

 i

���������	
 ���

�
����
��������

���	����
 ���
�������

��
 ����������

�������	���

Peretz Shoval
Ben-Gurion University, Israel

Hershey • London • Melbourne • Singapore
����
 �����
 ��� �!"�#�

ii

Acquisitions Editor: Michelle Potter
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Copy Editor: Holly Powell
Typesetter: Cindy Consonery
Cover Design: Lisa Tosheff
Printed at: Integrated Book Technology

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2007 by Idea Group Inc. All rights reserved. No part of this book may be reproduced,
stored or distributed in any form or by any means, electronic or mechanical, including photocopying,
without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI of the trademark
or registered trademark.

Shoval, Peretz.
 Functional and object oriented analysis and design : an integrated methodology / Peretz Shoval.
 p. cm.
 Summary: "The main objective of this book is to teach both students and practitioners of information
systems, software engineering, computer science and related areas to analyze and design information
systems using the FOOM methodology. FOOM combines the object-oriented approach and the
functional (process-oriented) approach"--Provided by publisher.
 ISBN 1-59904-201-0 -- ISBN 1-59904-202-9 (softcover) -- ISBN 1-59904-203-7 (ebook)
 1. Object-oriented methods (Computer science) 2. Functional programming (Computer science) I.
Title.
 QA76.9.O35S535 2007
 005.1'17--dc22
 2006010090

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this
book are those of the authors, but not necessarily of the publisher.

 iii

Functional and
Object-Oriented

Analysis and Design:
An Integrated
Methodology

Table of Contents

Preface ..vii

Section I: The Objects Model and Class Diagrams

Chapter I
Introduction to the Objects Approach in Software 1

Principles and Characteristics of the Objects Approach 1
Terms in OO Programming ... 5
Summary of Characteristics of OO Software 9
Review Questions ...11

Chapter II
The Objects Model and the Class Diagram ...13

Similarities and Differences Between the Objects Model and
 the Entity Relationship Model ... 13
Objects and Classes ...14
Attributes ...18
Relationships ..24
Functions ..43
Review Questions ...53

iv

Chapter III
Creating Class Diagrams ...57

Rules for the Creation of Class Diagrams ...57
Examples and Exercises on the Creation of Class Diagrams60
Review Questions ...71

Chapter IV
Mapping Entity Relationship Diagrams to Class Diagrams................... 74

Why Map an ERD to a Class Diagram? ..74
The Mapping Rules .. 75
Examples and Exercises on the Mapping of ERDs into Class
 Diagrams ...87
Review Questions .. 100

Chapter V
Mapping Class Diagrams to Relational Schemas 103

Why Map a Class Diagram to a Relational Schema? 103
The Mapping Rules ... 105
Examples and Exercises of Mapping Class Diagrams to
 Relational Schemas .. 113
Review Questions .. 119

Section II: Functional and Object Oriented Analysis

Chapter VI
Object Oriented Methodologies and the UML 124

A Review of OO Methodologies ... 124
Unified Modeling Language .. 127
Structure Diagrams ... 129
Behavior Diagrams ... 135
Model Management Diagrams .. 142
UML-Based Methodology: An Example ... 145
Review Questions .. 159

Chapter VII
Combining the Functional and Object Oriented Approaches:
Introduction to FOOM ... 165

Approaches to System Development Methodologies 165
Motivation for the Development of a Combined Functional and
 Object Oriented Methodology .. 168
Review of the Stages of FOOM and Its Products 169
Review Questions .. 174

 v

Chapter VIII
Information Systems Analysis with FOOM ... 178

Data Modeling: Creating an Initial Class Diagram 178
Functional Analysis-Creating OO-DFDs.. 183
Keeping the Initial Class Diagram and the OO-DFDs
 Compatible ... 201
Example of Functional Analysis: OO-DFDs of the Apartments
 Building System .. 204
Review Questions .. 226

Chapter IX
Data Dictionary ... 230

A Relational Data Dictionary .. 231
An OO Data Dictionary .. 239
Review Questions .. 243

Section III: Information Systems Design with FOOM

Chapter X
Transactions and Their Top-Level Design ... 248

Overview of the Design Phase According to FOOM 248
Identifying the Transactions .. 249
Data Dictionary of the Transactions .. 264
Review Questions .. 266

Chapter XI
Design of the Man-Machine Interface: Menus, Inputs, and
Outputs .. 268

Designing the Menus Tree Interface ... 268
Designing Menus for Subsystems .. 276
The Menus Class ... 278
Designing the Inputs and Outputs ... 281
The Data Dictionary and the Inputs and Outputs Classes 285
Review Questions .. 287

Chapter XII
Detailed Design of the Transactions and Class Methods 291

Steps in the Design of Transactions and Class Methods 291
From Top-Level to Detailed Transaction Descriptions 292
From Detailed Descriptions of Transactions to Class Methods ... 304
Message Charts ... 315

vi

Summary of the Design Phase ... 321
Review Questions .. 322

Glossary ... 329

About the Author ... 333

Index .. 334

 vii

Preface

The main objective of this book is to teach students and practitioners to analyze
and design information systems (IS) using the functional and object oriented
methodology (FOOM),1 which combines the functional (process-oriented) ap-
proach with the object oriented (OO) approach.
The functional approach to IS development (sometimes also termed the tra-
ditional approach) was popular in the 1980s and 1990s of the 20th century.
The development life cycle of this approach is based on the waterfall model
(or its variations), according to which the IS development is essentially a se-
quential process, with the possibility of repetitions and iterations, thus making it
look more like a spiral process. This approach views the IS as made of func-
tions (processes), interconnected in a complex manner. The analysis of the IS
focuses on discovering and defining the functions which the system needs to
perform, and the flow of data to and from those functions. Two of the notable
methodologies supporting this approach are structure system analysis (SSA)
and system structure design (SSD) (DeMarco, 1978; Gane & Sarson, 1979;
Yourdon, 1989). The SSA methodology is based on the use of data flow dia-
grams (DFDs) which describe the various functions of the system; the data
stores in which the data are saved; the external entities which are the source of
data input to the system and the destination of output information; and the
dataflows which connect all of these components. According to the SSD meth-
odology, the DFDs created in the analysis phase are transformed into a modu-
lar description of application programs, expressed by structure charts (Yourdon
& Constantine, 1979).
With the development of the relational data model on the one hand, and concep-
tual data models on the other hand, more emphasis was given to the analysis
and design of the system’s database. The entity relationships (ER) model and
its entity relationship diagram (ERD) (Chen, 1976) had become a common mean

viii

for modeling the data and creating a conceptual data model, thus playing a
complementary role to the role of DFDs in functional analysis. In the design
phase, the ERD is mapped into a relational database schema. Simultaneously,
the functional model is mapped, as mentioned previously, into structure charts
of the application programs.2

One of the main problems with the traditional development methodologies such
as SSA and SSD is the difficulty of transition from the analysis phase to the
design phase. The transition is not smooth and causes difficulties because of
the need to translate DFDs, which are a network structure, into structure charts,
which are hierarchical. Another problem is the gap between the functional
modeling aspect on one hand (leading to the creation of the application pro-
grams), and the data modeling aspect on the other hand (leading to the creation
of the database schema of the application). In order to address these issues,
Shoval developed the ADISSA methodology, which closes the gap between
analysis and design phases and enables a smooth transition from the former to
the latter phase (Shoval, 1988, 1991). The smooth transition from analysis to
design is made possible by introducing a new construct in the DFDs: transac-
tions. From a user’s point of view, a transaction is a process performed by the
IS to support a user’s task, which is activated as a result of an event in the real
(user) world. The transactions of the system are identifiable in the DFDs, and
based on them it is possible to design all components of the system as a natural
continuum of the analysis phase. The products of the design include, according
to ADISSA, detailed descriptions of the application programs; a database
schema; the user interfaces (menus trees) and the input/output screens; and
reports.
The OO approach for IS development became popular in the early 1990s. The
success of object oriented programming languages (OPL) motivated the pen-
etration of the objects approach also to the area of analysis and design method-
ologies. In the last 15 years many OO analysis and design methodologies have
evolved, and many techniques and diagram types which support these method-
ologies have been created, enabling the modeling of a system from various
perspectives. Some examples of early OO methodologies can be found in Booch
(1994), Coad and Yourdon (1990, 1991), Jacobson (1992), Martin and Odell
(1993), Rumbaugh (1995), Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen
(1992), Shlaer and Mellor (1992), and Wirfs-Brock, Wilkerson, and Wiener
(1990).3

The huge number of techniques and diagram types which evolved until the mid
1990s was a main driving force for proposing and adopting the unified modeling
language (UML) as the “standard” for OO systems modeling.4 UML is a col-
lection of visual notation, that is, diagrammatic techniques. In spite of its great
popularity and the advantage of having standardized techniques, UML has limi-
tations. One of them is that UML includes many techniques with a certain

 ix

degree of overlapping between them. Some techniques enable developers to
achieve the same goal in different ways;5 but it is not always clear which tech-
nique should be preferred. Clearly, multiplicity of techniques and notations makes
learning UML difficult and complicates the development process because of
the need to move from one model/diagram type to another while keeping all
models consistent (Siau & Qing, 2001).
Ever since the use of development methodologies for the creation of IS, soft-
ware developers had to deal with two main problems: (1) the gap between
process and data; and (2) the gap between analysis and design. The gap be-
tween process and data was manifested in traditional methodologies by the fact
that DFDs emphasize process (functional) modeling, neglecting somewhat the
modeling of data. A remedy to this gap came with the introduction of concep-
tual data models, notably the ER model, which complement DFDs as tools for
defining the users’ requirements. In early OO methodologies, the gap between
process and data modeling was manifested by putting most of the emphasis on
data (objects) modeling, while process modeling played a minor role only. To
compensate for this deficiency, various techniques were added over time to
deal with the functional aspects; but the result was, as said, a multitude of
techniques with no well-defined interconnection among them.
The gap between analysis and design is expressed by the fact that the transition
from analysis to design is not always clear and natural. In the analysis phase
we define what the system ought to do as based on the users’ needs, while in
the design phase we deal with how the system will do that. Although it is clear
that the design should be a direct continuation of the analysis, analysis and
design methodologies have not always succeeded in doing so; some methodolo-
gies do not make it clear what “belongs” to analysis and what to design, or
when does one phase end and the other begins, or (especially) what to do with
the products of the analysis phase in the design phase. A solution to this void
was offered, as said, by the ADISSA methodology, which defines and derives
transactions from the DFDs and uses them as the basis for designing the appli-
cation programs, the user interface, and the inputs and outputs of the system
(Shoval, 1988, 1990, 1991). Some OO methodologies have tried to bridge the
gap between the analysis and design by making the borders between the two
phases “fuzzy,” that is, treating the design as a refinement of analysis (e.g.,
Coad & Yourdon, 1990, 1991). Some OO methodologies do not specify what
activity belongs to which phase, or where one phase ends and the other begins,
or which of the possible techniques should be used in each of these phases. Yet,
some methodologies view design as a refinement of analysis.
FOOM methodology (initially presented in Shoval & Kabeli, 2001) combines
the functional and objects approaches and gives them an equal stand in both
phases. In the analysis phase, the users’ requirements are defined by creating
two complementary models: a data model, expressed in the form of an initial

x

class diagram, and a functional model, expressed in the form of object oriented
DFDs (OO-DFD). The two models are synchronized and used in the design
phase in order to design the various components of the system. The design
products include a complete class diagram; detailed descriptions of the class
methods; user interfaces and input/output screens; and reports. The products
of the design phase facilitate the construction (programming) of the system in
an OO development environment.

Organization of This Book

This book is aimed for students of IS, computer science, management, and
other fields which include a concentration on IS. It is intended to be a textbook
of an advanced course (possibly in an undergraduate or graduate program),
after the students have had at least one course in the fields of computer sci-
ence or IS. In addition, it is recommended that the students take a course on
databases (mainly being familiar with the relational model, data normalization,
and the ER model). A course on IS analysis and design is not a prerequisite.
However, familiarity with IS development methodologies, either from the func-
tional or objects approach, is an advantage.
The book is divided into three learning sections, each consisting of three to five
chapters. The first section deals mainly with the objects model and class dia-
grams; the second section deals with system analysis, and the third with system
design. The material in each chapter includes many examples. At the end of
each chapter there are review questions, which are meant to help the students
in digesting and understanding the material. In some chapters there are also
assignment questions which require solving practice-oriented problems. In ad-
dition to working on such assignments, it is recommended to include in the
course a guided project, in which teams of two to three students perform the
tasks of analysis and design of an IS for an organization in a real-world envi-
ronment (as much as possible). If this is not possible an alternative is to per-
form a similar project on a case study that will be prepared for the students.6

The content of the book is as follows:

Section I (The Objects Model and Class Diagrams) provides a preview of
the objects approach in general, and elaborates on the objects model and class
diagrams in particular. The section consists of five chapters.

• Chapter I (Introduction to the Objects Approach in Software) pre-
sents the principles and characteristics of OO software in the objects
approach, and common terms in OO programming.

 xi

• Chapter II (The Objects Model and the Class Diagram) describes in
detail the components of the objects model (including objects, classes,
attributes, relationships, and functions), and the class diagram which rep-
resents them.

• Chapter III (Creating Class Diagrams) discusses considerations and
rules for identifying classes, attributes, relationships, and functions and
presents case study examples (problems), that is, descriptions of users’
data requirements, along with their class diagram solutions.

• Chapter IV (Mapping Entity Relationship Diagrams to Class Dia-
grams) explains why it might be preferred to first create an ERD and
then map it to a class diagram. The chapter then describes the mapping
rules and demonstrates the mapping process with several comprehensive
examples.

• Chapter V (Mapping Class Diagrams to Relational Schemas) ex-
plains the need to map a class diagram to a relational schema. Most of the
chapter is dedicated to presenting and demonstrating the mapping rules
for converting a class diagram into a relational schema which is made of
normalized relations. The mapping process is demonstrated with several
comprehensive examples.

Section II (Functional and Object Oriented Analysis) starts with present-
ing a background for the development of UML, and then explains the motiva-
tion for the development of FOOM, which combines the objects and functional
approaches. Most of the section is dedicated to learning how to analyze a sys-
tem according to FOOM. The section consists of four chapters.

• Chapter VI (Object Oriented Methodologies and UML) reviews the
evolution of OO methodologies and UML. Most of the chapter is dedi-
cated to presenting and demonstrating the various techniques and dia-
grams which make up UML, and then it provides a detailed example of IS
modeling using a UML-based methodology.

• Chapter VII (Combining the Functional and Object Oriented Ap-
proaches: Introduction to FOOM) starts by introducing the motivation
for the development of a combined methodology. Then it presents the
stages, substages, and products of FOOM.

• Chapter VIII (Information Systems Analysis with FOOM) elaborates
on the activities and products of the analysis phase. The products of analysis
include a data/objects model (in the form of an initial class diagram) and a
functional model (in the form of hierarchical OO-DFDs. The two diagram
types are synchronized in order to verify the correctness and complete-
ness of the two models. The chapter presents various examples of dia-
grams of both types.

xii

• Chapter IX (Data Dictionary) explains the roles of a data dictionary in
the development of the IS and describes its components. The chapter
presents a possible implementation of the data dictionary both with the
relational and with the OO models.

Section III (Information System Design with FOOM) is about the design
phase. The products of the design include: (1) a complete class diagram, con-
taining (in addition to the data classes) the interface, inputs, outputs, and trans-
actions class; (2) detailed descriptions of the various class methods; (3) the
menus of the user interface; (4) the input and output screens and reports. The
section includes three chapters.

• Chapter X (Transactions and Their Top-Level Design) describes what
a transaction is and explains how to identify and extract the transactions
from the OO-DFDs. Then it explains how to map transaction diagrams to
top-level descriptions which details their components and process logic.

• Chapter XI (Designing of the Man-Machine Interface: Menus, In-
puts, and Outputs) presents a method for the design of user interfaces—
menus trees—for the entire system as well as for its subsystems. Then it
describes how to design the inputs and outputs/reports of the systems.

• Chapter XII (Detailed Design of the Transactions and Class Meth-
ods) describes how to map top-level descriptions of transactions to de-
tailed descriptions, and then how to “decompose” these detailed descrip-
tions into various methods, which are attached to proper classes. Two
equivalent techniques for the description of methods are provided: pseudo
code and message charts. The chapter ends with a review on the products
of the design phase, which serve as input to the system construction (pro-
gramming) stage.

References

Avison, D., & Fitzgerald, G. (1988). Information systems development: Meth-
odologies, techniques and tools. Oxford, UK: Blackwell.

Booch, G. (1994). Object-oriented analysis and design with applications
(2nd ed.). Redwood City, CA: Benjamin/Cummings.

Chen, P. (1976). The entity-relationship model—Toward a unified view of data.
Transactions on Database Systems, 1(1), 9-36.

Coad, P., & Yourdon, E. (1990). Object oriented analysis. Englewood Cliffs,
NJ: Prentice Hall.

 xiii

Coad, P., & Yourdon, E. (1991). Object oriented design. Englewood Cliffs,
NJ: Prentice Hall.

DeMarco, T. (1978). Structure analysis and system specification. Englewood
Cliffs, NJ: Prentice Hall.

Gane, C., & Sarson, T. (1979). Structured systems analysis, tools and tech-
niques. Englewood Cliffs, NJ: Prentice Hall.

Jacobson, I. (1992). Object-oriented software engineering: A use case driven
approach. New York: Addison Wesley.

Jayaratna, N. (1994). Understanding and evaluating methodologies:
NIMSAD, a systematic framework. London: McGraw Hill.

Martin, J., & Odell, J. (1993). Object-oriented analysis and design. Englewood
Cliffs, NJ: Prentice Hall.

Olle, W., Sol, H., & Verrijn-Stuart, A. (Eds.). (1986). Information system de-
sign methodologies—Improving the practice. North Holland: Elsevier
Science Publishers; IFIP.

Rumbaugh, J. (1995). OMT: The dynamic model, the functional model, the ob-
ject model. Journal of Object-Oriented Programming, 7(9), 6-12; 8(1),
10-14; 7(8): 21-27.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1992).
Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice
Hall.

Shlaer, S., & Mellor, S. (1992). Object lifecycles—Modeling the world in
states. Englewood Cliffs, NJ: Yourdon Press, Prentice Hall.

Shlaer, S., & Mellor, S. (1992). Object-oriented systems analysis: Modeling
the world in data. Englewood Cliffs, NJ: Yourdon Press, Prentice Hall.

Shoval, P. (1988). ADISSA: Architectural design of information systems based
on structured analysis. Information System, 13(2), 193-210.

Shoval, P. (1990). Functional design of a menu-tree interface within structured
system development. International Journal of Man-Machine Studies,
33, 537-556.

Shoval, P. (1991). An integrated methodology for functional analysis, process
design and database design. Information Systems, 16(1), 49-64.

Shoval, P. (1998). Planning, analysis and design of information systems
(Vols. 1-3). Tel-Aviv, Israel: Open University Press. (Original work pub-
lished)

Shoval, P., & Kabeli, J. (2001). FOOM: Functional and object-oriented analysis
and design of information systems—An integrated methodology. Journal
of Database Management, 12(1), 15-25.

Shoval, P., & Kabeli, J. (2005). Essentials of functional and Object-oriented
methodology. In M. Khosrow-Pour (Ed.), Encyclopedia of information
science and technology (pp. 1108-1115). Hershey, PA: Idea Group.

xiv

Siau, K., & Qing, C. (2001). Unified modeling language (UML)—A complexity
analysis. Journal of Database Management, 12(1), 26-34.

Wieringa, R. (1998). A survey of structured and object-oriented software speci-
fication methods and techniques. ACM Computing Surveys, 30(4), 459-
527.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-ori-
ented software. Englewood Cliffs, NJ: Prentice Hall.

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, NJ:
Prentice Hall.

Yourdon, E., & Constantine, L. (1979). Structured design. Englewood Cliffs,
NJ: Prentice Hall.

Endnotes

1 FOOM was developed by Peretz Shoval, the author of this book, with the
assistance of his doctoral student Judith Kabeli (Shoval & Kabeli, 2001,
2005). FOOM is based on and expands the ADISSA methodology, which
Peretz Shoval has developed as a functional development methodology
(Shoval, 1988, 1991, 1998).

2 More background and surveys of traditional IS development methodolo-
gies can be found, among others (in Avison and Fitzgerals (1988), Jayaratna
(1995), Olle, Sol, and Verrijn-Stuart (1986), and Wieringa (1998)).

3 For a survey of both structured and early object-oriented methodologies
see Wieringa (1998).

4 UML Web sites are detailed in the References.
5 For example, sequence diagrams and collaboration diagrams.
6 It is also recommended that the students will build (program) the system

(or parts of it) in a proper development environment. This can be done in
a follow-up course or exercise.

 xv

Acknowledgments

This book is the outcome of many years of work, research, and teaching in the
areas of information systems analysis and design, as well as data modeling.
Many of the ideas regarding functional and object oriented methodology
(FOOM), which are the core of this book, originated from the Architectural
Design of Information Systems based on Structures Analysis (ADISSA) meth-
odology, a functional-oriented methodology which I developed in the late 1980s.
Some of those ideas include the method to design transactions (processes) and
the method to design menus-tree interfaces. FOOM can be viewed as an en-
hancement of ADISSA with object oriented ingredients, notably the use of class
diagrams for data modeling, and the method for designing class-methods from
the transactions.
The development of FOOM was done in cooperation with Judith Kabeli, my
doctoral student at the time of its development. I am especially thankful for
Judith’s contributions in utilizing the methodology in several case studies and
projects, as well as in conducting experimental evaluations of the methodology.
The fruits of our cooperation are reflected in many papers we have jointly
published in journals, books, and conference proceedings. I am also thankful to
the many students at the Department of Information Systems Engineering of
Ben-Gurion University, as well as students of other departments, who took part
in the various experiments and who utilized the methodology in their graduation
projects.
This book was first published in Hebrew by the Open University. I would like to
acknowledge the help of Dr. Ilan Ben Ami, the head of academic development
unit, and his staff, as well as the staff at the graphics unit. Special thanks go to
Irit Asher who worked “around the clock” preparing the figures.

xvi

I appreciate the work done by the reviewers: Dr. Micha Hanani, Dr. Arieh
Nachmias, and Dr. Bracha Shapira, for their constructive comments on the
Hebrew version of this book.
Thanks go to the publishing team at Idea Group Inc., in particular to Kristin
Roth, Development Editor, for her guidance and for keeping the project on
schedule.
Finally, I thank my wife Sara for her patience, understanding, and love through-
out all our years together, and my children and their families for their love.

Peretz Shoval

 xvii

Section I:
The Objects Model and

Class Diagrams

The objects model had become dominant in the field of programming languages,
and from this field it has spread to other fields of computing, including analysis
and design of information systems. Alongside with the traditional analysis and
design methodologies, which are based on the functional approach (also termed
process-oriented, or traditional methodologies), object oriented methodologies
have and are still evolving. This unit provides a preview of the objects approach
in general, and elaborates on the objects model and class diagram in particular.
The unit contains five chapters.

Chapter I (Introduction to the Objects Approach in Software) presents
the principles and characteristics of object oriented software and the common
terms in object oriented (OO) programming.

Chapter II (The Objects Model and the Class Diagram) describes in de-
tail the components of the objects model (including objects, classes, attributes,
relationships and functions), and the class diagrams which represent them.

Chapter III (Creating Class Diagrams) discusses considerations and rules
for identifying classes, attributes, relationships and functions; and presents case
study examples (problems), i.e., descriptions of user data requirements, along
with their class diagram solutions.

Chapter IV (Mapping Entity Relationship Diagrams to Class Diagrams)
explains why it might be preferred to first create an ER diagram and then map
it to a class diagram. The chapter then describes the mapping rules, demon-
strating the mapping process with several comprehensive examples.

Chapter V (Mapping Class Diagrams to Relational Schemas) explains
the need to map a class diagram to a relational schema. Most of the chapter is
dedicated to presenting and demonstrating the mapping rules based on which a
relational schema (made of normalized relations) is created. The mapping pro-
cess is demonstrated with several comprehensive examples.

Introduction to the Objects Approach in Software 1

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Introduction to the
Objects Approach

in Software

This chapter presents the principles and characteristics of software in the
objects approach, and the common terms in object oriented (OO)
programming.

Principles and Characteristics
of the Objects Approach

The term “object oriented” spread in the last decade and a half, throughout many
fields of computing, including the analysis and design of information systems
(IS). The use of the OO approach began in the early 1970s in fields such as
computers architecture, operating systems, and artificial intelligence. But the
main field to which the approach penetrated was programming languages,
beginning with Simula and then with Smalltalk. Some years passed by until the
approach became popular in the programming field. Reasons for the vigorous
penetration of the approach include the emergence of the windows-based
graphical interfaces technology, the desire to economize development costs by
reusing existing software, and the transition from centralized computing to
distributed- and Internet-based computing. As aforesaid, the approach pen-
etrated into other fields of computing due to its success in the field of
programming, including the field of analysis and design of IS.

2 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OO analysis and design may be viewed as an extension of OO programming.
This extension may be considered as analogous to a former extension in the field
of structured programming: In the same manner that the success of the
structured programming approach was followed by the development of system
analysis methodologies such as structured system analysis (SSA) (DeMarco,
1978; Gane & Sarson, 1979) and system design methodologies such as structured
system design (SSD) (Yourdon & Constantine, 1979), so was the success of the
OO approach in programming followed by development of OO analysis and
design methodologies (Sumit, Srifdhar, & Radhakanta, 2001; Wieringa, 1998).
Another source, from which the OO approach nourished, is conceptual data
models, notably Chen’s (1976) entity relationship (ER) model and Smith and
Smith’s (1977) database abstractions. As known, the ER model describes reality
using entities, attributes, and relations, distinguishing between entity types and
entity occurrences. The OO approach also describes reality by entities that have
attributes; only here, instead of the terms entity type and entity occurrence, the
OO approach uses the terms class and object, respectively; that is, a class
consists of objects which are characterized by the same attributes. Different
relationship types between the object classes are also observed. Hence, there is
a lot of similarity between the OO and the ER approach with regard to how they
model the data structure of reality.
However, the OO approach models not only the data structure but also their
“behavior,” that is, the functions that can manipulate the data. In IS that are
developed in the traditional approach (meaning pre-OO era) there is a separation
between the structural component, that is, the database schema, and the
functional component, that is, the programs which perform various functions on
the data. The database schema is defined by a data definition language (DDL)
of the database management system (DBMS), and the functions are defined
separately from the database schema. These are expressed by application
programs, written in some high-level programming language, which embed data
manipulation language (DML) commands of the DBMS, or by queries written in
a fourth generation language (4GL) or a query language which is part of the
DBMS.1 In contrast to that, in an IS which is developed according to the OO
approach, the components are connected: The software system is a collection of
objects that are classified in classes; each class includes definitions of the objects
structure as well as of the functions which can operate on the objects during their
lifetime in the system.
Among the justifications for the development of the OO approach is the growing
need for developing more complex IS than the ones which were developed in the
previous decades. Indeed, most of the organizational or business-oriented IS can
be implemented with traditional software tools, because such IS are character-
ized by a database that can be represented as tables or relations (according to

Introduction to the Objects Approach in Software 3

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the relational model) and by relatively simple application programs which
perform queries and update the data in the tables. However, in the last years
there has been a growing demand to develop IS in new fields which were not
handled in the past, such as systems for engineered design and manufacturing
(CAD/CAM), geographical information systems (GIS), computer aided soft-
ware engineering (CASE), and multi-media systems. Such systems are charac-
terized by complex data structures and complex functions which are hard to
implement in traditional programming languages and relational DBMSs.
The relational model is simple and easy to apply, but it has limitations: tables
assume “horizontal” homogeneity (i.e., every record in a table has the same
attributes) and “vertical” homogeneity (i.e., every attribute has the same data
type for all records in the table). A relation does not enable direct representation
of multiple valued attributes (sets). Sometimes an entity in reality cannot be
represented as a holistic unit, that is, in one relation, and must be artificially
decomposed into several relations, causing inefficient retrieval of data.2 In
complex applications such as CAD there are complex objects which can not be
represented as rows of tables. In multi-media systems there are graphics,
pictures, sound, and so forth. Such data are usually held in different length series
of bytes with different relationships between them. These can not be represented
by relational tables. It is expected that in the future there will still be a wide use
of relational DBMSs in application domains where they are effective. But in
order to allow application development in complex domains such as previously
stated, there is a need for an approach which enables representation of complex
data structures.
The terms which the OO approach uses differ from the terms used in the
traditional programming world. Those who support the OO approach claim that
the basic terms in this field are “natural,” as they are based on terms known from
childhood. From childhood we know that the world consists of objects which
have attributes. For example, the human body consists of body parts; people have
similar attributes/characteristics, but there are different groups/types of people,
and so forth. The first thing children learn is to identify objects (such as people);
later on they learn to identify the body parts from which they are assembled; then
they distinguish between different groups (classes) of people (objects).3

Many claim that the OO approach to software development has advantages
compared to the traditional approach. Here are some advantages which are
attributed to OO software development:

• OO programming is simpler than traditional programming: As
aforesaid, there is a separation in traditional programming between data
and functions. Different functions can access and manipulate the same
data and the programmer must know the data structure well and plan the

4 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

programs well in order to ensure data completeness and correctness. In OO
programming, the data and behavior (functions) are integrated. An object
is like a box containing its structure (the data) and its behavior (the functions
which can operate on the data). Whoever is outside the object does not need
to know how the data and functions are defined. He/she only needs to know
what the object is and what it can do. OO systems development includes
mainly the definition of objects and their functions; they can be built without
the need of thinking of loops and complex branching, as in traditional
programming. Usually the programs are smaller and simpler than in
traditional programming; therefore the chance of an error is smaller. Once
an object is built and functions well, the developer considers it as a “closed
box” that can be used without knowing how it is built. Hence, software
engineering resembles hardware engineering. Each object is independent;
therefore entire classes of objects can be changed independently. Since
changing a class can be done easily, maintenance of OO systems is
considered easier than that of traditional systems.

• The OO approach can encompass many phases of the system’s
development process: For instance, the system’s analysis is done by OO
analysis yielding an objects analysis model; the system’s design is done by
refinement of that model and adding design artifacts yielding a design
model; the implementation of the system is done by OO programming;
CASE tools, which support the development, utilize the OO approach; and
the data are stored using an object oriented database management system
(OO-DBMS). That is, the same approach can be used in nearly all stages
of the system’s development and life cycle, and there is no need to mix
different approaches. That is unlike other development approaches which
may require a combination of a variety of methods; that is, a combination
of functional analysis using data flow diagrams (DFD) with data analysis
using entity relationship diagrams (ERD). Some claim that combining
different methods is unnatural and causes difficulties to developers. In
contrast, the OO approach represents data, processes, people, and so
forth—all as objects.4

• The OO approach supports reuse of software; therefore new soft-
ware development is faster and more reliable: An organization dealing
with software development can maintain a software library of objects of
certain application domains. If such a library exists, the development of a
new application turns into a matter of choice and connection between
existing objects. Since the existing objects were already tested and
examined independently, when connected they provide an application
within a short time. Only entirely new objects need to be developed or
acquired. Some claim that eventually there will be global object libraries,
and software developers will only need to search and choose what they

Introduction to the Objects Approach in Software 5

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

need for the new applications. Since the objects in these libraries will be
reliable (having been tested in the past) the development of a new
application and the modifying of an existing application will be easy to
perform. Therefore, software development will not only be cheaper and
faster, but also more reliable and error free.

Terms in OO Programming

An object is a thing for which data is saved and actions (functions) are
performed. An object is an abstraction of something in the real world that we
need to represent in the system. An object has attributes which are a collection
of data which describe it. An object’s state is the values which its attributes
possess in a certain moment. In addition, an object has a behavior; that is, the
various functions which can operate on the object. Other common terms for
functions are services and methods.
A class is a collection of objects of the same kind; that is, an object is an instance
of the class to which it belongs. All objects belonging to a specific class have the
same attributes and behavior. Classes can be organized in superclass and
subclass hierarchies. Inheritance means that a subclass inherits attributes and
behavior from its superclass. Multiple-inheritance means that a subclass can
inherit from more than one superclass.5

We shall demonstrate now the terms introduced so far. Assume there is an object
which is a certain student. The student has attributes such as: student ID
(Identification Number), name, birth date, and average grade.6 The student’s
state is the values of his attributes in a certain point of time. For example, student
ID: ‘12345678’, name: ‘John Doe’, birth date: ‘22/07/1985’, average grade:
‘87.4’. The state of an object may change over time, according to various events
which cause appropriate actions to be performed on an object throughout its
lifetime in the IS. For example, adding a new student to the system, locating a
student, and displaying some of its attributes (i.e., its state), updating values of
the student’s attributes (such as changing the address or calculating the average
grade), and so forth. The IS contains many students; each student is an object
(instance) of the class of students, assuming all the students have the same
attributes and behaviors. In our example we name the class Students (but it may
also be in singular: Student).7

As aforesaid, classes are organized in a hierarchy. In our example, the Students
class can be a subclass of the superclass People. This superclass can have other
subclasses, such as Lecturers and Administrative Employees. A subclass
can be in itself a superclass of subclasses. For example, Lecturers can be a

6 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

superclass of Senior Staff and Junior Staff. The hierarchy is expressed by
inheritance of attributes and behaviors: The superclass’s attributes and behav-
iors are inherited to its subclasses. In addition, each subclass may have specific
attributes or behaviors which its superclass does not have. For example, the class
People may include general attributes that all people have (and which are
relevant to the IS) such as: name, birth date, and address, as well as general
behaviors (functions) such as: add a new person, locate a person, display a
person’s details, change a person’s details, and delete a person. The class
Students (as well as all other subclasses of People) inherits People’s
attributes and behavior, meaning that every attribute and every function that are
defined for every person are applicable to every student as well. In addition,
specific attributes (e.g., average grade) and specific functions (e.g., calculate
average grade) can be defined for students.
The advantage of inheritance is that existing software code can be reused if one
needs to implement similar functions, rather than writing new code. For example,
if a Student’s class needs to be implemented in a new system, there is no need
to define and code it from scratch; rather, existing code (in a software library or
in another IS) which includes a People class can be used as a superclass, so that
only specific attributes and functions need to be coded. Reuse of code saves
development time, prevents errors in the new software, and contributes to the
standardization of the software.
Note the difference between reusing code in an OO programming environment
and reusing code in a traditional programming environment, in which code is also
reused in different programs. Organizations possess program files which can be
used in different applications, according to the application’s needs. This reuse
may save time and development effort as well; however, the difference is that
in traditional programming there is no return to the original code. It means, once
the program code is copied, there are two different programs (software entities):
the original and the new one; each can develop separately and independent of the
other. If an error is discovered in the original program or some change to it is
required, the change is not applied in the new program. Contrarily, in OO
programming with inheritance, a superclass can be changed and the subclass
inherits its new behavior by simply recompiling it. The specific functions of the
subclass are not affected. For example, we may change the superclass People
by adding an attribute, say address; then we can compile the subclass Students,
meaning that the subclass will now have the new attribute address. That is, the
change is done only once and applied to all subclasses, thus truly obtaining the
advantage of software reuse.
It needs to be clarified that inheritance does not occur by itself; it has to be well
planned. That is, appropriate classes and hierarchy relations must be con-
structed, so that the general attributes and functions of objects will be defined in

Introduction to the Objects Approach in Software 7

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the classes at the higher level of the hierarchy, while the specific attributes and
functions will be defined in the classes at the lower levels. In our example the
attributes: name, birth date, and address are defined in the general class
People, and its subclasses (at some level of the hierarchy) inherit these
attributes without the need for redefining. This applies to the general functions
as well, such as locating a certain person or updating a person’s details. In
contrast, it is obvious that an attribute such as research name is specific to the
Research Student’s class. As we will see later on, one of the main issues in
the OO approach is to plan correctly the classes and their attributes, behaviors,
and inheritance relationships.
OO software is a collection of cooperating object classes. In OO software, the
objects simply exist and await activation. Activation occurs when an object
(belonging to a certain class) receives a message from another object. Hence,
there is a sender object who delivers a message to the receiver object. The
message includes the name of the function which the sender asks the receiver
to perform. A message may include parameters (also termed arguments) which
are the data needed by the receiver’s function to perform. The receiving function
performs the function it was asked to perform on its object in the way it was
defined (i.e., coded) while using the data handed with the message—if needed.
The function may be, for example, locating/retrieving the object, updating its
state (i.e., changing one or more of its attributes), doing some calculations based
on the object’s data, and so forth. At any rate, the sender does not know how
the function is performed; it is internal to the receiver. The object is viewed as
a “closed box,” or a capsule, which can perform certain functions (identified by
its functions names), but no one outside must know how it performs its functions.
A function’s code may include messages to other objects. A message asks an
object to perform a certain function that it knows to perform. Hence, a “chain
reaction” may occur due to further activation of objects by messages sent from
already activated objects.
The following example demonstrates the activation process (see Figure 18): An
IS includes a class Students (as described earlier) and a class Registrations
whose objects are the events of all students’ registrations to courses. Registra-
tions class includes the attributes: student ID, course code, registration date
(year, semester), grade, and date of grade; and a function named update
course grade. A process of reporting a course grade is activated due to an event
in the real world; for example, a teacher sends a grade report at the end of the
semester to the department secretary who is in charge of updating the system.
Assume that system includes a class named Forms, and one of its objects is a
grade report form designed to input course grades. The secretary starts the
process by making certain menu selections (which can be viewed as sending
messages to a function of a class Menus, which is not shown in the figure). As

8 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a result, the desired grade report form is presented on screen; the secretary fills
in the necessary details (student ID, course code, grade, and date of grade),
and then hits a “send” button. This can be viewed as sending a message to the
function get grade. Assume that this function, besides doing some internal
activities (e.g., checking the correctness of the input data) sends a message to
the class Registrations to its function named update course grade, along with
the parameters: student ID, course code, grade, and date of grade. Based on
that, the receiving function locates/retrieves the specific object of Registra-
tions and starts its internal process. Assume that the function’s code includes
the following two procedures: (1) registering the new grade and date and saving
the updated Registrations object; and (2) sending a message to the function
calculate average grade of class Students, with the parameters student ID
and grade; this will enable the receiving function to locate the specific student
object and update its average grade according to the new course grade. The
receiving function retrieves the student object, recalculates the new average
grade, and saves the updated student object.9 At the end, the function sends the
sender (in Registrations) a confirmation status, and this function can in turn
send to its sender (in Forms) some text confirming the update.10

Figure 1.1. Update grade event

Introduction to the Objects Approach in Software 9

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An object is independent of other objects. As aforesaid, the way in which an
object performs its role (meaning the way the method is implemented) is
unknown to other objects. That means that the internal structure of an object or
its implementation can be changed without causing problems to other objects.
The external world can approach an object using its interface. An object’s
interface includes the names of the functions that it can perform. A function has
a signature which includes: (1) the function name; (2) parameters for the data
it will get (as input) from the sender; and (3) the data it will return (as output).
As aforesaid, not all functions must have parameters or return data.
Note again that the system’s data and function are defined within class objects
and not outside of them. The internal structures of objects and of the functions
that can operate on them are concealed from the external world. The sender only
needs to know which function can provide the required service, and on which
object the function should be applied; it is not supposed to know how the function
is implemented and how it performs. This is termed encapsulation.
OO software is therefore a collection of objects of various types, which may be
connected by messages sent to functions aimed to perform certain operations on
the objects. Usually, a certain function of a certain class is initiated due to an
event in the real world, which causes a user of the system who is in charge of
handling the event to act (but sometimes a function can be initiated automatically,
for example, as based on predefined time or by a certain device). The triggered
function may operate on an object or objects of the class, or send a message to
another function of the same or another class, to operate on respective objects,
and so on.
An object is, as we already know, an instance of the class to which it belongs.
All objects of the class are identical in structure and behavior, but differ only in
their identity and state, but the same function can operate on the different objects
of the class. Therefore, it is clear that the functions’ code is not stored separately
within each object; rather, the code of each function is written and stored once
for all objects of the class; in other words: the functions belong to the class. An
object is simply a data structure holding its data values. When a function is
triggered by a message, the software system binds the function code (which is
stored in one location) to the object on which the function needs to be performed.

Summary of Characteristics
of OO Software

We recount the advantages of software in an OO approach as appose to
traditional software.

10 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Abstraction of reality: The OO software system is built according to a
model which is more adaptable to reality than in the traditional approach,
because in the OO approach, the reality is represented as it is, meaning as
objects, which makes the system more comprehensible.

• Encapsulation and information hiding: A definition of a class includes
its objects’ data structures and behavior. The object’s definition is “private”
and concealed from the external world. Outside the object, what is known
is only “what” the object can do, but only “inside” it is specified “how” the
object does it. The object has a public interface through which it allows
whoever is outside to know what it can do. These attributes allow
developers: (1) to change the objects inner definitions without changing its
external appearance and without affecting other objects; and (2) to easily
use existing objects, because whoever develops a new application only
needs to know what an object can do, not how it does it. If anyone (say a
user or another object) needs to know or change anything in a certain object,
he/she needs to approach the object (by sending a message) and ask it to
perform the needed function. The way in which the function performs is
hidden from any external object.

• Inheritance: The existing definitions of object classes can be used as is or
changed according to specific needs using the inheritance principle.
Inheritance creates hierarchies among classes and makes it easier to
design the system, because existing attributes and functions do not have to
be redefined. This way, redundant definitions are prevented, development
effort is spared, and complicated object classes can be easily built.

• Reusability: Due to abstraction, encapsulation, and inheritance, object
classes originally built for other systems can be reused. Reuse saves costs,
shortens development time, and improves system’s reliability. This enables
easy changing and expanding of the existing system.

• Creating new software markets: Due to reusability, software compa-
nies can supply class libraries to the use of many organizations in various
domains.

• Easier programming: The programs are built in small parts, which are
easier to make. The programmer builds one class function at a time, thus
avoiding complicated programming.

• Easier software maintenance: Each class can be maintained separately,
because each class is independent of other classes.

• Improved communication between developers and users: The devel-
opers and users think in the same terms: objects having attributes and
functions that are performed in response to events. Therefore, the OO
approach encourages understanding between users and developers.

Introduction to the Objects Approach in Software 11

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Review Questions

1. What has motivated the development of the OO approach?
2. In what way is the objects model similar to a conceptual model, and in what

way are they different?
3. What types of applications are suitable to develop with the objects approach

rather than the traditional approach?
4. What are the main advantages of the objects approach to IS development?
5. Explain and provide examples for the following terms: object; attribute;

state; behavior; function/service/method; class; superclass and subclass;
inheritance; message; parameter; interface; signature; and encapsulation.

6. What is reuse in software, and why is it more associated with OO
development than with traditional development?

References

Chen, P. (1976). The entity-relationship model—Toward a unified view of data.
Transactions on Database Systems, 1(1), 9-36.

DeMarco, T. (1978). Structure analysis and system specification. Englewood
Cliffs, NJ: Prentice Hall.

Elmasri, P., & Navathe, S. (2003). Fundamentals of database systems (4th

ed.). Boston: Addison Wesley.
Gane, C., & Sarson, T. (1979). Structured systems analysis, tools and

techniques. Englewood Cliffs, NJ: Prentice Hall.
Garcia-Molina, H., Ullman, J., & Widom, J. (2002). Database systems—The

complete book. Upper Saddle River, NJ: Prentice Hall.
Smith, J., & Smith, D. (1977). Database abstractions: Aggregation and gener-

alization. ACM Transactions of Database Systems, 2(2), 105-133.
Sumit, S., Srifdhar, P., & Radhakanta, M. (2001). Revolution or evolution? A

comparison of object-oriented and structured systems development meth-
ods. MIS Quarterly, 25(4), 457-471.

Wieringa, R. (1998). A survey of structured and object-oriented software
specification methods and techniques. ACM Computing Surveys, 30(4),
459-527.

Yourdon, E., & Constantine, L. (1979). Structured design. Englewood Cliffs,
NJ: Prentice Hall.

12 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Endnotes

1 To be more precise, in some DBMSs it is possible to define functions as part
of the database schema. These are sometime termed database proce-
dures or stored procedures, but their use is limited usually to perform
checks of completeness or constraints on values of fields/attributes.

2 For more information on databases and the relational model, see for
example, Elmasri and Navathe (2003) and Garcia-Molina, Ullman, and
Widom (2002).

3 Indeed, Smalltalk was developed originally for children.
4 In spite of what is said here, we shall see that in the OO approach too,

different techniques are combined in the development process.
5 Hence, in multiple-inheritance, the data model is actually a directed graph

of classes rather than a hierarchy.
6 Attribute names are written (here and in the rest of the book) in italics.

Values of attributes are written within ‘ ’ signs.
7 Class names are written in Bold; initial letter capitalized.
8 At this stage, the reader can understand the figure intuitively; in the

following chapters, more detailed explanations will be given.
9 This is an informal description of the function; actually it may get assistance

from other functions of this class to perform tasks of retrieving the object
or saving it. These details are not important at this stage.

1 0 The figure does not show arrows returned to senders because these are not
considered messages but rather confirmations. By the way, it is not
necessary for a receiver to return a confirmation or any data to the sender;
it depends on the specific application needs.

The Objects Model and the Class Diagram 13

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

The Objects Model
and the Class Diagram

This chapter describes in detail the components of the objects model
(including objects, classes, attributes, relationships, and functions), and
the class diagram which represent them.

Similarities and Differences Between
the Objects Model and the
Entity Relationship Model

The objects model (or object oriented [OO] model) is a conceptual-application
model that is used to define a database schema representing a certain reality. The
model views the world as consisting of objects belonging to classes. The objects
of these classes have attributes, behavior (i.e., functions), and various relation-
ships with other objects.
The objects model can be presented as a class diagram (also termed OO diagram
or objects diagram). Like an entity relationship diagram (ERD), the class
diagram has two main goals:

1. To serve as a communication medium between the developers (analysts/
designers) and the users or their representatives. The diagram is created
as a result of the interactions between the two parties, during which they

14 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

discover and define the users’ information needs; the diagram serves like
a contract between these two sides which summarizes the users’ needs.

2. To be the basis for further development of the information system (IS).
Based on the diagram, it should be possible to design the database schema
of the application, and (partially) the functions that it will have to perform.
For that, it is necessary to transform the class diagram into an equivalent
verbal description—an objects schema. This is done using an object
definition language (ODL), similar to data definition language (DDL) in the
relational model. In principle, all components of the class diagram are
mapped to the objects schema. However, the objects schema includes more
details which are not included in the diagram. For example, in the diagram
each attribute has a name, and some attributes may have specific constraint
definitions (e.g., key, unique); in the objects schema there are more detailed
definitions, including the attributes’ domains or data types (e.g., numeric,
char., real, etc.) and lengths. Another example, in the class diagram, we
only write the names of the classes’ functions, while in the objects schema
we specify the parameters of the functions.

As aforementioned, there is a great deal of similarity between the OO and ER
models and diagrams, since the ER model is one of the sources from which the
objects model originated. But there are differences between the two models,
which we will review later on. One of these differences is that the ER model is
“static,” that is, it only deals with the data structure, while the objects model also
includes “behavior,” that is, the functions that operate on the data.
The rest of this chapter is dedicated to describing the components of the objects
model and the class diagram. The description is organized in four main catego-
ries: objects and classes, attributes, relationships, and functions.

Objects and Classes

Object

An object represents a thing that exists in the real world, tangible or intangible.
In the real world there are many different things, but we are only interested in
those which are relevant to the business or the organization, and for which data
needs to be stored in the IS, as based on the users’ needs.
An object can be tangible, for example, a student, an employee, an item or a book.
But it can also be an intangible thing, for example, a purchase order, a delivery

The Objects Model and the Class Diagram 15

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of goods; or it can be an event that has to be recorded, for example, a student
registers to a course, a reader lends a book. The thing all objects have in common
is that they all contain data which need to be saved, updated, or retrieved and
presented to users. They are sometimes termed data objects or entity objects.
The process of creating an objects data model includes the discovering and
identification of the types of objects that exist in the reality and on which data
needs to be kept in the system. This is done, as said, in cooperation between
analysts and users or their representatives (e.g., experienced users or managers
who are familiar with the organization, the existing IS, the problems caused by
that system, and the needs from the future IS). Based on the types of objects,
the database schema and other components of the IS will eventually be built.
In addition to the data objects, there are those who distinguish other kinds of
objects, such as interface objects, which are used to enable communication
between the IS and external entities or users, for example, windows, input
screens, icons, buttons, and other accessories known as the graphical user
interface. Such objects do not originate from the reality being modeled and do not
contain real-world data; they are used as a means to build the system in its
development environment. In the system analysis phase, when we build models
of the reality according to the users’ needs, we deal only with data objects, while
other kinds of objects are dealt with in the following phases of development.
An object is characterized by attributes, which have values. The values of the
attributes are the object’s data. For example, the object student can be
characterized by these attributes: student ID, first name, last name, birth date,
city, and average grade. The values of these attributes for a certain student
may be: ‘1234567’ for student ID, ‘John’ for first name, ‘Doe’ for last name,
‘22.07.1985’ for birth date, ‘New York’ for city, and ‘87.4’ for average grade.
The values of these attributes determine the state of the object. It is obvious that
the state of an object can change from time to time. For example, John might
move to a different city, or his average grade may change.
In addition to attributes, an object has “behavior,” which means all the actions or
functions that can operate on the object or its attributes during its lifetime in the
system, for example, adding a new student, displaying the state of a student,
updating a student’s address, calculating the average grade, and so forth. The
various functions can be performed on an object in response to events in the real
world. For example, the function add student is activated when a new student
is admitted; the function update address is activated when a student moves to
a different city; the function calculate average grade is activated when a new
course grade is reported. At this point we do not explain who and how a function
is activated, nor how the function performs its task. We only say that a function
is activated by a message sent to it from an object, asking it to do what it ought
to do. Usually, a message arrives with parameters containing data which the
function needs in order to do its task. For example, in order to activate the

16 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

function update address, the message sent to the function should include the
object’s (student’s) identifier and the new city. To conclude this introductory
discussion on “behavior,” we note that like objects and their attributes, the
functions too must be defined and based on the users’ needs.
Objects in the real world are not “independent”; they usually have relationships
with other objects. For example, a student may belong to a certain department,
be registered to certain courses, and have certain classmates. Just like the need
to keep data on the object (i.e., its attributes) and define its behavior (the
functions that operate on it), it is also important to know are other objects to which
it is related. Sometimes an action performed on an object will affect other objects
related to it. Sometimes it is necessary to display data of objects which can be
found based on predefined relationships. For example, if a student is admitted to
a certain department or moves to a different department, a record of the event
should be kept in the student object (for example, by changing the value of a
certain attribute), and this will be done by an appropriate function. Additionally,
this should also be recorded in the respective department object, using its proper
function, to enable finding the department’s students. In order to allow all of this
to happen, a relationship must be defined between each student and his/her
department. Similarly, if a student registers to a course, the event should be
recorded in both the student and course objects. Another example of enabling
one to produce a report providing some details about the students who registered
to a course, one needs to find the specific course object and the respective
(registered) student objects. In general, many relationships of different types
may exist between different objects. The various relationship types need to be
defined in the course of creating the objects model.

Class

A class is a collection of objects of the same type, that is, objects having the same
attributes, behavior (functions), and types of relationships. For example, assum-
ing that all students have the same attributes, functions, and relationship types,
we may say that the students belong to a class Students.1

When we say that the objects of a class have the same attributes we do not mean,
of course, that they have the same values; every object has its own attribute
values, for example, every student has its own student ID, name, and so forth.
The same is true for relationships: All objects of a class have the same types of
relationships, but obviously every object has its specific relationships with other
specific objects. For example, a certain student may be registered to certain
courses, belong to a certain department, and so forth. When it comes to behavior,

The Objects Model and the Class Diagram 17

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

things are different: The functions which can operate on an object (that until now
we considered as belonging to the object) actually belong to the object’s class.
When a certain function needs to act on a certain object, a message is sent to the
function of the class, while one of the parameters sent with it is an identification
of that object. Hence, we may assume that all the functions of a class are located
in one place (say attached to their class); when a function needs to be executed,
it is called (triggered) by a message which includes the necessary parameters.
The function operates on the object (perhaps changes its state); eventually the
object and the function return each to its place.
Sometimes, objects can be very “similar” to one another, but not entirely; there
may be differences in some attributes, functions, or relationships. For example,
in the case of student objects, there may be graduate students, who are indeed
students, but they also have specific attributes which are not shared by other
students (such as supervisors and thesis topic), or specific functions (such as a
function for assigning a supervisor or recording a thesis topic), or specific
relationship types (such as being supervised by supervisors). In such case we
may define a specific class Graduate Students as subclass of Students. We
will elaborate on classification later on, in the section on relationships.
In a class diagram, a class is represented by a rectangle divided into three parts,
as shown in Figure 2.1. In the upper part we write the class name, in the middle—
the attribute names, and in the lower part—the function names.

Figure 2.1. An object’s class

18 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Attributes

An attribute is a type of data that needs to be stored for every object. As already
said, all the objects belonging to the same class have the same attributes. The
data, that is, the values of the attributes, are stored within each object (in the
system’s database), while the definitions of the attributes (e.g., the attribute
names and their data types) are kept separately, as part of the class definition.2

Attribute names are unique for every class (but not necessarily for the whole
schema). An attribute has a data type and length, which determines the type of
data it may store. We will not deal here with the specific data types and lengths
of attributes;3 we only mention that these details are not defined in the class
diagram anyhow, but rather in the objects schema which will be generated from
it. Even in the objects schema it is not necessity to define the data type and length
of each and every attribute separately. If a certain type of attribute appears in
several classes, even if having different names but the same data type, it may be
defined once only under a category of “data type definitions” (also termed
“domain definitions”), while within each class the respective attribute will just
reference to its data type definition. For example, within “data type definitions”
we may define:

• Type name: ‘ID’; data type: ‘numeric’ (9)
• Type name: ‘Name’; data type: ‘characters’ (30);

while within the class Students we may define the following attributes:

• Attribute student ID type ID
• Attribute last name type Name
• Attribute first name type Name
• Attribute department data type characters (20)

The latter is an example for an attribute definition whose data type is not defined
separately but rather within its class definition.

The Objects Model and the Class Diagram 19

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Types of Attributes

Simple/Atomic Attributes

A simple/atomic attribute may have a single value of the certain data type. For
example (see Figure 2.1), student ID, first name, last name, average grade.
Sometimes we want to limit or constrain the possible values of an attribute. Here
are some common constraints:

• Default: The attribute of an object is assigned a default value. The value
may be assigned either at creation of the object or due to some operation
on it some other time, unless a different value is assigned due to a certain
function operating on the object. For example, the attribute country born
of class Students may be defined as follows: Attribute country born type
country default ‘USA’. This definition may be useful if many students
were born in the USA, for it allows time to be saved when inputting the data
of new students: Only for those born in different countries will we need to
input different values.

• Not-Null: The attribute must have a value. It means that when the object
is created the attribute must be given a value; the value may be changed
later on, but it may not be nullified. Hence, in case one wishes to change the
attribute a new value must be provided. Here is an example for Not-Null
definition: Attribute last name type name not-null.

An attribute may be defined as both ‘default’ and ‘not-null’. For example, in class
Students we may define: attribute department not-null default ‘Software
Engineering’, meaning that it if no other value is assigned, the student’s
department is software engineering. A student may move to another department,
but may not be without a department.

• Unique: The value of the attribute must be unique among all objects of the
class. For example, Attribute department unique. It means that there may
not be two departments having the same name. A unique attribute may be
null, unless it is additionally define as not-null.

• Enumerate: The attribute can have one of the enumerated values. The
values are listed within parentheses, separated by a ‘/’. For example,
Attribute day enumerate (Sun/Mon/Tue/…)

20 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tuple

Tuple (sometimes also called structure or group) is a group of (two or more)
attributes that appear together. For example, an address may be defined as
Attribute address tuple {Street, Number, City, Zip}. For short, the word “tuple”
may be left out, because the “{ }” parentheses indicate that the attributes within
are a tuple.

Key

A key is an attribute whose value is unique among the class’ objects, and
therefore enables to identify an object in the class. Obviously, a key may not be
null. A key is often used for searching/locating or storing an object in the
database. The key name is underlined, as can be seen in Figure 2.1 for student
ID. A key may sometimes consist of more than one attribute (because no single
attribute alone can identify an object). For example, assume a class Course
Offerings, where each of its objects includes details of a specific course offered
in a certain year and semester. In this case, the key would be tuple {course
code, year, semester}. Instead of underlining the key, or in addition to it, it is
possible to write ‘key’ after the attribute name(s).
A class may have more than one key (while each key may consist of one or more
attributes). For example, a student may have two keys: student ID and student
number (a number assigned to each student by the university). In this case, each
of these is considered a candidate key; one of them is defined as ‘key’, while the
other is defined as ‘unique’. It is better to choose as key the shorter attribute
(field lengthwise), or the more useful one, since the user may be using it to search
desired objects.
It is not always possible to find a key which can uniquely identify an object of a
class. For example, assume a class Registrations, in which every object
includes data on the registration of a certain student to a certain course offering.
It is possible to define the key: {student -ID, course code, year, semester} but
this would require including these attributes in the class. This is not necessary;
we may save “space” by only including the attribute course grade because the
other details may be found in related objects (i.e., of the student and the course
offering objects). But obviously course grade cannot be defined as a key (as
many students may obtain the same grade). So how can we tell who is the student
and which is the course? For this, we need to define proper relationships between
each student’s object (in Students class) and his/her specific registration
objects in Registrations, as well as between each Course Offering’s object and
its specific registration objects. We should not be bothered by the “technical”

The Objects Model and the Class Diagram 21

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

aspects of the realization of these relationships; suffice it to understand that by
defining proper relationships it is possible to locate an object even if it cannot be
identified by its own key attribute(s). We will discuss more on relationships and
how we use them to refer to objects later on in this chapter.
Anyway, whether a key is defined for the class or not, one must assume that
when an object is stored in a database, it is given an object identification number
(OID) by the database management system. This unique, internal ID serves the
system for the purpose of identification and location of objects, and it cannot be
change by a user.4 In the registration example, for instance, when a registration
of a student to a course is reported, the system will create a new object of
Registrations (assume it would be done by add a registration function). Upon
creation, it is assigned an OID which the system can use for various purposes,
for example, to determine its physical location in the database, to add it to the
student’s object as a new member of its set registered to courses; as well as
to add it to the course offering’s object as a new member of its set registered
students. This will enable a user to find the registration object in order to report
its course grade at the end of the semester. For that, the user will only need to
provide the keys of the student (student ID) and the course (course code), and
the system will be able to find (using the right functions) the registration object.

Set Attribute

A set attribute, also termed multi-valued attribute, may have multiple values. The
number of values may vary from one object to another. In some cases there is
no limitation on the number of values; in other cases it is possible to limit the
number by specifying a min or max number. For example, in Figure 2.1 we have
set phone numbers (1...3) meaning that each student must have at least 1 phone
number but not more than 3. The min number of values may sometimes be zero
(meaning no values) or any positive number. If there are no limitations, nothing
is written after the set name; if there is only a min limit, we write ‘*’ or ‘N’ instead
of a specific max value. It should be noted that the values within a set must be
unique, that is, no duplicate values are allowed.
A set may consist of tuples of attributes, for example, set address {street,
number, city Zip}, or set grades {course code, grade}. Sometimes we may be
willing to constrain one or more of the member attributes of the tuple to be unique
in the set. In the previous example, although the combination of course code and
grade must be unique, each of the member attributes is not necessarily unique;
hence it is possible to have two tuples such as ‘{CS, 85}, {CS, 95}’ (as if there
are two grades for the same course). To prevent such possibility we must specify
a partial-key constraint on the respective attribute(s) within the set. This is done

22 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

by a broken underline of the partial key, for example, set grades {course code,
grade}. Here is another example: consider a set in Students class named set
annual average grade {year, average grade}. This definition enables storing
multiple grades for a certain year, for example, {2006, 85}, {2006, 95}. In order
to make sure that there is only one average grade per year, we must specify set
annual average grade {year, average grade}.

Reference Attribute

A reference attribute refers to another object (in the same or a different class).
A reference attribute does not contain a value, but rather the OID of the
referenced object. More on reference attributes will be discussed later in the
context of relationships between objects.

Combinations of Attribute Types

Attributes can be combined and nested in various ways. For instance, a tuple may
consist of a simple attribute and of sets; a set may consist of tuples (as already
seen) and of other sets. Here are a few examples of possible combinations of
attribute types, all dealing with the class Students.

• set tuition-fees tuple {date-paid, bank name, sum}
• total-grades tuple {total grade average, set annual average grade tuple

{year, average grade}}
• set course-achievements {course code, year, semester, set grades

{final grade, exam grade, set assignment-grades {assignment#, weight,
grade}}}

(Note that the word tuple was left out in the last example.)

In spite of the possibility to combine and nest sets within sets, this is not
recommended because it complicates the data structure and comprehensibility
of the class diagram. Such situations can be simplified by defining separate
classes instead of nested attributes. This will be elaborated later on in this and
in the next chapter.

The Objects Model and the Class Diagram 23

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An Attribute or a Class?

Sometimes we are faced with the dilemma of deciding whether something is an
attribute of a class, or entitled to be a class of its own, having relationships with
other classes. For example, let us assume that we need to know which vehicle
a student owns. We could define an attribute of class Students named car plate
number. If we also need to know the year the car was made we could define
another attribute for it, and so on. However, we may consider defining a class
Cars which will have certain attributes, for example, plate number and year
made (and perhaps also manufacturer name, set repairs made, etc.), and also
define a relationship between the classes Students and Cars. Which is better,
then: to keep the car’s details as attributes of the student object, or create a class
Cars? This question does not have only one right answer; it may depend on, for
example, the number of attributes of cars: The more things we want to know
about cars the more justification we have to define a class Cars. In that case,
we will of course have to define a relationship between each student object and
his/her car object (or objects), a relationship that will replace what was originally
considered an attribute of Students.
It is obvious that if we make changes in classes and attributes, it may also require
making changes in the class functions. For example, if the plate number and
year made attributes are part of the Students class, this class might have a
function named display student’s car details that will enable retrieving this
information from a student object. However, if cars are defined in a class of their
own, and we still need to find information about a student’s cars, we will not be
able to find what we are looking for in the student’s object only. Hence, the
aforementioned function will have to change somehow including sending a
message to a function of class Cars, and the latter function will retrieve the car’s
information. (We will discuss functions later on as well.)
To conclude the discussion on classes, we would like to mention again that a class
is not a “normalized” structure (in the relational model sense). It is possible for
a class to be normalized in the sense that it has a key, and all its other attributes
functionally depend on it; but, as we already know, a class does not have to have
a key (only an OID), and even if it has a key, it may contain attributes of various
kinds, including sets and combinations of simple attributes, tuples, and sets. One
can see advantages and disadvantages in a class structure compared to a
normalized relation. Generally, a relational (normalized) structure has less
duplicity of data, and is easier to update. However, the retrieval of data is more
complicated and may require more time (because of the need to perform joint
operations in order to find data that might be spread across various relations).
The opposite is true for the objects model: Generally there are more data

24 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

duplicities, which make updating more difficult, but it might be easier to retrieve
desired data because of the higher chances of finding it in one class.5

Relationships

As we already know, objects are not necessarily “independent,” but can be
related to other objects (either in the same class or in other classes). We
distinguish between three kinds of relationships: ordinary relationships, aggrega-
tions (whole-part relationships), and inheritance (class-subclass relationships).

Ordinary Relationships

An ordinary relationship (or association), like a relationship between entities in
the ER model, means that an object in a certain class can be related to one or
more other objects. In the objects model only binary and unary relationships are
allowed.6 Unlike the ER model, ternary or higher order relationships are not
allowed. When a relationship of this kind needs to be expressed, it is done by
defining a “relationship class”—as will be elaborated later on.
In the class diagram, a relationship is specified by a line connecting the respective
classes (unlike the ER model, where a diamond shape is used to emphasize the
relationship). The relationship name is written above or under the line. Next to
every class participating in the relationship we write the multiplicity of the
relationship, that is, how many objects may participate in that type of relationship.
A simplistic way to define multiplicity is one-to-one (1:1), one-to-many (1:N)7 or
many-to-many (N:N or M:N). In this notation ‘1’ or ‘N’ mean how many objects
at most may participate in a relationship type. For example, a 1:N relationship
belongs to between Students and Departments, where the ‘1’ is next to
Departments and ‘N’ is next to Students, means that a student may only
belong to one department, while a department may have many students. This
definition does not tell us if a student must belong to any department or if a
department must have any students. A more precise way to define multiplicity
is by distinguishing between the min and max number of participants in the
relationship. We will use the example shown in Figure 2.2 to explain the matter.
The relationship belonging between Students and Departments is generally
many-to-one. But more precisely, the (1,1) next to Departments means that a
student must belong to one department, no less and no more; the (0,N) next to
Students means that a department might not have any students (this may be true
for a new department), but there is no limitation on the number of students it may

The Objects Model and the Class Diagram 25

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have. The 1:N relationship between Departments and Courses can be
interpreted in a similar way.
The unary relationship prerequisites in class Courses is (0,N) in both sides of
the relationship, meaning that a course may (but must not) require many
prerequisite courses; similarly, a course may (but must not) be required (as
prerequisite) for many other courses. Since a course may play two different roles
in this relationship type, we write on the relationship line, next to each of its ends,
the role it plays in the relationship. In this example, the multiplicity of the
relationship is symmetric, so apparently there is no importance to mentioning the
roles, but this would not be the case in nonsymmetric relationships. For example,
if we assume that a course may only have one prerequisite, but can be a
prerequisite for several other courses, in that case we need to write (0,1) next
to one end of the line, and the role ‘required courses’, and write (0,N) next to the
other end, and the role name ‘is prerequisite for’.
Registration is a many-to-many relationship between Courses and Students.
The (0,N) next to Courses means that a student does not have to register to even
a single course (say a new student), but he/she may register to many courses.
The (0,N) next to Students means that a course may have no students registered

Figure 2.2. Ordinary relationships between classes

26 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to it (say a new course), but there is no limitation on the number of students who
may register to it.
Besides the values 0 and 1 for min, or the values 1 and N for max, we may define
other specific values for min and max participation in a relationship. For example,
(10,150) instead of (0,N) next to Students would mean that a course must have
at least five registered students but no more than 150.
Many relationship types may be defined between the same classes. For example,
between Departments and Courses we may define the relationship types:
courses offered by a department, service courses received by a department,
the most popular course of a department, and so on.

Reference Attributes

A relationship between classes is not represented only by a connecting line, but
also by defining reference attributes (also called relationship attributes) of the
respective classes. A reference attribute is given a name based on the name of
the relationship or on the role of its objects in the relationship, followed by the
name of the related class in square brackets [..]. For example, in Figure 2 we
have the belonging relationship between Courses and Departments; there-
fore we define in class Courses an attribute: belongs to department [Depart-
ments]. (It is possible, but not mandatory, to write ‘rel’ or ‘ref’ before the [..].)
Note that a reference attribute does not contain a value, but rather the OID of
the related object—as if it is a pointer to that object. In our example, assume that
every course object contains in its attribute belongs to the OID of its depart-
ment. Note that due to the min 1 multiplicity of the relationship there must be an
OID for every course. A min 0 (meaning that there may be courses which do not
belong to any department), would mean that a course which does not belong to
a department has no OID of a department but rather a null value. Note the
inverse reference attribute of Departments: set courses of department
[Courses]; it is a set reference attribute because a department may have many
courses. So, assume that the members of the set are the OIDs of the respective
courses.
In general, for a one-to-one relationship, a referenced attribute is defined in each
of the involved classes; for a one-to-many relationship, one for the reference
attributes—that of the class which is in the “one” side of the relationship—is a
set attribute; for a many-to-many relationship, both reference attributes are sets.
In an objects schema (but not in the class diagram) we further clarify the
relationship between objects by adding to each reference attribute—next to the
name of the referenced class—the name of the “inverse” attribute, that is, the
attribute in the other object which refers to this object. For example, in class

The Objects Model and the Class Diagram 27

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Courses we will define the reference attribute: belongs to [Departments]
inverse courses of department, while in Departments we will define the
reference attribute: set courses of department [Courses] inverse belongs to.
All the aforementioned material on reference attributes also applies to unary
relationships. For example, in Figure 2.2, due to the prerequisites relationship,
there are two reference attributes in the class Courses, one for each of the roles
a course can have: one set reference attribute for the prerequisite courses: set
required courses [Courses], and the other for the courses this course is a
prerequisite for: set is pre-req. for [Courses]. Of course, the name of the
referenced class in both attributes is identical, but each attribute has a different
name.

Attributes of Relationships

A many-to-many relationship may have attributes. In Figure 2, for instance, there
is a many-to-many relationship registration between classes Courses and
Students. Assuming that a student obtains a course grade, the grade is an
attribute of the registration relationship. It is not an attribute of a student only
or the course only, but of the relationship between the two. In the ER model, the
grade would have been marked as an attribute of the relationship diamond. In the
relational model, a new, “relationship relation” would have been defined and the
grade would have been included (with student ID and course code as key). In
the objects model, we specify the relationship attribute(s) together with the
respective reference attributes. This forms a tuple whose components are the
reference attribute and the relationship attribute(s). In our example, we define
in class Courses the attribute: set registered students tuple {[Students],
grade}, and in class Students we symmetrically define the attribute: set
registered to courses {[Courses], grade}.
As we can see, relationship attributes may cause duplicity of data, because the
relationship data are written in both related objects. (Each grade, in our example,
is written/stored in both the student objects and the course object.) On the other
hand, it allows us to efficiently find the grades obtained by a student, as well as
the grades given in a course. This is so if we need symmetric access to the data—
and this is the way we define the relationship attributes in the class diagram
which we create in the analysis phase; but it is not necessarily the way it will
eventually be implemented in the database. If, for example, we will find out that
no one (i.e., no user of the system) needs to know the students’ grades in a
certain course (but say only the student names and their average grade), then the
attribute set registered students of class Courses will not include the grade, so
it will be defined as: set registered students [Students]. Moreover, if we will
find out that no one needs to know which students took the course (but say only

28 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

their average grade), then there is even no need to implement the set attribute
registered students. In other words, there is no must to implement all reference
and relationship attributes symmetrically. The decision whether to do so (or
whether or not to implement them at all) depends on the users’ needs, which must
be defined separately (in the functional analysis process). However, while
building the class diagram, if opt to model a M:N relationship between two
classes directly, we write the reference and relationship attributes symmetri-
cally—with duplicities.
The more relationship attributes we have in a many-to-many relationship, the
bigger the amount of duplicities. The problem can be avoided by defining a
“relationship class” between the M:N related classes. That class will hold the
data of the relationship attributes. In our example, instead of defining a direct
relationship between Courses and Students we may define a relationship class
Registrations, as presented in Figure 2.3. The attributes of this class include a
key tuple consisting of two reference attributes, one referring to Students and
one to Courses. In addition, it has a simple attribute grade. Note how the key
tuple is written: Being a key of the class it is given an attribute name; for simplicity
the key name may be identical or similar to the class name, and it is underlined.
We term it “key tuple.” This key does not contain values but rather OIDs of the
referenced objects (obviously, the combination of two OIDs of an object must
be unique).8 The attribute names the student and the course, preceding the

Figure 2.3. Representing a many-to-many relationship via a relationship
class

The Objects Model and the Class Diagram 29

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

respective class names, are not mandatory and are written only for clarity;
suffice it to specify only the referenced class names, that is, registration
{[Students], [Courses]}. Viewing the two reference attributes within the tuple,
following the underlined key, makes it clear that this is a relationship class,
representing a many-to-many relationship between the referenced classes. Note
that in each of the “parent” classes, Courses and Students, there is a set
reference attribute to class Registration. Using one of these sets, it is possible
to find the courses a student is registered to and his/her grades, or the students
registered to a certain course and their grades.
As we have seen, a many-to-many relationship may be represented by direct
relationships between the involved classes, or by a relationships class. The more
relationship attributes there are, the more justifiable it is to adopt this solution. By
the way, even if the many-to-many relationship is unary, we can still define a
relationship class, assuming there are relationship attributes. Let us assume, for
example, that the prerequisites relationship (Figure 2.2) has the following
relationship attributes: date set and min qualifying grade. In that case, instead
of keeping these attributes within the two set reference tuples, it seems
preferable to define a relationship class Prerequisites (see Figure 2.4), in which
each object is a prerequisite relationship between two courses: the required
(termed pre; may be termed “parent course”) and the requiring (termed post;
may be termed “child course”). Note that the key of this class is a tuple with two

Figure 2.4.

30 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

references to class Courses: one to the “parent” course object and the other to
the “child” course object.9 Note that in the class Courses we define two set
reference attributes: requires courses and pre-req. for courses; the inverse
reference attributes enable finding the respective course objects.
Up until now we have been discussing many-to-many relationships having
relationship attributes. Generally, one-to-one relationships too may have rela-
tionship attributes. For example, assume a one-to-one relationship named
management between two classes Employees and Departments. This rela-
tionship may have an attribute date appointed. A one-to-one relationship with
attributes can be treated just like a many-to-many relationship, including the
possibility to define a relationship class; but this solution is rare because in reality
such cases (namely of 1:1 relationships having many relationship attributes) are
rare. The case of one-to-many relationships is a bit different; if there are
relationship attributes in such a case, they may be considered as attributes of the
class in the “many” side of the relationship. For example, consider the one-to-
many relationship belongs to between classes Students and Departments
(see Figure 2), and assume that we need to know the date each student was
admitted to his/her department. Although some may claim that this date is an
attribute of the relationship, it is more correct to say that it is an attribute of
Students, because every student belongs to just one department. Therefore, in
such case we only have to add to class Students a simple attribute date
admitted—with no changes in the reference attributes of the two classes.

Dealing with Ternary Relationships

It has already been said that in the objects model, ternary relationships are not
defined, nor are relationships of higher order. If such a relationship exists in the
real world, the relationship itself is considered an object; thus a class is defined
whose instances are the relationship occurrences. For example, assume a reality
in which agents sell products to customers, hence, there exists a ternary
relationship involving three participants: an agent, a product, and a customer. In
the objects model we define a relationship class Sales, whose objects are
actually events of sale, in addition to classes Customers, Agents, and Products
(see Figure 2.5). Every object of Sales refers to three objects, one in each of the
related classes. Assuming an agent may sell many products to the same
customer, that a product may be sold by an agent to many customers, and that
a customer may buy a product from many agents (perhaps at different times),
we define a many-to-many-to-many (M:N:P or N:N:N) relationship. Therefore,
the key of Sales is a tuple consisting of three reference attributes, each referring
to one of the aforementioned classes: sale {[Products], [Customers],
[Agents]}.10 It is clear that in each of the involved classes there is a set of
reference attributes to the Sales class.

The Objects Model and the Class Diagram 31

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Now let us analyze the case of a many-to-many-to-one (M:N:1) relationship.
Assume that the policy of the previous company is that a certain product may be
sold to a certain customer by one agent only. In other words, if a customer buys
a product from a certain agent, he may not buy that product from another agent,
but he may buy other products from that agent, not to mention that the agent may
sell the same product to other customers. The class diagram depicting this
situation is shown in Figure 2.6. It looks very similar to the former example where
we had a M:N:P relationship, and we still see similar relationships and cardinali-
ties, because each of the involved classes is still in 1:N relationship with the class
Sales. The difference can be seen in Sales: Its key is a tuple of two reference
attributes only: sale {[Products], [Customers]}, while the reference attribute
the agent [Agents] is not part of the key. It means that a certain sale event,
which is identifiable by a certain customer and a certain product, has (i.e., refers
to) just one agent.

Figure 2.5. Representing a many-to-many-to-many relationship

32 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It should be mentioned that a ternary many-to-many-to-one relationship is rare
in the real world, and the previous example was only invented to demonstrate the
way such a relationship can be represented in a class diagram. An even rarer
relationship is many-to-one-to-one (N:1:1). Let us assume in accordance with
the previous example that in addition to the aforementioned constraint that a
customer may buy a certain product from one agent only, a customer may only
buy one product form a certain agent. There are two alternative ways of defining
the attributes of Sales:

Alternative 1: Alternative 2:
- sale {[Customers], [Agents]}
- the product [Products]

- sale {[Customers], [Products]}
- the agent [Agents]

Figure 2.6. Representing a many-to-many-to-one relationship

The Objects Model and the Class Diagram 33

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Aggregation

Aggregation is a structural relationship between objects from different classes
that “come together.” In most cases we are dealing with a relationship between
one object which is the “whole,” and other objects which are its “parts.” That is
why aggregation is also called “whole-parts” relationship. For example, a car is
made of an engine, a body, wheels, and so forth. Each of these is an object of
a respective class, while the relationship enables finding the parts (components)
of the whole object (car). Another kind of aggregation is “container-contained”
relationship. For example, an office contains chairs, tables, shelves, phones, and
so forth. Another kind is “collection-member” relationship. For example, an
organization is made of departments, workers, buildings, offices, machines,
laboratories, and so forth.
Figure 2.7 demonstrates a “whole-parts” aggregation. We have a class Air-
planes (the “whole”), and classes Engines and Gears (the “parts”). A “whole-
parts” relationship is marked by a line with a diamond next to the “whole” class.

Figure 2.7. A whole-parts relationship

34 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We also write the multiplicities of the relation similar to an ordinary relationship,
but here the multiplicity at the “whole” side must be (0,1) or (1,1). The max is
always 1, meaning that a certain part (engine or gear) must be installed (at a
certain point in time) in one airplane only. The min may be 0 or 1: min 0 means
that a part may not be installed on an airplane (e.g., when an engine or a gear is
in repair); min 1 would have meant that the “part” cannot be disconnected from
the “whole.” In such case, the diamond is shaded (not shown in this Figure). In
the “part” side, there can be any min and max numbers. In our example, an
airplane must have at least one engine but no more than four; and at least four
gears without any limitation on the max number.
Besides the slightly different symbol, an aggregation is not much different from
a one-to-many relationship between the class in the “whole” side and each of the
classes in the “parts” side. Like an ordinary relationship, a “whole-parts”
relationship is defined by reference attributes (see Figure 2.7). Actually, many
objects in reality may be defined as aggregations, but they are not modeled as
such, but rather as ordinary relationships. For example, we may say that a
university consists of departments, students, professors, buildings, and so forth,
but still it is not customary to define an aggregation relationship between
university and the latter. Instead, ordinary relationships are usually defined
between them. Only when indeed the “parts” cannot be removed from the
“whole” there may be an advantage in modeling such relationships as an
aggregation, because in such cases the addition or deletion of the “whole” implies
also addition or deletion of its parts. Anyway, it must be stated that an
aggregation is not an inheritance relationship; the “whole” and the “parts” are
different types of objects, belonging to different classes, the “parts” do not inherit
from the “whole” and they have different keys. In our example, an airplane is
made up of engines and gears, but an engine or a gear are not kinds of an airplane.

Inheritance

An inheritance relationship, also termed “generalization-specialization” or “is-a”
relationship, enables us to distinguish superclasses from subclasses that inherit
attributes, relationships and functions from them. A class, as we know, is a
collection of objects sharing the same attributes, relationships, and functions.
However, there may be objects of a certain kind which are similar to other
objects in their kind, but in addition having some specific attributes, relationships,
or functions. In cases like these we distinguish between super- and subclasses.
This is demonstrated in Figure 2.8, which shows a superclass Students and a
subclass Undergraduate Students. The inheritance relationship is marked by
a semicircle (a triangle can also be used) on the line connecting the classes. The
distinction is made since, according to the example, an undergraduate student has

The Objects Model and the Class Diagram 35

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specific attributes (average grade and sport club) that other students do not
have. (Other students may include, e.g., graduate students, external students,
and others). It is obvious that an undergraduate student is first of all a student,
and has the same attributes as the other (in the superclass)—student ID, name,
phone numbers, etc.) However, undergraduate students have additional, spe-
cific attributes (possibly also specific relationships and functions—not shown in
this figure).
We should consider this question: How do we know when it is necessary to
distinguish between super- and subclasses? In the previous example, is it not
enough to define just a class Students and include in it the two specific attributes
of undergraduate students? In such case only undergraduate student objects will
have values in those two specific attributes, while for all other student objects
these attributes will be null. If the majority of students are undergraduates, then
indeed there might be no justification for making the distinction. But if only some
of the students are undergraduates, it would mean that for many objects there will
be null values. Hence, the more distinct attributes we have—not to mention
distinct functions and relationships—the more justification there is for subclas-
sification.

Figure 2.8. Inheritance with one subclass

36 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As we already know inheritance enables us to use the definitions (code) of
existing classes to create new ones with minimal effort. Let us assume that there
is an application in which a Students class is already defined (There may be a
software library which includes many classes, brought from other application.).
Now, assume that we want to devote special attention to undergraduate
students. So we only need to declare a new class named Undergraduate
Students, and define that it “inherits” the (existing) Students class.
One might ask: Where is the data of undergraduate students stored? Is part of
the data stored in class Students and another part (data of the specific
attributes) in class Undergraduate Students? The answer to this cannot be
found in the model (meaning in the class diagram); it depends on the way the
system will be implemented. There are many possible ways to implement the
system, on which we will not elaborate here. At the conceptual model level we
are not concerned with implementation issues; we only need to know and specify
that every undergraduate student is also a student, and therefore the data saved
on such student includes all the data we would save on an ordinary student, and
the specific data as an undergraduate. Generally, we say that every object of the
subclass is also an object of its superclass, and a superclass contains all the
objects, including those of the subclasses.

Figure 2.9. Inheritance with two subclasses

The Objects Model and the Class Diagram 37

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2.9 shows a superclass Students with two subclasses: Undergraduate
Students and Research Students. We can see that each of the subclasses
have their own specific attributes and may also have specific relationships, other
than those of the superclass. In general, the superclass may have many
subclasses, depending on the specific attributes and relationships of its objects.
A subclass may itself be a superclass for subclasses. For example, the subclass
Research Students may have a subclass PhD Students, assuming such
students have specific attributes, relationships, or functions that are not shared
by all other research students.
If there is a structure where the superclass has more than one subclass, we may
also define participation constraints on objects of the subclasses, as follows:

1. Exclusiveness: ‘exclusive’ or ‘overlapping’ participation. Exclusive
means that an object may belong to only one subclass, while overlapping
means that an object may belong to more than one subclass. Figure 2.9
shows an example: A student may be only an undergraduate or a research
student, but not both. Exclusiveness is indicated by ‘X’ within the inherit-
ance symbol (X stands for exclusive). In case overlapping is allowed,
nothing is signified. In other words, the default case assumes that sub-
classes may overlap.

2. Totality: ‘total’ (also ‘cover’) or ‘not-total’ (‘non-cover’) participa-
tion. Total means that there are no more objects other than those defined
by the subclasses; hence, all objects of the superclass belong to the defined
subclasses. Not-total means that there may be objects in the superclass
which do not belong to any of the subclasses. For example, if there are only
undergraduate and research students (and no other types), it is a ‘total’
situation. Such case would be marked by ‘T’ within the inheritance symbol
(T stands for total). If other types of students may exist, such as external
students or alumni, we have a ‘not-total’ situation. Not-total is not signified.
In other words, the default case assumes that subclasses are ‘not-total’.
Note that the other possible types of students are not subclassified because
they have no specific attributes, relationships, or functions; these students
are members of the superclass only.

In the case of totality, where all objects of the superclass belong to any of its
subclasses; it means that the superclass itself has no objects—it is considered an
abstract class that only includes definitions of attributes and functions, which
are inherited to the subclasses. (We will elaborate on abstract classes later on.)
Following the aforementioned participation constraints, the following four com-
binations of exclusiveness and totality are distinguished:

38 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Overlapping and Not-Total: this is the default situation; no symbol
needed.

• Exclusive and Not-Total: marked by X.
• Overlapping and Total: marked by T.
• Exclusive and Total: marked by XT.

In conclusion of this subject we provide a more comprehensive example of a
class diagram (Figure 2.10). The superclass University Workers has three
subclasses: Teachers, Students and Administrative Workers. The subclass
Students is also a superclass of Undergraduate Students and Research
Students. All the university workers are identifiable by an ID number. The

Figure 2.10. A class diagram with inheritance and ordinary relationships

The Objects Model and the Class Diagram 39

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

participation constraint on the subclasses of University Workers is ‘XT’, that
is, there are no other subtypes but the previously mentioned three, and an object
can belong to one of the three only. The subclass Teachers has several specific
attributes, in addition to the attributes inherited from University Workers. Note
that Teachers has an additional key: teacher number. We can also see that
Teachers has two relationship types with Departments: a one-to-many
relationship belonging, and a one-to-one relationship management. While every
teacher must belong to one department, only some teachers manage any
department. A department may have many teachers, but at least one; and it must
have one manager (who is a teacher). A student must belong to one department,
but there may be departments with no students. Each of the two subclasses of
Students has its specific attributes (in addition to the attributes inherited from
Students). A research student is related with one or two supervisors (teachers),
but not all teachers must supervise research students. It should be noted that
there may be other types of students besides the above two (because no ‘T’
constraint is specified) but a research student cannot be at the same time an
undergraduate student (‘X’ is specified). At any rate, each and every student,
no matter of which type, must belong to a department.

Polymorphism

A subclass can inherit the attributes from its superclass as they are; the names
of the inherited attributes are not written in the subclass. But it is possible to
change the definition of inherited attributes in some way. For example, it is
possible to change data types or lengths. In such a case, the name of the inherited
attribute needs to be written in the subclass, and it must be redefined in the
objects schema (where data types of the attributes are defined). Obviously, the
original name of the attribute must be used; otherwise the system will assume
that the original attribute is inherited and there is an additional specific attribute.
A subclass may also inherit all the functions of the superclass as they are (and
then there is no need to write the function names in the subclass) but it is possible
to change specifications of inherited functions. For example, assume that in the
University Workers class there is a function named add new employee. Now
assume that the procedure for adding a new student is different from that of
adding a new employee (who is a teacher or an administrative worker); this
means that we have to define (and then code) a specific procedure for this
function, replacing the original one. Hence, there will be two functions named
add new employee: a general one for all workers excluding students, and a
specific one for students only.
The aforementioned cases are examples for polymorphism: using the same
name of attribute or function, but implementing it differently for different types

40 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of objects in an inheritance hierarchy. Hence, every attribute or function defined
in the superclass is inherited to the subclasses, but if an existing name of attribute
or function appears also in a subclass, it is assumed that they are redefined (in
the objects schema, not in the class diagram); the definitions of attributes or
functions in a subclass override the definitions given in the superclass.

Multiple Inheritance

Multiple inheritance means that a class may inherit (attributes, relationships, and
functions) from more than one superclass. In the class diagram, multiple
inheritance is marked by two or more semicircles, one for every superclass (see
examples in Figures 2.11 and 2.12).
We distinguish between two types of multiple inheritance: multiple inheritance
from different sources and multiple inheritance from one source. In multiple
inheritance from different sources, the subclass inherits its attributes and
functions from all of its superclasses, when none of the superclasses share an
“ancestor” (no two classes originated from the same class). This case is
demonstrated in Figure 2.11: A caravan is both a private home, which is a type
of building, and a wheeled vehicle, which is also a type of vehicle. Therefore, a
caravan inherits all the attributes, relationships, and functions of its different

Figure 2.11. Multiple-inheritance from different sources

The Objects Model and the Class Diagram 41

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

superclasses. In multiple inheritance from the same source, the “chains of
inheritance” originate from the same ancestor class. In Figure 2.12 we see that
Teaching Assistants (TA) inherit both from Students and from Teachers, but
both of them inherit from University Workers; that is, TAs actually inherit
attributes from the same superclass.
Multiple inheritance can be problematic if the superclasses of a certain class
have attributes or functions with identical names; the problem is this: Since
different superclasses may have attributes and functions with the same names
but different data types or functionality, how can we know which of the different
attributes or functions to inherit? The problem becomes more acute when dealing
with multiple inheritance from different sources, because the sources’ attributes
and functions may be substantially different (while in multiple inheritance from
the same source there is a chance that many attributes and functions are
inherited from the same ancestor with no changes, and each of its subclasses has
only a smaller number of specific attributes or functions having the same names).
There are ways to overcome the problem, like using polymorphism (changing the
definitions of the problematic attributes and functions), or specifying the name
of the class from which we wish to inherit a specific attribute or function. This
can be done by writing the superclass name before the attribute or function name
(i.e., superclass name.attribute/function name).

Figure 2.12. Multiple-inheritance from the same source

42 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Selective Inheritance

Selective inheritance is used when we wish to prevent certain attributes or
functions from being inherited to a subclass. This can be done by writing the word
“except” followed by the name of the attribute or function which we do not wish
to inherit. An example for this can be seen in Figure 2.10, where the attribute
rank is not inherited to Students.

Abstract Class

An abstract class is a class that has no objects, but it has attributes, functions,
and subclasses which inherit from it. The definition of such an “empty” class
enables us to save the time needed for defining attributes and functions in various
classes. For example, in Figure 2.10 we defined the University Workers class.
At first glance, it appears that we could have done without it, since every person
at the university is one of the three: teacher, student, or administrative worker.
However, in this case we would have had to define the shared attributes,
relationships, and functions in each of the three classes; the definition of the
University Workers as their superclass saves time and prevents duplicities.
The state of abstract class can easily change to an ordinary one (i.e., a class that
has objects). In our example (Figure 2.10), the University Workers class can
be considered abstract only because of the ‘T’ constraint, meaning there are no
other kinds of employees in the university but those defined in the subclasses.
However, had we chosen to allow other kinds of employees (who have no
specific attributes and relationships) their objects could only exist in the
superclass. Of course, in that case the ‘T’ constraint must be removed.
An abstract class does not have to have a key (since it does not have objects to
distinguish between). This is true only if the subclasses have keys of their own,
which are different from one another. For example, if a teacher is identified by
teacher number, a student by student ID, and an administrative worker by emp-
ID (and the ‘T’ constrain holds), then there is not a necessity to define a “super
key” for University Workers. If, on the other hand, all types of workers are
identified by a universal (national) ID number, it would be preferred to define this
attribute as key of the superclass—as demonstrated in Figure 2.10.

The Objects Model and the Class Diagram 43

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Functions

A class has functions which can perform actions on its objects. All the functions
that can be performed on an object during its lifetime in the system define the
object’s “behavior.” Recall that while the objects of a class are assumed to be
stored in a database, it may be assumed that the functions of a class (more
precisely, the code of the functions) are stored separately, along with other
definitions of the class (especially its attributes). This place is usually called the
catalog.
As we know, a function has a name. The function’s full name, by which it can
be identified, is the name of the class it belongs to, and the function’s name within
the class (it means, of course, that the function’s names within a class are
unique). A function may also include an output variable, by which the outcome
of the operation will be returned to the function that called it, and a list of
parameters (arguments) by which the function receives values needed for the
execution. We call this part of the function (i.e., the function name and its
parameters) signature. The main part of a function is the method, that is, a
detailed specification of how the procedure will perform the function. A method
can be viewed as a small program, made up of specific commands which are
organized in proper process logic, using patterns of structured programming (i.e.,
sequences, branches, or loops). In addition to ordinary commands which a
method performs by itself, it may include messages to other functions, whether
belonging to the same class or to other classes. A message includes, as we know,
the name of the receiving function (and its class), and it may include parameters
through which the function will receive data needed to execute, or an output
variable in case the sending method needs to get a result from the receiving
message.
As an example we bring here the definitions of a class Student and its subclass
Graduate Student, each including several attributes and functions. The ex-
ample is written in C++; it is not the intention to get into the code details, only to
demonstrate how functions and methods can be defined.
The Student class has several attributes defined as “private.” It means that they
cannot be accessed from outside the class; they are hidden. On the other hand,
the functions are defined as “public,” which means that the class objects are
accessible through them. Generally, functions too can be defined as private, but
only if they may be activated by other functions of that class. The function
student, whose name is the same as the class name, is a constructor function,
which can create/add a new student object and initialize its attributes. (Similarly,
we can also define a destructor function, capable of deleting a student object.)

44 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The other function, show student, can present a student’s details. In the
parentheses following the function’s name, the parameters and their data types
are listed. The code of the method is written separately. It starts with the class
name followed by the name of the function (and in parentheses the names and
data types of the parameters, as before). Without getting too deep into the matter,
the code of the method includes the following commands: receive a name, ID,
and average grade, verify that the average is between 0 and 100, and if it is—
create a new student object. The function show student has no parameters; its
task is to display the state of the student (i.e., the values of its attributes name,
ID, and average grade).
The subclass Graduate Student has three specific attributes: salary, advisor
name, and thesis title. It also has two functions: a constructor and a display
(show student) function. We can see that the constructor has a list of parameters
which includes student, and that the code of the method includes a message to
the constructor student. The function show graduate student calls the function
show student—which belongs to its superclass (and which, as we know, displays
three student attributes), and also includes commands to display the specific
attributes of the graduate student.

#include <iostream.h>
#include <string.h>

class student {
private:

char s_name[30]
long s_id:
float avg_grade;

public:
student (char *s_name, long s_id, float avg_grade); (This is the signature of the function.)
void show_student (void)

};

student:: student (char *s_name, long s_id, float avg_grade) (and here is the method)
{

strcpy (student::s_name);
student::s_id - s_id;
if (avg_grade > 0.0 and avg_grade < 100.0) student::avg_grade = avg_grade;
else // invalid average grade
student::avg_grade = 0.0;

}

void show_student (void)
{

cout << “Student name is “ << s_name << endl;
cout << “Student ID is “ << s_id << endl;
cout << “Average grade is “ << avg_grade << endl;

};

The Objects Model and the Class Diagram 45

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

class graduate_students : public student { (This is the way to specify inheritance.)
private:

float salary;
char advisor_name [30];
char thesis_title [60];

public:
graduate_student (char *, long, float, float, char *, char *) (constructor)
void show_graduate_student (void) (another function)

};
 (code of the constructor method)
graduate_student::graduate_student (char *s_name, long s_id, float avg_grade,

float salary, char *advisor_name, char *thesis_title) : student (s_name, s_id, avg_grade)
{

strcpy(graduate_student::advisor_name, thesis_title);
graduate_student::salary = salary;

}
 (code of the other method)
void graduate_student::show_graduate_student (void)
{

show_student ();
cout << “Advisor name is “ << advisor_name << endl;
cout << “Thesis title is “ << thesis_title << endl;
cout << “Salary is “ << salary << endl;

}

In the phase of system analysis, when we define the objects model and create
the class diagram, we do not deal with definitions of the parameters and the
methods of the function and certainly not with the writing of code; these things
will be done in the design and programming phases, respectively. In the analysis
phase, our main goal with respect to functionality of the sought system is to
decide which functions are needed and to which class each function belongs.
This will be discussed in detail later on. At this stage we concentrate on the class
diagram and how the functions are defined within, assuming that we already
know which are the functions of each class. In the class diagram we write only
the names of functions in the lower part of the class rectangle. Figure 2.13
demonstrates two classes with their functions (For the sake of simplicity, the
names of the attributes are not shown.) At a later stage, when we will create the
objects schema, we will be more specific and add for each function its
parameters and their data types and then detail the methods. Methods can be
described using various techniques, including in natural language, pseudo code
or specific types of charts—as will be detailed in further chapters of this book.

46 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Types of Functions

We distinguish between three types of functions: basic functions, application-
specific functions, and application programs.

Basic Functions

It is assumed that every data class has basic functions which enable us to
perform the four basic operations: create, read, update, and delete—in short:
CRUD.

• Create: This function adds a new object. It is possible to set the attribute
values of the created object in several ways: some will have default values
(if such values were predefined); some will get values while being created,
through user input; some may remain null until they are updated by some
other function. For example, assume that the function add student of class
Students receives, when activated,11 the parameters: student ID, name,
and address, but not a department code, which at that time is unknown. The
department code might be updated by another function some other time
(say when the student will be assigned to a department).

• Read: This function finds/retrieves an existing object of the class. The
function will receive (as a parameter) the identification of the sought object
(for example, student ID) and will return the object or a message saying that
the object does not exist. In addition to the basic Read function, there may

Figure 2.13. Examples of class function

The Objects Model and the Class Diagram 47

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be specific functions to find one or many objects according to certain search
criteria, depending on the specific application and its users, for example, a
function to find and display the codes and names of courses which a certain
student has taken, and the grades received.

• Update: This function changes values of attributes of an existing object.
Generally, a class may have different specific update functions, if it has
attributes which have to be updated in different manners or at different
times. For example, the Students class may have an update function to
change some attributes of a student, such as, address and phone numbers;
another to change his/her department; yet another to add or update a course
grade, and so forth. Each of these functions might be activated, most likely,
in response to an event occurring in the real world. It should be noted that
every attribute of a class must be updatable by a function.

• Delete: This function deletes an object from the class. The function needs
to receive a value that will enable it to identify the object to be deleted. It
also should be able to return a message informing the user whether the
object has been deleted or not found.

We also assume that a basic function performs checks and other “standard”
actions, such as:

• Checking the validity of the message: Every function checks its
activation message and verifies its correctness. The message arguments
are compared to the definitions of the matching attributes. If an error is
found, a message is sent to the function that sent the original message.

• Confirmation message: An activated function may return (to the func-
tion that sent it) data, or a confirmation that it performed its task, or an error
message. There is no necessity for the receiving function to return any
message to the sender, although it is reasonable that doing so will be done
in many cases.

Dealing with Relationships Between Objects

The addition, change, and deletion functions need to take into account the
relationships of their target object with other objects and perform referential
integrity checks. For instance, an addition function needs to check the types of
relationships and their cardinality—as defined in the class—to make sure the
addition is allowed. For example (see Figure 2.2), when we wish to add a new
student object, the addition function needs to check the definition of two

48 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

relationship types: registration to Courses and belonging to Departments.
As for the former, the multiplicity defines that a student does not have to be
registered to even a single course, so everything is fine; as for the latter, the
multiplicity states that a student must belong to a department, so the addition
function needs to get (from the sender function) a name of a department. In
addition, the addition method should include a message to the function add a
student to department of class Departments, with a department name as
parameter. This function, in turn, will check whether that department exists. If
it does, the function will check the multiplicity of the belonging relationship.
Since the maximum is ‘N’, there is no reason not to add the student to the
department. Therefore, it will end its task by adding the new student’s OID to
the reference attribute set students of department [Students] and send a
confirmation to the Students’ addition function. That function, in turn, will
complete its task by adding the department’s OID to the reference attribute
belongs to a [Departments] of the new student object.
In a similar way, the delete function needs to check whether the deletion is
allowed, and if it is, to complete the necessary actions that might be needed due
to the object’s relationships and their multiplicities. For example, let us examine
the delete function of the class Departments (see Figure 2.2). The function
needs to check the relationships of Departments with Courses and Students
to verify that if the department is deleted no constraints are violated. In our
example a department does not have to have any courses or students, so it may
be deleted. However, we still may have a problem because if a department has
at least one course (this can be verified by looking if there are any OIDs in the
set courses of department [Courses]) or at least one student (this can be
verified similarly in the respective reference attribute), then the question is what
to do with those courses and students (because according to those classes’
definitions, each course and each student must belong to a department. Before
demonstrating how this problem can be solved, we only mention that a change
function too may have to perform similar checks. For example, if we wish to
transfer a student to another department, we have to make sure the other
department exists, that the number of students in the student’s current depart-
ment may be reduced by one (if there is a min constraint on the number of
students in a department), and that the student can be added to their new
department (if there is a max constraint).
Addition, deletion, or update of an object may have side effects, due to its
relationships with other objects, the types of those relationships, and their
multiplicities. Side effects may be: (1) preventing the change because it violates
a certain constraint, or (2) approving the change but applying other changes as
well, according to the predefined constraints. Whether to prevent or approve a
change which may violate constraints is a matter of organization policy (rules).
We can distinguish between several kinds of policies which it is possible to apply
in different cases. Here are some examples of policies for a ‘Delete’ function:

The Objects Model and the Class Diagram 49

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Delete is restricted: This is considered a default option, meaning that one
cannot delete an object if it will cause violation of a constraint. For example,
if we wish to delete a course and there are students registered to it (at least
one), the deletion is not allowed (so the problem might be overcome by first
canceling the registrations of those students to that course).

• Delete cascades: This means that not only the deletion is allowed but it
will also cause deletion of a related object which can cause the violation of
the constraint. For example, if we wish to delete a department which has
students, they will be deleted too. This policy is, certainly, “destructive” and
should be applied carefully.

• Delete nullifies: This means that the delete is permitted, but the related
objects will have to be changed too, so that they will not refer to the deleted
object. For example, if we wish to cancel a course, in addition to the
deletion, any students who registered to the course will be unregistered
(i.e., the reference to the course will be nullified).

Until now we have explained and demonstrated several types of referential
integrity checks which should be performed by Add, Update, and Delete
functions.12 The checks may be part of those basic functions or be defined as
separate functions, which will be activated by the aforementioned basic func-
tions. This way, the basic functions become simpler, and the referential integrity
check functions can be changed with greater ease, according to the organization’s
policy.
Since we assume that every data class has CRUD basic functions, and in order
to simplify the class diagram, there is no need to write the names of these
functions in the class diagram. Due to inheritance, it may be assumed that all
classes inherit the basic functions from a superclass where these functions are
defined.

Application-Specific Functions

Specific functions are defined according to the needs of the application (i.e., of
the users). Such functions may perform various specific tasks, beyond what can
be achieved with the CRUD basic functions, for example, a function that
calculates a student’s average grade, a function that displays a student’s list of
grades per academic period, or a function that displays details on a department’s
students or teachers. It is reasonable for an application-specific function to
include messages to basic functions to perform basic CRUD operations. For
example, a specific function that calculates a student’s average grade may
include a message to a ‘Read’ function of Students class that will retrieve the

50 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

student’s object, including the grades, and then another message to an ‘Update’
function to store the calculated average.
One of the main issues in the objects model is to find out which are the
application-specific functions and to which class to attach each of them. This
issue is part of the system’s analysis phase. In that phase, analysts cooperate
with users (or their representatives) in order to elicit and define the various user
requirements from the system. The main products of this phase are a functional
model and a data model (i.e., a class diagram). The functional model will enable
us to define the functions, while the data model (class diagram) will assist in
determining to which class to attach each function. Many more details on the
analysis phase will be provided in Unit 2 of this book. Meanwhile, we bring here
several more detailed examples of application-specific functions and their
process logic.

Example 1: An Extracting and Reporting Function
We need to produce a report providing details of students who belong to a certain
department. For this we define an application-specific function that belongs to
the class Departments. Once activated by a user (at this stage we do not detail
how it can be done), the function will first find the specific department object;
this will be achieved by sending a message to the basic function ‘Read’. The
returned department object includes a set reference attribute students of
department, which includes OIDs of students (see Figure 2). The function will
perform a loop on this set; within the loop there will be a message to the class
Students to its basic ‘Find’ function, which will find an object of a student
(according to the current OID) and return it to the sender. Other commands in
the loop will include sending the student’s details to print. At the end of the loop
there may be other commands, for example, summarizing the number of students
in the department, and so forth.

Example 2: An Update Function
We need to register a student to courses. Assume that the registration takes
place at the beginning of every semester, and that a student may register to one
course or more.13 The application-specific function will belong to the class
Students. Note that a student object includes the set reference attribute: set
registered to courses {[Courses], grade} (see Figure 2). The objective is to
add tuples to this set, one per each course that he/she registers to. At this stage
only the courses’ OIDs will be added, but the grade will be null. The function will
be activated through the user interface. First, it will find the student’s object using
the basic function ‘Read’. Then it will perform a loop as long as there are more
courses the student wants to register for. In every iteration of the loop, the

The Objects Model and the Class Diagram 51

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

function will send a message to the user (imagine that it is done through a
message to a function of a class Forms which presents a form on screen)
requesting the user to input a course code. Once the course code is returned to
the update function, it will send a message to the ‘Read’ function of the class
Courses in order to verify that the course exists. If the ‘Read’ function returns
an error message the update function will send an error message to the user (via
the aforementioned form) requesting the user to reenter a course code. If the
search function finds the course object it returns its OID to the update function.
Now the update function needs to make sure that the student is not already
registered to this course, so it will run a search inside the set reference attribute.
If it finds the aforementioned course’s OID in the set, the function will send an
error message to the user, but if not, it will perform the addition to the set. It will
then send a message to the class Courses, to its specific function add a student
to course; the message will include, of course, the course OID (by which the
course object will be found) as well as the student’s OID, so that, that function
will be able to add the student’s OID to the set reference attribute: set registered
students {[Students], grade}. Every iteration of the main loop of the update
function (of Students) will end with a message to the user (on screen) asking
whether he/she wants to register for more courses. If the answer is yes, a new
update loops will begin; otherwise the update will terminate.
Here is a short (and abbreviated) description of this update function in pseudo
code:

Begin function “Register student to courses”
Student-OID = Students.Read(student-ID) (this is a message to the basic function)
Do while the student wishes to register to more courses:

Course-code = Forms.present form Course-Registration (the form will return a course
 code entered by the user)

course-OID = Courses.Read(course-code) (a message to Courses to find the course
object)

If error then Forms.error message: “no such course”;
Course-code = Forms.present form Course-Registration

Else For i=1 to end of set registered to courses
If course-OID = [Courses] then Forms.error message: “already registered

to this course”; Error = “yes”
Else;

 Next i
 If Error <> “yes” then append the tuple {course-OID, Nill} to set registered

 to courses; Courses.add a student to course (course-OID, student-OID)
 (this is a message to a specific function of Courses)

 Else;
 Forms.ask user if continue registration

End while
End function.

52 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We have seen that the update function which belongs to the Students class has
also updated the lists of students registered to a course by activating the
respective update function of Courses class. The update could have been
implemented in a different way, such as defining a function in Courses: Register
a student to course. This way, every activation of the function would have
caused the addition of a student’s OID to the set students registered to course”
of Courses. But in order to register the certain student to several courses, we
would have had to run this update function several times. Using the function
presented previously, we only have to activate it once, no matter to how many
courses the student wishes to register for. From this we can learn that there is
more than one way to implement a function, and that various options should be
considered carefully in order to find the most appropriate.
The messages sent from one function to another could also be described by a
diagram, in which message lines connect the involved classes. As you can
imagine, an attempt to draw such a diagram for a system with many functions
would result in many intersecting lines and a diagram would not be comprehen-
sible. However, it is reasonable to draw such a diagram for a single application-
specific function, where only the relevant classes and the functions that are
called by that function are displayed. In our last example, such a diagram would
include the three involved classes: Students, Courses, and Forms, a message
line from Students to Forms (with the name present form Course Registra-
tion on it), and two message lines from Students to Courses, with the function
names Read (course-code) and add a student to course, respectively.14

Application Programs

In principle, we could implement every task of the IS using application-specific
functions or basic functions, where an application-specific function may include
messages to other application-specific or basic functions. If we choose to
implement all of the IS tasks this way, we might end up with long “chains” of
functions and messages. This might raise problems of comprehensibility and
maintainability. Moreover, if we will assign many specific functions to a certain
class, its “independence” may be harmed: It might become “tailored” for a
specific application and will not be reusable for other applications. By doing so,
we will be defeating one of the main objectives of OO development.
According to this, there might be functions which we would prefer to implement
using an application program which will not be attached to “ordinary” data
classes. Consider the following examples: (1) We need to produce a report

The Objects Model and the Class Diagram 53

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

showing the details of certain departments, and for each department we need to
detail the courses it offers in each of its degree programs, and the teachers who
can teach these courses; (2) We need to display the details of the students in all
departments whose average grade in a certain year and semester is above a
certain value, and send them a message; and (3) We need to cancel certain
course offerings, void the registration of students to those courses, and the
assignment of the teacher and TAs to those courses. In such cases, many objects
from different classes are involved, and many application-specific and basic
functions need to be activated in order to complete a task. An IS may have many
such “complex” functions. Such a function need not be attached to a certain
class; it might not even be clear to which class such function should be attached.
Instead, we may opt to separate such a function from any ordinary data class and
attach it to a specific abstract class, which will contain no objects—only such
functions. Such functions may be termed application programs. Actually, the
abstract class will not include the entire application programs, only their “main”
parts, because each “main” program will contain, besides “ordinary” commands
or procedures, messages to basic and application-specific functions of various
classes.

Review Questions

1. What are the two main roles of a class diagram?
2. What is the difference between a class diagram and an objects schema?
3. What are the differences and similarities between a class diagram and an

ER diagram?
4. Explain the difference between class and object.
5. What is the relation between ‘class’ in the objects model and ‘entity’ in the

ER model?
6. What is the difference between ‘data object’ and ‘interface object’?
7. What parts of the definition of an attribute are included in the class diagram

and what parts are included in the objects schema?
8. Give an example for each of the following (non-key) attributes: a simple/

atomic attribute; a tuple of simple attributes; a set of simple attributes; a
reference attribute; a tuple consisting of a reference attribute and a simple
attribute; and a tuple consisting of two reference attributes and a simple
attribute.

54 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

9. Give an example for each of the following keys: a key consisting of one
simple attribute; a key consisting of two simple attributes; a key tuple
consisting of a reference attribute and a simple attribute; a key tuple
consisting of two reference attributes; a key tuple consisting of two
reference attributes and a simple attribute; and a key tuple consisting of
three reference attributes.

10. What is OID and what is it used for?
11. Show an example in which a thing can be defined as an attribute of a class,

or alternatively as a class related with another class. What is the dilemma?
12. What is the meaning of min ‘0’ or ‘1’ at the “one” side of a relationship?

Show examples.
13. What is the min possible value at the “many” side of a relationship? Explain.
14. Show examples for each of the following types of relationships: one-to-one;

one-to-many; and many-to-many. For each case, show examples with min
values of ‘0’ and ‘1’.

15. What is the problem with relationship attributes in a many-to-many relation-
ship between two classes? What can be done about it? Show examples.

16. How do the objects model and class diagram deal with ternary relationships
in reality? Compare to how it is done in the ER model.

17. What is the difference between an aggregation and an ordinary relationship
between classes?

18. Show examples for the following types of inheritance: inheritance with one
subclass; inheritance with two subclasses with “exclusive’ constraint;
inheritance with two subclasses with “total’ constraint; a subclass with
multiple inheritance from one source; and a subclass with multiple inherit-
ance from different sources.

19. What are the considerations for or against subclassification? Show ex-
amples for and against subclassification.

20. What is an abstract class and what can it be used for?
21. What is polymorphism? What is it good for, and which problems may it

cause?
22. Clarify the difference between ‘function’ and ‘method’. Where are each

of them defined?
23. What are basic functions? Show examples for each type.
24. Which checks need to be performed upon activation of a function that

attempts to delete an object having relationships with other objects?
Distinguish between different types of relationships that object may have.

The Objects Model and the Class Diagram 55

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

25. Explain the difference between an application-specific function and a basic
function. Explain and exemplify the relationship between the two types.

References

Elmasri, P., & Navathe, S. (2003). Fundamentals of database systems (4th ed.).
Boston: Addison Wesley.

Garcia-Molina, H., Ullman, J., & Widom, J. (2002). Database systems—The
complete book. Upper Saddle River, NJ: Prentice Hall.

Endnotes

1 A class name may be in plural or singular, so we may as well say class Student.
2 We may assume that the database schema of a certain application is kept in a

dictionary or catalog of the system.
3 We do not deal with such details at the stage of data modeling. Generally, there

is no difference between the definition of data types of object attributes and
data types of variables in programming languages or in Data Base Management
Systems (DBMS). Sometimes data type definitions depend on the specific
software used to implement the system.

4 Although we do not deal with physical aspects of the system and the database,
we may assume that an OID acts like a pointer to a certain place where the
object is stored.

5 A deeper discussion about these issues is beyond the scope of this book and
can be found in books dealing with relational and object oriented databases
(e.g., Elmasri & Navathe, 2003; Garcia-Molina, Ullman, & Widom, 2002).

6 A binary relationship relates two objects, each belonging to a different
class; a unary relationship relates two object both belonging to the same
class.

7 1:N or N:1 are identical, only the order of the related objects is switched.
8 A DBMS which would implement this model may use this key to avoid

object duplicity, like an ordinary key which contains data.
9 Here too we give names to the reference attributes, preceding the referenced

class names. However, we may abbreviate by writing only the names of the

56 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

referenced class (within square brackets). This will be shown in further
figures.

10 Note that in this example we omitted the names of the reference attributes
within the key tuple.

1 1 Recall that a function is activated by a message sent to it by another
function. Here, assume that the message was sent from the function named
input student details which belongs to a class Forms.

1 2 More detailed explanations are beyond the scope of this book; they can be
found in books on databases.

1 3 You may assume that the registration can be performed by a clerk/
secretary using a manual form which includes the details of the student and
of the courses to register; or directly by the student through the Internet.
These options do not affect the logic of the required function.

1 4 This is only an intuitive description of such a diagram; more details will be
provided when dealing with methods in the final unit of this book.

Creating Class Diagrams 57

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Creating
Class Diagrams

This chapter discusses considerations and rules for identifying classes,
attributes, relationships, and functions; and presents case study examples
(problems), that is, descriptions of users’ data requirements; along with
their class diagram solutions.

Rules for the Creation
of Class Diagrams

In the previous chapter, we have come to know the components of the objects
model and the class diagram. When the problem is small, there seems to be no
problem to identify the object classes, attributes, and relationships and present
them properly in a class diagram. However, in reality things are (usually) not
simple, the problems with the existing system and the needs from the new system
are usually not well defined.
The study of the problems users have with an existing system and their
requirements from the new system, is carried out using common information
gathering techniques, such as: (1) interviews with various users in different
management levels; (2) brainstorming with the users’ representatives; (3)
observations on how certain workers are performing their jobs or how certain
processes are carried out; (4) study and analysis of documents describing the
organization and the existing business processes; (5) distribution of question-

58 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

naires and the conducting of polls among users (customers, suppliers); and (6)
the study of other organizations and systems which bear resemblance to the
studied organization. All these techniques have shortcomings. For example,
documents may not be accurate or up-to-date; users are not homogenous; there
may be many different users who function in different organizational units and
ranks, with different experience and different acquaintances with the existing
system and its problems and with different preferences. Hence, the different
users may understand the situation and problems with the existing system
differently and pose different, sometimes even conflicting, requirements from
the new system.1

Unlike functional analysis, which concentrates on identifying and defining the
functions of the information system (IS), data analysis concentrates on identify-
ing the object classes, their attributes, and relationships among them. Some claim
that data analysis is easier than functional analysis because it is easier to identify
objects than to identify functions, since objects are usually more tangible and
stable, while functions are intangible, vague, and changing artifacts. However,
there are those who claim it is the opposite, that is, that functional analysis is
easier because users tend to describe what they do and what they want the
system to do for them in terms of functions, not objects. There is no clear answer
which task is easier.2 At any rate, here we concentrate on data analysis with the
objective to create a class diagram representing the data structure of the reality
being modeled.
It is obvious that the construction of a class diagram is not a structured,
algorithmic, sequential process, which ensures one “correct” solution. Rather, it
is an iterative process, which involves a lot of trial and error. It relies on work
practice, experience, intuition, and requires close collaboration between the
analyst and the users.
As was mentioned before, one of the first and main problems in creating a class
diagram is identifying the objects and classifying them. There are various
guidelines as to how this should be done. For example, Coad and Yourdon (1990)
suggest the following guidelines (among others) for the identification of classes:

• Examine what are the facilities, instruments, organizational units, and so on,
which the system needs to keep information about.

• Examine what are the events in reality which need to be remembered and
stored in the information system.

• Examine the various roles performed by people working in or for the
organization.

• Examine other system connected to the system in question (or systems that
bear resemblance to it).

Creating Class Diagrams 59

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Coad and Yourdon (1990) also suggest different criteria in order to help the
analyst decide if something is an object, that is, if it deserves to be defined
as an object. Here are a few of the criteria:

The need to remember: is there any information that needs to be
kept on the object in the information system? If not, there is a good
chance it is not an object.
The need to behave: is there any behavior that needs to be saved?
i.e., is there a need to process or use functions on it? If there is no
behavior, it is probably not an object. If no information needs to be
saved on it, and it has no behavior, it is certainly not an object.
More than one attribute: an object has usually more than one
attribute; if this is not the case, one should examine if it is an object, or
just another object’s attribute.
More than one object: a class usually includes several objects. If a
class has no instances, then the designer should reconsider whether
this class has a place in the system. However, the possibility of an
abstract class should be considered, if other classes inherit from it.
The attributes are always applicable: it is best if all objects in a
class have values in all their attributes. If this is not the case, splitting
of the class into super and subclasses should be considered, so that the
attributes defined in the superclass would characterize all the objects,
while specific attributes would apply to the respective subclasses only.
The relationships are always applicable:3 As with attributes, it is
best if all the objects in a certain class have the same types of
relationships with other objects. If this is not the case, splitting of the
class into subclasses should be considered, so that relationship types
which may apply to all objects will be of the superclass, while specific
relationship types will be of the respective subclasses.
The functions are always applicable: As with attributes and func-
tions, if there are functions that are not applicable to all the objects in
class, splitting of the class should be considered. This way the right
functions would be assigned to the super and subclasses.
Thing are within the scope of the problem: One has to assure that
all the object classes included in the model are relevant. However, one
should not stick too heavily to the present condition, for it may lead to
mistakes. For example, if a certain organization uses a certain form to
make purchase orders, it does not mean that a “purchase order form”
class needs to be defined. The present orders system represents the
present conditions and technology, but not necessarily of the new

60 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system. It is better to define classes with a high abstraction level,
which are less bound to the present conditions. Therefore, instead of
defining a “purchase order form” class, it is better to define a
“purchase order” or “order” class.

The division to super and subclasses can be done in two ways: top-down and
bottom-up. According to the top-down approach, the general classes are located
and classified, and then objects having specific attributes, relationship types, and
behaviors are identified. Based on it, specialization of the classes takes place—
subclasses are defined, with specific attributes, relationship types, and behavior.
According to the bottom-up approach, “independent” classes are first identified,
without any connection to other classes. Afterwards, similar classes (which have
similar attributes, relationships, and behavior) are identified and generalization
is performed—a superclass is defined, and it receives the shared attributes,
relationship types, and behavior. It is obvious that in reality it is impossible (and
not necessary) to use only one approach; the process is iterative and involves
both specialization and generalization.
A possible work order of creating a class diagram is first to identify and define
the classes, their attributes, and relationship types, and then to define the
behavior, that is, their functions. A different work order may be to first perform
the task of functional analysis and create a functional model of the system; then
use this model to identify the classes and their attributes and relationship types.
Another possibility is to work concurrently on the two tasks of data analysis and
functional analysis. There are many different development methodologies which
offer different orders of activities. We will be dealing with these issues in Unit
II of this book. At this stage we concentrate on creating class diagrams only,
without considering the system’s functionality.

Examples and Exercises on the
Creation of Class Diagrams

In this section, we present examples for the creation of class diagrams.4 Each
example consists of a problem statement and its solution—a class diagram. Each
problem statement can be viewed as a data requirements document, which
represents the users’ data-related needs. (As already discussed, in reality one
may not assume that the users’ requirements are already predefined and given
in a “clear” and easy to read description. Obviously, in reality the problems are
much more complex. But such real-world examples cannot be provided in a
textbook.)

Creating Class Diagrams 61

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The reader is asked to treat the examples as self practice exercises. This means:
first, read the problem statement; based on it, create your class diagram; only
then look at the provided solution and the explanations that accompany it.
As said, in this chapter we deal with data modeling, not with functionality.
Therefore functional requirements are hardly mentioned in the problem state-
ments, and hence, names of functions are specified in a few cases only.

Example A: Research Proposals
You need to create a data model for an IS that will manage information
regarding research proposals submitted by university researchers to
research funds (i.e., organizations funding academic research). The system
will serve the Research Contracts division of the university and the
researchers.

A researcher belongs to a department and occasionally submits research
proposals. A researcher has an ID number and name and works for one
department of the university. A department is identified by a department
name and is managed by one researcher. A research proposal may be
submitted by one or several researchers (principal investigators [PIs]). A
research proposal has a title given to it by the researcher, but since a title
may not be unique, the university’s Research Contracts division assigns
each proposal a unique research code. The proposal is submitted to a
research fund (identified by a fund name). When a proposal is first
submitted, the PIs specify how many years the research is supposed to take
(between 1 to 4 years), and for every year they specify: how much money
they request, who will be the coinvestigators (CIs) (i.e., other university
researchers who work on the research), and how many months will each of
the CIs work on the research. The research fund may approve or disap-
prove the request, or approve a different amount of money. At the end of
every year, the PIs have to resubmit their request of funding for the next
year, and the research fund may disapprove or approve any amount of
money. The status, amount, and date of approval must be registered.

A class diagram for this example is presented in Figure 3.1. Here are a few
explanations regarding this diagram:

• The problem description makes it clear that there is a need to define classes
for researchers (Researcher), academic departments (Department),
and research proposals (Research, in short).5 However, it may not be
clear at first glance that there is a need of a class Research Year, and

62 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

some may define a set attribute in the Research class instead. However,
a more in-depth examination reveals that we need to save data for each
research year separately. Hence, each research year is an object, which is
different from the research object. Obviously, there is a 1:N relationship
between the two classes, with the specified multiplicities, because every
research will last between 1 and 4 years, while every year of research is
associated with exactly one specific research.

• Each of the classes Researcher, Department, and Research has a
simple key attribute. However, Research Year is identifiable by a tuple
made up of two attributes: one is a reference attribute the research
[Research], and the other is year (i.e., the calendar year of the research).
Note that the name of the key of Research Year is identical to the class
name, as we do in most cases where a key is constructed of several
attributes. Note also the inverse reference attribute of class Research: set
years of research [Research Year].

Figure 3.1. Class diagram of the research proposals example

Creating Class Diagrams 63

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• In this solution we define a Researcher class without distinguishing PIs
from CIs. It means that every researcher has a set reference attribute of
research proposals submitted as a PI, and a set reference attribute of
researches on which he/she had worked each year as a CI. But there may
be researchers who are PIs only or CIs only (or even researchers who are
neither). Figure 3.2 presents another possible solution to the problem, in
which the two subtypes of researchers are distinguished. The class
Researcher retained the attributes shared by all researchers (and the
relationships with Department), while each of the subclasses has a
respective set reference attribute: set PI of researchers [Research], and
set CI in research years {[Research Year], no. of months}. Therefore,
in the Research and Research Year classes, the reference sets refer to
the respective subclasses.

• There is a many-to-many relationship between Researcher and Re-
search Year (as well as between CI and Research Year in the alternative

Figure 3.2. Alternative class diagram with subclasses

64 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

solution). The relationship has a relation attribute no. of months which
appears in the two inverse set reference attributes. A possible solution
which prevents this duplicity is by defining a relationship class. This solution
is presented in Figure 3.3.6 The relationship class is called CI Works, and
it is connected in one-to-many relationships to each of the “parent” classes.
Note the key of this class: It consists of the two reference attributes. In this
particular example, where there is one relationship attribute only, this use
of a relationship class may not be justifiable, however.

• As said, we wrote some function names in the first solution, only as an
example.

Example B: Parts, Orders, and Suppliers
You need to create a data model for an organizational IS that will manage
information on parts (items), suppliers, orders of parts from suppliers, and
their deliveries. The organization orders parts using order forms. A part
has a part number, name, and weight. A supplier has an ID, name, and
address. An order is identified by an order number, and it lists the parts and
quantities ordered. An order is sent on a certain date to a certain supplier.

Figure 3.3. Alternative class diagram with a relationship class

Creating Class Diagrams 65

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Suppliers deliver parts which have been ordered along with a delivery
certificate. The certificate is identified by a number on which the delivery
date is also written. A delivery may contain parts from different orders, and
it specifies the order according to which a part is supplied and the quantity
supplied, per order. (Hence, a delivery may contain a certain part which
has been ordered in different orders and specifies the quantities per each
order.) A delivery may contain only some of the parts and quantities which
have been ordered in a certain order. Records must be kept of the parts,
suppliers, orders, deliveries, and parts outstanding (i.e., ordered parts not
yet supplied).

The class diagram in Figure 3.4 presents a solution to this problem. Here are a
few clarifications:

Figure 3.4. Class diagram of the parts, orders and suppliers example

66 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• There is a many-to-many relationship between the Part and Order
classes. While a part does not have to be present in even a single order, an
order must include at least one part.

• Each of the set reference attributes: in orders of class Part, and its inverse
attribute parts in order of class Order, include, besides a reference to a
class, the relationship attributes qty. in order. This duplicity can be avoided
by creating a relationship class, as shown in Figure 3.5.

• The relationship between Order and Supplier is many-to-one: An order
is sent to one supplier, while a supplier may get many orders or none at all.

• Every object of the Delivery class, which is identified by delivery no., also
includes a reference attribute to its supplier and a set reference attribute
parts per orders, which is a tuple made of three attributes: reference to
Order, reference to Part and quantity in delivery. Each such can be
viewed like an “item row” in the delivery certificate, specifying the quantity

Figure 3.5. Alternative class diagram with a relationship class

Creating Class Diagrams 67

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of each item sent per its order. Note a similar set where delivered in Order
class, which also includes a triplet: a reference to Delivery, a reference to
Part, and quantity in delivery. The set in deliveries of Part also includes
such a triplet: a reference to Order, a reference to Delivery, and the
quantity in delivery. This means that either by looking at Order or Part we
can tell in which orders and deliveries a certain part appears. The
relationship attribute qty. in delivery can be found in three different places
in this solution.

• Figure 3.5 presents another possible solution, which appears to be easier to
understand and also eliminates some of the duplicities in the previous
solution. In this solution, the many-to-many relationship between parts and
orders is expressed using the Parts in Orders relationship class. The key
of this class includes reference attributes to Part and Order. The class also
includes the relationship attributes qty. in order, and the set in deliveries
which is made of two attributes: a reference to Delivery and qty. in
delivery. The inverse set in Delivery, named parts by orders, is also made
of two attributes: a reference to Parts in Orders and qty. in delivery.
Note that Delivery is only linked to Parts in Orders and not to Part and
Order. The set reference attributes in the two classes are “simple” and
include less duplicity compared to the set attributes in the previous solution.

Figure 3.6. Alternative class diagram with another relationship class

68 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• There is another possible solution to this problem, which “decomposes” the
many-to-many relationship between Part in Order and Delivery by using
a relationship class. Figure 3.6 presents only that part of the solution: The
additional class Ordered Part in Delivery includes a key made of two
reference attributes: one to Delivery and one to Part in Order. In addition
it has an attribute qty. in delivery. Each of the referenced classes includes
a set reference attribute to Ordered Part in Delivery. In this solution
there is no duplicity of data; the “cost” of this solution is an increase in the
number of classes (because we are actually “normalizing” the classes,
similar to normalized tables in the relational model). The objects model does
not answer the question which is the best solution, and leaves that to the
discretion of the designer.7

Example C: Sport Tournament
In an athletics sport tournament, athletes from various countries take part
in various contests. The IS manages information on the participants, that is,
athletes, coaches, and managers; and on the contests. Each participant is
given an ID number, and his/her name, country, and birth date has to be
recorded. Each athlete’s blood type is also recorded. Every athlete can
only play in one branch of a sport. Throughout the tournament, every
athlete undergoes drug tests; for every test the test code, date, and result
are recorded. The same test can be taken several times but on different
dates. Every coach has one branch of sport he/she coaches; he/she may
coach several athletes (but at least one). An athlete has one coach only. A
coach cannot be an athlete.

For every contest held during the tournament, the following information is
being recorded: the branch, date, the level (e.g., preliminary, semifinals,
and finals), the stadium in which the contest takes place, the hour it began,
and the athletes who played. There can be more than one contest of the same
branch each day, but not in the same level. For example, it is possible that
a basketball semifinal will be held in the morning of a certain day and the
final in the evening. The minimal number of players in any contest is three.
There is a possibility that an athlete will not play in any contest (e.g., due
to an injury). The result of each player in each contest is recorded, and also
the total number of medals he/she won in the tournament.

A class diagram for this problem is presented in Figure 3.7 (with no clarifica-
tions).
In addition to the class diagram, for completeness we show the objects schema
of this example. Note the definitions of data type, which are then referred to from

Creating Class Diagrams 69

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the attributes’ definitions within the classes. In some cases the data types of
attributes are defined within their classes. Note also that class Participant is
defined total-cover, standing for the T sign in the class diagram; similarly,
subclasses Athlete and Coach exclude each other.

Objects Schema of Sport Tournament
 Data type definitions {
 Type ID: numeric (9)
 Type name: char (30)
 Type date: dd/mm/yyyy
 Type time: hh/mm
 Type result: decimal (3.2)
 }
Class Contest
 Attributes {
 Contest {branch: name, date of contest: date, level: numeric (2)}
 Stadium: name

Figure 3.7. Class diagram of sport tournament example

70 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Time started: time
 Set players {[Athlete] inverse played in, result: result}
 }
Class: Participant total-cover
 Attributes {
 ID number type ID
 Name: name
 Country: name
 Birth date: date
 Branch: name
 }
Class Athlete inherits Participant excludes Coach
 Attributes {
 Blood: enumerate (A, A+, A-, B)
 No. of medals: integer (2)
 Coached by [Coach] inverse coaches
 Set tests {code: char (3), date: date, test result: char (10)}
 Set played in contests {[Contest] inverse players, result: result}
 }
Class Coach inherits Participant excludes Athlete
 Attributes {
 Set coaches [Athlete]
 }

End of Sport Tournament schema.

Example D: Library
A book in the library has an international standard book number (ISBN),
title, publisher, year of publication, and one or more authors. (For sake of
simplicity assume that author names are unique.) In order to assist with
book selections, each book is characterized by a few key words. There are
books of which the library has several copies. Each copy can be shelved in
a certain place in the library. A place is identified by a hall name and shelf
number. The library lends books to readers. Each reader has a reader ID,
name, and address. The book’s lending out and return dates are recorded.
It is impossible to lend out the same copy of a book to the same reader more
than once on the same day. However, it is possible to lend it out on the same
day to different readers (for example, one reader checks out the book in the
morning, returns it in the afternoon, and then another reader checks it out).

Creating Class Diagrams 71

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A solution for this problem is presented in Figure 3.8.

Review Questions

1. Which techniques can be used when studying the users’ requirements prior
to creation of the objects model?

2. What criteria and guidelines can be used to discover objects and classes?
3. What is the difference between division of classes into superclasses and

subclasses according to the top-down approach compared to the bottom-up
approach?

4. Discuss the possible work orders for identifying functions and defining the
“behavior” of a system.

Figure 3.8. A class diagram of the Library example

72 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Avison, D., & Fitzgerald, G. (1988). Information systems development:
Methodologies, techniques and tools. Oxford, UK: Blackwell.

Coad, P., & Yourdon, E. (1990). Object oriented analysis. Englewood Cliffs,
NJ: Prentice Hall.

Hoffer, J., George, J., & Valacich, J. (1999). Modern systems analysis and
design (2nd ed.). Reading, MA: Addison Wesley.

Kabeli, J., & Shoval, P. (2003). Data modeling or functional analysis: What
comes next? An experimental comparison using FOOM methodology.
Proceedings of the Eight CAISE/ IFIP8.1 International Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design (pp.
48-57). Velden, Austria.

Shoval, P. (1998). Planning, analysis and design of information systems
(Vols. 1-3). Tel-Aviv, Israel: Open University Press.

Whitten, J., Bentley, L., & Dittman, K. (2000). Systems analysis and design
methods (5th ed.). Berkeley, CA: McGraw Hill.

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, NJ:
Prentice Hall.

Endnotes

1 More on these problems can be found in the literature on systems analysis
and design. See, for example, Avison and Fitzgerald (1988), Hoffer,
George, and Valacich (1999), Shoval (1998), Whitten, Bentley, and Dittman
(2000), and Yourdon (1989).

2 More on this debate can be found in Kabeli and Shoval (2003).
3 This criterion is not one of those proposed by Code and Yourdon (1990). It

is added in the interest of completeness.
4 The examples are based on similar examples brought in Chapters 9.1 and

9.2 in Shoval (1998).
5 In this and the following class diagrams all class names are in singular.
6 This solution shows only the relevant parts of the diagram, and refers to the

solution shown in Figure 3.1, which only has a Researcher class; a similar
solution could be provided for the case shown in Figure 3.2. The reader may
create the equivalent diagram for this case.

Creating Class Diagrams 73

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

7 Other solutions, a little different from those presented here, are also
possible. The reader is welcome to try and find them.

74 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

Mapping Entity
Relationship Diagrams

to Class Diagrams

This chapter first explains why it might be preferred to first create an entity
relationship diagram (ERD) and then map it to a class diagram. The chapter
then describes the mapping rules, demonstrating the mapping process with
several comprehensive examples.

Why Map an ERD to a Class Diagram?

We have already seen that there is a great deal of resemblance between the
objects and entity relationship (ER) models.1 The main difference between the
two is that the ER model does not deal with functionality of the system. But there
are some other differences. One of the main differences is that in the objects
model there are only unary and binary relationships, while in ER there are also
ternary relationships. This means that a ternary relationship between objects in
reality, which can be represented as such in an ERD, is represented in a class
diagram as a (separate) class. Another difference is that in ER there may be
weak entity types, signified by a special symbol (a dotted rectangle for the weak
entity type and dotted diamonds and connection lines for the relationships to the
respective “strong” entity types). In the objects model there are no “weak”
classes, but there may be classes whose key includes reference attributes to
other classes. Of course, there are some differences in notations; the most visible
is that in the ERD a relationship is signified by a diamond, while in the class

Mapping Entity Relationship Diagrams to Class Diagrams 75

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

diagram there is simply a connection line; in the ERD attributes are presented in
ovals connected to their entity or relationship types; in the class diagram the
attributes are listed inside the rectangle of the class. In almost any other sense,
the models are very similar.
In the previous chapter we have learned how to create a class diagram based on
the users’ needs. However, there is an alternative way—to first create an ERD
(based on users’ needs) and then map it into an equivalent class diagram. There
are several reasons to pursue this course of action: Some analysts may prefer
working with an ER model, either because of having more experience with ER
or due to personal preference. Moreover, there is research which shows that an
ERD is in some cases more comprehensible by users (Shoval & Frumermann,
1994), and that analysts create more correct data models when using ERDs
rather than class diagrams (Shoval & Shiran, 1997). The main reason for these
two phenomena is the advantage of ER in dealing with ternary relationships: The
ER model is capable of representing such relationships “directly,” using the
diamond symbol, while the objects model represents such relationships as
“relationship classes.” Because of this it is sometimes difficult to understand
whether a class represents a “simple” thing or a complex one. Indeed, a
“relationship class” can be identified by looking at the key: It consists of two or
three reference attributes (depending on the specific type of ternary relationship
which it stands for), but this form of identification is not clear enough compared
to the “direct” representation of a ternary relationship in ERD.2

Whether we agree with these claims or not, it is important to remember that there
may be users who prefer ERDs or understand them better than class diagrams,
and that there may be analysts/designers who prefer ERDs or produce more
correct schemas when using them rather than class diagrams. Hence, given an
ERD, we must provide a precise method for mapping it to an equivalent class
diagram. Equivalent means that they bear the same meaning (semantics). Once
the target class diagram is created, it is of course possible to add the functional
dimension (i.e., to define the functions and attach them to the proper classes).

The Mapping Rules

We present the mapping rules according to the following categories: (1) mapping
of simple entity types and their attributes; (2) mapping of relationships between
simple entity types; (3) mapping of weak entity types; and (4) mapping of
structural relationships.

76 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Mapping of Simple Entity Types and Their Attributes

Every simple entity type (i.e., not a weak or a subentity type) is mapped into a
class. Its attributes are mapped as follows:

• A simple attribute is mapped to a simple attribute.
• A complex attribute is mapped to a tuple made of the respective attribute.

Figure 4.1. Mapping of entities and relationships

Mapping Entity Relationship Diagrams to Class Diagrams 77

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• A multi-valued attribute is mapped to a set attribute.
• The key of the entity type (one attribute or more) is mapped to a key of the

class.

Example: The ERD in Figure 4.1(a) includes three simple entity types with
several attributes and relationships. The object oriented design (OOD) in Figure
4.1(b) demonstrates the mapping of those entities and their attributes into
classes. Note the mapping of the attributes ID, name, address, and phone
numbers of the Employee entity type; the mapping of name of Department,
and the mapping of number and area of Building. (At this point ignore the
mapping of the relationships.)

Mapping of Relationships Between Simple Entity Types

We distinguish the mapping of unary and binary relationships from the mapping
of ternary relationships.

Mapping of Unary and Binary Relationships

The relationship between the entity types is mapped to an equivalent relationship
between the classes created from those entity types. In addition, a reference
attribute is added in each of these classes. If the relationship is unary (meaning
only one class was created), two reference attributes are added in the class, and
each is given an appropriate name.
The type of relationship dictates the following types of reference attributes:

• 1:1 relationship: The reference attribute in each class is singular (mean-
ing reference to a single object). If the 1:1 relationship has attributes, they
are mapped to simple attributes of each of the classes. (Note the duplicity;
as we know, at a later stage such duplicity may be removed—depending on
the users’ needs, as would be determined in the functional analysis
process.)

• 1:N relationship: The reference attribute from the “1” side of the
relationship is defined set (meaning, referring to several objects); the
reference attribute from the “N” side of the relationship is singular. (Recall
that a 1:N relationship has no attributes.)

78 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• N:N relationship without attributes: Each of the reference attributes is
defined set.
Example: In Figure 4.1 we can see relationships of the various types:

The unary relationship boss of Employee is one-to-many, and
therefore it is mapped into two reference attributes of class Em-
ployee: one subordinate-of [Employee] for the employee’s boss,
and the other set boss-of [Employee] for the employee’s subordi-
nates. Note the role names written next to the ends of the relationship
line.
The binary relationship management is one-to-one; it is mapped to
a single reference attribute in each of the involved classes, while the
relationship attribute date appointed is mapped to a simple attribute
in each of the two classes. Note that for brevity, the name of the
attribute in each class is slightly different: date manager appointed
in Department and date appointed dept. manager in Employee.
The binary relationship belonging is a one-to-many; it is mapped to
belongs to [Department] of Employee, and to set dept. employees
[Employee] of Department.
The binary relationship buildings of department is many-to-many;
it is mapped to a set of reference attributes in each of the two classes.

• M:N relationship with attributes—there are two mapping options:
1. Mapping to set reference attributes: This option is similar to the

previous case of N:N relationship without attributes. But in this case
each of the set reference attributes is a tuple consisting of a reference
attribute along with the relationship attributes. (Again, note the duplic-
ity of relationship attributes in the two classes.)
Note that if a relationship attribute is multi-valued, it is mapped to a set.
This means that in such cases, the set attribute in each of the involved
classes contains a set for each multi-valued attributed of the relation-
ship.

2. Mapping to a relationship class: According to this option, the
relationship is mapped to a new, relationship class. The name of this
class can be identical or similar to the relationship’s name. In addition,
a one-to-many relationship is defined between each of the regular
classes and the relationship class. The multiplicity of each of these
relationships is as follows: At the end next to the regular class it is
(1,1),3 while at the end next to the relationship class it is identical to the
multiplicity in the “many” side of the original relationship. The at-

Mapping Entity Relationship Diagrams to Class Diagrams 79

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tributes of the relationship class are as follows: (1) its key is a tuple,
whose name may be identical or similar to the class name, and whose
components are a pair of reference attributes to the two related
classes; and (2) its other attributes are the attributes of the original
relationship. In each of the two related classes, a set reference
attributes are defined, referring to the relationship class. Note that in
this mapping there is no duplicity of attributes. The more attributes a
N;N relationship has, the greater justification is for opting this solution.

Example: Figure 4.2 includes two many-to-many relationships with relationship
attributes. We demonstrate the two mapping options. The customers of projects

Figure 4.2. Mapping of M:N relationships with attributes

80 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

relationship between Project and Customer is mapped to a respective relation-
ship between the corresponding classes. Note that the set attribute in each of the
related classes is a tuple made of two attributes: a reference attribute to the other
class and a relationship attribute % of ownership. The jobs relationship
between Employee and Project is mapped to a relationship class Job. Each of
the two classes connected to this relationship class has a set reference attributed
to it. The key of Job is a tuple named job containing a pair of reference attributes,
one to Employee and one to Project. Note the multiplicities of the relationships:
At the Employee and Project ends they are (1,1); at the Job end of jobs of
employee relationship it is (0,N) because an employee does not have to work in
any job (project); at the Job end of jobs relationship it is (3,N) because every
project must have at least three jobs (employees).

Mapping of Ternary Relationships

Every ternary relationship is mapped to a class. The class name is identical or
similar to the name of the relationship. A one-to-many relationship is defined
between each of the involved classes and the new relationship class. The
multiplicity of each of these relationships at the end of the regular class is (1,1).
The multiplicity of each of these relationships at the end of the relationship class
is determined according to the multiplicity of the ternary relationship, as will be
detailed later on. A set reference attribute referring to the relationship class is
added to the three related classes. The attributes of the relationship class include:
(1) the relationship attributes, if such exist; and (2) a key tuple whose name is
identical or similar to the class name and whose components are reference
attributes to the three related classes or two of them, depending on the type of
relationship in the ERD:

1. If the relationship is N:N:N, the key tuple consists of three reference
attributes, one for each of the connected classes.
Example: Figure 4.3 presents a N:N:N relationship sales, where a sale
involves a product being sold by an agent to a customers, and there are no
constraints on who may buy or sell products. The relationship is mapped to
the relationship class Sale. Note the set reference attributes in each of the
three regular classes, and in particular note the key of Sale which includes
three reference attributes to the three classes. The relationship’s attributes
appear in the relationship class only.

2. If the relationship is N:N:1, the key tuple consists of two reference
attributes only—referring to the two classes that are at the “N” sides of the
relationship. In addition, there is another reference attribute (not part of the
key) referring to the class in the “1” side of the relationship.

Mapping Entity Relationship Diagrams to Class Diagrams 81

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example: Figure 4.4 presents an N:N:1 ternary relationship jobs. The
relationship defines that a certain employee may work on a certain project
in one city only4 (while he may work in a certain city on many projects; and
a project in a city may involve many employees). The relationship is mapped
to a class Job whose key contains reference to Employee and Project
only, while the reference attribute to City is not part of the key.

3. If the relationship is N:1:1, the key structure consists of two reference
attributes—one referring to the class at the “N” side of the relationship, and
the other, to one of the other two classes (at the “1” side). In addition, there
is another reference attribute (not part of the key) referring to the other
class (at the “1” side) that is not referenced from the. The choice of which
of the classes in the “1” side in the key is arbitrary.5

Figure 4.3. Mapping of a N:N:N relationship

82 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example: Figure 4.5 presents an example similar to the former one, except
for the fact that here there is an additional constraint: not only that a certain
employee may work on a certain project in one city only, but he may work
in a certain city on one project only.6 According to the mapping demon-
strated in this example, the key of Job includes references to Employee
and City, and an additional reference to Project. An alternative mapping
could be identical to the one presented in Figure 4.4.

Mapping of Weak Entity Types

A weak entity type may be mapped to attributes of the class created for its strong
entity type, or to a class of its own—depending on other relationships it may have.

Figure 4.4. Mapping of a N:N:1 relationship

Mapping Entity Relationship Diagrams to Class Diagrams 83

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.5. The mapping of an N:1:1 ternary relationship

Here are the rules for the different cases:

1. A weak entity type having one strong entity type and no other
relationships: It is mapped to a set attribute of the class created from its
strong entity type. That set may be a tuple if the weak entity type has
several attributes. Moreover, it may even include sets it if the weak entity
type has multi-valued attributes.
Example: Figure 4.6 presents a weak entity type Assignment, which is
linked to the strong entity type Doctor. Note the partial key attribute day
indicating that a doctor may have only one assignment (actually work shift
in any day he works). The weak entity type is mapped to set assignments
of doctor {day, from hour, to hour} in class Doctor.7

84 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. A weak entity type having more than one strong entity type: It is
mapped to a class with relationships to the classes created from its strong
entity types. The key of the new class is a tuple made of reference
attributes to the strong entity types and the partial key of the weak entity
type, if such partial key exists. (Note that a partial key is not always needed
because sometimes a weak entity type can be identified by its strong entity
types only.)
Example: Figure 4.7 presents a weak entity type Prescription having two
strong entity types Patient and Medicine, and a partial key date. It is
mapped to a class Prescription whose key is a triplet: two reference
attributes to the respective classes, and the attribute date. In addition, the
class includes the attribute quantity. The multiplicities of the relationships
between the new class and the two other are identical to the multiplicities
of the relationships in the ERD. (Note that we would have reached the same
mapping had the prescription been an N:N relationship between Medicine
and Patient.)

3. A weak entity type which is also a strong entity type or having also
ordinary relationships: It is mapped to a class, like an ordinary entity
type. Its key is a tuple including a reference to the class created from the
strong entity type and the partial key attributes. If the weak entity type has
also ordinary relationships with other entity types, these relationships are
mapped just like any other relationship. The weak entity type at the lower
level is mapped like any other weak entity type.

Figure 4.6. Mapping of a weak entity type having one strong entity type and
no other relationships

Mapping Entity Relationship Diagrams to Class Diagrams 85

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example: Figure 4.8 exemplifies the case of a weak entity type having also
a regular relationship. The weak entity type Visit is identified by its strong
entity type Patient and its partial key date. In addition it has an ordinary
N:1 relationship with Doctor (which means that every patient’s visit is
treated by one doctor only). It is mapped to Visit class whose key consists
of a reference to Patient and the attribute date of visit. In addition, the class
has a reference attribute to Doctor. Obviously, in class Doctor a new set
reference attribute is added referring to his/her visits.

Figure 4.7. Mapping of a weak entity having two strong entity types

86 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Mapping of Structural Relationships

This section deals with mapping of inheritance and aggregation relationships.
Actually, there is no difference between the two models and diagram types in
these cases, except for a slight difference in the symbols. Hence, the mappings
are straightforward.

1. Mapping of inheritance relationships: A subentity type is mapped into
the subclass of the class created from the super entity type. An inheritance
relationship is defined between the respective classes. If ‘Total’ (T) or

Figure 4.8. Mapping of a weak entity type having an ordinary relationship

Mapping Entity Relationship Diagrams to Class Diagrams 87

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

‘Exclusion’ (X) constraints are defined in the ERD, they are copied to the
class diagram.

2. Mapping of an aggregation relationships: An aggregative relationship
is dealt with just like any ordinary relationship: The class created from the
entity type at the “whole” side of the aggregation contains a set reference
attribute for each of the classes created from the entity types at the “parts”
side of the aggregation. Similarly, each “part” class contains a reference
attribute to the “whole” class.

Due to simplicity of these mappings, no examples are shown.

Examples and Exercises on the Mapping
of ERDs into Class Diagrams

In this section we present examples for the mapping of ERDs to class diagrams.
For each example we show: (1) a narrative description of the users’ require-
ments; this description is brought only to ease comprehension of the ERD; (2) the
ERD created for these requirements. It must be noted that we present only one
possible ERD for any given example; as we know, sometimes more than one
(correct) ERD is possible;8 and (3) the class diagram obtained according to the
mapping rules.
The reader is asked to treat the examples as self-practice exercises. This means
that before looking at the class diagram of each example, the reader is expected
to review the ERD and create his/her own solution by applying the mapping rules;
and only then compare his/her solution with the one presented in the book.

Example A: Clinic
We have to create a data model for a clinic information system (IS) that will
record and provide information of the clinic employees, patients, visits of
patients in the clinic, and treatments given to them.

The clinic’s employees are doctors, nurses, and administrative workers.
Each worker is identified by an ID number and has a name, address, and
phone number. A doctor has also a license number (in addition to his ID
number as any other employee) and one or more specializations. A nurse
has a specialization classification and a role he/she performs in the clinic.

88 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Doctors are assigned to treat patients in the clinic on certain days and
hours; a doctor may work only one shift per day (i.e., from an hour to an
hour).

For each patient, we record his/her ID number, name, address, and one or
more phone numbers. A patient may visit at the clinic no more than once a
day and is being seen by a doctor; not necessarily the same doctor in
different visits. The doctor who treats the patient writes a diagnosis. As a
result, the doctor may prescribe medicines for the patients, including the
medicine name, daily dose, and the number of days each medicine should
be taken. (Assume that each medicine has a unique identification name.)
The doctor may also send the patient for additional examinations (tests) to
be performed on certain dates. Each test has a code, description, and a
location where it takes place. (Assume that a certain test can only be
performed in one place only.)

• ERD: The ERD of the clinic is presented in Figure 4.9.
• OOD: Figure 4.10 presents the class diagram created according to the

mapping rules. Note the way the following issues were dealt with:
The ordinary entity types Employee, Patient, Medicine, and Test
were mapped to respective classes; the subentity types Doctor and
Nurse were mapped to subclasses of Employee. (Note that on both
the ERD and the OOD there is an exclusion constraint on the
participants of Employees, but not a total constraint, because there
are other types of employees who are neither doctors nor nurses.)
The weak entity type Assignment was mapped to a set attribute of the
subclass Doctor. This set is a tuple made up of the three attributes of
the weak entity type.
The weak entity type Visits was mapped to a class because it has
ordinary relationships with other entity types. Note that the key of
Visit contains a reference to Patient and date of visit. In addition, this
class has a reference attribute to the Doctor who treats the patient,
and two set reference attributes: one to Medicine and the other to
Test .
The weak entity type Visits has two many-to-many relationships with
relationship attributes. We demonstrate the two options of mapping
such relationships: The subscriptions relationship was mapped to a
relationship class Subscription, whose key refers to both Visit and
Medicine, and it includes the two relationship attributes number of
days of daily dose. The examinations relationship, on the other hand,

Mapping Entity Relationship Diagrams to Class Diagrams 89

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

was mapped to set reference attributes of Visit and Test, each
including also the relationship attribute date.

Example B: Archeological Excavations and Exhibitions
An IS for the Archeological Commission is needed in order to manage
information on excavation sites, discovered artifacts, their maintenance
treatments, and museum exhibitions.

Each discovered artifact is given a unique ID number, a description, and
a type (category). In addition, the date when the artifact was discovered is
also recorded. Over time, an artifact undergoes certain treatments. The
treatments’ dates and types need to be recorded. An artifact can undergo
the same treatment on several occasions and several treatments on each
occasion.

Figure 4.9. ERD of the clinic example

90 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Every excavation site has a unique name and the date in which the
excavation had begun. A site is located in a certain region and has a
researcher who is in charge of the site. Each researcher has an ID, a name,
a degree, and an academic institute to which he/she belongs. From time to
time, excavations are carried out in the sites. The date of each excavation
needs to be recorded, along with the number of artifacts found. Many
researchers can take part in every excavation, and the number of hours
each researcher worked needs to be recorded.

The found artifacts are presented from time to time in various museums.
Each museum has a unique name, an address, and a manager (assume that
he/she is identified by name). An artifact may be presented in a museum for
a while. It may be presented in the same museum several times, but it can

Figure 4.10. Class diagram of the clinic example

Mapping Entity Relationship Diagrams to Class Diagrams 91

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

only be in one place at a time. The start and end dates of each presentation
of an artifact in a museum need to be recorded.

• ERD: Figure 4.11 presents the ERD.
• OOD: The class diagram created by mapping the ERD is shown in Figure

4.12. Here are several clarifications:
The ordinary entity types Artifacts, Excavation Sites, and Re-
searchers are mapped to classes, with their corresponding attributes.
The weak entity type Treatments has no relationships with the other
classes, so it is mapped to a set attribute artifact treatments of class
Artifact. The set contains two components; one is date of treatment
and the other is set types of treatment. Hence, we have a set within
a set; this enables recording several types of treatments on the same
date.
The weak entity type Exhibitions has a regular relationship with
Museums. Therefore, it was mapped to a class. Its key consists of
two attributes: a reference to Artifact, and start date: These two are

Figure 4.11. ERD of the archeological excavations and exhibitions example

92 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sufficient to identify each exhibition of an artifact, no matter where it
is. The class also has a simple attribute end date (hence each
exhibition has one beginning date and one end date associated with it),
and a reference attribute to Museum.
The way of dealing with the weak entity type Excavations is similar
to the case of Exhibitions. Note that the type of relationship between
Excavations and Researchers is many-to-many, and therefore we
get sets (took part in excavations and participants) in each of the
respective classes, referring to the other class. In addition, the
relationship attribute work hours also exists.9

Figure 4.12. Class diagram of the archeological excavations and exhibitions
example

Mapping Entity Relationship Diagrams to Class Diagrams 93

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example C: Travel Agency
A travel agency needs an IS to manage information on its guided tours,
guides, and travelers. The agency plans different tour types. Each trip type
is identified by a code, and it has duration (number of days), a price (per
traveler), a max number of participants, and a list of sites that will be visited
in the tour, including the order of their visit (e.g., 1st, 2nd, etc.). A certain site
may be included in various tour types. Each site is located in a certain
country and has a name which is unique in its country (but in different
countries there may be sites with the same name). Each site also has a
recommended duration of visit (hours) and a quality rank.

The agency offers tours throughout the year. The same tour type may be
offered many times, but no more than one tour of a certain type may
commence on the same day. Several guides may be assigned to guide each
tour. A guide has an ID number, name, and birth date. For each participant
(customer) of a tour the following details need to be recorded: ID number,
name, address, and phone number. At the end of a tour, each participant
is asked to grade his/her level of satisfaction from the tour. Each
participant’s grade and the average grade of all participants are recorded.

Figure 4.13. ERD of the travel agency example

94 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• ERD: Figure 4.13 presents the ERD.
• OOD: The class diagram created by mapping the ERD is shown in Figure

4.14.

Example D: Parliament
An IS needs to be created for a Parliament, purposed to manage informa-
tion on parliament members (PM), parties, parliament committees, govern-
ments, coalitions, parliament sessions, and committee meetings. The system
will not only serve the present Parliament, but also those to come.

A PM has an ID number, a name, a birth date, a profession, and a party to
which he/she belongs. A certain individual may be a PM for several terms.
He/she may be a member of only one party while being in a certain
parliament, but he/she may change a party when a new parliament is

Figure 4.14. Class diagram of the travel agency example

Mapping Entity Relationship Diagrams to Class Diagrams 95

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

elected. A record of the number of parliament sessions each PM attends is
kept, along with the total number of bills he/she presented and the number
of queries he/she submitted. The information on the participation and
activity of each PM is kept until a new parliament is elected. At that point
this information is erased, and recording of participation and activities for
PMs in the new parliament begins.

Each party has a code, name, and establishment date. A party has a
chairman who must be also a member of the present parliament. A party can
be represented in many parliament terms. A record of the PMs of every
parliament and their parties is kept. A record is also kept of the number of
PMs of each party in every parliament term, along with the number of the
registered party members and the number of votes the party received in the
elections.

A parliament is identified by a number, and it also has a date when it is
sworn in and a speaker (chair or parliament). The speaker may be replaced
during the parliament’s term, and records need to be kept on the beginning
and end date of each speaker’s term. (Assume that a speaker cannot serve
more than once during the same term.) The Parliament holds sessions; each
session is held at a certain date, and there cannot be more than one session
on the same date. Every session has one chair of session.

Several committees are operating in the parliament. A committee is identi-
fied by name and it has several PM numbers, whose number may change
from term to term. A PM may be a member of several committees, and in each
committee he/she may have a certain role, for example, chair, vice chair,
secretary, or just member.

A government is identified by a number and it is sworn in at a certain date.
The prime minister is head of the government for its entire term. This means
that replacing the prime minister causes the establishment of a new
government (but not necessarily elections for the parliament). Several
governments may be established throughout a certain parliament’s term,
with a different or the same prime minister. Certain parties form coalitions.
(A coalition consists of parties who take part in a government.) A party may
join and leave a coalition several times throughout a term of a government,
and the dates of joining and leaving are registered.

96 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.15. ERD of the parliament example

• ERD: The ERD is presented in Figure 4.15.10

• OOD: Since this example is relatively large, it is impossible to display a
clear class diagram on one page. Therefore, the solution is presented in two
complimentary forms:
1. A “Skeleton” class diagram: The diagram presented in Figure 4.16

only shows the classes and relationships, but not the attributes. This

Mapping Entity Relationship Diagrams to Class Diagrams 97

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

way it is possible to present a “compact” diagram for a nontrivial
problem.

2. An objects schema: The objects schema that follows specifies the
classes and their attributes. For brevity, we do not detail the data type
definitions and the inverse of the reference attributes.

Objects Schema of Parliament
Class: PM (parliament member)

Attributes {
ID number
birth date
profession
set PM in parliaments [PM in Parliament]
set speaker of parliaments {[Parliament], from date, to date}
set prime minister of [Government]
set member of committees [PM in Committee]
set chair of parliament sessions [Session]

}
Class: PM Now Inherits PM

Attributes {
number of sessions attended
number of bills proposed
number of queries asked
member of party [Party]
chairperson of party [Party]
set sessions attended [Session]

}
Class: Party

Attributes {
party code
party name
date established
set current PM’s of today [PM Now]
set PMs in parliaments [PM in Parliament]
chair of party [PM Now]
set acted in parliaments [PM in Parliament]
set party in coalitions [Coalition]

}

98 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Class: Parliament
Attributes {

parliament number
date sworn in
set parties in parliament [Party in Parliament]
set members of parliament [PM in Parliament]
set governments in parliament [Government]
set speakers {[PM], from date, to date}
set committees of parliament {[Committee], no. of members}
set parliament sessions [Session]

}
Class: Party in Parliament

Attributes {
party in parliament {[Party], [Parliament]}
number of PMs
number of votes
number of members

}
Class: PM in Parliament

Attributes {
PM in parliament {[PM], [Parliament]}
in party [party]

}
Class: Government

Attributes {
government number
governed during parliament [Parliament]
date sworn in
prime minister [PM]
set coalitions of government [Coalition]

}
Class: Coalition

Attributes {
coalition {[Party], date joined}
of government [Government]
date quit coalition

}
Class: Session

Mapping Entity Relationship Diagrams to Class Diagrams 99

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Attributes {
session date
held during parliament [Parliament]
chair of session [PM Now]
set PM’s in Session [PM Now]

}
Class: Committee

Attributes {
committee name
set acted in parliaments {[Parliament], no. of members}
set committee members [PM in Committee]

}
Class: PM in Committee

Figure 4.16. A skeletal class diagram of the parliament example

100 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Attributes {
PM in committee {[PM], [Parliament], [Committee]}
role in committee

}

End of Parliament schema.

As mention before, this form of presentation is appropriate for real-size
schemas. If a computer aided software engineering (CASE) tool is used for the
creation of the class diagram, it may be assumed that such tool enables us to
display a skeleton diagram, similar to the one presented in Figure 4.16, and to
“zoom” in on a class chosen by the user by opening a window detailing its
attributes.

Review Questions

1. What can be the reasons for an analyst/designer to prefer creating an ERD
and then map it to a class diagram rather than create a class diagram
“directly?”

2. Explain and exemplify how to map each of the following attribute types to
an equivalent construct in a class diagram: a simple attribute; a complex
attribute; a multi-valued attribute; and a key of an entity.

3. Explain and exemplify how to map the following relationship types: one-to-
one; one-to-many; and many-to-many with no relationship attributes.

4. Explain and exemplify two options for mapping a many-to-many relation-
ship with relationship attributes.

5. Explain and exemplify the mapping of each of the following ternary
relationships: N:N:N; N:N:1; and N:1:1.

6. Explain and exemplify the mapping of the following weak entity types: (1)
the weak entity type has one strong entity type and no other relationships;
(2) the weak entity type has two strong entity types and a partial key; and
(3) the weak entity type has one strong entity type which is also a weak
entity type.

7. Explain and exemplify the mapping of an inheritance relationship.
8. Explain and exemplify the mapping of an aggregation relationship.

Mapping Entity Relationship Diagrams to Class Diagrams 101

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Batini, C., Ceri, S., & Navathe, S. (1992). Conceptual database design: An
entity-relationship approach. Redwood City, CA: Benjamin/Cummings.

Chen, P. (1976). The entity-relationship model—Toward a unified view of data.
Transactions on Database Systems, 1(1), 9-36.

Dietrich, S., & Urban, S. (2005). An advanced course in database systems—
Beyond relational databases. Upper Saddle River, NJ: Prentice Hall.

Elmasri, P., & Navathe, S. (2003). Fundamentals of database systems (4th

ed.). Boston: Addison Wesley.
Garcia-Molina, H., Ullman, J., & Widom, J. (2002). Database systems—The

complete book. Upper Saddle River, NJ: Prentice Hall.
Shoval, P. (1998). Planning, analysis and design of information systems

(Vols. 1-3). Tel-Aviv, Israel: Open University Press.
Shoval, P., & Frumermann, I. (1994). OO and EER conceptual schemas: A

comparison of use comprehension. Journal of Database Management,
5(4), 28-38.

Shoval, P., & Shiran, S. (1997). Entity-relationship and object oriented data
modeling—An experimental comparison of design quality. Data & Knowl-
edge-Engineering, 21, 297-315.

Thalheim, B. (2000). Entity-relationship modeling: Foundations of database
technology. Berlin; New York: Springer.

Endnotes

1 The ER model was created by Chen (1976) and since then it was in
widespread use and had many extensions and variations. The model is
described in numerous books and papers in the areas of database design and
systems analysis and design. A few sources are: Batini, Ceri, and Navathe
(1992), Dietrich and Urban (2005), Elmasri and Navathe (2003), Garcial-
Molina, Ullman, and Widom (2002), Shoval (1998), and Thalheim (2000).

2 More details on the findings of these researches can be found in the
references listed in footnote one.

3 Because each object of the relationship-class must be connected to exactly
one object of each of the classes it connects.

102 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4 This constraint may not be realistic; it is given only to exemplify the mapping
of a N:N:1 relationship.

5 By analogy to the relational model, this is a situation of two candidate keys,
in which any of the two attributes may be defined as primary key.

6 Again it must be noted that these “strange” constraints have been invented
only to be able to demonstrate the mapping rule. In reality N:1:1 and N:N:1
are vary rare.

7 Note that if we want to permit more than one assignment/shift per day, the
partial key, in both the ERD and the OOD would be day and from hour.

8 The reader is encouraged to read the narrative descriptions and then create
the respective ERDs by himself/herself before looking at the ERDs
provided here.

9 The reader is welcome to propose an alternative solution, using a relation-
ship-class.

1 0 The black triangle in an entity’s left corner indicates that it appears more
than once in the diagram. This enables us to shorten lines and avoid crossing
lines.

Mapping Class Diagrams to Relational Schemas 103

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Mapping Class
Diagrams to

Relational Schemas

This chapter first explains the need to map a class diagram to a relational
schema. Then, most of the chapter is dedicated to presenting and
demonstrating the mapping rules based on which a relational schema
(made of normalized relations) is created. The mapping process is
demonstrated with several comprehensive examples.

Why Map a Class Diagram
to a Relational Schema?

The objects model can serve two purposes: (1) as a mean for planning, that is,
to create a conceptual data model of the reality (this model, a class diagram, can
be used to communicate between the users and the analysts/designers, similar
to the role of an entity relationship diagram [ERD]), and (2) as a means for
implementation, that is, the class diagram can be converted to an objects schema
and then implemented in an object oriented database management system (OO-
DBMS), as a substitute for a relational DBMS.
However, OO-DBMSs are not in widespread use. Although various OO-
DBMSs have been developed and marketed (mainly during the 1990s, and mostly
by small companies who tried to commercialize ideas created by researchers),
they were not very successful. In fact, relational DBMSs continue to dominate
the market. A reasonable explanation to this fact is that the big companies in the

104 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DBMS market invested huge amounts on their relational systems and have many
customers, and there seems to be little reason to abandon these investments and
risk their customer base with the new technology. Another possible explanation
is that for data processing systems (i.e., systems serving the business organiza-
tional world) there is no real need for a data model which is so different from the
relational model. Despite claims regarding limitations of the relational model (see
discussion in Chapter I) it seems that the model is adequate for most business-
oriented data processing needs. Rather than seeing OO-DBMSs replacing the
relational systems, we see that relational DBMSs are being enhanced with
certain features of the objects model, thus enabling them to provide specific
needs which they were unable to fulfill according to the “pure” relational model.
The “new generation” relational systems are called object relational DBMS
(OR-DBMS). Here are a few typical object oriented extensions to relational
DBMSs1:

• Array (or multi-valued attribute): A field (attribute) does not need to be
“atomic” (meaning, contain only one value), but it can contain several
values. For example, in a Students relation, it is possible to define an
attribute array phone numbers (3), which allows us to save up to three
phone numbers for each student (instead of having a separate relation for
student phone numbers).

• Structure (or nested relation): It is possible to group several attributes
in a relation and define them as a subrelation (subrecord, to be exact). This
extension enables us to implement set attributes in a relation. For example,
in the Students relation, it is possible to define an attribute nested relation
registration to courses (course code, grade). This enables each student’s
record to contain a subrecord of the student’s course registrations (instead
of having a separate relation for course registrations).

• Methods (or procedures): In addition to attributes and “simple” con-
straints (e.g., key, unique, not-null) this extension enables to define methods
which perform more complex constraint-checking operations on attributes
in one or more relations. (This is actually an extension of the “check”
procedure in relational DBMSs.)

• Internal ID for a structure: By analogy to object identification (OID) in
the objects model, an OR-DBMS enables us to assign an internal ID to a
structure (i.e., a subrecord). This enables us to save the subrecord apart
from the main record (e.g., for the sake of efficiency), and use the internal
ID to refer to it (like a reference attribute in the objects model). For
example, instead of saving the nested relation registration to courses
along with all other attributes of a student, it is possible to save it separately
and refer to it (thus enable locating it) using its ID.

Mapping Class Diagrams to Relational Schemas 105

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Since on the one hand the objects model has become a commonly used
conceptual data model (like the entity relationship [ER] model), and on the other
the relational model remained dominant in the DBMS field, there is a need to map
one model to the other. In the next section we provide rules for mapping a class
diagram to a relational schema consisting of normalized relations.2

The Mapping Rules

First, we wish to point out that the main problem with objects-to-relational model
mapping is that a class is not a “normalized” data structure; it may contain
different kinds of attributes (simple, tuples, sets, reference attributes, and their
combinations). Moreover, in the objects model there is a possibility of data
duplicity (e.g., relationship attributes in the case of many-to-many relationships
between classes). Another problem is with keys of classes: Sometimes a key
consists of not just ordinary attributes but also or only reference attributes to
other classes.
In contrast, a normalized database schema, according to the relational model,
consists of “simple” and well-defined relations. A normalized relation has certain
characteristics which adhere to certain rules called normal forms (NF in short).
Here is a brief summary of these characteristics3:

1. A relation consists of attributes; each attribute is of a certain data type and
has an atomic value. The key of a relation consisting of one or more
attributes. (A relation which adheres to these definitions is considered
1NF—1st normal form.)

2. All no-key attributes of the relation are functionally dependent on the entire
key—not just on part of the key (2NF); and not on any other non-key
attribute (3NF). (A more precise definition, termed BC/NF, is: every
determinant [i.e., an attribute which functionally determines another at-
tribute] is a candidate key of the relation.)

3. There are no multi-valued dependencies between attributes within the key;
each multi-valued dependency must be in a separate relation (4NF and
5NF).

In addition to normalized relations, a normalized relational schema defines
referential integrity constraints between relations, using foreign-key to primary-
key relationships. One or more (key or non-key) attributes of a relation may be

106 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

defined as foreign-key if there exists another relation (termed “parent” or “base”
relation), in which those attributes constitute its primary key.
The mapping rules presented next ensure the creation of a relational database
schema consisting of normalized relations and foreign-key to primary-key
relationships between them.
Generally, each class is mapped to one relation or more, depending on the types
of its attributes and relationships. The mapping process includes going over the
classes in the following order:

1. First, we deal with classes which have a key made of a simple attribute, or
a tuple of simple attributes.

2. Then we deal with the rest of other classes according to the number of
reference attributes included in their key.4 This means that we first deal
with classes whose key contains one reference attribute, then those with
two, and so on.

3. When dealing with any class, we first map its key attributes and only then
its other attributes—except for the reference attributes which will be
mapped separately.

4. Afterwards, we go back and map the reference attributes. The reason for
this is that every reference attribute has an inverse reference attribute
(usually in a different class) so it is possible to efficiently deal with the
mapping of the relationships after the initial mapping of the respective
classes is completed.

5. Eventually, we deal with subclasses (i.e., classes which inherit from
superclasses) and with classes which are “parts” of aggregations.

Mapping of the Class

A relation is created for the class. The name of the relation may be identical or
similar to that of the class. (Usually, in our examples relation names are in plural,
while class names are in singular.)

Mapping of the Key

The key of a class is mapped to the key of the respective relation, according to
the following possibilities for the key of the class:

Mapping Class Diagrams to Relational Schemas 107

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The key is a simple attribute: It is mapped to a single-attribute key. For
example, the key student ID of Student class is mapped to the key student
ID of Students relation.

• The key is a tuple made of several simple attributes: It is mapped to
the key which is made up of the components attributes. For example, the
key course offering {course code, year, semester} of class Course
Offering is mapped to key {course code, year, semester} of the Course
Offerings relation.

• The key is a tuple which includes one reference attribute and one or
more simple attributes:5 It is mapped to a key which includes the simple
attribute(s) and the key of the relation created from the referenced class
(we term it “parent relation”). (Note that according to the order of mapping
defined earlier, the parent relation has already been created and its key is
known.) In addition, that part of the key is defined foreign-key, referring to
the parent relation. For example, in Figure 8 (Chapter IV) there is class
Visit whose key is visit {[Patient], date of visit}. It is mapped to the key
{patient ID, date of visit} of the relation Visits. In addition, patient ID is
defined as foreign-key referring to the relation Patients.

• The key is a tuple containing two or three reference attributes, with
or without simple attributes:6 It is mapped to a key which includes the
simple attributes (if any exist) and the keys of the two or three parent
relations created from the referenced classes. In addition, each of those
parts of the key is defined foreign-key referring to the respective parent
relation. Here are a few examples:

In Figure 4.2 (Chapter IV) there is a class Job whose key is job
{[Employee], [Project]}. It is mapped to the key {employee ID,
project code} of the relation Jobs. In addition, employee ID is defined
foreign-key of Employees relation, and project code is defined
foreign-key of Projects relation.
In Figure 4.3 (Chapter IV) there is a class Sale whose key is sale
{[Customer], [Agent], [Product]}. It is mapped to the key of the
{customer ID, agent ID, product code} of relation Sales. In addition,
each of these attributes is defined foreign-key referring to Custom-
ers, Agents, and Products relations, respectively.
In Figure 4.7 (Chapter IV) there is a class Prescription whose key is
prescription {[Medicine], [Patient], date}. It is mapped to the key
{medicine name, patient ID, date} of relation Prescriptions. In
addition, medicine name is defined foreign-key of Medicines, and
patient ID—foreign-key of Patients.

108 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Mapping of Other Class Attributes

The other attributes of a class are mapped as follows:

• A simple (ordinary) attribute is mapped to a simple attribute of the
respective relation. For example, student name in the class Student is
mapped to an attribute of relation Students.

• A tuple made up of simple attributes is mapped to simple attributes of
the respective relation. For example, the tuple address {street, number,
city, zip code} is mapped to four simple attributes in the relation Students.

• Every set attribute which is made up of a simple attribute is mapped
to a new relation whose key consists of two parts: one is the key of the
relation already created from that class, and the other is the name of the set
attribute. The name of the new relation is based on the names of the set and
its class. In addition, the first part of the key is defined foreign-key referring
to the parent relation. For example, In Figure 4.1 (Chapter IV) the class
Employee includes the attribute set phone numbers. It is mapped to a new
relation named Employees’ Phones whose key is {employee ID, phone
number}. In addition, employee ID is defined as a foreign-key of Employ-
ees relation.

Note that every set of a class is mapped to a different new relation; hence,
a certain class has several set attributes, there will be a new relation for each of
them.

• Every set attribute which is made up of a tuple of simple attributes
is mapped to a new relation whose key consists of two parts, similar to the
previous case. However, in this case the second part of the key may include
all or only parts of tuple’s attributes, depending if tuple includes a partial-
key.7 For example, in Figure 10 (Chapter IV) there is a class Doctor with
the attribute set assignments {day, from hour, to hour} which dictates no
more than one shift per day. It is mapped to a new relation Doctors’
Assignments whose key is {doctor license number, day}. The rest of
the tuple’s attributes, from hour and to hour, are mapped to simple (non-
key) attributes of the new relation. In addition, doctor license number is
defined foreign-key of the relation Doctors. (By the way, had we assumed
that more than one shift per day is possible for a doctor, the partial key of
the tuple would have included both day and from hour, and therefore the
key of the new relation would have been {doctor license number, day,

Mapping Class Diagrams to Relational Schemas 109

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from hour} while only to hour would have been added as an ordinary
attribute.

Mapping of reference attributes are dealt with in the next section.

Mapping of Relationships and Reference Attributes

In the class diagram there are both relationships, signified by labeled lines and
multiplicities, and reference attributes in the respective classes; every reference
attribute of a class has an inverse reference attribute in the other class (unless
it is a unary relationship in which case the reference attributes refer to the same
class). A reference attribute can appear in different forms: as a single reference
attribute, as a set of reference attributes, or as part of a tuple containing both
reference and ordinary attributes—in accordance with the possible types of
relationships between classes. The mapping of relationships is as follows.

• One-to-One Relationship: This type of relationship is also represented
by a single reference attribute in each of the involved classes. The mapping
is as follows: the key of one of the created relations is added as an ordinary
attribute of the other relation, where it is defined as foreign-key of the first
relation. We may randomly choose the relation to which to add the attribute,
but it is better to choose the relation which we think there will be fewer
records or fewer null values in the added attribute.
For example, in Figure 4.1(b) (Chapter IV) there is a 1:1 relationship
management between the classes Employee and Department, and two
respective reference attributes: manager of [Department] and dept.
manager [Employee]. Each of the two classes have already been mapped
to a relation. Therefore, it is possible to add an attribute manager ID (based
on the attribute Employee ID which is the key of Employees) to the
relation Departments, or to add an attribute manager of department
(based on the attribute name department name which is the key of
Departments) to Employees. Since there are fewer departments than
employees, and only a few employees are department managers (note that
the min multiplicity of the relationship in the Department side is 0), it is
better to add manager ID to Departments. Hence, this attribute will also
be defined as foreign-key, referring to Employees relation.

• One-to-Many Relationship: This type of relationship is also represented
by a single reference attribute of the class at the ‘N’ side of the relationship
and a set of reference attributes in the class at the ‘1’ side of the

110 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

relationship. The mapping is as follows: the key of the relation created from
the class at the ‘1’ side is added as an ordinary attribute of the relation
created from the class at the ‘N’ side of the relationship. This field is also
defined as foreign-key, referring to the other relation. (Note that no
attribute is added to the relation created from the class at the ‘1’ side of the
relationship.)
For example, in Figure 4.1 (Chapter IV) there is a one-to-many relationship
belonging between the classes Employee and Department, where ‘N’
is on the Employee side. Therefore, the attribute department name is
added to the relation Employees and defined foreign-key referring to
Departments. (A better name for this attribute might be department of
employee.)

• Many-to-Many Relationship: This type of relationship is also repre-
sented by a set reference attribute in each side of the involved classes. If
the relationship also has attributes, these are included within the two sets
(which are actually tuples containing both the reference and the relationship
attributes). The N:N relationship is mapped to a new relation (a “relation-
ship relation”) whose key is made of the keys of the two relations created
from the classes involved in the relationship. Each of these parts of the key
is defined as a foreign-key referring to the respective parent relation. If the
relationship has attributes (either simple attributes or tuples), they are
mapped to respective attributes of the new relation. If the relationship has
a set attribute—a new (additional) relation is created for each set, and its
key will consist of the key of the aforementioned relationship relation
(which will also be defined foreign-key) plus the set attribute.
Note that if the is more than one N:N relationship between two classes,
every such relationship is mapped to a different relationship relation.
For example, in Figure 4.1 (Chapter IV) there is a N:N relationship
buildings of departments between the classes Department and Build-
ing. The relationship is also represented by two respective set reference
attributes. In this example there are no relationship attributes. The relation-
ship is mapped to a new relation named Buildings of Departments whose
key is {department name, building number}. Each of the components of
the key is defined foreign-key referring to the respective relation.
Another example, in Figure 4.2 (Chapter IV) there is a N:N relationship
customers of projects between the classes Project and Customer.
There is also a relationship attribute % of ownership which is included in
each of the respective set reference attributes. The relationship is mapped
to a new class named Customers of Projects whose key is {project
code, customer ID}, while % of ownership is added as an ordinary
attribute.

Mapping Class Diagrams to Relational Schemas 111

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Ternary Relationships: It should be pointed out that a ternary relation-
ship in reality is expressed in the objects model by a relationship class whose
key contains references to the related classes. This means that such
classes have already been mapped to relations, and there is nothing else to
be mapped. It should be pointed out that every class which is related to the
relationship class has a set reference attribute to that class, standing for the
1:N relationship between them (where the ‘N’ is at the side of the
relationship class). According to the mapping rule of 1:N relationships,
there is no need to add anything to any of the relations. This applies to all
kinds of ternary relationships, whatever their multiplicities.
For example, in Figure 4.3 (Chapter IV) there is a class named Sale
representing the ternary relationship between Customer, Agent, and
Product. A relation has already been created for each of the four classes
involved, including the relation Sales whose key is {customer ID, agent
ID, product code}; each of the three components of the key is defined
foreign-key, referring to the respective relation. Note that the relation has
two other, non-key attributes: date and price.

Mapping of Subclasses (Inheritance Relationships)

First of all, it should be pointed out that by now the superclasses have already
been mapped to relations. All that remains now is to map the subclasses. There
are several alternative mappings. Here are three of them:

• Alternative 1: Create a new relation for every subclass (in addition to the
relation already created for the superclass). The key of each new
“subrelation” is identical to that of the relation created from the superclass
(namely “super relation”). The mapping of the attributes and the relation-
ships (of each subclass) is done exactly like in any other class (but the
attributes of the superclass are not copied to the new relations). In addition,
the key of every subrelation is defined as foreign-key, referring to the super
relation. If a subclass has a key attribute of its own (in addition to the key
of its superclass), it may be mapped to an ordinary and not-null attribute, or
be defined key of the subrelation, while the key of the super relation is
defined as an ordinary and not-null attribute, and foreign-key of the super
relation.
It is important to point out that according to this solution; the super relation
contains all the common attributes, while each subrelation only contains its
specific attributes, plus the key of the super relation. Therefore, it should
be clear that the data of each object of a subclass are “spread” (stored) in

112 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

two different relations: It has a data record in the super relation including
the “common” attributes, and a record in the subrelation including the
specific attributes. This also means that an inquiry about such an object may
involve the two relations (and hence require performing a joint operation).
It must be noted that the relational model provides no means (at the schema
definition level) to constraint the population of records across the subrelations,
that is, there are no equivalents to the total (T) and exclusion (X)
participation constraints. Hence, these constraints, if defined in the class
diagram, are not mapped and their enforcement is up to the application
programmers.
For example, in Figure 2.9 (Chapter II) there are two subclasses, Under-
graduate Students and Research Students which inherit from Stu-
dents. The subclasses are mapped to the following relations (note that the
attributes of the superclass are not copied into the subrelations, except for
the key):

Undergraduate Students (student ID, average grade, sports
club)
Research Students (student ID, supervisor ID, subject of thesis,
completion date)

• Alternative 2: Add the common attributes (which are in the super relation)
to each of the subrelations. This way each subrelation contains all the
attributes of the subobjects, and therefore the super relation does not
contain records of the subclasses’ objects. Hence, the super relation
contains only records of objects of the superclass only. In case there is a
“total” participation constraint on the subclasses (meaning that there are no
additional subtypes of objects besides those in the defined subclasses), the
super relation is redundant and should be dropped, because all data about
the objects are kept in the respective subrelations.
Example: In the previous example, the following relations will be created:

Undergraduate Students (student ID, name, address, department
name, average grade, sports club)
Research Students (student ID, name, address, department name,
supervisor ID, subject of thesis, completion date)

• Alternative 3: Map the specific attributes of the subclasses to attributes
of the super relation. This means that no new relations are created because
of the subclasses; only the relation created for the superclass gets more
attributes. Obviously, the specific attributes of this multi-attributed relation
may have many null values, because it includes all types of records, and for
many of them some of the attributes may not be applicable. This is why this

Mapping Class Diagrams to Relational Schemas 113

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

solution is not desirable if there are many different subclasses which have
many specific attributes.
For example, had this solution been chosen for the previous example, we
would have obtained the following single relation:

Students (student ID, name, address, department name, average
grade, sports club, supervisor ID, subject of thesis, completion
date)

As said, more mapping alternatives for inheritance relationships are possible. As
far as normalization is concerned, the alternative mappings provide normalized
relations, but each may have some advantages and disadvantages—depending
on the specific application and its users’ needs (e.g., which queries are typical
of the users). More details on this are beyond the scope of this book.

Mapping Aggregations

As we already know, aggregation relationships are considered like ordinary
relationship classes. Therefore, the mapping of the classes involved in aggrega-
tions is done the same way. For example, Figure 7 (Chapter II) shows a “whole-
parts” relationship between Airplanes (the “whole”) and Engines and Gears
(the “parts”). The mapping of these classes provides the following relations:

• Airplanes (airplane ID,….)
• Engines (engine ID, installed in airplane ID,…)
• Gears (gear ID, installed in airplane ID,…)

Examples and Exercises of Mapping
Class Diagrams to Relational Schemas

In this section, we present examples for the mapping of class diagrams to
relational schemas consisting of normalized relations and foreign-keys to pri-
mary-key constraints. We use examples already shown in previous chapters
(such as Chapter I). For the sake of convenience, the class diagrams are brought
here once again. The reader is asked to treat the examples as self-practice
exercises This means that before looking at the relational schema created from
each class diagram, the reader is expected to create his/her own solution by

114 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

applying the mapping rules; and only then compare his/her solution with the one
presented in the book.

Example A: University Workers
• Class diagram: The class diagram of this example was presented in Figure

2.10 (Chapter II).
• Relational schema: Figure 5.1 presents the relational schema created as

a result of the mapping. Here are several clarifications:
The University Workers class was mapped to a relation whose key
(ID number) and other attributes are derived from the class’ simple
attributes and the tuple address. The set attribute phone numbers
was mapped to a separate relation Employees’ Telephones whose
key consists of ID number and phone number.
The three subclasses were mapped to three subrelations (according to
Alternative 1 of the mapping rules). The key of each of the three
relations is based on ID number, but we changed the names slightly so
as to better define the population of objects in each relation. The
Teachers relation also has a candidate key teacher number (marked
by a dashed line above it). Note the foreign-key of each of the
subrelations which is also the (primary) key of its relation. This means
that the relationship between each of the subrelations and the super

Figure 5.1. Relational schema of the University Workers example

Mapping Class Diagrams to Relational Schemas 115

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

relation is one-to-one, that is, for each record in a subrelation there is
only one record in the super relation, and for each record in the super
relation there may be no more than one record in each of the
subrelations.
On the other hand, we chose not to create separate relations for the
subclasses Undergraduate Students and Research Students but
rather to map them according to Alternative 3 by adding their attributes
to the relation Students. Therefore, this relation will have records
with null values for undergraduate students (who are not research
students) and for research students (who are not undergraduates).
The relation Teachers has a department name attribute because of
the N:1 belonging relationship with Departments; the relation also
has this attribute for the same reason.
The Departments relation has a manager ID attribute as a result of
mapping the 1:1 management relationship between the Teachers and
Departments classes. We preferred this mapping rather than map-
ping the relationship to an attribute manages department in the
relation Teachers because only a few teachers manage departments,
while every department has a manager.
Note the lines connecting the relations, denoting a foreign-key to
primary-key relationships. The arrow heads point to the primary keys
of the parent relations.
Needless to say that all the relations in the relational schema are fully
normalized.

Example B: Research Proposals
• Class diagram: This class diagram of this example was presented Figure

3.1 (Chapter III).
• Relational schema: Figure 5.4 presents the relational schema created as

a result of the mapping. Here are a few clarifications:
Like in the class diagram in the relational schema, we too use the
acronym PI for principal investigator (i.e., researcher) and CI for co-
investigator.
The PIs of Researches relation is the result of the many-to-many
relationship between Researcher and Research classes. Its key
(research code, researcher ID) is made of the keys of the related
relations.

116 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The key of Research Years relations is made of research code and
year—like the key of the class from which it was created.
The CI Works relation is the result of the many-to-many relationship
between the classes Researcher and Research Year. Its key is
made of three attributes which are a combination of the keys of the two
relations involved: (CI ID, research code, year).
The same relational schema would have been created had we applied
the mapping rules on the alternative class diagram of this example,
which has been presented in Figure 3.3 (Chapter III). In that class
diagram, there is already a relationship class CI Works, which would
be mapped directly to the CI Works relation.
Had we chosen to refer to the class diagram presented in Figure 3.2
(Chapter III), we could have allegedly gotten a slightly different
mapping as a result of the distinction between the Researcher,
superclass, and the subclasses PI and CI. We could have mapped
each subclass into a relation, but then we would have discovered that
each of these relations does not have any attributes other than
researcher ID, so we would have chosen a different mapping alter-
native anyway, that is—to group all the researchers into one relation,
as presented in Figure 5.4.

Figure 5.2. Relational schema of the Research Proposals example

Mapping Class Diagrams to Relational Schemas 117

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example C: Parts, Orders, and Suppliers
• Class diagram: This class diagram of this example was presented in

Figure 3.4 (Chapter III).
• Relational schema: Figure 5.3 presents the relational schema created as

a result of the mapping. Here are several clarifications:
The Parts in Orders relation was created as a result of the many-to-
many relationship between the Part and Order classes; its key (order
number, part code) consists of the two key keys of the relations that
were created from those classes.
The relation Ordered Parts in Deliveries is created from three
mappings: because of the attribute set in deliveries {[Delivery],
[Order], qty. in delivery} of class Parts, because of the attribute set
where delivered {[Delivery], [Part], qty. in delivery} of class
Order, and because of the attribute set parts per orders {[Order],
[Part], qty. in delivery} of class Delivery. It is clear that we obtain
only one relation dealing with the details of deliveries, and not three:
Because of the symmetry of the reference attributes the same relation
is created from the three mappings.
The same relational schema would be created had the mapping rules
been applied on the alternative class diagram presented in Figure 3.5

Figure 5.3. Relational schema of the Parts, Orders, and Suppliers example

118 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(Chapter III), in which there is a relationship class named Parts in
Orders, which is in itself in a many-to-many relationship with class
Delivery.
The same relational schema would also have been created had we
used the mapping rules on the solution offered in Figure 3.6 (Chapter
III), in which there is a relationship class Ordered Part in Delivery.
In this case the mapping to the respective relation is straightforward.

Example D: Archeological Excavations and Exhibitions
• Class diagram: This class diagram of this example was presented in

Figure 4.12 (Chapter IV).
• Relational schema: Figure 5.4 presents the relational schema created as

a result of the mapping.8

Figure 5.4. Relational schema of the Archeological Excavations and
Exhibitions example

Mapping Class Diagrams to Relational Schemas 119

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example E: Travel Agency
• Class diagram: This class diagram of this example was presented in

Figure 4.14 (Chapter IV).
• Relational schema: Figure 5.5 presents the relational schema created as

a result of the mapping.

Review Questions

1. What are the main uses of the objects model?
2. Why is there a need to map a class diagram into a relational schema?
3. Which additions from the objects model are included on OR-DBMSs?
4. What are the two alternative approaches to create a relational schema?

Figure 5.5. Relational schema of the Travel Agency example

120 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. What is the order of activities when mapping a class diagram into a
relational schema?

6. Explain and exemplify the mapping of each of the following types of
classes: (1) the key consists of one simple attribute; (2) the key consists of
a tuple of simple attributes; (3) the key includes a reference attribute and
two simple attributes; and (4) the key consists of two reference attributes
and a simple attribute.

7. Explain and exemplify how to map the following types of attributes: (1) a
simple attribute; (2) a tuple of simple attributes; and (3) a set consisting of
simple attributes.

8. Explain and exemplify how to map a set consisting of a tuple of simple
attributes. Which problem may arise and how can it be resolved?

9. Explain and exemplify how to map the following types of relationships: (1)
one-to-one; (2) one-to-many; and (3) many-to-many.

10. Explain and exemplify how to map a class representing a ternary relation-
ship in reality.

11. Explain and exemplify three alternative mappings of an inheritance rela-
tionship between a superclass and three subclasses to respective relational
schemas. In which cases will you prefer each alternative?

12. Which mapping of an inheritance relationship is preferred when there is a
“total” constraint among the subclasses? Explain why.

13. Explain and exemplify the mapping of a whole-parts relationship.

References

Dietrich, S., & Urban, S. (2005). An advanced course in database systems—
Beyond relational databases. Upper Saddle River, NJ: Prentice Hall.

Elmasri, P., & Navathe, S. (2003). Fundamentals of database systems (4th

ed.). Boston: Addison Wesley.

Endnotes

1 The examples brought here are typical extensions to relational DBMSs, but
they do not represent any particular OR-DBMS; different systems have

Mapping Class Diagrams to Relational Schemas 121

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

different extensions. For more details see, for example, Elmasri and
Navathe (2003) and Dietrich and Urban (2005).

2 By presenting the mapping rules we ignore OO extensions to relational
DBMSs. However, if an OR-DBMS implements a certain feature of the
objects model, its mapping should be “one-to-one” (meaning, the mapping
is straightforward).

3 Here we only briefly summarize the theory of normalization and normal
forms. More details can be found in various textbooks on databases.

4 At this stage the key of each class consists of one or more reference
attributes.

5 This situation is typical of a class created for a weak entity type (in the ER
terminology) which has one strong entity type and one or more partial-key
attributes.

6 This situation is typical of the following cases: a class which was created
for a weak entity type which has more than one strong entity type, a result
of a many-to-many binary relationship, or a ternary relationship.

7 Note the discussion on partial-key of a tuple within a set attribute in Chapter
II.

8 No clarifications are provided on this and the next example.

122 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section II:
Functional and

Object Oriented Analysis

This unit provides a background on the development of the unified modeling
language (UML) for modeling systems in the object oriented approach, and also
with the reasons for the development of the functional and object oriented
methodology (FOOM) which combines the objects and the functional ap-
proaches. Most of the unit is devoted to FOOM’s analysis phase, which includes
creating a data model in the form of an initial class diagram and a functional
model in the form of object oriented data flow diagrams (OO-DFDs).

Chapter VI (Object Oriented Methodologies and the UML) reviews the
evolution of OO methodologies and UML. Most of the chapter is dedicated to
presenting and demonstrating the various techniques and diagrams which make
up UML, and then it provides a detailed example of information system modeling
using a UML-based methodology.

Chapter VII (Combining the Functional and Object Oriented Approaches:
Introduction to FOOM) starts by introducing the motivation for the develop-
ment of a combined methodology. Then it presents the stages, sub-stages and
products of FOOM.

Mapping Class Diagrams to Relational Schemas 123

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII (Information Systems Analysis with FOOM) elaborates on
the activities and products of the analysis stage. The products of the analysis
stage include a data/objects model in the form of an initial class diagram, and a
functional model in the form of hierarchical OO-DFDs (which are similar to
traditional DFD but have data classes instead of data stores). The two diagram
types are synchronized in order to guarantee the correctness and completeness
of the two models. The chapter presents various examples of diagrams from both
kinds.

Chapter IX (Data Dictionary) explains the roles of a data dictionary in the
development of the information system and describes its components. The
chapter presents a possible implementation of the data dictionary both with the
relational and the OO models.

124 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

Object Oriented
Methodologies
and the UML

This chapter reviews the evolution of object oriented (OO) methodologies
and unified modeling language (UML). Most of the chapter is dedicated to
presenting and demonstrating the various techniques and diagrams which
make up UML, and then it provides a detailed example of information
system (IS) modeling using a UML-based methodology.

A Review of OO Methodologies

OO methodologies had begun to evolve in the early 1990s. Some of the famous
early methodologies are: object modeling technique (OMT) developed by
Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen (1992); Booch Method
developed by Booch (1994); object oriented analysis/design (OOA/OOD)
developed by Coad and Yourdon (1990; 1991); object oriented software engi-
neering (OOSE) developed by Jacobson (1992); object oriented analysis and
design method developed by Martin and Odell (1993); object life cycles devel-
oped by Shlaer and Mellor (1992); and object oriented software developed by
Wirfs-Brock, Wilkerson, and Wiener (1990). The major thing all OO methodolo-
gies have in common is the use of class diagrams for data modeling. In addition
to the class diagrams, different methodologies include other techniques and
diagram types which enable modeling other aspects of the system. The OMT
methodology, for example, includes data flow diagrams (DFD) and state charts,1

Object Oriented Methodologies and the UML 125

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and the OOSE methodology included use cases. Over the years, new OO
methodologies (with new techniques) were created, and some have been
combined (e.g., the combination of Booch and Rambaugh et al.’s methodologies,
and later on the combination of that methodology with Jacobson’s methodol-
ogy).2

Many of the OO methodologies were aimed mainly for the development of real
time or reactive systems. From a modeling point of view the main concern in such
systems is to model events which occur in the external environment of the
system, and the required system’s response to the events, which also means
modeling the possible states of objects in response to events affecting them. Only
some of the OO methodologies were aimed mainly for the development of
business-oriented (i.e., organizational-managerial) IS. One of the popular early
OO methodologies for the development of such systems was OOA/OOD (Coad
& Yourdon, 1991, 1991). We use it to demonstrate this type of OO methodology.
It deals with two phases of development: OOA deals with system analysis and
OOD—with system design.
OOA involves five main activities:

1. Identifying classes and objects:3 This is the main activity at the analysis
phase, and from it the other activities are derived. During this activity, all
the object classes that exist in reality and need to be included in the system
are discovered and defined.

2. Identifying structures: In this activity a distinction between two kinds of
structures is made: generalization-specification (also termed is-a, or inher-
itance relationship), and aggregation (also termed whole-parts relation-
ship).

3. Identification of subjects: In this activity, which is relevant when dealing
with large-scale systems, the main subjects of the sought system are
identified, and the various classes are assigned to those subjects. Every
subject includes classes which have relatively many structural relationships
among themselves and relatively few structural relationships with classes
outside the subject.

4. Defining attributes: In this activity, the attributes of the various classes
and the (ordinary) relationships between classes are defined (besides the
structures identified earlier).4

5. Defining services:5 In this activity, the functions of every class are
identified, and their logic is described. Sometimes, a certain service needs
the assistance of another service (in the same class or in another one);
therefore, message connections are defined between the calling classes
(the sender) and the receiving classes.

126 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These are the main activities of OOA at the analysis phase. OOA does not
prescribe that they must be performed exactly in the aforementioned order, and
it is even possible to work on some of them concurrently. Moreover, since system
analysis is an iterative process, the same activity may be repeated until a “good”
model is obtained. At the end of this phase, an OO schema consisting of the five
following layers is created: (1) a subject layer; (2) an object and classe layer; (3)
a structure layer; (4) an attribute layer; and (5) a function (service) layer. The
five layers are described using an objects diagram.6 In addition to it, it is possible
to create a messages diagram which includes only the classes (without their
attributes and relationships) in which the names of their services are written, and
lines which represent the messages that can be passed between the classes.
OO methodologies usually do not make a clear distinction between the analysis
and design phases. The design phase sometimes involves mainly refinements of
the analysis products, and addition of implementation-related aspects; some-
times analysis and design are considered as a major phase. Let us look, for
example, at the design phase according to OOD (Coad & Yourdon, 1991). It
adds the following four activities (or components, as termed by Coad &
Yourdon) to the analysis layers:

1. Problem domain component: this activity consists of reviewing the
products of the analysis phase in order to improve them. Improvements may
include changes and additions to the definitions of classes, attributes,
services and relationships.

2. Database management component: this activity is concerned with the
way the database will be implementation. The methodology takes into
account the possibility of using a files system, a relational DBMS or an OO-
DBMS. Every possibility requires different objects and services in order to
deal with data retrievals and updates.

3. Human interface component: this activity creates the interface model
according to the users’ needs. It includes the classification of users,
creation of task scenarios and organization of the tasks in a hierarchy. All
this is done in order to create a hierarchy of menus that will enable the
various users to use the various services offered by the system. Following
that, windows objects (containing menus) are added to the OO schema.

4. Task management component: this activity involves defining the com-
ponents of the operating system which are needed in order to implement the
information system.

This brief review of the OOA/OOD methodology was brought as an example for
an early OO methodology for IS development. Another popular early OO

Object Oriented Methodologies and the UML 127

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

methodology worth mentioning is OMT (Rumbaugh et al., 1992; Rumbaugh,
1995). This methodology provides three models: an objects model, a dynamic
model, and a functional model. The objects model deals with the data structure
of the system and is expressed by an objects diagram which is actually a variant
of an entity relationship diagram (ERD). The dynamic model deals with the
various states in which each object can be throughout its lifetime and with
defining the transition between those states; this model is expressed by state
charts.7 The functional model defines the various functions carried out by the
objects, and is expressed by “traditional” DFDs. Although the methodology
enables us to define a system from three different perspectives, each using a
different type of diagram, the integration of these models is not well-defined, and
the method of integrating the dynamic and functional model with the static model
is unclear.8

Throughout the 1990s, many other OO methodologies were developed. Some
were developed in the academic world; they were described in journal articles
and textbooks and used in classrooms and student projects. Other methodologies
were developed in the industry (e.g., consulting companies and software
houses); such methodologies were actually used in real-life development of
systems. The huge number of methodologies, techniques, and types of diagrams
caused a lot of difficulties and confusion, including difficulties to learn the
different methodologies; incompatibility between the different techniques and
diagrams; ill communication between developers and users; and more. These
problems encountered by OO developers and developing organizations moti-
vated the desire to create a “standard language” for OO modeling—the UML.

Unified Modeling Language

Object management group (OMG) is a consortium of companies and organiza-
tions operating in the fields of computers, software, and related areas whose goal
is to standardize methodologies and techniques for the development of software
in the OO approach. In the middle 1990s, OMG initiated a request for proposals
of a standard language for the modeling of software systems. By “language”
they meant visual techniques and notations that will enable OO developers to
describe and define the components of the system being developed from various
viewpoints and in various stages of development. The standard was meant to tear
down the “Tower of Babylon” of techniques and notations that dominated until
then, and to be used as a standard by OMG members. As a result of the request,
OMG received several proposals from researchers and developers in the
academia and the industry. Among them were Booch (the creator of Booch

128 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Method) and Rumbaugh (one of the creators of OMT), who joined forces and
proposed (in 1995) a series of techniques that were based on their methodolo-
gies. They named their techniques unified method (UM). Later on, they were
joined by Jacobson (the creator of OOSE methodology), and together they
proposed a series of techniques which they named unified modeling language
(UML). UML was chosen by OMG in 1997 as a standard modeling language for
OO development. Since then UML has become widely accepted as the “industry
standard” for modeling software systems. New versions of the language,
including additional techniques, are published from time to time. In addition,
computer aided software engineering (CASE) tools which implement various
UML techniques have been developed, and many books which offer OO
methodologies that implement UML techniques have been written.9

It is important to clarify that UML is not a development methodology. It provides
various techniques with graphic notations (diagrams) enabling developers to
present software system models in different forms and from different view-
points, but UML in itself does not dictate which techniques to use in the
development of an application or the order in which they should be used.
Although UML consists of 12 techniques,10 not all of them need to be applied in
a specific development project; actually only a few of them are in widespread
use.11 In spite of its popularity, heuristics, design guidelines, and lessons learned
from experiences are extremely important for the effective use of UML.
The 12 diagrammatic techniques included in UML can be classified in three
categories:

• Structure diagrams: diagrams which deal with the static structure of the
system. They describe the system’s components and the relationships
between them. There are four types of structure diagrams: class diagram,
objects diagram, components diagram, and deployment diagram.

• Behavior diagrams: diagrams which deal with the dynamic, that is,
functional aspects of the system. They describe the system’s behavior over
time. There are five types of behavior diagrams: use case diagram,
sequence diagram, collaboration diagram, state chart, and activity diagram.

• Model management diagrams: diagrams which deal with the manage-
ment and organization of the system’s components. There are three types
of model management diagrams: package, subsystem diagram, and model
diagram.

In the next sections we elaborate on the four structure diagrams and the five
behavior diagrams. The three model management diagrams will be reviewed
only briefly.12

Object Oriented Methodologies and the UML 129

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Structure Diagrams

Class Diagram

A class diagram is, as we know, the most commonly used diagram for the
description of a system’s static structure. It displays the object classes, their
attributes, methods, and various relationship types. This diagram is used in all OO
development methodologies. Since the class diagram was studied in depth in Unit
I of this book, we will deal here mainly with the specific characteristics and
notations of the UML class diagram.
A class is signified by a rectangle divided into three parts: The upper contains the
class name, the middle—its attributes, and the lower—its functions. Relation-
ships between classes are marked by connecting lines. The multiplicities of a
relationship are signified a bit differently from the way presented in Unit I of this
book. Tables 6.1 and 6.2 present the UML notations.

Table 6.1. Components of a class diagram

Notation Meaning

+doOperation)inParameter 1 : Double (: Integer

ClassName
-attribute : String

Class: A class rectangle is divided into three parts: (1) class name;
(2) attributes: Each attribute has a name and data type. It is possible
to write "+", "-" or "#" in front of an attribute’s name indicating its
visibility, that is, who may access the attribute;i and (3) functions:
Each function has a name, parameters, and a data type of the return
value. It is possible to write the visibility indicators here as well.

+Role1

1..*

-Role2

2..5

Ordinary relationship: A relationship is represented by a labeled
line; the multiplicities are indicated at the ends of the line. Table
6.2 details the symbols for the different multiplicities. At each end
of the line it is also possible to write the object’s role in the
relationship.

Inheritance: This symbol indicates superclass and subclass
relationship. The arrow pointed to the superclass.

Composite Aggregation: The symbol indicates “whole-parts”
relationship. The diamond shaped arrow head points to the “whole”
class. The black diamond means that the whole and its parts are
one unit and cannot be separated (e.g., a human body and its
various organs).

Shared Aggregation: This symbol too indicates a “whole-parts”
relationship. The difference is that in a shared aggregation the parts
may belong to different “wholes” (at different times); that is, it is
possible to remove a part from its “whole” and connect it to
another “whole” (e.g., a car and its engine and other components).

i These notations are relevant in the programming stage

130 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are some differences between the UML class diagrams and the class
diagram introduced in Unit I of this book; here are some of them: A minor
difference is in the min/max notations of the relationship multiplicities. Another
difference is that in UML a class may not have a key (because the diagram is
meant to model not only data objects, but also temporal objects which reside only
in memory; such objects are identifiable by system assigned object identification
number (OID) and not necessarily by values of attribute). Nonetheless, UML
enables defining key attributes for persistent objects (objects which are saved in
the database). As for attributes, reference attributes are not defined in UML;
hence, it is assumed that the relationship lines between classes will be mapped
to reference attributes at the system implementation stage.
Figure 6.1 presents a UML class diagram of the music programs system for a
radio station.14 Several classes are displayed in this diagram, including: musical
piece, listener request, musical program, and actual program (meaning a certain
musical program broadcast on a certain date). In addition, there are classes
representing the radio station’s workers, including technicians and program
editors.15

Type Notation Example Meaning
Exactly 1 1

or
nothing

Teacher Courseteaches

1

A teacher may teach
exactly one course—no
more, no less.

0 or 1 0..1 Teacher Courseteaches

0..1

A teacher may teach
one course at most, or
none.

Teacher Courseteaches

0..*

0 or more 0..* or *

Teacher Courseteaches

*

A teacher may teach
many courses
(indefinitely) or none.

1 or more 1..* Teacher Courseteaches

1..*

A teacher may teach
many courses, but at
least one.

A
defined
range of
numbers

3..5 Teacher Courseteaches

3..5

A teacher may teach
between 3 to 5 courses.

Table 6.2. Multiplicity constraints in UML

Object Oriented Methodologies and the UML 131

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Objects Diagram

An object diagram is similar to a class diagram, but it displays instantiations of
classes, that is, certain objects. The objects diagram provides a snapshot of the
system’s state. The diagram is meant to help the user understand the class
diagram by demonstrating states (attribute values) of several specific objects
and their relationships. It can also be used by system analysts to test the
compatibility of the static model (defined in the class diagram) with the user
requirements and the reality it describes. In general, the use of this type of
diagram is limited because the class diagram can be verified without it and it
might be useful for only a short period of time. In this diagram every object is
notated by a rectangle which is divided into two parts: the upper part (headline)
contains the name of the object and the name of the class it belongs to; the lower
part contains the names of the attributes and their value.

Figure 6.1. UML class diagram of the music programs example

132 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.2 presents a possible objects diagram for the music programs example.
It shows three listener requests for songs in the program named “voice of love”;
two requests are for the same song (“fly my bird”), and the third is for another
song (“end of the summer”).

Components Diagram

A components diagram describes the physical architecture of the system. It
enables us to show how the software components of the system are distributed
among independent units, each dealing with a different aspect of the system. The
diagram also describes the relationships among the units and with external units.
This diagram is useful at the phases of programming and maintenance, but not
of analysis and design.
Table 6.3 presents the notations of the components diagram, and Figure 6.3
displays a possible components diagram of the Music Programs example.

Figure 6.2. Objects diagram for the music programs example

Object Oriented Methodologies and the UML 133

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

According to this diagram, the Music Programs system is divided into four units:
one unit is the database which stores the musical pieces, and the other three units
provide services to each other and to external units (using interfaces). A line with
a small circle at its end signifies a service/interface that a software component
can provide, and a dashed line signifies the use of a software component or an
interface by a client.

Notation Meaning

Component

Component: Represents one software component in the system which deals
with one aspect of the system.

Interface

Interface: Represents a software component’s interface with other
components or with the external environment. Every component may have
several interfaces, which will be represented by attaching several of these
notations to it.

Client: Represents the use of an interface or a software component by a
client. Several of these notations can be attached to each component and
interface of the system.

A t

Actor: Represents every element which interacts with the system’s
components. Such an element can be a user of the system or an external
system which interacts with the system.

Table 6.3. Components of the components diagram

Figure 6.3. Components diagram for the music programs example

134 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Deployment Diagram

A deployment diagram also displays the physical architecture of the system’s
hardware and software, that is, the software, processes, and devices that make
up the system. The physical resources (computers, terminals, and various
devices) are described as nodes (junctions) connected by communication lines.
Clearly, this diagram too is not relevant at the analysis and design phases, but it
is especially useful in building a distributed system, where it is possible to divide
the run units of the application among several interconnected servers. Table 6.4
displays the notations of the diagram.

Notation Meaning

Node Name

1

Hardware node: Represents a hardware device. In each box we draw the
software components installed in it, similar to the way the software
components are drawn in the components diagram. The name of the hardware
is written at the upper left corner of the box, and at the lower right corner we
write how many hardware units of this type may be used when the system is
implemented.

1 *

A s s o c i a t i o n N a m e

Communication association: Represents a possible communication between
two hardware nodes. Here too, it is possible to specify how many hardware
units may take part in an association.

Table 6.4. Components of the deployment diagram

Figure 6.4. Deployment diagram for the music programs example

Object Oriented Methodologies and the UML 135

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.5. An occurrence of the deployment diagram

Figure 6.4 displays a deployment diagram for the Music Programs example. The
diagram presents a possible division of the system into three types of hardware
units: the music programs main server which uses two software components, a
database (structured query language [SQL]) server which contains the system’s
database, and a Sales terminal server which manages the payments to royalty
owners. Just as it is possible to create an objects diagram for a class diagram,
it is also possible to create an occurrences diagram for a deployment diagram,
as shown in Figure 6.5. It is possible to see that there is one main server and one
database server, while there are two terminal servers located in two different
locations.

Behavior Diagrams

Use Case Diagram

A use case diagram presents interactions between the system and other systems
or with the system’s users, who are called actors. It describes who will use the
system and the ways in which a user will interact with the system to achieve a
certain goal. Usually, the diagram is accompanied by a narrative description,
which details, in a structured manner, the steps of each interaction. The use case
technique enables creating an initial description of the users’ needs, so that later
on the system’s behavior can be defined by using other means, for example,

136 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sequence or collaboration diagrams. Table 6.5 presents the components of a use
case diagram.
Figure 6.6 displays a use case diagram for the music programs example. The
diagram consists of six use cases, divided into two subsystems, each in a separate
square: Assignments and Production and External Relations. This division
makes it possible for two teams to develop the system. As can be seen, the
Assignments and Production subsystem consists of four use cases, including
Edit musical programs. This use case extends the Edit radio programs use
case, and it also uses Handle listener requests. The External Relations
subsystem consists of two use cases. The system has a total of six actors.
As said, a narrative description can be added to each use case diagram. Such a
description elaborates on the way the process is carried out and provides
additional information, such as preconditions, post conditions, and reference to
a user requirements document. The use case description is usually presented in
a tabular format, as shown in Table 6.6. Table 6.7 demonstrates a description for
the Payments of royalties use case, which is included in Figure 6.6.

Table 6.5. Components of a use case diagram

Notation Meaning

UseCase

Use case: An ellipse represents a single use case. The name of the use case is
written inside the ellipse.16

A c t or

Actor: Represents every element which interacts with the system. It may be a
user or another system which interacts with the system described in the use
case.

Ordinary relationship: Represents a connection, that is, a channel for the
transfer of information between an actor and a use case or between use cases.

« us es »

Uses relationship: Represents a dependency among use cases, that is, one use
case uses another one. The use case being used (to which the arrow points) is
usually a general or multi-purpose process that can be used by many other use
cases.

« e x t e n d s »

Extends relationship: A complex use case, which consists of many activities
that cannot be easily understood, it can be split into several simple use cases.
In that case, a dependency is created among them. Extends relationship
specifies the dependency among those use cases: The use case to which the
arrow points can only be used by the use case on the other side of the line.

System

System boundary: A square represents the borders of the system. Inside the
square are the use cases, and outside are the actors who interact with the
system. The system may also be divided into subunits by using squares inside
squares.

Object Oriented Methodologies and the UML 137

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.6. Use case diagram for the music programs example

Use case name In this field we write the name of the use case
Actor(s) List of the actors who take part in the use case
Description A short verbal description of the use case and its goals
References Links to a requirements document and other related use cases
Typical course of
event

This is the main part of the use case description. Its purpose is to describe
the sequence of the use case’s activities. This part is divided into two
columns: Actor Action and System Response. The actions performed by
external elements are written in the left column, and the actions performed
by the system are written in the right. This part may also be described by a
sequence diagram.

Actor Action System Response
Step 1: …

Step 4: …

Step 2: …
Step 3: …

Alternate course This part describes special courses of action, for example, dealing with

error conditions, which are not described in the general (typical) course of
events.

Preconditions Lists preconditions that must be fulfilled before the use case can take
place.

Post conditions Lists events that have to occur after the use case is completed.
Assumptions Basic assumptions and other remarks.

Table 6.6. Format of a use case description

138 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sequence Diagrams

A sequence diagram describes a scenario of the interactions among the objects
participating in a use case. The interaction is described by messages which are
sent from one object to another. Sequence diagrams can be used as a means to
find out which methods need to be attached to which object classes.
A sequence diagram can be used to describe the interaction between the system
and external elements. In such case it is called “black box diagram,” and it
complements the use case diagram. This diagram describes, for each use case,
the subevents it is made of, the order of these events, and the possible reactions
of the system to each of them. The only components of such a diagram are the
external element and the system.
A more common use of sequence diagrams is to describe the interaction among
the system’s objects and the messages they exchange. The messages are
ordered chronologically. Each participating object has a “life line” (shown as a

Table 6.7. Example for a verbal description of a use case

Use case Name: Payments of royalties
Actors: Music manager, technician, musicians union
Description: The radio station plays musical pieces at different times according to the

actual musical program. After each piece is played, a report needs to be
sent both to the manager and to the musicians union; based on it the station
will pay royalties to the royalty owners.

References:
Typical course of
event

Actor action System response
Step 1: The technician keeps a
list of musical pieces that should
be heard in a certain (actual)
program. The technician plays
each musical piece and marks
that the piece has actually been
aired.

Step 2: The system updates the
number of times the musical piece
has been played.
Step 3: The system produces a
report on the musical pieces that
have been played during the
reporting period.

Alternate
courses:

If a musical piece that needs to be heard is not found, a commercial from
the commercial database is played instead.

Preconditions: The technician has a list of musical pieces that need to be heard in the
program.

Post conditions: A report is sent to the musicians union with a copy to the music manager.
Assumptions: The technician has access to both the database of musical pieces and the

commercials databases.

Object Oriented Methodologies and the UML 139

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.7. Sequence diagram of handling a listener request

dashed line drawn under the square which signifies the object) indicating that the
object is active (alive) during the event. The passed messages are shown by
arrows, which connect the different objects’ life lines. If a message is sent, it
means that the receiving object has the necessary function to perform the
required service.
Table 6.8 presents the notations of a sequence diagram. Figure 6.7 presents a
sequence diagram for handling a listener’s request to hear a musical piece in the
music programs example.

Collaboration Diagram

A collaboration diagram has the same purpose as a sequence diagram. However,
it emphasizes the interaction between objects in a different way: Each of the
participating objects appears as a node, and each message from one object node
to another is numbered according the order of its activation in the course of
execution. It is possible to pass a message from one object to another only if the
two have a relationship in the class diagram. The advantage in presenting the
interaction this way is the possibility of arranging the participating objects
similarly to the way they appear in the class diagram. This makes it easy to find
inconsistencies between the class and collaboration diagrams, unlike in the case

140 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of sequence diagrams. On the other hand, the sequence diagram’s advantage is
in its ability to express more clearly the times in which messages are passed;
therefore it is considered as more suitable for the modeling of real-time
systems.17

Table 6.9 presents the notations of a collaboration diagram. Figure 6.8 exempli-
fies a collaboration diagram for handling a listener’s request to hear a musical
piece—equivalent to the one described in a sequence diagram.

Table 6.8. Components of a sequence diagram

Figure 6.8. Collaboration diagram of handling a listener request

Notation Meaning

O bje ct N a m e : C lass N am e

Object: Represents an object in the system. The object can respond to
messages that are being sent to it, and it can also send messages to
other objects. Inside the square are the object's name and the class it
belongs to. The dashed line signifies the object's “life line”. It is
possible to draw an “X” at the end of the line in order to signify the
object's “destruction point”.

Message

Message: An arrow represents the sending of a message from one
object to another. Usually, a message triggers a function of the target
object, and therefore it is possible to write the name of that function (at
the destination object), including parameters.

Object Oriented Methodologies and the UML 141

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.9. State chart of musical piece object

Notation Meaning

Object Name : Class Name
Object: Represents an object that can receive and send messages. The
name of the object and its class are written inside the square.

Object Name : Class Name

Collection of objects: A double square represents a collection of
objects that belong to the same class.

Me ssag e

Message: A message is signified by an arrow above a link. Every
message has a number indicating its order of activation. As in a
sequence diagram, the message name may be identical to that of the
function that will be triggered in the target object.

Table 6.9. Components of the collaboration diagram

State Chart

A state chart describes the dynamic behavior of an object during its lifetime in
the system. An object may be in different states during its life, depending on
various events that may occur and change its current state. A state chart
presents all of the object’s possible states, connected by transition links which
indicate the possible events that may occur and hence change the object’s state.
State charts can also be used to model interfaces, controls, and reactive systems.
They are mainly used to model the behavior of objects in real-time systems in
which there are real-time events which affect the states of objects. However,
they are hardly used in the modeling of IS.

142 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 6.10 presents the notations of a state chart, and Figure 6.9 exemplifies a
possible state chart for a musical piece object in the music programs example.18

The diagram presents three possible states of the object. The arrows describe
the object’s possible state transitions throughout its life.

Activity Diagram

An activity diagram can be seen as a combination of a state chart and a program
flowchart. Like a state chart, it too describes transitions between states, but here
instead of states there are activities. Like a program flowchart, it shows the order
of the activities. Unlike a flowchart, an activity diagram is capable of presenting
parallel activities. Activity diagrams can be used to model business processes,
use cases, or computer programs.
Table 6.11 presents the notations of an activity diagram. Figure 6.10 exemplifies
an activity diagram for the preparation of a new musical program.

Model Management Diagrams

Package

A package is a group of well-connected elements belonging to a model. It is
usually used to group elements of a class diagram. It enables drawing partial
class diagrams containing only those elements which are well connected. This

Table 6.10. Components of the state chart

Notation Meaning

State Name

State: Represents a possible state of an object. A name representing the
state is written inside the square. Hierarchy can be created among the
states by drawing squares inside squares.

wh e n : E ve n t [co n d itio n] / A ctio n

Transition: Represents transition between states. For every transition it
is possible to specify:
• The triggering event that starts the transition.
• Conditions which define the constraints that must be met to enable

the transition.
• Actions that will be carried out when the transition takes place.

 Initial state: Represents the initial state of the object.

 Final state: Represents the object’s final state.

Object Oriented Methodologies and the UML 143

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 6.11. Components of the activity diagram

Notation Meaning

Activity

Activity: An ellipse represents one activity. An activity can represent a
business process, a use case, or a software component. The transition between
activities is described by arrows.

Fork: Signifies the splitting of an activity to several parallel activities.

Join: Signifies the unification of several activities into one.

Figure 6.10. Activity diagram of preparing a musical program

144 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is necessary when the whole class diagram is very large and it is impossible to
display all of it in one diagram. Every element in the model can be assigned to
one package, so the packages can be displayed in a hierarchical fashion.

Subsystem Diagram

A subsystem diagram enables grouping elements which model the behavior of a
certain part of the system. The elements in a subsystem are of two types: (1)
specification elements, which define the subsystem’s behavior, and (2) realiza-
tion elements, which specify how the aforementioned specifications elements
can be implemented.

Model Diagram

A model diagram provides a certain point of view of the system, for example, a
description of the dynamic/behavioral aspects of the system. The diagram
includes all the model elements needed in order to represent the system

Figure 6.11. Use cases model

Object Oriented Methodologies and the UML 145

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

perfectly. The model’s elements are presented in the diagram in a hierarchical
of packages, where the top level represents the entire system.

UML-Based Methodology: An Example

As we have seen, UML is made up of a variety of modeling techniques, dealing
with various aspects of the system. Following UML’s popularity and widespread
adoption as the “industry standard,” many OO development methodologies
which utilize its techniques have been developed in recent years and published
in numerous books. In this section we present one of these methodologies: The
one described in Whitten, Bentley, and Dittman (2000).19 The methodology deals
with the system’s analysis and design phases. We elaborate and demonstrate the
activities in each of these phases, using the Music Programs example.

The Analysis Phase

As in other methodologies, the analysis phase deals mainly with defining the
users’ requirements. In this phase the objects and their attributes, behavior, and
relationships are being discovered. This is done in four subphases:

1. Creating the system’s functional model.
2. Discovering and defining the business objects.
3. Organizing the objects in classes and identifying relationships among them.
4. Modeling the objects’ behavior.

Creating the System’s Functional Model

The functional model is created with use cases. The use case model describes
the system’s functions from the users’ point of view. The model created in this
subphase is termed “requirement use case model.” Its creation involves four
steps:

1. Identifying users and use cases: Using popular techniques for eliciting
user requirements (such as interviews, observations, and documents analy-
sis), the various types of users and their business processes are identified.

146 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Based on the findings, a use case list is made. For every use case the
following details are written: the use case name, its users’ names, and a
short narrative description of what it involves. Table 6.12 exemplifies
several use cases identified in the Music Programs example.

2. Creating a use case model: Every use case is presented in a diagram. It
is possible to group several use cases which deal with the same business
function into a subsystem. This can ease comprehensibility of the system
(especially if the system has many use cases), and provides for several
development teams to work concurrently on different subsystems. Figure
6.11 exemplifies the use case model including the four use cases shown in
Table 6.12.20 As can be seen, they are grouped in two subsystems: Program
Assignments and Production, and External Relations.

3. Description of the use cases: A narrative description is created for each
use case, according to the format and example shown in Tables 6 and 7,
respectively. At this point the description is general and not necessarily
accurate; it will be extended and refined throughout the development
process. This first version of the functional model is called “requirement
use case model,” and it should be approved by the users or their represen-
tatives. Table 6.13 provides an example of a use case description, for the
use case handling listener requests.

4. Analysis of the use cases: In this step the aforementioned use case
descriptions are refined and detailed. During the refinement it is possible

Use case name Users Description
Production of
musical pieces
catalogs

Music
manager,
Distributors,
Editor

Music catalogs are being produced and distributed based
on various criteria such as types of music, composers,
signers, and so forth.

Editing musical
programs

Music
manager,
Editor,
Listener,
Technician

Program editors and technicians are assigned to each
musical program; the musical programs that will be
broadcast during the planned period are planned by the
music manager, while the editor assigned to each program
will determine which musical pieces will be heard in each
program actually broadcasted, depending also on listeners’
requests.

Handling
listener
requests

Editor, Listener Requests sent by mail from listeners are processed by the
editor of the respective musical program.

Payments of
royalties

Music
manager,
Musicians
union,
Technician

Various reports on musical pieces actually heard in
programs are produced (according to different
parameters). These are sent to the music manager and the
musicians union and will be used to prepare payment
orders to the royalty owners.

Table 6.12. Use cases identified in the music programs example

Object Oriented Methodologies and the UML 147

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 6.13. Description of a use case

Use case
name:

Handling listener requests

Actor(s): Editor, Listener
Description: The listeners send postcards with requests to hear certain musical pieces. A

request includes, among other things, the name of the program, the name of
the requested musical piece, a range of requested dates to hear it, and a
dedication. The editor feeds the users’ requests into the system, assuming
that both the musical program and the musical piece exist in the database.

References: See the use case model in Figure 11
Typical
course of
events

Actor action System response
Step 1: The editor obtains
the postcards sent by
listeners and feeds them
into the system.

Step 3: The editor
determines whether or not
the requested musical
piece will indeed be heard
and records his/her
decision.

Step 2: For every request, the system
checks if the musical piece exists in the
database, and if requested musical program
exists and will actually be broadcast during
the required period.

Step 4: (a) If the editor decided to approve
the request—the system adds the details of
the requests to the list of approved requests
for that program. (b) At any rate, the system
sends an approval or disapproval message to
the listener.

Alternate
courses:

If the requested program does not exist or the requested musical piece does
not exist, the system sends a proper message to the listener.

Preconditions: A program of musical programs that will be broadcast during the planning
period must exist as well as a database (catalog) of the musical pieces.

Post
conditions:

An appropriate object is created for each listener’s request and connected to
the actual program in which it is planned to be heard.

Assumptions: The editor of the musical program is connected to the system.

that additional use cases will be defined. Two typical refinements are: (1)
a certain use case may be too complex and difficult to comprehend because
of the number of activities and conditions involved. In such case it is
possible to define some parts of it as a separate use case, that is, to “extend”
the use case. The new use case can only be activated by the use case from
which it was extracted. This situation is signified in the use case model by
an “extends” link. (2) There are cases in which several use cases need to
perform the same activity. Instead of repeating that activity in every use
case, it is possible to extract and present it as a stand alone use case. This
use case may be activated by any of the use cases from which it was

148 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

extracted. This situation is signified in the use case model by a “uses” link.
Figure 6.6, which extends Figure 6.11, demonstrates the two cases: The use
case edit musical programs seems to be complex; therefore two additional
use cases are created: edit radio programs, which is assumed to be a more
general use case; and handle listeners’ requests, which represents an
activity that may be used by other use cases in the system. Obviously, these
changes require not only changing the use case diagrams but also their
descriptions.

Discovering and Defining the Business Objects

The modeling of the system’s static structure begins by discovering its objects.
At this stage, this means discovering the business objects (also termed entity
objects or data objects). During the design phase, other types of objects will be
added. The discovery of the objects may rely on the use cases and also the user
requirements which were used to create the functional model. This subphase
includes two steps:

1. Locating potential objects: In this step, all use case descriptions are
reviewed in search of nouns that refer to business entities or events. This
way, a list of potential objects is obtained. In the Music Programs example,
in light of the use cases described earlier, the following potential objects can
be located:
• Potential objects due to business entities: radio station, music

manager, musical editor, musical programs editor, technician, distribu-
tor, listener, musicians union, copyright owners, composer, singer, and
performing artist.

• Potential objects due to events: musical pieces catalog, musical
programs catalog, musical piece, listener request, seasonal music
program, report on played musical pieces, and financial settlement with
the musicians union.

2. Choosing the right objects: Not all of the potential objects are “good”
business objects; some of them will be deleted or merged. For example,
there may be duplicate objects, that is, the same objects have more than one
name (e.g., “performing artist” is considered synonym of “singer”); or
objects which are not within the scope of the system, or names of objects
which should be considered attributes of other objects. This way, for
example, it is possible to remove “composer” and “singer” from the list of
objects and make them attributes of the “musical piece” object. In addition,

Object Oriented Methodologies and the UML 149

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

it is possible to consider the “musicians union” and the “copyright owners”
as the same object.

It is important to understand that the process of discovering the objects is not well
structured and done in an iterative manner. The process usually begins by
focusing on the primary objects; then, during the creation of the static model,
other objects may be discovered. For example, it is possible to add a new object
“actual hearing” (of a musical piece) which has not been identified initially.

Organizing the Object in Classes and Identifying
Relationships Among Them

In this subphase the objects are organized in classes, and various types of
relationships among them are defined. This results with a class diagram. Here
are four steps of this subphase:

Figure 6.12. Initial class diagram of the music programs example

150 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Identifying ordinary relationships and their cardinality: In order to
make the identification of the relationships easy, the methodology suggests
using a two dimensional matrix with the names of the object classes in both
its rows and columns. The analyst examines each pair of classes and
decides whether the two need to have a relationship; if so, he/she
determines the type of relationship and writes it in the proper cell in the
matrix. Table 6.14 exemplifies possible relationships among some of the
classes of the Music Programs system. It is assumed that the class written
in the column is the “source” and the class written in the row is the
“destination.” For example, the ‘one’ in the cell intersecting the column of
“request” and row of “listener” means that a request comes from a single
listener, while the ‘many” in the cell intersecting column “listener” and row
“request” means that a listener may send many (different) requests. Note
that there the ‘one’ and ‘many’ only indicate the max multiplicities.
After the relationships are identified and defined, an initial class diagram is
drawn. In this diagram, the types of the relationships are defined more
precisely, that is, they include min and max multiplicities. Note that
attributes of classes are not included yet. Figure 6.12 exemplifies the initial
class diagram of the Music Program example.21

2. Identifying inheritance relationships: In this step the class diagram is
reviewed in search for classes which have inheritance relationships. As a
result, it is possible that a new class is defined as superclass of one or more
existing classes. In our example, we can see that “editor,” “technician,” and
“distributor” have the same relationship type with “radio station,” so it may
be assumed that these classes have some common attributes (e.g., a name,
a phone number, and an address). Therefore, it is deduced that they are
subclasses of a new class named “worker.”

3. Identifying aggregations and compositions: This step complements
the previous one. Here we identify and define aggregations of classes, that
is, “whole-parts” relationships. Recall the distinction between compositions

Source
Destination

Editor Catalog Musical
piece

Request Listener

Editor - one - - -
Catalog many - many - -
Musical piece - many - - -
Request - - - - many
Listener - - one -

Table 6.14. Relationship matrix of the music programs example

Object Oriented Methodologies and the UML 151

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.13. Class diagram of the music programs example including
structural relationships

(signified by a black diamond) in which the whole and the parts are always
together, and aggregation relationships (signified by an empty diamond) in
which the part can be separated from the whole. In our example we can see
an aggregation consisting of “catalog” as the whole and “musical piece” as
its part (because a musical piece may appear in several catalogs), and a
composition consisting of “musical program” as the whole and “actual
program” as its part (because an actual program is always apart of its
program type).
Figure 6.13 displays the updated class diagram that includes the structural
relationships added in last two steps.

4. Completion of the class diagram: Finally, the class diagram is completed
by adding the attributes of the classes. In order to find the attributes we
must return to the use cases and their descriptions. Figure 6.14 exemplifies
the class diagram after having added the attributes. (Note that the attributes
of “editor,” “technician,” and “distributor” are written at their superclass
“worker.”)

152 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Modeling the Objects’ Behavior

The state of an object is the collection of the object’s attribute values and its
relationships with other objects at a given moment. An object changes its state
when an event that affects one or more of its attributes or relationships occurs.
UML’s technique for defining states and the transitions among them is a state
chart. It has already been said that this technique is useful mainly in real-time
systems but is hardly used in IS; therefore we opt not to elaborate on it. Note that
Figure 6.9 already exemplified a state chart for the musical piece object.
This completes the analysis phase according to the demonstrated methodology.
The modeling of the system’s behavior and other aspects belong to the design
phase.

Figure 6.14. Class diagram of the music programs example including
attributes

Object Oriented Methodologies and the UML 153

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Design Phase

In the analysis phase we dealt with the modeling of the data (or entity) objects.
In the design phase we add new types of objects concerned with the implemen-
tation of the system. One type is interface objects, which enable the users to
communicate with the system, that is, to make menu selections, feed input, or
obtain output. Another type is control objects, which contain the process logic
of the use cases. Some behavior is neither related with interface objects (i.e., not
dealing with the way the users communicates with the system) nor with data
objects (i.e., not dealing with the way the data are updated or retrieved), but
rather deal with managing the interactions among objects involved in a use case.
The process logic of the use case is, therefore, placed in its control object.
During the design phase, the use case model and the objects model need to be
improved so that they can take into account the system’s implementation
environment. This phase consists of three subphases:

1. refining the use case model,
2. modeling the interactions among objects and altering their behavior, and
3. updating the objects model.

Refining the Use Case Model

In this subphase the use cases are modified so that they contain details
concerning how the users actually communicate with the system, and how the
system reacts and carries out the business function. The way the user accesses
the system needs to be explained in detail, for example, by menus, windows,
buttons, barcode readers, magnetic card readers, and so forth. Based on these
detailed definitions the users will be able to verify that their requirements are
being fulfilled, and the programs will be able to code the applications programs.
This subphase consists of two steps:

1. Turning the use case analysis model into a use case design model:
In this step we go over the description of each use case and extend it by
referring to the physical aspects of the application. For example, who will
activate the use case, what device will be used, what exactly will be the data
input and output, what will the error message be, what will every window
contain, and so forth. Table 6.15 demonstrates design details for the use
case “handling listener requests” that was initially presented in Table 6.13.

154 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. Updating the use case diagrams and their descriptions: Many
changes in the use cases may have occurred during the previous step; it is
even possible that new use cases have been created (such as the “uses” and
“extends” use cases). It is important to keep all the diagrams and their
descriptions updated.

Modeling the Interactions Among Objects and Altering
Their Behavior

In this subphase it is important to identify and classify the objects required
according to the functionality defined in the use cases and to define the
interaction among the objects. This is done according to the following steps:

1. Identifying and classifying the objects in each use case: Recall that
we have distinguished between data, interface, and control objects. In this
step we go over the description of each use case in order to identify and
classify the required objects according to the use case’s logic/functionality.
For every use case we create three lists of objects, according to the
aforementioned types. The interface objects will include windows to enable
the users to feed in input data and receive messages and reports. The
control objects will contain the use case’s process logic, and the data
objects will include the real-world (domain) objects. For example, here are
the three types of objects required in order to implement the “handling
listener requests” use case:
• Data objects: listener, request, musical program, musical piece,

catalog, editor, and radio station. (Other classes which appear in the
class diagram of this example are not relevant to this use case.)

Table 6.15. Physical aspects of the “handling listener requests” use case

Name of use case Handling listener requests
Operator A program editor who has clearance to feed data into the system
Input device Keyboard and mouse
The manner of
accessing the
system

The system will support three access methods:
• a graphic client installed in the station’s computer and linked to the

server who runs the application,
• a browser allowing Internet access, and
• a terminal presenting textual information.

Input data See details in Figure 6.15
Error messages Each of the input fields are to be verified according to its data type, and

a proper message is to be displayed in case of an error.

Object Oriented Methodologies and the UML 155

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Interface objects: graphic interface, textual interface, and Internet
interface.

• Control objects: a controller that handles listener requests.
2. Identifying object attributes: The object’s attributes can be identified

and detailed both at the analysis phase (as we did already) and the design
phase. In any case, in this step we once more go over all the use case
descriptions in order to make sure that all the attributes appearing in them
also appear in the class diagram.

3. Creating an objects interaction model for each use case: After having
prepared the lists of objects (of the three types) for each use case, an
objects-interaction model is created, using an objects-interaction diagram.
This diagram is similar to a collaboration diagram, but it includes, besides
the use case’s objects, also its users.22 Clearly, a user can only be
connected to an interface object. The connections between the various
objects and their order of execution (as indicated by their numbers) are
derived from the process logic description of the use case. Based on these
diagrams it will be possible to create a more detailed behavior model later
on.
Figure 6.16 demonstrates an objects interaction diagram of the “handling
listener requests” use case. As can be seen, at first the user chooses an
interface he/she wishes to connect to the system through. Using any of the
interfaces, the user can feed in the required input. After being fed in, the
data is passed from the interface object to the controller object which

Figure 6.15. Example of an input screen for accepting a user request

156 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

manages the process logic. It first verifies the user’s identity and the
existence of the requested musical program (by sending messages to the
radio station object); then it passes a request to the musical program object
to add a new listener’s request. The musical program object asks the
catalog object to verify that the requested musical piece exists, and then it
creates a new request objects.

4. Identifying the behavior of each object: After having created an
objects-interaction model for each use case, it is possible to define the
overall behavior of each of the class objects in the system. This is done
according to the following steps:
1. Analyzing every use case in order to identify its behavior: The

verbal description of a use case includes verbs and expressions whose

Figure 6.16. Example of an objects interaction diagram

Object Oriented Methodologies and the UML 157

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

meaning are behaviors or functions that need to be carried out.
According to these a list of behaviors is made for the use case; each
behavior is given a brief name.
Here is an example of the behaviors/functions needed for the execu-
tion of the “handling listener requests” use case:
• add a new user request—insertNewRequest,
• find the musical program which the request needs to be added—

getProgram,
• find the requested musical piece—getSong, and
• verify that the user is authorized to perform the operation—

isAuthorized.
2. Assigning behaviors to the appropriate objects: Based on the

objects interaction model it is possible to determine to which objects
each behavior should be assigned. Actually, the behavior is assigned
to the object’s class. Once this step is completed, we obtain a list of
functions assigned to each class.
The functions that were added to the classes according to Figure 6.16
are:
• Each of the interface classes was added to the

“insertNewRequest” function.
• The controller was added the “insertNewRequest” function.
• The “radio station” class was added the “getProgram” and

“isAutorized” functions.
• The “musical program” class was added the “addNewRequest”

function.
• The “catalog” class was added the “getSong” function.

3. Examining the class diagram in order to identify more behav-
iors: The analysis of behavior, which is based on the use case
description as previously described, will not necessarily find all the
needed functions. In addition, the class diagram has to be reviewed in
order to look for more functions. For example, a relationship between
two classes requires the creation of a function in one of the classes
that will be in charge of connecting or disconnecting objects belonging
to the two classes.
For example, due to the interactions previously shown we need to add
the following functions (that were not identified in the use case
description):

158 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• A function named “add” is added to the class “musical program”;
it connects a new listener request to the program.

• A function named “new” is added to the class “listener”; it
creates a new listener object based on details received from the
interface.

• A function named “new” is added to the class “request”; it
creates a new listener request object and connects it to the
listener’s object and to the musical piece object.

Based on the previous steps, Figure 6.17 displays the class diagram
that was created during the system analysis phase, along with the
functions that were added to the classes due to behavior identified in
the “handling listener requests” use case.

4. Verification: Many diagrams have been created by the analyst so
far. It is important to verify that they are complete and consistent, and
that the classes include all the necessary functions. This can be

Figure 6.17. Class diagram of the musical programs example including
functions due to one use case

Object Oriented Methodologies and the UML 159

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

achieved by going over every use case, preferably along with a user,
and performing a “role playing”: the description of the use case is
traced while making sure that every relevant class has the functions
which are needed to perform the requirements.

5. Creating an accurate interaction model for each use case: Now
it is possible to create an accurate model that will show how the
objects are going to carry out their interactions in order to fulfill the
functionality of every use case. In order to achieve that it is possible
to use sequence diagrams or a collaboration diagram.23 (Examples of
each of these diagrams can be seen in Figure 6.7 and 6.8.)

Updating the Object Model in Order to Reflect the
Development Environment

At the end of the design phase, the objects model is completed by writing in every
class rectangle of the class diagram the names of its functions. The methodology
does not require the creation of one complete class diagram for the entire system
(presumably because it might be very big), but rather it suggests to create partial
class diagrams, one for each use case.
This concludes the example of a UML-based methodology.

Review Questions

1. What is the major component that all OO methodologies have in common?
2. According to OOA methodology, what are the five main activities of the

analysis phase?
3. What are the layers of the OO schema?
4. According to OOD methodology, what are the main activities of the design

phase?
5. Which models are included in OMT methodology?
6. Explain the background and motivation for the adoption of UML as a “de

facto” standard for OO notations.
7. What are the three main categories of modeling methods included in UML?
8. Which techniques are included among the structure charts of UML?
9. Explain the difference between UMLs class diagram and objects diagram.

160 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

10. What are the objectives of components diagrams and deployment dia-
grams?

11. Which techniques are included among the behavior diagrams of UML?
12. Which techniques are included among the model management diagrams of

UML?
13. What is the difference between composite aggregation and shared aggre-

gation? Show examples.
14. What are the differences in the notations of multiplicity constraints between

a UML class diagram and the class diagram learned in Section I of this
book?

15. Explain the different components of the components diagram.
16. What are hardware nodes and communication associations in deployment

diagrams?
17. What are “uses” relationships and “extends” relationships in use cases?

Show examples.
18. Describe the structure of a use case narrative description. Show an

example.
19. What is the objective of sequence diagrams? Explain the relationship

between sequence diagram, use case, and class diagram.
20. What are the commonalities and differences between sequence diagram

and collaboration diagram?
21. What is the objective of state charts? Explain the relationship between state

chart and class diagram?
22. What is a “state” and what is a “transition”? What can be specified for

every transition?
23. What is the similarity between activity diagram and state chart? What is the

similarity between activity diagram and program flowchart?

The following questions relate to the OO methodology of Whitten et al. (2001).

24. What are the four substages of the analysis stage?
25. What are the four steps in creating a requirement use case model?
26. What is done in the step of use cases analysis? What may be the results?
27. What steps are involved in the definition of relationship types among

classes?
28. What are interface objects? Control objects?

Object Oriented Methodologies and the UML 161

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

29. What are the three steps of the design phase?
30. What is involved in turning a use case analysis model into a use case design

model?
31. What is an objects interaction diagram and how is it used to create the

objects interaction model?
32. What steps are involved in the definition of the overall behavior of the class

objects in the system?
33. Which functions which do not evolve from the use cases can be added to

the class diagram?
34. How can it be verified that the various diagrams created in the analysis and

design phases are complete and consistent?

References

Booch, G. (1994). Object-oriented analysis and design with applications
(2nd ed.). Redwood City, CA: Benjamin/Cummings.

Booch, G., Rumbaugh, J., & Jacobson, I. (2004). UML reference manual (2nd

ed.). Reading, MA: Addison Wesley.
Champeaux, D., Lea, D., & Faure, P. (1993). Object-oriented system devel-

opment. Reading, MA: Addison Wesley.
Coad, P., & Yourdon, E. (1990). Object oriented analysis. Englewood Cliffs,

NJ: Prentice Hall.
Coad, P., & Yourdon, E. (1991). Object oriented design. Englewood Cliffs, NJ:

Prentice Hall.
Embley, D., Kurtz, B., & Woodfield, S. (1992). Object-oriented systems

analysis: A model driven approach. Englewood Cliffs, NJ: Prentice Hall.
Firesmith, D. (1993). Object-oriented requirements analysis and logical

design. New York: Wiley & Sons.
Fowler, M. (2003). UML distilled—A brief guide to the standard object

modeling language (3rd ed.). Reading, MA: Addison Wesley.
Harel, D. (1988). On visual formalisms. Communications of the ACM, 31(5),

514-530.
Henderson-Sellers, B. (1992). A book of object-oriented knowledge. New

York: Prentice Hall.
Jacobson, I. (1992). Object-oriented software engineering: A use case

driven approach. New York: Addison Wesley.

162 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software
development process. Reading, MA: Addison Wesley.

Khoshafian, S., & Abnous, R. (1990). Object-orientation: Concepts, lan-
guages, databases, user interfaces. New York: Wiley & Sons.

Larman, C. (2002). Applying UML and patterns—An introduction to object
oriented analysis and design (2nd ed.). Prentice Hall.

Larman, C. (2004). Agile and iterative development: A manager’s guide.
Addison Wesley.

Maciaszek, L. A. (2001). Requirements analysis and system design—Devel-
oping information systems with UML. Essex, UK: Addison Wesley.

Martin, J., & Odell, J. (1993). Object-oriented analysis and design. Englewood
Cliffs, NJ: Prentice Hall.

Norman, R. (1996). Object-oriented systems analysis and design. Upper
Saddle River, NJ: Prentice Hall.

OMG - Object Management Group. Home Web site. http://www.omg.org.
Otero, C., & Dolado, J. (2004). Evaluation of the comprehension of the dynamic

modeling in UML. Information and Software Technology, 46, 35-53.
Page-Jones, M. (2000). Fundamentals of object-oriented design in UML.

Reading, MA: Addison Wesley.
Rumbaugh, J. (1995). OMT: The dynamic model, the functional model, the object

model. Journal of Object-Oriented Programming, 7(9), 6-12; 8(1), 10-
14; 7(8), 21-27.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1992).
Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice
Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified modeling
language reference manual. Reading, MA: Addison Wesley.

Shlaer, S., & Mellor, S. (1992a). Object lifecycles—Modeling the world in
states. Englewood Cliffs, NJ: Yourdon Press, Prentice Hall.

Shlaer, S., & Mellor, S. (1992b). Object-oriented systems analysis: Modeling
the world in data. Englewood Cliffs, NJ: Yourdon Press, Prentice Hall.

Siau, K., & Qing, C. (2001). Unified modeling language (UML)—A complexity
analysis. Journal of Database Management, 12(1), 26-34.

UML - Unified Modeling Language. http://www.uml.org/
UML 2.0 - The Current Official Version. http://www.uml.org/#UML2.0
Whitten, J., Bentley, L., & Dittman, K. (2000). Systems analysis and design

methods (5th ed.). Berkeley, CA: McGraw Hill.

Object Oriented Methodologies and the UML 163

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Wieringa, R. (1998). A survey of structured and object-oriented software
specification methods and techniques. ACM Computing Surveys, 30(4),
459-527.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-
oriented software. Englewood Cliffs, NJ: Prentice Hall.

Yourdon, E. (1994). Object-oriented systems design: An integrated ap-
proach. Englewood Cliffs, NJ: Prentice Hall.

Endnotes

1 At this point we only mention the names of the techniques; explanations will
be given later on.

2 More on early OO methodologies can be found, among others, in Champeaux,
Lea, and Faure (1993), Embley, Kurtz, and Woodfield (1992), Firesmith
(1993), Henderson-Sellers (1992), Khoshafian and Abnous (1990), Martin
and Odell (1993), Norman (1996), Wieringa (1998), and Yourdon (1994).

3 Coad and Yourdon use the term Class-&-Object, indicating that that a class
contains objects.

4 This is according to OOA; usually ordinary relationships are dealt with
together or even before structural relationships.

5 More common terms for services are, as we already know, functions or
methods.

6 The differences between an OOD objects diagram and a class diagram (as
learned in the previous chapters) will not be specified here.

7 Based on Harel’s (1988) State charts.
8 More details on the OMT and its limitation are beyond the scope of this

book.
9 There are plenty of books on UML; here are a few references: Booch,

Rumbaugh, and Jacobson (2004), Fowel (2003), Jacobson, Booch, and
Rumbaugh (1999), Larman (2002, 2004), Maciaszek (2001), Page-Jones
(2000), and Rumbaugh, Jacobson, and Booch (1999). In addition, there are
Web sites: UML - Unified Modeling Language. http://www.uml.org/ and
UML 2.0 - The Current Official Version. http://www.uml.org/#UML2.0.

1 0 The number of techniques may increase over time.
1 1 For an analysis of the complexity of UML see Siau and Qing (2001).

164 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1 2 The review provided here does not cover, of course, all the notations and
rules of UML. More details and can be found in various books and on UML
Web sites—see references.

1 3 These notations are relevant in the programming stage.
1 4 In this diagram, as in other diagrams in this chapter, we demonstrate the

UML techniques using the Music Programs example without fully describ-
ing the user requirements of this system. A full description of the require-
ments will be presented in Chapter VIII, where the FOOM analysis
methodology will be presented.

1 5 This is only a partial and simplified class diagram of the Music Programs
example. More detailed diagrams of this example will be displayed later on
in this chapter.

1 6 Note that a use case is not equivalent to an elementary function in a DFD;
a more precise comparison will be provided in the next chapter of this book.

1 7 An experimental comparison of sequence diagrams and collaboration
diagrams is provided in Otero and Dolado (2004).

1 8 The problem description of the Music Programs example does not deal with
the possible states of the “musical piece” object; the model presented in the
diagram is merely an example.

1 9 This is just one of many UML-based development methodologies. A few
more have already been cited earlier in this chapter.

2 0 This diagram is somewhat different from the one presented in Figure 6.6,
which includes components which we had not yet dealt with in this example.

2 1 This class diagram is more elaborate than the one presented in Figure 6.1,
which merely gave a “first taste” of a UML class diagram.

2 2 It must be noted that this diagram is not part of UML; it was introduced by
the creators of the described methodology.

2 3 The demonstrated methodology does not recommend any of the two
techniques.

Combining the Functional and Object Oriented Approaches 165

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Combining the
Functional and Object
Oriented Approaches:

 Introduction to FOOM

This chapter starts with a brief discussion on approaches to system
development methodologies and the motivation for the development of the
integrated methodology FOOM. Then it presents the stages and products of
FOOM.

Approaches to System Development
Methodologies

Many paradigms for information systems (IS) development, particularly for their
analysis and design, have been proposed over the years. The functional approach
(also known as “process-oriented” or “traditional” approach) was very popular
during the 1980s and the 1990s of the 20th century. The life cycle for developing
an IS according to this approach is based on the “water fall” model (or variations
of it), which distinguishes between certain stages of development which are
carried out in a serial manner, with the possibility of iterations between the

166 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

stages. According to this approach the IS is built from functions (or processes)
that are connected in a complex manner, and there are constant flows of data
between functions. IS analysis focuses on the identification and definition of the
functions and the dataflows.
Common methodologies that support the functional approach are system struc-
ture analysis (SSA) for analysis and system structure design (SSD) for design.
SSA (DeMarco, 1978; Gane & Sarson, 1979) is based on the use of data flow
diagrams (DFDs), which define the functions of the system; the data stores
within the system; the external entities, which are the sources of inputs and the
destinations of outputs of the system; and the dataflows among the aforemen-
tioned components.
Early development methodologies such as SSA emphasized the functional
aspects of system analysis, that is, functional modeling, but neglected the
somewhat structural aspects, that is, data modeling. This was remedied by
enhancing those methodologies with conceptual data modeling methods, usually
the entity relationship (ER) model (Chen, 1976), that is used to create a diagram
of the data model, which is later mapped to a relational database schema. The
role of entity relationship diagrams (ERD) in data modeling can be viewed as
equivalent to the role of DFD in the functional modeling. For years, DFDs and
ERDs have complemented each other in the traditional development methodolo-
gies (see, for example, Hoffer, George, & Valacich, 1999; Yourdon, 1989).
SSD methodology for systems design (Yourdon & Constantine, 1979) is based
on the use of structure charts (SC), which describe the division of the system to
program modules as well as the hierarchy of the different modules and their
interfaces. Certain techniques have been proposed to create SCs from DFDs.
But the transition from DFDs to SCs is problematic because DFDs are basically
a network structure, while SCs are hierarchical. Despite various guidelines and
rules for conversion from one structure to the other, the problem has not been
resolved by those methodologies (Coad & Yourdon, 1990).
Architectural design of information systems based on structural analysis
(ADISSA)1 methodology (Shoval, 1988, 1991, 1998) resolved this problem. It
uses hierarchical DFDs during the analysis stage (similar to other functional
analysis methodologies), but the design is based on transactions. A transaction
in ADISSA is defined as a process that supports a user who performs a business
function and is triggered as a result of an event.2 Transactions will eventually
become the application programs. At the beginning of the design stage the
transactions are derived from DFDs (according to certain rules) and the process
logic of each transaction is defined by means of structured programming
techniques, for example, pseudo code. Based on the DFDs and the transactions,
ADISSA provides structured techniques to design the user interface—a menus
tree (Shoval, 1990), the inputs and outputs (forms and reports), the relational

Combining the Functional and Object Oriented Approaches 167

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

database schema, and detailed descriptions of the transactions, which will
eventually become the application programs.
The Objects Approach for the development of IS became very popular during
the 1990s.3 As we already know, in the object oriented (OO) approach the world
is composed of objects with attributes (defining its state) and behavior (meth-
ods), which constitute the only way by which the data included in the object can
be accessed.
While there may be no doubts about the advantages of the OO approach in
programming, as it supports information hiding (encapsulation), software reuse,
and maintenance, there may be doubts with respect to the effectiveness of the
approach for analyzing business-oriented IS (as opposed to real-time systems).
Early OO methodologies tended to neglect the functionality aspect of system
analysis, and did not show clearly how to integrate the application’s functions
with the class diagram. Another difficulty with those methodologies was that
they involved many types of nonstandard diagrams and notations. The multiplic-
ity of diagram types in the OO approach has been a major motivation for the
adoption of the unified modeling language (UML) as a standard modeling
language. But UML in itself is not a development methodology; it is a collection
of notations (visual techniques), but it does not guide the developer, step by step,
to which of its repertoire of techniques to use. Some of these techniques are
primarily intended for modeling real-time systems or computer-embedded
systems (e.g., state charts) and not business-organization IS. As we saw, the
techniques are not integrative; there is some redundancy or overlap between
techniques (e.g., sequence diagrams and collaboration diagrams) and it is not
always clear which technique to use in a certain situation. The text books about
UML methodologies usually present the various techniques and only recommend
how to use them for different activities at the developing process. But they do
not specify exactly, step by step, in which technique to use when developing a
certain type of IS; how exactly does the output of one technique serve as input
for another, and so on. It is obvious that the numerous techniques, terms, and
notations, and the need to switch from one to another and maintain consistency
between them, makes it difficult to learn, understand, and utilize the various
techniques.4

In conclusion, in spite of the popularity of OO and UML-based development
methodologies, there are still doubts regarding the efficiency and effectiveness
of such methodologies for analyzing and designing business-oriented (i.e.,
organizational, managerial) IS. Generally, one might say that the efficacy of OO
development methodologies for such systems has not been proven yet. However,
OO methodologies continue to grow and change.

168 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Motivation for the Development of a
Combined Functional and

Object Oriented Methodology

In system analysis we try to model the reality or parts of it from certain points
of view. We do so in an attempt to understand, explain, and improve existing
systems, or to design new ones. Visual modeling of the reality and its systems
is essential in order to establish good communication between the system’s
developers and the users, and is an important factor in the system’s successful
development and implementation.
Since the late 1970s, system developers encountered two major problems: one
is the gap between analysis and design, and the other, the gap between processes
and data.
The gap between analysis and design is manifested in an unnatural and
unclear transition from the analysis stage to the design stage. In general, at the
analysis stage we deal with what will the system do for its users, while at the
design stage we deal with how the system will do it. Although it is obvious that
the design should be a natural continuation of the analysis, and the outputs of the
former should serve as inputs to the latter, development methodologies often do
not follow that properly. Some methodologies do not clarify what “belongs” to the
analysis stage and what to the design stage; when does one stage end and the
other begin; and more importantly, what exactly to do with the outputs of the
analysis stage at the design stage. For example, in the functional approach, SSA
did not deal at all with the question of what to do with the DFDs that are its main
product; SSD, on the other hand, which primarily dealt with the modular design
of programs, tried—with little success—to use DFDs as a starting point for
designing SCs. A good solution to the gap between analysis and design in the
functional approach was introduced in ADISSA methodology which uses the
DFDs produced in the analysis stage and smoothly derives from them the
transactions of the system (which later on become programs), the user interface,
the inputs and outputs, and the database schema.
OO methodologies have tried to bridge the analysis-design gap by blurring the
distinction between them. Some OO methodologies do not determine what
belongs to the analysis stage and what to the design; some methodologies
consider the design stage as a refinement of the analysis stage. There are
techniques that we cannot tell whether they belong to analysis or design and
hence different methodologies use them in different stages (e.g., sequence
diagrams and collaboration diagrams).
The gap between processes and data (or between behavior and structure)
could be seen in the traditional development methodologies, which used mainly

Combining the Functional and Object Oriented Approaches 169

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DFDs that emphasize process (functional) analysis but somewhat neglect data
analysis. A remedy was found when those methodologies adopted ER as a data
modeling method, but the two techniques have not been fully integrated. In early
OO methodologies the process-data gap has not narrowed—it has grown, mainly
because of referring to objects as the primary building blocks of the system, while
the processes are “encapsulated” within them. To compensate for this gap,
additional techniques that dealt with the functional aspects have emerged,
notably use cases. As a result, we have now multiple techniques of all kinds for
all purposes, without well-defined connections between them.
It seams that the transition from emphasizing the processes in the functional
approach to emphasizing the objects in the OO approach was a step in the right
direction, but it went too far; the transition to objects was made at the account
of processes. Instead of emphasizing and preferring one approach over the other,
the two must be balanced; objects (data) and processes (functions) must be
treated “equally” and compliment each other in both the analysis and design
stages. There is a need for a methodology that combines the two approaches
evenly and closes both the analysis-design gap and the process-data gap.

Review of the Stages of FOOM
and Its Products

FOOM for analyzing and designing IS, combines the functional approach and
the OO approach.5

At the analysis stage, the users’ requirements are specified in two modeling
activities: (1) data modeling, producing an initial class diagram, which is a class
diagram consisting of data classes, their attributes and relationships—but not
methods; and (2) functional modeling, producing object oriented data flow
diagrams (OO-DFDs), which are hierarchical DFDs that resemble traditional
DFDs, but instead of data stores they include data classes. A by-product of the
analysis stage is a data dictionary.
At the design stage the aforementioned analysis products are used to design the
system. The products in this stage include: (1) a complete class diagram, which
includes additional classes and all classes include their method; (2) descriptions
of methods; each method is described in pseudo code or message chart; (3) a
user interface (a menus tree); and (4) input/output screens and reports. As
said, all these products are derived systematically from the products of the
analysis stage. The transition from the analysis stage to the design stage is based
on techniques adopted from the ADISSA methodology. The design products
enable building (programming) the system in an OO environment.

170 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Here are more details about the stages, substages, and products of the method-
ology. They are also summarized in Table 7.1.

The Analysis Stage

The analysis stage consists of two primary activities: data modeling, providing an
initial class diagram, and functional modeling, providing hierarchical OO-DFDs.
The initial class diagram consists of data (entity) classes, namely classes that
are derived from the users’ requirements and contain “real-world” data.6 Each
class includes attributes of various types (e.g., atomic, multi-valued, sets, and
reference attributes). Association types between classes include ordinary
relationships, generalizations (inheritance relationships), and aggregations (whole-
parts relationships). Relationships are signified by links between respective
classes and by reference attributes to those classes. The initial class diagram
does not include methods; these will be defined in functional modeling and added
at the design phase.
The OO-DFDs consist of general and elementary functions, classes (that appear
in the initial class diagram), external-entities (providing the inputs and receiving
the outputs of the system), and dataflows among them.
The two modeling activities of the analysis stage can be performed in any order.
For instance, the analyst may start the process by creating the OO-DFDs (as
based on the users’ requirements). Then the analyst may continue by creating

1. Analysis phase
a) Data modeling Initial class diagram
b) Functional modeling Hierarchical OO-DFDs
c) Data dictionary

2. Design phase
d) Discovering transactions Top-level descriptions of transactions
e) Designing the user

interface
Menus class and objects

f) Designing the inputs and
outputs

- Forms class and objects
- Reports classes and objects

g) Creating detailed
descriptions of
transactions and their
decomposing into
methods

- Transactions class
- Transaction methods and class

methods—in pseudo code or message
charts

Table 7.1. Summary of the stages and substages of FOOM

Combining the Functional and Object Oriented Approaches 171

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

an initial class diagram—using the classes already appearing in the OO-DFDs.
This means mainly defining proper class associations and attributes. Alterna-
tively, the analyst may start the analysis process by first creating an initial class
diagram, and then continue by creating the OO-DFDs, using the already defined
classes. The initial class diagram can be created “directly” based on the users’
requirements or “indirectly” by first creating an ERD (based on the users’
requirement) and then mapping it, using the mapping algorithm, to a class
diagram.7 This order of activities may be more appropriate since the data
structure elements of a certain reality seem to be more tangible/concrete and
easy to define than functions, which are intangible and less well-defined. Yet
another possibility is to perform the two modeling activities simultaneously and
incrementally. The pros and cons of the two opposing orders of analysis activities
have been investigated in controlled experiments, and it was found that an
analysis process which starts with data modeling provides better class diagrams
and is preferred by analysts (Kabeli & Shoval, 2003; Shoval & Kabeli, in press).
Therefore, the methodology follows this order of activities, that is, first—data
modeling; second—functional modeling.
At any rate, the two products of the analysis stage are synchronized. This means
that it is verified that every class appearing in the class diagram appears also in
the OO-DFDs, and vise versa; and that each attribute of a class is updated by
at least one function and retrieved by at least one function. This is done with the
help of a data dictionary which is also created at the analysis stage. The data
dictionary stores various details regarding the components of the OO-DFDs. In
particular, it includes details about the data elements of the dataflows connecting
the various components of the diagrams. This dictionary will continue to evolve
and be used in further stages of development.

The Design Stage

The design stage includes the following substages: (1) discovering transactions
and creating top-level descriptions; (2) designing the user interface and adding
a ‘menus’ class; (3) designing the inputs and outputs and adding ‘forms’ and
‘reports’ classes; and (4) creating detailed descriptions of transactions and their
decomposing into methods.

Discovering Transactions and Creating Top-Level Descriptions

From the user’s point of view, a transaction is a process performed by the IS to
support a business process he/she has to perform, and it is executed in response
to an event that occurs in the real world. From a designer’s point of view, the

172 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

transactions of the system are derived from the OO-DFDs. A transaction
consists of one or more elementary functions in the OO-DFDs which are chained
through dataflows. The transaction also includes the external entities and classes
(rather than data stores in traditional DFDs) that are connected to these
functions. A transaction is triggered by a user who interacts with the system, or
automatically, on a predefined (timely) basis. The transactions will eventually be
transformed and decomposed into class methods.
This substage involves discovering the transactions in the OO-DFDs and
creating a top-level description for each of them, using pseudo code. This
description specifies the process logic for the transaction, according to its user’s
needs. (The process logic of a transaction cannot be determined automatically
from a diagram, since a diagram can be interoperated in different ways, and only
the user, assisted by the analyst, can determine the desired flow of control
(process logic).

Designing the User Interface and Adding a Menus Class

A menus tree interface is derived from the hierarchical OO-DFDs in a
semialgorithmic process. This process consists of two main steps. In the first
step, which is an algorithmic one, an initial menus tree is derived from the OO-
DFDs following certain rules concerning general and elementary functions that
are connected to user entities. In the second step, the analyst and the user
interact and apply heuristic rules and “behavioral” considerations (e.g., aesthet-
ics) in order to improve in the initial menus tree, until the designed menus please
the users. Following that, a Menus class is added to the class diagram, whose
objects are the various menus designed. The Menus class also includes certain
methods enabling the analyst to present the menus and follow the users’
selections. Imagine that at run time a certain user operates the system by making
selections from menus; the user actually sends messages to certain menu
objects. He/she may select a menu item/option which might cause the invocation
and presentation of another menu object (submenu), or he might cause the
activation of a transaction, meaning an application-specific method which will
then perform the desired task (as will be detailed later on).

Designing the Inputs and Outputs and Adding Forms and Reports
Classes

The design of the input and output screens and reports is based on the “input”
and “output” commands appearing in top-level transactions’ descriptions. (An
“input” command is created because of a dataflow from a user entity to a

Combining the Functional and Object Oriented Approaches 173

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

function; an “output” command is created because of a dataflow from a function
to a user-entity.) For each “input” command an input/form screen is designed,
and for each “output” command an output screen or report is designed.
Sometimes input and output screens are combined. Eventually, two new classes
are added to the class diagram: a forms (or inputs) class whose objects are the
input screens/forms, and a reports (or outputs) class whose objects are the
outputs screens and reports. The two classes also include certain methods which
enable their presentation and accepting the input (for input objects).

Creating Detailed Descriptions of Transactions and Their
Decomposing into Methods

This is a primary substage of design in which the top-level description of each
transaction is converted into a detailed description, and then the detailed
description is decomposed into methods which are attached to proper classes. In
the course of that decomposition we distinguish between three types of methods:
(1) basic methods exist in every data class, enabling the basic operations (i.e.,
create, read, update, and delete of objects); (2) application-specific methods
are identified in the transaction descriptions and attached to respective data
classes; and (3) the remaining parts of each transaction become a transaction
method, which is attached to a new class named “transactions.” A transaction
method can be viewed as the “main” part of the transaction’s program. In
addition to its internal procedures, it includes messages to basic and application-
specific methods of certain classes, methods which have been extracted from
the original transaction and associated with the respective classes.
Hence, the designed system consists of transaction methods and class methods
which can be activated by messages from transaction methods. Imagine again
a user at run time, who wishes to activate (run) a certain application program;
at a certain point in time the user selects a menu item which actually sends a
message to a specific transaction method (the program’s main) and activates it;
that method performs, and depending on its process logic, it might send messages
to other class methods, who in turn may include messages to other methods of
related classes. Eventually, the chain effect terminates and control returns to the
menus interface, waiting for further activations by users.
A detailed description of each transaction method and application-specific
method can be expressed in two complementary techniques: pseudo code and
message chart. A message chart is similar to a collaboration diagram but in
addition to classes and messages involved in the method, it also includes symbols
expressing the process logic, that is, selection (branching) and repetition (loop)
operations. A message chart is entirely equivalent (from the aspect of the

174 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

information it bears) to a pseudo-code description presents. Hence, either of the
two techniques can be used to describe a method.

FOOM and CASE Tools

One of the advantages of FOOM is that no specific computer aided software
engineering (CASE) tools are needed for its utilization. Any software tools which
have drawing capabilities can be used to create FOOM’s products. In particular,
the only diagrams which need to be created are a class diagram and OO-DFDs
in the analysis stage and message charts in the design stage. Such diagrams can
be created by many software tools.8

This concludes the survey of FOOM’s analysis and design stages, substages, and
products. FOOM does not deal with the stage of construction/programming.
However, the products of the design stage are sufficient to enable programming
teams to construct the system using an OO programming environment.

Review Questions

1. What characterizes development methodologies that are based on the
functional approach?

2. How do ERDs combine in traditional development methodologies?
3. How does ADISSA methodology provide a smooth transition from the

analysis phase to the design phase?
4. In what way did the objects approach change the “balance” between

treatment of processes and structures? Discuss the advantages and
disadvantages of this change.

5. Explain the process-data gap. How is the gap handled by the different
development approaches?

6. Explain the analysis-design gap. How is the gap handled by the different
development approaches?

7. What are the three products of the analysis phase of FOOM?
8. What is the advantage in creating an initial class diagram before the OO-

DFDs?
9. How can ERDs be integrated in the analysis phase?

Combining the Functional and Object Oriented Approaches 175

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

10. What are the five substages of the design?
11. What is a top-level transaction description and what is it based on?
12. Describe the method for designing the menus tree user interface.
13. What is the basis for the design of the inputs and the outputs?
14. What is the difference between a transaction’s top-level description and its

detailed description?
15. What is the difference between a basic function, an application-specific

function, and a “main” function of a transaction?
16. What is included in the message chart? How does it differ from a pseudo-

code description?

References

Chen, P. (1976). The entity-relationship model—Toward a unified view of data.
Transactions on Database Systems, 1(1), 9-36.

Coad, P., & Yourdon, E. (1990). Object oriented analysis. Englewood Cliffs,
NJ: Prentice Hall.

DeMarco, T. (1978). Structure analysis and system specification. Englewood
Cliffs, NJ: Prentice Hall.

Dori, D. (2002). Object-process methodology—A holistic systems paradigm.
Berlin: Springer Verlag.

Gane, C., & Sarson, T. (1979). Structured systems analysis, tools and
techniques. Englewood Cliffs, NJ: Prentice Hall.

Hoffer, J., George, J., & Valacich, J. (1999). Modern systems analysis and
design (2nd ed.). Reading, MA: Addison Wesley.

Kabeli, J., & Shoval, P. (2003). Data modeling and functional analysis: What
comes next? An experimental comparison using FOOM methodology.
Proceedings of the Eight CAISE/ IFIP8.1 International Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design (pp. 48-
57). Velden, Austria.

Shoval, P. (1988). ADISSA: Architectural design of information systems based
on structured analysis. Information System, 13(2), 193-210.

Shoval, P. (1990). Functional design of a menu-tree interface within structured
system development. International Journal of Man-Machine Studies,
33, 537-556.

176 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Shoval, P. (1991). An integrated methodology for functional analysis, process
design and database design. Information Systems, 16(1), 49-64.

Shoval, P. (1998). Planning, analysis and design of information systems
(Vols. 1-3). Tel-Aviv, Israel: Open University Press.

Shoval, P., & Frumermann, I. (1994). OO and EER conceptual schemas: A
comparison of use comprehension. Journal of Database Management,
5(4), 28-38.

Shoval, P., & Kabeli, J. (2001). FOOM: Functional- and object-oriented analysis
and design of information systems—An integrated methodology. Journal
of Database Management, 12(1), 15-25.

Shoval, P., & Kabeli, J. (2005). Essentials of functional and object-oriented
methodology. In M. Khosrow-Pour (Ed.), Encyclopedia of information
science and technology (pp. 1108-1115). Hershey, PA: Idea Group.

Shoval, P., & Kabeli, J. (in press). Data modeling or functional modeling—What
comes first? An experimental comparison. Communications of the AIS.

Shoval, P., & Shiran, S. (1997). Entity-relationship and object-oriented data
modeling—An experimental comparison of design quality. Data & Knowl-
edge-Engineering, 21, 297-315.

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, NJ:
Prentice Hall.

Yourdon, E., & Constantine, L. (1979). Structured design. Englewood Cliffs,
NJ: Prentice Hall.

Endnotes

1 ADISSA stands for: Architectural Design of Information Systems based on
Structured Analysis.

2 One can see some similarity between a transaction in ADISSA and a use
case in UML. More details on this point will be provided in further chapters.

3 Some of the early OO methodologies have been mentioned in Chapter VI.
4 The various UML techniques include approximately 150 different terms

and symbols. There are studies on complexity of techniques which showed
that UML is much more complex than other system modeling techniques.

5 FOOM was developed by Peretz Shoval, the author of this book, in
cooperation with his doctoral student, Judith Kabeli, while working on her
PhD under his supervision. It was originally published in Shoval and Kabeli
(2001). Additional publications describing the methodology include Kabeli

Combining the Functional and Object Oriented Approaches 177

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and Shoval (2003) and Shoval and Kabeli (2005). The paper Kabeli and
Shoval (2005) describes experimental evaluations and comparisons of
FOOM with another methodology OPM (Dori, 2002) which combines the
functional and OO approaches.

6 Additional classes will be added at the design stage.
7 As already discussed in Chapter IV, previous research (Shoval &

Frumermann, 1994; Shoval & Shiran, 1987) has shown that in some cases,
especially when dealing with ternary relationships, an ERD is more
comprehensible by users, and analysts can create more correct data models
when using the ER model. In addition, an ERD can be mapped easily to an
initial class diagram.

8 Of course, specific tools which utilize and enforce the specific notations
and rules of the aforementioned types of diagrams could be an advantage,
but they have not been developed yet.

178 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

Information Systems
Analysis with FOOM

This chapter elaborates on the activities and products of the analysis stage
with functional and object oriented methodology (FOOM). The products of
this stage include a data/objects model in the form of an initial class
diagram, and a functional model in the form of hierarchical object oriented
Data flow diagram (OO-DFDs). The two diagram types are synchronized in
order to guarantee the correctness and completeness of the two models. The
chapter presents various examples of diagrams of both types.

Data Modeling: Creating an
Initial Class Diagram

An initial class diagram includes, as we already know, data/entity classes. These
classes are derived from the users’ requirement and are made up of objects
which keep real-world data.1 For each class in the initial class diagram we only
define its attributes and relationships (but not its functions). At this stage we
already know how to create an initial class diagram. Recall that there are two
alternative ways to create it: (1) “directly”—based on the users’ requirements;
and (2) “indirectly”—first to create an entity relationship diagram (ERD) and
then to map it to an initial class diagram using the mapping algorithm.2

Information Systems Analysis with FOOM 179

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In Chapter VII we dealt with the possible orders of activities in the analysis stage
and came to the conclusion that it is preferred to start by creating a data model
and continue by creating a functional model. Since we have already studied how
to create an initial class diagram, here we will only show another example of such
a diagram. The example is more detailed than previous examples and involves
both data (structural) and functional requirements, because we will use it also to
demonstrate functional modeling.

Example: The Apartments Building Information System3

An information system (IS) needs to be developed for a company which
manages an apartment building. The system will provide information on the
tenants, their monthly payments to the company (for maintenance of the
building), and maintenance works requested by the tenants and conducted
by contractors. Here is a description of the requirements from the system:

Tenant Fees
The IS will be able to store, update, and retrieve information on the tenants
of the building and their payments to the company. For each apartment it
will store the apartment number, its size (in square meters), the family name
living in the apartment,4 their phone numbers, and the number of persons.
Based on these details (and other considerations), the managing company
will determine, for each apartment/family the monthly fees for maintenance
of the building. The fee may be updated from time to time by the company.
The tenants may pay their dues in cash or by check. The system will store
the payment details (including the amount, date, and form of payment), and
produce a receipt for the tenant. The system will enable the company to
retrieve and report on the payments and debts of certain apartments
(families) in certain periods (months). At the end of each month the system
will produce a report on all tenants detailing the amounts paid and debt (as
based on the monthly fees on one hand and the actual payments on the other
hand). The total debt of all tenants will be stored to enable easy retrieval.
In addition, the system will issue a notification (reminder) on the debt to
each tenant whose debt is bigger than a three months fee, or whose debt is
bigger than a two months fee but who already received a notification in the
previous month.

Maintenance Works
The maintenance works for the building will be dealt with as follows: A
tenant or several tenants together may request a maintenance work to be
commenced in any of the common (public) parts of the building. For every

180 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

request the following details will be saved: the tenants who requested the
work, the date of request, the description of the needed work, and its type
(e.g., plumbing, electricity, and gardening). The system will be able to
update the work requests, if needed.

The system will maintain data on contractors who may be asked to perform
maintenance works for the building. The data on each contractor will
include, among other things, its fields of expertise (e.g., plumber, gardener,
etc.) in order to assist in choosing the right contractor for any requested
work.

A company officer will be authorized to decide on the commencement of a
requested work. He will be assisted by the IS, which will present him the
requested works which were not yet dealt with (those that are still in a
“proposal” status). The officer will choose one of those requests, and the
system will retrieve and present details of contractors who are suitable for
the required work. The officer will contact the potential contractors,
describe the desired work and ask them to submit proposals. Contractors
will submit their proposals, and the company officer will review them,
perhaps negotiate with some of them, and eventually will select one of the
proposals. It was decided that the IS will not deal with addressing the
contractors, accepting their proposals, and the negotiation and selection
process. The system will only store the details of the agreement with the
selected contractor, including a description of the work that will be done;
the beginning and ending dates; and of course, the agreed upon payments.
The system will produce printed versions of the agreement: one will be sent
to the contractor and one will be saved in the company’s files. At this stage,
the status of the requested work will be changed from to “in progress,” and
the building’s financial status (i.e., obligation to pay) will be updated.

The contractor will carry out the work and will be paid from time to time,
according to the agreement. The date and sum of each payment will be
saved, and the remainder of the total debts of the building will also be
updated. The system will enable to retrieve and present details of the works
in progress. Once a certain work is completed (as agreed upon by the
company and the contractor) a completion report will be produced and sent
to the tenants who requested the work. The status of that work will be
changed to “completed.”

Information Systems Analysis with FOOM 181

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Initial Class Diagram

Figure 8.1 displays the initial class diagram of the apartments building IS. Several
clarifications follow:

• Based on the users’ requirements, it is quite easy to discover and define the
classes Apartment, Work, and Contractor (which include objects of
apartments, requested works, and contractors, respectively). Since tenants
of apartments may move in and out over time, we opted to refer to objects
of apartments, and include relevant details on tenants within the apartment
objects. Hence, an apartment as well as a family living in an apartment is

Figure 8.1. Initial class diagram of the apartments building system

182 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

identified by its apartment number (and not an ID number or the family
name of the tenants).

• Every class is identified (in addition to its name) by a code consisting of the
letter “C” and a serial number. This code will also be used later on in the
OO-DFDs and in the data dictionary (DD).

• Each requested work is identified by work code. This code will be used
throughout the lifetime of the. Note the status attribute of a work and its
possible values.

• The Work in Progress class is not as trivial as the former classes. A
system analyst may not see the need for this subclass right away, and
perhaps only define the Work class, in which he might include all possible
attributes of a work, including those related to its actual conduct by a
contractor. However, a more thorough examination should reveal that there
are enough specific attributes regarding works that are underway to justify
the creation of a subclass that we term Work in Progress, which will
contain those attributes. Work in Progress has a many-to-one relation-
ship with Contractor: A project may be given to only one contractor, while
a contractor may do more than one work (but the min 0 implies that there
may be contractors who never did any work for the company).

• The relationship between Apartment and Work is many-to-many, since a
work may be requested by several apartment tenants, and an apartment
may request more than one work. Since there are no relationship attributes,
there is no justification for the creation of a relationship class.

• The Company class is a special case: It is a singular class, that is, a class
with only one object having a series of attributes, such as the total annual
payments from the tenants and the sum of amounts payable to contrac-
tors. Although it is possible to calculate these amounts when needed and
therefore it is not mandatory to save and update them, it was decided to
prefer the alternative solution of saving and updating these values. This will
enable the system to immediately retrieve the needed amounts without
having to calculate them again and again. Note that this class does not have
a key (which is not needed since it includes only one object), and also that
it has no relationships with other classes. Obviously, the class will have
functions to update its attribute values.

• When we will deal with the functional analysis of the IS, and later on with
its design, we will review the class diagram and see how the various
functions that the system needs to carry out are defined and how they are
attached to the respective classes.

Information Systems Analysis with FOOM 183

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.1 displayed the initial class diagram as created directly from the users’
requirements. For the sake of completeness, we also demonstrate the “indirect”
way to create the data model, using an ERD. Figure 8.2 displays the respective
ERD. Obviously, this diagram can be mapped to the respective class diagram,
based on the mapping rules learned in Chapter IV.

Functional Analysis-Creating OO-DFDs

OO-DFDs are a graphic mean for the definition of the functions of the IS and
the flows of data among them. They are similar to traditional hierarchical DFDs
(as, for example, in DeMarco, 1978), but instead of data stores they include data
classes. This section reviews the components of an OO-DFD and the rules for
the construction of hierarchical OO-DFDs.

Figure 8.2. ERD of the apartments building system

184 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Components of an OO-DFD

The components of an OO-DFD are: (1) function—we distinguish between
elementary (basic) functions and general (complex) functions; (2) external
entities—we distinguish between user entities, time entities, and real-time
entities; (3) data classes; and (4) data flows among those components. Figure 8.3
demonstrates a schematic OO-DFD. In the following sections we elaborate on
each of the components.

Functions

A function represents an action that the system will carry out. A function may
receive data from various sources, internal or external to the system; it carries
out actions which may affect/change the data, and it may produce output to
various internal or external destinations. Hence, a function must have at least one
source for its input and at least one destination for its output. Data move from

Figure 8.3. A schematic OO-DFD

Information Systems Analysis with FOOM 185

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a source to a function and from a function to a destination via data flow, which
can be viewed as a channel for transition of data. It is reasonable to compare a
function to a small computer program or parts of a program which carries out a
certain task. As a matter of fact, the functions defined in the OO-DFDs will
eventually become programs of the implemented system: A function may
become a whole program or part of a program (i.e., a procedure consisting of a
set of commands performing a certain task). In other words, a certain function
in an OO-DFD may represent a very simple task which the system ought to
perform or a very complex one, or anything in between.
The discovery and definition of the functions of an IS are carried out in a
hierarchical decomposition process, which starts with the discovery of the
general functions and ends with the most elementary (basic) ones. For example,
the most general functions of an IS for a marketing chain may be order products
from suppliers, sell products to costumers, and inventory reports. Each
of these general functions may actually consist of many subfunctions. For
example, the order products from supplier function may consist of subfunctions
such as determine products to order, choose a supplier, issue an order to
a supplier, update inventory in order, and more. Each of these subfunctions
is somewhat smaller/simpler than its parent function. Each subfunction may also
be decomposed into even smaller/simpler subfunctions. For example, the func-
tion determine products to order may be decomposed into the subfunctions
find a product with low quantity, check quantity in order, check rate of
sales, and calculate quantity to order. Hence, hierarchical decomposition
involves the discovery of the most general functions of the sought system and
then an iterative process in which each such function may be decomposed into
subfunctions, until all functions are elementary.
There is no exact, formal mechanism to determine if a certain function is general
(complex) and hence decomposable, or it is elementary and need not be
decomposed into more elementary functions. It sometimes depends on the eyes
of the analyst and user who cooperate in the process of functional-hierarchical
decomposition. Hence, it is possible to see different diagrams, each with
different functions and subfunctions for the same requirements, and it is not
always possible to tell which diagram is more “correct.” A diagram is correct if
it represents correctly and completely the users’ requirements; but more than
one such diagram may be such.5

Despite the possible distinction between different levels of “generality” and
“simplicity” of functions, in OO-DFDs we distinguish only between two kinds of
functions: general and elementary:

• General function: notated by a double circle. A general function is
determined by the analysts as complex to some degree, so that he/she can

186 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

identify its subfunctions. The components of a general function will be
described in a separate diagram.

• Elementary function: notated by a circle. An elementary function (also
termed basic or primitive) is simple enough, according to the system
analyst’s view, that it needs no decomposition into subfunctions. Rather, it
can be described easily in a few words or sentences (as will be elaborated
later on).

From the previous definitions it is obvious that any function which is not defined
as elementary is general, no matter if it also a subfunction of a super function,
at any level.
Figure 8.3 demonstrated four elementary functions only.6 As we can see, every
function has a unique number and a name consisting of one or a few words,
written inside the circle. (It is also possible to write “F,” for function, before the
number.)
As said, whether a certain function is elementary or general is not always clear
and determined from the beginning, and it might even change during the
hierarchical decomposition process. In other words, it is possible that at a certain
point in the process a function is defined as elementary and later on is defined
general (and thus needs to be described in a separate diagram). Yet, it is also
possible that a function that is defined as general is changed to one or more
elementary functions (with appropriate dataflows between them).
An OO-DFD includes several functions, whether general or elementary. If an
OO-DFD includes less than three functions, it is reasonable to eliminate it and
include its details (i.e., its functions and other components) in its parent OO-
DFD. This means that the parent function which was defined as general will be
converted to one or two elementary functions. This will avoid too many, too small/
simple OO-DFDs in a system. On the other hand, too many functions in an OO-
DFD may make it too complex to read and comprehend. Note that in addition to
functions, a diagram includes also classes, external entities, and dataflows, so the
number of elements in a diagram increases with the number of functions. An
OO-DFD which includes more than 10-12 functions is considered complex and
should be avoided. This can be done by grouping certain tightly related functions
into a general function, which will be described in a separate diagram. Anyhow,
there is no mandatory rule concerning how many functions or elements a diagram
must include. Note also that the size of the OO-DFD elements, the distances
between them, their names, and fonts may be changed (if the diagrams are
created with any software), so there is a certain degree of freedom when
determining the number of functions and other elements in a diagram.

Information Systems Analysis with FOOM 187

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

External Entities

An external entity is an element (person, organization, or device) which provides
input (data) to the system or receives output (information) from the system. An
external entity provides input to a function via a dataflow, or receives output
from a function via a dataflow. The term external entity means that it is not a part
of the software system that will be created; it is only a source of input to the
system or destination of output from the system. This is why external entities are
drawn outside of the diagram’s frame. It may appear on the left, right, or both
sides of the frame, in accordance with the role it plays: An entity that provides
input to the system is drawn on the left while an entity that receives output is
drawn on the right. Obviously, the same may appear on both sides of the diagram.
For the sake of simplicity of the diagram, the same entity may appear more than
once on the same side (to avoid crossing of the dataflow lines, if the same entity
provides input or receives output from more than one function).
We distinguish between three types of external entities: user entity, time
entity, and real-time entity.

• User entity: A user entity is a person or an organization that uses the IS,
whether as a source of input or as a destination of output. For example, a
supplier who gets an order from the company is an output user entity, while
the supplier who delivers the supplies is an input user entity; a customer
who buys certain products and receives a receipt is an output user entity;
an employee of the company may be both an input and output user entity
because he/she provides various personal and other data and receives
various reports (e.g., a salary paycheck) from the system.
A user entity is notated by a rectangle. The entity name is written inside the
rectangle, along with a unique code made up of the letter “U” (for user) and
a number. A user entity provides input to a function via an input dataflow,
and gets output from a function via an output dataflow. From the point of
view of the involved function, it means that the function must be activated
by some user in order to perform the input or output operation.

• It is important to point out that the user is not necessarily one who actually
operates the system (i.e., activate the involved function) in order to feed the
system with the input or produce the output, nor does the user have to be
in direct contact with the system. The actual operator will be determined
at a later stage (as part of the system design phase); the diagram does not
specify who operates the system and its various functions. The user is, as
said, the person or organization from where the input data arrives and who
receives the information produced by the system, no matter how these will

188 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be done. Let us take, for example, an educational system (e.g., of a
university) which includes a function to store grades of students in a course.
The external entity in this case would be the teacher who provides the
grades, no matter how the grades will be fed into the system. This can be
done in different ways that will be determined separately; for example, by
the teacher, by a secretary, or by a scanner.

• Time entity: An IS may include functions that are not activated by users,
but rather in certain predefined points of time or time intervals. For
example, assume that an IS of a marketing chain has to produce, every
morning, a list of cashiers and their shifts; at the end of every week it has
to produce a report on the quantities and values of all items in stock, and at
the end of every month it has to produce paychecks to all employees. In
such cases, we must specify which of the respective functions of the
system will be activated (fired) at what times; this is done by the time
entities. A time entity can actually be viewed as a clock of the system which
initiates the respective function in predefined time intervals.
A time entity is notated by a triangle and identified by the letter “T” (for
time) and a number. A time entity may only appear on the left side of the
diagram (because it is viewed as a kind of input).7

• Real-time entity: A system may include functions that activated “auto-
matically” by devices which are connected to the system and provide/
transmit real-time data. Here are a few examples: radar sends signals on
objects it identifies to an aircraft or a ground station; a humidity meter sends
signals if the humidity of the soil drops below or goes above certain points
to a computerized irrigation system; a system sends a signal which fires a
certain weapon. The commonality of these examples is that they are all
devices which are connected to the system, and they either activate or are
activated by a function of the system; not by a user and not in a predefined
time.
A real-time entity is notated by a triangle. It has a name (usually of the
device) and a unique code made up of the letter “R” (for real time) and a
number. A real-time entity may appear on both the left and right sides of
the diagram.8

Generally, real-time entities are very rare in organizational/business IS.
Note that when a device which is connected to the IS is operated by a user,
the entity is considered user entity, not real-time entity. For example, an
automated teller machine (ATM) is not a real-time entity, it is simply an
input/output device which enables a user (customer of a bank) to perform
monetary transactions.

Information Systems Analysis with FOOM 189

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Classes

In “traditional” DFDs, a data store is a repository of data of a certain type—data
which is added, updated, and retrieved by functions. In OO-DFDs, we have data
classes instead of data stores. A class, as we know, is a collection of objects of
a certain type. Just like a data store which is an abstract repository of data of the
same type but not necessarily a file or a (relational) relation, so it can be viewed
a class in an OO-DFD. However, the advantage of using classes is that the
classes which we need to include in the OO-DFDs are already defined in the
initial class diagram; they only need to be “used” in the right places in the OO-
DFDs.
In the OO-DFD, a class is notated like in a class diagram—by a rectangle divided
in three. The class name is written in the upper part, along with its unique code
which is made up of the letter “C” and a number. Attributes and functions are
not specified in the rectangle. Relationships between classes too, are not shown
in OO-DFDs.
Every class in an OO-DFD must be connected to at least one function that
updates it (meaning, there must be at lest one dataflow from a function to the
class) and at least one function that retrieves data from it (meaning, there must
be at least one dataflow from the class to a function). Note that update may
mean any of the following three operations: (1) adding a new object to the class;
(2) changing the values (of attributes) of an existing object; or (3) deleting an
object. Each of these possible operations is expressed by a dataflow from a
function to the updated class. It is well known that every update must be
preceded by a retrieval (search) operation. For example, before a new object is
added to a class, the object must be searched in order to make sure that it does
not already exist. The same is true if we wish to change an object or delete it.
Hence, in an OO-DFD, it seems that wherever there is an update dataflow (from
a function to a class) there should also be a retrieval dataflow in the opposite
direction. However, the rule is that such retrieval dataflows are not specified in
the diagram; the retrieval (search) is implied by the updating dataflow. This
simplifies the diagram. But it should be emphasized that if a function not only
needs to update a class but also to retrieve data from it for other purposes (e.g.,
if it has to perform some computations on data retrieved from the class, or to
transfer data to another function, or output it to a user), then a dataflow from the
class to the function needs to be specified too.
A class is drawn inside the frame of the diagram, close to the functions it is
connected to. If the same class serves more than one function in a diagram, it
may not be close to all of them, and therefore there may be intersecting lines
(dataflows) which would make the diagram incomprehensible. Therefore, it is
allowed to draw the same class more than once in the same diagram, next to the

190 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

involved functions. In order to make it clear this is the same class; it is possible
to draw a diagonal line at the upper left corner of the class.
A class can only be connected (by dataflows) to functions. There is no meaning
for a direct connection between an external entity and a class or between
classes.9

• External class: An IS sometimes needs to use (retrieve) data which
already exist in databases of other systems. We refer to data used/retrieved
from other databases as an “external class,” which appears outside of the
diagram’s frame, on its left side—similar to an external entity. For example,
assume that a certain IS includes a function issue order to supplier
where the order has to include information about the buyer (an employee
of the company who is in charge of the order). Assuming that the company
already has a human resource IS which includes a database of its
employees; the personnel database will be treated as an “external class.”10

It is also possible (although in very rare cases) for an external class to
appear on the right side of the frame, like an external entity that receives
information from the system. This situation is only good for saving
information needed only by other systems, or for saving information for
some future use.

Dataflows

Dataflows represent channels which transfer data to functions or from func-
tions. A dataflow to a function may carry data from an external entity, a class,
or another function. Similarly, a dataflow from a function may carry data to
another function, a class, or an external entity (excluding a time entity). This
means that there must be a function at least on end of any dataflow. The data
carried by a dataflow consist of data elements which will be defined and
described in a DD.
In the OO-DFD, a dataflow is represented by an arrow. The dataflow name is
written above or below the arrow. The name may consist of a few words
characterizing the carried data. A dataflow name is not necessarily unique (i.e.,
many dataflows may have the same name); it is identifiable by its two ends (each
of which has a unique code). A dataflow from a time entity actually does not
carry data but signifies a trigger; instead of a name it has a time interval.
Similar to the distinction we made between elementary and general functions, we
make a distinction between two types of dataflows, based on the types of
functions at their either ends.

Information Systems Analysis with FOOM 191

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• An elementary dataflow is a dataflow on whose end or two ends (if it
connects two functions) are elementary functions. This dataflow carries
specific data elements which will be specified in a DD. (In Figure 8.3 all
dataflows are elementary because all the functions are elementary.)

• A general dataflow is a dataflow on whose ends there is at least one
general function. Recall that every general function will be decomposed
into subfunctions and described in a separate diagram. Similarly, every
dataflow which is connected to a general function may be “decomposed”
to subdataflows, each connected to a certain subfunction and carrying
some specific data elements. Therefore, the data elements of a general
function need not be specified. Obviously, the data carried by a general
function is the union of data carried by its subelementary dataflows.

While an elementary dataflow must be unidirectional (one way), because it
carries specific data elements from a source to a destination (which is indicated
by the arrow head), a general dataflow may be bidirectional (two-way), that is,
with an arrow head at each of its two ends, because (as we will see) it may be
decomposed into subdataflows, each of which may carry data in opposite
directions. Two separate unidirectional dataflows in the opposing directions are
allowed too, but one bidirectional dataflow instead saves space on the diagram.
It is obvious that a dataflow from an external entity to any function must be
unidirectional, and so must be a dataflow from any function to an external entity.
Hence, only dataflows between general functions and classes may be bidirec-
tional.
Dataflows connecting between different components of an OO-DFD may have
different meanings, as explained herein:

• A dataflow from a class to a function carries data retrieved from a class.
The data retrieved depends on selection criteria which are part of the
function’s process logic; generally, it may include data elements (i.e.,
values of attributes) of one or more objects of the class.

• A dataflow from a function to a class carries data which updates the
class. Recall that update may mean adding one or more new objects,
changing the values of attributes of existing objects, or the deletion of
objects—depending on the function’s process logic.

• A dataflow from a user entity to a function carries data (i.e., data
element) originating from the user entity that has to be fed into the system
and used by the target function. It also signifies a need to create an interface
between the user and the system that will enable to input the data.11

192 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• A dataflow from a function to a user entity carries information gener-
ated by the system (actually the source function) and transmitted to the
user. It too signifies a need to create an interface between the user and the
system that will enable to produce the output.

• A dataflow from a time entity to a function does not carry data; it only
represents the activation of the target function at a certain time interval. If
the dataflow is elementary (i.e., pointed at an elementary function) the time
of activation is written on it; but if it is pointed at a general function, no time
is written on it because of the (unlikely) possibility that it will be decom-
posed into several dataflows, each sent to a different function at a different
time. Therefore, instead of a specific time interval, this dataflow is labeled
time of activation. Note also that a dataflow from a time entity to a function
does not signify a need to create a user interface because the target
function will not be activated by a user but rather by an “automatic” process
that will utilize the internal clock of the system.

• A dataflow from a real-time entity to a function carries signals from the
real-time device. The target function examines the signals and reacts as
needed. Like a dataflow that originates from a time entity, this dataflow too
does not signify a need to create a user interface.

• A dataflow from a function to a real-time entity carries signals from the
source function to the real-time device which causes its activation.

• A dataflow between two functions carries data from the source function
that is needed by the target function. In addition, it means that the source
function activates the target function. This implies that the source and
target functions are part of the same process and execute in that order.12

Actually, the source function activates the target function and passes to it
parameters which are the data carried by the dataflow.

When a dataflow connects two general functions or a basic and a general
function, it is not true to assume that the whole general function activates or is
activated by the connecting dataflow, because the general function will be
decomposed into subfunctions, and similarly, the above general dataflow will be
decomposed into subdataflows; it is reasonable that only one or some of those
subfunctions will activate or be activated. It will become clear exactly which
functions activate or are activated only after the functional decomposition
process is completed and all functions dealt with are elementary.

Information Systems Analysis with FOOM 193

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hierarchical OO-DFDs

A functional model of a real-world IS may consist of many dozens, even
hundreds of functions—much more than can be included in a single OO-DFD.
There are two approaches for modeling such systems with OO-DFDs: flat
diagram (as in Gane & Sarson, 1979) and hierarchical diagrams (as in DeMarco,
1978). In the flat diagram approach all functions are elementary; there is no
functional decomposition process and no hierarchies of diagrams. The modeling
process may start by choosing a certain part of the system (actually of the user
requirements) and creating a diagram for it, including the required (elementary
functions) and the other OO-DFD components. Afterwards, another part is
chosen and the first diagram is extended with the new functions and other related
components. The process continues until the entire system is described and one
“big” diagram is obtained. Of course, the diagram created this way must be very
big and cannot fit into a reasonable size of page (or screen, if a software tool is
used). But it can be “cut” somehow into ordinary pages (or screens), where each
page contains some part of the entire diagram and points to the neighboring
parts—similar to the way it is done in road maps or atlases. Since our
methodology does not follow this approach, we do not elaborate on it any further.
The hierarchical diagrams approach creates a hierarchy (tree) of OO-DFDs: At
the top (actually root) of the hierarchy there is the most general diagram,
including the main and most general functions of the system. Below it there are
additional diagrams, each describing in more detail one of the general functions
included in the root diagram. Below each of those diagrams there may be more
diagrams, each describing a function defined as “general” in the diagram above.
The resulting tree of diagrams enables us to see the system in different degrees
of detail, depending on our needs: When we wish to see a most general model
of the system we will look at the root diagram; when we wish to see details we
will look at a lower level diagram.
In addition to being able to see the system in different levels of detail, the
hierarchical diagrams approach has the advantage of enabling a top-down
analysis process: First the analyst identifies and defines the main functions of the
system; next the analyst may perform a decomposition of a certain main function
and create its “child” diagrams, and so on, until all functions in all diagrams are
elementary. This also facilitates working in parallel by several teams of analysts,
each working on a certain main function of the system.
Hence, the work order is as follows: Based on the input documents and additional
information provided by the users or their representatives, the analyst creates the
root OO-DFD. In order to do that the analyst first identifies the primary, most
general functions of the sought system. In a large-scale system, the most general

194 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

functions may be viewed as subsystems. Here are several examples for such
functions: In a financial system of an organization, the primary functions may be:
accounting, budgets, management, sales to customers, orders from suppliers,
inventory management; in a students management system of a university the
primary functions may be: students admission, tuition fees, registration to
courses, grades management, graduation management; in a human resources
management system the primary functions may be: hiring employees, personal
information management, salaries, job assignments and promotion, retirement.
Along with identifying the primary functions of the IS, the analyst also identifies
the external entities which are sources of data needed by the functions or
destination of information produced by the functions. Similarly, the analyst
identifies the data classes from which those functions need to retrieve data or
update. Given that at this stage we already have an initial class diagram, this task
is relatively easy because the analyst has to use classes which exist in that
diagram. The next step is to create the root diagram, including the dataflows
among those components. The root diagram only includes classes that serve
more than function (each). This means that every class that appears in the root
diagram must be “shared” by at least two functions so that at least one function
is updating it and at least one is retrieving information from it. (Of course, it is
possible that a certain function will both update and retrieve data from the same
class.) This means that some of the classes appearing in the initial class diagram
may not be included in the root OO-DFD; they will be included in lower level
diagrams, where they will serve (be used for update and retrieval) subfunctions
of the primary ones.
Every OO-DFD has a name (label) and identification code. The code of the root
diagram is OO-DFD-0 (because its function numbers are 1, 2, etc.). The code
of any “child” diagram is OO-DFD-x where x stands for the number of the
general function which it describes, and its name is identical to the name of that
function. Every function in a child diagram has a unique number consisting of the
number of its parent function, a decimal point and a serial number (starting with
1 in).
Figure 8.4 demonstrates the OO-DFD-0 of a (small and rather “trivial”) system
named Customers and Suppliers. The system has two general functions:13

Management of customers and Management of suppliers, several user
entities, a time entity, and a class Customers that serves both functions. Function
1 both updates the class and retrieves information from it, while function 2 only
retrieves from it. We assume that the initial class scheme, including the class
Customers, had been created. Beside Customers, the initial class diagram
includes also a class Suppliers which does not appear in OO-DFD-0. The
reason is that it only serves the subfunctions of the general function Manage-
ment of suppliers, but not the function Management of customers.

Information Systems Analysis with FOOM 195

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

After the creation of OO-DFD-0, each of its general functions is decomposed
into subfunctions and a “child” OO-DFD is created. A subfunction in a child
diagram may be defined as either general or elementary. Whether it is general
or elementary depends on the analyst’s judgment. It is possible for an analyst to
first define a function as elementary, assuming it is simple and need not be further
decomposed; but later on the analyst may change his/her mind and define it as
general. The opposite may also happen, that is, that a function defined as general
is later defined as one or more elementary functions. There are no precise rules
and measures for deciding whether a function is elementary or general. There
are several rules of thumb which may guide the analyst, as follows:

• If it is possible to describe the process logic of a function in a few sentences
or a simple structured description or flowchart, there is probably no need
to define it as general and create for it a child diagram.

• If a function cannot be decomposed into more than two or three subfunctions,
there is probably no need to define it as general and create a child diagram
for it; those two or three (elementary) functions may be included in the
same diagram.

Figure 8.4. OO-DFD-0 of customers and suppliers system

196 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• If an OO-DFD consists of relatively many functions (say more than about
12) and looks complex and difficult to understand, it might be best to group
several related functions, define them as a general function, and create a
child diagram for that function.

• If a function is connected (by dataflows) to relatively many other functions,
classes, and external entities (say more than about eight), it seems to be a
function which involves many activities, that is, consists of many subfunctions.
In that case it may be reasonable to define it as general, decompose it into
subfunctions, and create a child diagram.

When a general function in a diagram is directly connected (by a dataflow) to an
elementary function, and a child diagram is created for the general function, the
elementary function is not included in the child diagram (because it is not a
subfunction of the general function). However, in the child diagram there should
be a dataflow emanating from one or more of the subfunctions, pointing to the
above basic function, which appears outside of the diagram’s frame. The basic
function is represented as a small circle with its function number in it. The small
circle signifies a connector between the function(s) within the diagram and the
basic function. Similarly, if a basic function is connected to a general function,
it will be represented as a small connector circle on the left side of the frame, with
at least one dataflow coming from it to one or more of the subfunctions within
the diagram. If two general functions are connected in a certain diagram, in each
of their child diagrams there will be respective connector circles, in the left or
right side of the diagram.
Along with subfunctions of a general, which will be included in its child diagram,
it will also include data classes which need to be used by those subfunctions and
external entities from which data will be input or to which information will be
provided. As a rule, every class and external entity connected to a general
function must also appear in the child diagram of that function—they have to be
connected (via dataflows) to the appropriate subfunctions within the child
diagrams. In addition, it is possible that new classes, which did not appear in the
parent diagram (the diagram where the general function appears), will appear in
the child diagram. A “new” class in an OO-DFD is not really new, because it
already appears in the initial class diagram; but it did not appear in the parent
diagram because it did not serve more than one of its functions. A new class
appears in a child diagram because there it serves at least two of its functions,
where at least one function updates it and at least one function retrieves data
from it. Hence, such a “new” class is actually “internal” to the above general
function, as it is used only by its subfunctions.
Figure 8.5 shows OO-DFD-1 of the general function Management of custom-
ers. It includes two subfunctions, each of which obtains input from the user entity

Information Systems Analysis with FOOM 197

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Customer and provides output (information) to the user entity Clerk. The class
Customers, which appeared in the root diagram with a two-way dataflow
connecting it to the general function, appears again here, where we can see
exactly which of the subfunctions updates it and which of them retrieves data
from it. Figure 8.6 shows OO-DFD-2 of the general function Management of
suppliers. Here we see first time the class Suppliers which is updated by
function 2.1 and from which functions 2.2 and 2.3 retrieve.14 In addition, we see
that the time entity (T) in the root diagram has been decomposed into two specific
time entities: One will trigger function 2.2 which will produce a daily end-of-day
report, and the other will trigger function 2.3 which will produce a monthly end-
of-month report. Note that in the parent diagram the dataflow from the time
entity to the general function is labeled time of activation, while in the child
diagram the respective dataflows to the elementary functions are labeled with
the specific time intervals.
When presenting the tree of OO-DFDs of an entire system, it is customary to add
on top of an OO-DFD a “content diagram,” which includes one big circle of a
general function representing the whole system. Inside the circle is written the
name of the system. This diagram shows no classes, while on the two sides of
the frame it shows some primary external entities of the system. The content
diagram has only a descriptive purpose—it may be considered as a “cover page”
of the document which includes the tree of OO-DFDs.

Figure 8.5. OO-DFD-1 of customers and suppliers system

198 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One of the main problems with functional-hierarchical decomposition is how
“deep” to go and at what level of details. On the one hand, the more diagrams
we create and the more details we provide, the easier might be the work at the
later phases of development. On the other hand, too many details may make the
diagrams too complex and uneasy to read and comprehend. We must remember
that OO-DFDs are only meant to define diagrammatically “what” the system
needs to do—“not how”! The diagrams are not meant to prescribe and describe
the process logic of each of the system’s functions. Details concerning how the
functions will work do not belong in the analysis phase and are not included in the
OO-DFDs. Since system analysis, including functional-hierarchical decomposi-
tion, is not an exact science, the analysts have a lot of “freedom degrees” with
respect to how deep to go and how much to detail. Hence, it is possible that for
a given description of user requirements, a certain analyst will create a deep
hierarchy of diagrams, going into much detail, while another analyst might create
a more “shallow” hierarchy of diagrams, with less detail. Again, there are no
exact rules on the level of detail, but as said—the more we detail at the analysis
stage, the more precise is the functional definition of the required system, but this

Figure 8.6. OO-DFD-2 of customers and suppliers system

Information Systems Analysis with FOOM 199

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

may take more time. At any rate, there are several rules to remember regarding
the need to avoid excessive detail of the diagrams:

• Avoid describing the process logic of functions: OO-DFDs are meant
to define the flow of data/information to and from functions, but not the
process logic of the functions. The process logic of functions is considered
part of “how” and not of “what,” and therefore it will be dealt with in the
design phase, using other techniques suitable for this purpose. So, for
example, if a certain function needs to check various conditions or perform
certain things repeatedly (in a loop), there is no way and no need to describe
the conditions and loops by using different functions and dataflows—an
OO-DFD does not even have the proper tools for that (i.e., it provides no
simple means to express conditions and loops).

• Avoid describing data integrity checks and error messages: As said,
OO-DFDs model the functionality of the system from the point of view of
the users, and it should not detail how the system performs the functions.
Therefore, there is no need to deal with checking the integrity of input data
and error messages sent to users if certain data are not entered properly,
for example, a user feeding input data using an input screen and a keyboard.
Obviously, we expect the system to check the correctness and complete-
ness of the input data, according to the defined data types, and to present
proper error messages to the user if anything is violated—but these things
need not be dealt with at the analysis stage and not specified in the OO-
DFDs; they will be dealt with at the programming phase.15

• Avoid dealing with file administration: There is no need to define
functions which perform back up of data, reorganization of files/databases,
or any similar “physical” activities with data. These will be dealt with by the
database administrator of the system and are not part of the functional
requirements which are of the users’ concern.

• Avoid dealing with functions outside the system: The OO-DFDs
should only specify the functions that will become part of the computerized
system (i.e., functions that will eventually be performed by computer
programs), not “manual” functions (that will be performed by humans). For
example, if the system has to produce a certain report for a user, this
function is of course part of the system, but if the user has to perform certain
things with that report which are out of scope of the system, then those
functions should not be included in the OO-DFDs.

• Avoid over detail of user (external) entities: User entities are not part
of the software system and therefore their level of description in the OO-
DFDs is not of major importance. Over detail of user entities may result in
having too many rectangles of user entities on the two sides of the

200 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

diagrams’ frames. If there are too many user entities, it is possible to group
“similar” entities (i.e., which have common characteristics) and represent
them as a “general” entity in an upper-level diagram (somewhat similar to
general function which is a grouping of its subfunctions). This enables
reducing the amount of user entities in high-level diagrams, while showing
the specific user entities in lower level diagrams. For example, in a large-
scale system with many user entities, including may types of customers, the
root diagram may include a “general” user entity named “customer,” while
in lower level diagrams this entity may be “decomposed” into subentities
such as “retailer,” “wholesaler,” “private customer,” and so forth. In such

• Every function must have at least one dataflow entering it and one dataflow
emanating from it.

• A dataflow may connect two functions or a function and a class or external entity
(hence, a class or external entity must be connected to a function).

• A function cannot be connected (with a dataflow) to itself.

• External entities on the left side of the frame are sources of input, while those on the
right side are a destination for the output.

• A time entity can only appear on the left side of the frame.

• An elementary dataflow (a dataflow which is not connected to a general function)
must be one-way, while a general dataflow may be two-way.

• Every class appearing in the OO-DFDs must also appear in the initial class diagram
and vise versa.

• When a class appears first time in an OO-DFD, there has to be at least one function
that updates it and one function that retrieves data from it. In the child diagram of a
general function that used a certain class, that class will have the same role(s) as in
the parent diagram. For example, if a class is used by a certain general function for
retrieval only (or for update only) then it will appear in its child diagram and be used
by at least one of its subfunctions for retrieval only (or for update only).

• An “external class” (that belongs to another IS) is drawn outside of the frame (hence
the former rule does not apply).

• Every external entity connected to a general function must also appear on the child
diagram of that function and in the same role. In addition, an external entity may not
appear in a child diagram if it was not connected to the general function in the parent
diagram. (However, it is possible to group similar user entities into a general user
entity and show only it in a parent diagram.)

• If a general function is connected to another function (either elementary or general),
in its child diagram there will be at least one connector (a little circle) on one of the
frame’s sides.

• The number within a connector must be that of an elementary function to which it
refers.

Table 8.1. Summary of the correctness rules of OO-DFDs

Information Systems Analysis with FOOM 201

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

case, the subuser entities will have to be numbered similar to the way
subfunctions are numbered. For example, if the code of a general user
entity is U1, then its subuser entities will be U1.1, U1.2, and so on.

Table 8.1 summarizes the correctness rules of OO-DFDs.

Keeping the Initial Class Diagram and
the OO-DFDs Compatible

Verifying Identical Classes in the Two Diagram Types

The initial class diagram and the OO-DFDs must be compatible. This means that
every class defined in the initial class diagram must appear at least once in an
OO-DFD and vise versa. During the hierarchical decomposition process, when
the analyst finds out that a certain function needs to retrieve or update data, he/
she has to choose the proper class (from the initial class diagram) and draw it in
the right place in the diagram next to the respective function. Naturally, in reality
(and especially when the user requirements are not well described) there may
be a situation in which there is a need to update or retrieve data which is not
defined in the initial class diagram. If this is the case, the class diagram must be
altered. This can be done by adding a new class to the diagram, or adding
attributes to an existing class, or even dropping a class. Such changes may also
cause changes in the relationships between classes (both ordinary and structural,
e.g., the creation of is-a hierarchies between a superclass and its subclasses).
Such changes are likely to occur because although we advocated creating the
data model (an initial class diagram) prior to creating the functional model (OO-
DFDs), actually the two modeling activities cannot be done entirely in sequence.
Once again we emphasize that the process is iterative, and during the iterations
both the initial class diagram and the OO-DFDs may change and improve.

Using Classes Which Have Inheritance Relationships

This issue is related to the way in which the functions in the OO-DFDs “use”
classes which have inheritance relationships. The rule is simple: An OO-DFD
should include only the specific class which the function uses (whether to update
or retrieve from), not the whole hierarch of classes. Hence, if a function needs
to update or retrieve data from a superclass, that superclass will only appear in

202 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the diagram; if it needs to update or retrieve from a subclass—only the subclass
will appear. For example, in Figure 8.1 there is a class Work and a subclass
Work in progress. Assuming that there is a certain function in a certain OO-
DFD whose task is to handle work requests from tenants (apartments); this
function needs to update the class Work, but it has nothing to do with the subclass
Work in progress. On the other hand, assuming that there is a function whose
task is to handle payments to contractors; this function needs to update only the
class Work in progress. It is possible, of course, for a function to access both a
superclass and its subclasses. For example, assume a function whose task is to
save the details of a new contract with contractor; this function needs to access
both the superclass (to update the attribute status of request) and the subclass
(to add a new object of Work in progress).

Dealing with Attribute Duplicity and Relationship
Attributes

As we know, in a class diagram every reference attribute has an inverse attribute
in the referenced class. Moreover, if there are relationship attributes, they are
saved twice, along with two (inverse) reference attributes. This “symmetry” of
reference attributes and duplicity of relationship attributes is maintained in the
class diagram because when this diagram is created we have not yet examined
the users’ functional needs and we are not sure whether or not all of this is
needed. Now that we already created a functional model we can systematically
review their attributes in order to verify if they are all needed, or perhaps some
reference attributes or relationship attributes may be dropped. In order to clarify
the problem let us look again at the class diagram in Figure 8.1, which includes
a many-to-many relationship between Apartment and Work, that is, a tenant of
an apartment may submit many work requests and a work request may be
submitted by more than one apartment. The two set reference attributes are set
work requests [Work] and set who requested [Apartment]. If this relationship
also had attributes (e.g., each tenant’s share in the request), they would have
been included in both sets. The meaning is that every time a new work request
is submitted a new Work object needs to be added, including references to the
Apartment objects who submitted it, and each of the Apartment objects needs
to be updated by adding a reference to the new Work object (the reference is
added to the set work requests); and if there are relationship attributes they too
need to be added in all those places. But now let us assume that during functional
analysis we found out that no one ever needs to know the share of each
apartment in each requested work. This means that this relationship attribute
needs not be included in the class Apartment—only in class Work. Moreover,
assume that we found out that no one needs to know which works have been

Information Systems Analysis with FOOM 203

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requested by an apartment, only which apartments requested a work; if this is the
case then there is no need for the set work requests [Work] at all. This is
expressed in the OO-DFD by the fact that the function Insert/update work
request only updates the class Work (although it needs to retrieve the objects
of Apartment who requested the work in order to verify their existence).
Let us look at a different example. Assume that in a management IS on students,
the initial class diagram includes a many-to-many relationship between the
classes Student and Course offering which enables finding references from
a student to each of the courses he/she registered to and reference from a course
offering to each of the students who registered to it. Assume also that the initial
class diagram includes a relationship attribute grade. The two respective sets
are defined as: set registered to courses {[Course offering], grade} and set
registered students {[Student], grade}. In the functional analysis stage we
find out “who needs to know what,” and according to that we decide whether
these attributes with the redundant information are indeed needed. If indeed
there is a need to know which courses a student took and what his/her grades
were in each of them, as well as to know who registered to a course and what
their grades were—then there is no choice but to maintain those two sets despite
the data duplicity. On the other hand, if we find out that there is no need to know
the grades of students who registered to a certain course (but only who are the
students) then in the class Course offering we need only the set registered
students [Student]’ without the grade attribute (while we may need to add a
separate attribute average grade instead, if it has not been defined already). In
summary, as a result of the functional analysis process, various changes may
occur in the initial class diagram, including deletion of reference attributes and
relationship attributes.

How Can We Verify Compatibility?

At the end of the analysis phase it is important to verify that the data model and
the functional model are fully compatible or synchronized. This involves check-
ing compatibility at two levels: classes and attributes.

• Class level compatibility has already been dealt with in the section
“Verifying Identical Classes in the Two Diagram Types.”

• Attribute level compatibility means verifying, for each and every class, that
every attribute is updated by at least one function and retrieved by at least
one function. This can be checked once a DD for the system is created,
because it specifies (among other things) the data elements of the dataflows
in the OO-DFDs. This certainly includes the elements of dataflows from

204 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

functions to classes (which mean attributes that will be updated by the
functions) and the data elements of dataflows from classes to functions
(which mean attributes that will be retrieved). More details about the DD
and the data elements of dataflows will be provided later on (in chapter IX);
at this stage let us assume that a DD already exists. So that the following
procedure can be applied for each class:
1. Make a list of all data elements (i.e., attributes) of the class.
2. For each dataflow from an elementary function to the class (i.e., for

all “update” elementary dataflows, in all diagrams including that
class)—review its data elements and mark the respective attribute in
that class. All attributes of the class should be marked at least once;
otherwise it means that there is an attribute which is never updated.

3. Repeat the same process for each dataflow from the class to elemen-
tary functions (i.e., for all “retrieve” elementary dataflows). All
attributes of the class should be marked at least one, otherwise it
means that there is an attribute which is never retrieved.

All erroneous cases must be rechecked: There is a possibility that a certain data
element of a certain dataflow was not defined by mistake in the DD, or that a
certain dataflow from a function to a class or from a class to a function was not
defined by mistake in an OO-DFD, or that a certain attribute was not included
by mistake in the class diagram, and so forth. At the end of these checks (which
as said requires the existence of a DD) it is guaranteed that each of the attributes
of each of the classes is updated at least once and retrieved at least once.
Examples for tests of compatibility will be provided later on.

Example of Functional Analysis:
OO-DFDs of the Apartments

Building System

This section presents a complete example of functional analysis with OO-DFDs.
We use the Apartments Building system. The user requirements for this system
have already been presented in the opening section of this chapter, and Figure
8.1 presented its initial class diagram. The OO-DFDs resulting from the
functional analysis process are presented in Figures 8.7-8.10. Figure 8.7
presents the root diagram, comprising two general functions and one elementary
function.16 The general function Payments of fees is detailed in OO-DFD-1
(Figure 8.8) and the general function Maintenance works in OO-DFD-2

Information Systems Analysis with FOOM 205

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(Figure 8.9). This diagram includes a general function Performance of works
which is detailed in OO-DFD-2.2 (Figure 8.10).
Before providing some clarifications of the diagrams, we wish to point out that
the diagrams present the result of the analysis process; we cannot see the drafts
of diagrams and the changes and refinements made during the functional analysis
process. Naturally, it may be assumed that the process had begun with the
creation of a root OO-DFD, but it is possible that initially it did not include exactly
the functions, classes, and external entities which are shown in Figure 8.7. When
the analyst went on and created an OO-DFD for any of the general functions in
the root diagram, it is likely that he/she had discovered things (subfunctions and
interactions between functions, classes, and external entities) that had an impact
on the root diagram, which was updated accordingly. Such things are true for
every diagram, no matter its level.

Figure 8.7. OO-DFD-0 of apartments building system

206 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Clarifications to OO-DFD-0 (Figure 8.7)

• The root diagram includes two general functions that encompass the main
activities of the system (Payments of fees and Maintenance works), and
an elementary function which enables presenting the financial status of the
building. This function appears at this top-level because it is not a subfunction
of any of the above general functions. The user entities are Tenant,
Company (which represents any officer working for the company who has
the authority to perform the respective functions), and Contractor.

• The time entity which is connected to the general function 1 is labeled T
(without a number) and the respective dataflow is named time of activa-
tion but with no specific time; time intervals are specified only on dataflows
to elementary functions; in such cases the time entities are also numbered,
as can be seen in Figure 8.8.

• The two-way dataflow between the general function Payments of fees
and the class Apartment indicates that there is at least one subfunction that
retrieves data from this class, and at least one subfunction that updates it—
as can be see in OO-DFD-1.

• The Company class is updated by the two general functions (actually, it is
updated by their specific subfunctions, as can be seen in the following OO-
DFDs). But only the elementary function 3 (present financial status of
building) retrieves data from this class.

• Note that other classes appearing in the initial class diagram (see Figure
8.1) do not appear in this diagram because they are used only by the
subfunctions of the general function Maintenance works. We will see it
only in OO-DFD-2 and OO-DFD-2.2.

Clarifications to OO-DFD-1 (Figure 8.8)

• The diagram is consistent with the root diagram. The external entities
(Tenant and Company), the time entity, and the classes (Apartment and
Company) all appeared in the root diagram “surrounding” function 1.

• Function 1.1 deals with adding and updating of tenants’ details. Although
the external entity is Tenant, it is possible that the data on tenants/
apartments are added or updated by an officer of the company or by the
tenants themselves (say via the Internet site of the system)—depending on
how the system will be designed and implemented. Anyhow, in the analysis
stage we do not deal with such matters; the point is that the data on tenants
originate from the tenants, so they are the external entities/users.

Information Systems Analysis with FOOM 207

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.8. OO-DFD-1 of apartments building system

208 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Function 1.2 and 1.3 allow officers of the company to review the details of
any tenant/apartment and based on that determine their monthly fee:
Function 1.2 retrieves details about a certain apartment/tenant whose fee
the company wishes to determine or change; it presents the details to the
officer in charge (represented by the external entity Company); function
1.3 enables the officer to input the fee which he/she determines. Another
possibility could be to create one function instead of these two that will
perform both activities. Nonetheless, the fact that the two functions are
connected makes it clear that they are part of the same process, that is, the
same computer program.

• Functions 1.4 and 1.5 deal with accepting payments from tenants. Here too,
the dataflow between the two functions means that one function activates
the other. Here too another solution is possible: Instead of the two functions,
it is possible to define only one (e.g., input and update payment). Function
1.5 adds the payment details to the object of class Apartment (where they
will be added to the attribute set payments {date, sum, form}—see Figure
8.1), and the sum paid will be added to the class Company (thus updating
its attribute total annual payments from tenants). The function will also
produce a receipt for the tenant. (Again, in stead of including this activity
within function 1.5, it could be done by a separate function connected to
function 1.5.)

• As can be seen, the same external entity may appear several times on each
side of the frame. This is done for the sake of convenience and in order to
prevent crossing lined (dataflows).

• As we know, the way each function is executed is not described in the
diagram. For example, the diagram does not describe how the payments
report is produced (function 1.6); this will be done in the design phase, using
appropriate techniques which deal with the process logic of functions. At
this stage it may be assumed that the function will perform loops repeated
for each of the apartments determined by the user (i.e., company officer).
In every loop the function will retrieve an object of Apartment, specifically
the monthly fees (which are stored in the attribute set monthly fees
{month, fee} and the payment details (which are stored in the attribute set
payments {date, sum, form}. The function will consider only fees and
payments within the time period determined by the company officer. Based
on these data, the function will calculate the tenant’s debt, if there is any,
and produce a payments report that will be sent to the tenant. As said, these
issues are part of the system’s design phase, and therefore are not
expressed in the OO-DFD.

• Function 1.7 is activated at the end of each month. It calculates, for each
apartment, the remainder of debt as based on data retrieved from the

Information Systems Analysis with FOOM 209

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

apartment’s object and produces a debts report. In addition, it computes the
sum of debts of all tenants and updates the class Company (specifically,
its attribute sum of amounts receivable from tenants). While calculating
the debt of an apartment, the function checks the amount and whether a
notification was sent to the tenant last month (this information is saved in
the attribute set reminders {date, debt} of the Apartment object). If
needed (according to conditions specified in the users’ requirements
document), function 1.7 will then activate function 1.8, which will produce
a notification of the debt that will be sent to the tenant. This example shows
that a dataflow from one function to another does not necessarily always
activate it; it depends on conditions which are part of the process logic of
the activating function—conditions which are not shown in the diagram.

Clarifications to OO-DFD-2 (Figure 8.9)

• In this diagram we see two classes which did not appear in the root diagram:
Work and Contractor. This is because they are used “internally” by the
subfunctions of Maintenance work and not by any of the functions which
appeared in the root diagram.

• Function 2.1 enables the users to add or update work requests coming from
tenants. (Note that a request may be submitted by one or more tenants; this
is not shown in the diagram but will be considered at the design phase,
where an input screen will be designed that will enable to register more than
one tenant for a request.) Once activated, the function verifies the details
of the tenants (retrieving their objects from the class Apartment) and then
creates a new object of Work, or updates an existing one (if a tenant wishes
to update an existing request). We could distinguish between an addition
function and an update function, but this is not needed because the practice
in data processing is that a function which adds input data also enables
changing the data; the distinction between the two subactivities will be done
at the design stage (e.g., by providing different input screens for adding or
changing data).

• Function 2.3 enables to add and update data of contractors who work with
the company.

• The primary function of this OO-DFD is 2.2: Performance of works,
which is defined as a general function. This function retrieves data stored
in the class Contractor; retrieves from and updates the class Work; and
updates the class Company. The details of this function are described in
OO-DFD-2.2.

210 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Clarifications to OO-DFD-2.2 (Figure 8.10)

• In this diagram there are seven elementary functions. Function 2.2.1
presents the authorized officer of the company with requested works that
were not yet dealt with (those with status “requested”). The officer will
select requested work he/she wishes to deal with. Note that function 2.2.1
does not get input from an external entity—this is correct, because once
activated, the function retrieves information on the requested works from
the Work class and presents it to the user, who then selects one of them
to deal with. Hence, it should be understood that the dataflow from the
function to the Company user entity means that the user-system interface
that will be designed (in the design phase) will include a menu entry which
will enable the user in charge (in this case a company officer) to activate

Figure 8.9. OO-DFD-2 of apartments building system

Information Systems Analysis with FOOM 211

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.10. OO-DFD-2 of apartments building system

212 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the function. Once the user selects a requested work, function 2.2.2
retrieves from the class Contractor the details of relevant contractors,
depending on the type of requested work (which is an attribute of the class
Work) and the contractors’ fields of expertise (which is a set attribute of
the class Contractor). The relevant contractors’ information is presented
to the company officer.

• As said in the users’ requirements document, all the communication and
possible negotiations between the company and the relevant contractors is
not within the scope of the system. The system has only to register the
details of the agreement or contract with the selected contractor. This is
done by functions 2.2.3 and 2.2.4. It is assumed that function 2.2.3 is
activated by the company’s officer when he/she wishes to input the
agreement details. Once activated, the user inputs the code of the work and
name of the selected contractor; the function then verifies the existence of
the requested work and the selected contractor by retrieving the work
object from class Work and the contractor’s object from class Contrac-
tor. (If any of them is not found, a proper error message must be presented
to the user; but as we know, such messages are not included in the OO-
DFDs; they will be dealt with as part of the design of input-output forms.)
Then, the user inputs the details of the work agreement, and function 2.2.3
activates function 2.2.4 and forwards to it those details. Function 2.2.4
performs the following activities: (1) it creates a new object of Work in
progress, which is a subclass of Work—note that this class appears in this
OO-DFD for the first time; (2) it changes the status of the Work object to
“in progress;” (3) it updates the Contractor object by inserting the code of
the work which the contractor will perform; (4) it updates the class
Company by adding the amount of money which will have to be paid to the
contractor to the attribute sum of amounts payable to contractors; and
(5) it produces printouts of the agreement: one will be sent to the contractor
and another will be saved in the company’s office. Since function 2.2.4
involves relatively many activities, it could have been decomposed into
several functions; but this would have added more functions to the diagram.
Another possibility could be to replace both functions 2.2.3 and 2.2.4 by one
general function and describe it in a separate diagram.17

• Function 2.2.5 enables the user (a company officer) to obtain a report on
the state of the works in progress. Here too, it may be assumed that the
function will be activated by whoever will get the authority to produce such
a report, and this will be done via the user-system interface. Besides being
activated from the interface, this function needs no input data.

Information Systems Analysis with FOOM 213

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Function 2.2.6 enables the company to handle payments to contractors. The
company officer who initiates a payment to a contractor activates the
function and inputs a code of the work for which he/she wants to make a
payment. The function retrieves the respective work in progress object,
which includes relevant details such as the total sum to pay and the past
payments to the contractor (detailed in the attribute set payments {date,
amount}). Based on these details the officer determines and inputs the
amount to be paid. Following that, the function adds the payment details
(date and amount)18 to the Work in progress object and produces a
payment order which is sent to the contractor.

• When the company officer wishes to report that a certain work is complete,
he/she activates function 2.2.7 and inputs the work code. The function
retrieves the details of the work in progress object, produces a report which
is sent to the tenants who requested the work, and changes the status of the
work to “completed.”

Checking the Compatibility of the OO-DFDs and the
Initial Class Diagram

To conclude this example, we demonstrate the verification of compatibility of the
OO-DFDs and the initial class diagram.19 At the class level we simply verify that
all classes in the class diagram are indeed used in the OO-DFDs. At the attribute
level we check, for each class, that all of its attributes are added/updated at least
once (by any function) and retrieved at least once. For every class we create a
table in which the rows are the attributes of the class and the columns are the
elementary functions which either update the class (“update” functions) or
retrieve from it (“retrieve” functions). For each of the dataflows from the
“update” functions to the class and from the class to the “retrieve” functions, the
DD specifies the data elements it includes. Based on that we mark, for each of
these functions, the class attributes which they update or retrieve. An updated
attribute is marked by “+” and a retrieved attribute by “-”. Tables 8.2-8.4 show
the checks for three of the classes: Contractor, Work, and Work in progress.
We see that the first two classes are correct because each of their attributes is
updated and retrieved at least once. However, in the Work in progress class
we found an attribute, actual completion date, which is neither updated nor
retrieved. After verification that indeed no function in the system needs to update
or retrieve this attribute, it is decided to drop it from the class.20

214 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 8.2. Compatibility check of class contractor

Functions Attributes
2.3 2.2.4 2.2.2

Contractor name + + -
Address + -
Set phone numbers + -
Set fields of expertise + -
Set works contracted [Work in
progress]

 + -

Functions Attributes
2.1 2.2.4 2.2.7 2.2.1 2.2.3

work code + + + - -
set who requested [Apartment] + -
date of request + - -
type of work + - -
description of work + -
status(requested/in progress/completed) + + - -
date of status + + + -

Table 8.3. Compatilbility check for work class

Functions Attributes
2.2.4 2.2.6 2.2.5 2.2.6

the contractor [Contractor] + + - -
description of work + -
starting date + -
date to complete + -
total sum to pay + - -
set payments {date, amount} + - -
actual completion date*
*no function updates or retrieves this attribute.

Table 8.4. Compatibility check for class work in progress

* No function updates or retrieves this attribute

System Analysis with FOOM: Example of the Musical
Programs System

In this section we present one more complete example of the analysis of an IS
using FOOM methodology. First we will present the users’ requirements21 and
then the initial class diagram, the OO-DFDs, and some compatibility checks.

Information Systems Analysis with FOOM 215

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Before we begin, we point out again that the analysis process is not exactly a
sequential one but rather is iterative and interactive, in which the analysts interact
with the users or their representatives; throughout the work process there is a
constant improvement of the class diagram and the OO-DFDs. Here we can only
see the final products.
The reader is asked to treat the example as a self-practice exercise. This means
that before looking at solution diagrams, the reader is expected to study the
users’ requirements and based on them to create an initial class diagram and the
OO-DFDs—and only then study the solution provided in this section and see if
and why there are any differences.22

The Users’ Requirements

An IS that will assist the managers and editors of music programs of a radio
station needs to be created. The system will contain a database of musical pieces
owned by the station. The data on the musical pieces will be input and stored
when new disks or other music media arrive from distributors. For every musical
piece the following details will be stored: an identification code (piece ID); which
will be given to each piece by the station; the piece name (e.g., name of a song);
the music type (e.g., classic, country, jazz); the length of play (in minutes and
seconds); the royalties owner (who will be paid according to the number of times
the piece will be played); and the composers and the performers. The system will
enable to produce various catalogs from the database of musical pieces.
Catalogs will be produced upon requests from the music director of the station
and according to different criteria such as music types, performers, and
composers. The catalogs will be used by the music director and the program
editors and may also be sent to distributors.
Music programs may play musical pieces requested by listeners. A listener may
send a request (by postcard, fax, or any other means) to hear a certain musical
piece. A request will include the name of the requested piece, the name of the
program in which the listener wishes to hear it, a range of dates within which he/
she wishes to hear the requested piece, and a dedication (to be read before the
musical piece is played). The listener’s request is registered with a status
“waiting” and waits until the editor of that music program will take care of it.
One of the main objectives of the IS is to assist the editors in the editing of the
music programs. To enable this, the system will maintain a database of music
programs and of the actual programs that will be broadcast throughout the
season. A music program is identified by a name and is characterized by the
types of music that will be played in it. A program has duration (in hours and
minutes) and a day or days and start time in which it will be broadcast every

216 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

week. In addition, every music program is assigned an editor and a technician
(who are employees of the radio station). The planning of the music programs
for the season is done by the music director, while the editor of a music program
is in charge of scheduling its actual broadcast during the season. This means
deciding which musical pieces will be played in each of the actual broadcasts of
the programs. The IS will enable adding and updating music programs and the
scheduling of actual programs that will be broadcast, including the assignment of
musical pieces that will be played and the handling of listeners’ requests. In
addition, the system will enable the production of reports on the music programs
for the music director, the editors, technicians, and the listeners (via newspapers
and other media).
The assignment of musical pieces to a program will be done as follows: The editor
will select a program which he/she wishes to schedule; this means selecting a
program name and a date it will be broadcast (based on the day or days in which
the program will be broadcast every week). The system will retrieve the details
of the program and present the editor with relevant information: First, it will
present details of existing musical pieces of the types which are suitable to that
program. Then it will enable the editor to see which musical pieces have already
been played on past broadcasts of the program (and when). The system will also
enable the editor to review listeners’ requests for this program whose range of
dates includes the date of the scheduled program. Based on all this information,
the editor will then select musical pieces to be played in the scheduled program.
(The number of assigned pieces will depend on the duration of the program, the
length of each piece, “talk time,” and commercials.) Printed messages with the
date in which the pieces will be played will be sent to listeners whose requests
have been accepted, and the requests database will be updated accordingly.
When the scheduling of a program is complete (as determined by the editor), the
system will produce a “blueprint” for the editor and the technician, according to
which they will prepare the broadcast.
The radio station must pay royalties to the royalty owner of each musical piece
according to the number of times it is played. In order to do this, the system must
record every actual playing of a music piece. This will be done by the technician
of the program (during or after playing each piece). (Note that not every piece
assigned to a program must actually be played, and there is a possibility that a
certain piece will be played in a program even if not assigned in advance.) The
system should enable the music director to produce various playing reports of
musical pieces according to various parameters, such as per program, dates of
broadcast, royalty owners, composers, and performers. The reports will be used
by the musical director and also be sent to the musicians union (which represents
the royalty owners). The actual payments to the royalty owners will be done by
the station’s finance department. For that, the system will produce a summary

Information Systems Analysis with FOOM 217

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

report at the end of each month, which will state how many times each piece has
been played in the past month. The report will be sorted by royalty owner,
program, and musical piece. The report will be sent to the finance department
and to the musicians union.

The Objects Model: Initial Class Diagram

The initial class diagram is presented in Figure 8.11. It consists of four classes:
musical piece (C1), music program (C2), scheduled program (C3), and
listener request (C4). Note the differences between music program and
scheduled program. The objects of the former are the various programs
planned by the radio station for the season; the objects of the latter are actually
scheduled programs to be broadcast on certain dates. Obviously, each music
program object will be associated with many scheduled program objects—as

Figure 8.11. Initial class diagram of the musical programs system

218 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

many times as the program will be broadcasted. Note that a (new) music
program may have no scheduled program, while a scheduled program must
belong to one music program.
Without going into all details of the class diagram, here are a few highlights:

• It can be assumed that piece ID, the key attribute of a musical piece, is
assigned when it is added to the system. Every piece also has simple
attributes piece name, music type, length, and royalty owner, and set
attributes composers and performers.

• Note the distinction between the set attributes assigned programs and
played programs of class musical pieces. The values in the first set are
determined by the program editor when the musical pieces for a program
are scheduled; the values of the latter are determined by the technician
when the pieces are actually played. The same is true for the inverse
attributes in the class scheduled program.

• The attribute set requested by [listener request] is marked as stricken
out; this reference attribute is defined because of the many-to-many
relationship between this class and the class listener request, but it is
actually not needed by any user—as we will see when the compatibility
checks are performed. As can be seen in Figure 8.11, the same is true for
the attribute set requested by [listener request] of the class music
program, and the attribute assigned in [scheduled program] of class
listener request.

• The key of listener request consists of {listener ID, date} which makes
it possible for a listener to submit many requests. A request refers to an
object of musical program (not an actually scheduled program which is
not known at the time of request) and an object of musical piece. It
includes a range of dates the listener wishes the piece to be played and gets
an initial status of “waiting.” Once the request will be accepted by the
program editor, its status will change to “accepted” and it will refer to the
object of scheduled program.

• The key of scheduled program consists of a reference to its music
program and date of broadcast. The value of attribute status is initially
“unscheduled,” and changed to “scheduled” by the program editor when the
scheduling of that specific program is complete.

As noted, at this stage the class diagram includes reference attributes and
inverse reference attributes for all the relationships. In the functional analysis
stage we may find out that not all these attributes are indeed needed. For
example, the relationship between listener request and musical piece is

Information Systems Analysis with FOOM 219

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

expressed by the inverse attributes request piece [musical piece] in the former
class and requested by [listener request] in the latter class. We will see that
no user of the system even needs to know, for a musical piece, who of the
listeners requested to hear it. Therefore this attribute of musical piece will be
dropped.

The Functional Model: OO-DFDs

The results of the functional analysis process are expressed by three OO-DFDs
shown in Figures 8.12-8.14. Some clarifications for the diagrams are provided as
follows.

Clarifications for OO-DFD-0 (Figure 8.12)

The root diagram includes three elementary functions and two general ones,
each shown in its own OO-DFD. Function 1 is responsible for adding and
updating data on musical pieces obtained from distributors (assumed to arrive on
discs and other media). Function 2 enables the production of catalogs on the
musical pieces in the database, according to parameters set by the music
director. The name given to the three dataflows emanating from function 2 is just
catalogs; however, the structure of the various catalogs will be determined in
the design phase. Function 3 adds listeners’ requests. Before a request object is
added to the listener request class, the function verifies that the requested
musical piece and the requested program do exist. Functions 3 and 4 are general
and will be clarified separately.
It should be noted that in this example all four classes of the initial class diagram
already appear in the root OO-DFD. In addition, note that function 4 obtains data
of an external class employees. It is assumed that data on editors and
technicians are already stored in an existing database (say of the human
resources IS). The music programs system merely uses the data when those
employees are assigned to the respective programs.

Clarifications for OO-DFD-4 (Figure 8.13)

The general function edit music programs is decomposed into eight elementary
subfunctions. Note that this diagram is fully compatible with OO-DFD-0 in the
sense that all the classes and external entities that were connected to function
4 in the root diagram also appear in this diagram.

220 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.12. OO-DFD-0 of musical programs system

Information Systems Analysis with FOOM 221

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.13. OO-DFD-4 of the musical programs system

222 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Function 4.1 deals with adding and updating the music programs of the radio
station. The external class employees (on the left side of the frame) provides
the details of the editors and technicians assigned to the programs. When the
musical director creates a new program, the function creates (adds) a new object
to the class music program and also new objects to the class scheduled
program—each object for a specific date on which the program will be
broadcast. This is done based on the times (days) the program will be broad-
casted every week during the season. (This function, however, does not assign
musical pieces to the scheduled programs.) Function 4.2 enables the user to
present or print the music programs that will be distributed to the music director,
editors, technicians, and listeners. The listener will probably be informed about
the programs through newspapers and other public media.
Functions 4.3-4.7 deal with the assignment of musical pieces to scheduled
programs. Function 4.3 enables the editor to select a specific program he/she
wishes to work on, by imputing a program name and broadcast date. The function
locates the music program object and retrieves the data needed for the
assignment of music pieces, that is, the types of music and the program duration.
In addition, it locates the scheduled program object and retrieves the existing
assignments of pieces; this is so because the editor may have already assigned
some musical pieces to this scheduled program but did not complete the task.
Function 4.3 then activates function 4.4, which retrieves from the class musical
piece the musical pieces which are suitable for this type of program. The function
presents the details of the already assigned pieces and the suitable pieces to the
editor. In addition, it activates function 4.5 which locates, in the class scheduled
programs, the musical pieces which have already been played in this program,
retrieves the details of these pieces from class musical piece, and presents them
to the editor. (This will enable the editor to avoid playing too excessively the same
musical pieces which have already been played in past broadcasts of the
program.) The function 4.6 is activated, which retrieves listeners’ requests for
this program with the appropriate dates. The details of these requests are also
presented to the editor. Using all this information, the editor makes the decision
which pieces will be played on that scheduled program. Function 4.7 obtains the
editor’s assignments and adds them to the scheduled program object and the
music program object. Actually, for every musical piece assigned, a reference
to the object of that piece is added to the attribute set assigned pieces [musical
piece], and a reference to the object of scheduled program in added to the
attribute set assigned in [scheduled program] of the musical piece object. If
the assignments include pieces that were requested by listeners, the function
adds references to the listeners’ requests (in the attribute set accepted requests
[listener request] and in the object of each of those listener requests it adds a
reference to the scheduled program object and changes its status attribute to
“accepted”). Finally, it produces a notification which is sent to those listeners.

Information Systems Analysis with FOOM 223

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Note again that the assignment process of musical pieces to a scheduled
program does not have to be done all at once; the editor may work on a certain
program without completing the assignments of musical pieces and continue
sometime later. Every time the editor wishes to work on the assignment of a
certain program, function 4.3 needs only to be activated, and the process will
resume as explained. When the editor will indicate that the assignment is
complete, function 4.8 will store the value “scheduled” in the attribute status of
the scheduled program object.

Figure 8.14. OO-DFD-5 of the musical programs system

224 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Function 4.8 enables the production of detailed programs which have been
scheduled, so that the editor and technician will use them in the preparation of
the broadcast itself. It should be noted that functions 4.3-4.7 are connected to
each other by dataflows, which means they activate one another once the first
is activated by the program editor. But function 4.8 is not connected to the
former. This means that the production of the scheduled program reports is not
connected to the process of assigning musical pieces to the program. Function
4.8 will be activated by a program editor whenever he/she wishes; he/she will
input a program name and date to be broadcasted, and the function will produce
the desired report for the program editor’s or technician’s use.
So far we have seen a verbal (and not completely accurate) description of the
assignment process and the other functions, all in accordance with the level of
detail provided in the OO-DFDs. However, one should remember that the
diagram cannot be specific when it comes to describing the process logic of the
functions. Detailed definitions and descriptions of the process logic of the
functions will be provided in the design phase of the IS.

Clarifications for OO-DFD-5 (Figure 8.14)

This diagram includes four elementary functions that deal with the broadcasting
of musical pieces and the payments of royalties to the owners. Functions 5.1-5.2
enable the technician to input the IDs of the musical pieces that were actually
played (whether from those that were or were not assigned). Note that function
5.2 registers the played piece in the scheduled program object as well as in
each of the musical piece objects. Function 5.3 enables the production of
reports on the played musical pieces according to different parameters provided
by the music director (e.g., per right owners, performers, composers, etc.). In
addition, Function 5.4 is activated at the end of each month and produces a
monthly summary report of the played musical pieces, sorted by composer,
performer, and program. This report is produced both for the musicians union
and the financial department of the radio station.

Verification of Compatibility of Diagrams

We conclude the example with a demonstration of three checks of compatibility
of the initial class diagram and the OO-DFDs. Tables 8.5-8.7 show the checks
for three of the classes: listener request, musical piece, and music program.
In Figure 8.5 we can see that the attribute assigned in [scheduled program]
of class listener request is not retrieved by any function (but only updated by
function 4.7); therefore it will be dropped from this class as well as from the

Information Systems Analysis with FOOM 225

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Functions Attributes
4.1 3 4.2 4.3

program name + - - -
duration {hours, minutes} + - - -
editor name + -
technician name + -
set music types + - - -
set times {date, start time} + - -
set requested by [listener request]*
set consists of [scheduled program] + -

Table 8.7 Compatibility check for class musical program

Table 8.5. Compatibility check for class listener request

Functions Attributes
1 4.7 5.2 4.4 4.5 5.1 5.3 5.4

piece ID + - - - -
piece name + - - -
music type + -
length (minutes, seconds) + -
royalty owner + - -
set composers + - - -
Ser performers + - - -
set assigned in [scheduled program] + -
set played in [scheduled program] + -
set requested by [listener request] *

Table 8.6 Compatibility check for class musical piece

Functions Attributes
3 4.6 4.7

the request [listener ID, date] + -
requested program [music program] + -
requested piece [musical piece] + -
range of play dates + -
Dedication + -
Status + - +
assigned to [scheduled program] * +

* No function retrieves this attribute

* No function neither updates nor retrieves this attribute

* No function neither updates nor retrieves this attribute

226 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

dataflow coming from the updating function. This means that function 4.7 will
only update the status attribute of that class. In Table 8.6 we see that the
attribute set requested by [listener request] of class musical piece is neither
updated nor retrieved by any function, so we drop it from the class. This is also
true for the attribute set requested by [listener request] of class musical
program (see Table 8.7).

Review Questions

1. What does an initial class diagram include? What does it not include?
2. What are the “direct” and the “indirect” ways to create an initial class

diagram?
3. Discuss considerations and guidelines for determining whether a function

is “general” or “elementary.”
4. Explain and exemplify the different types of external entities.
5. Is an ATM a real-time entity? Explain.
6. Can an OO-DFD include a class which is only updated by a function (but

no function retrieves data from it)? Explain.
7. What is “external class?”
8. What is the difference between an elementary dataflow and a general

dataflow? Why is the distinction between the two types important?
9. What does a dataflow between two elementary functions mean?
10. What can be done if a certain OO-DFD includes too many functions?
11. What can be done if a certain OO-DFD includes too few functions?
12. In a certain OO-DFD, a dataflow links from an elementary function to a

general function; how will this be expressed in the child diagram of the
general function? Show an example.

13. In a certain OO-DFD, a bidirectional dataflow links two general functions;
how will this be expressed in the child diagram of each of the general
functions? Show an example.

14. Create a context diagram for the Customers and Suppliers system pre-
sented in Figures 8.4-8.6.

15. Why is it important to verify the compatibility between the initial class
diagram and the OO-DFDs?

Information Systems Analysis with FOOM 227

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

16. Explain and exemplify the issue of redundancy of relationship data in a
many-to-many relationship between classes. How can such redundancy be
avoided?

References

DeMarco, T. (1978). Structure analysis and system specification. Englewood
Cliffs, NJ: Prentice Hall.

Gane, C., & Sarson, T. (1979). Structured systems analysis, tools and
techniques. Englewood Cliffs, NJ: Prentice Hall.

Shoval, P. (1998). Planning, analysis and design of information systems
(Vols. 1-3). Tel-Aviv, Israel: Open University Press.

Endnotes

1 Additional classes will be added in the design phase.
2 See Chapter IV.
3 This example was originally used in Shoval (1998).
4 Assume one family name representing whoever lives in the apartment.
5 This is similar, to a certain degree, to the possibility to have different

computer programs which perform the same task.
6 General functions will be demonstrated later on.
7 Actually, it could appear inside the frame of the OO-DFD, next to the

respective function.
8 The example in Figure 8.3 shows only a real-time entity fired by a function.
9 If we wish to show that data need to be input from an external entity and

saved in a class, it should be done by a function that receives the input data
from the entity and updates the class. Similarly, if we wish to pass data from
one class to another, it should be done by a function, not by a direct
connection.

1 0 Actually, the use of a class is not of paramount importance; instead, one
may use an external entity instead. At any rate, this is not going to affect
the new IS because we are not going to design or build the external
components whether we call them external entities or external classes;

228 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

they serve only as a means to express input from external sources.
Therefore, it also does not matter to us how exactly the data is organized
in the external database, for example, is it in a class, a relational relation,
or any other type of file.

1 1 It does not mean that the user entity will actually input the data; it is only
the source of the data. At any rate, the user interface will be designed at
the design phase.

1 2 For this reason it is preferable that the numbers of the connected functions
will also be according to their order of execution.

1 3 Of course, diagrams with two or three functions as this one and others that
will be shown later, are too small and trivial; but this is just for example.

1 4 It appears twice in the diagram only for convenience, to avoid crossing
dataflows.

1 5 Of course, if such things are included in an OO-DFD it does not make the
diagram erroneous; it only makes it full of trivial details that will be dealt
with anyhow in the programming stage, as part of common programming
practice.

1 6 Again we note that an OO-DFD of a real-world system would include more
functions.

1 7 The readers are welcome to revised draw diagrams according to the two
alternatives.

1 8 In this example only; in reality there would be more details on a payment.
1 9 Recall that this check should be done with the aid of the DD, which specifies

the data elements that are contained in the dataflows. The next chapter
deals with the DD in detail.

2 0 As we know, the diagrams shown in the various examples present the final
results of the analysis process, so it is impossible to know what changes
were made in order to prevent incompatibility. For example, let us assume
that in a nonfinal OO-DFD-2.2 (Figure 8.10) the function 2.2.7 updated the
Work in progress class by inserting the date the work was completed.
During the compatibility check it was discovered that no function retrieves
this data, that is, no one needs to know the date of completion. Therefore,
this attribute should be removed from the class and from the DD. As a
matter of fact, OO-DFD-2.2 does not include an update of this class.

2 1 We have already referred to this example in chapter VI, but the users’
requirements have not been presented in detail. This example too has
originally been used in Shoval (1998).

2 2 The reader is reminded that many correct solutions are possible, not only
the solution provided here. At any rate, any solution must be examined

Information Systems Analysis with FOOM 229

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

according to two criteria: (1) syntax of the models: the class diagram and
the OO-DFDs must be syntactically correct according to the rules of each
model; and (2) user requirement: all the users’ requirements (as expressed
in the requirements document) must be satisfied.

230 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Data Dictionary

This chapter explains the roles of a data dictionary (DD) in the development
of the information system (IS) and describes its components. The chapter
presents a possible implementation of the data dictionary both with the
relational and the object oriented (OO) models.

A DD is a database or repository of data on the products of the analysis and
design phases. It is initially created during the analysis phase, containing
details about the components of the object oriented data flow diagram (OO-
DFD) and the data elements carried by their various dataflows. But it will
be updated and extended throughout the design phase to include details
about the products of that phase too. The DD is essential in the development
of large-scale systems because it enables its users (analysts and designers)
to define, save, and retrieve, in a standard manner, various details of the
analysis and design products, details which are not included in those
products.

A DD can be implemented as a relational database consisting of tables, or
as an OO database consisting of object classes. This chapter describes the
components of a DD using both models. Obviously, at this stage we only
describe the components which are created at the analysis phase.

Data Dictionary 231

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Relational Data Dictionary

The data dictionary consists of tables which store and enable to retrieve
information of two major types: (1) information about the components of the OO-
DFDs; and (2) information about the data elements carried by the dataflows.

Information about the Components of the OO-DFDs

The data dictionary should enable the analyst to document and retrieve informa-
tion about any component appearing in any of the OO-DFDs. The components
are (general and elementary) functions, external (user, time, and real-time)
entities and classes. The information that might be needed on any component
includes its identification, name, description, and the other components to which
it is connected via dataflows. This information might be needed by the analyst
while making modifications to the diagrams. To enable this, two relational tables
are needed: a components table and a dataflows table.

Components Table

The structure of this table is as follows:1

Code number name description

The table includes a record for each component of any OO-DFD. A component
is uniquely identified by the component code and a number. The component
codes are, as we know: F = a function;2 U = a user entity; T = a time entity; R
= a real-time entity; and C = a class. Besides its code and number, a component’s
record includes its name (as appearing in the diagram) and a description. The
description may include some explanation about the component, if needed. For
example, for a user entity it may explain who will actually be the users or the
organizational unit; for a class—a short description on the objects that it will
include (but there is no need to elaborate more because the details of the classes
are defined in the class diagram). For an elementary function the explanation
must be more detailed, it should describe what the function does and its process
logic; these details will be used later on in the design phase. The necessary
description can be provided in natural language (free text), but if the process logic
is not simple and involves various conditions and actions, it might be better to
describe it using structured English or pseudo code, or even create a flow chart.

232 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In these cases, the description may be included in a separate file while the
description field in the table will only contain a reference to it.

Dataflows Table

The structure of this table is as follows:

Source target
Code number code number

dataflow name type (e/g)

The table contains a tuple for each dataflow in the diagrams.3 Note that a
dataflow is identifiable by the components at its two ends: the source and the
target (at least one of them must be a function).
This table, along with the components table, enables finding, for any compo-
nent, the other components to which it is connected as their source or as their
target. For example, to find which functions retrieve data from the class
apartment (in all OO-DFDs) we may use the following SQL query:

Select target-code, target-number, dataflow name
From Components, dataflows
Where components.code = dataflows.source-code and components.number =

dataflows.source-number and components.name = “Apartment” and
components.code = “C”;

Another example: to find which functions provide output to user entity company,
we may sue the SQL query:

Select source-code, source-number, dataflow name
From components, dataflows
Where components.code = dataflows.target-code and components.number =

dataflows.target-number and element name = “Company” and
components.code = “U”;

Data Dictionary 233

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Information about the Data Elements Carried by the
Dataflows

The data dictionary should include detailed definitions of the data elements
carried by the elementary dataflows and passes from and to the components of
the OO-DFDs. A data element is an elementary unit of data of a certain data
type, for example, person ID number, first name, last name, phone number, birth
date, grade, salary, and so forth. The data elements carried by a dataflow from
a user entity to a function will eventually become fields in the input screen (or
other input device that may be determined for that input); the data elements
carried by a dataflow from a function to a user entity will eventually become
fields in an output screen or a report; the data elements carried by a dataflow
from a function to a class or from a class to a function will eventually become
attributes which are updated or retrieved by the function, and which are also
attributes of the class; the data elements carried by a dataflow from a function
to another function will eventually become the parameters which are passed
from the former to the latter.
There is no need to define the data elements carried by general dataflows, only
by elementary dataflows, because general dataflows will eventually be decom-
posed into elementary ones.4

To enable the aforementioned definitions, three tables are needed: data ele-
ments, elementary dataflows, and data elements on elementary dataflows.

Data Elements Table

The structure of this table is as follows:

data element name description data type length range of values

• Data element name: Each data element has a unique name (usually one
or two words).

• Description: explains what the element is. A description is only needed if
the name of the element is unclear.

• Data type: for example, text (characters), numeric (integer), decimal
(real), date, and so on.

• Length: the number of bytes.

234 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Range of values: if there is a limitation on the element’s values. For
example, > 0 means that the value must be positive.

The definitions of the data types, lengths, and ranges of values of the various data
elements may be deferred to the design phase.

Elementary Dataflows Table

The structure of this table is as follows:

Source Target
code number code Number

list of data
elements

volume method of
delivery

While the dataflows table includes records of all the dataflows, this one includes
only records of the elementary dataflows. The most informative data included in
this table are the list of data elements carried by each elementary dataflow. This
valuable information causes the table to be not normalized.5 Actually, this field
may be eliminated from this table because at any rate the next table (data
elements in elementary dataflows) will provide these details. The fields
“volume” and “method of delivery” will include data for only dataflows from and
to user entities. The “volume” of each such dataflow is the sum of lengths of the
data elements it carries; it will help the designer to determine the method and
media for delivery of the input from the user or the output to the user. For
example, if the volume of input data is huge, it might be determined that the input
media must be some device (e.g., a scanner or a magnetic card reader) rather
than a keyboard. This also determines the method of delivery (e.g., presenting
a certain output on screen or by a printed report).
As said about data types and lengths of data elements, the definition of these
details (i.e., of volume and method of delivery) may also be deferred to the design
phase.

Data Elements in Elementary Dataflows Table

The structure of this table is as follows:

data element source Target
 code number code number

constraints

Data Dictionary 235

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This table enables the finding out of which data elements are carried by which
dataflow (as can be done in the former table assuming that it includes the filed
list of data elements), and on which dataflow a certain data element is carried.
Obviously, each data element will have as many records in the table as the
number of elementary dataflows by which it is carried, and each elementary
dataflow will have as many records as the number of data elements it carries.
In addition, it is possible to define constraints (restrictions) on the appearance of
a data element on a dataflow, as follows:

• Optional: meaning that the data element may not have a value. For
example, for a data element “address” of a certain input dataflow, optional
would mean that input of the address is not mandatory.

• Multi-valued: means that the data element may have many values. For
example, for a data element “phone number” of a certain input dataflow it
would mean that more than one phone number may be input. It is also
possible to determine a minimal or maximal number of values—for ex-
ample, “phone numbers (1-3).”

Optional Dictionary Tables

In addition to the previous three tables which enable defining the data elements
carried by the dataflows, two more tables may be needed for special types of
data elements: Synonyms table and Aggregates table.

Synonyms Table

In a large-scale system, there is a possibility that different users would use
different names for a certain data element. For example, “pupil” can be used as
a synonym of “student,” or “ID number” as a synonym of “identification
number.” In such cases, one of the names should be chosen as the standard
name of the data element, which will be used in the other tables where it appears,
while the dictionary will store all its synonyms. For this, there is need for a
synonyms table as presented hereafter. Note that the key of this table is
“synonym name,” while “standard name” is the data element name which is used
in the other tables of the DD.

synonym name standard name

236 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Aggregates Table

Sometimes several data elements appear together on the dataflow, as a group.
For example, the data elements: street, number, city, and zip code (and
sometimes also state code or country) usually appear together and constitute a
“data aggregate” called address. Another common example is the data aggre-
gate “date” whose elements are day, month, and year. In such cases, space and
time can be saved if the aggregate name is used instead of the individual data
element names. This is enabled with the aggregates table which details the
data elements of each aggregate. Note that the key of this table consists of both
fields because a certain aggregate may include two or more data elements, while
a certain data element may be included in more than one aggregate. It is also
important to note that a certain data element may be part of an aggregate but also
exists as an “independent” element. For example, “city” or “year” may be part
of aggregates “address” and “date,” respectively, but they may also serve as
stand-alone data elements.

aggregate name data element name

To summarize, Figure 9.1 presents the relational database schema of the DD
using Microsoft (MS) Access. In addition to the tables and their fields, the
foreign-key to primary-key relationships are also on display.

Figure 9.1. Relational database schema of the data dictionary

Synonyms

 in dataflows

C

Dataflows Elementary dataflows

Data elements

Aggregates

synonym name
standard name

data elelment
source code

source number
target code

target number
constraintscode

number
name

description

code
number

name
description

source code
source number

target code
target number
dataflow name

type (g/e)

source code
source number

target code
target number

volume
method of delivered

data element name
description

data type
length (bytes)

range of valuesaggregate name
data element name

Data Dictionary 237

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Code Number Name Description
F 1.1 add/update

tenant details
The function enables the adding of new tenants, as well as
the updating of existing tenants or their deletion.

F 1.2 review tenant
details

…

U 1 Tenant …
U 2 Company …
T 1 Time …
C 1 Apartment The attributes of the class and its relationships with other

classes are detailed in the class diagram.
… … … …

Table 9.1. Components table

Examples of Data in a Relational Data Dictionary

Here is a small example of the DD tables (see Tables 9.1-9.7). Each table
presents a few data records only, based on OO-DFD-1 of the apartments
building system (Figure 8.8, Chapter VIII).

Table 9.2. Dataflows table

Table 9.3. Data elements table

Data element name Description Data type Length
(bytes)

Range of
values

Apartment number Identifies an apartment in the
building and the family or
tenants who live in it.

Numeric 2 x > 0

Family name Does not identify an apartment Text 30
Month Numeric 2 13 > x > 0
Monthly fee How much a tenant needs to

pay
Decimal 3(2) …

Sum How much has been paid Decimal 3(2) …
Remainder … Text 100 …
… … … … …

Source Target
code number code number

Dataflow name Type

U 1 F 1.1 Tenant details e
F 1.1 C 1 Tenant details e
F 1.4 F 1.5 Tenant and payment details e
F 1.5 U 1 Receipt e
C 1 F 1.7 fees and payments e
T 1 F 1.7 End of month e
… … … … … …

238 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 9.7. Aggregates table

Aggregate name Data element name
Phone number Type
Phone number Number
Date Day
Date Month
Date Year
… …

Table 9.5. Data elements in elementary dataflows table

Source Target Constraints Data element

code number code number
Apartment number U 1 F 1.1
Apartment number F 1.1 C 1
Apartment number F 1.5 U 1
Number of tenants U 1 F 1.1 optional
… … … …
Family name U 1 F 1.1
Family name F 1.1 C 1
… … … … …
Sum U 1 F 1.4
Sum F 1.4 F 1.5
Sum F 1.5 C 1
Sum F 1.5 U 1
… … … … …

Table 9.6. Synonyms table

Synonym name Standard name
Tenant number Apartment number
apartment Apartment number
… …

Table 9.4. Elementary dataflows table

Source Target
code number code number

Volume
(bytes)

Method of delivery

U 1 F 1.1 150 Typing from keyboard via input screen.
F 1.1 C 1 150 …
C 1 F 1.4 150 …
F 1.5 C 5 50 …
F 1.5 U 1 100 …
… … … … …

Data Dictionary 239

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An OO Data Dictionary

Figure 9.2 presents the data dictionary in a class diagram. Here are several
clarifications:

• The components class contains objects which are the various components
of the OO-DFDs. We made no distinction between different kinds of
components. However, we could subclassify components into functions,
classes, and external entities. Furthermore, we could subclassify func-
tions into general and elementary functions, and external entities into
user, time, and real-time entities.

Figure 9.2. Class diagram of the data dictionary

240 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• As we know, each component is identified by the component code and
number. Note the two set reference attributes of the class: one set (flows
in) refers to the dataflows coming to this component from other compo-
nents, and the other set (flows out) refers to dataflows going out from this
component to other components.

• The dataflows class includes objects of all the dataflows, general and
elementary. A dataflow is identified, as we know, by the source and target
components. (We may assume that this class includes a function/method
whose objective is to verify that at least one end of the ends of each
dataflow refers to a function.)

• Elementary dataflows is, obviously, a subclass of dataflows. For each
elementary dataflow we write the total volume of data it carries and the
method of delivery. As we know, this is only relevant for dataflows coming
from or going to user entities (but this is not shown in the diagram because
we have not made the distinction between subclasses of components).

• The data elements class contains the data element objects. Note its
attributes set synonyms and set included in [aggregates]. Obviously,
these sets will only contain values for objects which have synonyms or
which are included in aggregates. The class aggregates has an inverse
attribute set consists of [data elements].

• Since an elementary dataflow may carry both data elements and aggre-
gates, we have defined a super class data. This is an abstract class,
because all of its objects are either Data elements or aggregates. The
attribute type enables us to distinguish between data elements and aggre-
gates.

• Between the classes elementary dataflow and data there is a many-to-
many relationship. It is represented by a “relationship class” data in
dataflows. The key of this class consists of two reference attributes
{[data], [elementary dataflow]}. The class includes the relationship
attribute constraints which enables us to define whether the data element
or aggregate in the dataflow is mandatory or optional, or if it is single or
multi-valued.

Figure 9.3 exemplifies another version of a DD class diagram. This version is
simplified (compared to the former): It assumes that there are no aggregates and
no constraints on values of data elements in dataflows. Hence, there is only a
data elements class, with a many-to-many relationship with elementary
dataflows class.

Data Dictionary 241

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Examples of Data in an OO Data Dictionary

Here is a small example of the OO DD. The example refers to the (extended)
class diagram in Figure 9.2. It shows only one object from each class, based on
the same OO-DFD-1 of the apartments building system.6

An Object of Class Components

The example demonstrates the object C1 which is the class apartments:

• code+number: C1
• name: Apartments
• description: stores objects of apartments.
• set flows in [Dataflows]: [F1.1], [F1.5], [F1.8]7

• set flows out [Dataflows]: [F1.2], [F1.4], [F1.6], [F1.7].

Figure 9.3. A simplified class diagram of the data dictionary

242 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An Object of Class Elementary Dataflow

The example demonstrates the object of the dataflow from user entity U1 to
function F1.1. Note that the attributes of this object also include the attributes
defined in the super class dataflows.

• dataflow: {source: [U1], target [F1.1]}
• name: tenants details
• type: e
• volume: 150
• method of delivery: keyboard and input screen.
• set data carries: apartment number, family name, apartment size,… (The

rest of the data elements are not detailed.) Note that we listed here names
of data elements, but actually the list includes OIDs of objects in the class
data in dataflows, each of which references back to the respective data
object of the data class.

An Object of Class Data Elements

The example demonstrates the object of the data element apartment number.

• type: elementary (note that this and the next attribute are taken from the
super class data).

• set in dataflows: [data in dataflows]: [U1, F1.2]; [F1.1, C1]; [C1, F1.2];…
(Each pair is a source and a target of a certain dataflow. Only a few of the
dataflows in which this data element is carried are detailed.) Note that
actually the set includes the OIDs of objects in the class data in dataflows,
each of which references back to the respective object of the elementary
dataflows class.

• data element name: apartment number
• description: identifies an apartment or a family living in the apartment.
• data type: numeric
• length: 3
• range of values: between 001 and 4500
• set synonyms: tenant ID, apartment

Data Dictionary 243

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• set included in [aggregate]: this data component belongs to no aggregate;
if it did, the OID of the aggregate object would have been written here.

An Object of Class Aggregate

The example demonstrates the object of the data aggregate date:

• type: aggregate
• set in dataflows: [data in dataflows]: [U1, F1.4]; [F1.1, F1.5]; [F1.5, C1];

… (See comment in the former example.)
• aggregate name: date
• set elements of aggregate: [day], [month], [year] (Actually the set includes

references to the OIDs of these data elements.)

An Object of Class Data in Dataflows

The example demonstrates an object which links the data element apartment
number and the elementary dataflow from user entity U1 to function F1.1

• data in dataflow {[elementary flows], [data]}: [U1, F1.1]; [apartment
number]

• constraints: mandatory

Review Questions

1. What is the objective of the components DD?
2. Assume you have a relational DD; explain by referring to specific tables,

how one can find the following: (1) which elementary functions retrieve
(read from) a certain class; (2) which functions provide outputs to a certain
external entity; and (3) which functions update a certain class.

3. Assume you have an objects DD; answer the same questions as stated in
Review Question two, by referring to specific classes in the class diagram.

4. Why is it not necessary to define which data elements flow on general
dataflows?

244 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each of the following questions can be answered assuming a relational or an
objects data dictionary. For each question, refer to specific tables or classes
which need to be accessed:

5. How can you find out which dataflows carry/contain a certain data
element?

6. How can you find out the volume of data carried by a certain elementary
dataflow?

7. How can you find out which data elements are carried/contained by a
certain elementary dataflow?

8. How can you find the standard name of a data element?
9. How can you find out which dataflows carry/contain a certain data

aggregate?
10. How can you find out which are the data elements of a certain aggregate?
11. What type of relationship exists between the dataflows table/class and

elementary dataflows able/class?
12. Practice exercise: Create a relational database schema for a DD, similar

to the one presented in Figure 9.1. You may use any relational Data Base
Management System (DBMS), for example, MS Access, MySQL, Oracle,
and so forth. Then, populate the tables of the DD with data from one of the
systems exemplified in chapter VIII. Note that for this you have to “invent”
data elements which flow on the various elementary dataflows of the OO-
DFDs.

13. Practice exercise: Create an objects database schema for a DD, similar to
the one presented in Figure 9.2 or 9.3. Then populate the classes of the DD
with data from the same system used in the previous exercise.

Endnotes

1 Key fields are in bold and underlined.
2 Note that general functions and elementary functions have the same code

F; the function type is identifiable by its decimal number.
3 A two-way dataflow will have two records in this table, in the opposite

directions.
4 Hence, the data elements carried by a general function are the union of data

elements carried by its elementary dataflows.

Data Dictionary 245

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5 This field must be defined as a character string of some large size to enable
many data elements per dataflow.

6 In this example we see both the attribute names and values (data).
However, the readers should bear in mind that in the dictionary database,
the names of the attributes are saved in the database catalog, where the
classes are described, while the objects contain only the data values.

7 Actually, the values of this set are Object Identification Numbers (OID) of
the referenced objects (i.e., dataflows), but for the sake of demonstration
we present the values of those objects (i.e., the dataflows as identified by
their sources and targets). This comment applies also to the other reference
attributes in the example.

Section III:
Information Systems Design

with FOOM

This unit is concerned with the phase of system design. As we know, design is
a continuation of the analysis phase and it uses its products (i.e., the initial class
diagram, the OO-DFD’s and the data dictionary) as input for the design of the
system components.

The products of the design phase, according to FOOM methodology, are: (a) a
complete class diagram which includes, in addition to the data classes, menus,
inputs, outputs and transactions classes. Each class contains, in addition to
attributes and relationships, its functions; (b) detailed descriptions of the meth-
ods of the classes; (c) the user interface; (d) the input and output screens/
reports. The products of the design phase will be used as input for the
construction/programming of the system.

Chapter X (Transactions and Their Top-Level Design) starts with an
overview of the design phase according to the FOOM methodology and presents
the sub phases and their products. Then, the chapter focuses on the design of
transactions. First it describes what transactions are and how they can be
identified and extracted from the OO-DFDs. Afterwards, it explains how to map

transaction diagrams to top-level descriptions, which detail their components and
process logic. The transactions’ top-level descriptions will eventually become
detailed descriptions of respective class methods. The chapter ends with
additions to the data dictionary and the class diagram due to the definition of the
transactions.

Chapter XI (Design of the Man-Machine Interface: Menus, Inputs, and
Outputs) describes a method for the design of the user interface—menus
trees—for the entire system as well as for its sub systems. Then it describes how
to design the inputs and outputs/reports of the systems. As results, new classes
of menus, forms and reports are added to the class diagram.

Chapter XII (Detailed Design of the Transactions and Class Methods)
describes how to map a top-level description of a transaction to a detailed
description, and then how to “decompose” a detailed description of a transaction
to various methods which are attached to proper classes. Two equivalent
techniques for the description of methods are provided: pseudo-code and
message charts. The chapter ends with a review on the products of the design
stage, which serve as input to the system construction (programming) stage.

248 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Transactions and Their
Top-Level Design

This chapter starts with an overview of the design phase according to the
functional and object oriented methodology (FOOM) and presents the
subphases and their products. Then, the chapter focuses on the design of
transactions. First it describes what transactions are and how they can be
identified and extracted from the object oriented data flow diagrams (OO-
DFD). Afterwards, it explains how to map transaction diagrams to top-level
descriptions, which detail their components and process logic. The
transactions’ top-level descriptions will eventually become detailed
descriptions of respective class methods. The chapter ends with additions
to the data dictionary (DD) the class diagram due to the definition of the
transactions.

Overview of the Design Phase
According to FOOM

In the design phase we use the products of the analysis phase in order to design
the components of the system. At the end of the design phase, the following
products will be created: (1) a complete class diagram which will include, in
addition to all the data classes, the interface, input (Forms), and output (Reports)
classes; every class will include, in addition to its attributes, a list of its functions;
(2) a detailed description of the methods, the functions of the classes. The

Transactions and Their Top-Level Design 249

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

methods will be described in pseudo code or with message charts; (3) the user
interface—in the form of a menus tree; and (4) the input and output screens/
reports. The products of the design phase will enable the creation of the
information system (IS) in an object oriented environment.
In order to create these products, the design phase is carried out in several
subphases, which are:

1. identification of the transactions of the system and creation of their top-
level descriptions;

2. design of the user interface—a menus tree—and addition of the Menus
class;

3. design of the input and output screen/reports and addition of the Forms and
Reports classes; and

4. detailed design of the transactions and their decomposition into class
methods, described in pseudo code or message charts.

This chapter deals with the first subphase, while the other subphases will be dealt
with in the following chapters.

Identifying the Transactions

What is a Transaction?

A transaction is an independent computer process which performs a task for a
user of the system in order to assist in the completion of a business process.1 A
transaction may include a series of activities performed by a computer program
which support in achieving the user’s task. For example, a transaction may
enable the user to input new data, update the database, retrieve data from the
database, perform various computations (e.g., summarizing, sorting, comparing),
produce reports, and so on. The activities included in a transaction are performed
in a certain order or process logical, according to the user’s task.
Hence, an IS is made up of transactions, each assisting in performing a certain
business task. All the transactions taken together express the functionality of the
system. In a business/organizational IS, most of the transactions will be activated
by users2 who interact with the system; that is, a certain user may interact with
a certain transaction and together carry out the user’s task. But some of the
transactions may not be activated by users but rather “automatically” by the

250 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system, at certain points of time or time intervals, or as a result of real-time
events.
Obviously, the transactions of the system should be derivable from the OO-
DFDs which define the users’ needs. Eventually they will become the application
programs, implemented as class methods. The first task in the design of
transactions is to discover them in the OO-DFDs, identify their components, and
describe their process logic, thus providing a top-level (general) description. In
this subphase, the object scheme is also added a new class called “transactions.”
Later on, each top-level description will be detailed and then decomposed into
various methods that will be attached to the proper classes.
As said, the transactions do exist in the OO-DFDs. They have to be discovered,
extracted, and described. First, let us define a transaction in terms of its OO-
DFD components:

A transaction consists of one or more elementary functions which are
connected directly to each other by dataflows. It also includes the classes
and external entities which are connected to those functions. A transaction
must include at least one external entity (of any kind) which enables its
activation.

Let us look more closely at the definition of the transaction:

• A transaction includes one or more elementary functions which are
connected directly to each other by dataflows. As we know, a dataflow
connecting two functions means that one function activates (triggers) the
other; that is, they all execute in the same process, which is the transaction.
Functions that are not directly connected are separated by classes. The
lack of a direct connection between functions means that they are not
activated in the same process; that is, they belong to different transactions.

• A transaction may consist of a single elementary function, if it is not directly
connected to any other function. Such a transaction is probably simple and
does not perform many activities. On the other hand, a transaction may
consist of many elementary functions; there is no “formal” limitation on the
number of functions, as long as they are connected directly, but it is
preferable to have relatively simple transactions so that the interaction of
a user with a transaction will be simple and easy. If it will turn out that a
certain transaction is not simple enough, it may have to be changed, which
actually means that the respective OO-DFD will have to be changed, in
order to keep all analysis and design products updated and consistent at all
times.3

Transactions and Their Top-Level Design 251

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• All the functions included in a transaction are elementary. A general
function is not a part of a transaction, since it is decomposed into
subfunctions. As we know, a general function may be decomposed into
many subfunctions, elementary or general ones; some of them may be
directly connected to each other (via dataflows) while some may be
“separated” by classes. This means that the elementary subfunctions of a
general function may eventually belong to different transactions.

• A transaction includes the external entities and the classes which are
connected to its elementary functions; an external entity can be a source
of data input to a function or destination of information output by a function;
the class can be updated by a function used by a function to retrieve data
from it. Note that a certain external entity or class may belong to more than
one transaction, while an elementary function may belong to one transac-
tion only.

• It is possible that the components of a certain transaction appear in more
than one OO-DFD. This is the case if at a certain level there is a general
function connected (directly) to an elementary function or to another
general function. The elementary functions of a transaction which “be-
longs” to different OO-DFDs are easily identifiable by following the
connectors at the right or left sides of the OO-DFDs.

• A transaction must include at least one external entity (of any kind) which
enables its activation. As we know, an external entity can be a user entity
(U), a time entity (T), or real-time entity (R):

The existence of a user entity in a transaction means that the
transaction will be activated by a user because he/she either needs to
input data into the system or retrieve information from it, or do both.
A transaction which includes a user entity is called user transaction.
This is the most common type of transaction in IS, where various users
interact with the various transactions of the system. Obviously, a user
transaction must be accessible from the user interface (that will be
designed later on). A transaction may include more than one user
entity, both as sources of data or destinations of information. This does
not necessarily mean that more than one user will activate the same
transaction and interact with it concurrently; a transaction will prob-
ably be activated by a certain user who will be authorized to activate
it; the various user entities only signify where the input data comes
from or where the output information goes to, not who actually
activates the transaction and interacts with it.
The existence of a time entity means that the transaction will be
activated “automatically” on a certain point of time or time intervals,
as indicated on the triggering dataflow—without the involvement of a

252 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

user. This type of transaction is called time transaction. As we know,
not many transactions in an IS are likely to be time transactions.
Obviously, a time transaction will not be accessible to users via the user
interface.
The existence of a real-time entity means that the transaction will be
activated by a device that senses the environment and sends messages
to a function which interprets the messages real time and reacts
accordingly. This type is called real-time transactions. Real-time
transactions are certainly rare in IS but more typical to real-time,
embedded systems.
A transaction that includes both user entities and a time entity may be
defined as a mixed transaction, which means that it can be activated
by both a user who interacts with the system, and “automatically” by
the system in predefined time intervals. However, the existence of
both user entities and a time entity in a transaction does not necessarily
mean that it should be activated in both modes. There are two
possibilities: (1) that indeed it is a mixed transaction, which may be
activated in both modes. For example, assume a certain transaction
that produces a certain report on a timely basis (say once a week) but
which can also be activated by an authorized user to produce the report
anytime the user wished to get it. (2) That it is only a time transaction,
which will be activated “automatically” and on that occasion will
perform the input operation (if a user entity is on the “input” side) or
produce the output (if a user entity is on the “output” side). For
example, assume a certain transaction that is activated once a month
and produces a monthly report which is sent to various users.

Since a given transaction that includes both user entities and a time entity can be
interpreted in different ways, the system analyst along with the user must
determine the desired mode of its activation. Note that a mixed transaction must
be accessible to its user(s) from the user interface, in addition to being activated
automatically by the system. Note also that if a mixed transaction or time
transaction includes a user entity on the “input” side, it cannot be assumed that
there is a real user “waiting” with data to be input once the transaction is
activated automatically; rather the data to be input must be prepared on an
appropriate input device and be ready to be activated with the transaction. (For
example, assume a batch of sales forms are prepared to be read by an optic or
magnetic reader.)

Transactions and Their Top-Level Design 253

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Examples of Transactions

Following the definition of a transaction, it is straightforward to identify and
extract the transactions from the OO-DFDs. In most cases, all the components
of a transaction will be found in one OO-DFD; in some cases, a transaction may
be “spread” over more than one OO-DFD. In order to “see” the transaction more
easily in the diagrams it is possible to color all the functions belonging to the same
transaction in one color. Another way to see clearly the transactions is to present
them in a separate diagram.
We will demonstrate a few transaction diagrams which were extracted from
OO-DFD-1 of the Apartments Building system (Figure 8.8 of Chapter VIII).
In this OO-DFD we identify five transactions; their diagrams are presented in
Figure 10.1.
Here are some explanations on the components of some of the transactions and
what they are meant to do. At this stage the explanations are actually narrative
descriptions of the possible meaning of the transactions and their process logic.
More precise descriptions of the transactions and their process logic will be
provided later on, using pseudo code:

• Transaction (a) exemplifies a simple user transaction; it includes only the
elementary function 1.1, one user entity U1, and one class C1. The task of
the transaction is to enable the user to add or update details of the tenants
of an apartment. The transaction will not necessarily be activated by a
tenant, as may be implied from the user entity tenant. It may be activated
by an authorized officer of the maintenance company in charge of this
activity. Alternatively, it may indeed be activated by a tenant (for example,
if the system will be implemented via the Internet, enabling the tenants to
access the system from their apartments). The decision about who will
activate the various user transactions will be made later on at the stage of
interface design (see Chapter XI). Once activated, function 1.1 will display
an input screen (form) by which the user will be able to choose between
adding a new tenant and updating details of an existing one. The function
will enable the user to key in the new data in proper fields/windows or
update existing data presented in those fields. Then the function will add a
new tenant (apartment) object or update the existing object, and the
transaction will terminate.

• User transaction (b) includes two elementary functions 1.2 and 1.3, a user
entity U2 and the class C1. The meaning of the transaction can be
interpreted as follows: The transaction will be activated by an authorized
officer of the company when he/she decides to set or update the monthly

254 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10.1. Transaction diagrams extracted from OO-DFD-1 of the
apartments building system

Transactions and Their Top-Level Design 255

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

fees of a tenant. Once activated, function 1.2 will retrieve from class C1
and present on screen a list of apartment IDs and family names; the user
will select a certain apartment/tenant and consequently all details of that
apartment and tenant will appear on the screen presented to the user. The
officer will review the details, perhaps consider other things (which are not
in the system), and based on that he/she will determine the monthly fee and
input the fee and the effective month using the input screen. Then function
1.2 will trigger function 1.3 and forward to it these details; function 1.3 will
in turn update the apartment object accordingly. Note that the previous
explanation is not a one-to-one description of the diagram, it may be slightly
different or more detailed because it describes not just the components of
the transaction but rather the transaction as a whole unit or process.

• Transaction (e) demonstrates a time transaction that is activated at the
end of each month. (The exact day and hour will be set separately at the
implementation phase.) Although the transaction includes user entities,
which means that potentially this is a mixed transaction, it is determined by
the analyst and user that it is actually just a time transaction. Once
activated, function 1.7 will perform a series of activities for each apartment
object: First it will retrieve the monthly fees and payments made by the
tenant since the beginning of the year; based on that it will calculate the debt
as of the end of this month (if any), print a line in the debts report (which
will eventually be forwarded to the authorized company officer), and
update the Company class with the amount of debt. In addition, the function
will activate function 1.8, whose task is to check if a notification on the debt
should be sent to the tenant. (The details of the check are not specified yet,
but note that they have been documented in the DD where function 1.8 is
described.) If so determined by the function, a notification is printed
(detailing the debt) and sent to the tenant and the apartment object is
updated accordingly. Note that this process will be repeated for all
apartments. This is evidenced from what the transaction is intended to do,
even though the diagram shows no “loop.”

As we have seen more than once, the transaction diagram (which is extracted
from the OO-DFD) only details its components but it does not “tell the story,”
that is, it does not prescribe a specific meaning and process logic. Generally, a
transaction diagram can be interpreted in different ways; but the analyst and the
user must determine and specify the proper meaning and process logic according
to which the transaction should work. The process logic of a transaction will be
specified in pseudo code. Initially we will create general, top-level descriptions
of the transactions; later on they will be more detailed.

256 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Top-Level Descriptions of Transactions

The process logic of the transactions must be determined by the analyst in
cooperation with the user (or his/her representative), because the transaction is
aimed to assist the user performing a business function. The process logic of a
transaction can be described using various structured techniques, such as those
used to describe programs or other sequences of activities. In FOOM we use
Structured English or pseudo code.4

A top-level description of a transaction consists of two types of commands: (1)
commands which define the main activities that the transaction performs; and (2)
commands which define the process logic according to which the activities are
performed.
The commands which define the main activities of a transaction are based on its
functions and other components, as follows:

• Each function appearing in a transaction is translated to a command
“execute function...” followed by the function number and name.

• Each dataflow from a user entity to a function is translated to a command
“input from U...” followed by the user number and name and the dataflow
name.5

• Each dataflow from a function to a user entity is translated to a command
“output to U…” followed by the user number and name and the dataflow
name.

• Each dataflow from a class to a function is translated to a command “read
from C...” followed by the class number and name and the dataflow name.

• Each dataflow from a function to a class is translated to a command “write
to C…” followed by the class number and name and the dataflow name.

• Each dataflow from a function to a function is translated to a command
“move to F…” followed by the function number and the dataflow name.

The process logic of the transactions is defined with structured-programming
patterns:

• Sequence: Commands which are performed in sequence are detailed one
after the other, either in the same line or in separate lines.

Transactions and Their Top-Level Design 257

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Conditions (braches): Commands which are performed according to
conditions are specified using the pattern “if <condition> then <action> else
<action>”, where <action> may stay of any of the previous commands.
Alternatively, if the conditions are complex and to avoid nesting of “ if…
then…. else…” patterns, the “Do case… end case” pattern may be used,
within which the various conditions and actions can be detailed one after the
other.

• Iterations (loops): Commands which may be repeated many times,
depending on certain conditions, are specified using a “Do-while... end-
while” pattern, with a mechanism to determine the end-of-loop condition.

It should be emphasized again that a top-level description of a transaction is not
a one-to-one mapping from the transaction diagram. Certain changes, usually
additions, may take place due to the process logic determined for the transaction.
For example, wherever the previous mapping rules say “dataflow name” there
may be some variations due to the specific interpretation of the transaction which
may imply more specific details about what a dataflow included. At the same
time, note that the transaction’s top-level description does not include all possible
and needed details; in particular, it does not detail exactly the activities involved
in its functions. Such details will be added, as already mentioned, at the step of
detailed description of transactions.
In the sequel we show a few examples of top-level descriptions of transactions.
The first three examples are based on the transactions diagrams presented in
Figure 10.1. The examples include explanations, which are brought in parenthe-
ses and italic font within the example text.

Example 1: Top-Level Description of Transaction (a) of Figure 10.1
Begin transaction 1.1 (The ID of the transaction is made of the numbers of its functions.)
Input from U1 Tenant: type of operation desired (It is assumed that an input screen is displayed

and the user is asked to select “add” or “update” a tenant.)
If action = “add” then input from U1 Tenant: new tenant details to add
Else (if action = “update”) then input from U1 Tenant: tenant details to update (It is assumed

that upon selection of “update” the function first asks the user to input an apartment number
or tenant family name; based on that it retrieves the details of that tenant and presents them
on the input screen/form, enabling the user to key in the changes. Note that the transaction
diagram does not show a “read’ dataflow from class C1 to function 1.1; it is implied because,
as we know, any add or update activity is preceded by a find/read activity.)

Execute F1.1: Add/update tenant details
Write to C1 Apartments: new or updated tenant details

End transaction.

258 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 2: Top-Level Description of Transaction (c) of Figure 10.1
Begin transaction 1.4/5
Input from U1 Tenant: Apartment number or family name
Read from C1 Apartment: tenant details (The function finds and retrieves the apartment object.)
If not-found then present error message and ask user to input again an apartment ID
Else input from U1 Tenant: payment details (The exact details are specified in the DD.)
Execute F1.4 Input payment (Actually, this function does the previous activities; it is brought here

just for the completeness of the description.)
Move to F1.5: tenant and payment details
Execute F1.5: Store payment and report (Actually, this function does the following activities; again,

it is brought just for the completeness of the description.)
Write to C1 Apartment: payment details
Write to C5 Company: sum paid
Output to U1 Tenant: receipt

End transaction.

Example 3: Top-Level Description of Transaction (e) of Figure 10.1
Begin transaction 1.7/8

(This is a time transaction that will be activated at the end of each month;
the dataflow from T1 to F1.7 is not included in the description.)

Do-while there are apartment objects in class C1: (The transaction performs a loop on all the
apartment objects.)
Read from C1 Apartment: details of fees and payments since the beginning of year
Execute F1.7 Produce end-of-month report (The function name is misleading; it actually

calculates the tenant’s debt; the method of calculation is not described yet at this stage;
generally, it sums up the actual payments and compares them to the sum supposed to
be paid according to the monthly fees. In addition the debt of the tenant is accumulated.)

Output to U2 Company: debts report (A line is printed in the debts report detailing the debt
of the current tenant.)

Move to F1.8: debt of tenant and date of past reminder
Execute function 1.8: produce remainder to ower (The function checks the condition

for sending a reminder considering the size and age of the debt and the month in which
the past reminder was sent; these details are not included here; they are recorded in
the DD and will be included in the detailed description.)

If remainder = “T” then Write to C1 Apartment: date of reminder; Output to U1
Tenant: notification and debt details (This applies only to tenants who need to be
reminded.)

Else; (no action for a tenant who needs not be reminded)
End while

Transactions and Their Top-Level Design 259

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Write to C5 Company: sum of debts (The accumulated sum of debts of all tenants is added to
the attribute total amounts receivable of the Company class.)

End transaction.

Example 4: Top-Level Description of Transaction 4.3-7 of Figure 8.13
(Chapter XIII)
The following example refers to the transaction that appears in OO-DFD-4 of
the musical programs system (see Chapter VIII). This is a rather complex
transaction including functions 4.3-4.7. It deals with the scheduling of music
programs by the editor. The diagram of the transaction is presented in Figure
10.2. The top-level description of the transaction follows, along with comments.

Begin transaction 4.3-7
Input from U3 Editor: program name and date
Read from C2 Music program: details of program (A search is conducted for the program which

the editor wishes to schedule, that is,assign musical pieces. Among other things, the music
program object includes the types of music suitable for this program.)

Read from C3 Scheduled program: details of assignment (The Scheduled program object is
retrieved. It contains the details of the musical pieces that have already been assigned to
the program.)

Execute F4.3: Input program to schedule (This function name is misleading; actually this command
is written only for the completeness of the description because the input has already been
received in the “Input from…” command.)

Move to F4.4: details of program and existing assignments (The forwarded data will be used by
the following functions.)

Read from C1 Musical piece: suitable pieces for program (The suitable pieces are retrieved
according to previous parameters, which include the types of music suitable for this
program.)

Execute F4.4: Review suitable pieces for program (This function presents to the editor the details
of the musical pieces already assigned to this program and other suitable pieces retrieved
from the Musical pieces class.)

Output to U3 Editor: assigned and suitable pieces (This command is actually redundant; what
it does is already said in function 4.4.)

Move to F4.5: details of suitable pieces
Read from C3 Scheduled program: past plays (retrieves lists of musical pieces already played in

past broadcasts of the program, so that the editor will be aware of which pieces have already
been played and how many times)

Read from C1 Musical piece: assigned pieces (retrieves the details of the above musical pieces)
Execute F4.5: Review past plays of pieces in program (This function actually presents to the editor

the details of the musical pieces that were actually played in past broadcasts of this program.)

Output to U3 Editor: past plays of pieces in program (Again, this command is redundant due to
the previous one.)

260 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Move to F4.6: details of program, pieces and past plays
Read from C4 Listener request: listeners’ requests within the range of dates (Only requests with

status “waiting” whose range of date includes the date of the scheduled program are
retrieved.)

Execute F4.6: Review listeners’ requests (The function presents to the editor the above listeners’
requests. The command is the same as the next one.)

Output to U3 Editor: listeners’ requests
Move to F4.7: details of musical pieces assigned and played, and listeners’ requests (All the passed

Figure 10.2. Transaction diagram of transaction 4.3-7 of the musical
programs system

Transactions and Their Top-Level Design 261

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

information, which is also displayed to the editor,will assist in assigning musical pieces to
the scheduled program.)

Do-while the editor wishes to assign more musical pieces: (The loop executes as long as the editor
wishes to assign musical pieces to the program. The editor may assign only some pieces
in a work session with the transaction, pause, and resume the work some other time.)
Input from U3 Editor: selected musical piece and listeners’ requests (Assume that the editor

is reviewing the information presented on his/her screen, including lists of suitable
musical pieces, pieces already assigned to the program being scheduled, pieces that
have been played in past broadcasts of the program and listeners’ requests. Based
on all this, the editor decides which musical piece to assign.)

Execute F4.7: Assign pieces and requests (It may be assumed that the actual assignment of
a musical piece is done by clicking on its name appearing in any of the lists presented
on the editor’s screen.)

Write to C3 Scheduled program: assigned piece (The selected piece is added to the set of
assigned pieces.)

Write to C1 Musical piece: program where assigned (The scheduled program is added to
the set of programs the piece was assigned to.)

Do-while there are listener requests for this piece: (An assigned piece may have been
requested by one or more listeners.)

Write to C3 Scheduled program: approved listener request (The listener whose
request has been fulfilled is added to a set of approved requests.)

Write to C4 Listener request: status = “approved”
Output to U2 Listeners: notification of approved request

End while (end of inner loop dealing with approved listener requests)
End while (end of outer loop dealing with the assignment of pieces)
If editor completed all the assignments of pieces to this program then write to C1 Musical

piece: status = “scheduled”
Else; (The status remains “unscheduled”.)

End transaction.

As we know, when the structured description of a process is very complex, it may
be presented in a hierarchical form, with one “main” procedure (or module) and
one or more subprocedures. Each subprocedure is given a name by which it is
referenced from the main procedure (using the command “Do <procedure
name>). Since the description presented previously is fairly complex, it will be
presented again, this time by using a main procedure and three subprocedures.

Begin transaction 4.3-7
Do “Present program for assignment”
Do “Present suitable pieces”
Do “Assign pieces”

262 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If editor completed all the assignments of pieces to this program then write to C1 Musical piece:
status = “scheduled”

Else; (The status remains “unscheduled.”)

End transaction.

Begin Present program for assignment
Input from U3 Editor: program name and date
Read from C2 Music program: details of program (A search is conducted for the program which

the editor wishes to schedule, that is, assign musical pieces. Among other things, the music
program object includes the types of music suitable for this program.)

Read from C3 Scheduled program: details of assignment (The Scheduled program object is
retrieved. It contains the details of the musical pieces that have already been assigned to
the program.)

Execute F4.3: Input program to schedule (This function name is misleading; actually this command
is written only for the completeness of the description because the input has already been
received in the “Input from…” command.)

Move to F4.4: details of program and existing assignments (The forwarded data will be used by
the following functions.)

End Present program for assignment.

Begin Present suitable pieces
Read from C1 Musical piece: suitable pieces for program (The suitable pieces are retrieved

according to previous parameters, which include the types of music suitable for this
program.)

Execute F4.4: Review suitable pieces for program (This function presents to the editor the details
of the musical pieces already assigned to this program, and other suitable pieces retrieved
from the Musical pieces class.)

Output to U3 Editor: assigned and suitable pieces (This command is actually redundant; what
it does is already said in function 4.4.)

Move to F4.5: details of suitable pieces
Read from C3 Scheduled program: past plays (retrieves lists of musical pieces already played in

past broadcasts of the program, so that the editor will be aware of which pieces have already
been played and how many times)

Read from C1 Musical piece: assigned pieces (retrieves the details of the above musical pieces)
Execute F4.5: Review past plays of pieces in program (This function actually presents to the editor

the details of the musical pieces that were actually played in past broadcasts of this program.)
Output to U3 Editor: past plays of pieces in program (Again, this command is redundant due to

the previous one.)
Move to F4.6: details of program, pieces and past plays
Read from C4 Listener request: listeners’ requests within the range of dates (Only requests with

status “waiting” whose range of date includes the date of the scheduled program are
retrieved.)

Execute F4.6: Review listeners’ requests (The function presents to the editor the above listeners’
requests. The command is the same as the next one.)

Transactions and Their Top-Level Design 263

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Output to U3 Editor: listeners’ requests
Move to F4.7: details of musical pieces assigned and played, and listeners’ requests (All the passed

information, which is also displayed to the editor, will assist in assigning musical pieces to
the scheduled program.)

End Present suitable pieces.

Begin Assign pieces
Do-while the editor wishes to assign more musical pieces: (The loop executes as long as the editor

wishes to assign musical pieces to the program. The editor may assign only some pieces
in a work session with the transaction, pause, and resume the work some other time.)
Input from U3 Editor: selected musical piece and listeners’ requests (Assume that the editor

is reviewing the information presented on his/her screen, including lists of suitable
musical pieces, pieces already assigned to the program being scheduled, pieces that
have been played in past broadcasts of the program and listeners’ requests. Based
on all this, the editor decides which musical piece to assign.)

Execute F4.7: Assign pieces and requests (It may be assumed that the actual assignment of
a musical piece is done by clicking on its name appearing in any of the lists presented
on the editor’s screen.)

Write to C3 Scheduled program: assigned piece (The selected piece is added to the set of
assigned pieces.)

Write to C1 Musical piece: program where assigned (The scheduled program is added to
the set of programs the piece was assigned to.)

DO-while there are listener requests for this piece: (An assigned piece may have been
requested by one or more listeners.)

Write to C3 Scheduled program: approved listener request (The listener whose
request has been fulfilled is added to a set of approved requests.)

Write to C4 Listener request: status = “approved”
Output to U2 Listeners: notification of approved request
End while (end of inner loop dealing with approved listener requests)

End while (end of outer loop dealing with the assignment of pieces)

End Assign pieces.

In conclusion, we wish to remind that the detailed description of a transaction,
which will be created later on, will contain more details and will be more
accurate. In addition, it will refer to specific input and output screens and reports
that will be designed in the next step of the design phase. Generally, the detailed
description of each transaction will enable the designer to identify activities or
procedures that will be defined as methods. Certain methods will be removed
from the “main” body of the transaction and attached to proper classes;
remaining parts, that is, the main part of the transaction will become the
“transaction method,” which will be attached to a new class: Transactions. This
abstract class will include no objects, only transaction methods—one for each
transaction. (This will be detailed in Chapter XII.)

264 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Data Dictionary of the Transactions

The DD of the system must be updated with information on the transactions and
their components. As we did in Chapter IX, here too we show the needed updates
for both a relational DD and an OO dictionary.

The Relational Data Dictionary

Two new tables will be added to the data dictionary, as follows:

Transactions Table

This table has a record for each transaction. Its structure is as follows:

transaction
ID

transaction
name

type
(U/T/R/M)

ref. to
diagram

ref. to
description

activation
conditions

users and
authorizations

Transaction ID is a unique number or code which can be used to identify a
transaction, instead of the combination of function numbers included in the
transaction which we have been using so far in the examples. In addition, each
transaction may be given a name which represents what it does. The type field
indicates whether it is a user, time, real-time, or mixed transaction. The next two
fields include references to files which store the transaction’s diagram (if one
has nee created, since it already exists in the OO-DFDs) and the top-level
description. The last two text fields enable describing specific conditions for the
activation of the transaction (e.g., the average and pick time frequency of
activation, or preconditions for activation), and the users who will be permitted
to activate the transaction.

Components of Transactions Table

The structure of this table is as follows:

transaction ID component code number

Transactions and Their Top-Level Design 265

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It enables finding the various components of a transaction and the different
transactions in which a certain component participates. Obviously, each elemen-
tary function in the system will appear only once in this table, while general
functions will not appear at all. External entities and classes may appear many
times, according to the number of transactions in which each of them partici-
pates. Note that the key of this table consists of all its fields/attributes.
In addition to these new tables, the Elementary dataflows table will be added
a new field belongs to transaction.

The OO Data Dictionary and the Transactions Class

A new class titled Transactions will be added (see Figure 10.3). Most of the
attributes of this class are equivalent to respective fields in the Transactions
table. Two specific attributes are set components of transaction [Compo-
nents] and set elementary dataflows [Elementary dataflows]. At this stage
we treat the new Transactions class as part of the DD. However, it will also
be part of the complete class diagram of the application. As we will see (in
chapter XII), each object of this class will include a transaction method which
will include the “main” part of the transaction code, with messages to specific
methods that will be attached to other classes. This is indicated in Figure 10.3 by
transactions.method (ID) at the lower compartment of the class rectangle.
Besides this new class, the class Components will be added an attribute set
included in transactions [Transactions], and the class Elementary dataflows
will be added an attribute belongs to transaction [Transactions].

Figure 10.3. The transactions class

266 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Review Questions

1. What are the products of the design phase? What are its substages?
2. What is a transaction from a user’s point of view?
3. What is a transaction in terms of OO-DFD components?
4. Why are general functions not included in transactions?
5. Explain and exemplify why a transaction can belong to more than one

transaction.
6. What are the similarities and differences between a transaction in FOOM

and a use case in UML?
7. What is a user transaction, a time transaction, and a mixed transaction?

Show examples of transaction diagrams of each type.
8. Prepare a few transaction diagrams of the Apartments Building system.

How many transactions, in total, are there in that system? List the
elementary functions in each of the transactions.

9. Prepare a few transaction diagrams of the Musical Programs system. How
many transactions are there in that system? List the elementary functions
in each of the transactions.

10. List the types of commands included in a top-level description of a
transaction.

11. Prepare top-level descriptions of the transactions prepared in Review
Question 9 for the Apartments Building system.

12. Prepare top-level descriptions of the transactions prepared in Review
Question 10 for the Musical Programs system.

13. Extend the relational DD created in Review Question 12 of chapter IX, by
creating a Transactions table and a Components of Transactions table.
Then populate these tables with data about the transactions of one of the
systems: Apartments Building or Musical Programs.

14. Extend the objects DD created in Review Question 13 of chapter IX, by
creating a Transactions table and a Components of Transactions table.
Then populate these tables with data about the transactions of one of the
systems: Apartments Building or Musical Programs.

Transactions and Their Top-Level Design 267

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Babin, G., Lustman, F., & Shoval, P. (1991). Specification and design of
transaction systems: A formal approach. IEEE Transactions on Software
Engineering, 17(8), 814-829.

Shoval, P. (1988) ADISSA: Architectural design of information systems based
on structured analysis. Information System, 13(2), 193-210.

Shoval, P. (1991). An integrated methodology for functional analysis, process
design and database design. Information Systems, 16(1), 49-64.

Endnotes

1 The term “transaction” is taken from the ADISSA methodology (Babin,
Lustman, & Shoval, 1991; Shoval, 1988, 1991). One may find some
similarity between a transaction and a Unified Modeling Language (UML)
use case. However, while a use case consists mainly of an actor and
functions, a transaction also includes classes and external/user entities. As
we know, a use case can also be described in a narrative description; here,
a transaction is described in pseudo code.

2 In a system which serves many users, it is likely to assume that there is a
sharing of responsibility and an authorization policy that allows certain
users to access and activate only certain transactions and prevents them
from activating others.

3 This shows that in spite of having moved from the analysis phase to the
design phase, changes of the analysis products are still possible (although
relatively minor ones); that is, analysis and design are not entirely sequential
processes, they are more like spiral processes.

4 It is assumed that the reader is familiar with this technique. Anyhow, we
will show examples which will make it clear. Other structured techniques,
which are not used here, may be appropriate for this purpose; for example,
flowcharts, sequence diagrams, and collaboration diagrams. Following the
aims of FOOM, we opt to minimize the different techniques and notations
and prefer using pseudo code only, here as well as at the next step of
detailed design of transactions.

5 But not from a time entity, because the time interval is not data input to the
system, it only signifies the time of activation.

268 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XI

Design of the
Man-Machine

Interface:
Menus, Inputs,

and Outputs

This chapter deals with the design of the interfaces between the users and
the system. First, it describes a method for the design of menus trees—for
the entire system as well as for its subsystems. Then it describes how to
design the inputs and outputs/reports of the systems. As a result, new
classes of menus, forms, and reports are added to the class diagram.

Designing the Menus Tree Interface

A menus interface enables the user to choose the desired options from lists of
available options presented on screen. The lists of options, that is, menus, may
appear in various forms, for example, text, icons, buttons, and so forth. The
advantage of a menus interface is that even naïve, inexperienced users are able
to operate it and find what they are looking for. If the menus are organized in a
hierarchy, as a tree of menus, the user may start the search from the root menu
which proposes the main options; the user then can successively make selections

Design of the Man-Machine Interface 269

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

down the tree until the desired option is found and selected. This kind of interface
is suitable for a variety of users, especially occasional or inexperienced ones,
who are not familiar with the information system (IS) and its capabilities. A
menus interface also enables enforcing an authorization policy: Certain users
may be given access only to the options which they are allowed to perform.
However, a menus tree may be too tedious and time consuming for experienced,
routine users, who already know what they are looking for and would like to get
direct access to the desired options. For them, a “direct manipulation” interface
is needed, for example, special function keys or shortcuts which directly activate
the desired operations. In this chapter we concentrate on the design of a menus
tree interface.
As we know, a menus tree consists of a hierarchy of menus. The root (or main)
menu contains the primary options, which reflect the main issues or services
which the system provides. The user selects an appropriate option from this
menu, and as a result the system displays a secondary (or child) menu which
includes the suboptions, that is, more specific issues/services. This process may
go on—depending on the “depth” of the menus tree in the direction explored by
the user—until at some point the user selects an option which does not lead to
another child menu, but rather activates the desired operation. Hence, any menu
may contain two types of items: “selection” and “trigger.” A “selection” item
causes the display of a submenu; a “trigger” item causes the activation of an
operation, that is, a transaction of the application. It is likely that a menu at the
top of the menus tree (particularly the root menu) will include mostly “selection”
items, while menus at lower levels will include more “trigger” items. Note that
a menus tree is not necessarily balanced, that is, the depth from the root menu
to the lowest level menu may vary, depending on the breakdown of issues/
services provided by the system. This issue will be elaborated later on.
As said, there are many ways and forms of presenting menus on screen. In other
words, a menu item may appear to the user in various forms. For example, as a
text box consisting of one or more words which describes briefly the option, or
an icon which portrays the option, or both. A “user friendly” system would enable
the user to get more explanations about the options (“help”) which can be
invoked by the user (e.g., by hitting the respective menu item). Menus may be
presented in lines or columns. For example, a root menu may consist of text boxes
displayed on the top line of the screen; once a “selection” item is selected, the
submenu may “pull down” in a column under the selected option; the selection
of a “selection” item from this menu may cause a submenu to “pop up” at a
certain location on screen, and so forth. Besides varieties of forms of presenta-
tion, there are issues of aesthetics of menus. This includes proper use or colors,
size of text and icons, location of items on screen, and so on. All these aspects
of menus design will not be discussed in this chapter. We concentrate on the
functional design of the menus interface, namely the various menu items which

270 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

should be included in the user interface and their proper organization in the menus
tree.

The Method for Designing the Menus Interface1

The menus tree is created from the three object oriented data flow diagrams
(OO-DFD) in a process consisting of two main stages: In the first stage, which
is algorithmic, a menus tree is created from the diagrams based on the general
and elementary functions that are connected to user entities. In the second stage,
which involves interaction between the designer and users, the aforementioned
menus tree is improved until a satisfactory design to the users is achieved.

The Algorithmic Steps of the Menus Tree Design Process

Step 1: Deriving an Initial Menus Tree From the OO-DFDs
A menu is created for every OO-DFD which has at least one user entity. The
menu may contain items of two types: “selection” and “trigger,” which are
determined according to the types of functions which are connected to the user
entities: For every general function connected to a user entity (one or more,
from the “input” or “output” side of the diagram), a “selection” item is defined,
because when the user will select this item, a child menu will be displayed. For
every elementary function connected to a user entity, a “trigger” item is
defined, because when the user will select it, it will cause activation of the
transaction to which that function belongs. At this stage, every menu is given an
ID number which is identical to the OO-DFD number from which it was
originated, and every item in the menu is given the number and name of the
function from which it was created. A “selection” line is marked by an “S” and
a “trigger” line is marked by a “T.” Next to the “T” we write the number of the
transaction to which the function belongs. (The data dictionary (DD) records the
transaction numbers and the transaction to which each elementary function
belongs.)
Note that the menus tree obtained by now is a subset of the OO-DFDs. As such,
its structure reflects the functional structure of the system. Clearly, only OO-
DFDs which have no user entities at all will not have a constituent menu. Any
menu created may have a different number of items of the two types, depending
on the number of functions connected to user entities and their types (general or
elementary). The root menu is likely to include mostly “selection” lines because
most of its functions are general, while lower level menus are likely to include
more “trigger” items because the respective OO-DFDs include more elemen-
tary functions. Obviously, a leaf menu includes only “trigger” items.

Design of the Man-Machine Interface 271

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We will now demonstrate step 1 of the process using the Apartments Building
system. The OO-DFDs of this system have been presented in Figures 8.7-8.10
(Chapter VIII). The initial menus tree of this system, resulting from step 1 of the
algorithm, is presented in Figure 11.1. It consists of four menus, one for each of
the OO-DFDs, because in each of them there are functions which are connected
to user entities. Based on the transaction numbers (which are written next to the
“T” items only) we can see that the system includes 13 transactions involving
users.2 Note that in some cases, the same transaction number of a transaction
is written next to more than one line, indicating that more than one elementary
function connected to user entities belongs to the same transaction. This duplicity
will be dealt with in the next step.

Step 2: Combining “Trigger” Items Belonging to the Same Transaction
As noted, a menu may happen to have several “trigger” items belonging to the
same transaction. However, the menu is meant to enable the activation of an
entire transaction, including all of its functions, not just single functions within
transactions.3 This means that the redundant “trigger” (T) items should be
combined into a single line.

Figure 11.1. Initial menus tree of the apartments building system

272 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For example, in menu 1 (Figure 11.1) items 1.2 and 1.3 belong to the same
transaction (number 3). As it looks, item 1.2 triggers function 1.2 which enables
reviewing the tenant’s details, while items 1.3 triggers function 1.3 which enables
adding or updating a monthly fee. But since the two functions are part of the same
transaction, there is no need for two separate items which “independently”
trigger the component functions of the transaction. On the contrary, the user who
is authorized to activate this transaction (say an officer of the company) wishes
to activate the transaction as a whole, and the various functions of the transaction
will be activated “internally,” according to the process logic of the transaction.
(Note that this may include activation of other functions belonging to a transac-
tion which happen to not be connected to user entities and therefore are not
present in the initial menu.) Therefore, all “trigger” items in all initial menus are
combined.
The combination of items obliges us to give the combined item a new number and
name. Temporarily, the number of a combined item is a concatenation of its original
item numbers. For example, items 1.2 and 1.3 are replaced by item 1.2/3. The name
of the unified item should express the essence of the transaction it activates, so it
may be identical or similar to the name of the transaction. Later on, at the
interactive stage of the menus design process, the items of the various menus
may be given different names according to the users’ preferences.
There may be cases where a certain transaction spans more than one OO-DFD,
that is, its functions are located in different OO-DFDs.4 In the initial menus tree
it means that the items with the same transaction number may appear in different
menus. As we know, the redundant items need to be combined; the question is:
in which menu to place the combined item? The best strategy is to place it in the
menu that originated from the OO-DFD in which “most” of the transaction is
located. “Most” can be determined according to the number of functions
belonging to that transaction in each of the respective diagrams. The rationale
for this is that a user is likely to look for the transaction in the path of menus which
corresponds to the decomposition of functions in the system: If most of a
transaction is located in a certain OO-DFD, its “trigger” item should be located
in the respective menu. If no difference can be visible (e.g., the same number
of functions of the transaction appear in two diagrams), then the location of the
menu item can be determined arbitrarily. Another possibility is to include the
same item in the two menus. This may be even preferable to users who may be
able to locate and trigger the transaction by following more than one search path.

Step 3: Removing Items Belonging to “Time” and “Real-Time”
Transactions
At this stage the menus may include “trigger” items which belong to “time” or
“real-time” transactions. For example, it is possible that a certain transaction has

Design of the Man-Machine Interface 273

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

been defined as a “time” transaction in spite of including elementary functions
which are connected to user entities.5 The items which belong to such transac-
tions should be removed from the menus tree. (But note that this does not apply
to “mixed transactions,” which may be activated from the menus interface as
well as on a timely basis.)
In the example of the Apartment Building system (Figure 11.1) there is only
one transaction—transaction 6—which has been defined as “time transaction.”
It appeared in the initial menu because functions 1.7 and 1.8 (that belong to it)
are connected to user entities. However, it has already been determined that this
transaction is not to be activated by a user, only in predefined time intervals (and
as a result of its activation, reports will be sent to a user); hence, items 1.7/8 will
be removed from menu 1.

Step 4: Elimination of “Degenerate” Menus
As a result of all the previous steps, “degenerate” menus may have been created,
that is, menus containing a single item only. A degenerate menu does not offer
any choice to the user, and therefore needs to be removed from the menus tree.
If the item in the degenerate menu is a “trigger” (marked “T”) it replaces the
“selection” line in the parent menu. This means that the respective transaction
will be activated from the parent menu. If the item in the degenerate menu is a
“selection” (marked “S”), there is no need for any additional changes (except for
elimination of the degenerate menu). This means that upon the selection of the
parent item (in the parent menu) the “grandchild” menu (which now becomes the
“child” menu) will be presented.
Figure 11.2 presents the menus tree of the Apartment Building system at the
end of step 4 of the algorithmic stage. As we can see, each “T” item is associated
with one transaction number. Note the numbers and names of the unified
“trigger” items. Note also that the items of the “time transaction” 6 have been
eliminated. (In this example, no menu has become “degenerate.”)
Since no degenerate menus have been created in the previous example, we will
demonstrate such cases using another example, the Customers and Suppliers
system. The OO-DFDs of this system have been presented in Figures 8.4-8.6
(Chapter VIII). Figure 11.3 presents the menus tree of the system created in
each of the algorithmic steps: Part (a) presents the menus created in step 1. As
can be seen, this system has only 4 transactions. Part (b) presents the menus
after step 2 and 3 together. The two “trigger” items of transaction 1 have been
unified and the “trigger” items of transactions 3 and 4 (defined as “time
transactions”) have been removed. As a result, the two menus 1 and 2 became
“degenerate” and they need to be removed. Part (c) of the figure presents the
only menu that remains in this small system.

274 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 11.2. The menus tree at the end of the algorithmic stage

Figure 11.3. The menus tree of the customers and suppliers system

Design of the Man-Machine Interface 275

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Interactive Stage of the Menus Tree Design Process

The purpose of the interactive stage is to improve the menus tree which has been
created thus far “automatically.” This stage is performed in cooperation between
the analyst/designer and the users (or their representatives), using appropriate
software tools purposed for the design and creation of menus.6 Using such a tool,
the menus thus far created can be changed and improved according to the users’
preferences.7

Unlike the previous stage, this one is not structured. In the sequel we outline a
few guidelines for possible improvements of the menus tree.

• Unification or Splitting of Menus: It is possible that at the end of the
algorithmic stage we obtained menus with too few or two many items.
“Narrow” menus (with only two or three lines) are especially not desirable;
a “narrow” menu can be eliminated by moving its items up the tree,
replacing their parent “selection” item. A “wide” menu (with many items,
say above 10) may be split into two menus, such that each of them will
include items which are tightly related. Consequently, the “selection” item
in the parent menu must be split into two “selection” items, each for its
respective child menu.

• Renaming Menu Items: Instead of the line numbers and names of the
menu items, which are based on the functions numbers and names, more
appealing numbers and names can be given, according to the users’
preferences. For example, instead of existing item numbers it may be
decided to use serial numbers for the items within each menu, or to eliminate
any numbers at all and use only item names. (Numbers are not needed
anyhow if items are selectable with a pointing device.) As for the names of
the items, whether “selection” or “trigger,” they should be as short as
possible, but still reflective of the selections proposed or transactions
activated. Obviously, the symbols “S” and “T” are removed from the
menus.

• Help and Navigation Mechanisms: A help mechanism should provide
explanations to users who are not sure about the meaning of a certain menu
item. Hence, for each menu item, a proper textual explanation should be
added.8 In addition, the menus should include a navigation mechanism (e.g.,
hotkeys) that will enable a user to easily move from a given menu up to its
parent menu, the root menu, or any specific menu. Another option should
be the elimination of the display of menus (relevant for an experienced user)
and the option to use function keys which directly trigger desired transac-
tions.

276 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• “Aesthetic” Design of Menus: This involves, as already said, designing
the graphic form of the menus, adoption or creation of icons instead of or
in addition to the items’ texts, and so forth. These aspects are beyond the
scope of this book.

The Activation of “Time” and “Real-Time”
Transactions

“Time” and “real-time” transactions are not activated by users and are not
accessible from the user interface. The activation of the “time transactions” of
an application should be the responsibility of the person or organizational unit in
charge of the day-to-day operation of the system. “Time transactions” can be
activated by a “scheduler” program which resides in the computer and runs at
all times. Assume that the scheduler program maintains a list of all “time
transactions” running by the computer.9 Since each such transaction has a time
interval for its activation, the program can compute for each transaction its next
time (date/hour/minute) and be prompted at certain time intervals (e.g., every
hour); it would then check if any transactions (at the top of the table) have to be
activated at that time and act accordingly. Afterwards, the program would
calculate the next activation time of the transaction (according to the time
interval stored in its table of “time transactions”) and move it to the proper place
in the sorted time table.
A “real-time” transaction is automatically activated when its sensor receives
proper input from its environment. Our assumption is that the system will be
implemented with a sensor that will be able to receive and analyze the inputs, and
when the input corresponds with certain predefined activation conditions, a
signal will be sent and activate the transaction.

Designing Menus for Subsystems

Until now we have thought of the users of the IS as one group where every user
can access (i.e., activate) all the transactions of the system via the menus tree.
This may work for small systems with few users and transactions. But a large-
scale system may have many (even an unlimited number of) users. The users
may belong to different organizational units, each with its objectives and
responsibilities in the organization. Moreover, a system may have users from
within the organization (employees) or from the outside (e.g., customers and
suppliers). A large-scale system may consist of many transactions which are

Design of the Man-Machine Interface 277

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

aimed to support the various different users. In such systems there is no need
(and it is also undesirable) to expose all of the system’s transactions to all users,
because of security, privacy, and managerial reasons. This means that not all
users should be exposed to all menus and menu items of the system. We need
to create a mechanism which will enable to the “opening” of only certain parts
of the system to certain types of users, by creating “partial” menus of the system
for them. Such a mechanism is needed in addition to any other means to protect
the system from access by unauthorized persons (such as login authorizations
and passwords). We are looking for a mechanism to define and create menus
trees, submenus of the “global” menus tree, tailored for specific groups of users.
The other protection mechanisms can and should be applied on any group of
users who have access to some part of the system—a subsystem—via a
submenus tree.
Let us first define a subsystem: A subsystem consists of a set of transactions
which serve a group of users of a certain type, who have a certain organizational
responsibility or special characteristics for which certain transactions are
defined. The subsystem includes a submenus tree which enables the users of that
subsystem to operate (activate) their transactions. The subsystem includes also
a subset of the global database schema which is used by those users. As said,
usually a subsystem serves a certain organizational unit. For example, in the
Student Management System of a university we may define the following
subsystems: student admission, academic affairs (including registration to courses,
reporting of grades, etc.), tuitions, dormitories, executive reports, and so forth.
Clearly, the users of a certain subsystem need to have access to certain
transactions which “belong” to their subsystem, but need not know about or have
access to other subsystems and their transactions.
Subsystems of a system can be defined when the system is being developed, at
the design phase. In addition, a new subsystem can be defined anytime during the
lifetime of a system. In any such case, a menus tree for the subsystem is defined
as follows.

1. First, an administrative/manager decision must be made about the need to
define a subsystem, its objectives and users. Sometimes a subsystem will
correspond to a certain organizational unit, but not necessarily. Based on
that, a decision must be made about which of the systems’ transactions will
belong to this subsystem. A certain transaction may belong to more than
one subsystem, if users who belong to different subsystems are authorized
to activate it.10

2. Based on the aforementioned decision, we review the global menus tree
and mark the “trigger” (T) items of the transactions of that subsystem.

278 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. Then we mark the respective “selection” (S) items at the parent menus of
the marked “T” items.

4. Then we mark the “selection” items at the parent menus of the marked “S”
items; this is repeated until we reach the root menu.

5. All marked items constitute the initial submenus tree of the subsystem. It
is possible that this process generated “degenerate” menus (consisting of
single “T” or “S” items). Such menus should be eliminated, as described for
the global menus tree.

6. Eventually, the interactive stage of the menus tree design process should
be performed, in order to improve the resulting submenus tree.

It must be noted that in the case of a large-scale system, it is possible that a global
menus tree (for the entire system) will not be implemented at all, but rather it will
remain only a design artifact (a “virtual” menus tree). Rather, only submenus
trees will be created for the various subsystems. Note also that not only a certain
transaction may belong to more than one subsystem, it is reasonable that a certain
user will “belong” to more than one subsystem. For example, a user at a certain
managerial level or position may have access to transactions belonging to
different subsystems.

The Menus Class

After the menus are designed, a new class Menus is added to the class diagram.
The objects of this class are all the menus that were designed for the system.
Figure 11.4 presents the class diagram. The Menus class contains two types of
attributes: attributes bearing the content of the menu objects, and attributes
dealing with the display options of the menus. The figure only presents the
content-bearing attributes, that is, menu name, the key attribute, and set menu
items; each member of this set is a triplet consisting of: (1) ID code—as we
know, a menu item does not have to have an ID, therefore this attribute may
remain null; (2) name—includes the text of the item that will be displayed on
screen; and (3) type—either “S” for a selection line or “T” for a trigger line.
Attributes dealing with display options, which are not presented in the figure, may
include, for example, reference to the parent menu, reference to the icon
representing the menu (if any), shortcuts, and so forth. It might be assumed that
attributes of this kind will be implemented by using appropriate class libraries of
the CASE tool or the interface development environment used by the developers.

Design of the Man-Machine Interface 279

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 11.5 presents two objects (that is, menus) of the Menus class, taken form
the Apartments Building example: the root (main) menu, and Menu object 1.
The Menus class may include various methods that will be implemented using
the class libraries of the interface development environment, for example, a
method for creating a shortcut for a menu, a method for the updating of the menus
hierarchy, a method for creating a new menu, and so forth. We exemplify only
two methods (Figure 11.4):

A. Display method presents a menu object on screen, detailing its various
menu items (each of which may be of type “S” or “T”).

B. Choose (ItemID11) method is activated by the Display method once the
user selects one of the above menu items. Once activated, the method
sends a message in accordance with the selection made by the user: If a
selection (“S”) item has been selected, a message is sent to the Display
method of class Menus, asking to display the selected submenu (identified

Figure 11.4. The menus class

Figure 11.5. Two menu objects of the menus class

280 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

by ItemID). If a trigger (“T”) item has been selected, a message is sent to
the class Transactions, asking to activate the transaction method (identi-
fied by ItemID). This issue will be elaborated in Chapter XII.

At this stage it is possible to define the method Choose (ItemID), since we
already know what the menus are and the transactions of the system. Here is a
pseudo-code description of this method for the Apartment Building system:

Begin Choose (ItemID)
Do while not “exit” (“exit” may be implemented as a “button” enabling the user to

exist the system)
Menu-0.Display (displays the main menu of the application)
Menu-0.Choose (ItemID) (accepts the user’s selection, which may be an “S” or a “T”

item of the main menu)
On Case ItemID do:

Case 1: Menu-1.Display (displays menu 1: Payments of fees)
Menu-1.Choose (ItemID) (accepts the user’s selection of from this menu)

Case 2: Menu-2.Display (displays menu 2: Maintenance works)
Menu-2.Choose (ItemID) (accepts the user’s selection of from this menu)

Case 3: Menu-2.2.Display (displays menu 2.2: Performance of works)
Menu-2.2.Choose (ItemID) (accepts the user’s selection of from this menu)

Case 4: Transaction.transaction1 (a message to class Transactions to activate
transaction 1)

Case 5: Transaction.transaction2 (a message to activate transaction 2)
Case 6: Transaction.transaction3 (a message to activate transaction 3)
Case 7: Transaction.transaction4 (a message to activate transaction 4)
Case 8: Transaction.transaction5 (a message to activate transaction 5)
Case 9: Transaction.transaction7 (a message to activate transaction 7)
Case 10: Transaction.transaction8 (a message to activate transaction 8)
Case 11: Transaction.transaction9 (a message to activate transaction 9)
Case 12: Transaction.transaction10 (a message to activate transaction 10)
Case 13: Transaction.transaction11 (a message to activate transaction 11)
Case 14: Transaction.transaction12 (a message to activate transaction 12)
Case 15: Transaction.transaction13 (a message to activate transaction 13)

End Case
End while

End.

Design of the Man-Machine Interface 281

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Note that if the user selects a “selection” item from a displayed menu, it causes
the display of the respective submenu, and then an additional user selection from
the submenu, invoking the Choose method again. However, if the user selects a
“trigger” item, a message is sent to the abstract class Transactions, where the
selected transaction method is activated and starts to execute (as will be detailed
in Chapter XII). Once the execution is completed, the main menu is displayed.

Designing the Inputs and Outputs

The design of the inputs and the outputs12 is based on the Input/Output commands
appearing in the transactions’ top-level descriptions. As we know, the feeding
in of input data and the production of output information is done within the various
transactions of the system. Every input is expressed in the OO-DFD by a
dataflow from a user entity to an elementary function, and every output is
expressed by a dataflow from an elementary function to a user entity. In the top-
level descriptions of transactions, the Input/Output commands are expressed as
follows:

• Input from User…:13 the name of the input dataflow
• Output to User…: the name of the output dataflow

A transaction may include several input or output commands, each appearing in
a proper place, according to the process logic of the transaction. So far, the
medium for feeding the inputs or producing the outputs have not yet been
determined. For example, it has not yet been determined whether a certain input
will be fed using a keyboard, by a barcode reader, or a magnetic card reader.
Similarly, it has not yet been determined whether a certain output will be printed,
presented on screen, or sent by e-mail. At this stage of inputs and outputs design,
the following decisions need to be made for every input and output dataflow/
command:

• For every input dataflow/command, it should be determined which input
medium (device) will be used and how will the data be fed in. Based on that,
the respective input device should be designed in detail. For example, it may
be determined that a certain input will be performed using a keyboard and
input screen; hence the screen must be designed in detail.

282 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• For every output dataflow/command, it should be determined which output
device will be used. Based on that, the respective output device should be
designed in detail. For example, it may be determined that a certain output
will be performed by a printed report; hence the report must be designed in
detail.

In spite of what has been said, not every input command will necessarily become
an independent input screen; it is possible that several input commands will be
combined and implemented by a single input screen. Similarly, it is possible that
several output commands will be combined and implemented by a single report.
Moreover, it is possible that several input and output dataflows/commands
(within a certain transaction) will be combined and implemented by one
interactive input/output screen, which enables both feeding input data and
presenting output to the user.
The decisions on the appropriate input and output media (devices) should be
made in cooperation between the designer and the users’ representatives,
because it may have various implications, such as budgets to acquire the
necessary devices, the infrastructure, work methods, and so forth. When
considering the appropriate input and output devices for each transaction, it is
necessary to take into account the nature of the transaction (for example,
whether it is a user transaction where the user must feed in the data while
interacting with the transaction, or a time transaction which requires preparation
of the input data in advance, using specialized “off-line” devices, e.g., scanners).
Other important factors include the frequency in which the transaction is
activated; the amount of data that needs to be input or produced; the required
level of accuracy; and the fitness of the devices to the users. Besides, existing
devices in the organization need to be taken into account too, as well as other
financial constraints.
The specific design of each input or output screen is done with appropriate
software tools (similar to what has been said about the menus interface design).
When designing a specific input or output, it is necessary to make sure that it
includes all the data elements that need to be input or output. This is done with
assistance of the DD, which specifies for each input and output dataflow the data
elements it contains. For every data element in an input screen, it should be
determined whether the data will be fed in by keying in the data or by selecting
the data from a list, using the mouse. Based on these decisions, the headlines,
titles, and field names need to be determined. In addition, the right controls14 need
to be chosen for every input.
We will demonstrate the task of input and output design using a transaction from
the Apartments Building system. First, let us have a look again at the top-level
description of transaction 1.4/5 which deals with Tenant Payments. (This

Design of the Man-Machine Interface 283

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

description has been shown in example 2 of chapter X; comments have been
removed; the input/output commands are in bold.)

Begin transaction 1.4/5
Input from U1 Tenant: Apartment number or family name
Read from C1 Apartment: tenant details
If not-found then present error message and ask user to input again an apartment ID
Else input from U1 Tenant: payment details
Execute F1.4 Input payment
Move to F1.5: tenant details and payment
Execute F1.5: Store payment and report
Write to C1 Apartment: payment details
Write to C5 Company: sum paid
Output to U1 Tenant: receipt

End transaction.

Assume that the user who is in charge of this transaction is an officer of the
company who activates the transaction whenever he/she wishes to update the
system on a tenant’s payment. The officer is sitting in front of a workstation and
interacts with the transaction. The payment details will be input using an input
screen, keyboard, and mouse device, and the output will be produced by a printer.
Here is a more detailed explanation of the designer’s considerations:
One input screen will be designed for all of the transaction’s input activities. The
input screen will be presented to the user once the transaction is activated. The
screen will have an appropriate title (e.g., “Accept Payment from a Tenant”)
centered at the top. The body of the screen will include various input fields as
follows: First, we need input fields for the apartment number and/or the family
name of the paying tenant; this will satisfy the first input command (Input from
U1 Tenant ID: Apartment number and family name). Each input field needs
to be of a certain length and defined over a certain data type (e.g., numeric and
text, respectively). Next to each input field we need an appropriate title. Assume
that the user will feed in data for at least one of these fields and then press a
“Send” button. In response, the transaction will verify that the apartment/family
really exists in the database (using the Read/Find command of the Apartment
class). This kind of input involves actual keying in the apartment number or family
name; if a family name is used, there may be more than one family with that
name, so the apartment number of the respective family name must be retrieved
and presented on the screen in the respective field, and the user must be given
an option to acknowledge the right apartment/family or ask to see the next
apartment with the same family name (using other buttons, e.g., “OK” and “Find

284 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Next”). This method of input is amenable to human errors (e.g., keying in an
existing apartment number or family name) for which there must also be
designed a window for an error message (e.g., “no such apartment/family”) and
a button to clear the input windows.
An alternative design that may save such errors is that once the transaction is
activated by the user it first searches the Apartment class and presents on
screen a list of all the apartment numbers and family names, using a scroll
window, and then the user can select the proper apartment and family by using
the mouse device. This method of input is free from keying in errors and
eliminates the need for error messages and certain buttons.
At any rate, once the proper apartment/tenant is selected, new input fields with
appropriate titles will be opened on the same input screen, including fields to input
the payment details (e.g., date of payment, sum, and payment method); this will
satisfy the second input command (Input from U1 Tenant: payment details).
These fields may appear on the input screen from the beginning but be defined
as inactive (that is, it will not be possible to key data in them) until the proper
apartment/tenant is selected. Figure 11.6 presents an input screen designed for
the inputs of this transaction.15

For the output command of this transaction (Output to U1 Tenant: receipt)
we will design a receipt printout that will include the appropriate information
(such as receipt number; apartment number and family name; date of payment;
and the other payment details—all according to the data elements defined in the
DD for the respective output dataflow.) An example is presented in Figure 11.7.

Figure 11.6. Design of the input screen for tenant payments

Design of the Man-Machine Interface 285

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We have demonstrated the design of an input screen and an output report for one
user transaction. As we know, there are various input and output devices, and
various ways to design every input and output. As said, the decision regarding
the devices depends on the type of each transaction; the frequency of its
activation; the amount of data that must be input or output; the source of the input
data and the way the data can be collected; the target of the output and its
location; and so on.

The Data Dictionary and the
Inputs and Outputs Classes

After having designed the inputs and outputs, two new classes are added to the
class diagram: Inputs (also termed Forms) and Outputs (also termed Re-
ports). These classes belong both to the DD and the class diagram of the
application (similar to the Transactions class; see Chapter X). The objects of
each of these classes are the input and output screens (or forms and reports) that
were designed for the system. Figure 11.8 presents the diagrams of these two
classes.
The attributes of these two classes are similar: Every input and output is
identified by the transaction to which it belongs along with a serial number. It also
has a title (headline) which is identical to the name of the screen or report, the
input or output device. The next attribute is a reference to a file containing the
figure or the prototype of the input/output, as designed with the software tool.

Figure 11.7. Design of the printout of a payment receipt

286 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Source of input and target of output are textual attributes describing the
respective external entities. The sets input fields (for Inputs) and output fields
(for Outputs) consist of tuples including the attributes field name and explana-
tion, which describes the data fields to be input, for example, the method of filling
in the data16 (for input screens) or presenting the output17 (for output screens).
The explanation attribute may also include explanatory text (tip) to be displayed
upon user request.
To complete the updates to the data dictionary, we need to add two set reference
attributes to the Transactions class: set inputs [Inputs] will include references
to the inputs designed for a transaction; set outputs [Outputs] will include
references to the outputs designed for the transaction.18

Figure 11.9 demonstrates two objects; one of the Inputs class and the other of
the Outputs class; these are the Input and Output objects that were presented
in Figures 11.6 and 11.7, respectively.
The Inputs and Outputs classes include a method named Display which presents
the form/report on the screen. In case of the Output class, the method presents
(that is, produces) the output using the appropriate output device. In case of an
Input class, the method presents the input (e.g., the input screen), then the user
fill in the data, using the respective input device, and the method returns the input
data in a variable called ReturnObject. This data can then be used by other
components of the transaction which handle the input.
In conclusion of this chapter, let us review what we have achieved.

• We have designed the user interfaces in the form of menus trees—this
includes a menus tree of the entire (global) IS and submenu trees for the
subsystems. We added a Menus class to the class diagram, whose objects
are the designed menus.

Figure 11.8. The inputs/forms and outputs/reports classes

Design of the Man-Machine Interface 287

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• We have designed all the inputs and outputs of the system, per its
transactions. We added an Inputs class and an Outputs class, whose
objects are the various inputs and outputs.

Review Questions

1. What are the four algorithmic steps in designing the menus tree interface?
2. What is a “degenerate” menu and how can it be created? Distinguish

between three different cases.
3. What are “redundant” menu items and why are they created?
4. How can it happen that a certain transaction may have “triggers” in

different menus? What is the solution for this?
5. What is the objective of the interactive stage of the menus tree design

process? Detail a few possible guidelines applicable to this stage.
6. How is a time transaction activated? How is a real-time transaction

activated?

Figure 11.9. Objects of the inputs/forms class and output/reports class

288 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

7. Detail the process of designing a submenus tree for a subsystem.
8. What are the attributes and functions/methods of the Menus class?
9. Explain the method Choose of the Menus class.
10. Create a pseudo-code description of the Choose method for the Musical

Programs system.
11. Explain the method to design the inputs and outputs of the system.
12. Explain what has to be determined for each “Input from U…” command

and for each “Output to U…” command in the top-level descriptions of
transactions.

13. What are the attributes and functions/methods of the Forms class and the
Reports class?

14. Using the OO-DFDs of the Musical Programs system (Figures 8.12-8.14,
Chapter VIII), create a menus tree for the system according to the
algorithmic steps.

15. Using a software tool which supports the design of menus and forms,
implement the menus tree created in review question 14 for the Musical
Programs system. Then, apply the interactive stage of the menus design
process until you obtain the final menus tree of that system.

16. Following review question 15, use the software tool to design the input/
output forms and reports for a few transactions of that system.

References

Shoval, P. (1988). ADISSA: Architectural design of information systems based
on structured analysis. Information System, 13(2), 193-210.

Shoval, P. (1990). Functional design of a menu-tree interface within structured
system development. International Journal of Man-Machine Studies,
33, 537-556.

Shoval, P. (1995). Experimental comparison between automatic and manual
menu-interface design methods. Interacting With Computers, 7(1), 73-
89.

Design of the Man-Machine Interface 289

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Endnotes

1 The method for designing the menus tree is based on the architectural
design of information systems based on structures analysis (ADISSA)
methodology (Shoval, 1988, 1990, 1995).

2 The system may include also time or real-time transactions which do not
involve user entities and therefore their transaction numbers do not appear
here; this point will be clarified later on.

3 The various functions within a certain transaction will be activated “inter-
nally,” once the transaction is activated, depending on the process logic of
the transaction.

4 This happens in cases when a general function is connected to another
general or elementary function; elementary subfunctions of a general may
belong be connected to other elementary functions located in a different
diagram.

5 The transaction type is defined in the DD.
6 Such as Visual Basic, VB.net, Visual Java, PowerBuilder, and Delphi.
7 If a computer aided software engineering (CASE) tool that supports the

methodology is used, it may be assumed that the initial menus tree has
already been created with the tool, which is then used for improvements of
the menus.

8 The help mechanism can be implemented in different ways. For example,
when a user clicks the right mouse button pointing to a certain menu item,
a help window opens next to it.

9 It may include “time transactions” for various applications.
1 0 For example, a transaction that finds a student’s registration to courses.

This transaction may be activated both by employees working for an
academic department (and subsystem) as well as by employees working for
the tuitions department.

1 1 ItemID is the ID code of a menu item.
1 2 The method for designing the inputs and outputs is also based on the

ADISSA methodology.
1 3 The “…” stands for the user entity ID.
1 4 Such as text box, list box, or combo box.
1 5 The design was made using MS Visio. Note that the example also includes

input fields for the bank and account data which are not included in the class
Apartment.

290 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1 6 Such as text box, list box, check box, or combo box.
1 7 Such as a label, picture, or locked textbox.
1 8 The inverse attributes of each of these reference attributes is part of the

key attribute of Inputs and Outputs classes, respectively.

Detailed Design of the Transactions and Class Methods 291

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XII

Detailed Design of
the Transactions

and Class Methods

This chapter describes how to map a top-level description of a transaction
into a detailed description, and then how to “decompose” a detailed
description of a transaction into various methods which are then attached
to proper classes. Two equivalent techniques for describing methods are
provided: pseudo code and message charts. The chapter ends with a review
on the products of the design phase, which serve as input to the system
construction (programming) phase.

Steps in the Design of Transactions
and Class Methods

The main objective of this stage is to define the class methods and attach them
to proper classes. This involves two main steps.
In the first step, we convert the top-level descriptions of the transactions1 into
detailed descriptions. A detailed description of a transaction is expressed in
pseudo code and it details the various procedures performed by the transaction,
as derived from the process logic of the elementary functions of the transaction
and the dataflows between the functions and the external entities and the data
classes.

292 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the second step, the detailed description of each transaction is “decomposed”
into various procedures; some of them are defined as methods which are
removed from the main transaction description, attached to proper classes, and
replaced by messages to those methods. The remaining parts of the transaction
(which are not defined as class methods) are defined as the “main” method of
the transaction, which is attached to the class Transactions. Eventually, each
transaction of the system becomes a “main” method which is attached to the
Transactions class, and includes messages to other methods which are
attached to proper classes.
Hence, all the application programs of the information system (IS) are actually
defined as methods of the Transactions class and other classes. When the user
wishes to run (execute) an application program, he/she makes selections from
the menus interface. Once the user selects a trigger (“T”) menu item, the menu
object sends a message to the Transactions class to activate the desired
Transaction method. The method is executed according to its internal process
logic; as said, during the execution it may send messages to the methods of other
classes, which may in turn send messages to other class methods. When the
“chain of activations” of the various methods ends, the transaction terminates,
and the control returns to the Menus Choose method (as described in chapter
XII).

From Top-Level to
Detailed Transaction Descriptions

In Chapter X we saw how the transactions are identified in the object oriented
data flow diagrams (OO-DFD) and then described using pseudo code. A top-
level description of a transaction includes, as we know, the main activities that
take place in the transaction as based on its components and its process logic.
The transition from a top-level description of a transaction to a detailed
description is based on the commands included in the initial description: Every
command is being either elaborated or replaced by specific commands, as
follows:2

• Every “execute function...” command, which states that a certain
function needs to be executed, is replaced by a detailed description of the
function, according to its internal process logic. These details do not appear
in the OO-DFD, as we well know, but they should appear in the data
dictionary (DD), specifically in the part where the elementary functions are

Detailed Design of the Transactions and Class Methods 293

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

described. If the existing description is missing or not precise enough, the
analyst/designer may get the missing details from the user (or the user’s
representative). The amount of detail may vary from function to function;
in some cases an elementary function may be very simple and easy to
describe; in other cases it may be more complex, involving various
activities, conditions, loops, and so forth.

• Every “input from U...” command, which states that data need to be
received from a user, is replaced by a reference to a predefined input
screen or a different input device, as defined for that input. Note that at this
stage we have already designed all inputs and outputs, and defined the
Inputs (Forms) and Outputs (Reports) classes and their objects.

• Every “output to U…” command, which states that information needs to
be produced for a user, is replaced by a reference to a predefined output
screen or a different output device, as defined for that output.

• Every “read from C...” command, which states that data of a certain
object or objects need to be retrieved, is replaced by a more detailed
command that includes the conditions for retrieval (if any). Note that the
data elements (attributes) that need to be retrieved have already been
defined in the DD.

• Every “write to C…” command states that data of a certain object or
objects need to be updated. As we know, write/update may mean adding
a new object, changing an existing object, or deleting an object. Therefore,
the “write” command is replaced by a more detailed command which
specifies the type of the update and its conditions (if any). Note again that
the data elements that need to be updated have already been defined in the
DD.

• Every “move to F…” command indicates the activation of the following
function. The data (parameters) that need to be passed to the function are
specified in the DD. Therefore, there is no need to add more detail for this
command.

Here are several examples for the transition from top-level descriptions of
transactions to their detailed descriptions.

Example 1: Transaction 1.4/5 of the Apartments Building System
The objective of transaction 1.4/5 of that system is to handle payments received
from tenants. In order to make things easy to follow, the top-level description
of the transaction3 is brought again here:

294 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Begin transaction 1.4/5
Input from U1 Tenant: Apartment number or family name
Read from C1 Apartment: tenant details
If not-found then present error message and ask user to input again an apartment ID
Else input from U1 Tenant: payment details
Execute F1.4 Input payment
Move to F1.5: tenant and payment details
Execute F1.5: Store payment and report
Write to C1 Apartment: payment details
Write to C5 Company: sum paid
Output to U1 Tenant: receipt

End transaction.

For the “input” commands of this description, an input screen called “Payment
Form” was created (see Figure 11.6 in Chapter XI). In addition, a “Payment
Receipt” was designed for the output command (see Figure 11.7, Chapter XI).
As for the inputs of this transaction, it has already been made clear that the input
screen includes a scroll window displaying the apartment numbers and family
names, from which the user can choose the proper apartment and family using
the mouse device. This means that the entire list of apartments is first retrieved
from the Apartments class, and only then the user can choose one of them.
Consequently, the rest of the input fields will be opened, to keying in the payment
details.
The detailed description of the transaction follows. The description is rela-
tively short, since the transaction is “simple” and the functions it includes do not
perform any complicated task besides receiving some input data, updating
several values of an object, and producing an output (receipt)—which means that
there are no special procedures to be explained here.

Begin transaction 1.4/5
Do while “update” was not chosen:

Read C1 Apartment - Retrieve all apartment objects from the class and save their apartment
number and family name attributes. (Assume that these details are saved in the
system’s memory.)

Input from U1 Tenant - Use Input 1.4/54 “Payment Form”. (At this point only the apartment
number and family name scroll window is “open,” displaying the apartment numbers
and family names. The user chooses an apartment number or a family using the mouse
device.)

(Note that the command “Execute F1.4…” is not detailed; it is actually performed using
the above input screen. As result of the user’s choice, the remaining windows on the

Detailed Design of the Transactions and Class Methods 295

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

screen become active; the user keys in the payment details; afterwards, the user would
press the “update” button.)

End while (The loop terminates once “update” is pressed.)
(Note also that the command “Move to F1.5…” is redundant because all data retrieved from
C1 and input U1 is available within the procedure.)
(Similarly, the command “Execute F1.5…” is redundant because the update is performed
by the next command “Write to C1…”.)

Write to C1 Apartment – Update the apartment object by adding the payment details to its
respective attributes.

Write to C5 Company – Update the singular class with the paid amount. The sum is added to
attribute total annual payments from tenants.

Output to U1 Tenant – Use Output 1.4/55 (“Payment Receipt”).

End transaction.

Example 2: Transaction 4.3-7 of the Musical Programs System
Transaction 4.3-7 in the Musical Programs system is in charge of assigning
musical pieces to programs. Here is again its top-level description:6

Begin transaction 4.3-7
Do “Present program for assignment”
Do “Present suitable pieces”
Do “Assign pieces”
If editor completed all the assignments of pieces to this program then write to C1 Musical piece:

status = “scheduled”
Else;
End transaction.

Begin Present program for assignment
Input from U3 Editor: program name and date
Read from C2 Music program: details of program
Read from C3 Scheduled program: details of assignment
Execute F4.3: Input program to schedule
Move to F4.4: details of program and existing assignments
End Present program for assignment.

Begin Present suitable pieces
Read from C1 Musical piece: suitable pieces for program
Execute F4.4: Review suitable pieces for program
Output to U3 Editor: assigned and suitable pieces
Move to F4.5: details of suitable pieces

296 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Read from C3 Scheduled program: past plays
Read from C1 Musical piece: assigned pieces
Execute F4.5: Review past plays of pieces in program
Output to U3 Editor: past plays of pieces in program
Move to F4.6: details of program, pieces and past plays
Read from C4 Listener request: listeners’ requests within the range of dates
Execute F4.6 Review listeners’ requests
Output to U3 Editor: listeners’ requests
Move to F4.7: details of musical pieces assigned and played, and listeners’ requests
End Present suitable pieces.

Begin Assign pieces
Do while the editor wishes to assign more musical pieces:

Input from U3 Editor: selected musical piece and listeners’ requests
Execute F4.7: Assign pieces and requests
Write to C3 Scheduled program: assigned piece
Write to C1 Musical piece: program where assigned
DO-while there are listener requests for this piece:

Write to C3 Scheduled program: approved listener request
Write to C4 Listener request: status = “approved”
Output to U2 Listeners: notification of approved request

End while
End while
End Assign pieces.

The previous was the top-level description of the transaction. Assume that at the
stage of inputs and outputs design, an input-output screen (whose number 4.3-
7.1) has been designed for this transaction, which enables the displaying of
various details about the program to be scheduled, the suitable musical pieces,
the listeners’ request, and so forth, and the user to make selections from the
screen or key in data as needed. In addition, an output/report (whose number is
4.3-7.2) was designed as a postcard which will be sent to a listener whose
request has been approved.
The detailed description of the transaction follows. We can see that this
description also consists of a main procedure that calls three subprocedures. The
names of the procedures were not changed, but their descriptions are more
detailed.

Detailed Design of the Transactions and Class Methods 297

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Begin transaction 4.3-7
Do “Present program for assignment”
Do “Present suitable pieces”
Do “Assign pieces”
Input from U3 Editor - Use Input 4.3-7.1. If the editor decides that the assignment of musical

pieces to this program is complete, he/she is supposed to press to “end scheduling” button.
If “end scheduling” pressed then Write to C3 Scheduled program: status = “scheduled”
Else; (the status remains “unscheduled”)
End transaction.

Begin Present program for assignment
Read from C2 Music program: program names - Upon activation of the transaction, all objects

of class Music program are retrieved and their names are kept in an array (vector) in
memory.

Input from U3 Editor: program name to schedule - Use Input 4.3-7.1. The list of the musical
program names is displayed in a scrolling window; the user (editor) chooses the program
he wishes to edit.

Read from C2 Music program: details of program - As result of the user’s choice, the selected
Music program object is retrieved and kept in memory; the attribute set time {day, hours}
enables to compute the dates of all future broadcasts of this program till the end of season;
the dates will be presented in a scrolling window.

Input from U3 Editor: date of program to schedule - Use Input 4.3-7-1. The above dates are
presented in a scrolling window. The user chooses the desired date.

Read from C3 Scheduled program - The object of the chosen Scheduled program is being searched
for. If the object already exists (i.e., the editor already started scheduling this program in
the past), then the object’s details are retrieved and displayed in respective windows of
the input screen. If not (i.e., the editor never started scheduling this program) - those
windows of the input screen remain empty.
(Note that the command “Execute F4.3…” is redundant; the data about the program to
schedule have already been retrieved in the previous command.)

Move to F4.4: details of program and existing assignments - The parameters passed to the next
procedure include the attributes of the Scheduled program object and music types of the
Music program.

End Present program for assignment.

Begin Present suitable pieces
Read from C1 Musical piece: suitable pieces for program - A search is performed for musical pieces

whose music type is at least one of the types listed in attribute set music types of the Music
program object. The numbers and names of each of these pieces are kept in memory,
 to be displayed later on screen. Already scheduled pieces are not included again.
(The command “Execute F4.4…” is redundant; it is carried out by the next output
command.)

Output to U3 Editor: suitable pieces - Use Input 4.3-7.1. (This is actually an input/output screen.)
The details of the above suitable pieces are displayed in a scrolling window; from these the
editor will choose, later on, the pieces he/she wishes to assign to this scheduled program.

298 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(The command “Move to F4.5…” is redundant; the data from the past commands are
available to the next commands within this procedure.)

Read from C3 Scheduled program: past played pieces - Find a certain number of objects of the
latest broadcasts of this program (the number is determined by the editor) and keep the IDs
of the musical pieces that have been played in them; these will be used to retrieve the relevant
details of these pieces and then presented to the editor (so that he/she will be aware of
already played pieces).

Read from C1 Musical piece: details of past played pieces - Find all the objects of Musical piece
that have been kept as result of the above Read command; for each of them keep its number
and name, to be displayed later on screen.
(The command “Execute F4.5…” is not detailed; it is performed by the next output
command.)

Output to U3 Editor: past plays of pieces in program - Use Input 4.3-7.1. The details (i.e.,
numbers and names) of the past played musical pieces are displayed in a scrolling window.
(The command “Move to F4.6…” is redundant, as explained earlier.)

Read from C4 Listener request: Search objects of the class Listener request which qualify to the
following conditions: (1) their requested program attribute references to the Music
program being scheduled; (2) their attribute range of play dates includes the date of the
Scheduled program; (3) their status is “waiting”. Keep the details of these objects
(including the requested musical piece and dedication), to be presented later on screen.
(The command “Execute function 4.6…” are expressed by the next output command.)

Output to U3 Editor: listeners’ requests - Use Input 4.3-7.1. The details of the listeners’ requests
that were retrieved and kept in the previous Read command are displayed in a scrolling
window of the screen.

Move to F4.7: details of the program, pieces and requests - The parameters passed to the next
procedure include the attributes of the Scheduled program object, the numbers and names
of the assigned pieces, suitable pieces, played in the past pieces, and requested pieces, along
with their listeners’ dedications. All these are displayed in the respective windows of the
input screen.

End Present suitable pieces.

Begin Assign pieces
Do-while the editor has not pressed the “stop” button. (The loop executes as long as the editor

wishes to assign more musical pieces to the scheduled program. He/she may assign only
some pieces in a work session with the transaction, pause—by hitting the “stop” button—
and resume the work some other time.)

 Input from U3 Editor: selected musical piece and listeners’ requests - Use Input 4.3-7.1.
The editor reviews the information presented in the windows of the screen, as
described previously, and based on that he/she decides which musical piece to assign.
Assignment of a piece is done by choosing/clicking on a name of a musical piece
appearing in any of the windows: suitable pieces, played in the past pieces, or
requested pieces, and moving it to the window of the assigned pieces. (The com-
mand “Execute F4.7…”need not be detailed because is actually performed by the
former command.)

Write to C3 Scheduled program: assigned pieces and requests – Adds the ID of the assigned
piece to the attribute set assigned pieces of the Scheduled program object.

Detailed Design of the Transactions and Class Methods 299

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Write to C1 Musical piece: program where assigned - The ID of the Scheduled program object
is added to the attribute set assigned in of the selected Musical piece object.

Do-while there are listener requests for this assigned piece (An assigned musical piece may
have been requested by more one or more listeners. The loop is performed for each
of the listeners who requested the assigned piece.)
Write to C3 Scheduled program: listener’s ID - The attribute set approved requests

of the Scheduled program object is updated by adding a reference to the Listener
request object.

Write to C4 Listener request: status = “approved” - The attribute status is updated
so that this request will not be retrieved again in further assignments.

Output to U2 Listeners: notification - Use Output 4.3-7.2 (As said, this output was
 designed as a postcard to be sent to the listeners whose requests have been granted.)

 End while (This inner loop terminates when there are no more listener requests for this
assigned musical piece.)

End while (This outer loop terminates when the editor presses the “stop” button, since he/she is
no longer interested in assigning more musical pieces to this scheduled program. When the
transaction will be activated again, all assigned pieces, which are saved in the Scheduled
program object, will be retrieved and displayed in the respective window of the input/output
screen.)

End Assign pieces.

Example 3: A Transaction in an Academic Library System
The following example is taken from an IS of an academic library. Here is a
verbal description of the transaction dealing with lending out books to students.7

A student who wishes to borrow books comes to the lending out counter with his/
her reader card (a magnetic card with the student’s ID) and the books. On the
cover of every book there is a barcode label with the book’s ID. First of all, the
magnetic card reader reads the student’s details and the system checks the
reader’s record in order to make sure he/she is allowed to borrow books. Based
on the student’s record, the system determines whether the student is eligible to
borrow books and how many and notifies the librarian. If the student is allowed,
each book is lent out by reading its barcode; the lend details are saved, and the
reader is given a printout specifying the books that were lent and when they are
due back. Once the last book has been lent out to the reader, a “blank” barcode
reading is performed in order to signal the system.
Here are the rules regarding the lending out of books: an old-time (over three
years) undergraduate student may borrow as many as eight books if he/she owes
no money to the library. If there is a debt of up to $200 he/she may only borrow
five books, and if the debt is bigger—none at all. If the old-time student is studying
for a higher degree, the number of books allowed is double that of an undergradu-
ate student in the same situation. A new student (less than a year), who owes less
than $80, may borrow up to two books. If the debt is bigger than $80, he/she may

300 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

borrow no books, unless he/she is a graduate student, in which case one book is
allowed. If the new reader has no debt, then if he/she is a graduate student he/
she may borrow up to five books, while if the student is an undergraduate student
he/she may borrow only three books.
Figure 12.1 presents a diagram of the transaction. Note that details such as the
conditions for lending out books are not included in the diagram (and the OO-
DFD from which it is extracted). It should be assumed that these details are
saved in the DD. In the transaction diagram we see only two functions; one deals
with checking the student’s eligibility to borrow books, and the other—with the
actual lending of books.
Before presenting the top-level description and then the detailed description of
the transaction, let us discuss the classes and the inputs and outputs involved in
this transaction.
The Classes: The transaction involves data classes: C1 is the Reader class,
whose objects are the various readers (i.e., students). Class C2 is Book copy,
whose objects are the books of the library. (We do not see here the class Book
which certainly exists in this system. An object of book presumably includes
attributes such as title, authors, publisher, and so forth, and it may have one or
more book copies. But this transaction only handles the lending out of copies of
books.) A partial class diagram for this example is presented in Figure 12.2.
Every lending of a book is represented in this diagram by a many-to-many
relationship between Reader and Book copy, and two respective set reference

Figure 12.1. Diagram of a transaction of the academic library system

Detailed Design of the Transactions and Class Methods 301

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

attributes: in Reader it is set books lent out {[Book copy], lend date, return
date}; in Book copy the inverse attribute is set lent out to {[Reader], lend date,
return date}.8 Note that class Reader contains, among other things, the
attributes degree of study, registration year, and debt. Upon lending out of a
book, each of the set attributes (of the Reader object and of the Book copy
object) is updated by adding a tuple of values: Reference to the Book copy and
the lending date is added to the Reader object; and reference to the Reader and
the lending date is added to the Book copy object. At this stage the attribute
return date of both objects remains null; it will be updated by a separate
transaction dealing with book returns.
The Inputs and Outputs: Assume that at this stage the inputs and outputs of the
system, including those of this transaction, have already been designed as
follows:

• Input number 12.19 from U1 Reader to function 1.1: The reader
details are read from a magnetic card by a card reader.

• Input number 12.2 from U2 Librarian to function 1.2: The book details
(actually, details of a book copy) are read from a barcode attached to the
inside cover of the book by a barcode reader. Assume that the barcode
includes the book ISBN and copy number.

• Output number 12.1 from function 1.1 to U2 Librarian: The eligibility
notice is presented on the librarian’s screen. It includes the reader details
(e.g., reader ID, name, registration year, degree of study, number of books
eligible, number of books lent out, and debt) and a notice: In case of
eligibility the notice is “This reader may lend out X books,” where X =
number of books eligible—number of books lent out. In case of ineligibility
the notice is “This reader may not lend books at this stage.”

Figure 12.2. Partial class diagram of the academic library system

302 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Output number 12.2 from function 1.2 to U1 Reader: The lend details
are printed out by the printer next to the librarian’s station. It includes the
reader’s details and the details of each of the books lent out.

Top-Level Description of the Transaction

The transaction’s top-level description follows. Note that the lending of the
books is done by a loop that runs as long as the reader is willing and allowed to
lend more books. This is checked by function 1.1. As can be seen, the top-level
description does not include details such as the conditions of eligibility to lend
books—these will be included, however, in the detailed description.

Begin transaction 12
Input from U1 Reader: reader details
Read from C1 Reader: reader details
Execute F1.1: check eligibility
Output to U2 Librarian: eligibility notice
Do while reader is willing and eligible to lend more books

Input from U2 Librarian: book details
Execute F1.2: lend book
Write to C1 Reader: lend details
Write to C2 Book copy: lend details
Output to U1 Reader: lend printout

End while

End transaction.

Detailed Description of the Transaction

The detailed description that follows considers the various conditions for lending
out books to readers. It consists of a main procedure which calls two subprocedures:
one which checks the eligibility of the reader to lend books; the other deals with
the actual lending of books.

Begin transaction 12
Input from U1 Reader: reader details - Use input 12.1 (magnetic card reader)
Read from C1 Reader: read reader’s details
Do “Eligibility check” (This procedure, which elaborates on function 1.1,returns a variable

named “elig” with the number of books the reader is eligible to lend at the present time.)

Detailed Design of the Transactions and Class Methods 303

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If elig <=0 then output to U2 Librarian: ineligibility notice - Use Output 12.1
Else output to U2 Librarian: eligibility notice - Use Output 12.1

Do while elig > 0 (as long as the reader is eligible to lend more books)
Input from U2 Librarian: book details - Use Input 12.2 (barcode reader)
If input <> “F” then Do “Lend out book” (This function deals with lending the book

to the reader and updating the reader’s eligibility. The process is performed only
if the barcode was that of a book to be lent, not of a fictitious book, which returns
an “F” value.)

Else (if input = ‘F’) output to U2 Librarian: end of process notification - Use Output
12.1

End while

End transaction.

Begin Eligibility Check
years = current year – registration year (Assume that current year is taken from the system, while

registration year is an attribute of reader.)
If years > 3 then Do-Case:

Case-1: if debt = 0 then N=8
Case-2: if debt <=200 then N=5
Case-3: debt > 200 then N=0

End case
If degree of study = “Grad” then N=N*2
Else;

Else (if years <= 3) Do-Case:
Case-1: if debt = 0 and degree of study = “Grad” 1 then N=5
Case-2: if debt = 0 and degree of study = “Under” then N=3
Case-3: if debt >= 40 and degree of study = “Grad” then N=1
Case-4: if debt >= 40 and degree of study = “Under” then N=0
Case-5: if debt < 40 then N=2

End-Case
elig = N- number of books lent out
End Eligibility check.

Begin Lend out book
Write to C1 Reader: lend details - a) add 1 to attribute number of books lent out;

b) add a tuple to attribute set books lent out
with OID of Book copy and lend date

Write to C2 Book copy: lend details - add a tuple to attribute set lent out to with OID of Reader
and lend date

Output to U1 Reader: lent printout - Use Output 12.2

304 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

elig = elig – 1 (returns the value of eligible to the main procedure)

End Lend out book.

From Detailed Descriptions of
Transactions to Class Methods

In this stage, the detailed description of each transaction is “decomposed” into
methods which are attached to proper classes. Before elaborating on that, let us
remember the discussion in the Functions Section of Chapter II, which dealt with
functions or methods of classes. We made a distinction between two major types
of methods:
Basic Methods enable performing the four basic operations: create, read,
update, and delete (CRUD):

• Create adds an object. It is possible to set the attribute values of the
created object in several ways: some may receive default values (if such
values were predefined); some may receive values while being created,
through user input; and some may remain null until they are updated by
some other method.

• Read locates/finds an existing object of the class. The method receives (as
a parameter) the identification of the sought object and returns the object
or a message saying that the object does not exist. In addition to the basic
Read method, there may be specific methods to find one or many objects
according to certain search criteria—depending on the specific application
and its users.

• Update changes values of attributes of an existing object. Generally, a
class may have different specific update methods, if it has attributes which
have to be updated in different manners or at different times. Each of these
methods may be activated, most likely, in response to an event occurring in
the real world.

• Delete removes an object from the class. The method receives a value that
enables it to identify the object to be deleted. It also returns a message
informing the sender whether the object has been deleted or not found.

We assume that every data class has basic methods. There is no need to design/
define them, and it may be assumed that all classes inherit the basic methods from
a superclass where these methods are defined.

Detailed Design of the Transactions and Class Methods 305

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The appendix at the end of this chapter provides a few examples of basic
methods. Actually, we do not detail the methods themselves, only their structure.
Each method has a name, parameter, and returning values. We also provide
examples for the use of the methods.
Application-Specific Methods10 are defined according to the specific needs
of the application (i.e., the users). Such methods may perform various specific
tasks, beyond tasks which can be performed by the basic methods. It is
reasonable that a specific method would include messages to basic methods
which will perform for it the basic CRUD operations. It is also reasonable to
assume that the same basic method might be activated by more than one specific
method.
Before detailing the process by which a transaction description is decomposed
into methods, here is an example which clarifies the distinction between basic
methods and specific methods:11 Assume that we need to register a student to
courses. Registrations take place at the beginning of every semester. A student
may register to one or more courses. This can be achieved by a specific method
of the class Student, which includes the attribute set registered to courses
{[Courses], grade}. The objective of the method is to add tuples to this set, one
per each course the student registers to. At this stage only the courses’ OIDs
are to be added, but the grades are null. Once the method is activated, it first finds
the student’s object—using the basic method Read of Student. Then it performs
a loop as long as there are more courses the students registers to. In every
iteration of the loop, the method sends a message to the user (assume that it is
done through a message to a method of a class Forms which displays a form on
screen), requesting the user to key in a course code. Once the course code is
returned to the update method, it sends a message to the Read method of class
Course in order to verify that the course exists. If the Read method returns an
error message, the update method will send an error message to the user (via the
previous form) requesting the user to key in another course code. If the Read
method finds the course object, it returns its OID to the update method. Now this
method needs to make sure that the student is not already registered to this
course, so it runs a search inside that set attribute. If it finds the aforementioned
course’s OID in the set, the method will send an error message to the user; if
not—it will perform the addition to the set. Then it will send a message to the
class Course, to its specific method add a student to course; the message
includes the course OID (by which the course object can be found) as well as
the student’s OID, so that that method will be able to add the student’s OID to
the attribute set registered students {[Students], grade}. Every iteration of the
main loop of the update method (of Student) ends with a message to the user
(on screen) asking whether he/she wants to register to more courses. If the
answer is yes, a new update loops begins; otherwise the update terminates.

306 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generally, the detailed description of a transaction is “decomposed” into
methods and messages according to the following rules:

• A command “Input from User…” is translated into a message to the
Display method of the Forms class; the message will include the ID of the
specific Form object. The Display method will enable, as we know, feeding
in the input needed by the transaction. (If the input is retrieved through an
input screen, the input fields will be presented in appropriate windows, in
accordance with the input screen’s design.) The method will return an
object containing the input values (or null, if no data were input).

• A command “Output to User…” is translated into a message to the Display
method of the Reports class; the message will include the ID of the
specific Reports object and the output values. The display method will
enable the production of the output, according to its design.

• A command “Read from Class…” is translated into a message to the
method of that class, whose task is to search and retrieve one object or
more, according to conditions defined in the transaction. Therefore, the
message will include the class name, the name of the Read method, and the
search conditions (if there are any). Note that the Read method of the target
class is assumed to exist already (as a Basic method).

• A command “Write to Class…” is translated into a message to the method
of that class, whose task is to perform the specific Write command,
according to the description of the transaction. As we know, a Write
command can mean adding a new object (using the Create basic method),
or removing an existing object (using the Delete method), or changing an
object (using the Update or Change method). Sometimes the Write
command may apply to a single object (e.g., creating a new object); while
sometimes it may apply to certain objects (e.g., changing a certain attribute
of objects of a class according to certain conditions). Hence, the message
will include the class name, the name of the specific Create/Delete/Update
methods, and the conditions (if there are any).

• A detailed description of a transaction may include commands which
describe a certain procedure (possibly derived from an “Execute func-
tion…” command in the top-level description). Here we need to review the
procedure and determine if it can be defined as a specific method that can
be detached from the “main” part of the transaction and attached to one of
the classes involved in the transaction. This may be a class which is used
by that procedure (i.e., which the procedure retrieves from or updates). For
example, assume that the description of a certain transaction includes a
procedure (i.e., certain commands) which performs the task of updating the

Detailed Design of the Transactions and Class Methods 307

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

average grade of a student as a result of reporting a new course grade (as
has been demonstrated earlier). It makes sense to define this procedure as
a specific method that will be attached to class Student. Hence, the original
procedure will be a message to the new method of the designated class. The
message may include parameters that will transfer any data required by the
method to fulfill its task. The method may return the result of its operation.

If a procedure cannot be assigned to any class (for example, because it involves
several classes, or perhaps because it involves no classes—just some general
calculations), it remains in the transaction. The remaining parts of the transac-
tion, which have not been identified as basic or specific methods and replaced
by messages (to those methods), are defined as the “main” method of the
transaction. This method is attached to the Transactions class.
Hence, we wish to repeat: The Transactions class will contain one “main”
method for each transaction. A Transaction method will be activated by a user
who uses the interface and makes selections among menu items, until activating
a desired “T” menu item. At that point the Choose method of the Menus class
sends as message to the respective Transaction method. Once activated, the
Transaction method executes according to its process logic. This may include the
sending of messages to basic or specific methods of various classes. A certain
specific method may, in turn, send messages to other class methods, according
to its process logic. Eventually, the transaction method completes its task, and
control is returned to the Menus main method (as described in chapter XI).
In the sequel we provide a few examples for the mapping of detailed descriptions
of transactions into methods and messages. We use the same examples that have
been used in the previous section. The examples are brought in pseudo code.12

It is important to point out that the pseudo code we use to describe methods is
not a programming language; it is not a formal language, and does not follow
syntactic rules. The pseudo-code description of methods is aimed to provide
guidelines to the programmers who will program and test the methods. There-
fore, the pseudo code must include also comments and explanations which the
programmers will use when creating the program code. To understand the
structure of the methods in the following examples, the reader is referred to the
Appendix at the end of this chapter.

Example 1: Transaction 1.4/5 of the Apartments Building System
As you may recall, this is a relatively simple transaction; and so is its pseudo code.
(The line numbers are not a part of the method description; they are only meant
to make the explanation easier to follow.)

308 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Begin Transaction.Method 1.4/5
2. Do while “update” was not chosen:
3. apart-numbers, family-names = Apartment.GetObjects (All)
4. payment-details = Forms.payment form.Display (apart-numbers, family-names)
5. End while
6. Apartment.Add payment (payment-details)
7. Company.Change (Add, total annual payments from tenants, sum paid)
8. Reports.Payment receipt.Display

9. End.

Explanations:
1. This is the Transaction method. As we will see, the body of the method

includes messages to other class methods.
2. Recall that the method performs a loop as long as the user does not press

the “update” button of the payments form, that is, as long as the user did
not complete keying in the payment details.

3. Within the loop, a message is sent to class Apartment to its method
GetObjects. The parameter (All) means that the method retrieves all
apartment objects. But only their apartment numbers and family names are
kept in respective arrays (in memory).13

4. A message is sent to the Display method of class Forms, in order to display
its object payment form. The parameters apartment-numbers and family-
names pass these data so that the receiving method can display them in the
respective windows of the form (as can be seen in Figure 11.6, Chapter XI).
Then the user chooses an apartment number or a family name. As a result,
the other input fields of the form become active so that the user can key in
the rest of the payment details. The method returns the payment details
which are kept in variables named payment-details. Note that at the
programming stage, payment-details will be defined in more detail using
specific variables for the specific fields; here we do not need to go into such
details.

6. After the payment data have been received, a message is sent to class
Apartment to its method Add payment, with the parameter payment-
details. Add payment is assumed to be a specific method that has to be
defined (but its description is not provided here); its task is to add the details
of the new payment to the apartment object; specifically to its attribute set
payments.

7. Following that, a message is sent to the Change method of class Company.
The method’s parameters include the type of change (Add), the attribute

Detailed Design of the Transactions and Class Methods 309

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to which it applies (total annual payments from tenants), and what has to
be added (sum paid). Note that the structure of the parameters of this
method (as well as of other methods) is not consistent with the structures
used in programming languages. Moreover, we do not use any formal
language and notations for our methods and parameters; our objective is to
provide simple and easy-to-comprehend guidelines so that the program-
mers who will read them will be able to convert them easily to program
code.

8. Finally, a message is sent to the Display method of the Reports class in
order to produce the payment receipt.

Example 2: Transaction 4.3-7 of the Music Programs System
A detailed description of this transaction has been presented in the previous
section. This is a fairly complex transaction; it includes several classes and there
is an intense interaction between the user (the editor) and the IS, using input/
output screens. After reviewing the detailed description of the transaction, we
have come to a decision as to how to decompose it into methods and messages:
The procedure Present program for assignment will be defined as a specific
method of class Music programs; the procedure Present suitable pieces will
be defined as a specific method of class Scheduled program; and the procedure
Assign pieces, along with the rest of the commands included in the transaction’s
description, will be defined as the “main” method, that is, the method
Transactions.Method 4.3-7. As we will see, the main method and the specific
methods include, among other commands, messages to other basic and specific
methods of various classes involved in the execution of the method. What follows
are both the main/Transaction method and the aforementioned specific meth-
ods.14

Begin Transaction.Method 4.3-7
SchProgramObject = MusicProgram.PresentProgramToSchedule

(The transaction begins by sending a message to PresentProgramToSchedule, which is a
specific method of the class MusicProgram. The details of the method will follow. The method
returns the details of the program to which the editor wishes to assign musical pieces; these
are kept in a variable SchProgramObject. These details include, among other things, the
music types of the program, references to musical pieces already assigned, and references
to approved listener requests—this is true for a program which the editor already started
to schedule in the past.)

SuitablePieces, PlayedPieces, RelevantRequests =
ScheduledProgram.PresentRelevantPieces (SchProgramObject)

310 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(A message is sent to PresentRelevantPieces, a specific method of class ScheduledPorgram,
whose details follow. The message contains, as a parameter, the details of the program to
schedule. The method returns three lists of musical pieces: suitable pieces, pieces played
in past broadcasts of this program, and pieces requested by listeners. All this information
will be presented to the editor, and based on it he/she will decide which musical pieces to
assign to this program.)

Do while not “stop”
(Now starts a loop in which the editor assigns musical pieces to the program. The loop
will terminate when the editor will press the “stop” button on the input form. Recall
that the editor may assign only some musical pieces in a work session, pause by hitting
the “stop” button, and resume the work some other time.)

PieceObj, ApprovedRequests = Forms.Schedule Program.Display (SuitablePieces,
PlayedPieces, RelevanPieces)

(A message is sent to the Display method of class Forms to act upon the input/output
form Schedule Program. This method [whose details are not shown here] enables the
editor to choose a musical piece from any of the lists displayed in scroll windows of
the form. Assume that the choice is done by clicking on a piece name and moving it
from its window to the window containing the assigned pieces. The OID of the selected
piece is kept in one variable (PieceObj) and the OIDs of the listener who requested
this piece are kept in the other variable (ApprovedRequests.)

ScheduledProgram.SchProgramObj.Change (Add, set assigned pieces, PieceObj)
(This is a message to the method Change of class ScheduledProgram. T h e
method acts on the scheduled program object. The meaning of the parameters of this
method is as follows: Add is the operation, set assigned pieces is an attribute of the
object, and PieceObj is the OID of the musical piece to be added to the set.)

MusicalPiece.PieceObj.Change (Add, set assigned in, SchProgramObj)
(This is a message to the method Change of class MusicalPiece; similar to the former
case, this method adds the OID of the scheduled program to set assigned in of the
assigned musical pieces.)

For i = 1 to end of ApprovedRequests do:
(A loop is performed for all the listeners who requested the above assigned musical
piece. Recall that ApprovedRequests is an array which contains the OIDs of approved
listener requests.)
ScheduledProgram.SchProgramObj.Change (Add, set approved requests,
ApprovedRequests(i))

(This is a message to the Change method of class ScheduledProgram. Its task is
to add the OIDs of the approved listener requests to the attribute set approved
requests of the scheduled program object.)

ListenerRequest.ApprovedRequests(i).Change (Replace, status, “approved”)
(Now, a message is sent to the Change method of class ListenerRequest, in order
to update the status of the request from “waiting” to “approved,” so that this
request will not be retrieved again in future assignments.)

Reports.CardToListener.Display(ApprovedRequest(i), SchProgramObj)
(Now a message is sent to the Display method of class Reports, to be applied on the
output CardToListenert; it prints a postcard that will be sent to the listener. The
postcard will contain the details of the request and the scheduled program, based on
the parameters passed to it.)

Detailed Design of the Transactions and Class Methods 311

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Next i (This inner loop terminates after all approved requests have been processed.)
End While (The outer loop terminates after the editor presses the “stop” button.)
Out = Forms.Schedule Program_Stop.Display()

(After the editor presses the “stop” button, the Display method of class Forms is activated
in order to open two buttons: “Exit—Schedule Complete” and “Exit—Schedule Not
complete”: The former will be hit if the editor determines that the scheduling of the program
is complete; he/she will hit the other button if he/she plans to continue scheduling this
program at another time. The editor’s decision is kept in the return variable Out.)

If Out = “Schedule Complete” then ScheduledProgram.SchProgramObj.Change (Replace, status,
“scheduled”)
(If the “Schedule Complete” button was pressed, the status of the scheduled program is
changed accordingly.)

Else; (There is no status change.)
End.

Begin MusicProgram.PresentProgramToSchedule
(This is a specific method of class MusicProgram which is called from the main method and
returns a variable named SchProgramObj which includes the details of the program to
schedule.)

MusicPrograms = MusicProgram.GetObjects (program name)
(Upon activation of the method, a message is sent to a basic GetObjects of class Music
Program in order to find all objects of music programs. The method returns an array of
program names which are kept in the variable MusicPorgrams.)

ProgramObj = Forms.Schedule Program.Display (MusicPrograms)
(Now a message is sent to the method Display of class Forms, to be activated on the input
form Schedule Program. The message contains, as parameter, the names of the music
programs; assume that the list of program names will be displayed in a scroll window, and
the editor will then choose one program from the list. The OID of the chosen program is
returned and passed to the variable ProgramObj.)

SchedDates = MusicProgram.ProgramObj.Get-programs-to-schedule
(Now a message is sent to a specific method Get-programs-to-schedule of class
MusicPrograms, which is activated on the ProgramObj chosen by the editor. Assume that
this specific method [whose details are not brought here] goes over the set times {day, hour},
based on that computes the dates of all future broadcasts of this program until the end of
the season; before inserting a computed date in the return variable the method still has to
check if the program planned for that date has already been scheduled by the editor. For
this it goes over the values of the set which consists of [Scheduled program] and for each
value it sends a message to the class ScheduledProgram to find the object; if the object is
not found it means that the program for that date has not been scheduled yet; if the object
is found the method checks its status: if the status is “unscheduled,” it returns its
broadcasting date to the sender. Eventually, the return variable of this method [i.e., the
variable SchedDates of Get-programs-to-schedule] contains a list of future broadcast dates
of the program from which the editor will be asked to choose one.)

SchedObj = Forms.Schedule Program.Display (SchedDates)
(A message is sent to method Display of class Forms, to be activated on the form object
Schedule Program [the same form used earlier]; the parameter includes the above dates

312 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the future broadcasts of the program. Assume that the dates are displayed in a scroll
window, from which the editor will choose one which he/she wishes to work on. The OID
of the chosen program is passed to the variable SchedObj.)

SchProgramObj = ScheduledProgram.GetObjects (SchedObj)
(Now a message is sent to the basic method GetObjects of class ScheduledProgram, with
the OID of that object; the method finds and returns the ScheduledProgram object, which
is kept in the variable ScheProgramObj. Note that the object contains, among other things,
references to musical pieces already assigned, and references to approved listener
requests—this is true for a program which the editor already started to schedule in the past.
The variable is returned to the main Transaction method.)

End.

Begin ScheduledProgram.PresentRelevantPieces (SchProgramObj)
SuitablePieces = MusicalPiece.GetObjects (music types in SchProgramObj)

(When this method is activated, a message is sent to the GetObjects method of class
MusicalPiece. The parameter includes a list of music types of the program. The method
searches and retrieves all the musical pieces whose type is one of the above. The numbers
and names of each of these pieces are kept in the variable SuitablePieces, to be displayed
later to the editor.)

PastPrograms = ScheduledProgram.GetLatestBroadcasts
(This is a message to a specific method of the class ScheduledProgram [whose details
are not shown here]. The method retrieves a certain number of previously broadcasted
program objects, in order to enable the extraction of the musical pieces played in them.
The OIDs of these programs are kept in the return variable.)

PastPieces = MusicalPiece.GetLatestPieces (PastPrograms)
(Following the result of the previous message, a message is sent to a specific method of
class MusicalPieces [whose details are not shown], whose task is to retrieve the musical
pieces played in those previously broadcasted programs. The return variable PastPieces
keeps the numbers and names of these pieces.)

RelevantRequests = ListenerRequest.GetRelevantRequests (SchProgramObj)
(Now a message is sent to a specific method GetRelevantRequests of class ListenerRequest
[whose details are not shown]. The parameter passed to this method is the scheduled
program object, which includes its broadcasting date. This method retrieves requests
for the program with status “waiting” which satisfy the condition, that is, the range of
play dates includes the broadcasting date of the program. The return variable includes,
for each listener request, the dedication.)

End.

Example 3: Transaction 12 of the Academic Library System
A detailed description of this transaction has been presented in Example 3 of the
section, From Top-Level to Detailed Transaction Descriptions. We have seen
that the description consists of a main procedure which calls two subprocedures:
Eligibility check and Lend out book. The main procedure is defined as the
Transaction/main method, while the two subprocedures are defined (with minor

Detailed Design of the Transactions and Class Methods 313

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

modifications) as specific methods: The method Eligibility check is attached to
class Reader, and the method Lend out book is attached to class Book copy.
Here are the pseudo-code descriptions of the three methods:

Begin Transaction.Method 12
reader-ID = Forms.Magnetic card reader.Display

(This is a message to the Magnetic reader card input. The reader’s ID is saved in the return
variable.)

reader-object = Reader.GetObjects (reader-ID)
(Search and retrieve the reader object. The object contains the values of the various
attributes, including registration year, debt, degree of study, and number of books lent out.
These details are needed for the eligibility check.)

elig = Reader.reader object.Eligibility-check
(A message is sent to the specific method Eligibility-check of class Reader to operate on the
reader object. The object’s details include registration year, debt, degree of study, and
number of books lent out. These details are needed in order to calculate the number of books
the reader is eligible to lend out at any point in time. The method returns a variable “elig”
which contains the number of books the reader may lend.)

If elig <= 0 then Reports.Eligibility notice.Display (reader object, “not eligible”)
(If the reader is not eligible to lend even a single book, a message is sent to method Display
of class Reports to display the Eligibility notice on the librarian screen. The parameter
includes the reader object and the message “not eligible.”)

Else Report.Eligibility notice.Display (reader object, “eligible”)
(Otherwise, the eligibility notice will be “eligible.”)
Do while elig > 0

(The loop is performed as long as the reader is eligible to lend more books.)
 BookCode = Forms.Barcode reader.Display

(The meaning of this message is to read the barcode of the book.)
 If input <> ‘F’ then Book copy.Book copy object.Lending (BookCode);

 elig = elig - 1
(If a barcode of a book was read—not a false barcode which returns an “F” value—
a message is sent to the specific method Lending of class Book copy. Upon
completion of that method [i.e., a book has been lent out] the reader’s eligibility
decreases by one book.)

 Else Reports.End-of-lending notice.Display; elig = 0
(If a false barcode was read, a message is sent to Reports class to display the end-
of-lending notice. In addition, the variable elig is set to 0 in order to terminate the
process.)

End while
End.

314 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Begin Reader.Eligibility-check
years = current-year – registration-year
If years > 3 then Do Case:

Case 1: if debt = 0 then N = 8
Case 2: if debt <= 200 then N = 5
Case 3: if debt > 200 then N = 0

 End Case
 If degree of study = “Grad” then N = N*2
 Else;

Else Do Case (If years of study is 3 or less.)
Case 1: if debt = 0 AND degree of study = “Grad” then N = 5
Case 2: if debt = 0 AND degree of study = “Under” then N = 3
Case 3: if debt >= 40 AND degree of study = “Grad” then N = 1
Case 4: if debt >= 40 AND degree of study = “Under” then N = 0
Case 5: if debt < 40 then N = 2

 End Case
elig = N - number of books lent out
End.

Begin Book copy.Lending
Reader.reader object.Change (Replace, number of books lent out, ++1)

(A message is sent to the reader object in order to change the value of the attribute number
of books lent out; it will be increased by 1.)

Reader.reader object.Change (Add, set books lent out, (Book copy object, lending date))
(This message too is sent to the reader object; the Change method will add a tuple of values
to the set books lent out. The tuple includes a reference to the book object and the lending
date. At this stage there is no return date; it will be updated by a separate transaction, whose
details are not brought here.)

Book copy.book copy object.Change (Add, set lent out to, (reader object, lending date))
(This is a message to the Change method of Book copy which will add a tuple of values to
the set lent out to. The tuple includes a reference to the reader object and the lending date.
Again, at this stage there is no return date.)

Reports.Lending printout .Display (reader object, book copy object)
(The message is sent to the Reports class in order to print a line in the Lend printout; the
Display method prints a line detailing the book name. Note that this command is performed
within the loop of the Transaction method, so eventually the lend report will include a line
for each book lent out.)

End.

Detailed Design of the Transactions and Class Methods 315

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Message Charts

A message chart provides a visual presentation of a method, and is equivalent
to a description in pseudo code. A message chart can be viewed as a variation
of a “traditional” program flowchart because it employs the same process logic
patterns and the same symbols; only the class symbol is added. The chart is
displayed inside a folder-like rectangle. The label part of the folder contains the
class and method names. The chart consists of the following symbols:

• Ellipse: Signifies the “begin” or “end” of the method.
• Diamond: Signifies a condition or a loop.
• Rectangle: Contains a command or a sequence of commands.
• Class rectangle: Signifies the class receiving a message to activate one

of its methods. The class rectangle has three parts: (1) the upper (label) part
contains the class name; (2) the middle part contains the name of the
specific class object on which the method is to be activated. An object name
is specified only if the method acts on a specific object; and (3) the lower
part contains the name of activated method, its parameters and the return
value—depending on the specific method.

• Arrow: Signifies a flow of control (if pointing to an “ordinary” rectangle),
or a message being sent to a method (if it is pointing to a class rectangle).

As we already know, a transaction may consist of a “main” method (the
Transaction method) which may contain messages to basic and specific methods
of other classes. Therefore, a complete description of a complex transaction may
include several message charts: a “main” chart for the Transaction method and
subcharts for the specific methods. Moreover, since a specific method may
include messages to other specific methods, there may be a hierarchy of
message charts describing a whole transaction.
Being semantically equivalent, the two techniques for describing methods—
pseudo code and message charts—may be used interchangeably. For example,
a Transaction (main) method may be described by a message chart, while its
submethods may be described by pseudo code, or vise versa. Moreover, there
is no necessity to use message charts at all, in particular for relatively simple
methods. But for complex methods, message charts may be more clear and
comprehensible than pseudo code.
Here are a few examples of message charts:

316 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example A
Figure 12.3 presents an example of a message chart of Transaction 1.4/5 of the
Apartments Building system. It can easily be seen that the chart is equivalent to
the pseudo-code description of this method.

Example B
Figures 12.4-12.6 present three message charts of Transaction 4.3-7 of the
Music Programs system: Figure 12.4 is the message chart of the Transaction
(main) method, while Figures 12.5 and 12.6 are message charts of two of its
specific methods. Clearly, these charts are equivalent to the pseudo-code
descriptions presented earlier. We could of course also present message charts
of other specific methods included in the transaction (just as we could have done
using that pseudo code).

Figure 12.3. Message chart of transaction 1.4/5

Detailed Design of the Transactions and Class Methods 317

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 12.4.

318 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 12.5.

Figure 12.6.

Detailed Design of the Transactions and Class Methods 319

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example C
Figures 12.7-12.9 present three message charts of Transaction 12 of the
Academic Library system. Figure 12.7 is the chart of the Transaction (main)
method, while the other two charts describe the Eligibility check method of class
Reader, and the Lend out book method of class Book copy.

Figure 12.7.

320 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 12.8.

Figure 12.9.

Detailed Design of the Transactions and Class Methods 321

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary of the Design Phase

In conclusion of the design phase, we review its products:

• A complete class diagram, consisting of the data classes, Menus class,
Inputs (Forms) and Output (Reports) classes, and the Transactions
class. Each of the data classes includes various attributes and relationships
to other classes. In addition, each class includes a list of function names,
that is, names of its specific methods which have been defined as a result
of the process transactions decomposition.

• The Menus class includes detailed designs of the menus objects, and a
pseudo-code description of the Choose method which enables the users to
interact with the menus interface.

• The Inputs (Forms) and Outputs (Reports) classes include detailed
design of the inputs and outputs/reports of the system.

• The Transactions class contains, for each transaction, a description of its
main method—using pseudo code or a message chart.

• Each of the specific methods of the classes are described in detail using
pseudo code or a message chart.

Before the design phase terminates, it is necessary to verify the consistency of
the static product (i.e., the class diagram) and behavioral products (i.e., the
methods). Special attention should be paid to making sure that every attribute of
every data class is updated by at least one method and retrieved by at least one
method. If this is not the case, then there is an attribute which is either never
updated or never retrieved. This verification is repeating a similar activity
performed at the end of the analysis phase (see the Keeping the Initial Class
Diagram and the OO-DFDs Compatible section in Chapter VIII). The difference
is that while at the analysis phase we verified the consistency of the initial class
diagram with OO-DFDs, here we do it for the final class diagram and the various
methods. The consistency check can be performed on every class (similar to
what we have done in the analysis phase) and all methods which access it to
“read” or to “write.” That is, we list the attributes of a class and all the methods
operating on that class; looking into the details of each method, we mark every
attribute of the class which is retrieved by the method and every attribute which
is updated by the method. Eventually, each attribute must be retrieved by at least
one method and updated by at least one method. If this is not the case, we need
to make sure that the relevant methods are defined correctly, or perhaps the

322 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

attribute in question may be removed (and consequently, the method(s) which
retrieve(s) that attribute or update it needs to be modified too).
The next phase of the development process is construction (i.e., programming).
The aforementioned products of the design phase provide everything the
programming teams need in order to create the system in an OO programming
environment.

Review Questions

1. What are the steps in the design of transaction and class methods?
2. What is the “main” method of a transaction and how does it relate with other

class methods?
3. Describe the transition from a top-level description of a transaction to a

detailed description. How is each command in the top-level description
handled?

4. What is the difference between a basic method and an application-specific
method?

5. Describe the transition from a detailed description of the transaction to
methods and messages. How are the various commands in the detailed
description handled? What makes up a Transaction method?

6. How is a transaction activated and executed from the point of view of a
user?

7. What components/symbols are included in a message chart?
8. Explain the similarity and the difference between a message chart and a

pseudo-code description of a method.
9. Explain the similarity and the difference between a message chart and a

program flowchart.
10. Explain what is a hierarchy of message charts or pseudo-code descriptions

of transactions.
11. What are the final products of the design phase?
12. Explain the consistency checks of the design products. In what way is it

different from the consistency checks of the analysis products?

Detailed Design of the Transactions and Class Methods 323

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Shoval, P. (1988). ADISSA: Architectural design of information systems based
on structured analysis. Information System, 13(2), 193-210.

Shoval, P. (1998). Planning, analysis and design of information systems
(Vols. 1-3). Tel-Aviv, Israel: Open University Press.

Endnotes

1 As described in Chapter X.
2 The rules for the transition of top-level descriptions of transactions to

detailed descriptions are based on Architectural Design of Information
Systems based on Structures Analysis (ADISSA) (Shoval, 1988, 1998).

3 This transaction was described in Chapter X and then again in Chapter XI.
Here, the comments were left out.

4 Assume that this is the number of the input screen, that is, input number 1
of transaction 1.4/5.

5 This is the number of the output designed for this transaction.
6 The description has already appeared in Chapter IX, and the transaction’s

diagram has been presented in Figure 10.2, Chapter X. The version of
description shown here is the one that consists of procedures. The remarks
that appeared in the original description were left out.

7 This is just one transaction of the library system, but more details are not
needed for the sake of this example. The example was originally used in
Shoval (1998).

8 This is one possible class diagram for this case; an alternative could be
having a “relationship class” Lend out, in which each lending of a book to
a reader creates an object, which contains the lending details.

9 We gave the transaction an arbitrary number 12.
1 0 In short we call it specific method.
1 1 This example was originally presented in Chapter II.
1 2 In the next section, we will use message charts.
1 3 Obviously, this is not a “standard” way to define a message and its

parameters; but as said, our notation is not formal and is mainly aimed to
direct the programmers who will eventually code the methods according to
the rules of the programming language that will be utilized.

324 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1 4 The lines are not numbered, but comments and explanations follow almost
every line/command.

Detailed Design of the Transactions and Class Methods 325

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Appendix:
Examples of Basic Methods

In this chapter, as well as in chapter II, we have made a distinction between basic
methods and application-specific methods. We have assumed that every class
includes basic methods that can perform the CRUD functions, so that we need
only to define the application-specific methods, extract them from the transac-
tions’ descriptions and attach them to the proper classes.
We have been showing examples of various basic and application-specific
methods in pseudo code, along with comments, and we have pointed out that this
pseudo code is not a formal language and, unlike a programming language, it does
not follow syntactic rules. Rather, the pseudo-code description of methods is
aimed to provide guidelines to the programmers who will program and test the
methods; therefore the pseudo code includes also comments and explanations.
In this appendix we define a few basic methods. The objective is to see the
structure of such methods and their parameters.

A Method to Add A New Object to A Class:

Structure of method: ClassName.Construct (object)
Example: Student.Construct (StudentObj)

This method gets as a parameter the values of the attributes of new object and
adds it to the class. It may be assumed that the data values of the new object have
been added via some input device and already reside in memory in the variable
‘object’. But note that ‘object’ is not necessarily a single variable of a certain
data type, like in programming languages; rather it represents all the values of
attributes that will become the new object. The method ‘Construct’ is not
detailed here; but it should be assumed that it performs the relevant integrity
checks for adding a new object, according to the relationship types and
multiplicities defined in the class diagram for that class. Hence, the method is
assumed to return a value ‘True’ if the new object has been added successfully,
or ‘False’ if the object could not be added because of an integrity constraint.

A Method to Delete an Object

Structure of the method: ClassName.object (Delete)
Example: Student.StudentObj.Delete

326 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The method deletes an existing object which is identified by the value of ‘object’.
As before, the method ‘Delete’ is not detailed, but it should be assumed that it
performs the relevant integrity checks for deleting an object from a class,
according to the relationship types and multiplicities defined in the class diagram
for that class. Hence, the method is assumed to return a value ‘True’ if the new
object has been deleted successfully, or ‘False’ if the object could not be deleted.
Note the different notation of this method compared to ‘Construct’: In ‘Con-
struct’ the parameter includes the data values of the new object; in ‘Delete’ the
method operates on the object identified by ‘object’, which is actually its OID.
It should be assumed that the OID has been obtained by an earlier ‘Find’ method.

A Method to Find an Object or Objects

Structure of method: returnObject = ClassName.GetObjects (conditions and
attributes)
Example: some-students = Student.GetObjects. (name = “Smith” and city =
“Chicago”)

The method gets as parameter search conditions, which refer to values of the
class attributes; it returns to ‘retunObject’ the data of the objects which satisfy
the conditions. Note again that the return value is not a single variable; it may
include the data values of one or more objects that satisfy the search conditions.
If no search conditions are passed, that is, ‘GetObjects()’, all the objects of the
class will be returned. On the other hand, it is possible that no object is returned
if none satisfies the conditions.

A Method to Retrieve Certain Attributes of an Object

Structure of method: return values = ClassName.object.Get (list of attributes)
Example: stud-number, name = Student.StudentObj.Get (ID number, name)

The method operates on a certain object of a class, identified by ‘object’. Its
parameter is a list of attributes whose values will be returned to the variables
listed in ‘return values’.

Detailed Design of the Transactions and Class Methods 327

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Method to Change/Update Attributes of an Object

Structure of the method: ClassName.object.Change (action, attribute, value1,
[value2])

This method operates on an object which has to be changed. It receives several
parameters: ‘action’ is the type of change: ‘Add’ adds a value to an attribute;
‘Replace’ puts a new value instead of an existing one; ‘Del’ erases the existing
value. The action will be performed on the ‘attribute’. ‘value1’ is the value to be
added, replaced, or deleted. ‘value2’ is relevant only for ‘Replace’—it includes
the new value of the attribute. Note that if ‘attribute’ is a reference attribute, then
‘value1’ and value2' must include OIDs of objects to be added, deleted, or
replaced. Note that ‘attribute’ may also be a tuple, or a set, or any combination
of attribute types.
Examples:

Student.StudentObj.Change (Add, city, New-York)
Student.StudentObj.Change (Del, set phones, 054-8765432)
Student.StudentObj.Change (Replace, set phones, 054-8765432, 052-3456789)

The next example assumes that there is a many-to-one relationship between
classes Student and Department with respective reference attributes: ‘be-
longs to’ is an attribute of Student, and ‘student list’ is an attribute of Department.
In order to add a student to a department we need to change the values of the
reference attributes of the involved objects. (It is assumed that the OIDs of the
student and department have already been found by the respective ‘Find’
methods.) Hence, we apply these two ‘Change’ methods:

Student.StudentObj.Change (Add, belongs to, DepartmentObj)
Department.DepartmentObj.Change (Add, students list, StudentObj)

The next example shows an opposite operation: we want to disconnect a student
from a department:

Student.StudentObj.Change (Del, belongs to, DepartmentObj)
Department.DepartmentObj.Change (Del, students list, StudentObj)

328 Shoval

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If we want to disconnect all the students from a certain department, we need to
delete all references to the student objects in the department’s object, and then
delete the reference to that department in all its student objects. The next
example shows a part of a specific method which carries out this task, dealing
mainly with the “Change’ methods. Note that the ‘GetObjects’ method retrieves
all student objects belonging to the department (i.e., the department whose OIS
is in ‘DepartmentObj’). Then, a loop is performed for those students; in each
iteration of the loop, the reference to the department is removed from the
student’s object. Note also the parameter ‘All’ of the ‘Change’ method applied
on Department, which means that it deletes all values of this set attribute.

Department.DepartmentObj.Change (Del, students list, All)
all-dept-students = Student.StudentObjets.Change (belongs to = DepartmentObj)
For each Object in all-dept-students do:

Student.StudentObj.Change (Del, belongs to, DepatmentObj)
Next object.

A Method to Count How Many Values Include an
Attribute of an Object

Structure of method: return value = ClassName.object.Count (attribute)
Example: number-of-students = Department.DepartmentObj.Count (students list)

Note that if the attribute is simple, the return value can be 0 or 1. If it is a set
attribute, the number of members in the set is returned.

Glossary 329

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Glossary

4GL
Fourth Generation Language

ADISSA
Architectural Design of Information Systems Based on Structures Analysis

CAD
Computer Aided Design

CAM
Computer Aided Manufacturing

CASE
Computer Aided Software Engineering

CRUD
Create, Read, Update, Delete

DBMS
Data Base Management System

DD
Data Dictionary

330 Glossary

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DDL
Data Definition/Description Language

DFD
Data Flow Diagram

DML
Data Manipulation Language

ER
Entity Relationship

ERD
Entity Relationship Diagram

FOOM
Functional and Object-Oriented Methodology

GIS
Geographical Information System

IS
Information System

MS
Microsoft

ODL
Objects Definition/Description Language

OID
Object Identification

OMG
Object Management Group

OMT
Object Modeling Technique

Glossary 331

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OO
Object-Oriented

OOA
Object Oriented Analysis

OOD
Object Oriented Design

OO-DBMS
Object-Oriented Data Base Management System

OO-DFD
Object-Oriented Data Flow Diagram

OOSE
Object Oriented Software Engineering

OPL
Object-Oriented Programming Language

OR-DBMS
Object-Relational Data Base Management System

PL
Programming Language

SC
Structure Chart

SQL
Structured Query Language

SSA
System Structure Analysis

SSD
System Structure Design

332 Glossary

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UM
Unified Method

UML
Unified Modeling Language

VB
Visual Basic

About the Author 333

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Author

Peretz Shoval is a professor of information systems with the Department of
Information Systems Engineering of Ben-Gurion University. He earned his BA
(economics) and MSc (information systems) from Tel-Aviv University, and PhD
(information systems, 1981) from the University of Pittsburgh, where he
specialized in expert systems for information retrieval. In 1984, he joined Ben-
Gurion University in Israel, where he started the Information Systems Program
at the Department of Industrial Engineering and Management, and later on
created and headed the Department of Information Systems Engineering. Prior
to moving to academia, Shoval held professional and managerial positions in
computer and software companies. Shoval’s research interests include informa-
tion systems analysis and design methods; data modeling and database design;
and information retrieval and filtering. He has published more than 100 papers
in journals, conference proceedings, and book chapters, and authored several
books on systems analysis and design. Shoval has developed methodologies and
tools for systems analysis and design, and for conceptual and logical database
design.

334 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea
Group Inc. is prohibited.

Index

A

abstract class 37, 42, 54, 240
abstraction 10
activity diagram 128, 142, 160
actor 133
ADISSA 166, 174
aggregation 33, 113, 129
aggregation relationship 34, 86, 113, 151
analysis and design 1, 126, 168
analysis stage 168, 178
application program 2, 52, 173, 250, 292
application-specific 49, 173, 305
attribute 5, 18

B

basic method 173, 304
behavior 43, 154, 167
behavior diagram 128, 135
binary relationship 77-78
business object 145
business process 57, 142, 249

C

candidate key 114
CASE tool 4, 100, 128, 174

class 5, 16
class diagram 13, 57, 169
class method 249, 291
collaboration diagram 128
compatibility 131, 203, 213, 225
complete class diagram 248
complex attribute 76, 100
conceptual data model 2, 103
conceptual model 11, 36
control object 153
create 248
CRUD 46, 304

D

data analysis 4, 58, 169
data class 184, 248
data definition language (DDL) 2, 14
data dictionary (DD) 169, 203, 230, 248
data elements 233
data flow 4, 166, 184, 230, 270
data flow diagram (DFD) 4, 124
data model 50, 61, 169
data object 15, 130, 154
data store 183
data structure 2
data type definition 18

Index 335

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

data/entity class 178
database management system (DBMS) 2,

126
database schema 2, 14
dataflow 170, 231, 250, 281
description of a transaction 172, 256, 291,

296
design phase 126, 153, 159, 170, 209,

230, 248, 263, 322
design stage 166, 168, 171, 209
development methodologies 168
dictionary tables 235
display method 279
dynamic behavior 141, 144

E

elementary function 186, 250
encapsulation 9, 167
entity relationship (ER) 2, 105, 166
entity relationship diagram (ERD)

4, 74, 127, 166, 171, 178
entity relationship model 13, 74
external entity 170, 187, 250

F

flowchart 142, 315
FOOM 165, 178
foreign-key 105
fourth generation language 2
function 5, 45, 184, 250, 292
functional analysis 4, 58, 182
functional approach 165
functional design 269
functional model 50, 127, 178
functional requirement 61
functional-hierarchical decomposition 198

G

general function 185, 226, 251, 265, 270
generalization-specification 125

H

hierarchical decomposition 185
human interface 126

I

inheritance 5, 41, 129
inheritance relationship 7, 86, 111,

125, 201
initial class diagram 169, 178
input 172, 187, 248
input screen 15, 209, 242, 257, 285
input-output screen 296
inputs and outputs 281, 286, 301
integrity constraint 105, 325
interface 9, 133, 248, 268, 307
interface object 15, 153
inverse reference attribute 30, 62

K

key 14, 20, 28, 42, 54, 62, 84, 105
key tuple 28, 80

M

M:N relationship 78
main method 292
main procedure 261
many-to-many relationship 63, 110
mapping rule 74, 103
menu item 172, 169, 275, 292, 307
menus 7, 126, 273
menus class 171, 278
menus interface 269
menus tree 169, 249, 268
menus tree design 270
message 7, 17, 138
message chart 169, 249, 315
message connection 125
method 5, 43, 169, 248, 291
mixed transaction 252
multi-valued attribute 21, 77, 104
multi-valued dependencies 105
multiple-inheritance 40
multiplicity 24, 48, 78, 130, 167
multiplicity constraint 130

N

N:N relationship 78, 110
N:N:N relationship 80

336 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea
Group Inc. is prohibited.

normal form (NF) 105
normalization 113
normalized relation 23, 105
not-null attribute 111
null value 26, 35, 109, 115

O

object 5
object class 58
object definition language (ODL) 14
object diagram 131
object identification number (OID) 21, 104
object management group (OMG) 127
object model 159
object modeling technique (OMT) 124
object-oriented (OO) 1, 124
object-oriented data flow diagram (OO-

DFD) 169
object-oriented programming 2
object-relational DBMS (OR-DBMS)

104
objects model 13, 57, 127
objects schema 14, 68, 103
one-to-many relationship 80, 109
OO database 230
OO development methodologies 145
OO methodologies 167
OO model 13
OO programming 3
OO schema 126
OO-DBMS 4, 103, 126
OO-DFD 170, 178, 250
OOA 125
OOA/OOD 124
OOD 126
output 153, 167, 173, 248
output report 268, 285

P

parameter 43
participation constraint 37, 112
polymorphism 39, 42
primary-key 105
process logic 195, 250, 291
program flowchart 142, 160, 315
programming 47, 308, 322

programming language 1
pseudo code 47, 169, 249, 291

R

real-time entity 185, 251
real-time system 140, 152, 167
real-time transaction 252, 272
reference attribute 22, 26, 62, 75, 106
relation 108, 111
relational database 230
relational DBMS 3
relational model 3, 104
relational schema 103
relationship 24, 27, 64, 110, 202
relationship class 28, 78
reusability 10
reuse 4, 10

S

selection item 270, 278
sequence diagram 128
set attribute 21, 108
signature 9, 11, 43
singular class 182
software engineering 3
specialization 60
specific methods 305
SQL 135, 232
state chart 127, 141, 160
structural relationship 86, 125
structure diagram 128
structured programming 2, 43
structured system analysis (SSA) 2, 166
structured system design (SSD) 2, 166
subclass 5, 34, 60, 106
subsystem 277
superclass 5, 34, 112
synchronized 178
system analysis 45, 168
system development methodologies 165

T

ternary relationship 30, 74, 111
time entity 184, 251
time transaction 252, 272

Index 337

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

transaction 166, 172, 248, 256, 291, 296
transaction class 172, 286, 292
transaction method 173, 263, 307
trigger item 270, 277
trigger menu item 292
tuple 20, 107

U

unary relationship 24, 78, 109
unified modeling language (UML) 124, 167
use case 128
use case description 137
use case diagram 135
use case model 145
user entity 184, 251, 281
user interface 169, 249
user transaction 251

V

verification 158, 224

W

weak entity type 74
whole-parts 33, 150
whole-parts relationship 33, 113

InfoSci-Online
Experience the latest full-text research in the fields
of Information Science, Technology & Management

infosci-online.comA PRODUCT OF

Publishers of Idea Group Publishing, Information Science Publishing, CyberTech Publishing, and IRM Press

“…The theoretical bent
of many of the titles
covered, and the ease
of adding chapters to
reading lists, makes it
particularly good for
institutions with strong
information science
curricula.”

— Issues in Science and
Technology Librarianship

To receive your free 30-day trial access subscription contact:
Andrew Bundy

Email: abundy@idea-group.com • Phone: 717/533-8845 x29
Web Address: www.infosci-online.com

InfoSci-Online is available to libraries to help keep students,
faculty and researchers up-to-date with the latest research in
the ever-growing field of information science, technology, and
management.

The InfoSci-Online collection includes:
� Scholarly and scientific book chapters
� Peer-reviewed journal articles
� Comprehensive teaching cases
� Conference proceeding papers
� All entries have abstracts and citation information
� The full text of every entry is downloadable in .pdf format

Some topics covered:
� Business Management
� Computer Science
� Education Technologies
� Electronic Commerce
� Environmental IS
� Healthcare Information Systems
� Information Systems
� Library Science
� Multimedia Information Systems
� Public Information Systems
� Social Science and Technologies

InfoSci-Online
features:
� Easy-to-use
� 6,000+ full-text

entries
� Aggregated
� Multi-user access

	Title Page
	Copyright Page
	Table of Contents
	Preface
	Section I:
The Objects Model and
Class Diagrams
	Chapter I
Introduction to the
Objects Approach
in Software
	Chapter II
The Objects Model
and the Class Diagram
	Chapter III
Creating
Class Diagrams
	Chapter IV
Mapping Entity
Relationship Diagrams
to Class Diagrams
	Chapter V
Mapping Class
Diagrams to
Relational Schemas
	Section II:
Functional and
Object Oriented Analysis
	Chapter VI
Object Oriented
Methodologies
and the UML
	Chapter VII
Combining the
Functional and Object
Oriented Approaches:
Introduction to FOOM
	Chapter VIII
Information Systems
Analysis with FOOM
	Chapter IX
Data Dictionary
	Chapter X
Transactions and Their
Top-Level Design
	Chapter XI
Design of the
Man-Machine
Interface:
Menus, Inputs,
and Outputs
	Chapter XII
Detailed Design of
the Transactions
and Class Methods
	Glossary
	About the Author
	Index

