
PROGR AMMING L ANGUAGES

Introducing Elixir

ISBN: 978-1-449-36999-6

US $24.99 CAN $26.99

Twitter: @oreillymedia
facebook.com/oreilly

Elixir is an excellent language if you want to learn about functional
programming, and with this hands-on introduction, you’ll discover just
how powerful and fun Elixir can be. This language combines the robust
functional programming of Erlang with a syntax similar to Ruby, and
includes powerful features for metaprogramming.

This book shows you how to write simple Elixir programs by teaching one skill
at a time. Once you pick up pattern matching, process-oriented programming,
and other concepts, you’ll understand why Elixir makes it easier to build
concurrent and resilient programs that scale up and down with ease.

 ■ Get comfortable with IEx, Elixir’s command-line interface

 ■ Discover atoms, pattern matching, and guards: the foundations
of your program structure

 ■ Delve into the heart of Elixir with recursion, strings, lists, and
higher-order functions

 ■ Create processes, send messages among them, and apply
pattern matching to incoming messages

 ■ Store and manipulate structured data with Erlang Term Storage
and the Mnesia database

 ■ Build resilient applications with Erlang’s Open Telecom
Platform

 ■ Define macros with Elixir’s metaprogramming tools

Simon St. Laurent is a Strategic Content Director at O’Reilly Media, Inc., focusing
primarily on web-related topics. He is co-chair of O’Reilly’s Fluent and OSCON
conferences. Simon has written or co-written books, including Introducing Erlang,
Learning Rails 3, and XML Pocket Reference, Third Edition (all O’Reilly).

J. David Eisenberg is a programmer and instructor in San Jose, California, with a
talent for teaching and explaining. He’s developed courses for CSS, JavaScript,
CGI, and XML, and teaches Computer Information Technology courses at
Evergreen Valley College. David has written books including SVG Essentials,
Études for Erlang (both O’Reilly), and Let’s Read Hiragana (Eisenberg Consulting).

Simon St. Laurent & J. David Eisenberg

 Introducing

 Elixir
GETTING STARTED IN FUNCTIONAL PROGRAMMING

Introducing E
lixir

St. Laurent &
 Eisenberg

www.it-ebooks.info

http://www.it-ebooks.info/

PROGR AMMING L ANGUAGES

Introducing Elixir

ISBN: 978-1-449-36999-6

US $24.99 CAN $26.99

Twitter: @oreillymedia
facebook.com/oreilly

Elixir is an excellent language if you want to learn about functional
programming, and with this hands-on introduction, you’ll discover just
how powerful and fun Elixir can be. This language combines the robust
functional programming of Erlang with a syntax similar to Ruby, and
includes powerful features for metaprogramming.

This book shows you how to write simple Elixir programs by teaching one skill
at a time. Once you pick up pattern matching, process-oriented programming,
and other concepts, you’ll understand why Elixir makes it easier to build
concurrent and resilient programs that scale up and down with ease.

 ■ Get comfortable with IEx, Elixir’s command-line interface

 ■ Discover atoms, pattern matching, and guards: the foundations
of your program structure

 ■ Delve into the heart of Elixir with recursion, strings, lists, and
higher-order functions

 ■ Create processes, send messages among them, and apply
pattern matching to incoming messages

 ■ Store and manipulate structured data with Erlang Term Storage
and the Mnesia database

 ■ Build resilient applications with Erlang’s Open Telecom
Platform

 ■ Define macros with Elixir’s metaprogramming tools

Simon St. Laurent is a Strategic Content Director at O’Reilly Media, Inc., focusing
primarily on web-related topics. He is co-chair of O’Reilly’s Fluent and OSCON
conferences. Simon has written or co-written books, including Introducing Erlang,
Learning Rails 3, and XML Pocket Reference, Third Edition (all O’Reilly).

J. David Eisenberg is a programmer and instructor in San Jose, California, with a
talent for teaching and explaining. He’s developed courses for CSS, JavaScript,
CGI, and XML, and teaches Computer Information Technology courses at
Evergreen Valley College. David has written books including SVG Essentials,
Études for Erlang (both O’Reilly), and Let’s Read Hiragana (Eisenberg Consulting).

Simon St. Laurent & J. David Eisenberg

 Introducing

 Elixir
GETTING STARTED IN FUNCTIONAL PROGRAMMING

Introducing E
lixir

St. Laurent &
 Eisenberg

www.it-ebooks.info

http://www.it-ebooks.info/

Simon St. Laurent and J. David Eisenberg

Introducing Elixir

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Elixir
by Simon St. Laurent and J. David Eisenberg

Copyright © 2014 Simon St. Laurent and J. David Eisenberg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Melanie Yarbrough
Proofreader: Amanda Kersey
Indexer: J. David Eisenberg

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

September 2014: First Edition

Revision History for the First Edition:

2014-09-10: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449369996 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introducing Elixir, the cover image of a
four-horned antelope, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the authors have used good faith efforts to ensure that the information and in‐
structions contained in this work are accurate, the publisher and the authors disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

ISBN: 978-1-449-36999-6

[LSI]

www.it-ebooks.info

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449369996
http://www.it-ebooks.info/

Table of Contents

Preface. vii

1. Getting Comfortable. 1
Installation 1

Installing Erlang 1
Installing Elixir 2

Firing It Up 2
First Steps 2

Moving Through Text and History 3
Moving Through Files 3

Doing Something 4
Calling Functions 5
Numbers in Elixir 6
Working with Variables in the Shell 8

2. Functions and Modules. 11
Fun with fn 11
And the & 13
Defining Modules 13
From Module to Free-Floating Function 16
Splitting Code Across Modules 17
Combining Functions with the Pipe Operator 18
Importing Functions 19
Default Values for Arguments 20
Documenting Code 21
Documenting Functions 22
Documenting Modules 23

iii

www.it-ebooks.info

http://www.it-ebooks.info/

3. Atoms, Tuples, and Pattern Matching. 25
Atoms 25
Pattern Matching with Atoms 25
Atomic Booleans 27
Guards 28
Underscoring That You Don’t Care 31
Adding Structure: Tuples 33

Pattern Matching with Tuples 33
Processing Tuples 34

4. Logic and Recursion. 37
Logic Inside of Functions 37

Evaluating Cases 37
Adjusting to Conditions 40
If, or else 41
Variable Assignment in case and if Constructs 42

The Gentlest Side Effect: IO.puts 43
Simple Recursion 44

Counting Down 45
Counting Up 46
Recursing with Return Values 47

5. Communicating with Humans. 51
Strings 51
Multiline Strings 53
Unicode 54
Character Lists 54
String Sigils 55
Asking Users for Information 56

Gathering Characters 56
Reading Lines of Text 58

6. Lists. 61
List Basics 61
Splitting Lists into Heads and Tails 63
Processing List Content 64
Creating Lists with Heads and Tails 66
Mixing Lists and Tuples 68
Building a List of Lists 68

7. Name-Value Pairs. 73
Keyword Lists 73

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Lists of Tuples with Multiple Keys 75
Hash Dictionaries 76
From Lists to Maps 77

Creating Maps 77
Updating Maps 78
Reading Maps 78

From Maps to Structs 78
Setting Up Structs 79
Creating and Reading Structs 79
Pattern Matching Against Structs 80
Using Structs in Functions 80
Adding Behavior to Structs 82
Adding to Existing Protocols 84

8. Higher-Order Functions and List Comprehensions. 87
Simple Higher-Order Functions 87
Creating New Lists with Higher-Order Functions 89

Reporting on a List 90
Running List Values Through a Function 90
Filtering List Values 91

Beyond List Comprehensions 92
Testing Lists 92
Splitting Lists 93
Folding Lists 94

9. Playing with Processes. 97
The Shell Is a Process 97
Spawning Processes from Modules 99
Lightweight Processes 102
Registering a Process 102
When Processes Break 104
Processes Talking Amongst Themselves 105
Watching Your Processes 107

Watching Messages Among Processes 109
Breaking Things and Linking Processes 110

10. Exceptions, Errors, and Debugging. 119
Flavors of Errors 119
Rescuing Code from Runtime Errors as They Happen 120
Logging Progress and Failure 122
Tracing Messages 123
Watching Function Calls 125

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Unit Tests 126

11. Storing Structured Data. 131
Records: Structured Data Before structs 131

Setting Up Records 132
Creating and Reading Records 133
Using Records in Functions 134

Storing Data in Erlang Term Storage 136
Creating and Populating a Table 138
Simple Queries 142
Overwriting Values 143
ETS Tables and Processes 144
Next Steps 146

Storing Records in Mnesia 146
Starting up Mnesia 146
Creating Tables 147
Reading Data 151

12. Getting Started with OTP. 153
Creating Services with gen_server 154
A Simple Supervisor 159
Packaging an Application with Mix 162

13. Using Macros to Extend Elixir. 167
Functions versus Macros 167
A Simple Macro 168
Creating New Logic 170
Creating Functions Programatically 171
When (Not) to Use Macros 173
Sharing the Gospel of Elixir 173

A. An Elixir Parts Catalog. 175

B. Generating Documentation with ExDoc. 183

Index. 187

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Elixir offers developers the functional power and concurrent resilience of Erlang, with
friendlier syntax, libraries, and metaprogramming. Elixir compiles to Erlang byte code,
and you can mix and match it with Erlang and Erlang tools. Despite a shared foundation,
however, Elixir feels very different, perhaps more similar to Ruby than to Erlang’s an‐
cestor Prolog.

Introducing Elixir will give you a gentle guide to this powerful language.

This release of Introducing Elixir covers version 1.0.0. We will up‐
date it as the language evolves. If you find mistakes or things that have
broken, please let us know through the errata system.

Who This Book Is For
This book is mostly for people who’ve been programming in other languages but want
to look around. Maybe you’re being very practical, and a distributed model, with its
resulting scale and resilience advantages, appeals to you. Maybe you want to see what
this “functional programming” stuff is all about. Or maybe you’re just going for a hike,
taking your mind to a new place.

I suspect that functional programming is more approachable as a first language, before
you’ve learned to program in other paradigms. However, getting started in Elixir—
sometimes even just installing it—requires a fair amount of computing skill. If you’re a
complete newcomer to programming, welcome, but there will be a few challenges along
the way.

Who This Book Is Not For
This book is not for people in a hurry to get things done.

vii

www.it-ebooks.info

http://bit.ly/elixir-errata
http://www.it-ebooks.info/

If you already know Elixir, you don’t likely need this book unless you’re looking for a
slow brush-up.

If you already know Erlang, this book will give you an opportunity to see how things
are different, but odds are good that you understand the key structures.

If you’re already familiar with functional languages, you may find the pacing of this
gentle introduction hopelessly slow. Definitely feel welcome to jump to another book
or online documentation that moves faster if you get bored.

What This Book Will Do For You
You’ll learn to write simple Elixir programs. You’ll understand why Elixir makes it easier
to build resilient programs that can scale up and down with ease. You’ll be able to read
other Elixir resources that assume a fair amount of experience and make sense of them.

In more theoretical terms, you’ll get to know functional programming. You’ll learn how
to design programs around message passing and recursion, creating process-oriented
programs focused more on data flow.

Most importantly, the gates to concurrent application development will be open.
Though this introduction only gets you started using the incredible powers of OTP, that
foundation can take you amazing places. Once you’ve mastered the syntax and learned
about Elixir’s expectations for structuring programs, your next steps should be creating
reliable and scalable applications - with much less effort than you would have needed
in other approaches!

How This Book Works
This book tries to tell a story with Elixir. You’ll probably get the most out of it if you
read it in order at least the first time, though you’re always welcome to come back to
find whatever bits and pieces you need.

You’ll start by getting Elixir installed and running, and looking around its shell, IEx.
You’ll spend a lot of time in that shell, so get cozy. Next, you’ll start loading code into
the shell to make it easier to write programs, and you’ll learn how to call that code and
mix it up.

You’ll take a close look at numbers because they’re an easy place to get familiar with
Elixir’s basic structures. Then you’ll learn about atoms, pattern matching, and guards
—the likely foundations of your program structure. After that you’ll learn about strings,
lists, and the recursion at the heart of much Elixir processing. Once you’ve gone a few
thousand recursions down and back, it’ll be time to look at processes, a key part of Elixir
that relies on the message-passing model to support concurrency and resilience.

viii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Once you have the foundation set, you can take a closer look at debugging and data
storage, and then get a quick look at a toolset that is likely at the heart of your long-term
development with Elixir: Erlang’s Open Telecom Platform (OTP), which is about much
much more than telephones.

Finally, you’ll learn about Elixir’s macro tools, features that give Elixir tremendous flex‐
ibility by letting you extend the language.

Some people want to learn programming languages through a dictionary, smashing
together a list of operators, control structures, and datatypes. Those lists are here, but
they’re in Appendix A, not the main flow of the book.

The main point you should get from this book is that you can program in Elixir. If you
don’t get that, let me know!

Other Resources
This book may not be the best way for you to learn Elixir. It all depends on what you
want to learn and why. If you’re looking for a faster-flying introduction to the language,
Dave Thomas’ Programming Elixir (Pragmatic Publishers) jumps in faster and empha‐
sizes Elixir’s uniqueness more frequently.

If you like the pace of this book and want to try out your new knowledge, you might
like Études for Elixir (O’Reilly Media). That book provides descriptions of short pro‐
grams that you can write in Elixir, and they may ask you stretch a bit beyond the examples
you find here. It is also designed so that its chapters are in parallel with this book’s
chapters.

The other books in the field all cover Erlang, not Elixir. Hopefully there will be more
Elixir-specific work soon. Elixir in Action (Manning) is getting underway. The main
Elixir website includes a lot of tutorials, documentation, and links to other resources.

If your primary interest in learning Elixir is to break out of a programming rut, you
should explore Bruce Tate’s wild tour of Seven Languages in Seven Weeks (Pragmatic
Publishers), which explores Ruby, Io, Prolog, Scala, Erlang, Clojure, and Haskell. Erlang
gets only (an excellent) 37 pages, but that might be what you want.

Erlang books can also help you understand what makes Elixir work so well.

For a simple introduction to Erlang that largely parallels this book, Introducing Er‐
lang will get you started with Erlang and functional programming.

For an online experience (now also in print from No Starch Books) with more snark
and funnier illustrations, you should explore Fred Hebert’s Learn You Some Erlang for
Great Good!.

Preface | ix

www.it-ebooks.info

http://bit.ly/etudes_for_elixir
http://www.elixir-lang.org/
http://www.elixir-lang.org/
http://learnyousomeerlang.com/
http://learnyousomeerlang.com/
http://www.it-ebooks.info/

The two classic general books on Erlang are the similarly-titled Programming Erlang
(Pragmatic Publishers) by Erlang creator Joe Armstrong, and Erlang Programming
(O’Reilly) by Francesco Cesarini and Simon Thompson. They cover a lot of similar and
overlapping terrain, and both may be good places to start if this book moves too slowly
or you need more reference material. Erlang Programming goes further into what you
can do with Erlang, whereas Programming Erlang provides a lot of detail on setting up
an Erlang programming environment.

On the more advanced side, Erlang and OTP in Action (Manning) by Martin Logan,
Eric Merritt, and Richard Carlsson, opens with a high-speed 72-page introduction to
Erlang and then spends most of its time applying the Open Telecom Platform, Erlang’s
framework for building upgradeable and maintainable concurrent applications.

Designing for Scalability with Erlang/OTP (O’Reilly), by Francesco Cesarini and Steve
Vinoski, explores how OTP and Erlang make things that seem hugely difficult in other
environments a normal day’s work in Erlang.

If you want to focus on connecting Erlang to the Web, you should definitely also explore
Building Erlang Web Applications (O’Reilly) by Zachary Kessin.

You’ll also want to visit the main Erlang website for updates, downloads, documentation,
and more.

Elixir Will Change You
Before you go deeper, you should know that working in Elixir may irrevocably change
the way you look at programs. Its combination of functional code, process orientation,
and distributed development may seem alien at first. However, once it sinks in, Elixir
can transform the way you solve problems (perhaps even beyond the way Erlang does),
and potentially make it difficult to return to other languages, environments, and pro‐
gramming cultures.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

x | Preface

www.it-ebooks.info

http://bit.ly/erlang-prog
http://bit.ly/web-apps-erlang
http://www.erlang.org/
http://www.it-ebooks.info/

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
The examples in this book are meant to teach basic concepts in small bites, making it
easy to see what changed from one example to another. While you may certainly borrow
code and reuse it as you see fit, you won’t be able to take the code of this book and build
a stupendous application instantly (unless perhaps you have an unusual fondness for
calculating the speeds of falling objects). You should, however, be able to figure out the
steps you need to take to build a great application.

You can download the code from GitHub. (Eventually it will also be available from the
Examples link on the book’s catalog page.)

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you are reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Introducing Elixir, by Simon St.Laurent and
J. David Eisenberg (O’Reilly). Copyright 2014 Simon St.Laurent and J. David Eisenberg,
978-1-449-36999-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Preface | xi

www.it-ebooks.info

http://bit.ly/1uerSjm
http://bit.ly/introducing_elixir
mailto:permissions@oreilly.com
http://www.it-ebooks.info/

Help This Book Grow
While I hope that you will enjoy reading this book and learn from it, I also hope that
you can contribute to helping other readers learn Elixir here. You can help your fellow
readers in a number of ways:

• If you find specific technical problems, bad explanations, or things that can be
improved, please report them through the errata system.

• If you like (or don’t like) the book, please leave reviews. The most visible places to
do so are on Amazon.com (or its international sites) and at the O’Reilly page for
the book. Detailed explanations of what worked and what didn’t work for you (and
the broader target audience of programmers new to Erlang) are helpful to other
readers and to me.

• If you find you have much more you want to say about Elixir, please consider sharing
it, whether on the Web, in a book of your own, in training classes, or in whatever
form you find easiest.

We’ll update the book for errata and try to address issues raised in reviews. Even once
the book is “complete,” I may still add some extra pieces to it. If you purchased it as an
ebook, you’ll receive these updates for free at least up to the point where it’s time for a
whole new edition. I don’t expect that new edition declaration to come quickly, however,
unless the Elixir world changes substantially.

Hopefully this book will engage you enough to make you consider sharing.

Please Use It For Good
We’ll let you determine what “good” means, but think about it. Please try to use Elixir’s
power for projects that make the world a better place, or at least not a worse place.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

xii | Preface

www.it-ebooks.info

http://bit.ly/elixir-errata
http://bit.ly/introducing_elixir
http://bit.ly/introducing_elixir
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
http://www.it-ebooks.info/

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/introducing_elixir.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The Elixir community is amazing, open to questions and suggestions from a wide range
of perspectives. We’ve been lucky to be able to ask questions and get them answered,
and have enjoyed a rare community that treats “difficult to explain” as a problem worth
fixing in code.

José Valim’s leadership and explanations have helped us throughout the project. Our
competitor Dave Thomas confirmed that yes, Elixir is here and the world is waiting for
it. From the Erlang side, Francesco Cesarini encouraged us to purse this new language
sibling. Reviewers Bibek Pandey, Alexei Sholik, David Lorenzetti, Bengt Kleberg, Mistral

Preface | xiii

www.it-ebooks.info

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/introducing_elixir
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Contrastin, Augie De Blieck Jr, Arie van Wingerden, Elias Carrillo, and Nicholas helped
us find the errors of our ways.

Our editor Meghan Blanchette kept us on track, and Melanie Yarbrough saw the book
through an intricate production process as we waited for Elixir to finalize.

Also, J. David Eisenberg’s commitment to the project saved Simon St.Laurent repeatedly!

Thanks also to Simon, who made David’s first experience as a co-author a pleasant one.

xiv | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Getting Comfortable

The easiest place to start learning Elixir is in Interactive Elixir, iex. This command-line
interface is a cozy place to get started and a good place to start figuring out what works
and what doesn’t work in Elixir. Its features will spare you headaches later, so settle in!

Installation
Because Elixir runs on top of Erlang, you’ll need to install Erlang on your system first,
and then install Elixir.

Installing Erlang
If you’re on Windows, installing Erlang is easy. Download the Windows binary file, run
the installer, and you’re set. If you are a brave beginner tackling your first programming
language, this is easily your best bet.

On Linux or Mac OS X, you may be able to download the source file and compile it. For
me, on Mac OS X, I just had to unzip and untar it, and then, from the directory created
by the untarring, run ./configure, make, and sudo make install. However, that simple
sequence works only if you have the right files previously installed, and can give you
mysterious errors if they weren’t. In particular, Apple’s shift to the LLVM compiler in
newer versions of XCode instead of GCC makes it less likely that GCC will be on newer
Mac OS X systems, and Erlang needs GCC.

(You can also ignore the error about FOP, which Erlang uses to generate PDF docu‐
mentation you can download elsewhere. Also, on newer Macs, you’ll get an error at the
end that wxWidgets doesn’t work on 64-bit Mac OS X. For now, ignore this.)

If the compilation approach doesn’t work or isn’t for you, Erlang Solutions offers a
number of installs. Also, many different package managers (Debian, Ubuntu, MacPorts,
homebrew, and so on) include Erlang. It may not be the very latest version, but having

1

www.it-ebooks.info

http://www.erlang.org/download.html
http://bit.ly/erlang-dl
http://www.it-ebooks.info/

Erlang running is much better than not having Erlang running. They do tend to make
it run on the latest version of various operating systems, so if you have installation
problems, look closely at their requirements.

Erlang is increasingly part of the default installation on many sys‐
tems, including Ubuntu, largely thanks to the spread of CouchDB.

Installing Elixir
Once you have Erlang installed, you should be able to download a precompiled version
of Elixir or the GitHub source. Some package managers are starting to support Elixir,
including homebrew. This version of this book should work with Elixir 1.0.0.

Then you need to set your path so that it can find elixir/bin.

Elixir’s instructions for setup are organized into a tutorial.

Firing It Up
Go to the command line (or shell, or terminal) and type iex.

You’ll see something like the following code sample, likely with a cursor next to the
iex(1)> prompt:

Erlang/OTP 17 [erts-6.0] [source-07b8f44] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false] [dtrace]

Interactive Elixir (1.0.0) - press Ctrl+C to exit (type h() ENTER for help)

You’re in Elixir! (The first line about Erlang reflects that Elixir runs within Erlang. Don’t
worry about that part!)

First Steps
Before moving on to the excitement of programming Elixir, it’s always worth noting
how to quit. The shell suggests Ctrl+C, which will bring you to a menu. If you press “a”
in that menu, IEx will stop, and you’ll see whatever prompt you had before starting IEx:

iex(1)>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a
$

You can also ask iex (once you start it up again) for help, by entering h() or just h:

2 | Chapter 1: Getting Comfortable

www.it-ebooks.info

http://bit.ly/1lbMOnw
http://bit.ly/1lbMOnw
http://bit.ly/elixir-lang
http://bit.ly/elixir-install
http://www.it-ebooks.info/

iex(1)> h()
IEx.Helpers

 IEx.Helpers

Welcome to Interactive Elixir. You are currently seeing the documentation for
the module IEx.Helpers which provides many helpers to make Elixir's shell more
joyful to work with.

This message was triggered by invoking the helper h(), usually referred to as
h/0 (since it expects 0 arguments).

There are many other helpers available:
...
:ok

So what have you done here? You’ve issued an iex command, calling a helper function,
h, that provides you with some basic help information. It printed a lot of information
to the screen and then ended, returning :ok.

Moving Through Text and History
If you explore the shell, you’ll find that many things work the way they do in other shells,
or in Emacs. The left and right arrow keys move you backward and forward through
the line you’re editing. Some of the key bindings echo those of the Emacs text editor.
Ctrl-A will take you to the beginning of a line, while Ctrl-E will take you back to the
end of the line. If you get two characters in the wrong sequence, pressing Ctrl-T will
transpose them.

Also, as you type closing parentheses or square brackets, the cursor will highlight the
corresponding opening parenthesis or square bracket.

The up- and down-arrow keys run through the history, making it easy to reissue com‐
mands. You can reference a given result value with v(N), where N is the line number.

Moving Through Files
IEx does understand filesystems to some extent because you may need to move through
them to reach the files that will become part of your program. The commands have the
same names as Unix commands but are expressed as functions. IEx starts wherever you
opened the shell, and you can figure out where that is with pwd:

iex(1)> pwd()
/Users/elixir/code/
:ok

First Steps | 3

www.it-ebooks.info

http://www.it-ebooks.info/

If you get tired of typing the empty parentheses, you can skip it. We’ve
included them here to emphasize that you’re calling functions.

To change directories, use the cd function, but you’ll need to wrap the argument in
double quotes:

iex(2)> cd ".."
/Users/elixir
:ok
iex(3)> cd "code"
/Users/elixir/code
:ok

You can look around with the ls() command, which will list files in the current directory
if you give it no arguments, and list files in a specified directory if you give it one
argument.

Doing Something
One of the easiest ways to get started playing with Elixir is to use the shell as a calculator.
Unlike your typical command line, you can enter mathematical expressions and get
useful results:

Interactive Elixir (0.13.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> 2+2
4
iex(2)> 27-14
13
iex(3)> 35*42023943
1470838005
iex(4)> 4*(3+5)
32
iex(5)> 200/15
13.333333333333334

The first three operators are addition(+), subtraction(-), and multiplication(*), which
work the same way whether you’re working with integer values or floating points.
Parentheses let you modify the order in which operators are processed, as shown on
line 4. (The normal order of operations is listed in Appendix A.) The fourth operator, /,
supports division where you expect a floating-point (a number with a decimal part)
result, as shown on line 5.

4 | Chapter 1: Getting Comfortable

www.it-ebooks.info

http://www.it-ebooks.info/

Calling Functions
Functions are bits of logic that accept arguments and return a value. Mathematical
functions are an easy place to start. For example, if you want an integer result (and have
integer arguments), use the div function instead of the / operator, with rem to get the
remainder, as shown on lines 6 and 7:

iex(6)> div(200,15)
13
iex(7)> rem(200,15)
5
iex(8)> rem 200,15
5

Line 8 demonstrates a feature of Elixir syntax: parentheses around the arguments to a
function are optional. If you think they make your code clearer, use them. If you think
they are extra typing, don’t.

Elixir will accept integers in place of floats, but floats are not always welcome where
integers are used. If you need to convert a floating-point number to an integer, you can
use the round() built-in function:

iex(9)> round 200/15
13

The round() function drops the decimal part of the number. If the decimal part was
greater than or equal to .5, it increases the integer part by 1, rounding up. If you’d rather
just drop the decimal part completely, use the trunc() function, which effectively always
rounds down.

You can also refer to a previous result by its line number using v(). For example:

iex(10)> 4*v(9)
52

The result on line 9 was 13, and 4*13 is 52.

If you’re feeling adventurous, you can use negative numbers to refer‐
ence prior results. v(-1) is the previous result, v(-2) is the result
before that, and so on.

If you want to do more powerful calculations, Elixir lets you use Erlang’s math mod‐
ule, which offers pretty much the classic set of functions supported by a scientific cal‐
culator. They return floating-point values. The constant pi is available as a func‐
tion, :math.pi. Trigonometric, logarithmic, exponential, square root, and (except on
Windows) even the Gauss error functions are readily available. (The trigonometric

Calling Functions | 5

www.it-ebooks.info

http://www.it-ebooks.info/

functions take their arguments in radians, not degrees, so be ready to convert if neces‐
sary.) Using these functions is a little verbose because of the need to prefix them
with :math., but it’s still reasonably sane.

For example, to get the sine of zero radians, you could write:

iex(11)> :math.sin(0)
0.0

Note that it’s 0.0, not just 0, indicating that the number is floating point. (And yes, you
could have written :math.sin 0 without the parentheses.)

To calculate the cosine of pi and 2pi radians, you’d write:

iex(12)> :math.cos(:math.pi)
-1.0
iex(13)> :math.cos(2 * :math.pi)
1.0

To calculate 2 taken to the 16th power, you’d use:

iex(14)> :math.pow(2,16)
65536.0

The full set of mathematical functions supported by Erlang’s math module and accessible
through Elixir is listed in Appendix A.

Numbers in Elixir
Elixir recognizes two kinds of numbers: integers and floating point numbers (often
called floats). It’s easy to think of integers as “whole numbers,” with no decimal, and
floats as “decimal numbers,” with a decimal point and some value (even if it’s 0) to the
right of the decimal. 1 is an integer, while 1.0 is a floating-point number.

However, it’s a little trickier than that. Elixir stores integers and floats in a very different
way. Elixir lets you store massive integers, but whether they’re big or small, they are
always precise. You don’t need to worry about their values being off by just a little.

Floats, on the other hand, cover a wide range of numbers but with limited precision.
Elixir uses the 64-bit IEEE 754-1985 “double precision” representation. This means that
it keeps track of about 15 decimal digits plus an exponent. It can also represent some
large numbers—powers up to positive or negative 308 are available—but because it
tracks only a limited number of digits, results will vary a little more than may seem
convenient, especially when you want to do comparisons:

iex(1)> 3487598347598347598437583475893475843749245.0
3.4875983475983474e42
iex(2)> 2343243.345435893850234543339545
2343243.3454358936

6 | Chapter 1: Getting Comfortable

www.it-ebooks.info

http://www.it-ebooks.info/

iex(3)> 0.0000000000000000000000000000023432432432432234232324
2.3432432432432235e-30

As you can see, some digits get left behind, and the overall magnitude of the number is
represented with an exponent.

When you enter floating-point numbers, you must always also have at least one number
to the left of the decimal point, even if it’s zero. Otherwise Elixir reports a syntax error
—it doesn’t understand what you’re doing:

iex(4)> .0000000000000000000000000000023432432432432234232324
** (SyntaxError) iex:4: syntax error before: '.'

You can also write floats using the digits-plus-exponent notation:

iex(4)> 2.923e127
2.923e127
iex(5)> 7.6345435e-231
7.6345435e-231

Floats’ lack of precision can cause anomalous results. For example, the sine of zero is
zero, and the sine of pi is also zero. However, if you calculate this in Elixir, you won’t
quite get to zero with the float approximation Elixir provides for pi:

iex(6)> :math.sin(0)
0.0
iex(7)> :math.sin(:math.pi)
1.2246467991473532e-16

If Elixir’s representation of pi went further, and its calculations of pi went further, the
result for line 7 would be closer to zero.

If you need to keep track of money, integers are going to be a better bet. Use the smallest
available unit—cents for US dollars, for instance—and remember that those cents are
1/100 of a dollar. (Financial transactions can go to much smaller fractions, but you’ll
still want to represent them as integers with a known multiplier.) For more complex
calculations, though, you’ll want to use floats, and just be aware that results will be
imprecise.

Elixir supports integers in a few bases other than 10. For example, if you wanted to
specify the binary value of 1010111, you could write:

iex(8)> 0b01010111
87

Elixir reports back with the base 10 value of the number. Similarly, you can specify
hexadecimal (base 16) numbers by using x instead of b:

iex(9)> 0xcafe
51966

To make any of these numbers negative, just put a minus sign (-) in front of them. This
works with integers, numbers in hex or binary, and floats:

Numbers in Elixir | 7

www.it-ebooks.info

http://www.it-ebooks.info/

iex(10)> -1234
-1234
iex(11)> -0xcafe
-51966
iex(12)> -2.045234324e6
-2045234.324

Working with Variables in the Shell
The v() function lets you refer to the results of previous expressions, but it’s not exactly
convenient to keep track of result numbers, and the v() function works only in the shell.
It isn’t a general-purpose mechanism. A more reasonable solution stores values with
textual names, creating variables.

Elixir variable names begin with a lowercase letter or an underscore. Normal variables
start with a lowercase letter, whereas “don’t care” variables start with an underscore. For
now, stick with normal variables. You assign a value to a variable using a syntax that
should be familiar from algebra or other programming languages, here with n as the
variable:

iex(13)> n=1
1

To see the value of a variable, just type its name:

iex(14)> n
1

Elixir, unlike many other functional programming languages (including Erlang), will
let you assign n a new value:

iex(15)> n=2
2
iex(16)> n=n+1
3

Elixir makes the righthand side of an expression, after the =, match the lefthand side. It
will assign a new value to n if you ask it to do so, and will even use the old value of n on
the righthand side to calculate a new value for n. n=n+1 means “assign the value n+1,
which is 3, to n.”

When you assign a value to a variable, you should make sure that all the calculations
are on the right side of the equals sign. Even though I know that m should be 6 when
2*m = 3*4, Erlang doesn’t:

iex(17)> 2*m=3*4
** (ErlangError) erlang error: :illegal_pattern

IEx will remember your variables until you quit or tell it to forget them.

8 | Chapter 1: Getting Comfortable

www.it-ebooks.info

http://www.it-ebooks.info/

You can also put multiple statements on a line with a semicolon (;). Syntactically, it acts
just like a line break:

iex(18)> distance = 20; gravity=9.8
9.8
iex(19)> distance
20
iex(20)> gravity
9.8

IEx will only report the value of the last statement, but as you can see on lines 19 and
20, all the values were assigned.

If it’s all getting too messy, call clear. It will just clear the screen for you.

Before moving on to the next chapter, which will introduce modules and functions,
spend some time playing in IEx. The experience, even at this simple level, will help you
move forward. Use variables, and see what happens with large integers. Elixir supports
large numbers very well. Try mixing numbers with decimal values (floats) and integers
in calculations, and see what happens. Nothing should be difficult yet.

Working with Variables in the Shell | 9

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Functions and Modules

Like most programming languages, Elixir lets you define functions to help you represent
repeated calculations. While Elixir functions can become complicated, they start out
reasonably simple.

Fun with fn
You can create functions in IEx using the keyword fn. For example, to create a function
that calculates the velocity of a falling object based on the distance it drops in meters,
you could do the following:

iex(1)> fall_velocity= fn (distance) -> :math.sqrt(2 * 9.8 * distance) end
#Function<6.6.111823515/1 in :erl_eval.expr/5>

That binds the variable fall_velocity to a function that takes an argument of dis
tance. (Parentheses are optional around the argument.) The function returns (I like to
read the -> as “yields”) the square root of 2 times a gravitational constant for Earth of
9.8 m/s, times distance (in meters). Then the function comes to an end.

The return value in the shell, #Function<6.6.111823515/1 in :erl_eval.expr/5>,
isn’t especially meaningful by itself, but it tells you that you’ve created a function and
didn’t just get an error. (The exact format of that return value changes with Elixir ver‐
sions, so it may look a bit different.)

Conveniently, binding the function to the variable fall_velocity lets you use that
variable to calculate the velocity of objects falling to Earth:

iex(2)> fall_velocity.(20)
19.79898987322333
iex(3)> fall_velocity.(200)
62.609903369994115
iex(4)> fall_velocity.(2000)
197.9898987322333

11

www.it-ebooks.info

http://www.it-ebooks.info/

If you need to do something more complex, you can separate pieces of your function
with newlines. IEx will keep the line open until you type end, as in this more verbose
version:

iex(5)> f=fn (distance)
...(5)> -> :math.sqrt(2 * 9.8 * distance)
...(5)> end
iex(6)> f.(20)
19.79898987322333

This can be useful when you want to include multiple statements in a function.

You need the period between the variable name and the argument when you call a
function that is stored in a variable. You won’t need it for functions declared in modules,
coming later this chapter.

If you want those meters per second in miles per hour, just create another function. You
can copy-and-paste the earlier results into it (as I did here), or pick shorter numbers:

iex(6)> mps_to_mph = fn mps -> 2.23693629 * mps end
#Fun<erl_eval.6.111823515>
iex(7)> mps_to_mph.(19.79898987322333)
44.289078952755766
iex(8)> mps_to_mph.(62.609903369994115)
140.05436496173314
iex(9)> mps_to_mph.(197.9898987322333)
442.89078952755773

I think I’ll stay away from 2,000-meter drops. Prefer the fall speed in kilometers per
hour?

iex(10)> mps_to_kph = fn(mps) -> 3.6 * mps end
#Fun<erl_eval.6.111823515>
iex(11)> mps_to_kph.(19.79898987322333)
71.27636354360399
iex(12)> mps_to_kph.(62.60990336999411)
225.39565213197878
iex(13)> mps_to_kph.(197.9898987322333)
712.76363543604

You can also go straight to your preferred measurement by nesting the following calls:

iex(14)> mps_to_kph.(fall_velocity.(2000))
712.76363543604

However you represent it, that’s really fast, though air resistance will in reality slow them
down a lot.

This is handy for repeated calculations, but you probably don’t want to push this kind
of function use too far in IEx, as quitting the shell session makes your functions vanish.
This style of function is called an anonymous function because the function itself doesn’t
have a name. (The variable name isn’t a function name.) Anonymous functions are

12 | Chapter 2: Functions and Modules

www.it-ebooks.info

http://www.it-ebooks.info/

useful for passing functions as arguments to other functions. Within modules, though,
you can define named functions that are accessible from anywhere.

And the &
Elixir offers a shortcut style for defining anonymous functions using &, the capture
operator. Instead of fn, you’ll use &; and instead of naming the parameters, you’ll use
numbers, like &1 and &2.

Previously, you defined fall_velocity as:

iex(1)> fall_velocity= fn (distance) -> :math.sqrt(2 * 9.8 * distance) end
#Fun<erl_eval.6.111823515>

If that is too verbose for you, you could use the &:

iex(1)> fall_velocity= &(:math.sqrt(2 * 9.8 * &1))
#Function<6.17052888 in :erl_eval.expr/5>
iex(2)> fall_velocity.(20)
19.79898987322333

When getting started, it’s probably easier to use parameter names, but as impatience
sets in, the capture operator is there. Its value will become clearer when you do more
complex things with functions, as shown in Chapter 8.

Defining Modules
Most Elixir programs, except things like the preceding simple calculations, define their
functions in compiled modules rather than in the shell. Modules are a more formal place
to put programs, and they give you the ability to store, encapsulate, share, and manage
your code more effectively.

Each module should go in its own file, with an extension of .ex. (You can put more than
one module in a file, but keep it simple while getting started.) You should use
name_of_module.ex, where name_of_module is the lowercase version of the module
name you specify inside of the module file. For the module Drop, the file name would
be drop.ex. Example 2-1, which you can find in the examples archive at ch02/ex1-drop,
shows what a module, drop.ex, containing the functions previously defined might look
like.

Example 2-1. Module for calculating and converting fall velocities
defmodule Drop do
 def fall_velocity(distance) do
 :math.sqrt(2 * 9.8 * distance)
 end

 def mps_to_mph(mps) do
 2.23693629 * mps

And the & | 13

www.it-ebooks.info

http://www.it-ebooks.info/

 end

 def mps_to_kph(mps) do
 3.6 * mps
 end
end

defmodule contains the functions that the module will support. It takes the name of the
module—this time starting with a capital letter—and contains function definitions.
These begin with def, using a slightly different structure than you used when defining
functions with fn. You don’t need to assign the function to a variable, and use def instead
of fn.

Function definitions inside of a module must use the longer do… end
syntax rather than the shortcut -> syntax. If your function defini‐
tion is very short, you may put it all on one line like this:

def mps_to_mph(mps), do: 2.23693629 * mps

You may see this “one-liner” version in other people’s code, but for consistency and
readability, we recommend that you use the full do…end syntax for all your functions.

Any functions you declare with def will be visible outside of the module and can be
called by other code. If you want keep some functions accessible only within the module,
you can use defp instead of def, and they will be private.

Usually the code inside of the module will be contained in functions.

How do you make this actually do something?

It’s time to start compiling Elixir code. The shell will let you compile modules and then
use them immediately. The c function lets you compile code. You need to start IEx from
the same directory as the file you want to compile:

iex(1)> c("drop.ex")
[Drop]

If you were to look at the directory where your drop.ex file is, you would now see a new
file named Elixir.Drop.beam. Once compiled, you can use the functions in your module:

iex(2)> Drop.fall_velocity(20)
19.79898987322333
iex(3)> Drop.mps_to_mph(Drop.fall_velocity(20))
44.289078952755766

It works the same as its predecessors, but now you can quit the shell, return, and still
use the compiled functions:

14 | Chapter 2: Functions and Modules

www.it-ebooks.info

http://www.it-ebooks.info/

iex(4)>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a
$ iex
Erlang/OTP 17 [erts-6.0] [source-07b8f44] [64-bit] [smp:8:8] [async-threads:10]
[hipe] [kernel-poll:false] [dtrace]

Interactive Elixir (1.0.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> Drop.mps_to_mph(Drop.fall_velocity(20))
44.289078952755766

Most Elixir programming involves creating functions in modules and connecting them
into larger programs.

If you aren’t sure which directory you are currently in, you can use
the pwd() shell command. If you need to change to a different direc‐
tory, use cd(pathname):

iex(1)> pwd()
/Users/elixir/code/ch02
:ok
iex(2)> cd("ex1-drop")
/Users/elixir/code/ch02/ex1-drop
:ok
iex(3)> pwd()
/Users/elixir/code/ch02/ex1-drop
:ok

When calling named functions, the parentheses are optional. Elixir will interpret a space
after the function name as the equivalent of the opening of a set of parentheses, with
the parentheses closing at the end of the line. When this produces unexpected results,
Elixir may ask in an error message that you “do not insert spaces in between the function
name and the opening parentheses.”

If you find yourself repeating yourself all the time in IEx, you can also
use c to “compile” a series of IEx commands. Instead of defining a
module in a .ex file, you put a series of commands for IEx in a .exs
(for Elixir script) file. When you call the c function with that file, Elixir
will execute all of the commands in it.

Defining Modules | 15

www.it-ebooks.info

http://www.it-ebooks.info/

Elixir Compilation and the Erlang Runtime System
When you write Elixir in the shell, it has to interpret every command, whether or not
you’ve written it before. When you tell Elixir to compile a file, it converts your text into
something it can process without having to reinterpret all the text, tremendously im‐
proving efficiency when you run the code.

That “something it can process,” in Elixir’s case, is an Erlang BEAM file. It contains code
that the BEAM processor, a key piece of the Erlang Runtime System (ERTS), can run.
BEAM is Bogdan’s Erlang Abstract Machine, a virtual machine that interprets optimized
BEAM code. This may sound slightly less efficient than the traditional compilation to
machine code that runs directly on the computer, but it resembles other virtual ma‐
chines. (Oracle’s Java Virtual Machine (JVM) and Microsoft’s .NET Framework are the
two most common virtual machines.)

Erlang’s virtual machine optimizes some key things, making it easier to build applica‐
tions that scale reliably. Its process scheduler simplifies distributing work across multiple
processors in a single computer. You don’t have to think about how many processors
your application might get to use—you just write independent processes, and Erlang
spreads them out. Erlang also manages input and output in its own way, avoiding con‐
nection styles that block other processing. The virtual machine also uses a garbage col‐
lection strategy that fits its style of processing, allowing for briefer pauses in program
execution. (Garbage collection releases memory that processes needed at one point but
are no longer using.)

When you create and deliver Elixir programs, you will be distributing them as a set of
compiled BEAM files. You don’t need to compile each one from the shell as we’re doing
here, though. elixirc will let you compile Elixir files directly and combine that com‐
pilation into make tasks and similar things, and calling elixir on .exs files will let you
run Elixir code as scripts outside of the IEx environment.

From Module to Free-Floating Function
If you like the style of code that fn allowed but also want your code stored more reliably
in modules where it’s easier to debug, you can get the best of both worlds by using &,
the capture operator to refer to a function you’ve already defined. You can specify the
function to retrieve with a single argument in the form Module_name.function_name/
arity. Arity is the number of arguments a function takes: 1 in the case of Drop.fall_ve
locity:

iex(2)> fun=&Drop.fall_velocity/1
&Drop.fall_velocity/1
iex(3)> fun.(20)
19.79898987322333

16 | Chapter 2: Functions and Modules

www.it-ebooks.info

http://www.it-ebooks.info/

You can also do this within code in a module. If you’re referring to code in the same
module, you can leave off the module name preface. In this case, that would mean leaving
off Drop. and just using &(fall_velocity/1).

Splitting Code Across Modules
The Drop module currently mixes two different kinds of functions. The fall_veloci
ty function fits the name of the module, Drop, very well, providing a calculation based
on the height from which an object falls. The mps_to_mph and mps_to_kph functions,
however, aren’t about dropping. They are generic measurement-conversion functions
that are useful in other contexts and really belong in their own module. Example 2-2
and Example 2-3, both in ch02/ex2-split, show how this might be improved.

Example 2-2. Module for calculating fall velocities
defmodule Drop do
 def fall_velocity(distance) do
 :math.sqrt(2 * 9.8 * distance)
 end
end

Example 2-3. Module for converting fall velocities
defmodule Convert do
 def mps_to_mph(mps) do
 2.23693629 * mps
 end

 def mps_to_kph(mps) do
 3.6 * mps
 end
end

Next, you can compile them, and then the separated functions are available for use:

Interactive Elixir (1.0.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> c("drop.ex")
[Drop]
iex(2)> c("convert.ex")
[Convert]
iex(3)> Drop.fall_velocity(20)
19.79898987322333
iex(4)> Convert.mps_to_mph(Drop.fall_velocity(20))
44.289078952755766

That reads more neatly, but how might this code work if a third module needed to call
those functions? Modules that call code from other modules need to specify that ex‐
plicitly. Example 2-4, in ch02/ex3-combined, shows a module that uses functions from
both the drop and convert modules.

Splitting Code Across Modules | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Example 2-4. Module for combining drop and convert logic
defmodule Combined do
 def height_to_mph(meters) do
 Convert.mps_to_mph(Drop.fall_velocity(meters))
 end
end

That looks much like the way you called it from IEx. This will only work if the Com
bined module has access to the Convert and Drop modules, typically by being in the
same directory, but it’s quite similar to what worked directly in IEx.

The combined function lets you do much less typing:

iex(5)> c("combined.ex")
[Combined]
iex(6)> Combined.height_to_mph(20)
44.289078952755766

If you’re coming from Erlang, you’re probably used to the discipline
of thick module walls and functions that only become accessible
through explicit -export and -import directives. Elixir goes the op‐
posite route, making everything accessible from the outside except
for functions explicitly declared private with defp.

Combining Functions with the Pipe Operator
There’s another way to combine the functions, using Elixir’s |> operator, called the pipe
operator. The pipe operator, sometimes called pipe forward, lets you put the result of
one function into the first argument of the next function. Example 2-5, in ch02/ex4-
pipe, shows the operator in use.

Example 2-5. Using the pipe operator
defmodule Combined do
 def height_to_mph(meters) do
 Drop.fall_velocity(meters) |> Convert.mps_to_mph
 end
end

Note that the order is reversed from Example 2-4, with Drop.fall_velocity(me
ters) appearing before Convert.mps_to_mph. If you read |> as “goes into”, the logic
may be clearer. You can have several of these in a row, converting functions that used
to be deeply nested into hopefully clearer sequences.

18 | Chapter 2: Functions and Modules

www.it-ebooks.info

http://www.it-ebooks.info/

The pipe operator only passes one result into the next function as its
first parameter. If you need to use a function that takes multiple pa‐
rameters, just specify the additional parameters as if the first didn’t
have to be there.

Importing Functions
As long as you fully specify the name of the function, Elixir does a great job of seeking
out the code. However, if you’re working with code that relies on code in a particular
module constantly, it may be appealing to reduce your typing by formally importing it.

Example 2-6, in ch02/ex5-import, shows a simple use of import to bring in all the func‐
tions (and macros, though there aren’t any yet) in the Convert module.

Example 2-6. Module for combining drop and convert logic, with imported Convert
defmodule Combined do
 import Convert

 def height_to_mph(meters) do
 mps_to_mph(Drop.fall_velocity(meters))
 end
end

The import Convert line tells Elixir that all of the functions and macros (except those
starting with underscore) in the Convert module should be available without prefixes
in this module.

Importing an Erlang module, shown in Example 2-7, is much the same, except that you
prefix the module name with a colon and don’t start the name with an uppercase letter:

Example 2-7. Importing the Erlang math module.
defmodule Drop do
 import :math

 def fall_velocity(distance) do
 sqrt(2 * 9.8 * distance)
 end
end

Importing entire modules might create conflicts with function names you are already
using in your own module, so Elixir lets you specify which functions you want with the
only argument. For example, to get just the sqrt function, you could use:

defmodule Drop do
 import :math, only: [sqrt: 1]
 def fall_velocity(distance) do
 sqrt(2 * 9.8 * distance)

Importing Functions | 19

www.it-ebooks.info

http://www.it-ebooks.info/

 end
end

If you just need to import a module for one function, you can place the import directive
inside of the def or defp for that function. It won’t apply beyond that function’s scope:

defmodule Drop do
 def fall_velocity(distance) do
 import :math, only: [sqrt: 1]
 sqrt(2 * 9.8 * distance)
 end
end

If you want all of the functions except for some specific functions,
you can use the except argument:

import :math, except: [sin: 1, cos:, 1]

Use import with caution. It certainly spares you typing, but it can also make it harder
to figure out where functions came from.

Default Values for Arguments
If you wanted to deal with astronomical bodies other than Earth (and you’ll be doing a
lot of that in subsequent chapters), you might want to create a fall_velocity/2 func‐
tion that accepts both a distance and a gravity constant:

defmodule Drop do
 def fall_velocity(distance, gravity) do
 :math.sqrt(2 * gravity * distance)
 end
end

You can then calculate velocities from Earth, where the gravity constant is 9.8, and the
moon, where the gravity constant is 1.6:

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.fall_velocity(20, 9.8)
19.79898987322333
iex(3)> Drop.fall_velocity(20, 1.6)
8.0

If you anticipate dropping objects primarily on Earth, Elixir lets you specify a default
value for the gravity parameter by putting the default value after a pair of backslashes,
as in Example 2-8, which you can find in ch02/ex6-defaults.

20 | Chapter 2: Functions and Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Example 2-8. Function with a default value
defmodule Drop do
 def fall_velocity(distance, gravity \\ 9.8) do
 :math.sqrt(2 * gravity * distance)
 end
end

Now you can specify only the first argument for Earth, and both arguments for other
astronomical bodies:

iex(4)> c("drop.ex")
drop.ex:1: warning: redefining module Drop
[Drop]
iex(5)> Drop.fall_velocity(20)
19.79898987322333
iex(6)> Drop.fall_velocity(20, 1.6)
8.0

Documenting Code
Your programs can run perfectly well without documentation. Your projects, however,
will have a much harder time.

While programmers like to think they write code that anyone can look at and sort out,
the painful reality is that code even a little more complicated than that shown in the
previous examples can prove mystifying to other developers. If you step away from code
for a while, the understanding you developed while programming it may have faded,
and even your own code can seem incomprehensible.

Elixir’s creators are well aware of these headaches and have emphasized “Documentation
as first-class citizen” right on the front page of Elixir’s website (for now at least!).

The simplest way to add more explicit explanations to your code is to insert comments.
You can start a comment with #, and it runs to the end of the line. Some comments take
up an entire line, while others are short snippets at the end of a line. Example 2-9 shows
both varieties of comments.

Example 2-9. Comments in action
#convenience functions!
defmodule Combined do

 def height_to_mph(meters) do #takes meters, returns mph
 Convert.mps_to_mph(Drop.fall_velocity(meters))
 end
end

The Elixir compiler will ignore all text between the # sign and the end of the line, but
humans exploring the code will be able to read them.

Documenting Code | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Informal comments are useful, but developers have a habit of including comments that
help them keep track of what they’re doing while they’re writing the code. Those com‐
ments may or may not be what other developers need to understand the code, or even
what you need when you return to the code after a long time away. More formal com‐
ment structures may be more work than you want to take on in the heat of a program‐
ming session, but they also force you to ask who might be looking at your code in the
future and what they might want to know.

Elixir goes way beyond basic comments, offering a set of tools for creating documen‐
tation you can explore through IEx or separately through a web browser.

Documenting Functions
The Drop module contains one function: fall_velocity/1. You probably know that it
takes a distance in meters and returns a velocity in meters per second for an object
dropped in a vacuum on Earth, but the code doesn’t actually say that. Example 2-10
shows how to fix that with the @doc tag.

Example 2-10. Documented function for calculating fall velocities
defmodule Drop do
 @doc """
 Calculates the velocity of an object falling on Earth
 as if it were in a vacuum (no air resistance). The distance is
 the height from which the object falls, specified in meters,
 and the function returns a velocity in meters per second.
 """

 def fall_velocity(distance) do
 import :math, only: [sqrt: 1]

 sqrt(2 * 9.8 * distance)
 end
end

After you compile that, the h function in IEx will now tell you useful information about
the function:

iex(1)> c("drop.ex")
[Drop]
iex(2)> h Drop.fall_velocity
* def fall_velocity(distance)

Calculates the velocity of an object falling on Earth
as if it were in a vacuum (no air resistance). The distance is
the height from which the object falls, specified in meters,
and the function returns a velocity in meters per second.

22 | Chapter 2: Functions and Modules

www.it-ebooks.info

http://www.it-ebooks.info/

That’s a major improvement, but what if a user specifies “twenty” meters instead of 20
meters? Because Elixir doesn’t worry much about types, the code doesn’t say that the
value for distance has to be a number or the function will return an error.

You can add a tag, @spec, to add that information. It’s a little strange, as in some ways
it feels like a duplicate of the method declaration. In this case, it’s simple, as shown in
Example 2-11.

Example 2-11. Documented function for calculating fall velocities
defmodule Drop do

@doc """
Calculates the velocity of an object falling on Earth
as if it were in a vacuum (no air resistance). The distance is
the height from which the object falls, specified in meters,
and the function returns a velocity in meters per second.
"""

@spec fall_velocity(number()) :: number()

 def fall_velocity(distance) do
 import :math, only: [sqrt: 1]

 sqrt(2 * 9.8 * distance)
 end
end

Now you can use the s function to see type information about your function from IEx:

iex(3)> s(Drop.fall_velocity)
@spec fall_velocity(number()) :: number()

You can also use s(Drop) to see all the specs defined in the Drop module.

This chapter has really demonstrated only the number() type, which combines
integer() and float(). Appendix A includes a full list of types.

Documenting Modules
The modules in this chapter are very simple so far, but there is enough there to start
documenting, as shown in the files at ch02/ex7-docs. Example 2-12 presents the Drop
module with more information about who created it and why.

Example 2-12. Documented module for calculating fall velocities
defmodule Drop do
 @moduledoc """
 Functions calculating velocities achieved by objects dropped in a vacuum.

 from *Introducing Elixir*, O'Reilly Media, Inc., 2014.

Documenting Modules | 23

www.it-ebooks.info

http://www.it-ebooks.info/

 Copyright 2014 by Simon St.Laurent and J. David Eisenberg.
 """
 @vsn 0.1

 @doc """
 Calculates the velocity of an object falling on Earth
 as if it were in a vacuum (no air resistance). The distance is
 the height from which the object falls, specified in meters,
 and the function returns a velocity in meters per second.
 """

 @spec fall_velocity(number()) :: number()

 def fall_velocity(distance) do
 import :math, only: [sqrt: 1]

 sqrt(2 * 9.8 * distance)
 end
end

This lets you use h to learn more about the module:

iex(4)> h Drop

 Drop

Functions calculating velocities achieved by objects dropped in a vacuum.

from *Introducing Elixir*, O'Reilly Media, Inc., 2014. Copyright 2014 by
Simon St.Laurent and J. David Eisenberg.

Having the documentation is useful for anyone else who is reading your code (and if
you are away from your code for a few months, when you return, you will be that “anyone
else”). You can also use this documentation to create web pages that summarize your
modules and functions. To do this, you need the ExDoc tool. ExDoc recognizes Mark‐
down formatting in your documentation, so your documentation can include empha‐
sized text, lists, and links, among other things. For more details on using ExDoc, see
Appendix B.

24 | Chapter 2: Functions and Modules

www.it-ebooks.info

http://bit.ly/df-markdown
http://bit.ly/df-markdown
http://www.it-ebooks.info/

CHAPTER 3

Atoms, Tuples, and Pattern Matching

Elixir programs are at heart a set of message requests and tools for processing them.
Elixir provides tools that simplify the efficient handling of those messages, letting you
create code that is readable (to programmers at least) while still running efficiently when
you need speed.

Atoms
Atoms are a key component of Elixir. Technically they’re just another type of data, but
it’s hard to overstate their impact on Elixir programming style.

Usually, atoms are bits of text that start with a colon, like :ok or :earth or :Today. They
can also contain underscores (_) and at symbols (@), like :this_is_a_short_sen
tence or :me@home. If you want more freedom to use spaces, you can start with the
colon, and then put them in single quotes, like :'Today is a good day'. Generally,
the one-word lowercase form is easier to read.

Atoms have a value—it’s the same as their text:

iex(1)> :test
:test

That’s not very exciting in itself. What makes atoms exciting is the way that they can
combine with other types and Elixir’s pattern-matching techniques to build simple but
powerful logical structures.

Pattern Matching with Atoms
Elixir used pattern matching to make the examples in Chapter 2 work, but it was very
simple. The name of the function was the one key piece that varied, and as long as you
provided a numeric argument, Elixir knew what you meant. Elixir’s pattern matching

25

www.it-ebooks.info

http://www.it-ebooks.info/

offers much more sophisticated possibilities, however, allowing you to match on argu‐
ments as well as on function names.

For example, suppose you want to calculate the velocity of falling objects not just on
Earth, where the gravitational constant is 9.8 meters per second squared, but on Earth’s
moon, where it is 1.6 meters per second squared, and on Mars, where it is 3.71 meters
per second squared. Example 3-1, which you can find in ch03/ex1-atoms, shows one
way to build code that supports this.

Example 3-1. Pattern matching on atoms as well as function names
defmodule Drop do

 def fall_velocity(:earth, distance) do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) do
 :math.sqrt(2 * 3.71 * distance)
 end

end

It looks like the fall_velocity function gets defined three times here, and it certainly
provides three processing paths for the same function. However, because Elixir will
choose which function to call by pattern matching, they aren’t duplicate definitions. As
in English, these pieces are called clauses. All of the clauses for a given function name
must be grouped together in the module.

Once you have this, you can calculate velocities for objects falling a given distance on
Earth, the Earth’s moon, and Mars:

iex(2)> c("drop.ex")
[Drop]
iex(3)> Drop.fall_velocity(:earth,20)
19.79898987322333
iex(4)> Drop.fall_velocity(:moon,20)
8.0
iex(5)> Drop.fall_velocity(:mars,20)
12.181953866272849

You’ll quickly find that atoms are a critical component for writing readable Elixir code.

26 | Chapter 3: Atoms, Tuples, and Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to do a pattern match against a value stored in a vari‐
able, you’ll need to put a ^ in front of the variable name.

Atomic Booleans
Elixir uses the values true and false to represent the boolean logic values of the same
names. Although underneath these are atoms, :true and :false, they are common
enough that you don’t need to use the colons. Elixir will return these values if you ask
it to compare something:

iex(1)> 3<2
false
iex(2)> 3>2
true
iex(3)> 10 == 10
true
iex(4)> :true == true
true
iex(5)> :false == false
true

Elixir also has special operators that work on these atoms (and on comparisons that
resolve to these atoms):

iex(1)> true and true
true
iex(2)> true and false
false
iex(3)> true or false
true
iex(4)> false or false
false
iex(5)> not true
false

The and and or operators both take two arguments. For and, the result is true if and
only if the two arguments are true. For or, the result is true if at least one of the argu‐
ments is true. If you’re comparing expressions more complicated than true and
false, it’s wise to put them in parentheses.

Elixir will automatically take shortcuts on its logic. If it finds, for example, that the first
argument in an and is false, it won’t evaluate the second argument and will return
false. If the first argument in an or is true, it won’t evaluate the second argument and
will return true.

Atomic Booleans | 27

www.it-ebooks.info

http://www.it-ebooks.info/

The not operator is simpler, taking just one argument. It turns true into false and
false into true. Unlike the other boolean operators, which go between their arguments,
not goes before its single argument.

If you try to use these operators with any other atoms, you’ll get an argument error:

iex(6)> not :bonkers
** (ArgumentError) argument error
 :erlang.not(:bonkers)

Like true and false, Elixir lets you write the atom :nil as nil. There
are other atoms that often have an accepted meaning, like :ok
and :error, but those are more conventions than a formal part of the
language and don’t get special treatment. Their colons are required.

Guards
The fall_velocity calculations work fairly well, but there’s still one glitch: if the func‐
tion gets a negative value for distance, the square-root (sqrt) function in the calculation
will be unhappy:

iex(5)> Drop.fall_velocity(:earth,-20)
** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-392.0)
 drop.ex:4: Drop.fall_velocity/2

Since you can’t dig a hole 20 meters down, release an object, and marvel as it accelerates
to the surface, this isn’t a terrible result. However, it might be more elegant to at least
produce a different kind of error.

In Elixir, you can specify which data a given function will accept with guards. Guards,
indicated by the when keyword, let you fine-tune the pattern matching based on the
content of arguments, not just their shape. Guards have to stay simple, can use only a
very few built-in functions, and are limited by a requirement that they evaluate only
data without any side effects, but they can still transform your code.

You can find a list of functions that can safely be used in guards in
Appendix A.

Guards evaluate their expressions to true or false, as previously described, and the
first one with a true result wins. That means that you can write when true for a guard
that always gets called if it is reached, or block out some code you don’t want to call (for
now) with when false.

28 | Chapter 3: Atoms, Tuples, and Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

In this simple case, you can keep negative numbers away from the square-root function
by adding guards to the fall_velocity clauses, as shown in Example 3-2, which you
can find at ch03/ex2-guards.

Example 3-2. Adding guards to the function clauses
defmodule Drop do

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

end

The when expression describes a condition or set of conditions in the function head. In
this case, the condition is simple: the Distance must be greater than or equal to zero.
In Elixir, greater than or equal to is written >=, and less than or equal to is written <=,
just as they’re described in English. If you compile that code and ask for the result of a
positive distance, the result is the same. Ask for a negative distance, and the result is
different:

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.fall_velocity(:earth,20)
19.79898987322333
iex(3)> Drop.fall_velocity(:earth,-20)
** (FunctionClauseError) no function clause matching in Drop.fall_velocity/2
 drop.ex:3: Drop.fall_velocity(:earth, -20)

Because of the guard, Elixir doesn’t find a function clause that works with a negative
argument. The error message may not seem like a major improvement, but as you add
layers of code, “not handled” may be a more appealing response than “broke my for‐
mula.”

A clearer, though still simple, use of guards might be code that returns an absolute value.
Yes, Elixir has a built-in function, abs, for this, but Example 3-3 makes clear how this
works.

Example 3-3. Calculating absolute value with guards
defmodule MathDemo do

 def absolute_value(number) when number < 0 do

Guards | 29

www.it-ebooks.info

http://www.it-ebooks.info/

 -number
 end

 def absolute_value(number) when number == 0 do
 0
 end

 def absolute_value(number) when number > 0 do
 number
 end

end

When mathdemo:absolute_value is called with a negative (less than zero) argument,
Elixir calls the first clause, which returns the negation of that negative argument, making
it positive. When the argument equals (==) zero, Elixir calls the second clause, returning
0. Finally, when the argument is positive, Elixir calls the third clause, just returning the
number. (The first two clauses have processed everything that isn’t positive, so the guard
on the last clause is unnecessary and will go away in Example 3-4.)

iex(1)> c("mathDemo.ex")
[MathDemo]
iex(2)> MathDemo.absolute_value(-20)
20
iex(3)> MathDemo.absolute_value(0)
0
iex(4)> MathDemo.absolute_value(20)
20

This may seem like an unwieldy way to calculate. Don’t worry—Elixir has simpler logic
switches you can use inside of functions. However, guards are critically important to
choosing among function clauses, which will be especially useful as you start to work
with recursion in Chapter 4.

Elixir runs through the function clauses in the order you list them and stops at the first
one that matches. If you find your information is heading to the wrong clause, you may
want to reorder your clauses or fine-tune your guard conditions.

Also, when your guard clause is testing for just one value, you can easily switch to using
pattern matching instead of a guard. This absolute_value function in Example 3-4
does the same thing as the one in Example 3-3.

Example 3-4. Calculating absolute value with guards and pattern matching
defmodule MathDemo do

 def absolute_value(number) when number < 0 do
 -number
 end

 def absolute_value(0) do

30 | Chapter 3: Atoms, Tuples, and Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

 0
 end

 def absolute_value(number) do
 number
 end

end

In this case, it’s up to you whether you prefer the simpler form or preserving a parallel
approach.

You can also have multiple comparisons in a single guard. If you
separate them with an or statement, it succeeds if any of the compar‐
isons succeeds. If you separate them with an and statement, they all
have to succeed for the guard to succeed.

Underscoring That You Don’t Care
Guards let you specify more precise handling of incoming arguments. Sometimes you
may actually want handling that is less precise, though. Not every argument is essential
to every operation, especially when you start passing around complex data structures.
You could create variables for arguments and then never use them, but you’ll get warn‐
ings from the compiler (which suspects you must have made a mistake), and you may
confuse other people using your code who are surprised to find your code cares about
only half of the arguments they sent.

You might, for example, decide that you’re not concerned with what planemo (for plan‐
etary mass object, including planets, dwarf planets, and moons) a user of your velocity
function specifies, and you’re just going to use Earth’s value for gravity. Then, you might
write something like Example 3-5, from ch03/ex3-underscore.

Example 3-5. Declaring a variable and then ignoring it
defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

end

This will compile, but you’ll get a warning, and if you try to use it for, say, Mars, you’ll
get the wrong answer for Mars:

iex(1)> c("drop.ex")
drop.ex:3: variable planemo is unused
[Drop]

Underscoring That You Don’t Care | 31

www.it-ebooks.info

http://www.it-ebooks.info/

iex(2)> Drop.fall_velocity(:mars,20)
19.79898987322333

On Mars, that should be more like 12 than 19, so the compiler was right to scold you.

Other times, though, you really only care about some of the arguments. In these cases,
you can use a simple underscore (_). The underscore accomplishes two things: it tells
the compiler not to bother you, and it tells anyone reading your code that you’re not
going to be using that argument. In fact, Elixir won’t let you. You can try to assign values
to the underscore, but Elixir won’t give them back to you. It considers the underscore
permanently unbound:

iex(3)> _ = 20
20
iex(4)> _
** (CompileError) iex:4 unbound variable _
 :erl_eval.exprs/2

If you really wanted your code to be Earth-centric and ignore any suggestions of other
planemos, you could instead write something like Example 3-6.

Example 3-6. Deliberately ignoring an argument with an underscore
defmodule Drop2 do

 def fall_velocity(_, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

end

This time there will be no compiler warning, and anyone who looks at the code will
know that first argument is useless:

iex(4)> c("drop2.ex")
drop.ex:1: redefining module Drop
[Drop]
iex(5)> Drop2.fall_velocity(:you_dont_care,20)
19.79898987322333

You can use underscore multiple times to ignore multiple arguments. It matches any‐
thing for the pattern match and never binds, so there’s never a conflict.

You can also start variables with underscores —like _planemo—and
the compiler won’t warn if you never use those variables. Those vari‐
ables do get bound, and you can reference them later in your code if
you change your mind. However, if you use the same variable name
more than once in a set of arguments, even if the variable name starts
with an underscore, you’ll get an error from the compiler for trying
to bind twice to the same name.

32 | Chapter 3: Atoms, Tuples, and Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Structure: Tuples
Elixir’s tuples let you combine multiple items into a single composite datatype. This
makes it easier to pass messages between components, letting you create your own
complex datatypes as needed. Tuples can contain any kind of Elixir data, including
numbers, atoms, other tuples, and the lists and strings you’ll encounter in later chapters.

Tuples themselves are simple, a group of items surrounded by curly braces:

iex(1)> {:earth, 20}
{:earth,20}

Tuples might contain one item, or they might contain 100. Two to five seem typical (and
useful, and readable). Often (but not always) an atom at the beginning of the tuple
indicates what it’s really for, providing an informal identifier of the complex information
structure stored in the tuple.

Elixir includes built-in functions that give you access to the contents of a tuple on an
item-by-item basis. You can retrieve the values of items with the elem function, set values
in a new tuple with the put_elem function, and find out how many items are in a tuple
with the tuple_size function. Elixir (unlike Erlang) counts from zero, so the first item
in a tuple is referenced as 0, the second as 1, and so on:

iex(2)> tuple={:earth,20}
{:earth,20}
iex(3)> elem(tuple,1)
20
iex(4)> newTuple=put_elem(tuple,1,40)
{:earth,40}
iex(5)> tuple_size(newTuple)
2

If you can stick with pattern matching tuples, however, you’ll likely create more readable
code.

Pattern Matching with Tuples
Tuples make it easy to package multiple arguments into a single container and let the
receiving function decide what to do with them. Pattern matching on tuples looks much
like pattern matching on atoms, except that there is, of course, a pair of curly braces
around each set of arguments, as Example 3-7, which you’ll find in ch03/ex4-tuples,
demonstrates.

Example 3-7. Encapsulating arguments in a tuple
defmodule Drop do

 def fall_velocity({:earth, distance}) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

Adding Structure: Tuples | 33

www.it-ebooks.info

http://www.it-ebooks.info/

 def fall_velocity({:moon, distance}) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity({:mars, distance}) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

end

The arity changes: this version is fall_velocity/1 instead of fall_velocity/2 because
the tuple counts as only one argument. The tuple version works much like the atom
version but requires the extra curly braces when you call the function as well:

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.fall_velocity({:earth,20})
19.79898987322333
iex(3)> Drop.fall_velocity({:moon,20})
8.0
iex(4)> Drop.fall_velocity({:mars,20})
12.181953866272849

Why would you use this form when it requires a bit of extra typing? Using tuples opens
more possibilities. Other code could package different things into tuples—more argu‐
ments, different atoms, even functions created with fn(). Passing a single tuple rather
than a pile of arguments gives Elixir much of its flexibility, especially when you get to
passing messages between different processes.

Processing Tuples
There are many ways to process tuples, not just the simple pattern matching shown in
Example 3-7. If you receive the tuple as a single variable, you can do many different
things with it. A simple place to start is using the tuple as a pass through to a private
version of the function. That part of Example 3-8 may look familiar, as it’s the same as
the fall_velocity/2 function in Example 3-2. (You can find this at ch03/ex5-
tuplesMore.)

Example 3-8. Encapsulating arguments in a tuple and passing them to a private func‐
tion
defmodule Drop do

 def fall_velocity({planemo, distance}) when distance >= 0 do
 fall_velocity(planemo, distance)
 end

 defp fall_velocity(:earth, distance) do

34 | Chapter 3: Atoms, Tuples, and Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

 :math.sqrt(2 * 9.8 * distance)
 end

 defp fall_velocity(:moon, distance) do
 :math.sqrt(2 * 1.6 * distance)
 end

 defp fall_velocity(:mars, distance) do
 :math.sqrt(2 * 3.71 * distance)
 end

end

The use of defp for the private versions mean that only fall_velocity/1, the tuple
version, is public. The fall_velocity/2 function is available within the module, how‐
ever. It’s not especially necessary here, but this “make one version public, keep another
version with different arity private” is common in situations where you want to make
a function accessible but don’t necessarily want its inner workings directly available.

If you call this function—the tuple version, so curly braces are necessary—fall_veloc

ity/1 calls the private fall_velocity/2, which returns the proper value to fall_ve
locity/1, which will return it to you. The results should look familiar:

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.fall_velocity({:earth,20})
19.79898987322333
iex(3)> Drop.fall_velocity({:moon,20})
8.0
iex(4)> Drop.fall_velocity({:mars,20})
12.181953866272849

There are a few different ways to extract the data from the tuple. You could reference
the components of the tuple by number using the built-in Kernel macro elem/2, which
takes a tuple and a numeric position as its arguments. The first component of a tuple
can be reached at position 0, the second at position 1, and so on:

 def fall_velocity(where) do
 fall_velocity(elem(where,0), elem(where,1))
 end

You could also break things up a bit and do pattern matching after getting the variable:

 def fall_velocity(where) do
 {planemo, distance} = where
 fall_velocity(planemo,distance)
 end

The result of that last line will be the value the function returns.

Adding Structure: Tuples | 35

www.it-ebooks.info

http://www.it-ebooks.info/

The pattern matching is a little different. The function accepted a tuple as its argument
and assigned it to the variable where. (If where is not a tuple, the function will fail with
an error.) Extracting the contents of that tuple, since we know its structure, can be done
with a pattern match inside the function. The planemo and distance variables will be
bound to the values contained in the where tuple and can then be used in the call to
fall_velocity/2.

36 | Chapter 3: Atoms, Tuples, and Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Logic and Recursion

So far, Elixir seems logical but fairly simple. Pattern matching controls the flow through
a program, and requests that match a form return certain responses. While this is
enough to get many things done, there are times when you’ll want more powerful op‐
tions, especially as you start working with larger and more complicated data structures.

Logic Inside of Functions
Pattern matching and guards are powerful tools, but there are times when it’s much
easier to do some comparisons inside of a function clause instead of creating new func‐
tions. Elixir’s designers agreed and created two constructs for evaluating conditions
inside of functions: the case expression and the less frequently used cond and if ex‐
pressions.

The case construct lets you use pattern matching and guards inside of a function clause.
It reads most clearly when a single value (or set of values) needs to be compared with
multiple possibilities. The cond construct evaluates only a series of guards, without
pattern matching. The cond construct tends to produce more readable code in situations
where the multiple possibilities are specified by combinations of different values. The
if construct evaluates only a single guard.

All these constructs return a value your code can capture.

Evaluating Cases
The case construct lets you perform pattern matching inside of your function clause.
If you found the multiple function clauses of Example 3-2 hard to read, you might prefer
to create a version that looks like Example 4-1, which you can find in ch04/ex1-case.

37

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-1. Moving pattern matching inside the function with case
defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 case planemo do
 :earth -> :math.sqrt(2 * 9.8 * distance)
 :moon -> :math.sqrt(2 * 1.6 * distance)
 :mars -> :math.sqrt(2 * 3.71 * distance)
 end
 end

end

The case construct will compare the atom in planemo to the values listed, going down
the list in order. It won’t process beyond the match it finds. Each matching value is
followed by a ->, which you can read as “yields”. The case construct will return the result
of different calculations based on which atom is used, and because the case construct
returns the last value in the function clause, the function will return that value as well.

You can use the underscore (_) for your pattern match if you want a
choice that matches “everything else.” However, you should always
put that last—nothing that comes after that will ever be evaluated.

The results should look familiar:

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.fall_velocity(:earth,20)
19.79898987322333
iex(3)> Drop.fall_velocity(:moon,20)
8.0
iex(4)> Drop.fall_velocity(:mars,-20)
** (FunctionClauseError) no function clause matching: Drop.fall_velocity(:mars, -20)
 drop.ex:3: Drop.fall_velocity(:moon, -20)

The case construct switches among planemos, while the guard clause on the function
definition keeps out negative distances, producing (rightly) the error on line 4. This way
the guard needs to appear only once.

You can also use the return value from the case construct to reduce duplicate code and
make the logic of your program clearer. In this case, the only difference between the
calculations for earth, moon, and mars is a gravitational constant. Example 4-2, which
you can find in ch04/ex2-case, shows how to make the case construct return the gravi‐
tational constant for use in a single calculation at the end.

38 | Chapter 4: Logic and Recursion

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-2. Using the return value of the case construct to clean up the function
defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end
 :math.sqrt(2 * gravity * distance)
 end

end

This time, the gravity variable is set to the return value of the case construct. The now
more readable formula math:sqrt(2 * gravity * distance) is the last line of the
function, and the value it produces will be the return value.

You can also use guards with a case statement, as shown, perhaps less than elegantly,
in Example 4-3, which is in ch04/ex3-case. This might make more sense if there were
different planemos with different rules about distances.

Example 4-3. Moving guards into the case statement
defmodule Drop do

 def fall_velocity(planemo, distance) do
 gravity = case planemo do
 :earth when distance >= 0 -> 9.8
 :moon when distance >= 0 -> 1.6
 :mars when distance >= 0 -> 3.71
 end
 :math.sqrt(2 * gravity * distance)
 end

end

This produces similar results, except that the error message at the end changes from
(FunctionClauseError) no function clause matching: Drop.fall_veloci

ty(:mars, -20) to (CaseClauseError) no case clause matching: :mars:

iex(7)> c("drop.ex")
[Drop]
iex(8)> Drop.fall_velocity(:earth,20)
19.79898987322333
iex(9)> Drop.fall_velocity(:moon,20)
8.0
iex(10)> Drop.fall_velocity(:mars,-20)
** (CaseClauseError) no case clause matching: :mars
 drop.ex:4: Drop.fall_velocity/2

Logic Inside of Functions | 39

www.it-ebooks.info

http://www.it-ebooks.info/

The error is correct, in that the case construct is trying to match :mars, but misleading
because the problem isn’t with :mars but rather with the guard that’s checking the
distance variable. If Elixir tells you that your case doesn’t match but a match is obvi‐
ously right there in front of you, check your guard statements.

Adjusting to Conditions
The cond construct is broadly similar to the case statement, but without the pattern
matching. If you would like, this allows you to write a catch-all clause—a guard matching
true at the end. This often makes it easier to express logic based on broader comparisons
than simple matching.

Suppose, for example, that the precision of the fall_velocity function is too much.
Instead of an actual speed, you’d like to describe the speed produced by dropping from
a tower of a given height. You can add a cond construct that does that to the earlier code
from Example 4-2, as shown in Example 4-4, in ch04/ex4-cond.

Example 4-4. Adding an if construct to convert numbers into atoms
defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end

 velocity = :math.sqrt(2 * gravity * distance)

 cond do
 velocity == 0 -> :stable
 velocity < 5 -> :slow
 velocity >= 5 and velocity < 10 -> :moving
 velocity >= 10 and velocity < 20 -> :fast
 velocity >= 20 -> :speedy
 end
 end

end

This time, the cond construct returns a value (an atom describing the velocity) based
on the many guards it includes. Because that value is the last thing returned within the
function, that becomes the return value of the function.

The results are a little different from past trials:

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.fall_velocity(:earth,20)

40 | Chapter 4: Logic and Recursion

www.it-ebooks.info

http://www.it-ebooks.info/

:fast
iex(3)> Drop.fall_velocity(:moon,20)
:moving
iex(4)> Drop.fall_velocity(:mars,20)
:fast
iex(5)> Drop.fall_velocity(:earth,30)
:speedy

If you want to capture the value produced by the cond construct in a variable, you can.
Just replace the cond do in the first line with something like description = cond do.

Elixir evaluates the cond and if statements on the basis of truthi‐
ness. All values are considered to be true except nil and false.

If, or else
For simpler cases, Elixir also offers an if function that tests only a single clause, and
allows an else to follow if a failed test also requires action.

Example 4-5, in ch04/ex5-if, sends a warning to standard output (in this case IEx) if you
drop an object too fast. It uses the simpler cousin of cond, if, to decide whether to put
out the extra message.

Example 4-5. Sending an extra warning if the velocity is too high
defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end

 velocity = :math.sqrt(2 * gravity * distance)

 if velocity > 20 do
 IO.puts("Look out below!")
 else
 IO.puts("Reasonable...")
 end

 velocity

 end

end

Logic Inside of Functions | 41

www.it-ebooks.info

http://www.it-ebooks.info/

The new if clause checks the velocity variable to see if it’s above 20. If it is, it calls
IO.puts, which creates a side effect: a message on the screen. If not, the else clause puts
a milder message on the screen. (The velocity at the end makes sure that the calculated
result is the return value.):

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.fall_velocity(:earth,50)
Look out below!
31.304951684997057
iex(3)> Drop.fall_velocity(:moon,100)
Reasonable...
17.88854381999832

You can write if statements in a few different ways. The if statement is compact enough
that it can be tempting to put it on a single line:

iex(4)> x=20
20
iex(5)> if x>10 do :large end
:large

That worked well, and you can even add an else:

iex(6)>if x>10 do :large else :small end
:large

As an alternative, Elixir lets you put a colon after the do and then use a shorter form:

iex(6)> if x>10, do: :large, else: :small
:large

You may also find Elixir’s unless statement more readable than an if when you want
to test against an opposite:

iex(8)> unless x>10, do: :small, else: :large
:large

Variable Assignment in case and if Constructs
Every possible path created in a case, cond, or if statement has the opportunity to bind
values to variables. This is usually a wonderful thing, but could let you create unstable
programs by assigning different variables in different clauses. This might look some‐
thing like Example 4-6, which you can find in ch04/ex6-broken.

Example 4-6. A badly broken cond construct
defmodule Broken do

 def bad_cond(test_val) do

 cond do
 test_val < 0 -> x=1

42 | Chapter 4: Logic and Recursion

www.it-ebooks.info

http://www.it-ebooks.info/

 test_val >= 0 -> y=2
 end

 x+y

 end
end

Erlang would have stopped you from doing this by refusing to compile the code and
letting you know that there are unsafe variables. Elixir, however, lets it compile, and then
breaks at runtime:

iex(1)> c("broken.ex")
[Broken]
iex(2)> Broken.bad_cond(20)
** (ArithmeticError) bad argument in arithmetic expression
 broken.ex:10: Broken.bad_cond/1

Elixir also lifts Erlang’s tight rules on what can happen in the clause
being evaluated by if and cond. Erlang only lets you use the fea‐
tures available in guards, ensuring that there will be no side effects.
Elixir doesn’t have those limits.

The Gentlest Side Effect: IO.puts
Up until Example 4-5, all of the Elixir examples you’ve seen focused on a single path
through a group of functions. You put an argument or arguments in, and got a return
value back. That approach is the cleanest way to do things: you can count on things that
worked before to work again because there’s no opportunity to muck up the system with
leftovers of past processing.

Example 4-5 stepped outside of that model, creating a side effect that will linger after
the function is complete. The side effect is just a message that appears in the shell (or
in standard output when you start running Elixir outside of the shell). Applications that
share information with multiple users or keep information around for longer than a
brief processing cycle will need stronger side effects, like storing information in
databases.

Elixir best practice suggests using side effects only when you really need to. An appli‐
cation that presents an interface to a database, for example, really will need to read and
write that database. An application that interacts with users will need to put information
on the screen (or other interface) so that users can figure out what they’re expected to
do.

Side effects are also extremely useful for tracing logic when you are first starting out.
The simplest way to see what a program is doing, before you’ve learned how to use the

The Gentlest Side Effect: IO.puts | 43

www.it-ebooks.info

http://www.it-ebooks.info/

built-in tracing and debugging tools for processes, is to have the program report its
status at points you consider interesting. This is not a feature you want to leave in
shipping code, but when you’re getting started, it can give you an easily understandable
window into your code’s behavior.

The IO.puts function lets you send information to the console, or, when you’re even‐
tually running code outside of the console, to other places. For now, you’ll just use it to
send messages from the program to the console. Example 4-5 showed the simplest way
to use IO.puts, just printing a message it takes in double quotes:

IO.puts("Look out below!")

IO.puts adds a newline to the end, telling the console to start any new messages it sends
at the beginning of the next line. It makes your results look a bit neater. If you don’t want
a newline, you can use IO.write instead. If you want to print a variable that isn’t a string,
you can use IO.inspect.

Elixir flatly prohibits operations that could cause side effects in guard
expressions. If side effects were allowed in guards, then any time a
guard expression was evaluated—whether it returned true or false—
the side effect would happen. IO.puts wouldn’t likely do anything
terrible, but these rules mean that it too is blocked from use in guard
expressions.

Simple Recursion
The main tool you’ll use to repeat actions is recursion: having a function call itself until
it’s (hopefully) reached a conclusion. This can sound complicated, but it doesn’t have
to be.

There are two basic kinds of useful recursion. In some situations, you can count on the
recursion to reach a natural end. The process runs out of items to work on or reaches
a natural limit. In other situations, there is no natural end, and you need to keep track
of the result so the process will end. If you can master these two basic forms, you’ll be
able to create many more complex variations.

There is a third form, in which the recursive calls never reach an end.
This is called an infinite loop and is best known as an error you’ll want
to avoid. As you’ll see in Chapter 9, though, even infinite loops can
be useful.

44 | Chapter 4: Logic and Recursion

www.it-ebooks.info

http://www.it-ebooks.info/

Counting Down
The simplest model of recursion with a natural limit is a countdown, like the one used
for rockets. You start with a large number and count down to zero. When you reach
zero, you’re done (and the rocket takes off, if there is one).

To implement this in Elixir, you’ll pass a starting number to an Elixir function. If the
number is greater than zero, it will then announce the number and call itself with the
number minus one as the argument. If the number is zero (or less), it will announce
blastoff! and end. Example 4-7, found in ch04/ex7-countdown, shows one way to do
this.

Example 4-7. Counting down
defmodule Count do

 def countdown(from) when from > 0 do
 IO.inspect(from)
 countdown(from-1)
 end

 def countdown(from) do
 IO.puts("blastoff!")
 end

end

The last clause could have a guard—when from <= 0—but it would be useful only to
make clear when the blastoff happens to human readers. Unnecessary guard clauses
may lead to later confusion, so brevity is probably the best option here. However, you’ll
get a warning that from is unused in the final clause. Here’s a test run:

iex(1)> c("count.ex")
count.ex:8: variable from is unused
[Count]
iex(2)> Count.countdown(2)
2
1
blastoff!
:ok

The first time through, Elixir chose the first clause of countdown(from), passing it a
value of 2. That clause printed 2, plus a newline, and then it called the countdown
function again, passing it a value of 1. That triggered the first clause again. It printed 1,
plus a newline, and then it called the countdown function again—this time passing it a
value of 0.

Simple Recursion | 45

www.it-ebooks.info

http://www.it-ebooks.info/

The value of 0 triggered the second clause, which printed blastoff! and ended. After
running three values through the same set of code, the function comes to a neat
conclusion.

You could also implement this conclusion with an if statement in‐
side a single countdown(from) function clause. This is unusual in
Elixir. I find guards more readable in these cases, but you may see
things differently.

Counting Up
Counting up is trickier because there’s no natural endpoint, so you can’t model your
code on Example 4-7. Instead, you can use an accumulator. An accumulator is an extra
argument that keeps track of the current result of past work, passing it back into a
recursive function. (You can have more than one accumulator argument if you need,
though one is often sufficient.) Example 4-8, which you can find in ch04/ex8-countup,
shows how to add a countup function to the count module, which lets Elixir count up
to a number.

Example 4-8. Counting up
defmodule Count do

 def countup(limit) do
 countup(1,limit)
 end

 defp countup(count, limit) when count <= limit do
 IO.inspect(count)
 countup(count+1, limit)
 end

 defp countup(count, limit) do
 IO.puts("finished!")
 end

end

It produces results like the following:

iex(1)> c("count.ex")
count.ex:12: variable count is unused
count.ex:12: variable limit is unused
[Count]
iex(2)> Count.countup(2)
1
2

46 | Chapter 4: Logic and Recursion

www.it-ebooks.info

http://www.it-ebooks.info/

finished!
:ok

The countup/2 function, which does most of the work, remains private, not exported.
This isn’t mandatory; you might make it public if you wanted to support counting be‐
tween arbitrary values, but it’s a common practice. Keeping the recursive internal func‐
tions private makes it less likely that someone will misuse them for purposes they’re not
well-suited to. In this case, it doesn’t matter at all, but it can make a big difference in
other more complex situations, especially when data is modified.

When you call countup/1, it calls countup/2 with an argument of 1 (for the current
count) and the limit value you provided for the upper limit.

If the current count is less than or equal to the upper limit, the first clause of the countup/
2 function reports the current count value with IO.puts. Then it calls itself again, in‐
creasing the count by one but leaving the limit alone.

If the current count is greater than the upper limit, it fails the guard on the first clause,
so the second clause kicks in, reports "Finished.", and is done.

The guards here are sufficient to avoid infinite loops. You can en‐
ter zero, negative numbers, or decimals as arguments to countup/1
and it will terminate neatly. You can get into serious trouble, how‐
ever, if your termination test relies on == or === for comparison to
a single value rather than >= or <= for comparison to a range.

Recursing with Return Values
The counting examples are simple—they demonstrate how recursion works, but just
discard the return values. There are return values—the IO.puts calls return the
atom :ok—but they aren’t of much use. More typically, a recursive function call will
make use of the return value.

A classic recursive call calculates factorials. A factorial is the product of all positive
integers equal to or less than the argument. The factorial of 1 is 1; 1 by itself yields 1.
The factorial of 2 is 2; 2 × 1 yields 2. It starts to get interesting at 3, where 3 × 2 × 1 is 6.
At 4, 4 × 3 × 2 × 1 is 24, and the results get rapidly larger with larger arguments.

There was a pattern to that, though. You can calculate any factorial by multiplying the
integer by the factorial of one less. That makes it a perfect case for using recursion, using
the results of smaller integers to calculate the larger ones. This approach is similar to
the countdown logic, but instead of just counting, the program collects calculated re‐
sults. That could look like Example 4-9, which you’ll find in ch04/ex9-factorial-down.

Simple Recursion | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-9. A factorial written with the counting-down approach
defmodule Fact do

 def factorial(n) when n > 1 do
 n * factorial(n-1)
 end

 def factorial(n) when n<=1 do
 1
 end
end

The first clause of factorial uses the pattern previously described. The first clause,
used for numbers above one, returns a value that is the number n times the factorial of
the next integer down. The second clause returns the value 1 when it reaches 1. Using
<= in that comparison, rather than ==, gives the function more resilience against non-
integer or negative arguments, though the answers it returns aren’t quite right: factorials
really only work for integers of 1 or higher. The results are as previously suggested:

iex(1)> c("fact.ex")
[Fact]
iex(2)> Fact.factorial(1)
1
iex(3)> Fact.factorial(3)
6
iex(4)> Fact.factorial(4)
24
iex(5)> Fact.factorial(40)
815915283247897734345611269596115894272000000000

This works, but it may not be clear why it works. Yes, the function counts down and
collects the values, but if you want to see the mechanism, you need to add some IO.puts
calls into the code, as shown in Example 4-10. (You can find this at ch04/ex10-factorial-
down-instrumented.)

Example 4-10. Looking into the factorial recursion calls
defmodule Fact do

 def factorial(n) when n > 1 do
 IO.puts("Calling from #{n}.")
 result = n * factorial(n-1)
 IO.puts("#{n} yields #{result}.")
 result
 end

 def factorial(n) when n<=1 do
 IO.puts("Calling from 1.")
 IO.puts("1 yields 1.")
 1

48 | Chapter 4: Logic and Recursion

www.it-ebooks.info

http://www.it-ebooks.info/

 end
end

There’s a bit more overhead here. To present the result of the recursive call and still
return that value to the next recursive call requires storing it in a variable, here called
result. The IO.puts call makes visible which value produced the result. Then, because
the last value expression in a function clause is the return value, result appears again.
The second clause for 1 is similar, except that it can report simply that 1 yields 1.
because it always will.

When you compile this and run it, you’ll see something like the following:

iex(1)> c("fact.ex")
[Fact]
iex(2)> Fact.factorial(4)
Calling from 4.
Calling from 3.
Calling from 2.
Calling from 1.
1 yields 1.
2 yields 2.
3 yields 6.
4 yields 24.
24

Although the calls count down the values, as the logic would suggest, the messages about
results don’t appear until the countdown is complete, and then they all appear in order,
counting up.

The reason this happens is that the function calls don’t return values until the countdown
is complete. Until then, Elixir builds a stack of frames corresponding to the function
calls. You can think of the frames as paused versions of the function logic, waiting for
an answer to come back. Once the call with an argument of 1 returns a simple value,
not calling any further, Elixir can unwind those frames and calculate the result. That
unwinding presents the results—“X yields Y”—in the order that the frames unwind.

That “unwinding” also means that the code in Example 4-9 and Example 4-10 is not
tail recursive. When Elixir encounters code that ends with a simple recursive call, it can
optimize the handling to avoid keeping that stack of calls around. This probably doesn’t
matter for a one-time calculation, but it makes a huge difference when you write code
that will stay running for a long time.

You can achieve tail recursion for factorials by applying the counting-up approach to
factorials. You’ll get the same results (at least for integer values), but the calculations
will work a little differently, as shown in Example 4-11, at ch04/ex11-factorial-up.

Simple Recursion | 49

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-11. A factorial written with the counting-up approach
defmodule Fact do

 def factorial(n) do
 factorial(1,n,1)
 end

 defp factorial(current, n, result) when current <= n do
 new_result = result * current
 IO.puts("#{current} yields #{new_result}.")
 factorial(current+1, n, new_result)
 end

 defp factorial(_current, _n, result) do
 IO.puts("finished!")
 result
 end

end

As in the counting-up example, the main function call, here factorial/1, calls a private
function, factorial/3. In this case, there are two accumulators. current stores the
current position in the count, whereas result is the answer from the previous
multiplication. When the value of current climbs past the limiting value n, the first
guard fails, the second clause is invoked, and the function is finished and returns the
result. (You’ll get a compilation warning because the final clause doesn’t use the ac‐
cumulator variables current or n. You can ignore it.)

Because factorial/3’s last call in the recursive section is to itself, without any compli‐
cations to track, it is tail recursive. Elixir can minimize the amount of information it
has to keep around while the calls all happen.

The calculation produces the same results, but does the math in a different order:

iex(1)> c("fact.ex")
[Fact]
iex(2)> Fact.factorial(4)
1 yields 1.
2 yields 2.
3 yields 6.
4 yields 24.
finished!
24

Although the code is tracking more values, the runtime has less to do. When it finally
hits the final result, there’s no further calculation needed. That result is the result, and
it passes back through to the original call. This also makes it easier to structure the
IO.puts calls. If you remove them or comment them out, the rest of the code stays the
same.

50 | Chapter 4: Logic and Recursion

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Communicating with Humans

Elixir rebuilds the Erlang tools for working with strings from scratch, bringing them up
to speed for Unicode (UTF-8) and recognizing that strings deserve more focus than just
a list of characters. Chapter 4 showed you a bit of string handling and presentation
(IO.puts), but there are more pieces you’ll want to learn to handle communications
with people and sometimes with other applications. At the very least, this chapter will
let you build more convenient interfaces for testing your code than calling functions
from IEx.

If you’re feeling completely excited about the recursion you learned
in Chapter 4, you may want to jump ahead to Chapter 6, where that
recursion will once again be front and center.

Strings
Atoms are great for sending messages within a program, even messages that the pro‐
grammer can remember, but they’re not really designed for communicating outside of
the context of Erlang processes. If you need to be assembling sentences or even pre‐
senting information, you’ll want something more flexible. Strings are the structure you
need. You’ve already used strings a little bit, as the double-quoted arguments to IO.puts
in Chapter 4:

IO.puts("Look out below!")

The double-quoted content (Look out below!) is a string. A string is a sequence of
characters. If you want to include a double quote within the string, you can escape it
with a backslash, like \". \n gives you a newline. To include a backslash, you have to use
\\. Appendix A includes a complete list of escapes and other options.

51

www.it-ebooks.info

http://www.it-ebooks.info/

If you create a string in the shell, Elixir will report back the string with the escapes. To
see what it “really” contains, use IO.puts:

iex(1)> x= "Quote - \" in a string. \n Backslash, too: \\ . \n"
"Quote - \" in a string. \n Backslash, too: \\ . \n"
iex(2)> IO.puts(x)
Quote - " in a string.
 Backslash, too: \ .

:ok

If you start entering a string and don’t close the quotes, when you
press Enter, IEx will just give you a new line with the same number.
This lets you include newlines in strings, but it can be very confus‐
ing. If you think you’re stuck, usually entering " will get you out of it.

Elixir also provides operations for creating new strings. The simplest is concatenation,
where you combine two strings into one. Elixir uses the unusual-looking but functional
<> operator:

iex(3)> "el" <> "ixir"
"elixir"
iex(4)> a="el"
"el"
iex(5)> a <> "ixir"
"elixir"

Elixir also has string interpolation, using {} as a wrapper around content to be added
to the string. You used this in Chapter 4 to see the value of variables:

IO.puts("#{n} yields #{result}.")

When Elixir encounters #{} in a string, it processes its contents to get a result, converts
them to a string if necessary, and combines the pieces into a single string. That inter‐
polation happens only once. Even if the variable used in the string changes, the contents
of the string will remain the same:

iex(1)> a = "this"
"this"
iex(2)> b = "The value of a is #{a}."
"The value of a is this."
iex(3)> a = "that"
"that"
iex(4)> b
"The value of a is this."

You can put anything that returns a value in the interpolation: a variable, a function call,
or an operation on parts. I find it most readable to just have variables, but your usage

52 | Chapter 5: Communicating with Humans

www.it-ebooks.info

http://www.it-ebooks.info/

may vary. Like any other calculation, if the value to be interpolated can’t be calculated,
you’ll get an error.

Interpolation works only for values that are already strings or can nat‐
urally be converted to strings (such as numbers). If you want to inter‐
polate any other sort of value, you must wrap it in a call to the in
spect function:

iex(1)> x = 7 * 5
35
iex(2)> "x is now #{x}"
"x is now 35"
iex(3)> y = {4, 5, 6}
{4,5,6}
iex(4)> "y is now #{y}"
** (Protocol.UndefinedError) protocol String.Chars not implemented
for {4, 5, 6}
 (elixir) lib/string/chars.ex:3: String.Chars.impl_for!/1
 (elixir) lib/string/chars.ex:17: String.Chars.to_string/1
iex(4)> "y is now #{inspect y}"
"y is now {4,5,6}"

Elixir also offers two options for comparing string equality, the == operator and the ===
(exact or strict equality) operator. The == operator is generally the simplest for this,
though the other produces the same results:

iex(5)> "el" == "el"
true
iex(6)> "el" == "ixir"
false
iex(7)> "el" === "el"
true
iex(8)> "el" === "ixir"
false

Elixir doesn’t offer functions for changing strings in place, as that would work badly
with a model where variable contents don’t change. However, it does offer a set of func‐
tions for finding content in strings and dividing or padding those strings, which together
let you extract information from a string (or multiple strings) and recombine it into a
new string.

If you want to do more with your strings, you should definitely explore the documen‐
tation for the String and Regex (regular expressions) Elixir modules.

Multiline Strings
Multiline strings, sometimes called heredocs , let you create strings containing newlines.
Chapter 2 mentioned them briefly, as a convenience for creating documentation, but
you can use them for other purposes as well.

Multiline Strings | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike regular strings, multiline strings open and close with three double quotes:

iex(1)> multi = """
...(1)> This is a multiline
...(1)> string, also called a heredoc.
...(1)> """
"This is a multiline\nstring, also called a heredoc.\n"
iex(2)> IO.puts(multi)
This is a multiline
string, also called a heredoc.

:ok

Apart from the different way you enter them, you process multiline strings the same
way as any other strings.

Unicode
Elixir works well with Unicode (UTF-8) strings. The String.length/1 function returns
the number of Unicode graphemes in its argument. This is not necessarily the same as
the number of bytes in the string, as it requires more than one byte to represent many
Unicode characters. If you do need to know the number of bytes, you can use the
byte_size/1 function:

iex(1)> str="서울 - 대한민국" # Seoul, Republic of Korea
"서울 - 대한민국"
iex(2)> String.length(str)
9
iex(3)> byte_size(str)
21

Character Lists
Elixir’s string handling is a major change from Erlang’s approach. In Erlang, all the
strings were lists of characters, the same kind of lists you’ll learn about in Chapter 6. As
many Elixir programs will need to work with Erlang libraries, Elixir provides support
for character lists as well as strings.

Character lists are slower to work with and take up more memory
than strings, so they shouldn’t be your first choice.

To create a character list, you use single quotes instead of double quotes:

iex(1)> x = 'ixir'
'ixir'

54 | Chapter 5: Communicating with Humans

www.it-ebooks.info

http://www.it-ebooks.info/

You concatenate character lists with ++ instead of <>:

iex(2)> 'el' ++ 'ixir'
'elixir'

You can convert character lists to strings with List.to_string/1 and strings to char‐
acter lists with String.to_char_list/1:

iex(3)> List.to_string('elixir')
"elixir"
iex(4)> String.to_char_list("elixir")
'elixir'

For purposes other than working with Erlang librares, you should probably stick with
strings. (Chapter 6 will explain more about working with lists, and these may be helpful
if you have data that you want to treat explicitly as a list of characters.)

String Sigils
Elixir offers another way to create strings, character lists, and regular expressions you
can apply to the other two formats. String sigils tell the interpreter, “This is going to be
this kind of content.”

Sigils start with a ~ sign, then one of the letters s (for binary string), c (for character
list), r (for regular expression), or w (to produce a list split into words by whitespace).
If the letter is lowercase, then interpolation and escaping happen as usual. If the letter
is uppercase (S, C, R, or W), then the string is created exactly as shown, with no escaping
or interpolation. After the letter, you can use any nonalphanumeric character, not just
quotes, to start and end the string.

This sounds complicated, but it works pretty easily. For example, if you needed to create
a string that contained escapes that some other tool was going to process, you might
write:

iex(5)> pass_through = ~S"This is a {#msg}, she said.\n This is only a {#msg}."
"This is a {#msg}, she said.\\n This is only a {#msg}."
iex(6)> IO.puts(pass_through)
This is a {#msg}, she said.\n This is only a {#msg}.
:ok

Elixir also offers w and W, for lists of words. This sigil takes a binary string and splits it
into a list of strings separated by whitespace:

iex(1)> ~w/Elixir is great!/
["Elixir", "is", "great!"]

String Sigils | 55

www.it-ebooks.info

http://www.it-ebooks.info/

You can also create your own sigils for your own formats. See the
Elixir website for more on these possibilities.

Asking Users for Information
Many Elixir applications run kind of like wholesalers—in the background, providing
goods and services to retailers who interact directly with users. Sometimes, however,
it’s nice to have a direct interface to code that is a little more customized than IEx
command line. You probably won’t write many Elixir applications whose primary in‐
terface is the command line, but you may find that interface very useful when you first
try out your code. (Odds are good that if you’re working with Elixir, you don’t mind
using a command-line interface, either.)

You can mix input and output with your program logic, but for this kind of simple
facade, it probably makes better sense to put it in a separate module. In this case, the
ask module will work with the drop module from Example 3-8.

Erlang’s io functions for input have a variety of strange interactions
with the Erlang shell, as discussed in the following section. You will
have better luck working with them in other contexts.

Gathering Characters
The IO.getn function will let you get just a few characters from the user. This seems
like it should be convenient if, for example, you have a list of options. Present the options
to the user, and wait for a response. In Example 5-1, which you can find at ch05/ex1-
ask, the list of planemos is the option, and they’re easy to number 1 through 3. That
means you just need a single-character response.

Example 5-1. Presenting a menu and waiting for a single-character response
defmodule Ask do

 def chars() do
 IO.puts(
 """
Which planemo are you on?
 1. Earth
 2. Moon
 3. Mars
 """
)

56 | Chapter 5: Communicating with Humans

www.it-ebooks.info

http://bit.ly/1lbMOnw
http://bit.ly/1lbMOnw
http://www.it-ebooks.info/

 IO.getn("Which? > ")

 end
end

Most of that is presenting the menu. The key piece is the IO.getn call at the end. The
first argument is a prompt, and the second is the number of characters you want re‐
turned, with a default value of 1. The function still lets users enter whatever they want
until they press Enter, but it will tell you only the first character (or however many
characters you specified), and it will return it as a string:

iex(9)> c("ask.ex")
[Ask]
iex(10)> Ask.chars
Which planemo are you on?
1. Earth
2. Earth's Moon
3. Mars

Which? > 3
"3"
iex(11)>
nil
iex(12)>

The IO.getn function returns the string "3", the character the user entered, after press‐
ing Enter. However, as you can tell by the nil and the duplicated command prompt,
the Enter still gets reported to IEx. This can get stranger if users enter more content
than is needed:

iex(13)> Ask.chars
Which planemo are you on?
1. Earth
2. Earth's Moon
3. Mars

Which? > 2222222
"2"
iex(14)> 222222
222222
iex(15)>

There may be times when IO.getn is exactly what you want, but odds are good, at least
when working within IEx, that you’ll get cleaner results by taking in a complete line of
user input and picking what you want from it.

Asking Users for Information | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Reading Lines of Text
Erlang offers a few different functions that pause to request information from users.
The IO.gets function waits for the user to enter a complete line of text terminated by
a newline. You can then process the line to extract the information you want, and noth‐
ing will be left in the buffer. Example 5-2, in ch05/ex2-ask, shows how this could work,
though extracting the information is somewhat more complicated than I would like.

Example 5-2. Collecting user responses a line at a time
defmodule Ask do

 def line() do
 planemo=get_planemo()
 distance=get_distance()
 Drop.fall_velocity(planemo, distance)
 end

 defp get_planemo() do
 IO.puts(
 """
Which planemo are you on?
 1. Earth
 2. Earth's Moon
 3. Mars
 """
)

 answer = IO.gets("Which? > ")
 value=String.first(answer)
 char_to_planemo(value)
 end

defp get_distance() do
 input = IO.gets("How far? (meters) > ")
 value = String.strip(input)
 binary_to_integer(value)
end

defp char_to_planemo(char) do
 case char do
 "1" -> :earth
 "2" -> :moon
 "3" -> :mars
 end
 end

end

58 | Chapter 5: Communicating with Humans

www.it-ebooks.info

http://www.it-ebooks.info/

To clarify the code, the line function just calls three other functions. It calls
get_planemo to present a menu to the user and get a reply, and it similarly calls get_dis
tance to ask the user the distance of the fall. Then it calls Drop.fall_velocity to return
the velocity at which a frictionless object will hit the ground when dropped from that
height at that location.

The get_planemo function uses IO.puts and a multiline string to present information
and an IO.gets call to retrieve information from the user. Unlike IO.getn, IO.gets
returns the entire value the user entered as a string, including the newline, and leaves
nothing in the buffer:

defp get_planemo() do
 IO.puts(
 """
Which planemo are you on?
 1. Earth
 2. Earth's Moon
 3. Mars
 """
)

 answer = IO.gets("Which? > ")
 value=String.first(answer)
 char_to_planemo(value)
end

The last two lines process the result. The only piece of the response that matters to this
application is the first character of the response. The easy way to grab that is with the
built-in function String.first, which pulls the first character from a string.

The Drop.fall_velocity function won’t know what to do with a planemo listed as 1,
2, or 3; it expects an atom of :earth, :moon, or :mars. The get_planemo function con‐
cludes by returning the value of that conversion, performed by the char_to_planemo
function:

defp char_to_planemo(char) do
 case char do
 "1" -> :earth
 "2" -> :moon
 "3" -> :mars
 end
end

The case statement matches against the string. The atom returned by the case statement
will be returned to the get_planemo/0 function, which will in turn return it to the line/
0 function for use in the calculation.

Asking Users for Information | 59

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the distance is somewhat easier:

defp get_distance() do
 input = IO.gets("How far? (meters) > ")
 value = String.strip(input)
 String.to_integer(value)
end

The input variable collects the user’s response to the question, “How far?” The pro‐
cessing for value uses String.strip to remove any surrounding whitespace from
input, including the newline at the end. Finally, the binary_to_integer function ex‐
tracts an integer from value. Using binary_to_integer isn’t perfect, but for these pur‐
poses, it’s probably acceptable.

A sample run demonstrates that it produces the right results given the right input:

iex(1)> c("ask.ex")
[Ask]
iex(2)> c("drop.ex")
[Drop]
iex(3)> Ask.line
Which planemo are you on?
1. Earth
2. Earth's Moon
3. Mars

Which? > 1
How far? (meters) > 20
19.79898987322333
iex(4)> Ask.line
Which planemo are you on?
1. Earth
2. Earth's Moon
3. Mars

Which? > 2
How far? (meters) > 20
8.0

Chapter 10 will return to this code, looking at better ways to handle the errors users can
provoke by entering unexpected answers.

60 | Chapter 5: Communicating with Humans

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Lists

Elixir is great at handling lists, long series of similar (or not) values. List processing
makes it easy to see the value of recursion and offers opportunities to get a lot of work
done for very little effort.

List Basics
An Elixir list is an ordered set of elements. Generally you will process a list in order,
from the first item (the head) to the last item, though there are times when you may
want to grab a particular item from the list. Elixir also provides built-in functions for
manipulating lists when you don’t want to go through the entire sequence.

Elixir syntax encloses lists in square brackets and separates elements with commas. A
list of numbers might look like the following:

[1,2,4,8,16,32]

The elements can be of any type, including numbers, atoms, tuples, strings, and other
lists. When you’re starting out, it’s definitely easiest to work with lists that contain only
a single type of element, rather than mixing all the possibilities, but Elixir itself has no
such constraint. There is also no limit on the number of items a list can contain, though
eventually you may find practical limits of memory.

You can pattern match with lists just as you can with other Elixir data structures:

iex(1)> [1,x,4,y] = [1,2,4,8]
[1,2,4,8]
iex(2)> x
2
iex(3)> y
8

61

www.it-ebooks.info

http://www.it-ebooks.info/

Your code will usually make more sense if you use tuples to handle
data structures containing various kinds of data in a known se‐
quence, and lists to handle structures containing less varied data in
unknown quantities. Tuples are expected to come in a certain order
and can also contain lists, so if you have a data structure that’s most‐
ly known except for an expanding part or two, including a list in‐
side of a tuple can be a workable solution.

Lists can contain lists, and sometimes this can produce surprising results. If, for example,
you want to add a list to a list, you may end up with more levels of list than you planned:

iex(4)> insert = [2,4,8]
[2,4,8]
iex(5)> full = [1,insert,16,32]
[1,[2,4,8],16,32]

You can fix that (if you want to) with the List.flatten/1 function:

iex(6)> neat = List.flatten(full)
[1,2,4,8,16,32]

This also means that if you want to append lists, you need to decide whether you’re
creating a list of lists or a single list containing the contents of the component lists. To
create a list of lists, you just put lists into lists:

iex(7)> a = [1,2,4]
[1,2,4]
iex(8)> b = [8,16,32]
[8,16,32]
iex(9)> list_of_lists = [a,b]
[[1,2,4],[8,16,32]]

To create a single list from multiple lists, you can use the Enum.concat/2 function or
the equivalent ++ operator:

iex(10)> combined = Enum.concat(a, b)
[1,2,4,8,16,32]
iex(11)> combined2 = a ++ b
[1,2,4,8,16,32]

Both produce the same result: a combined and flattened list.

The ++ operator is right associative, which can change the order of
the resulting list when you append multiple lists.

62 | Chapter 6: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

If you have a set of lists you’d like combined, you can use the Enum.concat/1 function,
which takes a list of lists as its argument and returns a single list containing their con‐
tents:

iex(12)> c = [64,128,256]
[64,128,256]
iex(13)> combined3 = Enum.concat([a,b,c])
[1,2,4,8,16,32,64,128,256]

Splitting Lists into Heads and Tails
Lists are a convenient way to hold piles of similar data, but their great strength in Elixir
is the way they make it easy to do recursion. Lists are a natural fit for the counting-down
style of logic explored in Chapter 4: you can run through a list until you run out of items.
In many languages, running through a list means finding out how many items it contains
and going through them sequentially. Elixir takes a different approach, letting you pro‐
cess the first item in a list, the head, while extracting the rest of the list, the tail, so that
you can pass it to another call recursively.

To extract the head and the tail, you use pattern matching, with a special form of the
list syntax on the left:

[head | tail] = [1,2,4]

The two variables separated by a vertical bar (|), or cons, for list constructor, will be
bound to the head and tail of the list on the right. In the console, Elixir will just report
the contents of the right side of the expression, not the fragments created by the pattern
match, but if you work through a list you can see the results:

iex(1)> list = [1, 2, 4]
[1,2,4]
iex(2)> [h1 | t1] = list
[1,2,4]
iex(3)> h1
1
iex(4)> t1
[2,4]
iex(5)> [h2 | t2] = t1
[2,4]
iex(6)> h2
2
iex(7)> t2
[4]
iex(8)> [h3 | t3] = t2
[4]
iex(9)> h3
4
iex(10)> t3
[]
iex(11)> [h4 | t4] = t3

Splitting Lists into Heads and Tails | 63

www.it-ebooks.info

http://www.it-ebooks.info/

** (MatchError) no match of right hand side value: []
 :erl_eval.expr/3

Line 2 copies the initial list into two smaller pieces. h1 will contain the first item of the
list, whereas t1 will contain a list that has everything except the first element. Line 5
repeats the process on the smaller list, breaking t1 into a h2 and a t2. This time t2 is
still a list, as shown on line 7, but contains only one item. Line 8 breaks that single-item
list again, putting the value into h3 and an empty list into t3.

What happens when you try to split an empty list, as shown on line 11? Elixir reports
an error, "no match…". This fortunately does not mean that recursion on lists is doomed
to produce errors. That lack of a match will naturally stop the recursive process, which
is probably what you want.

Head and tail work only moving forward through a list. If order
matters and you really need to go through a list backwards, you’ll need
to use the Enum.reverse function and then walk through the re‐
versed list.

Processing List Content
The head-and-tail notation was built for recursive processing. Actually making that
work typically follows a pattern in which a list arrives as an argument and is then passed
to another (usually private) function with an accumulator argument. A simple case
might perform a calculation on the contents of the list. Example 6-1, in ch06/ex1-
product, shows this pattern in use, multiplying the values of a list together.

Example 6-1. Calculating the product of values in a list
defmodule Overall do
 def product([]) do
 0
 end

 def product(list) do
 product(list, 1)
 end

 def product([], accumulated_product) do
 accumulated_product
 end

 def product([head | tail], accumulated_product) do
 product(tail, head * accumulated_product)
 end
end

64 | Chapter 6: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

In this module, the product/1 function is the gateway, passing the list (if the list has
content) plus an accumulator to product/2, which does the real work. If you wanted to
test the arriving list to make sure it meets your expectations, it would probably make
the most sense to do that work in product/1, and let product/2 focus on recursive
processing.

Is the product of an empty list really zero? It might make more sense
for an empty list to fail and produce a crash. Elixir’s “let it crash”
philosophy is, as you’ll see later, pretty calm about such things. In the
long run, you’ll have to decide which cases are better left to crash and
which shouldn’t.

The product/2 function has two clauses. The first matches the empty list and will get
called at the end of the recursive process when there are no more entries to process, or
if the list arrives empty. It returns its second argument, the accumulator.

The second clause does more work if the arriving list is not empty. First, the pattern
match ([head|tail]) splits off the first value the list from the rest of the list. Next, it
calls product/2 again, with the remaining (if any) portion of the list and a new accu‐
mulator that is multiplied by the value of the first entry in the list. The result will be the
product of the values included in the list:

iex(1)> c("overall.ex")
[Overall]
iex(2)> Overall.product([1,2,3,5])
30

That went smoothly, but what happened? After product/1 called product/2, it made
five iterations over the list, concluding with an empty list, as shown in Table 6-1.

Table 6-1. Recursive processing of a simple list in product/2
Arriving list Arriving product Head Tail

[1,2,3,5] 1 1 [2,3,5]

[2,3,5] 1 (1*1) 2 [3,5]

[3,5] 2 (1*2) 3 [5]

[5] 6 (2*3) 5 []

[] 30 (6*5) None None

The last arriving accumulated_product, 30, will be handled by the clause for the empty
list and reported as the return value for product/2. When product/1 receives that value,
it will also report 30 as its return value and exit.

Processing List Content | 65

www.it-ebooks.info

http://www.it-ebooks.info/

Because strings in single quotes are lists, you can do strange things
like enter Overall.product('funny'). product/1 will interpret the
character values as numbers and return 17472569400.

Creating Lists with Heads and Tails
While there are times you want to calculate a single value from a list, much list processing
involves modifying lists or converting a list into another list. Because you can’t actually
change a list, modifying or converting a list means creating a new list. To do that, you
use the same vertical bar head/tail syntax, but on the right side of the pattern match
instead of the left. You can try this out in the console, though it’s more useful in a module:

iex(5)> x = [1|[2,3]]
[1,2,3]

Elixir interprets [1|[2,3]] as creating a list. If the value to the right of the vertical bar
is a list, it gets appended to the head as a list. In this case, the result is a neat list of
numbers. There are a few other forms you should be aware of:

iex(2)> y = [1,2 | [3]]
[1,2,3]
iex(3)> z = [1,2 | 3]
[1,2|3]

In line 2, there isn’t a list wrapped around the now two items in the head, but the
constructor still blends the head and the tail together seamlessly. (If you do wrap them
in square brackets, the list constructor assumes that you want a list as the first item in
the list, so [[1,2] | [3]] will produce [[1,2],3].)

However, line 3 demonstrates what happens if you don’t wrap the tail in square brackets
—you get a list, called an improper list, that still contains a constructor, with a strange
tail. Until you’ve learned your way quite thoroughly around Elixir, you definitely should
avoid this, as it will create runtime errors if you try to process it as a normal list. Even‐
tually you may find rare reasons to do this or encounter code that uses it.

More typically, you’ll use list constructors to build lists inside recursive functions.
Example 6-2, which you can find in ch06/ex2-drop, starts from a set of tuples repre‐
senting planemos and distances. With the help of the drop module from Example 3-8,
it creates a list of velocities for the corresponding falls.

Example 6-2. Calculating a series of drop velocities, with an error
defmodule ListDrop do
 def falls(list) do
 falls(list, [])
 end

66 | Chapter 6: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

 def falls([], results) do
 results
 end

 def falls([head|tail], results) do
 falls(tail, [Drop.fall_velocity(head) | results])
 end
end

Much of this is familiar from Example 6-1, except that the results variable gets a list
instead of a number, and the last line of falls/2 creates a list instead of a single value.
If you run it, however, you’ll see one minor problem:

iex(1)> c("drop.ex")
[Drop]
iex(2)> c("listdrop.ex")
[ListDrop]
iex(3)> ListDrop.falls([{:earth, 20}, {:moon, 20}, {:mars, 20}])
[12.181953866272849,8.0,19.79898987322333]

The resulting velocities are reversed: the Earth has more gravity than Mars, and objects
should fall faster on Earth. What happened? That last key line in falls/2 is reading a
list from the beginning to the end and creating a list from the end to the beginning. That
puts the values in the wrong order. Fortunately, as Example 6-3 (in ch06/ex3-drop)
demonstrates, this is easy to fix. You need to call Enum.reverse/1 in the clause of the
falls/2 function that handles the empty list.

Example 6-3. Calculating a series of drop velocities, with the error fixed
defmodule ListDrop do
 def falls(list) do
 falls(list, [])
 end

 def falls([], results) do
 Enum.reverse(results)
 end

 def falls([head|tail], results) do
 falls(tail, [Drop.fall_velocity(head) | results])
 end
end

Now it works:

iex(4)> c("listdrop.ex")
listdrop.ex:1: redefining module ListDrop
[ListDrop]
iex(5)> ListDrop.falls([{:earth, 20}, {:moon, 20}, {:mars, 20}])
[19.79898987322333,8.0,12.181953866272849]

Creating Lists with Heads and Tails | 67

www.it-ebooks.info

http://www.it-ebooks.info/

You could instead have put the Enum.reverse/1 call in the falls/1
gateway function. Either way is fine, though I prefer to have falls/2
return a finished result.

Mixing Lists and Tuples
As you get deeper into Elixir and pass around more complex data structures, you may
find that you’re processing lists full of tuples, or that it would be more convenient to
rearrange two lists into a single list of tuples or vice versa. The List module includes
easy solutions to these kinds of transformations and searches.

The simplest tools are the List.zip/1 and List.unzip/1 functions. They can turn two
lists of the same size into a list of tuples or a list of tuples into a list of two lists:

iex(1)> list1 = [:earth, :moon, :mars]
[:earth,:moon,:mars]
iex(2)> list2 = [9.8, 1.6, 3.71]
[9.8,1.6,3.71]
iex(3)> planemos = List.zip([list1, list2])
[earth: 9.8, moon: 1.6, mars: 3.71]
iex(4)> separate_lists = List.unzip(planemos)
[[:earth,:moon,:mars],[9.8,1.6,3.71]]

The two lists, list1 and list2, have different contents but the same number of items.
The List.zip/1 function returns a list containing a tuple for each of the items in the
original lists. The List.unzip/1 function takes that list of two-component tuples and
splits it out into a list containing two lists.

Building a List of Lists
While simple recursion isn’t too complicated, list processing has a way of turning into
lists of lists in various stages. Pascal’s triangle, a classic mathematical tool, is relatively
simple to create but demonstrates more intricate work with lists. It starts with a 1 at the
top, and then each new row is composed of the sum of the two numbers above it:

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
...

68 | Chapter 6: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

If those numbers seem familiar, it’s probably because they’re the binomial coefficents
that appear when you put (x+y) to a power. That’s just the beginning of this mathematical
marvel!

Pascal’s triangle is easily calculated with Elixir in a number of ways. You can apply the
list techniques already discussed in this chapter by treating each row as a list, and the
triangle as a list of lists. The code will be seeded with the first row—the top 1—repre‐
sented as [0,1,0]. The extra zeros make the addition much simpler.

This is not intended to be an efficient, elegant, or maximally com‐
pact implementation. At this point, a naive implementation likely
explains more about lists.

For a first step, Example 6-4, found in ch06/ex4-pascal, calculates rows individually. This
is a simple recursive process, walking over the old list and adding its contents to create
a new list.

Example 6-4. Calculating a row
defmodule Pascal do
 def add_row(initial) do
 add_row(initial, 0, [])
 end

 def add_row([], 0, final) do
 [0 | final]
 end

 def add_row([h | t], last, new) do
 add_row(t, h, [last + h | new])
 end
end

The add_row/1 function sets things up, sending the current row a 0 to get the math
started and an empty list you can think of as “where the results go,” though it is really
an accumulator. The add_row/3 function has two clauses. The first checks to see if the
list being added is empty. If it is, then the function reports back the final row, adding a
0 at the front.

Most of the work gets done in the second clause of add_row/3. When it receives its
arguments, the [h | t] pattern match splits the head of the list into the h value (a
number) and the tail into t (a list, which may be empty if that was the last number). It
also gets values for the last number processed and the current new list being built.

Building a List of Lists | 69

www.it-ebooks.info

http://www.it-ebooks.info/

It then makes a recursive call to add_row/3. In that new call, the tail of the old list, t, is
the new list to process, the h value becomes the last number processed, and the third
argument, the list, opens with the actual addition being performed, which is then com‐
bined with the rest of the new list being built.

Because the lists in the triangle are symmetrical, there is no need to
use Enum.reverse/1 to flip them. You can, of course, if you want to.

You can test this easily from the console, but remember that your test lists need to be
wrapped in zeros:

iex(1)> c("pascal.ex")
[Pascal]
iex(2)> Pascal.add_row([0,1,0])
[0,1,1,0]
iex(3)> Pascal.add_row([0, 1, 1, 0])
[0,1,2,1,0]
iex(4)> Pascal.add_row([0, 1, 2, 1, 0])
[0,1,3,3,1,0]

Now that you can create a new row from an old one, you need to be able to create a set
of rows from the top of the triangle, as shown in Example 6-5, which you can find in
ch06/ex4-pascal. The add_row/3 function effectively counted down to the end of the
list, but triangle/3 will need to count up to a given number of rows. The triangle/1
function sets things up, defining the initial row, setting the counter to 1 (because that
initial row is the first row), and passing on the number of rows to be created.

The triangle/3 function has two clauses. The first, the stop clause, halts the recursion
when enough rows have been created and reverses the list. (The individual rows may
be symmetrical, but the triangle itself is not.) The second clause does the actual work
of generating new rows. It gets the previous row generated from the list, and then it
passes that to the add_row/1 function, which will return a new row. Then it calls itself
with the new list, an incremented count, and the rows value the stop clause needs.

Example 6-5. Calculating the whole triangle with both functions
defmodule Pascal do
 def triangle(rows) do
 triangle([[0,1,0]], 1, rows)
 end

 def triangle(list, count, rows) when count >= rows do
 Enum.reverse(list)
 end

70 | Chapter 6: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

 def triangle(list, count, rows) do
 [previous | _] = list
 triangle([add_row(previous) | list], count + 1, rows)
 end

 def add_row(initial) do
 add_row(initial, 0, [])
 end

 def add_row([], 0, final) do
 [0 | final]
 end

 def add_row([h | t], last, new) do
 add_row(t, h, [last + h | new])
 end
end

Happily, this works:

iex(5)> c("pascal.ex")
pascal.ex:1: redefining module Pascal
[Pascal]
iex(6)> Pascal.triangle(4)
[[0,1,0],[0,1,1,0],[0,1,2,1,0],[0,1,3,3,1,0]]
iex(7)> Pascal.triangle(6)
[[0,1,0],[0,1,1,0],[0,1,2,1,0],[0,1,3,3,1,0],[0,1,4,6,4,1,0],[0,1,5,10,10,5,1,0]]

Pascal’s triangle may be a slightly neater set of lists than most you will process, but this
kind of layered list processing is a very common tactic for processing and generating
lists of data.

Building a List of Lists | 71

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Name-Value Pairs

Tuples and lists are powerful tools for creating complex data structures, but there are
two key pieces missing from the story so far. Tuples are relatively anonymous structures.
Relying on a specific order and number of components in tuples can create major
maintenance headaches. Lists have similar problems: the usual approaches to list pro‐
cessing in Elixir assume that lists are just a sequence of (often) similar parts.

Sometimes you want to call things out by name instead of number, or pattern match to
a specific location. Elixir has many different options for doing just that.

Maps and structs appeared late in Elixir’s development. They layer
directly on features Erlang introduced in R17. In the long run, maps
and structs will probably become the key pieces to know, but you may
need the rest for compatibility with older Erlang code.

Keyword Lists
Sometimes you need to process lists of tuples containing two elements that can be con‐
sidered as a “key and value” pair, where the key is an atom. Elixir displays them in
keyword list format, and you may enter them in that format as well:

iex(1)> planemo_list = [{:earth, 9.8}, {:moon, 1.6}, {:mars, 3.71}]
[earth: 9.8, moon: 1.6, mars: 3.71]
iex(2)> atomic_weights = [hydrogen: 1.008, carbon: 12.011, sodium: 22.99]
[hydrogen: 1.008, carbon: 12.011, sodium: 22.99]
iex(3)> ages = [david: 59, simon: 40, cathy: 28, simon: 30]
[david: 59, simon: 40, cathy: 28, simon: 30]

A keyword list is always sequential and can have duplicate keys. Elixir’s Keyword module
lets you access, delete, and insert values via their keys.

73

www.it-ebooks.info

http://www.it-ebooks.info/

Use Keyword.get/3 to retrieve the first value in the list with a given key. The optional
third argument to Keyword.get provides a default value to return in case the key is not
in the list. Keyword.fetch!/2 will raise an error if the key is not found. The Key
word.get_values/2 will return all the values for a given key:

iex(5)> Keyword.get(atomic_weights, :hydrogen)
1.008
iex(6)> Keyword.get(atomic_weights, :neon)
nil
iex(7)> Keyword.get(atomic_weights, :carbon, 0)
12.011
iex(8)> Keyword.get(atomic_weights, :neon, 0)
0
iex(9)> Keyword.fetch!(atomic_weights, :neon)
** (KeyError) key not found: :neon
 (elixir) lib/keyword.ex:164: Keyword.fetch!/2
iex(10)> Keyword.get_values(ages, :simon)
[40,30]

You can use Keyword.has_key?/2 to see if a key exists in the list:

iex(11)> Keyword.has_key?(atomic_weights, :carbon)
true
iex(12)> Keyword.has_key?(atomic_weights, :neon)
false

To add a new value, use Keyword.put_new/3. If the key already exists, its value remains
unchanged:

iex(13)> weights2 = Keyword.put_new(atomic_weights, :helium, 4.0026)
[helium: 4.0026, hydrogen: 1.008, carbon: 12.011, sodium: 15.999]
iex(14)> weights3 = Keyword.put_new(weights2, :helium, -1)
[helium: 4.0026, hydrogen: 1.008, carbon: 12.011, sodium: 22.99]

To replace a value, use Keyword.put/3 If the key doesn’t exist, it will be created. If it does
exist, all entries for that key will be removed and the new entry added:

iex(15)> ages2 = Keyword.put(ages, :chung, 19)
[chung: 19, david: 59, simon: 40, cathy: 28, simon: 30]
iex(16)> ages3 = Keyword.put(ages2, :simon, 22)
[simon: 22, chung: 19, david: 59, cathy: 28]

All of these functions are copying lists or creating new modified ver‐
sions of a list. As you’d expect in Elixir, the original list remains un‐
touched.

If you want to delete all entries for a key, use Keyword.delete/2; to delete only the first
entry for a key, use Keyword.delete_first/2:

74 | Chapter 7: Name-Value Pairs

www.it-ebooks.info

http://www.it-ebooks.info/

iex(17)> ages2
[chung: 19, david: 59, simon: 40, cathy: 28, simon: 30]
iex(18)> ages4 = Keyword.delete(ages2, :simon)
[chung: 19, david: 59, cathy: 28]

Lists of Tuples with Multiple Keys
If you had created the list of atomic weights with tuples that included both the element
name and its chemical symbol, you could use either the first or second element in the
tuple as a key:

iex(1)> atomic_info = [{:hydrogen, :H, 1008}, {:carbon, :C, 12.011},
...(1)> {:sodium, Na, 22.99}]
[{:hydrogen,:H,1.008},{:carbon,:C,12.011},{:sodium,:Na,22.99}]

If you have data structured this way, you can use the List.keyfind/4, List.keymem
ber?/3, List.keyreplace/4, List.keystore/4, and List.keydelete/3 functions to
manipulate the list. Each of these functions takes the list as its first argument. The second
argument is the key you want to find, and the third argument is the position within the
tuple that should be used as the key, with 0 as the first element:

iex(1)> atomic_info = [{:hydrogen, :H, 1.008}, {:carbon, :C, 12.011},
...(1)> {:sodium, Na, 22.99}]
[{:hydrogen, :H, 1008}, {:carbon, :C, 12.011}, {:sodium, Na, 22.99}]
iex(2)> List.keyfind(atomic_info, :H, 1)
{:hydrogen, :H, 1.008}
iex(3)> List.keyfind(atomic_info, :carbon, 0)
{:carbon, :C, 12.011}
iex(4)> List.keyfind(atomic_info, :F, 1)
nil
iex(5)> List.keyfind(atomic_info, :fluorine, 0, {})
{}
iex(6)> List.keymember?(atomic_info, :Na, 1)
true
iex(7)> List.keymember?(atomic_info, :boron, 0)
false
iex(8)> atomic_info2 = List.keystore(atomic_info, :boron, 0,
...(8)> {:boron, :B, 10.081})
[{:hydrogen, :H, 1008}, {:carbon, :C, 12.011}, {:sodium, Na, 22.99},
 {:boron, :B, 10.081}]
iex(9)> atomic_info3 = List.keyreplace(atomic_info2, :B, 1,
...(9)> {:boron, :B, 10.81})
[{:hydrogen, :H, 1008}, {:carbon, :C, 12.011}, {:sodium, Na, 22.99},
 {:boron, :B, 10.81}]
iex(10)> atomic_info4 = List.keydelete(atomic_info3, :fluorine, 0)
[{:hydrogen, :H, 1008}, {:carbon, :C, 12.011}, {:sodium, Na, 22.99},
 {:boron, :B, 10.81}]
iex(11)> atomic_info5 = List.keydelete(atomic_info3, :carbon, 0)
[{:hydrogen, :H, 1008}, {:sodium, Na, 22.99}, {:boron, :B, 10.81}]

Lists of Tuples with Multiple Keys | 75

www.it-ebooks.info

http://www.it-ebooks.info/

Lines 2 and 3 show that you can search the list by chemical name (position 0) or symbol
(position 1). By default, trying to find a key that doesn’t exist returns nil (line 4), but
you may return any value you choose (line 5). Lines 6 and 7 show the use of List.key
member?.

To add new values, you must give a complete tuple as the last argument, as shown in
line 8. The value for the atomic weight of boron was deliberately entered incorrectly.
Line 9 uses List.keyreplace to correct the error.

You can also use List.keyreplace to replace the entire tuple. If you wanted
to replace boron with zinc, you would have typed:

iex(9)> atomic_info3 = List.keyreplace(atomic_info2, :B, 1, {:zinc, :Zn,
65.38})

Lines 10 and 11 show what happens when you use List.keydelete on an entry that is
not in the list and on one that is in the list.

Hash Dictionaries
If you know that your keys will be unique, you can create a hash dictionary (HashDict),
which is an associative array. Hash dictionaries aren’t really lists, but I am including
them in this chapter because all of the functions that you have used with a Keyword list
will work equally well with a HashDict. The advantage of a HashDict over a Keyword
list is that it works well for large amounts of data. In order to use a hash dictionary, you
must explicitly create it with the HashDict.new function:

iex(1)>planemo_hash = Enum.into([earth: 9.8, moon: 1.6, mars: 3.71],
HashDict.new())
#HashDict<[earth: 9.8, mars: 3.71, moon: 1.6]>
iex(2)> HashDict.has_key?(planemo_hash, :moon)
true
iex(3)> HashDict.has_key?(planemo_hash, :jupiter)
false
iex(4)> HashDict.get(planemo_hash, :jupiter)
nil
iex(5)> HashDict.get(planemo_hash, :jupiter, 0)
0
iex(6)> planemo_hash2 = HashDict.put_new(planemo_hash, :jupiter, 99.9)
#HashDict<[moon: 1.6, mars: 3.71, jupiter: 99.9, earth: 9.8]>
iex(7)> planemo_hash3 = HashDict.put_new(planemo_hash2, :jupiter, 23.1)
#HashDict<[moon: 1.6, mars: 3.71, jupiter: 99.9, earth: 9.8]>
iex(8)> planemo_hash4 = HashDict.put(planemo_hash3, :jupiter, 23.1)
#HashDict<[moon: 1.6, mars: 3.71, jupiter: 23.1, earth: 9.8]>
iex(9)> planemo_hash5 = HashDict.delete(planemo_hash4,:saturn)
#HashDict<[moon: 1.6, mars: 3.71, jupiter: 23.1, earth: 9.8]>

76 | Chapter 7: Name-Value Pairs

www.it-ebooks.info

http://www.it-ebooks.info/

iex(10)> planemo_hash6 = HashDict.delete(planemo_hash4, :jupiter)
#HashDict<[moon: 1.6, mars: 3.71, earth: 9.8]>

Line 6 deliberately sets Jupiter’s gravity to an incorrect value. Line 7 shows that Hash
Dict.put_new/2 will not update an existing value; line 8 shows that HashDict.put will
update existing values. Line 9 shows that attempting to delete a nonexistent key from a
hash dictionary leaves it unchanged.

From Lists to Maps
Keyword lists are a convenient way to address content stored in lists by key, but under‐
neath, Elixir is still walking through the list. That might be OK if you have other plans
for that list requiring walking through all of it, but it can be unnecessary overhead if
you’re planning to use keys as your only approach to the data.

The Erlang community, after dealing with these issues for years, added a new set of tools,
maps, to R17. (The initial implementation is partial but will get you started.) Elixir
simultaneously added support for the new feature, with, of course, a distinctive Elixir
syntax.

Creating Maps
The simplest way to create a map is to use %{} to create an empty map:

iex(1)> new_map = %{}
%{}

Frequently, you’ll want to create maps with at least some initial values. Elixir offers two
ways to do this. You use the same %{} syntax, but put some extra declarations inside:

iex(2)> planemo_map = %{:earth => 9.8, :moon => 1.6, :mars => 3.71}
%{earth: 9.8, mars: 3.71, moon: 1.6}

The map now has keys that are the atoms :earth, :moon, and :mars, pointing to the
values 9.8, 1.6, and 3.71, respectively. The nice thing about this syntax is that you can
use any kind of value as the key. It’s perfectly fine, for example, to use numbers for keys:

iex(3)> number_map=%{2 => "two", 3 => "three"}
%{2 => "two", 3 => "three"}

However, atoms are probably the most common keys, and Elixir offers a more concise
syntax for creating maps that use atoms as keys:

iex(4)> planemo_map_alt = %{earth: 9.8, moon: 1.6, mars: 3.71}
%{earth: 9.8, mars: 3.71, moon: 1.6}

The responses created by IEx in response to lines 2 and 4 are identical, and Elixir itself
will use the more concise syntax if appropriate.

From Lists to Maps | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Updating Maps
If the strength of a planemo’s gravitational field changes, you can easily fix that with:

iex(7)> altered_planemo_map = %{planemo_map | earth: 12}
%{earth: 12, mars: 3.71, moon: 1.6}

or:

iex(8)> altered_planemo_map = %{planemo_map | :earth => 12}
%{earth: 12, mars: 3.71, moon: 1.6}

You can update multiple key-value pairs if you want, with syntax like %{planemo_map
| earth: 12, mars:3} or %{planemo_map | :earth ⇒ 12, :mars ⇒ 3}.

You may also want to add another key-value pair to a map. You can’t, of course, change
the map itself, but the Dict.put_new library function can easily create a new map that
includes the original plus an extra value:

iex(7)> extended_planemo_map = Dict.put_new(planemo_map, :jupiter, 23.1)
%{earth: 9.8, jupiter: 23.1, mars: 3.71, moon: 1.6}

The Dict library lets you treat maps much like HashDict if you want that style of access,
too.

Reading Maps
Elixir lets you extract information from maps through pattern matching. The same
syntax works whether you’re matching in a variable line or in a function clause. Need
the gravity for earth?

iex(12)> %{earth: earth_gravity} = planemo_map
%{earth: 9.8, mars: 3.71, moon: 1.6}
iex(13)> earth_gravity
9.8

If you ask for a value from a key that doesn’t exist, you’ll get an error. (If you need to
pattern match “any map,” just use the empty map, %{}.)

From Maps to Structs
One shortcoming of tuples, keyword lists, and maps is that they are fairly unstructured.
When you use tuples, you are responsible for remembering the order in which the data
items occur in the tuple. With keyword lists and maps, you can add a new key at any
time or misspell a key name, and Elixir will not complain. Elixir structs overcome these
problems. They are based on maps, so the order of key-value pairs doesn’t matter, but
a struct also keeps track of the key names and makes sure you don’t use invalid keys.

78 | Chapter 7: Name-Value Pairs

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Structs
Using structs requires telling Elixir about them with a special declaration. You use a
defstruct declaration (actually a macro, as you’ll see later) inside of a defmodule
declaration:

defmodule Planemo do
 defstruct name: :nil, gravity: 0, diameter: 0, distance_from_sun: 0
end

That defines a struct named Planemo, containing fields named name, gravity, diame
ter, and distance_from_sun with their default values. This declaration creates structs
for different towers for dropping objects:

defmodule Tower do
 defstruct location: "", height: 20, planemo: :earth, name: ""
end

Creating and Reading Structs
Find these in _ch07/ex1-struct, compile them in IEx, and you can start using the structs
to store data. As you can see on line 3, creating a new struct with empty {} applies the
default values, while specifying values as shown on line 4 overrides the defaults:

iex(1)> c("planemo.ex")
[Planemo]
iex(2)> c("tower.ex")
[Tower]
iex(3)> tower1 = %Tower{}
%Tower{height: 20, location: "", name: "", planemo: :earth}
iex(4)> tower2 = %Tower{location: "Grand Canyon"}
%Tower{height: 20, location: "Grand Canyon", name: "", planemo: :earth}
iex(5)> tower3 = %Tower{location: "NYC", height: 241, name: "Woolworth Building"}
%Tower{height: 241, location: "NYC", name: "Woolworth Building",
 planemo: :earth}
iex(6)> tower4 = %Tower{location: "Rupes Altat 241", height: 500,
...(6)> planemo: :moon, name: "Piccolini View"}
%Tower{height: 500, location: "Rupes Altat 241", name: "Piccolini View",
 planemo: :moon}
iex(7)> tower5 = %Tower{planemo: :mars, height: 500,
...(7)> name: "Daga Vallis", location: "Valles Marineris"}
%Tower{height: 500, location: "Valles Marineris", name: "Daga Vallis",
 planemo: :mars}
iex(8)> tower5.name
"Daga Vallis"

These towers (or at least drop sites) demonstrate a variety of ways to use the record
syntax to create variables as well as interactions with the default values:

• Line 3 just creates tower1 with the default values. You can add real values later.

From Maps to Structs | 79

www.it-ebooks.info

http://www.it-ebooks.info/

• Line 4 creates a tower2 with a location, but otherwise relies on the default values.
• Line 5 overrides the default values for location, height, and name, but leaves the
planemo alone.

• Line 6 overrides all of the default values.
• Line 7 replaces all of the default values, and also demonstrates that it doesn’t matter

in what order you list the name/value pairs. Elixir will sort it out.

Once you have values in your structs, you can extract the values using the dot notation
shown on line 8, which may be familiar from other programming languages.

Pattern Matching Against Structs
Since structures are maps, pattern matches against structures work in exactly the same
way as they do for maps.

iex(9)> %Tower{planemo: p, location: where} = tower5
%Tower{height: 500, location: "Valles Marineris", name: "Daga Vallis",
 planemo: :mars}
iex(10)> p
:mars
iex(11)> where
"Valles Marineris"

Using Structs in Functions
You can pattern match against structures submitted as arguments. The simplest way to
do this is to just match against the record, as shown in Example 7-1, which is in ch07/
ex2-struct-match.

Example 7-1. A method that pattern matches a complete record
defmodule StructDrop do

 def fall_velocity(t) do
 fall_velocity(t.planemo, t.height)
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

80 | Chapter 7: Name-Value Pairs

www.it-ebooks.info

http://www.it-ebooks.info/

end

This uses a pattern match that will match only Tower records, and puts the record into
a variable t. Then, like its predecessor in Example 3-8, it passes the individual arguments
to fall_velocity/2 for calculations, this time using the record syntax:

iex(13)> c("struct_drop.ex")
[StructDrop]
iex(14)> StructDrop.fall_velocity(tower5)
60.909769331364245
iex(15)> StructDrop.fall_velocity(tower1)
19.79898987322333

The StructDrop.fall_velocity/1 function shown in Example 7-2 pulls out the pla
nemo field and binds it to the variable planemo. It pulls out the height field and binds
it to distance. Then it returns the velocity of an object dropped from that distance
just like earlier examples throughout this book.

You can also extract the specific fields from the structure in the pattern match, as shown
in Example 7-2, which is in ch07/ex3-struct-components.

Example 7-2. A method that pattern matches components of a structure
defmodule StructDrop do
 def fall_velocity(%Tower{planemo: planemo, height: distance}) do
 fall_velocity(planemo, distance)
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

You can take the Tower structures you have created and feed them into this function,
and it will tell you the velocity resulting from a drop from the top of that tower to the
bottom.

Finally, you can pattern match against both the fields and the structure as a whole.
Example 7-3, in ch07/ex4-struct-multi, demonstrates using this mixed approach to cre‐
ate a more detailed response than just the fall velocity.

From Maps to Structs | 81

www.it-ebooks.info

http://www.it-ebooks.info/

Example 7-3. A method that pattern matches the whole record as well as components of
a record
defmodule StructDrop do
 def fall_velocity(t = %Tower{planemo: planemo, height: distance}) do
 IO.puts("From #{t.name}'s elevation of #{distance} meters on #{planemo},")
 IO.puts("the object will reach #{fall_velocity(planemo, distance)} m/s")
 IO.puts("before crashing in #{t.location}")
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

It is possible to have a variable whose name is the same as a field name;
in the previous example, the planemo field was assigned to a vari‐
able also named planemo.

If you pass a Tower structure to StructDrop.fall_velocity/1, it will match against
individual fields it needs to do the calculation and match the whole record into t so that
it can produce a more interesting if not necessarily grammatically correct report:

iex(16)> StructDrop.fall_velocity(tower5)
From Daga Vallis's elevation of 500 meters on mars,
the object will reach 60.90976933136424520399 m/s
before crashing in Valles Marineris
:ok
iex(17)> StructDrop.fall_velocity(tower3)
From Woolworth Building's elevation of 241 meters on earth,
the object will reach 68.72845116834803036454 m/s
before crashing in NYC
:ok

Adding Behavior to Structs
Elixir lets you attach behavior to structures (and, in fact, any type of data) with proto‐
cols. For example, you may want to test to see if a structure is valid or not. Clearly, the
test for what is a valid structure varies from one type of structure to another. For example,
you may consider a Planemo valid if its gravity, diameter, and distance from the sun are

82 | Chapter 7: Name-Value Pairs

www.it-ebooks.info

http://www.it-ebooks.info/

nonnegative. A Tower is valid if its height is nonnegative and it has a non-nil value for
a planemo.

Example 7-4 shows the definition of a protocol for testing validity. The files for this
example are in ch07/ex5-protocol.

Example 7-4. Defining a protocol for valid structures
defprotocol Valid do
 @doc "Returns true if data is considered nominally valid"
 def valid?(data)
end

The interesting line here is the def valid?(data); it is, in essence, an incomplete func‐
tion definition. Every data type whose validity you want to test will have to provide a
complete function with the name valid?, so let’s add some code to the definition of the
Planemo structure:

defmodule Planemo do
 defstruct name: :nil, gravity: 0, diameter: 0, distance_from_sun: 0
end

defimpl Valid, for: Planemo do
 def valid?(p) do
 p.gravity >= 0 && p.diameter >= 0 &&
 p.distance_from_sun >= 0
 end
end

Let’s test that out right now. Some of the output lines have been split for ease of reading:

iex(1)> c("valid_protocol.ex")
[Valid]
iex(2)> c("planemo.ex")
[Valid.Planemo, Planemo]
iex(3)> p = %Planemo{}
%Planemo{diameter: 0, distance_from_sun: 0, gravity: 0, name: nil}
iex(4)> Valid.valid?(p)
true
iex(5)> p2 = %Planemo{name: :weirdworld, gravity: -2.3}
%Planemo{diameter: 0, distance_from_sun: 0, gravity: -2.3, name: :weirdworld}
iex(6)> Valid.valid?(p2)
false
iex(7)> c("tower.ex")
[Tower]
iex(8)> t = %Tower{}
%Tower{height: 20, location: "", name: "", planemo: :earth}
iex(9)> c("valid_protocol.ex")
** (Protocol.UndefinedError) protocol Valid not implemented for
 %Tower{height: 20, location: "", name: "", planemo: :earth}
 valid_protocol.ex:1: Valid.impl_for!/1
 valid_protocol.ex:3: Valid.valid?/1

From Maps to Structs | 83

www.it-ebooks.info

http://www.it-ebooks.info/

Lines 3 and 4 show the creation and testing of a valid Planemo; lines 5 and 6 show the
results for an invalid one. Line 9 shows that you cannot test a Tower structure for validity
yet, as the valid? function has not yet been implemented. Here is the updated code for
the Tower, which you can find in ch07/ex6-protocol:

defmodule Tower do
 defstruct location: "", height: 20, planemo: :earth, name: ""
end

defimpl Valid, for: Tower do
 def valid?(%Tower{height: h, planemo: p}) do
 h >= 0 && p != nil
 end
end

Here is the test:

iex(10)> c("tower.ex")
tower.ex:1: warning: redefining module Tower
[Valid.Tower, Tower]
iex(11)> Valid.valid?(t)
true
iex(12)> t2 = %Tower{height: -2, location: "underground"}
%Tower{height: -2, location: "underground", name: "", planemo: :earth}
iex(13)> Valid.valid?(t2)
false

Adding to Existing Protocols
When you inspect a Tower, you get rather generic output:

iex(1)> t3 = %Tower{location: "NYC", height: 241, name: "Woolworth Building"}
%Tower{height: 241, location: "NYC", name: "Woolworth Building",
 planemo: :earth}
iex(2)> inspect t3
"%Tower{height: 241, location: \"NYC\", name: \"Woolworth Building\", planemo: :earth}"

Wouldn’t it be nice to have better-looking output? You can do this by implementing the
Inspect protocol for Tower structures. Example 7-5 shows the code to add to tow‐
er.ex; you will find the source in ch07/ex7-inspect:

Example 7-5. Implementing the inspect protocol for the Tower structure
defimpl Inspect, for: Tower do
 import Inspect.Algebra
 def inspect(item, _options) do
 metres = concat(to_string(item.height), "m:")
 msg = concat([metres, break, item.name, ",", break,
 item.location, ",", break,
 to_string(item.planemo)])
 end
end

84 | Chapter 7: Name-Value Pairs

www.it-ebooks.info

http://www.it-ebooks.info/

The Inspect.Algebra module implements “pretty printing” using an algebraic ap‐
proach (hence the name). In the simplest form, it puts together documents that may be
separated by optional line breaks (break) and connected with concat. Every place that
you put a break in a document is replaced by a space, or, if there is not enough space
on the line, a line break.

The inspect/2 function takes the item you want to inspect as its first argument. The
second argument is a structure that lets you specify options that give you greater control
on how inspect/2 produces its output.

The first concat puts the height and abbreviation for metres together without any in‐
tervening space. The second concat connects all the items in the list, so the function
returns a string containing the pretty-printed document:

iex(3)> inspect t3
"241m: Woolworth Building, NYC, earth"

From Maps to Structs | 85

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Higher-Order Functions and List
Comprehensions

Higher-order functions, functions that accept other functions as arguments, are a key
place where Elixir’s power really starts to shine. It’s not that you can’t do higher-order
functions in other languages—you can in many—but rather that Elixir treats higher-
order functions as a native and natural part of the language rather than an oddity.

Simple Higher-Order Functions
Way back in Chapter 2, you saw how to use a fn to create a function:

iex(1)> fall_velocity = fn(distance) -> :math.sqrt(2 * 9.8 * distance) end
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(2)> fall_velocity.(20)
19.79898987322333
iex(3)> fall_velocity.(200)
62.609903369994115

Elixir not only lets you put functions into variables, it lets you pass functions as argu‐
ments. This means that you can create functions whose behavior you modify at the time
you call them, in much more intricate ways than is normally possible with parameters.
A very simple function that takes another function as an argument might look like
Example 8-1, which you can find in ch08/ex1-hof.

Example 8-1. An extremely simple higher-order function
defmodule Hof do
 def tripler(value, function) do
 3 * function.(value)
 end
end

87

www.it-ebooks.info

http://www.it-ebooks.info/

The argument names are generic, but fit. tripler/2 will take a value and a function as
arguments. It runs the value through the function and multiplies that result by three.
In the shell, this might look like the following:

iex(1)> c("hof.ex")
[Hof]
iex(2)> my_function = fn(value) -> 20 * value end
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(3)> Hof.tripler(6, my_function)
360

Line 2 defines another simple function taking one argument (and returning that number
multiplied by 20) and stores it in the variable my_function. Then line 3 calls the
Hof.tripler/2 function with a value of 6 and the MyFunction function. In the Hof.tri
pler/2 function, it feeds the value to the function, getting back 120. Then it triples
that, returning 360.

You can skip assigning the function to a variable if you want, and just include the fn
declaration inside the Hof.tripler/2 function call:

iex(4)> Hof.tripler(6, fn(value) -> 20 * value end)
360

That may or may not be easier to read, depending on the functions and your expecta‐
tions. This case is trivially simple, but demonstrates that it works.

Elixir gives you another way to specify the function: you can use & as the capture oper‐
ator, &1 to stand for the first argument, and so on. Using this notation, you can make
the previous examples even simpler:

iex(5)> ampersand_function = &(20 * &1)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(6)> Hof.tripler(6, ampersand_function)
360
iex(7)> Hof.tripler(6, &(20 * &1))
360

While this is a powerful technique, you can outsmart yourself with
it easily. (I do!) Just as with normal code, you need to make sure the
number and sometimes the type of your arguments line up. The extra
flexibility and power can create new problems if you aren’t careful.

fn has a few other tricks up its sleeve that you should know. You can use a fn to preserve
context, even context that has since changed or vanished:

iex(8)> x = 20
20
iex(9)> my_function2 = fn(value) -> x * value end
#Function<6.106461118/1 in :erl_eval.expr/5>

88 | Chapter 8: Higher-Order Functions and List Comprehensions

www.it-ebooks.info

http://www.it-ebooks.info/

iex(10)> x = 0
0
iex(11)> my_function2.(6)
120

Line 8 assigns a variable named x a value, and line 9 uses that variable in a fn. Line 10
changes the x variable, but line 11 shows that my_function2 still remembers that x was
20. Even though the value of x has been changed, the fn preserves the value and can act
upon it. (This is called a closure.)

Again, you can use the ampersand notation:

iex(12)> x = 20
20
iex(13)> my_function3 = &(x * &1)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(14)> x = 0
0
iex(15)> Hof.tripler(6, my_function3)
360

You may also want to pass a function from a module, even a built-in module, to your
(or any) higher-order function. That’s simple, too:

iex(16)> Hof.tripler(:math.pi, &:math.cos(&1))
-3.0

In this case, the Hof.tripler function receives the value pi and a function, which is
the :math.cos/1 function from the built-in math module. Since the function has arity
1, you must indicate this with &1. Since the cosine of pi is -1, the tripler returns -3.0.

Creating New Lists with Higher-Order Functions
Lists are one of the best and easiest places to apply higher-order functions. Applying a
function to all the components of a list to create a new list, sort a list, or break a list into
smaller pieces is popular work. You don’t need to do much difficult work to make this
happen, though: Elixir’s built-in List and Enum modules offer a variety of higher-order
functions, listed in Appendix A, that take a function and list and do something with
them. You can also use list comprehensions to do much of the same work. The List and
Enum modules may seem easier at first, but as you’ll see, list comprehensions are powerful
and concise.

The functions in the Enum module will work on any collection of data
(for example, the individual lines in a file); the functions in List make
sense only for lists.

Creating New Lists with Higher-Order Functions | 89

www.it-ebooks.info

http://www.it-ebooks.info/

Reporting on a List
The simplest of these functions is Enum.each/2, which always returns the atom :ok.
That may sound strange, but Enum.each/2 is a function you’ll call if and only if you
want to do something to the list with side effects—like present the contents of a list to
the console. To do that, define a list and a simple function that applies IO.puts/1, here
stored in the variable print, and then pass them both to Enum.each/2:

iex(1)> print = fn(value) -> IO.puts(" #{value}") end
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(2)> list = [1,2,4,8,16,32]
iex(3)> Enum.each(list, print)
 1
 2
 4
 8
 16
 32
:ok

The Enum.each/2 function walked through the list, in order, and called the function in
print with each item of the list as a value. The IO.puts function inside of print
presented the list item, slightly indented. When it reached the end of the list, Enum.each/
2 returned the value :ok, which the console also displayed.

Most of the demonstrations in this chapter will be operating on that
same list variable containing [1,2,4,8,16,32].

Running List Values Through a Function
You might also want to create a new list based on what a function does with all of the
values in the original list. You can square all of the values in a list by creating a function
that returns the square of its argument and passing that to Enum.map/2. Instead of re‐
turning :ok, it returns a new list reflecting the work of the function it was given:

ex(4)> square = &(&1 * &1)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(5)> Enum.map(list, square)
[1, 4, 16, 64, 256, 1024]

90 | Chapter 8: Higher-Order Functions and List Comprehensions

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to generate a list of sequential integers (or characters),
you can use the notation start..end. You normally use this notation
with integers, but you can also use it with characters, with rather
unusual results:

iex(6)> Enum.map(1..3, square)
[1, 4, 9]
iex(7)> Enum.map(-2..2, square)
[4, 1, 0, 1, 4]
iex(8)> Enum.map(?a..?d, square)
[9409, 9604, 9801, 10000]

There’s another way to accomplish the same thing that Enum.map/2 does, with what
Elixir calls a list comprehension:

iex(9)> for value <- list, do: value * value
[1, 4, 16, 64, 256, 1024]

That produces the same resulting list, with different (and more flexible) syntax.

You can read this list comprehension as “For each value in list list, create an entry
value * value in a new list.” You can also use ranges in a list comprehension: for value
← 1..3, do: value * value.

Filtering List Values
The Enum module offers a few different functions for filtering the content of a list based
on a function you provide as a parameter. The most obvious, Enum.filter/2, returns
a list composed of the members of the original list for which the function returned
true. For example, if you wanted to filter a list of integers down to values that could be
represented as four binary digits, so numbers 0 or greater but less than 16, you could
define a function and store it in four_bits:

iex(10)> four_bits = fn(value) -> (value >= 0) and (value < 16) end
#Function<6.106461118/1 in :erl_eval.expr/5>

Then, if you apply it to the previously defined list of [1,2,4,8,16,32], you’d get just
the first four values:

iex(11)> Enum.filter(list, four_bits)
[1, 2, 4, 8]

Once again, you can create the same effect with a list comprehension. This time, you
don’t actually need to create a function, but instead use a guard-like construct (written
without the when) on the right side of the comprehension:

iex(12)> for value <- list, value >= 0, value < 16, do: value
[1, 2, 4, 8]

Creating New Lists with Higher-Order Functions | 91

www.it-ebooks.info

http://www.it-ebooks.info/

If you also want a list of values that didn’t match, use Enum.partition/
2, which returns both the matched and unmatched values as sepa‐
rate lists.

Beyond List Comprehensions
List comprehensions are concise and powerful, but they lack a few key features available
in other recursive processing. The only type of result they can return is a list, but there
will be many times when you want to process a list and return something else, like a
boolean, a tuple, or a number. List comprehensions also lack support for accumulators
and don’t let you suspend processing completely when certain conditions are met.

You could write your own recursive functions to process lists, but much of the time,
you’ll find that the Enum and List modules already offer a function that takes a function
you define and a list and returns what you need.

Testing Lists
Sometimes you just want to know if all the values—or any of the values—in a list meet
specific criteria. Are they all of a specific type, or do they have a value that meets certain
criteria?

The Enum.all?/2 and Enum.any?/2 functions let you test a list against rules you specify
in a function. If your function returns true for all of the list values, both of these func‐
tions will return true. Enum.any?/2 will also return true if one or more values in the
list results in your function returning true. Both will return false if your function
consistently returns false.

Enum.all?/2 and Enum.any?/2 don’t necessarily evaluate the entire
list; as soon as they hit a value that provides a definitive answer, they’ll
stop and return that answer.

iex(13)> is_int = fn(value) -> is_integer(value) end
#Function<erl_eval.6.17052888>
iex(14)> Enum.all?(list, is_int)
true
iex(15)> Enum.any?(list, is_int)
true
iex(16)> compare = &(&1 > 10)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(17)> Enum.all?(list, compare)
false

92 | Chapter 8: Higher-Order Functions and List Comprehensions

www.it-ebooks.info

http://www.it-ebooks.info/

iex(18)> Enum.any?(list, compare)
true

You can think of Enum.all?/2 as an and function applied to lists because it stops pro‐
cessing as soon as it encounters a false result. Similarly, Enum.any?/2 is like or, in this
case stopping as soon as it finds a true result. As long as you need only to test individual
values within lists, these two higher order functions can save you writing a lot of re‐
cursive code.

Splitting Lists
Filtering lists is useful, but sometimes you want to know what didn’t go through the
filter, and sometimes you just want to separate items.

The Enum.partition/2 function returns a tuple containing two lists. The first list con‐
tains the items from the original list that met the conditions specified in the function
you provided, while the second list contains the items that didn’t. If the compare variable
is defined as shown in line 14 of the previous demonstration, returning true when a
list value is greater than 10, then you can split a list into a list of items greater than 10
and a list of items less than or equal to 10 easily:

iex(19)> Enum.partition(list, compare)
{[16,32],[1,2,4,8]}

Sometimes you’ll want to split a list by starting from the beginning—the head—and
stopping when a list value no longer meets a condition. The Enum.take_while/2 and
Enum.drop_while/2 functions create a new list that contains the parts of an old list
before or after encountering a boundary condition. These functions aren’t filters, and
to make that clear, the examples use a different list than the rest in this chapter:

iex(20)> test = &(&1 < 4)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(21)> Enum.drop_while([1,2,4,8,4,2,1], test)
[4, 8, 4, 2, 1]
iex(22)> Enum.take_while([1,2,4,8,4,2,1], test)
[1, 2]

Both functions run through a list from head to tail and stop when they reach a value
for which the function you provide as the first argument returns false. The
Enum.drop_while/2 function returns what’s left of the list, including the value that
flunked the test. It does not, however, filter out later list entries that it might have drop‐
ped if they had appeared earlier in the list. The Enum.take_while/2 function returns
what was already processed, not including the value that flunked the test.

Beyond List Comprehensions | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Folding Lists
Adding an accumulator to list processing lets you turn lists into much more than other
lists and opens the door to much more sophisticated processing. Elixir’s List.foldl/3
and List.foldr/3 functions let you specify a function, an initial value for an accumu‐
lator, and a list. Instead of the one-argument functions you’ve seen so far, you need to
create a two-argument function. The first argument is the current value in the list tra‐
versal, and the second argument is an accumulator. The result of that function will
become the new value of the accumulator.

Defining a function that works within the folding functions looks a little different, be‐
cause of the two arguments:

iex(23)> divide = fn(value, accumulator) -> value / accumulator end
#Function<12.106461118/2 in :erl_eval.expr/5>

This function divides its first argument—to be the value coming from the list—by the
second, the accumulator passed to it by the function doing folding.

Folding has one other key twist. You can choose whether you want the function to
traverse the list from head to tail, with List.foldl/3, or from tail to head, with
List.foldr/3. If order doesn’t change the result, you should go with List.foldl/3, as
its implementation is tail-recursive and more efficient in most situations.

The divide function is one of those cases that will produce very different results de‐
pending on the direction in which you process the list (and the initial accumulator
value). In this case, folding also produces different results than you might expect in a
simple division. Given the usual list of [1,2,4,8,16,32], it seems like going from left
to right will produce 1/2/4/8/16/32, and going from right to left will produce
32/16/8/4/2/1, at least if you use an initial accumulator of 1. They don’t produce those
results, however:

iex(24)> divide = fn(value, accumulator) -> value / accumulator end
#Function<12.106461118/2 in :erl_eval.expr/5>
iex(25)> 1/2/4/8/16/32
3.0517578125e-5
iex(26)> List.foldl(list, 1, divide)
8.0
iex(24)> 32/16/8/4/2/1
0.03125
iex(25)> List.foldr(list, 1, divide)
0.125

This code seems too simple to have a bug, so what’s going on? Table 8-1 walks through
the calculations for List.foldl(list, 1, divide), and Table 8-2 walks through
List.foldr(list, 1, divide) step by step.

94 | Chapter 8: Higher-Order Functions and List Comprehensions

www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-1. Recursive division of a list forward with List.foldl/3
Value from list Accumulator Result of division

1 1 1

2 1 (1/1) 2

4 2 (2/1) 2

8 2 (4/2) 4

16 4 (8/2) 4

32 4 8

Table 8-2. Recursive division of a list backward with List.foldr/3
Value from list Accumulator Result of division

32 1 32

16 32 (32/1) 0.5

8 0.5 (32/16) 16

4 16 (8/0.5) 0.25

2 0.25 (4/16) 8

1 8 0.125

Moving through a list step by step produces very different values. In this case, the simple
divide function’s behavior changes drastically above and below the value 1, and com‐
bining that with walking through a list item by item yields results that might not be
precisely what you expected.

The result of the List.foldl is the same as 32/(16/(8/(4/(2/
(1/1))))), while the result of the List.foldr is the same as
1/(2/(4/(8/(16/(32/1))))). The parentheses in those perform the
same restructuring as the fold, and the concluding 1 in each is where
the initial accumulator value fits in.

Folding is an incredibly powerful operation. This simple if slightly weird example just
used a single value, a number, as an accumulator. If you use a tuple as the accumulator,
you can store all kinds of information about a list as it passes by and even perform
multiple operations. You probably won’t want to try to define the functions you use for
that as one-liners, but the possibilities are endless.

Beyond List Comprehensions | 95

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Playing with Processes

Elixir is a functional language, but Elixir programs are rarely structured around simple
functions. Instead, Elixir’s key organizational concept is the process, an independent
component (built from functions) that sends and receives messages. Programs are de‐
ployed as sets of processes that communicate with each other. This approach makes it
much easier to distribute work across multiple processors or computers, and also makes
it possible to do things like upgrade programs in place without shutting down the whole
system.

Taking advantage of those features, though, means learning how to create (and end)
processes, how to send messages among them, and how to apply the power of pattern
matching to incoming messages.

The Shell Is a Process
You’ve been working within a single process throughout this book so far, the Elixir shell.
None of the previous examples sent or received messages, of course, but the shell is an
easy place to send and (for test purposes, at least) receive messages.

The first thing to explore is the process identifier, often called a pid. The easiest pid to
get is your own, so in the shell you can just try the self() function:

iex(1)> self()
#PID<0.26.0>

<0.26.0>, is the shell’s representation of a triple, a set of three integers that provide the
unique identifier for this process. You may get a different set of numbers when you try
it. This group of numbers is guaranteed to be unique within this run of Elixir, not
permanently the same in future use. Elixir uses pids internally, but while you can read
them in the shell, you can’t type pids directly into the shell or into functions. Elixir much
prefers that you treat pids as abstractions.

97

www.it-ebooks.info

http://www.it-ebooks.info/

Pids can even identify processes running on multiple computers
within a cluster. You’ll need to do more work to set up a cluster, but
you won’t have to throw away code you wrote with pids and process‐
es built on them when you get there.

Every process gets its own pid, and those pids function like addresses for mailboxes.
Your programs will send messages from one process to another by sending them to a
pid. When that process gets time to check its mailbox, it will be able to retrieve and
process the messages there.

Elixir, however, will never report that a message send failed, even if the pid doesn’t point
to a real process. It also won’t report that a message was ignored by a process. You need
to make sure your processes are assembled correctly.

The syntax for sending a message is pretty simple: use the send/2 function with two
arguments: a function or variable containing the pid and the message.

iex(2)> send(self(), :test1)
:test1
iex(3)> pid = self()
#PID<0.26.0>
iex(4)> send(pid, :test2)
:test2

Line 2 sent a message to the shell containing the atom :test1. Line 3 assigned the pid
for the shell, retrieved with the self() function, to a variable named pid, and then line
4 used that pid variable to send a message containing the atom :test2. (The send/2
function always returns the message, which is why it appears right after the sends in
lines 2 and 4.)

Where did those messages go? What happened to them? Right now, they’re just waiting
in the shell’s mailbox, doing nothing.

There’s a shell function—flush()—that you can use to see what’s in the mailbox, though
it also removes those messages from the mailbox. The first time you use it, you’ll get a
report of what’s in the mailbox, but the second time, the messages are gone, already
read.

iex(5)> flush()
:test1
:test2
:ok
iex(6)> flush()
:ok

The proper way to read the mailbox, which gives you a chance to do something with
the messages, is the receive…end construct. You can test this out in the shell. The first

98 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

of the following tests just reports what the message was, whereas the second expects a
number and doubles it.

iex(7)> send(self(), :test1)
:test1
iex(8)> receive do
...(8)> x -> x
...(8)> end
:test1
iex(9)> send(self(), 23)
23
iex(10)> receive do
...(10)> y -> 2 * y
...(10)> end
46

So far, so good. However, if you screw up—if there isn’t a message waiting, or if you
provide a pattern match that doesn’t work—the shell will just sit there, hung. Actually,
it’s waiting for something to arrive in the mailbox, but you’ll be stuck. The easiest way
out of that is to hit Ctrl-G, and then type q. You’ll have to restart IEx. (x and y become
bound variables, and even though they are not immutable, it is considered in the spirit
of functional programming to not reuse them.)

Spawning Processes from Modules
While sending messages to the shell is an easy way to see what’s happening, it’s not
especially useful. Processes at their heart are just functions, and you know how to build
functions in modules. The receive…end statement is structured like a case…end state‐
ment, so it’s easy to get started.

Example 9-1, which is in ch09/ex1-simple, shows a simple—excessively simple—module
containing a function that reports messages it receives.

Example 9-1. An overly simple process definition
defmodule Bounce do
 def report do
 receive do
 msg -> IO.puts("Received #{msg}")
 end
 end
end

When the report/0 function receives a message, it will report that it received it. Setting
this up means compiling the module and then using the spawn/3 function, which turns
the function into a free-standing process. The arguments are the module name, the
function name (as an atom), and a list of arguments for the function. Even if you don’t

Spawning Processes from Modules | 99

www.it-ebooks.info

http://www.it-ebooks.info/

have any arguments, you need to include an empty list in square brackets. The spawn/3
function will return the pid, which you should capture in a variable, here pid:

iex(1)> c("bounce.ex")
[Bounce]
iex(2)> pid = spawn(Bounce, :report, [])
#PID<0.43.0>

Once you have the process spawned, you can send a message to that pid, and the process
will report that it received the message:

iex(3)> send(pid, 23)
Received 23
23

However, there’s one small problem. The report process exited—it went through the
receive clause only once, and when it was done, it was done. If you try to send the
process another message, you’ll get back the message, and nothing will report an error,
but you also won’t get any notification that the message was received because nothing
is listening any longer.

iex(4)> send(pid, 23)
23

To create a process that keeps processing messages, you need to add a recursive call, as
shown in the receive statement in Example 9-2, in ch09/ex2-recursion.

Example 9-2. A function that creates a stable process
defmodule Bounce do
 def report do
 receive do
 msg -> IO.puts("Received #{msg}")
 report()
 end
 end
end

That extra call to report() means that after the function shows the message that arrived,
it will run again, ready for the next message. If you recompile the bounce module and
spawn it to a new pid2 variable, you can send multiple messages to the process, as shown
here.

iex(5)> c("bounce.ex")
bounce.ex:1: warning: redefining module Bounce
[Bounce]
iex(6)> pid2 = spawn(Bounce, :report, [])
#PID<0.43.0>
iex(7)> send(pid2, 23)
Received 23
23
iex(8)> send(pid2, :message)

100 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

Received message
:message

Because processes are asynchronous, the output from send/2 may
appear before the output from report/0.

You can also pass an accumulator from call to call if you want, for a simple example, to
keep track of how many messages have been received by this process. Example 9-3 shows
the addition of an argument, in this case just an integer that gets incremented with each
call. You can find it in ch09/ex3-counter.

Example 9-3. A function that adds a counter to its message reporting
defmodule Bounce do
 def report(count) do
 receive do
 msg -> IO.puts("Received #{count}: #{msg}")
 report(count + 1)
 end
 end
end

The results are pretty predictable, but remember that you need to include an initial value
in the arguments list in the spawn/3 call.

iex(1)> c("bounce.ex")
[Bounce]
iex(2)> pid2 = spawn(Bounce, :report, [1])
#PID<0.43.0>
iex(3)> send(pid2, :test)
:test
Received 1: test
iex(4)> send(pid2, :test2)
:test2
Received 2: test2
iex(5)> send(pid2, :another)
:another
Received 3: another

Whatever you do in your recursive call, keeping it simple (and preferably tail-recursive)
is best, as these can get called many, many times in the life of a process.

If you want to create impatient processes that stop after waiting a given
amount of time for a message, you should investigate the after con‐
struct of the receive clause.

Spawning Processes from Modules | 101

www.it-ebooks.info

http://www.it-ebooks.info/

You can write this function in a slightly different way that may make what’s happening
clearer and easier to generalize. Example 9-4, in ch09/ex4-state, shows how to use the
return value of the receive clause, here the count plus one, to pass state from one
iteration to the next.

Example 9-4. Using the return value of the receive clause as state for the next iteration
defmodule Bounce do
 def report(count) do
 new_count = receive do
 msg -> IO.puts("Received #{count}: #{msg}")
 count + 1
 end
 report(new_count)
 end
end

In this model, all (though just one here) of the receive clauses return a value that gets
passed to the next iteration of the function. If you use this approach, you can think of
the return value of the receive clause as the state to be preserved between function
calls. That state can be much more intricate than a counter—it might be a tuple, for
instance, that includes references to important resources or work in progress.

Lightweight Processes
If you’ve worked in other programming languages, you may be getting worried. Threads
and process spawning are notoriously complex and often slow in other contexts, but
Elixir expects applications to be a group of easily spawned processes? That run recur‐
sively?

Yes, absolutely. Elixir was written specifically to support that model, and its processes
are more lightweight than pretty much any of its competitors. The Erlang scheduler that
Elixir uses gets processes started and distributes processing time among them, as well
as splitting them out across multiple processors.

It is certainly possible to write processes that perform badly and to structure applications
so that they wait a long time before doing anything. You don’t, though, have to worry
about those problems happening just because you’re using multiple processes.

Registering a Process
Much of the time, pids are all you need to find and contact a process. However, you will
likely create some processes that need to be more findable. Elixir provides a process
registration system that is extremely simple: you specify an atom and a pid, and then
any process that wants to reach that registered process can just use the atom to find it.

102 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

This makes it easier, for example, to add a new process to a system and have it connect
with previously existing processes.

To register a process, just use the Process.register/2 built-in function. The first ar‐
gument is the pid of the process, and the second argument is an atom, effectively the
name you’re assigning the process. Once you have it registered, you can just send it
messages, using the atom instead of a pid:

iex(1)> pid1 = spawn(Bounce, :report, [1])
#PID<0.39.0>
iex(2)> Process.register(pid1, :bounce)
true
iex(3)> send(:bounce, :hello)
:hello
Received 1: hello
iex(4)> send(:bounce, "Really?")
Received 2: Really?
"Really?"

If you attempt to call a process that doesn’t exist (or one that has crashed), you’ll get a
bad arguments error:

iex(5)> send(:zingo, :test)
** (ArgumentError) argument error
 :erlang.send(:zingo, :test)

If you attempt to register a process to a name that is already in use, you’ll also get an
error, but if a process has exited (or crashed), the name is effectively no longer in use
and you can re-register it.

You can also use Process.whereis/1 to retrieve the pid for a registered process (or
nil, if there is no process registered with that atom), and unregister/1 to take a process
out of the registration list without killing it. Remember that you must use an atom for
the process name.

iex(5)> get_bounce = Process.whereis(:bounce)
#PID<0.39.0>
iex(6)> Process.unregister(:bounce)
true
iex(7)> test_bounce = Process.whereis(:bounce)
nil
iex(8)> send(get_bounce, "Still there?")
Received 3: Still there?
"Still there?"

If you want to see which processes are registered, you can use the
Process.registered/0 function.

Registering a Process | 103

www.it-ebooks.info

http://www.it-ebooks.info/

If you’ve worked in other programming languages and learned the gospel of “no global
variables,” you may be wondering why Elixir permits a systemwide list of processes like
this. Most of the rest of this book, after all, has been about isolating change and mini‐
mizing shared context.

If you think of registered processes as more like services than functions, however, it may
make more sense. A registered process is effectively a service published to the entire
system, something usable from multiple contexts. Used sparingly, registered processes
create reliable entry points for your programs, something that can be very valuable as
your code grows in size and complexity.

When Processes Break
Processes are fragile. If there’s an error, the function stops and the process goes away.
Example 9-5, in ch09/ex5-division, shows a report/0 function that can break if it gets
input that isn’t a number.

Example 9-5. A fragile function
defmodule Bounce do
 def report do
 receive do
 x -> IO.puts("Divided to #{x / 2}")
 report()
 end
 end
end

If you compile and run this (deliberately) error-inviting code, you’ll find that it works
well so long as you only send it numbers. Send anything else, and you’ll see an error
report in the shell (reformatted to fit on the page), and no more responses from that
pid. It died.

iex(1)> c("bounce.ex")
bounce.ex:1: warning: redefining module Bounce
[Bounce]
iex(2)> pid3 = spawn(Bounce, :report, [])
#PID<0.50.0>
iex(3)> send(pid3, 38)
38
Divided to 19.0
iex(4)> send(pid3, 27.56)
Divided to 13.78
27.56
iex(5)> send(pid3, :seven)
:seven
iex(6)>
18:30:46.791 [error] Error in process <0.50.0> with exit value:
{badarith,[{'Elixir.Bounce',report,0,[{file,"bounce.ex"},{line,4}]}]}

104 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

iex(7)> send(pid3, 14)
14

As you get deeper into Elixir’s process model, you’ll find that “let it crash” is not an
unusual design decision in Elixir, though being able to tolerate such things and continue
requires some extra work. Chapter 10 will also show you how to find and deal with
errors of various kinds.

Processes Talking Amongst Themselves
Sending messages to Elixir processes is easy, but it’s hard for them to report back re‐
sponses if you don’t leave information about where they can find you again. Sending a
message without including the sender’s pid is kind of like leaving a phone message
without including your own number: it might trigger action, but the recipient might
not get back to you.

To establish process to process communications without registering lots of processes,
you need to include pids in the messages. Passing the pid requires adding an argument
to the message. It’s easy to get started with a test that calls back the shell. Example 9-6,
in ch09/ex6-talking, builds on the drop module from Example 3-2, adding a drop/0
function that receives messages and making the fall_velocity/2 function private.

Example 9-6. A process that sends a message back to the process that called it
defmodule Drop do
 def drop do
 receive do
 {from, planemo, distance} ->
 send(from, {planemo, distance, fall_velocity(planemo, distance)})
 drop()
 end
 end

 defp fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 defp fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 defp fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

To get started, it’s easy to test this from the shell:

Processes Talking Amongst Themselves | 105

www.it-ebooks.info

http://www.it-ebooks.info/

iex(1)> c("drop.ex")
[Drop]
iex(2)> pid1 = spawn(Drop, :drop, [])
#PID<0.43.0>
iex(3)> send(pid1, {self(), :moon, 20})
{#PID<0.26.0>,:moon,20}
iex(4)> flush()
{:moon,20,8.0}
:ok

Example 9-7, which you’ll find in ch09/ex7-talkingProcs, shows a process that calls that
process, just to demonstrate that this can work with more than just the shell. We use
IO.write/1 so that the code listing doesn’t stretch off the page, but the output will all
appear on one line.

Example 9-7. Calling a process from a process, and reporting the results
defmodule MphDrop do
 def mph_drop do
 drop_pid = spawn(Drop, :drop, [])
 convert(drop_pid)
 end

 def convert(drop_pid) do
 receive do
 {planemo, distance} ->
 send(drop_pid, {self(), planemo, distance})
 convert(drop_pid)
 {planemo, distance, velocity} ->
 mph_velocity = 2.23693629 * velocity
 IO.write("On #{planemo}, a fall of #{distance} meters ")
 IO.puts("yields a velocity of #{mph_velocity} mph.")
 convert(drop_pid)
 end
 end
end

The mph_drop/1 function spawns a Drop.drop/0 process when it is first set up, using
the same module you saw in Example 9-6, and stores the pid in drop_pid. Then it calls
convert/1, which will listen for messages recursively.

If you don’t separate the initialization from the recursive listener, your
code will work, but will spawn new Drop.drop/0 processes every time
it processes a message instead of using the same one repeatedly.

The receive clause relies on the call from the shell (or another process) including only
two arguments, while the Drop.drop/0 process sends back a result with three. (As your

106 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

code grows more complex, you will likely want to use more explicit flags about the kind
of information contained in a message.) When the receive clause gets a message with
two arguments, it sends a message to drop_pid, identifying itself as the sender and
passing on the arguments. When the drop_pid process returns a message with the result,
the receive clause reports on the result, converting the velocity to miles per hour. (Yes,
it leaves the distance metric, but makes the velocity more intelligible to Americans.)

Using this from the shell looks like the following:

iex(1)> c("drop.ex")
[Drop]
iex(2)> c("mph_drop.ex")
[MphDrop]
iex(3)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.47.0>
iex(4)> send(pid1, {:earth, 20})
On earth, a fall of 20 meters
yields a velocity of 44.28907895275576578342 mph.
{:earth,20}
iex(5)> send(pid1, {:mars, 20})
On mars, a fall of 20 meters
yields a velocity of 27.25025468657154448238 mph.
{:mars,20}

This simple example might look like it behaves as a more complex version of a function
call, but there is a critical difference. In the shell, with nothing else running, the result
will come back quickly—so quickly that it reports before the shell puts up the message
—but this was a series of asynchronous calls. Nothing held and waited specifically for
a returned message.

The shell sent a message to pid1, the process identifier for MphDrop.convert/1. That
process sent a message to drop_pid, the process identifier for Drop.drop/0, which
MphDrop.mph_drop/0 set up when it was spawned. That process returned another mes‐
sage to MphDrop.convert/1, which reported to standard output, in this case the shell.
Those messages passed and were processed rapidly, but in a system with thousands or
millions of messages in motion, those passages might have been separated by many
messages, and come in later.

Watching Your Processes
Erlang provides a simple but powerful tool for keeping track of your processes and
seeing what’s happening. Observer, the process manager, offers a GUI that lets you look
into the current state of your processes and see what’s happening. Depending on how
you installed Erlang when you installed Elixir, you may be able to start it from a toolbar,
but you can always start it from the shell:

Watching Your Processes | 107

www.it-ebooks.info

http://www.it-ebooks.info/

iex(6)> :observer.start
#PID<0.49.0>

When you click the Processes tab you’ll see something like Figure 9-1 appear. It’s a long
list of processes, more than you probably wanted to know about. If you click the Current
Function column header twice to sort the list in reverse order, you will see the Elixir
processes at the top, similar to Figure 9-2.

Figure 9-1. The Process Manager at startup

Figure 9-2. The Process Manager after sorting by Current Function

108 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

The Observer will update the process list every ten seconds. If you would prefer to
control the refresh yourself, choose Refresh Interval from the View menu, and un‐
check Periodical Refresh.

Watching Messages Among Processes
The list of processes is useful, but Observer also lets you look inside of process activity.
This is a little bit more complex a process, so take a deep breath!

• Find the Elixir.MphDrop:mph_drop/0 process and right-click it.
• Choose Trace named processes (all nodes) and select all items in the left of the

dialog, as shown in Figure 9-3.
• Click the Trace Overview tab.
• Click Start Trace, and you will get a warning message as shown in Figure 9-4. You

may safely ignore that message.

Figure 9-3. Options in Trace Processes

Watching Your Processes | 109

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-4. Starting a trace

This will open up a new window, which may display a message like Dropped 10 mes
sages. Now make the process do something:

iex(7)> send(pid1, {:mars, 20})
On mars, a fall of 20 meters
yields a velocity of 27.25025468657154448238 mph.
{:mars,20}

The Observer window for that process will update to show messages and calls, as shown
in Figure 9-5. << means a message was received, whereas ! indicates a message sent.

Observer is generally the easiest place to turn when you’re having difficulty figuring out
what is happening among your processes.

Breaking Things and Linking Processes
When you send a message, you’ll always get back the message as the return value. This
doesn’t mean that everything went well and the message was received and processed
correctly, however. If you send a message that doesn’t match a pattern at the receiving
process, nothing will happen (for now at least), with the message landing in the mailbox
but not triggering activity. Sending a message that gets through the pattern matching

110 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-5. Tracing calls when you send mph_drop a message

but creates an error will halt the process where the error occurred, possibly even a few
messages and processes down the line.

Messages that don’t match a pattern in the receive clause don’t
vanish; they just linger in the mailbox without being pro‐
cessed. It is possible to update a process with a new version of
the code that retrieves those messages.

Because processes are fragile, you often want your code to know when another process
has failed. In this case, if bad inputs halt Drop.drop/0, it doesn’t make much sense to
leave the MphDrop.convert/1 process hanging around. You can see how this works
through the shell and Observer. First, start up Observer, go to the process window, and
then, from the command line, spawn MphDrop.mph_drop/0.

iex(1)> :observer.start()
#PID<0.39.0>
iex(2)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.45.0>

You’ll see something like Figure 9-6 in Observer. Then, feed your process some bad data,
an atom (:zoids) instead of a number for the Distance, and Observer will look more
like Figure 9-7. (The following output has been broken into multiple lines to make it
easier to read.)

iex(3)> send(pid1, {:moon, :zoids})

9:17:04.084 [error] Error in process <0.69.0> with exit value:
{badarith,[{'Elixir.Drop',fall_velocity,2,[{file,"drop.ex"},{line,15}]},
{'Elixir.Drop',drop,0,[{file,"drop.ex"},{line,5}]}]}

{:moon,:zoids}

Breaking Things and Linking Processes | 111

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-6. A healthy set of processes

Figure 9-7. Only the drop:drop/0 process is gone

Since the remaining MphDrop.convert/1 process is now useless, it would be better for
it to halt when Drop.drop/0 fails. Elixir lets you specify that dependency with a link.
The easy way to do that while avoiding potential race conditions is to use spawn_link/
3 instead of just spawn/3. Everything else in the module remains the same. This is shown
in Example 9-8, which you can find in ch09/ex8-linking.

Example 9-8. Calling a linked process from a process so failures propagate
defmodule MphDrop do
 def mph_drop do
 drop_pid = spawn_link(Drop, :drop, [])
 convert(drop_pid)
 end

 def convert(drop_pid) do
 receive do
 {planemo, distance} ->
 send(drop_pid, {self(), planemo, distance})
 convert(drop_pid)
 {planemo, distance, velocity} ->
 mph_velocity = 2.23693629 * velocity
 IO.write("On #{planemo}, a fall of #{distance} meters ")
 IO.puts("yields a velocity of #{mph_velocity} mph.")
 convert(drop_pid)
 end

112 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

 end
end

Now, if you recompile and test this out with Observer, you’ll see that both processes
vanish when drop:drop/0 fails, as shown in Figure 9-8. (Output has been split into
separate lines for ease of reading.)

iex(1)> c("mph_drop.ex")
mph_drop.ex:1: warning: redefining module MphDrop
[MphDrop]
iex(2)> :observer.start()
#PID<0.43.0>
iex(3)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.52.0>
iex(4)> send(pid1, {:moon, :zoids})
{:moon,:zoids}
iex(5)>

19:20:33.546 [error] Error in process <0.1150.0> with exit value:
{badarith,[{'Elixir.Drop',fall_velocity,2,[{file,"drop.ex"},{line,15}]},
{'Elixir.Drop',drop,0,[{file,"drop.ex"},{line,5}]}]}

Figure 9-8. Both processes now depart when there is an error

Links are bidirectional. If you kill the the MphDrop.mph_drop/0 pro‐
cess—with, for example, exit(pid1,:kill).—the Drop.drop/1 pro‐
cess will also vanish. (:kill is the harshest reason for an exit, and isn’t
trappable because sometimes you really need to halt a process.)

That kind of failure may not be what you have in mind when you think of linking
processes. It’s the default behavior for linked Elixir processes, and makes sense in many
contexts, but you can also have a process trap exits. When an Elixir process fails, it sends
an explanation, in the form of a tuple, to other processes that are linked to it. The tuple
contains the atom :EXIT, the pid of the failed process, and the error as a complex tuple.
If your process is set to trap exits, through a call to Process.flag(:trap_exit,
true), these errors reports arrive as messages, rather than just killing your process.

Breaking Things and Linking Processes | 113

www.it-ebooks.info

http://www.it-ebooks.info/

Example 9-9, in ch09/ex9-trapping, shows how the initial mph_drop/0 method changes
to include this call to set the process flag, and adds another entry to the receive clause
which will listen for exits and report them more neatly.

Example 9-9. Trapping a failure, reporting an error, and exiting
defmodule MphDrop do
 def mph_drop do
 Process.flag(:trap_exit, true)
 drop_pid = spawn_link(Drop, :drop, [])
 convert(drop_pid)
 end

 def convert(drop_pid) do
 receive do
 {planemo, distance} ->
 send(drop_pid, {self(), planemo, distance})
 convert(drop_pid)
 {:EXIT, pid, reason} ->
 IO.puts("Failure: #{inspect(pid)} #{inspect(reason)}")
 {planemo, distance, velocity} ->
 mph_velocity = 2.23693629 * velocity
 IO.write("On #{planemo}, a fall of #{distance} meters ")
 IO.puts("yields a velocity of #{mph_velocity} mph.")
 convert(drop_pid)
 end
 end
end

If you run this and feed it bad data, the convert/1 method will report an error message
(mostly duplicating the shell) before exiting neatly. (Again, output has been split into
separate lines for ease of reading.)

iex(1)> c("mph_drop.ex")
mph_drop.ex:1: warning: redefining module MphDrop
[MphDrop]
iex(2)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.43.0>
iex(3)> send(pid1, {:moon, 20})
On moon, a fall of 20 meters
yields a velocity of 17.89549032 mph.
{:moon,20}
iex(4)> send(pid1, {:moon, :zoids})
{:moon,:zoids}
iex(5)>

19:23:07.016 [error] Error in process <0.680.0> with exit value:
{badarith,[{'Elixir.Drop',fall_velocity,2,[{file,"drop.ex"},{line,15}]},
{'Elixir.Drop',drop,0,[{file,"drop.ex"},{line,5}]}]}

FAILURE. #PID<0.680.0> {:badarith, [{Drop, :fall_velocity, 2,

114 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

[file: 'drop.ex', line: 15]},
{Drop, :drop, 0, [file: 'drop.ex', line: 5]}]}

A more robust alternative would set up a new drop_pid variable, spawning a new pro‐
cess. That version, shown in Example 9-10, which you can find at ch09/ex10-resilient,
is much hardier. Its receive clause sweeps away failure, soldiering on with a new copy
(new_drop_pid) of the drop calculator if needed.

Example 9-10. Trapping a failure, reporting an error, and setting up a new process
defmodule MphDrop do
 def mph_drop do
 Process.flag(:trap_exit, true)
 drop_pid = spawn_link(Drop, :drop, [])
 convert(drop_pid)
 end

 def convert(drop_pid) do
 receive do
 {planemo, distance} ->
 send(drop_pid, {self(), planemo, distance})
 convert(drop_pid)
 {:EXIT, _pid, _reason} ->
 new_drop_pid = spawn_link(Drop, :drop, [])
 convert(new_drop_pid)
 {planemo, distance, velocity} ->
 mph_velocity = 2.23693629 * velocity
 IO.write("On #{planemo}, a fall of #{distance} meters ")
 IO.puts("yields a velocity of #{mph_velocity} mph.")
 convert(drop_pid)
 end
 end
end

If you compile and run Example 9-10, you’ll see Figure 9-9 when you first start Observer
(and check the Hide System Processes box). If you feed it bad data, as shown on line 6
in the following code sample, you’ll still get the error message from the shell, but the
process will work just fine. As you’ll see in Observer, as shown in Figure 9-10, it started
up a new process to handle the drop:drop/0 calculations, and as line 8 shows, it works
like its predecessor.

iex(1)> c("mph_drop.ex")
mph_drop.ex:1: warning: redefining module MphDrop
[MphDrop]
iex(2)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.43.0>
iex(3)> :observer.start()
#PID<0.45.0>
iex(4)> send(pid1, {:moon, 20})
On moon, a fall of 20 meters
yields a velocity of 17.89549032 mph.

Breaking Things and Linking Processes | 115

www.it-ebooks.info

http://www.it-ebooks.info/

{:moon,20}
iex(5)> send(pid1, {:mars, 20})
On mars, a fall of 20 meters
yields a velocity of 27.250254686571544 mph.
{:mars, 20}
iex(6)> send(pid1, {:mars, :zoids})
{:mars,:zoids}
iex(7)>

19:26:07.329 [error] Error in process <0.1045.0> with exit value:
{badarith,[{'Elixir.Drop',fall_velocity,2,[{file,"drop.ex"},{line,19}]},
{'Elixir.Drop',drop,0,[{file,"drop.ex"},{line,5}]}]}

iex(8)> send(pid1, {:moon, 20})
On moon, a fall of 20 meters
yields a velocity of 17.89549032 mph.
{:moon,20}

Figure 9-9. Processes before an error. Note the Pid on the top line.

Figure 9-10. Processes after an error. Note the top line Pid change.

Elixir offers many more process management options. You can remove a link with
Process.unlink/1, or establish a connection for just watching a process with Pro
cess.monitor/1. If you want to terminate a process, use Process.exit/2 to specify a
process and reason. You may specify another process’s pid or self().

Building applications that can tolerate failure and restore their functionality is at the
core of robust Elixir programming. Developing in that style is probably a larger leap for

116 | Chapter 9: Playing with Processes

www.it-ebooks.info

http://www.it-ebooks.info/

most programmers than Elixir’s shift to functional programming, but it’s where the true
power of Elixir becomes obvious.

Breaking Things and Linking Processes | 117

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Exceptions, Errors, and Debugging

“Let it crash” is a brilliant insight, but one whose application you probably want to
control. While it’s possible to write code that constantly breaks and recovers, it can be
easier to write and maintain code that explicitly handles failure where it happens. How‐
ever you choose to deal with errors, you’ll definitely want to be able to track them down
in your application.

Flavors of Errors
As you’ve already seen, some kinds of errors will keep Elixir from compiling your code,
and the compiler will also give you warnings about potential issues, like variables that
are declared but never used. Two other kinds of errors are common: runtime errors,
which turn up when code is operating and can actually halt a function or process, and
logic errors, which may not kill your program but can cause deeper headaches.

Logic errors are often the trickiest to diagnose, requiring careful thought and perhaps
some time with the debugger, log files, or a test suite. Simple mathematical errors can
take a lot of work to untangle. Sometimes issues are related to timing, when the sequence
of operations isn’t what you expect. In severe cases, race conditions can create deadlocks
and halting, but more mild cases can produce bad results and confusion.

Runtime errors can also be annoying, but they are much more manageable. In some
ways you can see handling runtime errors as part of the logic of your program, though
you don’t want to get carried away. In Elixir, unlike many other programs, handling
errors as errors may offer only minor advantages over letting an error kill a process and
then dealing with the problem at the process level, as Example 9-10 showed.

119

www.it-ebooks.info

http://www.it-ebooks.info/

Rescuing Code from Runtime Errors as They Happen
If you want to catch runtime errors close to where they took place, the try…rescue
construct lets you wrap suspect code and handle problems (if any) that code creates. It
makes it clear to both the compiler and the programmer that something unusual is
happening, and lets you deal with any unfortunate consequences of that work.

For a simple example, look back to Example 3-1, which calculated fall velocity without
considering the possibility that it would be handed a negative distance.
The :math.sqrt/1 function will produce a badarith error if it has a negative argument.
Example 4-2 kept that problem from occurring by applying guards, but if you want to
do more than block, you can take a more direct approach with try and rescue, as shown
in Example 10-1. (You can find this and the following two variations in ch10/ex1-
tryCatch.)

Example 10-1. Using try and catch to handle a possible error
defmodule Drop do
 def fall_velocity(planemo, distance) do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end
 try do
 :math.sqrt(2 * gravity * distance)
 rescue
 _error -> _error
 end
 end
end

The calculation itself is now wrapped in a try. If the calculation succeeds, the statement
following the do will be used, and the return value will become the result of the calcu‐
lation.

If the calculation fails, in this case because of a negative argument, the pattern match in
the rescue clause comes into play. In this case, the variable _error will contain the
exception type and message, and return that as its value.

You can try the following on the command line:

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.fall_velocity(:earth, 20)
19.79898987322333
iex(3)> Drop.fall_velocity(:earth, -20)
%ArithmeticError{}

120 | Chapter 10: Exceptions, Errors, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

When the calculation is successful, you’ll just get the result. When it fails, you see the
exception. It’s not a complete solution, but it’s a foundation on which you can build.

You can have multiple statements in the try (much as you can in a case). At least when
you’re getting started, it’s easiest to keep the code you are trying simple so you can see
where failures happened. However, if you wanted to watch for requests that provided
an atom that didn’t match the planemos in the case, you could put it all into the try:

defmodule Drop do
 def fall_velocity(planemo, distance) do
 try do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end
 :math.sqrt(2 * gravity * distance)
 rescue
 _error -> _error
 end
 end
end

If you try an unsupported planemo, you’ll now see the code catch the problem, at least
once you recompile the code to use the new version:

iex(4)> Drop.fall_velocity(:jupiter, 20)
** (CaseClauseError) no case clause matching: :jupiter
 drop.ex:3: Drop.fall_velocity/2
iex(5)> c("drop.ex")
drop.ex:1: warning: redefining module Drop
[Drop]
iex(6)> Drop.fall_velocity(:jupiter, 20)
%CaseClauseError{term: :jupiter}

The CaseClauseError indicates that a case failed to match and tells you the actual item
that didn’t match.

You can also have multiple pattern matches in the rescue. If the error doesn’t match
any of the patterns in the rescue clause, it gets reported as a runtime error, as if the try
hadn’t wrapped it. The following example will provide different messages for each type
of error. The code doesn’t store the exception in a variable since it doesn’t use informa‐
tion stored in the exception:

defmodule Drop do
 def fall_velocity(planemo, distance) do
 try do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71

Rescuing Code from Runtime Errors as They Happen | 121

www.it-ebooks.info

http://www.it-ebooks.info/

 end
 :math.sqrt(2 * gravity * distance)
 rescue
 ArithmeticError -> {:error, "Distance must be non-negative"}
 CaseClauseError -> {:error, "Unknown planemo #{planemo}"}
 end
 end
end

And here is what it looks like in action:

iex(7)> c("drop.ex")
drop3.ex:1: warning: redefining module Drop
[Drop]
iex(8)> Drop.fall_velocity(:earth, -20)
{:error,"Distance must be non-negative"}
iex(9)> Drop.fall_velocity(:jupiter, 20)
{:error,"Unknown planemo jupiter"}

If you want to do the same actions for multiple exceptions, you can
write code like this:

[ArithmeticError, CaseClauseError] -> "Generic Error"
err in [ErlangError, RuntimeError] -> {:error, err}

If the code that might fail can create a mess, you may want to include an after clause
after the rescue clause and before the closing end. The code in an after clause is guar‐
anteed to run whether the attempted code succeeds or fails and can be a good place to
address any side effects of the code. It doesn’t affect the return value of the clause.

Logging Progress and Failure
The IO:puts function is useful for simple communications with the shell, but as your
programs grow (and especially as they become distributed processes), hurling text to‐
ward standard output is less likely to get you the information you need. Elixir offers a
set of functions for more formal logging. They can hook into more sophisticated logging
systems, but it’s easy to get started with them as a way to structure messages from your
application.

These functions in Elixir’s Logger module give you four levels of reporting:
:info

For information of any kind.

:debug

For debug-related messages.

122 | Chapter 10: Exceptions, Errors, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

:warn

For news that’s worse. Someone should do something eventually.

:error

Something just plain broke and needs to be looked at.

As you can see, these calls produce reports that are visually distinctive. If you run IEx
and enter these statements, you will see that the messages also appear in different colors:

iex(1)> require Logger
nil
iex(2)> counter=255
255
iex(3)> Logger.info("About to begin test")
18:57:36.846 [info] About to begin test
:ok
iex(4)> Logger.debug("Current value of counter is #{counter}")
18:58:06.526 [debug] Current value of counter is 255
:ok
iex(5)> Logger.warn("Connection lost; will retry.")
18:58:21.759 [warn] Connection lost; will retry.
:ok
iex(6)> Logger.error("Unable to read database.")
18:58:37.008 [error] Unable to read database.
:ok

These functions produce only a mild improvement over IO.puts, so why would you
use them? Because there is much much more lurking under the surface. By default, when
Elixir starts up, it sets up the Logger module to report to the shell. However, you can
design a custom backend to log information to any destination you please.

While logging information is useful, it’s not unusual to write code with subtle errors
where you’re not positive what to log where. You could litter the code with reporting,
or you could use the Erlang debugging tools that are also available in Elixir.

Tracing Messages
Elixir offers a wide variety of tools for tracing code, both with other code (using Erlang’s
trace and trace_pattern built-in functions) and with a text-based debugger/reporter.
The dbg module is the easiest place to start into this toolset, letting you specify what you
want traced and showing you the results in the shell.

Tracing Messages | 123

www.it-ebooks.info

http://www.it-ebooks.info/

The :dbg module is an Erlang module, but if you are getting tired of
typing the leading : every time you use an Erlang function, you can
make things feel more Elixir-like by typing this command:

iex(8)> alias :dbg, as: Dbg
[]

For now, we will continue to use :dbg.

An easy place to get started is tracing messages sent between processes. You can
use :dbg.p to trace the messages sent between the mph_drop process defined in
Example 9-8 and the drop process from Example 9-6. After compiling the modules, you
call :dbg.tracer() to start reporting trace information to the shell. Then you spawn
the mph_drop process as usual and pass that pid to the :dbg.p/2 process. The second
argument here will be :m, meaning that the trace should report the messages. The code
from Chapter 8 is duplicated in ch10/ex2-debug:

iex(1)> c("drop.ex")
[Drop]
iex(2)> c("mph_drop.ex")
[MphDrop]
iex(3)> :dbg.tracer()
{:ok,#PID<0.47.0>}
iex(4)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.49.0>
iex(5)> :dbg.p(pid1, :m)
{:ok,[{:matched,:"nonode@nohost",1}]}

Now when you send a message to the mph_drop process, you’ll get a set of reports on
the resulting flow of messages. (<0.49.0> is the mph_drop process, and <0.50.0> is the
drop process.)

iex(6)> send(pid1, {:moon, 20})
(<0.49.0>) << {moon,20}
(<0.49.0>) <0.50.0> ! {<0.49.0>,moon,20}
(<0.49.0>) << {moon,20,8.0}
(<0.49.0>) << {code_server,{module,'Elixir.String.Chars.Atom'}}
(<0.49.0>) << {code_server,{module,'Elixir.String.Chars.Integer'}}
(<0.49.0>) << {code_server,{module,'Elixir.String.Chars.Float'}}
(<0.49.0>) << {code_server,{module,'Elixir.String.Chars.BitString'}}
On moon, a fall of 20 meters yields a velocity of 17.89549032 mph.
(<0.49.0>) <0.26.0> ! {io_request,<0.49.0>,<0.26.0>,
 {put_chars,unicode,
 <<"On moon, a fall of 20 meters yields a velocity
 of 17.89549032 mph.\n">>}}
(<0.49.0>) << {io_reply,<0.26.0>,ok}
{:moon, 20}

The << pointing to a pid indicates that that process received a message. Sends are indi‐
cated with the pid followed by ! followed by the message. This is much like what you

124 | Chapter 10: Exceptions, Errors, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

saw when using the observer to view process messages in “Watching Your Processes”
on page 107. In this case:

• On this run, the report from mph_drop that On moon, a fall of 20 meters
yields a velocity of 17.89549032 mph. comes through in the middle of the
tracing information. The rest of the trace indicates how that report got there.

• mph_drop (<0.49.0>) receives the message tuple {moon,20}.
• It sends a further message, the tuple {<0.49.0>,moon,20}, to the drop process at

pid <0.50.0>.
• mph_drop receives a tuple {moon,20,8.0} (from drop).
• Then it calls io:request/2, which triggers another set of process messages to make

the report.

The trace reports come through interleaved with the actual execution of the code, but
they make the flow of messages clear. You’ll want to learn to use :dbg in its many var‐
iations to trace your code and may eventually want to use match patterns and the trace
functions themselves to create more elegant systems for watching specific code.

Watching Function Calls
If you just want to keep track of arguments moving between function calls, you can use
the tracer to report on the sequence of calls. Chapter 4 demonstrated recursion and
reported results along the way through IO.puts. There’s another way to see that work,
again using the :dbg module.

Example 4-11, the upward factorial calculator, started with a call to
Fact.factorial/1, which then called Fact.factorial/3 recursively. :dbg will let you
see the actual function calls and their arguments, mixed with the IO.puts reporting.
(You can find it in ch10/ex3-debug.)

Tracing functions is a little trickier than tracing messages because you can’t just
pass :dbg.p/2 a pid. As shown on line 3 in the following code sample, you need to tell
it you want it to report on all processes (:all) and their calls (:c). Once you’ve done
that, you have to specify which calls you want it to report, using :dbg.tpl as shown on
line 4. It takes a module name (Fact), function name as an atom (:factorial), and
optionally a match specification that lets you specify arguments more precisely. Varia‐
tions on this function also let you specify arity.

So turn on the tracer, tell it you want to follow function calls, and specify a function (or
functions, through multiple calls to :dbg.tpl) to watch. Then call the function, and
you’ll see a list of the calls:

Watching Function Calls | 125

www.it-ebooks.info

http://www.it-ebooks.info/

iex(1)> c("fact.ex")
[Fact]
iex(2)> :dbg.tracer()
{:ok,#PID<0.43.0>}
iex(3)> :dbg.p(:all, :c)
{:ok,[{:matched,:"nonode@nohost",29}]}
iex(4)> :dbg.tpl(Fact, :factorial, [])
{:ok,[{:matched,:"nonode@nohost",2}]}
iex(5)> Fact.factorial(4)
1 yields 1!
(<0.26.0>) call 'Elixir-Fact':factorial(4)
(<0.26.0>) call 'Elixir-Fact':factorial(1,4,1)
2 yields 2!
(<0.26.0>) call 'Elixir-Fact':factorial(2,4,1)
3 yields 6!
(<0.26.0>) call 'Elixir-Fact':factorial(3,4,2)
4 yields 24!
(<0.26.0>) call 'Elixir-Fact':factorial(4,4,6)
Finished.
(<0.26.0>) call 'Elixir-Fact':factorial(5,4,24)
24

You can see that the sequence is a bit messy here, with the trace reporting coming a little
bit after the IO.puts results from the function being traced. Because the trace is running
in a separate process (at pid <0.43.0>) from the function (at pid <0.26.0>), its reporting
may not line up smoothly (or at all, though it usually does).

When you’re done tracing, call :dbg.stop/0 (if you might want to restart tracing with
the same setup) or :dbg.stop_clear/0 (if you know that when you start again you’ll
want to set things up again).

The :dbg module and the trace functions on which it builds are incredibly powerful
tools.

Writing Unit Tests
You can avoid some debugging by adequately testing your code beforehand, and Elixir
has a unit-testing module named ExUnit to make this easy for you.

To demonstrate ExUnit, the following is a Drop module with an error in it. The gravity
constant for Mars has been accidentally mistyped as 3.41 instead of 3.71 (someone’s
finger slipped on the numeric keypad). Save this as file drop_bad.ex:

defmodule Drop do
 def fall_velocity(planemo, distance) do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.41
 end

126 | Chapter 10: Exceptions, Errors, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

 :math.sqrt(2 * gravity * distance)
 end
end

You write your tests in an Elixir script file (with an extension of .exs) so that it doesn’t
need to be compiled. You then define tests using the test macro. Here are two tests.
The first tests that a distance of zero returns a velocity of zero, and the second tests that
a fall of 10 meters on Mars produces the correct answer. Save this in a file named
drop_test.exs:

ExUnit.start

defmodule DropTest do
 use ExUnit.Case, async: true

 test "Zero distance gives zero velocity" do
 assert Drop.fall_velocity(:earth,0) == 0
 end

 test "Mars calculation correct" do
 assert Drop.fall_velocity(:mars, 10) == :math.sqrt(2 * 3.71 * 10)
 end
end

The first line of the script sets up ExUnit to run automatically, and the use line allows
Elixir to run the test cases in parallel.

A test begins with the macro test and a string that describes the test. The content of
the test consists of executing some code and then asserting some condition. If the
result of executing the code is true, then the test passes; if the result is false, the test
fails.

To run the tests, you need to compile the Drop module (which you can do from the
command line) and then type elixir drop_test.exs:

$ elixirc drop_bad.ex
$ elixir drop_test.exs
.

 1) test Mars calculation correct (DropTest)
 drop_test.exs:10
 Assertion with == failed
 code: Drop.fall_velocity(:mars, 10) == :math.sqrt(2 * 3.71 * 10)
 lhs: 8.258329128825032
 rhs: 8.613942186943213
 stacktrace:
 drop_test.exs:11

Finished in 0.3 seconds (0.2s on load, 0.07s on tests)
2 tests, 1 failures

Writing Unit Tests | 127

www.it-ebooks.info

http://www.it-ebooks.info/

Randomized with seed 210488

The line starting . indicates the status of each test; a . means that the test succeeded.

Fix the error by going into the Drop module and changing Mars’s gravity constant to the
correct value of 3.71. Save it with the name drop.ex and recompile. Then run the test
again, and you will see what a successful test looks like:

$ elixirc drop.ex
drop.ex:1: warning: redefining module Drop
$ elixir drop_test.exs
..

Finished in 0.1 seconds (0.1s on load, 0.00s on tests)
2 tests, 0 failures

Randomized with seed 878156

In addition to assert/1, you may also use refute/1, which expects the condition you
are testing to be false in order for a test to pass. Both assert/1 and refute/1 auto‐
matically generate an appropriate message. There is also a two-argument version of each
function that lets you specify the message to produce if the assertion or refutation fails.

If you are using floating-point operations, you may not be able to count on an exact
result. In that case, you can use the assert_in_delta/4 function. Its four arguments
are the expected value, the value you actually received, the delta, and a message. If the
expected and received values are within delta of each other, the test passes. Otherwise,
the test fails and ExUnit prints your message. Here is a test to see if a fall velocity from
a distance of one meter on Earth is close to 4.4 meters per second. Add this to your
drop_test.exs file and run the tests again. (The revised version is in file ch10/ex4-testing/
drop_test2.exs.)

test "Earth calculation correct" do
 calculated = Drop.fall_velocity(:earth, 1)
 assert_in_delta calculated, 4.4, 0.05,
 "Result of #{calculated} is not within 0.05 of 4.4"
end

If you want to see the failure message, change the test to require the calculation to be
more precise, and save it. (This version is in file ch10/ex4-testing/drop_test3.exs.)

test "Earth calculation correct" do
 calculated = Drop.fall_velocity(:earth, 1)
 assert_in_delta calculated, 4.4, 0.0001,
 "Result of #{calculated} is not within 0.0001 of 4.4"
end

This is the result:

$ elixirc drop_test3.exs

128 | Chapter 10: Exceptions, Errors, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

 1) test Earth calculation correct (DropTest)
 drop_test3.exs:14
 Result of 4.427188724235731 is not within 0.0001 of 4.4
 stacktrace:
 drop_test3.exs:16

..

Finished in 0.1 seconds (0.1s on load, 0.01s on tests)
3 tests, 1 failures

Randomized with seed 336034

You can also test that parts of your code will correctly raise exceptions. These following
two tests will check that an incorrect planemo and a negative distance actually cause
errors. In each test, you wrap the code you want to test in an anonymous function. You
can find these additional tests in file ch10/ex4-testing/drop_test4.exs:

test "Unknown planemo causes error" do
 assert_raise CaseClauseError, fn ->
 Drop.fall_velocity(:planetX, 10)
 end
end

test "Negative distance causes error" do
 assert_raise ArithmeticError, fn ->
 Drop.fall_velocity(:earth, -10)
 end
end

Elixir’s testing facilities also allow you to test whether messages have been received or
not, specify code to be run before and after each test, write functions to be shared among
tests, and much more. The full details are available in the Elixir documentation.

Writing Unit Tests | 129

www.it-ebooks.info

http://elixir-lang.org/docs.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Storing Structured Data

Despite Elixir’s general preference for avoiding side effects, storing and sharing data is
a fundamental side effect needed for a wide variety of projects.

Because Elixir works well with Erlang, you can use Erlang Term Storage (ETS) to help
you store and manipulate those sets, and the Mnesia database provides additional fea‐
tures for reliable distributed storage.

Records: Structured Data Before structs
As you saw in “From Maps to Structs” on page 78, Elixir’s structs allow you to use names
to connect with data rather than order (as with tuples). Structs, however, are based on
maps, which are new to Erlang and Elixir. Before maps existed, Erlang had to solve the
problem of keeping structured data, and that solution was the concept of records. As
with structs, you can read, write, and pattern match data in a record without having to
worry about the details of where in a tuple a field lurks or whether someone’s added a
new field.

Records are not especially loved in Erlang, and are supported but not encouraged in
Elixir. The record definition requirement creates headaches. However, records are com‐
mon in Erlang APIs and run efficiently, so they are still worth understanding. At the
very least you’ll have a better sense of what people are arguing about in discussions of
Elixir and Erlang data structures.

There are still tuples underneath records, and occasionally Elixir will
expose them to you. Do not attempt to use the tuple representa‐
tion directly, or you will add all the potential problems of using tuples
to the slight extra syntax of using records.

131

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Records
Using records requires telling Elixir about them with a special declaration. Instead of
saying defmodule, you use a defrecord declaration:

defrecord Planemo, name: :nil, gravity: 0, diameter: 0, distance_from_sun: 0

That defines a record type named Planemo, containing fields named name, gravity,
diameter, and distance_from_sun with their default values. This declaration creates
records for different towers for dropping objects:

defrecord Tower, location: "", height: 20, planemo: :earth, name: ""

Unlike defmodule declarations, you’ll often want to share record declarations across
multiple modules and (for the examples in this chapter at least) even use them in the
shell. To share record declarations reliably, just put the record declarations in their own
file, ending with the extension .ex. You may want to put each record declaration in a
separate file or all of them in a single file, depending on your needs. To get started, to
see how these behave, you can put both of the declarations into a single file, records.ex,
shown in Example 11-1. (You can find it in ch11/ex1-records.)

Example 11-1. A records.ex file containing two rather unrelated record declarations
defmodule Planemo do
 require Record
 Record.defrecord :planemo, [name: :nil, gravity: 0, diameter: 0,
 distance_from_sun: 0]
end

defmodule Tower do
 require Record
 Record.defrecord :tower, Tower,
 [location: "", height: 20, planemo: :earth, name: ""]
end

Record.defrecord constructs a set of macros to create and access a record. The first
item after Record.defrecord is the record name. The second item is optional; it is the
tag. If you don’t provide a tag, Elixir uses the record name. In this case, we have provided
a tag for Tower records, but not for Planemo records. The name and optional tag are
followed by a list that gives pairs of key names and default values. Elixir automatically
builds functions into the module that let you create new records, access record values,
and update record values. Because records are modules, all you need to do to make a
record available to your program is to be sure that it has been compiled and in the same
directory as your other modules. You can use the elixirc program from the command
line to compile defrecord declarations, or you can compile from the shell:

iex(1)> c("records.ex")
[Tower,Planemo]

132 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

The shell now understands records with the names Planemo and Tower, but you must
require them in order to use them in a program or in the shell.

You can also declare records directly in the shell by typing the defre
cord declaration, but if you’re doing anything more than just pok‐
ing around, it’s easier to have them in an external file.

Creating and Reading Records
You can now create variables that contain new records. You create a new record by using
the record name function

iex(2)> require Tower
nil
iex(3)> tower1 = Tower.tower()
{Tower, "", 20, :earth, ""}
iex(4)> tower2 = Tower.tower(location: "Grand Canyon")
{Tower, "Grand Canyon", 20, :earth, ""}
iex(5)> tower3 = Tower.tower(location: "NYC", height: 241,
...(5)> name: "Woolworth Building")
{Tower, "NYC", 241, :earth, "Woolworth Building"}
iex(6)> tower4 = Tower.tower location: "Rupes Altat 241", height: 500,
...(6)> planemo: :moon, name: "Piccolini View"
{Tower, "Rupes Altat 241", 500, :moon, "Piccolini View"}
iex(7)> tower5 = Tower.tower planemo: :mars, height: 500,
...(7)> name: "Daga Vallis", location: "Valles Marineris"
{Tower, "Valles Marineris", 500, :mars, "Daga Vallis"}

These towers (or at least drop sites) demonstrate a variety of ways to use the record
syntax to create variables as well as interactions with the default values:

• Line 3 just creates tower1 with the default values. You can add real values later.
• Line 4 creates a tower with a location, but otherwise relies on the default values.
• Line 5 overrides the default values for location, height, and name, but leaves the
planemo alone.

• Line 6 replaces all of the default values with new values. Also, as is usual with Elixir,
you do not need to put the arguments to new inside parentheses.

• Line 7 replaces all of the default values, and also demonstrates that it doesn’t matter
in what order you list the name/value pairs. Elixir will sort it out.

You can read record entries with two different approaches. To extract a single value, you
can use a dot (.) syntax that may look familiar from other languages. For example, to
find out which planemo tower5 is on, you could write:

Records: Structured Data Before structs | 133

www.it-ebooks.info

http://www.it-ebooks.info/

iex(8)> Tower.tower(tower5, :planemo)
:mars
iex(9)> import Tower
nil
iex(10)> tower(tower5, :height)
500

Line 9 did an import to make life easier, so line 10 no longer requires Tower.

If you want to change a value in a record, you can do so. In the following example, the
right-hand side actually returns an entirely new record and re-binds that new record to
tower5, overwriting its old value.

iex(11)> tower5
{Tower, "Valles Marineris", 500, :mars, "Daga Vallis"}
iex(12)> tower5 = tower(tower5, height: 512)
{Tower, "Valles Marineris", 512, :mars, "Daga Vallis"}

Using Records in Functions
You can pattern match against records submitted as arguments. The simplest way to do
this is to just match against the type of the record, as shown in Example 11-2, which is
in ch11/ex2-records.

Example 11-2. A method that pattern matches a complete record
defmodule RecordDrop do
 require Planemo
 require Tower

 def fall_velocity(t = Tower.tower()) do
 fall_velocity(Tower.tower(t, :planemo), Tower.tower(t, :height))
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

end

This uses a pattern match that will match only Tower records, and puts the record into
a variable t. Then, like its predecessor in Example 3-8, it passes the individual arguments
to fall_velocity/2 for calculations, this time using the record syntax.

134 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

iex(13)> c("record_drop.ex")
[RecordDrop]
iex(14)> RecordDrop.fall_velocity(tower5)
60.909769331364245
iex(15)> RecordDrop.fall_velocity(tower1)
19.79898987322333

The record_drop:fall_velocity/1 function shown in Example 11-3 pulls out the
planemo field and binds it to the variable planemo. It pulls out the height field and binds
it to distance. Then it returns the velocity of an object dropped from that distance
just like earlier examples throughout this book.

You can also extract the specific fields from the record in the pattern match, as shown
in Example 11-3, which is in ch11/ex3-records.

Example 11-3. A method that pattern matches components of a record
defmodule RecordDrop do
 require Tower
 def fall_velocity(Tower.tower(planemo: planemo, height: distance)) do
 fall_velocity(planemo, distance)
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

You can take the records created and feed them into this function, and it will tell you
the velocity resulting from a drop from the top of that tower to the bottom.

Finally, you can pattern match against both the fields and the records as a whole.
Example 11-4, in ch11/ex4-records, demonstrates using this mixed approach to create
a more detailed response than just the fall velocity.

Example 11-4. A method that pattern matches the whole record as well as components
of a record
defmodule RecordDrop do
 require Tower
 import Tower
 def fall_velocity(t = tower(planemo: planemo, height: distance)) do
 IO.puts("From #{tower(t, :name)}'s elevation of #{distance} meters on #{planemo},")
 IO.puts("the object will reach #{fall_velocity(planemo, distance)} m/s")

Records: Structured Data Before structs | 135

www.it-ebooks.info

http://www.it-ebooks.info/

 IO.puts("before crashing in #{tower(t, :location)}")
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

It is possible to have a variable whose name is the same as a field name;
in the previous example, the planemo field was assigned to a vari‐
able also named planemo.

If you pass a Tower record to RecordDrop.fall_velocity/1, it will match against in‐
dividual fields it needs to do the calculation, and match the whole record into t so that
it can produce a more interesting if not necessarily grammatically correct report.

iex(16)> RecordDrop.fall_velocity(tower5)
From Daga Vallis's elevation of 500 meters on mars,
the object will reach 60.90976933136424520399 m/s
before crashing in Valles Marineris
:ok
iex(17)> RecordDrop.fall_velocity(tower3)
From Woolworth Building's elevation of 241 meters on earth,
the object will reach 68.72845116834803036454 m/s
before crashing in NYC
:ok

Storing Data in Erlang Term Storage
Erlang Term Storage (ETS) is a simple but powerful in-memory collection store. It holds
tuples, and since records are tuples underneath, they’re a natural fit. ETS and its disk-
based cousin DETS provide a (perhaps too) simple solution for many data management
problems. ETS is not exactly a database, but it does similar work and is useful by itself
as well as underneath the Mnesia database, which you’ll see in the next section.

Every entry in an ETS tables is a tuple (or corresponding record), and one piece of the
tuple is designated the key. ETS offers a few different structural choices depending on
how you want to handle that key. ETS can hold four kinds of collections:

136 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

Sets (:set)
Can contain only one entry with a given key. This is the default.

Ordered sets (:ordered_set)
Same as a set, but also maintains a traversal order based on the keys. Great for
anything you want to keep in alphabetic or numeric order.

Bags (:bag)
Lets you store more than one entry with a given key. However, if you have multiple
entries that have completely identical values, they get combined into a single entry.

Duplicate bags (:duplicate_bag)
Not only lets you store more than one entry with a given key, but also lets you store
multiple entries with completely identical values.

By default, ETS tables are sets, but you can specify one of the other options when you
create a table. The examples here will be sets because they are simpler to figure out, but
the same techniques apply to all four table varieties.

There is no requirement in ETS that all of your entries look at all
similar. When you’re starting out, however, it’s much simpler to use
the same kind of record, or at least tuples with the same structure.
You can also use any kind of value for the key, including complex tuple
structures and lists, but again, it’s best not to get too fancy at the
beginning.

All of the examples in the following section will use the planemo record type defined in
“Records: Structured Data Before structs” on page 131, and the data in Table 11-1.

Table 11-1. Planemos for gravitational exploration
Planemo Gravity (m/s2) Diameter (km) Distance from Sun (106 km)

mercury 3.7 4878 57.9

venus 8.9 12104 108.2

earth 9.8 12756 149.6

moon 1.6 3475 149.6

mars 3.7 6787 227.9

ceres 0.27 950 413.7

jupiter 23.1 142796 778.3

saturn 9.0 120660 1427.0

uranus 8.7 51118 2871.0

neptune 11.0 30200 4497.1

pluto 0.6 2300 5913.0

Storing Data in Erlang Term Storage | 137

www.it-ebooks.info

http://www.it-ebooks.info/

Planemo Gravity (m/s2) Diameter (km) Distance from Sun (106 km)

haumea 0.44 1150 6484.0

makemake 0.5 1500 6850.0

eris 0.8 2400 10210.0

Although the name is Erlang Term Storage, you can still use ETS from
Elixir. Just as you can use Erlang’s math module to calculate square
roots by saying :math.sqrt(3), you can use ETS functions by pre‐
ceding them with :ets.

Creating and Populating a Table
The :ets.new/2 function lets you create a table. The first argument is a name for the
table, and the second argument is a list of options. There are lots and lots of options,
including the identifiers for the table types described in the previous section, but the
two most important for getting started are :named_table and the tuple starting
with :keypos.

Every table has a name, but only some can be reached using that name. If you don’t
specify :named_table, the name is there but visible only inside the database. You’ll have
to use the value returned by :ets.new/2 to reference the table. If you do speci‐
fy :named_table, processes can reach the table as long as they know the name, without
needing access to that return value.

Even with a named table, you still have some control over which
processes can read and write the table through the :private, :pro
tected, and :public options.

The other important option, especially for ETS tables containing records, is the :key
pos tuple. By default, ETS treats the first value in a tuple as the key. The tuple repre‐
sentation underneath records (which you shouldn’t really touch) always uses the first
value in a tuple to identify the kind of record, so that approach works very badly as a
key for records. Using the :keypos tuple lets you specify which record value should be
the key.

Remember, the record format for a Planemo looks like the following:

defmodule Planemo do
 require Record
 Record.defrecord :planemo, [name: :nil, gravity: 0, diameter: 0,
 distance_from_sun: 0]
end

138 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

Because this table is mostly used for calculations based on a given planemo, it makes
sense to use the :name as a key. An appropriate declaration for setting up the ETS table
might look like the following:

planemo_table = :ets.new(:planemos,[:named_table, {:keypos,
 Planemo.planemo(:name) + 1}])

That gives the table the name :planemos and uses the :named_table option to make
that table visible to other processes that know the name. Because of the default access
level of :protected, this process can write to that table but other processes can only
read it. It also tells ETS to use the :name field as the key.

ETS expects the :keypos to be a number that gives the position of the
key field in the underlying tuple, with the first entry numbered as one.
The call to the planemo function returns the index of the field in the
underlying Elixir tuple, with the first entry numbered as zero. That’s
why the preceding code had to add one.

Because it doesn’t specify otherwise, the table will be treated as a set, where each key
maps to only one instance of record, and ETS doesn’t keep the list sorted by key.

Once you have the table set up, as shown in Example 11-5, you use the :ets.info/1
function to check out its details. (You can find this in ch11/ex5-ets.)

Example 11-5. Setting up a simple ETS table and reporting on what’s there
defmodule PlanemoStorage do
 require Planemo

 def setup do
 planemo_table = :ets.new(:planemos,[:named_table,
 {:keypos, Planemo.planemo(:name) + 1}])
 :ets.info planemo_table
 end
end

If you compile and run this, you’ll get a report of an empty ETS table with more prop‐
erties than you probably want to know about at the moment.

iex(1)> c("records.ex")
[Tower,Planemo]
iex(2)> c("planemo_storage.ex")
[PlanemoStorage]
iex(3)> PlanemoStorage.setup
[compressed: false, memory: 307, owner: #PID<0.26.0>, heir: :none,
name: :planemos, size: 0, node: :"nonode@nohost", named_table: true,
type: :set, keypos: 2, protection: :protected]

Storing Data in Erlang Term Storage | 139

www.it-ebooks.info

http://www.it-ebooks.info/

Most of this is either more information than you need or unsurprising, but it is good
to see the name(:planemos), size (0—empty!), and keypos (not 1, the default, but 2, the
location of the name in the tuple underneath the record). It is, as the defaults specify,
set up as a :protected :set.

You can set up only one ETS table with the same name. If you call PlanemoStorage.set
up/0 twice, you’ll get an error:

iex(3)> PlanemoStorage.setup
** (ArgumentError) argument error
 (stdlib) :ets.new(:planemos, [:named_table, {:keypos, 2}])
 planemo_storage.ex:6: PlanemoStorage.setup/0

To avoid this, at least in these early tests, you’ll want to use the :ets.delete/1 command
to delete the table. Give the table name—in this case, :planemos--as the argument. If
you think you’re likely to call your initialization code repeatedly after you figure the
basics out, you can also test the :ets.info/1 for :undefined to make sure the table
doesn’t already exist, or put a try…catch construct around the :ets.new/2 call.

A more exciting ETS table, of course, will include content. The next step is to
use :ets.insert/2 to add content to the table. The first argument is the table, referenced
either by its name (if you set the named_table option), or by the variable that captured
the return value of :ets.new/2. In Example 11-6, which is in ch11/ex6-ets, the first call
uses the name, to show that it works, and the rest use the variable. The second argument
is a record representing one of the rows from Table 11-1.

Example 11-6. Populating a simple ETS table and reporting on what’s there
defmodule PlanemoStorage do
 require Planemo

 def setup do
 planemo_table = :ets.new(:planemos,[:named_table,
 {:keypos, Planemo.__record__(:index, :name) + 1}])
 :ets.insert :planemos, Planemo.planemo(name: :mercury, gravity: 3.7,
 diameter: 4878, distance_from_sun: 57.9)
 :ets.insert :planemos, Planemo.planemo(name: :venus, gravity: 8.9,
 diameter: 12104, distance_from_sun: 108.2)
 :ets.insert :planemos, Planemo.planemo(name: :earth, gravity: 9.8,
 diameter: 12756, distance_from_sun: 149.6)
 :ets.insert :planemos, Planemo.planemo(name: :moon, gravity: 1.6,
 diameter: 3475, distance_from_sun: 149.6)
 :ets.insert :planemos, Planemo.planemo(name: :mars, gravity: 3.7,
 diameter: 6787, distance_from_sun: 227.9)
 :ets.insert :planemos, Planemo.planemo(name: :ceres, gravity: 0.27,
 diameter: 950, distance_from_sun: 413.7)
 :ets.insert :planemos, Planemo.planemo(name: :jupiter, gravity: 23.1,
 diameter: 142796, distance_from_sun: 778.3)
 :ets.insert :planemos, Planemo.planemo(name: :saturn, gravity: 9.0,
 diameter: 120660, distance_from_sun: 1427.0)

140 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

 :ets.insert :planemos, Planemo.planemo(name: :uranus, gravity: 8.7,
 diameter: 51118, distance_from_sun: 2871.0)
 :ets.insert :planemos, Planemo.planemo(name: :neptune, gravity: 11.0,
 diameter: 30200, distance_from_sun: 4497.1)
 :ets.insert :planemos, Planemo.planemo(name: :pluto, gravity: 0.6,
 diameter: 2300, distance_from_sun: 5913.0)
 :ets.insert :planemos, Planemo.planemo(name: :haumea, gravity: 0.44,
 diameter: 1150, distance_from_sun: 6484.0)
 :ets.insert :planemos, Planemo.planemo(name: :makemake, gravity: 0.5,
 diameter: 1500, distance_from_sun: 6850.0)
 :ets.insert :planemos, Planemo.planemo(name: :eris, gravity: 0.8,
 diameter: 2400, distance_from_sun: 10210.0)

 :ets.info planemo_table
 end
end

Again, the last call is to :ets.info/1, which now reports that the table has 14 items.

iex(4)> c("PlanemoStorage.ex")
[PlanemoStorage]
iex(5)> :ets.delete(:planemos)
true
iex(6)> PlanemoStorage.setup
[compressed: false, memory: 531, owner: #PID<0.26.0>, heir: :none, name:
:planemos, size: 14, node: :"nonode@nohost", named_table: true, type: :set,
keypos: 2, protection: :protected]

If you want to see what’s in that table, you can do it from the shell by using
the :ets.tab2list/1 function, which will return a list of records, broken into separate
lines for ease of reading:

iex(25)> :ets.tab2list :planemos
[{:planemo, :neptune, 11.0, 30200, 4497.1},
 {:planemo, :jupiter, 23.1, 142796, 778.3},
 {:planemo, :haumea, 0.44, 1150, 6484.0}, {:planemo, :pluto, 0.6, 2300, 5913.0},
 {:planemo, :mercury, 3.7, 4878, 57.9}, {:planemo, :earth, 9.8, 12756, 149.6},
 {:planemo, :makemake, 0.5, 1500, 6850.0}, {:planemo, :moon, 1.6, 3475, 149.6},
 {:planemo, :mars, 3.7, 6787, 227.9}, {:planemo, :saturn, 9.0, 120660, 1427.0},
 {:planemo, :uranus, 8.7, 51118, 2871.0}, {:planemo, :ceres, 0.27, 950, 413.7},
 {:planemo, :venus, 8.9, 12104, 108.2}, {:planemo, :eris, 0.8, 2400, 10210.0}]

If you’d rather keep track of the table in a separate window, Erlang’s Observer table
visualizer shows the same information in a slightly more readable form. You can start
it from the shell with :observer.start(), and click the Table Viewer tab. You will see
something that looks like Figure 11-1. Double-click on the planemos table, and you’ll
see a more detailed report on its contents like the one shown in Figure 11-2.

Storing Data in Erlang Term Storage | 141

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-1. Opening the table visualizer

Figure 11-2. Reviewing the planemos table in the visualizer

The visualizer doesn’t know about your record declarations; it only knows the field
numbers. The Edit menu lets you poll the table to be sure you have its latest contents,
and set a polling interval if you want it to refresh automatically. If you declare tables
public, you can even edit their contents in the table viewer.

If you want to see a table of all the current ETS tables, try issu‐
ing :ets.i() in the shell. You’ll see the tables you’ve created (proba‐
bly) near the bottom.

Simple Queries
The easiest way to look up records in your ETS table is with the :ets.lookup/2 function
and the key. You can test this easily from the shell:

142 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

iex(9)> :ets.lookup(:planemos, :eris)
[{:planemo, :eris, 0.8, 2400, 10210.0}]

The return value is always a list. This is true despite Elixir’s knowing that this ETS table
has the :set type, so only one value can match the key, and despite there being only one
value. In situations like this where you know that there will only be one returned value,
the hd/1 function will get you the head of a list quickly. Since there is only one item, the
head is just that item.

iex(10)> hd(:ets.lookup(:planemos, :eris))
{:planemo, :eris, 0.8, 2400, 10210.0}

The square brackets are gone, which means that you can now extract, say, the gravity
of a planemo:

iex(11)> result = hd(:ets.lookup(:planemos, :eris))
{:planemo, :eris, 0.8, 2400, 10210.0}
iex(12)> Planemo.planemo(result, :gravity)
0.8

Overwriting Values
Although you can re-assign values to Elixir variables, it’s better if you don’t overwrite
the value of a variable or change the value of an item in a list. Keeping variables “single-
assignment” makes it easier to more write reliable programs that involve communica‐
tion among many processes (you saw this in Chapter 9 and will see more about com‐
municating processes in Chapter 12). However, ETS is meant for storing values that
might need to be re-assigned. If you want to change the value of gravity on :mercu
ry, you can. (I pressed ENTER on line 13 so that the listing does not go off the edge of
the page.)

iex(13)> :ets.insert(:planemos, Planemo.planemo(name: :mercury,
...(13)> gravity: 3.9, diameter: 4878, distance_from_sun: 57.9))
true
iex(14)> :ets.lookup(:planemos, :mercury)
[{:planemo, :mercury, 3.9, 4878, 57.9}]

Just because you can change values in an ETS table, however, doesn’t mean that you
should rewrite your code to replace variables with flexible ETS table contents. Nor
should you make all your tables public so that various processes can read and write
whatever they like to the ETS table, making it a different form of shared memory.

Ask yourself when making changes is going to be useful, and when it might introduce
tricky bugs. You probably won’t have to change the gravity of Mercury, but it certainly
could make sense to change a shipping address. If you have doubts, lean toward caution.

Storing Data in Erlang Term Storage | 143

www.it-ebooks.info

http://www.it-ebooks.info/

ETS Tables and Processes
Now that you can extract gravitational constants for planemos, you can expand the drop
module to calculate drops in many more locations. Example 11-7 combines the drop
module from Example 9-6 with the ETS table built in Example 11-6 to create a more
powerful drop calculator. (You can find this in ch11/ex7-ets-calculator.)

Example 11-7. Calculating drop velocities using an ETS table of planemo properties
defmodule Drop do
 require Planemo
 def drop do
 setup
 handle_drops
 end

 def handle_drops do
 receive do
 {from, planemo, distance} ->
 send(from, {planemo, distance, fall_velocity(planemo, distance)})
 handle_drops
 end
 end

 def fall_velocity(planemo, distance) when distance >= 0 do
 p = hd(:ets.lookup(:planemos, planemo))
 :math.sqrt(2 * Planemo.planemo(p, :gravity) * distance)
 end

 def setup do
 :ets.new(:planemos, [:named_table,
 {:keypos, Planemo.__record__(:index, :name) + 1}])
 info = [
 {:mercury, 3.7, 4878, 57.9},
 {:venus, 8.9, 12104, 108.2},
 {:earth, 9.8, 12756, 149.6},
 {:moon, 1.6, 3475, 149.6},
 {:mars, 3.7, 6787, 227.9},
 {:ceres, 0.27, 950, 413.7},
 {:jupiter, 23.1, 142796, 778.3},
 {:saturn, 9.0, 120660, 1427.0},
 {:uranus, 8.7, 51118, 2871.0},
 {:neptune, 11.0, 30200, 4497.1},
 {:pluto, 0.6, 2300, 5913.0},
 {:haumea, 0.44, 1150, 6484.0},
 {:makemake, 0.5, 1500, 6850.0},
 {:eris, 0.8, 2400, 10210.0}]
 insert_into_table(info)
 end

 def insert_into_table([]) do # stop recursion
 :undefined

144 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

 end

 def insert_into_table([{name, gravity, diameter, distance} | tail]) do
 :ets.insert(:planemos, Planemo.new(name: name, gravity: gravity,
 diameter: diameter, distance_from_sun: distance))
 insert_into_table(tail)
 end
end

The drop/0 function changes a little to call the initialization separately and avoid setting
up the table on every call. This moves the message handling to a separate function,
handle_drop/0. The fall_velocity/2 function also changes, as it now looks up pla‐
nemo names in the ETS table and gets their gravitational constant from that table rather
than hardcoding those contents into the function. (While it would certainly be possible
to pass the planemo_table variable from the previous example as an argument to the
recursive message handler, it’s simpler to just use it as a named table.)

The setup function has also changed dramatically. Rather than doing a series
of :ets.insert calls, it creates a list of tuples with the planemo information and then
calls the insert_into_table/1 recursively to insert each entry.

If this process crashes and needs to be restarted, restarting it will
trigger the setup/0 function, which currently doesn’t check to see if
the ETS table exists. That could cause an error, except that ETS tables
vanish when the processes that created them die. ETS offers an heir
option and an :ets.give_away/3 function if you want to avoid that
behavior, but for now it works well.

If you combine this module with the mph_drop module from Example 9-7, you’ll be able
to calculate drop velocities on all of these planemos:

iex(1)> c("drop.ex")
[Drop]
iex(2)> c("mph_drop.ex")
[MphDrop]
iex(3)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.47.0>
iex(4)> send(pid1, {:earth, 20})
On earth, a fall of 20 meters yields a velocity of 44.289078952755766 mph.
{:earth,20}
iex(5)> send(pid1, {:eris, 20})
On eris, a fall of 20 meters yields a velocity of 12.65402255793022 mph.
{:eris,20}
iex(6)> send(pid1, {:makemake, 20})
On makemake, a fall of 20 meters yields a velocity of 10.003883211552367 mph.
{:makemake,20}

That’s a lot more variety than its :earth, :moon, and :mars predecessors!

Storing Data in Erlang Term Storage | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Next Steps
While many applications just need a fast key/value store, ETS tables are far more flexible
than the examples so far demonstrate. You can use Erlang’s match specifications
and :ets.fun2ms to create more complex queries with :ets.match and :ets.select.
You can delete rows (as well as tables) with :ets.delete. The :ets.first, :ets.next,
and :ets.last functions let you traverse tables recursively.

Perhaps most important, you can also explore DETS, the Disk-Based Term Storage,
which offers similar features but with tables stored on disk. It’s slower, with a 2 GB limit,
but the data doesn’t vanish when the controlling process stops.

You can dig deeper into ETS and DETS, but if your needs are more complex, and es‐
pecially if you need to split data across multiple nodes, you should probably explore the
Mnesia database.

Storing Records in Mnesia
Mnesia is a database management system (DBMS) that comes with Erlang, and, by
extension, one that you can use with Elixir. It uses ETS and DETS underneath, but
provides many more features than those components.

You should consider shifting from ETS (and DETS) tables to the Mnesia database if:

• You need to store and access data across a set of nodes, not just a single node.
• You don’t want to have to think about whether you’re going to store data in memory

or on a disk or both.
• You need to be able to roll back transactions if something goes wrong.
• You’d like a more approachable syntax for finding and joining data.
• Management prefers the sound of “database” to the sound of “tables.”

You may even find that you use ETS for some aspects of a project and Mnesia for others.

That isn’t “amnesia,” the forgetting, but “mnesia,” the Greek word for
memory.

Starting up Mnesia
If you want to store data on disk, you need to give Mnesia some information. Before
you turn Mnesia on, you need to create a database, using the :mnesia.create_schema/

146 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

1 function. For now, because you’ll be getting started using only the local node, that will
look like the following:

iex(1)> :mnesia.create_schema([node()])
:ok

By default, when you call :mnesia.create_schema/1, Mnesia will store schema data in
the directory where you are when you start it. If you look in the directory where you
started Elixir, you’ll see a new directory with a name like Mnesia.nonode@nohost. Ini‐
tially, it holds a FALLBACK.BUP and schema.DAT file. The node/0 function just returns
the identifier of the node you’re on, which is fine when you’re getting started.

If you start Mnesia without calling :mnesia.create_schema/1, Mne‐
sia will keep its schema in memory, and it will vanish if and when
Mnesia stops.

Unlike ETS and DETS, which are always available, you need to turn Mnesia on:

iex(2)> :mnesia.start()
:ok

There’s also a :mnesia.stop/0 function if you want to stop it.

If you run Mnesia on a computer that goes to sleep, you may get odd
messages like Mnesia(nonode@nohost): ** WARNING ** Mnesia is
overloaded: {dump_log, time_threshold} when it wakes up. Don’t
worry, it’s a side effect of waking up, and your data should still be safe.
You probably shouldn’t run production systems on devices that go to
sleep, of course.

Creating Tables
Like ETS, Mnesia’s basic concept of a table is a collection of records. It also of‐
fers :set, :orderered_set, and :bag options, just like those in ETS, but doesn’t of‐
fer :duplicate_bag.

Mnesia wants to know more about your data than ETS, too. ETS pretty much takes data
in tuples of any shape, counting only on there being a key it can use. The rest is up to
you to interpret. Mnesia wants to know more about what you store, and takes a list of
field names. The easy way to handle this is to define records and consistently use the
field names from the records as Mnesia field names. There’s even an easy way to pass
the record names to Mnesia, using record_info/2.

Storing Records in Mnesia | 147

www.it-ebooks.info

http://www.it-ebooks.info/

The planemos table can work just as easily in Mnesia as in ETS, and some aspects of
dealing with it will be easier. Example 11-8, which is in ch11/ex7-mnesia, shows how to
set up the planemo table in Mnesia. The setup/0 method creates a schema, then starts
Mnesia, and then creates a table based on the planemo record type. Once the table is
created, it writes the values from Table 11-1 to it.

Example 11-8. Setting up an Mnesia table of planemo properties
defmodule Drop do

 def drop do
 setup
 handle_drops
 end

 def handle_drops do
 receive do
 {from, planemo, distance} ->
 send(from, {planemo, distance, fall_velocity(planemo, distance)})
 handle_drops
 end
 end

 def fall_velocity(planemo, distance) when distance >= 0 do
 {:atomic, [p | _]} = :mnesia.transaction(fn() ->
 :mnesia.read(Planemo, planemo) end)
 :math.sqrt(2 * p.gravity * distance)
 end

 def setup do
 :mnesia.create_schema([node()])
 :mnesia.start()
 :mnesia.create_table(PlanemoTable, [{:attributes,
 [:name, :gravity, :diameter, :distance_from_sun]},
 {:record_name, :planemo}])

 f = fn ->
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :mercury, gravity: 3.7,
 diameter: 4878, distance_from_sun: 57.9), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :venus, gravity: 8.9,
 diameter: 12104, distance_from_sun: 108.2), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :earth, gravity: 9.8,
 diameter: 12756, distance_from_sun: 149.6), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :moon, gravity: 1.6,
 diameter: 3475, distance_from_sun: 149.6), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :mars, gravity: 3.7,
 diameter: 6787, distance_from_sun: 227.9), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :ceres, gravity: 0.27,
 diameter: 950, distance_from_sun: 413.7), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :jupiter, gravity: 23.1,
 diameter: 142796, distance_from_sun: 778.3), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :saturn, gravity: 9.0,

148 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

 diameter: 120660, distance_from_sun: 1427.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :uranus, gravity: 8.7,
 diameter: 51118, distance_from_sun: 2871.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :neptune, gravity: 11.0,
 diameter: 30200, distance_from_sun: 4497.1), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :pluto, gravity: 0.6,
 diameter: 2300, distance_from_sun: 5913.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :haumea, gravity: 0.44,
 diameter: 1150, distance_from_sun: 6484.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :makemake, gravity: 0.5,
 diameter: 1500, distance_from_sun: 6850.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :eris, gravity: 0.8,
 diameter: 2400, distance_from_sun: 10210.0), :write)
 end

 :mnesia.transaction(f)
 end
end

In the setup, the :mnesia.create_table call gives the attributes for the table explicitly
because, as of this writing, there is no easy way to extract all the field names for a record.
Ordinarily, Mnesia presumes that the table name is the same as the first field of the
record, but in this case, the table is PlanemoTable and the record starts with :planemo.
You give the record name explicitly with this code: {:record_name, :planemo}

The :mnesia_write calls take three parameters: the table name, the record, and the type
of lock to use on the database (in this case, :write).

Apart from the setup, the key thing to note is that all of the writes are contained in a fn
that is then passed to :mnesia.transaction to be executed as a transaction. Mnesia
will restart the transaction if there is other activity blocking it, so the code may get
executed repeatedly before the transaction happens. Because of this, do not include any
calls that create side effects in the function you’ll be passing to :mnesia.transaction,
and don’t try to catch exceptions on Mnesia functions within a transaction. If your
function calls :mnesia.abort/1 (probably because some condition for executing it
wasn’t met), the transaction will be rolled back, returning a tuple beginning with abor
ted instead of atomic.

You may also want to explore the more flexible :mnesia.activity/2
when you need to mix more kinds of tasks in a transaction.

Your interactions with Mnesia should be contained in transactions, especially when
your database is shared across multiple nodes. The main :mnesia.write, :mne
sia.read, and :mnesia.delete methods work only within transactions, period. There

Storing Records in Mnesia | 149

www.it-ebooks.info

http://www.it-ebooks.info/

are dirty_ methods, but every time you use them, especially to write data to the data‐
base, you’re taking a risk.

Just as in ETS, you can overwrite values by writing a new value with
the same key as a previous entry.

If you want to check on how this function worked out, try the :mnesia.table_info
function, which can tell you more than you want to know. The following listing is ab‐
breviated to focus on key results.

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.setup
{:atomic,:ok}
iex(3)> :mnesia.table_info(PlanemoTable, :all)
[access_mode: :read_write,
 active_replicas: [:"nonode@nohost"],
 all_nodes: [:"nonode@nohost"],
 arity: 5,
 attributes: [:name,:gravity,:diameter,:distance_from_sun],
 ...
 ram_copies: [:"nonode@nohost"],
 record_name: :planemo,
 record_validation: {:planemo,5,:set},
 type: :set,
 size: 14,
 ...]

You can see which nodes are involved in the table (nonode@nohost is the default for the
current node). arity in this case is the count of fields in the record, and attributes
tells you what their names are. ram_copies plus the name of the current node tells you
that this table is stored in memory locally. It is, as in the ETS example, of type set, and
there are 14 records.

By default, Mnesia will store your table in RAM only (ram_copies)
on the current node. This is speedy, but it means the data vanishes if
the node crashes. If you specify disc_copies (note the spelling),
Mnesia will keep a copy of the database on disk, but still use RAM for
speed. You can also specify disc_only_copies, which will be slow.
Unlike ETS, the table you create will still be around if the process that
created it crashes, and will likely survive even a node crash so long as
it wasn’t only in RAM on a single node. By combining these options
and (eventually) multiple nodes, you should be able to create fast and
resilient systems.

150 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

The table is now set up, and you can start to use it. If you’re running the observer, you
can take a look at the contents of your Mnesia tables as well as your ETS tables. Choose
the Table Viewer tab, then, in the View menu, choose Mnesia Tables. The interface is
similar to that for ETS tables.

Reading Data
Just like writes, you should wrap :mnesia.read calls in a fn, which you then pass
to :mnesia.transaction. You can do that in the shell if you want to explore:

iex(5)> :mnesia.transaction(fn()->:mnesia.read(PlanemoTable, :neptune) end)
{:atomic, [{:planemo, :neptune, 11.0, 30200, 4497.1}]}

The result arrives as a tuple, which when successful contains atomic plus a list with the
data from the table. The table data is packaged as a record, and you can get to its fields
easily.

You can rewrite the fall_velocity/2 function from Example 11-8 to use an Mnesia
transaction instead of an ETS call. The ETS version looked like the following:

def fall_velocity(planemo, distance) when distance >= 0 do
 p = hd(:ets.lookup(:planemos, planemo))
 :math.sqrt(2 * Planemo.planemo(p, :gravity) * distance)
end

Line 2 of the Mnesia version is a bit different.

def fall_velocity(planemo, distance) when distance >= 0 do
 {:atomic, [p | _]} = :mnesia.transaction(fn() ->
 :mnesia.read(PlanemoTable, planemo) end)
 :math.sqrt(2 * Planemo.planemo(p, :gravity) * distance)
end

Because Mnesia returns a tuple rather than a list, this uses pattern matching to extract
the first item in the list contained in the second item of the tuple (and throws away the
tail of that list with _). This table is a set, so there will always be only one item there.
Then the data, contained in p, can be used for the same calculation as before.

If you compile and run this, you’ll see a familiar result:

iex(6)> c("drop.ex")
drop.ex:1: warning: redefining module Drop
[Drop]
iex(7)> Drop.fall_velocity(:earth, 20)
19.79898987322333
iex(8)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.115.0>
iex(9)> send(pid1, {:earth, 20})
On earth, a fall of 20 meters yields a velocity of 44.289078952755766 mph.
{:earth, 20}

Storing Records in Mnesia | 151

www.it-ebooks.info

http://www.it-ebooks.info/

For these purposes, the simple :mnesia.read is enough. You can tell Mnesia to build
indexes for fields other than the key, and query those with :mnesia.index_read as well.

If you want to delete records, you can run :mnesia.delete/2, also
inside of a transaction.

152 | Chapter 11: Storing Structured Data

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Getting Started with OTP

At this point, it might seem like you have all you need to create process-oriented projects
with Elixir. You know how to create useful functions, can work with recursion, know
the data structures Elixir offers, and probably most important, know how to create and
manage processes. What more could you need?

Process-oriented programming is great, but the details matter. The basic Elixir tools are
powerful but can also bring you to frustrating mazes debugging race conditions that
happen only once in a while. Mixing different programming styles can lead to incom‐
patible expectations, and code that worked well in one environment may prove harder
to integrate in another.

Ericsson encountered these problems early when developing Erlang (remember, Elixir
runs on Erlang’s virtual machine), and created a set of libraries that eases them. OTP,
the Open Telecom Platform, is useful for pretty much any large-scale project you want
to do with Elixir and Erlang, not just telecom work. It’s included with Erlang, and though
it isn’t precisely part of the language, it is definitely part of Erlang culture. The bound‐
aries of where Elixir and Erlang end and OTP begins aren’t always clear, but the entry‐
point is definitely behaviors. You’ll combine processes built with behaviors and man‐
aged by supervisors into an OTP application.

So far, the lifecycle of the processes shown in the previous chapters has been pretty
simple. If needed, they set up other resources or processes to get started. Once running,
they listen for messages and process them, collapsing if they fail. Some of them might
restart a failed process if needed.

OTP formalizes those activities, and a few more, into a set of behaviors (or behaviours
—this was originally created with British spelling). The most common behaviors are
GenServer (generic server) and Supervisor. Through Erlang, you can use the gen_fsm
(finite state machine) and gen_event behaviors. Elixir provides the Mix build tool for

153

www.it-ebooks.info

http://www.it-ebooks.info/

creating applications so that you can package your OTP code into a single runnable
(and updatable) system.

The behaviors pre-define the mechanisms you’ll use to create and interact with pro‐
cesses, and the compiler will warn you if you’re missing some of them. Your code will
handle the callbacks, specifying how to respond to particular kinds of events, and you
will need to decide upon a structure for your application.

If you’d like a free one-hour video introduction to OTP, though it is
Erlang-centric, see Steve Vinoski’s “Erlang’s Open Telecom Platform
(OTP) Framework” at http://www.infoq.com/presentations/Erlang-
OTP-Behaviors. You probably already know the first half hour or so
of it, but the review is excellent. In a very different style, if you’d like
an explanation of why it’s worth learning OTP and process-oriented
development in general, Francesco Cesarini’s slides at https://
www.erlang-factory.com/upload/presentations/719/francesco-otp.pdf
work even without narration, especially the second half.

Creating Services with gen_server
Much of the work you think of as the core of a program—calculating results, storing
information, and preparing replies—will fit neatly into the GenServer behavior. It pro‐
vides a core set of methods that let you set up a process, respond to requests, end the
process gracefully, and even pass state to a new process if this one needs to be upgraded
in place.

Table 12-1 shows the methods you need to implement in a service that uses GenServ
er. For a simple service, the first two or three are the most important, and you may just
use placeholder code for the rest.

Table 12-1. What calls and gets called in GenServer
Method Triggered by Does

init/1 GenServer.start_link Sets up the process

handle_call/3 GenServer.call Handles synchronous calls

handle_cast/2 GenServer.cast Handles asynchronous calls

handle_info/2 random messages Deals with non-OTP messages

terminate/2 failure or shutdown signal from supervisor Cleans up the process

code_change/3 system libraries for code upgrades Lets you switch out code without losing state

Example 12-1, which you can find in ch12/ex1-drop, shows an example that you can use
to get started. It mixes a simple calculation from way back in Example 2-1 with a counter
like that in Example 9-4.

154 | Chapter 12: Getting Started with OTP

www.it-ebooks.info

http://www.infoq.com/presentations/Erlang-OTP-Behaviors
http://www.infoq.com/presentations/Erlang-OTP-Behaviors
https://www.erlang-factory.com/upload/presentations/719/francesco-otp.pdf
https://www.erlang-factory.com/upload/presentations/719/francesco-otp.pdf
http://www.it-ebooks.info/

Example 12-1. A simple gen_server example
defmodule DropServer do
 use GenServer

 defModule State do
 defstruct count: 0
 end

 # This is a convenience method for startup
 def start_link do
 GenServer.start_link(__MODULE__, [], [{:name, __MODULE__}])
 end

 # These are the callbacks that GenServer.Behaviour will use
 def init([]) do
 {:ok, %State{}}
 end

 def handle_call(request, _from, state) do
 distance = request
 reply = {:ok, fall_velocity(distance)}
 new_state = %State{count: state.count + 1}
 {:reply, reply, new_state}
 end

 def handle_cast(_msg, state) do
 IO.puts("So far, calculated #{state.count} velocities.")
 {:noreply, state}
 end

 def handle_info(_info, state) do
 {:noreply, state}
 end

 def terminate(_reason, _state) do
 {:ok}
 end

 def code_change(_old_version, state, _extra) do
 {:ok, state}
 end

 # internal function
 def fall_velocity(distance) do
 :math.sqrt(2 * 9.8 * distance)
 end

end

The module name (DropServer) should be familiar from past examples. The second
line specifies that the module is going to be using the GenServer module.

Creating Services with gen_server | 155

www.it-ebooks.info

http://www.it-ebooks.info/

The nested defModule declaration should be familiar; it creates a structure that contains
only one field, to keep a count of the number of calls made. Many services will have
more fields, including things like database connections, references to other processes,
perhaps network information, and metadata specific to this particular service. It is also
possible to have services with no state, which would be represented by an empty tuple
here. As you’ll see further down, every single GenServer function will reference the
state.

The State structure declaration is a good example of a declaration
you should make inside of a module and not declare in a separate file.
It is possible that you’ll want to share state models across different
processes that use GenServer, but it’s easier to see what State should
contain if the information is right there.

The first function in the sample, start_link/0, is not one of the required GenServer
functions. Instead, it calls Elixir’s GenServer.start_link function to start up the pro‐
cess. When you’re just getting started, this is useful for testing. As you move toward
production code, you may find it easier to leave these out and use other mechanisms.

The start_link/0 function uses the built-in MODULE declaration, which returns the
name of the current module..

This is a convenience method for startup
def start_link do
 GenServer.start_link(__MODULE__, [], [{:name, __MODULE__}])
end

The first argument is an atom (MODULE) that will be expanded to the name of the current
module, and that will be used as the name for this process. This is followed by a list of
arguments to be passed to the module’s initialization procedure and a list of options.
Options can specify things like debugging, timeouts, and options for spawning the pro‐
cess. By default, the name of the process is registered with just the local Elixir instance.
Because we want it registered with all associated nodes, we have put the tuple {:name,
MODULE} in the options list.

You may also see a form of GenServer.start_link with :via as an
atom in an option tuple. This lets you set up custom process regis‐
tries, of which gproc is the best known. For more on that, see https://
github.com/uwiger/gproc.

All of the remaining functions are part of GenServer’s behavior. init/1 creates a new
state structure instance whose count field is zero—no velocities have yet been calculated.
The two functions that do most of the work here are handle_call/3 and handle_cast/

156 | Chapter 12: Getting Started with OTP

www.it-ebooks.info

https://github.com/uwiger/gproc
https://github.com/uwiger/gproc
http://www.it-ebooks.info/

2. For this demonstration, handle_call/3 expects to receive a distance in meters and
returns a velocity for a fall from that height on earth, while handle_cast/2 is a trigger
to report the number of velocities calculated.

handle_call/3 makes synchronous communications between Erlang processes simple.

def handle_call(request, _from, state) do
 distance = request
 reply = {:ok, fall_velocity(distance)}
 new_state = %State{count: state.count + 1}
 {:reply, reply, new_state}
end

This extracts the distance from the request, which isn’t necessary except that I wanted
to leave the variable names for the function almost the same as they were in the template.
(handle_call(distance, _from, state) would have been fine.) Your request is more
likely to be a tuple or a list rather than a bare value, but this works for simple calls.

The function then creates a reply based on sending that distance to the simple fall_ve
locity/1 function at the end of the module. It then creates a new_state containing an
incremented count. Then the atom :reply, the reply tuple containing the velocity, and
the new_state containing the updated count get passed back.

Because the calculation is really simple, treating the drop as a simple synchronous call
is perfectly acceptable. For more complex situations where you can’t predict how long
a response might take, you may want to considering responding with a :noreply re‐
sponse and using the _from argument to send a response later. (There is also a :stop
response available that will trigger the :terminate/2 method and halt the process.)

By default, OTP will time out any synchronous calls that take longer
than five seconds to calculate. You can override this by making your
call using GenServer.call/3 to specify a timeout (in milliseconds)
explicitly, or by using the atom :infinity.

The handle_cast/2 function supports asynchronous communications. It isn’t supposed
to return anything directly, though it does report :noreply (or :stop) and updated
state. In this case, it takes a very weak approach, but one that does well for a demon‐
stration, calling IO:puts/1 to report on the number of calls:

def handle_cast(_msg, state) do
 IO.puts("So far, calculated #{state.count} velocities.")
 {:noreply, state}
end

The state doesn’t change, because asking for the number of times the process has cal‐
culated a fall velocity is not the same thing as actually calculating a fall velocity.

Creating Services with gen_server | 157

www.it-ebooks.info

http://www.it-ebooks.info/

Until you have good reason to change them, you can leave handle_info/2, terminate/
2, and code_change/3 alone.

Making a GenServer process run and calling it looks a little different than starting the
processes you saw in Chapter 9.

iex(1)> c("drop_server.ex")
[DropServer,DropServer.State]
iex(2)> DropServer.start_link()
{:ok,#PID<0.46.0>}
iex(3)> GenServer.call(DropServer, 20)
{:ok,19.79898987322333}
iex(4)> GenServer.call(DropServer, 40)
{:ok,28.0}
iex(5)> GenServer.call(DropServer, 60)
{:ok,34.292856398964496}
iex(6)> GenServer.cast(DropServer, {})
So far, calculated 3 velocities.
:ok

The call to DropServer.start_link() sets up the process and makes it available. Then,
you’re free to use GenServer.call or GenServer.cast to send it messages and get re‐
sponses.

While you can capture the pid, you don’t have to keep it around to
use the process. Because start_link returns a tuple, if you want to
capture the pid you can do something like {:ok, pid} =

Drop.start_link().

Because of the way OTP calls GenServer functions, there’s an additional bonus—or
perhaps a hazard—in that you can update code on the fly. For example, I tweaked the
fall_velocity/1 function to lighten Earth’s gravity a little, using 9.1 as a constant
instead of 9.8. Recompiling the code and asking for a velocity returns a different answer:

iex(7)> c("drop_server.ex")
drop_server.ex:1: redefining module DropServer
drop_server.ex:4: redefining module DropServer.State
[DropServer,DropServer.State]
iex(8)> GenServer.call(DropServer, 60)
{:ok,33.04542328371661}

This can be very convenient during the development phase, but be careful doing any‐
thing like this on a production machine. OTP has other mechanisms for updating code
on the fly. There is also a built-in limitation to this approach: init gets called only when
start_link sets up the service. It does not get called if you recompiled the code. If your
new code requires any changes to the structure of its state, your code will break the next
time it’s called.

158 | Chapter 12: Getting Started with OTP

www.it-ebooks.info

http://www.it-ebooks.info/

A Simple Supervisor
When you started the DropServer module from the shell, you effectively made the shell
the supervisor for the module—though the shell doesn’t really do any supervision. You
can break the module easily:

iex(9)> GenServer.call(DropServer, -60)

=ERROR REPORT==== 28-Jun-2014::08:17:52 ===
** (EXIT from #PID<0.42.0>) an exception was raised:
 ** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-1176.0)
 drop_server.ex:44: DropServer.fall_velocity/1
 drop_server.ex:20: DropServer.handle_call/3
 (stdlib) gen_server.erl:580: :gen_server.handle_msg/5
 (stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

Interactive Elixir (1.0.0-rc2) - press Ctrl+C to exit (type h() ENTER for help)

08:52:00.459 [error] GenServer DropServer terminating
Last message: -60
State: %DropServer.State{count: 3}
** (exit) an exception was raised:
 ** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-1176.0)
 drop_server.ex:44: DropServer.fall_velocity/1
 drop_server.ex:20: DropServer.handle_call/3
 (stdlib) gen_server.erl:580: :gen_server.handle_msg/5
 (stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

The error message is nicely complete, even telling you the last message and the state,
but when you go to call the service again, you can’t, because the IEx shell has restarted.
You can restart it with DropServer.start_link/0 again, but you’re not always going
to be watching your processes personally.

Instead, you want something that can watch over your processes and make sure they
restart (or not) as appropriate. OTP formalizes the process management you saw in
Example 9-10 with its supervisor behavior.

A basic supervisor needs to support only one callback function, init/1, and can also
have a start_link function to fire it up. The return value of that init/1 function tells
OTP which child processes your supervisor manages and how how you want to handle
their failures. A supervisor for the drop module might look like Example 12-2, which
is in ch12/ex2-drop-sup.

Example 12-2. A simple supervisor
defmodule DropSup do
 use Supervisor

A Simple Supervisor | 159

www.it-ebooks.info

http://www.it-ebooks.info/

 # convenience method for startup

 def start_link do
 Supervisor.start_link(__MODULE__, [], [{:name, __MODULE__}])
 end

 # supervisor callback

 def init([]) do
 child = [worker(DropServer, [], [])]
 supervise(child, [{:strategy, :one_for_one}, {:max_restarts, 1},
 {:max_seconds, 5}])
 end

 # Internal functions (none here)
end

The init/1 function’s job is to specify the process or processes that the supervisor is to
keep track of, and specify how it should handle failure.

The worker/3 function specifies a module that the supervisor should start, its argument
list, and any options to be given to the worker’s start_link function. In this example,
there is only one child process to supervise, and the options are given as list of key/value
tuples.

You can also specify the options as a keyword list, which you would write this
way:

supervise(child, strategy: :one_for_one, max_restarts: 1, max_seconds: 5)

The supervise/2 function takes the list of child processes as its first argument and a
list of options as its second argument.

The :strategy of :one_for_one tells OTP that it should create a new child process
every time a process that is supposed to be :permanent (the default) fails. You can also
go with :one_for_all, which terminates and restarts all of the processes the supervisor
oversees when one fails, or :rest_for_one, which restarts the process and any processes
that began after the failed process had started.

When you’re ready to take more direct control of how your process‐
es respond to their environment, you might explore working with the
dynamic functions Supervisor.start/2, Supervisor.termi

nate_child/2, Supervisor.restart_child/2, and Supervisor.de
lete_child/2, as well as the restart strategy :simple_one_for_one.

160 | Chapter 12: Getting Started with OTP

www.it-ebooks.info

http://www.it-ebooks.info/

The next two values define how often the worker processes can crash before terminating
the supervisor itself. In this case, it’s one restart every five seconds. Customizing these
values lets you handle a variety of conditions but probably won’t affect you much ini‐
tially. (Setting :max_restarts to zero means that the supervisor will just terminate if a
worker has an error.)

The supervise function takes those arguments and creates a data structure that OTP
will use. By default, this is a :permanent service, so the supervisor should always restart
a child when it fails. You can specify a :restart option when defining the worker if you
want to change this to a different value. The supervisor can wait five seconds before
shutting down the worker completely; you can change this with the :shutdown option
when defining the worker. More complex OTP applications can contain trees of super‐
visors managing other supervisors, which themselves manage other supervisors or
workers. To create a child process that is a supervisor, you use the supervisor/3 func‐
tion, whose arguments are the same as those of worker/3.

OTP wants to know the dependencies so that it can help you up‐
grade software in place. It’s all part of the magic of keeping systems
running without ever bringing them to a full stop.

Now that you have a supervisor process, you can set up the drop function by just calling
the supervisor. However, running a supervisor from the shell using the start_link/0
function call creates its own set of problems; the shell is itself a supervisor, and will
terminate processes that report errors. After a long error report, you’ll find that both
your worker and the supervisor have vanished.

In practice this means that you need a way to test supervised OTP processes (that aren’t
yet part of an application) directly from the shell. This method explicitly breaks the
bond between the shell and the supervisor process by catching the pid of the supervisor
(line 2) and then using the Process.unlink/1 function to remove the link (line 3). Then
you can call the process as usual with GenServer.call/2 and get answers. If you get an
error (line 6), it’ll be okay. The supervisor will restart the worker, and you can make
new calls successfully. The calls to Process.whereis(DropServer) on lines 4 and 7
demonstrate that the supervisor has restarted DropServer with a new pid.

iex(1)> c("drop_sup.ex")
[DropSup]
iex(2)> {:ok, pid} = DropSup.start_link()
{:ok,#PID<0.44.0>}
iex(3)> Process.unlink(pid)
true
iex(4)> Process.whereis(DropServer)
#PID<0.45.0>

A Simple Supervisor | 161

www.it-ebooks.info

http://www.it-ebooks.info/

iex(5)> GenServer.call(DropServer,60)
{:ok,34.292856398964496}
iex(6)> GenServer.call(DropServer, -60)

** (exit) exited in: GenServer.call(DropServer, -60, 5000)
 ** (EXIT) an exception was raised:
 ** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-1176.0)
 drop_server.ex:44: DropServer.fall_velocity/1
 drop_server.ex:20: DropServer.handle_call/3
 (stdlib) gen_server.erl:580: :gen_server.handle_msg/5
 (stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

08:59:56.886 [error] GenServer DropServer terminating
Last message: -60
State: %DropServer.State{count: 1}
** (exit) an exception was raised:
 ** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-1176.0)
 drop_server.ex:44: DropServer.fall_velocity/1
 drop_server.ex:20: DropServer.handle_call/3
 (stdlib) gen_server.erl:580: :gen_server.handle_msg/5
 (stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3
 (elixir) lib/gen_server.ex:356: GenServer.call/3

iex(6)> GenServer.call(DropServer, 60)
{:ok,34.292856398964496}
iex(7)> Process.whereis(DropServer)
#PID<0.46.0>

You can also open the Process Manager in Observer and whack away
at worker processes through the Kill option on the Trace menu and
watch them reappear.

This works, but it is only the tiniest taste of what supervisors can do. They can create
child processes dynamically and manage their lifecycle in greater detail.

Packaging an Application with Mix
Elixir’s Mix tool “provides tasks for creating, compiling, testing (and soon deploying)
Elixir projects.” In this section, you will use Mix to create an application for the drop
supervisor and server that you have written.

Create a directory to hold your application, type mix new name, as in the following
example:

162 | Chapter 12: Getting Started with OTP

www.it-ebooks.info

http://bit.ly/1nowlsL
http://www.it-ebooks.info/

$ mix new drop_app
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/drop_app.ex
* creating test
* creating test/test_helper.exs
* creating test/drop_app_test.exs

Your mix project was created successfully.
You can use mix to compile it, test it, and more:

 cd drop_app
 mix test

Run `mix help` for more commands.

Make sure that the Elixir executable is in your $PATH variable so that
Mix can find it.

Mix creates a set of files and directories for you. Change directory to the drop_app
directory that Mix created. Then open up the mix.exs file in your favorite text editor.

defmodule DropApp.Mixfile do
 use Mix.Project

 def project do
 [app: :drop_app,
 version: "0.0.1",
 elixir: "~> 1.0.0-rc2",
 deps: deps]
 end

 # Configuration for the OTP application
 #
 # Type `mix help compile.app` for more information
 def application do
 [applications: [:logger]]
 end

 # Dependencies can be Hex packages:
 #
 # {:mydep, "~> 0.3.0"}
 #
 # Or git/path repositories:

Packaging an Application with Mix | 163

www.it-ebooks.info

http://www.it-ebooks.info/

 #
 # {:mydep, git: "https://github.com/elixir-lang/mydep.git", tag: "0.1.0"}
 #
 # Type `mix help deps` for more examples and options
 defp deps do
 []
 end
end

The project/0 function lets you name your application, give it a version number, and
specify the dependencies for building the project.

The dependencies are returned by the deps/0 function. The commented example says
that you need to have the mydep project version 0.3.0 or higher, and it is available via
git at the specified URL. In addition to git:, you may specify the location of a de‐
pendency as a local file (path:)

In this example, the application doesn’t have any dependencies, so you may leave ev‐
erything exactly as it is.

If you type the command mix compile, Mix will compile your empty project. If you
look in your directory, you will see that Mix has created an _build directory for the
compiled code.

$ mix compile
Compiled lib/drop_app.ex
Generated drop_app.app
$ ls
_build config lib mix.exs README.md test

An empty application isn’t very exciting, so copy the drop_server.ex and drop_sup.ex
files that you wrote into the lib folder. Then start iex -S mix. Mix will compile the
new files, and you can start using the server straightaway.

$ iex -S mix
Erlang/OTP 17 [erts-6.0] [source] [64-bit] [smp:2:2] [async-threads:10] [hipe] [kernel-poll:false]

Compiled lib/drop_sup.ex
Compiled lib/drop_server.ex
Generated drop_app.app
Interactive Elixir (1.0.0-rc2) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> {:ok, pid} = DropServer.start_link()
{:ok,#PID<0.60.0>}

The last steps you need to do are to write the application code itself and then tell Mix
where everything is.

Inside mix.exs, change the application/0 function to look like this:

 def application do
 [applications: [:logger],
 registered: [:drop_app],

164 | Chapter 12: Getting Started with OTP

www.it-ebooks.info

http://www.it-ebooks.info/

 mod: {DropApp, []}]
 end

The :registered key is a list of all the names that your application registers (in this
case, just :drop_app), and :mod is a tuple that gives the name of the module to be run
when the application starts up and a list of any arguments to be passed to that mod‐
ule. :applications lists any applications that your application depends on at runtime.

Here is the code that we have added to the DropApp Module, which is in a file named
drop_app.ex in the ch12/ex3-drop-app/drop_app/lib directory.

defmodule DropApp do
 use Application

 def start(_type, _args) do
 IO.puts("Starting the app...") # show that app is really starting.
 DropSup.start_link()
 end
end

The start/2 function is required. The first argument tells how you want the virtual
machine that Elixir runs on to handle application crashes. The second argument gives
the arguments that you defined in the :mod key. The start/2 function should return a
tuple of the form {:ok, pid}, which is exactly what DropSup.start_link/0 does.

If you type mix compile at the command prompt, Mix will generate a file
_build/dev/lib/drop_app/ebin/drop_app.app. (If you look at that file, you will see an
Erlang tuple that contains much of the information gleaned from the files you have
already created.) You may then run the application from the command line.

$ elixir -pa _build/dev/lib/drop_app/ebin --app drop_app
Starting the app...

There is much, much more to learn. OTP deserves a book or several all on its own.
Hopefully this chapter provides you with enough information to try some things out
and understand those books. However, the gap between what this chapter can reason‐
ably present and what you need to know to write solid OTP-based programs is, to say
the least, vast.

Packaging an Application with Mix | 165

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Using Macros to Extend Elixir

You have now learned enough Elixir to write interesting and fairly powerful programs.
Sometimes, though, you need to extend the language itself in order to make your code
easier to read or to implement some new functionality. Elixir’s macro feature lets you
do this.

Functions versus Macros
On the surface, macros look a lot like functions, except that they begin with defmacro
instead of def. However, macros work very differently than functions. The best way to
explain the difference is to show you Example 13-1, which is in directory ch13/ex1-
difference.

Example 13-1. Showing the difference between function and macro calls
defmodule Difference do

 defmacro m_test(x) do
 IO.puts("#{inspect(x)}")
 x
 end

 def f_test(x) do
 IO.puts("#{inspect(x)}")
 x
 end

end

In order to use a macro, you must require the module that it’s in. Type the following
in the shell:

iex(1)> c("difference.ex")
[Difference]

167

www.it-ebooks.info

http://www.it-ebooks.info/

iex(2)> require Difference
[]
iex(3)> Difference.f_test(1 + 3)
4
4
iex(4)> Difference.m_test(1 + 3)
{:+,[line: 4],[1,3]}
4

Line 3 gives you exactly what you’d expect—Elixir evaluates 1 + 3 and passes it on to
the f_test function, which prints the number 4 and returns the number 4 as its result.

Line 4 may be something of a surprise. Instead of an evaluated expression, the argument
is a tuple that is the internal representation of the code before it is executed. The macro
returns the tuple (in Elixir terms, the macro has been expanded) and then that tuple is
passed on to Elixir to be evaluated.

The first item in the tuple is the operator, the second item is a list of
metadata about the operation, and the third item is a list of the
operands.

A Simple Macro
Because defmacro gets the code before Elixir has had a chance to evaluate it, a macro
has the power to transform the code before sending it on to Elixir for evaluation.
Example 13-2 is a macro that creates code to double whatever its argument is. (This is
something that could much more easily be accomplished with a function, but I need to
start with something easy.) It works by manually creating the tuple that Elixir will rec‐
ognize as a multiplication operation. You can find it in ch13/ex2-double.

Example 13-2. A manually-created macro
defmodule Double do

 defmacro double x do
 {:*, [], [2, x]}
 end

end

iex(1)> c("double.ex")
[Double]
iex(2)> require Double
[]
iex(3)> Double.double(3)
6

168 | Chapter 13: Using Macros to Extend Elixir

www.it-ebooks.info

http://www.it-ebooks.info/

iex(4)> Double.double(3 * 7)
42

That works, but there must be an easier way. It would be nice if you could say, “turn this
Elixir code into internal format” so that Elixir creates the tuples for you. In fact, you can
do this by using quote, which takes any Elixir expression and converts it to internal
format:

iex(5)> quote do: 1 + 3
{:+,[import: Kernel],[1,3]}
iex(6)> x = 20
20
iex(7)> quote do: 3 * x + 20
{:+,[import: Kernel],[{:*,[import: Kernel],[3,{:x,[],Elixir}]},20]}

As you see, quote takes normal Elixir code and converts it to the internal format that
macros accept as input and return as their expanded result. You might be tempted to
rewrite the macro from the previous example as follows:

defmodule Double do

 defmacro double(x) do
 quote do: 2 * x
 end

end

If you try this code, it won’t work. The reason is that you are saying, “turn 2 * x into
its tuple form,” but x already is in tuple form, and you need a way to tell Elixir to leave
it alone. Example 13-3 uses the unquote/1 function do exactly that. (You may find this
example in ch13/ex3-double.)

Example 13-3. Using quote to create a macro
defmodule Double do

 defmacro double(x) do
 quote do
 2 * unquote(x)
 end
 end

end

This says, “turn 2 * x into internal form, but don’t bother converting x; it doesn’t need
quoting”:

iex(8)> c("double.ex")
double.ex:1: redefining module Double
[Double]
iex(9)> require Double
[]

A Simple Macro | 169

www.it-ebooks.info

http://www.it-ebooks.info/

iex(10)> Double.double(3 * 5)
30

To summarize: quote means “Turn everything in the do block into internal tuple for‐
mat”; unquote means “Do not turn this into internal format.” (The terms quote and
unquote come from the Lisp programming language.)

If you quote an atom, number, list, string, or a tuple with two ele‐
ments, you will get back the same item and not an internal format
tuple.

The most common mistake people make when writing macros is to
forget to unquote arguments. Remember that all of a macro’s argu‐
ments are already in internal format.

Creating New Logic
Macros also let you add new commands to the language. For example, if Elixir didn’t
already have an unless construct (which works as the opposite of if), you could add it
to the language by writing the macro shown in Example 13-4, which is in ch13/ex4-
unless.

Example 13-4. Creating a macro to implement the unless construct
defmodule Logic do

 defmacro unless(condition, options) do
 quote do
 if(!unquote(condition), unquote(options))
 end
 end

end

This macro takes a condition and options (in their internal form) and expands them
to the internal code for an equivalent if statement with a reversed test for the condition.
As in the previous example, the condition and options must remain in an unquote
state, as they are already in internal form. You can test it in the shell:

iex(4)> c("logic.ex")
[Logic]
iex(6)> require(Logic)
nil
iex(7)> Logic.unless (4 == 5) do

170 | Chapter 13: Using Macros to Extend Elixir

www.it-ebooks.info

http://www.it-ebooks.info/

...(7)> IO.puts("arithmetic still works")

...(7)> end
arithmetic still works
:ok

Creating Functions Programatically
Everything in Elixir has an internal representation, even functions. This means that a
macro can take data as input and output a customized function as its result.

Example 13-5 is a simple macro create_multiplier that takes an atom and a multi‐
plication factor as its input. It produces a function whose name is the atom you gave,
and that function will multiply its input by the factor.

Example 13-5. Using a macro to programmatically create a function
defmodule FunctionMaker do
 defmacro create_multiplier(function_name, factor) do
 quote do
 def unquote(function_name)(value) do
 unquote(factor) * value
 end
 end
 end
end

You now need another module to invoke the macro.

defmodule Multiply do
 require FunctionMaker

 FunctionMaker.create_multiplier(:double, 2)
 FunctionMaker.create_multiplier(:triple, 3)

 def example do
 x = triple(12)
 IO.puts("Twelve times 3 is #{x}")
 end

end

Once this is done, you can use the programmatically created functions:

iex(1)> c("function_maker.ex")
[FunctionMaker]
iex(2)> c("multiply.ex")
[Multiply]
iex(3)> Multiply.double(21)
42
iex(4)> Multiply.triple(54)
162
iex(5)> Multiply.example()

Creating Functions Programatically | 171

www.it-ebooks.info

http://www.it-ebooks.info/

Twelve times 3 is 36
:ok

The entire example is in ch13/ex5-programmatic.

You can’t define a function programmatically outside of a module or
inside of a function.

You can even write a single macro that creates many different functions.If, for example,
you wanted to have a separate drop/1 function for each planemo, you could have a
macro that takes a list of planemos with their gravity constants and creates those func‐
tions. Example 13-6 will create functions mercury_drop/1, venus_drop/1, etc. from a
keyword list. The entire example is in ch13/ex7-multidrop.

Example 13-6. Creating multiple functions with a macro
defmodule Functionmaker do
 defmacro create_functions(planemo_list) do
 Enum.map planemo_list, fn {name, gravity} ->
 quote do
 def unquote(:"#{name}_drop")(distance) do
 :math.sqrt(2 * unquote(gravity) * distance)
 end
 end
 end
 end
end

Again, you need another module to invoke the macro:

defmodule Drop do
 require FunctionMaker

 FunctionMaker.create_functions([{:mercury, 3.7}, {:venus, 8.9},
 {:earth, 9.8}, {:moon, 1.6}, {:mars, 3.7},
 {:jupiter, 23.1}, {:saturn, 9.0}, {:uranus, 8.7},
 {:neptune, 11.0}, {:pluto, 0.6}])

end

Once compiled, the 10 new functions are available to you:

iex(1)> c("function_maker.ex")
[FunctionMaker]
iex(2)> c("drop.ex")
[Drop]
iex(3)> Drop.earth_drop(20)
19.79898987322333

172 | Chapter 13: Using Macros to Extend Elixir

www.it-ebooks.info

http://www.it-ebooks.info/

iex(4)> Drop.moon_drop(20)
8.0

The entire example is in ch13/ex6-multidrop.

When (Not) to Use Macros
What you have seen so far are good examples of sample programs. Everything in this
chapter could have been done more easily with simple Elixir functions. While you’re
learning about Elixir, go wild and experiment with macros as much as you like. When
you start writing programs for general use and are tempted to write a macro, first ask,
“Could I do this with a function?” If the answer is “Yes” (and it will be, most of the time),
then stick with functions. Use macros only when it will make the lives of people who
use your code easier.

Why, then, has this chapter made such a big tzimmes about macros, if you aren’t en‐
couraged to use them? First, Elixir itself uses macros extensively. For example, when
you define a record, Elixir programatically generates the functions that let you access
that record’s fields. Even def and defmodule are macros!

More important, when you read other people’s code, you may find that they have used
macros, and the information from this chapter will help you understand what they’ve
written. (It’s sort of like learning a foreign language; there are phrases you may never
have to say yourself, but you want to be able to understand them when someone says
them to you.)

Sharing the Gospel of Elixir
While this concludes your introduction to Elixir, be aware that Elixir is a young language
with a growing ecosystem, and there are many more features available for you to learn.

It may seem easy to argue for Elixir. The broad shift from single computers to networked
and distributed systems of multiprocessor-based computing gives the Elixir/Erlang en‐
vironment a tremendous advantage over practically every other environment out there.
More and more of the computing world is starting to face exactly the challenges that
Elixir and Erlang were built to address. Veterans of those challenges may find themselves
breathing a sigh of relief because they can stop pondering toolsets that tried too hard
to carry single-system approaches into a multisystem world.

At the same time, though, I’d encourage you to consider a bit of wisdom from Joe
Armstrong: “New technologies have their best chance a) immediately after a disaster or
b) at the start of a new project.”

While it is possible you’re reading this because a project you’re working on has had a
disaster (or you suspect it will have one soon), it’s easiest to apply Elixir to new projects,
preferably projects where the inevitable beginner’s mistakes won’t create new disasters.

When (Not) to Use Macros | 173

www.it-ebooks.info

http://bit.ly/erlang-ques
http://bit.ly/erlang-ques
http://www.it-ebooks.info/

Find projects that look like fun to you and that you can share within your organization
or with the world. There’s no better way to show off the power of a programming lan‐
guage and environment than to build great things with it!

174 | Chapter 13: Using Macros to Extend Elixir

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

An Elixir Parts Catalog

Like every language, Elixir has drawers full of parts that are fun to peruse, and there are
many more available through Erlang.

These are a few of the more common ones, all represented using Elixir calling conven‐
tions. If you want much much more, see the erlang documents.

Shell Commands
You can use most Elixir functions from the shell, but the commands shown in Table A-1
are ones that are exclusive to the shell.

Table A-1. Elixir shell commands
Command Action

c(file) Compiles the specified Erlang file.

c(file,path) Compiles the specified file and puts object code in the directory specified by path.

ls() Lists files at the current location.

ls(path) Lists files at the specified path.

cd(Directory) Changes to the specified Directory.

pwd() Gets the present working directory.

clear() Clears the screen.

h() Prints list of available helpers.

h(item) Prints help for the specified item.

l(Module) Loads given Module’s code, purging the current version.

m() Lists all loaded modules.

r(Module) Recompiles and reloads the given Module’s source file.

v() Prints a list of all commands and returned values for this session.

175

www.it-ebooks.info

http://bit.ly/erlang-docs
http://www.it-ebooks.info/

Command Action

v(n) Retrieves +n+th output value from shell session.

flush() Flushes all messages sent to the shell.

Reserved Words
There are a few Elixir terms you can’t use outside of their intended context.

The Elixir compiler will wonder what you’re trying to do if you use certain keywords as
function names (see a list of these words in Table A-2. It will try to treat your functions
as if they were code, and you can get very strange errors. After all, you should be able
to have something called inlist, right?

Table A-2. Reserved words that require careful use
after and catch do else end false fn in

inbits inlist nil not or rescue true when xor

The answer is simple: use something else.

While the following aren’t reserved words, there are also a few atoms commonly used
in return values. It’s probably best to use them only in the circumstances where they’re
normally expected.

Table A-3. Commonly used return-value atoms
Atom Means

:ok Normal exit to a method. (Does not mean that whatever you asked for succeeded.)

:error Something went wrong. Typically accompanied by a larger explanation.

:undefined A value hasn’t been assigned yet. Common in record instances.

:reply A reply is included with some kind of return value.

:noreply No return value is included. A response of some sort may come, however, from other communication.

:stop Used in OTP to signal that a server should stop, and triggers the terminate function.

:ignore Returned by OTP supervisor process that can’t start a child.

Operators
Table A-4. Logical (Boolean) operators

Operator Operator Description

and && Logical and

or || Logical or

not ! Unary logical not

xor (No equivalent) Logical xor

176 | Appendix A: An Elixir Parts Catalog

www.it-ebooks.info

http://www.it-ebooks.info/

The logical not operator has the highest precedence. and, &&, or, and || are short-circuit
operators. If they don’t need to process all the possibilities in their arguments, they stop
at the first one that gives them a definite answer.

Operators in the first column require their argument(s) to be Boolean. Operators in the
second column will accept any expression, with any value that is not false or nil treated
as true. Because of short-circuiting, the && and || operators will return whichever value
“decided” the ultimate true or false value. For example, nil || 5 returns 5, and nil &&
5 returns nil.

Table A-5. Term-comparison operators
Operator Description

== Equal to

!= Not equal to

<= Less than or equal to

< Less than

>= Greater than or equal to

> Greater than

=== Exactly equal to

!== Exactly not equal to

You can compare elements of different types in Elixir. The relationship of types from
“least” to “greatest” is:

number < atom < reference < fn < port < pid < tuple < list < bit string

Within number, you can compare integers and floats except with the more specific ===
and !== operators, both of which will return false when you compare numbers of
different types.

You can also compare tuples even when they contain different numbers of values. Elixir
will go through the tuples from left to right and evaluate on the first value that returns
a clear answer.

Table A-6. Arithmetic operators
Operator Description

+ Unary + (positive)

- Unary - (negative)

+ Addition

- Subtraction

* Multiplication

/ Floating-point division

Operators | 177

www.it-ebooks.info

http://www.it-ebooks.info/

To calculate integer division and integer remainder, use the div and rem functions. Thus,
div(17, 3) yields 5, and rem(17, 3) yields 2.

Table A-7. Binary operators
Function Operator Description

bnot ~ Unary bitwise not

band &&& Bitwise and

bor ||| Bitwise or

bxor ^ Arithmetic bitwise xor

bsl <<< Arithmetic bitshift left

bsr >>> Bitshift right

If you wish to use these operators and functions, your code must use Bitwise.

Table A-8. Operator precedence, from highest to lowest
Operator Associativity

Unary + - ! ^ not ~~~ Not associative

=~ |> /> Right

++ -- ** Right

<> Right

* / Left

+ - Left

&&& ||| Left

.. Left

in Left

< > <= >= == === != !== Left

and Left

or Left

&& Left

|| Left

<- Right

= Right

inlist inbits Left

| Right

// Right

when Right

:: Right

, Left

178 | Appendix A: An Elixir Parts Catalog

www.it-ebooks.info

http://www.it-ebooks.info/

Operator Associativity

-> Right

do Left

@ Not associative

The highest priority operator in an expression is evaluated first. Elixir evaluates oper‐
ators with the same priority by following associative paths. (Left associative operators
go left to right, and right associative operators go right to left.)

Guard Components
Elixir allows only a limited subset of functions and other features in guard expressions,
going well beyond a “no side effects” rule to keep a simple subset of possibilities. The
list of allowed components includes the following:

• true

• Other constants (regarded as false)
• Term comparisons (Table A-5)
• Arithmetic expressions (Table A-6 and Table A-7)
• Boolean expressions and these logical operators: and and or
• The following functions: hd/1, is_atom/1, is_binary/1, is_bitstring/1,
is_boolean/1, is_float/1, is_function/1, is_function/2, is_integer/1,
is_list/1, is_number/1, is_pid/1, is_port/1, is_record/1, is_record/2,
is_reference/1, is_term/2, is_tuple/1

Common Functions
Table A-9. Mathematical functions

Function Use

:math.pi/0 The constant pi

:math.sin/1 Sine

:math.cos/1 Cosine

:math.tan/1 Tangent

:math.asin/1 Inverse sine (arcsine)

:math.acos/1 Inverse cosine (arcosine)

:math.atan/1 Inverse tangent (arctangent)

:math.atan2/2 Arctangent that understands quadrants

Guard Components | 179

www.it-ebooks.info

http://www.it-ebooks.info/

Function Use

:math.sinh/1 Hyperbolic sine

:math.cosh/1 Hyperbolic cosine

:math.tanh/1 Hyperbolic tangent

:math.asinh/1 Hyperbolic arcsine

:math.acosh/1 Hyperbolic arccosine

:math.atanh/1 Hyperbolic arctangent

:math.exp/1 Exponential function

:math.log/1 Natural logarithm (base e)

:math.log10/1 Logarithm (base 10)

:math.pow/2 First argument to the second argument power

:math.sqrt/1 Square root

:math.erf/1 Error function

:math.erfc/1 Complementary error function

Arguments for all trigonometric functions are expressed in radians. To convert degrees
to radians, divide by 180 and multiply by pi.

The erf/1 and erfc/1 functions may not be implemented in Win‐
dows. The Erlang documentation also warns more broadly that “Not
all functions are implemented on all platforms,” but these come
directly from the C-language libraries.

Table A-10. Approachable higher-order functions for processing collections and lists
Function Returns Use

Enum.each/2 ok Side effects specified in function

Enum.map/2 New list Apply function to list values

Enum.filter/2 Subset Creating list where function returns true

Enum:all?/2 Boolean Returns true if function true for all values, otherwise false

Enum.any?/2 Boolean Returns true if function true for any values, otherwise false

Enum.take_while/2 Subset Collects the head of the list until the function is true

Enum.drop_while/2 Subset Deletes the head of the list until the function is true

List.foldl/3 Accumulator Passes function list value and accumulator, forward through list

List.foldr/3 Accumulator Passes function list value and accumulator, backward through list

Enum.partition/2 Tuple of two lists Split list based on function

Chapter 8 describes these in greater detail.

180 | Appendix A: An Elixir Parts Catalog

www.it-ebooks.info

http://www.it-ebooks.info/

Table A-11. Escape sequences for strings
Sequence Produces

\" Double quote

\' Single quote

\\ Backslash

\b Backspace

\d Delete

\e Escape

\f Form feed

\n Newline

\r Carriage return

\s Space

\t Tab

\v Vertical tab

\xXY Character in hex

\x{X…} Characters in hex, where X… is one or more hexadecimal characters

^a…^z or ^A…\^Z Control-A to control-Z

Table A-12. String sigils
Sigil Meaning

%c %C Returns a list of characters

%r %R Returns a regular expression

%s %S Returns a binary string

%w %W Returns a list of words

Sigils created with lowercase letters will use escaping and interpolation as usual; those
created with uppercase letters will be created exactly as written, with no escaping or
interpolation.

Common Functions | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Datatypes for Documentation and Analysis
Table A-13. Basic datatypes for @spec and ExDoc
atom() binary() float() fun() integer() list() tuple()

union() node() number() String.t() char() byte() [] (nil)

any() none() pid() port() reference()

The type String.t() is used for Elixir binaries; the type string() is used for Erlang’s
strings stored as a list of characters. For more, see the user manual.

182 | Appendix A: An Elixir Parts Catalog

www.it-ebooks.info

http://bit.ly/types-functs
http://www.it-ebooks.info/

APPENDIX B

Generating Documentation with ExDoc

In Chapter 2, you learned how to add documentation to your programs. The ExDoc
tool takes that documentation and produces nicely formatted reference documentation
in web page format. ExDoc works in conjunction with Mix, a tool for creating, compil‐
ing, and testing projects.You can find out more about Mix in Chapter 12.

Using ExDoc with mix
The easiest way to create documentation is to create a project using the mix tool, using
a command of the form:

mix new _project_name_

Here is what it looks like when creating the documentation for the code in Example 2-4.

$ mix new combined
* creating README.md
* creating .gitignore
* creating mix.exs
* creating lib
* creating lib/combined.ex
* creating test
* creating test/test_helper.exs
* creating test/combined_test.exs

Your mix project was created successfully.
You can use mix to compile it, test it, and more:

 cd combined
 mix test

Run `mix help` for more commands.

183

www.it-ebooks.info

http://www.it-ebooks.info/

Change to the combined directory and put all of your source files (for this example,
combined.ex, drop.ex, and convert.ex) into the lib directory. The combined.ex file you
have written before will replace the one in that mix created for you in the lib directory.

Now edit the file mix.exs so that the deps function reads as follows:

def deps do
 [{:ex_doc, github: "elixir-lang/ex_doc}]
end

Typing mix deps.get will install ExDoc in a directory named deps. You can now com‐
pile all the Elixir files at one go using mix:

$ mix compile
==> ex_doc
Compiled lib/ex_doc/cli.ex
Compiled lib/ex_doc.ex
Compiled lib/ex_doc/markdown.ex
Compiled lib/ex_doc/markdown/hoedown.ex
Compiled lib/ex_doc/markdown/pandoc.ex
Compiled lib/mix/tasks/docs.ex
Compiled lib/ex_doc/retriever.ex
Compiled lib/ex_doc/formatter/html/autolink.ex
Compiled lib/ex_doc/formatter/html.ex
Compiled lib/ex_doc/formatter/html/templates.ex
Generated ex_doc.app
==> combined
Compiled lib/convert.ex
Compiled lib/drop.ex
Compiled lib/combined.ex
Generated combined.app

You can then generate the documentation with mix docs. If you have a markdown
processor installed, it should all be smooth sailing. If you don’t have markdown installed
(I didn’t have it on my Linux system) you might get an error message like this:

** (RuntimeError) Could not find a markdown processor to be used on ex_doc.
You can either:

1. Add {:markdown, github: "devinus/markdown"} to your mix.exs deps
2. Ensure pandoc (http://johnmacfarlane.net/pandoc) is available in your system

In my case, the first option seemed simpler, so I changed function deps in mix.exs to:

defp deps do
 [{:ex_doc, github: "elixir-lang/ex_doc"},
 {:markdown, github: "devinus/markdown"}]
end

I then did another mix deps.get:

* Getting markdown (git://github.com/devinus/markdown.git)
Cloning into '/Users/code/ex6-docs/combined/deps/markdown'...

184 | Appendix B: Generating Documentation with ExDoc

www.it-ebooks.info

http://www.it-ebooks.info/

remote: Reusing existing pack: 83, done.
remote: Total 83 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (83/83), 12.52 KiB | 0 bytes/s, done.
Resolving deltas: 100% (34/34), done.
Checking connectivity... done.
* Getting hoedown (git://github.com/hoedown/hoedown.git)
Cloning into '/Users/code/ex6-docs/combined/deps/hoedown'...
remote: Counting objects: 1869, done.
remote: Compressing objects: 100% (805/805), done.
remote: Total 1869 (delta 1050), reused 1869 (delta 1050)
Receiving objects: 100% (1869/1869), 504.60 KiB | 481.00 KiB/s, done.
Resolving deltas: 100% (1050/1050), done.
Checking connectivity... done.

Then I re-did the mix docs, which caused the markdown processor to be compiled with
the C compiler, recompiled the Elixir files, and finally created the documents. The fol‐
lowing is the output without the compiler messages:

Compiled lib/markdown.ex
Generated markdown.app
==> combined
Compiled lib/convert.ex
Compiled lib/combined.ex
Compiled lib/drop.ex
Generated combined.app
%{green}Docs successfully generated.
%{green}View them at "docs/index.html".

Sure enough, listing the directory will now show a docs directory that contains an
index.html file. The result will look like Figure B-1.

Using ExDoc with mix | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Figure B-1. Example of web page produced by ExDoc

186 | Appendix B: Generating Documentation with ExDoc

www.it-ebooks.info

http://www.it-ebooks.info/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
#{} interpolation, 52
& argument notation, 88
& capture operator, 13
++ list concatentation operator, 62
. record value extraction, 133
.exs, 15
<> operator, 52
== equality operator, 53
=== strict equality operator, 53
@doc, 22
@moduledoc, 23
@spec, 23
| list constructor operator, 63, 66

A
after clause in rescue, 122
ampersand notation, 88
arguments, 11

ampersand notation, 88
default values, 20
non-essential, 31

arithmetic operators, 4, 177
arity, 16
assert, 127
assert_in_delta, 128
assert_raise, 129

atoms, 25
boolean, 27
pattern matching with, 26

B
bag collection (ETS), 137
BEAM (Bogdan’s Erlang Abstract Machine), 16
behaviours, 153

GenServer, 153
state, 156
Supervisor, 153, 159

binary operators, 178
binding to variables

case, cond, if constructs, with, 42
binding variables, 8
Bogdan’s Erlang Abstract Machine (see BEAM)
boolean operators, 177
booleans, 27

C
c character list sigil, 55
call (GenServer), 157
callbacks in GenServer, 156
capture operator, 13, 16
caret, 27
case construct, 37

with guards, 39
return value, 38

187

www.it-ebooks.info

http://www.it-ebooks.info/

cast (GenServer), 158
character lists, 54

conversion to strings, 55
clause, 26

no matching, 29
vs. pattern matching, 30

closures, 88
collections in Mnesia, 147
commands, shell, 175
comments, one-line, 21
comparison operators, 177
compiling Elixir code, 14
compiling Mix project, 164
components of tuples, referencing, 35
concatenation of lists, 62
concatenation operator <>, 52
cond construct, 40
constructor operator, lists, 63, 66
create_schema (Mnesia), 146
creating application in Mix, 162
creating new records, 133

D
datatypes, documentation, 182
def, 14
default values for arguments, 20
defining modules, 13
defmacro, 167
defmodule, 14
defp, 18, 35
defrecord, 132
defstruct, 79
deleting records (Mnesia), 150
dependencies in Mix, 164
directories in IEx, 3

change directory, 4
display current, 3
list contents, 4

documentation, 183
creating with ExDoc, 24
generating with mix docs, 184

documentation datatypes, 182
documenting

functions with @doc, 22
modules with @moduledoc, 23

dot synatx for records, 133
duplicate bag collection (ETS), 137

E
Elixir, 1

installing, 2
reserved words, 176

else construct, 41
Enum.all?, 92
Enum.any?, 92
Enum.concat, 62
Enum.drop_while, 93
Enum.each, 90
Enum.filter, 91
Enum.map, 90
Enum.partition, 93
Enum.reverse, 64, 67
Enum.take_while, 93
equality operator ==, 53
Erlang, 1

BEAM processor, 16
installing, 1
math module, 5
runtime, 16

Erlang Term Storage (see ETS)
errors, 119–123

catching with try..rescue, 120
logging, 122
logic, 119
runtime, 119

escape sequences for strings, 51, 180
ETS (Erlang Term Storage), 136–145

bag collection, 137
convert table to list, 141
creating tables, 138
duplicate bag collection, 137
info, 139
inserting values, 140
keypos, 138
lookup, 142
named table, 138
ordered set collection, 137
overwriting values, 143
set collection, 137

ExDoc, 24, 183
dependencies in Mix, 184
using with Mix, 183

expansion of macros, 168
exs files, 16, 127

in Mix, 163
extending Elixir with macros, 170
ExUnit, 126

188 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

F
filtering lists, 91
floats, 6
fn, 11
folding lists, 94
functions, 5, 11

as arguments, 87
assigning to variable, 88
binding to variables, 11
clause, 26
creating with macros, 171–173
default values for arguments, 20
defined with fn, 11
defining with def, 14
documenting with @doc, 22
higher-order, 87, 180
importing, 19
in multiple modules, 17
mathematical, 179
non-essential arguments, 31
preserving context, 88
private with defp, 18, 35
private with recursion, 47
referring to via &, 16
specifications with @spec, 23
watching calls, 125

G
GenServer, 154–158

call, 157
callbacks, 156
cast, 158
creating services, 154
reply, 157
request, 157
start_link, 156

GenServer behaviour, 153
guards, 28–31

with case statement, 39
components allowed in, 179
evaluation of, 28
multiple comparisons, 31
side effects in, 44

H
h (IEx help), 2
handle_call, 156

handle_cast, 156
hash dictionary, 76

create, 76
HashDict, 76
HashDict.delete, 77
HashDict.new, 76
HashDict.put, 77
HashDict.put_new, 77
head of list, 63
heredocs, 53
hexadecimal, 7
higher-order functions, 87, 180

I
IEx (Interactive Elixir), 1

change directory, 4
current directory, 3
help, 2
list directory contents, 4
navigating, 3
previous results, 5
starting, 2
stopping, 2

if construct, 41
import, 19
improper lists, 66
info (ETS), 139
init (Supervisor), 159
inserting values (ETS), 140
integers, 6
Interactive Elixir (see IEx)
intercommunicating processes, 105
interpolation operator \#{}, 52
IO.getn, 56
IO.gets, 58
IO.inspect, 44
IO.puts, 43
IO.write, 44

K
keypos (ETS), 138
keyword list, 73

delete entry, 74
new entry, 74
retrieval, 74, 74
update, 74

Keyword.delete, 74
Keyword.delete_first, 74

Index | 189

www.it-ebooks.info

http://www.it-ebooks.info/

Keyword.get, 74
Keyword.has_key?, 74
Keyword.put, 74
Keyword.put_new, 74

L
linking processes, 110–116
list comprehensions, 91
List.flatten, 62
List.foldl, 94
List.foldr, 94
List.key… functions, 75
List.unzip, 68
List.zip, 68
lists, 61–68

character, 54
conversion to strings, 55

concatenation, 62
constructor, 63, 66
definition, 61
filtering, 91
flatten, 62
folding, 94
head, 63
improper, 66
keyword, 73

delete entry, 74
new entry, 74
retrieval, 74, 74
update, 74

lists of, 68
mapping, 90
mixing with tuples, 68
partitioning, 93
pattern matching with, 61
processing recursively, 64
reverse, 64
tail, 63
vs. tuples, 62
tuples with multiple keys, 75

logging errors, 122
logical operators, 27
lookup (ETS), 142

M
macros, 167–173

creating functions, 171–173
expansion, 168

extending Elixir, 170
internal representation, 168
quote, 169
require, 167
unquote, 169
When to use, 173

mapping lists, 90
maps, 77
matching against variables, 27
math module, 5
mathematical functions, 179
messages, 98

flushing, 98
receiving, 99
recursion and receiving, 100
return value from receive, 102
sending, 98
tracing, 123

Mix, 162–165
application function, 164
compiling, 164
creating application, 162
dependencies, 164
dependencies for ExDoc, 184
docs command, 184
exs file, 163

Mnesia, 146–152
collections, 147
create schema, 146
result of read, 151
stopping, 147
table info, 150
transaction, 149

modules, 13
documenting with @moduledoc, 23
importing, 19
multiple for functions, 17

monitoring processes, 116
monitoring processes with observer, 107
multiline strings, 53
multiple statements per line, 9

N
named table (ETS), 138
navigating IEx, 3
node function, 147
numbers

float, 6
hexadecimal, 7

190 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

integers, 6

O
observer module, 107
Open Telecom Platform (see OTP)
operators, 4, 177–179

arithmetic, 4, 177
binary, 178
boolean, 177
comparison, 177
logical, 27
precedence, 178

ordered set collection (ETS), 137
OTP (Open Telecom Platform), 153
output, 43

P
parentheses, optional in function calls, 5, 15
partitioning lists, 93
pattern matching, 11

with lists, 61
in records, 134–136
in rescue, 120, 121
in structs, 80–82
tuples, 33
using atoms, 26
vs. clause, 30

pid (process identifier), 97
retrieving, 103

pipe operator, 18
precedence of operators, 178
private functions

with recursion, 47
private functions with defp, 18, 35
process identifier (see pid)
process, current via self(), 98
Process.exit, 116
Process.monitor, 116
Process.register, 103
Process.unlink, 116
Process.unregister, 103
Process.whereis, 103
processes, 97

failure, 104
finding, 103
intercommunication, 105
linking, 110–116
monitoring, 116

monitoring with observer, 107
registering, 102
spawning, 99
spawning with initial value, 101
spawning with link, 112
terminating, 116
tracing messages between, 124
unlink from supervisor, 161
unlinking, 116
unregistering, 103

protocols, 82

Q
quote (in macros), 169

R
r regular expression sigil, 55
reading records (Mnesia), 150
receiving messages, 99

return value, 102
receiving messages recursively, 100
records, 131

creating new, 133
defining, 132
dot syntax, 133
in external files, 132
pattern matching, 134–136
relationship to modules, 132

recursion, 44–47
with accumulator, 46
natural limit, setting, 44
non-tail recursive, 49
processing lists, 64
for receiving messages, 100
return values, 47
tail recursive, 49

refute, 128
registering processes, 102
reply (GenServer), 157
request (GenServer), 157
require (for macros), 167
rescue, 120

after clause, 122
pattern matching, 120, 121

reserved words, 176
return value of receive, 102
reverse list, 64

Index | 191

www.it-ebooks.info

http://www.it-ebooks.info/

S
s string sigil, 55
scripts, 15, 16
scripts in exs files, 127
self(), 98
set collection (ETS), 137
shell commands, 175
side effects, 43

disallowed in guards, 44
sigils, 55

character list c, 55
regular expression r, 55
string, 181
string s, 55
word list w, 55

spawning processes, 99
with initial value, 101
with link, 112

spawn_link, 112
splitting lists, 93
start_link (Supervisor), 161
start_link in GenServer, 156
state in behaviours, 156
statements, multiple per line, 9
stopping Mnesia, 147
strict equality operator ===, 53
String.first, 59
String.strip, 60
strings, 51–54

concatenation with <>, 52
conversion to character lists, 55
convert to integer, 60
definition, 51
escape sequences, 51, 180
first character, 59
interpolation with {}, 52
multiline, 53
sigils, 55, 181
strip whitespace, 60

structs
defining, 79
pattern matching, 80–82

supervise (Supervisor function), 160
Supervisor, 159–162

init, 159
start_link, 161
supervise function, 160
unlink process, 161

worker, 160
Supervisor behaviour, 153

T
table info (Mnesia), 150
tail of list, 63
terminating processes, 116
test macro, 127
tracing function calls, 125
tracing messages, 123

between processes, 124
transaction (Mnesia), 149
try..rescue, 120
tuples, 33–34

vs. lists, 62
mixing with lists, 68
pattern matching, 33
processing, 34–36
referencing components, 35

U
underscore, 31
unit tests, 126

assert, 127
assert_in_delta, 128
assert_raise, 129
refute, 128
test macro, 127

unless construct, 42
unlinking processes, 116
unquote (in macros), 169
unregister process, 103

V
variables, 8

assignment, 8
binding in case, cond, if, 42

W
w list of words sigil, 55
w word sigil, 55
when, 28
worker (Supervisor), 160
writing records (Mnesia), 150
writing unit tests, 126

192 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Simon St. Laurent is a web developer, network administrator, computer book author,
and XML troublemaker living in Ithaca, NY. His books include XML: A Primer, XML
Elements of Style, Building XML Applications, Cookies, and Sharing Bandwidth. He is a
contributing editor to XMLhack.com and an occasional contributor to XML.com.

J. David Eisenberg is a programmer and instructor living in San Jose, California. David
has a talent for teaching and explaining. He has developed courses for HTML and CSS,
JavaScript, XML, and Perl. He also teaches computer and information technology cour‐
ses at Evergreen Valley College in San Jose. He has also developed online courses pro‐
viding introductory tutorials for Korean, Modern Greek, and Russian. David has been
developing education software since 1975, when he worked with the Modern Foreign
Language project at the University of Illinois to developer computer-assisted instruction
on the PLATO system. He is co-author of SVG Essentials (O’Reilly). When not pro‐
gramming, David enjoys digital photography, caring for a feral cat colony at work, and
riding his bicycle.

Colophon
The animal on the cover of Introducing Elixir is a four-horned antelope (Tetracerus
quadricornis) found in India and Nepal. Also called chousingha, these antelope are the
smallest of Asian bovids, standing at 22 to 25 inches at the shoulder and weighing from
37 to 49 pounds. They have a slender build with thin legs and short tails, and a yellow-
brown or reddish coat that fades to white on its underbelly and inner legs. They have a
black stripe of hair that runs down each leg as well. The antelope’s most distinctive
features are the four horns seen on males: two between the ears, which grow in at just
a few months’ age, and two on the forehead, which grow in after 10 to 14 months. The
front pair can reach up to 1.97 inches whereas the hind pair can grow to 3.9 inches in
length.

Four-horned antelope tend to live near a water supply and in areas with significant
vegetation cover, such as from tall grass or heavy undergrowth. They are generally soli‐
tary animals, occasionally found in groups of up to four, and they tend to avoid human-
inhabited areas. During mating season—May to July—males can become aggressive
toward other males. Gestation lasts around eight months, and usually results in one or
two young, which remain with their mothers for about a year, reaching sexual maturity
at two years.

The antelope communicate through alarm calls, which sound like a husky “phronk,”
and through scent marking (leaving piles of droppings to mark their territory or using
large scent glands in front of their eyes to mark vegetation).

Because they live in such a densely populated area of the world, the four-horned ante‐
lope’s natural habitat is threatened by agricultural development. This species is listed as

www.it-ebooks.info

http://shop.oreilly.com/product/0636920032335.do
http://www.it-ebooks.info/

Vulnerable by the International Union for Conservation of Nature (IUCN) because of
habitat loss. They have also become a target for trophy hunters who seek their unusual
horned skull. There are estimated to be around only 10,000 individuals of this species
left in the wild; many are being protected in animal conservatories. The four-horned
antelope is protected under the Indian Wildlife Protection Act.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	What This Book Will Do For You
	How This Book Works
	Other Resources
	Elixir Will Change You
	Conventions Used in This Book
	Using Code Examples
	Help This Book Grow
	Please Use It For Good
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Comfortable
	Installation
	Installing Erlang
	Installing Elixir

	Firing It Up
	First Steps
	Moving Through Text and History
	Moving Through Files

	Doing Something
	Calling Functions
	Numbers in Elixir
	Working with Variables in the Shell

	Chapter 2. Functions and Modules
	Fun with fn
	And the &
	Defining Modules
	From Module to Free-Floating Function
	Splitting Code Across Modules
	Combining Functions with the Pipe Operator
	Importing Functions
	Default Values for Arguments
	Documenting Code
	Documenting Functions
	Documenting Modules

	Chapter 3. Atoms, Tuples, and Pattern Matching
	Atoms
	Pattern Matching with Atoms
	Atomic Booleans
	Guards
	Underscoring That You Don’t Care
	Adding Structure: Tuples
	Pattern Matching with Tuples
	Processing Tuples

	Chapter 4. Logic and Recursion
	Logic Inside of Functions
	Evaluating Cases
	Adjusting to Conditions
	If, or else
	Variable Assignment in case and if Constructs

	The Gentlest Side Effect: IO.puts
	Simple Recursion
	Counting Down
	Counting Up
	Recursing with Return Values

	Chapter 5. Communicating with Humans
	Strings
	Multiline Strings
	Unicode
	Character Lists
	String Sigils
	Asking Users for Information
	Gathering Characters
	Reading Lines of Text

	Chapter 6. Lists
	List Basics
	Splitting Lists into Heads and Tails
	Processing List Content
	Creating Lists with Heads and Tails
	Mixing Lists and Tuples
	Building a List of Lists

	Chapter 7. Name-Value Pairs
	Keyword Lists
	Lists of Tuples with Multiple Keys
	Hash Dictionaries
	From Lists to Maps
	Creating Maps
	Updating Maps
	Reading Maps

	From Maps to Structs
	Setting Up Structs
	Creating and Reading Structs
	Pattern Matching Against Structs
	Using Structs in Functions
	Adding Behavior to Structs
	Adding to Existing Protocols

	Chapter 8. Higher-Order Functions and List Comprehensions
	Simple Higher-Order Functions
	Creating New Lists with Higher-Order Functions
	Reporting on a List
	Running List Values Through a Function
	Filtering List Values

	Beyond List Comprehensions
	Testing Lists
	Splitting Lists
	Folding Lists

	Chapter 9. Playing with Processes
	The Shell Is a Process
	Spawning Processes from Modules
	Lightweight Processes
	Registering a Process
	When Processes Break
	Processes Talking Amongst Themselves
	Watching Your Processes
	Watching Messages Among Processes

	Breaking Things and Linking Processes

	Chapter 10. Exceptions, Errors, and Debugging
	Flavors of Errors
	Rescuing Code from Runtime Errors as They Happen
	Logging Progress and Failure
	Tracing Messages
	Watching Function Calls
	Writing Unit Tests

	Chapter 11. Storing Structured Data
	Records: Structured Data Before structs
	Setting Up Records
	Creating and Reading Records
	Using Records in Functions

	Storing Data in Erlang Term Storage
	Creating and Populating a Table
	Simple Queries
	Overwriting Values
	ETS Tables and Processes
	Next Steps

	Storing Records in Mnesia
	Starting up Mnesia
	Creating Tables
	Reading Data

	Chapter 12. Getting Started with OTP
	Creating Services with gen_server
	A Simple Supervisor
	Packaging an Application with Mix

	Chapter 13. Using Macros to Extend Elixir
	Functions versus Macros
	A Simple Macro
	Creating New Logic
	Creating Functions Programatically
	When (Not) to Use Macros
	Sharing the Gospel of Elixir

	Appendix A. An Elixir Parts Catalog
	Shell Commands
	Reserved Words
	Operators
	Guard Components
	Common Functions
	Datatypes for Documentation and Analysis

	Appendix B. Generating Documentation with ExDoc
	Using ExDoc with mix

	Index
	About the Authors

