

Lecture Notes in Computer Science 6816
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Herbert Kuchen (Ed.)

Functional
and Constraint
Logic Programming

20th International Workshop, WFLP 2011
Odense, Denmark, July 19, 2011
Proceedings

13

Volume Editor

Herbert Kuchen
Westfälische Wilhelms-Universität Münster
Institut für Wirtschaftsinformatik
Leonardo-Campus 3, 48149 Münster, Germany
E-mail: kuchen@uni-muenster.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22530-7 e-ISBN 978-3-642-22531-4
DOI 10.1007/978-3-642-22531-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011931683

CR Subject Classification (1998): F.4, F.3.2, D.3, I.2.2-5, I.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 20th International Workshop on
Functional and (Constraint) Logic Programming (WFLP 2011), held in Odense,
Denmark, July 19, 2011 at the University of Southern Denmark. WFLP aims at
bringing together researchers interested in functional programming, (constraint)
logic programming, as well as the integration of the two paradigms. It promotes
the cross-fertilizing exchange of ideas and experiences among researchers and
students from the different communities interested in the foundations, appli-
cations and combinations of high-level, declarative programming languages and
related areas. The previous editions of this workshop were: WFLP 2010 (Madrid,
Spain), WFLP 2009 (Brasilia, Brazil), WFLP 2008 (Siena, Italy), WFLP 2007
(Paris, France), WFLP 2006 (Madrid, Spain), WCFLP 2005 (Tallinn, Estonia),
WFLP 2004 (Aachen, Germany), WFLP 2003 (Valencia, Spain), WFLP 2002
(Grado, Italy), WFLP 2001 (Kiel, Germany), WFLP 2000 (Benicassim, Spain),
WFLP 1999 (Grenoble, France), WFLP 1998 (Bad Honnef, Germany), WFLP
1997 (Schwarzenberg, Germany), WFLP 1996 (Marburg, Germany), WFLP 1995
(Schwarzenberg, Germany), WFLP 1994 (Schwarzenberg, Germany), WFLP
1993 (Rattenberg, Germany), and WFLP 1992 (Karlsruhe, Germany). Since its
2009 edition, the WFLP proceedings have been published by Springer in its Lec-
ture Notes in Computer Science series, as volumes 5979 and 6559, respectively.

Each submission of WFLP 2011 was peer-reviewed by at least three Program
Committee members with the help of some external experts. The Program Com-
mittee meeting was conducted electronically in May 2011 with the help of the
conference management system EasyChair. After careful discussions, the Pro-
gram Committee selected ten submissions for presentation at the workshop. Nine
of them were considered mature enough to be published in these proceedings.

On behalf of the Program Committee, I would like to thank all researchers,
who gave talks at the workshop, contributed to the proceedings, and submitted
papers to WFLP 2011. As Program Chair, I would also like to thank all mem-
bers of the Program Committee and the external reviewers for their careful work.
Moreover, I am pleased to acknowledge the valuable assistance of the conference
management system EasyChair and to thank its developer Andrei Voronkov for
providing it. Finally, all the participants of WFLP 2011 and I are deeply indebted
to Peter Schneider-Kamp and his team, who organized the Odense Summer on
Logic and Programming, which besides WFLP comprised the 21st International
Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR
2011), the 13th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming (PPDP 2011), and the 4th International
Workshop on Approaches and Applications of Inductive Programming (AAIP
2011). All the local organizers did a wonderful job and provided invaluable sup-
port in the preparation and organization of the overall event.

May 2011 Herbert Kuchen

Organization

Program Chair

Herbert Kuchen University of Münster, Germany

Program Committee

Maŕıa Alpuente Universidad Politécnica de Valencia, Spain
Sergio Antoy Portland State University, USA
Rafael Caballero-Roldán Universidad Complutense, Madrid, Spain
Olaf Chitil University of Kent, UK
Rachid Echahed Institut IMAG, Laboratoire Leibniz, France
Santiago Escobar Universidad Politécnica de Valencia, Spain
Moreno Falaschi University of Siena, Italy
Sebastian Fischer National Institute of Informatics, Tokyo, Japan
Michael Hanus Christian-Albrechts-Universität Kiel, Germany
Julio Mariño y Carballo Universidad Politécnica de Madrid, Spain
Janis Voigtländer Universität Bonn, Germany

Additional Reviewers

Demis Ballis
Raúl Gutierrez
Pablo Nogueira

Local Organization Chair

Peter Schneider-Kamp University of Southern Denmark, Odense,
Denmark

Table of Contents

Functional Logic Programming

KiCS2: A New Compiler from Curry to Haskell . 1
Bernd Braßel, Michael Hanus, Björn Peemöller, and Fabian Reck

New Functional Logic Design Patterns . 19
Sergio Antoy and Michael Hanus

XQuery in the Functional-Logic Language Toy . 35
Jesus M. Almendros-Jiménez,
Rafael Caballero, Yolanda Garćıa-Ruiz, and
Fernando Sáenz-Pérez

Functional Programming

Size Invariant and Ranking Function Synthesis in a Functional
Language . 52

Ricardo Peña and Agustin D. Delgado-Muñoz

Memoizing a Monadic Mixin DSL . 68
Pieter Wuille, Tom Schrijvers, Horst Samulowitz, Guido Tack, and
Peter Stuckey

A Functional Approach to Worst-Case Execution Time Analysis 86
Vı́tor Rodrigues, Mário Florido, and Simão Melo de Sousa

Building a Faceted Browser in CouchDB Using Views on Views and
Erlang Metaprogramming . 104

Claus Zinn

Integration of Constraint Logic and Object-Oriented
Programming

Logic Java: Combining Object-Oriented and Logic Programming 122
Tim A. Majchrzak and Herbert Kuchen

Term Rewriting

On Proving Termination of Constrained Term Rewrite Systems by
Eliminating Edges from Dependency Graphs . 138

Tsubasa Sakata, Naoki Nishida, and Toshiki Sakabe

Author Index . 157

KiCS2: A New Compiler from Curry to Haskell

Bernd Braßel, Michael Hanus, Björn Peemöller, and Fabian Reck

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
{bbr,mh,bjp,fre}@informatik.uni-kiel.de

Abstract. In this paper we present our first steps towards a new system to com-
pile functional logic programs of the source language Curry into purely func-
tional Haskell programs. Our implementation is based on the idea to represent
non-deterministic results as values of the data types corresponding to the results.
This enables the application of various search strategies to extract values from
the search space. We show by several benchmarks that our implementation can
compete with or outperform other existing implementations of Curry.

1 Introduction

Functional logic languages integrate the most important features of functional and logic
languages (see [8,24] for recent surveys). In particular, they combine higher-order func-
tions and demand-driven evaluation from functional programming with logic program-
ming features like non-deterministic search and computing with partial information
(logic variables). The combination of these features has led to new design patterns [6]
and better abstractions for application programming, e.g., as shown for programming
with databases [14,18], GUI programming [21], web programming [22,23,26], or string
parsing [17].

The implementation of functional logic languages is challenging since a reasonable
implementation has to support the operational features mentioned above. One possible
approach is the design of new abstract machines appropriately supporting these oper-
ational features and implementing them in some (typically, imperative) language, like
C [32] or Java [9,27]. Another approach is the reuse of already existing implemen-
tations of some of these features by translating functional logic programs into either
logic or functional languages. For instance, if one compiles into Prolog, one can reuse
the existing backtracking implementation for non-deterministic search as well as logic
variables and unification for computing with partial information. However, one has to
implement demand-driven evaluation and higher-order functions [5]. A disadvantage of
this approach is the commitment to a fixed search strategy (backtracking).

If one compiles into a non-strict functional language like Haskell, one can reuse the
implementation of lazy evaluation and higher-order functions, but one has to imple-
ment non-deterministic evaluations [13,15]. Although Haskell offers list comprehen-
sions to model backtracking [36], this cannot be exploited due to the specific semantical
requirements of the combination of non-strict and non-deterministic operations [20].
Thus, additional implementation efforts are necessary like implementation of shared
non-deterministic computations [19].

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 B. Braßel et al.

Nevertheless, the translation of functional logic languages into other high-level lan-
guages is attractive: it limits the implementation efforts compared to an implementation
from scratch and one can exploit the existing implementation technologies, provided
that the efforts to implement the missing features are reasonable.

In this paper we describe an implementation that is based on the latter principle. We
present a method to compile programs written in the functional logic language Curry
[28] into Haskell programs based on the ideas shown in [12]. The difficulty of such
an implementation is the fact that non-deterministic results can occur in any place of a
computation. Thus, one cannot separate logic computations by the use of list compre-
hensions [36], as the outcome of any operation could be potentially non-deterministic,
i.e., it might have more than one result value. We solve this problem by an explicit
representation of non-deterministic values, i.e., we extend each data type by another
constructor to represent the choice between several values. This idea is also the basis of
the Curry implementation KiCS [15,16]. However, KiCS is based on unsafe features of
Haskell that inhibit the use of optimizations provided by Haskell compilers like GHC.1

In contrast, our implementation, called KiCS2, avoids such unsafe features. In addition,
we also support more flexible search strategies and new features to encapsulate non-
deterministic computations (which are not described in detail in this paper due to lack
of space).

The general objective of our approach is the support of flexible strategies to explore
the search space resulting from non-deterministic computations. In contrast to Prolog-
based implementations that use backtracking and, therefore, are incomplete, we also
want to support complete strategies like breadth-first search, iterative deepening or par-
allel search (in order to exploit multi-core architectures). We achieve this goal by an
explicit representation of the search space as data that can be traversed by various op-
erations. Moreover, purely deterministic computations are implemented as purely func-
tional programs so that they are executed with almost the same efficiency as their purely
functional counterparts.

In the next section, we sketch the source language Curry and introduce a normalized
form of Curry programs that is the basis of our translation scheme. Section 3 presents
the basic ideas of this translation scheme. Benchmarks of our initial implementation of
this scheme are presented in Section 4. Further features of our system are sketched in
Section 5 before we conclude in Section 6.

2 Curry Programs

The syntax of the functional logic language Curry [28] is close to Haskell [35]. In addi-
tion, Curry allows free (logic) variables in conditions and right-hand sides of defining
rules. In contrast to functional programming and similarly to logic programming, oper-
ations can be defined by overlapping rules so that they might yield more than one re-
sult on the same input. Such operations are also called non-deterministic. For instance,
Curry offers a choice operation that is predefined by the following rules:

x ? _ = x
_ ? y = y

1 http://www.haskell.org/ghc/

KiCS2: A New Compiler from Curry to Haskell 3

Thus, we can define a non-deterministic operation aBool by

aBool = True ? False

so that the expression “aBool” has two values: True and False.
If non-deterministic operations are used as arguments in other operations, a seman-

tical ambiguity might occur. Consider the operations

xor True False = True
xor True True = False
xor False x = x

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting
system, we could have the reduction

xorSelf aBool → xor aBool aBool → xor True aBool
→ xor True False → True

leading to the unintended result True. Note that this result cannot be obtained if we
use a strict strategy where arguments are evaluated before the operation calls. In or-
der to avoid dependencies on the evaluation strategies and exclude such unintended
results, González-Moreno et al. [20] proposed the rewriting logic CRWL as a logi-
cal (execution- and strategy-independent) foundation for declarative programming with
non-strict and non-deterministic operations. This logic specifies the call-time choice
semantics [29] where values of the arguments of an operation are determined before
the operation is evaluated. Note that this does not necessarily require an eager evalua-
tion of arguments. Actually, [1,31] define lazy evaluation strategies for functional logic
programs with call-time choice semantics where actual arguments passed to operations
are shared. Hence, we can evaluate the expression above lazily, provided that all oc-
currences of aBool are shared so that all of them reduce either to True or to False.
The requirements of the call-time choice semantics are the reason why it is not simply
possible to use list comprehensions or non-determinism monads for a straightforward
implementation of functional logic programs in Haskell [19].

Due to these considerations, an implementation of Curry has to support lazy eval-
uation where operations can have multiple results and unevaluated arguments must be
shared. This is a complex task, especially if we try to implement it directly on the level
of source programs. Therefore, we perform some simplifications on programs before
the target code is generated.

First of all, we assume that our programs do not contain logic variables. This as-
sumption can be made since it has been shown [7] that logic variables can be replaced
by non-deterministic “generators”, i.e., operations that evaluate to all possible values of
the type of the logic variable. For instance, a Boolean logic variable can be replaced by
the generator aBool defined above.

Furthermore, we discuss our translation scheme only for first-order programs for the
sake of simplicity. However, our implementation also supports higher-order features
(see Section 4) by exploiting the corresponding features of Haskell.

4 B. Braßel et al.

e ::= x x is a variable
| c(e1, . . . , en) c is an n-ary constructor symbol
| f(e1, . . . , en) f is an n-ary function symbol
| e1 ? e2 choice

D ::= f(x1, . . . , xn) = e n-ary function f with a single rule
| f(c(y1, . . . , ym), x2, . . . , xn) = e matching rule for n-ary function f

c is an m-ary constructor symbol
P ::= D1 . . . Dk

Fig. 1. Uniform programs (e: expressions, D: definitions, P : programs)

Finally, we assume that the pattern matching strategy is explicitly encoded in indi-
vidual matching functions. In contrast to [1], where the pattern matching strategy is
encoded in case expressions, we assume that each case expression is transformed into a
new operation in order to avoid complications arising from the translation of nested case
expressions. Thus, we assume that all programs are uniform according to the definition
in Fig. 1.2 There, the variables in the left-hand sides of each rule are pairwise different,
and the constructors in the left-hand sides of the matching rules of each function are
pairwise different. Uniform programs have a simple form of pattern matching: either a
function is defined by a single rule without pattern matching, or it is defined by rules
with only one constructor in the left-hand side of each rule, and in the same argument
for all rules.3 For instance, the operation xor defined above can be transformed into the
following uniform program:

xor True x = xor’ x
xor False x = x
xor’ False = True
xor’ True = False

In particular, there are no overlapping rules for functions (except for the choice oper-
ation “?” which is considered as predefined). Antoy [3] showed that each functional
logic program, i.e., each constructor-based conditional term rewriting system, can be
translated into an equivalent unconditional term rewriting system without overlapping
rules but containing choices in the right-hand sides, also called LOIS (limited overlap-
ping inductively sequential) system. Furthermore, Braßel [11] showed the semantical
equivalence of narrowing computations in LOIS systems and rewriting computations in
uniform programs. Due to these results, uniform programs are a reasonable intermediate
language for our translation into Haskell which will be presented in the following.

2 A variant of uniform programs has been considered in [33] to define lazy narrowing strategies
for functional logic programs. Although the motivations are similar, our notion of uniform
programs is more restrictive since we allow only a single non-variable argument in each left-
hand side of a rule. Uniform programs have also been applied in [37] to define a denotational
analysis of functional logic programs.

3 For simplicity, we require in Fig. 1 that the matching argument is always the first one, but one
can also choose any other argument.

KiCS2: A New Compiler from Curry to Haskell 5

3 Compilation to Haskell: The Basics

3.1 Representing Non-deterministic Computations

As mentioned above, our implementation is based on the explicit representation of non-
deterministic results in a data structure. This can easily be achieved by adding a con-
structor to each data type to represent a choice between two values. For instance, one
can redefine the data type for Boolean values as follows:

data Bool = False | True | Choice Bool Bool

Thus, we can implement the non-deterministic operation aBool defined in Section 2
as:

aBool = Choice True False

If operations can deliver non-deterministic values, we have to extend the rules for opera-
tions defined by pattern matching so that they do not fail on non-deterministic argument
values. Instead, they move the non-deterministic choice one level above, i.e., a choice
in some argument leads to a choice in any result of this operation (this is also called
a “pull-tab” step in [2]). For instance, the rules of the uniform operation xor shown
above are extended as follows:

xor True x = xor’ x
xor False x = x
xor (Choice x1 x2) x = Choice (xor x1 x) (xor x2 x)

xor’ False = True
xor’ True = False
xor’ (Choice x1 x2) = Choice (xor’ x1) (xor’ x2)

The operation xorSelf is not defined by a pattern matching rule and, thus, need not be
changed. If we evaluate the expression “xorSelf aBool”, we get the result

Choice (Choice False True) (Choice True False)

How can we interpret this result? In principle, the choices represent different possible
values. Thus, if we want to show the different values of an expression (which is usually
the task of a top-level “read-eval-print” loop), we enumerate all values contained in the
choices. These are False, True, True, and False in the result above. Unfortunately,
this does not conform to the call-time choice semantics discussed in Section 2 which
excludes a value like True. The call-time choice semantics requires that the choice of a
value made for the initial expression aBool should be consistent in the entire computa-
tion. For instance, if we select the value False for the expression aBool, this selection
should be made at all other places where this expression might have been copied dur-
ing the computation. However, our initial implementation duplicates the initially single
Choice into finally three occurrences of Choice.

We can correct this unintended behavior of our implementation by identifying differ-
ent Choice occurrences that are duplicates of some single Choice. This can be easily
done by attaching a unique identifier, e.g., a number, to each choice:

type ID = Integer
data Bool = False | True | Choice ID Bool Bool

6 B. Braßel et al.

Furthermore, we modify the Choice pattern rules so that the identifiers will be kept,
e.g.,

xor (Choice i x1 x2) x = Choice i (xor x1 x) (xor x2 x)

If we evaluate the expression “xorSelf aBool” and assign the number 1 to the choice
of aBool, we obtain the result

Choice 1 (Choice 1 False True) (Choice 1 True False)

When we show the values contained in this result, we have to make consistent selec-
tions in choices with same identifiers. Thus, if we select the left branch as the value of
the outermost Choice, we also have to select the left branch in the selected argument
(Choice 1 False True) so that only the value False is possible here. Similarly, if
we select the right branch as the value of the outermost Choice, we also have to select
the right branch in its selected argument (Choice 1 True False) which yields the
sole value False.

Note that each Choice occurring for the first time in a computation has to get its own
unique identifier. For instance, if we evaluate the expression “xor aBool aBool”, the
two occurrences of aBool assign different identifiers to their Choice constructor (e.g.,
1 for the left and 2 for the right aBool argument) so that this evaluates to

Choice 1 (Choice 2 False True) (Choice 2 True False)

Here we can make different selections for the outer and inner Choice constructors so
that this non-deterministic result represents four values.

To summarize, our implementation is based on the following principles:

1. Each non-deterministic choice is represented by a Choice constructor with a
unique identifier.

2. When matching a Choice constructor, the choice is moved to the result of this
operation with the same identifier, i.e., a non-deterministic argument yields non-
deterministic results for each of the argument’s values.

3. Each choice introduced in a computation is supplied with its own unique identifier.

The latter principle requires the creation of fresh identifiers during a computation—
a non-trivial problem in functional languages. One possibility is the use of a global
counter that is accessed by unsafe features whenever a new identifier is required. Unfor-
tunately, unsafe features inhibit the use of optimization techniques developed for purely
functional programs and make the application of advanced evaluation and search strate-
gies (e.g., parallel strategies) more complex. Therefore, we avoid unsafe features in our
implementation. Instead, we thread some global information through our program in
order to supply fresh references at any point of a computation. For this purpose, we
assume a type IDSupply with operations

initSupply :: IO IDSupply
thisID :: IDSupply → ID
leftSupply :: IDSupply → IDSupply
rightSupply :: IDSupply → IDSupply

and add a new argument of type IDSupply to each operation of the source program,
i.e., a Curry operation of type

KiCS2: A New Compiler from Curry to Haskell 7

f :: τ1 → · · · → τn → τ

is translated into a Haskell function of type

f :: τ1 → · · · → τn → IDSupply → τ

Conceptually, one can consider IDSupply as an infinite set of identifiers that is created
at the beginning of an evaluation by the operation initSupply. The operation thisID
takes some identifier from this set, and leftSupply and rightSupply split this set
into two disjoint subsets without the identifier obtained by thisID. The split oper-
ations leftSupply and rightSupply are used when an operation calls two4 other
operations in the right-hand side of a rule. In this case, the called operations must be
supplied with their individual disjoint identifier supplies. For instance, the operation
main defined by

main :: Bool
main = xorSelf aBool

is translated into

main :: IDSupply → Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

Any choice in the right-hand side of a rule gets its own identifier by the operation
thisID, as in

aBool s = Choice (thisID s) True False

The type IDSupply can be implemented in various ways. The simplest implementation
uses unbounded integers:

type IDSupply = Integer
initSupply = return 1
thisID n = n
leftSupply n = 2*n
rightSupply n = 2*n+1

There are other more sophisticated implementations available [10]. Actually, our com-
pilation system is parameterized over different implementations of IDSupply in or-
der to perform some experiments and choose the most appropiate for a given appli-
cation. Each implementation must ensure that, if s is a value of type IDSupply, then
thisID(o1(. . .(on s). . .)) and thisID(o′

1(. . .(o′
m s). . .)) are different identifiers

provided that oi, o
′
j ∈ {leftSupply, rightSupply} and o1 · · · on �= o′1 · · · o′m.

3.2 The Basic Translation Scheme

Functional logic computations can also fail, e.g., due to partially defined operations.
Computing with failures is a typical programming technique and provides for specific
programming patterns [6]. Hence, in contrast to functional programming, a failing com-
putation should not abort the complete evaluation but it should be considered as some
part of a computation that does not produce a meaningful result. In order to implement
this behavior, we extend each data type by a further constructor Fail and complete

4 The extension to more than two is straightforward.

8 B. Braßel et al.

each operation containing matching rules by a final rule that matches everything and
returns the value Fail. For instance, consider the definition of lists

data List a = Nil | Cons a (List a)

and an operation to extract the first element of a non-empty list:

head :: List a → a
head (Cons x xs) = x

The type definition is extended as follows:5

data List a = Nil | Cons a (List a) | Choice (List a) (List a) | Fail

The operation head is extended by an identifier supply and further matching rules:

head :: List a → IDSupply → a
head (Cons x xs) s = x
head (Choice i x1 x2) s = Choice i (head x1 s) (head x2 s)
head _ s = Fail

Note that the final rule returns Fail if head is applied to the empty list as well as if the
matching argument is already a failed computation, i.e., it also propagates failures.

As already discussed above, an occurrence of “?” in the right-hand side is translated
into a Choice supplied with a fresh identifier by the operation thisID. In order to
ensure that each occurrence of “?” in the source program get its own identifier, all
choices and all operations in the right-hand side of a rule get their own identifier supplies
via appropriate applications of leftSupply and rightSupply to the supply of the
defined operation. For instance, a rule like

main2 = xor aBool (False ? True)

is translated into

main2 s = let s1 = leftSupply s
s2 = rightSupply s
s3 = leftSupply s2
s4 = rightSupply s2

in xor (aBool s3) (Choice (thisID s4) False True) s1

An obvious optimization, performed by our compiler, is a determinism analysis. If an
operation does not call, neither directly nor indirectly through other operations, the
choice operation “?”, then it is not necessary to pass a supply for identifiers. In this case,
the IDSupply argument can be omitted so that the generated code is nearly identical
to a corresponding functional program (apart from the additional rules to match the
constructors Choice and Fail).

As mentioned in Section 2, our compiler translates occurrences of logic variables
into generators. Since these generators are standard non-deterministic operations, they
are translated like any other operation. For instance, the operation aBool is a generator
for Boolean values and its translation into Haskell has been presented above.

5 Actually, our compiler performs some renamings to avoid conflicts with predefined Haskell
entities and introduces type classes to resolve overloaded symbols like Choice and Fail.

KiCS2: A New Compiler from Curry to Haskell 9

A more detailed discussion of this translation scheme can be found in the original
proposal [12]. The correctness of this transformation from non-deterministic source
programs into deterministic target programs is formally shown in [11].

3.3 Extracting Values

So far, our generated operations compute all the non-deterministic values of an ex-
pression represented by a structure containing Choice constructors. In order to extract
the various values from this structure, we have to define operations that compute all
possible choices in some order where the choice identifiers are taken into account. To
provide a common interface for such operations, we introduce a data type to represent
the general outcome of a computation,

data Try a = Val a | Choice ID a a | Fail

together with an auxiliary operation:6

try :: a → Try a
try (Choice i x y) = Choice i x y
try Fail = Fail
try x = Val x

In order to take the identity of choices into account when extracting values, one has to
remember which choice (e.g., left or right branch) has been made for some particular
choice. Therefore, we introduce the type

data Choice = NoChoice | ChooseLeft | ChooseRight

where NoChoice represents the fact that a choice has not yet been made. Furthermore,
we need operations to lookup the current choice for a given identifier or change its
choice:

lookupChoice :: ID → IO Choice
setChoice :: ID → Choice → IO ()

In Haskell, there are different possibilities to implement a mapping from choice iden-
tifiers to some value of type Choice. Our implementation supports various options
together with different implementations of IDSupply. For instance, a simple but effi-
cient implementation can be obtained by using updatable values, i.e., the Haskell type
IORef. In this case, choice identifiers are memory cells instead of integers:

newtype ID = ID (IORef Choice)

Consequently, the implementation of IDSupply requires an infinite set of memory cells
which can represented as a tree structure:

data IDSupply = IDSupply ID IDSupply IDSupply
thisID (IDSupply r _ _) = r
leftSupply (IDSupply _ s _) = s
rightSupply (IDSupply _ _ s) = s

6 Note that the operation try is not really polymorphic but overloaded for each data type and,
therefore, defined in instances of some type class.

10 B. Braßel et al.

The infinite tree of memory cells (with initial value NoChoice) can be constructed as
follows, where unsafeInterleaveIO is used to construct the tree on demand:

initSupply = getIDTree

getIDTree = do s1 <- unsafeInterleaveIO getIDTree
s2 <- unsafeInterleaveIO getIDTree
r <- unsafeInterleaveIO (newIORef NoChoice)
return (IDSupply (ID r) s1 s2)

Using memory cells, the implementation of the lookup and set operations is straightfor-
ward:

lookupChoice (ID ref) = readIORef ref
setChoice (ID ref) c = writeIORef ref c

Now we can print all values contained in a choice structure in a depth-first manner by
the following operation:

printValsDFS :: Try a → IO ()
printValsDFS (Val v) = print v
printValsDFS Fail = return ()
printValsDFS (Choice i x1 x2) = lookupChoice i >>= choose
where
choose ChooseLeft = printValsDFS (try x1)
choose ChooseRight = printValsDFS (try x2)
choose NoChoice = do newChoice ChooseLeft x1

newChoice ChooseRight x2

newChoice ch x = do setChoice i ch
printValsDFS (try x)
setChoice i NoChoice

This operation prints a computed value and ignores failures. If there is some choice, it
checks whether a choice for this identifier has already been made (note that the initial
value for all identifiers is NoChoice). If a choice has been made, it follows this choice.
Otherwise, the left choice is made and stored. After printing all the values w.r.t. this
choice, the choice is undone (like in backtracking) and the right choice is made and
stored.

For instance, to print all values of the expression main defined in Section 3.1, we
evaluate the Haskell expression

initSupply >>= \s → printValsDFS (try (main s))

Thus, we obtain the output

False
False

In general, one has to propagate all choices and failures to the top level of a computa-
tion before printing the results. Otherwise, the operation try applied to an expression
like “Just aBool” would return a Val-structure instead of a Choice so that the main
operation printValsDFS would miss the non-determinism of the result value. There-
fore, we have to compute the normal form of the main expression before passing it to
the operation try. Hence, the result values of main are printed by evaluating

KiCS2: A New Compiler from Curry to Haskell 11

initSupply >>= \s → printValsDFS (try (id $!! main s))

where “f $!! x” denotes the application of the operation f to the normal form of
its argument x. This has the effect that a choice or failure occurring somewhere in a
computation will be moved (by the operation “$!!”) to the root of the main expression
so that the corresponding search strategy can process it. This ensures that, after the
computation to a normal form, an expression without a Choice or Fail at the root is a
value, i.e., it does not contain a Choice or Fail.

Of course, printing all values via depth-first search is only one option which is not
sufficient in case of infinite search spaces. For instance, one can easily define an oper-
ation that prints only the first solution. Due to the lazy evaluation strategy of Haskell,
such an operation can also be applied to infinite choice structures. In order to abstract
from these different printing options, our implementation contains a more general ap-
proach by translating choice structures into monadic structures w.r.t. various strategies
(depth-first search, breadth-first search, iterative deepening, parallel search). This al-
lows for an independent processing of the resulting monadic structures, e.g., by an
interactive loop where the user can request the individual values.

4 Benchmarks

In this section we evaluate our compiler by comparing the efficiency of the gener-
ated Haskell programs to various other systems, in particular, other implementations
of Curry. For our comparison with other Curry implementations, we consider PAKCS
[25] (Version 1.9.2) which compiles Curry into Prolog [5] (based on SICStus-Prolog
4.1.2, a SWI-Prolog 5.10 back end is also available but much slower). PAKCS has
been used for a number of practical applications of Curry. Another mature implemen-
tation we consider is MCC [32] (Version 0.9.10) which compiles Curry into C. MonC
[13] is a compiler from Curry into Haskell. It is based on a monadic representation of
non-deterministic computations where sharing is explicitly managed by the technique
proposed in [19]. Since this compiler is in an experimental state, we could not execute
all benchmarks with MonC (these are marked by “n/a”).

The functional logic language TOY [30] has many similarities to Curry and the TOY
system compiles TOY programs into Prolog programs. However, we have not included
a comparison in this paper since [5] contains benchmarks showing that the implemen-
tation of sharing used in PAKCS produces more efficient programs.

Our compiler has been executed with the Glasgow Haskell Compiler (GHC 6.12.3,
option -O2). All benchmarks were executed on a Linux machine running Debian 5.0.7
with an Intel Core 2 Duo (3.0GHz) processor. The timings were performed with the
time command measuring the execution time (in seconds) of a compiled executable
for each benchmark as a mean of three runs. “oom” denotes a memory overflow in a
computation.

The first collection of benchmarks7 (Fig. 2) are purely first-order functional pro-
grams. The Prolog (SICStus, SWI) and Haskell (GHC) programs have been rewritten

7 All benchmarks are available at http://www-ps.informatik.uni-kiel.de/
kics2/benchmarks/

12 B. Braßel et al.

System ReverseUser Reverse Tak TakPeano
KiCS2 0.12 0.12 0.21 0.79
PAKCS 2.05 1.88 39.80 62.43
MCC 0.43 0.47 1.21 5.49
MonC 23.39 22.00 20.37 oom
GHC 0.12 0.12 0.04 0.49
SICStus 0.39 0.29 0.49 5.20
SWI 1.63 1.39 1.84 11.66

Fig. 2. Benchmarks: first-order functional programs

according to the Curry formulation. “ReverseUser” is the naive reverse program applied
to a list of 4096 elements, where all data (lists, numbers) are user-defined. “Reverse” is
the same but with built-in lists. “Tak” is a highly recursive function on naturals [34] ap-
plied to arguments (27,16,8) and “TakPeano” is the same but with user-defined natural
numbers in Peano representation. Note that the Prolog programs use a strict evaluation
strategy in contrast to all others. Thus, the difference between PAKCS and SICStus
shows the overhead to implement lazy evaluation in Prolog.

One can deduce from these results that one of the initial goals for this compiler is
satisfied, since functional Curry programs are executed almost with the same speed as
their Haskell equivalents. An overhead is visible if one uses built-in numbers (due to the
potential non-deterministic values, KiCS2 cannot directly map operations on numbers
into the Haskell primitives) where GHC can apply specific optimizations.

System ReverseHO Primes PrimesPeano Queens QueensUser
KiCS2 oom 1.22 0.30 10.02 13.08
KiCS2HO 0.24 0.09 0.27 0.65 0.73
PAKCS 7.97 14.52 23.08 81.72 81.98
MCC 0.27 0.32 1.77 3.25 3.62
MonC oom 16.74 oom oom oom
GHC 0.24 0.06 0.22 0.06 0.11

Fig. 3. Benchmarks: higher-order functional programs

The next collection of benchmarks (Fig. 3) considers higher-order functional pro-
grams so that we drop the comparison to first-order Prolog systems. “ReverseHO” re-
verses a list with one million elements in linear time using higher-order functions like
foldl and flip. “Primes” computes the 2000th prime number via the sieve of Er-
atosthenes using higher-order functions, and “PrimesPeano” computes the 256th prime
number but with Peano numbers and user-defined lists. Finally, “Queens” (and “Queen-
sUser” with user-defined lists) computes the number of safe positions of 11 queens on
a 11× 11 chess board.

As discussed above, our compiler performs an optimization when all operations
are deterministic. However, in the case of higher-order functions, this determinism
optimization cannot be performed since any operation, i.e., also a non-deterministic

KiCS2: A New Compiler from Curry to Haskell 13

operation, can be passed as an argument. As shown in the first line of this table, this
considerably reduces the overall performance. To improve this situation, our compiler
generates two versions of a higher-order function: a general version applicable to any
argument and a specialized version where all higher-order arguments are assumed to
be deterministic operations. Moreover, we implemented a program analysis to approx-
imate those operations that call higher-order functions with deterministic operations so
that their specialized versions are used. The result of this improvement is shown as
“KiCS2HO” and demonstrates its usefulness. Therefore, it is always used in the subse-
quent benchmarks.

System PermSort PermSortPeano Last RegExp
KiCS2HO 2.83 3.68 0.14 0.49
PAKCS 26.96 67.11 2.61 12.70
MCC 1.46 5.74 0.09 0.57
MonC 48.15 916.61 n/a n/a

Fig. 4. Benchmarks: non-deterministic functional logic programs

To evaluate the efficiency of non-deterministic computations (Fig. 4), we sort a list
containing 15 elements by enumerating all permutations and selecting the sorted ones
(“PermSort” and “PermSortPeano” for Peano numbers), compute the last element x of
a list xs containing 100,000 elements by solving the equation “ys++[x] =:= xs” (the
implementation of unification and variable bindings require some additional machinery
that is sketched in Section 5.3), and match a regular expression in a string of length
200,000 following the non-deterministic specification of grep shown in [8]. The results
show that our high-level implementation is not far from the efficiency of MCC, and it
is superior to PAKCS which exploits Prolog features like backtracking, logic variables
and unification for these benchmarks.

Since our implementation represents non-deterministic values as Haskell data struc-
tures, we get, in contrast to most other implementations of Curry, one interesting
improvement for free: deterministic subcomputations are shared even if they occur in
different non-deterministic computations. To show this effect of our implementation,
consider the non-deterministic sort operation psort (permutation sort) and the infinite
list of all prime numbers primes, as used in the previous benchmarks, and the follow-
ing definitions:

goal1 = [primes!!1003, primes!!1002, primes!!1001, primes!!1000]
goal2 = psort [7949,7937,7933,7927]
goal3 = psort [primes!!1003, primes!!1002, primes!!1001, primes!!1000]

In principle, one would expect that the sum of the execution times of goal1 and goal2
is equal to the time to execute goal3. However, implementations based on backtracking
evaluate the primes occurring in goal3 multiple times, as can be seen by the run times
for PAKCS and MCC shown in Fig 5.

14 B. Braßel et al.

System goal1 goal2 goal3
KiCS2HO 0.34 0.00 0.34
PAKCS 14.90 0.02 153.65
MCC 0.33 0.00 3.46

Fig. 5. Benchmarks: sharing over non-determinism

5 Further Features

In this section we sketch some additional features of our implementation. Due to lack
of space, we cannot discuss them in detail.

5.1 Search Strategies

Due to the fact that we represent non-deterministic results in a data structure rather than
as a computation as in implementations based on backtracking, we can provide different
methods to explore the search space containing the different result values. We have
already seen in Section 3.3 how this search space can be explored to print all values in
depth-first order. Apart from this simple approach, our implementation contains various
strategies (depth-first, breadth-first, iterative deepening, parallel search) to transform
a choice structure into a list of results that can be printed in different ways (e.g., all
solutions, only the first solution, or one after another by user requests). Actually, the
user can set options to select the search strategy and the printing method.

Method PermSort PermSortPeano NDNums
printValsDFS 2.82 3.66 ∞
depth-first search 5.33 6.09 ∞
breadth-first search 26.16 29.25 34.00
iterative deepening 9.16 10.91 0.16

Fig. 6. Benchmarks: comparing different search strategies

In order to compare the various search strategies, Fig. 6 contains some corresponding
benchmarks. “PermSort” and “PermSortPeano” are the programs discussed in Fig. 4
and “NDNums” is the program

f n = f (n+1) ? n

where we look for the first solution of “f 0 == 25000” (obviously, depth-first search
strategies do not terminate on this equation). All strategies except for the “direct print”
method printValsDFS translate choice structures into monadic list structures in order
to print them according to the user options. The benchmarks show that the overhead of
this transformation is acceptable so that this more flexible approach is the default one.

We also made initial benchmarks with a parallel strategy where non-deterministic
choices are explored via GHC’s par construct. For the permutation sort we obtained a
speedup of 1.7 when executing the same program on two processors, but no essential

KiCS2: A New Compiler from Curry to Haskell 15

speedup is obtained for more than two processors. Better results require a careful analy-
sis of the synchronization caused by the global structure to manage the state of choices.
This is a topic for future work.

5.2 Encapsulated Search

In addition to the different search strategies to evaluate top-level expressions, our system
also contains a primitive operation

searchTree :: a → IO (SearchTree a)

to translate the search space caused by the evaluation of its argument into a tree structure
of the form

data SearchTree a = Value a | Fail | Or (SearchTree a) (SearchTree a)

With this primitive, the programmer can define its own search strategy or collect all
non-deterministic values into a list structure for further processing [15].

5.3 Logic Variables and Unification

Although our implementation is based on eliminating all logic variables from the source
program by introducing generators, many functional logic programs contain equational
constraints (e.g., compare the example “Last” of Fig. 4) to put conditions on computed
results. Solving such conditions by generating all values is not always a reasonable ap-
proach. For instance, if xs and ys are free variables of type [Bool], the equational
constraint “xs=:=ys” has an infinite number of solutions. Instead of enumerating all
these solutions, it is preferable to delay this enumeration but remember the condition
that both xs and ys must always be evaluated to the same value. This demands for
extending the representation of non-deterministic values by the possibility to add equa-
tional constraints between different choice identifiers. Due to lack of space, we have
to omit the detailed description of this extension. However, it should be noted that the
examples “Last” and “RegExp” of Fig. 4 show that unification can be supported with a
reasonable efficiency.

6 Conclusions and Related Work

We have presented a new system to compile functional logic programs into purely
functional programs. In order to be consistent with the call-time choice semantics of
functional logic languages like Curry or TOY, we represent non-deterministic values
in choice structures where each choice has an identification. Values for such choice
identifiers are passed through non-deterministic operations so that fresh identifiers are
available when a new choice needs to be created. The theoretical justification of this
implementation technique is provided in [11]. Apart from the parser, where we reused
an existing one implemented in Haskell, the compiler is completely written in Curry.

Due to the representation of non-deterministic values as data, our system easily
supports various search strategies in constrast to Prolog-based implementations. Since
we compile Curry programs into Haskell, we can exploit the implementation efforts

16 B. Braßel et al.

done for functional programming. Hence, purely functional parts of functional logic
programs can be executed with almost the same efficiency as Haskell programs. Our
benchmarks show that even the execution of the non-deterministic parts can compete
with other implementations of Curry.

In the introduction we already discussed the various efforts to implement functional
logic languages, like the construction of abstract machines [9,27,32] and the compi-
lation into Prolog [5] or Haskell [13,15,16]. Our benchmarks show that an efficient
implementation by compiling into a functional language depends on carefully handling
the sharing of non-deterministic choices. For instance, our previous implementation
[13], where sharing is explicitly managed by the monadic techniques proposed in [19],
has not satisfied the expectations that came from the benchmarks reported in [19]. Due
to these experiences, in our new compiler we use the compilation scheme initially pro-
posed in [12] which produces much faster code, as shown in our benchmarks.

If non-deterministic results are collected in data structures, one has more fine-grained
control over non-deterministic steps. For instance, [2] proposes pull-tab steps to move
non-determinism from arguments to the result position of a function. Antoy [4] shows
that single pull-tab steps are semantics-preserving. Thus, it is not necessary to move
each choice to the root of an expression, as done in our implementation, but one could
also perform further local computations in the arguments of a choice before moving it
up. This might be a reasonable strategy if all non-deterministic values are required but
many computations fail. However, the general effects of such refinements need further
investigations.

Our implementation has many opportunities for optimization, like better program
analyses to approximate purely deterministic computations. We can also exploit ad-
vanced developments in the implementation of Haskell, like the parallel evaluation of
expressions. These are interesting topics for future work.

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for declarative
multi-paradigm languages. Journal of Symbolic Computation 40(1), 795–829 (2005)

2. Alqaddoumi, A., Antoy, S., Fischer, S., Reck, F.: The pull-tab transformation. In: Proc. of the
Third International Workshop on Graph Computation Models, pp. 127–132. Enschede, The
Netherlands (2010),
http://gcm-events.org/gcm2010/pages/
gcm2010-preproceedings.pdf

3. Antoy, S.: Constructor-based conditional narrowing. In: Proc. of the 3rd International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP 2001),
pp. 199–206. ACM Press, New York (2001)

4. Antoy, S.: On the correctness of the pull-tab transformation. In: To Appear in Proceedings of
the 27th International Conference on Logic Programming, ICLP 2011 (2011)

5. Antoy, S., Hanus, M.: Compiling multi-paradigm declarative programs into Prolog. In:
Kirchner, H. (ed.) FroCos 2000. LNCS, vol. 1794, pp. 171–185. Springer, Heidelberg (2000)

6. Antoy, S., Hanus, M.: Functional logic design patterns. In: Hu, Z., Rodrı́guez-Artalejo, M.
(eds.) FLOPS 2002. LNCS, vol. 2441, pp. 67–87. Springer, Heidelberg (2002)

7. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic programs.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 87–101. Springer,
Heidelberg (2006)

KiCS2: A New Compiler from Curry to Haskell 17

8. Antoy, S., Hanus, M.: Functional logic programming. Communications of the ACM 53(4),
74–85 (2010)

9. Antoy, S., Hanus, M., Liu, J., Tolmach, A.: A virtual machine for functional logic com-
putations. In: Grelck, C., Huch, F., Michaelson, G.J., Trinder, P. (eds.) IFL 2004. LNCS,
vol. 3474, pp. 108–125. Springer, Heidelberg (2005)

10. Augustsson, L., Rittri, M., Synek, D.: On generating unique names. Journal of Functional
Programming 4(1), 117–123 (1994)

11. Braßel, B.: Implementing Functional Logic Programs by Translation into Purely Functional
Programs. PhD thesis, Christian-Albrechts-Universität zu Kiel (2011)

12. Braßel, B., Fischer, S.: From functional logic programs to purely functional programs pre-
serving laziness. In: Pre-Proceedings of the 20th Workshop on Implementation and Applica-
tion of Functional Languages, IFL 2008 (2008)

13. Braßel, B., Fischer, S., Hanus, M., Reck, F.: Transforming functional logic programs into
monadic functional programs. In: Mariño, J. (ed.) WFLP 2010. LNCS, vol. 6559, pp. 30–47.
Springer, Heidelberg (2011)

14. Braßel, B., Hanus, M., Müller, M.: High-level database programming in curry. In: Hudak, P.,
Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 316–332. Springer, Heidelberg (2008)

15. Braßel, B., Huch, F.: On a tighter integration of functional and logic programming. In: Shao,
Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 122–138. Springer, Heidelberg (2007)

16. Braßel, B., Huch, F.: The kiel curry system kICS. In: Seipel, D., Hanus, M., Wolf, A. (eds.)
INAP 2007. LNCS(LNAI), vol. 5437, pp. 195–205. Springer, Heidelberg (2009)

17. Caballero, R., López-Fraguas, F.J.: A functional-logic perspective of parsing. In: Middel-
dorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 85–99. Springer, Heidelberg (1999)

18. Fischer, S.: A functional logic database library. In: Proc. of the ACM SIGPLAN 2005 Work-
shop on Curry and Functional Logic Programming (WCFLP 2005), pp. 54–59. ACM Press,
New York (2005)

19. Fischer, S., Kiselyov, O., Shan, C.: Purely functional lazy non-deterministic programming.
In: Proceeding of the 14th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2009), pp. 11–22. ACM, New York (2009)

20. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodrı́guez-Artalejo,
M.: An approach to declarative programming based on a rewriting logic. Journal of Logic
Programming 40, 47–87 (1999)

21. Hanus, M.: A functional logic programming approach to graphical user interfaces. In: Pon-
telli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp. 47–62. Springer, Heidel-
berg (2000)

22. Hanus, M.: High-level server side web scripting in curry. In: Ramakrishnan, I.V. (ed.) PADL
2001. LNCS, vol. 1990, pp. 76–92. Springer, Heidelberg (2001)

23. Hanus, M.: Type-oriented construction of web user interfaces. In: Proceedings of the 8th
ACM SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2006), pp. 27–38. ACM Press, New York (2006)

24. Hanus, M.: Multi-paradigm declarative languages. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.
LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

25. Hanus, M., Antoy, S., Braßel, B., Engelke, M., Höppner, K., Koj, J., Niederau,
P., Sadre, R., Steiner, F.: PAKCS: The Portland Aachen Kiel Curry System (2010),
http://www.informatik.uni-kiel.de/˜pakcs/

26. Hanus, M., Koschnicke, S.: An ER-based framework for declarative web programming. In:
Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 201–216. Springer, Heidelberg
(2010)

27. Hanus, M., Sadre, R.: An abstract machine for curry and its concurrent implementation in
java. Journal of Functional and Logic Programming 1999(6) (1999)

18 B. Braßel et al.

28. Hanus, M. (ed.): Curry: An integrated functional logic language, vers. 0.8.2 (2006),
http://www.curry-language.org

29. Hussmann, H.: Nondeterministic algebraic specifications and nonconfluent term rewriting.
Journal of Logic Programming 12, 237–255 (1992)

30. Fraguas, F.J.L., Hernández, J.S.: TOY: A multiparadigm declarative system. In: Narendran,
P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 244–247. Springer, Heidelberg
(1999)

31. López-Fraguas, F.J., Rodrı́guez-Hortalá, J., Sánchez-Hernández, J.: A simple rewrite notion
for call-time choice semantics. In: Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP 2007), pp. 197–
208. ACM Press, New York (2007)

32. Lux, W.: Implementing encapsulated search for a lazy functional logic language. In: Middel-
dorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 100–113. Springer, Heidelberg (1999)

33. Moreno-Navarro, J.J., Kuchen, H., Loogen, R., Rodrı́guez-Artalejo, M.: Lazy narrowing in a
graph machine. In: Kirchner, H., Wechler, W. (eds.) ALP 1990. LNCS, vol. 463, pp. 298–317.
Springer, Heidelberg (1990)

34. Partain, W.: The nofib benchmark suite of Haskell programs. In: Proceedings of the 1992
Glasgow Workshop on Functional Programming, pp. 195–202. Springer, Heidelberg (1993)

35. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report. Cambridge
University Press, Cambridge (2003)

36. Wadler, P.: How to replace failure by a list of successes. In: Jouannaud, J.-P. (ed.) FPCA
1985. LNCS, vol. 201, pp. 113–128. Springer, Heidelberg (1985)

37. Zartmann, F.: Denotational Abstract Interpretation of Functional Logic Programs. In: Van
Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 141–156. Springer, Heidelberg (1997)

New Functional Logic Design Patterns

Sergio Antoy1 and Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Patterns distill successful experience in solving common soft-
ware problems. We introduce a handful of new software design pat-
terns for functional logic languages. Some patterns are motivated by the
evolution of the paradigm in the last 10 years. Following usual ap-
proaches, for each pattern we propose a name and we describe its intent,
applicability, structure, consequences, etc. Our patterns deal with fun-
damental aspects of the design and implementation of functional logic
programs such as function invocation, data structure representation and
manipulation, specification-driven implementation, pattern matching,
and non-determinism. We present some problems and we show fragments
of programs that solve these problems using our patterns. The program-
ming language of our examples is Curry. The complete programs are
available on-line.

1 Introduction

A design pattern is a proven solution to a recurring problem in software de-
sign and development. A pattern itself is not primarily code. Rather it is an
expression of design decisions affecting the architecture of a software system.
A pattern consists of both ideas and recipes for the implementations of these
ideas often in a particular language or paradigm. The ideas are reusable, whereas
their implementations may have to be customized for each problem. For exam-
ple, the Constrained Constructor pattern [3], expresses the idea of calling a data
constructor exclusively indirectly through an intermediate function to avoid un-
desirable instances of some type. The idea is applicable to a variety of problems,
but the code of the intermediate function is dependent on each problem.

Patterns originated from the development of object-oriented software [6] and
became both a popular practice and an engineering discipline after [11]. As the
landscape of programming languages evolves, patterns are “translated” from
one language into another [10,12]. Some patterns are primarily language specific,
whereas others are fundamental enough to be largely independent of the language
or programming paradigm in which they are coded. For example, the Adapter
pattern [11], which solves the problem of adapting a service to a client coded
for different interface, is language independent. The Facade pattern [11], which
presents a set of separately coded services as a single unit, depends more on

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 19–34, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

20 S. Antoy and M. Hanus

the modularization features of a language than the language’s paradigm itself.
The Visitor pattern [11], which enables extending the functionality of a class
without modifying the class interface, is critically dependent on features of object
orientation, such as overloading and overriding.

Patterns are related to both idioms and pearls. Patterns are more articulated
than idioms, which never cross languages boundaries, and less specialized than
pearls, which often are language specific. The boundaries of these concepts are
somewhat arbitrary. Patterns address general structural problems and therefore
we use this name for our concepts.

Patterns for a declarative paradigm—in most cases specifically for a functional
logic one—were introduced in [3]. This paper is a follow up. Ten years of active
research in functional logic programming have brought new ideas and deeper
understanding, and in particular some new features and constructs, such as
functional patterns [4] and set functions [5]. Some patterns presented in this
paper originates from these developments.

High-level languages are better suited for the implementation of reusable code
than imperative languages, see, e.g., parser combinators [7]. Although whenever
possible we attempt to provide reusable code, the focus of our presentation is on
the reusability of design and architecture which are more general than the code
itself. Our primary emphasis is not on efficiency, but on clarity and simplicity
of design and ease of understanding and maintenance. Interestingly enough, one
of our patterns is concerned with moving from the primary emphasis to more
efficient code. Our presentation of a pattern follows the usual (metapattern) ap-
proaches that provide, e.g., name, intent, applicability, structure, consequences,
etc. Some typical elements, such as “known uses,” are sparse or missing be-
cause functional logic programming is a still relatively young paradigm. Work
on patterns for this paradigm is slowly emerging.

Section 2 briefly recalls some principles of functional logic programming and
the programming language Curry which we use to present the examples. Sec-
tion 3 presents a small catalog of functional logic patterns together with moti-
vating problems and implementation fragments. Section 4 concludes the paper.

2 Functional Logic Programming and Curry

A Curry program is a set of functions and data type definitions in Haskell-like
syntax [26]. Data type definitions have the same semantics as Haskell. A function
is defined by conditional rewrite rules of the form:

f t1 . . . tn | c = e where vs free (1)

Type variables and function names usually start with lowercase letters and the
names of type and data constructors start with an uppercase letter. The appli-
cation of f to e is denoted by juxtaposition (“f e”).

In addition to Haskell, Curry offers two main features for logic programming:
logical (free) variables and non-deterministic functions. Logical variables are
declared by a “free” clause as shown above, can occur in conditions and/or

New Functional Logic Design Patterns 21

right-hand sides of defining rules, and are instantiated by narrowing [1,2], a
computation similar to resolution, but applicable to functions of any type rather
than predicates only. Similarly to Haskell, the “where” clause is optional and
can also contain other local function and/or pattern definitions.

Non-deterministic functions are defined by overlapping rules such as:

(?) :: a -> a -> a
x ? y = x
x ? y = y

In contrast to Haskell, in which the first matching rule is applied, in Curry all
matching (to be more precise, unifiable) rules are applied—non-deterministically.
For example, 0 ? 1 has two values, 0 and 1. The programmer has no control over
which value is selected during an execution, but will typically constrain this value
according to the intent of the program. In particular, Curry defines equational
constraints of the form e1 =:= e2 which are satisfiable if both sides e1 and e2 are
reducible to unifiable data terms. Furthermore, “c1 & c2” denotes the concurrent
conjunction of the constraints c1 and c2 which is evaluated by solving both c1

and c2 concurrently. By contrast, the operator “&&” denotes the usual Boolean
conjunction which evaluates to either True or False.

An example of the features discussed above can be seen in the definition of a
function that computes the last element of a non-empty list. The symbol “++”
denotes the usual list concatenation function:

last l | p++[e]=:=l = e where p,e free

As in Haskell, the rules defining most functions are constructor-based [25], in (1)
t1 . . . tn are made of variables and/or data constructor symbols only. However,
in Curry we can also use a functional pattern [4]. With this feature, which relies
on narrowing, we can define the function last also as:

last (_++[e]) = e

The operational semantics of Curry, precisely described in [14,22], is a conser-
vative extension of both lazy functional programming (if no free variables occur
in the program or the initial goal) and (concurrent) logic programming. Since
Curry is based on an optimal evaluation strategy [2], it can be considered a
generalization of concurrent constraint programming [27] with a lazy strategy.

Furthermore, Curry also offers features for application programming like mod-
ules, monadic I/O, encapsulated search [21], ports for distributed programming
[15], libraries for GUI [16] and HTML programming [17], etc. We do not present
these aspects of the language, since they are not necessary for understanding
our contribution. There exist several implementations of Curry. The examples
presented in this paper were all compiled and executed by Pakcs [20], a com-
piler/interpreter for a large subset of Curry.

There exist also other functional logic languages, most notably T OY [8,24],
with data types, possibly non-deterministic functions, and logic variables instan-
tiated by narrowing similar to Curry. Many patterns and exemplary programs

22 S. Antoy and M. Hanus

discussed in this paper are adaptable to these languages with minor, often purely
syntactic, changes.

3 Patterns

In this section we present a small catalog of patterns that address non-trivial
solutions of some general and challenging problems.

3.1 Call-by-Reference

Name Call-by-reference
Intent return multiple values from a function without defining a con-

taining structure
Applicability a function must return more than one value
Structure an argument passed to a function is an unbound variable
Consequences avoid constructing a structure to hold multiple values
Known uses Parser combinators
See also Monads, Extensions

The pattern name should not mislead the reader. There is no call-by-reference
in functional logic languages. The name stems from a similarity with the passing
mode in that a value is returned by a function through an argument of the call.

When a function must return multiple values, a standard technique is to return
a structure that holds all the values to be returned. For example, if function f
must return both a value of type A and a value of type B, the return type could
be (A, B), a pair with components of type A and B, respectively. The client of f
extracts the components of the returned structure and uses them as appropriate.
Although straightforward, this approach quickly becomes tedious and produces
longer and less readable code. This pattern, instead, suggests to pass unbound
variables to the function which both returns a value and binds other values to
the unbound variables.

Example: A symbol table is a sequence of records. A record is a pair in which
the first component is intended as a key mapped to the second component.

type Record = (String,Int)
type Table = [Record]

The function insert attempts to insert a record (k, v) into a table t which
is expected to contain no record with key k. This function computes both a
Boolean value, False if a record with key k is already in t, True otherwise,
and the updated table, if no record with key k is in t. Attempting to insert a
record whose key is in the table is an error, hence the returned table in this
case is uninteresting. The Boolean value is returned by the function whereas
the updated table is bound to the third argument of the call. Alternatively, the
function could return the updated table and bind the Boolean value to the third
argument, but as we will discuss shortly this option is not as appealing.

New Functional Logic Design Patterns 23

insert :: Record -> Table -> Table -> Bool
insert (k,v) [] x = x =:= [(k,v)] &> True
insert (k,v) ((h,w):t) x

| k == h = x =:= (h,w):t &> False
| otherwise = let b = insert (k,v) t t’

in x =:= (h,w):t’ &> b where t’ free

The operator “&>”, called constrained expression, takes a constraint as its first
argument. It solves this constraint and, if successful, returns its second argument.

The function remove attempts to remove a record with key k from a table
t which is expected to contain one and only one such record. This function
computes both a Boolean value, True if a record with key k is in t, False
otherwise, and the updated table if a record with key k is in t. Attempting to
remove a record whose key is not in the table is an error, hence the returned
table in this case is uninteresting.

remove :: String -> Table -> Table -> Bool
remove [] [] = False
remove k ((h,w):t) x

| k == h = x =:= t &> True
| otherwise = let b = remove k t t’

in x =:= (h,w):t’ &> b where t’ free

An example of use of the above functions follow, where the key is a string and
the value is an integer.

emptyTable = []
test = if insert ("x",1) emptyTable t1 &&

insert ("y",2) t1 t2 &&
remove "z" t2 t3 then t3

else error "Oops"
where t1, t2, t3 free

Of the two values returned by functions insert and remove, the table is subordi-
nate to the Boolean in that when the Boolean is false, the table is not interesting.
This suggest returning the Boolean from the functions and to bind the table to
an argument. A client typically will test the Boolean before using the table,
hence the test will trigger the binding. However, variables are bound only to
fully evaluated expressions. This consideration must be taken into account to
select which value to return in a variable when laziness is crucial.

For a client, it is easier to use the functions when they are coded according to
the pattern rather than when they return a structure. A state monad [23] would
be a valid alternative to this pattern for the example presented above and in
other situations. Not surprisingly, this pattern can be used instead of a Maybe
type.

This pattern is found, e.g., in the parser combinators of [7]. A parser with
representation takes a sequence of tokens and typically a free variable, which is
bound to the representation of the parsed tokens, whereas the parser returns the

24 S. Antoy and M. Hanus

sequence of tokens that remain to be parsed. The Extensions of [9] are a form of
this pattern. The reference contains a comparison with the monadic approach.

This pattern is not available in functional languages since they lack free vari-
ables. Logic languages typically return information by instantiating free variables
passed as arguments to predicates, but predicates do not return information, ex-
cept for succeeding.

3.2 Many-to-Many

Name Many-to-many
Intent encode a many-to-many relation with a single simple function
Applicability a relation is computed in both directions
Structure a non-deterministic function defines a one-to-many relation;

a functional pattern defines the inverse relation
Consequences avoid structures to define a relation
Known uses
See also

We consider a many-to-many relationR between two sets A and B. Some element
of A is related to distinct elements of B and, vice versa, distinct elements of A
are related to some element of B. In a declarative program, such a relation is
typically abstracted by a function f from A to subsets of B, such that b ∈ f(a)
iff aR b. We will call this function the core function of the relation. Relations
are dual to graphs and, accordingly, the core function can be defined, e.g., by an
adjacency list. The relation R implicitly defines an inverse relation which, when
appropriate, is encoded in the program by a function from B to subsets of A,
the core function of the inverse relation.

In this pattern, the core function is encoded as a non-deterministic function
that maps every a ∈ A to every b ∈ B such that aR b. The rest of the abstraction
is obtained nearly automatically using standard functional logic features and
libraries. In particular, the core function of the inverse relation, when needed,
is automatically obtained through a functional pattern. The sets of elements
related to a given element are automatically obtained using the set functions of
the core function.

Example: Consider an abstraction about blood transfusions. We define the
blood types and the function giveTo. The identifiers Ap, An, etc. stand for the
types A positive (A+), A negative (A−), etc. The application giveTo x returns
a blood type y such that x can be given to a person with type y. E.g., A+ can
be given to both A+ and AB+.

data BloodType = Ap | An | ABp | ABn | Op | On | Bp | Bn

giveTo :: BloodType -> BloodType
giveTo Ap = Ap ? ABp
giveTo Op = Op ? Ap ? Bp ? ABp
giveTo Bp = Bp ? ABp
...

New Functional Logic Design Patterns 25

The inverse relation is trivially obtained with a function defined using a func-
tional pattern [4]. The application receiveFrom x returns a blood type y such
that a person with type x can receive type y. E.g., AB+ can receive A+, AB+
and O+ among others.

receiveFrom :: BloodType -> BloodType
receiveFrom (giveTo x) = x

To continue the example, let us assume a database defining the blood type of a
set of people, such as:

has :: String -> BloodType
has "John" = ABp
has "Doug" = ABn
has "Lisa" = An

The following function computes a donor for a patient, where the condition x �= y
avoids self-donation, which obviously is not intended.

donorTo :: String -> String
donorTo x

| giveTo (has y) =:= has x & x =/= y
= y
where y free

E.g., the application donorTo"John" returns both "Doug" and "Lisa", whereas
donorTo"Lisa" correctly fails for our very small database.

To continue the example further, we may need a particular set of donors,
e.g., all the donors that live within a certain radius of a patient and we may
want to rank these donors by the date of their last blood donation. For these
computations, we use the set function [5] automatically defined for any function.
The function donorTo’set produces the set of all the donors for a patient. The
SetFunctions library module offers functions for filtering and sorting this set.

Many-to-many relations are ubiquitous, e.g., students taking courses from
teachers, financial institutions owning securities, parts used to build products,
etc. Often, it won’t be either possible or convenient to hard-wire the relation
in the program as we did in our example. In some cases, the core function of
a relation will access a database or some data structure, such as a search tree,
obtained from a database. An interesting application of this pattern concerns
the relation among the functions of a program in which a function is related to
any function that it calls. In this case, we expect that the compiler will produce
a structure, e.g., a simple set of pairs, which the core function will access for its
computations. Beside a small difference in the structure of the core function, the
rest of the pattern is unchanged.

This pattern is not available in functional languages since they lack non-
deterministic functions. Logic languages support key aspects of this pattern,
in particular, the non-determinism of the core function and the possibility of
computing a relation and its inverse relation with the same predicate.

26 S. Antoy and M. Hanus

3.3 Quantification

Name Quantification
Intent encode first-order logic formula in programs
Applicability problems specified in a first-order logic language
Structure apply “there exists” and “for all” library functions
Consequences programs are encoded specifications
Known uses
See also

First-order logic is a common and powerful language for the specification of prob-
lems. The ability to execute even some approximation of this language enables
us to directly translate many specifications into programs. A consequence of this
approach is that the logic of the resulting program is correct by definition and
the code is obtained with very little effort. The main hurdle is existential quan-
tification, since specifications of this kind are often not constructive. However,
narrowing, which is the most characterizing feature of functional logic languages,
supports this approach.

Narrowing evaluates expressions, such as a constraint, containing free vari-
ables. The evaluation computes some instantiations of the variables that lead
to the value of the expression, e.g., the satisfaction of the constraint. Hence, it
solves the problem of existential quantification.

Universal quantification is more straightforward. Mapping and/or folding op-
erations on sets are sufficient to verify whether all the elements of the set satisfy
some condition. In particular, set functions can be a convenient means to com-
pute the sets required by an abstraction.

We define the following two functions for existential and universal quantifica-
tion, where Values is a library-defined polymorphic type abstracting a set and
mapValues and foldValues are standard mapping and folding functions on sets.
The function exists is a simple idiom defined only to improve the readability
of the code.

exists :: a -> (a -> Success) -> Success
exists x f = f x

forall :: Values a -> (a -> Bool) -> Success
forall s f = foldValues (&&) True (mapValues f s) =:= True

Example: Map coloring is stated as “given any separation of a plane into con-
tiguous regions, producing a figure called a map, ... color the regions of the
map so that no two adjacent regions have the same color” [28]. A map coloring
problem has a solution M iff there exists a colored map M such that for all x
and y regions of M and x adjacent to y the colors of x and y differ. The above
statement is a specification of the problem stated semi-formally in a first-order
logic language.

New Functional Logic Design Patterns 27

We begin by defining the regions of the map and the adjacency relation. For
the curious, the map is the Pacific North West.

data State = WA | OR | ID | BC

states = [WA,OR,ID,BC]

adjacent = [(WA,OR),(WA,ID),(WA,BC),(OR,ID),(ID,BC)]

To continue the example, we define the colors to use for coloring the map, only
3, and the function that colors a state. Coloring a state is a non-deterministic
assignment, represented as a pair, of a color to a state.

data Color = Red | Green | Blue

color :: a -> (a,Color)
color x = (x, Red ? Green ? Blue)

The rest of the program follows:

solve :: [(State,Color)]
solve | exists cMap (\map ->

forall someAdj’set (\(st1,st2) ->
lookup st1 map /= lookup st2 map))

= cMap
where cMap = map color states

someAdj = foldr1 (?) adjacent

The identifier cMap is bound to some colored map. The identifier someAdj is
bound to some pair of adjacent states. The identifier someAdj’set is bound to
the implicitly defined set function of someAdj, hence it is the set of all the pairs
of adjacent states. The function lookup is defined in the standard Prelude. It
retrieves the color assigned to a state in the colored map.

The condition of the function solve is an encoded, but verbatim, translation
of the specification. The condition could be minimally shortened by eliminating
the exists idiom, but the presented form is more readable and shows the pattern
in all its generality.
Since ∀x P is equivalent to ¬∃x ¬P , we also define:

notExists :: Values a -> (a -> Bool) -> Success
notExists s f = foldValues (||) False (mapValues f s) =:= False

This pattern is very general and applicable to problems, whether or not deter-
ministic, which have non-constructive specifications. For example, the minimum
element of a collection can be specified as m is the minimum of C iff there exists
some m in C such that there not exists some x in C such that x < m, i.e.,
∃m (m ∈ C ∧ ¬∃x (x ∈ C ∧ x < m)) or, equivalently, for all x in C, x ≥ m

This pattern is not available in functional languages since they lack narrow-
ing. Logic languages have some forms of existential quantification, but their
lack of functional nesting prevents the readable and elegant notion available in
functional logic languages.

28 S. Antoy and M. Hanus

3.4 Deep Selection

Name Deep selection
Intent pattern matching at arbitrary depth in recursive types
Applicability select an element with given properties in a structure
Structure combine a type generator with a functional pattern
Consequences separate structure traversal from pattern matching
Known uses HTML and XML applications coded in Curry
See also Curry’s HTML library

Pattern matching is undoubtedly a convenient feature of modern declarative
languages because it allows to easily retrieve the components of a data structure
such as a tuple. Recursively defined types, such as lists and trees, have compo-
nents at arbitrary depths that cannot be selected by pattern matching because
pattern matching selects components only at predetermined positions. For re-
cursively defined types, the selection of some element with a given property in a
data structure typically requires code for the traversal of the structure which is
intertwined with the code for using the element. The combination of functional
patterns with type generators allows us to select elements arbitrarily nested in
a structure in a pattern matching-like fashion without explicit traversal of the
structure and mingling of different functionalities of a problem.

A list is a recursively defined type that can be used to represent a mapping
by storing key-value pairs. One such structure, bound to the variable cMap,
was used in the example of the Quantification pattern. The library function
lookup retrieves from the mapping the value v associated to a key k. In that
example, there is one and only one such pair in the list. The function lookup
must both traverse the list to find the key and through pattern matching return
the associated value. The two computations are intermixed and pattern matching
some element with different characteristic in a list would require duplication of
the code to traverse the list. Functional patterns offer a new option.

The key idea of the deep selection pattern is to define a “generator” function
that generates all the instances of a type with a given element. This function is
interesting for recursively defined types. For a list, this generator is:

withElem :: a -> [a]
withElem e = e:unknown ? unknown:withElem e

The function unknown is defined in the Prelude and simply returns a free vari-
able. This generator supports the following definition of lookup in which the
(functional) pattern is as simple as it can be.

lookup :: :: [(a,b)] -> b
lookup (withElem (_,v)) = v

The counterpart of withElem is elemOf, an “extractor” as opposed to a gener-
ator, which returns non-deterministically a component of a structure:

elemOf :: [a] -> a
elemOf (withElem e) = e

New Functional Logic Design Patterns 29

We will use both these functions including specialized variations of them.

Example: Below, we show a simple type for representing arithmetic expressions
and a generator of all the expressions with a given subexpression:

data Exp = Lit Int
| Var [Char]
| Add Exp Exp
| Mul Exp Exp

withSub :: Exp -> Exp
withSub exp = exp

? op (withSub exp) unknown
? op unknown (withSub exp)

where op = Add ? Mul

Suppose that we want to find all the variables of an expression. The function
varOf, a specialization of elemOf shown earlier, for the type Exp, takes an ex-
pression exp and returns the identifier of some variable of exp.

varOf :: Exp -> String
varOf (withSub (Var v)) = v

The set of identifiers of all the variables of exp is simply obtained with the set
function of varOf, i.e., varOf’setexp.

In some situations, a bit more machinery is needed. For example, suppose
that we want to find common subexpressions of an expression, such as 42 and y
in the following:

Add (Mul (Lit 42) (Add (Lit 42) (Var "y")))
(Add (Var "x") (Var "y"))

One option is a more specialized generator that generates all and only the ex-
pressions with a given common subexpression:

withCommonSub :: Exp -> Exp
withCommonSub exp = op (withCommonSub exp) unknown

? op unknown (withCommonSub exp)
? op (withSub exp) (withSub exp)

where op = Add ? Mul

Another option is a different more specialized generator that generates all the
expressions with a given subexpression at a given position. The position is a
string of 1’s and 2’s defining a path from the root of the expression to the
subexpression.

withSubAt :: [Int] -> Exp -> Exp
withSubAt [] exp = exp
withSubAt (1:ps) exp = (Add ? Mul) (withSubAt ps exp) unknown
withSubAt (2:ps) exp = (Add ? Mul) unknown (withSubAt ps exp)

30 S. Antoy and M. Hanus

This generator is useful to pattern match a subexpression and its position:

subAt :: Exp -> ([Int],Exp)
subAt (withSubAt p exp) = (p,exp)

In the new version of the function that computes a common subexpression, not
only we return the common subexpression, but also the two positions at which
subexpression occurs, since they are available. The ordering operator “<:” is
predefined for all types. Its use in our code ensures that the same subexpression
is not matched twice.

commonSub :: Exp -> (Exp,[Int],[Int])
commonSub exp | p1 <: p2 & e1=:=e2 = (e1,p1,p2)

where (p1,e1) = subAt exp
(p2,e2) = subAt exp

This pattern is applied in HTML processing. Curry provides a library for the
high-level construction of type-safe HTML documents and web-oriented user
interfaces [18]. HTML documents are instances of a type HtmlExp, shown below,
consisting of sequences of text and tag elements with both attributes and possibly
nested elements.

data HtmlExp = HtmlText String
| HtmlStruct String [(String,String)] [HtmlExp]

The problem, sought-after by spammers, of finding all the e-mail addresses in
a HTML page is trivialized by this pattern. The following function finds some
e-mail address in a document:

eAddress :: HtmlExp -> String
eAddress (withHtmlElem

(HtmlStruct _
(withElem ("href","mailto:"++name)) _)) = name

where withElem, defined above, is applied to match a href tag with value mailto
in a list of attributes and the type generator withHtmlElem, defined below, is
applied to match an HtmlStruct structure with the desired attribute in a tree
of HTML structures.

withHtmlElem :: HtmlExp -> HtmlExp
withHtmlElem helem = helem

? HtmlStruct unknown
unknown
(withElem (withHtmlElem helem))

All the addresses in a page are produced by the set function of eAddress.
In a similar way, one can also define generators for deep matching in XML

structures. A library to support the declarative processing of XML data based
on the deep selection pattern is described in [19].

New Functional Logic Design Patterns 31

This pattern is not available in both functional and logic languages since they
lack functional patterns.

3.5 Non-determinism Introduction and Elimination

Name Non-determinism introduction and elimination
Intent use different algorithms for the same problem
Applicability some algorithm is too slow or it may be incorrect
Structure either replace non-deterministic code with deterministic one or

vice versa
Consequences improve speed or verify correctness of algorithms
Known uses prototyping
See also

Specifications of problems are often non-deterministic because in many cases
non-determinism defines the desired results of a computation more easily than
by other means. We have seen this practice in several previous examples. Func-
tional logic programming, more than any other paradigm, allows a programmer
to translate a specification, whether or not non-deterministic, with little or no
change into a program [1]. Thus, it is not unusual for programmers to initially
code non-deterministic programs even for deterministic problems because this
approach produces correct programs quickly. We call a prototypical implemen-
tation this direct encoding of a specification.

For some problems, prototypical implementations are not as efficient as an ap-
plication requires. This is typical, e.g., for sorting and searching problems, which
have been the subject of long investigations, because non-deterministic solutions
ignore domain knowledge that speeds up computations. In these cases, the pro-
totypical implementation, often non-deterministic, should be replaced by a more
efficient implementation, often deterministic, that produces the same result. We
call the latter production implementation. The investment that went into the pro-
totypical implementation is not wasted, as several benefits derive from that effort.
First of all, the specification of the problem is better understood and it has been
tested through the input/output behavior of the prototypical implementation and
possibly debugged and corrected. Second, the prototypical implementation can be
used as a testing oracle of the production implementation. Testing can be largely
automated, which both reduces effort and improves reliability.

PAKCS [20] is distributed with a unit testing tool [13] called CurryTest which
is useful in the situation we describe. A unit testing of a program is another
program defining, among others, some zero-arity functions containing assertions,
e.g., specific conditions stating the equality between a function call and its
result. The CurryTest tool applied to the program invokes, using reflections, all
the functions defining an assertion. The tool checks the validity of each assertion
and reports any violation. Thus, a test of a function f of the production imple-
mentation will apply both f and the corresponding function of the prototypical

32 S. Antoy and M. Hanus

implementation to test arguments, and assert that the results are the same.

Example: Assume an informal specification of sorting: “find the minimum of
a list, sort the rest, and place the minimum at the front.” The most compli-
cated aspect of an implementation of this specification is the computation of the
minimum. A fairly precise specification of the minimum was given in the Quan-
tification pattern. A prototypical implementation of this specification follows:

getMinSpec :: [a] -> a
getMinSpec l | exists m (\m -> m =:= elemOf l &>

notExists (elemOf’set l) (\x -> x < m))
= m where m free

The prototypical implementation is assumed to be correct, since it is a direct
encoding of the specification, and it is non-deterministic due to elemOf. Sorting
with the prototypical implementation is too slow for long lists, hence we code a
deterministic and more efficient production implementation:

getMin :: [a] -> a
getMin (x:xs) = aux x xs

where aux x [] = x
aux x (y:ys) | x <= y = aux x ys

| otherwise = getMin (y:ys)

To test the production implementation, we define the following function that
compares the output of the production implementation with that of the proto-
typical implementation. We process this function with CurryTest.

testGetMin :: Assertion Int
testGetMin = AssertEqual "getMin" outSpec out

where input = [3,1,2,4,9,5] -- some test data
outSpec = getMinSpec input
out = getMin input

This pattern is typically used to replace non-deterministic code with more de-
terministic code to improve the efficiency of a program. However, the opposite
replacement is occasionally useful to attempt to “improve the correctness” of a
program. Suppose that the input/output behavior of a program is incorrect and
that we suspect that the culprit is some function f . We can replace the code of
f with code directly obtained from the specification of f . This code is likely to
be more non-deterministic. If the replacement fixes the input/output behavior
of the program, we have the proof that the code that we replaced was indeed
incorrect.

Both unit testing and replacing an algorithm with another for various pur-
poses, such as improving performance or verifying behavior, are widespread
and language independent techniques. The customization of these techniques
to functional logic programming emphasizes the possibility of executing
non-deterministic code, in particular code obtained from a direct encoding of a
specification.

New Functional Logic Design Patterns 33

4 Conclusion and Related Work

Design patterns help structuring code for general problems frequently arising
in software development. They produce solutions that are more readable, main-
tainable and elegant than improvised alternatives. Efficiency may be partially
sacrificed for these very desirable attributes. We have also shown that employ-
ing a pattern has various benefits even in situations in which the pattern-driven
solution is inefficient and it is eventually replaced by more efficient code.

We presented five new design patterns for the functional logic programming
paradigm. These patterns are a follow up on our initial work [3] in this area. Pat-
terns distill successful programming experience similar in scope to programming
pearls. Some of our patterns were motivated, in part, by features introduced in
the Curry language in the last 10 years, in particular functional patterns [4] and
set functions [5].

The programs discussed in this paper are available at URL:

http://www.cs.pdx.edu/~antoy/flp/patterns/

References

1. Antoy, S.: Programming with narrowing. Journal of Symbolic Computation 45(5),
501–522 (2010)

2. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. Journal of the
ACM 47(4), 776–822 (2000)

3. Antoy, S., Hanus, M.: Functional logic design patterns. In: Hu, Z., Rodŕıguez-
Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441, pp. 67–87. Springer, Heidelberg
(2002)

4. Antoy, S., Hanus, M.: Declarative programming with function patterns. In: Hill,
P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6–22. Springer, Heidelberg (2006)

5. Antoy, S., Hanus, M.: Set functions for functional logic programming. In: Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2009), Lisbon, Portugal, pp. 73–82
(September 2009)

6. Beck, K., Cunningham, W.: Using pattern languages for object-oriented programs.
In: Specification and Design for Object-Oriented Programming, OOPSLA 1987
(1987)

7. Caballero, R., López-Fraguas, F.: A functional-logic perspective of parsing. In: Mid-
deldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 85–99. Springer, Heidelberg
(1999)

8. Caballero, R., Sánchez, J. (eds.): TOY: A Multiparadigm Declarative Language,
version 2.3.1 (2007), http://toy.sourceforge.net

9. Caballero, R., López-Fraguas, F.J.: Extensions: A technique for structuring
functional-logic programs. In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI
1999. LNCS, vol. 1755, pp. 297–310. Springer, Heidelberg (2000)

10. Cooper, J.W.: Java Design Patterns. AddisonWesley, London (2000)
11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. AddisonWesley, London (1994)
12. Grand, M.: Patterns in Java. J. Wiley, Chichester (1998)

34 S. Antoy and M. Hanus

13. Hanus, M.: Currytest: A tool for testing Curry programs,
http://www-ps.informatik.uni-kiel.de/currywiki/tools/currytest

(accessed April 13, 2011)
14. Hanus, M.: A unified computation model for functional and logic programming.

In: Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93 (1997)

15. Hanus, M.: Distributed programming in a multi-paradigm declarative language. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 376–395. Springer, Heidelberg
(1999)

16. Hanus, M.: A functional logic programming approach to graphical user interfaces.
In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp. 47–62.
Springer, Heidelberg (2000)

17. Hanus, M.: High-level server side web scripting in curry. In: Ramakrishnan, I.V.
(ed.) PADL 2001. LNCS, vol. 1990, pp. 76–92. Springer, Heidelberg (2001)

18. Hanus, M.: Type-oriented construction of web user interfaces. In: Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP 2006), pp. 27–38. ACM Press, New York (2006)

19. Hanus, M.: Declarative processing of semistructured web data. Technical report
1103, Christian-Albrechts-Universität Kiel (2011)

20. Hanus, M., Antoy, S., Braßel, B., Engelke, M., Höppner, K., Koj, J., Niederau, P.,
Sadre, R., Steiner, F.: PAKCS: The Portland Aachen Kiel Curry System (2011),
http://www.informatik.uni-kiel.de/~pakcs/

21. Hanus, M., Steiner, F.: Controlling search in declarative programs. In: Palamidessi,
C., Meinke, K., Glaser, H. (eds.) ALP 1998 and PLILP 1998. LNCS, vol. 1490, pp.
374–390. Springer, Heidelberg (1998)

22. Hanus, M. (ed.): Curry: An integrated functional logic language (vers. 0.8.2)
(March 28, 2006), http://www.informatik.uni-kiel.de/~curry

23. Hudak, P., Peterson, J., Fasel, J.: A gentle introduction to Haskell 98 (1999),
http://www.haskell.org/tutorial/monads.html

24. Fraguas, F.J.L., Hernández, J.S.: TOY: A multiparadigm declarative system. In:
Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 244–247.
Springer, Heidelberg (1999)

25. O’Donnell, M.J.: Equational Logic as a Programming Language. MIT Press, Cam-
bridge (1985)

26. Peyton Jones, S.L., Hughes, J.: Haskell 98: A non-strict, purely functional language
(1999), http://www.haskell.org

27. Saraswat, V.A.: Concurrent Constraint Programming. MIT Press, Cambridge
(1993)

28. Wikipedia, the free encyclopedia. Four color theorem,
http://en.wikipedia.org/wiki/Four_color_theorem (accessed April 8, 2011)

XQuery in the Functional-Logic Language Toy

Jesus M. Almendros-Jiménez1, Rafael Caballero2, Yolanda García-Ruiz2,
and Fernando Sáenz-Pérez3,�

1 Dpto. de Lenguajes y Computación, Universidad de Almería
2 Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid
3 Departamento de Ingeniería del Software e Inteligencia Artificial

Universidad Complutense de Madrid
Spain

Abstract. This paper presents an encoding of the XML query lan-
guage XQuery in the functional-logic language T OY. The encoding is
based on the definition of for-let-where-return constructors by means
of T OY functions, and uses the recently proposed XPath implementa-
tion for this language as a basis. XQuery expressions can be executed
in T OY obtaining sequences of XML elements as answers. Our setting
exploits the non-deterministic nature of T OY by retrieving the elements
of the XML tree once at a time when necessary. We show that one of the
advantages of using a rewriting-based language for implementing XQuery
is that it can be used for optimizing XQuery expressions by query rewrit-
ing. With this aim, XQuery expressions are converted into higher order
patterns that can be analyzed and modified by T OY functions.

Keywords: Functional-Logic Programming, Non-Deterministic Func-
tions, XQuery, Higher-Order Patterns.

1 Introduction

In the last few years the eXtensible Markup Language XML [33] has become a
standard for the exchange of semistructured data. Thus, querying XML docu-
ments from different languages has become a convenient feature. XQuery [35,37]
has been defined as a query language for finding and extracting information
from XML documents. It extends XPath [34], a domain-specific language that
has become part of general-purpose languages. Recently, in [10], we have pro-
posed an implementation of XPath in the functional-logic language T OY [22].
The implementation is based on the definition of XPath constructors by means
of T OY functions. As well, XML documents are represented in T OY by means
of terms, and the basic constructors of XPath: child, self, descendant, etc.

� This work has been supported by the Spanish projects TIN2008-06622-C03-
01, TIN2008-06622-C03-03, S-0505/TIC/0407, S2009TIC-1465, and UCM-BSCH-
GR58/08-910502.

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 35–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

36 J.M. Almendros-Jiménez et al.

are defined as functions that apply to XML terms. The goal of this paper is to
extend [10] to XQuery.

The existing XQuery implementations either use functional programming or
Relational Database Management Systems (RDBMS’s). In the first case, the
Galax implementation [23] encodes XQuery into Objective Caml, in particular,
encodes XPath. Since XQuery is a functional language (with some extensions)
the main encoding is related with the type system for allowing XML documents
and XPath expressions to occur in a functional expression. With this aim, a spe-
cific type system for handling XML tags, the hierarchical structure of XML, and
sequences of XML items is required. In addition, XPath expressions can be im-
plemented from this representation. There are also proposals for new languages
based on functional programming rather than implementing XPath and XQuery.
This is the case of XDuce [19] and CDuce [5,6], which are languages for XML
data processing, using regular expression pattern matching over XML trees and
subtyping as basic mechanism. There are also proposals around Haskell for han-
dling XML documents, such as HaXML and UUXML [31,4,36,30]. XML types
are encoded with Haskell’s type classes providing a Haskell library in which XML
types are encoded as algebraic datatypes. HXQ [14] is a translator from XQuery
to embedded Haskell code, using the Haskell templates. HXQ stores XML doc-
uments in a relational database, and translates queries into SQL queries.

This is also followed in some RDBMS XQuery implementations: XML doc-
uments are encoded with relational tables, and XPath and XQuery with SQL.
The most relevant contribution in this research line is MonetDB/XQuery [7]. It
consists of the Pathfinder XQuery compiler [8] on top of the MonetDB RDBMS,
although Pathfinder can be deployed on top of any RDBMS. MonetDB/XQuery
encodes the XML tree structure in a relational table following a pre/post order
traversal of the tree (with some variant). XPath can be implemented from such
table-based representation, and XQuery by encoding flwor expressions into the
relational algebra, extended with the so-called loop-lifted staircase join.

There are also proposals based on logic programming. In most cases, new lan-
guages for XML processing are proposed. The Xcerpt project [27,9] proposes a
pattern and rule-based query language for XML documents, using the so-called
query terms including logic variables for the retrieval of XML elements. Another
contribution to XML processing is the language XPathLog (integrated in the the
Lopix system) [24] which is a Datalog-style extension for XPath with variable
bindings. XCentric [13] is an approach for representing and handling XML doc-
uments by logic programs, by considering terms with functions of flexible arity
and regular types. XPathL [26] is a logic language based on rules for XML pro-
cessing including a specific predicate for handling XPath expressions in Datalog
programs. FNPath [29] is also a proposal for using Prolog as a query language for
XML documents. It maps XML documents to a Prolog Document Object Model
(DOM), which can either consist of facts (graph notation) or a term structure
(field notation). FNPath can evaluate XPath expressions based on that DOM.
[2,3] aim to implement XQuery by means of logic programming, providing two

XQuery in the Functional-Logic Language Toy 37

alternatives: a top-down and a bottom-up approaches (the latter in the line of
Datalog programs). Finally, some well-known Prolog implementations include
libraries for loading XML documents, such as SWI-Prolog [38] and Ciao [12].

In the field of functional-logic languages, [18] proposes a rule-based language
for processing semistructured data that is implemented and embedded in the
functional logic language Curry [17]. The framework is based on providing oper-
ations to describe partial matchings in the data and exploits functional patterns
and set functions for the programming tasks.

In functional and functional-logic languages, a different approach is possi-
ble: XPath queries can be represented by higher-order functions connected by
higher-order combinators. Using this approach, an XPath query becomes at the
same time implementation (code) and representation (data term). This is the
approach we have followed in our previous work [10]. In the case of XQuery, for-
let-where-return constructors can be encoded in T OY , which uses the XPath
query language as a basis. XQuery expressions can be encoded by means of
(first-order) functions. However, we show that we can also consider XQuery ex-
pressions as higher order patterns, in order to manipulate XQuery programs by
means of T OY . For instance, we have studied how to transform XQuery expres-
sions into T OY patterns in order to optimize them. In this paper we follow this
idea, which has been used in the past, for instance for defining parsers in func-
tional and functional-logic languages [11,20]. A completely declarative proposal
for integrating part of XQuery in T OY can be found in [1], which restricts it-
self to the completely declarative features of the language. This implies that the
subset of XQuery considered is much narrower than the framework presented
here. The advantage of restricting to the purely declarative view is that proofs
of correctness and completeness are provided. In this work we take a different
point of view, trying to define a more general XQuery framework although using
non-purely declarative features as the (meta-)primitive collect. Another differ-
ence of this work is the use of higher-order patterns for rewriting queries, which
was not available in [1].

The specific characteristics of functional-logic languages match perfectly the
nature of XQuery queries:

– Non-deterministic functions are used to nicely represent the evaluation of
an XPath/XQuery query, which consists of fragments of the input XML
document. In addition, the for constructor of XQuery can be defined with
non-deterministic behavior.

– Logic variables are employed for instance when obtaining the contents of
XPath text nodes, and for solving nested XQuery expressions, capturing the
non-deterministic behavior of inner for and XPath expressions.

– By defining rules with higher-order patterns, XPath/XQuery queries become
truly first-class citizens in our setting. In the case of XQuery, this allows us
to rewrite queries in order to be optimized. XPath can also be optimized
(see [10] for more details).

The rest of the paper is organized as follows. Section 2 briefly introduces the
XPath subset presented in [10]. Section 3 defines the encoding of XQuery in

38 J.M. Almendros-Jiménez et al.

T OY . Section 4 shows how to use T OY for the optimization of XQuery. Finally,
Section 5 presents some conclusions.

2 XPath in T OY

This section introduces the functional-logic language T OY [22] and the subset
of XPath that we intend to integrate with T OY , omitting all the feaures of
XPath that are supported by T OY but not used in this paper, such as filters,
abbreviations, attributes and preprocessing of reverse axes. See [10] for a more
detailed introduction to XPath in T OY .

2.1 The Functional-Logic Language T OY
All the examples in this paper are written in the concrete syntax of the lazy
functional-logic language T OY [22], but most of the code can be easily adapted
to other similar languages as Curry [17]. T OY is a lazy functional-logic lan-
guage. A T OY program is composed of data type declarations, type alias, infix
operators, function type declarations and defining rules for functions symbols.
The syntax is similar to the functional language Haskell, except for the capital-
ization, which follows the approach of Prolog (variables start by uppercase, and
other symbols by lowercase1). Each rule for a function f has the form:

f t1 . . . tn
︸ ︷︷ ︸

left-hand side

= r
︸︷︷︸

right-hand side

⇐ e1, . . . , ek
︸ ︷︷ ︸

condition

where s1 = u1, . . . , sm = um
︸ ︷︷ ︸

local definitions

where ui and r are expressions (that can contain new extra variables) and ti,
si are patterns. The overall idea is that a function call (f e1 . . . en) returns an
instance rθ of r, if:

– Each ei can be reduced to some pattern ai, i = 1 . . . n, such that (f t1 . . . tn)
and (f a1 . . . an) are unifiable with most general unifier θ, and

– uiθ can be reduced to pattern siθ for each i = 1 . . .m.

Infix operators are also allowed as particular case of program functions. Consider
for instance the definitions:

infixr 30 /\ infixr 30 \/ infixr 45 ?
false /\ X = false true \/ X = true X ? _Y = X
true /\ X = X false \/ X = X _X ? Y = Y

The /\ and \/ operators represent the standard conjunction and disjunction,
respectively, while ? represents the non-deterministic choice. For instance the
infix declaration infixr 45 ? indicates that ? is an infix operator that associates
to the right (the r in infixr) and that its priority is 35. The priority is used
to assume precedences in the case of expressions involving different operators.
Computations in T OY start when the user inputs some goal as
1 Also, only variables are allowed to start that way. If another identifier has to start

with uppercase or underscore, it must be delimited between single quotes.

XQuery in the Functional-Logic Language Toy 39

Toy> 1 ? 2 ? 3 ? 4 == R

This goal asks T OY for values of the logical variable R that make true the
(strict) equality 1 ? 2 ? 3 ? 4 == R. This goal yields four different answers
{R �→ 1 }, {R �→ 2 }, {R �→ 3 }, and {R �→ 4 }. The next function extends
the choice operator to lists: member [X|Xs] = X ? member Xs. For instance,
the goal member [1,2,3,4] == R has the same four answers that were obtained
by trying 1 ? 2 ? 3 ? 4 == R.
T OY is a typed language. Types do not need to be annotated explicitly by

the user, they are inferred by the system, which rejects ill-typed expressions.
However, function type declarations can also be made explicit by the user, which
improves the clarity of the program and helps to detect some bugs at compile
time. For instance, a function type declaration is: member :: [A] -> A which
indicates that member takes a list of elements of type A, and returns a value
which must be also of type A. As usual in functional programming languages,
T OY allows partial applications in expressions and higher order parameters like
apply F X = F X. Consider for instance the function that returns the n-th value
in a list:

nth :: int -> [A] -> A
nth N [X|Xs] = if N==1 then X else nth (N-1) Xs

This function has program arity 2, which means that the program rule is ap-
plied when it receives nth 1 == R1, R1 ["hello","friends"] == R2 and
produces the answer { R1 �→ (nth 1), R2 �→ "hello" }. In this solution, R1
is bound to the partial application nth 1. Observe that R1 has type ([A] ->
A), and thus it is a higher-order variable. Applying R1 to a list of strings like in
the second part of the goal R1 ["hello","friends"] == R2 ’triggers’ the use
of the program rule for nth. A particularity of T OY is that partial applications
with pattern parameters are also valid patterns. They are called higher-order pat-
terns. For instance, a program rule like foo (apply member) = true is valid,
although foo (apply member []) = true is not because apply member [] is
a reducible expression and not a valid pattern. For instance, one could define a
function like: first (nth N) = N==1 because nth N is a higher-order pattern.
However, a program rule like: foo (nth 1 [2]) = true is not valid, because
(nth 1 [2]) is reducible and thus it is not a valid pattern. Higher-order vari-
ables and patterns play an important role in our setting.

2.2 Representing XPath Queries

Data type declarations and type alias are useful for representing XML documents
in T OY , as illustrated next:

data xmlNode = txt string
| comment string
| xmlTag string [xmlAttribute] [xmlNode]

data xmlAttribute = att string string

40 J.M. Almendros-Jiménez et al.

type xml = xmlNode
type xPath = xml -> xml

Data type xmlNode represents nodes in a simple XML document. It distinguishes
three types of nodes: texts, comments, and tags (element nodes), each one rep-
resented by a suitable data constructor and with arguments representing the
information about the node. For instance, constructor xmlTag includes the tag
name (an argument of type string) followed by a list of attributes, and finally a
list of child nodes. Data type xmlAttribute contains the name of the attribute
and its value (both of type string). Type alias xml is a renaming of the data
type xmlNode. Finally, type alias xPath is defined as a function from nodes to
nodes, and is the type of XPath constructors. Of course, this list is not ex-
haustive, since it misses several types of XML nodes, but it is enough for this
presentation. Notice that in T OY we do not still consider the adequacy of the
document to its underlying Schema definition [32]. This task has been addressed
in functional programming defining regular expression types [30]. However, we
assume well-formed input XML documents. In order to import XML documents,
the T OY primitive load_xml_file loads an XML file returning its representa-
tion as a value of type xmlNode. Figure 1 shows an example of XML file and its
representation in T OY.

Typically, XPath expressions return several fragments of the XML document.
Thus, the expected type in T OY for xPath could be type xPath = xml ->
[xml] meaning that a list or sequence of results is obtained. This is the approach
considered in [2] and also the usual in functional programming [16]. However,

<?xml version=’1.0’?>
<food>
<item type="fruit">

<name>watermelon</name>
<price>32</price>

</item>
<item type="fruit">

<name>oranges</name>
<variety>navel</variety>
<price>74</price>

</item>
<item type="vegetable">
<name>onions</name>
<price>55</price>
</item>
<item type="fruit">
<name>strawberries</name>
<variety>alpine</variety>
<price>210</price>
</item>
</food>

xmlTag "root" [att "version" "1.0"] [
xmlTag "food" [] [

xmlTag "item" [att "type" "fruit"] [
xmlTag "name" [] [txt "watermelon"],
xmlTag "price" [] [txt "32"]

],
xmlTag "item" [att "type" "fruit"] [
xmlTag "name" [] [txt "oranges"],
xmlTag "variety" [] [txt "navel"],
xmlTag "price" [] [txt "74"]

],
xmlTag "item" [att "type" "vegetable"][
xmlTag "name" [] [txt "onions"],
xmlTag "price" [] [txt "55"]

],
xmlTag "item" [att "type" "fruit"] [
xmlTag "name" [] [txt "strawberries"],
xmlTag "variety" [] [txt "alpine"],
xmlTag "price" [] [txt "210"]

]
]]

Fig. 1. XML example (left) and its representation in T OY (right)

XQuery in the Functional-Logic Language Toy 41

in our case we take advantage of the non-deterministic nature of our language,
returning each result individually. We define an XPath expression as a function
taking a (fragment of) XML as input and returning a (fragment of) XML as its
result: type xPath = xml -> xml. In order to apply an XPath expression to a
particular document, we use the following infix operator definition:

(<--) :: string -> xPath -> xml S <-- Q = Q (load_xml_file S)

The input arguments of this operator are a string S representing the file name and
an XPath query Q. The function applies Q to the XML document contained in file
S. This operator plays in T OY the role of doc in XPath. The XPath combinators
/ and :: which correspond to the connection between steps and between axis
and tests, respectively, are defined in T OY as function composition:

infixr 55 .::. infixr 40 ./.
(.::.) :: xPath -> xPath -> xPath (./.) :: xPath -> xPath -> xPath
(F .::. G) X = G (F X) (F ./. G) X = G (F X)

We use the function operator names .::. and ./. because :: and / are already
defined in T OY . Also notice that their definitions are the same. Indeed, we could
use a single operator for representing both combinators, but we decided to do this
way for maintaining a similar syntax for XPath practitioners, more accustomed
to use such symbols. In addition, we do not check for the “appropriate" use
of such operators and either rely on the provided automatic translation by the
parser or left to the user. The variable X represents the input XML fragment
(the context node). The rules specify how the combinator applies the first XPath
expression (F) followed by the second one (G). Figure 2 shows the T OY definition
of XPath main axes and tests. node. In our setting, it corresponds simply to the
identity function. A more interesting axis is child, which returns, using the non-
deterministic function member, all the children of the context node. Observe that
in XML only element nodes have children, and that in the T OY representation
these nodes correspond to terms rooted by constructor xmlTag. Once child has
been defined, descendant and descendant-or-self are just generalizations.
The first rule for this function specifies that child must be used once, while
the second rule corresponds to two or more applications of child. In this rule,

self,child,descendant :: xPath
descendant_or_self :: xPath
self X = X
child (tag _ _ L) = member L
descendant X = child X
descendant X = if child X == Y

then descendant Y
descendant_or_self =

self ? descendant

nodeT,elem :: xPath
nameT,textT,commentT::string->xPath
nodeT X = X
nameT S (xmlTag S Att L) =

xmlTag S Att L
textT S (txt S) = txt S
commentT S (comment S) = comment S
elem = nameT _

Fig. 2. XPath axes and tests in T OY

42 J.M. Almendros-Jiménez et al.

the if statement is employed to ensure that child succeeds when applied to
the input XML fragment, thus avoiding possibly infinite recursive calls. Finally,
the definition of axis descendant-or-self is straightforward. Observe that the
XML input argument is not necessary in this natural definition. With respect
to test nodes, the first test defined in Figure 2 is nodeT, which corresponds to
node() in the usual XPath syntax. This test is simply the identity. For instance,
here is the XPath expression that returns all the nodes in an XML document,
together with its T OY equivalent:

XPath → doc("food.xml")/descendant-or-self::node()
T OY → ("food.xml" <– descendant_or_self.::.nodeT)==R

The only difference is that the T OY expression returns one result at a time in
the variable R, asking the user if more results are needed. If the user wishes to
obtain all the solutions at a time, as usual in XPath evaluators, then it is enough
to use the primitive collect. For instance, the answer to the T OY goal:

Toy> collect ("food.xml" <-- descendant_or_self.::.nodeT) == R

produces a single answer, with R instantiated to a list whose elements are the
nodes in "food.xml". XPath abbreviated syntax allows the programmer to omit
the axis child:: from a location step when it is followed by a name. Thus, the
query child::food/child::price/child::item simply food/price/item. In
T OY we cannot do that directly because we are in a typed language and the
combinator ./. expects xPath expressions and not strings. However, we can
introduce a similar abbreviation by defining new unitary operators name (and
similarly text), which transform strings into XPath expressions:

name :: string -> xPath
name S = child.::.(nameT S)

So, we can write in T OY name "food"./.name "item"./.name "price".
Other tests as nameT and textT select fragments of the XML input, which

can be returned in a logical variable, as in:

XPath → child::food/child::item/child::price/child::text()
T OY → child.::.nameT "food"./.child.::.nameT "item" ./.

child.::.nameT "price"./.child.::.textT P

The logic variable P obtains the prices contained in the example document.
Another XPath useful abbreviation is // which stands for the unabbreviated
expression /descendant-or-self::node()/. In T OY , we can define:

infixr 30 .//.
(.//.) :: xPath -> xPath -> xPath
A .//. B = append A (descendant_or_self .::. nodeT ./. B)
append :: xPath -> xPath -> xPath
append (A.::.B) C = (A.::.B) ./. C
append (X ./.Y) C = X ./. (append Y C)

XQuery in the Functional-Logic Language Toy 43

Notice that a new function append is used for concatenating XPath expressions.
This function is analogous to the well-known append for lists, but defined over
xPath terms. This is our first example of the usefulness of higher-order patterns
since for instance pattern (A.::.B) has type xPath, i.e., xml -> xml.

3 XQuery in T OY

Now, we are in a position to define the proposed extension to XQuery. Firstly,
the subset of XQuery expressions handled in our setting is presented (XQuery
is a richer language than the fragment presented here):

XQuery ::= XPath | $Var | XQuery/XPath∗ |
let $Var := XQuery [where BXQuery] return XQuery |
for $Var in XQuery [where BXQuery] return XQuery |
<tag> XQuery < /tag>

BXQuery ::= XQuery | XQuery=XQuery
Basically, the XQuery fragment handled in T OY allows building new XML doc-
uments employing new tags, and the traversal of XML documents by means of
the for construction. XQuery variables are used in for and let expressions and
can occur in the built documents and XPath expressions. It is worth observing
that XPath can be applied to XQuery expressions, that is, for instance, XPath
can be applied to the result of a for expression. Therefore, such XPath expres-
sions are not rooted by documents (they are denoted by XPath∗). In order to
encode XQuery in T OY we define a new type:

type xQuery = [xml]

In Section 2, XPath has been represented as functions from xml nodes to
xml nodes. However, XQuery expressions are defined as sequences of xml nodes
represented in T OY by lists. This does not imply that our approach returns the
answers enclosed in lists, it still uses non-determinism for evaluating for and
XPath expressions. We define functions for representing for-let-where-return
expressions as follows. Firstly, let and for expressions are defined as:

xLet :: xQuery -> xQuery -> xQuery
xLet X [Y] = if X == collect Y then X
xLet X (X1:X2:L) = if X == (X1:X2:L) then X

xFor :: xQuery -> xQuery -> xQuery
xFor X [Y] = if X == [Y] then X
xFor X (X1:X2:L) = if X == [member (X1:X2:L)] then X

xLet uses collect for capturing the elements of Y in a list, whereas xFor
retrieves non deterministically the elements of Expr in unitary lists. It fits well,
for instance, when Y is an XPath expression in T OY. The definition of for relies
on the non-deterministic function member defined in Section 2. Now T OY goals
like xFor X ("food.xml" <$– name "food" ./. name "item")==R or xLet X

44 J.M. Almendros-Jiménez et al.

("food.xml" <$– name "food" ./. name "item")==R can be tried. Let us re-
mark that XPath expressions have been modified in XQuery as follows. A new
operator <$– is defined in terms of <–:

infixr 35 <$--
(<$--) :: string -> xPath -> xQuery
(<$--) Doc Path = [(<--) Doc Path]

The function <$– returns (non deterministically) unitary lists with the ele-
ments of the given document in the corresponding path. Therefore, XPath and
for expressions have the same behavior in the T OY implementation of XQuery.
In other words, (<$–) serves for type conversion from XPath to XQuery. Now,
we can define where and return as follows:

infixr 35 ‘xWhere‘
(‘xWhere‘) :: xQuery -> bool -> xQuery
(‘xWhere‘) X Y = if Y then X

infixr 35 ‘xReturn‘
(‘xReturn‘) :: xQuery -> xQuery -> xQuery
(‘xReturn‘) X Y = if X == _ then Y

The definition of xWhere is straightforward: the query X is returned if the con-
dition Y can be satisfied. The if statement in xReturn forces the evaluation of
X. The anonymous variable (_) can be read as if the query X does not fail, then
return Y. With these definitions, we can simulate many XQuery expressions in
T OY . However, there are two elements still to be added. XPath expressions can
now be rooted by XQuery expressions. Thus, we add a new function:

infixr 35 <$
(<$) :: xQuery -> xPath -> xQuery
(<$) [Y] Path = [Path Y]
(<$) (X:Y:L) Path = map Path (X:Y:L)

The first argument is an XPath variable or, more generally, an XQuery expres-
sion. The XPath expression represented by variable Path is applied to all the
values produced by the XQuery expression. According to the commented behav-
ior, XQuery expressions can be unitary lists (for’s and XPath’s) and non-unitary
lists (let’s). The xmlTag constructor is also converted into a function xmlTagX:

xmlTagX :: string -> [xmlAttribute] -> xQuery -> xQuery
xmlTagX Name Attributes [Expr] =

if Y == collect Expr then [xmlTag Name Attributes Y]
xmlTagX Name Attributes (X:Y:L) = [xmlTag Name Attributes (X:Y:L)]

Basically, this conversion is required to apply collect when either a for or
an XPath expression provides the elements enclosed in an XML tag. With the
previous definitions, T OY accepts the following query:

XQuery in the Functional-Logic Language Toy 45

R == xmlTagX "names" []
(xLet X ("food.xml" <$-- name "food")
‘xReturn‘
xmlTagX "result" [] (X <$ (name "item"./.name "name")))

which simulates the query:

<names>
let $x:=doc("food.xml")/food return
<result> { $x/item/name } </result>
</names>

and outcomes the following answer:

{R -> [xmlTag "names" []
[xmlTag "result" [] [
xmlTag "name" [] [xmlText "watermelon"],
xmlTag "name" [] [xmlText "oranges"],
xmlTag "name" [] [xmlText "onions"],
xmlTag "name" [] [xmlText "strawberries"]]]] }

It is worth noticing that T OY shows not only the binding for R, but also
for the variable X. If we are interested in the query without the values of the
variables, we can introduce a function containing the code:

query = xmlTagX "names" []
(xLet X ("food.xml" <$-- name "food")
‘xReturn‘
xmlTagX "result" [] (X <$ (name "item"./.name "name")))

and try the goal query == R to get the same result. In the case of for expres-
sions, we can write:

query2 = xFor Y
(xFor X ("food.xml" <$-- name "food")

‘xReturn‘ (X <$ (name "item" ./. name "name")))
‘xReturn‘ Y

which simulates the following query:

for $Y in
(for $X in doc("food.xml")/food return $X/item/name)
return $Y

The following T OY query returns four answers, once at a time, due to the use
of non-determinism in the for expression:

Toy> query2== X
{ X -> [xmlTag "name" [] [xmlText "watermelon"]] }
{ X -> [xmlTag "name" [] [xmlText "oranges"]] }
{ X -> [xmlTag "name" [] [xmlText "onions"]] }
{ X -> [xmlTag "name" [] [xmlText "strawberries"]] }

46 J.M. Almendros-Jiménez et al.

4 XQuery Optimization in T OY

In this section we present one of the advantages of using T OY for running
XQuery expressions. In [10] we have shown that XPath queries can be prepro-
cessed by replacing the reverse axes by predicate filters including forward axes,
as shown in [25]. In the case of XQuery, one of the optimizations to be achieved
is to avoid XPath expressions at outermost positions. Here is an example of
optimization. Consider the following query:

exam = xFor X
(xFor Y ("food.xml" <$-- name "food" ./. name "item")
‘xReturn‘
(xmlTagX "elem" []

(xFor Z (Y <$ name "name")
‘xReturn‘ (xmlTagX "ids" [] Z))))

‘xReturn‘
(X <$ ((name "ids") ./. (name "name")))

In such a query, (X <$ ((name "ids") ./. (name "name")) is an XPath
expression applied to an XML term constructed by the same query. By remov-
ing outermost XPath expressions, we can optimize XQuery expressions. In gen-
eral, a place for optimization are nested XQuery expressions [21,15]. In our case,
we argue that XPath can be statically applied to XQuery expressions. The op-
timization comes from the fact that unnecessary XML terms can be built at
run-time, and that removing them improves memory consumption. We observe
in the previous query that "elem" and "ids" tags are useless, once we retrieve
"name" from the original file. Therefore, the previous query can be rewritten
into a more simpler and equivalent one:

examo = ("food.xml" <$-- name "food"./.name "item"./.name "name")

4.1 XQuery as Higher Order Patterns

In order to proceed with optimizations, we follow the same approach as in XPath.
In [10] we have used the representation of XPath expressions for optimizing.
As it was commented before, XPath operators are higher order operators, and
then we can take advantage of the T OY facilities for using higher order pat-
terns to rewrite them. This is not the case, however, for XQuery expressions in
T OY because, for instance, xFor and xLet are always applied to two arguments,
and therefore constitute reducible expressions, not higher-order patterns. In or-
der to convert XQuery-T OY expressions into higher-order patterns, we propose
a redefinition of the functions adding a dummy argument. Then, XQuery con-
structors can be redefined as follows:

yLet :: (A -> xQuery) -> (A -> xQuery) -> A -> xQuery
yLet X Y _ = xLet (X _) (Y _)

XQuery in the Functional-Logic Language Toy 47

yFor :: (A -> xQuery) -> (A -> xQuery) -> A -> xQuery
yFor X Y _ = xFor (X _) (Y _)

The anonymous variable plays a role similar to the quote operator in Lisp
[28]. In our case the expressions will become reducible when any extra argument
is provided. In the meanwhile it can be considered as a data term, and as such it
can be analyzed and modified. In the definitions above, yLet is reduced to xLet
when such extra argument is provided. The two arguments X and Y also need
their extra variable to become reducible. A variable is a special case, which has
to be converted into a function (xvar):

xvar :: xQuery -> A -> xQuery
xvar X _ = X

Now, a given query can be rewritten as a higher order pattern. For instance,
the previous exam can be represented as follows:

xexam = yFor (xvar X)
(yFor (xvar Y) ("food.xml" <$$-- name "food"./.name "item")

‘yReturn‘
(xmlTagY "elem" []

(yFor (xvar Z) ((xvar Y) <$$ (name "name"))
‘yReturn‘ (xmlTagY "ids" [] (xvar Z)))))

‘yReturn‘
((xvar X) <$$ ((name "ids") ./. name "name"))

The query can be executed in T OY just providing any additional argument,
in this case an anonymous variable:

Toy> xexam _ == R
{ R -> [xmlTag "name" [] [xmlText "watermelon"]] }
{ R -> [xmlTag "name" [] [xmlText "oranges"]] }
{ R -> [xmlTag "name" [] [xmlText "onions"]] }
{ R -> [xmlTag "name" [] [xmlText "strawberries"]] }

If the extra argument _ is omitted, then the variable R is bound to the XQuery
code yFor (xvar X) (...name "name")). This behavior allows us to inspect
and modify the query in the next subsection.

4.2 XQuery Transformations

Now, we would like to show how to rewrite XQuery expressions in order to opti-
mize them. We have defined a set of transformation rules for removing outermost
XPath expressions, when possible. Let us remark that correctness of the trans-
formation rules, that is, preserving equivalence, is out of the scope of this paper.
An example of (a subset of) the transformation rules is:

48 J.M. Almendros-Jiménez et al.

reduce ((yFor (xvar Z) E) ‘yReturn‘ (xvar Z)) = E
reduce ((xmlTagY N A E) <$$ P) = reduce_xml (xmlTagY N A E) P
reduce_xml (xmlTagY N A E) P = reduce_xmlPath E P
reduce_xmlPath (xmlTagY N A E) P =

if P == (name N) ./. P2
then reduce_xmlPath E P2
else ((xmlTagY N A E) <$$ P)

...

The first reduction rule removes the unnecessary for expressions that define a
variable Z taking a value E only to return Z. The second rule removes XPath
expressions that traverse elements built in the same query. For instance, an
expression of the form $X/a/b, with $X of the form <a>E is reduced to
$Y/b with $Y/b and $X taking the value E (this transformation is performed
by function reduce_xmlPath). The optimizer can be defined as the fixpoint of
function reduce:

optimize :: (A -> xQuery) -> (A -> xQuery)
optimize X = iterate reduce X

iterate :: (A -> A) -> A -> A
iterate G X = if Y == X then Y else iterate G Y

where Y = (G X)

For instance, the running example is optimized as follows:

Toy> optimize xexam == X
{ X -> (<$$-- "food.xml" child .::. (nameT "food") ./.
child .::. (nameT "item") ./. child .::. (nameT "name")) }

Finally, an XQuery expression is executed (with optimizations) in T OY by call-
ing the function run, which is defined as:

run :: (A -> xQuery) -> xQuery
run X = (optimize X) _

By using run, T OY obtains the same four answers as with the original query:

Toy> run xexam == X
{ R -> [xmlTag "name" [] [xmlText "watermelon"]] }
{ R -> [xmlTag "name" [] [xmlText "oranges"]] }
{ R -> [xmlTag "name" [] [xmlText "onions"]] }
{ R -> [xmlTag "name" [] [xmlText "strawberries"]] }

In order to analyze the performance of the optimization, the next table compares
the elapsed time for the query running on T OY before and after the optimiza-
tion, with respect to different sizes for file "food.xml".

XQuery in the Functional-Logic Language Toy 49

Items Initial Query Optimized Query Speed-up
1,000 1.9 0.4 4.8
2,000 3.7 0.8 9.3
4,000 7.4 1.7 4.4
8,000 18.1 3.9 4.6

16,000 36.0 7.8 4.6

The first column indicates the number of item elements included in "food.xml",
the second and third column display the time in seconds required by the original
and the optimized query, respectively, and the last column displays the speed-
up of the optimized code. In order to force the queries to find all the answers,
the submitted goals are (exam == R, false) and (run xexam == R, false),
corresponding to the initial and the optimized query, respectively. The atom
false after the first atomic subgoal always fails, forcing the reevaluation until
no more solutions exist. As can be seen in the table, in this experiment the
optimized query is above 4.5 times faster in the average than the initial one.
In other experiments (for instance, replacing for by let in this example) the
difference can be noticeable also in terms of memory, since the system runs
out of memory computing the query before optimization, but works fine with
the optimized query. Of course, more extensive benchmarks would be needed
to assess this preliminary results. However, the purpose of this paper is not to
propose or to evaluate XQuery optimizations, but to show how they can be easily
incorporated and tested in our framework.

5 Conclusions

We have shown how the declarative nature of the XML query language XQuery
fits in a very natural way in functional-logic languages. Our setting fruitfully
combines the collection of results required by XQuery let statements and the use
of individual values as required by for statements and XPath expressions. For
the users of the functional-logic T OY , the advantage is clear: they can use queries
very similar to XQuery in their programs. Although adapting to the T OY syntax
can be hard at first, we think that the queries are close enough to their equiv-
alents in native XQuery. However, we would like to go further by providing a
parser from XQuery standard syntax to the equivalent T OY expressions.

From the point of view of the XQuery apprentices, the tool can be useful,
specially if they have some previous knowledge of declarative languages. The
possibility of testing query optimizations can be very helpful. The paper shows
a technique based on the use of additional dummy variables for converting queries
in higher-order patters. A similar idea would be to use a data type for repre-
senting the query and then a parser/interpreter for evaluating this data type.
However, we think that the approach considered here has a higher abstraction
level, since the queries can not only be analyzed, they can also be computed
by simply providing an additional argument. Finally, the framework can also

50 J.M. Almendros-Jiménez et al.

be interesting for designers of XQuery environments, because it allows users to
easily define prototypes of new features such as new combinators and functions.

A version of the T OY system including the examples of this paper can be
downloaded from http://gpd.sip.ucm.es/rafa/wflp2011/toyxquery.rar

References

1. Almendros-Jiménez, J., Caballero, R., García-Ruiz, Y., Sáenz-Pérez, F.: A Declar-
ative Embedding of XQuery in a Functional-Logic Language. Technical Report
SIC-04/11, Facultad de Informática, Universidad Complutense de Madrid (2011),
http://gpd.sip.ucm.es/rafa/xquery/

2. Almendros-Jiménez, J.M.: An Encoding of XQuery in Prolog. In: Bellahsène, Z.,
Hunt, E., Rys, M., Unland, R. (eds.) XSym 2009. LNCS, vol. 5679, pp. 145–155.
Springer, Heidelberg (2009)

3. Almendros-Jiménez, J.M., Becerra-Terón, A., Enciso-Baños, F.J.: Querying XML
documents in logic programming. Journal of Theory and Practice of Logic Pro-
gramming 8(3), 323–361 (2008)

4. Atanassow, F., Clarke, D., Jeuring, J.: UUXML: A type-preserving XML schema–
haskell data binding. In: Jayaraman, B. (ed.) PADL 2004. LNCS, vol. 3057, pp.
71–85. Springer, Heidelberg (2004)

5. Benzaken, V., Castagna, G., Frish, A.: CDuce: an XML-centric general-purpose
language. In: Proc. of the ACM SIGPLAN International Conference on Functional
Programming, pp. 51–63. ACM Press, New York (2005)

6. Benzaken, V., Castagna, G., Miachon, C.: A Full Pattern-Based Paradigm for XML
Query Processing. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS,
vol. 3350, pp. 235–252. Springer, Heidelberg (2005)

7. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In:
Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, pp. 479–490. ACM Press, New York (2006)

8. Boncz, P.A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
Pathfinder: XQuery - The Relational Way. In: Proc. of the International Conference
on Very Large Databases, pp. 1322–1325. ACM Press, New York (2005)

9. Bry, F., Schaffert, S.: The XML Query Language Xcerpt: Design Principles, Exam-
ples, and Semantics. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.)
NODe-WS 2002. LNCS, vol. 2593, pp. 295–310. Springer, Heidelberg (2003)

10. Caballero, R., García-Ruiz, Y., Sáenz-Pérez, F.: Integrating XPath with the
Functional-Logic Language Toy. In: Rocha, R., Launchbury, J. (eds.) PADL 2011.
LNCS, vol. 6539, pp. 145–159. Springer, Heidelberg (2011)

11. Caballero, R., López-Fraguas, F.: A functional-logic perspective on parsing. In:
Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 85–99. Springer, Heidel-
berg (1999)

12. Cabeza, D., Hermenegildo, M.: Distributed WWW Programming using (Ciao-
)Prolog and the PiLLoW Library. Theory and Practice of Logic Programming 1(3),
251–282 (2001)

13. Coelho, J., Florido, M.: XCentric: logic programming for XML processing. In:
WIDM 2007: Proceedings of the 9th Annual ACM International Workshop on
Web Information and Data Management, pp. 1–8. ACM Press, New York (2007)

14. Fegaras, L.: HXQ: A Compiler from XQuery to Haskell (2010)

XQuery in the Functional-Logic Language Toy 51

15. Grinev, M., Pleshachkov, P.: Rewriting-based optimization for XQuery transforma-
tional queries. In: 9th International Database Engineering and Application Sym-
posium, IDEAS 2005, pp. 163–174. IEEE Computer Society, Los Alamitos (2005)

16. Guerra, R., Jeuring, J., Swierstra, S.D.: Generic validation in an XPath-Haskell
data binding. In: Proceedings Plan-X (2005)

17. Hanus, M.: Curry: An Integrated Functional Logic Language (2003),
http://www.informatik.uni-kiel.de/~mh/curry/ (version 0.8.2 March 28, 2006)

18. Hanus, M.: Declarative processing of semistructured web data. Technical report
1103, Christian-Albrechts-Universität Kiel (2011)

19. Hosoya, H., Pierce, B.C.: XDuce: A Statically Typed XML Processing Language.
ACM Transactions on Internet Technology 3(2), 117–148 (2003)

20. Hutton, G., Meijer, E.: Monadic parsing in Haskell. J. Funct. Program. 8(4), 437–
444 (1998)

21. Koch, C.: On the role of composition in XQuery. In: Proc. WebDB (2005)
22. Fraguas, F.J.L., Hernández, J.S.: TOY: A Multiparadigm Declarative System. In:

Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 244–247.
Springer, Heidelberg (1999)

23. Marian, A., Simeon, J.: Projecting XML Documents. In: Proc. of International
Conference on Very Large Databases, pp. 213–224. Morgan Kaufmann, Burlington
(2003)

24. May, W.: XPath-Logic and XPathLog: A Logic-Programming Style XML Data
Manipulation Language. Theory and Practice of Logic Programming 4(3), 239–
287 (2004)

25. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking forward. In: Chaudhri,
A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490,
pp. 109–127. Springer, Heidelberg (2002)

26. Ronen, R., Shmueli, O.: Evaluation of datalog extended with an XPath predicate.
In: Proceedings of the 9th Annual ACM International Workshop on Web Informa-
tion and Data Management, pp. 9–16. ACM, New York (2007)

27. Schaffert, S., Bry, F.: A Gentle Introduction to Xcerpt, a Rule-based Query and
Transformation Language for XML. In: Proc. of International Workshop on Rule
Markup Languages for Business Rules on the Semantic Web. CEUR Workshop
Proceedings, vol. 60, p. 22 (2002)

28. Seibel, P.: Practical Common Lisp. Apress (2004)
29. Seipel, D.: Processing XML-Documents in Prolog. In: Procs. of the Workshop on

Logic Programming 2002, p. 15. Technische Universität Dresden, Dresden (2002)
30. Sulzmann, M., Lu, K.Z.: XHaskell – adding regular expression types to haskell.

In: Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 75–92.
Springer, Heidelberg (2008)

31. Thiemann, P.: A typed representation for HTML and XML documents in Haskell.
Journal of Functional Programming 12(4&5), 435–468 (2002)

32. W3C. XML Schema 1.1
33. W3C. Extensible Markup Language, XML (2007)
34. W3C. XML Path Language (XPath) 2.0 (2007)
35. W3C. XQuery 1.0: An XML Query Language (2007)
36. Wallace, M., Runciman, C.: Haskell and XML: Generic combinators or type-based

translation? In: Proceedings of the International Conference on Functional Pro-
gramming, pp. 148–159. ACM Press, New York (1999)

37. Walmsley, P.: XQuery. O’Reilly Media, Inc., Sebastopol (2007)
38. Wielemaker, J.: SWI-Prolog SGML/XML Parser, Version 2.0.5. Technical report,

Human Computer-Studies (HCS), University of Amsterdam (March 2005)

Size Invariant and Ranking Function Synthesis

in a Functional Language�

Ricardo Peña and Agustin D. Delgado-Muñoz

Universidad Complutense de Madrid, Spain
ricardo@sip.ucm.es, elsmda@gmail.com

Abstract. Size analysis is concerned with the compile-time determi-
nation of upper bounds to the size of program variables, including the
size of the results returned by functions. It is useful in many situations
and also as a prior step to facilitate other analyses, such as termination
proofs. Ranking function synthesis is one way of proving termination of
loops or of recursive definitions.

We present a result in automatic inference of size invariants, and of
ranking functions proving termination of functional programs, by adapt-
ing linear techniques developed for other languages. The results are ac-
curate and allow us to solve some problems left open in previous works
on automatic inference of safe memory bounds.

Keywords: functional languages, linear techniques, abstract interpreta-
tion, size analysis, ranking functions.

1 Introduction

Size analysis allows us to determine the individual size of (some) program vari-
ables, or more commonly, the size relationship between groups of them. In the
latter case, they are called size invariants. Size analysis has been used in the past
to help the memory management system to estimate the size of data structures
at compile time [13], or to obtain inter-argument size relationships in predicates
of logic programs [7]. It is also useful for providing size variations of arguments
in recursive procedures, thus facilitating building termination proofs.

In our case, the motivation for designing a size analysis is using it as a previous
step in determining the memory consumption of functional programs written in
our language Safe. In a prior work [18] we presented some static analysis based
algorithms for inferring upper bounds to memory consumption of programs. The
technique used was abstract interpretation, using the complete lattice of mono-
tonic functions (R+)n → R

+ ordered by point-wise ≤ as abstract domain, where
n is the number of arguments of the function being analysed. We showed some ex-
amples of applications, and the bounds obtained were good in simple programs.
For instance, we got precise linear heap and stack bounds for list functions such
as merge, append, and split, and quadratic over-approximations for the heap
� Work partially funded by the projects TIN2008-06622-C03-01/TIN (STAMP), and

S2009/TIC-1465 (PROMETIDOS).

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 52–67, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Size Invariant and Ranking Function Synthesis in a Functional Language 53

consumption of functions such as mergesort and quicksort. The algorithms were
even able to infer a constant stack space for tail recursive functions.

A remarkable feature of the algorithms was that in some circumstances the
abstract interpretation was reductive in the lattice meaning that, by introducing
as hypothesis the previously inferred bound, and by iterating the interpretation,
a tighter bound and still a correct one could be obtained.

Unfortunately, the work was incomplete because it needed some information to
be introduced by hand for every particular program, namely the size of some local
variables and an upper bound to the length of the longest call chain of recursive
functions. These two problems deserve independent and complex analyses by
themselves, and we decided to defer their solution. The algorithms were proved
correct, provided correct functions for these figures were given.

In a prior paper [15] we approached one of these problems — inferring the
length of the longest recursive call chain — by translating our functional pro-
grams into a term rewriting system (TRS) and then using termination proofs
of TRSs, based on dependency pairs and polynomial synthesis, for computing
this bound. The first results were encouraging but the approach could not prove
any bound for simple algorithms such as mergesort and quicksort. We felt that
having a previous size analysis could probably improve the termination proofs.

In this paper we approach both size analysis and termination proofs by us-
ing linear techniques, which have proved successful in analysing imperative and
logic languages, and even bytecode programs. We do not know of any relevant
application of these techniques to functional languages.

The main contribution of the paper is showing that these techniques have
for first-order functional languages the same power as for any other paradigm.
The adaptations needed essentially consist of applying some transformations to
the source programs, and taking some care when applying the techniques in a
context different to the one they were conceived in.

The plan of the paper is as follows: In Sec. 2 we do a brief survey of linear
techniques applied to both size analysis and ranking function synthesis. Then,
Sec. 3 presents the aspects of our functional language Safe that are relevant
to this paper. Sec. 4 is devoted to obtaining size invariants of Safe programs,
while Sec. 5 adapts the well-known ranking function synthesis method for loops
by Podelski and Rybalchenko [19] to computing our bound to the longest call
chain. Finally, Sec. 6 provides a short conclusion.

2 Linear Constraints Techniques

Abstract interpretation [10] is a very powerful static analysis technique able to
infer a variety of properties in programs written in virtually any programming
language. In functional languages it has been successfully applied to strictness
and update avoidance analyses of lazy languages, to sharing and binding time
analyses, and many others. The abstract domains are usually finite small ones
when abstracting non-functional values, but they tend to grow exponentially
when they are extended to higher-order values.

54 R. Peña and A.D. Delgado-Muñoz

Polyhedral abstract domains have been extensively used in logic and imper-
ative languages, but not so frequently in functional ones. These domains are
useful when quantitative rather than qualitative properties are sought for, as it
is the case of size or cost relations between variables. Since the seminal work
of Cousot and Halbwachs [11], polyhedra have been used to analyse arithmetic
linear relations between program variables. A convex polyhedron is a subset of
R

n which is the intersection of a finite number of semi-spaces. There exist at
least two finite representations of convex polyhedra:

• By three sets, namely of vertexes, rays, and lines in a n-dimensional space.
Rays and lines are needed when the polyhedron is unbounded in order to
specify in which directions it extends to infinity.
• By a conjunction of linear constraints between n variables. Each constraint

determines a semi-space.

There are algorithms for translating these representations into each other, al-
though their cost is exponential in time. A frequent (and also costly) operation
is to compute the convex hull of two polyhedra, which is the minimum convex
polyhedron containing both. This operation is associative and commutative. The
advantage of using linear constraints is that most of the interesting problems in-
volving them are decidable. For instance: to know whether a set of constraints
is satisfiable; whether a constraint is implied by a set of other ones; to project
a set of constraints over a subset of their variables; to compute the convex hull
of two sets of constraints; to maximise (minimise) a linear function with respect
to a set of constraints; and others.

Invariant synthesis. In the context of imperative languages, an invariant is a lin-
ear relation between the variables involved in a loop, holding at the beginning of
each iteration. An abstract interpretation for synthesising loop invariants starts
by computing a polyhedron with the relations known at the beginning of the
loop, and iterates calculating the convex hull between the polyhedron coming
from the previous iteration and the one obtained by the transition relation of
the loop body. After a few iterations, some relations stabilise while some others
do not. The former constitute the invariant. Several tools have been developed
for obtaining these invariants, (for instance ASPIC, see [12]), or for giving the
necessary infrastructure to compute them (cf. [3]).

In the logic programming field, Benoy and King [7] applied a similar technique
to the inference of size relations between the arguments of a logic predicate. As
a first step, the logic program is transformed into an abstract one on arithmetic
variables, by replacing the original predicate arguments by their corresponding
sizes. An abstract interpretation of the transformed program infers the invari-
ant size relations between the arguments of the original program. The ascending
chain (in the sense of set inclusion) of polyhedra obtained by the fixpoint al-
gorithm may in principle be infinite, because some relations do not stabilise. A
widening technique [11,4] is used to eliminate these variant relations while the
invariant ones are retained. Of course, if the invariant relations are not linear
the algorithm does not obtain anything meaningful.

Size Invariant and Ranking Function Synthesis in a Functional Language 55

Ranking function synthesis. Detecting termination statically has attracted the
attention of much research work. Given that this is an undecidable problem in
general, the algorithms try to cover as many decidable cases as possible. One
successful approach has been the work by Ben-Amram and his group, starting
in the seminal paper [14], where in a first phase the program being analysed
is transformed into a so-called size-change graph. This is the program call flow
graph enriched with information about which arguments strictly decrease at a
call and which ones may decrease or remain equal. This part of the analysis is
outside of the proposed termination algorithms, and may be done by hand or
by a previous size analysis. Nice about this approach is that termination of size-
change graphs is decidable, although the algorithm is exponential in the worst
case (these programs are called size-change terminating, or SCT). However, by
using benchmarks the authors convincingly show that this case is very unusual
and that most of the time a polynomial algorithm suffices [6]. Moreover, in many
cases they can synthesise a global ranking function ensuring that the program
terminates, which can be proved decreasing at each transition in polynomial
time. Synthesising such a function is however a NP-complete problem which
they decide by using a SAT-solver [5]. Their algorithm is complete for SCT
problems admitting a global ranking function of a certain shape (lexicographic
tuples of some simple well-founded relations called level mappings).

Another successful line of research has been the synthesis of linear ranking
functions. Podelski and Rybalchenko give in [19] a complete method to synthe-
sise this kind of function for simple while-loops in which the loop guard is a
conjunction of linear expressions, and the loop body is a multiple assignment
of linear expressions to variables. The kernel of the method is solving a set of
linear constraints and it will be explained in more detail in Sec. 5. This small
piece can be the basis for inferring termination of more complex programs. In
[20] they define that a relation is disjunctively well-founded if it is the union of
a number of well-founded relations (which in general is not well-founded). They
completely characterise program termination by the existence of such a relation
if at the same time it is an invariant of the transition relation. The idea they
try to exploit is proving global termination of programs with nested loops by
associating a simple well-founded relation to each of the loops, and proving that
their union is a transition invariant.

Another method for analysing complex loop structures and synthesising linear
ranking functions is by Colon and Sipma in [9], which needs a prior size analysis
for computing linear loop invariants. The authors do not claim that the method
is complete for such kind of ranking functions. A recent work extending Colon
and Sipma’s approach is [2]. It presents a complete method for synthesising a
global ranking function for a complex nested control flow structure, provided
the ranking function has the form of a lexicographically ordered tuple of linear
expressions.

Albert et al claim in [1] — although not many details are given — to have used
Podelski and Rybalchenko’s method as one of the steps for solving recurrence
relations obtained by analysing Java bytecode programs. The idea is to use the

56 R. Peña and A.D. Delgado-Muñoz

prog → data i; decj; e {Core-Safe program}
dec → f xi = e {recursive, polymorphic function definition}
e → a {atom a: either a literal c or a variable x}

| a1 ⊕ a2 {primitive operator application}
| f ai {function application}
| C ai {constructor application}
| let x1 = e1 in e2 {non-recursive, monomorphic let}
| case x of alti {case expression}

alt → C xi → e {case alternative}

Fig. 1. Simplified Core-Safe syntax

ranking function as an upper bound to the recurrence depth (i.e. to the number
of unfoldings required in the worst case to reach a non-recursive case). We will
pursue this idea here for inferring an upper bound to the depth of the call tree
of a recursive Safe function.

3 The Safe Functional Language

Safe is a first-order eager polymorphic functional language with a syntax similar
to that of (first-order) Haskell, and featuring an unusual memory management
system. Its main aim is to facilitate the compile-time inference of safe upper
bounds to memory consumption. Its memory model is based on disjoint heap
regions where data structures are built. The compiler infers the optimal way to
assign data to regions, so that the data lifetimes are as short as possible while
compatible with allocating and deallocating regions by following a stack-based
strategy. The region-based model has two benefits:

• A garbage collector is not needed.
• The compiler may compute an upper bound to the size of each region and

then to the whole heap.

More information about Safe, its type system, and its memory inference algo-
rithms can be found at [16,17,18].

The Safe front-end desugars Full-Safe and produces a bare-bones functional
language called Core-Safe. The transformation starts with region inference and
goes on with Hindley-Milner type inference, desugaring pattern matching into
case expressions, transforming where clauses into let expressions, collapsing
several function-defining equations into a single one, and some other simple
transformations.

As regions are not relevant to this paper, in Fig. 1 we show a simplified Core-
Safe’s syntax where regions have been omitted. A program prog is a sequence of
possibly recursive polymorphic data and function definitions followed by a main
expression e whose value is the program result. The abbreviation xi stands for
x1 · · ·xn, for some n.

Size Invariant and Ranking Function Synthesis in a Functional Language 57

split 0 ys = ([], ys)

split n [] = ([], [])

split n (y:ys) = (y:ys1,ys2) where (ys1, ys2) = split (n-1) ys

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

msort [] = []

msort [x] = [x]

msort xs = merge (msort xs1) (msort xs2)

where (xs1,xs2) = split (length n / 2) xs

Fig. 2. mergesort algorithm in Full-Safe

merge x y = case x of

[] -> y

ex:x’ -> case y of

[] -> x

ey:y’ -> case ex <= ey of

True -> let z1 = merge x’ y in ex:z1

False -> let z2 = merge x y’ in ey:z2

msort x = case x of

[] -> []

ex:x’ -> case x’ of

[] -> ex:[]

: -> let n = length x in

let n2 = n/2 in

let (x1,x2) = split n2 x in

let z1 = msort x1 in

let z2 = msort x2 in

merge z1 z2

Fig. 3. functions merge and msort in Core-Safe

In Fig. 2 we show a Full-Safe version of the mergesort algorithm, which we will
use as running example throughout the paper. In Fig. 3 we show the translation
to Core-Safe of two of its functions.

Our purpose is to analyse Core-Safe programs to infer invariant size relations
between the arguments and results of each function, and upper bounds to the
runtime size of the call tree unfolded when invoking a recursive function. As part
of this process, it will be important to discover which sub-expressions contribute
to the non-recursive (or base) cases of a recursive function, and which ones
contribute to the recursive ones. Moreover, we will distinguish between mutually
exclusive recursive calls, i.e. those which will never execute together at runtime

58 R. Peña and A.D. Delgado-Muñoz

data QExp = B Exp | R Exp | Var := [QExp]

seqsf :: Exp → [[QExp]]
seqsf e = [[B e]] -- if e ∈ {c, x, a1 ⊕ a2, g ai, C ai}
seqsf (f ai) = [[R (f ai)]]
seqsf (case of alts) = concat [seqsf e | (C xi → e) ∈ alts]
seqsf (let x1 = e1 in e2) = [(x1 := s1) : s2 | s1 ∈ seqsf e1, s2 ∈ seqsf e2]

Fig. 4. Algorithm for extracting the base and recursive cases of a Core-Safe expression

seqsmerge = [[B y], [B x],
[z1 := [R (merge x′ y)],B (ex : z1)], [z2 := [R (merge x y′))],B (ey : z2)]]

seqsmsort = [[B []], [B (ex : [])],
[n := [B (length x)], n2 := [B (n/2)], (x1, x2) := [B (split n2 x)],
z1 := [R (msort x1)], z2 := [R (msort x2)], B (merge z1 z2)]]

Fig. 5. Decomposition of merge and msort into base and recursive cases

(e.g. those occurring in different alternatives of a case expression), and those
with may execute one after the other, i.e. potentially sequential recursive calls.

An approximation to this property can be obtained by an algorithm separating
textual calls occurring in different branches of a case, and putting together
textual calls occurring in the sub-expressions e1 and e2 of a let. In Fig. 4 we show
the algorithm seqsf , written in a Haskell-like language, analysing this property
for the Core-Safe expression corresponding to function-f ’s body. It returns a
list of lists of qualified expressions, meaning by this that a tag B (for base
cases), or R (for recursive ones) is added to each individual sub-expression.
Each internal list represents a mutually exclusive way of executing the function
(i.e. a potential path through its body), while the sub-expressions inside a list
indicate a sequential execution of them.

In Fig. 5 we show the application of the algorithm to merge and msort . For
merge x y we obtain four internal lists illustrating that there are two mutually
exclusive base cases, and that the two recursive calls exclude each other. When
applied to msort(x) we obtain three internal lists illustrating that there are two
base cases, and that the two recursive calls may be sequentially executed.

4 Size Invariant Inference

Following [7], in order to reason about sizes, the original program must first be
translated into an abstract program in which data structures have been replaced
by their corresponding sizes, and previously to that, a notion of size must be
defined. For logic programs, the more frequently used ones are the list length
for list arguments, the value for integer arguments, zero for any other atom, and
the term size for the rest of variables.

Size Invariant and Ranking Function Synthesis in a Functional Language 59

mergeS x y = case x of
x = 1 → y
x ≥ 2 → case y of

y = 1 → x
y ≥ 2 → case ? of

T → let z1 = mergeS (x − 1) y in z1 + 1
F → let z2 = mergeS x (y − 1) in z2 + 1

msortS x = case x of
x = 1 → 1
x ≥ 2 → case x of

x = 2 → 2
x ≥ 3 → let n = lengthS x in

let n2 = n/2 in
let (x1, x2) = splitS n2 x in
let z1 = msortS x1 in
let z2 = msortS x2 in
mergeS z1 z2

Fig. 6. Abstract size functions merge and msort

In our memory model we have a precise notion of size in terms of memory
cells occupied by a data structure: each constructor application fits exactly in one
cell. So, the size of a list is its length plus one because the empty list constructor
needs an additional cell. Moreover, we have a precise notion of data structure:
it comprises the set of cells corresponding to its recursive spine. For instance, a
list of n lists constitutes n + 1 independent data structures, while a binary tree
of integers is just one. Additionally we define:

• The size of an integer constant or variable is its value n.
• The size of a Boolean constant or variable is zero.

We will call size programs, and size functions, to the abstract programs and
functions resulting from the size translation. If f is the original function, fS will
denote its size version. The size functions resulting from the translation of merge
and msort of Fig. 3 are shown in Fig 6.

The next step consists of performing an abstract interpretation of the size
functions. The abstract domain will be that of convex polyhedra ordered by set
inclusion, represented in this paper by conjunctions of linear constraints. The
meet operation, or greatest lower bound �, is the intersection of two polyhedra,
and consists of just putting together the two sets of constraints. The join oper-
ation, or least upper bound �, is the convex hull of the two polyhedra. We have
used the algorithm developed by Andy King et al [8] to compute the convex hull
of two polyhedra represented by sets of linear constraints, and giving as result
another constraint set.

The algorithm we propose has been inspired by Benoy and King’s algorithm
[7] for analysing logic programs. It consists of the following steps:

60 R. Peña and A.D. Delgado-Muñoz

Analysing a complete Core-Safe program

1. The size functions obtained by translating a Core-Safe program are analysed
in the order they occur in the file: from low-level ones not using any other
function, to higher-level ones using those previously defined in the file.

2. For each size function gS, a set of invariant size relations between input
arguments and output results are inferred.

3. These relations are kept in a global environment Σ. When analysing the
current function, say fS , calling an already analysed function g, the invariant
relations of the latter are obtained from Σ and instantiated with the sizes
of the actual arguments ai

n used in the calls to g. These relations, together
with the rest of relations inferred for fS, are used to compute fS’s invariant
relations.

Analysing a function: extracting the constraints Analysing the current function
fS consists of the following steps. In order to fix ideas, we will call xi to fS’s
formal arguments and z to its result (or zj if the result is a tuple).

1. Function seqsf of Fig. 4 is applied to function-fS’s body in a similar way as
it was applied to a Core-Safe expression.

2. As a result, sets of constraints, one set for each of the code sequences, are
inferred. The base sequences constraint sets are then separated from the
recursive ones (recursive sequences can be identified by the presence of at
least a recursive call to fS).

3. The constraints of each base sequence are expressed in terms of xi and zj .
This can always be done by projecting a set of constraints with more variables
to variables xi and zj .

4. The constraints of each recursive sequence are expressed in terms of xi, zj ,
and of two sets of variables xi

k and zj
k for each recursive call k in the

sequence. The variables xi
k represent the input arguments sizes of that call,

while the zj
k represent its output sizes.

Analysing a function: fixpoint iteration Then, a fixpoint algorithm for fS is
launched having the following steps:

1. The initial polyhedron is the convex hull

Pnext = B1 � . . . �Bn

being Bl(xi, zj), 1 ≤ l ≤ n, the polyhedra defined by the sets of constraints
of the base cases.

2. At each iteration, the variables of polyhedron Pnext(xi, zj) are renamed, ob-
taining Qprev = Pnext [x′

i/xi, z′j/zj]. The idea is that Qprev(x′
i, z

′
j) represents

the constraints coming from the previous iterations.
3. Now, for each recursive sequence l, its constraints are enriched by adding

the constraints coming from Qprev , as many times nl as recursive calls are

Size Invariant and Ranking Function Synthesis in a Functional Language 61

Bmerge
1 = {x = 1, z = y}

Bmerge
2 = {x ≥ 2, y = 1, z = x}

Rmerge
1 = {x ≥ 2, y ≥ 2, x′ = x − 1, y′ = y, z = 1 + z′}

Rmerge
2 = {x ≥ 2, y ≥ 2, x′ = x, y′ = y − 1, z = 1 + z′}

Bmsort
1 = {x = 1, z = 1}

Bmsort
2 = {x = 2, z = 2}

Rmsort
1 = {x ≥ 3, x + 1 = x′

1 + x′
2, z + 1 = z′

1 + z′
2}

Fig. 7. Restrictions corresponding to the base and recursive cases of merge and msort

in the sequence, by previously substituting the x′
i for the xi

k and the z′
j for

the zj
k, 1 ≤ k ≤ nl. Let us call

Rl(xi, zj , xi
1, zj

1, . . . , xi
nl , zj

nl)

to the polyhedron resulting from the l-th sequence. In geometric terms, each
polyhedra Rl represents the intersection of the polyhedra determined by the
constraints coming from the recursive case l with the one determined by the
constraints coming from the internal calls of this sequence.

4. Each Rl is projected over the variables xi, zj obtaining RP l(xi, zj). If there
are m recursive sequences, then the following convex hull is computed:

Pnext (xi, zj) = RP1 � . . . �RPm �B1 � . . . �Bn

5. If Pnext [x′
i/xi, z′j/zj] = Qprev then stop; else go to (2).

Two examples

In Fig. 7 we show the base and recursive sets of constraints inferred for merge and
msort before launching the fixpoint algorithm. In the merge case, the constraints
are easily obtained from the sequences resulting from seqsmerge (mergeS). In the
msort case, the following relations obtained from the length, split and merge
invariants, are additionally needed:

n + 1 = x n := length x
n2 = x div 2 n2 := n/2
x + 1 = x1 + x2, x ≥ x2, x ≤ n2 + x2 (x1, x2) := split n2 x
z + 1 = z1 + z2 z := merge z1 z2

In Fig. 8 we show the polyhedra obtained for merge and msort after a few
iterations of the fixpoint algorithm. For merge the fixpoint is reached after the
first iteration, obtaining as invariant {x ≥ 1, z + 1 = x + y}. For msort, the
ascendant chain is infinite because of the restrictions x ≤ 2, x ≤ 3, x ≤ 4, . . .
The widening technique used in [7], and original from [11], eliminates this just
by keeping as Pnext the restrictions of iteration i implied by the ones of iteration
i + 1. This leads to {x ≥ 1, z = x} as the size invariant of msort. In both cases,
the invariants precisely describe the size relations between the input and the
output lists.

62 R. Peña and A.D. Delgado-Muñoz

Iter. Pnext Ri

1merge {x ≥ 1, z + 1 = x + y} R1 = {x ≥ 2, y ≥ 2, x′ = x − 1, y′ = y,
z = 1 + z′, x′ ≥ 1, z′ + 1 = x′ + y′}

R2 = {x ≥ 2, y ≥ 2, x′ = x, y′ = y − 1,
z = 1 + z′, x′ ≥ 1, z′ + 1 = x′ + y′}

2merge {x ≥ 1, z + 1 = x + y}

1msort {x ≥ 1, x ≤ 2, z = x} R1 = {x ≥ 3, x + 1 = x′
1 + x′

2, z + 1 =
z′
1 + z′

2, x′
1 ≥ 1, x′

1 ≤ 2, z′
1 = x′

1,
x′

2 ≥ 1, x′
2 ≤ 2, z′

2 = x′
2}

2msort {x ≥ 1, x ≤ 3, z = x} R1 = {x ≥ 3, x + 1 = x′
1 + x′

2, z + 1 =
z′
1 + z′

2, x′
1 ≥ 1, x′

1 ≤ 3, z′
1 = x′

1,
x′

2 ≥ 1, x′
2 ≤ 3, z′

2 = x′
2}

3msort {x ≥ 1, x ≤ 4, z = x}

Fig. 8. Fixpoint iterations for merge an msort

5 Ranking Function Synthesis

In [18] we presented three inference algorithms to statically obtain upper bounds
to the memory consumption of a Core-Safe recursive function. The first one was
for inferring the live heap memory contributed by a call to the function. The
second one for inferring the peak heap memory needed by the function, and a
last one for inferring its peak stack memory. There, we used several functions
assumed to be assumed correct for getting the following data:

• nrf (x) and nbf (x) respectively gave upper bounds to the number of non-
base and base calls of the runtime call tree unfolded by function f when it
is called with arguments sizes x. A non-base call is one recursively calling f
again, and a base call is one ending a chain of recursive calls to f .
• lenf (x) gave an upper bound to the length of the longest chain of recursive

calls to f .
• | y |f (x) gave an upper bound to the size of variable y (assumed to belong

to f ’s body) as a function of fs’ argument sizes x.

The algorithms were proved correct assuming that we had correct functions for
the above figures, but we left open how to infer them. A first step for inferring
size functions |y |f has been given with the inference of size invariants presented
in Sec. 4. By following a similar idea to [1], nrf and nbf can be approximated
should we have a correct function for lenf (x). In effect, having lenf (x) and a
bound nf to the maximum number of calls issued from an invocation to f , we
can compute the above functions as follows:

Size Invariant and Ranking Function Synthesis in a Functional Language 63

nbf (x) =

{

1 if nf = 1
n

lenf (x)−1
f if nf > 1

nrf (x) =

{

lenf (x)− 1 if nf = 1
n

lenf (x)−1

f −1

nf−1 if nf > 1

This figures correspond to the internal and leaf nodes of a complete tree of
branching factor nf and height lenf (x). The branching factor nf is a static
quantity easily computed by taking the maximum number of consecutive calls
in the sequences returned by function seqsf of Fig. 4. For instance, nmerge = 1
and nmsort = 2.

So, it suffices to approximate the function lenf (x). To this aim we have
adapted Podelski and Rybalchenko’s method [19]. It is complete for linear rank-
ing functions of loops of the form while B do S, where B(x) is a conjunction
of linear constraints over the variables x involved in the loop, and S(x, x′) is a
transition relation expressed as a conjunction of linear constraints over the vari-
able values respectively before and after executing the loop body. Using these
constraints over x and x′, the method creates another set of constraints over λ1

and λ2, two lists of m non-negative variables, being m the number of restric-
tions contained in the conjunction of B(x) and S(x, x′). They prove that this
set is satisfiable if and only if a linear ranking function exists for the while,
and the ranking function itself can be synthesised from the values of λ1 and λ2.
More precisely, the method synthesises a vector r of real numbers and two real
constants δ > 0 and δ0 such that:

⎧

⎨

⎩

r . x ≥ δ0 ∀x . B(x)

r . x′ ≤ r . x− δ ∀x, x′ . B(x) ∧ S(x, x′)

These conditions — the ranking function is bounded from below and it decreases
at each iteration — guarantee the termination of the loop.

The aim of [19] is proving termination and to exhibit a certificate of the proof.
In this respect, any ranking function is a valid certificate, i.e. any valid value
of the vectors λ1 and λ2 will suffice. Our aim is slightly different: we seek for
the least upper bound to the length of the worst case call chain to a recursive
Core-Safe function fS . Then, we introduce two variations to [19]:

1. We replace the restriction δ > 0 by δ ≥ 1. In this way, each transition counts
at least as an internal call to fS and so we will get an upper bound to the
number of internal calls in the chain (this would not be true if δ were any
real number satisfying 0 < δ < 1).

2. We reformulate the problem as a minimisation one. We ask for the solution
giving the minimum value of the following objective function:

Obj def=
∑

λ1 +
∑

λ2 − δ0

64 R. Peña and A.D. Delgado-Muñoz

Minimising −δ0 is equivalent to maximising δ0, expressing that we look for
the minimum value of r.x that is still an upper bound. Minimising the values
of λ1 and λ2 is needed because we have seen that requiring only the first
condition frequently leads to unbounded linear problems with an infinite
number of solutions, being the minimum one the one assigning infinite to
some of the components of λ1 or λ2.

The only remaining task is codifying our abstract size functions as while loops.
In this respect, the meaningful information is the size change between the argu-
ments of an external call to fS and the arguments of its internal calls. The result
sizes are not relevant for termination of the call chains. But we still must decide
what to do when there are more than one internal call, either excluding each
other (as in mergeS), or executed in sequence (as in msortS). Our approach
has been in both cases to compute the convex hull of the restrictions coming
from the internal calls, and to use this polyhedron both as the guard B(x) —by
collecting all restrictions depending only on x—, and as the transition relation
S(x, x′) —by collecting all restrictions depending both on x and x′.

• The justification of this decision in the case of excluding calls is clear: at
each ‘iteration’ the function may decide to take a possible different branch,
so the convex hull amounts to computing the logical ‘or’ of the restrictions
coming for all the branches. In geometric terms, the ‘or’ is the convex hull.
• In the case of consecutive calls, the reasoning is different: at each internal

node of the call tree, the function will take all the children branches and
we seek for a bound to the worst case path. We need to collect in this case
the minimum set of restrictions applicable to all the branches. This is also
the convex hull. It is like having a loop going from the root of the tree to
any leave, which non-deterministically decides at each iteration the branch
it will follow. A bound to the iterations of this ‘loop’ is then a bound to the
longest path in the call tree.

Examples

In Fig. 9 we show the restrictions of each internal call for splitS, mergeS , and
msortS , and their respective convex hulls. When introducing this data to the
above formulation of Podelski and Rybalchenkos’s method, we got the following
ranking functions:

Function r δ0 lenf (x) B(x)
split n x [0, 1] 2 x n ≥ 1 ∧ x ≥ 2
merge x y [1, 1] 4 x + y − 2 x ≥ 2 ∧ y ≥ 2
msort x [2] 2 2x x ≥ 3

We have taken as lenf (x) the expression r . x− δ0 + 2, because r . x− δ0 + 1 is a
bound to the number of ‘iterations’, each one corresponding to an internal call to
fS , and we add 1 for taking into account the code before the loop, representing
the initial call of the chain. Of course, this length is valid when B(x) holds at

Size Invariant and Ranking Function Synthesis in a Functional Language 65

Function Internal call 1 Internal call 2 Convex hull

split n x {n ≥ 1, x ≥ 2, n′ = n − 1, {n ≥ 1, x ≥ 2, n′ =
x′ = x − 1} n − 1, x′ = x − 1}

merge x y {x ≥ 2, y ≥ 2, x′ = x − 1, {x ≥ 2, y ≥ 2, x′ = x, {x ≥ 2, y ≥ 2,
y′ = y} y′ = y − 1} x + y = x′ + y′ + 1}

msort x {x ≥ 3, x′ = 1
2
x} {x ≥ 3, x′ = 1

2
x + 1} {x ≥ 3, x′ ≥ 1

2
x,

x′ ≤ 1
2
x + 1}

Fig. 9. Termination restrictions of split, merge and msort

the beginning. Otherwise, the length is just 1. Notice that the bounds for split
and merge are tight, while the one for msort is not (a tight bound would be
log2 x + 1). An obvious limitation of the method is that it can only give a linear
function as a result. On the other hand, it is not so easy to find in the literature
recursive functions whose longest call chain is described by a more-than-linear
function.

6 Conclusions

We have shown that a bunch of linear techniques can be successfully applied
to a first-order functional language in order to infer size invariants between the
arguments and results of recursive functions, and upper bounds to the longest
call chain of these functions. To this respect, some prior transformations of the
program may be needed in order to distinguish between internal recursive calls
related by ‘or’ (i.e. excluding each other), from those related by ‘and’ (i.e. ex-
ecuted in a sequence). This distinction comes for free in Prolog programs, but
not in functional ones.

Linear techniques — namely abstract interpretation on polyhedral domains
and linear ranking function synthesis — have been extensively used in imperative
and logic languages (see e.g. [4] for a broad bibliography), but apparently there
have been no much effort in applying them to functional languages. An exception
regarding termination analysis (although not necessarily a linear one) is Sereni
and Jones work [21] applying the SCT criterion to the termination of higher-
order ML programs.

The algorithms presented here have been implemented for the moment in
SWI-Prolog1, by using its CLP(Q) and simplex libraries. We have adapted to
this Prolog system Andy King’s algorithm [8] for computing convex hulls. Our
near future plans are to include these algorithms in the Safe compiler2, by using
an appropriate polyhedra library.

1 Available at http://www.swi-prolog.org/
2 A web version of the compiler is available at http://dalila.sip.ucm.es/~safe

66 R. Peña and A.D. Delgado-Muñoz

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic Inference of Upper
Bounds for Recurrence Relations in Cost Analysis. In: Alpuente, M., Vidal, G.
(eds.) SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional Rankings, Pro-
gram Termination, and Complexity Bounds of Flowchart Programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

3. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: The Parma Polyhedra Li-
brary, User’s Manual. Dept. of Mathematics. Univ. of Parma, Italy (2002),
http://www.cs.unipr.it/ppl/

4. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for
convex polyhedra. Science of Computer Programming 58(1-2), 28–56 (2005) Special
Issue on the Static Analysis Symposium 2003 - SAS 2003

5. Ben-Amram, A.M., Codish, M.: A SAT-Based Approach to Size Change Termi-
nation with Global Ranking Functions. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 218–232. Springer, Heidelberg (2008)

6. Ben-Amram, A.M., Lee, C.S.: Program termination analysis in polynomial time.
ACM Transactions on Programming Languages and Systems 29(1) (2007)

7. Benoy, F., King, A.: Inferring Argument Size Relationships with CLP(R). In: LOP-
STR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidelberg (1997)

8. Benoy, F., King, A., Mesnard, F.: Computing convex hulls with a linear solver.
TPLP 5(1-2), 259–271 (2005)

9. Colón, M., Sipma, H.: Practical Methods for Proving Program Termination. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.
Springer, Heidelberg (2002)

10. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In: POPL,
pp. 238–252. ACM, New York (1977)

11. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: POPL, pp. 84–96 (1978)

12. Gonnord, L., Halbwachs, N.: Combining Widening and Acceleration in Linear Re-
lation Analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

13. Horspool, R.N.: Analyzing List Usage in Prolog Code, University of Victoria (
March 1990)

14. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, pp. 81–92 (2001)

15. Lucas, S., Peña, R.: Rewriting Techniques for Analysing Termination and Com-
plexity Bounds of SAFE Programs. In: Proc. Logic-Based Program Synthesis and
Transformation, LOPSTR 2008, pp. 43–57 (2008)

16. Montenegro, M., Peña, R., Segura, C.: A Type System for Safe Memory Manage-
ment and its Proof of Correctness. In: ACM Principles and Practice of Declarative
Programming, PPDP 2008, Valencia, Spain, pp. 152–162 (July 2008)

17. Montenegro, M., Peña, R., Segura, C.: A Simple Region Inference Algorithm for
a First-Order Functional Language. In: Escobar, S. (ed.) WFLP 2009. LNCS,
vol. 5979, pp. 145–161. Springer, Heidelberg (2010)

18. Montenegro, M., Peña, R., Segura, C.: A space consumption analysis by abstract
interpretation. In: van Eekelen, M., Shkaravska, O. (eds.) FOPARA 2009. LNCS,
vol. 6324, pp. 34–50. Springer, Heidelberg (2010)

Size Invariant and Ranking Function Synthesis in a Functional Language 67

19. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

20. Podelski, A., Rybalchenko, A.: Transition Invariants. In: LICS, pp. 32–41. IEEE
Computer Society, Los Alamitos (2004)

21. Sereni, D., Jones, N.D.: Termination analysis of higher-order functional programs.
In: Yi, K. (ed.) Programming Languages and Systems. LNCS, vol. 3780, pp. 281–
297. Springer, Heidelberg (2005)

Memoizing a Monadic Mixin DSL

Pieter Wuille1, Tom Schrijvers2, Horst Samulowitz3,
Guido Tack1, and Peter Stuckey4

1 Department of Computer Science, K.U.Leuven, Belgium
2 Department of Applied Mathematics and Computer Science, UGent, Belgium

3 IBM Research, USA
4 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia

Abstract. Modular extensibility is a highly desirable property of a
domain-specific language (DSL): the ability to add new features without
affecting the implementation of existing features. Functional mixins (also
known as open recursion) are very suitable for this purpose.

We study the use of mixins in Haskell for a modular DSL for search
heuristics used in systematic solvers for combinatorial problems, that
generate optimized C++ code from a high-level specification. We show
how to apply memoization techniques to tackle performance issues and
code explosion due to the high recursion inherent to the semantics of
combinatorial search.

As such heuristics are conventionally implemented as highly entangled
imperative algorithms, our Haskell mixins are monadic. Memoization of
monadic components causes further complications for us to deal with.

1 Application Domain

Search heuristics often make all the difference between effectively solving a com-
binatorial problem and utter failure. Heuristics enable a search algorithm to
become efficient for a variety of reasons, e.g., incorporation of domain knowl-
edge, or randomization to avoid heavy tailed runtimes. Hence, the ability to
swiftly design search heuristics that are tailored towards a problem domain is
essential to performance improvement. In other words, this calls for a high-level
domain-specific language (DSL).

The tough technical challenge we face when designing a DSL for search heuris-
tics, does not lie in designing a high-level syntax; several proposals have already
been made (e.g., [10]). What is really problematic is to bridge the gap between
a conceptually simple specification language (high-level and naturally compo-
sitional) and an efficient implementation (typically low-level, imperative and
highly non-modular). This is indeed where existing approaches fail; they restrict
the expressiveness of their DSL to face up to implementation limitations, or they
raise errors when the user strays out of the implemented subset.

We overcome this challenge with a systematic approach that disentangles
different primitive concepts into separate modular mixin components, each of
which corresponds to a feature in the high-level DSL. The great advantage of

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 68–85, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Memoizing a Monadic Mixin DSL 69

s ::= prune
prunes the node

| base search(. . .)
label

| let(v, e, s)
introduce new global variable v with initial
value e, then perform s

| assign(v, e)
assign e to variable v and succeed

| and([s1, s2, . . . , sn])
perform s1, on success start s2 otherwise fail, . . .

| or([s1, s2, . . . , sn])
perform s1, on termination start s2, . . .

| post(c, s)
perform s and post a constraint c at every node

Fig. 1. Syntax of Search Heuristics DSL

mixin components to provide a semantics for our DSL is its modular extensibility.
We can add new features to the language by adding more mixin components.
The cost of adding such a new component is small, because it does not require
changes to the existing ones.

The application under consideration is heuristics for systematic tree search in
the area of Constraint Programming (CP), but the same issues apply to other
search-driven areas in the field of Artificial Intelligence (AI) and related areas
such as Operations Research (OR). The goal is generating tight C++ code for
doing search from our high-level DSL. The focus however lies in the combination
of using Haskell combinators for expressing strategies, open recursion to allow
modular extension and monads for allowing stateful behaviour to implement
a code-generation system. Further on, we explain how to combine this with
memoization to improve generation time as well as size of the generated code.

2 Brief DSL Overview

We provide the user with a high-level domain-specific language (DSL) for ex-
pressing search heuristics. For this DSL we use a concrete syntax, in the form of
nested terms, that is compatible with the annotation language of MiniZinc [9],
a popular language for modeling combinatorial problems.

The search specification implicitly defines a search tree whose leaves are so-
lutions to the given problem. Our implementation parses a MiniZinc model,
extracts the search specification expressed in our DSL and generates the corre-
sponding low-level C++ code for navigating the search tree. The remainder of
the MiniZinc model (expressing the actual combinatorial problem) is shipped
to the Gecode library [7], a state-of-the-art finite domain constraint solver.

70 P. Wuille et al.

The search code interacts with the solver at every node of the search tree to de-
termine whether a solution or dead end has been reached, or whether to generate
new child nodes for further exploration.

2.1 DSL Syntax

The DSL’s expression language comprises the typical arithmetic and comparison
operators and literals that require no further explanation. Notable though is the
fact that it allows referring to the constraint variables and parameters of the
constraint model.

The DSL’s search heuristics language features a number of primitives, listed
in the catalog of Fig. 1, in terms of which more complex heuristics can be defined.
The catalog consists of both basic heuristics and combinators. The former define
complete (albeit very basic) heuristics by themselves, while the latter alter the
behavior of one or more other heuristics.

There are two basic heuristics: prune, which cuts the search tree below the
current node, and the base search strategies, which implement the labeling (also
known as enumeration) strategies. We do not elaborate on the base search here,
because this has been studied extensively in the literature. While only a few
basic heuristics exist, the DSL derives great expressive power from the infinite
number of ways in which these basic heuristics can be composed by means of
combinators.

The combinator let(v, e, s) introduces a new variable v, initialized to the value
of expression e, in the sub-search s, while assign(v, e) assigns the value of e to
v and succeeds. The and-sequential composition and([s1, . . . , sn]) runs s1 and at
every success leaf runs and([s2, . . . , sn]). In contrast, or([s1, . . . , sn]) first runs s1

in full before restarting with or([s2, . . . , sn]).
Finally, the post(c, s) primitive provides access to the underlying constraint

solver, posting a constraint c at every node during s. If s is omitted, it posts the
constraint and immediately succeeds.

As an example, this is how branch-and-bound — a typical optimization heuris-
tic — can be expressed in the DSL:

let(best,maxint, post(obj < best, and([base search(. . .), assign(best, obj)])))

let introduces the variable best, post makes sure the constraint obj < best is
enforced at each node of the search tree spawned by base search. Combining
it with assign using and causes the best variable to be updated after finding
solutions. Note that we refer to obj, the program variable being minimized.

3 Implementation

Starting from base searches and functions for combining them — as called by the
parser — a C++ AST is generated. After a simplification step, a pretty printer is
invoked to generate the actual source code. Both the initial parsing phase and
pretty printer are trivial and not discussed here.

Memoizing a Monadic Mixin DSL 71

3.1 C++ Abstract Syntax Tree

Before we discuss the code generator, we need to define the target language, a
C++ AST, which is partly given here:

data Stmt = Nop | Expr := Expr
| IfThenElse Expr Stmt Stmt | Stmt ;Stmt
| Call String [Expr] |While Expr Stmt
| ...

A number of convenient abbreviations facilitate building this AST, e.g.,

(�) = liftM ◦ (;)
if ′ = liftM2 ◦ IfThenElse

3.2 The Combinator Stack

Based on the output of the parser, a data structure is built that represents the
search heuristic. The details of how this is represented will follow later, but in
general, a value of type Search will be used. Basic heuristics result immediately
in a Search, while combinators are modeled as functions that take one or more
Search values, and compute a derived one from that. Although conceptually this
is best modeled as a tree structure, with each subtree evaluating to a Search,
processing happens top-down, and only a single path through the combinator
tree is active at a given time. The list of combinators along this path will be
called the combinator stack. Figure 2 shows the combinator stack for the earlier
branch-and-bound example.

Fig. 2. Branch-and-bound combinator stack

72 P. Wuille et al.

3.3 The Code Generator

Inside Search structures, values of type Gen m will be built up. They contain a
number of hooks that produce the corresponding AST fragments1.

As will be explained later, some combinators need to keep an own modifiable
state during code generation, so hooks must support side effects; hence Gen is
parametrized in a monad m.

data Gen m = Gen {initG :: m Stmt, bodyG :: m Stmt
, addG :: m Stmt, tryG :: m Stmt
, resultG :: m Stmt, failG :: m Stmt
, height :: Int }

The separate hooks correspond to several stages for the processing of nodes in
a search tree. Nodes are initialized with initG and processed using consecutively
bodyG, addG, and tryG. resultG is used for reporting solutions, and failG for
aborting after failure. The height field indicates how high the stack of combina-
tors is.

The fragments of the different hooks are combined according to the following
template.

gen :: Monad m ⇒ Gen m → m Stmt
gen g = do init ← initG g

try ← tryG g
body ← bodyG g
return $ declarations

; init
; try
; While queueNotEmpty body

After emitting a number of variable declarations which we omit due to space
constraints, the template creates the root node in the search tree through initG,
and tryG initializes a queue with child nodes of the root. Then, in the main part
of the algorithm, nodes in the queue are processed one at a time with the bodyG

hook.

3.4 Code Generation Mixins

Instead of writing a monolithic code generator for every different search heuristic,
we modularly compose new heuristics from one or more components, each of
which corresponds to a constructor in the high-level DSL. Our code generator
components are implemented as (functional) mixins [2], where the result is a
function from Eval m to Eval m, which gets called with its own resulting strategy
as argument. The function argument in these mixins is comparable to the this
object in object-oriented paradigms.

1 See Section 3.4 for why we partition the code generation into these hooks.

Memoizing a Monadic Mixin DSL 73

type Mixin a = a → a
type MGen m = Mixin (Gen m)

There are two kinds of mixin components: base components that are self-
contained, and advice components that extend or modify another component [6].
An alternative analogy for mixins, that includes multi-argument combinators,
is that of inheritance, where we distinguish self-contained “base classes” and
“class deltas“. The application of a class delta Δ to a number of classes C̄ yields
a subclass Δ(C̄); this subclass is said to inherit from C̄. When C̄ consists of
more than one class, we speak of multiple inheritance.

Base Component. Base searches are implemented as Gen m → Gen m functions
(shortened using a type alias to MGen m here), with fixpoint semantics. Through
lazy evaluation, we can pass the fully combined search as an argument back to
itself. Through this mechanism, we can make the base search’s hooks call other
hooks back at the top of the chain, as shown in the protocol overview shown in
Figure 3.

Fig. 3. Node processing protocol

The main example of a base component is the enumeration strategy baseM :

baseM :: Monad m ⇒ MGen m
baseM this =

74 P. Wuille et al.

Gen {initG = return Nop
, bodyG = addG this
, addG = constrain � tryG this
, tryG = let ret = resultG this

succ = if ′ isSolved ret doBranch
in if ′ isFailed (failG this) succ

, resultG = return Nop
, failG = return Nop
, height = 0}

The above code omits details related to posting constraints (constrain), checking
the solver status (isSolved or isFailed) and branching (doBranch). The details of
these operations depend on the particular constraint solver involved (e.g. finite
domain, linear programming, . . .); here we focus only on the search heuristics,
which are orthogonal to those details.

As we can see the base component is parametrized by this , the overall search
heuristic. This way, the baseM search can make the final call to bodyG redirect
to an addG on the top of the combinator-stack again, restarting the processing
top-down, but this time using addG instead of bodyG. A similar construct is used
for called tryG and resultG.

The simplest form of a search heuristic is obtained by applying the fix-point
combinator to a base component:

fix :: Mixin a → a
fix m = m (fix m)
search1 :: Gen Identity
search1 = fix baseM

Advice Component. The mixin mechanism allows us to plug in additional advice
components before applying the fix-point combinator. This way we can modify
the base component’s behavior.

Consider a simple example of an advice combinator that prints solutions:

printM :: Monad m ⇒ MGen m
printM super = super {resultG = printSolution � resultG super

, height = 1 + height super }
where printSolution consists of the necessary solver-specific code to access and
print the solution. A code generator is obtained through mixin composition,
simply using (◦):

search2 :: Gen Identity
search2 = fix (printM ◦ baseM)

3.5 Monadic Components

In the components we have seen so far, the monad type parameter m has not
been used. It does become essential when we turn to more complex components
such as the binary conjunction and([g1, g2]).

Memoizing a Monadic Mixin DSL 75

The code presented at the end of this section shows a simplified and combina-
tor, for two Gen m structures with the same type m. It does require m to be an
instance of MonadReader Side, to store the current branch at code-generation
runtime. While some hooks simply dispatch to the corresponding hook of the
currently active branch, bodyG and resultG are more elaborate.

First of all, we also need to store the branch number at program runtime.
This is known at the time when the node is created, but needs to be restored
into the monadic state when activating it. We assume the functions store and
retrieve give access to a runtime state for each node, indexed with a field name
and the height of the combinator involved.

When the resultG hook is called — implying a solution for a sub-branch was
found — there are two options. Either the g1 was active, in which case both the
runtime state and the monadic state are updated to In2, and initG and tryG for
g2 are executed, which will possibly cause the node to be added to the queue,
if branching is required. When this new node is activated itself, its bodyG hook
will be called, retrieving the branch information from the runtime state, and
dispatching dynamically to g2. When a solution is reached after switching to g2,
resultG will finally call g2’s resultG to report the full solution.

data Branch = In1 | In2

type Mixin2 a = a → a → a
andM :: MonadReader Branch m ⇒ Mixin2 (Gen m)
andM g1 g2 = Gen {initG = store myHeight "pos" In1 � initG g1

, addG = dispatch addG

, tryG = dispatch tryG

, failG = dispatch failG
, bodyG = myBody
, resultG = myResult
, height = myHeight }

where parent = ask >>= λx → case x of
In1 → return g1

In2 → return g2

dispatch f = parent >>= f
myHeight = 1 + max (height g1) (height g2)
myBody = let pos = retrieve myHeight "pos"

br1 = local (const In1) (bodyG g1)
br2 = local (const In2) (bodyG g2)
in if ′ (pos =:= In1) br1 br2

myResult = do num ← ask
case num of

In1 → local (const In2) $
store myHeight "pos" In2

� liftM2 (;) (initG g2) (tryG g2)
In2 → resultG g2

76 P. Wuille et al.

3.6 Effect Encapsulation

So far we have parametrized MGen with m, a monad type parameter. This pa-
rameter will have to be assembled appropriately from monad transformers to
satisfy the need of every mixin component in the code generator. Doing this
manually can be quite cumbersome. Especially for a large number of mixin com-
ponents with multiple instances of, e.g., StateT this becomes impractical. To sim-
plify the process, we turn to a technique proposed by Schrijvers and Oliveira [11]
to encapsulate the monad transformers inside the components.

data Search = ∀t2.MonadTrans t2 ⇒
Search {mgen :: ∀m t1.(Monad m,MonadTrans t1)⇒ MGen ((t1 � t2) m)

, run :: ∀m x . Monad m ⇒ t2 m x → m x }
To that end we now represent components by the Search type that was an-
nounced earlier, which packages the components behavior MGen with its side
effect t2. The monad transformer t2 is existentially quantified to remain hidden;
we can eliminate it from a monad stack with the run field. The hooks of the
component are available through the mgen field, which specifies them for an
arbitrary monad stack in which t2 is surrounded by more effects t1 above and
m below. Here t1 � t2 indicates that the focus rests on t2 (away from t1) for
resolving overloaded monadic primitives such as get and put , for which multiple
implementations may be available in the monad stack. We refer to [12,11] for
details of this focusing mechanism, known as the monad zipper.

An auxiliary function promotes a non-effectful MGen m to MSearch:

type MSearch = Mixin Search
mkSearch :: (∀m.Monad m ⇒ MGen m)→ MSearch
mkSearch f super =

case super of
Search {mgen = mgen , run = run} → Search {mgen = f ◦mgen

, run = run }
which we can apply for instance to baseM and printM .

baseS , printS :: MSearch
baseS = mkSearch baseM

printS = mkSearch printM

Similarly, we define mkSearch2 for lifting binary combinators like andM . It takes
a combinator for two Gen m’s, as well as a run function for additional monad
transformers the combinator may require, and lifts it to MSearch2 (implemen-
tation omitted).

type MSearch2 = Mixin2 Search
andS :: MSearch2

andS = mkSearch2 andM (flip runReaderT In1)

Memoizing a Monadic Mixin DSL 77

mkSearch2 ::MonadTrans t2
⇒ (∀m t1.(Monad m,MonadTrans t1) ⇒ Mixin2 (Gen ((t1 � t2) m)))
→ (∀m x .Monad m ⇒ t2 m x → m x)
→ MSearch2

Finally we produce C++ code from a Search component with generate:

generate :: Search → Stmt
generate s = case s of

Search {mgen = mgen , run = run} →
runIdentity $ run $ runIdentityT $ runZ $ gen $ fix $ mgen

This code first applies the fix-point computation, passing the result back into
itself, as explained earlier. After that, gen is called to get the real code-generating
monad action. It extracts the knot-tied bodyG hook, runZ eliminates � from (t1�
t2) m, yielding t1 (t2 m). Then runIdentityT eliminates t1 (instantiating it to be
IdentityT), run eliminates t2, and runIdentity finally eliminates m (instantiating
it to be Identity) to yield a Stmt .

4 Memoization and Inlining

Experimental evaluation indicates that several component hooks in a complex
search heuristic are called frequently, as for example the failG hook can be called
from many different places. This is a problem 1) for the code generation — which
needs to generate the corresponding code over and over again — and 2) for
the generated program which contains much redundant code. Both significantly
impact the compilation time (in Haskell and in C++); in addition, an overly large
binary executable may aversely affect the cache and ultimately the running time.

4.1 Basic Memoization

A well-known approach that avoids the first problem, repeatedly computing the
same result, is memoization. Fortunately, Brown and Cook [4] have shown that
memoization can be added as a monadic mixin component without any major
complications.

Memoization is a side effect for which we define a custom monad transformer:

newtype MT m a = MT {runMT :: StateT Table m a }
deriving (MonadTrans)

runMemoT :: Monad m ⇒MT m a → m (a,Table)
runMemoT m = runStateT (runMT m) initMemoState

which is essentially a state transformer that maintains a table from Keys to
Stmts. For now we use Strings as Keys.

newtype Key = String
newtype Table = Map Key Stmt
initMemoState = empty

78 P. Wuille et al.

We capture the two essential operations of MT in a type class, which allows us
to lift the operations through other monad transformers.2

class Monad m ⇒MM m where
getM :: String → m (Maybe Stmt)
putM :: String → Stmt → m ()

instance Monad m ⇒ MM (MT m) where ...

instance (MM m, MonadTrans t)⇒MM (t m) where ...

These operations are used in an auxiliary mixin function:

memo :: MM m ⇒ String → Mixin (m Stmt)
memo s m = do stm ← getM s

case stm of
Nothing → do code ← m

putM s code
return code

Just code → return code

which is used by the advice component:

memoM :: MM m ⇒ MGen m
memoM super = super {initG = memo "init" (initG super)

, bodyG = memo "body" (bodyG super)
, addG = memo "add" (addG super)
, tryG = memo "try" (tryG super)
, resultG = memo "result" (resultG super)
, failG = memo "fail" (failG super)}

which allows us to define, e.g., a memoized variant of printS .

printS = mkSearch (memoM ◦ printM)

Note that in order to lift memoM to a Search structure, Search must be up-
dated with a MM m constraint, and generate must be updated to incorporate
runMemoT in its evaluation chain.

data Search = ∀t2.MonadTrans t2 ⇒
Search {mgen :: ∀m t1.(MM m,MonadTrans t1)⇒ MGen ((t1 � t2) m)

, run :: ∀m x . MM m ⇒ t2 m x → m x }
generate s =

case s of
Search {mgen = mgen, run = run} →
runIdentity $ runMemoT $ run $ runIdentityT $ runZ $ gen $ fix mgen

2 For lack of space we omit the straightforward instance implementations.

Memoizing a Monadic Mixin DSL 79

4.2 Monadic Memoization

Unfortunately, it is not quite this simple. The behavior of combinator hooks may
depend on internal updateable state, like andM from section 3.5 kept a Branch
value as state. The above memoization does not take this state dependency into
account.

In order to solve this issue, we must expose the components’ state to the
memoizer. This is done in two steps. First, MT keeps a context in addition to
the memoization table, and provides access to it through the MM type class.
Second — for the specific case of a ReaderT s with s an instance of Showable
— an alternative implementation (MemoReaderT) which updates the context
in the MT layer below it, is provided. Typically, the used states are simple in
structure.

To implement this, the Table type is extended:

type MemoContext = Map Int String
type Key = (MemoContext ,String)
data Table = Table {context :: MemoContext

, memoMap :: Map Key Stmt }
initMemoState = Table {context = empty

, memoMap = empty }
MemoContext is represented as a map from integers to strings. The integers are
identifiers assigned to the monad transformer layers that have context, and the
strings are serialized versions of the contextual data inside those layers (using
show).

The MM type class is extended to support modifying the context information,
using setCtx and clearCtx .

class Monad m ⇒MM m where
...
setCtx :: Int → String → m ()
clearCtx :: Int → m ()

Finally, MRT is introduced. It will contain a wrapped double ReaderT -
transformed monad. The state will be stored in the first, while the second is
used to give access to the identifier of the layer.

newtype MRT s m a = MRT {runMRT :: ReaderT Int (ReaderT s m) a }
For convenience, MRT is made an instance of MonadReader , so switching

from ReaderT to MRT does not require any changes to the code interacting
with it.

When running a MRT transformer, the enclosing Gen ’s height parameter is
passed to rReaderT , using that as identifier for the layer. The runtime state it-
self is stored inside the wrapped ReaderT layer, while a serialized representation
(using show) is stored in the context of the underlying MT . Note that show im-
plementations are supposed to turn a value into equivalent Haskell source code

80 P. Wuille et al.

for reconstructing the value — this is far from the most efficient solution, but it
does produce canonical descriptions for all values, and default implementations
are provided by the system for almost all useful data types. There are alterna-
tives, such as using an Ord -providing Dynamic-like type, but those are harder
to implement and there is little to be gained, as will be shown in the evaluation
(Section 5).

instance (Show s , MM m)⇒ MonadReader s (MRT s m) where
ask = MRT $ lift ask
local s m = MRT $ do n ← ask

old ← lift ask
let new = s old
putCtx n $ show new
let im = runMRT m
r ← mapReaderT (local $ const new) im
putCtx n $ show old
return r

rMRT :: (MM m,Show s)⇒ s → Int →MRT s m a → m a
rMRT s height m =

do let action = runReaderT (runMRT m) height
putCtx height (show s)
result ← runReaderT action s
clearCtx height
return result

4.3 Backend Sharing

So far we have only solved the first performance problem, repeated generation
of code. Memoization avoids the repeated execution of hooks by storing and
reusing the same C++ code fragment. However, the second performance problem,
repeated output of the same C++ code, remains.

We preserve the sharing obtained through memoization in the backend, by
depositing the memoized code fragment in a C++ function that is called from
multiple sites. Conceptually, this means that a memoized hook returns a func-
tion call (rather than a potentially big code fragment), and produces a function
definition as a side effect.3

memo2 :: MM m ⇒ String → Mixin (m Stmt)
memo2 s m = do code ← memo s m

let name = getFnName code
return (Call name [])

getFnName :: Stmt → String

3 The function getFnName — given without implementation — derives a unique func-
tion name for a given code fragment.

Memoizing a Monadic Mixin DSL 81

The following generate function produces both the main search code and the
auxiliary functions for the memoized hooks. By introducing runMemoT in the
chain of evaluation functions, the types change, and the result will be of type
(Stmt ,Table), since that is returned by runMemoT .

data FunDef = FunDef String Stmt
toFunDef :: Stmt → FunDef
toFunDef stm = FunDef (getFnName stm) stm
generate :: Search → (Stmt , [FunDef])
generate s =

case s of
Search {mgen = mgen , run = run} →

let eval = fix mgen
codeM = gen eval
memoM = run ◦ runIdentityT ◦ runZ $ codeM
(code, state) = runIdentity $ runMemoT memoM
in (code,map toFunDef ◦ elems $ memoMap state)

The result of extracting common pieces of code into separate functions, is
shown schematically in figure 4.

Fig. 4. Memoization with auxiliary functions

Note that only code generated by the same hook of the same component is
shared in a function, not code of distinct hooks or distinct components. Separate
from the mechanism described above, it is also possible to detect unrelated clones
by doing memoization with only the generated code itself as key (instead of
function names, present variables and active states). This causes a slowdown, as
the code needs to be generated for each instance before it can be recognized as
identical to earlier emitted code. To a limited extent, this second memoization
scheme is also used in the implementation to reduce the size of generated code
— without any measurable overhead.

Finally, applying the above technique systematically results in one generated
C++ function per component hook. This is not entirely satisfactory, as many

82 P. Wuille et al.

memoized functions are only called once, or only contain a single line of code.
One can either rely on the C++ compiler to determine when inlining is lucrative,
or perform inlining on the C++ AST in an additional processing step.

5 Evaluation

We have omitted a number of complicating factors in our account, so as not
to distract from the main issues. Without going into detail, we list the main
differences with the actual implementation:

– There are more hooks, including ones called during branching, adding to
the queue, deletion of nodes and switching between nodes belonging to
separate strategies. Furthermore, additional hooks exist for the creation of
combinator-specific data structures, both globally for the whole combinator,
or locally for each node, instead of the dynamic height -based mechanism.

– The code generation hooks are functions that take an additional argument,
the path info. It contains which variable names point to the local and global
data structures, which variables need to be passed to generated memoized
functions, and pieces of code that need to be executed when the current node
needs to be stored, aborted or copied. The values in the path info are also
taken into account when memoizing, complicating matters further.

– We have built into the code generators a number of optimizations. For ex-
ample, if it is known that a combinator never branches, certain generated
code and data structures may be omitted.

– Searches keep track of whether they complete exhaustively, or are pruned.
Repeat-like combinators use exhaustiveness as an additional stop criterion.

To evaluate the usefulness of our system, benchmarks4 were performed (see
Table 1)5. A first set includes the known problems golfers6, golomb7, open
stacks and radiation[1]; a second set contains artificial stress tests. The dif-
ferent problem sizes for golomb use the same search code, while in ortest and
radiation, separate code is used.

The first three columns give the name, problem size and whether or not the
memoizing version was used. Further columns show the number of generated
C++ lines (col. 4), the number of invoked hooks (col. 5), the number of monad
transformers active (both the effective ones (col. 6), and including IdentityT and
� (col. 7)). Finally, the average generation (Haskell, col. 8), build (gcc, col. 9)
and run time (col. 10) are listed. All these numbers are averages over many runs
(of up to an hour of runtime).

4 Available at http://users.ugent.be/~tschrijv/SearchCombinators
5 A 2.13GHz Intel(R) Core(TM)2 Duo 6400 system, with 2GiB of RAM was used.

The system was running Ubuntu 10.10 64-bit, with GCC 4.4.4, Gecode 3.3.1 and
Minizinc 1.3.1.

6 Social golfer problem, CSPlib problem 10.
7 Golomb rulers, CSPlib problem 6.

Memoizing a Monadic Mixin DSL 83

Table 1. Benchmark results

name size memo? lines hooks
trans. time
eff. total generate build run

golomb 10 no 216 70 4 14 0.00017 2.0 4.9
yes 187 95 5 17 0.0073 2.0 4.9

11 no 110
yes 110

12 no 1200
yes 1200

open-stacks 30 no 216 70 4 14 0.00016 2.1 0.12
yes 187 95 5 17 0.0074 2.0 0.12

golfers no 119 29 3 8 0.00017 2.0 1.3
yes 114 46 4 11 0.00017 2.0 1.3

radiation 15 no 11455 4153 4 76 0.57 16 210
yes 2193 1155 5 79 0.19 4.0 230

5 no 2530 898 4 36 0.073 4.3 0.10
yes 933 485 5 39 0.055 2.7 0.10

bab-real no 216 70 4 14 0.00019 2.0 17
yes 187 95 5 17 0.0074 2.0 17

bab-restart no 1499 1166 5 20 0.045 2.8 17
yes 433 262 6 23 0.026 2.2 17

for+copy no 1164 414 5 14 0.016 2.4 8.9
yes 494 180 6 17 0.0066 2.1 8.9

once-sequence no 2530 898 4 36 0.073 4.2 2.7
yes 933 485 5 39 0.054 2.7 2.6

ortest 10 no 1597 849 13 48 0.11 3.2 17
yes 1222 655 14 51 0.11 2.6 17

20 no 4232 1869 23 88 0.82 9.7 17
yes 3352 1465 24 91 0.79 6.7 17

For the larger problem instances, memoization reduces both generation time
and build time, by reducing the number of generated lines. No reduced cache
effects resulting from memoizing large generated code are observed in these ex-
amples, but performance is not affected either by the increased number of func-
tion calls. In particular for the radiation example, the effect of memoization is
drastic. On the other hand, for small problems, memoization does not help, but
the overhead is very small.

6 Related Work

We were inspired by the monadic mixin approach to memoization of Brown and
Cook [4]. The problem of memoization of stateful monad components is not yet
solved in general, but typically requires some way for exposing the implicit state,
as shown in [3] for parser combinators. In our system, this is accomplished by
also memoizing the implicit state.

84 P. Wuille et al.

A different approach that results in smaller code generated from a DSL is
observable sharing [5,8]. Yet, the main intent of observable sharing is quite dif-
ferent. Its aim is to preserve sharing at the level of Haskell in the resulting
generated code, typically using unsafePerformIO . It does not detect distinct
calls that result in the same code, and is hard to integrate with code-generating
monadic computations as appear in our setting.

Our work is directly inspired by earlier work on the Monadic Constraint Pro-
gramming DSL [13,15]. In particular, we have studied how to compile high-level
problem specifications in Haskell to C++ code for the Gecode library [14]. The
present complements this with high-level search specifications.

7 Conclusions

We have shown how to implement a code generator for declarative specification
of a search heuristic using monadic mixins. Using this mixin-based approach,
search combinators can be implemented in a modular way, and still indepen-
dently modify the behavior of the generated code. Through existential types and
the monad zipper, all combinators can introduce their own monad transformers
to keep their own state throughout the code generation, without affecting any
other transformers.

Since the naive approach leads to certain hooks being invoked many times
over, we turn to memoization to avoid code duplication. Memoization is im-
plemented as another monadic mixin which is added transparently to existing
combinators.

The system is implemented as a Haskell program that generates search code
in C++ from a search specification in MiniZinc which is then further integrated
in a CP solver (Gecode). Our benchmarks demonstrate the impact of memoizing
the monadic mixins.

References

1. Baatar, D., Boland, N., Brand, S., Stuckey, P.: CP and IP approaches to cancer
radiotherapy delivery optimization. Constraints (2011)

2. Bracha, G., Cook, W.R.: Mixin-based inheritance. In: Proc. of ACM Conf. on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
pp. 303–311 (1990)

3. Brown, D., Cook, W.R.: Function inheritance: Monadic memoization mixins. Re-
port, Department of Computer Sciences, University of Texas at Austin (June 2006)

4. Brown, D., Cook, W.R.: Function inheritance: Monadic memoization mixins. In:
Brazilian Symposium on Programming Languages, SBLP (2009)

5. Claessen, K., Sands, D.: Observable sharing for functional circuit description. In:
Thiagarajan, P.S., Yap, R.H.C. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 62–73.
Springer, Heidelberg (1999)

6. Oliveira, B.C.d.S., Schrijvers, T., Cook, W.R.: Effectiveadvice: disciplined advice
with explicit effects. In: Jézéquel, J.-M., Südholt, M. (eds.) AOSD, pp. 109–120.
ACM, New York (2010)

Memoizing a Monadic Mixin DSL 85

7. Gecode Team. Gecode: Generic constraint development environment (2006),
http://www.gecode.org

8. Gill, A.: Type-safe observable sharing in haskell. In: Proceedings of the 2nd ACM
SIGPLAN Symposium on Haskell, Haskell 2009, pp. 117–128. ACM, New York
(2009)

9. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: Bessiöre, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

10. Samulowitz, H., Tack, G., Fischer, J., Wallace, M., Stuckey, P.: Towards a
lightweight standard search language. In: Pearson, J., Mancini, T. (eds.) Constraint
Modeling and Reformulation, ModRef 2010 (2010)

11. Schrijvers, T., Oliveira, B.: Modular components with monadic effects. In: Prepro-
ceedings of the 22nd Symposium on Implementation and Application of Functional
Languages (IFL 2010), vol. (UU-CS-2010-020), pp. 264–277 (2010)

12. Schrijvers, T., Oliveira, B.: The monad zipper. Report CW 595, Dept. of Computer
Science, K.U.Leuven (2010)

13. Schrijvers, T., Stuckey, P.J., Wadler, P.: Monadic constraint programming. Journal
of Functional Programming 19(6), 663–697 (2009)

14. Wuille, P., Schrijvers, T.: Monadic Constraint Programming with Gecode. In:
Proceedings of the 8th International Workshop on Constraint Modelling and Re-
formulation, pp. 171–185 (2009)

15. Wuille, P., Schrijvers, T.: Parameterized models for on-line and off-line use. In:
Mariño, J. (ed.) WFLP 2010. LNCS, vol. 6559, pp. 101–118. Springer, Heidelberg
(2011)

A Functional Approach to Worst-Case

Execution Time Analysis

Vı́tor Rodrigues1, Mário Florido1, and Simão Melo de Sousa2

1 DCC-Faculty of Science & LIACC, University of Porto
vitor.gabriel.rodrigues@gmail.com,

amf@ncc.up.pt
2 DI-Beira Interior University & LIACC, University of Porto

desousa@di.ubi.pt

Abstract. Modern hard real-time systems demand safe determination
of bounds on the execution times of programs. To this purpose, program
execution for all possible combinations of input values is impracticable.
In alternative, static analysis methods provide sound and efficient mech-
anisms for determining execution time bounds, regardless of input data.

We present a calculation-based and compositional development of a
functional static analyzer using the Abstract Interpretation framework.
Meanings of programs are expressed in fixpoint form, using a two-level
denotational meta-language. At the higher level, we devise a uniform fix-
point semantics with a relational-algebraic shape, defined as the reflexive
transitive closure of the program binary relations. Fixpoints are calcu-
lated in the point-free style using functional composition and a proper
recursive operator. At the lower level, state transformations are speci-
fied by semantic transformers designed as abstract interpretations of the
transition semantics.

1 Introduction

The design of hard real-time systems is directed by the timeliness criteria. This
safety criteria [10] is most commonly specified by the worst-case execution time
(WCET) of the program, i.e. the program path that takes the longest time to
execute. In the general case, the particular input data that causes the actual
WCET is unknown and determination of the WCET throughout testing is an
expensive process that cannot be proven correct for any possible run of the
program. The obvious alternative to this incomputable problem are the static
analysis methods, which always determine sound properties about programs.

Static analysis methods exhibit a compromise between the efficiency and pre-
cision of the process, i.e. approximations are necessary to ensure that the static
analyzer stabilizes after finitely many steps. In this paper, we present a generic
framework for static determination of dynamic properties of programs, based
on the theory of abstract interpretation [5,4]. A particular instantiation of the
framework for the WCET analysis is described in detail.

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 86–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Functional Approach to Worst-Case Execution Time Analysis 87

This work belongs to the area of practical applications of Haskell: here we
present a high-level declarative implementation1 in Haskell of a WCET analysis
at hardware level. Haskell has several advantages for this purpose: its polymor-
phic type system gives us a definition of a polymorphic meta-language and a
parametrized fixpoint semantics for free, the compositional aspect of the an-
alyzer is trivially implemented by functional composition and, finally, Haskell
definitions, being highly declarative, are a direct implementation of the corre-
sponding definitions from the abstract interpretation literature.

The safeness requirement of the real-time system must be balanced with the
accuracy requirement to avoid excessive WCET overestimation. In this case,
tight upper-bounds on the actual WCET depend on accurate program flow in-
formation, such as infeasible program paths and maximal number of iterations in
loops [7]. Our framework provides a uniform fixpoint semantics[4], which allow
the analysis of program flow information as an instrumented version of the static
analyzer. This objective is accomplished by a polymorphic and graph-based rep-
resentation of control flow graphs.

In modern real-time systems, the use of caches and pipelines considerably
increases memory accesses and clock rates. Therefore, precise WCET analysis
must be made at hardware level, using a timing model capable to assess the effect
of each component that affect the WCET. In particular, we are interested in the
computation of the execution time for every instruction in the program, taking
into consideration all possible program paths. However, the WCET estimation
requires a final step: the calculation step that combines program flow analysis
with low-level analysis in order to find the worst-case program path [11]. To this
end, a path analysis is performed a posteriori, using Integer Linear Programming
(ILP) techniques in order to compute the WCET.

The contributions of the paper are:

– definition of a polymorphic, denotational meta-language capable to express
different abstract interpretations of the same program;

– definition of a compositional and generic static analyzer which uses the meta-
language to efficiently compute fixpoints using chaotic iterations ;

– definition of a uniform fixpoint semantics capable to simultaneously integrate
value analysis, cache prediction and pipeline simulation.

As an example, consider the simple program of Figure 1. The source code in
Figure 1(a) includes two procedures and a timeliness safety requirement in the
form of a post-condition (\wcet <= 75). The code generator produces the debug
information in Figure 1(b), where a correspondence is established between source
program points and assembly points. This allows the annotation of invariants
computed at machine level back to the source level by means of a back-annotation
mechanism[14]. Figure 1(c) shows the labeled control flow graph of the machine
program, where instructions are represented by graph edges and program points
are represented by graph nodes. The labeling of nodes is assigned in weak topo-
logical order[2]. The WCET of the two procedures, main and foo, is calculated

1 Available in http://www.dcc.fc.up.pt/~vitor.rodrigues

88 V. Rodrigues, M. Florido, and S. Melo de Sousa

/∗
\x == 0;
\ i n t e r va l (x)==[5 ,5];
\wcet <= 107;

∗/

1 : main={ : 0 [72+35]
2 : x:= foo () ; : 1

}

f oo={ [3 5]
3 : z :=5; : 2
4 : return z ; : 3

}

(a) Source code

Source Assembly
Store locations

x 0x00
return z 0x20
temp z 0x24
Program points
0 - 1 0 - 1
1 - 2 1 - 7
2 - 3 8 - 10
3 - 4 10 - 4

(b) Translation
information

1 0
 mov r13, #0

2
 mov r11, #20

3

 add r13, r13, r11

8

 bl 20

9
 mov r3, #5

4

 add r13, r13, r11 10

 str r3, [r13, #4]

11

 str r3, [r13]
b -28

35 cycles

5

 ldr r3, [r13, #4]

6

 sub r13, r13, r11

7
 str r3, [r13]

halt
 swi #11

72 cycles

(c) Compiled code

Fig. 1. Simple example of a WCET-aware tool chain development

and included in the control flow graph. The set of instructions associated with
the first procedure takes 50 processor cycles to complete and the second proce-
dure takes 22 processor cycles. Using the debug information in 1(b), the WCETs
are inserted in the source code as annotations. Since a call to the procedure foo

is found inside main, the total WCET of the program is 72+35 = 107 processor
cycles.

The remainder of this paper is organized as follows. In the next section we
present the related work. In section 3, we describe the two-level meta-language
and in Section 4 is defined our fixpoint semantics. Implementation guidelines of
the static analyzer are given in Section 5. Section 6 concludes.

2 Related Work

The general applicability of abstract interpretation to programs in a wide class
of languages has been assessed by Jones and Nielson in [9], where a denotational
meta-language maps programs to the mathematical domain of typed λ-calculus.
A distinguishable feature of our framework is the use of a relational algebra
as meta-language. Relations are represented as sets of Cartesian products and
operations over relations are expressed using a point-free notation. The main ad-
vantage of this approach is the algebraic aspect of fixpoint semantics: it provides
a good basis for modularity in program semantics, e.g. support for interproce-
dural analysis [6], and a basis for program transformation [3].

Reinhard Wilhelm et al. has extensive research work in the application of ab-
stract interpretation theory to WCET timing validation [1,8,15]. The commercial
tool AbstInt from AiT is the state of the art in respect to timing analysis. Their
methods require explicit annotation of machine code to determine the number
of times a loop is iterated and the static analyzer needs several runs in or-
der to aggregate each of the value, cache and pipeline analysis results. Moreover,
pipeline analysis is an hybrid static analysis since it employs both state transver-
sal and join operations. In contrast, our framework provides a uniform fixpoint

A Functional Approach to Worst-Case Execution Time Analysis 89

semantics capable to incorporate the pipeline temporal evolution along the
chaotic fixpoint iterations. Further, we automatically derive safe and tight anno-
tations of infeasible paths and loops by means of an instrumented static analysis.

3 The Two-Level Meta-language

We propose a relational-algebraic treatment of program semantics, combined
with denotational definitions of programming language semantics. The prag-
matics of this separation is that we can specify the structure of programs using
polymorphic relational operators and then simulate this specification by provid-
ing denotational definitions as arguments. To this end, we employ a modified
version of the two-level denotational meta-language defined in [12].

The two levels of the meta-language separates compile-time entities ct from
run-time entities rt. The relational algebra of run-time entities provides a point-
free perspective over functional application [3]. In the point-free view, program
points are not explicitly accessible in the program semantics and functions are
treated as relations. The main advantage of this approach is the possibility to
build new functions by combining simpler ones. In this way, we express the
compile-time part of program semantics using generic relational point-free oper-
ators such as the sequential composition (∗), the parallel composition (/), and
the recursive composition (+). On the other hand, run-time entities are viewed
as “code” at compile-time and constitute the actual arguments of the relational
operators. Intuitively, when interpreting the relational meta-program ct, variable
effects can be obtained by executing different pieces of code of type rt1→ rt2.

The compile-time entities denote type objects which are independent of their
instantiations and depend solely on the structure of the program. The run-time
entities are semantic transformers, defined for base types A, which denote the
many possibly different abstract interpretations of the same program.

ct ::= ct1 ◦ ct2 | ct1 || ct2 | ct1 + ct2 | rt
rt ::= A | [A, A] | rt1→ rt2

Generically, the program semantics of a programming language is expressed
by a nondeterministic transition system TransSys a, where the variable a denotes
a nonempty set of states. Each transition Rel is a binary relation between a state
and its possible successors. From the transition system, we infer a control flow
graph G = (V, E), where the edge set E denotes transition relations and the
node set V denotes the labels of the transition relations (associated to program
states). Derivation of meta-programs is performed by traversing the control flow
graph and applying the relational algebra to every connected subgraphs.

data Rel a = (Abstractable a) ⇒ Rel (a,String , a)
type TransSys a = [Rel a]

Our functional approach to data-flow analysis involves the computation of a
system of fixpoint equations in the domain rt1 → rt2. To this end, we apply the
constructive design of a hierarchy of semantics of a transition system by abstract

90 V. Rodrigues, M. Florido, and S. Melo de Sousa

interpretation [4]. Denotational semantics is defined as an abstract interpretation
of the transition semantics. Hence, we abstract away from the history of compu-
tations by creating input-output functions which specify each particular effect.
Thus, for each transition relation TransSys a, there is a relational abstraction
RelAbs a which, in its turn, represents a subgraph of the meta-program. Since
each subgraph has type a → IO a, all meta-programs have the unified type
a → IO a. The use of the IO monad is required to support cache analysis of
multi-core architectures, for which shared data memory is implemented using
synchronizing variables MVar (see Section 5.2).

type RelAbs a = a → IO a

Consider the source code example in Figure 2(a). The corresponding weak
topological order is given in Figure 2(b). Recursion is expressed by the label
“2”, which is the head (underlined) node of the cycle while. Program semantics
are non-deterministic because several statements can be referenced by the same
label. In the example, two different actions can take place starting from label
“2”: the execution enters the while loop body and the execution branches to
label “3”; or the while condition evaluates to False and the execution is blocked
with “halt”. Using the weak topological order, the labeled transition system is
derived from the program syntax as described in Figure 2(c). Finally, Figure
2(d) shows the transition semantics of the compiled code.

main={
x :=3;
while (x>0) do{

{x:=x−1;}
od

}

(a) Source code

01(234)5

(b) Weak topological order

1: main :0
2: x:=3 :1
3: x>0 :2
5: not (x>0) :2
4: x:=x-1 :3
2: skip :4

halt: stop :5

(c) Source Code Transition
Semantics

1: mov r13, #0 :0
2: mov r3, #3 :1
3: str r3, [r13] :2
4: ldr r1, [r13] :3
5: mov r2, #0 :4
6: cmp r1, r2 :5
7: bgt 8 :6

11: b 20 :6
8: ldr r1, [r13] :7
9: mov r2, #1 :8

10: sub r3, r1, r2 :9
11: str r3, [r13] :10
3: b -36 :11

halt: swi #11 :11

(d) Compiled Code

Fig. 2. Example with recursion

Let us focus and examine the interpretation of the compiled code transition
semantics. Each time two edges are connected by consecutive labels, we apply
the sequential composition of the two corresponding subgraphs. The sequential
composition (∗) of two relations T and R is defined by a(T ∗R)c iff there exists
b such that aT b and bRc. In point-free notation, its type is T ∗R :: a→ c.

When two edges have the same source label and two different sink labels,
we apply the parallel composition of the subsequent subgraphs. The parallel
composition (/) of two relations T and R is defined by (a, c)(T/R)(b, d) iff aT b∧
cRd. Its type is (a, c)→ (b, d).

A Functional Approach to Worst-Case Execution Time Analysis 91

(∗) :: (a → IO b) → (b → IO c) → (a → IO c)
(f ∗ g) s = f s >>= g >>= return

Example: (mov r13, #0) ∗ (mov r3, #3) ∗ ...

(∗)

subgraphedge

Fig. 3. Sequential com-
position

(/) :: (a → IO b) → (c → IO d) → (a, c) → IO (b, d)
(f / g) (s, t) = f s >>= λs′ → g t >>= λs′′ → return (s′, s′′)

Example: (b 20) / (ldr r1, [r13, #8]) ∗ (mov r2, #1) ∗
(sub r3, r1, r2) ∗ (str r3, [r13, #8])

(/)

Fig. 4. Parallel
composition

Interface adaptation is required prior and after parallel composition. Firstly,
the fork function provides a copy of the previous subgraph output a, to the input
of the two alternative subsequent paths. Secondly, when the output (a, a) of two
parallel subgraphs are combined together, we apply the function wide.

fork :: (Forkable a) ⇒ (a → IO a) → (a → IO (a, a))
fork f s = f s >>= λs ′ →

branch s s′ >>= λb →
if b then true s s′ else false s s ′

wide :: (Lattice a) ⇒ (a, a) → IO a
wide (a, b) = join a b

Example:
(fork bgt 8) ∗ ((b 20) / (ldr r1, [r13, #8]) ∗
(mov r2, #1) ∗ (sub r3, r1, r2) ∗
(str r3, [r13, #8])) ∗ wide

wide

fork

Fig. 5. Branching

Inside fork, it is necessary to instrument the contents of the program counter
register so that the alternative paths can be taken. If the branch condition evalu-
ates to True, we instrument the alternative path so that the evaluation to False is
also taken into consideration. The converse applies if branch condition evaluates
to False. Instances of type class Forkable provide the desired behavior.

The widening of subgraphs requires that program states constitute a lattice
〈L,�,�〉, where (�) is the join of program states and (�) is the meet of program
states. Thus, for every program State a, the type variable a must implement an in-
stance of the type class Lattice. Although the framework of abstract interpretation
requires that the abstract domain is a complete lattice, the computation of forward
abstract interpretations [5] only require the implementation of the join operator,
by the fact that the static analyzer computes the least fixed point. Even though it
is necessary to perform backward abstract interpretations for conditional instruc-
tions, such as “branch if greater” (bgt), this affects the values of the CPU registers
only. In this special case, an implementation of the meet operator is required.

92 V. Rodrigues, M. Florido, and S. Melo de Sousa

class Forkable a where
branch :: a → a → IO Bool
false :: a → a → IO (a, a)
true :: a → a → IO (a, a)

class (Eq a,Ord a) ⇒ Lattice a where
bottom :: a
join :: a → a → IO a
meet :: a → a → IO a

The analysis of loops is performed by the recursive point-free operator (+).
The interpretation of a loop corresponds to the reflexive transitive closure of the
subgraphs that constitute the loop. In this way, we distinguish in the structure
of the loop two subgraphs: the body (T) and the branch condition (R). The
recursive composition (+) of two relations T and R is defined by a′(T +R)(a | a′′)
if aTa′ ∧ a′Ra ∨ aTa′ ∧ a′Ra′′ and its type is a → a. Further, we distinguish
between the first loop iteration (dashed line in Figure 6) from others [8].

(+) :: (Iterable a)
⇒ (a → IO a) → (a → IO a) → (a → IO a)

(f + t) s = t s >>= λs ′ → if ¬ (fixed s ′)
then (f ∗ (f + t)) (loop s ′)
else return (unroll s s ′)

Example:
(ldr r1, [r13, #8]) ∗ (...) ∗ (forkf bgt 8) ∗
(...) ∗ wide ∗ ((ldr r1, [r13, #8]) ∗ (...) ∗
(fork bgt 8) ∗ (...) ∗ wide + b -36)

branch

body

(+)

Fig. 6. Recursion

class Iterable a where
fixed :: a → IO Bool
loop :: a → IO a
unroll :: a → a → IO a

Instrumentation of the analysis of loops is
possible through the instantiation of the type
class Iterable. The function fixed determines if
the static analysis has stabilized at the entry
point (head) of the loop. The function loop is

used to instrument the state of the analysis, for example, in order to find the
minimal and maximal number of iterations of the loop. Finally, the function
unroll finalizes the output state of the loop, which requires the subtraction of
the effect of having the first loop iteration moved outside the loop.

4 Fixpoint Semantics

For the purpose of data-flow analysis, program semantics are computed in fix-
point form, taking into account all possible program paths between two given
program points. Each elementary path corresponds to a subgraph and is ex-
pressed by a semantic transformer of type rt. Using the meta-language, these
semantic transformers are combined in order to derive a meta-program that
corresponds to the merge over all paths (MOP) specification. Since the MOP
solution is undecidable, we obtain a minimum fixed-point (MFP) by computing
joins (�) at merge points.

A Functional Approach to Worst-Case Execution Time Analysis 93

Two main advantages of using denotational definitions arise. The first is a
consequence of the polymorphic definition of the meta-language that allows the
computation of multiple effects for the same meta-program [12,9], provided the
desired semantic transformers (the syntactical objects of a particular interpreta-
tion are hidden from the meta-language). The second advantage of the denota-
tional meta-language is its natural support for interprocedural analysis. Indeed,
instead of computing fixpoints by a symbolic execution of the program using a
operational semantics of programs, we simulate program execution by computing
the semantic transformers associated to blocks of instructions or procedures.

For static analysis purposes, program states State a are assigned to each graph
node. Program states associate a Label according to the weak topological order,
and an abstract evaluation context Invs a. Evaluation contexts are maps between
program points and program values of type Node a, where a is the type variable
denoting the domain of interpretation. To every graph node are adjoined two
flags: the first indicates the state of the fixpoint iteration on that node; and the
second tells if the node is inside a loop or not.

data State a = State (Label , Invs a)
type Invs a = Map.Map Int (Node b)
data Node a = Node (a,Bool , InLoop) deriving (Eq ,Ord)
data InLoop = Yes | No deriving (Eq ,Ord)
data Label = HeadL Int | NodeL Int | HaltL Int | Empty deriving (Ord)

The abstraction of the transition semantics is implemented by the type class
Abstractable. For each transition Rel a is associated the right-image isomorphism
RelAbs a. Thus, the denotational semantics DenS a maps the set of transition
relations to their abstractions. The type class Abstractable a is used to apply
a semantic transformer during fixpoint computation. That is, given a program
state State a and an evaluation context Invs a, the semantic transformer apply
reads the target label from the transition relation Rel a, then computes the effect
given by RelAbs (Invs a) and, finally, stores it inside the target label.

class Abstractable a where
apply :: (State a) → (Rel a) → (RelAbs (Invs a)) → IO (State a)
label :: a → Label

The meaning of programs is taken from the least fixed point of the deno-
tational semantics DenS a, where a is the domain of interpretation. For every
pair of states State a, stored inside a transition relation Rel a, is associated a
relational abstraction RelAbs (Invs a).

type DenS a = Map (Rel a) (RelAbs a)

According to the Kleene first recursion theorem, every continuous functional
F : L → L, defined over the lattice 〈L,⊆,⊥,
,∪,∩〉, has a least fixed point
given by

⋃

δ�0 F δ, being F δ an ultimately stationary increasing chain (δ < λ).
Given the Lattice a, continuous functionals F are denoted by RelAbs a. Fixpoint
stabilization is reached when consecutive functional applications of RelAbs a
produce the same output, i.e. the least upper bound of Lattice a.

94 V. Rodrigues, M. Florido, and S. Melo de Sousa

The system of equations contained in DenS a is solved using the chaotic itera-
tion strategy [2]. The chaotic iteration strategy consists in recursively traversing
the control flow graph, labeled according to a weak topological order. Therefore,
fixpoint iterations mimic the execution order which, in its turn, is expressed by
the meta-language. In this way, the execution of a meta-program is in direct
correspondence with its fixpoint.

During chaotic iterations, the data flow dependency in the program is taken
into consideration in such a way that interpretation of sequential statements is
made only once and in the right order. In the case of loops, it is sufficient to have
stabilization at the entry point of the loop, for the whole loop to be stable. Note
that the instantiation of the domain of interpretation a, allows the definition of
different abstract interpretations for the same program.

The algorithm fixpoint used to derive meta-programs from denotational se-
mantics is implemented by

type Fixpoint a = (Label ,RelAbs a)

fixpoint :: (Lattice a, Iterable a,Forkable a)
⇒ DenS a → Label → Label → Bool → Fixpoint a → IO (Fixpoint a)

Given a denotational semantics DenS a, the start and end labels (Label), the
flag used to control loop unrolling (Bool) and an initial fixpoint program, the
algorithm returns the MOP representation of the denotational semantics. Start-
ing with the relational abstraction f = id, the algorithm proceeds recursively
throughout the following steps:

1. If the start and end labels are equal then return f ;
2. Determine the control flow pattern that follows the start label;
3. If the parsing of the denotation semantics has reached halt then return f ;
4. Else, if a sequential subgraph follows the start label, then obtain the rela-

tional abstraction f ′ associated with the subsequent label and recursively
invoke fixpoint with f ∗ f ′ as the actual meta-program;

5. Else, if multiple paths are available, the algorithm distinguishes between the
recursive pattern and the fork pattern;

6. If the recursive pattern is found, compute the sub- meta-program body that
corresponds to the body of the loop and the sub- meta-program branch that
corresponds to the branch condition of the loop. Then, recursively evaluate
multiple paths with f ∗ (body + branch) as the actual meta-program;

7. If the fork pattern is found, obtain the branch condition branch, the compute
the meta-programs true and false which correspond to every pair of alter-
natives and, finally, recursively evaluate multiple paths with ((fork test) ∗
(true/false)) ∗ wide as the actual meta-program;

8. When the evaluation of multiple paths terminates producing the meta-pro-
gram f , recursively invoke fixpoint with f ∗ f ′ as the actual meta-program;

9. When the algorithm returns, it is also available the last reached label.

The output of this process is a meta-program that computes by successive ap-
proximations an evaluation context (Invs a) at every program points. The access

A Functional Approach to Worst-Case Execution Time Analysis 95

(get) and the update (set) of the evaluation context is accomplished by an in-
stance of the type class Container.

A chaotic iteration comprises the following steps. The last computed state l for
the program label at is passed as argument. Then, the previous computed state
l′ is retrieved from the evaluation context and joined with the actual state to
produce a new state l′′. If the fixpoint condition l′′ ≡ l′ verifies, then the fixpoint
stabilizes for the program label at. For this purpose, the function stabilizes sets
the fixpoint flag defined in the data type Node to True.

chaotic :: (Eq a, Lattice a) ⇒ Label → Invs a → a → IO (Invs a)
chaotic at cert l = get cert at >>= λl ′ →

join l ′ l >>= λl ′′ →
if l ′′ ≡ l ′

then stabilize cert at
else set cert at l ′′ True

stabilize :: Invs a → Label → IO (Invs a)
stabilize cert at = let f (Node (s, c, , l)) = Node (s, c,True , l)

in return (adjust f (fromEnum at) cert)

class (Lattice b) ⇒ Container a b where
get :: forall l ◦ (Enum l) ⇒ a → l → IO b
set :: forall l ◦ (Enum l) ⇒ a → l → b → Bool → IO a

In order to perform timing analysis at machine level, our polymorphic fixpoint
framework uses the same meta-program to statically analyze the microproces-
sor’s registers file, cache and the pipeline. To this end, the type variable a is
instantiated into the appropriate abstract domains. As an example, consider the
microprocessor domain CPU. The fixpoint of an assembly program approximates
microprocessor states State CPU, defined by the evaluation context Invs CPU
at every program point Label.

Let simulate be the semantic transformer defined for the domain CPU. The
static analysis method consists in the lift of this semantic transformer to the
domain of the evaluation context Invs CPU. Finally, the function transf creates
an instance of the function apply (defined in the type class Abstractable), which is
the relational abstraction associated to the transition relation Rel (State CPU).
The functions source and sink simply return the states at the edges of the
transition relation.

data CPU = CPU {memory :: Memory , registers :: Registers , pipeline :: Pipeline }
simulate :: Instruction → CPU → IO CPU

transf :: (Rel (State CPU)) → Instruction → RelAbs (State CPU)
transf i rel = λs → let step = λcpu → simulate i cpu

eval = lift (sink r , source r) step
in apply s rel eval

lift :: (Container (Invs b) b) ⇒ (Label ,Label) → (Rel b) → (RelAbs (Invs b))
lift (after , at) f cert = get cert at >>= f >>= chaotic after cert

96 V. Rodrigues, M. Florido, and S. Melo de Sousa

5 The Static Analyzer

The computation of the worst-case of program execution times is done composi-
tionally, instruction by instruction. At this level of abstraction, the microar-
chitectural analysis employs abstract models of the microprocessor with the
objective to compute a cycle-level abstract semantics in order to derive sound
upper bounds for the execution times of an arbitrary basic block. Nonetheless,
while abstract interpretation techniques are capable to determine the WCET
for all possible program paths, the calculation of the worst-case program path
requires an additional path analysis [11].

In resume, WCET estimation is a process that requires three main steps:
(1) the program flow analysis is used to obtain flow information from the pro-
gram source code without manual intervention; (2) the microarchitectural anal-
ysis computes safe bounds on the execution times for every instruction in the
compiled program and is further divided into value analysis, cache analysis and
pipeline analysis ; (3) the ILP calculation combines program flow and atomic ex-
ecution times into a WCET estimation using algebraic constraints. Due to space
limitations, here we will describe only the implementation guidelines of the two
first steps.

Figure 7 shows how the static analyzer combines the several analyses in order
to provide a WCET-aware environment for software development. The additional
Back-Annotation component is responsible for the annotation of the source code
with the local execution times computed during pipeline analysis. For this pur-
pose, compiler debug information is used (see Figure 1(b)).

Source Code

Compiler Machine Code

Back-Annotation

Static Analyzer

ILP Flow Analysis

Cache Analysis

Pipeline Analysis

WCET

Value Analysis

Fig. 7. WCET analysis tool chain

5.1 Program Flow Analysis

Path information is essential for tight WCET calculation, namely to identify false
paths, i.e. paths that can never be taken, and to count the number of iterations
in loops. Since the calculation of the number of iterations in loops is in general
equivalent to the halting problem, we need to consider all possible executions
and reduce the computational cost by using abstractions in order to compute
the maximal number of iterations in loops [7]. Safe path information is obtained
automatically by abstract interpretation as an instrumented version of the value
analysis by means of the type class Iterable.

A Functional Approach to Worst-Case Execution Time Analysis 97

Instrumented interpretation requires the definition of a new state type called
IState. It includes two new evaluation contexts: Loops and Paths. The first as-
sociates the number of iterations to program points and the second associates
path feasibility to program points.

data State b = State (Label , Invs b)
| IState (Label , Invs b,Paths , Loops) deriving (Ord ,Eq)

type Loops = Map Int Loop
type Paths = Map Int Path
data Loop = Count Int | BottomL deriving Eq
data Path = TopP | BottomP deriving Eq

Each time a recursive branch is taken, we apply the function loop defined in
the type class Iterable that increments loop iterations by one. After reaching the
fixpoint of the same loop, loop iterations are unrolled by a factor of one. This is a
consequence of the algorithm used to derive the meta-program, which explicitly
unrolls the first iteration to distinguish the first iteration from all others.

loop (IState (after , cert , paths , loops, i))
= let label = fromEnum after

loops′ = mapWithKey (λk l → if k ≡ label then succ l else l) loops
cert ′ = mapWithKey (λk l → if k ≡ label then inLoop l else l) cert

in return (IState (label , cert ′, paths , loops ′, i))

For the detection of false paths we instrument the value analysis using the
function false defined in the type class Forkable. Every time a false path is taken
at given program point, we compute the meet (�) between the previous computed
Path at that point with BottomP . In this way, after reaching the fixpoint, all
program points instrumented with BottomP will be considered non-executable
paths.

5.2 Microarchitectural Analysis

Our target platform is based on ARM microprocessor instruction set [13], the
most popular platform for embedded real-time systems. It is a 32-bit reduced
instruction set computer (RISC) instruction set architecture (ISA) with 16 regis-
ters, 4 state bits and 32-bit addressable memory. The considered cache replace-
ment policy is the Least Recently Used (LRU) and pipelining is done in five
stages.

Value Analysis. The objective of value analysis is to obtain sound approxi-
mations of the set of values, inside the registers bank and data memory, that
may be produced at some program point. For this purpose, the interval domain
(Interval) is chosen as abstract domain of interpretation.

The registers bank Registers consists on 16 general purpose registers (R0, R1,
. . . ,R15) and one current program status register (CPSR). The domain of data
memory values DataMem 32-bit address values (Word32) to memory values
MemValue.

98 V. Rodrigues, M. Florido, and S. Melo de Sousa

type Interval = (Word32 ,Word32)
type Registers = Array RegisterName Register
data Register = BottomR | Pc Word32 | Status Word32 |

Interval Interval | TopR deriving (Eq)
data RegisterName = R0 | R1 | ... | CPSR deriving (Enum,Eq , Ix ,Ord ,Read)

There are some exceptions concerning the abstract domain of registers. The
abstract domain Status of program status register CPSR contains a concrete
value of type Word32. Similarly, for the remaining registers stack pointer R13,
link register R14 and program counter R15, the abstract domain Pc contains
concrete values. The design of the register domain in this way allows the chaotic
fixpoint algorithm to simulate the abstract interpretation of the program by
taking into account the data flow dependency in the program, using namely the
contents of R15. On the other hand, the static analyzer is not able to compute
safe bounds on the concrete registers.

Cache Analysis. Cache analysis is based on the notion of age of a memory
block [16]. Two simultaneous static analysis are performed: one called May anal-
ysis that approximates ages from below and classify definite cache misses, i.e.
the set of memory blocks that may not be in the cache at a program point;
another called Must analysis that approximates ages from above and classify
definite cache hits, i.e. the set of memory blocks that must be in the cache at a
program point.

data Memory
= Memory {datam :: DataMem ,must :: MVar Main,may :: MVar Main

,mustL1 :: L1Box ,mayL1 :: L1Box ,mustL2 :: L2Box
,mayL2 :: L2Box } deriving (Eq)

Our memory model supports multi-core design where each processor core has a
private first-level cache L1Box and a second-level cache L2Box shared across the
processor cores. The L1 caches implement the MESI cache coherence protocol
using the synchronous channel of type Request. Each elementary Cache is a fully-
associative instruction cache where address blocks CachedOp are stored in along
n cache lines (Int). The domain of concrete cached values OpCode holds either
the undefined element BottomW or a Word32 instruction opcode.

data L2Box = L2Box (MVar Cache)
data L1Box = L1Box {cache :: Cache , tc :: Chan Request , oc :: Chan Request }
type Cache = Map Int [CachedOp]
type CachedOp = (Address , (OpCode ,MESI))
data OpCode = OpCode Word32 | BottomW deriving (Eq)
data Request = SnoopOnWrite CachedOp | SnoopOnRead CachedOp

The abstract domain [CachedOp] is the powerset of concrete values. Cache
analysis is based on the notion of age of a memory block, i.e its position p inside
the cache set (p � n). The join of abstract cache states, specified in the type
class LRUCache, is parameterized by two functions: one compares the ages of

A Functional Approach to Worst-Case Execution Time Analysis 99

two memory blocks (> or <) and the second specifies the list operation (union
or intersect), respectively for the May and Must analysis.

class LRUCache a where
bottomLRU :: IO a
mergeBoxLRU :: a → a → (Int → Int → Bool) →

([Address] → [Address] → [Address]) → IO a

Pipeline. Pipeline analysis is based on the notion of number of processor cy-
cles needed to completely process an instruction inside pipeline [15]. The timing
model of pipeline analysis allows overlapped execution of instructions by divid-
ing the execution of instructions into a sequence of five pipeline stages denoted
by Stage, and by simultaneous processing three instructions. Each stage repre-
sents one phase of instruction execution: fetch (FI), decode (DI), execute (EX),
memory access (MEM), and write back (WB) [15].

data Stage = FI | DI | EX | MEM | WB

The Pipeline consists in a sequence of pipeline states PStatewhich depend
on several components: the next program counter to fetch from the instruction
cache (Word32), the internal program status register (Word32), the Registers
file and the Memory, and finally the coordinates vector Coord. The abstract state
of each task inside the pipeline AbsTaskState is a tuple consisting in the elaspsed
execution count (Int), the current Stage of the task and the actual computation
stored in TaskState.

data Pipeline = Pipeline [StateVector]
data PState = PState (Word32 ,Word32 , Registers ,Memory ,Coord)
data Coord = Coord (Vec3 (AbsTaskState))
data AbsTaskState = AbsTaskState (Int ,Stage ,TaskState)
data TaskState = Ready Task | Fetched Task Stubs | Decoded Task Stubs |

Stalled Reason Task Stubs | Executed Task Stubs |
Done Task deriving (Eq)

type Stubs = [(RegisterName ,Register)]
type Task = (Instruction , Word32 , Word32 ,Registers ,Memory)
type AbsTask = Int → TaskState → IO AbsTaskState
type FunArray = Vec3 AbsTaskState

Successive states of each element in coordinates vector are obtained by a
transfer function AbsTask that receives as arguments the actual execution count
and a TaskState to produce a new AbsTaskState. This functional approach to
pipelining is based on the instantiation of functions AbsTask that, using pattern
matching on the current stage (Ready, Fetched, Decoded, Stalled, Executed an
Done), update the execution count and the internal data (Stubs) stored in the
pipeline.

At the higher level of program semantics, for each Instruction we apply the
function simulate in order to update the state of the CPU. Recursive calls to the
function step are made until the stage of the tasks changes to Done. Each step
involves the instantiation of a FunArray, to which is passed the current PState.
In each step is also necessary to join the program counter and the program

100 V. Rodrigues, M. Florido, and S. Melo de Sousa

control status stored in the pipeline Stub with correspondent top-level data in
the pipeline PState. When branch instructions are completed, the pipeline is
flushed so that the next fetched instruction corresponds to the new program
counter.

simulate :: Instruction → CPU → IO CPU
step :: Instruction → StateVector → IO StateVector
next :: Instruction → StateVector → FunArray
apply :: StateVector → FunArray → IO StateVector

6 Conclusions

This paper introduced calculational design of a WCET static analyzer imple-
mented in Haskell. The abstract interpretation is defined in terms of a two-level
denotational meta-language with the purpose to generalize fixpoint computa-
tions using the reflexive transitive closure of different transition function systems.
Very high-level descriptions of program semantics are obtained in the point-free
notation and easily implemented in the highly declarative programming language
Haskell. In this way, fixpoints correspond to an algebraic point-free version of
the program, which is evaluated by a functional static analyzer.

The main advantage of using a functional approach is closely related with
the calculational method proposed in [5], used to induce abstract interpreta-
tions from the concrete semantics as formal specifications. With such method,
we start with the Haskell’s standard denotational interpretations of the assem-
bly programming language, and then apply the higher-order Galois connections
framework in order to induce, although not in a mechanized way, abstract inter-
pretations which have a straightforward implementation in Haskell.

References

1. AbsInt. Angewandte informatik., http://www.absint.com/pag/
2. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,

I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

3. Brassel, B., Christiansen, J.: Denotation by Transformation. In: King, A. (ed.)
LOPSTR 2007. LNCS, vol. 4915, pp. 90–105. Springer, Heidelberg (2008)

4. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Electronic Notes in Theoretical Computer Science 6
(1997)

5. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam (1999)

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, Dunod,
Paris, France, pp. 106–130 (1976)

7. Ermedahl, A., Gustafsson, J.: Deriving annotations for tight calculation of execu-
tion time. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS,
vol. 1300, pp. 1298–1307. Springer, Heidelberg (1997)

A Functional Approach to Worst-Case Execution Time Analysis 101

8. Ferdinand, C., Martin, F., Wilhelm, R., Alt, M.: Cache behavior prediction by
abstract interpretation. Sci. Comput. Program. 35, 163–189 (1999)

9. Jones, N.D., Nielson, F.: Abstract interpretation: a semantics-based tool for pro-
gram analysis. In: Handbook of Logic in Computer Science: Semantic Modelling,
vol. 4, pp. 527–636. Oxford University Press, Oxford (1995)

10. Lacan, P., Monfort, J.N., Ribal, L.V.Q., Deutsch, A., Gonthier, G.: ARIANE 5 -
The Software Reliability Verification Process. In: DASIA 1998 - Data Systems in
Aerospace. ESA Special Publication, vol. 422 (May 1998)

11. Li, Y.-T.S., Malik, S., Wolfe, A.: Cache modeling for real-time software: beyond
direct mapped instruction caches. In: IEEE Real-Time Systems Symposium, pp.
254–263 (1996)

12. Nielson, H.R., Nielson, F.: Pragmatic aspects of two-level denotational meta-
languages. In: Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213,
Springer, Heidelberg (1986)

13. Patankar, V.A., Jain, A., Bryant, R.E.: Formal verification of an arm processor.
In: Twelfth International Conference On VLSI Design, pp. 282–287 (1999)

14. Plazar, S., Lokuciejewski, P., Marwedel, P.: A Retargetable Framework for Multi-
objective WCET-aware High-level Compiler Optimizations. In: Proceedings of The
29th IEEE Real-Time Systems Symposium (RTSS) WiP, Barcelona, Spain, pp. 49–
52 (December 2008)

15. Schneider, J., Ferdinand, C.: Pipeline behavior prediction for superscalar processors
by abstract interpretation. SIGPLAN Not. 34, 35–44 (1999)

16. Wilhelm, R., Wachter, B.: Abstract Interpretation with Applications to Timing
Validation. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 22–36.
Springer, Heidelberg (2008)

102 V. Rodrigues, M. Florido, and S. Melo de Sousa

A Example

Here we show a simple example of two cores running the same assembly code.
The source code example writen in a programming language is a C-like language
is shown in Figure 8(a). The weak topological order is given in Figure 8(b) and
the labeled transition system of source code statements in shown in Figuref 8(c).
The labeled transition system of the compiled assembly code generated by our
framework is shown in Figure 8(d).

main={
x :=3;
while (x>0) do{

{x:=x−1;}
od

}

(a) gdfgdf

01(234)5

(b) Weak topological
order

1: main :0
2: x:=3 :1
3: x>0 :2
5: not (x>0) :2
4: x:=x-1 :3
2: skip :4

halt: stop :5

(c) Source Code Transition
Semantics

1: mov r13, #0 :0
2: mov r3, #3 :1
3: str r3, [r13] :2
4: ldr r1, [r13] :3
5: mov r2, #0 :4
6: cmp r1, r2 :5
7: bgt 8 :6

11: b 20 :6
8: ldr r1, [r13] :7
9: mov r2, #1 :8

10: sub r3, r1, r2 :9
11: str r3, [r13] :10
3: b -36 :11

halt: swi #11 :11

(d) Compiled Code

Fig. 8. Simple example with recursion

The meta-program created by the fixpoint generator is:

(mov r13, #0) ∗ (mov r3, #3) ∗ (str r3, [r13]) ∗ (ldr r1, [r13]) ∗ (mov r2, #0) ∗ (cmp r1, r2)∗
fork bgt 8) ∗ ((b 20)/(ldr r1, [r13, #8]) ∗ (mov r2, #1) ∗ (sub r3, r1, r2) ∗ (str r3, [r13, #8]))∗
wide ∗ ((ldr r1, [r13]) ∗ (mov r2, #0) ∗ (cmp r1, r2) ∗ (fork bgt 8) ∗ ((b 20)/(ldr r1, [r13, #8])∗
(mov r2, #1) ∗ (sub r3, r1, r2) ∗ (str r3, [r13, #8])) ∗ wide + (b -36)) ∗ (swi #11)

The value analysis of the register file at the last program point (halt) is:

+-------------------------------Certificate------------------------------- +
| Program point: halt Iterations 1 |
+--+
| Registers |
+--+

r0= _|_ r4= _|_ r8= _|_ r12= _|_
r1= (0,3) r5= _|_ r9= _|_ r13= (0,0)
r2= (0,1) r6= _|_ r10= _|_ r14= _|_
r3= (0,3) r7= _|_ r11= _|_ r15= 72

cpsr= 536870912 (N=0 Z=0 C=1 V=0)
+--+

The value analysis of the data memory at the last program point is (the
address of the variable x is 0x00):

A Functional Approach to Worst-Case Execution Time Analysis 103

+-------------------------------Certificate------------------------------- +
| Program point: halt Iterations 1 |
+--+
| Cache |
+--+
+============================== Data Cache =============================== +

0x00: (0,3)
: _|_
: _|_
: _|_
: _|_

...

The cache analysis of the two level (L1 of size 5 and L2 of size 15) instruction
cache is (addresses on the left):

+-------------------------------Certificate------------------------------- +
| Program point: 14 Iterations 1 |
+--+
| Memory |
+--+

0X00 : _|_
0X04 : _|_
0X08 : _|_
0x12 : _|_
0X16 : _|_
0X20 : _|_
0X24 : _|_
0X28 : 3830255616 read hit on L2
0X32 : _|_
0X36 : _|_
0X40 : _|_
0X44 : _|_
0X48 : _|_
0X52 : 3818921985 read hit on L1
0X56 : 3762368514 read hit on L1
0X60 : 3831312384 read hit on L1
0X64 : 3925934044 read hit on L1
0X68 : 4009754635 read hit on L1
...

The last pipeline state at the last program point is:

+--+
|PState: next fetch=72; blocked= |
+-----+---+------------+------------------------------+----+---------------+
| n | k | Next stage | State | Pc | Blocked |
+-----+---+------------+------------------------------+----+---------------+
1	0	DI	Fetched: ldr r1, [r13]	32	
0	1	FI	Ready: nop	0	
6	2	WB	Done: swi #11	72	
+-----+---+------------+------------------------------+----+---------------+

When the assembly program runs on a single core, the calculated WCET is
267 cpu cycles. When the assembly program runs on a dual core, the WCET may
be different on one of the cores due to the concurrent execution of one thread
per core. This This is explanied by the fact that the same set of instructions
are part of the same assembly program, which may affect the contents of the
shared cache on level L2. Additionally, the cache coherece protocol MESI will
detect some dirty addresses in private L1 caches, which force new fetches from
the upper memory levels and, consequently, more cache miss penalties will be
taken into account.

Building a Faceted Browser in CouchDB Using

Views on Views and Erlang Metaprogramming

Claus Zinn

Dept. of Linguistics
University of Tübingen

claus.zinn@uni-tuebingen.de

Abstract. Consider sets of XML documents where documents from the
same set adhere to the same schema, and documents from different sets
adhere to a different schema. All documents describe language resources
and tools, but as their schemas differ so differ their use of descriptors
and the values they can hold. The collection of metadata documents
and schemas is open and can get extended anytime. This paper de-
scribes a solution to the problem of storing all documents in a single
database and making them accessible to naive users to easily identify
language resources and tools according to their needs and interest. The
proposed storage solution makes use of the document-based database
CouchDB; for easy access, we propose a combination of faceted search
and full-text search, allowing users without intricate knowledge about
metadata descriptors to explore all documents in a systematic man-
ner. Faceted search is entirely bootstrapped using CouchDB views and
meta-views that we meta-programmed in Erlang given a declarative facet
specification.

1 Introduction and Background

While there is a technical and commercial infrastructure in place to manage
scientific publications, there is no systematic management of the underlying re-
search data. In recent years, there has been an increasing pressure from funding
agencies on institutions and individual researchers alike to describe their research
data with metadata and to make such data public so that it can be easily ac-
cessed by the scientific community. Such an infrastructure would make it easier
for researchers to reproduce results over identical data sets with an identical
or different research method; it increases scientific quality and fights fraud in
science; and it helps avoiding unmeant duplication of research work.

The NaLiDa1 project, funded by the German Research Foundation, aims at
contributing parts of this infrastructure for languages resources (corpora, lex-
ica etc.) and software tools (part-of-speech taggers, parsers etc.), and support-
ing partners in the scientific community with infrastructure building, metadata

1 NaLiDa is the acronym for the German “Nachhaltigkeit Linguistischer Daten” (sus-
tainability of linguistic data). See http://www.sfs.uni-tuebingen.de/nalida/.

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 104–121, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Building a Faceted Browser in CouchDB 105

management and storage. It assists institutions to systematically describe their
research with metadata, and encourages them to expose their metadata hold-
ings in terms of XML-based documents. For this, it encourages the use of the
Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) so that
NaLiDa can index or catalogue them.

XML

A

XML

B

XML

C

Faceted Search

OAI-PMH

Harvesting

Document

Storage

At regular intervals

new providers may join

Fig. 1. General Setting

The problem to be solved is depicted in Fig. 1. Documents from different
partner institutions will usually adhere to different schemas, and thus have dif-
ferent sets and uses of metadata field descriptors and corresponding value ranges.
Moreover, the holdings of an institution will change as new metadata descrip-
tions for language resources or tools are being created, or existing ones modified.
Document sets will need to be harvested at regular intervals to ensure high syn-
chronicity between the central storage and its individual document sources. In
light of considerable data heterogeneity, an easy and effective method to access
and browse all data is needed.

In this paper, we describe the design and implementation of a faceted search
component to give naive users, users without intricate knowledge about meta-
data structures and descriptors, a uniform and multi-dimensional access to the
aggregation of all metadata documents. Our approach is based upon the
document-based database CouchDB; it makes use of metaprogramming tech-
niques to bootstrap the faceted search’s back-engine entirely by generating
Erlang code from a declarative facet specification. CouchDB’s map-reduce frame-
work is used in two phases, with the second phase introducing a kind of views
of views.

106 C. Zinn

2 Faceted Browsing

2.1 Motivation

Faceted search seems well-suited for naive users to explore large data sets with
a small but informative set of facets. The method is becoming increasingly
popular in many commercial websites. It allows customers to identify prod-
ucts along many dimensions by selecting those facets that are more impor-
tant to them than other criteria. The presentation of facets, together with
their value range and the number of corresponding product items, gives users
a good overview of the structure and content of the search space. In fact,
many users learn the main criteria to systematically select a given item, and
without such structured search, they would be less able to make an informed
choice.

Metadata descriptions in the area of language resources and tools can be very
detailed. Given the complexity of the field, there is a large variety in the usage of
metadata field descriptors and their structural organisation. While most of this
information is of little use for naive users, there are some pieces that matter for
most users, and which can be used for faceted navigation. In part, facet selec-
tion is also governed by the search for a common denominator across document
collections; in fact, this search will yield a rather small set of (semantically sim-
ilar) metadata fields that can potentially serve as facets. In the given domain,
we found the following information to be shared by a majority of documents:
the organisation that has created the resource or tool (with values being the or-
ganisation names); the language that is being described or processed (language
names or codes such as ISO 639-2), the type of resource (corpus, lexicon, tool
etc.), and modality information (written, spoken etc.).

We also found information that is only commonly shared across well-defined
document subsets. Documents describing language tools, for instance, make fre-
quent reference to the type of tool (spell checking, named entity recognition
etc.), its lifecycle status (development, production etc.) as well as input and
output formats. Here, the introduction of conditional facets would help users
to cluster the corresponding document subspace once it is entered. Conditional
facets, thus, serve as additional navigational aid once the context permits their
use; moreover, they also keep performance issues in check.

While the sequel of our discussion will stick to the application context “lan-
guage resources”, it should be clear that our approach is applicable to document
collections of other domains.

2.2 Theoretical Background

Let F1, . . . , Fn be facets with their respective values ranges

{f11, . . . f1n} . . . {fn1, . . . fnm}.

Building a Faceted Browser in CouchDB 107

Fig. 2. Indexing of all documents (facetification)

A metadata document must be described by at least one facet-value pair, other-
wise it will not be accessible via faceted search. Moreover, a document can be
described by more than one value fij for a given facet Fi.2

Fig. 2 describes the result of indexing a document set in terms of the facet
“modality” and the values it can take. Each ring segment represents a non-
empty set of documents where a document can appear in more than one ring
segment. The initial view in faceted search (prior to any facet selection) can be
read directly from these data rings.

Once a facet-value pair fik is selected, the corresponding document set fik

must be intersected with each of the other subsets of Fj with 1 < j < n, j �= i.
In other words, the document set of the ring segment fik must be intersected
with the document sets of all segments of all rings other than Fi. When users
select a facet Fi with value fik and a facet Fj with value fjl, then we first build
the intersection between the two corresponding document collections; given the
resulting intersection is non-empty, it must be intersected with all ring segments
of all rings other than Fi and Fj .

3 CouchDB and Its Map-Reduce Framework

3.1 Design and Engineering Choices

Design and engineering choices were driven by the following requirements:

– cope with metadata heterogeneity, given that documents will adhere to
different schemas each defining its own structured set of descriptors and
values;

2 A multimodal corpus, for instance, may be described with the facet “modality” and
its values “gesture”, “sign language” and “spoken language”.

108 C. Zinn

– preserve the original format of all metadata descriptions, and consider storing
primary data in addition to the metadata describing it;

– handle regular additions to document storage with only incremental update
for document access;

– provide effective and user-friendly access to all documents in the most effi-
cient manner; and

– use a REST-based approach [9] to make data storage read & write web-
accessible.

The document-based database CouchDB [1] fulfills all the requirements. Its
schema-less database design permits the inclusion of arbitrarily structured docu-
ments into the database. Through CouchDB’s document attachment mechanism,
the original metadata format can be preserved, and primary data such as lan-
guage recordings, transcriptions, experimental data etc. can also be associated
with the metadata describing it. CouchDB’s map-reduce framework promises in-
crementality and scalability. CouchDB also features a REST-based interface for
document uploading, downloading and querying. Moreover, documents describ-
ing the faceted browser’s GUI (in terms of html, css and JavaScript files) can
be attached to so-called CouchDB design documents so that CouchDB’s REST
interface makes CouchDB playing the role of a GUI server, so to speak. In ad-
dition, a port to Lucene makes the provision of full-text search to all documents
and to documents attached to them easy to implement.

CouchDB is written in Erlang. Its document-oriented database can be queried
using the default language JavaScript or CouchDB’s native language Erlang.3

The indexing or querying of a database’s documents is defined in terms of views
whose definitions must also be stored in the database (again attached to the
database’s area for design documents). In contrast to traditional databases, thus,
CouchDB expects all queries to be anticipated and defined in advance. Once a
query is executed (that is, a view is computed), its result is stored. In case, the
document base changes, all views are recomputed by only taking the incremental
change into account.

3.2 Map-Reduce Framework

Queries in CouchDB are views, which are computed following a map-reduce
framework [4]. The framework is depicted in Fig. 3.

Map. A CouchDB view is defined in terms of a map function that is required to
be referentially transparent . That is, given a document, the function will always
emit the same key-value pairs. The document indexing process can thus be run
in parallel as the indexing of one document does not depend on the indexing of
other documents. Moreover, the map process can be realized as an incremental
process. As more documents come in, the result table of emitted values can be
extended to complement the index.
3 The CouchDB community is developing support for other programming languages

to be used for indexing and querying, such as PHP, Ruby, Python, or Haskell.

Building a Faceted Browser in CouchDB 109

documents documentsmap

reduce reduce reduce

final key-1
values

final key-2
values

final key-3
values

key-1
values

intermediate
values

key-2
values

key-3
values

map

key-1
values

key-2
values

key-3
values

key 1 key 2 key 3

aggregation

values values values

Fig. 3. General map-reduce framework

The map function to implement the elementary view representing the facet
“organisation” will, for instance, emit the key/value pair (“University of Leipzig”,
1), given that the corresponding document mentions “University of Leipzig” in
the respective metadata field given its schema definition.

Reduce. The map function of a CouchDB view can be complemented by a re-
duce function. It takes as input the table of emitted values with identical keys as
generated by the map function, and aggregates them. A simple aggregation
to sum up the values associated with the same key can be implemented in
JavaScript as

function(keys, values) { return sum(values); }

In the given example, we would obtain an aggregated view of metadata docu-
ments with regard to the organizations they originate from, e.g., [(“University
of Leipzig”, 120), (“University of Tuebingen”, 180), ...].

A reduce function must be referentially transparent, but also commutative
and associative. In particular, it must be possible for a reduce function to be
called not only with table entries resulting from the map process, but also with
intermediate values computed by a prior reduce process.

110 C. Zinn

4 Implementation

The implementation of a faceted browser for metadata documents on language
resources and tools is divided into the main phases for document ingestion,
document indexing and data curation, the generation of document indices and
views for faceted search, and the use of these views in the graphical user interface.

4.1 Document Ingestion

All documents harvested via OAI-PMH are being automatically validated against
their schema and, given successful validation, ingested into CouchDB. The in-
gestion process converts XML documents into JSON structures (a lightweight
data-interchange format, see http://www.json.org/), generates a unique doc-
ument id, adds extra metadata to mark a document’s origin (its data provider),
makes its schema reference accessible at doc.schema, and adds an ingestion
timestamp. The enriched JSON document is then added to the database of all
documents, together with the original XML document as CouchDB document
attachment. CouchDB also offers a versioning mechanism that preserves previous
document versions when documents with existing ids are being uploaded.

4.2 Document Indexing with Map-Reduce

The document indexing process attacks the problem of data heterogeneity given
that documents may adhere to different schemas. In CouchDB, indexing is nat-
urally defined in terms of a map and, for statistical purposes, a reduce function.
The map function indexes all documents along the dimensions defined in the
facet specification for both unconditional and conditional facets. Fig. 4 gives an
abstract description using JavaScript as view definition language. During view
computation, the map function is called for each CouchDB document doc (which

function(doc) {

switch(doc.schema)

{

case "<reference_to_schema_a>":

if (<tree_has_node>

) {

emit(<path_to_node_val>, 1);

break;

}

case "<reference_to_schema_b>":

[...]

[...]

}

}

Fig. 4. JavaScript template for CouchDB view

Building a Faceted Browser in CouchDB 111

{ "facet" : "modality",

"pathInfos" : [

{ "schema": "http://catalog.clarin.eu/...:cr1:p_1290431694580/...",

"path" : "doc.CMD.Components.TextCorpusProfile...",

},

{ "schema": "http://catalog.clarin.eu/...:cr1:p_1290431694579/...",

"path" : "doc.CMD.Components.LexicalResourceProfile..."

},

...

]

}

{ "facet" : "language",

"pathInfos" : [...]

}

[...]

Fig. 5. Declarative specification of facets (simplified)

is represented in JSON). Depending on the value of the document’s schema
(doc.schema), it checks whether a certain node in its document tree exists, and
if this is the case, emits the node’s value as facet value.

Initially, we have coded map functions manually. The resulting code was
adapted whenever a document schema was newly defined or modified. Coding
map functions for indexing is tedious and prone to error, so we moved toward
the automatic generation of views from a declarative facet specification using
JavaScript. Fig. 5 sketches the specification of facets. For each facet, we specify
the path where to find the facet’s value in the document, given the document’s
schema. We have written JavaScript code that uses the specification as input,
and generates code that mirrors the code structure given in Fig. 4. Given that
JavaScript does not support macros, we constructed code through string mani-
pulations, and uploaded (via CouchDB’s REST interface) the resulting code into
a CouchDB design document.

We have used JavaScript for this because it is the default language for the def-
inition of CouchDB views. JavaScript also natively supports JSON (CouchDB’s
native document format) and also offers a library with XPATH4-like functional-
ity to navigate through JSON structures.

4.3 Data Curation and Conversion of Views to Documents

The map functions that we meta-programmed using the information in the facet
specification are uploaded into the CouchDB database that also contains all
metadata documents. Each map function gives thus a view of the document
space in terms of the facet it represents. An analysis of the views showed a large
variability for many facet values. The computation of the view “organisation”,
for instance, yields a table that relates organisation names with document sets

4 See http://www.w3.org/TR/xpath/.

112 C. Zinn

carrying this information; table rows are redundant, however, when different
names (e.g., “MPI for Psycholinguistics” and “Max-Planck-Institute for Psy-
cholinguistics” denote the same organisation. Here, data curation is necessary.
We have used the results of our views analysis to devise curation tables that map
given names to preferred names. In case of the facet “organisation” we have also
made use of a database that is maintained by the German National Library
(DNB) and distributed via the Linked Data initiative (see http://linkeddata.
org/). The DNB database assigns unique identifiers to institutional bodies, to-
gether with their preferred name(s) and name variants. Our curation tables are
manually updated whenever we detect an unknown facet term that appears to
be semantically equivalent to an existing one.

Faceted search needs to be defined in terms of the document indexing estab-
lished in the first map-reduce cycle. However, CouchDB’s map-reduce framework

fun ({Doc}) ->
case proplists:get_value(<<"docType">>, Doc) of <<"docIndex">> ->

% get hash tables for each of the facets
{CountryHash} = proplists:get_value(<<"country">>, Doc, {[]}),
{LanguageHash} = proplists:get_value(<<"language">>, Doc, {[]}),
<other hashes>

% for each key in the given hash table
lists:foreach(fun (CountryItem) ->

DocSet = proplists:get_value(CountryItem, CountryHash),
DocSetSize = ordsets:size(DocSet),
if DocSetSize > 0 ->

% emit the number of documents available for each of the facet’s values
Emit(CountryItem,

{[{<<"facet">>, <<"_total_">>},
{<<"value">>, <<"_total_">>},
{<<"docs">>, DocSet}]}),

% emit the intersections
lists:foreach(fun (LanguageItem) ->

Intersection = ordsets:intersection(proplists:get_value(LanguageItem,
LanguageHash),

proplists:get_value(CountryItem,
CountryHash)),

case Intersection == [] of false ->
Emit(CountryItem,

{[{<<"facet">>, <<"language">>},
{<<"value">>, LanguageItem},
{<<"docs">>, ordsets:size(Intersection)}]});

_ -> ok
end

end,
proplists:get_keys(LanguageHash)),

<other intersections for other facets[...]>
true -> ok

end
end,
proplists:get_keys(CountryHash));

_ -> ok
end

end.

Fig. 6. Exemplary Erlang code for the facet “country”

Building a Faceted Browser in CouchDB 113

is defined in terms of documents and it is thus not possible to define views on
views, at least not directly. To re-use the result of document indexing for faceted
search, we converted views into documents containing the indices. The conversion
also included data curation so that documents associated with two semantically
identical keys where merged into a single set using the preferred key.5

We implemented the conversion process in JavaScript. We queried each view
and added the resulting JSON structure to another JSON structure containing
all indices modulo data curation. This large JSON data structure represents a
hash table of hash tables. The outer hash table gives access to the facets (e.g.,
“organisation”), and the inner hash table to all the values a chosen hash can
take. The inner hash key “University of Tuebingen’, for instance, is associated
with all documents that share this piece of information. The new index (of type
“docIndex”) is stored into a special purpose database to also hold all views to
implement faceted search. We have created such index files for each document
selection obtained by the respective data providers.

4.4 Faceted Search with Map-Reduce

Fig. 6 displays an Erlang code fragment for the view “country”. First, we test
whether the document to be processed is of type docIndex. If this is the case, we
retrieve from the document the hashes for each of the facets. Then, for each key
CountryItem of the hash country, we do the following: we emit the number of
documents indexed with CountryItem; then we build the intersections between
the set of all documents indexed with CountryItem with all sets described by
all keys of all other hashes.

The map function for the given view “country” emits a table of key-value
pairs comprising, for instance, the following entries:

Key Value
"Germany" {facet: " total ", value: " total ", docs: [d1, d2, ...]}
"Germany" {facet: "language", value: "Albanian", docs: 1}
[more]
"Germany" {facet: "language", value: "English", docs: 5}
"Germany" {facet: "language", value: "German", docs: 28}
[more]
"Germany" {facet: " total ", value: " total ", docs: [d91, d92, ...]}
"Germany" {facet: "language", value: "English", docs: 170}
"Germany" {facet: "language", value: "French", docs: 44}
"Germany" {facet: "language", value: "German", docs: 9987}
"Germany" {facet: "language", value: "German Sign Language", docs: 10}
[more]
"France" {facet: "language", value: "French", docs: 107}
[more]

A subsequent reduction step is required to aggregrate all keys with identical
facet and value attributes, and to group together all aggregates with identical
keys. The code for the reduce function is given in Fig. 7.

The table’s values are processed one by one, and hashed into an Erlang dictio-
nary structure using the pair of values for Facet and Value as dictionary key. If
the current facet has the value total , then aggregation is defined in terms of

5 That is, data curation is performed on the indices rather than the original documents.

114 C. Zinn

fun (Keys, Values, ReReduce) ->
AddToDict = fun (CurrentEntry, Dict) ->

{[{<<"facet">>, Facet}, {<<"value">>, Value},
{<<"docs">>, Documents}]} =

CurrentEntry,
DictKey = {Facet, Value},
case Facet of

<<"_total_">> ->
dict:append_list(DictKey, Documents, Dict);

_ ->
dict:update(DictKey,

fun (Old) -> Old + Documents end,
Documents, Dict)

end
end,

DictToList = fun (Dict) ->
lists:map(fun (Entry) ->

{{Facet, Value}, Docs} = Entry,
{struct,
[{<<"facet">>, Facet},
{<<"value">>, Value},
{<<"docs">>, Docs}]}

end,
dict:to_list(Dict))

end,
case ReReduce of

true -> ok;
_ -> DictToList(lists:foldl(fun (Value, Dict) ->

AddToDict(Value, Dict)
end,
dict:new(), Values))

end
end.

Fig. 7. Erlang code for reduce-function

appending together sets of documents; otherwise the accumulator for the given
dictionary key is increased by the value of Document. Once all table values are
processed, the resulting dictionary is transferred into a list and converted into a
format resembling the input format.

In the initial development stages, views were coded manually in JavaScript.
The poor performance in view computation on large index files lead to the usage
of Erlang instead, which resulted into a significant performance boost.

Again, writing views by hand is tedious and prone to error. We have thus
written Erlang code that generates the code definitions for Erlang views auto-
matically. Given Erlang’s lack of a powerful macro facility, our Erlang meta-code
is based on the concatenation of Erlang code strings. The meta-programming of
Erlang code is informed by a declarative specification:

-define(FACETS, ["country","language","modality",

"organisation", "resourceclass"]).

-define(COND_FACETS, [

{ "resourceclass", "corpus", ["genre"] },

{ "resourceclass", "Tool", ["tooltype", "applicationtype"

"inputtype", "outputtype",

"lifecyclestatus"]}]).

Building a Faceted Browser in CouchDB 115

comb_4(L) ->

case length(L) < 4 of true -> "please supply lists with length >= 4" ;

_ -> [{A,B,C,D,Z} || A <- L,

B <- L--[A],

A < B,

C <- L--[A,B],

B < C,

D <- L--[A,B,C],

C < D,

Z <- [L--[A,B,C,D]]]

end.

Fig. 8. Combinators in Erlang

This specification leads to the generation of 121 views, with each view having
between 5000 and 12000 bytes of Erlang code.

For the implementation of faceted search, not all possible combinations of set
intersections are necessary. The document sets resulting from first selecting facet
F1 and then selecting facet F2 are identical to those when F2 is selected first
and then F1. The computation of all necessary intersections can be done in a
very declarative manner using Erlang combinators, see Fig. 8. It computes all
necessary intersections for the case in which 4 out of all facets were selected. The
predicate comb 4 gets a list of all facets L, and returns a list of 5-tuples A, B,
C, D, Z such that each of A, B, C, and D stems from L, are all different and
lexically ordered, and where Z is the list of facets with A, B, C, and D removed
from L. Their output informs the generation of code similar to the one given
in Fig. 6. Similar predicates have been written for comb 1 to comb 3 to inform
the generation of views for cases where users selected between one and three
facets.

4.5 Web Interface

We have implemented the faceted browser’s GUI in JavaScript using the JQuery
library (jquery.com). Facets are represented as tables, where each table column
shows a given facet’s value, together with the number of associated documents.
Clicking on a column causes a HTTP request, which encodes the selection, to
be sent to the REST-based CouchDB database, the result of which is used to
update all tables. The history of facet selections is maintained in terms of URL
parameters. Clicking on “Germany” in the facet table “country”, for instance,
translates into a CouchDB query

/mpi_mgt/_design/country/_view/country?key=%22Germany%22&reduce=true

yielding a JSON data structure

116 C. Zinn

{"rows":[

{"key":"Germany","

value":[

{"facet":"modality","value":"Unspecified","docs":140},

{"facet":"modality","value":"Speech/gestures","docs":230},

{"facet":"language","value":"German Sign Language","docs":433},

{"facet":"genre","value":"Secondary document","docs":3},

{"facet":"genre","value":"Movie","docs":458},

{"facet":"_total_","value":"_total_",

"docs":["oai:www.mpi.nl:MPI100",

"oai:www.mpi.nl:MPI1002978"...]}

[...]

]}]}

Fig. 9. User Interface of the Web Application

Building a Faceted Browser in CouchDB 117

which is then processed on the client side to fill the respective tables. The total
facet is entered into the GUI’s document table to display all documents identified
with a facet selection. We have also provided a full-text search capable of per-
forming its duties on the entire document corpus, or the document set obtained
by prior facet selection. The faceted browser is publicly available at http://www.
sfs.uni-tuebingen.de/nalida/katalog/app/nalida/_design/nalida/.

5 Evaluation and Future Work

The computational complexity of faceted browsing stems from the large number
of set interactions required for the computation of views. The user of the faceted
browser does not need to experience any waiting though, as CouchDB views
can be calculated off-line so that every possible user query can be pre-computed
and “cached”. The cost of off-line computation, however, is high in the presence
of large document sets combined with many facet-value pairs. In the remaining
part of the paper, we sketch some of the optimizations to reduce this cost.

Views for Document Indexing. The views for document indexing are automat-
ically generated from a facet specification using JavaScript. The resulting map
and reduce functions are in JavaScript too, CouchDB’s default view language.
The computation of the view “organisation”, for instance, takes nevertheless ap-
proximately 25 minutes on a set of 86k documents, using a Macbook Pro laptop
with a 2.4Ghz Prozessor with 2GBs of memory. Given that this is a one-time
payoff, no effort has been made yet to increase the speed of view computation.
Morover, small changes in the document database will have only a small impact
on view recomputation at the document indexing level.

Views for Faceted Search. The computation of views to inform faceted search
is computationally expensive. Prior efforts to implement and run map functions
in JavaScript were unsuccessful and soon abandoned. First experiments with
Erlang, however, lead to encouraging results, both in terms of memory and pro-
cessor usage. The following data was computed with the following configuration:
(i) each Erlang view was stored in a separate CouchDB design document to bet-
ter control view computation;6 (ii) as the map-reduce framework lends itself to
parallelization, and given the high number of map-reduce functions to be run on
large document sets, we moved view computation to a Ubuntu-driven 24-core
machine with 96GB of memory.7

For evaluation purposes, we harvested approximately 86.000 metadata doc-
uments on language resources from the OAI-PMH server of the Max Planck
Institute for Psycholinguistics and ingested them into CouchDB. We have used
6 A view is computed when it is accessed for the first time, or when a view in the same

design document is computed.
7 Precomputed views can be copied from powerful multi-core machine to the webserver

hosting the faceted browser once their databases have been synchronised. With views
precomputed, a modest-sized web server is thus sufficient to host the faceted browser.

118 C. Zinn

five unconditional facets “language” (371), “country” (67), “organisation” (39),
“modality” (32), and “genre” (50), with the number of facet values given in
parentheses. We also indicate the largest document set for each facet: “modality”
= “speech” (59463); “language” = “Dutch” (18345); “country” = “Germany”
(16178); “organisation” = “Max Planck Institute for Psycholinguistics” (16568),
and “genre”= “Discourse” (33676). The automatic generation of faceted search
views from the facet specification yielded 31 different map-reduce pairs.

The generation of the views “language”, “country”, “organisation”, “modal-
ity”, and “genre” takes altogether less than one minute (using 5 cpus). The
generation of the ten views capturing the case where users selected two facets
(“country”:”genre”, “country”:”language”, ... “modality”:”organisation”) was
also computed in less than 1 minute (using 10 cpus). The computation of the
ten necessary views capturing the case where users selected three facets cost
altogether less than 7.5 minutes. The most expensive views are those capturing
the 5 necessary views that cover the case where users selected four facets. The
view “country”:”genre”:”language”:”modality”, for instance, takes more than 2
hours to compute.

Future Work. Given evaluation results, there are a number of improvements that
we wish to make for the NaLiDa faceted browser. In the live-system, we have
introduced indexing documents for each of the metadata providers to exploit
the incremental nature of map-reduce. Thus, an update from one data provider
only requires a limited view recomputation. Nevertheless, given that some data
providers such as the MPI provide 10.000s of documents, we would like to inves-
tigate ways to optimise the way index documents for faceted search are managed.
Any addition of new metadata descriptions, for instance, could be reflected by
a new index document, so that incremental updates are indeed limited to docu-
ment additions. To account for the cases of metadata modification and deletion,
we would like to investigate the introduction of MODIFY and DELETE lists
that a revised map-reduce combination would need to consider.

6 Related Work and Conclusion

Flamenco. The Flamenco toolkit offers a web-based interface to give faceted
access to large data collections [6]. It expects developers to prepare a given
collection by assigning each of its item to at least one term (say “German”)
from one or more facets (say “language”). To assign all collection data into
faceted categories, the following tab-delimited files must be provided: the file
facets.tsv listing all facets, the file attrs.tsv listing all attributes of a given
item, and the file items.tsv listing each collection item (following the attribute
definition given in attrs.tsv) with a unique integer id. For each entry facet
in facets.tsv, a file facet term and facet map must be given. The first file
lists all terms for the given facet, together with a unique facet term id; and the
second file associates item ids to facet term ids. Once a collection of item is
indexed in such a way, it can be ingested into the Flamenco relational database

Building a Faceted Browser in CouchDB 119

(MySQL, see http://www.mysql.com). With the database in place, the Flamenco
toolkit generates the faceted browser’s default graphical user interface (GUI),
which however, is open to customization. The user’s selection of a facet term, or
combinations thereof, are translated into corresponding MySQL queries to com-
pute all necessary set interactions. The results of executing MySQL queries are
cached to avoid their (potentially costly) re-computation.

A faceted search access to language resources has been implemented by the au-
thor (see [7] and http://www.clarin.eu/vlo) employing the Flamenco toolkit
using roughly the data described in evaluation. Using Perl, we translated the
80.000+ XML-based metadata files into the indexing data format required by
Flamenco. We have augmented the Perl-based indexing to also take care of data
curation. Once all data was prepared, we ingested the data into the Flamenco
database, and adapted its GUI to better fit our needs. To cope with the large
dataset, we have written a script whose execution generated all possible queries
to warm-up the cache before the faceted browser went live.

The data preparation required for Flamenco roughly corresponds to our
CouchDB-based document indexing phase described in Sect. 4.2. In our new
approach, data curation, however, only happens when the views of the index-
ing phase are converted into the indexing documents, see Sect. 4.3. The MySQL
queries fired by Flamenco correspond to the views computed in terms of the
indexing documents (see Sect. 4.4).

Our new approach using CouchDB and Erlang has four main advantages.
First, CouchDB also stores the original metadata documents (with varying sche-
mata) and thus also serves as permanent storage for this data (see Sect. 4.1).
Second, the use of conditional facets contributes to usability as only relevant
facets are shown, guiding users navigation; moreover, such facets need only be
computed in subsets whose documents are indexed against facet terms the condi-
tional facet depends on. Third, index generation accommodates for incremental
updates on the metadata sets, supporting regular harvesting without recomput-
ing all indices and views anew. In Flamenco, any change in the data set would
require a full phase of reindexing and index ingestion, overwriting all contents
of the previous database, together with its cache. Fourth, our facet specification
offers a more declarative view from which we generate procedures for indexing.
Index generation is thus taken to a higher level, which make it easier to exper-
iment with different facet configurations, or to adapt an existing one for other
datasets. Once a facet specification is changed, however, index generation starts
from scratch.

It shows that CouchDB with its native language Erlang is well suited for
the development of industrial-strength applications. CouchDB’s REST-based in-
terface offers a lean alternative to established software such as the Java-based
Apache Tomcat webserver (see http://tomcat.apache.org/). We felt Erlang’s
main limitations being the lack of a full macro package allowing users to write
programs to write other programs. A macro capability such as the defmacro
available in Common Lisp would have made our code generation for faceted
search views much easier. In this respect, it is unfortunate that there is no

120 C. Zinn

strong support for a Lisp (or Haskell) port to index and query documents in
CouchDB. We felt CouchDB’s main limitation – when used with Erlang – being
the lack of documentation and example code available.

In this paper, we have described a particular application to aggregate hetero-
geneously structured documents in the domain of linguistic resources and to
make them accessible via faceted (and full-text) search. From our description, it
should be clear, however, that our approach applies to documents of any domain
of discourse or structure as long as their relevant content can be described in
terms of JSON (CouchDB’s native format).

For our well-defined application context, it was straightforward to give a facet
specification as there is only a limited number of information available that
is shared across our various metadata sets. In the general case, it would be
desirable to detect good facet candidates automatically. The Castanet algorithm
goes into this direction [8]. It requires the definition of a set of target terms
to best reflect the topics present in a given document collection. The target
terms are then combined with the hypernymy (IS-A) information of the lexical
database WordNet (see http://wordnet.princeton.edu/) to both build facet
hierarchies and to assign documents to the facets.

Acknowledgements. The NaLiDa project is funded by the German Research
Foundation. The data used in the evaluation was harvested from the OAI-PMH
server at the Max-Planck Institute for Psycholinguistics in Nijmegen (thanks to
Lari Lampen for making the data accessible). The views were computed using a
24-core Linux machine at the University of Tuebingen (thanks to Jochen Saile
for making the hardware available). Thanks to Thorsten Trippel for commenting
on a prior draft of this article, and to the three anonymous reviewers for their
valuable feedback.

References

1. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide. O’Reilly
Media, Sebastopol (2010), http://guide.couchdb.org

2. Barkey, R., et al.: Trailblazing through forests of resources in linguistics. In: Digital
Humanities. Stanford University, Stanford (2011), dh2011.stanford.edu/

3. Cesarini, F., Thompson, S.: Erlang Programming – A Concurrent Approach to Soft-
ware Development. O’Reilly Media, Sebastopol (2009)

4. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: OSDI 2004: Sixth Symposium on Operating System Design and Implementation
(December 2004)

5. English, J., Hearst, M., Sinha, R., Swearingen, K., Ping, Y.: Flexible search and
navigation using faceted metadata (January 2002) (unpublished manuscript)

6. Hearst, M.A.: Design recommendations for hierarchical faceted search interfaces. In:
ACM SIGIR Workshop on Faceted Search (2006)

Building a Faceted Browser in CouchDB 121

7. Ringersma, J., Zinn, C., Koenig, A.: Eureka! – User friendly access to the MPI
linguistic data archive. SDV – Sprache und Datenverarbeitung/International Jour-
nal for Language Data Processing 34(1) (2010); Usability Aspects of Hypermedia
Systems, Cölfen, H., Schmitz, H.-C., Schmitz,U., Schröder B. (eds.), ISBN 978-3-
940251-98-5

8. Stoica, E., Hearst, M.A., Richardson, M.: Automating creation of hierarchical
faceted metadata structures. In: Sidner, C.L., Schultz, T., Stone, M., Zhai, C. (eds.)
HLT-NAACL, pp. 244–251. The Association for Computational Linguistics (2007)

9. Wikipedia. Representational state transfer — Wikipedia, the free encyclope-
dia(2011), http://en.wikipedia.org/wiki/Representational_State_Transfer

(accessed May 06, 2011)

Logic Java: Combining
Object-Oriented and Logic Programming

Tim A. Majchrzak and Herbert Kuchen

Department of Information Systems
University of Münster

Münster, Germany
{kuchen,tima}@ercis.de

Abstract. We have developed the programming language Logic Java
which smoothly integrates the object-oriented language Java and logic
programming concepts such as logic variables, constraint solving, and
backtracking. It combines the advantages of object-orientation such as
easy maintainability and adaptability due to inheritance and encapsu-
lation of structure and behavior with the advantages of logic languages
such as suitability for search problems. Java annotations and a sym-
bolic Java virtual machine are used to handle the logic programming
concepts. In contrast to previous approaches to integrate object-oriented
and logic programming, we preserve the syntax of Java. Our language is
not split into two distinguishable parts but as closely integrated as pos-
sible. Besides the design and implementation of Logic Java, providing
a suitable interface between conventional and logic computations is the
main contribution of this paper. A killer application, which can hardly
be implemented more elegantly in any other language, is the tool Muggl
which systematically generates glass-box test cases for Java programs.
Applications requiring a substantial amount of search are also well suited.

1 Introduction

Object-oriented programming is the dominating programming paradigm. Con-
cepts such as inheritance and encapsulation of structures and behavior [20]
provide advantages w.r.t. maintainability and adaptability [33]. Although all
application domains can be handled in principle, there are other programming
paradigms which are better suited for specific application areas. For exam-
ple (constraint) logic languages such as Prolog [42] are well-suited for search
problems due to their built-in search mechanism [36]. Even though declarative
paradigms are seldom used in business contexts, there are exceptions. The func-
tional language Erlang [3] is successfully used in the telecommunication industry
[32,43]; OCaml [35] is applied in the financial services industry [11]. This obser-
vation encourages the development of new problem-adequate languages.

We have developed a novel approach called Logic Java which smoothly com-
bines the object-oriented language Java [4] with logic programming concepts
such as logic variables, constraint solving, and backtracking. It preserves the

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 122–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Logic Java: Combining Object-Oriented and Logic Programming 123

syntax of Java and uses Java annotations to add the mentioned concepts. Java
compilers can still be used without modification. However, we replace the usual
Java virtual machine (JVM) [19] by a symbolic one. This symbolic Java virtual
machine (SJVM) provides the usual components of a JVM and additional fea-
tures which are known from virtual machines for logic programming languages
such as the Warren Abstract Machine (WAM) [1], namely logic variables, choice-
points, a trail, and a backtracking mechanism. If logic features are not used, the
SJVM behaves just as the JVM and causes little performance overhead.

Logic computations can be nested into conventional Java computations by
using a corresponding Java annotation (see Sect. 3). If a computation, which is
not using logic variables, is nested into a logic computation, it will just behave as
a usual Java computation. There is no need to annotate it as conventional. Nest-
ing logic computations into logic computations does not change the evaluation
mode. The outermost computation is always a conventional one.

Besides the design and implementation of Logic Java, the interface between
both types of computations is one of the main contributions of this paper. We
explain it with several examples that can be found in the course of this paper.

We assume the reader to be roughly familiar with Java [4] and logic program-
ming (LP). Logic languages such as Prolog provide so called logic variables,
which are initially unbound and then bound to some constructor terms during
a computation [2]. Such a binding happens if an argument of a predicate call is
unified with the left-hand side of a Prolog rule. Unifying two terms will cause
the occurring logic variables to be bound to terms in such way that both terms
become identical. If e.g. the so-called goal nat(X) is evaluated in the context of
the program in Listing 1.1, the system will apply the first rule for the predicate
nat and bind the logic variable X to a term only consisting of the constant zero
and the goal will succeed since the right-hand side of the rule is empty and hence
no further computations are necessary. If the user wants another solution, the
system will backtrack, apply the second rule for nat, and bind X to the term
suc(Y). Since the right-hand side of the second rule is not empty, the computa-
tion continues and the subgoal nat(Y) is solved e.g. by using the first rule and
by binding Y to zero. Thus, the new solution will bind X to the term suc(zero).

Listing 1.1. A very simple Prolog program
nat (ze ro) .
nat (suc (Y)) :− nat (Y) .

Our paper is structured as follows. Details of the language design are explained
in Sect. 3. Before, we give a detailed overview of related work in Sect. 2. Section 4
describes the implementation of Logic Java based on a SJVM. Section 5 contains
a discussion of strengths and weaknesses and remarks concerning limitations of
our approach. In Sect. 6 we conclude and point out future work.

2 Related Work

There is a plethora of work on the combination of programming languages and on
multi-paradigmatic approaches. A much cited paper on the family of concurrent

124 T.A. Majchrzak and H. Kuchen

logic programming languages [38] suggests that research reached its climax at
the end of the 1980s. It also cites a lot of lesser known approaches not further
discussed here. The high number of approaches that address the idea from many
different directions underline the importance of the topic.

The following approaches have been developed from a viewpoint of declar-
ative programming. They include syntactic sugar to embed object-orientation
(OO) features into declarative languages. The power of these languages is pre-
served. This makes them interesting for declarative programmers but using
the OO extensions is not necessarily convenient. Thus, these languages will
hardly be given attention by OO programmers. Oz is a lazy constraint language
with concurrency that offers some object-oriented features [41]. Many multi-
paradigmatic languages are based on Haskell or Curry [16], which by itself is
multi-paradigmatic and combines functional and logic programming. There are
extensions for an object-oriented design [17]. Special approaches incorporate fur-
ther paradigms leading to e.g. constraint functional logic programming [12].

Prolog has frequently been combined with object-orientation. A classic paper
by McCabe [25] presents a new language and case studies of an OO language
on top of Prolog. A 1983 approach discusses object-oriented programming in
concurrent Prolog [39]. Visual Prolog (formerly known as Turbo Prolog [15])
offers an OO extension for Prolog [37]. Its main purpose is the design of artificial
intelligence applications, though. Logtalk [30] and Prolog++ [29] are two well
known approaches of adding OO features to Prolog. Regardless of the integration
of object-orientation, their syntax is similar to that of pure Prolog.

Declarative meta languages such as SOUL [26] only roughly relate to our
approach. Despite offering object-oriented functionality, embedding logic pro-
gramming into an OO language is not their main purpose. For more details
on the application of SOUL e.g. check [10]. Not only general approaches ex-
ist. Many authors address niche problems. E.g., there is a fuzzy object-oriented
logic programming system [5,7], an object-oriented logic language for modular
system specification [28] and an object-oriented logic programming environment
for modeling [34]. Even a US patent (# 4.989.132) of a “tool [. . .] which inte-
grates an object-oriented programming language system, a logic programming
language system, and a database” exists. Other approached address special con-
texts such as distributed computing, e.g. ObjVProlog-D [24]. Due to their special
nature, our work does not compete with any of these approaches.

All approaches so far discussed combine more than one paradigm. Yet their
concepts differ from our ideas. Most notably, in almost all cases a logic lan-
guage is extended with object-oriented functionality or the extension of an OO
language significantly changes it. Both issues hinder a widespread reception of
the languages. There is one recent approach which has similar concepts as ours.
Cimadamore and Viroli combine Java with Prolog [8,9]. Despite their use of
generics and annotation, their work has a different focus. It allows Prolog code
to be integrated into Java and enables an exchange of data between Java and
Prolog. While we embed logic programming into a Java virtual machine (VM),
Cimadamore and Viroli start with an existing Prolog engine.

Logic Java: Combining Object-Oriented and Logic Programming 125

3 Design of Logic Java

3.1 General Principles

Before presenting Logic Java, we would like to state its design principles. Firstly,
the language should be easy to learn for Java users. We reach this by preserv-
ing the Java syntax. This also ensures that we trivially reach the second aim:
the language should be as homogeneous as possible. In particular, there should
be no different syntax for logic and OO computations. Thirdly, there should
be no performance penalty for conventional Java computations. We guarantee
this by using a symbolic Java virtual machine which behaves as the conven-
tional Java virtual machine if no logic computations are required. Fourthly, sev-
eral search strategies should be supported. For efficiency, Prolog just provides
the (incomplete) depth-first search strategy. This causes problems when writing
Prolog programs. Essentially, the declarative character of the language is lost
since the programmer has to avoid infinite computations. Our implementation
provides the complete search strategy iterative deepening in addition to depth-
first search. Other strategies such as breadth-first search can be added since the
strategy is a modular and modifiable part of the implementation. And fifthly,
we do not mean to change Java in a way that would require programmers to
change the way they use it. Rather, we want to augment it with new constructs.
Consequently, it can be perfectly used as it always was – or, if problems demand
it, in its extended version with the additional power of another paradigm. We
fully adhere to the Java language specification [14].

We now describe the design of the language. Logic programming concepts,
namely logic variables, unification, and backtracking, will have to be provided or
appropriately replaced when integrating Java and logic programming. There are
(at least) three feasible ways for introducing logic variables:

– Providing a generic type LogicVariable<T> which marks variables of type
T as logic variables.

– Annotating variables as logic variables.
– Introducing a default initialization as logic variables depending e.g. on a

specific naming scheme (as e.g. in Fortran [27]).

Using generic types (generics [31]) is a strategy often sought. However, a wrap-
per class causes overhead at runtime due to the costs of object generation and
(automated) (un-)boxing. A default initialization depending on naming is error
prone and inflexible. Using annotations does not only provide full flexibility but
also offers the best runtime characteristics. In particular, it is possible to an-
notate primitive types. We therefore introduce the annotation @LogicVariable
which can be used on fields (class members) and local variables of methods.

Unification is a special case of constraint solving and many practical Prolog
programs do not only rely on the rather simple constructor term unification
but integrate domain specific constraint solvers which lead to a smaller search
space and more efficient programs. Logic Java provides just constraint solving
and no non-trivial unification for parameter passing. Unification can however be
simulated using equality constraints.

126 T.A. Majchrzak and H. Kuchen

The SJVM adds new constraints to the constraint store when it processes
a conditional jump instruction such as if_icmpeq in Java bytecode. In case of
if_icmpeq this is an equality constraint relating the two topmost entries on the
stack. Other conditional jump instructions produce disequality or inequality con-
straints. Moreover, the SJVM will create a choice point. After finishing the first
alternative of the computation (successfully or not), the SJVM will backtrack
and replace the mentioned constraint in the constraint store by its negation.

If a method shall be evaluated as a logic computation using logic variables,
constraint solving and backtracking, we annotate it with @Search. This annota-
tion offers optional parameters for configuration. strategy can be set to change
the search strategy used when executing logically. At the moment, depth first
search (SearchStrategy.DEPTH_FIRST) and iterative deepening depth first
(SearchStrategy.ITERATIVE_DEEPENING) are supported. The latter forces back-
tracking if no solution has been found when reaching a specified depth of search.
The parameter deepeningStartingDepth can be set to a positive integer value.
By specifying a deepeningIncrement, search will start over with a maximum
depth which is set to the sum of the two parameters.

3.2 Introductory Examples

Let us illustrate Logic Java and its concepts using an example. The method
smm() finds a solution for a classical problem solved by logic programming: SEND
+ MORE = MONEY where each character has to be replaced by a different
digit (Listing 1.2). SendMoreMoney is a normal Java class. It has eight fields
annotated with @LogicVariable to represent the characters. smm() is annotated
with @Search to enable logic processing. The search strategy used is depth first;
the parameter could have been omitted since this is the default search strategy.
Please note that allDifferent(int[]) does not need to be annotated since the
nested call passes logic variables to it.

The outer condition of the if statement represents the main problem: ((1000s
+100e+10n+d)+(1000m+100o+10r+e)) = (10000m+1000o+100n+10e+y).
The inner condition of the if statement ensures that variables assume pairwise
different values. If any condition is not satisfied, an EmptySolution is generated.
This signals that the currently considered branch of the computation could not
provide a solution. If conditions are satisfied, i.e. the puzzle is solved, the values of
the eight variables are (in this case) stored as an array and saved as a Solution.
The Solutions container is used and either takes an instance of Solution or
EmptySolution as an argument.

The predefined class Solutions provides the interface between logic and con-
ventional Java computation. Note the quantity mismatch at this point. From a
Java point of view, the constructor Solutions gets just one – possibly empty –
solution as argument. The SJVM treats the type Solutions specifically. Rather
than returning a single solution directly, it collects all solutions of a logic compu-
tation and returns them after all branches of the logic computation are finished.1
Duplicate empty solutions are removed. If there is a non empty solution, empty
1 Infinite computation can be avoided by using the iterative deepening search strategy.

Logic Java: Combining Object-Oriented and Logic Programming 127

solutions are removed. In a simple case like the present one and also for the
majority of applications, a solution just consists of a value without references
to logic variables. Here, this value is an array of integers. Such a solution can
be fetched by the enclosing computation using the getSolution() method. The
main(String... args) method shows how this can be done. Later, we will
describe the general case, which is a bit more complicated to handle.

Listing 1.2. Send more money in Logic Java

pub l i c c l a s s SendMoreMoney {
@LogicVariable
protected i n t e , d , m, n , o , r , s , y ;

@Search (s t r a t e gy=SearchStrategy .DEPTH_FIRST)
pub l i c So lu t ion s<In t ege r [] > smm() {

i f ((s ∗ 1000 + e ∗ 100 + n ∗ 10 + d)
+ (m ∗ 1000 + o ∗ 100 + r ∗ 10 + e)
== (m ∗ 10000 + o ∗ 1000 + n ∗ 100 + e ∗ 10 +

y)) {
i n t [] v a r i a b l e s = {e , d , m, n , o , r , s , y } ;
i f (a l l D i f f e r e n t (v a r i a b l e s)) {

I n t e g e r [] s o l u t i o n = {e , d , m, n , o , r , s , y } ;
return new So lu t i on s (new

Solut ion <In t eg e r [] >(s o l u t i o n)) ;
}

}
return new So lu t i on s (new EmptySolution ()) ;

}

pub l i c boolean a l l D i f f e r e n t (i n t [] a) {
f o r (i n t i = 0 ; i < a . l ength ; i++) {

f o r (i n t j = i + 1 ; j < a . l ength ; j++) {
i f (a [i] == a [j]) return f a l s e ;

}
}
return true ;

}

pub l i c s t a t i c void main(S t r ing . . . args) {
SendMoreMoney sendM = new SendMoreMoney () ;
So lu t ion s<In t e g e r [] > s o l u t i o n s = sendM .smm() ;

f o r (Solut ion<In t eg e r [] > s o l u t i o n : s o l u t i o n s) {
I n t e g e r [] va lue s = s o l u t i o n . g e tSo lu t i on () ;
f o r (i n t value : va lues)

System . out . p r i n t l n (value) ;
}

}

}

128 T.A. Majchrzak and H. Kuchen

The main(String...)method executes smm(), gets the solutions and iterates
over them. Solutions implements the Iterator interface which is known to be
very helpful [13]. It can be used for handling the solutions one by one. In this
example, we simply write the values of the variables to standard output. We do
not need to explicitly state that the values of variables should be single digits
since the first solution returned will be the simplest one.

Note that a pure Java implementation of the send-more-money example would
need to program the search explicitly, e.g. by using 8 nested loops. This would be
a bit clumsy but manageable. The 8 nested loops would essentially correspond
to depth-first search. Since the search space is finite, the solution would be
found eventually. In situations where depth-first search runs into an infinite
computation, a complete search strategy such as iterative deepening would have
to be implemented explicitly. Then, a pure Java program would be extremely
more complex than a Logic Java program.

Consider a Logic Java program which computes all solutions of Fermat´s
problem (Listing 1.3). It finds suitable natural numbers a, b, c, n such that an +
bn = cn. The trivial implementation of method power(int, int) is omitted. We
encourage the reader to try to implement a corresponding pure Java program.

Listing 1.3. Fermat’s Last Theorem in Logic Java

pub l i c c l a s s Fermat {
@LogicVariable
protected i n t a , b , c , n ;

@Search (s t r a t e gy=SearchStrategy .ITERATIVE_DEEPENING,
deepeningIncrement =5)

pub l i c So lu t ion s<In t e g e r [] > fermat () {
i f (power (a , n) + power (b , n) == power (c , n)) {

I n t e g e r [] s o l u t i o n = { a , b , c , n } ;
return new So lu t ion s<In t ege r [] >(

new Solut ion <In t eg e r [] >(s o l u t i o n)) ;
} e l s e {

return new So lu t ion s<In t ege r [] >(new
EmptySolution ()) ;

}
}

}

In the above example, all logic variables are bound to values by equality con-
straints on integers. As explained, such a solution can be fetched by the enclosing
computation using the getSolution() method. In general, a solution consists
of a resulting value and a set of constraints which have been accumulated when
producing the result. The result can be a logic variable (represented by a cor-
responding predefined type) or it may contain (possibly indirect) references to
logic variables. A constraint is also represented by an object of a correspond-
ing predefined class and it may (possibly indirectly) refer to objects represent-
ing logic variables. If the user wants to process such a solution, appropriate

Logic Java: Combining Object-Oriented and Logic Programming 129

predefined methods of class Solutions and other predefined classes can be used
in order to extract the required information. A complete description of the prede-
fined classes for internally representing solutions, logic variables, and constraints
is out of scope of this paper. We briefly sketch some possibilities only.

Besides getSolution() the class Solution offers additional methods for ex-
tracting the result and constraints of a solution and for working with them.
The following list shows the most important methods. Assuming that a solution
consists of a result r and a set s of constraints, both may contain logic variables.

void addConstraint(Constraint) adds a constraint to s. When adding it, the
solver is invoked and the changed constraint system processed.

boolean isSatisfiable() checks whether s is still satisfiable.
T findExampleResult() finds an arbitrary example result of type T which is

obtained by instantiating all logic variables occurring in r by values which
are free of logic variables (so called ground values). The chosen values have
to correspond to s. E.g. if r consists of X + 5 (where X is a logic variable)
and s is the set {X <= 3, X > 1}, possibly delivered results can be 7 and 8,
respectively. One of them will be chosen randomly.

isGround() checks whether r does not contain logic variables.

Listing 1.4. inInterval in Logic Java

pub l i c c l a s s Value {
@LogicVariable
protected double x ;

@Search (s t r a t e gy=SearchStrategy .ITERATIVE_DEEPENING,
deepeningIncrement =5)

pub l i c So lu t ion s<Double> i n I n t e r v a l (double x1 , double
x2) {
i f (x1 <= x && x <= x2)

return new So lu t ion s<Double>(new
Solut ion<Double>(x)) ;

e l s e
return new So lu t ion s<Double>(new

EmptySolution ()) ;
}

pub l i c s t a t i c void main(S t r ing . . . args) {
So lu t ion s<Double> s o l u t i o n s

= (new Value ()) . i n I n t e r v a l (3 . 0 , 5 . 0) ;
f o r (Solut ion<Double> s o l : s o l u t i o n s)

i f (s o l . isGround ())
System . out . p r i n t l n (s o l . g e t So lu t i on ()) ;

e l s e
System . out . p r i n t l n (

s o l . f indExampleResult () . g e t So lu t i on ()) ;
}

}

130 T.A. Majchrzak and H. Kuchen

Listing 1.4 demonstrates the exemplary usage of some of the methods pro-
vided with Logic Java. inInterval(double, double) checks whether the value
of the variable x is contained in the interval determined by both parameters.
Note that in contrast to many other integration approaches Logic Java seam-
lessly works with arbitrary basic values such as doubles. Any primitive type of
Java can be used: integers (byte, char, short, int, long), floating point numbers
(float, double), and boolean values (boolean). The call of the method inside
of method main(String... args) returns a Solutions object containing one
solution consisting of the unbound logic variable x as result and the set of con-
straints {x >= 3.0, x <= 5.0}. Using findExampleResult(), we choose one
possible value for x which corresponds to the constraints, e.g. 4,2.

4 Implementation

The core of the implementation of Logic Java is the symbolic Java virtual ma-
chine. It was adapted from a previous project [22,23]. Using choice points and
backtracking, the SJVM processes all possible paths through a considered Java
program read from the bytecode in a class file. Choices, e.g. conditional jumps
or switching instructions, lead to the generation of choice points. For each such
instruction, a constraint is generated describing the condition under which the
considered branch can be entered. This constraint is added to the constraint
store. The set of constraints encountered so far is processed by the built-in con-
straint solver. If the current set of constraints is not satisfiable, the considered
branch of the computation is abandoned and backtracking occurs.

The architecture of the SJVM is depicted in Fig. 1. The SJVM consist of
a conventional JVM which has been extended by features known from virtual
machines of logic programming languages, namely logic variables (and corre-
sponding data structures to handle their computation), choice-points, a trail,
and a backtracking mechanism. Moreover, it has to manage the search strat-
egy (depth-first search or iterative deepening). An in-depth discussion of these
components is out of scope but given in [22].

Our solver has been specifically designed to process constraints generated
while executing Java bytecode. During execution, linear and non-linear con-
straints are encountered. Whilst it is of course possible to program a method to
calculate e.g. the logarithm in Java, on a bytecode level only simple instructions
are used.2 This includes basic arithmetic operations (addition, subtraction, mul-
tiplication, division, remainder), logic operations (and, or, xor) and conditional
jumps. Bit operations occurring in constraints are simulated by arithmetic oper-
ations. Moreover, constraints are transformed into certain normal forms, namely
equations, disequations, and inequations of polynomials. To be able to handle
different types of constraints efficiently, multiple solvers have been implemented
including a simplex solver for linear equations, a Fourier-Motzkin solver for

2 There are (very) complex instructions in Java bytecode such as those for method
invocation. However, they are handled the same way in the JVM and SJVM.

Logic Java: Combining Object-Oriented and Logic Programming 131

Execution Core

Bytecode class Files

Solution
Processor

Control-Flow
Generator

Def-Use Chain
Generator

Constraint
Solver

Symbolic Virtual Machine

Bytecode
Parser

Native
Wrapper

Execution Core /
Memory Abstraction

Search Algorithm / Backtracker

Trail

Choice Point Generator

Graphical User Interface

Options Class Inspector

Executer

Class Browser

Execution Set Up

Fig. 1. Architecture of the Symbolic Java Virtual Machine and auxiliary components

linear inequations and a bisection solver for non-linear constraints. More details
on transformations and on the solver are given in a distinct article [18].

Fig. 2 shows a small part of the bytecode generated for an implementation of
send-more-money (cf. Listing 1.2). Numbers in the first column are instruction
offsets rather than line numbers. The second column shows the Bytecode in-
struction and additional bytes, and the third column shows affected variables or
source code statements. The operation is briefly explained in the fourth column.

When the instruction at offset 100 is reached, the outer if has been executed
successfully and the branch where its condition is met is processed. Thus, the
constraint on the constraint store before continuing execution is ((1000s+100e+
10n + d) + (1000m + 100o + 10r + e)) == (10000m + 1000o + 100n + 10e +
y). Processing the inner if begins by pushing the logic variables e and d onto
the stack. Field access is fully qualified in Java bytecode i.e. first the object
reference (this) to the applicable class is loaded onto the stack and then its field
is accessed. Eventually, the instruction at offset 108 compares the two values.
Please note that the comparison in Java bytecode is negated; while we want to
check for inequality, the instruction checks equality. If e = d execution jumps
to the instruction following the successful return from execution (offset 480:
97 + ((1 << 8) | 127)). If any conditions from the outer or inner if are not met,
objects for EmptySolution and Solutions are created and returned. However,
if e �= d execution continues with the next step (offset 111). Value e is loaded
and pushed onto the stack again since the next step is its comparison with m.

When executing if_icmpeq, the constraint e = d is added to the constraint
store. Immediately, the solver checks the constraint system for satisfiability. If
it is not satisfiable, execution is not continued and the constraint is removed.
Otherwise, execution continues until it is finished or another unsatisfiable con-
straint is met. In both cases, backtracking is started. Since the instruction offers

132 T.A. Majchrzak and H. Kuchen

off bytecode Java operation
. . .
100 aload_0 this Load this onto the stack.
101 getfield 0 119 this.e Get value from field e and push it.
104 aload_0 this Load this onto the stack.
105 getfield 0 123 this.d Get value from field d and push it.
108 if_icmpeq 1 116 if(e == d)Generate constraint e == d and a corresponding

choice point.
111 aload_0 this Load this onto the stack.
102 getfield 0 119 this.e Get value from field e and push it.
. . .

Fig. 2. First Bytecode example

a second alternative for e �= d, this constraint is put onto the constraint store.
Again, satisfiability is checked and execution then continues. If all conditions
are satisfied, the encountered solution is added to the previously encountered
ones. Possibly existing empty solutions are removed. If all solutions have been
collected, a new instance of Solutions is generated and returned (see Fig. 3).

Additional aspects besides implementing the SJVM had to be considered.
First, a new package with support for the annotations has been created that
allows to mark logic variables and methods that should be executed in the logic
computation mode. Second, new classes have been introduced to store solutions
and make them accessible.

The SJVM ensures that logic variables are initialized correctly. If an object
is instantiated (by the new statement of Java), the JVM generates an internal
representation of an object reference (objectref). It then checks whether fields of
the underlying class have been marked with @LogicVariable. If so, it initializes
the fields to logic variables. Otherwise, they simply take default values and are
used as constants. The same applies to local variables of a method that are
annotated @LogicVariable. They are initialized when the method is invoked
and a so called frame is generated.

The annotation of logic variables works fine for member variables. Unfortu-
nately, the annotation of local variables of a method is not reflected in class files
even if Target is set to ElementType.LOCAL_VARIABLE and Retention is set to
RetentionPolicy.CLASS or RetentionPolicy.RUNTIME. The claimed technical
reasons for the decision to let the Java compiler ignore annotations of local vari-
ables are not convincing. We hope that they will be reflected in class files with
the release of Java 7. Up to then, only member variables can be used as logic
variables. This restriction is unaesthetic but not serious.

Our approach is robust w.r.t unnecessary usage of the annotations. Nesting
methods annotated with @Search does no harm; the same applies to annotation
of variables that are are used in searches. Logic variables passed as parame-
ters remain logic variables regardless of a potential duplicate annotation. They
will neither be reset nor would the doubled annotation disable logic processing.
Calling methods that take a mixture of constant and logic parameters are han-
dled, too: constant values are simply calculated in the constant way. Our JVM

Logic Java: Combining Object-Oriented and Logic Programming 133

off bytecode Java operation
. . .
408 bipush 8 Push 8 onto the stack.
410 newarray 10 new int[8] Generate a new array with 8 elements and push

it onto the stack.
412 dup Duplicate the topmost stack element i.e. the array.
413 iconst_0 Push 0 onto the stack.
414 aload_0 this Load this onto the stack.
415 getfield 0 119 this.e Get value from field e and push it.
418 iastore Save e as the first elements of the array.
. . .
470 astore_1 Save the array to local variable 1.
471 new 0 33 new Create the new object.
474 dup Duplicate the topmost stack element i.e. the ob-

ject reference.
475 aload_1 Load the array onto the stack.
476 invokespecial 0 133 Collect all solutions.
479 areturn return Return from execution with the topmost element

from the stack i.e. the object reference.
. . .

Fig. 3. Second Bytecode example

adheres to the the specification [19]; the decrease in efficiency between “normal”
and logic mode on constant operations is negligible.

5 Strength and Limitations

Our logic extension of Java is suited to applications that require a substantial
amount of search. In particular, combinatorial problems such as n-queens, and
graph coloring can easily be handled. But Logic Java is not only suited for toy
problems. Also practically relevant combinatorial problems such as crew schedul-
ing problems, machine planning and various forms of allocation and resource
planning problems can be handled. However, we cannot easily find optimal so-
lutions since Logic Java does not include an optimization algorithm. However,
with help of constraints corresponding to a lower or upper bound of some objec-
tive function only solutions of a certain minimal quality will be considered. Logic
Java is also well suited for certain games. For example, it can be used in artificial
intelligences that determine the moves of computer opponents, in particular if
this requires the exploration of large search spaces.

One of the most convincing applications of Logic Java is the test-case gener-
ator Muggl [22]. Muggl systematically generates a minimal set of glass-box test
cases for Java classes such that predefined code coverage criteria such as control-
flow and/or data-flow coverage are met. It calls the method that shall be tested
with logic variables as parameters. Each solution of a symbolic execution of the
code provides a system of constraints which describes a set of equivalent test

134 T.A. Majchrzak and H. Kuchen

cases (w.r.t. the coverage criterion). Any solution of such a system of constraints
can be used as a test case, which tests all equivalent behaviors of the program.

Compared to other approaches which integrate object-oriented and logic pro-
gramming (see Sect. 2), Logic Java has the advantage that it is very close to
Java; in fact it subsumes it. Most practitioners use OO languages for their daily
routine. OO languages are taught in most computer science degree programs
and they are well understood by almost all scientists that require programming
as well. Thus, it should be easier for them to learn Logic Java than a logic
programming language which has been extended by object-oriented features.

It often requires a lot of programming or leads to programs that are hard to
read if problems similar to our examples are implemented in pure OO languages.
At the same time, logic programming is rarely used for practical applications.
Using the flexibility and versatility of an OO language and the libraries available
for it is especially appealing if logic sub-routines can be used. Implementing logic
programs exactly where you need them and without the need to write wrapper
classes or to establish links between single software systems is extremely helpful.

Logic Java has strengths beyond the amenities of the general multi-paradig-
matic approach. First of all, it is very easy to learn for users that have knowl-
edge in OO programming. Of course, advanced concepts to successfully create
logic programs are (very) hard to master. Nevertheless, users of Logic Java can
broaden their knowledge as required for the tasks of their choice while starting
with nothing but knowledge of Java. Secondly, the sophisticated functions to al-
ter solutions, modify the constraints and get expressions calculated by the solver
are very powerful tools. Users with advanced logic programming knowledge will
find them useful. Thirdly, domains formerly dominated by logic programming
become open for object-oriented programs. In particular, it becomes possible to
interchange data between the “two worlds”. And fourthly, annotations offer a
very flexible way to implement the logic features.

Our approach also has some limitations. As already mentioned, due to the
Java compiler local variables cannot be used as logic variables. Instead, member
variables have to be used, until the mentioned problem is fixed, possibly with
Java 7. While Logic Java has the basic functionality of Prolog, some features are
missing. Most notably, there is no equivalent for the cut operator !. However, it is
not difficult to simulate it, e.g. by using globally available static class variables.
They guide the control flow and the backtracking mechanism.

It is currently not possible to combine logic and concurrent programming in
Logic Java. While the JVM offers concurrency, it is not yet implemented for sym-
bolic computations. Combining concurrency with symbolic computation is very
tricky, in particular in the presence of backtracking. One could use some of the
concepts taken from implementations of or-parallel Prolog versions such as Au-
rora [21,40]. However, we have not yet done so. At the moment, threads can only
be used outside of logic computations and they must not interact with them.

Currently, only our JVM can be used to execute programs written in Logic
Java. Since we used annotations to add the logic functionality, an Annotation

Logic Java: Combining Object-Oriented and Logic Programming 135

Processor [6] in combination with a library with the backtracking and solv-
ing functionality could be used to run Logic Java on any standard compatible
[19] JVM.

6 Conclusion and Future Work

We have presented the programing language Logic Java, which combines object-
oriented and logic programming. Starting from a discussion of related work,
we formulated design goals and introduced the concepts of Logic Java. Along
with several examples we explained its implementation as well as the interface
between logic and conventional computations. Then we identified strengths and
limitations of the approach and we named suitable application areas.

Studying previous approaches we observed that they often expand a language
or even invent a new one. Most of them require programmers to learn new con-
cepts and to distinguish different syntactic categories for logic and conventional
object-oriented computations. We believe that our approach to combine object-
oriented and logic programming is smoother than others. We preserve the Java
syntax and we use a single execution mechanism for logic and conventional Java
computations, namely the Symbolic Java Virtual Machine. Even though we iden-
tified some limitations of our approach, there are ways to decrease the negative
effects or even circumvent many of them.

A strength of our approach is the integrated constraint solver. Even though
it would be possible to work with external constraint solving libraries to solve
problems such as send more money in Java, using Logic Java is more convenient
and more versatile. Programmers hardly have to think about constraint solving
and do not have to program the solver; constraint solving is neatly integrated
into logic computation and done to speed up execution.

We will continue by refining Logic Java. A main aim of our future work will
be the extensive experimental evaluation of our approach. More examples have
to be implemented and thoroughly tested. Results gained from this will facilitate
further improvement of the specification.

References

1. Aït-Kaci, H.: Warren’s abstract machine: a tutorial reconstruction. MIT Press,
Cambridge (1991)

2. Apt, K.R.: From logic programming to Prolog. Prentice-Hall, Upper Saddle River
(1996)

3. Armstrong, J.: The development of Erlang. In: ICFP 1997: Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming,
pp. 196–203. ACM, New York (1997)

4. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language, 4th edn.
Addison-Wesley, London (2005)

5. Baldwin, J., Martin, T., Vargas-Vera, M.: Fril++: object-based extensions to Fril.
In: Martin, T., Fontana, F. (eds.) Logic Progr. and Soft Computing, pp. 223–238.
Research Studies Press, Hertfordshire (1998)

136 T.A. Majchrzak and H. Kuchen

6. Bloch, J.: Effective Java, 2nd edn. Prentice Hall, Upper Saddle River (2008)
7. Cao, T.H., Rossiter, J.M., Martin, T.P., Baldwin, J.F.: On the implementation

of Fril++ for object-oriented logic programming with uncertainty and fuzziness.
Technologies for Constructing Intelligent Systems: Tools, 393–406 (2002)

8. Cimadamore, M., Viroli, M.: A Prolog-oriented extension of Java programming
based on generics and annotations. In: Proceedings PPPJ 2007, pp. 197–202. ACM,
New York (2007)

9. Cimadamore, M., Viroli, M.: Integrating Java and Prolog through generic methods
and type inference. In: Proc. SAC 2008, pp. 198–205. ACM, New York (2008)

10. D’Hondt, M., Gybels, K., Jonckers, V.: Seamless integration of rule-based knowl-
edge and object-oriented functionality with linguistic symbiosis. In: Proc. of the
2004 ACM SAC, SAC 2004, pp. 1328–1335. ACM, New York (2004)

11. Eber, J.M.: The financial crisis, a lack of contract specification tools: What can
finance learn from programming language design? In: Castagna, G. (ed.) ESOP
2009. LNCS, vol. 5502, pp. 205–206. Springer, Heidelberg (2009)

12. Fernandez, A.J., Hortala-Gonzalez, T., Saenz-Perez, F., Del Vado-Virseda, R.: Con-
straint functional logic programming over finite domains. Theory and Practice of
Logic Programming 7(5), 537–582 (2007)

13. Gibbons, J., Oliveira, B.: The essence of the iterator pattern. J. Funct. Pro-
gram. 19(3-4), 377–402 (2009)

14. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java(TM) Language Specification,
3rd edn. Addison-Wesley Professional, London (2005)

15. Hankley, W.J.: Feature analysis of turbo prolog. SIGPLAN Not. 22, 111–118 (1987)
16. Hanus, M., Kuchen, H., Moreno-Navarro, J.: Curry: A Truly Functional Logic

Language. In: Proceedings ILPS 1995 Workshop on Visions for the Future of Logic
Programming, pp. 95–107 (1995)

17. Kuchen, H.: Implementing an Object Oriented Design in Curry. In: Proceedings
WFLP 2000, pp. 499–509 (2000)

18. Lembeck, C., Caballero, R., Mueller, R.A., Kuchen, H.: Constraint solving for
generating glass-box test cases. In: Proceedings WFLP 2004, pp. 19–32 (2004)

19. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

20. Louden, K.C.: Programming Languages. Wadsworth, Belmont (1993)
21. Lusk, E., Butler, R., Disz, T., Olson, R., Overbeek, R., Stevens, R., Warren, D.H.,

Calderwood, A., Szeredi, P., Haridi, S., Brand, P., Carlsson, M., Ciepielewski, A.,
Hausman, B.: The Aurora or-parallel Prolog system. New Gen. Comput. 7(2-3),
243–271 (1990)

22. Majchrzak, T.A., Kuchen, H.: Automated Test Case Generation based on Cov-
erage Analysis. In: TASE 2009: Proceedings of the 2009 3rd IEEE International
Symposium on Theoretical Aspects of Software Engineering, pp. 259–266. IEEE
Computer Society, Los Alamitos (2009)

23. Majchrzak, T.A., Kuchen, H.: Muggl: The Muenster Generator of Glass-box Test
Cases. In: Becker, J., Backhaus, K., Grob, H., Hellingrath, B., Hoeren, T., Klein,
S., Kuchen, H., Müller-Funk, U., Thonemann, U.W., Vossen, G. (eds.) Working
Papers No. 10. European Research Center for Information Systems, ERCIS (2011)

24. Malenfant, J., Lapalme, G., Vaucher, J.: ObjVProlog-D: a reflexive object-oriented
logic language for distributed computing. In: Proceedings OOPSLA/ECOOP 1990,
pp. 78–81. ACM, New York (1991)

25. McCabe, F.G.: Logic and objects. Prentice-Hall, Upper Saddle River (1992)
26. Mens, K., Michiels, I., Wuyts, R.: Supporting software development through declar-

atively codified programming patterns. Expert Syst. Appl. 23(4), 405–413 (2002)

Logic Java: Combining Object-Oriented and Logic Programming 137

27. Metcalf, M., Cohen, M.: Fortran 95/2003 Explained, 3rd edn. Oxford University
Press, Oxford (2004)

28. Morzenti, A., Pietro, P.S.: An Object-Oriented Logic Language for Modular Sys-
tem Specification. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 39–58.
Springer, Heidelberg (1991)

29. Moss, C.: Prolog++: The Power of Object-Oriented and Logic Programming, 1st
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1994)

30. Moura, P.: From plain prolog to logtalk objects: Effective code encapsulation and
reuse. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 23–23.
Springer, Heidelberg (2009)

31. Naftalin, M., Wadler, P.: Java Generics and Collections. O’Reilly Media, Inc., Se-
bastopol (2006)

32. Nyström, J.H.: Productivity gains with Erlang. In: Proceedings CUFP 2007. ACM,
New York (2007)

33. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University
of Illinois at Urbana-Champaign, Champaign, IL, USA (1992)

34. Page, Jr., T.W.: An object-oriented logic programming environment for modeling.
Ph.D. thesis, University of California, Los Angeles (1989)

35. Rémy, D.: Using, understanding, and unraveling the oCaml language from practice
to theory and vice versa. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.)
APPSEM 2000. LNCS, vol. 2395, pp. 413–536. Springer, Heidelberg (2002)

36. Salus, P.H.: Functional and Logic Programming Languages. Sams, Indianapolis
(1998)

37. Scott, R.: A Guide to Artificial Intelligence with Visual Prolog. Outskirts Press
(2010)

38. Shapiro, E.: The family of concurrent logic programming languages. ACM Com-
puting Surveys 21(3), 413–510 (1989)

39. Shapiro, E.Y., Takeuchi, A.: Object Oriented Programming in Concurrent Prolog.
New Generation Comput. 1(1), 25–48 (1983)

40. Szeredi, P.: Solving Optimisation Problems in the Aurora Or-parallel Prolog Sys-
tem. In: ICLP 1991: Pre-Conference Workshop on Parallel Execution of Logic Pro-
grams, pp. 39–53. Springer, London (1991)

41. Van Roy, P., Brand, P., Duchier, D., Haridi, S., Schulte, C., Henz, M.: Logic pro-
gramming in the context of multiparadigm programming: the Oz experience. The-
ory and Practice of Logic Programming 3(6), 717–763 (2003)

42. Warren, D.H.D., Pereira, L.M., Pereira, F.: Prolog – the language and its implemen-
tation compared with Lisp. In: Proceedings of the 1977 Symposium on Artificial
Intelligence and Programming Languages, pp. 109–115. ACM, New York (1977)

43. Wiger, U.: 20 years of industrial functional programming. In: ICFP 2004: Pro-
ceedings of the Ninth ACM SIGPLAN International Conference on Functional
Programming, pp. 162–162. ACM, New York (2004)

On Proving Termination of Constrained Term

Rewrite Systems by Eliminating Edges from
Dependency Graphs�

Tsubasa Sakata, Naoki Nishida, and Toshiki Sakabe

Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

sakata@sakabe.i.is.nagoya-u.ac.jp,
{nishida, sakabe}@i.is.nagoya-u.ac.jp

Abstract. In this paper, we propose methods for proving termination
of constrained term rewriting systems, where constraints are interpreted
by built-in semantics given by users, and rewrite rules are assumed to
be sound for the interpretation. To this end, we extend the dependency
pair framework for proving termination of unconstrained term rewriting
systems to constrained term rewriting systems. Moreover, we extend the
dependency pair framework so that dependency pair processors take a
subgraph of the dependency graph as input and they output a finite set
of graphs which can be obtained by eliminating nodes and/or edges from
the input graph.

1 Introduction

Constrained (un-)conditional term rewriting systems are finite sets of constrained
(un-)conditional rewrite rules [32,33,8,23,26,5,9,10,6,7,17,30,27], where the con-
straint parts are evaluated by built-in semantics (such as memberships and
integer arithmetics) or equational theories independent on the rewrite rules,
and the condition parts are evaluated by the rewrite rules recursively (and/or
partially evaluated by the built-in semantics). Moreover, constrained systems
are enriched such as constrained equational systems (CESs, for short) [13,14].
This paper deals with constrained unconditional term rewriting systems (con-
strained TRSs, for short) in [6,7,17,30,27], that are based on ones of the general
formulations.

Recently, inductive theorem proving methods for constrained TRSs are inves-
tigated [5,1,6,12,7,17,30]. Termination of constrained TRSs is one of the most
important properties in such methods and thus methods for proving termination
of constrained TRSs are expected to be developed. Such methods are also use-
ful in proving innermost termination of unconstrained term rewriting systems
(TRSs, for short) since termination of the constrained version of a TRS implies
innermost termination of the TRS [4].

� This work is partialy supported by MEXT KAKENHI #20300010 and # 21700011.

H. Kuchen (Ed.): WFLP 2011, LNCS 6816, pp. 138–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Proving Termination of Constrained Term Rewrite Systems 139

As a termination proof technique for TRSs both termination criterion based
on dependency pairs and the dependency pair framework (the DP framework,
for short) are well studied [2,21,19,18,22,15,16], and the framework has been ex-
tended to CESs [13,14]. To prove termination by using this framework, we only
prove that there exists no infinite dependency chain that is a sequence of depen-
dency pairs. In particular, a technique in [20] is useful in proving termination
of TRSs via polynomial interpretations over integers. In the technique, the DP
processor based on polynomial interpretations over integers eliminates two kinds
of dependency pairs: those ordered by > over integers, and those guaranteeing
the existence of a lower bound of integer strictly-decreasing sequences obtained
from dependency chains. For each dependency pair in an input set, the processor
refers all the dependency pairs that possibly follow after the focusing dependency
pair in order to use additional information that is useful in ordering the focusing
dependency pair or in detecting a lower bound. This technique seems useful in
proving termination of constrained TRSs, while the reference to the accident
pairs is not implemented in [13,14]. For a dependency pair, however, the proces-
sor does not succeed in detecting a lower bound for every accident pair, while
the processor detects a lower bound for some of the accident pairs. In such a
case, it does not matter to ignore the paths from the focusing dependency pair
to the accident pairs with a lower bound, i.e., no infinite dependency chain con-
tains infinitely many occurrences of the paths. Unfortunately, this idea cannot
be implemented in the DP framework since the framework does not keep infor-
mation of connections between two continuous dependency pairs (i.e., edges of
dependency graphs).

In this paper, we propose methods for proving termination of constrained
TRSs. We first extend both the termination criterion for TRSs w.r.t. dependency
pairs and the DP framework to constrained TRSs, and then extend them so that
dependency pair processors take a subgraph of the dependency graph as input
and output a finite set of subgraphs obtained by eliminating nodes and/or edges
from the input. For the sake of readability, we deal with the ordinary class of
constrained TRSs [6,7,17,30,27]. It is straightforward to extend the results of
this paper to more complicated classes such as CESs [13,14].

The first extension is straightforward, while we combine the lower bound
detection [20] and the integer polynomial interpretation method [13,14] for CESs.
In the second extension, we show how to adapt the existing sound and complete
DP processors taking dependency pairs as input into the sound and complete
processors for the extended DP framework, i.e., the extended framework is a
strict extension of the ordinary one. Since paths from dependency pairs to their
accident dependency pairs are captured as edges in the dependency graph, the
extended framework can eliminate the paths mentioned above from the graph.

In [31], DP processors take dependency graphs as input in order to update
graphs of which some nodes are not dependency pairs after the application of
transformational processors. In this case, such graphs cannot be computed in
keeping with the definition of dependency graphs and thus the processors related

140 T. Sakata, N. Nishida, and T. Sakabe

to the update eliminate edges between dependency pairs and other kinds of pairs.
Therefore, the purpose and use of carrying edges is different from ours.

The main contribution of this paper is to extend the DP framework for con-
strained TRSs to the one in which DP processors handle dependency graphs
and eliminate nodes and/or edges from the graphs. This extended framework is
applicable to the case of unconstrained TRSs.

This paper is organized as follows. Section 2 prepares notation of constrained
TRSs. Section 3 extends the termination criterion for TRSs w.r.t. dependency
pairs to constrained TRSs. Section 4 shows a necessary condition of two depen-
dency pairs for forming a dependency chain. Section 5 extends the DP framework
to constrained TRSs. Section 6 extends the DP framework to the one handling
edges of dependency graphs. Section 7 concludes and shows future work of this
research. Missing proofs of technical results can be found in the appendix of the
full version of this paper [29].

2 Preliminaries

In this section, we recall some basic notions and notations of term rewriting
[3,28], the first-order predicate logic [24], and constrained TRSs [6,7,17,30,27].

Throughout this paper, we use V as a countably infinite set of variables. The
set of terms over a signature F and V is denoted by T (F ,V). The set of variables
appearing in a term t is denoted by Var(t). The identity of terms s and t is
denoted by s ≡ t. For a term t and a position p of t, the notation t|p represents
the subterm of t at p. We write s � t if s|p ≡ t, and write s � t if s|p ≡ t and
p �= ε. If position p is a proper prefix of a position q, then we write p < q. The
symbol at the root position ε of t is denoted by root(t). For a context C[] with n-
holes at positions p1, · · · , pn, the notation C[t1, · · · , tn]p1,···,pn represents the term
obtained by replacing hole � at position pi with term ti for 1≤ i≤ n. The domain
and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respectively.
The application of σ to term t is abbreviated to tσ. If Dom(σ) = {x1, · · · , xn},
then we may write {xi �→ σ(xi) | 1 ≤ i ≤ n} instead of σ. The restriction σ|X of
σ to a set X ⊆ V is defined as σ|X = {x �→ σ(x) | x ∈ Dom(σ) ∩X}.

Let G be a signature such that G has at least a constant (i.e., T (G) �= ∅),
and P be a finite set of predicate symbols. Formulas over (G,P ,V) have the
following syntax given in Backus Naur form: φ ::= P (t1, · · · , tn) | � | ⊥ | (¬φ) |
(φ∧φ) | (φ∨φ) where P is an n-ary predicate in P and t1, · · · , tn ∈ T (G,V). We
sometimes denote (¬φ1∨φ2) by (φ1 ⇒ φ2) as usual. We often abbreviate brackets
in formulas as usual. The set of free variables in a formula φ is denoted by fv(φ).
A formula φ is called closed if fv(φ) = ∅. Substitutions from V to T (G,V) are
applied to formulas as usual. Note that, given another signature F , we allow
to apply substitution σ from V to T (F ∪ G,V), to formulas φ, denoted by φθ,
if Ran(θ|fv(φ)) ⊆ T (G,V). A structure M for (G,P ,V) is a triple (A,GM,PM)
such that the universe A is a non-empty set of concrete values, GM is a set
of mappings where gM : An → A is included in GM for every n-ary function
symbol g ∈ G, and PM is a family of sets where PM ⊆ An is included in PM for

On Proving Termination of Constrained Term Rewrite Systems 141

every n-ary predicate symbol P ∈ P . For a closed formula φ, we writeM |= φ if
φ holds w.r.t.M as usual. A formula φ is called valid (satisfiable, resp.) w.r.t.M
ifM |= φθ for every (some, resp.) substitution θ such that Ran(θ|fv(φ)) ⊆ T (G).
When G, P , and M are fixed in context, we may call formulas over (G,P ,V)
constraints (w.r.t.M). We suppose that the binary predicate symbol�, so-called
the equality predicate, is included in P and its interpretation �M is the identity
= over A, i.e., �M = {(a, a) | a ∈ A}.
Example 1. Let GPA be a signature {0, s(), p(), plus(,), minus(,)}, PPA be a set
{�(,),�(,)} of predicate symbols, and MPA be a structure (Z, {0MPA , sMPA ,
pMPA , plusMPA ,minusMPA}, {�MPA ,�MPA}) for (GPA,PPA,V) where Z is the
set of integers, 0MPA = 0, sMPA(x) = x + 1, pMPA(x) = x− 1, plusMPA(x, y) =
x + y, minusMPA(x, y) = x− y, and �MPA= {(n, m) | n > m}.
Let M be a structure for (G,P ,V) and F be a signature such that F ∩ G = ∅.
A constrained rewrite rule over (F ,G,P ,V,M) is a triple (l, r, φ), written as
l → r [[φ]], such that l and r are terms in T (F ∪ G,V), l is not a variable, φ is
a constraint w.r.t. M (i.e., a formula over (G,P ,V)), Var(l) ⊇ Var(r) ∪ fv(φ),
and φ is satisfiable w.r.t.M.1 We may write l → r instead of l → r [[�]].

A constrained term rewriting system R (constrained TRS, for short) is a finite
set of constrained rewrite rules over (F ,G,P ,V,M). Unless noted otherwise,
R is a constrained TRS over (F ,G,P ,V ,M). The rewrite relation −→R of R is
defined as follows: −→R = {(C[lσ]p, C[rσ]p) | l → r [[φ]] ∈ R,Ran(σ|fv(φ)) ⊆
T (G,V), φσ is valid w.r.t.M}. To specify position p above explicitly for C[sσ]p
−→R C[tσ]p, we may write −→p

R instead of −→R. Moreover, we may write −→ε<
R

instead of −→R or −→p
R if ε < p. A term t is called terminating w.r.t. −→R if there

is no infinite rewrite sequence of −→R that is starting from t. The constrained
TRS R is called terminating if every term is terminating w.r.t. −→R. We say that
R is locally sound w.r.t. its structure (locally sound, for short) if for every pair
of terms s ∈ T (G,V) and t ∈ T (F ∪ G), s −→R t implies both t ∈ T (G,V) and
s � t is valid w.r.t. M (i.e., for all l → r [[φ]] in R, l ∈ T (G,V) implies both
r ∈ T (G,V) and φ⇒ l � r is valid w.r.t.M). Roughly speaking, local soundness
guarantees that the reduction over T (G) is consistent with the structure M.

Example 2. Consider the C program and the locally sound constrained TRS R1

over ({f(), u(, ,)}, GPA,PPA,V ,MPA) illustrated in Fig. 1, where the TRS R1 is
obtained from the C program [17]. Note that R1 is a variant of the constrained
equational system obtained from the C program [14].

1 Constrained rewrite rules employed in [6,7] are assumed to be linear in order to
use tree automaton and context-free grammar techniques [11]. However, this paper
does not assume that constrained rewrite rules are linear and thus our results are
useful in proving termination of linear constrained TRSs in [6,7]. On the other hand,
auxiliary constrained rules in CESs [13] for interpreted symbols are assumed to be
right-linear because of the use of equational rewriting. Since this paper does not
deal with equational rewriting, our constrained rules for interpreted symbols are not
assumed to be right-linear.

142 T. Sakata, N. Nishida, and T. Sakabe

int f(int x){

int i = 0, z = 1;

while(x > i){

z += f(i);

i++;

}

return z;

}

R1 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

f(x)→u(x, 0, s(0))
u(x, i, z)→u(x, s(i), plus(z, f(i))) [[x � i]]
u(x, i, z)→z [[¬(x � i)]]

plus(x, y)→x [[y � 0]]
plus(x, s(y))→s(plus(x, y)) [[s(y) � 0]]
plus(x, p(y))→p(plus(x, y)) [[0 � p(y)]]
minus(x, y)→x [[y � 0]]

minus(x, s(y))→p(minus(x, y)) [[s(y) � 0]]
minus(x, p(y))→s(minus(x, y)) [[0 � p(y)]]

s(p(x))→x p(s(x)) → x

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

Fig. 1. A C program and the corresponding constrained TRS

3 Termination Criterion for Constrained TRSs

In this section, we extend the termination criterion for TRSs [2], which is based
on dependency pairs, to constrained TRSs. Let R be a constrained TRS. The
set of defined symbols of R is denoted by DR, i.e., DR = {root(l) ∈ F ∪ G |
l → r [[φ]] ∈ R}. The marked symbol of a defined symbol f ∈ DR is denoted by
f �. The set of marked symbols is denoted by D�R. For a term f(t1, · · · , tn) with
f ∈ DR, f(t1, · · · , tn)� denotes the term f �(t1, · · · , tn).

We extend dependency pairs and chains for TRSs to constrained TRSs.

Definition 3. Let R be a constrained TRS. A dependency pair of R is a con-
strained rewrite rule l� → t� [[φ]] over (F ∪D�R,G,P ,V,M) where l → r [[φ]] ∈ R,
t is a subterm of r such that root(t) ∈ DR and t is not a proper subterm of l.
The set of dependency pairs of R is denoted by DP (R).

Example 4. The dependency pairs of R1 in Fig. 1 are illustrated in Fig. 2.

Definition 5. Let R be a constrained TRS and S ⊆ DP (R). A (possibly infinite)
sequence s1 → t1 [[φ1]],s2 → t2 [[φ2]],· · · of dependency pairs in S is called an S-
chain (of R) if there are substitutions σ1, σ2, · · · such that tiσi

∗−→ε<
R si+1σi+1,

Ran(σ|fv(φi)) ⊆ T (G,V), and φiσi is valid w.r.t. M for all i ≥ 1.2 Notice that if
the length of the sequence is n then φnσn is valid w.r.t. M. The chain is called
minimal if tiσi is terminating w.r.t. −→R for all i ≥ 1. Moreover, the infinite
chain is called S-innumerable (S-innumerable chain, for short) if every element
in S appears infinitely many times in the chain.

A main difference from chains of TRSs is validity of φiσi. Moreover, when a chain
is finite, we impose validity of the constraint of the last dependency pair of the
chain. This is because the chain f �(s1, · · · , sn) → t [[φ]], u → g�(v1, · · · , vm) [[ψ]]
means that f calls g. For the case of TRSs, φ and ψ are � and thus their validity
is always guaranteed.

The termination criterion for TRSs [2], which is based on dependency pairs,
is extended to constrained TRSs as follows.
2 For the sake of readability, we employ the original definition of chains [2], while it is

easy to extend it to a more advanced one [19].

On Proving Termination of Constrained Term Rewrite Systems 143

DP (R1) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(1) f�(x)→u�(x, 0, s(0))
(2) f�(x)→s�(0)
(3) u�(x, i, z)→u�(x, s(i), plus(z, f(i))) [[x � i]]
(4) u�(x, i, z)→s�(i) [[x � i]]

(5) u�(x, i, z)→plus�(z, f(i)) [[x � i]]

(6) u�(x, i, z)→f�(i) [[x � i]]

(7) plus�(x, s(y))→s�(plus(x, y)) [[s(y) � 0]]
(8) plus�(x, s(y))→plus�(x, y) [[s(y) � 0]]
(9) plus�(x,p(y))→p(�plus(x, y)) [[0 � p(y)]]

(10) plus�(x,p(y))→plus�(x, y) [[0 � p(y)]]
(11) minus�(x, s(y))→p�(minus(x, y)) [[s(y) � 0]]
(12) minus�(x, s(y))→minus�(x, y) [[s(y) � 0]]
(13) minus�(x,p(y))→s�(minus(x, y)) [[0 � p(y)]]

(14) minus�(x,p(y))→minus�(x, y) [[0 � p(y)]]

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

Fig. 2. The dependency pairs of R1

Theorem 6. A constrained TRS R is terminating iff there exists no infinite
minimal DP (R)-chain.

Proof. The proof is similar to the case of TRSs (cf. Theorem 6 in [2]). ��
To prove termination of a constrained TRS R, we may show that there is no
infinite minimal DP (R)-chain. To this end, we show a criterion for an S ⊆DP (R)
to reduce the non-existence of infinite minimal S-chains to the non-existence of
both S-innumerable chains and infinite minimal S′-chains for some of proper
subsets S ′ of S. Let A be a set. The power set of A is denoted by Power(A). A
set B in Power(A) is called maximal in X ⊆ Power(A) if B = C whenever B
⊆ C for any C ∈ X .

Theorem 7. Let R be a constrained TRS, S ⊆ DP (R) and X ⊆ Power(S)
such that there exists no S ′-innumerable chain for any S′ ∈ X. There exists no
infinite (minimal) S-chain iff there exists no infinite (minimal) S′-chain for any
maximal S′ in Power(S) \X.

The proof can be found in [29]. Thanks to Theorem 7, to prove the non-existence
of infinite chains, we may show that for some X ⊆ Power(S),

– there is no S′-innumerable chain for any S′ in X , and
– there is no infinite minimal S ′-chain for any maximal set S′ in Power(S)\X .

This scheme is helpful to show soundness of DP processors shown later.
Finally, we explain how Theorem 7 helps us to show termination, by extending

Theorem 18 in [2] to constrained TRSs.

Definition 8. Let R be a constrained TRS and S ⊆ DP (R). The dependency
graph of S and R, written as DG(S, R), is a directed graph (V, E) such that
V = S and E = {(u, v) | u, v ∈ V, the sequence “u, v” is an S-chain}. The
dependency graph of DP (R) and R is called the dependency graph of R, and we
denote DG(DP (R), R) by DG(R).

144 T. Sakata, N. Nishida, and T. Sakabe

(1)
(2)

(3)(4)

(5)(6)

(7) (8)

(9) (10)

(11) (12)

(13) (14)

Fig. 3. The dependency graph of R1

Theorem 9. Let R be a constrained TRS and S ⊆ DP (R). There exists no
infinite (minimal) S-chain iff there exists no infinite (minimal) S′-chain for any
S′ that is the vertex set of a strongly connected component (SCC, for short) of
DG(S, R).

Proof. Let X = {S′ | DG(S′, R) is not an SCC of DG(S, R)}. Then, this theo-
rem follows from Theorem 7 since all of the following hold clearly:

– there exists no S′-innumerable chain for any S′ ∈ X , and
– maximal sets in a Power(S) \X are vertex sets of SCCs of DG(S, R). ��

Example 10. The dependency graph of R1 in Fig. 2 is illustrated in Fig. 3. The
vertex sets of SCCs of DG(R1) are {(1), (3), (6)}, {(8)}, {(10)}, {(12)} and
{(14)}. To prove termination of R1, it is suffices to show the non-existence of
infinite minimal chains for all of them.

As for the case of TRSs, the dependency graph is not computable for every
constrained TRS. Thus, for constrained TRSs, we employ approximation tech-
niques of dependency graphs for TRSs since for any constrained TRS R, the
dependency graph of the TRS obtained from R by removing constraints from
rewrite rules is an over approximation of DG(R). In the next section, we will
show one of the approaches to improve over approximated dependency graphs.

4 Necessary Condition of Two Dependency Pairs for
Forming a Chain

In this section, for locally sound constrained TRSs, we present a necessary con-
dition of two dependency pairs s→ t [[φ]], u→ v [[ψ]] for forming a chain. For two
terms t, u (the right-hand side of s→ t [[φ]] and the left-hand side of u→ v [[ψ]])
and for a set V of variables, we construct a constraint η such that for any sub-
stitutions σ, θ with Ran(σ|V ∪fv(φ)) ⊆ T (G,V), the constraint η(σ ∪ θ) is valid if
tσ

∗−→ uθ. Thus, satisfiability of φ ∧ η ∧ ψ is a necessary condition of the two
dependency pairs for forming a chain. The set V is used to specify variables that
are substituted by terms in T (G,V).

First, we show how to construct the constraint η mentioned above.

Definition 11. Let R be a locally sound constrained TRS, V ⊆ V, t and u be
terms in T (F ∪ G ∪ D�R,V) such that t ≡ C[t1, · · · , tn], u ≡ C[u1, · · · , un], and
root(ti) = root(ui) implies root(ti) ∈ DR for some context C[] over T (CR∪D�R∪

On Proving Termination of Constrained Term Rewrite Systems 145

{�},V). Note that for any pair of terms t and u, the context C[] is unique. The
constraint reachR,V (C[t1, · · · , tn], C[u1, · · · , un]) is defined as

∧n
i=1 bi such that

bi =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ti � ui if ti ∈ T (G, V), ui ∈ T (G,V), and root(ti) ∈ CR implies ui ∈ V
⊥ if ti ∈ T (G, V) and ui �∈ T (G,V)
⊥ if root(ti) ∈ CR ∪ D�R and ui �∈ V
� otherwise

For the first case of the construction of bi, we let bi be the formula ti � ui
since R is locally sound and then for all substitutions σ and θ, the constraint
tiσ � uiθ is valid w.r.t. M whenever tiσ

∗−→R uiθ and Ran(σ|V) ⊆ T (G,V).
For the second and third cases, we let bi be the invalid constraint ⊥ since any
instance of ti cannot be reduced to some instance of ui. For any other cases,
we let bi be � since there may exist substitutions σ and θ such that tiσ

∗−→R

uiθ. Since C[] is a constructor context of R and then the establishment of
C[t1, · · · , tn]σ ∗−→R C[u1, · · · , un]θ coincides with that of all the subderivations
t1σ

∗−→Ru1θ, · · · , tnσ ∗−→Runθ, we construct the constraint
∧n
i=1 bi for terms t and

u. In summary, tσ ∗−→R uθ implies validity of the constraint (reachR,V (t, u))(σ∪θ),
i.e, unsatisfiability of reachR,V (t, u) implies non-existence of substitutions σ and
θ such that tσ

∗−→Ruθ.

Lemma 12. Let R be a locally sound constrained TRS, t and u be terms over
T (F ∪ G ∪ D�R,V) such that Var(t) ∩ Var(u) = ∅, V be a subset of V such that
Var(u) ∩ V = ∅, and σ, θ be substitutions such that Ran(σ|V) ⊆ T (G,V). If sσ
∗−→R tθ, then

– Ran((σ ∪ θ)|fv(reachR,V (t,u))) ⊆ T (G,V), and
– (reachR,V (s, t))(σ ∪ θ) is valid w.r.t. M.

The proof can be found in [29].

Example 13. Consider the constrained TRS R1 in Fig. 2 and terms plus�(x, y)
and plus�(x′, p(y′)). We have reachR1,{y}(plus�(x, y), plus�(x′, p(y′))) = � ∧ y �
p(y′). Let σ and θ be substitutions such that yσ ∈ T (GPA,V). Then, �(σ ∪
θ) is valid w.r.t. MPA if xσ

∗−→R1
x′θ. Moreover, (y � p(y′))(σ ∪ θ) is also

valid w.r.t. MPA if yσ
∗−→R1

p(y′)θ since R1 is locally sound. Thus, the con-
straint (reachR1,{y}(plus�(x, y), plus�(x′, p(y′))))(σ ∪ θ) is valid w.r.t. MPA if
plus�(x, y)σ ∗−→R1

plus�(x′, p(y′))θ. Consider terms plus�(x, y) and f�(x′). We have
reachR1,{y}(plus�(x, y), f�(x′)) = ⊥, an unsatisfiable constraint. The unsatisfia-
bility tells us that there is no substitutions σ and θ such that plus�(x, y)σ ∗−→R1

f�(x′)θ.

Next we define a constraint of which satisfiability is a necessary condition of two
dependency pairs for forming a chain.

Definition 14. Let R be a constrained TRS, s → t [[φ]], u → v [[ψ]] ∈ DP (R),
and V ⊆ Var(t). Then, we denote the constraint φ ∧ reachR,V ∪fv(φ)(t, u) ∧ ψ by
chain(s→ t [[φ]], u→ v [[ψ]], V).

146 T. Sakata, N. Nishida, and T. Sakabe

Theorem 15. Let R be a locally sound constrained TRS, s → t [[φ]], u →
v [[ψ]] ∈ DP (R), u′ → v′ [[ψ′]] be a renamed variant of u → v [[ψ]] such that
Var(s) ∩ Var(u′) = ∅, V be a subset of Var(t), and σ, θ be substitutions such
that Ran(σ|V ∪fv(φ)∪fv(ψ′)) ⊆ T (G,V). If φσ and ψ′θ are valid w.r.t. M and tσ
∗−→R v′θ then

– Ran(σ|fv(chain(s→t [[φ]],u′→v′ [[ψ′]],V))) ⊆ T (G,V), and
– (chain(s→ t [[φ]], u′ → v′ [[ψ′]], V))(σ ∪ θ) is valid w.r.t. M,

i.e., if the sequence s → t [[φ]], u → v [[ψ]] is a DP (R)-chain, then chain(s →
t [[φ]], u′ → v′ [[ψ′]], ∅) is satisfiable w.r.t. M.

Proof. This theorem follows from Lemma 12. ��
Thanks to Theorem 15, we obtain a sufficient condition of two dependency pairs
that form no chain.

Corollary 16. Let R be a locally sound constrained TRS, S ⊆ DP (R), s →
t [[φ]], u→ v [[ψ]] ∈ S, u′ → v′ [[ψ′]] be a renamed variant of u→ v [[ψ]] such that
Var(s) ∩ Var(u) = ∅. If chain(s → t [[φ]], u′ → v′ [[ψ′]], ∅) is unsatisfiable w.r.t.
M, then s→ t [[φ]], u→ v [[ψ]] is not an S-chain.

Example 17. Consider the dependency pairs (8) and (10) of DP (R1) in Fig. 2.
Let (10)′ be a renamed variant of (10) such that x and y are renamed into x′ and
y′, respectively. Then, we have chain((8), (10)′, ∅) = s(y) � 0 ∧ (� ∧ y � p(y′))
∧ 0 � p(y′). This constraint corresponds to y + 1 > 0 ∧ y = y′ − 1 ∧ 0 > y′ − 1
over integers by means of MPA, and this is unsatisfiable. Thus, we can know
that (8), (10) is not a DP (R1)-chain and then there is no edge from (8) to (10).

The sufficient condition in Corollary 16 for two dependency pairs that form no
chain when constrained TRSs are locally sound is useful for improving over-
approximated dependency graphs in employing approximation techniques for
TRSs, i.e., if chain(s → t [[φ]], u′ → v′ [[ψ′]], ∅) is unsatisfiable w.r.t. M then we
may remove an edge (s→ t [[φ]], u→ v [[ψ]]) from over-approximated graphs. The
other possible approach to the improvement of over-approximated dependency
graphs is the one via the extension of unification in computing edges [13,14].
However, we did not take this approach since constraints corresponding to the
necessary condition are useful in developing DP processors shown later.

5 DP Framework for Constrained TRSs

In this section, we extend the DP framework for TRSs [19] to constrained TRSs.
Let R be a constrained TRS. A subset of DP (R) is called a dependency pair

problem (of R) (DP problem, for short).3 A DP problem S is called finite if
there is no infinite minimal S-chain, and called infinite if it is not finite or R

3 This paper does not use pairs of (S, R) as DP problems since the second component
R is not modified anywhere.

On Proving Termination of Constrained Term Rewrite Systems 147

is not terminating. A dependency pair processor (DP processor, for short) is a
function Proc which takes a DP problem as input and returns a finite set of
DP problems. A DP processor Proc is called sound if for any DP problem S,
the problem S is finite whenever all DP problems in Proc(S) are finite. Proc
is called complete if for any DP problem S, the problem S is infinite whenever
Proc(S) contains infinite DP problems. Therefore, a termination proof starts
with the initial DP problem DP (R) and applies sound DP processors until an
empty set of DP problems is obtained.

Theorem 18. A constrained TRS R is terminating iff the DP problem DP (R)
is finite. Moreover, R is not terminating iff the DP problem DP (R) is infinite.

Proof. This theorem follows from Theorem 6. ��
As a useful tool to prove soundness and completeness of DP processors, we adapt
Theorem 7 to DP processors.

Theorem 19. Let R be a constrained TRS. A DP processor Proc is sound and
complete if for any S ⊆ DP (R), there exists no S′-innumerable chain for any
S′ ⊆ S such that S′ \ S ′′ �= ∅ for all S′′ ∈ Proc(S).

Proof. We only prove soundness of Proc since completeness is trivial. Assume
that all problems in Proc(S) are finite. Let X = {S ′ | ∀S′′ ∈ Proc(S). S′ \S ′′ �=
∅} and there is no S′-innumerable chain for any S′ ∈ X . Then, Power(S) \X =
{S′ | ∃S′′ ∈ Proc(S). S′ ⊆ S′′}. Thus, all maximal sets in a Power(S) \X are
included in Proc(S). Therefore, it follows from Theorem 7 that S is finite. ��
We extend the DP processor w.r.t. dependency graphs [2] to constrained TRSs.

Theorem 20. Let R be a constrained TRS and S ⊆ DP (R). Then, the DP
processor Proc, which takes a DP problem S and outputs vertex sets of SCCs of
DG(S, R), is sound and complete.

Proof. Let X = {S ′ | ∀S′′ ∈ Proc(S). S′ \ S′′ �= ∅}. There exists no S′-
innumerable chain for any S′ ∈ X since S′ is not a vertex set of strongly con-
nected graphs which are included in DG(S, R). Thus, it follows from Theorem
19 that the processor is sound and complete. ��
Note that we can employ over approximation techniques for computing depen-
dency graphs in Theorem 20.

The DP processor based on the subterm criterion [22] can be straightforwardly
extended to constrained TRSs, by ignoring the constraints of dependency pairs.

Theorem 21. Let R be a constrained TRS, S ⊆ DP (R), π be a simple projec-
tion from D�R to natural numbers such that 1 ≤ π(f �) ≤ n for any n-ary marked
symbol f � ∈ D�R. Moreover, let �π = {s → t [[φ]] | s|π(root(s)) � t|π(root(t))} and
�π = {s→ t [[φ]] | s|π(root(s)) � t|π(root(t))}. Then, the following processor Proc
is sound and complete:

Proc(S) =
{{S \�π} if S ⊆ �π

{S} otherwise

148 T. Sakata, N. Nishida, and T. Sakabe

The proof can be found in [29].

Example 22. Consider DP (R1) in Fig. 2. For the initial DP problem DP (R1), the
DP processor in Theorem 20 converts DP (R1) into {{(1), (3), (6)}, {(8)}, {(10)},
{(12)}, {(14)}}. Then, the DP processor in Theorem 21 transforms {(8)}, {(10)},
{(12)} and {(14)} into {∅}. Thus, to prove termination of R1, it is suffices to
show that {(1), (3), (6)} is finite.

In developing DP processors, it is useful to refer the constraints of dependency
pairs. For example, the DP processor based on dependency graphs employs the
constraints via the dependency graphs that are improved by the sufficient condi-
tion in Corollary 16, while the DP processor based the subterm criterion cannot
employ the constraints. To show finiteness of the DP problem {(1), (3), (6)} in
Example 22, the DP processor based on polynomial interpretations over inte-
gers [20,22,15] seems useful. Thus, in the rest of this section, we extend the DP
processor based on polynomial interpretations to constrained TRSs.

The basic idea of the DP processor is to reduce an infinite ground deriva-
tion sequence obtained from an S-innumerable chain into an infinite strictly-
decreasing sequence of integers with a lower bound. The lower bound leads us to
a contradiction and hence the non-existence of S-innumerable chains. In ordering
a dependency pair s→ t [[φ]] by > over polynomial interpretations and in detect-
ing a lower bound for some s′ → t′ [[φ′]], φ and φ′ are sometimes useful, e.g., given
a polynomial interpretation Pol, the validity of “φ implies Pol(s) > Pol(t)” and
“∃n ∈ Z. φ′ implies Pol(s′) > n” is enough. If the constraints of dependency
pairs are over integer arithmetics, we can consider these conditions as arithmetic
constraints over integers. To this end, we employ tree homomorphisms (cf. Chap-
ter 1 in [11]) from marked symbols to the set of terms interpreted to integers.

Definition 23. Let F1 and F2 be sets of function symbols such that F1∩F2 = ∅,
A tree homomorphism H is a function from F1 to T (F2,V) such that H(f)
∈ T (F2, {x1, · · · , xn}) for any n-ary function symbol f ∈ F1. The application
of H to terms in T (F1 ∪ F2,V) is defined as follows: H(x) = x for x ∈ V,
H(f(t1, · · · , tn)) =H(f){xi �→H(ti) | 1 ≤ i ≤ n} for f ∈ F1, and H(g(t1, · · · , tn))
= g(H(t1), · · · ,H(tn)) for g ∈ F2.

Note that for a tree homomorphism H from D�R to T (F ∪ G,V) and terms
t ∈ T (F ∪ G,V) and f(t1, · · · , tn) ∈ T (F ∪ G,V), we have that H(t) ≡ t and
H(f(t1, · · · , tn)�) ≡ H(f �){xi �→ ti | 1 ≤ i ≤ n}.
Example 24. Consider the term u�(x, s(i), plus(z, f(i))) in Fig. 2 and a tree ho-
momorphism H : D�R → T (F ∪ GPA,V) such that H(u�) = minus(x1, x2). Then,
we have H(u�(x, s(i), plus(z, f(i)))) = minus(x, s(i)).

By imposing tree homomorphisms H on a condition “H(s),H(t) ∈ T (G,V) for
all dependency pairs s → t [[φ]]” shown later, we can use negative integer as
coefficients in polynomials, as well as [22,20,13,16,14].

On Proving Termination of Constrained Term Rewrite Systems 149

Finally, we propose a simplified extension of the DP processor based on poly-
nomial interpretations over integers. LetMZ be a structure for (GZ,PZ,V) such
that � ∈ PZ, the universe Z is the set of integers and �MZ = {n > m | n, m ∈ Z}.

Theorem 25. Let R be a locally sound constrained TRS over (F ,GZ,PZ,V ,

MZ), S ⊆ DP (R), and H be a tree homomorphism4 from D�R to T (F ∪ GZ,V)
such that H(s),H(t) ∈ T (GZ,V) for any s→ t [[φ]] ∈ S. Moreover, let

– S� = {s → t [[φ]] | ∀u → v [[ψ]] ∈ S. chain(s → t [[φ]], u′ → v′ [[ψ′]],
Var(H(s))) ⇒ H(s) � H(t) is valid w.r.t. MZ},

– S� = {s → t [[φ]] | ∀u → v [[ψ]] ∈ S. chain(s → t [[φ]], u′ → v′ [[ψ′]],
Var(H(s))) ⇒ H(s) � H(t) ∨H(s) � H(t) is valid w.r.t. MZ},

– Sbound = {s → t [[φ]] | ∃sbound ∈ T (GZ). ∀u → v [[ψ]] ∈ S. chain(s →
t [[φ]], u′ → v′ [[ψ′]], Var(H(s)))⇒ H(s) � sbound is valid w.r.t. MZ},

– Sfilter = {s→ t [[φ]] | Var(H(s)) ⊆ fv(φ)}, and
– Sprsrv = {s→ t [[φ]] | Var(H(t)) ⊆ fv(φ) ∪ Var(H(s))},

where u′ → v′ [[ψ′]] is a renamed variant of u → v [[ψ]] such that Var(s) ∩
Var(u′) = ∅. If none of S ∩ S�, S ∩ Sbound and S ∩ Sfilter is empty and S ⊆
S�∩Sprsrv, then there exists no S-innumerable chain, i.e., the following processor
Proc is sound and complete:

Proc(S) =
{{S \ S�, S \ Sbound, S \ Sfilter} if S ⊆ S� ∩ Sprsrv

{S} otherwise

The proof can be found in [29]. The sets Sfilter and Sprsrv in Theorem 25, orig-
inal ones of this paper, guarantee that every S-innumerable chain with ground
substitutions has a postfix chain from which we can obtain an infinite sequence
of terms in T (GZ) by applying a tree homomorphism H implementing a poly-
nomial interpretation over integers. More precisely, for an S-innumerable chain
s1 → t1 [[φ1]], s2 → t2 [[φ2]], · · · such that tiσi

∗−→R si+1σi+1, φiσi is valid w.r.t.
MZ and siσi, tiσi are ground, Sfilter guaranteesH(skσk) ∈ T (GZ) for some k, and
Sprsrv implies H(tiσi),H(si+1σi+1) ∈ T (GZ) for all j ≥ k, i.e., we have an infinite
sequence H(skσk), H(tkσk), H(sk+1σk+1), H(tk+1σk+1), · · · of terms in T (GZ).
Moreover, local soundness of R implies that (H(tiσi))MZ = (H(si+1σi+1))MZ for
all i ≥ k. For this reason, the DP processor needs not consider rewrite rules in
R. The sets S�, S� and Sbound in Theorem 25, variants of the usual ones, implies
that (H(siσi))MZ ≥ (H(tiσi))MZ for all i ≥ k, the strictly decreasing relation
> appears infinitely many times, and there is a lower bound m (= (sbound)MZ)
such that (H(siσi))MZ > m for all i ≥ k. Thus, the S-innumerable chain leads
us to a contradiction.

In Theorem 25, we restrict structures to ones with the set of integers as the
universe. However, it is possible to generalize Theorem 25 to structures such
that a binary predicate symbol � is interpreted to a non-infinitesimal one [20].
4 In practical, we use tree homomorphisms H such that H(f �) can be interpreted

into a polynomial expression w.r.t. the given structure MZ for any f ∈ D�
R, e.g.,

H(u�) = minus(x1, x2) in Example 24.

150 T. Sakata, N. Nishida, and T. Sakabe

Example 26. Consider the DP problem {(1), (3), (6)} in Example 22. Let H be
a tree homomorphism such that H(f�) = H(u�) = x1 and Proc be the DP
processor in Theorem 25. Then, Proc({(1), (3), (6)}) is {{(3), (6)}, {(1)}} since
both S� and Sbound include (1), and Sfilter includes both (3) and (6). We succeed
in detecting a lower bound via (1). This is not possible if the processor does not
refer the constraints of the dependency pairs following after (1), i.e., the case with
Sbound = {s → t [[φ]] | ∃sbound ∈ T (GZ). φ⇒ H(s) � sbound is valid w.r.t. MZ}.
For this reason, a straightforward extension of the DP processor in [13,14] to
our constrained TRSs is not useful to show that the DP problem {(1), (3), (6)}
is finite. After applying the DP processor in Theorem 20 to {(3), (6)} and {(1)},
the remaining DP problem is {(3)}. Given a tree homomorphism H′ such that
H′(u�) = minus(x1, x2), the processor in Theorem 25 converts {(3)} to {∅} and
thus {(1), (3), (6)} is finite. Therefore, R1 is terminating. Note that termination
of the C program in Fig 1 and of the corresponding integer rewriting system of
R1 could not be proved by AProVE 1.2 [18,16].

6 Graph-Handling DP Framework for Constrained TRSs

In this section, we extend the DP framework to the one such that DP processors
handle subgraphs of dependency graphs, and show how to adapt the existing
DP processors to such ones. Moreover, we extend the DP processor in Theorem
25 so that it eliminates none of nodes but some of edges.

Example 27. Consider the constrained TRS R2 such that R2 = R1∪{u(x, i, z)→
u(p(x), p(i), z) [[i � 0]]}. To prove termination of R2, it is suffices to show that
the DP problem {(1), (3), (6), (15) u�(x, i, z) → u�(p(x), p(i), z) [[i � 0]]} is fi-
nite. Let H be a tree homomorphism such that H(f�) = H(u�) = x1 as well
as Example 26. For the DP problem {(1), (3), (6), (15)}, the DP processor in
Theorem 25 outputs {{(1), (3), (6), (15)}} since the sequence “(1), (15)” cannot
guarantees the existence of a lower bound of infinite chains containing infinitely
many “(1), (15)” and thus Sbound does not include (1). However, any of the se-
quences “(1), (3)”, “(1), (6)”, “(3), (15)”, “(15), (3)” and “(15), (6)” guarantees
the existence of lower bounds for infinite chains containing infinitely many of
the sequence. Thus, it is enough to consider infinite chains such that the se-
quences do not appears in the infinite chain. All of such infinite chains can be
obtained from graphs such that edges which correspond to the sequence are elim-
inated from DG({(1), (3), (6), (15)}, R2). Therefore, it suffices to show finiteness
of the DP problems {(3)} and {(15)} that are SCCs of the graph obtained from
DG({(1), (3), (6), (15)}, R2) by eliminating edges ((1), (3)), ((1), (6)), ((3), (15)),
((15), (3)) and ((15), (6)) (Fig. 4).

Here, we define notations related to graphs. Let G be a graph (V, E). The vertex
and edge sets of G are denoted by V (G) and E(G), respectively, i.e., V = V (G)
and E = E(G). Let V ′ ⊆ V . G\V ′ denotes the graph obtained from G by
removing V ′ from the vertex set and by removing edges related to V ′ from the
edge set, i.e., G\V ′ = (V (G) \ V ′, E(G) \ (V (G) × V ′ ∪ V ′ × V (G))). The set

On Proving Termination of Constrained Term Rewrite Systems 151

(1)(3) (15)(6) (1)(3) (15)(6)

Fig. 4. DG({(1), (3), (6), (15)}, R2) (left), and the graph (right) obtained from the left
one by eliminating edges ((1), (3)), ((1), (6)), ((3), (15)), ((15), (3)) and ((15), (6))

of subgraphs of G is denoted by Subg(G), i.e., Subg(G) = {(V ′, E′) | V ′ ⊆
V (G), E′ ⊆ E(G) ∩ (V ′ × V ′)}. A graph G1 in Subg(G) is called maximal in
X ⊆ Subg(G) if G1 = G2 whenever G1 is a subgraph of G2 for all G2 ∈ X .

We first extend chains to subgraphs of dependency graphs, and then adapt
the termination criterion (Theorems 6 and 7) to the extended chains.

Definition 28. Let R be a constrained TRS and G be a subgraph of DG(R).
A V (G)-chain s1 → t1 [[φ1]],s2 → t2 [[φ2]],· · · is called a G-chain (of R) if
(si → ti [[φi]], si+1 → ti+1 [[φi+1]]) ∈ E(G) for all i ≥ 1. The G-chain is
called minimal if it is a minimal V (G)-chain. Moreover, the infinite G-chain
is called G-innumerable if it is a V (G)-innumerable chain and for every edge
(s → t [[φ]], u → v [[ψ]]) ∈ E(G), the subsequence s → t [[φ]], u → v [[ψ]] appears
infinitely many times in the chain.

Theorem 29. A constrained TRS R is terminating iff there exists no infinite
minimal DG(R)-chain.

Theorem 30. Let R be a constrained TRS, G be a subgraph of DG(R) and
X ⊆ Subg(G) such that there exists no G′-innumerable chain for any G′ ∈ X .
There exists no infinite (minimal) G-chain iff there exists no infinite (minimal)
G′-chain for any maximal graph G′ in Subg(G) \X.

The proofs of Theorem 29 and 30 can be found in [29].
Next, we extend the DP framework to the one such that DP processors handle

subgraphs of dependency graphs. Let R be a constrained TRS. A subgraph of
DG(R) is called a graph-based DP problem (of R) (GDP problem, for short).
A GDP problem G is called finite if there is no infinite minimal G-chain. A
GDP problem G is called infinite if it is not finite or R is not terminating.
A graph-handling DP processor (GDP processor, for short) is a function Proc
which takes a GDP problem as input and returns a finite set of GDP problems. A
GDP processor Proc is called sound if for any GDP problem G, the problem G is
finite whenever all GDP problems in Proc(G) are finite. Proc is called complete
if for any GDP problem G, the problem G is infinite whenever Proc(G) contains
infinite GDP problems. Therefore, a termination proof starts with the initial
GDP problem DG(R) and applies sound GDP processors until an empty graph
of GDP problems is obtained.

Theorem 31. A constrained TRS R is terminating iff the GDP problem DG(R)
is finite. Moreover, R is not terminating iff the GDP problem DG(R) is infinite.

Proof. This theorem follows from Theorem 29. ��

152 T. Sakata, N. Nishida, and T. Sakabe

As a tool to show soundness and completeness of GDP processors, we extend
Theorem 19 as follows.

Theorem 32. Let R be a constrained TRS. A GDP processor Proc is sound
and complete if for any G which is a subgraph of DG(R), there exists no G′-
innumerable chain for any G′ such that V (G′)\V (G′′) �= ∅ or E(G′)\E(G′′) �= ∅
for all G′′ ∈ Proc(G).

Proof. The proof is similar to that of Theorem 19. ��
Next, we show how to adapt the existing DP processors to GDP problems.

Theorem 33. Let R be a constrained TRS, G be a subgraph of DG(R) and
Procp be a DP processor. The following GDP processor Procg is sound if Procp
is sound:

Procg(G) =
{{DG(S, R) | S ∈ Procp(V (G))} if V (G) �∈ Procp(V (G))
{G} otherwise (1)

Suppose that for any infinite (minimal) V (G)-chain, there exists some graph S
∈ Procp(V (G)) such that there exists an infinite (minimal) S-chain as a postfix
chain of the V (G)-chain. Then, the following GDP processor Procg is sound
and complete if Procp is sound and complete:

Procg(G)

=
{{(S, E(G) ∩ S×S) | S ∈ Procp(V (G))} if V (G) �∈ Procp(V (G))
{G} otherwise

(2)

The proof can be found in [29]. The first adaptation (1) in Theorem 33 is naive
and the processor re-computes dependency graphs. Due to the re-computation,
all the eliminated edges are restored and thus the application of the processor
is sometimes meaningless. Moreover, almost all the existing practical and non-
transformational5 DP processors (e.g., processors based on dependency graphs,
reduction pairs [25] and the subterm criterion [22]) satisfy the assumption that
is required to employ (2) in Theorem 33. For these reasons, we prefer (2) in
Theorem 33 to (2).

Thanks to Theorem 33, the DP processor in Theorem 20 can be adapted to
GDP problems. However, the adapted processor is not always useful since for a
GDP problem G such that if DG(V (G), R) is an SCC then it outputs not a set
of SCCs of G but {G}. For this reason, we extend the DP processor in Theorem
20 to a GDP one, without the construction in Theorem 33.

Theorem 34. Let R be a constrained TRS and G be a subgraph of DG(R).
Then, the GDP processor, which takes a GDP problem G and outputs SCCs of
G, is sound and complete.

Proof. Let X = {G′ | G′ is not a subgraph of for any SCC of G}. For all G′ ∈ X ,
there exists no G′-innumerable chain since G′ is not a strongly connected graph.
Thus, the processor is sound and complete it follows from Theorem 32. ��
5 A DP processor is called non-transformational if it returns sets of dependency pairs.

On Proving Termination of Constrained Term Rewrite Systems 153

Finally, we extend the DP processor in Theorem 25 to a GDP one that elimi-
nates none of nodes but some of edges. For a dependency pair, the processor in
Theorem 25 does not always succeed in detecting a lower bound or in ordering
by > with all the dependency pairs following after the focusing dependency pair,
while it is possible to do for some of the accident dependency pairs. As stated
in Example 27, eliminating the edges from the focusing dependency pair to the
accident dependency pairs is sound for proving termination.

Theorem 35. Let R be a locally sound constrained TRS over (F ,GZ,PZ,V ,

MZ), G be a subgraph of DG(R), and H be a tree homomorphism from D�R
to T (F ∪ GZ,V) such that H(s),H(t) ∈ T (G,V) for any s → t [[φ]] ∈ V (G).
Moreover, let

– E� = {(s→ t [[φ]], u→ v [[ψ]]) | chain(s→ t [[φ]], u′ → v′ [[ψ′]], Var(H(s)))⇒
H(s) � H(t) is valid w.r.t. MZ},

– E� = {(s→ t [[φ]], u→ v [[ψ]]) | chain(s→ t [[φ]], u′ → v′ [[ψ′]], Var(H(s)))⇒
H(s) � H(t) ∨H(s) � H(t) is valid w.r.t. MZ},

– Ebound = {(s → t [[φ]], u → v [[ψ]]) | ∃sbound ∈ T (GZ), chain(s → t [[φ]], u′ →
v′ [[ψ′]], Var(H(s)))⇒ H(s) � sbound is valid w.r.t. MZ},

– Sfilter = {s→ t [[φ]] | Var(H(s)) ⊆ fv(φ)}, and
– Sprsrv = {s→ t [[φ]] | Var(H(t)) ⊆ fv(φ) ∪ Var(H(s))},

where u′ → v′ [[ψ′]] is a renamed variant of u → v [[ψ]] such that Var(s) ∩
Var(u′) = ∅. If none of E(G) ∩E�, E(G) ∩ Ebound and V (G) ∩ Sfilter is empty,
E(G) ⊆ E� and V (G) ⊆ Sprsrv, then there exists no G-innumerable chain, i.e.,
the following processor Proc is sound and complete:

Proc(G) =
⎧

⎨

⎩

{(V (G), E(G) \ E�), (V (G), E(G) \ Ebound), (G\Sfilter
)} if V (G) ⊆ Sprsrv

and E(G) ⊆ E�
{G} otherwise

Proof. The proof is similar to that of Theorem 25. ��

Example 36. Consider the constrained TRS R2 in Example 27 again. Let H
be a tree homomorphism such that H(f�) = H(u�) = x1. For the GDP problem
DG({(1), (3), (6), (15)}, R2), the GDP processor in Theorem 35 outputs the three
GDP problems illustrated in Fig. 5. By using the GDP processors in Theorems
34 and 35, it is possible to show that these three GDP problems are finite and
hence DG({(1), (3), (6), (15)}, R2) is finite. Therefore, R2 is terminating.

(1)(3) (15)(6) (1)(3) (15)(6) (1) (15)

Fig. 5. the GDP problems obtained from DG({(1), (3), (6), (15)}, R2) by applying the
GDP processor in Theorem 35

154 T. Sakata, N. Nishida, and T. Sakabe

7 Conclusion

In this paper, we have extended both the termination criterion w.r.t. dependency
pairs and the DP framework to constrained TRSs, and have proposed a DP
processor, which is a simplified combination of the lower bound detection and
the polynomial interpretation method over integers. Then we have extended the
DP framework for constrained TRSs to the GDP framework and have shown how
to adapt the existing DP processors to the GDP framework. As future work,
we will adapt the GDP framework for constrained TRSs to transformational
processors such as the argument filtering processor [19], and will implement the
GDP framework. Furthermore, we will improve the GDP processors, e.g., the
one in Theorem 35.

References

1. Armando, A., Rusinowitch, M., Stratulat, S.: Incorporating decision procedures in
implicit induction. J. Symb. Comput. 34(4), 241–258 (2002)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.
Comput. Sci. 236(1-2), 133–178 (2000)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
United Kingdom (1998)

4. Borralleras, C., Rubio, A.: Orderings and constraints: Theory and practice of prov-
ing termination. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud
Festschrift. LNCS, vol. 4600, pp. 28–43. Springer, Heidelberg (2007)

5. Bouhoula, A., Rusinowitch, M.: Implicit induction in conditional theories. Journal
of Automated Reasoning 14(2), 189–235 (1995)

6. Bouhoula, A., Jacquemard, F.: Automated induction for complex data structures.
In: CoRR, abs/0811.4720 (2008)

7. Bouhoula, A., Jacquemard, F.: Automated induction with constrained tree au-
tomata. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 539–554. Springer, Heidelberg (2008)

8. Comon, H.: Completion of rewrite systems with membership constraints. In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 392–403. Springer, Heidelberg (1992)

9. Comon, H.: Completion of rewrite systems with membership constraints. part I:
Deduction rules. J. Symb. Comput. 25(4), 397–419 (1998)

10. Comon, H.: Completion of rewrite systems with membership constraints. part II:
Constraint solving. J. Symb. Comput. 25(4), 421–453 (1998)

11. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding,
C., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata (release October 12, 2007)

12. Falke, S., Kapur, D.: Inductive decidability using implicit induction. In: Hermann,
M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 45–59. Springer,
Heidelberg (2006)

13. Falke, S., Kapur, D.: Dependency pairs for rewriting with built-in numbers and
semantic data structures. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp.
94–109. Springer, Heidelberg (2008)

14. Falke, S., Kapur, D.: A term rewriting approach to the automated termination anal-
ysis of imperative programs. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663,
pp. 277–293. Springer, Heidelberg (2009)

On Proving Termination of Constrained Term Rewrite Systems 155

15. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl,
H.: Maximal termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp.
110–125. Springer, Heidelberg (2008)

16. Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termination
of integer term rewriting. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp.
32–47. Springer, Heidelberg (2009)

17. Furuichi, Y., Nishida, N., Sakai, M., Kusakari, K., Sakabe, T.: Approach to
procedural-program verification based on implicit induction of constrained term
rewriting systems. IPSJ Trans. on Prog. 1(2), 100–121 (2008) (in Japanese)

18. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJ-
CAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

19. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg
(2005)

20. Giesl, J., Thiemann, R., Swiderski, S., Schneider-Kamp, P.: Proving termination
by bounded increase. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603,
pp. 443–459. Springer, Heidelberg (2007)

21. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. In:
Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 32–46. Springer, Hei-
delberg (2003)

22. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
Inf. Comput. 205(4), 474–511 (2007)

23. Hoot, C.: Completion for constrained term rewriting systems. In: Rusinowitch, M.,
Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 408–423. Springer, Heidelberg
(1993)

24. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, Cambridge (2000)

25. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg
(1999)

26. Lynch, C., Snyder, W.: Redundancy criteria for constrained completion. Theor.
Comput. Sci. 142(2), 141–177 (1995)

27. Nishida, N., Sakai, M., Hattori, T.: On Disproving Termination of Constrained
Term Rewriting Systems. In: Proc. of WST 2010, 5 pages (2010)

28. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
29. Sakata, T., Nishida, N., Sakabe, T.: On proving termination of constrained term

rewriting systems by eliminating edges from dependency graphs. The Full Version
of this Paper, http://www.trs.cm.is.nagoya-u.ac.jp/~nishida/wflp11/

30. Sakata, T., Nishida, N., Sakabe, T., Sakai, M., Kusakari, K.: Rewriting induction
for constrained term rewriting systems. IPSJ Trans. on Prog. 2(2), 80–96 (2009)
(in Japanese)

31. Thieman, R.: The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen University, Germany (October 2007)

32. Toyama, Y.: Confluent term rewriting systems with membership conditions. In:
Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 228–241.
Springer, Heidelberg (1988)

33. Yamada, J.: Confluence of terminating membership conditional TRS. In: Rusinow-
itch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 378–392. Springer,
Heidelberg (1993)

Author Index

Almendros-Jiménez, Jesus M. 35
Antoy, Sergio 19

Braßel, Bernd 1

Caballero, Rafael 35

Delgado-Muñoz, Agustin D. 52

Florido, Mário 86

Garćıa-Ruiz, Yolando 35

Hanus, Michael 1, 19

Kuchen, Herbert 122

Majchrzak, Tim A. 122
Melo de Sousa, Simão 86

Nishida, Naoki 138

Peemöller, Björn 1
Peña, Ricardo 52

Reck, Fabian 1
Rodrigues, Vı́tor 86

Sáenz-Pérez, Fernando 35
Sakabe, Toshiki 138
Sakata, Tsubasa 138
Samulowitz, Horst 68
Schrijvers, Tom 68
Stuckey, Peter 68

Tack, Guido 68

Wuille, Pieter 68

Zinn, Claus 104

	Cover
	Lecture Notes in Computer Science 6816
	Functional
and Constraint
Logic Programming
	ISBN 9783642225307
	Preface
	Organization
	Table of Contents
	Functional Logic Programming
	KiCS2: A New Compiler from Curry to Haskell

	Introduction
	Curry Programs
	Compilation to Haskell: The Basics
	Representing Non-deterministic Computations
	The Basic Translation Scheme
	Extracting Values

	Benchmarks
	Further Features
	Search Strategies
	Encapsulated Search
	Logic Variables and Unification

	Conclusions and Related Work
	References

	New Functional Logic Design Patterns

	Introduction
	Functional Logic Programming and Curry
	Patterns
	Call-by-Reference
	Many-to-Many
	Quantification
	Deep Selection
	Non-determinism Introduction and Elimination

	Conclusion and Related Work
	References

	XQuery in the Functional-Logic Language Toy

	Introduction
	XPath in TOY
	The Functional-Logic Language TOY
	Representing XPath Queries

	XQuery in TOY
	XQuery Optimization in TOY
	XQuery as Higher Order Patterns
	XQuery Transformations

	Conclusions
	References

	Functional Programming
	Size Invariant and Ranking Function Synthesis in a Functional Language

	Introduction
	Linear Constraints Techniques
	The Safe Functional Language
	Size Invariant Inference
	Ranking Function Synthesis
	Conclusions
	References

	Memoizing a Monadic Mixin DSL

	Application Domain
	Brief DSL Overview
	DSL Syntax

	Implementation
	C++ Abstract Syntax Tree
	The Combinator Stack
	The Code Generator
	Code Generation Mixins
	Monadic Components
	Effect Encapsulation

	Memoization and Inlining
	Basic Memoization
	Monadic Memoization
	Backend Sharing

	Evaluation
	Related Work
	Conclusions
	References

	A Functional Approach to Worst-Case Execution Time Analysis

	Introduction
	Related Work
	The Two-Level Meta-language
	Fixpoint Semantics
	The Static Analyzer
	Program Flow Analysis
	Microarchitectural Analysis

	Conclusions
	References

	Building a Faceted Browser in CouchDB Using Views on Views and Erlang Metaprogramming

	Introduction and Background
	Faceted Browsing
	Motivation
	Theoretical Background

	CouchDB and Its Map-Reduce Framework
	Design and Engineering Choices
	Map-Reduce Framework

	Implementation
	Document Ingestion
	Document Indexing with Map-Reduce
	Data Curation and Conversion of Views to Documents
	Faceted Search with Map-Reduce
	Web Interface

	Evaluation and Future Work
	Related Work and Conclusion
	References

	Integration of Constraint Logic and Object-Oriented
Programming
	Logic Java: Combining Object-Oriented and Logic Programming

	Introduction
	Related Work
	Design of Logic Java
	General Principles
	Introductory Examples

	Implementation
	Strength and Limitations
	Conclusion and Future Work
	References

	Term Rewriting
	On Proving Termination of Constrained Term Rewrite Systems by Eliminating Edges from Dependency Graphs

	Introduction
	Preliminaries
	Termination Criterion for Constrained TRSs
	Necessary Condition of Two Dependency Pairs for Forming a Chain
	DP Framework for Constrained TRSs
	Graph-Handling DP Framework for Constrained TRSs
	Conclusion
	References

	Author Index

