
explain how to produce a Relational Intermediate Directed (RID) Graph [11].
This graph includes all the relationships between a given set of schemas. Nodes
in the graph represent schemas and directed edges represent foreign keys between
those schemas. For each schema, a node in the graph is created, and for each
foreign key, an edge with cardinality “*” at both ends is added to the graph.

Figure 10 represents the RID graph for the flights scheduling. This graph can
generally be improved in several ways. For example, the information about foreign
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Flights

Pilots

*

*

Planes

*

*

Fig. 10. RID graph for our running example.

keys may lead to additional links in the RID graph. If two relations reference each
other, their relationship is said to be symmetric [11]. One of the foreign keys can
then be removed. In our example there are no symmetric references.

Another improvement to the RID graph is the detection of relationships, that
is, whether a schema is a relationship connecting other schemas. In such cases,
the schema is transformed into a relationship. The details of this algorithm are
not so important and left out for brevity.

Since the only candidate key of the schema Flights is the combination of
all the other schemas’ primary keys, it is a relationship between all the other
schemas and is therefore transformed into a relationship. The improved RID
graph can be seen in Fig. 11.

Flights

Pilots

*

Planes

*

Fig. 11. Refactored RID graph.

Generating ClassSheets. The RID graph generated in Sect. 4.2 can be directly
translated into a ClassSheet diagram. By default, each node is translated into
a class with the same name as the relation and a vertically expanding block. In
general, for a relation of the form

A1, . . . , An, An+1, . . . , Am

and default values da1, . . . , dan, dn+1, . . . , dm, a ClassSheet class/table is gener-
ated as shown in Fig. 1210. From now on this rule is termed rule 1.
10 We omit here the column labels, whose names depend on the number of columns in

the generated table.
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Fig. 12. Generated class for a relation A.

This ClassSheet represents a spreadsheet “table” with name A. For each
attribute, a column is created and is labeled with the attribute’s name. The
default values depend on the attribute’s domain. This table expands vertically,
as indicated by the ellipses. The key attributes become underlined labels.

A special case occurs when there is a foreign key from one relation to another.
The two relations are created basically as described above but the attributes that
compose the foreign key do not have default values, but references to the corre-
sponding attributes in the other class. Let us use the following generic relations:

M(M1, . . . , Mr,Mr+1, . . . , Ms)
N(N1, . . . , Nt,Mm, . . . , Mn,Mo, . . . , Mp, Nt+1, . . . , Nu)

Note that Mn, . . . , Mm,Mo, . . . , Mp are foreign keys from the relation N to
the relation M , where 1 � n,m, o, p � r, n � m, and o � p. This means that
the foreign key attributes in N can only reference key attributes in the M . The
corresponding ClassSheet is illustrated in Fig. 13. This rule is termed rule 2.

Fig. 13. Generated ClassSheet for relations with foreign keys.

Relationships are treated differently and will be translated into cell classes.
We distinguish between two cases: (A) relationships between two schemas, and
(B) relationships between more than two schemas.

For case (A), let us consider the following set of schemas:

M(M1, . . . , Mr,Mr+1, . . . , Ms)
N(N1, . . . , Nt, Nt+1, . . . , Nu)
R(M1, . . . , Mr, N1, . . . , Nt, R1, . . . , Rx, Rx+1, . . . , Ry)
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Fig. 14. ClassSheet of a relationship connecting two relations.

The ClassSheet that is produced by this translation is shown in Fig. 14 and
explained next.

For both nodes M and N a class is created as explained before (lower part of
the ClassSheet). The top part of the ClassSheet is divided in two classes and one
cell class. The first class, NKey, is created using the key attributes from the N
class. All its values are references to N. For example, n1 = N.N1 references the
values in column A in class N. This makes the spreadsheet easier to maintain
while avoiding insertion, modification and deletion anomalies [17]. Class Mkey is
created using the key attributes of the class M and the rest of the key attributes
of the relationship R. The cell class (with blue border) is created using the rest
of the attributes of the relationship R.

In principle, the positions of M and N are interchangeable and we have to
choose which one expands vertically and which one expands horizontally. We
choose whichever combination minimizes the number of empty cells created by
the cell class, that is, the number of key attributes from M and R should be
similar to the number of non-key attributes of R. This rule is named rule A.
Three special cases can occur with this configuration.

Case 1. The first case occurs when one of the relations M or N might have only
key attributes. Let us assume that M is in this situation:

M(M1, . . . , Mr)
N(N1, . . . , Nt, Nt+1, . . . , Nu)
R(M1, . . . , Mr, N1, . . . , Nt, R1, . . . , Rx, Rx+1, . . . , Ry)

In this case, and since all the attributes of that class are already included in
the class MKey or NKey, no separated class is created for it. The resultant
ClassSheet would be similar to the one presented in Fig. 14, but a separated
class would not be created for M or for N or for both. Figure 15 illustrates this
situation. This rule is from now on termed rule A1.
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Fig. 15. ClassSheet where one entity has only key attributes.

Case 2. The second case occurs when the key of the relationship R is only com-
posed by the keys of M and N (defined as before), that is, R is defined as follows:

M(M1, . . . , Mr,Mr+1, . . . , Ms)
N(N1, . . . , Nt, Nt+1, . . . , Nu)
R(M1, . . . , Mr, N1, . . . , Nt, R1, . . . , Rx)

The resultant ClassSheet is shown in Fig. 16.
The difference between this ClassSheet model and the general one is that the

MKey class on the top does not contain any attribute from R: all its attributes
are contained in the cell class. This rule is from now on named rule A2.

Case 3. Finally, the third case occurs when the relationship is composed only
by key attributes as illustrated next:

M(M1, . . . , Mr,Mr+1, . . . , Ms)
N(N1, . . . , Nt, Nt+1, . . . , Nu)
R(M1, . . . , Mr, N1, . . . , Nt)

In this situation, the attributes that appear in the cell class are the non-key
attributes of N and no class is created for N. Figure 17 illustrates this case.
From now on this rule is named rule A3.

For case (B), that is, for relationships between more than two tables, we
choose between the candidates to span the cell class using the following criteria:

1. M and N should have small keys;
2. the number of empty cells created by the cell class should be minimal.

This rule is from now on named rule B.
After having chosen the two relations (and the relationship), the generation

proceeds as described above. The remaining relations are created as explained
in the beginning of this section.
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Fig. 16. ClassSheet of a relationship with all the key attributes being foreign keys.

Fig. 17. ClassSheet of a relationship composed only by key attributes.

4.3 Mapping Strategy

In this section we present the mapping function between RID graphs and
ClassSheets, which builds on the rules presented before. For that, we use the
common strategic combinators listed below [48,73,74]:

In this context,Rule encodes a transformation fromRIDgraphs toClassSheets.
Using the rules defined in the previous section and the combinators listed

above, we can construct a strategy that generates a ClassSheet:

genCS =
many (once (rule B)) �
many (once (rule A)) �
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many (once (rule A1 ) � once (rule A2 ) � once (rule A3 )) �
many (once (rule 2)) �
many (once (rule 1))

Fig. 18. The ClassSheet generated by our algorithm for the running example.

The strategy works as follows: it tries to apply rule B as many times as
possible, consuming all the relationships with more than two relations; it then
tries to apply rule A as many times as possible, consuming relationships with
two relations; next the three sub-cases of rule A are applied as many times as
possible consuming all the relationships with two relations that match some of
the sub-rules; after consuming all the relationships and corresponding relations,
the strategy consumes all the relations that are connected through a foreign key
using rule 2 ; finally, all the remaining relations are mapped using rule 1.

In Fig. 18 we present the ClassSheet model that is generated by our tool for
the flight scheduling spreadsheet.

4.4 Generation of Model-Driven Spreadsheets

Together with the definition of ClassSheet models, Erwig et al. developed a
visual tool, Vitsl, to allow the easy creation and manipulation of the visual
representation of ClassSheet models [9]. The visual and domain specific modeling
language used by Vitsl is visually similar to spreadsheets (see Fig. 19).

The approach proposed by Erwig et al. follows a traditional compiler construc-
tion architecture [10] and generative approach [49]: first a language is defined (a
visual domain specific language, in this case). Then a specific tool/compiler (the
Vitsl tool, in this case) compiles it into a target lower level representation: an
Excel spreadsheet. This generated representation is then interpreted by a different
software system: the Excel spreadsheet system through the Gencel extension [33].
Given that model representation, Gencel generates an initial spreadsheet instance
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Fig. 19. Screen shot of the Vitsl editor, taken from [9].

(conforming to the model) with embedded (spreadsheet) operations that express
the underlying business logic. The architecture of these tools is shown in Fig. 20.

Fig. 20. Vitsl/Gencel -based environment for spreadsheet development.

The idea is that, when using such generated spreadsheets, end users are
restricted to only perform operations that are logically and technically correct
for that model. The generated spreadsheet not only guides end users to introduce
correct data, but it also provides operations to perform some repetitive tasks like
the repetition of a set of columns with some default values.

In fact, this approach provides a form of model-driven software development
for spreadsheet users. Unfortunately, it provides a very limited form of model-
driven spreadsheet development: it does not support model/instance synchro-
nization. Indeed, if the user needs to evolve the model, then he has to do it using
the Vitsl tool. Then, the tool compiles this new model to a new Excel spread-
sheet instance. However, there are no techniques to co-evolve the spreadsheet
data from the new instance to the newly generated one. In the next sections,
we present embedded spreadsheet models and data refinement techniques that
provide a full model-driven spreadsheet development setting.

4.5 Embedding ClassSheet Models in Spreadsheets

The ClassSheet language is a domain specific language to represent the busi-
ness model of spreadsheet data. Furthermore, as we have seen in the previous
section, the visual representation of ClassSheets very much resembles spread-
sheets themselves. Indeed, the visual representation of ClassSheet models is a
Visual Domain Specific Language. These two facts combined motivated the use
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of spreadsheet systems to define ClassSheet models [26], i.e., to natively embed
ClassSheets in a spreadsheet host system. In this line, we have adopted the well-
known techniques to embed Domain Specific Languages (DSL) in a host general
purpose language [38,44,70]. In this way, both the model and the spreadsheet
can be stored in the same file, and model creation along with data editing can
be handled in the same environment that users are familiar with.

The embedding of ClassSheets within spreadsheets is not direct, since
ClassSheets were not meant to be embedded inside spreadsheets. Their resem-
blance helps, but some limitations arise due to syntactic restrictions imposed
by spreadsheet host systems. Several options are available to overcome the syn-
tactic restrictions, like writing a new spreadsheet host system from start, mod-
ifying an existing one, or adapting the ClassSheet visual language. The two
first options are not viable to distribute Model-Driven Spreadsheet Engineering
(MDSE) widely, since both require users to switch their system, which can be
inconvenient. Also, to accomplish the first option would be a tremendous effort
and would change the focus of the work from the embedding to building a tool.

The solution adopted modifies slightly the ClassSheet visual language so it
can be embedded in a worksheet without doing major changes on a spreadsheet
host system (see Fig. 21). The modifications are:

1. identify expansion using cells (in the ClassSheet language, this identification
is done between columns/rows letters/numbers);

2. draw an expansion limitation black line in the spreadsheet (originally this is
done between column/row letters/numbers);

3. fill classes with a background color (instead of using lines as in the original
ClassSheets).

The last change (3) is not mandatory, but it is easier to identify the classes
and, along with the first change (2), eases the identification of classes’ parts.
This way, users do not need to think which role the line is playing (expansion
limitation or class identification).

Fig. 21. Embedded ClassSheet for the flights’ table.

We can use the flights’ table to compare the differences between the original
ClassSheet and its embedded representation:

– In the original ClassSheet (Fig. 9a), there are two expansions: one denoted by
the column between columns E and F for the horizontal expansion, and another
denoted by the row between rows 4 and 5 for the vertical one. Applying
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change 1 to the original model will add an extra column (F) and an extra row
(5) to identify the expansions in the embedding (Fig. 21).

– To define the expansion limits in the original ClassSheet, there are no lines
between the column headers of columns B, C, D and E which makes the hor-
izontal expansion to use three columns and the vertical expansion only uses
one row. This translates to a line between columns A and B and another line
between rows 3 and 4 in the embedded ClassSheet as per change 2.

– To identify the classes, background colors are used (change 3), so that the
class Flights is identified by the green11 background, the class PlanesKey
by the cyan background, the class PilotsKey by the yellow background, and
the class that relates the PlanesKey with the PilotsKey by the dark green
background. Moreover, the relation class (range B3:E5), called PilotsKey
PlanesKey, is colored in dark green.

Given the embedding of the spreadsheet model in one worksheet, it is now
possible to have one of its instances in a second worksheet, as we will shortly
discuss. As we will also see, this setting has some advantages: for once, users
may evolve the model having the data automatically coevolved. Also, having
the model near the data helps to document the latter, since users can identify
clearly the structure of the logic behind the spreadsheet. Figure 22a illustrates
the complete embedding for the ClassSheet model of the running example, whilst
Fig. 22b shows one of its possible instances.

To be noted that the data also is colored in the same manner as the model.
This allows a correspondence between the data and the model to be made quickly,
relating parts of the data to the respective parts in the model. This feature is not
mandatory to implement the embedding, but can help the end users. One can
provide this coloring as an optional feature that could be activated on demand.

Model Creation. To create a model, several operations are available such as
addition and deletion of columns and rows, cell editing, and addition or deletion
of classes.

To create, for example, the flights’ part of the spreadsheet used so far, one can:

1. add a class for the flights, selecting the range A1:G6 and choosing the green
color for its background;

2. add a class for the planes, selecting the range B1:F6, choosing the cyan color
for its background, and setting the class to expand horizontally;

3. add a class for the pilots, selecting the range A3:G5, choosing the yellow color
for its background, and setting the class to expand vertically; and,

4. set the labels and formulas for the cells.

The addition of the relation class (range B3:E4) is not needed since it is
added automatically when the environment detects superposing classes at the
same level (PlanesKey and PilotsKey are within Flights, which leads to the
automatic insertion of the relation class).
11 We assume colors are visible in the digital version of this paper.
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(a) Model on the first worksheet of the spreadsheet.

(b) Data on the second worksheet of the spreadsheet.

Fig. 22. Flights’ spreadsheet, with an embedded model and a conforming instance.

Instance Generation. From the flights’ model described above, an instance
without any data can be generated. This is performed by copying the structure
of the model to another worksheet. In this process labels copied as they are, and
attributes are replaced in one of two ways: (i), if the attribute is simple (i.e., it
is like a = ϕ), it is replaced by its default value; (ii), otherwise, it is replaced by
an instance of the formula. An instance of a formula is similar to the original one
defined in the model, but the attribute references are replaced by references to
cells where those attributes are instantiated. Moreover, columns and rows with
ellipses have no content, having instead buttons to perform operations of adding
new instances of their respective classes.
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An empty instance generated by the flights’ model is pictured in Fig. 23. All
the labels (text in bold) are the same as the ones in the model, and in the same
position, attributes have the default values, and four buttons are available to
add new instances of the expandable classes.

Fig. 23. Spreadsheet generated from the flights’ model.

Data Editing. The editing of the data is performed like with plain spreadsheets,
i.e., the user just edits the cell content. The insertion of new data is different
since editing assistance must be used through the buttons available.

For example, to insert a new flight for pilot pl1 in the Flights table, without
models one would need to:

1. insert four new columns;
2. copy all the labels;
3. update all the necessary formulas in the last column; and,
4. insert the values for the new flight.

With a large spreadsheet, the step to update the formulas can be very error
prone, and users may forget to update all of them. Using models, this process
consists on two steps only:

1. press the button with label “· · · ” (in column J, Fig. 22b); and,
2. insert the values for the new flight.

The model-driven environment automatically inserts four new columns, the
labels for those columns, updates the formulas, and inserts default values in all
the new input cells.

Note that, to keep the consistency between instance and model, all the cells in
the instance that are not data entry cells are non-editable, that is, all the labels
and formulas cannot be edited in the instance, only in the model. In Sect. 5 we
will detail how to handle model evolutions.
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Embedded Domain Specific Languages. In this section we have described
the embedding of a visual, domain specific language in a general purpose visual
spreadsheet system. The embedding of textual DSLs in host functional program-
ming languages is a well-known technique to develop DSLs [44,70]. In our visual
embedding, and very much like in textual languages, we get for free the powerful
features of the host system: in our case, a simple, but powerful visual program-
ming environment. As a consequence, we did not have to develop from scratch
such a visual system (like the developers of Vitsl did). Moreover, we offer a
visual interface familiar to users, namely, a spreadsheet system. Thus, they do
not have to learn and use a different system to define their spreadsheet models.

The embedding of DSL is also known to have disadvantages when compared
to building a specific compiler for that language. Our embedding is no exception:
firstly, when building models in our setting, we are not able to provide domain-
specific feedback (that is, error messages) to guide users. For example, a tool like
Vitsl can produce better error messages and support for end users to construct
(syntactic) correct models. Secondly, there are some syntactic limitations offered
by the host language/system. In our embedding, we can see the syntactic differ-
ences in the vertical/horizontal ellipses defined in visual and embedded models
(see Figs. 9 and 18).

5 Evolution of Model-Driven Spreadsheets

The example we have been using manages pilots, planes and flights, but it misses
a critical piece of information about flights: the number of passengers. In this
case, additional columns need to be inserted in the block of each flight. Figure 24
shows an evolved spreadsheet with new columns (F and K) to store the number
of passengers (Fig. 22b), as well as the new model that it instantiates (Fig. 22a).

(a) Evolved flights’ model.

(b) Evolved flights’ instance.

Fig. 24. Evolved spreadsheet and the model that it instantiates.

Note that a modification of the year block in the model (in this case, inserting
a new column) captures modifications to all repetitions of the block throughout
the instance.

In this section, we will demonstrate that modifications to spreadsheet models
can be supported by an appropriate combinator language, and that these model
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modifications can be propagated automatically to the spreadsheets that instan-
tiate the models [28]. In the case of the flights example, the model modification
is captured by the following expression:

addPassengers = once
(inside "PilotsKey_PlanesKey"

(after "Hours"
(insertCol "Passengers")))

The actual column insertion is done by the innermost insertCol step. The after
and inside combinators specify the location constraints of applying this step. The
once combinator traverses the spreadsheet model to search for a single location
where these constraints are satisfied and the insertion can be performed.

The application of addPassengers to the initial model (Fig. 22a) will yield:

1. the modified model (Fig. 24a),
2. a spreadsheet migration function that can be applied to instances of the

initial model (e.g. Fig. 22b) to produce instances of the modified model (e.g.
Fig. 24b), and

3. an inverse spreadsheet migration function to backport instances of the mod-
ified model to instances of the initial model.

In the remaining of this section we will explain the machinery required for
this type of coupled transformation of spreadsheet instances and models.

5.1 A Framework for Evolution of Spreadsheets in Haskell

Data refinement theory provides an algebraic framework for calculating with
data types and corresponding values [52,54,55]. It consists of type-level cou-
pled with value-level transformations. The type-level transformations deal with
the evolution of the model and the value-level transformations deal with the
instances of the model (e.g. values). Figure 25 depicts the general scenario of a
transformation in this framework.

A

to

��
� A′

from

��
A, A′ data type and transformed data type
to witness function of type A → A′ (injective)
from witness function of type A′ → A (surjective)

Fig. 25. Coupled transformation of data type A into data type A′.

Each transformation is coupled with witness functions to and from, which
are responsible for converting values of type A into type A′ and back.

2LT is a framework written in Haskell implementing this theory [12,18]. It
provides the basic combinators to define and compose transformations for data
types and witness functions. Since 2LT is statically typed, transformations are
guaranteed to be type-safe ensuring consistency of data types and data instances.
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To represent the witness functions from and to 2LT relies once again on the
definition of a Generalized Algebraic Data Type12 (GADT) [43,61]:

This GADT represents the types of the functions used in the transformations.
For example, π1 represents the type of the function that projects the first part of
a pair. The comments should clarify which function each constructor represents.
Given these representations of types and functions, we can turn to the encoding
of refinements. Each refinement is encoded as a two-level rewriting rule:

type Rule = ∀ a . Type a → Maybe (View (Type a))
data View a where View :: Rep a b → Type b → View (Type a)
data Rep a b = Rep {to = PF (a → b), from = PF (b → a)}

Although the refinement is from a type a to a type b, this can not be directly
encoded since the type b is only known when the transformation completes, so
the type b is represented as a view of the type a. A view expresses that a type
a can be represented as a type b, denoted as Rep a b, if there are functions
to :: a → b and from :: b → a that allow data conversion between one and the
other. Maybe encapsulates an optional value: a value of type Maybe a either
contains a value of type a (Just a), or it is empty (Nothing).

To better explain this system we will show a small example. The following
code implements a rule to transform a list into a map (represented by · ⇀ ·):

listmap :: Rule
listmap ([a]) = Just (View (Rep {to = seq2index , from = tolist }) (Int ⇀ a))
listmap = mzero

12 “It allows to assign more precise types to data constructors by restricting the vari-
ables of the datatype in the constructors’ result types.”
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The witness functions have the following signature (for this example their code
is not important):

tolist :: (Int ⇀ a) → [a]
seq2index :: [a] → (Int ⇀ a)

This rule receives the type of a list of a, [a], and returns a view over the type
map of integers to a, Int ⇀ a. The witness functions are returned in the rep-
resentation Rep. If other argument than a list is received, then the rule fails
returning mzero. All the rules contemplate this last case and so we will not show
it in the definition of other rules.

ClassSheets and Spreadsheets in Haskell. The 2LT was originally designed
to work with algebraic data types. However, this representation is not expressive
enough to represent ClassSheet specifications or their spreadsheet instances. To
overcome this issue, we extended the 2LT representation so it could support
ClassSheet models, by introducing the following GADT:

The comments should clarify what the constructors represent. The values of type
Type a are representations of type a. For example, if t is of type Type V alue,
then t represents the type V alue. The following types are needed to construct
values of type Type a:
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Once more, the comments should clarify what each type represents. To explain
this representation we will use as an example a small table representing the costs
of maintenance of planes. We do not use the running example as it would be very
complex to explain and understand. For this reduced model only four columns
were defined: plane model, quantity, cost per unit and total cost (product of quan-
tity by cost per unit). The Haskell representation of such model is shown next.

costs =
| Cost : Model � Quantity � Price � Totalˆ
| Cost : (model = "" � quantity = 0 � price = 0 � total =

FFormula "×" [FRef ,FRef ])↓

This ClassSheet specifies a class called Cost composed by two parts vertically
composed as indicated by the ˆ operator. The first part is specified in the first
row and defines the labels for four columns: Model , Quantity , Price and Total .
The second row models the rest of the class containing the definition of the
four columns. The first column has default value the empty string (""), the two
following columns have as default value 0, and the last one is defined by a for-
mula (explained latter on). Note that this part is vertical expandable. Figure 26
represents a spreadsheet instance of this model.

Fig. 26. Spreadsheet instance of the maintenance costs ClassSheet.

Note that in the definition of Type a the constructors combining parts of the
spreadsheet (e.g. sheets) return a pair. Thus, a spreadsheet instance is written
as nested pairs of values. The spreadsheet illustrated in Fig. 26 is encoded in
Haskell as follows:
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((Model , (Quantity , (Price,Total))),
[("B747", (2 , (1500 ,FFormula "×" [FRef ,FRef ]))),
("B777", (5 , (2000 ,FFormula "×" [FRef ,FRef ])))])

The Haskell type checker statically ensures that the pairs are well formed and
are constructed in the correct order.

Specifying References. Having defined a GADT to represent ClassSheet mod-
els, we need now a mechanism to define spreadsheet references. The safer way to
accomplish this is making references strongly typed. Figure 27 depicts the sce-
nario of a transformation with references. A reference from a cell s to the a cell
t is defined using a pair of projections, source and target. These projections are
statically-typed functions traversing the data type A to identify the cell defining
the reference (s), and the cell to which the reference is pointing to (t). In this
approach, not only the references are statically typed, but also always guaran-
teed to exist, that is, it is not possible to create a reference from/to a cell that
does not exist.

|s|

A

to

��

target ��

source
��

T �� A′

from

��

source′

��

target′��|t|
source Projection over type A identifying the reference
target Projection over type A identifying the referenced cell

source′ = source ◦ from
target′ = target ◦ from

Fig. 27. Coupled transformation of data type A into data type A′ with references.

The projections defining the reference and the referenced type, in the trans-
formed type A′, are obtained by post-composing the projections with the witness
function from. When source′ and target′ are normalized they work on A′ directly
rather than via A. The formula specification, as previously shown, is specified
directly in the GADT. However, the references are defined separately by defining
projections over the data type. This is required to allow any reference to access
any part of the GADT.

Using the spreadsheet illustrated in Fig. 26, an instance of a reference from
the formula total to price is defined as follows (remember that the second
argument of Ref is the source (reference cell) and that the third is the target
(referenced cell)):
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costWithReferences =
Ref Int (fhead ◦ head ◦ (π2 ◦ π2 ◦ π2)� ◦ π2) (head ◦ (π1 ◦ π2 ◦ π2)� ◦ π2) cost

The source function refers to the first FRef in the Haskell encoding shown after
Fig. 26. The target projection defines the cell it is pointing to, that is, it defines
a reference to the the value 1500 in column Price.

To help understand this example, we explain how source is constructed. Since
the use of GADTs requires the definition of models combining elements in a
pairwise fashion, π2 is used to get the second element of the model (a pair), that
is, the list of planes and their cost maintenance. Then, we apply (π2 ◦ π2 ◦ π2)�

which will return a list with all the formulas. Finally head will return the first
formula (the one in cell D2) from which fhead gets the first reference in a list
of references, that is, the reference B2 that appears in cell D2.

Note that our reference type has enough information about the cells and
thus we do not need value-level functions, that is, we do not need to specify the
projection functions themselves, just their types. In the cases we reference a list
of values, for example, constructed by the class expandable operator, we need to
be specific about the element within the list we are referencing. For these cases,
we use the type-level constructors head (first element of a list) and tail (all but
first) to get the intended value in the list.

5.2 Evolution of Spreadsheets

In this section we define rules to perform spreadsheet evolution. These rules can
be divided in three main categories: Combinators, used as helper rules, Semantic
rules, intended to change the model itself (e.g. add a new column), and Layout
rules, designed to change the visual arrangement of the spreadsheet (e.g. swap
two columns).

Combinators. The semantic and the layout rules are defined to work on a
specific part of the model. The combinators defined next are then used to apply
those rules in the desired places.

Pull up all references. To avoid having references in different levels of the models,
all the rules pull all references to the topmost level of the model. This allows
to create simpler rules since the positions of all references are know and do not
need to be changed when the model is altered. To pull a reference in a particular
place we use the following rule (we show just its first case):

pullUpRef :: Rule
pullUpRef ((Ref tb fRef tRef ta) � b2 ) = do

return (View idrep (Ref tb (fRef ◦ π1) (tRef ◦ π1) (ta � b2 )))

The representation idrep has the id function in both directions. If part of the
model (in this case the left part of a horizontal composition) of a given type has a
reference, it is pulled to the top level. This is achieved by composing the existing
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projections with the necessary functions, in this case π1. This rule has two cases
(left and right hand side) for each binary constructor (e.g. horizontal/vertical
composition).

To pull up all the references in all levels of a model we use the rule

pullUpAllRefs = many (once pullUpRef )

The once operator applies the pullUpRef rule somewhere in the type and the
many ensures that this is applied everywhere in the whole model.

Apply after and friends. The combinator after finds the correct place to apply
the argument rule (second argument) by comparing the given string (first argu-
ment) with the existing labels in the model. When it finds the intended place, it
applies the rule to it. This works because our rules always do their task on the
right-hand side of a type.

after :: String → Rule → Rule
after label r (label ′ � a) | label ≡ label ′ = do

View s l ′ ← r label ′

return (View (Rep {to = to s × id, from = from s × id}) (l ′ � a))

Note that this code represents only part of the complete definition of the func-
tion. The remaining cases, e.g. ·ˆ·, are not shown since they are quite similar to
the one presented.

Other combinators were also developed, namely, before, bellow , above, inside
and at . Their implementations are not shown since they are similar to the after
combinator.

Semantic Rules. Given the support to apply rules in any place of the model
given by the previous definitions, we now present rules that change the semantics
of the model, that is, that change the meaning and the model itself, e.g., adding
columns.

Insert a block. The first rule we present is one of the most fundamentals: the
insertion of a new block into a spreadsheet. It is formally defined as follows:

Block

id�(pnt a)

		
� Block � Block

π1





This diagram means that a horizontal composition of two blocks refines a block
when witnessed by two functions, to and from. The to function, id
(pnt a),
is a split: it injects the existing block in the first part of the result without
modifications (id) and injects the given block instance a into the second part of
the result. The from function is π1 since it is the one that allows the recovery of
the existent block. The Haskell version of the rule is presented next.
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insertBlock :: Type a → a → Rule
insertBlock ta a tx | isBlock ta ∧ isBlock tx = do

let rep = Rep {to = (id
(pnt a)), from = π1}
View s t ← pullUpAllRefs (tx � ta)
return (View (comprep rep s) t)

The function comprep composes two representations. This rule receives the type
of the new block ta, its default instance a, and returns a Rule. The returned
rule is itself a function that receives the block to modify tx , and returns a
view of the new type. The first step is to verify if the given types are blocks
using the function isBlock . The second step is to create the representation rep
with the witness functions given in the above diagram. Then the references are
pulled up in result type tx � ta. This returns a new representation s and a
new type t (in fact, the type is the same t = tx � ta). The result view has as
representation the composition of the two previous representations, rep and s,
and the corresponding type t .

Rules to insert classes and sheets were also defined, but since these rules are
similar to the rule to insert blocks, we omit them.

Insert a column. To insert a column in a spreadsheet, that is, a cell with a label
lbl and the cell bellow with a default value df and vertically expandable, we first
need to create a new class representing it: clas =| lbl : lblˆ(lbl = df ↓). The label
is used to create the default value (lbl , [ ]). Note that since we want to create an
expandable class, the second part of the pair must be a list. The final step is to
apply insertSheet :

insertCol :: String → VFormula → Rule
insertCol l f @(FFormula name fs) tx | isSheet tx = do

let clas =| lbl : lblˆ(lbl = df ↓)
((insertSheet clas (lbl , [ ])) � pullUpAllRefs) tx

Note the use of the rule pullUpAllRefs as explained before. The case shown in
the above definition is for a formula as default value and it is similar to the value
case. The case with a reference is more interesting and is shown next:

insertCol l FRef tx | isSheet tx = do
let clas =| lbl : Ref ⊥ ⊥ ⊥ (lblˆ((lbl = RefCell)↓))
((insertSheet clas (lbl , [ ])) � pullUpAllRefs) tx

Recall that our references are always local, that is, they can only exist with
the type they are associated with. So, it is not possible to insert a column that
references a part of the existing spreadsheet. To overcome this, we first create
the reference with undefined functions and auxiliary type (⊥). We then set these
values to the intended ones.

setFormula :: Type b → PF (a → RefCell) → PF (a → b) → Rule
setFormula tb fRef tRef (Ref t) =

return (View idrep (Ref tb fRef tRef t))
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This rule receives the auxiliary type (Type b), the two functions representing
the reference projections and adds them to the type. A complete rule to insert
a column with a reference is defined as follows:

insertFormula =
(once (insertCol label FRef )) � (setFormula auxType fromRef toRef )

Following the original idea described previously in this section, we want to intro-
duce a new column with the number of passengers in a flight. In this case, we
want to insert a column in an existing block and thus our previous rule will not
work. For these cases we write a new rule:

insertColIn :: String → VFormula → Rule
insertColIn l (FValue v) tx | isBlock tx = do

let block = lbl ˆ(lbl = v)
((insertBlock block (lbl , v)) � pullUpAllRefs) tx

This rule is similar to the previous one but it creates a block (not a class) and
inserts it also after a block. The reasoning is analogous to the one in insertCol .

To add the column "Passengers" we can use the rule insertColIn, but apply-
ing it directly to our running example will fail since it expects a block and we
have a spreadsheet. We can use the combinator once to achieve the desired result.
This combinator tries to apply a given rule somewhere in a type, stopping after it
succeeds once. Although this combinator already existed in the 2LT framework,
we extended it to work for spreadsheet models/types.

Make it expandable. It is possible to make a block in a class expandable. For
this, we created the rule expandBlock :

expandBlock :: String → Rule
expandBlock str (label : clas) | compLabel label str = do

let rep = Rep {to = id × tolist, from = id × head}
return (View rep (label : (clas)↓))

It receives the label of the class to make expandable and updates the class to
allow repetition. The result type constructor is · : (·)↓; the to function wraps
the existing block into a list, tolist ; and the from function takes the head of it,
head. We developed a similar rule to make a class expandable. This corresponds
to promote a class c to c→. We do not show its implementation here since it is
quite similar to the one just shown.

Split. It is quite common to move a column in a spreadsheet from on place to
another. The rule split copies a column to another place and substitutes the
original column values by references to the new column (similar to create a
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pointer). The rule to move part of the spreadsheet is presented in Sect. 5.2. The
first step of split is to get the column that we want to copy:

getColumn :: String → Rule
getColumn h t (l ′ˆb1 ) | h ≡ l ′ = return (View idrep t)

If the corresponding label is found, the vertical composition is returned. Note
that as in other rules, this one is intended to be applied using the combinator
once. As we said, we aim to write local rules that can be used at any level using
the developed combinators.

In a second step the rule creates a new a class containing the retrieved block:

do View s c′ ← getBlock str c
let nsh =| str : (c′)↓

The last step is to transform the original column that was copied into references
to the new column. The rule makeReferences :: String → Rule receives the label
of the column that was copied (the same as the new column) and creates the
references. We do not shown the rest of the implementation because it is quite
complex and will not help in the understanding of the paper.

Layout Rules. We will now describe rules focused on the layout of spreadsheets,
that is, rules that do not add/remove information to/from the model, but only
rearrange it.

Change orientation. The rule toVertical changes the orientation of a block from
horizontal to vertical.

toVertical :: Rule
toVertical (a � b) = return (View idrep (a ˆb))

Note that since our value-level representation of these compositions are pairs,
the to and the from functions are simply the identity function. The needed
information is kept in the type-level with the different constructors. A rule to
do the inverse was also designed but since it is quite similar to this one, we do
not show it here.

Normalize blocks. When applying some transformations, the resulting types may
not have the correct shape. A common example is to have as result the following
type:

A � B ˆC � Dˆ
E � F

However, given the rules in [29] to ensure the correctness of ClassSheets, the
correct result is the following:

A � B � Dˆ
E � C � F
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The rule normalize tries to match these cases and correct them. The types are the
ones presented above and the witness functions are combinations of π1 and π2.

normalize :: Rule
normalize (a � bˆc � d ˆe � f ) = do

let to = id × π1 × id ◦ π1
π1 ◦ π2
π2 ◦ π1 ◦ π2 × π2

from = π1 ◦ π1
π1 ◦ π2 × π1 ◦ π2
π2 ◦ π2 ◦ π1
id × π2 ◦ π2

return (View (Rep {to = to, from = from}) (a � b � d ˆe � c � f ))

Although the migration functions seem complex, they just rearrange the order
of the pairs so they have the correct arrangement.

Shift. It is quite common to move parts of the spreadsheet across it. We designed
a rule to shift parts of the spreadsheet in the four possible directions. We show
here part of the shiftRight rule, which, as suggested by its name, shifts a piece of
the spreadsheet to the right. In this case, a block is moved and an empty block
is left in its place.

shiftRight :: Type a → Rule
shiftRight ta b1 | isBlock b1 = do

Eq ← teq ta b1
let rep = Rep {to = pnt (⊥ :: EmptyBlock)
id, from = π2}
return (View rep (EmptyBlock � b1 ))

The function teq verifies if two types are equal. This rule receives a type and a
block, but we can easily write a wrapper function to receive a label in the same
style of insertCol .

Another interesting case of this rules occurs when the user tries to move a
block (or a sheet) that has a reference.

shiftRight ta (Ref tb frRef toRef b1 ) | isBlock b1 = do
Eq ← teq ta b1
let rep = Rep {to = pnt (⊥ :: EmptyBlock)
id, from = π2}
return (View rep (Ref tb (frRef ◦ π2) (toRef ◦ π2) (EmptyBlock � b1 ))

As we can see in the above code, the existing reference projections must be
composed with the selector π2 to allow to retrieve the existing block b1 . Only
after this it is possible to apply the defined selection reference functions.

Move blocks. A more complex task is to move a part of the spreadsheet to
another place. We present next a rule to move a block.

moveBlock :: String → Rule
moveBlock str c = do

View s c′ ← getBlock str c
let nsh =| str : c′

View r sh ← once (removeRedundant str) (c � nsh)
return (View (comprep s r) sh)
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After getting the intended block and creating a new class with it, we need to
remove the old block using removeRedundant .

removeRedundant :: String → Rule
removeRedundant s (s ′) | s ≡ s ′ = do

let rep = Rep {to = pnt (⊥ :: EmptyBlock), from = pnt s ′}
return (View rep EmptyBlock)

This rule will remove the block with the given label leaving an empty block in
its place.

6 Model-Driven Spreadsheet Development in MDSheet

The embedding and evolution techniques presented previously have been
implemented as an add-on to a widely used spreadsheet system, the OpenOffice/
LibreOffice system. The add-on provides a model-driven spreadsheet develop-
ment environment, named MDSheet, where a (model-driven) spreadsheet con-
sists of two type of worksheets: Sheet 0, containing the embedded ClassSheet
model, and Sheet 1, containing the spreadsheet data that conforms to the
model. Users can interact both with the ClassSheet model and the spreadsheet
data. Our techniques guarantee the synchronization of the two representations.

In such an model-driven environment, users can evolve the model by using
standard editing/updating techniques as provided by spreadsheets systems. Our
add-on/environment also provides predefined buttons that implement the usual
ClassSheets evolution steps. Each button implements an evolution rule, as descri-
bed in Sect. 5. For each button, we defined a Basic script that interprets the
desired functionality, and sends the contents of the spreadsheet (both the model
and the data) to our Haskell-based co-evolution framework. This Haskell frame-
work implements the co-evolution of the spreadsheet models and data presented
in Sect. 5.

MDSheet also allows the development of ClassSheet models from scratch
by using the provided buttons or by traditional editing. In this case, a first
instance/spreadsheet is generated from the model which includes some business
logic rules that assist users in the safe and correct introduction/editing of data.
For example, in the spreadsheet presented in Fig. 22, if the user presses the
button in column J, four new columns will automatically be inserted so the
user can add more flights. This automation will also automatically update all
formulas in the spreadsheet.

The global architecture of the model-driven spreadsheet development we con-
structed is presented in Fig. 28.

Tool and demonstration video availability. The MDSheet tool [24] and a video
with a demonstration of its capabilities are available at the SSaaPP – Spread-
Sheets as a Programming Paradigm project’s website13.

In the next section we present in detail the empirical study we have organized
and conducted to assess model-driven spreadsheets running through MDSheet.
13 http://ssaapp.di.uminho.pt.

http://ssaapp.di.uminho.pt
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Sheet 0Sheet 1

Sheet 0Sheet 1

Haskell ClassSheet data type

Application of evolution rule 
chosen by the user

New Haskell 
ClassSheet data type

Forward and backward 
transformations

New Haskell spreadsheet 
representation

BASIC sends sheet 1 (data) to 
MDSheet the back-end

Haskell spreadsheet representation

Application of the forward/
backward tansformation

BASIC sends sheet 0 (model) to the 
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From the model MDSheet generates a template

Fig. 28. Model-driven spreadsheet development environment.

Exercise 7. Consider the spreadsheet and corresponding model defined in Exer-
cise 5. First, write the ClassSheet model in the MDSheet environment. Second,
update the spreadsheet instance with the data.

7 Studies with School Participants

In this section we present the feedback we obtained from school participants
regarding spreadsheets and their engineering. This feedback was solicited in two
different moments and aimed at realizing the participants perspective on two
different spreadsheet aspects.
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For once, we asked participants to name, from the characteristics that have
been natively incorporated in spreadsheet systems, the ones they realized as
the most important. Also, we asked them to name the single feature they missed
the most. The details on this inquiry are presented in Sect. 7.1, and its results
were already presented to the participants during the summer school.

Secondly, we relied on the participants’ feedback to identify possible improve-
ments for our framework. This occurred after our tutorial sessions, and during a
lab session, where participants volunteered to actually perform concrete spread-
sheet engineering tasks under the framework that we have built and that we
have described in this tutorial. The details on this experiment are described in
Sect. 7.2.

In both cases, we believe that the generalization of the results we observe
here would require a larger sample of participants, namely for statistical rea-
sons. Nevertheless, we also believe that the volunteer nature and the interest
demonstrated by the participants when providing concrete feedback is surely
worth its analyzis and publishing.

7.1 Participants’ Perspective on Spreadsheets

In the beginning of our tutorial, we asked for the participants cooperation in
filling in an inquiry on the spreadsheet characteristics they understood as the
most important and on the feature they would like to see incorporated in tradi-
tional spreadsheet systems. We chose this moment to do so, since we wanted to
understand the participants’ perspective unbiased from the materials we later
exposed.

The inquiry that we conducted consisted in handing a paper form to each
participant, asking:

1. Please provide the three most important characteristics of spreadsheets, in
(descending) order of preference.

2. Please provide the feature you miss the most in spreadsheet systems.

Answers were completely open, in that no pre-defined set of possible answers
was given.

Figure 29 shows the feedback we received with respect to the first (most
important) characteristic identified by the school participants.

Out of a total number of 29 answers, 17 (almost 60%) identify the simplicity
in their usage as the most important characteristic of spreadsheets. Also, the tab-
ular layout of spreadsheets, with 5 answers (exactly 17%), and their underlying
incremental engine, with 3 (10%), were significantly acknowledged. Finally, their
flexibility, multi-purpose, availability on almost any computer as well as their
presentation-oriented nature were also mentioned, with 1 answer each (nearly
3% of all answers).

Next, we follow this same analysis regarding the characteristics pointed out
as the second most important of spreadsheets, and that are presented in Fig. 30.
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Fig. 29. Most important spreadsheet characteristic.

Fig. 30. Second most important spreadsheet characteristic.

In this case, we have received a total number of 24 answers. Out of these,
the tabular nature of spreadsheets, with 7 answers (circa 30%), and their sim-
ple usage, with 5 (around 10%) are again the most pointed characteristics.
Characteristics such as availability, multi-purpose, flexibility, functionality or
presentation-orientation were all pointed out by 2 participants (i.e., by 8% of
all answers).

Regarding the answers that were given as the third most important spread-
sheet characteristic, we have received a total of 20 valid answers, which are
sketched in Fig. 31.

We observe a predominance of the availability and functionality of spread-
sheets, with 4 answers each (i.e., 20% of all answers each). The layout of
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Fig. 31. Third most important spreadsheet characteristic.

spreadsheets was pointed by 3 participants (15%) and all other characteristics
were pointed out by a single participant (corresponding to 5% of all answers).

Considering all the characteristics that were identified, irrespective to their
order of preference, we obtain the results sketched in Fig. 32.

The top three identified characteristics were then the easiness of usage of
spreadsheets, with 24 answers (33%), their tabular format, 15 answers (21%),
and their availability, 7 answers (10%).

Fig. 32. Overall most important spreadsheet characteristic.
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Fig. 33. The single most missed feature on spreadsheets.

Finally, regarding our pre-tutorial inquiry, participants were asked to identify
the feature they missed the most on a spreadsheet system. The answers we
received, in number of 23, are depicted in Fig. 33.

We see that analysis tools, integration with other programming languages,
and user defined functions are the most missed features (with 4, 3 and 3 answers,
respectively). Interestingly enough, 3 participants say that spreadsheet systems
are fine in their current state, i.e., that they do not miss a single feature there.
With 2 participants referring to them, recursion, refactorings, and a better scala-
bility model are also identified as missing features. Finally, an improved graphical
user interface, precision and user defined data types were also identified each by
a single participant.

7.2 Participants’ Perspective on MDSheet

In this section, we describe the simple experiment that we have devised in order
to obtain feedback on the MDSheet framework from the participants. Five par-
ticipants volunteered to join the experiment: 4 males and 1 female; all of them
had never had contact with MDSheet prior to the summer school.

Our experiment consisted in executing three specific tasks. Prior to par-
ticipants actually performing each one, we have ourselves demonstrated with
equivalent actions. Also, the tasks that were solicited consisted of editing steps
on an already built model to deal with a simple budget (registering incomes and
expenses). These tasks followed the order:

1. Add an attribute to a class, being given its default value.
2. Add and attribute to a class, being its value defined by a given formula.
3. Remove an attribute from a class.
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After the execution of each task, we made available a (web) form, where
participants had the opportunity to answer the following questions:

(i) Did you find this functionality useful?
(ii) For this functionality, describe an advantage in using our environment.
(iii) For this functionality, describe a disadvantage in using our environment.
(iv) For this functionality, please give us a suggestion to improve our environ-

ment.
(v) Assuming that you are familiar with our environment, would you prefer to

use standard Excel to complete this task? Please elaborate.

In the remaining of this section, we present our analysis on the feedback that
was provided by participants.

Analyzing task 1. All participants found the functionality of adding attributes
to a class useful. Also, they in general see as beneficial the fact that attributes
may later be called by name, instead of by (alphabetical) column identifiers.
In fact, this is in line with the results presented in [46] where authors showed
that spreadsheet users create a mental model of the spreadsheet that helps them
understand and work with the spreadsheet. These mental models are created
using names from the real world as it is the case with our ClassSheet models.

In terms of disadvantages, they point out the fact that attribute names are
not visible on the instances, and potential efficiency problems when using larger
models. Some participants suggest that we should improve further our graphical
user interface. Still, all participants state that they prefer using our environment
over using a standard spreadsheet system for this type of action.

Analyzing task 2. All participants found the functionality of adding attributes
whose values are given by a formula to a class useful. Indeed, they state that
being able of defining formulas using attribute names is very intuitive and help-
ful. Also, they see as important the fact that a formula is defined only once, in
the model, being automatically copied (and updated) wherever (and whenever)
necessary at the instance level.

In terms of disadvantages, the one thing that is identified is that it would
be better, when defining a formula, to be able to use the mouse to point to an
attribute instead of having to type its name, as our tool in its current state
demands. Actually, overcoming this disadvantage is the main suggestion for
improvement that we receive here. For faster feedback, two participants state
that they would prefer using Excel in the particular scenario that we have set
and for this particular task. However, they also state that if they were dealing
with a larger model, they would prefer MDSheet.

Analyzing task 3. Again, all participants found the functionality of removing an
attribute from a class useful. All participants but one were particularly enthusias-
tic about the fact that all the necessary editions (e.g., in the scopes of all formulas
affected by the deletion of the attribute) are automatically implemented.
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Also, most participants found no disadvantages in using our framework for
this type of tasks. Nevertheless, the issues that were raised here concern to the
fact that using our model-based approach may sometimes restrict the flexibil-
ity of standard spreadsheets. The comments with respect to this task mainly
suggest that we should make available a message confirming the will to delete
data. Finally, no participant declared to prefer a standard spreadsheet system
to accomplish a task such as this one.

Apart from feedback on accomplishing specific tasks, we also requested gen-
eral feedback regarding MDSheet. Indeed, we asked each participant to choose
the descriptions they believed were applicable to our framework from the follow-
ing list. Any number of options was selectable.

Helpful Not helpful Useful for professional programmers
Usable Requires specific knowledge Useful for non-professional programmers
Intuitive Counter intuitive Can improve my productivity
Useless Not useful in practice Can not improve my productivity

The options that were selected, and the number of times they were selected
is given next.

Helpful 4
Can improve my productivity 4
Useful for non-professional programmers 3
Usable 3
Intuitive 1
Requires specific knowledge 1

Finally, we asked for comments on MDSheet and for suggestions that could
improve it. The most referred suggestion was to add an undo button to the
framework. In another direction, one participant commented that our framework
may be unfit for agile business practices.

As we explained before, this empirical study was performed in the laboratory
sessions of our tutorial course. The number of participants in the study is small,
and no statistical conclusions can be obtained from the study. However, we have
conducted a larger study with end users where we evaluated their efficiency
(measured as the time needed to complete a task) and effectiveness (measure
as the number of errors produced in solving the task) using regular and model-
driven spreadsheets [20]. Those results show that using our MDSD environment,
end users are both more efficient and effective. In fact, those results just confirm
the feedback we received from summer school participants.

8 Conclusion

This document presents a set of techniques and tools to analyze and evolve
spreadsheets. First, it presents data mining and database techniques to infer a
ClassSheet that represents the business logic of spreadsheet data. Next, it shows
the embedding of the visual, domain specific language of ClassSheet in a general
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purpose spreadsheet system. Finally, it presents model-driven engineering tech-
niques, based on data refinements, to evolve the model and have the instance
automatically co-evolved. These techniques are implemented in the MDSheet
framework: an add-on for a widely used, open source, spreadsheet system.

In order to validate both our embedding of a visual DSL and the evolution of
our model-driven spreadsheets, we have conducted an empirical study with the
summer school participants. The results show that regular spreadsheet users are
able to perform the proposed tasks, and they recognize the advantages of using
our setting when compared to standard spreadsheet systems.

The techniques and tools described in this paper were developed in the con-
text of the SSaaPP - Spreadsheets as a Programming Paradigm research project.
In the project’s webpage, the reader may find the tools presented in this paper
and other contributions in the area of spreadsheet engineering: namely the defi-
nition of a catalog of spreadsheet bad smells, the definition of a query language
for model-driven spreadsheets, and a quality model for spreadsheets. They are
available, as a set of research papers and software tools, at the following webpage:

http://ssaapp.di.uminho.pt
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Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
{deva,ldani,matej}@caesar.elte.hu

Abstract. Embedded Domain Specific Languages make language design
and implementation easier, because lexical and syntactical analysis and
part of the semantic checks can be completed by the compiler of the host
language.

On the other hand, by the nature of embedding, EDSL compilers
have to work with a syntax tree that stores no information about the
source file processed and the location of the program entities within the
source file. This makes it hard to produce user-friendly error messages
and connect the generated target code with the source code for debug-
ging and profiling purposes.

This lecture note presents this problem in detail and shows possi-
ble solutions. The first, lightweight solution uses macro preprocessing.
The second one is based on syntax tree transformations to add missing
source-related information. This is more powerful, but also more heavy-
weight. The last technique avoids the problem by turning the embedded
language implementation to a standalone one (with own parser) after
the experimental phase of the language development process: It turns
out that most of the embedded implementation can be reused in the
standalone one.

1 Introduction

As software systems become more and more complex, using appropriate lan-
guages that provide the right abstraction level and domain-specific optimization
possibilities is crucial to keep the time-to-market short, the maintenance costs
low and the product performance high.

These observations lead to the application of domain specific languages in
many different application areas. On the other hand, building applications using
DSLs adds new challenges: Designing new languages and creating well perform-
ing compilers is hard, integrating many different languages and tools into a
project may be difficult and DSLs usually lack the rich tool support (debug-
gers, profilers, static analisers) that widely used general purpose programming
languages have.

This paper addresses some of these challenges. In particular, we concentrate
on embedded domain specific languages (EDSLs), that are implemented as spe-
cial libraries in a general purpose programming languages (called the host lan-
guages). In this setup, language design is simplified to a great extent compared
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to standalone language development. On the other hand, good quality error
reporting, possibility of source level debugging and profiling is much harder.

This latter deficiency of EDSLs is due to the fact that the compilers of these
languages have no access to the source code of the program (unless the host
languages have special support for this). This paper presents three possible
solutions for the problem. These were developed in different EDSL projects
that the authors of this paper were involved in lately. One of these projects
is Feldspar [2,8], which stands for Functional Embedded Language for Digital
Signal Processing and Parallelism. It was originally initiated by Ericsson AB and
run by Chalmers Univerity of Technology in Gothenburg and ELTE University
in Budapest. The other project, called Miller [9], was initiated by Ericsson Hun-
gary and is run at ELTE University. The objective of this project is to create a
domain specific language for architectures with complex programmable memory
hierarchies. The topic of the third project [7] is an embedded language to express
formal specifications of programs and correctness proofs. All the three projects
created embedded languages using Haskell as the host language.

The rest of this section introduces the concept of embedding and gives the
details of the source code accessing problem. Section 2 presents a solution using
preprocessing with standard tools, while Sect. 3 describes a more advanced possi-
bility with syntax tree manipulation. Section 4 shows how to combine the devel-
opment of an embedded language with its standalone version. Finally, Sect. 5
presents related work and a summary is given in the last section.

1.1 EDSLs

DSLs are usually categorized as external or internal. External DSLs are imple-
mented as a stand alone language with own syntax and compiler, without any
particular connection to any existing language. On the other hand, internal DSLs
are created within the framework of another (usually general purpose) program-
ming language, which is called the host language. The relation between an inter-
nal DSL and its host language can be of many sort. A detailed overview can be
found in [17].

In this paper we consider a specific kind of internal DSL implementation
strategy that Hudak [11] named as domain specific embedded language (DSEL)
and is also called as embedded domain specific language (EDSL).

An EDSL is a library written in the host language. EDSL programs are
therefore programs in the host language that intensively use that library. The
border between traditional libraries and EDSLs is not always clear, but it is an
important feature of EDSLs that they have some kind of domain semantics in
addition to their meaning as plain host language programs.

There are two types of EDSL: shallow and deep embeddings. In case of a
shallow embedding, running the EDSL program as a host language program
computes the result of the EDSL program. On the other hand, executing a
program of a deeply embedded language as a host language program only creates
the abstract syntax tree of the EDSL program. This AST is then usually further
processed by the interpreter or compiler of the EDSL to execute the program
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or to generate target code. In the rest of the paper we will only focus on deeply
embedded DSLs. Creating a deeply embedded DSL consists of the following
steps:

– Definition of the data types of the abstract syntax tree. We will also refer to
these data types as internal representation.

– Implementation of a front-end: a set of helper data types and functions that
can be used to build up the abstract syntax tree. The purpose of this front-
end is to provide a user-friendly way of writing EDSL programs. This frontend
determines how EDSL programs will “look like”, therefore one might say that
it defines the EDSLs “syntax”.

– Implementation of a back-end that processes the syntax tree: a code generator
to transform the EDSL program to target code or an interpreter to execute it.

Compared to a standalone language, an EDSL is usually easier to develop:

– Since the EDSL has no own syntax, there is no need for lexer and parser:
These tasks are done by the host language compiler.

– If the host language has expressive enough type system, it is also possible to
encode much of the semantic rules of the EDSL in the types of the abstract
syntax tree elements and frontend functions. This way the semantic analysis
is partly done by the host language compiler too.

– The full power of the host language can be used to write meta programs on
top of the EDSL. As EDSL programs are valid host language programs, EDSL
program fragments can be freely combined and parametrized.

These advantages make embedding particularly suitable for language design
experiments. More on this aspect will be presented in Sect. 4.

These observations are more-or-less true also for the comparison of EDSLs
with other internal language implementation techniques, like Metaborg [4]. In
case of Metaborg-style embeddings, one defines stand alone syntax for the DSL,
but the DSL code fragments are written in host language source files. These
mixed-language source files are then processed by the compiler of the DSL and
the DSL fragments are translated to pure host language code. In the next step
the compiler of the host language is used to create an executable.

Haskell is particularly well-suited to be a host language: Its syntax is minimal
and is flexible enough to support different EDSL syntax styles. The type system
of the language is advanced, allowing the language designer to encode many
EDSL semantic rules in the types.

1.2 Accessing Source Code

Compilers of traditional, standalone languages have full access to the source files.
Lexing and parsing keep track of the locations and string values of the tokens
and the syntax tree can be annotated with this information. This annotation is
then used for several different purposes:



The EDSL’s Struggle for Their Sources 303

– Quality error messages. The error messages contain exact (file, row, column)
locations of the error. It may also name the entities (functions, variables
etc.) that are involved in the error, using the same names that appear in the
source file.

– Readable target code. Many DSL compilers translate the source code to
another textual programming language instead of machine code. Program-
mers usually want to read this generated code and understand its connections
to the original DSL code. To help this understanding process, it is helpful if
the generated code uses the same names for variables, functions as the source.
It may also be a good idea to add comments to the generated code showing
connected DSL code fragments.

– Finding the connection between the source and target code is important not
only for humans but also for software: In order to a show the active source
code instruction during a debugging session or to show the values of variables
it is necessary to provide the debugger with a mapping between the source
and target code.

– The above mentioned mapping is also necessary to project profiling results
back to the source level. This enables profilers to show performance bot-
tlenecks in the source code or to provide runtime statistics on function or
instruction level.

While any parsing based DSL development methods (standalone languages,
Metaborg-style internal languages) have all the necessary information for the
above tasks, EDSLs usually lack this information. The reason for this is simple:
The EDSL compiler’s input is the abstract syntax tree that was created by
running the EDSL program as a host language program. As this syntax tree
is not the result of parsing, location and textual information is not present. In
order to have that in an EDSL syntax tree, the host language should provide
constructs to ask for location and text of any program fragment. (See the note
about the Scala language in the Related Work, Sect. 5.)

Summarizing Sects. 1.1 and 1.2, one is faced with the following tradeoff: On
the positive side, EDSLs can use the host language compiler to solve lexical, syn-
tactical and (partly) semantic analysis. Furthermore, the host language becomes
a powerful meta programming layer on top of the EDSL. On the negative side,
EDSL compilers usually lack source location and text information which pre-
vents creating good quality error messages and connecting the generated target
code for human understanding, debugging and profiling.

2 Preprocessing

2.1 Concept

Preprocessing is the process of scanning and modifying source code before the
compiler inputs it. The most widely used preprocessor is the CPP (C preproces-
sor) which is used with many languages besides C and C++, including Haskell. It
supports macro definitions (#define), conditional compilation (#if, #ifdef etc.),
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inclusion of other files into the source file (#include), which is also used instead
of a proper modul system in C/C++.

There is a clone of the C preprocessor tailored a bit to the Haskell language:
cpphs [1]. It accepts quotes and backticks in macro names to match the Haskell
identifier lexical rules. However, operator symbols still cannot be used in macro
names. Also, this tool is easier to integrate into compiler projects using Haskell
as the implementation language than the traditional C preprocessor.

When compiling (or interpreting) Haskell sources using preprocessor direc-
tives, additional parameters are needed, for example:

ghci -cpp MyFile.hs

This will call the traditional C preprocessor, while the following uses cpphs:

ghci -cpp -pgmPcpphs -optP--cpp MyFile.hs

Preprocessing can also be used as a lightweight solution to the source code
access problem of EDSLs. The transformation steps of an EDSL implementation
can be summarized as follows:

– Extend the data types of the abstract syntax tree to be able to store source
file names and line numbers, symbol names in the source etc.

– Add more parameters to selected interface functions to be able to pass these
pieces of information.

– Create macros that generate these additional values automatically and publish
these macros to the user instead of the original interface functions.

2.2 Example

This section presents examples on using the C preprocessor to reflect symbol
names of the EDSL code in the generated target code and to make helpful error
messages.

An Example EDSL. Consider the following language, called Simple, as an
example. It contains the integer and boolean types, variables, basic arithmetic
and logic operations and assignment.

Simple.hs

module Simple
( Simple
, int , bool
, ( .=)
, true , f a l s e
, (&&), ( | | ) , not
, Num( . . )
, compi le
)
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where

import Prelude h id ing ( (&&) , ( | | ) , not )
import Simple . Frontend

An example program using this language is described in Example.hs.

Example.hs

import q u a l i f i e d Prelude
import Simple

c o r r e c t : : Simple
c o r r e c t = do : :

x <− i n t
x .= 10
x .= x + 20 − 2 ∗ x
y <− bool
y .= true && not y | | f a l s e

wrong1 : : Simple
wrong1 = do

x <− i n t
( x − 1) .= (x + 1)

Compilation can be invoked as follows:

ghci Examples.hs
*Main> compile correct
int var0;
bool var1;
var0 = 10;
var0 = ((var0+20)-(2*var0));
var1 = ((true&&(!var1))||false);

The generated code contains generated variable names, which makes it harder
to read and is really annoying in the error messages:

*Main> compile wrong1
Errors:
Non lvalue found on the left hand side of an assignment: (var0-1)

The task is to fix these problems, but first let us overview the implementation
of the EDSL presented in the appendix before modifying it.

The Implementation of Simple. The implementation consists of three files
in the Simple directory:
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– Representation.hs: The data types of the abstract syntax tree of the language.
– Frontend.hs: The types and functions that can be used in Simple programs.
– Compiler.hs: Functions to check programs for errors and to generate target

code.

A Program consists of Declarations and Instructions. A declaration contains
a variable of some type a, where a is a Supported type of the language. An
instruction is an assignment, consisting of two Expressions: the left and right
hand sides of the assignment. Expressions are either Literals, Var iables or com-
pound expressions built up by arithmetic or logic operators.

Simple.Representation.hs

{−# LANGUAGE GADTs #−}

module Simple . Representat ion where

data Program =
Program
{ d e c l a r a t i o n s : : [ Dec la ra t i on ]
, i n s t r u c t i o n s : : [ I n s t r u c t i o n ]
}

data Dec la ra t i on where
Dec la ra t i on : : Supported a => Var iab le a −> Dec la ra t i on

data Var iab le a = Var iab le S t r ing

c l a s s Supported a where
d e c l a r e : : Var iab le a −> St r ing

data I n s t r u c t i o n where
Assign : : Express ion a −> Express ion a −> I n s t r u c t i o n

data Express ion a where
L i t e r a l : : S t r ing −> Express ion a
Var : : S t r ing −> Express ion a
Add : : Express ion Int

−> Express ion Int −> Express ion Int
Sub : : Express ion Int

−> Express ion Int −> Express ion Int
Mul : : Express ion Int

−> Express ion Int −> Express ion Int
And : : Express ion Bool

−> Express ion Bool −> Express ion Bool
Or : : Express ion Bool

−> Express ion Bool −> Express ion Bool
Not : : Express ion Bool −> Express ion Bool
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Note that expressions are typed, this means that type errors in Simple pro-
grams will be reported already by the Haskell compiler. Consider the following
wrong3 program:

wrong3 : : Simple
wrong3 = do

x <− i n t
x .= true

The error message for this program is:

Examples.hs:31:10:
Couldn’t match expected type ‘Prelude.Int’

with actual type ‘Prelude.Bool’
Expected type: Simple.Representation.Expression Prelude.Int

Actual type: Simple.Representation.Expression Prelude.Bool
In the second argument of ‘(.=)’, namely ‘true’
In a stmt of a ’do’ block: x .= true

The frontend of the language instantiates the Num class for Expression Int
to provide integer literals and basic arithmetic in the language. The true and
false functions are the boolean literals and the standard (&&), (||) and not
operations of the Haskell Prelude are redefined as the boolean operations of
Simple.

Simple.Frontend.hs

{−# LANGUAGE Fl ex i b l e I n s t anc e s , GADTs, RankNTypes #−}

module Simple . Frontend where

import Prelude h id ing ( (&&) , ( | | ) , not )
import Control .Monad . State

import Simple . Representat ion
import Simple . Compiler

i n s t ance Num ( Express ion Int ) where
f romInteger n = L i t e r a l $ show n
a + b = Add a b
a − b = Sub a b
a ∗ b = Mul a b
abs a = e r r o r ”Function ’ abs ’ i s unsupported . ”
signum a = e r r o r ”Function ’ signum ’ i s unsupported . ”

t rue : : Express ion Bool
t rue = L i t e r a l ” t rue ”

f a l s e : : Express ion Bool
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f a l s e = L i t e r a l ” f a l s e ”

i n f i x r 3 &&
(&&) : : Express ion Bool −> Express ion Bool −> Express ion Bool
a && b = And a b

i n f i x r 2 | |
( | | ) : : Express ion Bool −> Express ion Bool −> Express ion Bool
a | | b = Or a b

not : : Express ion Bool −> Express ion Bool
not a = Not a

data FrontendState =
FrontendState
{ program : : Program
, unique id : : I n t eg e r
}

type Simple = State FrontendState ( )

addVar : : Dec la ra t i on −> Program −> Program
addVar d prg = prg { d e c l a r a t i o n s = de c l a r a t i o n s prg ++ [ d ] }

i n t : : State FrontendState ( Express ion Int )
i n t = do

s t <− get
l e t varName = ”var ” ++ show ( unique id s t )
l e t v = Var iab le varName : : Var iab le Int
put $ s t

{ program = addVar ( Dec la ra t i on v ) $ program s t
, unique id = unique id s t + 1
}

re turn $ Var varName

bool : : State FrontendState ( Express ion Bool )
bool = do

s t <− get
l e t varName = ”var ” ++ show ( unique id s t )
l e t v = Var iab le varName : : Var iab le Bool
put $ s t

{ program = addVar ( Dec la ra t i on v ) $ program s t
, unique id = unique id s t + 1
}

re turn $ Var varName

addInst r : : I n s t r u c t i o n −> Program −> Program
addInst r i prg = prg{ i n s t r u c t i o n s = i n s t r u c t i o n s prg ++ [ i ] }

i n f i x 0 .=
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( .=) : : Supported a => Express ion a −> Express ion a −> Simple
v .= e = do

s t <− get
put $ s t { program = addInst r ( Assign v e ) $ program s t }

compi le : : Simple −> IO ( )
compi le s = putStrLn $ show $ compile ’ r e s u l t

where
r e s u l t = program $ snd $ runState s empty
empty = FrontendState (Program [ ] [ ] ) 0

The instructions in a Simple program are written in a monadic environment.
The monad is called Simple and is a state monad with a state that collects the
declarations and instructions of the program, and an Integer used to generate
unique names for the declared variables.

The int and bool are monadic functions resulting in Expression Ints and
Expression Bools, so that they can be used to declare variables in the DSL
programs. These functions get the actual state of the program, create a new
Declaration with a Variable of the desired type inside, add this declaration to
the program, increment the integer used as unique identifier in variable names
and finally put the modified state back into the monad.

The (.=) operator can be used in the language to write an assignment oper-
ation. This function is also monadic, it adds the new assignment instruction to
the state.

The compile function runs the state monad in order to obtain the abstract
syntax tree of the program and calls the compile’ function defined in the Com-
piler module to generate code.

As defined in Compiler.hs, the Result of the compilation is a list of Strings,
which is either Code or Errors.

Simple.Compiler.hs

{−# LANGUAGE GADTs #−}

module Simple . Compiler where

import Control .Monad . State
import Data . L i s t

import Simple . Representat ion

in s t ance Supported Int where
d e c l a r e ( Var iab le name) = ” in t ” ++ name

in s t ance Supported Bool where
d e c l a r e ( Var iab le name) = ”bool ” ++ name

data Result = Code [ S t r ing ] | Errors [ S t r ing ]
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i n s t ance Show Result where
show (Code cs ) = un l i n e s cs
show ( Errors cs ) = un l i n e s $ ” Errors :\n” : cs

type ResultM a = State Result a

addError : : S t r ing −> ResultM ( )
addError s = do

s t <− get
put $ case s t o f

Code −> Errors [ s ]
Errors es −> Errors $ es ++ [ s ]

addIns t ruc t i on : : S t r ing −> ResultM ( )
addIns t ruc t i on s = do

s t <− get
put $ case s t o f

Code cs −> Code $ cs ++ [ s ]
Errors es −> Errors es

compile ’ : : Program −> Result
compile ’ prg = snd $ runState ( compile ’ ’ prg ) empty

where
empty = Code [ ]

compile ’ ’ : : Program −> ResultM ( )
compile ’ ’ prg = do

mapM compi l eDec la ra t i on $ d e c l a r a t i o n s prg
mapM comp i l e In s t ru c t i on $ i n s t r u c t i o n s prg
re turn ( )

c omp i l e In s t ru c t i on : : I n s t r u c t i o n −> ResultM ( )
comp i l e In s t ru c t i on ( Assign l e f t r i g h t ) = case l e f t o f

Var name −> do
r ight ’ <− compi leExpress ion r i gh t
addIns t ruc t i on $ name ++ ” = ”

++ r ight ’ ++ ” ;”
−> do

l e f t ’ <− compi leExpress ion l e f t
addError $ ”Non l va l u e found on

the l e f t hand s i d e o f an ass ignment : ”
++ l e f t ’

compi leExpress ion : : Express ion a −> ResultM Str ing
compi leExpress ion ( L i t e r a l va l ) = return va l
compi leExpress ion (Var name) = return name
compi leExpress ion (Add e1 e2 ) = binop ”+” e1 e2
compi leExpress ion (Sub e1 e2 ) = binop ”−” e1 e2
compi leExpress ion (Mul e1 e2 ) = binop ”∗” e1 e2
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compi leExpress ion (And e1 e2 ) = binop ”&&” e1 e2
compi leExpress ion (Or e1 e2 ) = binop ” | | ” e1 e2
compi leExpress ion (Not e ) = do

e ’ <− compi leExpress ion e
re turn $ ” ( ! ” ++ e ’ ++ ”)”

binop : : S t r ing −> Express ion a −> Express ion a
−> ResultM Str ing

binop op e1 e2 = do
e1 ’ <− compi leExpress ion e1
e2 ’ <− compi leExpress ion e2
re turn $ ”(” ++ e1 ’ ++ op ++ e2 ’ ++ ”)”

compi l eDec la ra t i on : : Dec la ra t i on −> ResultM ( )
compi l eDec la ra t i on ( Dec la ra t i on v )

= addIns t ruc t i on $ de c l a r e v ++ ”;”

Compilation is monadic, uses a state monad with the Result type as the
state. The addInstruction and addError functions help adding new target code
lines or error messages to the state. If an error occurs, the code lines generated
so far and to be generated later are omitted and only the error messages are
collected.

The compileDeclaration, compileInstruction and compileExpression monadic
functions are used to generate code for declarations, instructions and expres-
sions respectively. The compileInstruction function also reports an error when
anything but a variable is found on the left hand side of an assignment.

Elimination of the Generated Variable Names. The first possible solution
is to modify the language frontend so that programmers can set variable names
that will appear in the generated code:

c o r r e c t : : Simple
c o r r e c t = do

x <− i n t ”x”
x .= 10
x .= x + 20 − 2 ∗ x
y <− bool ”y”
y .= true && not y | | f a l s e

We can add a parameter of type String to the frontend functions int and bool
and use this name instead of the generated one. The result of the compilation
should now look like:

i n t x ;
bool y ;
x = 10 ;
x = ( ( x+20)−(2∗x ) ) ;
y = ( ( t rue&&(!y ) ) | | f a l s e ) ;

On the other hand, this solution is inconvenient for the programmers and it
is also easy to mess things up if the Haskell names and DSL names of variables
diverge: x <- int "y".
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This solution can be improved by creating a header file called simple.h
and moving the import directives at the beginning of Examples.hs into it. The
header has to be included in the example file: #include "simple.h". From now
on, compilation can be invoked passing -cpp option to ghci so that ghci calls
the C preprocessor before parsing.

Two macros (int and bool) can be defined in the header file, each with one
parameter. The macro call int(x) has to expand to x <- int "x". Now, the
examples can be rewritten so that they use the newly defined macros instead of
the int and bool frontend functions:

c o r r e c t : : Simple
c o r r e c t = do

in t ( x )
x .= 10
x .= x + 20 − 2 ∗ x
bool ( y )
y .= true && not y | | f a l s e

This way the error messages reporting invalid assignments become a little
bit more helpful, because they refer to the variables by their original names in
the source code.

Adding File Names and Line Numbers to Error messages. First, a
function

checkDeclarations :: [Declaration] -> ResultM ()

can be defined in Compiler.hs to find duplicate variable names in the declaration
list. The function addError is useable to report error. We can call this function
in the first line of the compile’’ function:

checkDeclarations (declarations prg)

Consider the following wrong2 program:

wrong2 : : Simple
wrong2 = do

x <− i n t
x .= 0
x <− i n t
x .= 1

Now it should also result in an error message:

Variable x is redefined.

This error message could be more helpful if indicated the source file and the
lines that caused the error:

Examples.hs, line 22: Variable x is redefined. Earlier definition
is in line 20.
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In order to achieve this, the following modifications have to be implemented:

– Addition of two new parameters of types String and Int is needed to the
functions int and bool to be able to pass the file name and the line number
of the variable definition.

– The macros FILE and LINE has to be used in the definition of the int
and bool macros to pass these new parameters.

– In Representation.hs, two new constructor parameters to the Variable
constructor of types String and Int is needed. The compiler’s code has to be
adapted to this change.

– In the int and bool functions the two new parameters have to be used in
the Variable constructor in order to store the file and line information in the
abstract syntax tree.

– In the checkDeclarations function we have to use the new constructor para-
meters of Variable to extend the error message with useful information.

Better Error Messages About Assignments. The techniques seen in the
previous section can be applied to make the error message about incorrect assign-
ment instructions more user friendly. In order to do this, we need to turn the
(.=) operator to a macro. This, unfortunately, will make the EDSL syntax less
pretty:

c o r r e c t : : Simple
c o r r e c t = do

in t ( x )
l e t (x , 10)
l e t (x , x + 20 − 2 ∗ x )
bool ( y )
l e t (y , t rue && not y | | f a l s e )

On the other hand, we can make the assignment related error message look
like this:

Examples.hs, line 14: Non lvalue found on the left hand side of an
assignment: (x-1)

In order to achieve this, we have to add new parameters to the (.=) function,
implement the let macro in the header file, add new constructor parameters
to Assign and use them in the error message inside the compileInstruction
function.

Further Possibilities. The same technique can be used for example to simplify
the definition of Simple programs. Instead of writing

c o r r e c t : : Simple
c o r r e c t = do

. . .
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one might prefer using this syntax:

s imple ( c o r r e c t )
. . .

This way we can further enrich the error messages with information about
the function in which the error is located.

2.3 Evaluation

To summarize the techniques we have seen in this section, we conclude that
the advantage of this solution is its simplicity and also that it only requires
easy-to-use and standard tools like the C preprocessor.

On the other hand, all the well-known pitfalls of the textual replacement of
macro expansion make this solution dangerous. Another disadvantage is that
eventual Haskell error messages will refer to the code after macro expansion,
while the user edits the one with macros.

The approach is also limited, and it affects the syntax of the EDSL as we
have seen in the examples so far.

3 Syntax Tree Manipulation

In case of languages with own concrete syntax and a parser, it is easy to create a
mapping between the source code and the target code, because the compiler gets
the source file and analyses it from character to character, so it gets the position
for each syntactical unit instantly and can store it in the syntax tree. But, as
described in Sect. 1.2, this is not the case for embedded languages, they use the
compiler of the host language to produce it’s own embedded representation, the
embedded compiler will not get any information about the source code.

This section presents a solution to this problem, which is more heavy weight
than macro preprocessing used in Sect. 2, but is also more powerful. The idea
is to perform a more advanced preprocessing, using the compiler of the host
language. This way we gain access to the position of each syntactical unit, and
can store it in the embedded syntax tree. For this, the we need to extend the
internal representation (abstract syntax tree) and the frontend library. Using
the extra location information, the compiler can create a mapping between the
stored positions and the corresponding position of the target code.

3.1 Extended Compilation

Compiling an embedded source is done via the following process: The inter-
preter of the host language analyses the source code, the program is executed
as a host language program and builds the internal representation of the DSL
program. Than the EDSL compiler generates the target code from the internal
representation.
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Fig. 1. Compiling embedded source

In order to add location information to the internal representation, the com-
pilation workflow becomes more complex. First of all we need the host syn-
tax tree of the embedded source (the host AST). A transformation then gets
the positions of all syntactical units and extends the host AST with further
nodes that represent wrapper functions. If we transform the modified syntax
tree back to embedded source, every necessary source position will appear. In
this solution the interface library and the embedded representation need to be
extended with the wrapper functions and the corresponding data types.

During the code generation we need to save each position from the node
of the embedded syntax tree and match it up with the corresponding position
of the target code to complete the mapping. Figure 1 illustrates the differen-
ces of the original and the extended compilation process.

3.2 Transformation

The first step of the described solution is the manipulation of the host AST.
During this, each node representing a syntactical unit is labeled. The label func-
tion holds the source position of the syntactical unit that is being labelled.
The result is an extended host AST, that can be easily transformed back to
source code in which every syntactical unit’s position appears as an argument of
the corresponding label function. The transformation itself is independent of the
embedded language, it depends only on the host language. Therfore it can be
reused by any embedded language that uses the same host language.
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3.3 Code Generation

Code generation also becomes a bit more complex, because it has to calculate
the absolute position of parts of the generated target code and produce a map-
ping between the target and the embedded source. For this purpose, we need
additional information to be able to generate code from each node of the embed-
ded syntax tree: the measure of the indentation, the absolute row and column
position, where the code generation should start from, the absolute row and col-
umn positions, where the code generation ends. This information, being spread
among the nodes of the abstract syntax tree is categorized as follows:

– downward spread: information that every child node gets with the same value
(eg. measure of indentation)

– upward spread: an information that the parents get from their child (eg. gen-
erated target code)

– state-like: an information that the node get from its parent and use it to
calculate other information (eg. absolute start row and column positions)

The code generator uses wrapping nodes and other nodes in the abstract
syntax tree differently: Nodes that represent language constructs are turned into
target code, while wrapper nodes are used to produce the location mapping
between the source and target files.

3.4 Embedding the While Language

The While language is a very simple imperative language which consists a
sequence of simple statements such as assignment and control statements (if-
then-else and while loop). Programmers can use logical constants and expres-
sions eg. true, false, comparison, negation and basic arithmetic operations like
addition, subtraction and multiplication. We choose this language, because it is
not too complex, so we can focus on the mapping problem.

First of all, we need to define a data type, that describes the abstract repre-
sentation of While language programs. A possible implementation of the embed-
ded syntax is the following.

data Program where
( :=) : : Var iab le a −> Expr a −> Program
Declare : : [ Var iab le a ] −> Program
Sequence : : [ Program ] −> Program
Loop : : Expr Bool −> Program −> Program
IfThenElse : : Expr Bool −> Program −> Program −> Program
Skip : : Program

Data Expr a where
Plus : : Expr Int −> Expr Int −> Expr Int
And : : Expr Bool −> Expr Bool −> Expr Bool
Compare : : Expr Int −> Expr Int −> Expr Bool
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Value : : (Show a ) => a −> Expr a
Var : : Var iab le a −> Expr a

data Var iab le a where
Var iab le : : Name −> Var iab le a

type Name = Str ing

The Program data type was defined as a generalised algebraic data type.
This way it is possible to use type variables in the constructor parameters that
do not appear as type variables of the Program data type itself.

So far, we defined the internal representation of the While language, but
using directly the defined data constructors is not convenient. So we need to
define an interface for the programmers, that hides the representation of the
language and helps them to build the syntax tree conveniently.

c l a s s Compare a where
(<) : : a −> a −> Expr Bool

c l a s s Equal a where
(==) : : a −> a −> Expr Bool

c l a s s Log i ca l a where
(&&), ( | | ) : : a −> a −> Expr Bool
( ! ) : : a −> Expr Bool

We make Expr Bool an instance of these type classes so that programmers
can write logical expressions in a convenient way. A question pops up here: Why
did not we use the Eq type class that is provided by Haskell’s Prelude module?
The answer is simple, the type signature does not fit:

c l a s s Eq a where
(==) : : a −> a −> Bool

In this case, if we want to examine if two integers or boolean values are equal,
the result will be a Bool, but we need an Expr Bool instead. However, when it
comes to arithmetic operations, we can use the Num a typeclass. If we make
the Expr Int type an instance of the Num a type class we can even use integer
literals in the arithmetic expressions of the DSL.

in s t ance Num (Expr Int ) where
(+) = Plus
(−) = Minus
(∗ ) = Mul
f romInteger i = Value $ f romInteger i

In general, before the code generation process, the EDSL’s compiler is allowed
to make transformations on the embedded syntax tree to optimize it. This is not
done in our case to make the example simple. Therefore the compilation phase
contains only code generation.
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c l a s s CodeGenerator a where
generate : : a −> Int −> St r ing

The CodeGenerator type class is used to generate target code from simple
nodes. The generate function takes a node from the syntax tree and an indenta-
tion value and produces the corresponding target code. We use the StateMonad,
to store the generated target code. The code function takes a String as an argu-
ment and puts it to the state of the monad. We give some example instances of
the CodeGenerator typeclass:

i n s t ance CodeGenerator Program
where
generate ( ( :=) ( Var iab l e name) expr ) indent = cSource
where

( ( ) , cSource ) = f l i p runState ”” $ do
code $ indente r indent ++ name
code $ ”=” ++ generate expr 0 ++ ”\n ; ”

. . .
i n s t ance CodeGenerator (Expr a )
where
generate ( Plus l h s rhs ) indent = cSource
where

( ( ) , cSource ) = f l i p runState ”” $ do
code $ ”(” ++ generate l h s 0 ++
code $ ”) + (” ++ generate rhs 0 ++ ”)”

. . .

3.5 Extending the Language

So far we have presented a possible way to embed the While language into
Haskell. However using the illustrated method the compiler does not have any
information about the source code. In this part we extend our language, step-
by-step, as mentioned in Sect. 3.1.

First, we extend the internal representation of the language and the frontend
with wrapper nodes and functions. In the next step we apply a transformation,
that manipulates the Haskell syntax tree in order to inject the positions of the
syntactical units into the DSL program source code. Because we have extended
the programmers’ interface and the embedded representation, and during the
transformation we did not break any syntactical rule of Haskell, the source
code that is pretty printed from the transformed host syntax tree will result
in valid code either in Haskell as well as in the (extended) While language.

New data constructors, so called wrapper nodes, are defined in the abstract
syntax tree to store the positions of the embedded source. These constructors
take a source position, and a node to be wrapped as an argument. In our case
we need only three wrapper nodes:
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type SrcLoc = ( ( Int , Int ) , ( Int , Int ) )
type Name = Str ing

data Program where
. . .

LabProg : : SrcLoc −> Program −> Program

data Expr a where
. . .

LabExpr : : SrcLoc −> Expr a −> Expr a

data Var iab le a where
Var iab le : : Name −> Var iab le a
LabVar : : SrcLoc −> Var iab le a −> Var iab le a

SrcLoc represents the wrapped node’s position in the source. In the first tuple
the start row and column positions are stored, while the second tuple stores the
end row and column positions.

The frontend needs to be extended with functions that represent the wrapper
nodes. For this purpose we created the Label a typeclass containing the label
function, which takes a source position and a node from the embedded syntax
tree. It wraps the node with the corresponding wrapper data constructor. Below
is the definition of the Label typeclass and some of the necessary instances:

c l a s s Label a where
l a b e l : : ( ( Int , Int ) , ( Int , Int ) ) −> a −> a

in s t ance Label Program where
l a b e l = LabProg

in s t ance Label (Expr a ) where
l a b e l = LabExpr

Using this modification the representation will be capable of storing infor-
mation about the source code, but the question remains: How can we label the
syntactical units with their source position? A tool is needed that can syntac-
tically analyse Haskell source and build a syntax tree containing the necessary
information. For this purpose we have chosen the haskell-src-exts package. After
syntactically analysing the source, it can produce the host AST. All we need
to do is to identify the syntactical units and extend them with new nodes that
represent the previously defined label function.

First of all, we need a helper function that retrieves source information from
a node of the Haskell syntax tree. For this purpose the Location a type class is
defined:

c l a s s Locat ion a where
ge tS ta r tL ine : : a SrcSpanInfo −> Int
ge tStar tCo l : : a SrcSpanInfo −> Int
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getEndLine : : a SrcSpanInfo −> Int
getEndCol : : a SrcSpanInfo −> Int

We instantiate this type class with the types that build the host syntax tree.
Every node contains its position in the source code. The information is stored in
a value with a type of SrcSpanInfo. The haskell-src-exts package provides helper
functions to retrieve this information. Another function needs to be defined, to
extend the syntax tree with further nodes, that represent the previously intro-
duced label function. The new function has two arguments, the second will be
the node that is to be wrapped, the first argument will be the source position of
the wrapped node. The next example is simplified to make it easier to read:

wrap : : Exp SrcSpanInfo −> Exp SrcSpanInfo
wrap exp =

(App
(App

(Var
(UnQual ( Ident ” l a b e l ” ) )

)
( Tuple

[ Tuple [ s t a r tL i n ePo s i t i o n
, startColumnPos it ion ]

, Tuple [ endLinePos i t ion
, endColumnPosition ]

]
)

)
exp

)

So far we have defined the transformation on a single node. We need to apply
this on every node in the host AST. The Transform a type class is responsible
for this. From the point of view of the transformation, the significant nodes are
the nodes having type Exp, especially the function applications. The instance of
the transformation function for nodes of other types is the identical mapping.

c l a s s Transform a where
transform : : ( a SrcSpanInfo ) −> ( a SrcSpanInfo )

i n s t ance Transform Exp
. . .

t rans form x@(App ) = wrap $ transformRec x

transformRec (App i n f fun arg ) =
App i n f ( transformRec fun ) ( trans form x)

transformRec x = transform x

Note that the transformRec function can handle any function application with
arbitrary number of arguments.
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So far we managed to store each syntactical unit’s position in the embedded
representation, however we do not know the nodes’ position in the generated
target code. So our task is to calculate each node’s position during the code
generation. For this purpose we need additional information for each node:

– an absolute location, where the code generation starts (state information),
– an absolute location, where the code generation ends (upwards propagated

information),
– and the measure of the indentation (downwards propagated information).

Upwards propagated information is stored in a record data structure. The Result
record has three fields

– source: contains the generated target code so far,
– mapping: mapping generated so far
– position: the target’s code absolute position generated from the latest node

from the embedded syntax tree.

Now we can define the DebugInfo and DebugInfo1 type classes which describe
the modified code generation. The latter one is used when the current node
contains a list.

type Locat ion = ( Int , Int )

c l a s s DebugInfo a where
generateDebugInfo : : a −> Int −> Locat ion −> Result

c l a s s ( DebugInfo a ) => DebugInfo1 a where
generateDebugInfo ’ : : [ a ] −> Int −> Locat ion −> Result

The original version of the code generator uses a State monad, where the
state is the generated code, and the result value is unit. In the extended version,
the State monad is used again, but the state will be a tuple with three members:

– the generated source so far,
– the absolute starting line position,
– the absolute starting column position.

We need to access these members during the whole process of code generation,
so the entire procedure needs to be monadic.

Another monadic function is needed, that calculates the ending position
of the code generated from the actual node of the embedded representation. With
these helper functions the DebugInfo a typeclass can easily be implemented for
the data types defined in the internal representation. However, as we pointed out
earlier, wrapper nodes and language constructs are handled differently. In the
case of a wrapper node our task is to call the monadic wrapper function with the
wrapped node and lift the result into the monad. After that we need to retrieve
the target code’s position from the Result record’s position field, pair it with the
corresponding position in the source, then extend the list in the mapping field
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with this value. On the other hand, if we are dealing with a node that represents
a language construct, the code function is used recursively for code generation
on each of the children nodes.

At the end of the compilation, the Result record will contain the generated
target code, and the mapping between the target code and the embedded source.

3.6 Example

Consider the following While program calculating the greatest common divisor
of two Int number as an example.

gcd : : Program
gcd = ( Dec lare [ x , y ] ) ++
(Loop

( ( ! ) ( x == y ) )
( I fThenElse

( x < y )
(y := ( ( Var y ) − (Var x ) ) )
( x := ( ( Var x ) − (Var y ) ) )

)
)

x : : Var iab le Int
x = Var iab le ”x”

y : : Var iab le Int
y = Var iab le ”y”

From this source code the following target code can be generated.

i n t x ;
i n t y ;
whi l e ( ! ( x == y ) )
{

i f ( ( x < y ) )
{

y = (y ) − ( x ) ;
}
e l s e
{

x = (x ) − ( y ) ;
}

}
The following listing introduces the textual description of the modified AST

created by adding new nodes representing the label functions.

gcd : : Program
gcd = l a b e l ( ( 14 , 7 ) , (14 , 123))

( ( l a b e l ( ( 14 , 8 ) , (14 , 22) )
( Dec lare ( l a b e l ( ( 14 , 16) , (14 , 22) ) [ x , y ] ) ) )



The EDSL’s Struggle for Their Sources 323

++
( l a b e l ( ( 14 , 28) , (14 , 122))
(Loop
( l a b e l ( ( 14 , 34) , (14 , 45) )

( ( ! ) ( l a b e l ( ( 14 , 38) , (14 , 44) ) ( x == y ) ) ) )
( l a b e l ( ( 14 , 48) , (14 , 121))
( I fThenElse ( l a b e l ( ( 14 , 60) , (14 , 65) ) ( x < y ) )
( l a b e l ( ( 14 , 68) , (14 , 92) )
( y :=
( l a b e l ( ( 14 , 74) , (14 , 91) )

( ( l a b e l ( ( 14 , 75) , (14 , 80) ) (Var y ) ) −
( l a b e l ( ( 14 , 85) , (14 , 90) ) (Var x ) ) ) ) ) )

( l a b e l ( ( 14 , 96) , (14 , 120))
( x :=
( l a b e l ( ( 14 , 102) , (14 , 119))
( ( l a b e l ( ( 14 , 103) , (14 , 108)) (Var x ) ) −
( l a b e l ( ( 14 , 113) , (14 , 118)) (Var y ) ) ) ) ) ) ) ) ) ) )

Using the extended version of the code generator and this modified AST we
can get a final result which contains the same target code we have seen before
and a mapping between the source code and the target code. The mapping can
be represented, for example, by an XML file:

<root>
<node>

<s t a r tL i n e t a r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”14”/>
<startColumn ta r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”7”/>
<endLine t a r g e tPo s i t i o n =”13” sou r c ePo s i t i on=”14”/>
<endColumn ta r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”123”/>

</node>
<node>

<s t a r tL i n e t a r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”14”/>
<startColumn ta r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”8”/>
<endLine t a r g e tPo s i t i o n =”3” sou r c ePo s i t i on=”14”/>
<endColumn ta r g e tPo s i t i o n =”0” sou r c ePo s i t i on=”22”/>

</node>
. . .

</root>

3.7 Summary

Debugging existing source code is not a simple task, even in case of general
purpose languages. In case of domain specific languages, source level debugging
is more complicated by the increased abstraction level. The generated target code
can be debugged and the results have to be mapped back to the DSL level. This
task is even harder in case of embedded programming languages, because the
mapping between the generated target code and the source code is missing. This
section presented a general method to extend an existing embedded language
and its compiler to be able to produce this mapping.

The extension consists of the following elements:
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– a transformation, that manipulates the host syntax tree,
– extended version of the internal representation and frontend containing wrap-

per nodes and functions,
– modified code generation to keep track of the location of the target code for

each node in the abstract syntax tree.

The extended compilation workflow is able to produce the necessary mapping.
The method can be used for every embedded language given that we have a
tool to easily produce and maipulate the syntax tree of the host language.

4 Embedding and Parsing Combined

Using classical compiler technology makes the development of new DSLs hard.
The new language usually changes quickly and the amount of the language con-
structs increases rapidly in the early period of the project. Continuous adaptation
of the parser, the type checker and the back-end of the compiler is not an easy
job.

As described in Sect. 1.1, language embedding is a technique that facili-
tates this development process. Not all general purpose programming languages
are equally suitable to be host languages. Flexible and minimalistic syntax,
higher order functions, monads, expressive type system are useful features in this
respect. For this reason Haskell and Scala are widely used as host languages. On
the other hand, these are not mainstream languages. As our experience from a
previous project [2,8] shows, using a host language being unfamiliar to the major-
ity of the programmers makes it harder to make the embedded DSL accepted in
an industrial environment.

Because of this, it is reasonable to create a standalone DSL as the final
product of DSL projects. However, it would be beneficial to make use of the
flexibility provided by embedding in the language design phase. This section of
the paper presents our experience from an experiment to combine the advantages
of these two approaches. The findings are based on a university research project
initiated by Ericsson. The goal of the project is to develop a novel domain
specific language that is specialized in the IP routing domain as well as the
special hardware used by Ericsson for IP routing purposes.

The most important lessons learnt from the experiment are the following. It
was more effective to use an embedded version of the domain specific language
for language experiments than defining concrete syntax first, because embed-
ding provided us with flexibility so that we were able to concentrate on language
design issues instead of technical problems. The way we used the host language
features in early case studies was a good source of ideas for the standalone lan-
guage design. Furthermore, it was possible to reuse the majority of the embedded
language implementation in the final product, keeping the overhead of creating
two front-ends low.

This section is organized as follows. Section 4.1 introduces the architecture
of the compiler. Then in Sect. 4.2 we analyse the implementation activities using
statistics from the version control system used. Section 4.3 summarizes the learnt
lessons.
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4.1 Compiler Architecture

The architecture of the software is depicted in Fig. 2. There are two main dataflows
as possible compilation processes: embedded compilation (dashed) and standalone
compilation (dotted).

The input of the embedded program compilation is a Haskell program loaded
in the Haskell interpreter. What makes a Haskell program a DSL program is
that it heavily uses the language front-end that is provided by the embedded
DSL implementation. This front-end is a collection of helper data types and
functions that, on one hand, define how the embedded program looks like (its
“syntax”), and, on the other hand, builds up the internal representation of the
program. The internal representation is in fact the abstract syntax tree (AST)
of the program encoded as a Haskell data structure.

The embedded language front-end module may contain complex functions to
bridge the gap between an easy-to-use embedded language syntax and an internal
representation suitable for optimizations and code generation. However, it is
important that this front-end does not run the DSL program: It only creates
its AST.

The same AST is built by the other, standalone compilation path. In this case
the DSL program has it’s own concrete syntax that is parsed. We will refer to the
result of the parsing as concrete syntax tree (CST). This is a direct representation
of the program text and may be far from the internal representation. For this
reason the transformation from the CST to an AST may not be completely
trivial.

Once the AST is reached, the rest of the compilation process (optimizations
and code generation) is identical in both the embedded and the standalone
version. As we will see in Sect. 4.2, this part of the compiler is much bigger
both in size and complexity than the small arrow on Fig. 2 might suggest.

Fig. 2. Compiler architecture.
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The numbers on the figure show the basic steps of the workflow to create a
compiler with this architecture. The first step is to define the data types of the
internal representation. This is the most important part of the language design
since these data types define the basic constructs of the DSL. Our experience has
shown that it is easier to find the right DSL constructs by thinking of them in
terms of the internal representation then experimenting with syntax proposals.

Once the internal representation (or at least a consistent early version of it)
is available, it is possible to create embedded language front-end and code gen-
eration support in parallel. Implementation of the embedded language front-end
is a relatively easy task if someone knows how to use the host language features
for language embedding purposes. Since the final goal is to have a standalone
language, it is not worth creating too fine grained embedded language syntax.
The goal of the front-end is to enable easy-enough case study implementation
to test the DSL functionality.

Contrarily, the back-end implementation is more complicated. If the internal
representation is changed during DSL design, the cost of back-end adaptation
may be high. Fortunately it is possible to break this transformation up into
several transformation steps and start with the ones that are independent of the
DSL’s internal representation. In our case this part of the development started
with the module that pretty prints assembly programs.

When the case studies implemented in the embedded language show that the
DSL is mature enough, it is time to plan its concrete syntax. Earlier experiments
with different front-end solutions provide valuable input to this design phase.
When the structure of the concrete syntax is fixed, the data types representing
the CST can be implemented. The final two steps, parser implementation and
the transformation of the CST to AST can be done in parallel.

4.2 Detailed Analysis

According to the architecture in Sect. 4.1 we have split the source code of the
compiler as follows:

– Representation: The underlying data structures, basically the building data
types of the AST.

– Back-end: Transforms the AST to target code. Mostly optimization and code
generation.

– Embedded front-end: Functions of the embedded Haskell front-end which con-
structs the AST.

– Standalone front-end: Lexer and parser to build up the CST and the trans-
formation from CST to AST.

The following figures are based on a dataset extracted from our version con-
trol repository1. The dataset contains information from 2012 late February to
the end of the year.
1 In this project we have been using Subversion.
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Figure 3 compares the code sizes (based on the eLOC, effective lines of code
metric) of the previously described four components. The overall size of the
project was almost 9000 eLOC2 when we summarized the results of the first
year.

51%

13%

7%

29% Back-end

Embedded front-end

Representation

Standalone front-end

Fig. 3. Code size comparison by components.

No big surprise there, the back-end is without a doubt the most heavyweight
component of our language. The second place goes to the standalone front-end,
partly due to the size of lexing and parsing codes3. The size of the embedded
front-end is less than the half of the standalone’s. The representation is the
smallest component by the means of code size, which means that we successfully
kept it simple.

Figure 4 shows the exact same dataset as Fig. 3 but it helps comparing the
two front-ends with the reused common components (back-end, representation).

The pie chart shows that by developing an embedded language first, we could
postpone the development of almost 30 % of the complete project, while the so-
called extra code (not released, kept internally) was only 13 %.

Figure 5 presents how intense was the development pace of the four compo-
nents. The dataset is based on the log of the version control system. Originally
it contained approximately 1000 commits which were related to at least one of
the four major components. Then we split the commits by files, which resulted
almost 3000 data-points, that we categorized by the four components. This way
each data-point means one change set committed to one file.

It may seem strange that we spent the first month of development with the
back-end, without having any representation in place. This is because we first
created a representation and pretty printer for the targeted assembly language.

The work with the representation started at late March and this was the
most frequently changed component over the next two-three months. It was
hard to find a proper, easy-to-use and sustainable representation, but after the
2 Note that this project was entirely implemented in Haskell, which allows much more

concise code than the mainstream imperative, object oriented languages.
3 We have been using the Parsec parser combinator library [12] of Haskell. Using

context free grammars instead would have resulted in similar code size.
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Fig. 4. Code size comparison for embedded / standalone.
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Fig. 5. Development timeline.

first version was ready in early April, it was possible to start the development
of the embedded front-end and the back-end.

The back-end and code generation parts were mostly developed during the
summer, while the embedded front-end was slightly reworked in August and
September, because the first version was hard to use.

By October we almost finalized the core language constructs, so it was time
to start to design the standalone front-end and concrete, textual syntax. This
component was the most actively developed one till the end of the year. At
the end of October we had a slight architecture modification which explains the
small spike in the timeline. Approaching the year end we were preparing the
project for its first release: Every component was actively checked, documented
and cleaned.

4.3 Lessons Learnt

This section summarizes the lessons learnt from the detailed analysis presented
in Sect. 4.2.

Message 1: Do the language experiments using an embedded DSL then define
concrete syntax and reuse the internal representation and back-end! Our project
started in January 2012 and in December the same year we released the first
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version of the language and compiler for the industrial partner. Even if this
first version was not a mature one, it was functional: the hash table lookups
of the multicast protocol was successfully implemented in the language as a
direct transliteration from legacy code. Since state of the art study and domain
analysis took the first quarter of the year, we had only 9 months for design and
implementation. We believe that using a less flexible solution in the language
design phase would not have allowed us to achieve the mentioned results.

Message 2: Design the language constructs by creating their internal representa-
tion and think about the syntax later! The temptation to think about the new
language in terms of concrete syntax is high. On the other hand, our experience
is that it is easier to design the concepts in abstract notation. In our case this
abstract notation was the algebraic data types of Haskell: The language con-
cepts were represented by the data types of the abstract syntax tree. When the
concepts and their semantics were clear there was still large room for syntax
related discussions4, however, then it was possible to concentrate on the true
task of syntax (to have an easy to use and expressive notation) without mixing
semantics related issues in the discussion. This is analogous to model driven
development: It is easier to build the software architecture as a model and think
about the details of efficient implementation later.

Message 3: Use the flexibility of embedding to be able to concentrate on language
design issues instead of technical problems! Analysis of the compiler components
in Sect. 4.2 shows that the embedded front-end of the language is lightweight
compared to the front-end for the standalone language. This means that embed-
ding is better suited for the ever-changing nature of the language in the design
phase. It supports the evolution of the language features by fast development
cycles and quick feedback on the ideas.

Message 4: No need for a full-fledged embedded language! Creating a good qual-
ity embedded language is far from trivial. Using different services of the host
language (like monads and do notation, operator precedence definition, overload-
ing via type classes in case of Haskell) to customize the appearance of embedded
language programs can easily be more complex then writing a context free gram-
mar. Furthermore, advocates of embedded languages emphasize that part of the
semantic analysis of the embedded language can be solved by the host language
compiler. An example in case of Haskell is that the internal representation of
the DSL can be typed so that mistyped DSL programs are automatically ruled
out by the Haskell compiler. These are complex techniques, while we stated so
far that embedding is lightweight and flexible — is this a contradiction? The
goal of the embedded language in our project was to facilitate the language
design process: It was never published for the end-users. There was no need for
a mature, nicely polished embedded language front-end. The only requirement
was to have an easy-to-use front-end for experimentation — and this is easy to
4 “Wadler’s Law: The emotional intensity of debate on a language feature increases as
one moves down the following scale: Semantics, Syntax, Lexical syntax, Comments.”
(Philiph Wadler in the Haskell mailing list, February 1992, see [18].).
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achieve. Similarly, there was no need to make the Haskell compiler type check
the DSL programs: the standalone language implementation cannot reuse such
a solution. Instead of this, type checking was implemented as a usual semantic
analyser function working on the internal representation. As a result of all this,
the embedded frontend in our project in fact remained a light-weight component
that was easy to adapt during the evolution of the language.

Message 5: Carefully examine the case studies implemented in the embedded
language to identify the host language features that are useful for the DSL! These
should be reimplemented in the standalone language. An important feature of
embedding is that the host language can be used to generate and to generalize
DSL programs. This is due to the meta language nature of the host language
on top of the embedded one. Our case studies implemented in the embedded
language contain template DSL program fragments (Haskell functions returning
DSL programs) and the instances of these templates (the functions called with
a given set of parameters). The parameter kinds (expressions, left values, types)
used in the case studies gave us ideas how to design the template features of the
standalone DSL. Another example is the scoping rules of variables. Sometimes
the scoping rules provided by Haskell were suitable for the DSL but not always.
Both cases provided us with valuable information for the design of the standalone
DSL’s scoping rules.

Message 6: Plan enough time for the concrete syntax support, which may be
harder to implement than expected! This is the direct consequence of the pre-
vious item. The language features borrowed from the host language (eg. meta
programming, scoping rules) have to be redesigned and reimplemented in the
standalone language front-end. Technically this means that the concrete syntax
tree is more feature rich than the internal representation. For this reason the
correct implementation of the transformation from the CST to the AST takes
time. Another issue is source location handling. Error messages have to point to
the problems by exact locations in the source file. The infrastructure for this is
not present in the embedded language.

4.4 Plans vs Reality

Our original project plan had the following check points:

– By the end of March: State of the art study and language feature ideas.
– By the end of June: Ideas are evaluated by separate embedded language exper-

iments in Haskell.
– By the end of August: The language with concrete syntax is defined.
– By the end of November: Prototype compiler is ready.
– December was planned as buffer period.

While executing it, there were three important diverges from this plan that we
recommend for consideration.
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First, the individual experiments to evaluate different language feature ideas
were quickly converging to a joint embedded language. Project members work-
ing on different tasks started to add the feature they were experimenting with
modularly to the existing code base instead of creating separate case studies.

Second, the definition of the language was delayed by three months. This
happened partly because it was decided to finish the spontaneously emerged
embedded language including the back-end, and partly because a major revision
and extension to the language became necessary to make it usable in practice.
As a result, the language concepts were more or less fixed (and implemented in
the embedded language) by September. Then started the design of the concrete
syntax which was fixed in October. At first glance this seems to be an unman-
ageable delay. However, as we have pointed out previously, it was then possible
to reuse a considerable part of the embedded language implementation for the
standalone compiler.

Third, we were hoping that, after defining the concrete syntax, it will be
enough to write the parser which will trivially fit into the existing compiler as
an alternative to the embedded language front-end. The parser implementation
was, in fact, straightforward. On the other hand, it became clear that it cannot
directly produce the internal representation of the embedded language. Recall
what Sect. 4.3 tells about the template features and scoping rules to understand
why did the transformation from the parsing result to the internal representa-
tion take more time than expected. Therefore the buffer time in the plan was
completely consumed to make the whole infrastructure work.

In brief, we used much more time than planned to design the language, but
the compiler architecture of Sect. 4.1 yet made it possible to finish the project
on time.

4.5 Sustainability of the Architecture

It is still an open question if it is worth it to keep the presented compiler archi-
tecture while adding more language features.

Conclusions suggest to continue with the successful strategy and experiment
with new language features by modifying, extending the embedded language
and, once the extensions are proved to be useful and are stable enough, add
them to the standalone language.

On the other hand, this comes at a cost: The consistency of the embedded and
standalone language front-ends have to be maintained. Whenever slight changes
are done in the internal representation, the embedded language front-end has to
be adapted.

Furthermore, since the standalone syntax is more convenient than the embed-
ded language front-end, it might not be appealing to experiment with new lan-
guage concepts in the embedded language. It also takes more effort to keep in
mind two different variants of the same language.

Even if it turns out that it is not worth maintaining the embedded language
front-end and it gets removed from the compiler one day, its important positive
role in the design of the first language version is indisputable.
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5 Related Work

The embedding technique as used by this lecture notes originates from Hudak
[11]. The first embedded languages, however, were interpreted and thus the
strictly compilation-related issues discussed here were not causing problems.
The foundations of compiled embedded languages are layed down in the seminal
paper about the Pan image manipulation language [10]. About the optimization
and compilation of Haskell functions over DSL types, the authors write: “The
solution we use is to extend the base types to support � variables �. Then to
inspect a function, apply it to a new variable [...] and look at the result.” The
extension with a named variable is:

data FloatE = . . . | VarFloat S t r ing

The problem of what the string value should be is not discussed in the paper. An
obvious solution of generating arbitrary fresh strings for each parameter works
well, but leads to generated variable names in the compiled code, making it hard
to read and connect to the DSL source.

Obsidian is another compiled EDSL in Haskell, targeting graphics processors.
Their authors claim [16] to build the language along the lines of Pan, mentioned
above. The cited paper does not mention the problems discussed in this lecture
notes, but there is a related code fraction in the Obsidian repository [15], related
to standard C code emission:

getC : : Conf ig
−> Program a
−> Name
−> [ ( Str ing , Type ) ]
−> [ ( Str ing , Type ) ]
−> St r ing

getC conf c name in s outs = . . .

That is, the names of the function and the input/output paremeters are fine
tuned when invoking the code generator function.

The authors of this lecture notes first met the source code access problem
when working on the Feldspar compiler [8]. That project targeted the digital
signal processing domain and the compiler produced C code. Since the project
was running in an industry-university cooperation, there was emphasis on the
generation of code that is readable and trackable back to the source code. If
the compiler is invoked from the Haskell interpreter, the generated code uses
generated variable names. On the other hand, Feldspar also has a standalone
compiler that applies a solution close to the one described in Sect. 3 (Syntax
tree manipulation): The compiler uses an off-the-shelf Haskell parser and uses it
to collect all top level function names and the names of their formal parameters.
Then a Haskell interpreter is started which loads the same source file, and then
the compilation of each of the collected functions is initiated. As the function and
parameter names are known this time, they are communicated to the compilation
function and therefore the same identifiers show up in the target C code.
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An emerging trend is to create embedded DSLs using the Scala language.
The authors do not have much experience in Scala-based DSLs, but the reflection
capabilities of the language seem to solve many of the problems discussed in this
paper [13]: “Scala reflection enables a form of metaprogramming which makes
it possible for programs to modify themselves at compile time. This compile-
time reflection is realized in the form of macros, which provide the ability to
execute methods that manipulate abstract syntax trees at compile-time.” A EDSL
compiler can use this feature to access the necessary source-related information
while generating target code.

The Metaborg approach [4,5] (and many similar projects) extend the host
language with DSL fragments using their own syntax. The applications are then
developed using the mixed language and the DSL fragments are usually compiled
to the host language. This approach requires a parsing phase to process the
extended syntax, therefore the accessibility of the actual source code is not an
issue.

Based on Spinellis’s design patterns for DSLs [14], we can categorize our
approaches. The preprocessing approach (see Sect. 2) is a combination of the lex-
ical processing and piggybacking design patterns. The syntax tree manipulation
based solution (see Sect. 3) uses the combination of the pipeline and the lexi-
cal processing approaches. Finally, the combined embedding&parsing approach
internally uses an embedded front-end, which is a realization of a piggyback
design pattern, where the new DSL uses the capabilities of an existing language.
While the final version of the language, which employs a standalone front-end,
is a source-to-source transformation.

5.1 Embedding and Parsing Combined

Combining the embedded and the parsing approach is the most advanced solu-
tion in our paper, therefore this subsection is devoted to somewhat similar
approaches and related works.

Thomas Cleenewerck states that “developing DSLs is hard and costly, there-
fore their development is only feasible for mature enough domains” [6]. Our expe-
rience shows that if proper language architecture and design methodology is in
place, the development of a new (not mature) DSL is feasible in 12 months. The
key factors for the success are to start low cost language feature experiments as
soon as possible, then fix the core language constructs based on the results and
finally expand the implementation to a full-fledged language and compiler.

Frag is a DSL development toolkit [20], which is itself a DSL embedded into
Java. The main goal of this toolkit is to support deferring architectural deci-
sions (like embedded vs. external, semantics, relation to host language) in DSL
software design. This lets the language designers to make real architectural deci-
sions instead of ones motivated by technological constraints or presumptions.
In case of our embedding&parsing approach (see Sect. 4) there were no reason
to postpone architectural decisions: It was decided early in the project to have
an external DSL with a standalone compiler. What we needed instead was to
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postpone their realization and keep the language implementation small and sim-
ple in the first few months to achieve fast and painless experiment/development
cycles.

Another approach to decrease the cost of DSL design is published by
Bierhoff, Liongosari and Swaminathan [3]. They advocate incremental DSL
development, meaning that an initial DSL is constructed first based on a few
case studies, which is later incrementally extended with features motivated by
further case studies. This might be fruitful for relatively established domains,
but our experience shows that the language design iterations are mostly heavier
then simple extensions. We believe that creating a full fledged first version of the
language and then considerably rewriting it in the next iterations would have
wasted more development effort than the methodology we applied.

David Wile has summarized several lessons learnt about DSL development [19].
His messages are mostly about how to understand the domain and express that
knowledge in a DSL. Our current paper adds complementary messages related to
the language implementation methodology.

6 Summary

This paper deals with the problem that EDSLs’ compilers have no access to
their source code, which would be important for good quality error messages,
debugging and profiling. Three different solutions are outlined.

Section 2 discussed how to use standard source code preprocessing tools like
the C preprocessor to add the missing location information to the abstract syntax
tree of the EDSL.

Next, in Sect. 3, we have generalized the preprocessing solution: The method
presented there extends the AST with and the language frontend with wrappers
and reuses the host language compiler to inject the location information into the
EDSL’s AST. The code generator is then able to produce a mapping to connect
the generated target code with the corresponding source code fragments.

Finally, Sect. 4 evaluates a language development methodology that starts the
design and implementation with an embedded language, then defines concrete
syntax and implements support for it. The main advantage of the method is
the flexibility provided by the embedded language combined by the advantages
of a standalone language. Experience from a project using this methodology
shows that most of the embedded language implementation can be reused for
the standalone compiler.
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Abstract. CλaSH is a recently developed system to specify and syn-
thesize hardware architectures, strongly based on the functional pro-
gramming language Haskell. Different from other existing approaches
to describe hardware in a functional style, CλaSH is not defined as an
embedded language inside Haskell, but instead, CλaSH uses Haskell itself
to specify hardware architectures. In fact, every CλaSH specification is an
executable Haskell program. Hence, the simulation of a hardware archi-
tecture is immediate, and all abstraction mechanisms that are available
in Haskell are maintained in CλaSH, insofar they are directly applicable
to the specification of hardware.

This paper describes several examples of specifications of hardware
architectures in CλaSH to illustrate the various abstraction mechanisms
that CλaSH offers. The emphasis is more on the CλaSH-style of spec-
ification, than on the concrete technical details of CλaSH. Often, the
specifications are given in plain Haskell, to avoid some of the specific
CλaSH details that will be indicated in a separate section.

The given examples include regular architectures such as a ripple carry
adder, a multiplier, vector and matrix multiplications, finite impulse
response filters, and also irregular architectures such as a simple Von Neu-
mann style processor and a reduction circuit. Finally, some specific techni-
calities of CλaSH will be discussed, among others the processing pipeline
of CλaSH and the hardware oriented type constructions of CλaSH.

1 Introduction

In this paper we describe the hardware specification environment CλaSH, which
is based on the functional programming language Haskell. The perspective from
which a CλaSH specification views a hardware architecture is that of a Mealy
Machine, that is, as a function of two arguments – one representing the state of
a component and the other the input – which yields two results – the new state
and the output. We will show several examples in CλaSH, ranging from matrix
product and FIR-filters, to a simple processor and a reduction circuit.

Since hardware architectures have specific properties, some extensions have
to be added to Haskell, and furthermore, not every Haskell program can be
translated into hardware. For example, the data type of lists, which is often
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used in a functional setting, is not suitable to describe architectures since a list
may vary in length during a computation, whereas hardware is fixed in size.
Besides, data dependent recursion is not possible in CλaSH, since that requires
transformations that are not (yet) included in the CλaSH compiler.

In the rest of this paper we first shortly discuss some related work (Sect. 2),
after which we outline the pattern along we will specify architectures (Sect. 3).
Then, in Sect. 4 we first describe some regular architectures and in Sect. 5 we
describe some irregular architectures. in both sections we give examples of state
less architectures and stateful architectures. Finally, in Sect. 6 we give an informal
description of some aspects of CλaSH itself.

2 Related Work

The most well-known specification languages for digital hardware are VHDL and
Verilog. Also in industry, the design of digital architectures is mostly expressed
in VHDL and Verilog. However, abstraction mechanisms available in these lan-
guages are not very strong and it is cumbersome to generalize a given specification
for different input/output types, or to parameterize for the functionality in a sub-
component. Over the years several attempts are made to improve the abstraction
mechanisms in these languages, leading to concepts such as generics and gener-
ate statements. With generics a design can be formulated exploiting – a limited
form of – polymorphism such that one may use the same design for different types
(see [9]).

However, full abstraction is reached only to a limited extent by these exten-
sions, such that using them is still quite verbose and error-prone. Besides, these
extensions are not fully supported by synthesis tools. This is widely recognized
by the hardware design community, and there are many attempts to base hard-
ware design on standard programming habits, notably on imperative languages
such as C/C++ or Java, leading to so-called high level synthesis. A well known
example of this approach is System-C, for an overview we refer to [6].

The perspective from which both VHDL and Verilog, as well as high level
synthesis languages view a hardware architecture is — at least partially — imper-
ative in nature. On the other hand, we argue that the concept of digital hardware
is closer to a function, than to an imperative statement : a digital circuit may
be viewed as a structure that transforms an input signal into an output signal,
exactly what a function in mathematics does, though in the case of a function
one speaks of arguments and results rather than input signals and output signals.

This observation makes it likely that a functional language might be bet-
ter suitable to specify hardware architectures than languages which are partly
based on an imperative perspective. Besides, abstraction mechanisms available
in functional programming languages are high, and include features such as
higher order functions, polymorphism, lambda abstraction, and pattern match-
ing. This observation was made several times before, dating back to the early
eighties of the 20th century, and is expressed in papers such as [4,10,15]. Since
then several languages are proposed which approach the specification of hard-
ware architectures from a functional perspective, some of the most important
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ones being Lava [3,8], Bluespec [13], ForSyDe [14]. For an overview of several of
these languages see [5].

Most of these functional hardware description languages, however, are embed-
ded languages inside a functional programming language, which has certain limi-
tations concerning the abstraction mechanisms that are available in a functional
language. For example, choice constructs that most functional language offer,
such as guards, pattern matching and case constructs, are not easily exploitable
in embedded languages, and give rise to more verbose formulations.

On the other hand, the method described in this paper, called CλaSH, uses
the functional programming language Haskell itself. Hence, all above mentioned
abstraction mechanisms that are available in Haskell are automatically also avail-
able in CλaSH. It falls outside the scope of this introduction into CλaSH to go
into further details concerning a comparison with other functional hardware
description languages.

3 Basic Program Structure for Hardware Descriptions

In this section we will give a first introduction to the general principles according
to which a CλaSH specification is built up.

3.1 Mealy Machine and Simulation

Below we assume that a hardware architecture consists of memory elements
together with a combinatorial circuit, and that it is connected to input and
output ports. The values in the memory elements form the state of the architec-
ture, whereas the combinatorial circuit generates its functionality. At every clock
cycle, the input signals and the values from the memory elements are going into
the combinatorial circuit, defined by some function f , which results in output
signals and in new values in the memory elements. Thus, the general format of
the function f is that f has two arguments (the state and the input) and the
result of f consists of two values as well (the updated state and the output):

f s x = (s′, y) (1)

where s denotes the current content of the state, x is the input, s′ is the updated
value of the state, and y is the output of the circuit described by f1. Clearly, both
the new state s′ and the output y must be defined separately, but we will come
to that later. Here only the top-level structure of the definition of a hardware
specification function f is relevant.

This function f describes the structure of the architecture, in addition we
need a function to simulate the described architecture. The simulation works by
executing the hardware function f repeatedly, on every clock cycle. The following
function simulate realizes this simulation process:

simulate f s (x:xs) = y : simulate f s′ xs
where
(s′, y) = f s x

simulate f s [ ] = [ ]
1 Note that we follow the convention used in Haskell, and write f s x instead of f(s, x).
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This definition consists of two clauses, where the difference is in the third argu-
ment (x:xs vs [], see below). The function simulate can be used for simulation
purposes by applying it to a given initial value of the state and a given list of
concrete arguments and executing that in Haskell.

The function simulate has three arguments, which can be described as follows:

– the first argument is a function f , which determines the functionality of some
hardware architecture as described above. We emphasize that f is just a formal
parameter of the function simulate, i.e., with every usage of simulate this
parameter f will be instantiated to the functionality of a concrete hardware
architecture.

Since simulate has a function as argument, simulate is called a “higher order
function”.

– the second argument is the state s, which contains all the values in all memory
elements in the architecture. Note that s need not be a simple parameter,
consisting of just one integer (say). Instead, s may be a structured parameter
which consists of several parts representing various memory elements.

– the third argument of the function simulate is the list of inputs, denoted by the
“patterns” x:xs and [ ], respectively. The second pattern denotes the empty
list, so the second clause only will be chosen when the input is empty, i.e.,
when all input values are processed by the first clause (in case an input list is
finite).

The first pattern x:xs denotes a non-empty list of input values, so the first
clause is chosen as long as the input still contains values. The colon “:” breaks
the input in its first element x and the rest xs (suggesting the plural of one x,
and pronounced as x-es). The value x will be dealt with during the present
clock cycle, and xs will be dealt with in future.

Here too, x may be a compound value, consisting of several parts which all
come in parallel during the same clock cycle.

In the result of simulate the values y and s′ are used, which are calculated by the
function f . The result of f then consists of a pair (s′, y) of two things: the output
y (which again may consist of several parallel values), and the new state s′. This
corresponds to the idea of a Mealy machine, as depicted in Fig. 1.

The global result of the simulate-function now is the output y followed by
(indicated by “:”) a recursive call of the function simulate, but with the new
state s′ and the rest of the input xs. That means that the function simulate
repeats itself, each time with the state resulting from the previous execution of
simulate, and with the rest of the input sequence. Thus, the total result of the
function simulate is a list of outputs generated by a repeated evaluation of the
architecture f , meanwhile updating the state at every step.

Note that the function simulate simulates a clock cycle at every recursive
call. Note also that we assume that at every clock cycle a new input value x is
available, though that can be weakened by choosing a Maybe type for the input
values, indicating that x can be a meaningful value, or Nothing.
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3.2 A Simple Architecture Example

In this section we will give an example of definition of a concrete architecture
by means of a function f according to the pattern as shown in Eq. (1). We will
also show the simulation of this architecture, using of the function simulate as
defined above.

Fig. 1. Mealy machine

Suppose we have to calculate the dot product of two vectors x and y of
integers, i.e., we have to calculate the following expression:

n∑

i=1

xi · yi.

Suppose further that we have only one multiplier and one adder available. Then
we clearly need a memory element acc to accumulate intermediate results of the
addition, and which should initially contain the value 0. In Fig. 2 the architecture
is shown that does the job: at each clock cycle the inputs xi and yi are first
multiplied, and then added to the value in the accumulator acc. The result of
this is put both back into the accumulator, and on the output.

Description in a Functional Language. The function macc (for “multiply-
accumulate”, see Fig. 2), which expresses the above behavior, may be defined as
follows:

macc :: Int → (Int, Int) → (Int, Int)

macc acc (x, y) = (z, z)
where
z = acc + x ∗ y

On the first line in this definition the type of the function macc is mentioned,
which expresses that macc is a function with an Int as its first argument, a pair
(int,int) as its second argument, and a pair (int,int) as its result.

We remark that the structure of the function macc matches the structure
of the function f in Eq. (1) and of the function f in the definition of simulate.
That is to say, where in the definition of simulate the pair (s′, y) is calculated
by using the function f , now the function macc is defined such that it can be
used in the role of f .
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Fig. 2. Multiply-accumulate

To explain the correspondence between macc and f in greater detail, we
observe that

– the first argument acc is the state of the architecture, and corresponds to s
in the expression “f s x” in the function simulate. In the case of macc, the
state consists of a single number only,

– the second argument (x, y) is the input that arrives at each clock cycle, and
corresponds to the parameter x in the expression “f s x” in the function
simulate. In this case the input consists of two numbers,

– the result (z, z) matches the pair (s′, y) in the definition of simulate, so in
this example both the output and the new content of the state are the same
value z. For reasons of readability we use a where-clause to define z, though
we might have written directly

macc acc (x, y) = (acc + x ∗ y, acc + x ∗ y).

Suppose we want to simulate and test this architecture with the vectors:

x = 〈1, 2, 3, 4〉
y = 〈5, 6, 7, 8〉

Then the input for the architecture is a sequence of parallel x and y values, as
follows (in Haskell notation as a list of 2-tuples):

input = [(1, 5), (2, 6), (3, 7), (4, 8)]

The initial value of the accumulator is 0, so in Haskell we can now simulate this
by evaluating:

simulate macc 0 input

The output of the simulation then is:

[5, 17, 38, 70]

The last value is the dot product of the two vectors x and y .
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Description in VHDL. In order to illustrate some differences between a func-
tional language and a standard hardware specification language, we describe the
same multiply-accumulator in VHDL. One possible specification is as follows
(leaving out the standard initial LIBRARY and USE statements):

ENTITY macc IS
PORT (x, y : IN integer;

z : OUT integer;
rst,
clk : IN std_logic);

END macc;

ARCHITECTURE behaviour OF macc IS
SIGNAL acc : integer;
SIGNAL zi : integer;

BEGIN
zi <= acc + x * y;

acc <= 0 when rst=’0’ else
zi when rising_edge(clk);

z <= zi;
END behaviour;

Assuming that the reader is not familiar with VHDL, we make some remarks
about this specification. First of all we remark that, in order to keep the VHDL
code as short as possible, we omitted the size of the type integer from the above
code.

Second, we remark that in VHDL it is not allowed to read from an OUT signal,
hence inside the architecture a local signal zi (for “z-internal”) is defined which
is used for both the OUT signal z and for the accumulator acc.

We further remark that the when statement is shorthand notation for a con-
current process.

Concerning a comparison between CλaSH and VHDL we restrict ourselves
to some obvious differences. A more detailed comparison falls outside the scope
of this text.

A first difference of course is the huge difference in syntactical notation: what
is a “type” in Haskell corresponds to a certain extent to an “entity” in VHDL,
and what is a “function definition” in Haskell, corresponds more or less to an
“architecture” in VHDL. We remark that in a functional language the concept
of “type” is wider than in VHDL, for example, in a functional language for every
type a and b, the type a → b is the type of all functions from a to b.

As a second difference we mention that in the VHDL-specification time and
space are mixed in the sense that references to the clock (clk) are present on the
same level in the code as the description of the functionality of the architecture.
In the functional specification, on the other hand, time and space are strictly
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separated: the clock is represented by the recursion in the simulate function,
whereas the circuit itself is described in the “architecture function” (such as
macc).

Note that in VHDL also a reset (rst) is present, whereas in the functional
specification a reset is not expressed. Without going into details we mention that
adding a reset to the functional specification is done on the level of the simulate
function as well, by distinguishing it as a special type of input value. That means
that for a reset too it holds that in VHDL it is part of the code describing the
architecture, whereas in a functional description it is dealt with on a separate
level.

A third difference has to do with the way how we understand the code: in a
functional specification we are strictly talking about values of variables, such that
a functional description is very close to a mathematical, structural description. In
VHDL one is more tempted to understand the code as a description of behavior,
i.e. what actions take place under certain conditions. In the macc-example one
might say that the outcome of the expression macc acc (x, y) is the value (z, z),
whereas in VHDL one has to perform an action of putting the value of an
expression on a signal (channel).

4 Regular Architectures

In this section we will discuss several examples of regular architectures, and
illustrate the power of higher order functions to specify such architectures. In
particular we will define a ripple carry adder, a multiplier, and several variants
of an FIR-filter. Besides, we will show that the fact that functions are first
class citizens in Haskell can be used to parameterize architecture specifications
beyond the level of numerical constants, i.e., we show that we can parameterize
an architecture with respect to the functionality of its subcomponents.

4.1 Introduction

To introduce the topic of this approach we start with the dot product as already
discussed in Sect. 3.2. First we repeat the definition of the dot product:

x • y =
n−1∑

i=0

xi · yi (2)

and mention that in Sect. 3.2 the dot product was calculated by an architecture
which performed one multiplication and one addition per clock cycle. Conse-
quently, there were as many clock cycles needed as there were elements in the
vectors to calculate the full dot product. It is however also possible to execute
the calculation of the dot product in a single clock cycle, by using more multipli-
ers and adders. In Fig. 3 the architecture is shown that calculates a dot product
in one clock cycle — assuming of course that all adders and multipliers also
take a single clock cycle. Clearly, there are hardware limitations to the number
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of components that can be reasonably executed in a single clock cycle. Besides,
the more components are combined in a so-called combinatorial path, the more
energy it takes. However, we will ignore such aspects here and concentrate on
the structure of the architecture and its specification.

Fig. 3. Dot product

As can be seen from Fig. 3, this is a rather regular structure, in which the same
combination of operations is repeated several times. In words the dot product
can be described as follows: multiply the corresponding values pairwise, and add
the results. In Haskell there exist the functions zipWith and foldl which perform
exactly these operations. Before we come to the definition of the dot-product
and the convolution example in Haskell, we first give the meaning in hardware
of some standard higher order functions.

Some standard higher order functions. We show the architectures indicated by
the standard higher order functions: map, zipWith, and foldl. Note that the
architectures hold for any function f and for any operation �.

Fig. 4. Some standard higher order functions
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(a) map. The function map applies a function to all elements in a given list of
elements, for example:

map (+1) [3, 5, 8, 6] = [3+1, 5+1, 8+1, 6+1]
= [4, 6, 9, 7]

Here, the function (+1) is applied to all the numbers is the list [3, 5, 8, 6].
The meaning of map as an architecture specification is shown in Fig. 4(a).

(b) zipWith. The function zipWith combines two sequences of elements by apply-
ing a given binary operation or function to the elements of the lists pairwise.
For example:

zipWith (+) [3, 5, 8, 6] [4, 6, 9, 2] = [3+4, 5+6, 8+9, 6+2]
= [7, 11, 17, 8]

The architectural meaning of zipWith is shown in Fig. 4(b). Note that both
map and zipWith are strongly parallel.

(c) Variants of fold. There are several variants of fold : foldl , foldr , foldl1, foldr1.
Here we only show foldl (for fold-left), which intuitively works as follows (see
Fig. 4(c)):

foldl (+) 0 [7, 11, 17, 8] = (((0 + 7) + 11) + 17) + 8
= 43

The “left” nature of these operations is indicated by the brackets, saying that
the operation (addition in this case) proceeds from left to right through the list.

We remark that for associative operations it is more efficient to give the
architecture of a fold function the form of a tree, but in the context of this text
we ignore such issues of efficiency.

Below we first describe some regular architectures which do not have state
and after that we describe some regular architectures which do have state. In
particular, in Sect. 4.2 we describe matrix operations and elementary arithmeti-
cal architectures, and in Sect. 4.3 we describe some variants of FIR-filters.

4.2 Regular Stateless Architectures

In this section we describe again the dot product of two vectors, followed by
matrix-vector multiplication and matrix-matrix multiplication.

Dot Product. Combining the architectures of the functions foldl and zipWith,
we can describe the dot product from Fig. 3 as follows:

x .∗. y = foldl (+) 0 (zipWith (∗) x y)

Equivalently, in a somewhat more elaborate notation we may define (w and z
refer to Fig. 3):

x .∗. y = z
where
w = zipWith (∗) x y
z = foldl (+) 0 w
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We choose for “.∗.” as notation for the dot product, since the notation “•”
cannot be typed directly on a keyboard. We remark that both definitions are
valid Haskell definitions, and thus executable in a simulation.

CλaSH translates specifications given in terms of higher order functions like
zipWith and foldl , and in the case of the definition of the dot product, it indeed
yields the architecture as shown in Fig. 3.

Matrix-Vector Product. We continue the usage of higher order functions by
discussing a matrix vector product, an example being given in Fig. 5.

Fig. 5. Matrix-vector product

A fairly standard way to deal with matrices is to consider them as a sequence
of rows, thus the matrix in Fig. 5 actually is represented in Haskell as

[[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]

That is to say, a row in the matrix is in fact an element of the matrix.
Now note that the i-th element of the result of the matrix-vector multiplication

is obtained by taking the dot product of i-th row with the vector. For example,

[21, 22, 23] .∗. [1, 2, 3] = 134.

Hence, the result vector is computed by applying the dot product with the vector
[1, 2, 3] to every row in the matrix. And thus, since the matrix is a list of rows,
this can be done by the map function. In other words, if xss is a matrix (seen as a
list of lists, hence the notation “xss”), and ys is a vector, then the matrix-vector
multiplication mxv can be defined as

mxv xss ys = map (.∗. ys) xss

Matrix-Matrix Product. This can even further be extended to matrix-matrix-
multiplications, see Fig. 6.

To define matrix-matrix multiplication in Haskell, letxss and yss be two matri-
ces, then matrix-matrix multiplication is obtained by multiplying the matrix xss
with every column of matrix yss, which gives the columns of the result matrix.
Thus, when we first transpose the matrix yss, and transpose the result back, then
the above reasoning applies to the rows of yss. Hence, the multiplication of matrix
xss with matrix yss (denoted as the function mxm) may be defined as

mxm xss yss = transpose (map (mxv xss) (transpose yss))

We invite the reader to test these definitions in Haskell.
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Generating Architectures by CλaSH. In order to offer the above definitions
on vector and matrix operations to CλaSH, we first have to add an empty state
arguments, e.g., as in

mxv′ s (xss, ys) = (s, zs)
where
zs = mxv xss ys

Note that the state s remains unchanged, so it can be anything we like, the
most obvious choice being s = (). Note further, that the input of the architec-
ture formally is one item (xss, ys) again, though it consists of many elements.
Extended in this way, CλaSH translates these definitions into hardware archi-
tectures, performing the described operations directly in hardware. For matrix-
vector multiplication of the size as in Fig. 5 the resulting architecture looks as
follows, exactly as intended:

We leave it to the reader to draw the architecture for matrix-matrix multi-
plication (Fig. 7).

A Ripple-Carry Adder. The ripple-carry adder is a standard way to add inte-
ger numbers, and is an immediate translation to binary number representations
of the usual way in which we add numbers by hand. For example:

1 1 0 1 0
1 0 1 0 1 1

1 0 0 0 1 0 1

Clearly, we need the elementary logical gates for and, or, and xor :

0 ∧ 0 = 0
0 ∧ 1 = 0
1 ∧ 0 = 0
1 ∧ 1 = 1

0 ∨ 0 = 0
0 ∨ 1 = 1
1 ∨ 0 = 1
1 ∨ 1 = 1

0 ⊗ 0 = 0
0 ⊗ 1 = 1
1 ⊗ 0 = 1
1 ⊗ 1 = 0

We remark that Haskell recognizes Unicode, so the above definitions are valid
Haskell definitions.

The most common way to define a ripple-carry adder is by means of a half
adder and a full adder, where a half adder takes two input bits, and a full adder
additionally also the carry-bit from the right neighbor. In both cases the result
is the pair of the sum-bit of the input bits and the carry-bit. In Fig. 8 we give the

Fig. 6. Matrix-matrix product
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Fig. 7. Architecture for matrix-vector product

Fig. 8. Half adder

truth table of the half-adder, the Haskell definition which calculates this truth
table, and the architecture which is specified by the Haskell definition. In Fig. 9
we do the same for the full adder.

We will say that the Haskell definition of the full adder has two arguments
(the pair of input bits (x, y), and the carry bit c), and two results (the pair of the
carry bit c′ and the sum bit s). Although this is a somewhat inconsistent formu-
lation since we consider a pair on the input side as one value and on the output
side as two values, we nevertheless choose for that formulation, since it gives us
the possibility to connect the full adders using a general mapAccumL function:
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Fig. 9. Full adder

the function mapAccumL can combine a sequence of functions of this structure
into a combined function that gets a list and a starting value a as arguments.
Figure 10 shows the Haskell definition and the corresponding architecture of the
function mapAccumL. Note that the function mapAccumL is a combination of
the function map and an accumulation (from the left, hence its name).

Fig. 10. mapAccumL

As a short explanation of the recursive structure in the where clause of the
definition of mapAccumL, we remark that the list as is developed element by
element: the first element a0 is calculated by applying f to a and the first element
x0 of xs. Then the second element a1 is calculated by applying f to a0 and x1,
and so on. The function unzip is needed, since zipWith results in a list of pairs,
and we need the lists of all first elements as and all second elements zs of these
pairs.
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Already now we remark that mapAccumL f has the same structure as needed
for f : it gets two arguments (a starting value a and a list of inputs xs), and
it results in two values as well (a final result a′ and the list of intermediate
results zs). We will use this fact later, in Sect. 4.2.

In order to define the ripple-carry adder in Haskell, assume that xs and ys are
the bit representations of two integer numbers x and y, where the first elements
of xs and ys are the least significant bits, and the last elements are the most
significant bits. Assumed is further that xs and ys are extended with leading
zeroes to a given fixed length (say 16 or 32).

Now the ripple carry adder rca can be defined by combining full adders fa by
the function mapAccumL with starting value 0 (the initial carry bit) and the list
corresponding pairs of bits from xs and ys as inputs. The result of mapAccumL
is the pair of the list of intermediate sum bits ss and the last carry bit c. Clearly,
to get the result of the ripple carry adder rca, the sum bits ss and the last carry
bit c have to be concatenated.

Fig. 11. Ripple-carry adder

As the matrix operations, we remark that in order to let CλaSH generate hard-
ware from the definition of the ripple carry adder, we have to extend the defini-
tion of rca with an empty state argument (Fig. 11).

An Elementary Multiplier. We conclude the stateless architectures with the
definition of an elementary multiplier. Again, we start from the way we would
multiply two binary numbers by hand, as in:

1 1 0 1 0
1 0 1 1 ×

1 1 0 1 0
1 1 0 1 0

0 0 0 0 0
1 1 0 1 0 +

1 0 0 0 1 1 1 1 0
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Assume that two 4-bit numbers x and y are given, whose bit sequences are xs
and ys where x0 and y0 are the least significant bits:

x3 x2 x1 x0

y3 y2 y1 y0 ×
An elementary multiplier can be constructed by using the ripple-carry adder as
defined in Sect. 4.2 and is as shown in Fig. 12.

Fig. 12. Elementary multiplier

First note that every horizontal line either consists of the bits from xs or it
consists of zeroes only, depending on the question whether the corresponding
y-bit is 1 or 0. To calculate this we have to calculate

map (∧yi) xs

on every line before the results are given to a ripple-carry adder, which then
adds it to the first four bits of the previous line, taking all zeroes at the first
line. Note that a ripple-carry adder yields one bit more than the length of the
inputs, and the last bit zi of that result is given to the total result immediately –
just as in the case of the calculation by hand. To get the total result, these last
bits resulting from all ripple-carry adders have to be concatenated with the first
four bits from the last ripple-carry adder.

Before we give the Haskell code for this elementary multiplier, we observe that
every line itself again is a function of the form as requested by the mapAccumL
function:

– every line has two inputs: the list ss of the first four sum bits from the previous
line (four zeroes on the first line), and the bit yi indicating whether the bit
sequence xs should be added or whether there should be zeroes instead,



352 J. Kuper

– and it has two outputs: the first four sum bits going to the next adder, and
the last bit z going straight to the final result.

Note that at every line the bit yi makes the choice whether or not to use the
bit sequence xs. That means that the sequence xs can be considered the same
at every line, i.e., it is a global input which is the same at every line. This global
pattern is shown in Fig. 13.

Fig. 13. Multiplier pattern

The Haskell definitions can now be given as follows:

add xs ss y = (ss′, z)
where
z:ss′ = rca ss (map (y∧) xs)

The function add takes xs as its first argument, meaning that add xs is a function
which takes sum bits ss and a single bit y, and applies the ripple-carry adder
to ss and map (∧y) xs. Note that the first bit of the result of the function rca
is the least significant bit, so that is the bit that has to be separated from the
rest. This is done by the pattern matching z:ss′ in the where-clause.

Note also that add xs is the actual addition function that is performed at
every line, and furthermore, add xs answers the pattern as described above.
hence, add xs can be given to the mapAccumL function:

mul xs ys = zs ++ ss
where
zeroes = replicate (length xs) 0
(ss, zs) = mapAccumL (add xs) zeroes ys
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Here, the function replicate produces the initial sequence of zeroes, to start the
additions. Clearly, the sum bits coming from the mapAccumL function, and
the individual z values that were given to the final output now have to be
concatenated in order to turn the result into a single number. We mention again
that the first bit of this number is the least significant bit.

The reader is invited to test the above definitions in Haskell, and even more
so, to experiment with CλaSH to see that these definitions actually can be
translated into hardware and, e.g., put on an FPGA.

We conclude with the remark that this elementary multiplier is not very
efficient. More efficient, for example, is the Baugh-Whooley multiplier, but we
leave it as an exercise to define this multiplier.

4.3 Regular Architectures with State

In this section we return to the dotproduct, but now we assume that there is
an ongoing stream of input values and we repeatedly need the dotproduct of an
initial part of the input stream with a fixed vector of co-efficients. So, this is a
“sliding window” over the input stream, and the computational technique we will
discuss is called convolution. With the right choice of co-efficients, this technique
can be used to filter high or low tones from a music stream, it can be used for
video processing, in astronomy, etcetera. In such situations one often speaks of
FIR-filters (for “Finite Impulse Response” filters). In this section we will discuss
the derivation of some variants of FIR-filters, and show their architectures and
their specifications in Haskell.

We start with the formula that expresses the convolution function. Let h
be a vector of n co-efficients, and let x0, x1, x2, . . . , xt, . . . be a stream of input
values, with the index t indicating the moment in time that the value arrives.
The FIR-filter determined by the vector h is called an n-tap FIR filter, and its
output yt at time t is defined as

yt =
n−1∑

i=0

hi ∗ xt−i (3)

So the FIR-filter calculates at every moment t the dotproduct of the co-efficients
h and the last n input values xt, . . . , xt−n+1. For n = 4, Fig. 14 shows three time
steps, where the dashed lines follow the values xi from one time moment to the
next (for reasons of space we join multiplication of hi and xt−i, and addition
into one computational component). Note that y3 is the first correct result of
the convolution.

Above, time was introduced with respect to the moments that the input
values xi arrive, but it does not say anything on the scheduling of the computation
of the results yi. Even though Fig. 14 suggests that the computation is done
on an architecture that consists of (in this case) four computing units doing a
multiplication and an addition, it in fact only expresses the dependencies between
the computations. Concerning the actual scheduling of the computations, there
are many different possibilities, which each give rise to a different architecture.
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Fig. 14. Convolution on a stream

The remaining parts of this section discuss some of these possible architectures
and the way they can be derived from the dependencies expressed in Fig. 14.

FIR-Filter: Variant 1. A straightforward way to schedule the data dependen-
cies from Fig. 14 is to schedule horizontally, as indicated by the thick black lines
in Fig. 15. All operations between two thick black lines are executed within the
same time frame. In the context of this text we will assume that a time frame
takes one clock cycle. Hence, data that moves from one time frame to the next
has to be remembered, i.e., at every position where a data line crosses a time
line, a memory element will be introduced. In Fig. 15 the data lines that cross a
time line, are the dashed lines indicating the traversal of the input values xi. For
example, at the end of the first time frame, input x3 has to be put in a memory
element before it will be multiplied by h1. That is realized by memory element
u1 in the right hand side of Fig. 15. In the same way memory elements u2 and
u3 can be explained. For memory element u0 the same reasoning holds, but as
will be noted, it would not have been necessary to extend the time line as far to
the left as we did. In that case, an input value xi would be multiplied with h0

in the same clock cycle as xi arrives.

Fig. 15. FIR-filter, variant 1
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As can now be seen from Fig. 15, the dot product of the convolution has to be
applied to the co-efficients hs and to all values us in the memory elements, i.e.,
the architecture has to calculate the expression

hs .∗. us

Besides, the values in the memory elements us all have to be shifted one position
to the right, and the next value xi has to be put in u0. For this we define the
operation +>>, saying that a value has to be “shifted into” a sequence of memory
elements:

x +>> us = x : init us

For example:
5 +>> [1, 2, 3, 4] = [5, 1, 2, 3]

Since the co-efficients hs are constant during the operation of the FIR-filter on
an input stream, we take those as a parameter to the FIR-filter. Hence, the first
argument of the FIR-filter consists of the co-efficients hs, the second argument
is the state us, and the third argument is the next input value x. As before, the
result consists of the updated state us′ and the output value y. That leads to
the following definition of the first variant of the FIR-filter:

fir1 hs us x = (us′, y)
where

us ′ = x +>> us
y = hs .∗. us

Note that fir1 hs matches the pattern of an architecture description as required
by the function simulate, thus fir1 hs indeed defines an architecture. That coin-
cides with the intuition, that the co-efficients hs are part of the architecture of
the FIR-filter.

FIR-Filter: Variant 2. For the second variant of the FIR-filter we choose
the time frames as indicated by the thick lines in Fig. 16. Note that now an
input value xi is multiplied with all co-efficients hs within the same time frame,
expressed in the right hand side of Fig. 16 by the fact that an input value x is not
delayed by a memory element before all multiplications with the co-efficients hs.

The data lines that cross the time lines are now the connections that are
between the computational units. Thus, the result of each computational unit
has to be put in a memory element before it is given to the next computational
units. That is realized by the memory elements vs between the computational
units in the right hand side of Fig. 16.

In this variant, the dotproduct operation by itself is not performed within a
single time slice, so we cannot use the standard dotproduct function. Instead, we
observe that the results ws are pairwise added to the values from the memory
elements vs (plus 0 in front). That is to say, the additions correspond to a zipWith
operation. However, the zipWith with + results in a sequence of four values, the
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Fig. 16. FIR-filter, variant 2

last of which is the output y, and the initial three are the new content of the
memory elements vs. Finally, we remark that the fact that all co-efficients hs
are multiplied with the same x-value is expressed by the map function.

This gives rise to the following Haskell definition:

fir2 hs vs x = (vs′, y)
where

ws = map (∗x) hs
vs ′′ = zipWith (+) (0:vs) ws
vs ′ = init vs ′′

y = last vs ′′

We leave it to the reader to check that y indeed is the dot product of four
consecutive inputs.

FIR-Filter: Variant 3. In the third variant we choose a different slope of the
time lines, and again, we check where the data lines and the time lines cross.
Now note that there are two crossings in the lines for xi before it reaches the
next computational unit, expressed by two memory elements u2i−1 and u2i in
the right hand side of Fig. 17. As with variant 2, there again is one memory
element vi between the computational units.

To define this architecture in Haskell, we define an operation to select a
sequence of elements (indicated by a list of indexes is) from a list:

xs !!! is = map (xs!!) is

For example:
[2, 1, 6, 4, 3] !!! [0, 2, 4] = [2, 6, 3]

Finally, note that the state now consists of two lists us and vs of memory ele-
ments. This leads to the following definition:
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Fig. 17. FIR-filter, variant 3

fir3 hs (us, vs) x = ((us ′, vs ′), y)
where
ws = zipWith (∗) hs (us!!![0, 2..])
vs ′′ = zipWith (+) (0:vs) ws
(us ′, vs ′) = (x +>> us, init vs ′′)
y = last vs ′′

Again we leave it to the reader to check that indeed this architecture produces
the dotproduct of the co-efficients hs and four consecutive values from the input
stream. Apart from checking that by hand, one may also run the function simu-
late on the architecture fir3 hs for a given list hs of co-efficients, and some input
stream xs.

FIR-Filter: Variant 4. As a last variant we discuss variant 4, in which the
input stream goes from right to left. Furthermore, observe that there are only
two computational units in the same time frame. We remark that these units are
not consecutive, i.e., either the first and the third, or the second and the fourth
computational unit are in the same time frame. The consequence is that not
all elements of the input stream will be meaningfully processed, thus the input
stream has to be interleaved with arbitrary values. We leave it as an exercise
to the reader to check the crossings of the data lines and the time lines, and to
connect these to the memory elements in the right hand side of Fig. 18.

We mention that the notation us <<+x means that x is “shifted into” the
list us from the right. It is defined as follows:

us <<+x = tail us ++ [x].

For example:
[1, 2, 3, 4] <<+ 5 = [2, 3, 4, 5]

Now the Haskell definition should be straightforward:
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Fig. 18. FIR-filter, variant 4

fir4 hs (us, vs) x = ((us ′, vs ′), y)
where
ws = zipWith (∗) hs us
vs ′′ = zipWith (+) (0:vs) ws
(us ′, vs ′) = (us <<+x, init vs ′′)
y = last vs ′′

Concluding Remarks. The above architectures are derived by a systematic
method, starting from the data dependencies generated by the mathematical
formula of the dotproduct of a list of co-efficients and an equally long initial
part of the input stream. By varying on the division in time frames, the concrete
architectures can be developed by introducing memory elements on the crossings
of data lines and time lines.

The major difference between these architectures consists of the number and
positioning of memory elements, and may cause some difference in delay of the
output and in maximum clock frequency. For example, in variant 1 there is a
long combinatorial path, going from the input through the first multiplication,
followed by four additions. Clearly, the output is available in the same clock
cycle as in which the last input arrived (or very quickly after that), but the
consequence of such a long combinatorial path may be that the clock frequency
will be low.

In variant 2 the maximal length of the combinatorial paths is much shorter,
but there still is the need to deliver the input value to many operations in parallel,
taking a lot of energy and possibly a low clock frequency. In variant 3, on the
other hand, all combinatorial paths are rather short, so the clock frequency can
be high, but there is a longer delay between the last input and the moment that
the output becomes available.

Such issues are examples of the considerations which may be relevant which
architecture suits a given situation best. This question falls outside the scope of



Hardware Specification with CλaSH 359

this text which is mainly aiming at the correspondence between an architecture
and its Haskell specification.

We conclude with a possible generalization that is made possible by the high
level abstraction mechanisms the Haskell offers: parameterization. It is possible
to generalize each of the above architectures with the functionality of subcompo-
nents. We will illustrate this for variant 1 of the FIR-filter above. If we abstract
away from the concrete functionalities of the subcomponents, and instead turn
them into arguments of the architecture, we get a higher level architecture, shown
in the following Haskell code:

genfir1 (f, g, a, hs) us x = (us′, y)
where

us ′ = x +>> us
ws = zipWith f hs us
y = foldl g a ws

Fig. 19. Parameterized filter

In this code not only the co-efficients hs are taken as parameters, but also the
functionalities f and g, and the initial value a in the application of foldl. The
corresponding architecture is shown in Fig. 19.

Note that we can now define

fir1 hs us x = genfir ((∗), (+), 0, hs) us x

It is equally well possible to define a pattern matcher, which selects subsequences
from an input stream that match a given pattern hs:

pattm hs us x = genfir ((==), (&&),True, hs) us x

This definition leads to the architecture in Fig. 20.

5 Irregular Architectures

In this section we turn to an example of an irregular architecture, the Sprockell :
a S imple processor in Haskell (see Fig. 21). It is an instruction set architecture
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Fig. 20. Pattern matcher

which has many simplifications in comparison with a real processor, for exam-
ple, we will assume that the execution of an instruction as well as fetching data
from memory takes only one clock cycle, there is no pipelining, there are no
cache memories, there is no I/O. We assume a program memory that is sepa-
rated from data memory, and only one program can be executed at the same
time. Nevertheless, the architecture together with its instruction set are Turing
complete, so it is a non-trivial processor.

The aim of showing it here is to demonstrate the natural character of its
specification by means of mathematical functions, which are all executable in
Haskell. The irregular character shows itself by the fact that no usage of higher
order functions is made, i.e., there is no repeating pattern in the architecture. On
the other hand, the way the definitions are given does show a regular pattern,
most definitions are just straightforward case-expressions.

5.1 The Sprockell

In Fig. 21 it can be seen that the program memory (pmem) contains a list of
instructions (see below for the complete instruction set). The decode function
D decodes these instructions one by one and sends signals onto all its outgoing
wires. The formulation “sends signals onto all its outgoing wires” is represented
in the definition of the function D by the fact that the result of D for every
instruction is a record consisting of 13 fields, where every field corresponds to
one of the outgoing wires of the decoder.

The Sprockell is a load-store architecture, where the load function L is able
to load data from various sources into some register in the register bank R. The
sources of these data can be a constant value delivered by the decoder, it can be
the output of the alu, or it can be a value from some address in data memory.
Which value the load function has to choose, is determined by a special code
sent to the load function by the decoder. Clearly, also the address of the register
in which the load function has to put the value, is coming from the decoder.

The store function S saves a value in data memory. As with the load function,
this value may come from different sources: it may be a constant sent by the
decoder, or it may be a value from some address in the register bank. Here too,
the decoder delivers the information which value to choose, which register to
read, and which address in data memory to save to.
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Fig. 21. Sprockell

The alu A performs an operation, indicated by an opcode, on two values
from the register bank, and sends its result to the load function L.

The last elements we mention in this introductory description are the pro-
gram counter and the stack pointer. As always, the program counter tells which
instruction from program memory should be fetched for the decoder (shown in
Fig. 21 by the indexing operation !! from Haskell). The program counter is stored
in a register which is updated by the function Upc, the program counter update
function, based on information from again the decoder. For the stack pointer the
same holds: it is stored in a register that is updated by the stack pointer update
function Usp.

So, all in all the state of the architecture consists of the register bank R,
data memory M, and two registers for the program counter pc, and for the
stack pointer sp. The Sprockell itself is defined as a function which transforms
its state every clock cycle, based on the instruction that has to be executed.
In the sections below we will formalize the above intuitive descriptions of the
various subcomponents and combine them in the definition of the Sprockell as a
whole.

We remark that in order to save space and to have some visual recognition
based on the names of the components, we choose for a more mathematical
formulation. However, this formulation may be readily translated into Haskell
in a word for word fashion, by choosing names fro the symbols, such as alu for
A, load for L, dataMemory for M, etcetera. Since Haskell recognizes Unicode,
one might also choose to leave some of the symbols unchanged, and the result
will nevertheless be an executable Haskell program, and simulation can be done
with the same function simulate as before.

The specification given below is complete in the sense that it can also be
mapped onto real hardware, e.g., onto an FPGA. However, in order to give the



362 J. Kuper

code to CλaSH to be translated into synthesizable code, still some mainly minor
transformations have to be executed on the Haskell code. We will come back to
that issue in Sect. 6.

Memory Structure. As mentioned above, the state of the Sprockell consists
of the register bank R, the data memory M, and the two registers pc and sp for
the program counter and the stack pointer, respectively. For reasons of simplicity
we choose to let all values be integers, and M and R be lists of integers:

Register bank: R :: [Int]
Data memory: M :: [Int]
Program counter: pc :: Int
Stack Pointer: sp :: Int

Note that for real hardware it is not sufficient to choose for integers, nor for lists
of integers: for integers one has to choose the number of bits with which the
integers will be represented, and also for lists one has to make a choice for the
length of the list. We will come back to this in Sect. 6.

To update the register bank or the data memory we define an update oper-
ation <∼ to put a value v on position i in a list:

xs <∼ (i, v) = ys ++ [v] ++ zs
where
(ys, :zs) = splitAt i xs

Applying this operation to the register bank or to the data memory has the
following limitations:

– register 0 of the register bank always contains the value 0, so putting a value
in this register means that the value will be lost,

– before putting a value in the data memory, it has to be enabled for writing.

The Alu A. Concerning the functional components in the Sprockell, we start
with the alu function A. As can be seen in Fig. 21, the alu has three input
signals. Thus, the function A that specifies the alu has three arguments. The
first of these arguments is the opcode opc which decides which operation the
alu should perform, the other two arguments x and y are the values on which
this operation should be performed. The opcodes are defined as an embedded
language, i.e., as an algebraic data type in Haskell, which can be extended as
desired:

data OpCode = NoOp | Id | Incr | Decr | Neg | Add | Sub | Mul | Eq | Gt | · · ·

The meaning of these opcodes become clear in the definition the alu func-
tion A, which is a simple case-expression, defined by pattern matching on the
opcode:
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A opc x y =case opc of
NoOp −> 0
Id −> x
Incr −> x + 1
Decr −> x − 1
Neg −> −x
Add −> x + y
Sub −> x − y
Mul −> x ∗ y
Eq −> tobit (x == y)
Gt −> tobit (x > y)

...
where
tobit True = 1
tobit False = 0

Note that in Haskell the relation “>” results in a boolean, so the function tobit
is needed to transform this into an integer.

The Load Function L. The load function L has several input values:

– we choose to let the result of the load function L be the updated register
bank as a whole, so also the register bank R itself is an argument to the load
function,

– three values from which the function L has to choose to put into the register
bank: an immediate value c coming from the decoder, a value from data
memory d, or the output z from the alu,

– a code ldc to tell the load function which value to put in the register bank, or
not to load anything at all,

– of course, the register r in which to put the value.

The codes which value to load is defined in an embedded language LoadCode:

data LoadCode = NoLoad | LdImm | LdAddr | LdAlu

Nowthedefinition of the load functionL again is a straightforward case-expression,
though the case where no value has to be loaded into the register bank is defined
in a separate clause:

L NoLoad R r (c, d, z) = R
L ldc R r (c, d, z) = R <∼ (r, v)

where

v = case ldc of
LdImm−> c
LdAddr−> d
LdAlu−> z
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The Store Function S. The store function S has the following input arguments:

– as with the load function L, we choose to let the result of the store function
S be the updated data memory as a whole, so also the data memory M itself
is an argument to the function S,

– two values from which the function S has to choose to put into the register
bank: an immediate value c coming from the decoder, or a value x from data
memory,

– a code stc to tell the store function which value to put in the data memory,
or not to store anything at all,

– of course, the address a at which to store the value.

The codes which value to store are again defined in an embedded language
StoreCode:

data StoreCode = NoStore | StImm | StReg
Again, the definition of the store function S is a straightforward case-expression,
taking the NoStore case as a separate clause leaving the data memory M
unchanged:

S NoStore M a (c, x) = M
S stc M a (c, x) = M <∼ (a, v)

where
v = case stc of

StImm −> c
StReg −> x

The Program Counter Update Function Upc. The program counter is
updated by the function Upc, based on a jump code to be provided by the decoder.
The jump codes are defined in an embedded language JumpCode:

data JumpCode = NoJump | UA | UR | CA | CR | Back

The meaning of the jump codes is as follows:

– NoJump: just go to the next instruction,
– in UA, UR, CA, CR the U/C stand for Unconditional and Conditional, respec-

tively, i.e., jump in any case, or based on the value x (0 or 1) of a condition.
A/R stand for Absolute and Relative, respectively, i.e., jump to instruction
with number n, or jump a n instructions forward (backward in case n is neg-
ative) from the current instruction,

– Back says that the program counter can jump back to a previously remem-
bered instruction, to be used in case of, e.g., return from a subroutine.

The program counter update function now again is straightforwardly defined by
a case-expression (ipc is the program counter, jmpc the program counter code,
y the previously stored program counter):
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Upc (jmpc, x) (n, y) pc =case jmpc of
NoJump −> pc+1
UA −> n
UR −> pc+n
CA | x==1 −> n

| otherwise −> pc+1
CR | x==1 −> pc+n

| otherwise −> pc+1
Back −> y

The Stack Pointer Update Function Usp. The stack is a dedicated sequence
of memory locations in the data memory, starting at a freely to determine mem-
ory address. The idea of defining the stack pointer update function should be
clear by now, and we give the definitions straight away. The stack pointer update
code:

data SPCode = Up | Down | None
The stack pointer update function, where sp is the stack pointer, and spc the
stack pointer code:

Usp spc sp = case spc of
Up −> sp+1
Down −> sp−1
None −> sp

The Instruction Set. Also the instruction set is defined as an embedded
language, called Assembly :

data Assembly = Compute OpCode Int Int Int
| Jump JumpCode Int
| Load Value Int
| Store Value Int
| Push Int
| Pop Int

The type Value consists of two sorts of values: immediate values (constants) and
values indicated by their address in data memory. It is defined as follows:

data V alue = Addr Int
| Imm Int

The following table describes the meaning of the instructions:

Compute opc i0 i1 i2: the alu will perform the operation opc on the values from
registers i0 and i1, and the result will be put in register i2,

Jump jmpc n: the program counter will be changed by the number n, based on
the jump code jmpc,

Load (Imm n) j: the value n will be loaded into register j,



366 J. Kuper

Load (Addr i) j: the value from address i in data memory will be loaded into
register j,

Store (Imm n) j: the constant n will be stored in data memory at address j,
Store (Addr i) j: the value from register i will be stored in data memory at

address j,
Push i: the value from register i will be pushed onto the stack,
Pop i: the top value of the stack ill be loaded into register i.

The program memory is a list of assembly instructions, i.e., the program memory
has type [Assembly ].

The Decode Function D. The decode function D translates an instruction
into signals for all other functions in the Sprockell. That is to say, the function
D gets two arguments: the stack pointer sp and an assembly instruction α, and
produces a record consisting of 13 fields, as shown in Fig. 21 This record type
represents the “machine code” and is defined as:

data MachCode = MachCode { ldCode :: LoadCode,
stCode :: StoreCode,
opCode :: OpCode,
jmpCode :: JumpCode,
spCode :: SPCode,
jmpN :: Int ,
immvalR :: Int ,
immvalS :: Int ,
reg0 :: Int ,
reg1 :: Int ,
addr :: Int ,
toreg :: Int ,
toaddr :: Int }

We define an empty record for the machine code C0:

C0 = MachCode { ldCode=NoLoad , stCode=NoStore, opCode=NoOp,
jmpCode=NoJump, spCode=None, jmpN=0,
immvalR=0, immvalS=0,
reg0=0, reg1=0, addr=0, toreg=0, toaddr=0 }

The function D now is defined by updating the empty machine code C0 for
every instruction separately, by using a case-expression. Note that the fact that
the instruction set is defined as an embedded language, offers the possibility of
pattern matching on each instruction:

D sp α = case α of
Compute opc i0 i1 i2 −> C0 { ldCode=LdAlu, opCode=opc, reg0=i0, reg1=i1, toreg=i2 }
Jump jc n −> C0 { jmpCode=jc, jmpN=n, reg0=1, reg1=6 }
Load (Imm n) j −> C0 { ldCode=LdImm, immvalR=n, toreg=j }
Load (Addr i) j −> C0 { ldCode=LdAddr , addr=i , toreg=j }
Store (Imm n) j −> C0 { stCode=StImm, immvalS=n, toaddr=j }
Store (Addr i) j −> C0 { stCode=StReg, reg0=i, toaddr=j }
Push i −> C0 { stCode=StReg, spCode=Up, reg0=i, toaddr=sp+1 }
Pop i −> C0 { ldCode=LdAddr , spCode=Down, addr=sp, toreg=i }
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Fig. 22. Examples of the effect of instructions (color figure online)

In order to illustrate the definition of the decoder, we give two examples. In
Fig. 22(a) it is shown which extra signals (marked with red) in comparison to
the empty machine code are activated by the decode function D to execute the
compute instruction. From the corresponding clause in the definition of D we
derive that these extra signals are:

– two register addresses by which the values for the alu A are selected,
– the opcode signal directly to the alu A,
– two signals to the load function L, saying that the outcome z of A has to be

put in the register bank, and to which register that value has to be put.

Likewise, Fig. 22(b)can be compared to the clause in the decode function D to
see that the following signals are added to the empty machine code for the push
instruction:

– the value from register i has to be selected,
– the store function S should know that the value x from the register bank has

to be put in data memory M, and that it has to be stored on top of the stack,
i.e., at address sp+1,

– since an element is put on top of the stack, the stack pointer has to be increased
by one, such that the stack pointer again points to the top element of the stack.

We leave it to the reader to check the decoding of the other instructions.

The Sprockell Function. Finally we come to the function sprockell, in which
all the above defined functions are composed together. We first remark that the
function sprockell is of the pattern as described by a Mealy Machine (see Sect. 3):

– it is parameterized with a sequence αs of instructions in the program memory,
– its state (R,M, pc, sp) consists of the register bank, the data memory, and

the program counter and stack pointer,
– the input is irrelevant, since for these lecture notes we chose to leave the

processor without I/O. The input may be interpreted as a clock tick,
– the result consists of the updated state and some output, which can be freely

defined, e.g., as a specific memory element to follow the changes.
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sprockell αs (R,M, pc, sp) = ((R′,M′, pc′, sp′), out)
where
MachCode{..}= decode sp (αs!!pc)
R+ = R ++ [pc]
(x, y) = (R+!!reg0, R+!!reg1)
z = A opCode x y
d = M!!addr
R′ = L ldCode R toreg (immvalR, d, z)
M′ = S stCode M toaddr (immvalS, x)
pc′ = Upc (jmpCode, x) (jmpN, y) pc
sp′ = Usp spCode sp

out = · · ·

Note that the first line of the where-clause says that we may use the field names of
the machine code record as if they were normal variables. The next line defines an
“extended register bank” such that we can also choose the value of the program
counter by indexing this extended register. That is practical in case a value of
the program counter is saved on the stack in case of subroutine calls.

The variables x and y are defined as the values from the register bank at
addresses reg0 and reg1, which come from the machine code vector, i.e., they are
chosen by the decoder. The variable z results from applying the alu A to these
values x and y, and applying the operation indicated by opCode, again afield
from the machine code record. Likewise, d is the value from the data memory M.

In the last four lines the various parts of the state are updated by applying
the corresponding update functions to their arguments.

Simulation. The Sprockell can now be simulated by choosing an appropriate
sequence α sof instructions, and appropriate values for the initial register bank
and data memory. Clearly, the expected values to fill register bank and data
memory are zeroes. The program counter should start at 0, and the stack pointer
at that value that indicates the address in data memory where the stack starts.
Now the processor may be simulated by the following expression:

simulate (sprockell αs) (R0,M0, pc0, sp0) [0..]

The list of instructions in the program memory in Fig. 21 calculates the value of
23. It puts 2 in register 3, 3 in register 4, and puts the result in register 5. If we
define out above as

(pc,R!!1,R!!3,R!!4,R!!5)

then the simulation gives the following sequence of 5-tuples:

[(0, 0, 0, 0, 0), (1, 0, 2, 0, 0), (2, 0, 2, 3, 0), (3, 0, 2, 3, 1),
(4, 0, 2, 3, 1), (5, 0, 2, 3, 1), (6, 0, 2, 3, 2), (7, 0, 2, 2, 2), (3, 0, 2, 2, 2),
(4, 0, 2, 2, 2), (5, 0, 2, 2, 2), (6, 0, 2, 2, 4), (7, 0, 2, 1, 4), (3, 0, 2, 1, 4),
(4, 0, 2, 1, 4), (5, 0, 2, 1, 4), (6, 0, 2, 1, 8), (7, 0, 2, 0, 8), (3, 0, 2, 0, 8),
(4, 1, 2, 0, 8), (8, 1, 2, 0, 8), (∗∗∗ Exception : Prelude.(!!) : index too large
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The first line contains the initialization of the values 2, 3, 1 in the registers 3,
4, 5 (respectively), and the other lines all start with the result of instruction
3 which computes whether register 4 equals zero. Note that the values in the
registers are the values before the instruction indicated by the program counter
(on the first position each 5-tuple) is executed.

Note also that instruction 3 puts the result in register 1, since that is the
register where the conditional jump looks to decide whether it should jump or
not (as determined by the choice reg0=1 in the definition of the decode function
for the jump instruction).

Finally, note that the simulation ends by an “index too large” error, since
instruction 4 will cause that the program counter gets the value 8, whereas the
largest index of the sequence is 7. Clearly, that is not the most elegant solution,
but in the framework of these lecture notes, we don’t elaborate this point any
further.

Concluding Remarks. Above we described a non-trivial processor in order
to show the naturality by which the components and the total processor can
be specified and simulated using Haskell. A further step would be to define a
programming language for the Sprockell, which can also be done by embedded
languages, a simplified example being:

type Variable = String
data Expression = · · ·
data Program = Program [Statement ]
data Statement = Assign Variable Expression

| If Expression [Statement ] [Statement ]
| While Expression [Statement ]

We leave it to the reader to work out the details, including the definition of
a compiler, which now can be defined as a function from these types to a list
of instructions, i.e., to the type [Assembly ]. Clearly, the compiler also needs a
lookup table in which it is registered on which memory location the value of a
variable is put.

5.2 Composition of Stateful Components

In the previous section we described the Sprockell processor as an example of an
irregular architecture. All subcomponents of the Sprockell are stateless, which
makes the composition of these subcomponents straightforward, as can be seen in
de definition of the function sprockell. In this section we will discuss an example
of an irregular architecture which is a composition of stateful subcomponents.
The example we choose for that is a reduction circuit as described in [7].

The issue with the composition of subcomponents with state is that the fact
that the state is an explicit argument and an explicit result of an architecture
definition causes that also the component that contains these subcomponents
must have the state of these subcomponents as an argument. The reason is
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that each clock cycle the resulting state of a component has to be fed back
to the same component as an argument. The consequence is that all states of
all subcomponents — and of subcomponents of subcomponents, etcetera — are
arguments and results of the top-level architecture. Because of the negative effect
of this on the readability of an architecture specification, we wish to hide the
state of subcomponents and suppress the visibility of state on a higher level then
the subcomponent to which the state belongs.

The Haskell feature that we use for this is called arrows. We will only show the
usage of arrows in the example below, for a deeper understanding of the concept
we refer to the Haskell website (www.haskell.org) where several introductions to
the concept can be found.

The Reduction Circuit. The intention of the reduction circuit presented here
is to add — on an FPGA — sequences of numbers which enter in order, for
example:

a1, . . . , ak, b1, . . . , bm, c1, . . . , cn, . . .

Thus, all numbers ai have to be added, all numbers bi have to be added, etcetera.
There are a few aspects that have to be taken into account:

– every number is marked with the row to which it belongs, but all numbers
belonging to the same row arrive consecutively,

– every number is a floating point number, meaning that addition is a pipeline
and takes several clock cycles,

– every clock cycle a number arrives and has to be processed immediately.

Clearly, the combination of the last two points make this a tricky problem, and
many architectures are published to do the reduction efficiently. The architecture
we will present uses the possibilities of the pipelined adder to process several
additions in parallel such that all additions can be executed streamingly. The
global idea of the architecture is shown in Fig. 23:

– there is a pipelined floating point adder receiving two numbers at a time, which
then travel through the adder upwards until at the top they are completely
added. Meanwhile the adder may receive new numbers, possibly belonging
to a different row. In the figure the adder is working on four additions, two
belonging to row a, and two belonging to row b.

– when the adder finished adding two numbers, the result is put in the partial
result memory on a location reserved to the row to which this result belongs.
In the figure this is row a, whereas an intermediate result of row b is stored on
another location. One clock cycle later, the adder will produce a next inter-
mediate result of row b, and together with the partial b-result from memory,
that will be sent to the adder.

– there is an input buffer (a FIFO buffer) where the numbers are received in-
order, one-by-one. From this input buffer, the numbers are sent to the pipelined
floating point adder, either two at the same time (as shown in the Fig. 23), or
one together with a result from the adder belonging to the same row.

https://www.haskell.org
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Fig. 23. Reduction circuit, schematic

There are five rules concerning the priority of the number combinations to be
sent to the adder:

1. a number from the adder together with a previous result of the same row in
memory,

2. a number from the adder together with the first number from the input buffer
if it belongs to the same row,

3. the first two numbers from the input buffer if they belong to the same row,
4. the first number from the input buffer if it is the last of a row, together with 0,
5. no number at all if none of the above rules apply.

We refer to [7] for a more extensive description of the algorithm and for a proof
that no pipeline stalls and no buffer overflows occur.

Fig. 24. Reduction circuit, architecture
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In Fig. 24 the components I, A, M correspond to the input buffer, the pipelined
adder, and the intermediate result memory, respectively. In addition to these
components there are two more components:

– a discriminator D which adds a marker to each number for the row it belongs
to. Note that this information is also sent to the partial result memory to
make a reservation for a location for the intermediate results of a row. When
the end result of a row is completely calculated, the corresponding marker can
be re-used for the numbers of a later row.

– a controller, C which checks the above rules and decides which combination of
numbers to send to the adder, and which informs the other components how
this choice influences the content of these components.

Each component has its own internal state, called SD, SI , etcetera. As an exam-
ple, we mention that the input buffer I receives every clock cycle a number x
together with its marker d. It sends its first two numbers i1 and i2 (or an unde-
fined value in case there is only zero or one cell of the input buffer filled) to
the controller and receives in return (in the same clock cycle) the number rem
telling whether there were 0, 1, or 2 of the values i1 and i2 used and which have
thus to be removed from the state of the input buffer.

Without going into the internal details of the other components, we remark
that they all are defined according to the pattern of a Mealy Machine, i.e., they
have the form

f state input = (state ′, output)

Now the state of the reduction circuit RC as a whole is the combination of the
states of all its subcomponents, i.e.,

sRC = ( sD, sI , sA, sC , sM )

The reducer as a whole is a composition of the nested states and can be defined
as follows:

reducer sRC (x, i) = (s′
RC , y)

where
( sD, sI , sA, sC , sM ) = sRC

(s′
D,(new, d)) = D sD i

(s′
I , (i1, i2)) = I sI (x, d, rem)

(s′
P ,res) = P sP (a1, a2)

(s′
R,(r, y)) = R sR (new, d, res, r′)

(s′
C , (a1, a2, rem, r′)) = C sC (i1, i2, res, r)

s′
RC = ( s′

D, s′
I , s′

A, s′
C , s′

M )

Note that the total state of the reduction circuit first has to be unpacked in
the 5-tuple of the states of its subcomponents, after which every individual
subcomponent is applied to its own state and the corresponding inputs (we
leave it to the reader to check these inputs with Fig. 24). The outcome of the
application of each subcomponent is a tuple of its updated state, and its outputs,
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after which the updated state of the reduction circuit as a whole again is the
5-tuple of the internal states of the various subcomponents.

Though straightforward, this is a cumbersome notation, the technique that
CλaSH uses to avoid it is by means of Haskell’s arrow abstraction mechanism,
written as follows (the input of the circuit consists of (x, i), and the output of
y, the total of a row):

reducer = proc (x, i) −> do rec

(new, d) <− (D ˆ̂ˆ s0D ) −< i

(i1, i2) <− ( I ˆ̂ˆ s0I ) −< (x, d, rem)
res <− (P ˆ̂ˆ s0P ) −< (a1, a2)
(r, y) <− (R ˆ̂ˆ s0R ) −< (new, d, res, r′)
(a1, a2, rem, r′) <− (C ˆ̂ˆ s0C ) −< (i1, i2, res, r)

returnA −< y

The internal state of each component is now maintained by the arrow mecha-
nism, where the notation ˆ̂ˆ instantiates a component with an adequately defined
initial component s0x. The comparison of this specification with Fig. 24 shows an
immediate correspondence between specification and figure.

The totally worked out code of the reduction circuit can be found on the
CλaSH website, clash.ewi.utwente.nl.

6 CλaSH

In the previous sections we gave several examples of architectures using Haskell
as a specification language, illustrating several aspects of such specifications. We
showed that Haskell has many powerful features which are very suitable for the
description of hardware architectures. First of all, the mathematical perspective
of the language suits the concept of transforming a signal by means of a digital
circuit, since that concept is close to th e concept of a function. But also several
more concrete features of Haskell are very powerful, for example, polymorphism
turned out to be a very pleasant feature when it comes to a first structural
design, as well as the possibility of higher order functions in case of regular
architectures. Furthermore, the flexibility in choice constructs, the possibility of
exploiting embedded languages, and the derivation of types are practical. Finally,
we mention the immediate possibility of simulating a design as a very practical
feature.

However, in order to produce real hardware from these specifications, for
example on an FPGA, we still have to modify the Haskell code in order to make
it suitable for processing by CλaSH. Since every CλaSH specification also is an
executable Haskell program, these modifications boil down to some rather stan-
dard adaptations. In Sect. 6.1 we will describe some of these steps. In Sect. 6.2
we will sketch the processing pipeline of CλaSH, and give an informal idea of
the rewrite mechanism that CλaSH performs in order to produce synthesizable

https://www.clash.ewi.utwente.nl
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code. Finally, in Sect. 6.3 we will mention some further issues where CλaSH still
has to be improved.

6.1 Transforming Haskell Code into CλaSH Code

The modifications of Haskell code into code that can be processed by CλaSH,
can be distinguished in three different issues, discussed below:

– Bringing the Haskell code into a specific form that can be dealt with during
CλaSH simulation and translation,

– Issues concerning types, in particular number types and list types,
– Issues that have to do with typical hardware deliberations, such as fixed point

arithmetic versus floating point arithmetic.

CλaSH Syntactical Form

Types. Several types that are natural in Haskell have to be modified in order
to be usable for hardware. The limitation stems from the fact that on hardware
one has to choose explicitly how many wires to use, for example, the designer
has to decide on the bit width of the involved number types. Besides, in order
to use the available area on an FPGA optimally, a designer will often choose for
a non-standard bit width of integers, such as 18 bit integers.

Number Types. CλaSH offers several typing constructs to express these choices,
the most important ones being Signed and Unsigned for integer numbers. In
addition the bit width of these numbers has to be indicated, for example Signed16
for 16 bit signed numbers.

List Types. The same holds for lists: in Haskell a list may vary in length during
the evaluation of a program. On hardware, however, that is not possible, so the
designer has to make a choice for the length of a “list”. For this, CλaSH offers
vector types, of the following pattern: Vector 〈width〉 〈type〉, where the width
should be, e.g., 16, 24, etcetera, and the type may be any type that is acceptable
on hardware.

Polymorphism. One further point concerning this issue is polymorphism: often
a specification in Haskell holds for many different types, for example, the spec-
ification of FIR-filters in Sect. 4.3 hold for any number type, they hold for Int,
Integer, Float, etcetera, alike. As mentioned above, for hardware a choice has
to be made, but it often is sufficient to make this choice at the top level of the
specification. For many types of subexpressions of the specification, the types
will be derived by the compiler.

Algebraic Types. As we saw in Sect. 5, a very powerful usage of algebraic types
is to define embedded languages. CλaSH is able to translate these types into bit
patterns, which can be mapped onto hardware. These bit patterns are efficient
in the sense that parts of the bit pattern can be re-used for other constructors
from the same algebraic type.
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Further Transformations. The above transformations stem from the need to
adapt Haskell code to specific hardware requirements, such as decisions on bit
widths of number types. Some other transformations that may have to be nec-
essary have to do with design choices concerning the performance and the preci-
sion of the designed hardware. A typical example of such a choice concerns the
choice for floating point or fixed point arithmetic, which has to do with a trade
off between the usage of area and time on the actual hardware. In Haskell every-
thing is done in floating point, so if the design has to use fixed point arithmetic,
the Haskell code has to be adapted correspondingly.

A comparable issue arises with some arithmetical operators which may be
complex in hardware, such as division. In Haskell itself, which is evaluated as
software, the designer does not need to think about such issues. But in order to
avoid the complexity in hardware, and possibly slow execution of such operators,
a designer may choose for an approximation of such an operator.

6.2 The Processing Pipeline of CλaSH

The process performed by CλaSH is a pipeline and consists of several stages (see
Fig. 25):

Fig. 25. CλaSH pipeline

GHC Frontend. The first step is done by the standard Haskell compiler GHC,
or by GHCi, the interactive variant of GHC. GHC takes care of aspects such as
syntax analysis, desugaring, parsing, and type checking. Also type derivation is
taken care of by GHC.

Besides, GHC translates the CλaSH specification into the Core language,
a GHC internal language which is a fully fledged functional language, but has
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only a limited number of syntactical constructions. That is to say, the result of
GHCI is a Core expression which is equivalent to the original specification, but
which is easier to deal with because of its greater syntactical simplicity.

CλaSH Rewrite Rules. This phase in the CλaSH pipeline is the first step of
the CλaSH kernel itself: to rewrite a specification into a normal form (CoreNF)
which makes the hardware architecture explicit in detail. In fact, this CλaSH
normal form is close to a so-called netlist formalism, which is used in techniques
to produce actual hardware from a specification. Informally put, a netlist for-
malism describes a graph in which every wire is mentioned. The CλaSH normal
form has the following structure:

λx . let
y0 = e0
y1 = e1
y2 = e2

...
in

z

Thus, the CλaSH normal form is a lambda expression with zero or more formal
parameters which correspond to the inputs of the specified component. The body
is a let expression with a sequence of local definitions, in which every defining
expression ei is a simple expression, i.e., an expression with only variables as
subexpressions. Every variable defined in this let-expression corresponds to a
wire in the actual hardware. Finally, the in part of the let-expression also is a
single variable, which corresponds to the output of the component. In fact, every
wire in the CλaSH normal form has a name, and thus the CλaSH normal form
is close to a netlist format.

Below we will give an informal example of this part of the pipeline to show
that the normal form indeed is close to the hardware architecture.

CoreNF to VHDL. The second step of the CλaSH kernel is the translation the
CλaSH normal form into VHDL. The reason to choose for VHDL as a target
language is that VHDL is a standardized hardware specification language, and
many tools exist that map VHDL specifications to actual hardware, such as an
FPGA. In fact, the expression in CλaSH normal form already is in a structural
sense already very close to VHDL.

Mapping to Hardware. This is the last phase in the pipeline and consists of the
usage of the tools that are available for VHDL to take care of the actual mapping
of the specification onto hardware. For example, the synthesis of an FPGA is
realized by these VHDL tools.
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Example of the Rewrite Step. Assume we specify a simple alu, using pattern
matching, as follows:

alu ADD = (+)
alu MUL = (∗)
alu SUB = (−)

So the alu is only able to add, to multiply, and to subtract numbers, i.e., the
embedded language for the opcodes is as follows:

data OpCode = ADD | MUL | SUB

Note, however, that no matter how simple the specified alu is, the specification
is polymorphic and higher order. It is polymorphic in the sense that it works for
any number type, and higher order because it is defined in terms of the functions
(+), (∗), (−) only, without using individual variables for numbers.

Intuitively, the hardware architecture specified by this definition is clear, and
shown in Fig. 26.

Fig. 26. The specified alu

The first step in the rewrite process is the GHC frontend which removes
the syntactic sugar of pattern matching and turns de definition into a lambda-
abstraction:

alu = λc. case c of
ADD → (+)
MUL → (∗)
SUB → (−)

The first rewrite step chosen by CλaSH will be η-expansion, i.e., to add lambda
abstractions and corresponding arguments:

alu = λc. λx. λy.

⎛

⎜⎜⎝

case c of
ADD → (+)
MUL → (∗)
SUB → (−)

⎞

⎟⎟⎠ x y

The result of η-expansion is that all inputs of the alu (c, x, y) now correspond
to formal parameters of the specification.
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Since the case-expression is of function type, the next step is application
propagation, i.e., to move the arguments x, y into the case-expression:

alu = λc x y.case c of
ADD → (+) x y
MUL → (∗) x y
SUB → (−) x y

The next step might be called letification, i.e., the body of the lambda term is
turned into a let-expression, by introducing a name z for the expression as a
whole and having that name as the only term in the body of the let-expression.
The result is that the output of the architecture (see Fig. 26) corresponds to this
variable z. For reasons of readability we write the arithmetical operations in an
infix way:

alu = λc x y.let
z = case c of

ADD → x + y
MUL → x ∗ y
SUB → x − y

in
z

Finally, all subexpressions that are not single variables will be extracted and
defined separately, resulting in a name for every single wire in the architecture:

alu = λc x y.let
p = x + y
q = x ∗ y
r = x − y
z = case c of

ADD → p
MUL → q
SUB → r

in
z

The resulting expression now is in CλaSH normal form, and corresponds to
Fig. 26 to the extent that all wires got names with, e.g., p being the wire that
results from the addition component.

6.3 Final Remarks

As described and illustrated in these lecture notes, CλaSH is a system to specify
hardware. It is based on Haskell, and translates Haskell definitions of a specific
form into synthesizable VHDL, which can be mapped to, e.g., an FPGA. How-
ever, CλaSH is still under development, thus these lecture notes are not the final
text on CλaSH, for an in-depth presentation of CλaSH we refer to [2]. Further



Hardware Specification with CλaSH 379

examples of architectures specified of in CλaSH can be found in, e.g., [1,12,17,18],
whereas some first introductions may be found in [1,11,16].

As an example of a topic on which CλaSH still has to be extended is the
usage of recursive definitions. At the moment there is no systematic treatment
of recursive specifications in CλaSH yet, it is future work to fill in that gap.
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Abstract. In these lecture notes we present examples of F# mobile web
applications using WebSharper [1], an open source F# web framework. In
the first part of the tutorial, we provide a quick walkthrough of the rele-
vant WebSharper features and concepts. WebSharper, through its exten-
sions, can provide type-safe interfaces to various JavaScript libraries. We
will make use of extensions to jQuery Mobile [2] and Sencha Touch [3],
and demonstrate how to develop F# mobile web applications with these
libraries.

1 WebSharper

WebSharper [1] is a mature, open source web framework for F#, that enables
developers to author F# web applications using various functional web abstrac-
tions such as formlets and sitelets, and provides automatic and faithful transla-
tion to JavaScript.

WebSharper can be used as a standalone tool, although most developers
prefer to use it as an extension to one of the mainstream integrated development
environments (IDEs), such as Visual Studio and/or MonoDevelop. We assume
working with the Visual Studio integration in this paper, and the reader is
referred to Sect. 1.8 to learn more about the available toolsets and templates in
that bundle.

The WebSharper team has also been hard at work to provide an online IDE
for WebSharper and F# development, and the first releases of CloudSharper [10],
an online IDE with these goals in mind, offer a friction-less way to get started
online.

WebSharper applications can be fully client-side (HTML + JavaScript), or
can have an optional server side that the client side code can call upon. These
client-server calls are simple F# function calls with each participating function
annotated to denote the tier it’s designed to run under.

The following snippet demonstrates seamless client-server RPC calls:

namespace Testing

module Server =
[<Rpc>]
let ServerFunction (...) = ...

c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 381–406, 2015.
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module Client =
[<JavaScript>]
let ClientFunction (...) =

...
Server.ServerFunction (...) // Call the server

1.1 Overview of the WebSharper Programming Model

WebSharper builds on F# and can largely be seen as a library of extensions
providing various web abstractions, enabling developers to embed entire web
applications, including client and server-side functionality into F#.

This single-language, uniform programming model avoids many of the short-
comings of mainstream, script-based web development, and empowers developers
with numerous functional constructs that dramatically simplify implementing
web applications.

WebSharper applications are built as a two step process. The first step
involves executing the F# compiler to produce a dynamically linked library,
also known as a .NET assembly. This assembly will contain quotation data
for annotated components such as those marked for client-side execution in
JavaScript, and meta information such as client-side dependencies (JavaScript
and CSS resources) required to be in scope when code is served in WebSharper
contexts from the given assembly. This quotation data is embedded automat-
ically by the F# compiler, as all WebSharper-related code attributes inherit
from ReflectedDefinition, the main F# attribute class that instructs the F#
compiler to embed the corresponding reified syntax tree representation into the
containing assembly.

The second build step invokes the WebSharper compiler, passing all ref-
erences and the main application assembly, and various other command line
options that drive compilation, and executes the code generation logic relevant
to the execution model selected. In every compilation path, F# to JavaScript
code generation uses the quotation data embedded in target and referenced
assemblies. Using this representation as opposed to the more raw .NET inter-
mediate language (CIL) representation has the added benefit of producing code
that is sufficiently high level and maintains stronger ties to the original source
code by retaining its shape and characteristics.

Code Generation for Sitelets. One key execution model for WebSharper
applications is based on WebSharper sitelets (see Sect. 1.6), an abstraction that
represents web applications as values in the F# type system. Sitelets provide
an elegant shorthand notation for building larger WebSharper applications, and
also cater for developing more advanced capabilities such as responding to REST
requests [9] or enabling user authentication on part of or the entire application
under development. The main sitelet can be marked as a sitelet entrypoint in
its assembly (one per assembly) using a wrapper type and an assembly-wide
attribute. The required code makes a reference to an Action discriminated union
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type that the sitelet is said to “implement,” containing union cases that rep-
resent the different functional areas/aspects of the resulting web application,
MySitelet, referencing the sitelet to be exposed, and MyActions, containing a
list of Action union cases to generate client-side code for:

[<Sealed>]
type Action =

| ...

type MyApplication() =
interface IWebsite<Action> with

member this.Sitelet = MySitelet
member this.Actions = MyActions

[<assembly: Website(typeof<MyApplication>)>]
do ()

WebSharper sitelets can be “online” or “offline”, with the former representing
web applications that are made up of a server side as well as a client side. For
online sitelets, the explicit facility to control the generated client-side code and
markup (via MyActions in the above snippet) is ignored, and instead no static
markup is produced, as this is a chore that is performed on request by the sitelet
handler embedded into the host web server. Online sitelets can be deployed and
run in any web server implementation that supports ASP.NET or OWIN, the
Open Web Interface for .NET.

Offline sitelets, also called HTML sitelet applications, consist of HTML mark-
up and client-side code, and can be fully encapsulated by a set of generated
HTML and JavaScript files and their related static artifacts such as images and
style sheet files. This means that offline sitelet applications, once generated,
can be embedded into any web server, not just those that support ASP.NET.
When building offline sitelet applications, the WebSharper compiler generates
all markup into separate HTML pages and embeds references to generated
JavaScript files for each piece of dynamic functionality. This follows the exact
same pattern as the content served via online sitelets in a sitelet-aware web
application container.

Code Generation for Non-sitelet HTML Applications. An alternate exe-
cution model for client-only applications is generating plain JavaScript code that
can be included in an HTML page. These applications are made up of ordi-
nary client-annotated F# functions and effectful value bindings that execute as
soon as their generated JavaScript file is referenced and loaded. Therefore, these
applications must manually control the point of generated script inclusion into
host markup. Despite this, such low-level control is often useful and desirable,
and from the perspective of other high-level language to JavaScript translation
users, this mode of operation is straightforward and helps to get started with
WebSharper for novice users.
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1.2 F# to JavaScript Translation

WebSharper can produce verbose and minified JavaScript output, driven by a
command-line switch to the WebSharper compiler, or by a web application con-
figuration setting in online sitelet applications. The latter enables developers to
change verbosity settings while the application at hand is running, making it
easier to keep deployed applications optimized in their ordinary course of oper-
ation, dropping back to a more verbose configuration when targeted debugging
and investigation is necessary.

The verbose output retains the identifiers/names and nested structure of the
original F# code, thereby greatly assisting in debugging. At the time of writing,
there are plans to support source maps to link the original F# code to the
generated code more tightly, but this is not yet available. Without source maps,
developers must rely on the verbose syntax to navigate the generated code, which
in practice turns out to be easy to get used to. However, unless debugging issues
in WebSharper extensions to various JavaScript libraries or missing resources,
one rarely has a reason to investigate the generated code more closely.

WebSharper translation performance and memory consumption is propor-
tional to the size of the input program (the parts that are marked for client-side
execution) and to the number of WebSharper extension/stub libraries used. In
general, WebSharper compilation times are similar to those of the F# compiler
for the same code base. For instance, a WebSharper solution consisting of about
100 lines of F#/WebSharper code is compiled under a second, while a larger,
enterprise-grade application of about 25,000 lines of F#/WebSharper code is
compiled in about 10 seconds on a mainstream development machine with an
Intel i5 quadcore CPU.

Compilation proceeds by constructing a call graph over the entire set of
referenced assemblies, and uses standard graph algorithms to traverse this graph
to infer dependencies and other meta information, and to generate JavaScript
code in a modular fashion (one file per assembly) given the main entry points of
the application. While it is possible to reduce the generated code to only those
fragments that are actually used in the given application, WebSharper makes
no such optimization as of writing this tutorial, and instead outputs client-
side code that reflects all the capabilities in the referenced assemblies and the
main application. This makes the JavaScript output modular and reusable (in
both verbose and minified form) in other consuming applications as well, at the
expense of containing potentially unused code. This makes smaller WebSharper
applications relatively more verbose in terms of the generated code, but this
quickly balances out as the size of the application grows.

Unused generated code increases load times, but have no effect on the runtime
performance. There are, however, code generation characteristics that should be
taken into consideration. Most importantly, as discussed earlier, WebSharper
generates JavaScript from F# quotations as opposed to intermediate language
(IL) representation. This has the immediate effect that WebSharper projects
are tied to the F# compiler and to F# as a source language, instead of being
able to work from other .NET Common Language Runtime (CLR) languages
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such as C# and Visual Basic. While we have plans to enable other languages
to be used with WebSharper in subsequent releases, the ways of interoperability
envisioned are not via IL code.

Not relying on the .NET Common IL (CIL) representation also means that
none of the optimizations that are otherwise performed by the F# compiler (or
other .NET front-end compilers in future releases) are included in the JavaScript
code generation. Some optimizations are performed by WebSharper itself, such
as eliminating intermediate lambda expressions and applying a sophisticated
inlining mechanism, overall giving a good balance of high-level and optimized
code. One notable major compromise is the missing tailcall optimization on top-
level functions, however, tailcalls are optimized for local/inner functions.

The example belowdemonstrates the optimizations performedbyWebSharper.

namespace Bundle1

open IntelliFactory.WebSharper

[<JavaScript>]
module Client =

let Foo x = x+1
let Bar x y = if x = y then x+1 else y+1
let F x =

let bar (x, y) = if x = y then x+1 else y+1
1+bar (x, Foo x)

let Main =
let foo = Bar 1
1 + Bar 1 (foo 2)

Note in particular that:

– Namespaces and modules are compiled to inner scopes
– Top-level functions are mapped to JavaScript functions with the same arity
– Top-level bindings are mapped to Runtime.Fields calls and are evaluated in

the order of their declaration
– Simple local functions are inlined
– Local functions taking tuples are converted to single-arity functions and are

called with an array of arguments via Runtime.Tupled.

The actual generated JavaScript code for the above snippet is inlined below:

Runtime.Define(Global,{
Bundle1:{
Client:{
Bar:function(x,y)
{
return x===y?x+1:y+1;

},
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F:function(x)
{
return 1+(Runtime.Tupled(function(tupledArg)
{
var x1,y;
x1=tupledArg[0];
y=tupledArg[1];
return x1===y?x1+1:y+1;

}))([x,Client.Foo(x)]);
},
Foo:function(x)
{
return x+1;

},
Main:Runtime.Field(function()
{
return 1+Client.Bar(1,Client.Bar(1,2));

})
}

}
});

The internal conversion from tuples to heterogeneous arrays gives a straight-
forward embedding for tuples and a predictable performance in extracting tuple
elements, however, in many cases the Runtime.Tupled machinery in local func-
tion calls could be optimized out.

1.3 Other Considerations

No WebSharper application is complete without adding the appropriate style
sheets and presentation layer artifacts. These can be generated from F# code,
or more often simply included in the markup that serves as a dynamic template
for sitelets or legacy ASP.NET applications. Section 1.8 contains an example of
the templating mechanism used in most WebSharper sitelet applications. This
approach makes it possible to embed typed placeholders in external markup
template files, which are in turn bound dynamically at runtime and instantiated
from the sitelet handler with programmed content.

Dynamic templating has the significant advantage of requiring no recompi-
lation upon changing the template files themselves. This enables a quick and
seamless workflow to adjust and fine-tune the templates, and developers and
designers only need to agree on the placeholder names and types used in these
templates.

Dynamically-bound templates, however, may mismatch their consuming
sitelet code. Such mismatch is discovered on the first request to a page that misuses
the underlying template, e.g. specifies a different number and/or type of placehold-
ers than those embedded in the actual template. Older versions of WebSharper
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also supported static templates, which were converted to F# code during com-
pilation to ensure that all occurrences of template placeholders are addressed as
expected. This, however, proved to be too inconvenient and slowed development
considerably with the frequest design changes that each application is expected to
undergo, and the static templating approach was thus removed from subsequent
releases of WebSharper.

1.4 Code Annotations

There are required and optional custom attribute annotations that drive how F#
code gets compiled to JavaScript. To participate in client-side code, a code entity
must be annotated with either the JavaScript attribute or one of the attributes
inheriting from AbstractInlineAttribute. To customize the name in the com-
piled JavaScript output, it might also be annotated with an attribute inherit-
ing from AbstractNameAttribute. Both of these abstract attributes and their
descendant attribute types discussed in this section are placed automatically in
scope when the IntelliFactory.WebSharper namespace is opened.

The JavaScript Attribute. The JavaScript attribute marks members for
compilation into JavaScript. It is the single most important attribute in Web-
Sharper. The annotated members are translated to JavaScript by the Web-
Sharper compiler by inspecting and translating their F# bodies, extracted from
quotations that are embedded into the containing assembly by the F# compiler,
triggered by the presence of ReflectedDefinitionAttribute, a superclass of
the JavaScript attribute, and all other WebSharper-related attributes.

Naming Attributes. These attributes influence the member names output
in JavaScript code. The base class, Naming.AbstractNameAttribute, allows to
create custom attributes with arbitrary logic for determining the compiled name.
This is useful in various context-dependent translation scenarios, such as to avoid
name clashes and shadowing.

A simple implementation, the Name attribute, explicity sets the JavaScript-
compiled names of members and types. For example, in the snippet below, both
Date and Date.GetDate output a specific JavaScript identifier when used.

[<Stub>]
[<Name "my.package.Date">]
type Date =

/// Returns the day of the month.
[<Name "getDate">]
member this.GetDate() = 0

Inlining Attributes. Inlining attributes mark functions for inline compilation
to JavaScript. The base class, Inlining.AbstractInlineAttribute, allows to
create custom attributes with arbtirary macro-expansion logic. Three common
forms are provided: InlineAttribute, ConstantAttribute and StubAttribute.



388 A. Granicz

– InlineAttribute - a simple attribute that specifies that members are to be
compiled inline. This attribute either complements JavaScriptAttribute, or
serves standalone with a JavaScript template string. The following two forms
are equivalent:

[<Inline>]
[<JavaScript>]
let Add (x: int) (y: int) = x + y

[<Inline "$x + $y">]
let Add (x: int) (y: int) = 0

The syntax of the template string is regular JavaScript. Variables that start
with $ are treated as placeholders. There are named ($x), positional ($0), and
special ($this,$value) placeholders. To use an actual variable that starts
with a $ sign, duplicate the sign, as in $$x.

– ConstantAttribute - allows members to compile to constant literals. Its most
common use is to annotate union cases. For example:

type Align =
| [<Constant "left">] Left
| [<Constant "center">] Center
| [<Constant "right">] Right

With these annotations, Align.Left is compiled as literal ‘‘left’’, and
pattern-matching against any union case is compiled as an equality test against
the corresponding literal.

This pattern is especially useful for providing type safety in JavaScript code
where literals are used as a segmentation device, or where the list of literals is
closed. By bringing these to F# as discriminated unions or constant literals
one can eliminate the potential for spelling errors or forgetting to handle all
“cases” of the literal list.

– StubAttribute - commonly marks types that expose JavaScript-implemen-
ted functionality to WebSharper. StubAttribute is useful for enabling Web-
Sharper code to consume and interoperate with legacy and third-party
JavaScript code.

Methods and fields on types marked with StubAttribute that are not
marked with special translation attributes such as JavaScriptAttribute are
translated by-name. Methods do not have to have a meaningful body, but
should be correctly typed.

The example below exposes to F# code some of the functionality of the
Date object as present in most JavaScript environments (as specified in the
ECMA-262 standard).

[<Name [| "Date" |]>]
[<Stub>]
type Date() =
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/// Returns the day of the month.
member this.getDate() = 0

/// Returns the day of the week.
member this.getDay() = 0

/// Returns the year.
member this.getFullYear() = 0

1.5 HTML Combinators

WebSharper provides two sets of HTML combinators to construct HTML con-
tent: one for client-side use to dynamically create DOM nodes in JavaScript,
and another for constructing markup on the server side. While these two sets of
combinators are largely equivalent in the way of their construction, they differ
in how they can include JavaScript functionality.

Constructing HTML. The following list summarizes the basic HTML com-
binators and their usage (Table 1):

Table 1. Basic HTML Combinators

Symbol Definition Comment

html ::= Div | P | ... HTML constructors

attr ::= Attr.Class "..." |

Attr.HRef "..." | ...

HTML attributes

attrs ::= [ attr1 ; . . . ; attrn ] — [ ] Sequencing

htmlnode ::= html attrs HTML nodes

node ::= htmlnode Nodes without subnodes

htmlnode -< nodes Nodes with subnodes

htmlnode -- node Nodes with a single subnode

Text "..." Text nodes

Client-side HTML combinators are contained under IntelliFactory.Web-
Sharper.Html, while the server-side equivalents are in the IntelliFactory.Html
namespace. It is common practice in WebSharper applications to separate client
and server functionality into separate F# modules, opening the appropriate
HTML combinator namespace within those modules.

Embedding Client-Side Behavior. Adding event handlers to client-side
HTML is straightforward using the builtin OnClick, etc. primitives in the
Pervasives module, opened automatically with the core IntelliFactory.
WebSharper namespace.
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The following snippet shows the syntax to attach an event handler to a DOM
node:

Button [Text "Click"]
|>! OnClick (fun _ _ ->

JavaScript.Alert "Hello World!"
)

Here, the |> operator, as opposed to the common F# forward pipe (|>)
operator, is used to attach the given event handler to a DOM element, returning
that same element. This operator is simply defined as:

let (|>!) x f = f x; x

Adding client-side functionality to server-side markup, on the other hand,
requires special treatment. This consists of defining a new server-side control
type, deriving from the Web.Control WebSharper control type, wrapping the
desired functionality, and embedding an instance of this server-side control in
client-side markup. This type marks crossing the client-server boundary in
sitelets, a server-side representation of web application values, and are necessary
to generate correct HTML/JavaScript interaction from them. The examples in
this tutorial employ this technique to embed client-side behavior.

1.6 Sitelets

A sitelet is a WebSharper abstraction to represent web applications. Sitelets are
F# values, and they can be programmatically created (using Sitelet.Content,
Sitelet.Infer, and Sitelet.Protect) and composed into larger sitelets (using
Sitelet.Sum).

Sitelets use the server-side HTML combinators to represent HTML markup,
and can embed WebSharper controls, as described in the previous section. Sitelets
define how requests are mapped to responses by providing a bijection through a
so-called action type: a discriminiated union type that contains various shapes to
represent the connection between requests and responses.

Consider the following simple action type, representing a web application
with two entry points:

type Action =
| Home
| ContactUs

To see the basic sitelet combinators in action, we can create a sitelet for this
application as follows:

module Site =
let HomePage = ...
let AboutPage = ...
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let Main =
Sitelet.Sum [

Sitelet.Content "/" Action.Home HomePage
Sitelet.Content "/about" Action.About AboutPage

]

Here, Sitelet.Content creates a singleton sitelet that “listens” on a par-
ticular URL translating GET requests to that URL to one of the shapes of the
action type the sitelet is parameterized over, and maps a given response content
to it. Sitelet.Sum simply combines sitelets into larger ones, aggregating the
URL space and the action type coverage by the resulting sitelet.

In scenarios that involve action type cases carrying parameters, one can use
Sitelet.Infer to create/infer sitelets, enabling access to the carried values.

type Action =
| [<CompiledName "home">] Home
| ContactUs
| Echo of string

module Site =
let HomePage = ...
let AboutPage = ...
let EchoPage s = ...

let Main =
Sitelet.Infer (fun action ->

match action with
| Action.Home ->

HomePage
| Action.ContactUs ->

AboutPage
| Action.Echo msg ->

EchoPage msg
)

With Sitelet.Infer, URLs are inferred for each action case, and these in
turn can be obtained via a sitelet context when creating content. This makes the
need to control actual URLs less relevant and it also avoids hard-coded URLs
that point inside the application.

There are, however, situations where being able to override the inferred URLs
is required. This can be easily accomplished by adding a CompiledName attribute
on the affected action case, as shown in the snippet above. Further refinements,
such as multiple URLs pointing to the same content, are possible by combining
sitelets appropriately.

More complex scenarios, such as handling non-GET HTTP requests or man-
aging unbounded URLs are beyond the scope of this tutorial, and the reader is
referred to [5] for more information.
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1.7 Formlets and Piglets

WebSharper formlets [6] are an implementation of the formlet abstraction
described in [7], providing an F# embedding with various enhancements such
as dependent formlets and flowlets, a wizzard-like presentation of a sequence of
related formlets.

Formlets provide a composable, type-safe, and declarative way of specifying
user interfaces that take user input. Consider the following WebSharper formlet,
which implements a two-page flowlet: a simple input box with Submit and Reset
buttons followed by printing the typed value back to the user.

Formlet.Do {
let! x =

Controls.Input ""
|> Enhance.WithTextLabel "Enter something"
|> Validator.IsNotEmpty "Can’t be empty"
|> Enhance.WithSubmitAndResetButtons
|> Enhance.WithFormContainer

return!
Formlet.OfElement (fun _ ->

H1 [Text x]
)

}
|> Formlet.Flowlet

Here, the formlet in the first page, represented by the binding to x, results in
a string value typed into the text box. It only accepts if the attached validator is
not blocking and the Submit button has been clicked. Numerous other enhance-
ments and validators are available in the standard formlet library, and custom
ones can be constructed easily.

Composing formlets into larger ones follows the general form, where
Formlet-1 . . . Formlet-n are sub-formlets and v-1 . . . v-n are their results:

Formlet.Yield (fun v_1 ... v_n -> [combined result])
<*> Formlet_1
...
<*> Formlet_n

Here, the type of the combined result will drive the type of the resulting
formlet. A short example to implement a formlet to input a “person” is as
follows:

type Person = {
Name: string
Age: int

}

[<JavaScript>]



Functional Web and Mobile Development in F# 393

let PersonFormlet () : Formlet<Person> =
let nameF =

Controls.Input ""
|> Validator.IsNotEmpty "Empty name not allowed"
|> Enhance.WithValidationIcon
|> Enhance.WithTextLabel "Name"

let emailF =
Controls.Input ""
|> Validator.IsInt "Valid age required"
|> Enhance.WithValidationIcon
|> Enhance.WithTextLabel "Age"

Formlet.Yield (fun name age -> {Name = name; Age = int age})
<*> nameF
<*> emailF
|> Enhance.WithSubmitAndResetButtons
|> Enhance.WithLegend "Add a New Person"
|> Enhance.WithFormContainer

Formlets enable ultra-rapid user interface development by relieving the devel-
oper from having to worry about presentation-level details. In fact, the snip-
pet above can be changed to take a list of “person” records by a single line
of code: by applying Enhance.Many to the composed formlet before further
enhancements.

WebSharper Pluggable Interactive GUIlets [8], or piglets for short, are another
powerful user interface abstraction offered on the WebSharper tool stack. Piglets
cater to the full customizability of the formlet markup, making it possible to
reuse the same declarative piglet definition across multiple content delivery chan-
nels, for instance for tablets, mobile phones and full web front-ends. The reader
is encouraged to study piglets in more detail in the paper referenced above.

1.8 Visual Studio Integration

WebSharper can be installed as a Visual Studio extension, supplying build
automation and various WebSharper templates for use with Visual Studio. Below
we give a short description of two of the main Visual Studio templates, used in
most WebSharper applications and in this very tutorial as well.

HTML Sitelet Applications. This template is designed to contain a typical
HTML/JavaScript application written in F#. It contains an F# file Main.fs,
that implements a simple web application as a WebSharper sitelet. The pages of
this web application use an external HTML “designer” template file Main.html,
also found in the template.

The plumbing to inject content into this designer template is defined in the
Skin module, which implements, among others, the WithTemplate function to
instantiate pages, with their placeholder content represented as the record type
Skin.Page. Placeholders can be string or Content.HtmlElement values, a Web-
Sharper representation for HTML DOM nodes.
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The snippet below contains the templating logic. Note the reference to the
HTML template source file. The content substitution mechanism implemented in
WebSharper builds on a simple, non-intrusive approach: the content placeholders
in the template markup are simple HTML elements with special HTML5 data
attributes. These attributes drive whether content is inserted inside or replaces
the placeholder node, using data-hole and data-replace, respectively.

module Skin =
open System.Web

type Page =
{

Title : string
Body : list<Content.HtmlElement>

}

let MainTemplate =
Content.Template<Page>("~/Main.html")

.With("title", fun x -> x.Title)

.With("body", fun x -> x.Body)

let WithTemplate title body : Content<Action> =
Content.WithTemplate MainTemplate <| fun context ->

{
Title = title
Body = body context

}

In addition to the data-attributes just described, WebSharper can also inter-
pret simple string placeholders using the $name syntax. A rudimentary designer
template is included in the project template and is shown below:

<!DOCTYPE html>
<html>
<head>

<title>${title}</title>
<meta name="generator" content="websharper"

data-replace="scripts" />
</head>
<body>

<h1>${title}</h1>
<div data-hole="body">
</div>

</body>
</html>
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HTML Bundle Applications. Similar to HTML sitelet applications, the
HTML bundle application template is designed to enable fully offline HTML/
JavaScript applications. The key difference to its sitelet-based alternative is that
HTML bundle applications do not require a sitelet to be defined, and instead can
express the main application logic directly. This typically takes the form of exe-
cuting an initialization function compiled from F# to JavaScript, that brings the
static designer template markup to life. The word bundle derives from the fact
that this application template produces and packages all the necessary scripts
into a self-containing bundle that uses a sophisticated, lazy-loaded set of include
scripts and a single HTML page. Therefore, bundle applications are often used
to implement Single Page Applications (SPAs).

An example bundle application is shown below. Note that defining a sitelet
is not required, and that the content insertion logic is explicit.

namespace MyApp

open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Html

[<JavaScript>]
module Client =

let Main =
let input = Input [Text ""]
let label = Div [Text ""]
Div [

input
label
Button [Text "Click"]
|>! OnClick (fun _ _ ->

label.Text <- input.Value)
].AppendTo "entry"

For this code to execute properly, the containing HTML page has to take
care of loading the generated scripts (by default, generated under Content/
project.min.js) and it must contain the placeholder element (“entry” in this
example). A sample host HTML page is shown below:

<!DOCTYPE html>
<html lang="en">
<head>

<title>My Application</title>
<meta charset="utf-8" />
<meta name="viewport"

content="width=device-width,initial-scale=1.0" />
<link rel="stylesheet" type="text/css"

href="Content/MyApp.css" />
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</head>
<body>

<div id="entry"></div>

<script type="text/javascript"
src="//code.jquery.com/jquery-1.10.2.min.js">

</script>
<script type="text/javascript"

src="Content/MyApp.min.js"></script>
</body>
</html>

2 Example: jQuery Mobile

In this section, we walk through a small WebSharper application that uses jQuery
Mobile [2] for its user interface. jQuery Mobile is an extension of jQuery [4] and
is one of the first HTML/JavaScript libraries designed to implement a familiar
mobile look and feel in consuming applications. It is heavily markup-based, using
HTML5 data attributes to erect a simple page-based structure with embedded
mobile controls, driving their appearance and eye candy such as transition effects.

2.1 SlideApp.fs

Our example uses the HTML Sitelet Application Visual Studio template descr-
ibed in the previous section. The main client-side functionality, placed in Slide
App.fs, implements a PageManager type that can manage a set of UI pages that
can be scrolled (via a left or right swipe event) horizontally. The final application
is depicted in Fig. 1.

[<IntelliFactory.WebSharper.Pervasives.JavaScript>]
module SlideApp

open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.JQuery
open IntelliFactory.WebSharper.JQuery.Mobile
open IntelliFactory.WebSharper.Html

[<AutoOpen>]
module private Internal =

let JQM = Mobile.Instance

type Transition =
| NoTransition
| SlideLeft
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| SlideRight
| SlideDown
| SlideUp

member this.Reverse =
match this with
| SlideUp
| SlideLeft -> true
| NoTransition
| SlideDown
| SlideRight -> false

member this.Name =
match this with
| NoTransition -> "none"
| SlideLeft
| SlideRight -> "slide"
| SlideUp
| SlideDown -> "slidedown"

The actual page manager wraps jQuery Mobile page elements. It provides
an abstraction from keys of a given type to actual DOM elements that repre-
sent pages of the UI. The SwitchTo member performs a visual shift of a given

Fig. 1. A Simple WebSharper Application Using jQuery Mobile
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kind from the current page to a given page specified by its key value using
Mobile.Instance.ChangePage from the jQuery Mobile binding.

type PageManager<’P when ’P : equality>() =

let rendered = Dictionary<’P, Element>()
let mutable setupPage : ’P -> Element = fun _ -> Div []

member this.SwitchTo (p: ’P, ?trans: Transition) =
if not (rendered.ContainsKey p) then

rendered.[p] <- setupPage p
JQuery.Of("body").Append(rendered.[p].Body).Ignore
(rendered.[p] :> IPagelet).Render()

let trans = defaultArg trans NoTransition
JQM.ChangePage(JQuery.Of(rendered.[p].Body),

ChangePageConfig(
Transition = trans.Name,
Reverse = trans.Reverse))

member this.Setup(setup: PageManager<’P>->’P->Element) =
setupPage <- setup this

We also provide a series of helper functions: PageDiv to create a jQuery
Mobile page element with the given content, OnSwipeLeft and OnSwipe Right
for binding event handlers to the corresponding swipe events, Header to create a
header element, and PageCarousel to create a left-right carousel from a sequence
of page contents.

let PageDiv content =
Div [HTML5.Attr.Data "role" "page"] -< content
|>! OnAfterRender (fun el ->

Mobile.Page.Init (JQuery.Of el.Body))

let OnSwipeLeft f (e: #IPagelet) =
JQuery.Of(e.Body).On("swipeleft", fun _ -> f e; true)

let OnSwipeRight f (e: #IPagelet) =
JQuery.Of(e.Body).On("swiperight", fun _ -> f e; true)

let Header x = Div [HTML5.Attr.Data "role" "header"] -< x

PageCarousel returns for a given set of pages a function that computes its
page-per-page representation. For each page of index i, it constructs a page ele-
ment with a header of left/right buttons to switch to the previous/next page, and
with the specified content given for that page. Switching between neighboring
pages is also attached via the corresponding swipe events.
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let PageCarousel (pages: seq<string * #seq<Element>>) =
let pages = Array.ofSeq pages
let n = pages.Length
fun (pm: PageManager<int>) (i: int) ->

let i = i % n
let ‘‘i-1‘‘= (i+n-1) % n
let ‘‘i+1‘‘= (i+1) % n
let title, content = pages.[i]
let prevTitle, _ = pages.[‘‘i-1‘‘]
let nextTitle, _ = pages.[‘‘i+1‘‘]
let goPrev() = pm.SwitchTo(‘‘i-1‘‘, SlideLeft)
let goNext() = pm.SwitchTo(‘‘i+1‘‘, SlideRight)
PageDiv [

yield Header [
Button [

HTML5.Attr.Data"icon" "arrow-l"
HTML5.Attr.Data "iconpos" "left"
Text prevTitle

]
|>! OnClick (fun _ _ -> goPrev())
H1 [Text title]
Button [

HTML5.Attr.Data "icon" "arrow-r"
HTML5.Attr.Data "iconpos" "right"
Text nextTitle

]
|>! OnClick (fun _ _ -> goNext())

]
yield! content

]
|>! OnSwipeLeft (fun _ -> goNext())
|>! OnSwipeRight (fun _ -> goPrev())

Finally, Init constructs the skeleton of our application: a carousel with three
pages, each displaying a single button that once clicked takes the user back to
the home page. Customizing the content of each page is straightforward, simply
by giving a different content list to start with.

let Init() =
let carousel = PageManager<int>()
let home = PageManager<unit>()
let homeButton() =

Button [Text "Home"]
|>! OnClick (fun _ _ -> home.SwitchTo((), SlideDown))

let carouselPages =
[

"Timeline", [
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homeButton()
]
"My tweets", [

homeButton()
]
"Mentions of me", [

homeButton()
]

]
carousel.Setup(PageCarousel carouselPages)
home.Setup(fun _ () ->

PageDiv [
yield Header [H1 [Text "Home"]]
yield! carouselPages |> List.mapi (fun i (title,_) ->

Button [Text title]
|>! OnClick (fun _ _ ->

carousel.SwitchTo(i, SlideUp)))
])

home.SwitchTo(())

2.2 Main.fs

With the page skeleton in place, the rest of the application code simply needs to
embed the main page as a client-side functionality into a single-page sitelet. For
this, we define a server-side control that initializes the page functionality into a
div placeholder once it has been rendered.

namespace MyApplication

open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Sitelets

type Action = | Index

module Client =
open IntelliFactory.WebSharper.Html

[<Sealed>]
type Control() =

inherit Web.Control()
[<JavaScript>]
override this.Body =

Div []
|>! OnAfterRender (fun _ ->

SlideApp.Init())
:> _
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Our single index page is an instantiation of a barebones designer HTML file
in Main.html, similar in content to that of the HTML Sitelet template discussed
earlier.

module Pages =
type Index = { Body: Content.HtmlElement list }

let IndexTemplate =
Content.Template(__SOURCE_DIRECTORY__ + "/Main.html")

.With("body", fun x -> x.Body)

open IntelliFactory.Html

let Index =
Content.WithTemplate IndexTemplate <| fun ctx ->

{ Body = [Div [new Client.Control()]] }

Once all the pieces are defined, we can create our sitelet to represent the
entire application as follows:

[<Sealed>]
type MyWebsite() =

interface IWebsite<Action> with
member this.Actions = [Action.Index]
member this.Sitelet =

Sitelet.Content "/" Action.Index Pages.Index

[<assembly: Website(typeof<MyWebsite>)>]
do ()

3 Example: Sencha Touch

While jQuery Mobile provides a good set of common mobile functionality and
look and feel, its markup-based mode of operation is often inflexible when cus-
tomizations need to be implemented. Therefore, users often desire to work in
various application frameworks implemented in JavaScript. One such frame-
work is Sencha Touch [3], an open-source, royalty-free JavaScript library that
implements a wide array of UI elements and mobile functionality. Through its
API, consuming applications can implement custom user interfaces and appli-
cation logic, embed arbitrary HTML/HTML5 content, and use other, external
JavaScript libraries.

With the matching WebSharper extension, developers can author Sencha
Touch applications entirely in F#. In this section, we walk through a simple
application using Sencha Touch, shown in Fig. 2 as developed in IntelliFactory’s
CloudSharper, an online Integrated Development Environment (IDE) for F#
and WebSharper.
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Fig. 2. An Enhanced Sencha Touch Application Running in CloudSharper

3.1 Control.fs

The core application functionality consists of assemblying a Sencha Touch Ext.
Application value. To help with this objective, we provide a MakeList function,
that creates a Sencha Touch container, similar to a jQuery Mobile page, with a
title bar docked on the top, and a list view that lists the given data values.

module Control

open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Html5
open IntelliFactory.WebSharper.Html
open IntelliFactory.WebSharper.SenchaTouch

[<JavaScript; AutoOpen>]
module ExtHelpers =

let Comps a = a : Ext.ComponentCfg[]

let MakeList title data =
Ext.ContainerCfg(

Layout = "fit",
Items = Comps [|

Ext.TitleBarCfg(
Docked = "top",
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Title = title
)
Ext.dataview.ListCfg(

ItemTpl = "{title}",
Data = As(Array.map (fun i -> {title=i}) data)

)
|]

)

Sencha Touch applications can be initialized by a single function that is called
at launch time. In our application, this function creates a full screen carousel
container, and initializes its slidable pages with three sets of data values: letters,
numbers, and punctuation characters.

[<JavaScript>]
let OnLaunch () =

Ext.ContainerCfg(
Fullscreen = true,
Layout = "fit",
Items = Comps [|

Ext.TitleBarCfg(
Docked = "top",
Title = "Lists in Carousel"

)
Ext.carousel.CarouselCfg(

Items = Comps [|
MakeList "Letters" <|

[|"A";"B";"C";"D";"E";"F";"G";"H";
"I";"J";"K";"L";"M";"N";"O";"P";
"Q";"R";"S";"T";"U";"V";"W";"X";
"Y";"Z"|]

MakeList "Numbers" <| As [| 0 .. 20 |]
MakeList "Punctuation" <|

[|".";",";"?";"!";"’";":";";";
"-";"\"";"/";"(";")"|]

|]
)

|]
)
|> fun cfg -> Ext.Container cfg |> ignore

We embed this client-side functionality into a server-side control, which in
turn can be embedded into a sitelet page, a routine task now that we have com-
pleted a similar exercise in the previous section. With Sencha Touch, a stateful
call to Ext.Application with the correct ApplicationCfg value does the trick,
however, we still need to return a dummy DOM element from the server-side
control’s Body function.
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type AppControl() =
inherit Web.Control()

[<JavaScript>]
override this.Body =

Ext.app.ApplicationCfg(Launch=OnLaunch) |> Ext.Application
upcast Div []

3.2 Main.fs

Given the server-side function to create the entire Sencha Touch application, we
can simply wrap it into an empty designer HTML file in a single-page sitelet,
exactly in the same way as we did in the previous example. We omit that code
here, as it largely follows the same format, except for the actual control that is
embedded.

4 Related Work

There are three main broad topics, ideas presented in this tutorial. The first
topic concerns using modern, high-level programming languages. such as F#,
and generating JavaScript code from these languages in order to facilitate a more
robust and maintainable way of developing web and mobile web applications. The
main motivations are two-fold: benefiting from a stricter type system (JavaScript
is weakly typed), and/or a shorter, more maintainable source syntax.

In the examples we presented, we gained a great deal of brevity from the con-
cise syntax of F#, as expressed in terms of lines of code (LOC) of source language
code versus generated JavaScript code. Savings averaged a factor of 5-7. Further-
more, entire classes of potential bugs were eliminated by the use of a sound type
system and safer language features, and development was further accelerated by
the code assistance features available for F#, such as code completion and type
checking.

The ubiquitous nature of JavaScript (the “assembly language of the web”) has
yielded JavaScript translators for nearly all mainstream programming languages.
Notable examples include GWT for Java, Scala.js for Scala, ClojureScript for
Clojure, WebSharper and FunScript for F#, Haste for Haskell, Script# for C#,
Ocamljs and Opa for OCaml, Hop for Scheme, PythonJS for Python, among
many-many others.

Next to language-to-JavaScript translators and web frameworks, there are
a growing number of new web programming languages that similarly target
generating JavaScript code. These include those that require explicit translation
by a corresponding tool, such as Elm [11], Roy, Dart, and others, and those that
are implemented in and implicitly converted to JavaScript, such as TypeScript,
LiveScript, CoffeeScript and its variants, and many others.

The second central topic to our tutorial is using functional programming con-
structs and abstractions to model various aspects of web development. We briefly
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presented our F# implementation [6] for formlets [7] and mentioned piglets [8],
a similar, but more flexible abstraction for modeling type-safe, composable user
interfaces. Formlets are widely implemented in various functional languages,
including Haskell, OCaml, F# and Scala. The WebSharper formlet library we
briefly introduced is one of the most advanced implementations available, pro-
viding explicit facilities for dependent formlets, enabling to encode dependencies
among form elements, and flowlets, a type-safe representation for wizard-like
sequences of formlets.

A unique functional programming-inspired construct we presented were
sitelets (Sect. 1.6), enabling developers to compose web applications as F# val-
ues. Sitelets give a robust answer to modeling Model-View-Controller (MVC)
applications by encapsulating routers and controllers into a single notation, and
yielding important added benefits such as safe URLs and type-safe URLs by
using a combination of an abstract URL representation, pattern matching, and
F# active patterns [12]. Similar approaches are available in Happstack and Yesod
with Haskell, and in Play with Scala.

And last, we have hinted to the applicability of online/web IDEs to cater to
and facilitate such functional web development, and showcased CloudSharper,
an online IDE for developing F# and WebSharper applications in one of running
examples. While an increasing number of online IDEs are available for scripting
languages such as PHP or JavaScript/HTML, including Cloud9, Visual Studio
Online, Codio, and others, CloudSharper remains in the top tier by providing
code assistance for a strongly-typed language.

5 Conclusions

In this tutorial, we presented the fundamentals of WebSharper-based F# mobile
web development using two notable HTML/JavaScript mobile libraries: jQuery
Mobile and Sencha Touch. Both examples we developed are self-contained and
are fully expressed in F#. The corresponding WebSharper extensions can be
obtained from [1], and the reader is encouraged to experiment more with these
and other extensions to enjoy the truly remarkable and highly productive alterna-
tive to mainstream web and mobile web development that WebSharper enables.

Acknowledgements. The author would like to thank his IntelliFactory colleagues
Loic Denuziere and Andras Janko for their help with the examples in this tutorial, and
Anton Tayanovskyy for writing most of Sect. 1.4.
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Abstract. In this paper we present a methodology to implement
multiple traversal algorithms in a functional programming setting. The
implementations we obtain s of highly modular and intermediate struc-
ture free programs, that rely on the concept of functional zippers to
navigate on data structures.

Even though our methodology is developed and presented under
Haskell, a lazy functional language, we do not make essential use of
laziness. This is an essential difference with respect to other attribute
grammar embeddings. This also means that an approach similar to ours
can be followed in a strict functional setting such as Ocaml, for example.

In the paper, our technique is applied to a significant number of
problems that are well-known to the functional programming commu-
nity, demonstrating its practical interest.

Keywords: Deforested computation · Generic programming ·
Functional programming

1 Introduction

Functional programs are often constructed by gluing together smaller compo-
nents, using intermediate data structures to convey information between com-
ponents. These data structures are constructed in one component and later
consumed in another one, but never appear in the result of the whole program.
This compositional style of programming has many advantages for clarity and
modularity, but gives rise to a maintenance problem due to the extra data that
must be created and consumed. The usual solution is to remove intermediate
data structures by combining smaller components into larger ones, thereby ruin-
ing modularity. In this paper we develop a technique for avoiding this tradeoff:
we implement modular functional programs without defining intermediate data
structures.

Consider the problem of transforming a binary leaf tree t1 into a new tree
t2 with the exact same shape as t1, but with all the leaves containing the min-
imum value of t1. This problem is widely known as repmin [1], and is often
c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 407–427, 2015.
DOI: 10.1007/978-3-319-15940-9 10
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used to illustrate important aspects of modern functional languages [2–4]. In
this paper, repmin is also used as a first running example, and we start by pre-
senting different solutions for it. In order to solve repmin, we start by defining
a representation for binary leaf trees:

data Tree = Leaf Int | Fork Tree Tree

In a strict, purely functional setting, solving this problem requires a two
traversal strategy. First, we need to traverse the input tree in order to compute
its minimum value:

tmin : : Tree −> Int
tmin ( Leaf n) = n
tmin ( Fork l r ) = min ( tmin l ) ( tmin r )

Having traversed the input tree to compute its minimum value, we need to
traverse that tree again. We need to replace all its leaf values by the minimum
value:

r ep l a c e : : Tree −> Int −> Tree
r ep l a c e ( Leaf ) m = Leaf m
rep l a c e ( Fork l r ) m = Fork ( r ep l a c e ( l ,m) )

( r ep l a c e ( r ,m) )

In order to solve repmin, we now only need to combine functions tmin and
replace appropriately:

trans form : : Tree −> Tree
trans form t = rep l a c e t ( tmin t )

There are many advantages in structuring our programs in this modular way.
Considered in isolation, functions tmin and replace are very clear, simple, they
are easy to write and to understand, so they have a great potential for reuse.
Furthermore, each function can be focused in performing a single task, rather
than attempting to do many things at the same time.

In this particular solution, given the simplicity of repmin, the input tree t
serves as input to both functions tmin and replace. In general, however, modular
programs are given by definitions such as prog = f.g, where prog :: a → c, g :: a →
b and f :: b → c. This means that these programs use an intermediate structure,
of type b, that needs to be more informative than the input one, of type a. This
fact forces the programmer to define and maintain new data structures which
are constructed as the program executes. The construction of these structures
that never appear in the result of the whole program adds overhead that makes
maintenance hugely difficult, which gets worse as the program increases both in
size and in complexity.

In the above solution, it is also the case that the scheduling of computa-
tions was left to the programmer. Indeed, in order to implement transform,
we realized that the minimum of the input tree needs to be computed before the
replacement is possible. Although the scheduling in this case is trivial, for more
realistic problems, the scheduling of computations may not be a simple task. For
example, the optimal pretty printing algorithm presented in [5] is implemented
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by four traversal functions, whose scheduling is extremely complex. Moreover,
those four functions rely on three (user-defined) gluing intermediate structures
to convey information between the different traversals.

In a lazy functional setting such as Haskell an alternative solution to repmin
can be formulated. In his original paper, [1] showed how to derive such a solution
from the two traversal solution seen before. He derives the program:

repmin : : Tree −> Int −> ( Tree , Int )
repmin ( Leaf n) m = ( Leaf m, n)
repmin ( Fork l r ) m = ( Fork t1 t2 , min m1 m2)

where ( t1 , m1) = repmin l m
( t2 , m2) = repmin r m

trans form : : Tree −> Tree
trans form t = nt

where ( nt , m) = repmin t m

This program is circular: we can see that, in the definition of the transform
function, m is both an argument and a result of the repmin call. Although this
definition seems to induce both a cycle and non-termination of this program, the
fact is that, in a lazy setting, the lazy evaluation machinery is able to determine,
at runtime, the right order to evaluate it. In this type of programs, the work
associated with the scheduling of computations is, therefore, transferred from
the programmer to the lazy evaluation machinery.

We may also notice that the circular version of transform does not construct
or use any intermediate data structure, and this is a characteristic of all circular
programs: since they define a single function to perform all the work (repmin,
in the example), the definition of intermediate data structures to glue different
functions loses its purpose. In fact, circular programming may be considered an
advanced technique for intermediate structure deforestation [3].

In a circular program, the definition of a single function, on the other hand,
forces us to encode together all the variables used in the program. Indeed, if
we needed to use more arguments or to produce more results in our example,
these would all have to be defined in repmin. As a consequence, the definition of
such a function needs to be concerned with using and computing many different
things. In this sense, we observe that circular programs are not modular.

Circular programs are also known to be difficult to write and to understand
and even for experienced functional programmers, it is not hard to define a real
circular program, that is, a program that does not terminate. The execution of
such programs is, furthermore, restricted to a lazy execution setting, since such
a setting is essential to schedule circular definitions. This means that we are
not able to execute the latter version of transform in a strict language such as
Ocaml, for example.

In summary, we notice some characteristics of these approaches: the first ver-
sion of transform is highly modular and its execution is not restricted to a lazy
setting, but relies on gluing data types and function scheduling, whereas the
second one is free of intermediate structures and requires no explicit schedul-
ing by the programmer but is hard and “non-natural” to write such circular
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programs, and even for an advanced lazy functional programmer it is hard to
write a program which is not completely circular, i.e., which terminates.

In this paper, we develop a framework for implementing multiple traversal
algorithms in a functional setting. Programs in our framework combine the best
of the two transform solutions: they are modular, intermediate structure free
and do not require explicit scheduling by the programmer. This is achieved
by thinking of our programs in terms of Attribute Grammars (AGs), i.e., by
implementing AGs as first class elements in our language. In this sense, our
work may also be thought of as an AG embedding.

In the literature, one may find other approaches with similar goals; [2,4] are
two notable examples. An essential difference with respect to these approaches is
that our framework does not make essential use of laziness, so that it can easily
be implemented in a strict setting such as Ocaml. A more detailed comparison
to related work is presented in Sect. 6.

The framework we propose relies heavily on the concept of functional zippers,
originally proposed by [6]. As we will see later, our use of functional zippers is
such that they provide an elegant and efficient mechanism for navigating on tree
structures, but also to hide that navigation.

In a previous work [7], we have presented an embedding of Attribute Gram-
mars in a functional setting, together with modern AG extensions, and shown
how these can be used to implement the semantics of programming languages.
In this work, we show how such setting can also be useful as an alternative to
traditional implementations on a functional setting, by creating programs that
are more modular and structured.

This paper is organized as follows. In Sect. 2, we review the standard concept
of functional zippers. In Sect. 3, we show how standard zippers can be used
to express a modular attribute grammar to solve the repmin problem. Our
approach is then used in Sects. 4 to 5 to express attribute grammar solutions to
programming problems more realistic than repmin, as well as a generic solution
to repmin. In Sect. 6 we describe works that relate to ours, and finally in Sect. 7
we draw our conclusions.

2 The Zipper

The zipper data structure was originally conceived by Huet [6] to solve the prob-
lem of representing a tree together with a subtree that is the focus of attention,
where that focus may move left, right, up or down the tree.

In our work we have used the generic zipper library of [8]. It works for both
homogeneous and heterogeneous datatypes, and data-types for which an instance
of the Data and Typeable type classes [9] are available can be traversed.

In order to introduce the concept of zipper, we consider again the represen-
tation for binary leaf trees in Haskell :

data Tree = Leaf Int | Fork Tree Tree
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and one of its possible instances with its visual representation:

t r e e = Fork ( Leaf 1)
( Fork ( Leaf 4)

( Leaf 7 ) )
1

4 7

We may notice that, in particular, each of tree’s subtree occupies a certain
location in tree, if we consider it as a whole. That location may be represented
by the subtree under consideration and by the rest of the tree, which is viewed
as the context of that subtree. For instance, the context of Leaf 4 in tree is

Fork ( Leaf 1)
( Fork focus

( Leaf 7 ) )

where focus marks a hole which corresponds exactly to the spot where Leaf 4
appears in tree. One of the possible ways to represent this context is as a path
from the top of the tree to the hole. To reach Leaf 4 in tree, we need to go
down the right branch and then down the left one.

Using this idea, we can easily reach Leaf 4 in tree using the generic zippers
provided by [8]. We start by encapsulating tree into a zipper:

a = toZipper t r e e

where a has the type a ::Zipper Tree. With this, it is simple to traverse a and
the position of the tree where Leaf 4 is:

b = let d = fromJust (down a )
in fromJust (down ’ d)

In this operation, we go to the rightmost child using down, and then to the
leftmost child using down′. Since all the functions of this library wrap the result
inside a data type to make them total, we also have to unwrap the result every
time a function is called. We do so simply by using the function fromJust1.

The result of this operation has the type b ::ZipperTree, meaning that b is
a zipper like a, with the difference of having a different focus. With this said, if
we ask for the focus of b, using the function getHole:

let f o cu s = getHole b : : Maybe Tree
f o cus = Leaf 4

In this formalism, the semantics are dependent on information that is immedi-
ately above or below of a certain tree position, concept which is directly provided
by zippers and the associated navigation functions.

The zipper data structure provides an elegant and efficient way of manipu-
lating locations inside a data structure. Zippers are particularly useful for per-
forming incremental edits on tree structures. Zippers have already been used in
1 We are not really checking for totality, otherwise we would have to test each function

call against a set of possible results. For simplicity we are just assuming the function
produced a result and we are directly unwrapping it with fromJust.
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the implementation of filesystems [10] and window managers [11], but they are
applicable anytime there is a focal point for edits. In the implementation of a
filesystem, the current working directory is the focal point of attention, and in
a window manager it is the window with focus.

In the next section, we show how we abstract this library of zippers by cre-
ating a set of constructors that resemble more closely the traditional formalism
to implement AGs.

2.1 Abstracting the Generic Zippers

The generic zipper library presented on the previous section provides a useful set
of functions to navigate throughout data types. However, it is our intention to
abstract as much as possible from this library and create a setting where Haskell
constructors are as similar as possible to the typical primitives used in Attribute
Grammars. In this section we present a set of functions that allows the easy
navigation of data types, that does not require further testings for the user (for
example, we abstract over totality checks) and leverages the implementation to
one much closer to AGs.

Let us consider a concrete data type to represent programs in an Algol 68-like
language restricted to expressing declarations and uses of variables. Programs
in this language consist of instruction blocks, where each instruction declares a
variable, uses a variable or defines a nested instruction block. A small example
of a program in this language is

p = [ dec l ’ y ; [ dec l ’ w; use ’ x ; ] use ’ y ; ]

In order to represent programs in the Algol 68 language, we define the fol-
lowing Haskell data-type. This data-type will be used, in Sect. 4, to implement
a semantic analyzer for that language:

data Root = Root I t s
deriving ( Typeable , Data )

data I t s = ConsIts I t I t s | N i l I t s
deriving ( Typeable , Data )

data I t = Decl String | Use String | Block I t s
deriving ( Typeable , Data )

In this representation, p is defined as:

p = Root ( ConsIts ( Decl ”y” )
( ConsIts ( Block ( ConsIts ( Decl ”w” )

( ConsIts (Use ”x” ) N i l I t s ) ) )
( ConsIts (Use ”y” ) N i l I t s ) ) )

Our goal now is to navigate on elements of type P in the same way that we
traversed elements of type Tree, in Sect. 2. Using our Attribute Grammar-based
approach, instead of writing concrete location navigation functions, the user is
only required to declare the data types to traverse as deriving from the Data
and Typeable type classes, which are provided as part of GHC’s2 libraries. This
2 The Glasgow Haskell Compiler, http://www.haskell.org/ghc/.

http://www.haskell.org/ghc/
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means we will be immediately able to navigate through the data types Root, Its
and It using the zipper-provided functions.

Suppose that we want to traverse the previous Algol phrase to the identifier
of the variable that is being used in the nested block of p. The first thing to do
is to get p inside a zipper:

g1 : : Z ipper Root
g1 = toZipper (Root p)

In order to reach the desired nested block on the program p, we now need to
go down from the root location created in g1. We do this using function .$, as
follows:

g2 = g . $1 : : Zipper Root

Data type locations do not need any information about the types of their
children, but neither does the user. Because we are embedding Algol in Haskell,
and Haskell has a strong type system, type correctness is always necessarily
enforced meaning a phrase of Algol is always type-valid. And because the zipper
does not need any contextual information, regarding what is above or below a
given position, this information is abstracted from the user as well. Of course, one
must be aware of the position of a tree where certain computation needs to be
performed, but our setting adds an increased level of abstraction comparing with
traditional Haskell programs while retaining the same core language features
such as type safety or referential transparency.

Retuning to our example, the value held by the location g2 is one position
below the initial focus on the zipper, which was Root. As expected, g2 yields:

g2 = ( ConsIts ( Decl ”y” )
( ConsIts ( Block ( ConsIts ( Decl ”w” )

( ConsIts (Use ”x” ) N i l I t s ) ) )
( ConsIts (Use ”y” ) N i l I t s ) ) )

We need to continue going down on p, if we want to edit the declaration of
the variable ”w”:

g1 = g2 . $2

With g3:

g1 = ConsIts ( Block ( ConsIts ( Decl ”w” )
( ConsIts (Use ”x” ) N i l I t s ) ) )

( ConsIts (Use ”y” ) N i l I t s )

Notice that function .$ is a generic function, that applies to locations on any
data type that derives from Typeable and Data. It is not even the case that. $
applies only to data-types that have the same number of children. What is more,
Root has a single data-type child, Its, and that Its may have two children, It
and Its. When .$ is applied with a constructor that has more than one child, it
will go down to the user-defined one. This is precisely how the original Attribute
Grammars formalism works: semantics on a tree site depend on the parent if they
are inherited, or on specific children that in our setting are numerically defined.
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We can see that the declaration of variable ”w” occurs in the first (left) child
of the current location. This means that if we apply function .$1 to g3 we will
immediately go to the correct child:

g4 = g1 . $1

Location g4 holds, as expected, the nested block of instructions that occurs
both in p, and in g3:

g4 = Block ( ConsIts ( Decl ”w” )
( ConsIts (Use ”x” ) N i l I t s ) )

We continue our navigation performing another go down step to access the
instructions in the nested block on g4,

g4 = g4 . $1

obtaining:

g4 = ConsIts ( Decl ”w” )
( ConsIts (Use ”x” ) N i l I t s )

An important remark is that in this block (g5) we declare a variable ”w”
but use a variable ”x”; intuitively, the identifiers of these two variables should
probably match. The zipper library we use provides primitives to change the
parts of a tree. In this example, we could easily correct the wrong assignment
of ”x” (or declaration of ”w”). We do not worry about this as this is not a
traditional behavior of Attribute Grammars.

Attribute Grammars as a formalism is extremely suitable to perform tree
transformations, but such operations are typically implemented by designing a
set of attributes that traverses the tree and whose result is a new, refactored one.
With this in mind, using AGs we would not change ou zipper, we would instead
create a new, corrected tree (as we do in Sects. 3 and 5). Nevertheless, such
operation is possible and the functions provided in the generic zipper library we
use are compatible with our abstraction of tree navigation functions with (.$),
serving as a reminder of the adaptability of our approach.

In the next sections, we show how the generic zipper framework introduced
in this section can be used to solve different programming problems.

3 The Repmin

In [1], it was originally proposed to solve repmin using a circular program, i.e.,
a program where, in the same function call, one of its results is at the same
time on of its arguments. With his work, Bird showed that any algorithm that
performs multiple traversals over the same data structure can be expressed in a
lazy language as a single traversal circular program.

Furthermore, using circular programming, the programmer does not have
to concern himself with the definition and the scheduling of the different tra-
versal functions and, because there is a single traversal functions, neither does
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the programmer have to define intermediate gluing data structures to convey
information between traversals.

Writing circular programs, however, forces the programmer to encode toge-
ther all the arguments and results that are used in the circular call. When
functions have many arguments as well as many results, it is often preferable
to express multiple traversal algorithms in terms of attribute grammars (AGs),
that have been proved to be strongly related to circular programs [12,13]. The
AG programming paradigm does not force the programmer to encode all the
aspects together.

Returning to our example, in [4], the authors identified three components for
solving repmin: computing the minimal value, passing down the minimal value
from the root to the leaves and constructing the resulting tree. In this section,
we review the Attribute Grammar for repmin that was introduced by [14], and
show how each of the three components identified by [4] in that grammar can
be embedded in Haskell using our approach.

The attribute grammar for repmin starts by defining the underlying data
structure, i.e., binary leaf trees. The attribute grammar fragments presented
in this section follow the standard AG notation of [14]. In this notation, we
straightforwardly use the Tree datatype from Sect. 2.

Having defined the structure, we need to define functionality. We start by
reviewing the AG component that computes the minimal value of a tree:

SYN Tree [ smin : Int ]
SEM Tree | Leaf l h s . smin = @v

| Fork l h s . smin = @le f t . smin
‘min ‘

@right . smin

This component declares, using the SY N keyword, that elements of type
Tree synthesize an attribute smin of type Int. Then, a SEM sentence defines
how smin is computed: when the current tree is a leaf, clearly its minimal value
is the leaf value itself; when it is the fork of two other trees (the left and the
right subtrees), we compute the minimal values of each subtree (i.e., their smin
attribute), and then their minimal value (function min). In this notation, lhs
refers to the left-hand side symbol of the production and @ prefixes a reference
to a field.

Our zipper-based embedding of this component is defined as:

smin : : Zipper Root −> Int
smin t = case con s t ruc to r t of

”Root” −> smin ( t . $1)
”Leaf ” −> lexeme t
”Fork” −> min ( smin ( t . $1 ) ) ( smin ( t . $2 ) )

Function constructor, given in Sect. 3.1, maps any element to a textual rep-
resentation of its constructor. Function lexeme is also defined in Sect. 3.1 to
compute the concrete value in any leaf of a tree.

We can see that the embedding of smin that we obtain very much directly
follows from its AG specification.
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Having implemented the first of the three components that solve repmin, we
now consider the remaining two. We start by implementing the construction of
the result of repmin, a tree with all leaves being the minimum of the original one.

SYN Tree [ s r e s : Tree ]
SEM Tree | Leaf l h s . s r e s = Leaf @lhs . i v a l

| Fork l h s . s r e s = Fork @le f t . s r e s @right . s r e s

We are now defining an attribute sres, again synthesized by elements of type
Tree. This attribute definition may again be mapped to our setting very easily.
We obtain the following implementation:

s r e s : : Zipper Root −> Tree
s r e s t = case con s t ruc to r t of

”Root” −> s r e s ( t . $1 )
”Leaf ” −> Leaf ( i v a l t )
”Fork” −> Fork ( s r e s ( t . $1 ) ) ( s r e s ( t . $2 ) )

The implementation of sres places in each leaf of a tree the value of the
ival attribute. This value corresponds to the minimal value of the global tree,
that still needs to be passed down to all the nodes in the tree. This corresponds
exactly to the third component that we still need to implement. In order to bind
the minimal value being computed (attribute smin) with the minimal value that
is passed down through the tree (attribute ival), it is common, in the AG setting,
to add a new data-type definition,

DATA Root | Root t r e e : Tree

and a new semantic rule,

SEM Root | Root t r e e . i v a l = @tree . smin

Passing down ival then becomes:

INH Tree [ i v a l : Int ]
SEM Tree | Fork l e f t . i v a l = @lhs . i v a l

r i g h t . i v a l = @lhs . i v a l

In our setting, we closely follow this approach and always introduce a new
data type that marks the topmost position of the tree, in this case, ”Root”.

When the current location corresponds to the top one, we have to define the
values of smin to ival in this particular position. In our setting, we then define
the attribute ival as follows (we use the location navigation function parent to
access the parent of a tree location):

i v a l : : Zipper Root −> Int
i v a l t = case con s t ruc to r t of

”Root” −> smin t
”Leaf ” −> i v a l ( parent t )
”Fork” −> i v a l ( parent t )

Notice that we do not explicitly distinguish between inherited and synthe-
sized attributes. Like in modern attribute grammar systems [14,15], inherited
attributes, such as ival, correspond to attributes that are defined in parent nodes.
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Having defined the three components that allow us to solve the repmin prob-
lem, we may now define a semantic function that takes a tree and produces a
repmined tree, using these components:

semant ics : : Root −> Tree
semant ics t = r ep l a c e (toZipper t )

Regarding this implementation, we may notice that it has the best properties
of the two transform solutions presented in Sect. 1. First, it is modular, since
the global computational effort has been separated into several components, and
does not rely on laziness, like the first transform implementation. Second, it
constructs no intermediate structure and it requires no explicit scheduling: notice
that smin, replace and ival were defined with no particular focus on the order
they need to be computed.

In this section, we have presented a solution to the repmin problem in terms
of an attribute grammar. Our solution is expressed in Haskell and closely follows
common attribute grammar notation. We showed that we can easily intermingle
separate concerns with the implementation’s basic functionality, which itself has
been split into different components. Therefore, we believe that our framework
is very appropriate for static aspect oriented programming [16] in a functional
language.

3.1 Boilerplate Code

Our goal with this paper was to address concerns of the expression problem
without relying in an opaque and possibly complex pre-processor. A disadvantage
of this approach is that some code that may be considered boilerplate code needs
to be manually defined. Function constructor, that we have used throughout
the paper to map an element to a textual representation of its constructor, is a
function clearly in this set: it goes down all the possible constructors and tries
to match them with a given element.

con s t ruc to r : : Zipper Root −> String
con s t ruc to r a = case ( getHole a : : Maybe Tree ) of

Just ( Fork ) −> ”Fork”
Just ( Leaf ) −> ”Leaf ”

otherwise −> case ( getHole a : : Maybe Root ) of
Just (Root ) −> ”Root”

For each individual argument, constructor matches an element wrapped up
in a zipper against the constructors of the data-type Tree. In this example,
constructor matches an element against the constructors Fork, Leaf and Root,
creating a String representation of them.

The other function that we have used and that could easily be given by a
pre-processor is function lexeme, that computes the value in any leaf of a tree.
In the leaves of our running example’s trees, we only have elements of on one
data constructor, Leaf , and these elements are always of type Int. So, it suffices
to define:
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lexeme : : Zipper Root −> Int
lexeme t = let Leaf v = fromJust ( getHole t : : Maybe Tree )

in v

As we said, the functions defined in this section could easily be given by
a pre-processor. Indeed, we could have implemented a simple program to go
through the Haskell’s abstract syntax tree that we obtain by parsing the data-
types definitions of Sect. 3 and finding all its constructors (for constructor) and
all its leaves (for lexeme). We, however, opted not to use this pre-processor
approach because we wanted to give clear and transparent definitions for all the
functions involved in our framework that also could be edited in a simple way
by any programmer. What’s more, the use of a pre-processor is often considered
a disadvantage when one needs to choose to re-use a tool or a setting against
some others.

4 The Algol 68 Scope Rules

In this section we present an attribute grammar that uses the tree navigating
mechanism of the generic zipper presented in the previous sections to imple-
ment the Algol 68 scope rules [17]. These rules are used, for example, in the
Eli system [18] to define a generic component for the name analysis task of a
compiler.

We wish to construct a modular and deforested program to deal with the
scope rules of the block structured language introduced in Sect. 2.1. If the reader
recalls the running example, named ”p”, there was an identifier ”x” which was
visible in the smallest enclosing block, with the exception of local blocks that
also contain a definition of ”x”. In the latter case, the definition of ”x” in the
local scope hides the definition in the global one. In a block an identifier may be
declared at most once. In Sect. 2.1, p is a simple example of a program we want
to analyze. The following program illustrates a more complex situation where
an inner declaration of ”y” hides an outer one.

p’= [ use ’ y ; dec l ’ x ;
[ dec l ’ y ; use ’ y ; use ’ w ; ]

dec l ’ x ; dec l ’ y ; ]

Programs such as p or p′ describe the basic block-structure found in many
languages, with the peculiarity that declarations of identifiers may also occur
after their first use. According to these rules, p′ contains two errors: a) at the
outer level, the variable ”x” has been declared twice, and b) the use of the
variable ”w”, at the inner level, has no binding occurrence at all.

We aim to develop a program that analyses Algol programs and computes a
list containing the identifiers which do not obey the scope rules. In order to make
it easier to detect which identifiers are being incorrectly used in a program, we
require that the list of invalid identifiers follows the sequential structure of the
program. Thus, the semantic meaning of processing p′ is [w, x].

Because we allow use before declaration, a conventional implementation of
the required analysis leads to a program which traverses the abstract syntax



Zipper-Based Modular and Deforested Computations 419

tree twice: once to accumulate the declarations of identifiers and construct an
environment, and again to check the uses of identifiers using the computed
environment. The uniqueness of names is detected in the first traversal: for
each newly encountered declaration we check whether the identifier has already
been declared at the current level. In this case an error message is computed.
Of course the identifier might have been declared at an outer level. Thus we
need to distinguish between identifiers declared at different levels. We use the
level of a block to achieve this. The environment is a partial function mapping
an identifier to its level of declaration.

As a consequence, semantic errors resulting from duplicate definitions are
computed during the first traversal of a block and errors resulting from missing
declarations in the second one. A straightforward implementation of this program
may be sketched as3:

semant ics : : P −> Errors
semant ics p = mi s s i n g d e c l s ( d up l i c a t e d e c l s p)
dup l i c a t e d e c l s : : P −> (P’ , Env)
m i s s i n g d e c l s : : (P’ , Env) −> Errors

In this implementation, a “gluing′” data structure, of type P ′, has to be
defined by the programmer and is constructed to pass the detected errors explic-
itly from the first to the second traversal, in order to compute the final list of
errors in the desired order. To be able to compute the missing declarations of a
block, the implementation also has to explicitly pass the names of the variables
that are used in a block between the two traversals of the block. This information
must therefore also be in the P ′ intermediate structure.

We start by defining an Haskell datatype that describes Algol syntactically,
whose data constructors will be, similarly to AGs, used as semantic points on
which functions (read attributes) will be defined.

data Root = Root I t s

data I t s = ConsIts I t I t s
| N i l I t s

data I t = Decl String
| Use String
| Block I t s

Next, we implement the same analysis but in terms of an attribute grammar
that does not rely on the construction of any intermediate structure.

As stated before, the language presented in this chapter does not force a
declare − before − use discipline, which means a conventional implementation
of the required analysis naturally leads to a program that traverses each block
twice: once for processing the declarations of identifiers and constructing an
environment and a second time to process the uses of identifiers (using the
computed environment) in order to check for the use of non-declared identifiers.
3 The interested reader may find in [17,19] strict and circular solutions to solve these

scope rules.
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An algorithm for processing this language as to be designed in two traversals:

– On a first traversal, the algorithm has to collect the list of local definitions
and, secondly, detect duplicate definitions from the collected ones.

– On a second traversal, the algorithm has to use the list of definitions from
the previous step as the global environment, detect the use of non-defined
variables and finally combine the erros from both traversals.

Next, we will define the semantics of the grammar. For every block we com-
pute three things: its environment, its lexical level and its invalid identifiers.
The environment defines the context where the block occurs. It consists of all
the identifiers that are visible in the block. The lexical level indicates the nesting
level of a block. Observe that we have to distinguish between the same identifier
declared at different levels, which is a valid declaration (for example, “decl y′′

in p′), and the same identifier declared at the same level, which is an invalid
declaration (for example, “decl x” in p′). Finally, we have to compute the list of
identifiers that are incorrectly used, i.e., the list of errors.

The Attribute Grammar that analyses a phrase of Algol will be composed by:

– An environment, attribute env, which consists of all the identifiers that are
visible in the block: type Env = [(String, Int)].

– A lexical level, attribute lev, which indicates the nesting level of a block:
type Level = Int.

– The invalid identifiers, attribute errs, which contains the list of identifiers
that are incorrectly used: type Errors = [String].

We start by defining the construction of the environment of an Algol pro-
gram. Every block inherits the environment of its outer block. Therefore, we
associate an inherited attribute dcli, that carries an environment, to the non-
terminal symbols Its and It that define a block. The inherited environment
is threaded through the block in order to accumulate the local definitions and
in this way synthesizes the total environment of the block. We associate a syn-
thesized attribute dclo, that also carries the environment, to the non-terminal
symbols Its and It, which defines the newly computed environment.

In our solution, we defined semantic Haskell functions which pattern match
on data constructors. For the readers familiar with Attribute Grammars, there
is an obvious mapping between Haskell functions and attributes, and between
data constructors and grammar productions. The attributes dcli and dclo are
declared as follows:

d c l i : : Z ipper Root −> [ ( String , Int ) ]
d c l i z = case ( con s t ruc to r z ) of

”Root”−> [ ]
” N i l I t s ”−> case ( con s t ruc to r ( parent z ) ) of

”ConsIts ”−> dc lo ( ( parent z ) . $1)
”Block” −> env ( parent z )
”Root” −> [ ]

”ConsIts ”−> case ( con s t ruc to r ( parent z ) ) of



Zipper-Based Modular and Deforested Computations 421

”ConsIts ”−> dc lo ( ( parent z ) . $1)
”Block” −> env ( parent z )
”Root” −> [ ]

”Block” −> d c l i ( parent z )
”Use” −> d c l i ( parent z )
”Decl ” −> d c l i ( parent z )

dc lo : : Zipper Root −> [ ( String , Int ) ]
dc lo z = case ( con s t ruc to r z ) of

”ConsIts ”−> dc lo ( z . $2)
” N i l I t s ” −> d c l i z
”Use” −> d c l i z
”Decl ” −> ( va lue z , l e v z ) : ( d c l i z )
”Block” −> d c l i z

The only production that contributes to the synthesized environment of a
phrase of Algol is Decl. The single semantic equation of this production makes
use of the semantic function ‘:’ (written in infix notation) to build the environ-
ment. Note that we are using the Haskell type definition presented previously.
The use of pairs is used to bind an identifier to its lexical level. The single occur-
rence of pseudo-terminal Name is a syntactically referenced in the equation
since it is used as a normal value of the semantic function. All the other seman-
tic equations of this fragment simply pass the environment to the left-hand side
and right-hand side symbols within the respective productions.

Now that the total environment of a block is defined, we pass that context
down to the body of the block in order to detect applied occurrences of unde-
fined identifiers. Thus, we define a second inherited that also carries the environ-
ment, called env, to distribute the total environment. It should be noticed that
attribute dclo can be used to correctly compute the required list of errors. We
choose to distribute the list of declarations in a new attribute to demonstrate
our techniques, as with this approach we force a two traversal (strict) evalu-
ation scheme. Although this approach is not really needed in the trivial Algol
language, it is a common feature when defining real languages. Env is defined as:

env : : Zipper Root −> [ ( String , Int ) ]
env z = case ( con s t ruc to r z ) of

” N i l I t s ”−> case ( con s t ruc to r ( parent z ) ) of
”Block” −> dc lo z
”ConsIts ”−> env ( parent z )
”Block” −> dc lo z

”ConsIts ”−> case ( con s t ruc to r ( parent z ) ) of
”Block” −> dc lo z
”ConsIts ”−> env ( parent z )
”Root” −> dc lo z

”Block” −> env ( parent z )
”Use” −> env ( parent z )
”Decl ” −> env ( parent z )
”Root” −> dc lo z
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The first semantic equation of Block specifies that the inner blocks inherit
the environment of their outer ones. As a result, only after computing the envi-
ronment of a block is it possible to process its nested blocks. That is, inner blocks
will be processed in the second traversal of the outer one.

The total environment of the inner blocks, however, is the synthesized envi-
ronment (attribute dclo), as defined for Block. It is also worthwhile to note that
the equations:

”Root” −> dc lo z
”Block” −> dc lo z

induce a dependency from a synthesized to an inherited attribute of the same
symbol.

Every block has a lexical level. Thus, we introduce one inherited attribute
lev indicating the nesting level of a block. The Haskell primitive function ‘+’ is
used to increment the value of the lexical level passed to the inner blocks:

l e v : : Zipper Root −> Int
l e v z = case ( con s t ruc to r z ) of

”Root” −> 0
” N i l I t s ” −> case ( con s t ruc to r $ parent z ) of

”Block” −> ( l e v ( parent z ) ) + 1
”ConsIts ”−> l e v ( parent z )
”Root” −> 0

”ConsIts ”−> case ( con s t ruc to r ( parent z ) ) of
”Block” −> ( l e v ( parent z ) ) + 1
”ConsIts ”−> l e v ( parent z )
”Root” −> 0

”Block” −> l e v ( parent z )
”Use” −> l e v ( parent z )
”Decl ” −> l e v ( parent z )

Finally, we have to synthesize one attribute defining the (static) semantic
errors. We define a second synthesized attribute: errs. The attribution rules for
this semantic domain are shown next:

e r r s : : Zipper Root −> [ String ]
e r r s z = case ( con s t ruc to r z ) of

”Root” −> e r r s ( z . $1)
” N i l I t s ” −> [ ]
”ConsIts ”−> ( e r r s ( z . $1 ) ) ++ ( e r r s ( z . $2 ) )
”Use” −> mBIn ( value z ) ( env z )
”Decl ” −> mNBIn ( value z , l e v z ) ( d c l i z )
”Block” −> e r r s ( z . $1)

There are two semantic functions that we need to define: mBIn and mNBIn.
The definition of these functions must be included in the grammar specification.
For this reason, attribute grammar specification languages provide an additional
notation in which semantic functions can be defined. Generally, this notation
is simply a standard programming language. We are embedding AG’s so we
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use plain Haskell for these functions. Thus, the two semantic functions look as
follows:

mBIn : : String −> [ ( String , Int ) ] −> [ String ]
mBIn name [ ] = [ name ]
mBIn name ( ( n , l ) : e s ) = i f (n==name) then [ ]

else mBIn name es

mNBIn : : (String , Int ) −> [ ( String , Int ) ] −> [ String ]
mNBIn tup l e [ ] = [ ]
mNBIn pa i r ( p l : e s ) = i f ( pa i r==pl ) then [ f s t pa i r ]

else mNBIn pa i r es

We may now define a program that implements the semantic analysis describ-
ed, simply by inspecting the errs attribute computed at the topmost location of
the program:

semant ics : : P −> [ String ]
semant ics p = e r r s (toZipper p)

This program can be used to compute the list of errors occurring in the p
and p′ programs presented before. As expected, we obtain:

semant ics p = [ ”x” ]
semant ics p ’ = [ ”w” , ”x” ]

5 Breadth-First Numbering

The running examples presented so far have shown that zippers provide a mod-
ular and intermediate structure free environment for implementing multiple tra-
versal algorithms in a functional setting. A key aspect of the implementations
seen earlier in the paper is that they make no essential use of laziness. In fact, all
of these implementations could be straightforwardly translated and implemented
in a strict setting. This property does not hold for the example that we study
in this section.

Consider the problem, described in detail in [20], of breadth first number-
ing a binary tree, or bfn for short. A sample input/output to such problem is
sketched next.

input output

4

8 2

. . 3

. .

.

1

2 3

. . 4

. .

.
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In order to tackle this problem, we follow the approach taken by [20]. To
implement bfn, the author computes a list of integers representing the first
available index on each of the levels of the input tree. This list is initially the
infinite list of ones and is updated as it goes down the tree to produce the
numbering.

In order to implement this algorithm we will need three attributes. Attribute
slist will be used to compute the list of indexes and ilist to pass that list down
the tree. Attribute replace will hold the result of breadth-first numbering a tree.
Attributes slist and replace have the same definition for any tree, regardless of
whether it is the topmost one or one of its subtrees. In this example, we follow
Okasaki by using binary trees instead of binary leaf trees:

data Tree = Fork Int Tree Tree | Empty
deriving ( Typeable , Data )

Attributes slist and replace are defined as follows, for any tree location:

s l i s t : : Zipper Root −> [ Int ]
s l i s t z = case ( con s t ruc to r z ) of

”Fork” −> (head ( i l i s t z ) + 1) : ( s l i s t ( z . $3 ) )
”Empty”−> i l i s t z

r ep l a c e : : Zipper Root −> Tree
r ep l a c e z = case ( con s t ruc to r z ) of

”Empty”−> Empty
”Fork” −> Fork (head ( i l i s t z ) )

( r ep l a c e ( z . $2 ) ) ( r ep l a c e ( z . $3 ) )
”Root”−> r ep l a c e ( z . $1)

The third attribute, ilist, is a little bit more tricky. We have to defined ilist
for the upmost location on the input tree, which we do by testing if the parent
is the ”Root”. We then define the following values for ilist:

i l i s t : : Zipper Root −> [ Int ]
i l i s t z = case ( con s t ruc to r ( parent z ) ) of

”Root” −> [ 1 ] ++ ( s l i s t z )
{− I f z i s the t h i r d ch i l d , i t i s the r i gh tmos t one−}

otherwise −> case ( z . | 3 ) of
True −> s l i s t ( fromJust ( l e f t z ) )
False −> ta i l ( i l i s t ( parent z ) )

Notice the very peculiar relationship between attributes ilist and slist at
the top level: ilist is defined as the list whose head is 1 and whose tail is slist,
and slist is defined as the list whose head is the head of ilist incremented by 1
and whose tail is the slist value computed for the right subtree of the current
tree. Then, if we try to compute, for example, the value of ilist in a strict
setting, this will cause the value of slist to be fully computed. But slist can
not be computed until ilist is itself computed. Therefore, in a strict setting,
these computations can not be ordered, and this particular program can not
be directly implemented in such a setting. In a lazy setting, however, the use
of head, the standard operator that selects the first element of a list, makes it



Zipper-Based Modular and Deforested Computations 425

possible for the above program to terminate. So, even though our approach does
not fundamentally dependent on laziness, attribute definitions that use laziness
can be accommodated.

It is now simple to obtain a bfn transformer for binary trees:

trans form : : Tree −> Tree
trans form t = rep l a c e (toZipper (Root t ) )

6 Related Work

In this paper, we have shown how the zipper data structure can be used to
implement multiple traversal algorithms in a functional language. The imple-
mentations we obtain are modular, do not require the use of intermediate data
structures and do not fundamentally rely on laziness. That is to say that our
implementations benefit from the best of the two traditional ways of expressing
multiple traversal programs described in the introduction.

Uustalu and Vene [21] use zippers in their approach to embed computations
using comonadic structures, with tree nodes paired with attribute values. How-
ever, the zipper approach they use does not appear to be generic and must be
individually instantiated for each new structure. They also rely on laziness to
avoid static scheduling.

Zippers are also used by Badouel et al. [22], where zipper transformers define
evaluations. This approach relies on laziness and their zipper representation is
not generic. This is also the case of [23], that similarly requires laziness and
forces the programmer to be aware of a cyclic representation of zippers.

Yakushev et al. [24] use mutually recursive data types, for which operations
are described with a fixed point strategy. In this work, data structures are trans-
lated into generic representations, used for traversals and updates, and translated
back after. This solution implies the extra overhead of the translations, and also
requires advanced features of Haskell such as type families and rank-2 types.

We have showed previously how zippers can be used to embed AGs on a
functional setting, together with modern extensions [7,25]. Even though our
library is defined in Haskell, a lazy language, we do not make essential use of
laziness, making the approach extendable to strict languages.

With this work we further extend the functionalities of functional zippers and
show these can be used as a substitute to traditional programming techniques
in a functional setting: while we do not rely on laziness, we present a setting
where the programmer can abstract from function scheduling and intermediate
data types and focus on more modular programs.

7 Conclusions

In this paper we presented a zipper-based approach to elegantly and modularly
express circular programs in a functional setting. Our approach does not rely
on laziness such as circular programs do, and does not force the programmer to
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deal with intermediate data structures nor to schedule multiple traversal func-
tions. Our solution uses functional zippers as a mechanism to allow generic tree
traversals upon which traversal functions are defined.

We have further proof-tested our approach by embedding other languages in
Haskell, using implementations that avoid functions scheduling and intermediate
data structures. These, together with the examples from this paper, can be found
in www.di.uminho.pt/∼prmartins or in the cabal package zipperAG.

As future work we plan to study both the design and implementation of our
embedding when compared to other techniques. Thus, we plan to study how
our embedding compares to first class AGs [2,26]. Circular programs are known
to have some performance overhead due to lazy evaluation. We want to study
the performance of the zipper embedding, and how the strictification techniques
persented in [27] could be adapted to our setting.
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Abstract. iTask3 is the most recent incarnation of the iTask framework
for the construction of distributed systems where users work together on
the internet. It offers a domain specific language for defining applica-
tions, embedded into the lazy functional language Clean. From the mere
declarative specification a complete multi-user web application is gener-
ated. Although the generated nature of the user interface (UI) entails a
number of benefits for the programmer, it suffers from the lack of pos-
sibility to create custom UI building blocks. In this paper, we present
an extension to the iTask3 framework which introduces the concept of
tasklets for the development of custom, interactive web components in
a single language manner. We further show that the presented tasklet
architecture can be generalized in such a way that arbitrary parts of an
iTask application can be executed on the client.

1 Introduction

The iTask framework was originally developed as a dedicated web-based Work-
flow Management System (WFMS). Its most recent incarnation, iTask3 [14],
however, extends its boundaries beyond classical WFMS and offers a novel pro-
gramming paradigm for the construction of distributed systems where users work
together on the internet.

According to the iTask paradigm, the unit of application logic is a task. Tasks
are abstract descriptions of interactive persistent units of work that have a typed
value. When a task is executed, it has an opaque persistent value, which can be
observed by other tasks in a controlled way. In iTask, complex multi-user inter-
actions can be programmed in a declarative style just by defining the tasks that
have to be accomplished. The specification of the tasks is given by a domain
specific language embedded in the pure, lazy functional language Clean. Fur-
thermore, the specification is given on a very high level of abstraction and does
not require the programmer to provide any user interface definition. Merely by
defining the workflow of user interaction, a complete multi-user web application
is generated, all the details e.g. the generation of web user interface, client-server
communication, state management etc. are automatically taken care of by the
framework itself.

c© Springer International Publishing Switzerland 2015
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Developing web applications such a way is straightforward in the sense that
the programmers are liberated from these cumbersome and error-prone jobs,
such that they can concentrate on the essence of the application. The iTask sys-
tem makes it very easy to develop interactive multi-user applications. The down
side is that one has only limited control over the customization of the gener-
ated user interface, but for this type of applications, this is often acceptable.
However, the experiment with real world applications, e.g. the implementation
of the Netherlands Coast Guard’s Search and Rescue (SAR) protocol [10,11],
indicated that even if the functional web design is satisfactory, custom building
blocks may be required for the purpose of user-friendliness. A good example is
the aforementioned SAR workflow, where Google MAPS widgets complemented
the otherwise functional web application to visualize the locations of incidents.

To overcome this shortcoming, in this paper we present an extension for
the iTask3 system which enables the development of such widgets, the so called
tasklets. Tasklets are seamlessly integrated into iTask to preserve the elegance
of functional specification by hiding the behavior behind the interface of a task.
Tasklets are developed in a single-language, declarative manner and in accor-
dance with the model-view-controller user interface design (MVC) [9]. MVC
decouples the application logic (the controller), the application data (the model)
and the presentation data (the view) to increase flexibility and reuse. Techni-
cally speaking, tasklets are embedded applications which behavior is encoded
in Clean written event handler functions. The event handlers are executed in
the browser, where, they have unrestricted access to client-side resources. Using
browser resources the tasklet can create custom appearance and exploit func-
tionality available only in the browser (e.g. HTML5 GeoLocation API), utilizing
the event-driven architecture the tasklet can achieve interactive behavior. With
this extension, iTask gains similar characteristics to multi-tier programming lan-
guages like Links [4] or Hop [15,16], in the sense that the same language is used
to specify code residing on multiple locations or tiers, such as the client and the
server.

We further show that the presented tasklet facility can be used to improve
the responsiveness of an iTask application by enabling the execution of ordi-
nary tasks (virtually any part of an iTask application) in the browser instead of
the server. This, amongst other things, helps with avoiding the latency of com-
munication, thus providing smoother user experience. Executing an iTask task
in the browser demands much more than executing an ordinary function. Tasks
have complex, interactive behavior and e.g. observable intermediate values which
requires communication with other tasks; therefore the execution must obey a
certain evaluation strategy. We will obtain general client-side execution support
by encoding this evaluation strategy in a tasklet.

In this paper we make the following contributions:

– The iTask framework is extended to enable the development of client-side,
interactive UI components in a single-language, declarative manner. These com-
ponents can be used to increase the expressiveness of the functional iTask appli-
cations, and to provide functionality which is available only in the browser.
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This facility, called tasklet, is designed in such a way to fit as seamlessly as
possible into the iTask formalism, that is to be opaque for the developer of the
functional specification and to retain the advantageous generated nature of user
interfaces of iTask applications as much as possible;

– Tasklets foster the model-view-controller user interface design to separate the
application logic, the application data and the presentation data. The separa-
tion of these roles helps with increasing code flexibility, reuse and maintain-
ability;

– We further show that the tasklet architecture is versatile enough to pave
the way for the evaluation of almost all tasks at the client-side. Executing
tasks in the browser helps with avoiding client-server communication to reduce
server load and provide smoother user experience. This feature also creates
the preconditions for running iTask applications offline in a browser which is
a desired direction of future development;

– Finally, tasklets utilize a special compilation technique to enable the execution
of arbitrary expression of an iTask application in the browser without ship-
ping of unnecessary code. This technique is based on run-time deserialization
of Clean expressions and involves on the fly compilation to JavaScript. By min-
imizing the amount of client code, this approach has the definite advantages of
reducing communication cost and memory usage in the browser. Moreover it
makes it possible to dynamically tune the set of tasks executed in the browser
by the current server load or other run-time information.

The remainder of this paper is organized as follows: in Sect. 2 we start with
a short overview of the iTask framework and develop a non-trivial, but neces-
sarily simplified example of a flight check-in application to give a taste of iTask.
In Sect. 3 we introduce the tasklet architecture and demonstrate its usage by
developing a tasklet to enrich the example of the previous section. Some real-
world use cases studies are discussed in Sect. 4. In Sect. 5 we briefly discuss the
design of the tasklet architecture, then we generalize it in Sect. 6 to enable the
execution of legacy tasks; some common restrictions on its applicability is also
given in this section. After a discussion of related work in Sect. 7, we conclude
in Sect. 8.

The iTask framework has been created in Clean. A concise overview of the
syntactical differences with Haskell is in [2]. We assume the reader is familiar
with the concept of generic programming and uniqueness typing.

2 Introduction to iTask

The most recent incarnation of the iTask system, iTask3, is a prototype framework
for programming workflow support applications in Clean using a new program-
ming paradigm built around the concept of a task. iTask uses a combinator-based
embedded domain specific language (EDSL) to specify compositions of interde-
pendent tasks. From these specifications, complete multi-user web applications
are generated.
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:: Task a // Task is an opaque, parameterized type constructor

// Exception handling:
throw :: e → Task a | iTask a & iTask, toString e

catchAll :: (Task a) (String → Task a) → Task a | iTask a

// Sequential composition:
(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

(>>|) infixl 1 :: (Task a) (Task b) → Task b | iTask a & iTask b

return :: a → Task a | iTask a

// Parallel composition:
(||-) infixr 3 :: (Task a) (Task b) → Task b | iTask a & iTask b

// User interaction:
viewInformation :: String m → Task m | iTask m

enterInformation :: String → Task m | iTask m

enterChoice :: String (c o) → Task o | OptionContainer c & iTask o

Fig. 1. Combinators and primitive tasks used in the paper

Tasks are abstract descriptions of interactive persistent units of work that
are represented by the opaque type Task a, where a denotes the type of the
value that will be, eventually, delivered by the task when it is executed. Tasks
can be combined sequentially. The infix functions return and >>= are stan-
dard monadic combinators. Task f >>= s, first performs task f, then the value
produced by f can be used by task s to compute any new task expression. The
combinator >>| works similarly, but it drops the value of the first task during
composition. Task return v produces value v without any effect. Tasks also can
be performed in parallel. In this paper only the rather special ||- combinator is
used; it groups two tasks in parallel and return the result of the right task.

The primitive task enterInformation is a generic editor, a type-driven task
which generates a web form for the arbitrary (first-order) type m and allows the
user to enter and edit a value of that type. Similarly, enterChoice allows the user
to choose from a set of values of type o. The selectable values must be disposed in
a container, the type of which is an instance of the type class OptionContainer.
Predefined instances of the OptionContainer class are the list type and a simple
tree type to enable hierarchical selection. Finally, viewInformation is used to
display a given value of the type m. The first argument of these functions is a
brief description of what the end-user is expected to do. Most type definitions
of the iTask combinators contain a closure at the end of their type signature,
e.g. | iTask m. This closure imposes a type restriction on the type variable m.
It means, that m can be arbitrary type, provided that some generic functions,
necessary for the iTask run-time system, must have instances for the given type.

A task can raise an exception in case it can no longer produce a meaningful
value. Any value can be thrown as exception by the throw function, provided
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that it can be serialized as a string. Exceptions can be caught by catchAll the
first argument of which is a task that will possibly raise an exception, and its
second argument is a task to handle it.

In Fig. 1, the small set of combinators and primitive tasks of the iTask DSL
is presented which are used throughout this paper (for reasons of presentation,
the types have been slightly simplified). The full language definition and its
semantics can be found in [14].

In the rest of this section, we demonstrate the expressive power of iTask
presenting an overly simplified, but still realistic example of a flight check-in
application. The application will operate on the following types:

:: Seat = Seat Int Int // Seat information: row, seat number in the row
:: Seats :== [Seat]

:: Booking = { bookingRef :: String // Unique booking reference number
, firstName :: String // Passenger’s first name
, lastName :: String, // Passenger’s last name
, flightNumber :: String, // Flight number
, pid :: Hidden String, // Unique number of passenger’s ID
, seat :: Maybe Seat // Seat information
}

:: Flight = { flightNumber :: String // Unique flight number
, free :: Seats // List of free seats
}

The Booking type describes a booking for a flight. It contains a unique reference
number, the flight number, and data of the passenger, including the unique
number of the ID document (pid). This latter is wrapped in the Hidden type to
indicate for the framework that it is not supposed to be displayed on any of the
screens. For the sake of brevity, the last field, seat, encodes seat information and
also indicates whether the passenger is checked-in. If a seat number is present,
the passenger is already checked-in, otherwise has not been yet. The Flight
record type describes a simplified view of flight data; in our case it contains only
the unique flight number and the list of vacant seats.

To concentrate on the essence of the application, the implementation of the
following functions, comprising the data tier, are omitted:

// Find flight and booking records by flight number and reference number accordingly
findFlight :: String → Task (Maybe Flight)
findBooking :: String → Task (Maybe Booking)
// Returns a list of booking records fulfilling a condition given by the first argument
listBookings :: (Booking → Bool) → Task [Booking]
// Update datasets and returns the up-to-date booking record
commitCheckIn :: Booking Seat → Task Booking

To keep the example as concise as possible, a very simple exception controlled
mechanism is used to handle errors; when an exception occurs the application
prints the error message and restarts the workflow. Therefore, the main task,
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checkIn, is responsible for handling exceptions only. The task does not return
any meaningful value (Void), its semantics is based on side-effect:

checkIn :: Task Void

checkIn = catchAll workflow (λmsg → viewInformation "Error:" msg >>| checkIn)

Thanks to exceptions, the top level workflow can be straightforwardly decom-
posed to a sequence of tasks:

1workflow = enterInformation "Please enter booking information:"

2>>= λbi → lookUpBooking bi

3>>= λmbB → verifyBooking mbB

4>>= λb → findFlight b.Booking.flightNumber

5>>= λf → chooseSeat f

6>>= λseat → commitCheckIn b seat

7>>= viewInformation "Check-in succeeded:"

8>>| checkIn

Fig. 2. The flight check-in screens

First, the user is asked to provide booking information (line 1). The entered
information is used to look up the booking record (line 2), then the identity
of the user and other prerequisites are verified (line 3). After looking up the
related flight record in line 4, the user is asked to choose seat (line 5). Finally,
the check-in is committed to the database and the updated booking record is
displayed (line 6–7). In the last line, the workflow is restarted to continue with
a new check-in procedure.

The generic enterInformation function in line 1, generates a user inter-
face for the BookingInfo type; this type is inferred by looking at the type of
lookUpBooking. According to this type, the passenger is asked to provide the
booking reference number or her last name:

:: BookingInfo = BookingReference String | PassangerLastName String

In lookUpBooking, if a reference number was provided, the booking record is
looked up. Otherwise the user is asked to choose (using enterChoice) one of
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the booking records in which the passenger’s last name matches and contains no
seat information. The function returns Nothing if a booking record could not be
found:

lookUpBooking :: BookingInfo → Maybe Booking

lookUpBooking (BookingReference ref) = findBooking ref

lookUpBooking (PassangerLastName ln)
= listBookings (λb → b.lastName==ln && isNothing b.seat)
>>= λbs → case bs of

[ ] = return Nothing

fs = enterChoice "Please choose passenger:" fs >>= return o Just

In the next step, the found booking record is validated. If some simple conditions
hold, the passenger is kindly asked to prove her identity:

verifyBooking :: (Maybe Booking) → Booking

verifyBooking Nothing = throw "Passenger cannot be found"

verifyBooking (Just b) | isJust b.seat = throw "Passenger is already checked-in"

verifyBooking (Just b) = viewInformation "Passenger:" b

||-

enterInformation "Please enter you id number:"

>>= λid → if (fromHidden b.pid==id) (return b) (throw "Identification...")

The final missing piece, the chooseSeat function, lets the passenger choose a
seat using enterChoice by the list of free seats stored in the Flight record:

chooseSeat :: (Maybe Flight) → Seat

chooseSeat (Just f)
= enterChoice "Please choose seat:" (map toString (sort f.free))

>>= return o fromString

chooseSeat Nothing = throw "Flight information cannot be found"

Figure 2 shows the screenshots of the application. As it can be seen, the user
interfaces are automatically generated from the type of the tasks only. Never-
theless they commonly look fine and intuitive to use. The only exception in this
example is the fourth screen shown; choosing a seat from a list of seat numbers
is anything but user friendly. In the next section we develop a more intuitive UI
component, a tasklet, for choosing a seat by looking at the layout of the airplane.

3 Introduction to Tasklets

Tasklets are designed for the development of interactive web components in a
single-language manner. With this extension iTask3 becomes a multi-tier pro-
gramming language since all the different tiers of the web application can be
programmed in the single language Clean.

However, despite the common basis, there are many important differences to
most multi-tier programming languages. First of all, tasklets are not for the
development of complete, customized applications. It is designed to develop
independent components to be attached to the generated trunk of an iTask
application. As such, we decided not taking the usual lightweight, view-centric
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web development approach but enforce the model-view-controller user interface
design in tasklet development. We believe that the separation of roles suits bet-
ter the development of components and it is more consistent with the objectives
of iTask. This heavyweight approach also fits better for a lazy, purely functional
language like Clean, where the expression of side-effects needs special attention.

Tasklets are designed to be independent in the sense that no facility is pro-
vided to initiate communication with other server or client components. One can
argue that this imposes limitations, however in our experience, it suits well typ-
ical tasklets and enjoy an important advantage: this way the communication
between the client and server components can be completely implicit. Any argu-
ment can be passed to a tasklet by enclosing it into a closure of the tasklet
and the result is automatically shipped to the server when it is needed. The
developer does not even have to be aware of programming different tiers. The
accessible resources are statically controlled by the unique type that appears in
the signature of the function.

Tasklets are defined by the means of the Tasklet st val record type. It has
two type parameters denoting the type of the internal state (the model) of the
tasklet (st) and the type of its result value (val):

:: Tasklet st val = { generatorFunc :: (*World → *(TaskletHTML st, st, *World))
, resultFunc :: (st → TaskValue val)
}

:: TaskValue a = NoValue | Value a Stability

:: Stability :== Bool

During initialization, generatorFunc is executed on the server to provide the
initial state and user interface of the tasklet. Its only argument, a value of the
unique type *World, allows access to the external environment. The current value
of the tasklet is calculated when necessary by resultFunc from its internal state.
The result type, TaskValue a, an iTasks system type, expresses that the result
of a task execution can be an actual value (Value) which is stable or unstable,
or can indicate no meaningful value (NoValue). For the explanation of value
stability, please refer to [14], in this paper we always use stable return values,
which basically tells the task engine that the computation of the actual task
is finished. The user interface (the view) and its behavior (the controller) are
defined by the TaskletHTML structure:

:: TaskletHTML st = { html :: HtmlDef

, eventHandlers :: [HtmlEvent st]
}

:: HtmlDef = ∃a: HtmlDef a & toHtml a

:: HtmlEvent st = HtmlEvent HtmlElementId EventType (EventHandlerFunc st)
:: EventType = OnClick | OnMouseOver | OnMouseOut | ...

:: EventHandlerFunc st :== (st JSValue *JSWorld → *(st, *JSWorld))

The actual user interface (html field) can be given by any data structure pro-
vided that it has an instance of the function class toHtml. In the following,
we will use an overly simplified ADT to create HTML definitions which suits
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well our straightforward example, however may not satisfying for more compli-
cated ones. Core iTask already supports the generation of high-level web forms
based on the iData [12] toolkit. In this case full, low-level control over the defi-
nition of HTML elements is needed. This can be done in an abstract, monadic
way like in Wash [19] or by an XML like domain specific language similar to
that of Hop. Furthermore, the MVC concept enables that the three components
can be developed separately, and specifically allowing the View to be developed
by non-programmers. For this reason, some template mechanism also could be
considered to be added similar to e.g. Yesod [17] or Snap [3]. However, providing
any particular tool here would beyond the scope of this paper.

The run-time behavior, the controller part, of a tasklet is encoded in a list
of event handler functions (eventHandlers field). Event handlers are defined
using the HtmlEvent type. Its only data constructor has three arguments: the
identifier of an HTML element, the type of the event and the event handler
function. During the instantiation of the tasklet on the client, the event handler
function is attached to the given HTML element to catch events of the given type.

The event handler functions work on the JavaScript event object (a value
of type JSValue in Clean) and the current internal state of the tasklet. They
also have access to the HTML Document Object Model (DOM) to maintain
their appearance. The DOM is a shared object from the point of event handlers,
therefore it can be manipulated only the way as IO done in Clean, through
unique types. That is, accessing the DOM is possible only using library functions
controlled by the unique *JSWorld type. This type is used in a similar way as
the type *World on the server. Introducing a new type to have IO on the client
has the advantage that reflects for the different purposes of client and server
side code. The server code can access all resources of the server computer, like
the file system, not available on the client; at the same time, the client code has
external access to a resource accessible only on the client: the DOM.

Following the tasklet definition, a wrapper task must be created to hide the
behavior of the tasklet behind the interface of a task:

mkTask :: (Tasklet st a) → Task a

The life cycle of a tasklet starts when the value of the wrapper task is requested.
First, generatorFunc is executed on the server to provide the initial state and
user interface of the tasklet. Then, the initial task state and the event handlers
defined in Clean are on the fly compiled to JavaScript and, along with the UI
definition, shipped to the browser. In the browser, the HTML markup is injected
into the page and the event handlers are attached. As events are fired, the related
event handlers catch them, and may modify the state of the tasklet and the
DOM. If the state is changed, resultFunc is called to create a new result value
that is sent to the server immediately. The life cycle of the tasklet is terminated
by the framework when the result value is finally taken by another task.
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3.1 Seat Choosing by Map

Fig. 3. Choosing
a seat

To clarify the usage of tasklets, we enrich our example with
the aforementioned seat chooser component. So far the pas-
senger was to choose a seat from the list of available seats by
their designation. The new idea is to allow the user choosing
by looking at a simplified seat map of the airplane as it is
shown in Fig. 3. For this, the Flight record is extended with
layout information:

:: Flight = { ...

, rows :: Int // Number of rows
, layout :: [Int] // Layout of a row
}

The rows and layout fields contain the number of rows on the
plane and the layout of the rows, respectively. If the layout
value is [2,3], rows consist of 5 seats in 2 groups: 2 seats,
corridor, 3 seats.

The signature of chooseSeat does not have to be changed,
we simply redefine its body:

chooseSeat (Just f) = mkTask seatChooserTasklet where

The internal state of the tasklet in this simple case is Maybe Seat. This expresses
that a seat is already chosen or has not been yet. At the beginning it is Nothing
(second value of the result of generatorFunc). According to resultFunc, the
tasklet results in the chosen seat if its state is not empty, otherwise no meaningful
value is propagated.

seatChooserTasklet :: Tasklet (Maybe Seat) Seat

seatChooserTasklet =
{ generatorFunc = (λworld → (TaskletHTML gui, Nothing, world))
, resultFunc = maybe NoValue (λv → Value v True)
}

The rowLayout function transforms the row layout description to a list of seat
numbers where corridors are denoted by -1:

rowLayout = intercalate [-1] (numbering 1 f.layout)
numbering i [ ] = [ ]
numbering i [x:xs] =[take x [i..] : numbering (i+x) xs]

The result of this function can be straightforwardly mapped to HTML elements
in genRowUI. In this example, we use only one data constructor of an overly sim-
plified ADT to create HTML markup. The different kind of seats and the corri-
dors are all mapped to HTML div elements using the DivTag data constructor.
It has two list arguments, the first contains the description of the attributes, like
TitleAttr, IdAttr and StyleAttr, and the second one contains child elements.
For the sake of readability and simplicity the style attributes corridorStyle,
freeStyle, occupiedStyle and newRowStyle are neglected.
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genRowUI (Seat _ -1) = DivTag [corridorStyle] [ ]
genRowUI seat | elem seat f.free

= DivTag [TitleAttr (toString seat) , IdAttr (genSeatId seat) , freeStyle] [ ]
= DivTag [TitleAttr (toString seat) , occupiedStyle] [ ]

seatMap = DivTag [ ] (intercalate [DivTag [newRowStyle] [ ] ]
[map (λs → genRowUI (Seat r s)) rowLayout \\ r← [1 .. f.rows] ] )

The genRowUI function also takes into account whether the seat is still vacant
or not. If a given seat has not been occupied yet, it gets different color and a
HTML id attribute for the later attachment of event handlers. Finally, function
seatMap generates and merges the markups of different lines. The special style
attribute newRowStyle forces the browser to wrap subsequent div elements to
the next line. The function genSeatId generates unique identifiers for HTML
id attributes from a value of type Seat.

Now that we have defined the actual user interface, it is time to assign behav-
ior to it. A seat should be chosen by simply clicking on it, furthermore, we would
like the free, selectable seats to be highlighted when the mouse pointer is over
them.

attachHandlers seat =
[ HtmlEvent (genSeatId seat) OnClick (setState (Just seat))
, HtmlEvent (genSeatId seat) OnMouseOver (setColor "red")
, HtmlEvent (genSeatId seat) OnMouseOut (setColor "white")]

setState nst _ _ w = (nst, w)
setColor clr st e w = (st, setObjectAttr e "target.style.backgroundColor" clr w)

Three event handlers are attached to each div element representing free seat.
Clicking on one of them, the internal state of the tasklet is changed to indicate
the corresponding seat. This triggers the execution of resultFunc which creates
a value result to send to the server. As for highlighting, the color of the event
target is changed on moving mouse over and out.

Setting the state is done by creating a closure of the setState function. It is
an event handler function which does nothing more than return its first argument
as the new state. The OnMouseOver and OnMouseOut event handlers also create
a closure of the function setColor which simply set the background color of the
target of the event. This is done by the setObjectAttr library function which
sets an attribute of a JavaScript object. This function has a side effect thus
the *JSWorld type appears in its signature. It takes a reference to an external
object (JSValue), the name of an attribute and an arbitrary value. The value is
converted to its JavaScript equivalent then the attribute of the object is set.

setObjectAttr :: JSValue String a *JSWorld → *JSWorld

The tasklet run-time system is shipped with a library which contains a large set
of interface functions, similar to that of setObjectAttr. These functions enable
tasklets to directly interface with the enclosing JavaScript environment, e.g. to
access the HTML Document Object Model (DOM), create arbitrary JavaScript
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objects (including HTML elements), read/write/create object attributes, or exe-
cute methods of JavaScript objects. This low level, general library provides unre-
stricted access to the JavaScript environment, and enables the development of
arbitrary higher level, special purpose libraries on top of it.

Finally, the last piece is the TaskletHTML record to assign the view (the
HTML markup) and controller (the event handlers) components:

gui = { html = HtmlDef seatMap

, eventHandlers = concatMap attachHandlers f.free

}

4 Use Case Studies

In this chapter, two real-world use cases of the presented tasklet architecture
are discussed to prove its usefulness. Both examples are taken from ongoing
projects of the iTask development team, and part of the current version of the
iTask system.

The first of these projects aims the
port of the Clean integrated develop-
ment environment, the Clean IDE, to
the iTask system. With this develop-
ment, we believe to achieve a web based
multi user development environment,
and to be able to refine the semantics
of the iTask combinators in the same
time. The iTask system excel at gen-
erating traditional graphical user inter-
faces, however, there is one component,
namely the source code editor, which
cannot be generated in any way. Thus,
we decided to develop a tasklet based
on the CodeMirror JavaScript text editor component. The tasklet we gained is
well customizable using a standard functional API, and seamlessly fits into the
generated user interface.

The goal of the second project, called Tonic,
is to develop an infrastructure to graphically rep-
resent the definition and behavior of tasks. It
translates a textual iTask specification into a
graphical one, called a blueprint. The Clean com-
piler has been adjusted to generate blueprints,
and a standalone application, a Tonic viewer,
written in iTask, is developed to visualize them.
Such a blueprint is basically a general graph,

which consists of special kind of annotated nodes and edges. To be able to draw
graphs, a general tasklet is developed. This tasklet is able to create a graphical
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Fig. 4. The architecture of client-side execution

representation of a graph Graph n e, provided that a GraphletRenderer n e
instance for the given node and edge types exist. The graph is given in a standard,
functional way, while the renderer must provide a description understandable by
the D3 JavaScript library, on which the tasklet is based.

5 The Architecture of Client-Side Execution

The client-side execution architecture is designed in such a way that the two
groups of functions, executed on the client versus executed on the server, are not
designated during compilation. Instead of this, two images of the same applica-
tion are produced by the Clean compiler: the server executable running in native
code and an intermediate representation that can be compiled to JavaScript (see
Fig. 4). For the intermediate representation, the so called Simple Application
Programming Language (SAPL) [7], a core, lazy functional language is utilized.
It is used to execute arbitrary Clean expressions in the browser as follows:

0. There are two images produced by the Clean compiler: a server image (native
code, executable) and a SAPL image (intermediate representation);

1. The executable on the server is started;
2. Instead of evaluating an expression on the server, one can decide, at run-

time, to evaluate it on the client instead. This can in principle be done for
any expression;

3. The expression to evaluate on the client is at run-time converted to an equiv-
alent SAPL expression;

4. This SAPL expression is passed to the run-time linker specially developed for
this purpose. The linker collects the dependencies of the expression recursively
using the SAPL image of the application;

5. The result is run through a caching mechanism to filter out SAPL code
already processed in a previous session;

6. The remaining SAPL code is on the fly compiled to efficient JavaScript code
by a newly developed SAPL-to-Javascript compiler [6];

7. The generated JavaScript code can be used e.g. by tasklets to perform com-
putation in the browser.
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Fig. 5. The generalized tasklet architecture

Therefore arbitrary Clean expressions of an iTask application can be executed
in the browser. Furthermore this is done by minimizing the necessary JavaScript
code shipped to the client which has the advantages of reducing communication
cost and memory usage of the browser.

6 Task Evaluation on the Client

Executing tasks is an intricate job compared to executing ordinary functions
because tasks have interactive behavior which needs life cycle management. The
difficulties can be understood by seeing the big picture of task evaluation logic.

A task basically consists of a state and a state transition function. When the
state transition function is executed, it produces (1) a new state (2) an abstract
description of the user interface of the task (hereafter Task User Interface, TUI)
and (3) an observable task value. Based on this, task execution involves the
following steps:

1. The state transition function is executed on the server to create the user
interface and the result value;

2. The result value can be observed by other tasks; they can decide to continue
with this current value. In that case the observed task is terminated;

3. The user interface information is sent to the browser to display;
4. If any event occurs on the client, it is passed to the state transition function

on the server and the procedure continues with step 2.

The standard way tasks are evaluated closely fits the architecture of tasklets:
(1) there is a distinct state to work on (2) the state transition function gener-
ates a new state and user interface just as we need in generatorFunc (3) the
user interface generates events (4) event handlers modify the state and the user
interface (see step 4). The consequence of this perfect fit is that it is possible to
define one general tasklet creator to run any task exclusively in the browser:

runOnClient :: (Task a) → Task a
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The result of the runOnClient task is a tasklet in which the state transition
function of the enclosed task is utilized in generatorFunc and in the event
handlers. Neglecting any details, at this point the tasklet API was slightly gen-
eralized to enable these functions to create and interact with TUI elements in
addition to HTML. When the value of runOnClient anyTask is requested, the
state transition function of anyTask is called on the server to create the initial
user interface and state of anyTask. These, and the JavaScript counterpart of the
event handlers (implicitly containing the state transition function) are sent to
the browser. Figure 5 summarizes the client part of the generalized architecture:

1. In the browser the TUI elements are displayed;
2. The events emitted by the TUI are passed to an event dispatcher function

which can decide if the target of the event runs on the server or on the client;
3. In the latter case the event is forwarded directly to the wrapper tasklet run-

ning on the client instead of being sent to the server;
4. The event handler of this tasklet executes the state transition function of

anyTask on the client to create a new state, result value and TUI definition;
5. If the result value is changed, it is shipped back to the server;
6. The user interface is updated by the TUI definition resulted by the state

transition function and the procedure continues with step 2.

6.1 Limitations

As for the current implementation there are some restrictions to the applicabil-
ity of the tasklet architecture. Some of them derives from the limitation of the
Clean to SAPL compiler and give constraints on the application of Clean lan-
guage elements: (1) tasks evaluated on the client can only produce higher order
functions as intermediate value. Higher order values cannot be returned as final
result, because the de-serialization of SAPL expressions into a Clean executable
is possible only in the case of first order values; (2) certain tasks are intended to
be executed on the server e.g. when a database is accessed, or global informa-
tion is shared between distributed tasks. Such tasks cannot easily be shipped to
the client, still a general solution is possible using a server side mediator service
which is being under development.

7 Related Work

The iTask3 system with the tasklet extension is a unique multi-tier programming
language. In contrast to most web programming languages where the function-
ality is view-centric, built around the user interface, iTask proposes an inverted
development model: the trunk of an iTask application is generated by a func-
tional specification then augmented with custom web components.

Several other languages address multi-tier programming. In the imperative
world the most modern approach is the Google Web Toolkit (GWT) [1], Google
Dart [5] and Node.js [18]. GWT utilizes a Java to JavaScript compilation tech-
nique for building complex browser-based applications. GWT fosters classical
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GUI programming where widgets can be developed using a programming model
comparable to that of tasklets.

The Dart language and the Node.js framework take a different approach.
They enable multi-tier programming by providing a run-time environment of
their languages for both client and server side. The language of Node.js is
JavaScript, which is native in the web browsers; the framework also provides
a run-time environment, including IO libraries, for the server side. Dart is a
programming language developed by Google specially designed for web appli-
cation engineering. On the client, it compiles to JavaScript, on the server it is
executed by a Dart virtual machine. However, these systems have a more general
approach than iTask and tasklets, they still share the idea of using the same lan-
guage on both client and server side and implicitly bridging the communication
between them.

Hop [15,16] uses a declarative approach. It is a dedicated web programming
language with a HTML-like syntax built on the top of Scheme. Hop uses two
compilers, one for compiling the server side program and one for compiling the
client-side part. The client side part is only used for executing the user inter-
face. Hop uses syntactic constructions for indicating client and server part code.
The application essentially runs on the client and may call services on the server.
In contrast, an iTask application essentially runs on the server and may execute
services, tasklets, on the client.

Links [4] and its extension Formlets is also a functional language-based web
programming language. Links compiles to JavaScript for rendering HTML pages,
and SQL to communicate with a back-end database. In a Links program, the
keywords client and server force a top-level function to be executed at the
client or server respectively.

The iTask framework differs from the latter two by fostering a non view-
centric approach even in the component development. Links and Hop have
extended syntax for embedding XML descriptions in the language; this is used
to mix the user interface definition and the behavior of the application. During
tasklet development the model-view-controller user interface design is enforced
to separate these roles.

Another important difference is that tasklets blur the boundaries of different
tiers. Links uses location annotations, Hop utilizes special syntactic construction
to denote the target tier of a given function or expression. In tasklets this is
implicit (basically the controller role runs in the browser) but unconcerned. If
a function is pure, it does not matter where it is executed. If it is not pure,
the available resources are controlled statically by the signature of the function.
Furthermore, the communication between the tiers is also implicit for tasklets.

As for iTask, there are earlier implementations of similar features utiliz-
ing a Java written SAPL interpreter [7] as a browser plug-in. The iEditors [8]
enables the development of interactive web UI elements as tasklets do, however,
it does not allow direct access to browser resources, therefore its applicability
is restricted to functionality provided by the plug-in. As a consequence, it does
not have the single-language property either, because for some functionality the
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plug-in has to be extended using Java. There also had been client-side task
evaluation attempts for an early version of iTask using the same plug-in based
interpretation technology [13]. However, our approach, to give one general solu-
tion for both of the problems is a novel strategy.

8 Conclusion

In this paper we have presented a number of contributions to the iTask3 system, a
web-enabled combinator library written in the lazy functional language Clean. In
iTask, complex, multi-user web applications are generated from a mere functional
specification. However, up to now, the system lacks the possibility to create
custom, interactive web components.

We introduced tasklets, an extension to iTask3, for the development of inter-
active web components in a single-language manner. With this extension iTask3
becomes a unique multi-tier programming language which offers an unusual web
development model based on the enrichment of a generated trunk program. Fur-
thermore, in contrast to most multi-tier programming languages, the extended
iTask framework enforces the model-view-controller user interface design in com-
ponent development and blurs the boundaries of different tiers.

For the execution of Clean code in the browser, a special client-side execution
facility was developed. It is designed in such a way that instead of evaluating
an expression on the server, one can decide, at run-time, to evaluate it on the
client. The expression is compiled to JavaScript on the fly.

Finally, we showed that the presented tasklet facility can be generalized to
enable the execution of ordinary tasks in the browser instead of the server by
turning an arbitrary task into a tasklet. This, amongst other things, can be used
to improve the responsiveness of an iTask application by avoiding the latency of
communication.
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Abstract. Grammar refactoring is a significant cornerstone of gram-
marware engineering, aimed at adjusting a formal grammar to specific
requirements derived from the application environment, without affect-
ing the language that a grammar generates. In our research, we focus
on tackling the problems related to formal specification and automated
application of well-known and newly-discovered refactoring procedures.
One of our research results is a language for specification of the refactor-
ing patterns to which we refer to as pLERO. In this paper, we present
an extension of pLERO language aimed at expanding the scope of its
applicability to additional classes of refactoring problems, such as fold-
ing and unfolding of grammar productions.

Keywords: Grammarware engineering · Grammar refactoring ·
Structural patterns · pLERO language

1 Introduction

Grammar refactoring is a non-trivial process of changing the form in which
a formal grammar is expressed, with preserving the language that a grammar
generates. Two or more formal grammars that generate the same language are
called equivalent. The objective of the classical grammar refactoring is adjusting
the form in which a grammar is expressed to specific requirements considering the
future purpose of a grammar. In our research we focus on context-free grammars,
since they are the most commonly used formal apparatus for expressing the
abstract syntax of programming languages.

Although grammar refactoring is both of theoretical and of practical sig-
nificance, for various subdomains of gramarware engineering it is still weakly
understood and poorly practiced [1]. A current gap between state-of-art and
state-of-practice can be clearly seen in the compiler design, where current state-
of-art provides limited number of specialized refactoring procedures. This, in
turn forces language designers to perform the majority of the refactoring proce-
dures manually on the basis of their intuition. This is a problem mainly because
such refactoring can be significantly difficult and error prone, while results in
many cases cannot be verified, since proving equivalence of two grammars is in
general an undecidable problem.

In our previous work, we addressed this issue by proposing two approaches to
automated grammar refactoring, more specifically a probabilistic approach based
c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 446–458, 2015.
DOI: 10.1007/978-3-319-15940-9 12
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on evolutionary algorithm, called mARTINICA (metrics Automated Refactoring
Task-driven INcremental syntactIC Algorithm) [2,3], and a deterministic app-
roach based on formal specification language called pLERO (pattern Language
of Extended Refactoring Operators) [4,5].

pLERO is the domain-specific language for specification of refactoring and
other transformations on context-free grammars. The core idea behind the app-
roach is to provide universal formal apparatus for automated application of
the knowledge of grammar engineers. The main purpose of pLERO is to uni-
formly define deterministic solutions to recurring refactoring problems, such as
left recursion removal and elimination of epsilon productions. To these solutions
we refer to as grammar refactoring patterns.

pLERO is currently being developed in two distinct dialects, namely a imper-
ative and a declarative. Refactoring patterns written in the imperative dialect
of pLERO are more process-centric, meaning that they are intended for the
specification of particular steps of a refactoring process, while refactoring pat-
terns written in the declarative dialect are more result-centric and facilitate the
understanding of a grammar’s structural changes. Detailed description of the
imperative dialect of pLERO can be found in [4], while description of the declar-
ative dialect of pLERO can be found in [5]. Refactoring patterns expressed in
both dialects currently operate on grammars expressed in BNF notation.

In this paper we consider the declarative dialect of pLERO and present
its extension aimed at addressing the following aspects of a pattern’s formal
specification:

– Parameterization of patterns, since the recently published [5] specification of
pLERO only included support for expressing parameterless refactoring trans-
formations.

– Matching of the negative grammar structures, meaning expressing structural
preconditions that grammar should not fulfill in order to be transformable by
a pattern, as opposed to previous version of pLERO, where only matching of
positive grammar structures could be formally specified.

– Equivalence precondition for grammatical structures whose properties are
expressed at multiple levels of abstraction.

– Iteration over structurally different grammar productions.

2 Grammar Refactoring Patterns

Refactoring patterns are the only first-class citizens of the pLERO language,
specifying structural transformations of grammar’s productions, and as such
they can be considered generic schemes of refactoring operations.

A grammar refactoring pattern consists of a nonempty set of transformation
rules, and a set of declarations. Each transformation rule defines alternation
of grammar’s production rules which exhibit some structural properties, while
each declaration specifies additional properties of formal structures that occur in
some of the transformation rules. We understand the term ‘structural property
of production rule’ as the ordering of symbols and symbol types production.
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For instance, a production rule may exhibit the structural property that its
right-hand side starts and ends with a nonterminal symbol.

A transformation rule consists of two parts, namely a predicate defining the
structure of some subset of a grammar’s production rules, and a transforma-
tion describing the way in which this structure should be changed. Although
predicates and transformations have different purposes, they are both expressed
in similar fashion using the formalism of meta-production rules. The predicate
is specified by exactly one meta-production rule, while the transformation is
defined by a set of meta-production rules.

Each meta-production rule specifies chosen structural properties exhibited by
some subset of the grammar’s productions. A meta-production rule is divided
into a left-hand side describing left-hand side of a grammar’s production rule,
and a right-hand side specifying structure of a right-hand side of a grammar’s
production rule. The left-hand side of a meta-production rule comprises exactly
one pattern variable, while the right-hand side of a meta-production rule is a
sequence of pattern variables.

Each pattern variable defines a homogeneous sequence of grammar symbols,
and as such consists of a variable name and a variable prefix. The variable pre-
fix describes a type of grammar symbols that can occur in sequences assigned
to a pattern variable, and the three possible variable prefixes are: ′t′ denoting
terminal, ′n′ denoting nonterminal and ′s′ denoting both terminal and nonter-
minal, while each of these prefixes can be followed by ′∗′, denoting sequences
of arbitrary length, or ′{m}′ denoting sequences of exactly ′m′ symbols. The
variable name serves as an identifier of a specific sequence of grammar symbols,
and it enables us using this sequence in other parts of a transformation rule
in which the pattern variable occurs (local pattern variable). It also enables us
using this sequence in other transformation rules or declarations (global pat-
tern variable) and adding a new nonterminal to the grammar (new pattern
variable).

Each pattern specification in pLERO must follow the same notion template,
as shown in Fig. 1, which has suffered minor changes since its publication [5] due
to extension of pLERO language itself.

More detailed description of the pLERO language, the pattern matching and
the pattern application processes can be found in [5]. In what follows we only
discuss pattern declarations and ways of pattern parameterization, since these
are parts of the language that have been subjected to change.

3 PLERO Extension

3.1 Pattern Parameterization

The main idea behind our previous refactoring approach to which we refer to as
mARTINICA [2,3] was to perform grammar transformation on the basis of cer-
tain mathematically expressed objectives, while the refactoring process consisted
of a series of incremental applications of the refactoring operators. In this case, we
operated with a constant set of refactoring operators, which were implemented
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Fig. 1. Template of a pattern notation

in the Java language. Initially pLERO was designed as complementary to this
approach, with the intention of providing a simple DSL in which language devel-
opers can specify their own refactoring procedures and incorporate them in
the base of refactoring operators. Patterns defined using the pLERO formal-
ism were not parameterized, since in mARTINICA parameters are mostly gen-
erated randomly, and thus it was decided that any input arguments that were
needed for refactoring were to be generated by the pLERO pattern matching
environment.

However, the following two factors motivated us to incorporate support for
pattern parameterization in the pLERO formalism:

– Recognition of the potential of pLERO to be used as formalism for preserva-
tion of newly discovered refactoring procedures and as a stand-alone tool for
their application.

– Need for passing grammar-specific data that cannot be randomly generated
or inferred from grammar’s productions, such as start symbol.

Each refactoring pattern may have an arbitrary number of parameters. Each
pattern parameter consists of an argument and an annotation. An argument can
be a meta-production rule denoting the production rule of a specific structure,
a pattern variable denoting specific sequence of symbols or an integer variable
denoting the length of a sequence of symbols. Each argument has annotation
describing its meaning, and each pattern variable occurring in arbitrary argu-
ment is considered to be a global pattern variable whose value cannot be altered
during the pattern matching process. The types of the pattern arguments do not
need to be declared, since they are inferred during the matching process. The
way in which parameters are specified can be seen in Fig. 1.
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3.2 Declarations

In this section we present five declarations within the pLERO language: vari-
ables, new symbols, join, equivalence and nonequivalence. The first two were
part of the most recently published version of pLERO, however they were never
closely examined, and the rationale behind them was never provided, which is
the main reason why we also include their descriptions in this section.

Global Variables. In general, pattern variables with the same name and pre-
fix occurring in different transformation rules represent distinct sequences of
symbols. One advantage of such approach is the relatively large separation of
concerns between individual transformation rules, which leads to a high level
of structural integrity for production rules matched against specific predicate.
This constraint also lowers the risk of the accidental structural corruption. How-
ever, in terms of generating the language, structurally diverse production rules
may be closely interlinked. Preservation of grammar’s equivalence may require
that transformation of production rules exhibiting some structure must be con-
ditioned by transformation of productions with different structures. Moreover,
such production rules may have common substructures that need to be preserved
or handled in a similar fashion, independently of structural differences that are
observable when considering production rules as a whole.

In our experience, this scenario is actually quite common and such interlink-
age is present in almost every meaningful refactoring pattern. A trivial example
of such a connection between structurally different productions can be found
in the pattern specifying the well-known procedure of immediate left-recursion
removal. If a left-recursive nonterminal is reachable in any derivation, in order
for the grammar to terminate, it must contain both left-recursive and non
left-recursive productions of such nonterminal. In the process of left-recursion
elimination both left-recursive and non-left-recursive productions need to be
transformed, while the transformation pattern is different for each of these two
structural classes of production rules. On the other hand, the recursive nontermi-
nal on the left-hand side of each transformed production needs to be preserved,
independently of the other structural properties.

In order to resolve this issue, we allowed sharing of pattern variables between
transformation rules, however all shared variables must be explicitly declared
using the ‘variables’ keyword and the template notion, as depicted in Fig. 2.
Pattern variables that are not specified using variables declaration and that are
not implicitly global (such as pattern arguments) are interpreted as local pattern
variables.

Generated Nonterminals. A refactoring process often involves the incorpo-
ration of new nonterminal symbols in a grammar. An example of a refactoring
procedure, always leading to the incorporation of one new nonterminal in a
grammar is the application of refactoring operator to which is referred to as
pack [2,3]. This operator and its formal specification are more closely examined
in Sect. 5.2
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Fig. 2. Variables declaration template

Names of nonterminals that need to be incorporated in a grammar could
be passed as pattern arguments, or could be set to constants using equivalence
declaration. However, this could lead to a naming conflict with existing non-
terminals, which can break the structure of the entire language generated by a
grammar. In order to resolve this issue, we created a declaration generating non-
conflicting names of nonterminal symbols. This declaration is specified using the
‘new symbols’ keyword and the template for it is depicted in Fig. 3. Each nonter-
minal pattern variable that is specified in a new symbols declaration represents
a nonterminal with unique name that is not part of the original grammar, and
as a consequence of this, variables declared in such fashion cannot be present in
predicate, but only in the transformation part of a transformation rule.

Fig. 3. New symbols declaration template

Production Alternatives. In the process of derivation the sentences of a lan-
guage every nonterminal symbol in each derivation can be expanded by arbitrary
production rule whose left-hand side is this nonterminal. This means that from
a language standpoint, multiple productions with the same nonterminal on their
left-hand side are alternatives directing the way in which language sentences
develop. However, in BNF notation these alternatives are expressed as separate
productions, and moreover from a structural standpoint, they may significantly
differ among themselves.

In our experience, during the execution procedure of the various refactoring
transformations, it is required that productions with equivalent left-hand sides
be treated jointly, as alternatives occurring in one production whose left-hand
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side is particular nonterminal. An example of such transformations is the appli-
cation of well-known refactoring operators, which is referred to as fold and unfold
[6]. In terms of BNF, unfolding means the replacement of specific nonterminal
on the right-hand side of an arbitrary production with all right-hand sides of
productions whose left-hand side is this nonterminal, while unfolding presents
inverse transformation to fold and its execution is conditioned by existence of
productions containing each alternative, as the only structural difference between
them. The problem with the approach above is that during the language design
phase any form of iteration (with the exception of iteration deriving from pat-
tern recognition process) was excluded from pLERO, mainly for the reasons of
simplicity and computational complexity.

We addressed this issue by proposing a declaration creating special kind
of iterator over productions whose left-hand side is the same nonterminal and
which exhibit particular structural properties. This declaration is specified using
the ‘join’ keyword and the template notion, as depicted in Fig. 4. The pattern
variable before the ‘where’ keyword represents a nonterminal over which iterator
is created, while the meta-production rule after the ‘where’ keyword describes the
structure of productions included in the iterator. All pattern variables included
in this declaration are implicitly global, and in case of their occurrence in a
predicate they specify the need for matching against all possible pattern bindings
in the iterator. On the other hand, if they occur in a transformation, they specify
the creation of productions which contain all possible pattern bindings in the
iterator.

Fig. 4. Join declaration template

Notice that this declaration combines right-hand sides of production rules
whose left-hand side is a same nonterminal into one production rule of EBNF
notation, whose left-hand side is this nonterminal and whose right-hand side
consists of right-hand sides of the combined productions between which EBNF
alternative meta-operator has been put.

Equivalence and Nonequivalence. Various refactoring procedures can be
performed only in the case of structural equivalence or nonequivalence of partic-
ular sequences of grammar symbols. In most cases, the first case is not an issue,
since in pLERO, the precondition of the structural equivalence can be specified
by using same pattern variables for equivalent structures, alternatively declaring
these variables as global. However, there is an exception when this solution can-
not be used, and that is in the case when one sequence of symbols needs to be
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expressed using two or more distinct sequences of pattern variables. For example,
when we specify refactoring operator which is referred to as pack, the production
rule that needs to be transformed is passed as a pattern argument, which is typed
as meta-production rule denoting arbitrary production. However, the transfor-
mation rule which specifies this operator needs to operate on more fine-grained
structures of the production that is passed as pattern argument, since the appli-
cation of the pack operator in general case requires dividing the production in
three parts (symbols before packed sequence, packed sequence itself and sym-
bols after packed sequence). Some refactoring procedures may also require that a
grammar does not exhibit some structural properties, for example if refactoring
precondition is that grammar must be in Chomsky normal form, then one of
structural preconditions is that grammar does not include epsilon productions.

The mentioned refactoring problems present our motivation to extend pLERO
with declarations of equivalence and nonequivalence. The equivalence precondi-
tion for two sequences of pattern variables (separated by ‘and’ keyword) is spec-
ified by keyword ‘equivalence’, and notion template, as depicted in Fig. 5, while
nonequivalence precondition for two sequences of variables is specified in similar
fashion, by replacing ‘equivalence’ keyword with ‘nonequivalence’. All pattern
variables used both in equivalence and nonequivalence declaration are implicitly
global.

Fig. 5. Equivalence declaration template

4 Related Work

We were not able to find related research considering grammar refactoring pat-
terns; however, any refactoring approach closely aimed for solving refactoring
issues of a particular problem domain [7–9] can in some sense be considered a
pattern.

Lämmel presented a suite of fifteen grammar transformation operators, four
considering grammar construction, five considering grammar destruction and six
considering grammar refactoring [6]. These operators are in large degree tailored
for solving issues of two specific problem domains e.g. grammar adaptation and
grammar recovery.
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Lämmel and Zaytsev recently introduced a suite of four refactoring operators,
specifically aimed for tackling refactoring tasks occurring in the process of gram-
mar extraction from multiple diverse sources of information [10].

5 Discussion

This section examines the process of formal specification of two chosen refactor-
ing operators using the pLERO language. The following discussion elaborates
on difficulty of specifying solutions to commonly occurring refactoring problems
using formal apparatus provided by previous version of pLERO. Subsequently,
it describes a way in which proposed language extensions tackle these issues
and thus provides justification of the new language features with relation to the
purpose of the pLERO language.

Domain-specific languages trade generality for expressiveness in a limited
domain [11]. We believe that a relative comparative advantage of using domain-
specific language over formal apparatus provided by general-purpose languages
should be evaluated in the terms of balance between the generality and the
expressiveness of the language. Therefore, in our view, the growth of domain-
specific language’s expressive power is generally not a sufficient reason for its
extension. In an ideal case, domain-specific languages should only be extended
in situations in which a particular extension does not have a significant negative
impact on the balance between the generality and the expressiveness of the
language in the domain (in the opposite case, benefits of its usage over using a
general-purpose language may be questioned).

In order to demonstrate, that the proposed language extensions fulfill this
condition, we have also implemented both discussed refactoring operators in
Java. However, comparison of expressive powers of different languages may be
difficult, especially since to the best of our knowledge, there is no generally
accepted methodology for performing such task. Therefore we decided to com-
pare a number of language statements used to implement refactoring operators
in both languages. For the analysis of Java code, we used tool Resource Stan-
dard Metrics (available at http://msquaredtechnologies.com), while in pLERO
we evaluated this metric as sum of number of transformation rules and number of
declarations. In the analysis of Java source code, we included only Java methods
that implement logic of refactoring operator, while other parts of source code,
such as grammar parser and grammar model were excluded from the analysis.

5.1 Case A: Unfold

Unfold is the refactoring operator that replaces each occurrence of a nonterminal
on the right-hand side of some production rule with all possible combinations
of right-hand sides of production rules whose left-hand side is this nonterminal.
For instance, consider the grammar containing set of three production rules
{A → ‘a’ B ‘a’, B → ‘a’, B → ‘b’}. In case we unfold the nonterminal B,
the resulting grammar will contain four production rules {A → ‘a’ ‘a’ ‘a’, A →
‘a’ ‘b’ ‘a’, B → ‘a’, B → ‘b’}.

http://msquaredtechnologies.com
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The unfolding operator is widely used in various procedures of grammarware
engineering, such as post-processing of inferred grammars, and grammar con-
vergence. Grammar inference is a process of extracting a correct grammar for
unknown target language from a finite set of language examples [12]. The prob-
lem is that majority of approaches to grammar inference primarily aim at extract-
ing a grammar of a correct language, focusing on issues related to over-generality
and over-specialization of inferred grammar [13], while the form in which the
extracted grammar is presented remains only a secondary concern if addressed
at all. In this case, the unfolding operator may be repeatedly used on a grammar
with the aim of reducing the count of grammar’s nonterminal symbols, or reduc-
ing depths of derivation trees constructed for sentences of language generated
by a grammar. Grammar convergence is a method of establishing and maintain-
ing the connection between grammar knowledge contained within heterogeneous
software artifacts. In this case, the unfolding operator is preferably used in the
process of transformation of software artifacts, predominantly because it leads
to semantics-preserving grammar transformations [10].

The Java method used to implement the unfolding operator consists of
37 language statements spanning over 47 effective lines of code, while the specifi-
cation of the unfolding operator in pLERO required only 2 language statements.
This pLERO specification is depicted in Fig. 6 and it consists of the proposed
join declaration and the transformation rule that defines transformation on pro-
ductions containing the unfolded nonterminal on their right-hand sides.

Fig. 6. Unfold pattern specification

Since there is an arbitrary number of productions whose left-hand side is
the unfolded nonterminal, and all such productions need to be considered in
each application of unfolding operator, it is clear that some form of iteration
over grammar’s productions is required. Iterations derived from multiple appli-
cations of pattern are in this case not sufficient. The rationale behind this claim
can be derived from the fact that between two consequent applications of pLERO
pattern no states are preserved, and thus the iterations derived from multiple
applications of pattern must preserve grammar equivalence in each step of refac-
toring procedure. In the case of formal specification of unfolding operator this
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condition cannot be satisfied without using the ‘join’ declaration, since grammar
equivalence is preserved only if all productions containing the unfolded nonter-
minal on their left-hand side are used in the transformation, and since number
of such productions is arbitrary, they generally cannot be matched in a single
transformation step.

5.2 Case B: Pack

Pack is the refactoring operator that replaces the specific sequence of symbols
contained within right-hand side of some production rule with newly created
nonterminal, and creates new production whose left-hand side is this nonterminal
and right-hand side is this sequence of symbols. Such sequence can be defined by
the position of its initial symbol within production’s right-hand side and by its
length. For instance, consider the grammar containing set of two production rules
{A → ‘a’ ‘a’ B ‘a’ ‘a’, B → ‘a’ ‘b’}. In case we pack sequence of three symbols,
starting from the second symbol of the first production the resulting grammar
will contain three production rules {A → ‘a’ NT ‘a’, NT → ‘a’ B ‘a’, B →
‘a’ ‘b’}, while NT will correspond with newly created nonterminal.

Pack may be used in various situations, with aim of reducing length of
grammar’s productions, reducing number of direct child nodes for each node of
constructed derivation trees and improving grammar comprehension. The Java
method used to implement the unfolding operator consists of 18 language state-
ments spanning over 25 effective lines of code, while the specification of the
unfolding operator in pLERO required only 4 language statements. This pLERO
specification is depicted in Fig. 7 and it consists of three declarations and one
transformation rule.

Fig. 7. Pack pattern specification
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The general form of the pack operator, specifying pack operator for all possi-
ble sequences of symbols on right-hand side of production rule cannot be specified
without parameterization of patterns since pLERO does not provide any other
formalism for exact specification of sequences of symbols with variable length and
ambiguous structural properties. By ambiguity in the above sentence we under-
stand, the inability to exactly identify some sequence of symbols within pro-
duction on the basis of definition provided by predicate of transformation rule.
However, specific forms of pack operator (for instance, applying pack operator on
sequence of three symbols starting from the second symbol of a production) can
be described without parameterization of patterns, but since the count of such
situations is infinite, the pack cannot be specified as their unification. The same
applies for the equivalence declaration, since general form of pack operator also
cannot be specified without it, and the reason for this is that arbitrary structure
of production within pattern argument could not be unambiguously matched
against specific structure of transformation rule describing the pack operator.

6 Conclusion

The most significant contribution of this paper is the contribution to automated
grammar evolution. As such, our refactoring approach presents an appropri-
ate basis for creation of new theory concerning automated task-driven gram-
mar refactoring, while the provided patterns as well as some other experimental
results [3,5] demonstrate the correctness and the applicability of our approach.
We believe that the proposed extensions significantly increase the applicability
of pLERO language for specification of various patterns occurring in the domain
of grammar refactoring, while preserving relative balance between languages
generality and expressive power.

In the future we would like to focus on increasing the abstraction power of the
pLERO language, so it would formalize other knowledge considering refactoring
problems and context of their occurrence, such as consequences of pattern’s
application on grammar’s quality attributes. We would also like to adopt our
approach to EBNF notation, which is structurally richer and would cause pattern
matching to be more deterministic.

Acknowledgments. This work was supported by project VEGA 1/0341/13 Princi-
ples and methods of automated abstraction of computer languages and software devel-
opment based on the semantic enrichment caused by communication.
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Abstract. This paper presents a domain-specific querying language for
model-driven spreadsheets. We briefly show the design of the language
and present in detail its implementation, from the denormalization of
data and translation of our user-friendly query language to a more effi-
cient query, to the execution of the query using Google. To validate our
work, we executed an empirical study, comparing QuerySheet with an
alternative spreadsheet querying tool, which produced positive results.
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1 Introduction

Nowadays, spreadsheets can be considered one of the most popular programming
system around, particularly in the field of business applications, and one of the
largest domain specific programming languages. With their availability on any
computing device (PC, smart-phone, etc.) and in the cloud, visual simplicity, low
learning curve for new users, and flexibility when it comes to what can be written
in a spreadsheet, the amount of users per year increases drastically. Although
spreadsheets begin as a simple, single-user software artifact, they may evolve
into a large and complex data-centric software [1]. In these cases, manipulating
a large amount of data in a traditional matrix structure becomes an arduous
task. This issue arises in spreadsheets, unlike the traditional database systems,
due to one considerable flaw: the absence of a data query language.

The problem of querying data is not new, having decades worth of attention
within the database community. Yet, only recently has it been seriously consid-
ered in the context of spreadsheets. And even then, these attempts to replicate a
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traditional database querying system have several drawbacks of their own. Most
impose restrictions on how the data must be stored, organized, and represented,
and some even have a hard-to-read query language.

To solve these problems, we propose a query language based on the Struc-
tured Query Language (SQL) where users can easily construct queries right in
their spreadsheet environment, without the need of complicated configurations,
or extra programs other than a simple add-on. Both SQL and spreadsheets can
be seen as domain-specific functional programming languages [2]. Our approach
builds upon a model-driven spreadsheet development environment, where the
queries would be expressed referencing entities in ClassSheet models, instead of
the actual data, allowing the user to not have to worry about the arrangement
of the spreadsheet’s data, but only what information is present.

This allows spreadsheet evolution to occur in the data or the arrangement of
entities within a spreadsheet model, without invalidating previously constructed
queries, as long as the entities continue to exist. The query results are then
shown as an inferred spreadsheet model, and a new worksheet in conformance
with the model. This system was named QuerySheet [3,4], and will be shown
further on.

Our goal is to make spreadsheet querying more humanized, understandable,
robust, and productive. In order to validate our achievements, we executed an
empirical study with real end users. Their experiences, productivity, and feed-
back in using the QuerySheet system were recorded and are now presented.

The results observed from this study were positive, as we will discuss fur-
ther on. Also, we plan to take on the user’s feedback to further improve our
framework.

This paper is organized as follows: Sect. 2 presents existing techniques to
query spreadsheets, detailing two specific approaches. In Sect. 3, a simple intro-
duction to model-driven spreadsheets is given. Section 3 explains the spreadsheet
querying system we propose, and shows an example of that envisioned system.
In Sect. 4 we present queries for model-driven spreadsheets. We then present in
Sect. 5 the design and implementation of our model-driven spreadsheet system,
along with a small demonstration of the actual tool in Sect. 6. Section 7 details
our empirical study and presents the results. And finally, Sect. 8 presents our
concluding thoughts and future work.

2 Spreadsheets and Queries

Before we present techniques to query spreadsheets, let us introduce a spread-
sheet to be used as a running example throughout this document. Figure 1
presents a spreadsheet to store information about the budget of a company.
This spreadsheet contains information about the Category of budget use (such
as Travel or Accommodation) and the Year. The relationship between these two
entities gives us information on the Quantity, the Cost, and the Total Costs.

As previously stated, there have been attempts to query spreadsheets using
some form of SQL. Two widely known names followed this path to create a
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Fig. 1. Spreadsheet data for a Budget example

spreadsheet querying system: Microsoft and Google, with their MS-Query Tool
and Google QUERY Function respectively. The following subsections will give a
brief description of each of these approaches.

2.1 MS-Query Tool

Microsoft’s Query tool, or MS-Query, is the database query interface used by
Microsoft Word and Excel, a utility which imports databases, text files, OLAP
cubes, and other spreadsheet representations (such as csv). While these are the
main uses, it can be used to query data from a spreadsheet, placing the data into
an intermediate database-like table to be able to apply the query and represent
the findings, but in turn brings some restrictions.

To be able to query the spreadsheet data, the data itself must be in a single
tabular format, with the headers present in the first row. In other words, they
require the data to be denormalized [5] if the user wishes to completely represent
his spreadsheet information. In most cases, users tend to use their spreadsheet
for more than one entity in a single worksheet, not joining all the information
into one single unified table (as we can see in our running example in Fig. 1).
This requirement prohibits the freedom to represent the spreadsheet data how
a user wishes.

Figure 2 shows the necessary denormalized representation of the data in our
running example, having the headers of each attribute explicitly represented in
a single row, just so we may be able to query the data using the MS-Query tool.

As one may notice, the representation of the data in this way is much harder
for someone to read, manage, and analyze, and if looking at a real-life spread-
sheet, which might have the number of columns reaching the hundreds, it can
become even more difficult. Along with the previously mentioned problem, a
user with this representation, may not expand his information horizontally, but
only vertically, to conform to the table format needed to query, allowing even
less freedom to represent the data.

2.2 Google QUERY Function

Google provides a QUERY function (GQF) which allows users, using a SQL-like
syntax, to perform a query over an array of values. An example would be their
Google Docs spreadsheets, where the function is built-in.
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Fig. 2. Spreadsheet data for a Budget example (denormalized)

In this setting, a query is a two part function, consisting of a range as its
first argument, to state the range of the data cells to be queried, for example
A1:B6. The second part consists of the query string itself, using a subset of the
SQL language, with column letters. The function’s input also assumes the first
row as headers, and each column of the input can only hold values of certain
types. An example function is shown in Listing 1.1. This function can actually
be written on the spreadsheet itself, allowing on-the-spot results.

Listing 1.1. Google QUERY function example

=query (A1 : F53 ; ”SELECT A, B, F WHERE D > 5” )

While being a powerful query function, it still has its flaws. The function
shares the same problems as MS-Query in regards to the data representation.
Much like MS-Query, to run the function, the data needs to be represented with
a single header row, without relationships between the entities, in other words,
also denormalized (as already shown in Fig. 2).

Along with the difficulty of managing the data in such a way, the function
has another flaw. Instead of writing the query using column names/labels, one
must use the column letters (as shown in Listing 1.1) to write the query. Even
with the small sized example we have been using, column letters and not names
can get confusing, counter-intuitive, and almost impossible to understand what
the query is supposed to do, without having the data sheet alongside. Moreover,
Google queries do not truly support evolution, since they do not adapt/evolve
when the spreadsheet data evolves. That is to say, by adding a new column
to the spreadsheet, we may turn a query invalid or incorrect because the data
changed positioning in the spreadsheet.

3 Model-Driven Spreadsheet Engineering

To overcome the issues identified in Sect. 2, and to design a language and system
which match the previously defined criteria, we turned to model-driven engineer-
ing methodologies [6,7]. Model-driven engineering is a development methodol-
ogy in software development that uses and exploits domain models, or abstract
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representations of a piece of software, a solution to the handling of complex
and evolving software systems. This has been applied to spreadsheets, making
model-driven spreadsheets possible [8,9], and even a model-driven spreadsheet
environment [10,11].

One of these spreadsheet models is ClassSheets [12,13], a high-level and
object-oriented formalism, using the notion of classes and attributes, to express
business logic spreadsheet data. Using ClassSheets, we can define the busi-
ness logic of a spreadsheet in a concise and abstract manner. This results in
users being able to understand, evolve, and maintain complex spreadsheets by
just analyzing the (ClassSheet) models, avoiding the need to look at large and
complex data.

Fig. 3. ClassSheet model for a Budget example

To showcase ClassSheets, we present in Fig. 3 a ClassSheet model for the
Budget example shown in Fig. 1. In this ClassSheet model, a Budget has a
Category and Year class, expanding vertically and horizontally, respectively.
The joining of these gives us a Quantity, a Cost, and the Total of a Category
in a given Year, each with its own default value. The Total in column G gives
us the total of each Category and the Total in column A gives us the total of
each Year.

This ClassSheet model specifies the business logic of the budget spreadsheet
data from our running example. In model-driven engineering, we would say that
the spreadsheet data (Fig. 1) conforms to the model (Fig. 3), as shown in Fig. 4.

Using models, we can also have a safe way to practice software evolution [14],
a term defining the process of changing an existing software system or pro-
gram, due to needs, rules, and other factors, is updated, or in other words evolves,

Fig. 4. Spreadsheet model and example in conformity
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to continue to be useful in its environment. Evolution, and other techniques (such
as spreadsheet model embedding and bidirectionality) are present in the model-
driven spreadsheet framework MDSheet [11,15]. A fully detailed explanation of
ClassSheets can be found in [Our DSL”13 ClassSheets tutorial].

4 Model-Driven Spreadsheet Querying

Querying spreadsheets should be simple and intuitive as it is in the database
realm. Using a simple SQL-like query language, users should be able to easily
construct queries right in their spreadsheet environment, without the need of
complicated configurations or extra programs. This language should be human-
ized, avoiding the use of computer-like terms as column letters, and use some
form of labels or descriptive tags to point to attributes and entities. In fact, this
is in line with the results presented in [16] where authors showed that spread-
sheet users create a mental model of the spreadsheet that helps them understand
and work with the spreadsheet. These mental models are created using names
from the real world as it is the case with our ClassSheet models.

To do this, a good approach would be to build upon a model-driven spread-
sheet development environment, where we can take advantage of ClassSheets,
allowing the queries to be expressed referencing the entities in ClassSheet models
instead of the data’s positioning. This would allow the user to not have to worry
about the arrangement of the spreadsheet’s data, but only what information
is present. This is almost identical to how a database administrator or analyst
would look at the relational model of a database to construct queries, and not
the data itself.

4.1 Querying Model-Driven Spreadsheets: An Example

To show how we envision the model-driven spreadsheet querying system, we will
show an example.

Using our previous Budget model from Fig. 3, and the Budget data from
Fig. 1, we will try to answer two simple questions:

Query1: What was our budget use in 2005?
Query2: What was our total quantity per year?

By simply looking at our ClassSheet model, if we do not remember or know
the structure of our spreadsheet data, we would be able to write the following
simple SQL-like queries:

Listing 1.2. Model-driven query for Query1

SELECT Name, Qnty , Cost , Total
WHERE Year = 2005
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Listing 1.3. Model-driven query for Query2

SELECT Year , Sum(Qnty )
GROUP BY Year
LABEL Sum(Qnty ) ”Total Qnty”

These queries will produce the following results shown in Table 1 and Table 2
respectively.

Table 1. Results for Query1

Name Qnty Cost Total

Travel 2 525 1050

Accommodation 4 120 480

Meals 6 25 150

Table 2. Results for Query2.

Year Total Qnty

2005 12

2006 30

The two equivalent Google QUERY functions would be Listings 1.4 and 1.5
respectively:

Listing 1.4. Google QUERY function for Query1

=query (A1 :H7 ; ”SELECT C, D, E, F WHERE A = 2005” )

Listing 1.5. Google QUERY function for Query1

=query (A1 :H7 ; ”SELECT A, sum(D)
GROUP BY sum(D) LABEL sum(D) ’ Total Qnty ’ ” )

Using this model-driven approach, we eliminate the work of using column letters
when writing the query, and the need of restricting the user’s data to a specific
format. This way, the user can maintain the original spreadsheet, without having
to conform to data representation restrictions, and analyze it with references to
the entities and attributes presents.

So as one can see, our approach hopes to make querying spreadsheets more:

– Humanized - Now we can represent attributes and data areas (models) using
human designated names, instead of column letters.

– Understandable - Now we can actually understand and easily read the queries,
knowing exactly what they do.

– Robust - Unless attributes in the query are removed or renamed, the queries
can still correctly function even with spreadsheet data/model evolutions.

– Productive - No need to manually think through what spreadsheet area our
data is inn, or what column letter is a given attribute.

These four topics are what we strived to achieve. To validate these topics,
we executed an empirical study, which is presented in Sect. 7 with more details.
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5 Design and Implementation

In this section we explain how the model-driven query language system we envi-
sioned has been materialized. Figure 5 presents the overall architecture of our
system which we have implemented on top of MDSheet [10].

Fig. 5. The model-driven query system

In MDSheet all mechanisms to handle models and instances are already
created. This is our starting point: in the left part of the figure we show a
spreadsheet instance and its corresponding model. The second required part is
the query over the model/instance. This will be explained in detail in the next
Subsect. 5.1. The spreadsheet instance is then denormalized, as we will explain
in Subsect. 5.2, and the query over the model is translated into a Google query,
as explained in Subsect. 5.3. The Google query and the denormalized data are
sent to Google and the result received is shown in the bottom-right part of the
figure, described in Subsect. 5.4. Finally, a new model is inferred so the result
can be used as input to a new query, as explained in Subsect. 5.5. This last step
is necessary since we want the queries to be composable, and new models to be
generated from queries.

Before presenting the algorithms that are used by our query mechanism, let
us introduce our Haskell representation of models and instances.

data Class = Class Name Expansion [Attribute ] HName VName
data Expansion = Horizontal | Vertical | Both | None
data Attribute = Attribute Name [Value ]
data Value = Value Val InstanceH InstanceV
data Layout = Layout [(Name,ClassName)]
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These are the four main data types for querying in our framework. The Class
data type holds the Class’s Name, Expansion direction (either Horizontal, Ver-
tical, Both, or None) a list of Attribute(s), and its horizontal/vertical class name
if it has one (HName/VName). Each attribute also has a Name, and a list of
Values, in which each Value has the value in a cell (Val), and its horizontal and
vertical instance (InstanceH and InstanceV ). These instances are used to know
which relational classes to combine with. The Layout data type has the header
information of the denormalized data, including the attribute’s Name and class
name (ClassName).

We can show the top function of our system. It receives the user’s query,
along with the worksheet being used. It then passes through all the processes
previously mentioned (denormalization, translation, execution, and inference)
and returns the new model and instance.

querysheet :: Query → Worksheet → (Model , Instance)
querysheet query worksheet =
let (model , inst) = getModelInstance worksheet

(denormData, layout) = denormalize model inst
googleQueryFun = translate query layout
queryResults = runGQF googleQueryFun denormData
(newModel ,newInstance) = inferClassSheet queryResults

in (newModel ,newInstance)

In the next Subsections we will explain in more detail each of the steps of
our algorithm.

5.1 Model-Driven Query Language

The Model-Driven Query Language (MDQL) is very similar to the standard
SQL language, while also allowing some of the GQF’s clauses such as LIMIT and
LABEL. To create the MDQL, we used advanced engineering techniques, namely
generalized top-down parsers and strategic programming to traverse trees.

The syntax of our query language is defined in the grammar shown in
Listing 1.6. As we can see, instead of selecting column letters in the SELECT
clause, the user can select the ClassSheet attributes he/she wishes to query, while
also allowing him/her to further specify, as to avoid any naming conflicts which
may occur, alternative ways of naming the attribute such as:

– stating its name - (Cost)
– stating the attribute along with its classes’ name (Year.Total)
– stating both classes ((Year, Category).Total or (Category, Year).Total)
– stating all the attributes in a given class (Category.*)
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Listing 1.6. Part of the model-driven query language syntax

SELECT [DISTINCT] (* | attr1, ...,agg(attrX), ...)
[FROM ClassSheet1, [JOIN ClassSheet2], ...]
[WHERE conditions]
[GROUP BY attr1, ...]
[ORDER BY attr1 [ASC|DESC], ...]
[LIMIT numRow]
[LABEL attr1 ’new_attr1’, ...]
[WITH HISTOGRAM]

attr ::= attribute
| Class .*
| (Class1, Class2).*
| Class.attribute
| (Class1, Class2). attribute

agg ::= Sum(attr)
| Count(attr)
| Avg(attr)
| Min(attr)
| Max(attr)

conditions ::= attr logic attr
| attr logic ’string ’
| attr logic number

logic :: = < | > | <= | >= | == | !=

The MDQL also has a FROM clause, very reminiscent from the same clause
in SQL, which allows the user to choose which ClassSheet model(s) to use for
the query, in cases where more than one ClassSheet is present in a spreadsheet.
Also note that as in SQL we allow JOIN operations between two ClassSheets
(nonexistent in the GQF). We also have the LIMIT clause to limit the amount
of results returned by a given number, and LABEL to rename attributes to a
given name, both originating from GQF clauses. The WHERE, GROUP BY, and
ORDER BY clauses work the same as in SQL, applying filters such as where
an attribute is equal to a given name (e.g. Category.Name = ‘Travel’), group-
ing values to apply an aggregation function, and ordering by a given attribute
either ascendant (ASC) or descendant (DESC), all three respectively. Finally,
the DISTINCT clause was also implemented (also nonexistent in the GQF) to
remove duplicated results which may occur, and WITH HISTOGRAM is used
to state if the user wishes the results produce a histogram chart to visually show
the results.

Since this language is very similar to SQL, it allows users who already know
basic SQL to simply jump into query writing in this system, avoiding the need to
learn a new language, allowing us to adapt the most used query language instead
of creating one, while also allowing queries to be more elegant, concise, robust
and understandable for spreadsheets, along with being easy to learn since the
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SQL-language is often described as “English-like” because many of its statements
read like English [17].

5.2 Denormalization of Spreadsheet Data

As mentioned before, to be able to use the Google Query Function, the data
must be in a single matrix format, with the headers present in the first row.
In consequence of this restriction, for a user to be able to write all the queries
possible with the data, every bit of data from the spreadsheet has to be written
in this single matrix structure. To do so, the data has to be in a redundant
state, combining the data from multiple tables together, reminiscent of a JOIN
between tables in databases, thus duplicating the data. In other words, we have
to denormalize our spreadsheet data [18].

To correctly do this, we must first obtain all the necessary and critical infor-
mation from the ClassSheet models, and their attributes/data. To begin, we
obtain this information from the MDSheet framework (atleast in this context),
such as which ClassSheet classes exist, their names, their expansion direction
(horizontally, vertically, both, or none at all) and most importantly the attributes
in each class.

After obtaining the ClassSheet models and data, we begin the denormaliza-
tion process, where we denormalize the models used in the query, and join the
relational models with their corresponding horizontal and vertical classes. This
denormalization process is automatic, and can always be done on the ClassSheet
data, as long as we have the ClassSheet model and the conformed data. A frag-
ment of that denormalization process can be seen next.

denormalize :: Model → Instance → (Data,Layout)
denormalize model inst =

let allClasses = merge model inst
relationClasses = findRelations allClasses
res = relationDenorm relationClasses allClasses
ssdata = getData res
layout = getLayout res

in (ssdata, layout)

As we can see, the first step is to merge the model and instance information
together into an intermediate representation we use. Using that intermediate
representation, we find the relational classes, for example (Category, Year), and
then denormalize the data in the relation, and obtain the spreadsheet data and
layout. The true process of denormalizing the data is presented next.

relationDenorm :: [Class ] → [Class ] → Table → Table
relationDenorm [ ] ac tab = tab
relationDenorm ((Class n exp attrs hName vName) : cs) ac tab =

let hClass = getClass hName ac
vClass = getClass vName ac
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classResJoin = rJoin (Class n, exp, attrs, hName, vName) hClass vClass
tabRes = addTable classResJoin tab
table = relationDenorm cs ac tabRes

in table

rJoin :: Class → Class → Class → Class
rJoin (Class n exp (attr : as) hName vName) hClass vClass =

let hAttrs = getHInstances attribute (getAttributes hClass)
vAttrs = getVInstances attribute (getAttributes vClass)
clas = (Class n exp ((attr : as) ++ hAttrs ++ vAttrs) hName vName)

in clas

We obtain, through the class names, the appropriate classes, which we then
use to correctly match and join the information from the relational classes. This
process happens in the rJoin function, where we use the HInstances and VIn-
stances to properly match the relational class, with its two “parent” classes.

A more detailed explanation of the denormalization process, along with
examples, and description of certain problems automatically solved, can be found
in [15].

5.3 Translation to Google Query

The main reason we chose not to develop a new querying engine, but re-utilize
the QUERY function’s querying engine, is because we do not want to try to
compete with Google in terms of performance and speed where Google has shown
dominance in developing querying engines.

To properly run the GQF, our model-driven queries must adhere to the Visu-
alization API Query Language [19], specified by Google. So, for our model-driven
queries to function correctly, a translator was made to transform the model-
driven queries to their equivalents for the GQF. To do so, we took advantage of
a strategy language to control transformations and pattern matching, to trans-
late and inspect the query respectively.

The translator automatically calculates the range from the ClassSheet mod-
els selected, in the FROM clause for example, by using a lookup function to find
what is the new range of data after the denormalization process. It also substi-
tutes the attribute names to their corresponding column letters in the denormal-
ized data, without the user having to do so. After parsing the user’s query, and
verifying that each attribute chosen by the user exists, and has no conflicts, such
as any ambiguous attribute names due to the attribute name repeating in more
than one ClassSheet (which may be solved by adding the class name beforehand
as shown in Sect. 5.1), we apply another lookup function on each attribute, and
calculate the column letter corresponding to each attribute. A fragment of one
of the lookup functions (for translating an attribute with its class name) can be
seen in the following:

lookUp :: (Name,ClassName) → Layout → String
lookUp p (Layout l) =
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let allIndices = elemIndices p l
in if (length allIndices) ≡ 1

then intToColumn (head allIndices)
else "ERROR"

Using the lookUp function, we find the matching header, and if there is
one and only one occurrence, we translate the index number to its appropriate
column letter (for example 0 = A, AA = 27). If more than one occurrence occurs,
or no occurrences, we send an error.

Now having both the denormalized data and translated model-driven query
ready, we can send the spreadsheet data to Google Spreadsheets, run the GQF
and afterwards retrieve the results for the user to view in its spreadsheet.

5.4 Google Spreadsheets

To be able to send the spreadsheet data to Google Spreadsheets and run the
GQF, we turned to the Google Spreadsheets API version 3.0 [20], an API which
enables developers to be able to create applications that can read, write and
modify the data in Google Spreadsheets. It allows us to manage the worksheets
in a Google spreadsheet, manage cells in a worksheet by position, and also allows
us to create spreadsheets, worksheets, insert and delete data, and retrieve a single
worksheet or a spreadsheet, along with authorizing requests and authentication.

So before we acquire the query results, we begin by creating a temporary
worksheet which will be filled with the denormalized data, followed by creating
a second temporary worksheet where the query function string is sent to. When
the query function is inserted into a cell, it calculates the results, and now that
second worksheet contains the query results. Finally, the results are retrieved,
the temporary worksheets removed and an inference technique is ran before
presenting it to the user.

5.5 ClassSheet Inference

In order to make the queries composable, that is, to allow the output of a model-
driven query as the input of another model-driven query we must provide the
results from the GQF with a model. Without having a model, it is impossible to
make a query on a result of another query. Previous work in this field introduced
a technique to automatically infer a ClassSheet model from spreadsheet data [21].
Thus, applying this technique on the results obtained from the GQF, we can now
infer the correct ClassSheet model and have it alongside the queried results. For
example, applying the inference technique to the results from Query2 presented
in Table 2, we would obtain the ClassSheet model shown in Fig. 6, and now
present the user the results alongside its model.
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Fig. 6. Model automatically inferred from the spreadsheet data shown in Table 2

6 QuerySheet

The model-driven query language and the techniques proposed in the previous
sections are the building blocks used to construct a tool, integrated in MDSheet
and OpenOffice/LibreOffice, named QuerySheet [4].

Fig. 7. A model-driven spreadsheet representing Budget information

To demonstrate QuerySheet, we will be using the same running ClassSheet
model, shown on the left in Fig. 7. Suppose we wanted to answer our previous
question:

– What was our total quantity per year?

In QuerySheet, we can express the query based on the ClassSheet model. The
tool provides a New Query button, which opens a text box to allow the user to
define a query. As we can see in Fig. 7 on the right, we have the query for our
first question, and as expected, the query looks very much like SQL, using the
same keywords and syntactic structure. Moreover, we now use the ClassSheet
entities to identify the attributes to be queried.

When executing the query, QuerySheet passes through all the phases
explained in the previous Sections and shown in Fig. 5, while also generating
the result as a ClassSheet-driven spreadsheet. In fact, two new worksheets are
added to the original spreadsheet: one containing the spreadsheet data that
results from the query (Query1.instance), and the other contains the ClassSheet
model (Query1.model), as shown in Fig. 8. This whole process is depicted in
Fig. 9.
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Fig. 8. A model-driven spreadsheet inferred from Query1

Fig. 9. The architecture of QuerySheet

7 Empirical Evaluation

To validate our query system, a study was planned and executed, to obtain
results of end-user’s experiences, productivity, and feedback. We ran this study
one participant at a time. This allowed us to see each participant using our
system and learn the difficulties participants were having and how to improve
the system to overcome them.

For this study, we had seven students participating, all with basic or minimal
knowledge of SQL, who are studying informatics/computer sciences, ranging
from Bachelor to PhD students.
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For this study we prepared a tutorial to teach them how to use Google’s
QUERY function and the QuerySheet system with a series of exercises using
both systems. When the users were comfortable with each system, the actual
study was performed.

In the actual study, a real-life spreadsheet was used, which we obtained, with
permission to use, from the local food bank in Braga. We then explained to the
students how the information was represented, and how to properly read the
spreadsheet, in this case, information regarding distributions of basic products
and institutions. This specific spreadsheet had information on 85 institutions
and 14 different types of basic products, giving way to over 1190 lines of unique
information.

We also denormalized the information for the students (since we wanted to
study the end-user’s interaction with the two different systems, and already knew
that denormalizing over 1000 lines of information would take a long time), and
also prepared the spreadsheet model and conformed instance in the MDSheet
environment. Since we can not show the actual spreadsheet due to revealing
private information, only the spreadsheet model (the same one used in the study)
is presented below in Fig. 10.

Fig. 10. A model-driven spreadsheet representing institutions, products, and distrib-
utions, used in the empirical evaluation

As we can see in the model, and hence the actual spreadsheet, the Dis-
tribution class is composed of a Institution class and a Product class. The
Institution class has its Code (Institution’s Code), Name (Intitution’s Name),
lunch (units used for lunch and snacks) and dinner (units used for lunch and
dinner). The Product class has a Name (Product’s Name), a Code (Prod-
uct’s Code), and Stock which represents the amount of that specific product
they have in stock. The relationship between both classes gives us information
on the quantity Distributed of a specific Product to a specific Institution.

For the study, a series of four questions were asked to the students, regarding
the information present in the distributions spreadsheet:

1. What is the total distributed for each product?
2. What is the total stock?
3. What are the names of each institution without repetitions?
4. Which were the products with more than 500 units distributed, and which

institution were they delivered to?
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For each question, they would answer it using Google’s QUERY function,
and the QuerySheet system, alternating between starting with one then the
other (the starting system would also alternate between students, so one would
begin alternating starting with QuerySheet, and another would begin alternating
starting with Google’s QUERY function). This alternation was introduced in the
study so the potential learning from answering a question in one system could
not interfere with the results. Since different participants started by answering
the same question using different querying systems, the potential learning can
be ignored for both systems.

The students were asked to write down the time after carefully reading each
question, and the time after the queries were executed with no errors (the cor-
rectness of the queries and results were analyzed afterwards), repeating for each
system, so they would read the question, write down initial time, write down
concluding time, and repeat starting with reading the question once again.

Along with writing down the time, after each question, and having answered
it using both systems, the students were asked to choose which system they felt
was more: Intuitive, Faster (to write the queries), Easier (to write the queries),
Understandable (being able to explain and understand the written queries).

After finishing answering the questions, the students answered which system
they preferred and why, and what advantages/disadvantage existed between the
systems. Some of the comments can be seen below:

– “The usage of models helped alot in building the queries. And not having to
calculate the range saves time and headaches.”

– “Using attribute names instead of column letters is simple and natural.”
– “QuerySheet is much more intuitive to use, as simple as looking at the model
and attribute names and then I could begin writing queries.”

The results were gathered and analyzed, and are now presented in Fig. 11.
The left side (Y-Axis) represents the number of minutes the students took to
answer the questions. The bottom side (X-Axis) represents the Question the
students answered. The green bars represent the Google QUERY function, and
the blue bars represent the QuerySheet system.1

As we can see, users using the QuerySheet system spent significantly less
time to write the queries to answer the questions, ranging from as much as 90 %
less to 40 % less, averaging out to 68 % faster.

Regarding the system they felt was more Intuitive, Faster, Easier, and Under-
standable, almost all chose the QuerySheet system.

We also analyzed the results and queries written, and in the cases where the
queries/results were incorrect, almost all were with the Google QUERY function
system, ranging from incorrect column letters chosen, to incorrect ranges.

Furthermore, the written questions at the end also gave us positive feed-
back. Users stated that using the QuerySheet system was much easier to write
the query, being able to look at the model to understand the logic behind the
information, and not having to deal with calculating the ranges, or worry about
1 We assume colors are visible through the digital version of this document.
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Fig. 11. A chart detailing the information gathered from the empirical evaluation

positing of information, while being easier to understand what is being written
and in turn was more intuitive.

With the user feedback, we were also able to understand what is still needed
in QuerySheet, such as having a way to store the previous queries for future use.
Along with the direct user feedback, we also realized that a basic knowledge of
SQL is needed, as expected, to be able to correctly answer the questions. Users
who incorrectly wrote queries in the QuerySheet system always incorrectly wrote
them in Google’s QUERY function, due to bad query construction. One of the
comments received was to have an interface to build the query visually and
not descriptively written, something we already believed would be helpful and
needed for a user not used to SQL writing.

8 Conclusion

In this paper, we presented the design and implementation of a query language
for model-driven spreadsheets. We designed the query language focusing primar-
ily on how expressive, friendly, readable, and intuitive the queries would be to
the users. As our study showed we were able to implement a system that can in
fact be used to query spreadsheets in a way users are comfortable with.

Indeed we created a query system that can be used to further knowledge
extraction from the spreadsheets. For instance, an interesting way to take advan-
tage of it, is to use it for detecting smells in spreadsheets [22–24], similarly to
Fowler’s idea of detecting bad smells in source code [25]. With our query lan-
guage, a user can easily detect a specific bad smell on a spreadsheet, before
having to handle possibly critical data. This can even be simplified using a pre-
defined set of template queries.
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8.1 Future Work

Even with the good results and responses in regards to the work already accom-
plished, some interesting directions of future research were identified.

Although the empirical results we have presented are interesting, they were
the result of a study with only seven participants. We are already planing a
second study, this time with more participants so we can confirm our initial
results, and provide a more thorough analysis.

Currently, each time a user executes a query, the data is denormalized on-the-
spot. A possible way to improve this is to have it so that this full on denormal-
ization is done only once in the beginning, and further changes to data and/or
models are changed incrementally, either during the changes, or in the next query
execution. An interesting topic which can bring in another level of functionality
to the framework, and take advantage of an incremental denormalization, would
be synchronization with the query results and original data. By this we mean,
allowing a user to, e.g., update the information of one of his/her employees from
a previous query result, and in turn this update would reflect upon the orig-
inal data which the results came from. Acting almost as if the results were a
View Table on the original spreadsheet data, possibly using techniques from [26]
regarding ways to solve the update-view problems.
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Department of Programming Languages and Compilers, Faculty of Informatics,
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Abstract. Cyber-Physical Systems (CPSs) are distributed systems com-
posed of computational and physical processes, often containing human
actors. In a CPS setting, the computational processes collect informa-
tion about their physical environment via sensors and react upon them
using actuators in order to realize a change in the physical world.

In the approach presented in this paper, a CPS application is described
as a hierarchical workflow of loosely-coupled tasks whose execution can
be constrained with various conditions. We have designed a framework
(Pέα) of a minimal set of combinators implementing features relevant
to CPS programming. The details are revealed through an illustrative
example defined in our fully functional implementation embedded into
an extended version of the Erlang distributed functional programming
language.

Keywords: Cyber-physical system ·Task-orientedprogramming ·Work-
flow · Domain-specific language

1 Introduction

Cyber-Physical Systems (CPSs) are around us. The information systems that
influence our lives so much are getting integrated, and increasingly interact with
activities and processes of the real world. There are many application domains
where Cyber-Physical Systems have appeared. However, from the programmers’
perspective, Cyber-Physical Systems also constitute a well-defined domain. Pro-
gramming such systems requires a certain set of techniques, and many CPS
applications share a certain set of requirements. Therefore, we aim to discover
methodologies for developing CPS applications and provide support for CPS
programming.

The approach we have taken is based on a recent programming paradigm,
task-oriented programming (TOP), in which computations are defined as work-
flows of simpler computational steps usually called primitive tasks. We designed
a hierarchical workflow language (Pέα), whose features are presented in this
paper. The language provides a minimal set of combinators that are relevant to
CPS programming.

Pέα is a domain-specific workflow language the first incarnation of which
is an embedding into an extended version of the distributed functional pro-
gramming language Erlang. We choose Erlang due to its built-in capabilities
c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 479–506, 2015.
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of seamless distribution. Moreover, TOP and functional programming makes it
able to orchestrate a complex application from loosely coupled building blocks.
This seems to be a crucial characteristic for easing the testing and verification
of such complex systems.

To demonstrate the capabilities of our framework, a small scale example has
been worked out the implementation of which poses all the challenges with which
developers of large scale CPS applications have to cope. Besides implementing a
workflow application for the example, we have tailored a special piece of hardware
to run the application and give a real-world demonstration. Different features of
Pέα are revealed through the step-by-step construction of a control application
for that example.

We have two contributions presented in this paper:

– We designed Pέα, a distributed, hierarchical workflow system for building CPS
applications from loosely coupled tasks whose execution can be constrained
with various conditions.

– We implemented a fully functional Pέα framework as an embedding into an
extended version of Erlang.

The rest of the paper is structured as follows. The problem domain at hand,
Cyber-Physical Systems, is summarized in Sect. 2. Section 3 describes the prin-
ciples of Pέα followed by a review of an illustrative example in Sect. 4. The
workflow application controlling the device described there is revealed using
the actual syntax of the Pέα implementation embedded into Erlang in Sect. 5.
Related work is discussed in Sect. 6 and, finally, Sect. 7 concludes the paper.

2 Cyber-Physical Systems

Cyber-Physical Systems [14] are networks of computational and physical pro-
cesses, often containing human actors. In a CPS setting, the computational
processes collect information about their physical environment via sensors and
react upon them using actuators in order to realize a change in the physical
world. Some examples, to illustrate the vast diversity of the application domains,
are as follows: automated production lines, automated transportation systems,
infantry fighting vehicles, robotic surgery, smart home and smart city applica-
tions.

Nevertheless, those very different application domains have common attributes
raising issues that are to be addressed. Computational devices involved in a CPS
are typically embedded devices, i.e. limitations on power consumption and perfor-
mance have to be considered. There is a network of computational devices work-
ing to reach a common goal, which needs an efficient goal-driven distribution of
data and computation among those nodes. Physical environment is to be taken
into account when defining the behaviour of the system, which also should be able
to react in a physical way. To that end, handling sensors and actuators has to be
an essential piece of the building blocks upon which a CPS application is built.
A special part of the applications’ physical environment is the segment of human
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beings. Making humans able to interact with a smart system in a comfortable
way is to be settled as well. Last but not least, most of the CPSs are critical
systems on which even human lives might depend.

There are also other requirements with which CPSs’ software must deal,
e.g. real-time constraints, robustness, fault-tolerance, failure recovery, adaptivity,
safety and security.

Our first step towards answering the aforementioned challenges is Pέα pre-
sented in this paper. Its current implementation addresses the basic questions of
CPS development. More sophisticated software features – e.g. failure recovery,
adaptivity or a limited scope of timing constraints – could be easily implemented
using current features. Other issues – such as precise worst-case execution time
and resource consumption estimation – need more research to be done.

3 Pέα – A language for Cyber-Physical Workflows

In Pέα, the behaviour of a CPS application is described as a workflow of loosely
coupled tasks whose execution can be constrained with various conditions, where
tasks are composed by combinators that are applicable to CPS programming.
Principles and considerations behind the design of Pέα are published in [12].

The basics of task-oriented programming are summarized in Sect. 3.1. The
details of Pέα compared to the general principles of TOP are exposed in Sect. 3.2,
and a short description on the DSL implementation in Erlang is provided in
Sect. 3.3. A more detailed elaboration of Pέα’s features is provided through an
example in Sect. 5.

3.1 Task-Oriented Programming

Task-Oriented Programming (TOP) [18] is a novel programming paradigm for
the development of distributed multi-user applications which extends pure func-
tional programming with a notion of tasks and operations for composing pro-
grams from tasks. Its four main concepts are as follows:

– Tasks: Tasks are abstract descriptions of interactive persistent units of work
that have a typed value. Other tasks can observe the current value of a task.
The observed current value can be of three kinds: (1) the task has no observable
value; (2) the current value of the task is unstable, it may change in the future;
(3) the current value of the task is stable, it is the final value of the task.

– Many-to-many Communication with Shared Data: When multiple tasks are
executed simultaneously, they may need to share data among each other. In
TOP, typed abstract interfaces, the so-called Shared Data Sources are pro-
vided to read, write and update shared data atomically. When one task mod-
ifies shared data, the other tasks can observe this change.

– Generic Interaction: A TOP framework generates user interfaces generically
for any type of data used by tasks. This means that the framework can be
asked to manage single interactions such as entering, updating or displaying
some data, and it takes care of all the related job automatically, e.g. generating
a user interface, client-server communication, state management, etc.
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– Task Composition: TOP defines a small carefully designed set of core com-
binator functions from which complex patterns can be constructed. These
are: (1) dynamic sequential composition, where dynamic means that the sub-
sequent task can be dependent of the current value of some initial task;
(2) parallel composition: the simultaneously executed tasks have read only
access to the current values of their siblings to be able to monitor each other.

3.2 Tasks and Combinators in Pέα

A Pέα task corresponds to that of TOP, dynamic sequential and parallel com-
positions are supported as well. Instead of shared data sources, Pέα provides
the pipe construct for tasks to observe the current value of another task. Note
that the functionality of a shared data source can be easily simulated by using
pipes. Pέα has some primitives for interacting with the user via a form-based
user interface. The implementation of this might seem rudimentary - but keep in
mind that Pέα is supposed to be used (mostly) in headless embedded systems.

In Pέα, a constant value can be turned into a task with the function return;
while a complex computation defined by a host-language function can be trans-
formed into a task by using the function task create. Such tasks are called
primitive tasks, as they are the smallest building blocks of workflows. More com-
plex tasks, that are considered workflows, can be created by combining already
defined ones using combinators. Besides stable and unstable values, a task in Pέα
can result in a special kind of final value, exception, which stops the execution
of subsequent tasks.

The system provides predefined primitive tasks. Two general ones are the
following: (1) delay blocks for a given amount of time, then results in a special
stable value timeout; (2) current node returns the name of the Erlang virtual
machine it is executed in. GUI operations, pipes and message passing among
simultaneously executed tasks have their predefined primitive tasks as well.

Primitive tasks are considered atomic operations, which typically do not
have unstable values. The predefined task show form, which handles the user
interaction with a GUI form, is an exception to this as it raises unstable values in
correspondence with state changes of GUI elements. Nevertheless, the function
task create, which is provided for workflow developers to create their own
application-specific primitive tasks, supports only the creation of tasks without
unstable values.

Combinators that can be used to compose tasks to build more complex ones
in Pέα are shown in Fig. 1. We introduce a graphical representation of the combi-
nators in order to ease understanding of program logic for domain experts. There
is a 1-to-1 mapping between elements of the graphical notation and elements of
the language - thus, executable code can be generated from such diagrams in
a straightforward manner.

The sequence combinator simply executes two tasks in a sequence, passing
the result of the first task to the second one. It is the only combinator which
raises new unstable values: the inner result of the sequence becomes an unstable
value when produced by the first task. All the other combinators propagate
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Fig. 1. Combinators in Pέα

or process the unstable values raised by instances of the sequence combinator.
While stable values are passed on according to the control flow, unstable values
are propagated backward in the control flow graph.

The parallel combinator is to use when concurrency is required in a workflow.
The combinator operates in the fork-join model: all the subtasks are executed in
parallel and the whole construct would finish when all parallel tasks are finished.
The unstable and stable values of the parallel combinator is a list consisting
of those of the subtasks. A task executed by the parallel combinator is able to
observe the actual state of its siblings through a pipe created by the combinator.
Moreover, parallel tasks are able to send messages to each other according to
the roles associated to them.

A controller executes a task and processes its unstable values. Each unstable
value raised inside of the observed task triggers the execution of the so-called
plan, which is a task with a special result. The stable value of a plan can be of
two kinds: (1) an unstable result indicates that the observed task can continue
and the value resulted by the plan is propagated as unstable value to other tasks
observing the controller; (2) a stable result means that the observed task is to
be stopped and the value resulted by the plan is the result of the controller. If
the observed task completes without the controller stopping it, the result of the
controller is that of the observed task. Hierarchies of tasks can be defined by
means of nested controllers. Note that the unstable values of a plan are ignored
by the executing controller. Though a plan could be constructed with controllers
inside, such a practice would lead to workflows of bad design.
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Pέα provides specificators to constrain the execution of tasks according to
a number of conditions. Currently, specificators defining constraining conditions
on the location and time of the execution of a task are built in to Pέα. The usage
of the resource specificator is shown in Fig. 1. When executing a task annotated
with a resource specificator, the runtime environment ensures that the annotated
task is going to be executed on a node which provides the specified resource(s).
Note that we can say role when talking about a number of resources connected
to each other and provided always together, e.g. a node running on a kettle
provides the resources heating elements and thermometers, and is referred to as
a node of the role kettle.

A pipe can be used to observe the state of a task which is in an unconnected
part of the control flow graph – namely in a parallel branch of execution. Note
that unstable values are propagated backward in the control flow, thus sibling
tasks cannot observe each other’s state without pipes. A pipe can be used in
two ways according to its two endpoints: (1) a task can be tapped with a pipe,
in which case the unstable values of the tapped task are propagated through
the pipe, and the behaviour of the tapped task does not change locally; (2) the
receiving end of a pipe can be observed by a controller, so making it possible
for the remote state to be taken into account. Data flow paths unrelated to the
control flow can be introduced in a workflow this way.

More details about the combinators and their usage are discussed in Sect. 5.

3.3 Implementation as an Embedding into Erlang

A fully functional implementation of the system is developed as a domain-specific
language embedded into an extended version of the Erlang [1] functional pro-
gramming language. Erlang has been chosen as a host language for the first
implementation of Pέα since it is a widely used programming language for
implementing highly scalable, distributed, reliable, and fault-tolerant software
systems [6]. Even though having appropriate properties for implementing the
designed features, Erlang is certainly not suitable as a host language for embed-
ding DSLs into and does not support code mobility.

To mend the above mentioned flaws, Pέα workflows are implemented in an
extended version of the Erlang language. Programs in this language are trans-
lated back to simple Erlang in one single step, then compiled and run as usual
Erlang applications. The required transformations are implemented twice with
two different software transformation tools separately to compare their capa-
bilities. One of the tools is a fork of RefactorErl [4], which is a static analysis
and refactoring toolkit for Erlang. The other one is a standalone tool developed
using the Spoofax language workbench [9], which is a general-purpose toolkit for
implementing (domain specific) languages.

The combinators of Pέα are implemented as regular Erlang functions, but are
provided for workflow developers as operators of the language. Custom operators
cannot be defined nor overridden in pure Erlang. However, the extended language
gives us a natural way to let arbitrary function names be used in prefix or infix
form. Even precedences can be assigned to them. Appropriately exploiting these
features, even mixfix operators can be expressed.
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Using resource specificators requires the framework to transmit tasks between
separate Pέα nodes. Sending tasks between Erlang virtual machines is not trivial.
More often than not, a task consists of primitive tasks defined by means of
anonymous Erlang functions. Erlang does not support sending such functions
out of the virtual machine in which it is defined. To overcome this limitation,
we extended Erlang with so-called portable functions. These are supported by
a transformation which turns anonymous functions into complex data terms
representing the computations along with their dependencies attached.

Further details on the language extension are revealed in [8].

4 Illustrative Example

Having described our problem domain, Cyber-Physical Systems, and the basics
of our framework, an illustrative example, the implementation of which poses
all the challenges with which developers of large scale CPS applications have
to cope, is discussed. The problem and the hardware abstraction layer of the
solution are revealed in the current section, while the control logic implemented
as a Pέα workflow is presented in Sect. 5.

4.1 Bringing Water to Boil

The example is about an interactive, computer-controlled, networked, safe and
fault tolerant kettle. Features include letting the user define when she would like
to have hot or boiling water; how hot exactly should the water be; automatic fault
detection and correction by using hot spares of hardware components; cutting
off heating when water reached the desired temperature and maintaining that
level of temperature until water is consumed or unit is turned off.

The kettle is a wireless device connecting to a network. Other devices con-
nected to the same network can monitor and control the kettle. This scenario is
shown in Fig. 2. Currently, only one device is allowed to be in control of the kettle
at a given time; nevertheless any number of devices could monitor its status.

In that small scale Cyber-Physical System, the control application may be
executed on separate devices in a distributed manner – among which there could

Fig. 2. Wireless access to the kettle
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be embedded systems as well. The kettle itself is an embedded device in such a
system. The application measures specific properties of the physical world via
thermometers and reacts upon changes via actuators – namely by turning coils
on and off.

Some details about the hardware and the software environment running on
it are exposed in Sect. 4.2; its Pέα interface – as a set of application-specific
primitive tasks - is described in Sect. 4.3. Main parts of the control application
are elaborated in Sect. 5.

4.2 The Hardware

Our tailor-made piece of hardware, “The Budapest Kettle”, consists of multiple
coils and thermometers which are directly controlled by a custom circuit. The
controller application runs on a tiny, WiFi-capable router built into the kettle,
which is thus able to take part in a distributed network of Pέα nodes.

The heater tank contains 3 off-the-shelf electric kettles built into one com-
mon enclosure along with 3 thermometer chips. The coils and the temperature
measurement units are directly connected to a self-designed interface board with
relays, data converters and an 8-bit microcontroller. The main computing unit
of the kettle is a travel router with a MIPS24Kc processor. The serial commu-
nication link provided by the interface board is connected to the router via a
Serial over USB adapter.

The firmware of the interface board has also been developed in our lab. The
router runs a copy of OpenWRT, an embedded Linux distribution for routers,
on which Pέα is executed by a stripped down version of Erlang R16B01 release.

More details about the hardware and the software code are provided on our
website: http://cps.elte.hu/kettle.

4.3 Low-Level Control

Without exposing the actual protocol implemented by the interface board, a
short summary on the features is given.

– The board can read the current values from thermometers and return a list
of raw measurements – voltage levels –, that need to be converted to degrees
Celsius according to the specification of the used thermometers.

– The board can be instructed to change the states of relays connected to it, so
switching individual coils on and off.

– Last but not least, the board is able to provide information about the project
during which the research and development have been carried out.

The interface board has a serial communication port connected to the embed-
ded router via USB using a Serial to USB converter, which yields a serial device
on the Linux system. Connecting to the serial device directly from Erlang is
not so easy to do because the Erlang virtual machine does not allow blocking
functions. Therefore, natively implemented functions (NIFs) have to be used to

http://cps.elte.hu/kettle


Rea: Workflows for Cyber-Physical Systems 487

realize such functionality. There is a publicly available Erlang module, srly,
providing direct access to serial devices. However, it uses platform-specific fea-
tures in NIFs that make it incompatible with the architecture of our embedded
router’s CPU. Thus, communication is performed through TCP, which needs a
Serial-TCP bridge running on the router.

For safety reasons, the board automatically cuts off the power supply of the
coils when there is no communication for a considerable length of time.

The controller module, kettle controller, is implemented as an instance of
Erlang OTP’s gen tcp behaviour, which connects to the Serial-TCP bridge on
localhost and runs as a service in the Erlang virtual machine. A Pέα node run-
ning on a kettle has the role kettle, which indicates that the service implemented
by the module kettle controller is provided for the workflows executed on the
node.

Pέα applications are able to interact with the kettle via the interface func-
tions exported from the module kettle controller. The two relevant inter-
face functions of kettle controller are wrapped into primitive tasks, that are
utilised by the kettle controller application.

– read temperature receives measurements from thermometer chips, converts
them to actual temperature values and returns a list of them.

– set relays is a unary function whose argument is a list of 3 logical values
indicating for each coil if it has to be provided with power supply.

5 The Control Application

In this section, we define the main parts of an application controlling the
kettle described in Sect. 4. The application is revealed step-by-step from a trivial
solution to a complex one which has the features listed previously. The different
capabilities of our system are also explained along the way.

Only snippets of the full program code are presented in the paper. Fully
functional workflow applications are available for download on our web page.

5.1 Simply Bring Water to Boil

The very first version of the control application does not provide any sophis-
ticated features, it only brings the water to boil. All the coils are switched on
at the beginning, then switched off when the water temperature has reached its
boiling point.

The Trivial Solution. The entry point of the workflow listed in Code 1 is the
function main, which executes the workflow defined in control workflow on
a Pέα node having the role kettle. On such a node, the kettle controller

module is available, thus kettle-specific operations of the control application can
be executed. The remote execution combinator @!, which is a resource specifi-
cator, ensures that exactly one kettle will be selected to execute the workflow.
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kettle_plan() ->
fun!(V) ->
case V of
#task_value{value = {ok, Ts}} ->
effective_temperature(Ts) >>= fun!(T) ->
Error_Threshold = 3,
if
T > 100 - Error_Threshold ->
kettle_controller:set_relays([off,off,off]) >>|
stable({done, T});
true ->
unstable(T)

end
end end
end.

temperature_reading() ->
iterate(fun!() ->
kettle_controller:read_temperature() >>= fun!(Ts) ->
continue(Ts) end end).

control_workflow() ->
kettle_controller:set_relays([on,on,on]) >>|
temperature_reading() controlled by kettle_plan().

main() ->
execute(control_workflow() @! [kettle]).

Code 1. Simply bring water to boil

The control workflow consists of two tasks combined with a sequential com-
binator which discards the result of its first component, i.e. it is not used by the
rest of the computation. First, all three coils are switched on. After that, the
actual temperature of the water is monitored. The latter is implemented by a
controller which executes temperature reading controlled by kettle plan.

As the temperature must be measured continuously in order for the applica-
tion to be able to cut the power when the water starts to boil, measuring is imple-
mented as an iterative task. The iterative combinator iterate is provided with
a nullary function which defines a workflow reading the actual temperature and
returning it wrapped into a continue value. The resulted value indicates that
the workflow belonging to iterate is to be executed again. In that workflow, the
original variant of the sequential combinator is used, which makes it possible to
use the result of the first task later on. Note that temperature values returned by
read temperature are propagated towards the plan of the controller as unstable
values.
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temperature_reading() ->
iterate(fun!() ->
kettle_controller:read_temperature() >>= fun!(Ts) ->
delay(timer:seconds(1)) >>|
continue(Ts) end end).

Code 2. Delaying subsequent sensor readings

The plan in this case is very straightforward. It receives the actual tempera-
ture reading as a task value and lets the application run until the temperature
has reached the boiling point. The hardware interface returns a list of readings
from all of the temperature sensors. This list is then transformed into one value
by the task effective temperature. That task can compute the average of the
values or perform more sophisticated computations with the list, e.g. discarding
extreme values or sudden changes from a given sensor. In general, such design
decisions are made by domain experts.

Having an effective temperature computed, there is one simple question to
answer: is the water boiling yet? If the temperature is within the range of the
boiling point – considering an error threshold –, the coils are switched off and
a stable value is returned. Otherwise, the water is deemed to require more
heating. Note that returning a stable value indicates that the controlled task
is to be ended, and the workflow would continue its execution with subsequent
tasks.

In our example, as there are no subsequent tasks after the controller in the
workflow, the kettle control application is terminated.

Slowing down the Sampling Rate. In the previous version of the work-
flow, temperature is read continuously, which yields an overflow of sensory data.
Instead, the sampling can be made coarser by delaying subsequent sensor read-
ings. Again, it is up to domain experts to decide the right sampling rate. In
the case of the kettle, a 1 Hz sampling rate is sufficient to safely detect water
temperature.

The extended version of task temperature reading is listed in Code 2. In
this version, an extra task is put between the sensor reading and continue. One
of the predefined primitive tasks in Pέα is delay, which blocks for the given
amount of time, then returns a special value, timeout.

Note that higher level timing combinators, e.g. setting a timeout for tasks
and rerun tasks periodically, can be easily defined by the means of delay and
basic Pέα combinators.

Note that sensory data is propagated to the associated plan as soon as sequen-
tial combinators raise unstable values. The set delay only postpone later readings.
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form("kettle monitor",
[label(l1, "Temperature:"), label(temp, ""),
label(l2, "Coils:"), label(heat, ""),
label(comment, "")], []).

Code 3. Declarative description of the monitor form

ke t t l e wo rk f l ow ( ) −>
c r ea t e f o rm ( monitor form ( ) ) @! [ i o t mon i t o r ] >>= fun ! (Form) −>
par ( [
show form (Form) ,

cont ro l work f l ow (Form) @! [ k e t t l e ]

] ) end .

Code 4. The new entry point of the control workflow

5.2 Monitoring Status

The next step is to somehow visualise the status of the kettle. This is achieved
in a simple way, by using predefined Pέα GUI form components.

Creating a Monitor Form. First of all, a form is to be defined. Pέα supports
the declarative description of forms, as shown in Code 3. The form function needs
three arguments: the title of the form, a list of the form components and a list of
actions corresponding to buttons in the form — the rest is handled by the frame-
work.

In our example, the actual temperature and status of coils are committed to
the form with some comments, e.g. indicating that the water has reached the
desired temperature, or that something went wrong.

Having a form description generated by form, a form instance must be created
on a capable Pέα node and then shown on that particular node. The instantiation
of forms is performed by the task create form, which creates a form on the local
node and returns a descriptor which can be used anywhere inside the Pέα network
to reach the instance. A form instance can be shown, updated and stopped.

Let us consider the beginning of the life-cycle of a form as presented in
Code 4. A form is created on a node with role iot monitor, then displayed by
show form, which is run with control workflow in parallel. That is because
show form is blocking until the form is stopped, closed or one of its actions is
selected by clicking on a button. Nevertheless, the form descriptor is now passed
to control workflow as it is needed to update the components of the form.

A task updating temperature value in a form can be seen in Code 5. The
temperature value is converted into text, with which an update request is gener-
ated using form update. The update then can be realized by update form fed
with a form descriptor and an update request. A form can be updated before
and while it is shown, but not afterwards.
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temperature_writer(Form) ->
fun(T) -> task_create(fun!()->
Text = io_lib:format("˜p", [T]),
Update = form_update([label_update(temp, Text)]),
update_form(Form, Update)

end) end.

Code 5. Writing temperature to a form

create_form(monitor_form()) @ [iot_monitor].

Code 6. A task creating a number of monitor forms

Implementing other form updates are left as an exercise to the reader.
For this version of the workflow to be ready, kettle plan also needs some

modification to keep the information on the monitor form up-to-date: a few
update requests for the values on the form have to be inserted in certain points;
and the form is also to be stopped just before returning the final stable value
from the plan. This latter can be done by using the primitive task stop form

fed with the form descriptor.
Note that the remote execution combinator @, which is an other kind of

resource specificator beside @!, executes an instance of a task on each such node
that provides the required resource(s). Thus, the task of Code 6 results in a
list of form descriptors by creating a monitor form on each iot monitor node
connected to the Pέα network. Maintaining a number of forms would require
only a slight extension of the workflow to issue update requests for all of the
forms instead of just one of them.

Fig. 3. The final shape of the kettle monitor form
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monitor form plan ( ) −>
fun ! (#ta sk va lu e{value = [#task va lu e{value = FV} , ]}) −>
case g e t a c t i o n (FV) of
c l o s ed −>
stable ( continue (FV) ) ;

stopped −>
stable (FV) ;

−>
unstable (FV)

end ;

(V) −> V

end .

c on t ro l l ed mon i t o r f o rm ( ) −>
iterate ( fun ! ( ) −>
c r ea t e f o rm ( monitor form ( ) ) @! [ i o t mon i t o r ] >>= fun ! (Form) −>
par ( [
show form (Form) ,
form updater (Form)

] ) controlled by monitor form plan ( )
end

end) .

k e t t l e wo rk f l ow ( ) −>
par ( [
{monitor , c on t ro l l ed mon i t o r f o rm ( )} ,

c ont ro l work f l ow ( ) @! [ k e t t l e ]

] ) .

Code 7. Recreating the monitor form iteratively

The Form is Important. The definition of a monitor form does not contain
any actions (see Code 3), so show form will never return because a button was
pressed. Nevertheless, the user is able to close the form by clicking the ‘x’ at the
top of the tab (see Fig. 3). Although one form cannot be forced to remain open
against the user’s will, the user can be forced to deal with the form by recreating
it over and over again. As the status of the kettle is considered to be important,
the user will be forced to keep an eye on it when executing further revisions of
the workflow application.

Once a form somehow ends (closed, stopped or a button has been clicked),
its life-cycle is over and there is no way to do anything with it. A new form
has to be instantiated according to the same description and the new instance
is to be shown next time. This scheme can be implemented using the iterative
combinator, as can be seen in the second function in Code 7.

In this case, control workflow is not executed in a common parallel con-
struct with a show form, but with the iterative task taking care of recreating the
monitor form if needed. Moreover, that task has the role monitor, which makes
other tasks executing in the same parallel environment able to send it messages
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by using the predefined primitive task send role msg. Utilising message passing
facilities of Pέα is necessary because the dynamically changing form descriptor
is required for updating the status information.

Inside the iterative task, the descriptor of the form actually displayed is
available, thus the form updater task is able to directly issue updates on that
form. The implementation of form updater consists simply in iteratively receiv-
ing messages by means of the predefined task receive msg, and executing the
proper form updaters that were already used in the previous version of the
application. On the other side, form updaters are replaced with tasks sending
appropriate messages to the role monitor from control workflow.

The plan controlling the parallel task inside the iterative combinator seems a
bit complicated because parallel combinators are propagating a list of task values
inside an unstable value. Thus, pattern matching against a list of an appropriate
length is necessary. The result of a displayed form is of the record form value,
which contains an action and the final values of the form components. The action
can be one of the user-defined actions belonging to the form or one of two special
values: closed and stopped. The former indicates that the form has been closed
by the user, whilst the latter indicates that the form has been stopped by the
application itself. In the case of monitor form plan, the iterative task is to be
rerun if the user closed the form, i.e. it returns a continue value if the resulted
action is closed.

Note that form updates are causing unstable values of the record form value

raised with action updated, which is why the last branch is present in the con-
ditional expression. Also note that different instances of the monitor form might
appear on separate iot monitor nodes as the node is selected before each instan-
tiation. One could force the form to be recreated on the same node by two means:
(1) moving the remote execution operator outside of the iterative combinator or
(2) selecting an iot controller node outside of the iterative construct and
execute create form on that particular node every time by using the remote
execution combinator. The difference between the two alternatives is whether
the whole iterative task or only the form instantiations are to be executed on
the selected node.

5.3 Detecting Failures

The application is now able to report its status – at least the actual temperature
of the water and whether each one of the heating elements is on or off. But the
application is unable to detect any kind of failures; for example, the application
is going to wait indefinitely for the water to boil if only broken heating elements
are switched on. In order to detect erroneous situations, the workflow must be
aware of its history, that is, whether some events and states occurred recently.
Such functionality can be implemented in Pέα by using a controller with an
accumulator. To detect broken coils, only two parts of the workflow need to be
changed, whose new version can be found in Code 8.

In the function control workflow, the controller construct is extended with
an accumulator using the construct with accumulator with an initial value of 0.
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k e t t l e p l a n ( ) −>
fun ! ( Old, V) −>
case V of
#task va lu e{value = {ok , Ts}} −>
e f f e c t i v e t empe r a t u r e (Ts ) >>= fun ! (T) −>
s end ro l e msg ( monitor , {temp, T}) >>| t a s k c r e a t e ( fun ! ( ) −>
Error Thresho ld = 3 ,

i f
T > 100 − Error Thresho ld −>
shutdown ( ”Water bo i l ed . ” ) >>|
stable ({done, T}) ;

Old − T > Error Thresho ld −>
shutdown ( ”Heating element broken ! ” )>>|
stable ({ e r r o r , T}) ;

true −>
unstable (max( Old, T) , T)

end
end) end end

end .

c ont ro l work f l ow ( ) −>
change hea t ing e l ement s ta tu s ( [ on,on ,on ] ) >>|
temperature read ing ( )
controlled by k e t t l e p l a n ( ) with accumulator 0 .

Code 8. Control plan mainaining an accumulator

Now the plan has two arguments, the first one is the actual value of the
accumulator and the second is the unstable value propagated from the controlled
task. In the case of returning an unstable result, two values have to be defined:
a new accumulator value and a value which is to be propagated as an unstable
value upwards in the controller hierarchy.

As can be seen in the code listing, the plan sends messages in order to inform
the form updater running under the role monitor about the actual temperature.

The definition of the task shutdown is not listed in Code 8 as its implemen-
tation is really simple: it turns all the coils off and instructs the form updater
to write its actual argument into the comment label of the monitor form. Note
that the form updater here also takes care of stopping the form after setting the
comment.

The logic implemented by the plan is able to detect when the water temper-
ature is dropping, thus determining if coils are broken. The accumulator value is
always set to the maximum of the previous value and the actual reading in order
to prevent the water from cooling down slowly unnoticed, which could otherwise
happen when the temperature difference of subsequent measurements is under
the value Error threshold.
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control_form(T, D) ->
form("kettle controller",
[label(l1, "Temperature:"), textfield(t, T),
label(l2, "Deadline:"), textfield(d, D)],

[action(ok, "Ok"), action(cancel, "Cancel")]).

Code 9. Declarative description of the control form

{T, D} = {97, ""},
pipe() >>= fun!(P) ->
par([
{monitor, controlled_monitor_form()},
{control, controlled_control_form(T,D,P) @! [iot_controller]}

,
control_workflow(T, D, P) @! [kettle]
]) >>|
destroy_pipe(P) end.

Code 10. The task starting up the application

5.4 The Human in the Loop

The application up to now is only slightly interactive, as it can show its status
to the user, but the user cannot influence the behaviour of the kettle. The next
version of the workflow allows the user to parameterise via a form.

The new form has two input fields: temperature and deadline. In the example,
only the value from the former is used, however the deadline could also be
similarly utilised with further modification of the controller plan.

Creating a Control Form. The definition of the control form is listed in
Code 9. The form has two input fields, whose initial values are given as arguments
of the function, and two actions to indicate whether the actual input values have
to be submitted to the control plan or reverted to the most recent ones. The
form is to be recreated every time it ends until the workflow is finished, which
is easily done with an iterative task.

First, let us consider the changes needed in the already familiar parts of the
application. On one hand, the monitor form should reflect the current user values
registered by the application. This is easily achieved by putting two new labels
on the form and extending the form updater with a new kind of message. On
the other hand, the control logic must go through deeper changes.

The start of the workflow can be seen in Code 10. The initial user request
(T for temperature and D for deadline) is set programatically in the first line, but
the control form could be executed to obtain a real input instead. First of all,
notice that the plan monitoring the temperature also must monitor input values
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to be aware of the user’s current wishes. The task measuring the temperature
could be moved inside a parallel construct along with a task managing the control
form, i.e. inside control workflow; but that would cause the whole user control
logic to run on the kettle, while the control form must be present on some other
iot controller node. In order to avoid that pitfall, the task responsible for the
control form is combined with the same parallel combinator than the monitor
form and the control logic.

Now the values coming from the user must be passed to the control plan, for
which the pipe construct is to be used. A pipe can be created with the predefined
primitive task pipe and must be destroyed with destroy pipe. Between the
execution of those two tasks, the created pipe can be used for propagating values
between tasks that are residing in parallel parts of the same workflow. Task values
normally are propagated according to the control flow: stable values forward and
unstable values backward. Pipes can be used to open one-way tunnels between
parallel control flow paths to propagate task values.

On the receiving side, a pipe behaves very similarly to usual tasks as it raises
unstable values. However, it would never end on its own. The usage of values
propagated via a pipe is shown in Code 11. The pipe is used as any normal task:
it gets executed in parallel with temperature reading. The plan pipe filter is
only turning form values with an action other than ‘ok’ into novalue, so making
the implementation of kettle plan simpler.

Instead of the simple parallel construct used previously, a special form of it
is utilised in control workflow. Controlling a parallel construct may be cum-
bersome when determining which component of the parallel construct triggered
the raise of a new list of values. In the case of the example at hand, different
things have to be done according to whether the pipe or sensor reading gave
a new unstable value. For such situations, Pέα provides a parallel combinator
with a tightly coupled monitor whose plan is fed with a triplet instead of a list
consisting of recent task values. The triplet provided for the plan consists of
(1) an index, (2) the kind of the third component of the triplet and (3) a value
coming from the task corresponding to the index. Remember that a task’s value
can be of three kinds: unstable, stable and exception.

Now, the accumulator belonging to kettle plan is a three-tuple: the recent
temperature extended with the currently requested temperature and deadline.
The implementation of the plan is straightforwardly derived from its previous
version. Some clarification is required only when processing a form value supplied
by the pipe. The action and new user input is taken out from the form value in
the first line of the corresponding branch. Then user input must be converted
from strings to numbers. Note that the action is ensured to be ‘ok’ at that point
by pipe filter.

Now let us see the iterative task handling the control form in Code 12. The
implementation is very similar to that of the monitor form, the only main dif-
ference is the usage of a pipe. On the side where values are issued, a pipe can
be connected to a task using the tap with operator. A task tapped with a pipe
behaves exactly as a normal one; tapping is completely transparent.
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k e t t l e p l a n ( ) −>
fun ! ({RT, RD, Old} , V) −>
case V of
#task va lu e{value = {1 , un s t ab l e , {ok , Ts}}} −>
e f f e c t i v e t empe r a t u r e (Ts ) >>= fun ! (T) −>
s end ro l e msg ( monitor , {temp, T}) >>| t a s k c r e a t e ( fun ! ( ) −>
Error Thresho ld = 3 ,

i f
T > RT − Error Thresho ld −>
shutdown ( ”Water temperature at the de s i r ed l e v e l . ” ) >>|
r e turn ( stable ({done, T}) ) ;

Old − T > Error Thresho ld −>
shutdown ( ”Heating element broken ! ” ) >>|
r e turn ( stable ({ e r r o r , T}) ) ;

true −>
r e turn (unstable ({RT, RD, max( Old, T)} , T) )

end end) end ;
#ta sk va lu e{value = {2 , un s t ab l e , #form value{} = FV}} −>
{ok , T, D} = ge t a c t i on and va l u e s (FV) ,

{T2, D2} = {convert temperature (T) , conver t t ime (D)} ,
s end ro l e msg ( monitor , { r e qu e s t , T, D})>>|
r e turn (unstable ({T2, D2, Old} , Old ) ) ;
−>

V

end
end .

c ont ro l work f l ow (T, D, Pipe ) −>
change hea t ing e l ement s ta tu s ( [ on,on ,on ] ) >>|
c on t r o l l e d pa r ( [
temperature read ing ( ) ,

Pipe controlled by p i p e f i l t e r ( )

] , k e t t l e p l a n ( ) , {T, D, 0}) .

Code 11. Control logic of the kettle

The task running in parallel with the form waits for one message indicat-
ing that the form should be stopped. When that message is received, the plan
controlling the parallel construct returns a non-continue stable value. Also note
that the accumulator here belongs to the iterative task in order to access the
most recent user input when recreating the control form. An iterative task main-
taining an accumulator must be built from a unary function whose argument is
the actual value of the accumulator. The initial value can be defined with the
operator with accumulator, just like in the case of a controller.

Dealing with Erroneous Input. Converting text typed by the user inside the
control plan is not good practice. There are many theoretical reasons for that.
The most practical one is that the user could not be informed about an erroneous
input because of the pipe being unidirectional. In the following revision of the
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controlled_control_form(T, D, Pipe) ->
iterate(fun!({T, D}) ->
create_form(control_form(T, D)) >>= fun!(Form) ->
par([
show_form(Form) tap with Pipe,
receiver()

]) controlled by control_form_plan(T, D)
end end) with accumulator {T, D}.

Code 12. Iterative task for handling user input

to_integer(S) ->
case string:to_integer(S) of
{error, R} -> throw({to_integer, R, S});
{T, _} -> T
end.

convert_input(FV) -> task_create(fun!() ->
{A, T, D} = get_action_and_values(FV),
case A of
ok ->
{ok, {convert_temperature(T), convert_time(D)}};

_ ->
{A, {}}

end end).

get_and_convert_input(Form) ->
show_form(Form) >>= fun!(FV) ->
convert_input(FV)
end.

Code 13. Converting user input

workflow, the conversion of user inputs is moved from the control plan to a task
executed immediately after the input is over.

The workflow needs to be modified at three points. Task show form is to be
replaced with get and convert input of Code 13 in the iterative task related
to the control form. Then pipe filter and kettle plan is to be adjusted to
the value format resulting from convert input. Finally, the plan controlling the
control form is to be modified to handle exceptions.

The input has to be converted only when the action is ‘ok’, and can be ignored
otherwise. The implementation of the two converter functions are not interesting,
but note that they utilise the function to integer. If the given string cannot
be converted to an integer, an exception is thrown. Exceptions are wrapped into
a task value of kind exception automatically as long as they are thrown inside
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fun ! (V) −>
case V of

% other branches
#task va lu e{value = [#task va lu e{ s t a b i l i t y = except ion} , ]}−>
stable ( continue ({T, D, ”Wrong format ! ”}) ) ;
−>

V

end
end .

Code 14. Pattern matching against an exception

a task. The plan controlling the form then can catch the exception in Code 14.
In this case, the form is extended with a new label for giving feedback to the
user about errors, and the accumulator tuple also has a third slot for storing the
text of that label.

It Could Be Shut Down. So far, the kettle can be shut down only by the
application itself, however the user must be able to stop it at any time. Therefore,
make the control form is extended with a new action, ‘shutdown’.

From now on, the plan controlling the form is to return a non-continue stable
value when the form returns with the action ‘shutdown’, thus keeping the form
from being recreated again. On the receiving side of the pipe, some simple mod-
ifications are also in order. The plan pipe filter must keep values triggered by
the action ‘shutdown’ also intact, besides the ones triggered by the ‘ok’ button.
Then, the control plan has to check whether the value coming from the pipe is
a new user input or a shutdown request. In the latter case, task shutdown is to
be executed to end the workflow.

Once again, these modifications are left as an exercise to the reader.

5.5 Keeping the Water Warm

The last feature of the kettle allows the water to stay warm until it is consumed;
this latter fact being indicated by clicking the ‘shutdown’ button.

Up to now, the workflow used to end when the temperature reached the
desired level. Now, it will follow a different plan which maintains the temperature
and falls back to the heating plan if the user changes their mind and sets a
higher temperature. Only the control logic requires modifications, other parts of
the workflow remain the same.

Changing Plans on Demand. We need to find a way to change plans on
demand. A straightforward-looking approach would call for creating a complex
plan which starts with deciding which scenario is active actually: heating the
water or maintaining its temperature. The accumulator is to be extended with
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kettle_status_reading(Pipe, ControlFun, InitAcc) ->
controlled_par([
temperature_reading(),
Pipe controlled by pipe_filter()
], ControlFun, InitAcc).

heating(Pipe) ->
recent_piped_value(Pipe) >>= fun!({A, I}) ->
case A of
shutdown ->
return({shutdown, nil});

_ ->
{T, D} = I,
change_heating_element_status([on,on,on]) >>|
kettle_status_reading(Pipe, heating_plan(), {T, D, 0})

end end.

control_workflow(Pipe) ->
iterate(fun!() ->
heating(Pipe) >>= fun!(Res) ->
case Res of
{done, T} ->
keeping_warm(T, Pipe);

_ ->
return(Res)

end
end end).

Code 15. Changing of plans

a flag indicating the actual scenario in this case. The plan itself would consist of
a case expression with a number of patterns, which comes obviously with some
thinking.

However, a more verbose approach is presented here to discuss other issues.
The relevant parts of the revised implementation are shown in Code 15.

The task running on the kettle is defined by control workflow as an itera-
tive task. It starts with heating after which keeping warm, a task maintaining
the user-defined temperature, would be executed if the heating was successful.
That second part can result in a continue value if the water needs more heat-
ing due to the user having changed the desired temperature to a higher value.
Otherwise, a non-continue value would be returned eventually.

The two tasks, heating and keeping warm, are very similar, thus only
heating is revealed in the provided code snippet. The only difference is in the
second branch of the case expression: in the task keeping warm, there is no need
for turning the coils on, and, of course, a different plan with a proper initial accu-
mulator value is to be passed as actual argument to kettle status reading.
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There is an issue, however, that must be addressed in this approach due to
starting separate controllers, one in heating and another one in keeping warm.
After one controller is ended and before the next one is started, there is a tiny
period of time in which no controller is monitoring the pipe and values propa-
gated by it could be missed. The predefined task recent piped value, which
results in the value that has been most recently gone through the pipe, is to be
used in order to mitigate the impact of such unfortunate circumstances.

Note that, in this case, the task convert input requires the most recent user
input with each ‘cancel’ action, thus being able to set the initial accumulators
of control plans.

The plan for heating is exactly the same as in the previous versions of the
workflow. The other plan is a bit more complicated. Its detailed implementation
is not presented here, but we provide a short discussion on it. Its implementation
consists of two main cases:

– If new user input is received, there are three different scenarios: (1) if the
requested temperature is below of the current one, the controller needs to
update its accumulator; (2) if the requested temperature is set to a higher
value, the iterative task is to be restarted to heat up the water; (3) in case
of a ‘shutdown’ action, the plan returns a stable value which ends the whole
application.

– There are also three different scenarios when the execution of the plan is
triggered by a new temperature measurement: (1) if temperature is higher
than necessary, coils have to be turned off; (2) if temperature is below of the
desired level with a given threshold, the coils have to be switched on; (3) if
the coils are already on, a hardware failure can be detected just like earlier,
in which case the plan results in a stable value ending the whole workflow.

Stop Wasting Energy. The final revision of the application is able to shut
down the kettle if there was no user interaction for a long time while maintaining
water temperature. This needs only the modification of control workflow, in
which timing constraints can be defined in an elegant way by using Pέα combi-
nators. The new version of that task is presented in Code 16.

Note that the combinators used in this revision to define timing constraints
are predefined in Pέα, but could be implemented in a couple of lines with the
help of the primitive tasks and combinators mentioned in the paper.

The combinator or after lets keeping warm run for 5 min. If the task
does not end within the given time, the combinator stops it and executes the
other task provided after the do operator, i.e. the sequentially combined task
would be executed after 5 min. A warning message is sent to monitor form, then
keeping warm is executed again. That second running of keeping warm is to be
timed out by the combinator timeout after after another 5 min. That timeout
will eventually end the workflow as it results in a value which is not wrapped
into a continue.

It is also noteworthy that such timeouts could be implemented inside the
plan which controls kettle status reading in the task keeping warm. In that
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control_workflow(Pipe) ->
iterate(fun!() ->
heating(Pipe) >>= fun!(Res) ->
case Res of
{done, _} ->
keeping_warm(Pipe) or after timer:minutes(5) do
send_role_msg(monitor, {cmt, "Hot water is ready!"}) >>|
keeping_warm(Pipe) timeout after timer:minutes(5);

_ ->
return(Res)

end
end end).

Code 16. Keeping the water warm for a limited time

case, however, the high level control structure would be less clear. Elapsed time
would have to be computed and meticulously kept track of within the plan by
passing it around explicitly.

6 Related Work

The design of Pέα is based on the principles of task-oriented programming, more
specifically on the iTask System [18]. As the domain on which our research is
focused is different from that of iTasks, Pέα implements a modified set of TOP
principles to fit the requirements of Cyber-Physical Systems. For example, we
do not really need to generate user interfaces automatically. However, letting the
system operate in a distributed manner is first principle for us.

Workflows are used for modelling and organizing business processes [11] for a
very long time, because such graphical tools are easy for managers and other non-
programmer persons to understand. Besides programming CPSs with Pέα, our
aim is to provide a tool for non-programmer domain-experts to create their very
own applications easily. Therefore, ideas worked out for widely used workflow
languages are also to be considered as possible extensions for the front-end of
our system.

Reactive programming has recently gained popularity in developing event-
driven and interactive applications [2]. Pέα, in fact, makes it easy to express
concepts of functional reactive programming (FRP). If we drop the notion of
stable values outside plans, we would get a system highly similar to FRP.
The matching operation of function composition would then be the controller;
the matching notion of signals would be that of streams of unstable values.

There are many different approaches and tools to model, design and pro-
gram Cyber-Physical Systems. The current and planned features of Pέα are
implemented by some of them to some extent. However, none of them integrates
a sufficient set of features to build and orchestrate a comprehensive applica-
tion connected to different cyber-physical domains. Some of the existing tools
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are dedicated to particular vertical domains; others need not only engineers but
experienced software craftsmen to utilise their capabilities. In fact, both of these
are true for most contemporary toolkits. The emerging need for a comprehensive
tool which integrates the orthogonal design concerns of Cyber-Physical Systems
is well known [20]. One way to ease the actual situation is defining design method-
ology in terms of existing tools and techniques. A thing which is more or less
done already, for example [5] contains the very high-level principles of such an
integrated methodology. Nevertheless, that combined design apparatus would be
better used to identify the different aspects of the CPS design process and then
implement one consistent tool supporting those separate concerns.

The main industrial parties also have their standardized methodologies for
systems design, which nowadays can be considered as CPS design standards.
For example, one of the standards of automotive industry is EAST-ADL [3]
describing the different concerns have to included in any design documents.
Nevertheless, implementation issues of the designed systems have a separate
standard, AUTOSAR [21].

The Orc Programming Language [10] is advertised as a tool for CPS appli-
cations which heavily involve human interaction. The language is based on a
concurrency calculus of the same name, extended with a functional core. The
language can be used to distribute computation among many nodes dynami-
cally, which truly makes it suitable for CPS programming. However, it supports
features that make the language impure and hard to reason about. Compared to
Pέα, Orc does not support reactive programming; user interfaces can be defined
only with external tools involved; and the implicit parallelism inherited from
the base calculus, which is present throughout the language, makes it hard to
understand its semantics without significant background knowledge.

One way to create cyber-physical applications quickly based on existing
services is writing glue code for those services. A tool that makes gluing web
services together possible is described in [19]. The paper proposes two ways to
define the glue application: writing Python code, which needs a considerable
body of knowledge on programming in Python; and defining the glue logic in
a 2D tabular workspace, which is also not so straightforward according to the
experience of the authors of this paper. The system is called event-driven, yet it
needs manual synchronisation of each event in the glue application. Moreover,
the control logic itself is to be developed as a web service.

There is a workflow engine, ERWF [7], with high-level goals similar to ours.
The research is aiming at creating a framework for describing the computational
part of user-centric Cyber-Physical Systems as workflows and execute them on
embedded systems in a real-time manner. Despite the similar vision, the imple-
mentations could not be more different. ERWF is implemented using the Real
Time Application Interface of Linux, which makes the system able to execute
tasks taking time constraints into account – a feature that lacks from Pέα when
this paper is being written. It is noteworthy that the decision about task execu-
tion is based on probabilistic approximation of worst-case execution time. More-
over, definition of ERWF tasks involves low-level features like global variables
for data sharing and wait/notify primitives for synchronisation, which makes



504 D. Juhász et al.

programming the system really hard and error-prone. The low-level workflows
of ERWF are not comparable with those of Pέα.

Besides the somewhat general tools, which require solid programming knowl-
edge to harness them, there are domain-specific ones as well. Those tools are easy
to use for domain-experts, but the area where they can be applied is very limited.

Regiment [15] is a DSL to program sensor networks on the global level rather
than individual sensor nodes. The approach in which the global network program
is automatically translated into node-local programs is called macroprogram-
ming. Regiment is a good tool for macroprogramming sensor networks, however
it is not flexible enough for solving general CPS problems. Dynamic behaviour
of applications, dynamically changing network configuration and rapid queries,
which are present in Pέα as the propagation of unstable values, cannot be imple-
mented with Regiment.

There is a tool described in [13] which supports designing energy efficient
buildings in a model-driven way. An UML-like modelling DSL is provided to
define all the facilities that affect the energy consumption of a building. The tool
can be used to make the building more energy efficient through the model-driven
design process. Having the construction done, the sensors deployed throughout
the premises is to be controlled by a distributed application generated by the
tool and collecting data about the energy consumption. The data collected is
then used to create different kinds of reports. The application has nothing to
do with controlling the building, yet it could be a good basis for such a reactive
system.

Not only buildings, but every mission-critical systems have to be monitored
to check their behaviour. Copilot [16,17] is a real-time monitoring tool with the
ability to oversee temporal properties of running systems in a non-intrusive way.
The recent version of Copilot is able to trigger callbacks in the system in certain
situations as well. That kind of monitoring tool comes in handy for auditing
legacy systems. However, monitor and control functionality is better included
into new applications by design, which can be implemented simply in Pέα.

7 Conclusion

A workflow system, Pέα, specifically designed for programming Cyber-Physical
Systems is presented in this paper. Pέα is based on the principles of task-oriented
programming, nevertheless it restricts some of its features while extending its
capabilities with new ones to suit the system to the needs of CPS programming.
A working Pέα framework is implemented in an extended version of the Erlang
distributed functional programming language.

The features of the current implementation are revealed through a small scale
illustrative example, the implementation of which poses all the challenges with
which developers of large scale CPS applications have to cope.

The first version of our workflow system, as it is published in this paper,
addresses the basic issues of CPS programming and provides a good basis for
continuing research and adding more sophisticated features to the system in
order to solve further open questions of the field of CPS programming.
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A referee asked if there would be a second “incarnation” of Pέα. Having the
first version of this paper submitted, we started to work on implementing Pέα in
Scala using the Akka library. Scala has a rich static type system, which can be
leveraged to ease the development of Pέα workflows by preventing many issues
that occurs as runtime errors in the Erlang implementation, and raising static
type errors instead. Moreover, Akka implements the actor model of Erlang, which
makes it easy for us to port the Erlang implementation into Scala. Although the
embedding into Scala is not completed at the time when this paper is finalised,
we believe that the changes that are forced by the strong type system of Scala
would result in a new incarnation of Pέα that can be used in a more concise way
than the original version presented in this paper.
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