

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-07007-2 - Functional Programming and Input/Output
Andrew D. Gordon
Frontmatter
More information

http://www.cambridge.org/9780521070072
http://www.cambridge.org
http://www.cambridge.org

Chapter �

Introduction

One of the main arguments in favour of functional programming is that it is easier to
prove properties of functional programs than of imperative programs� Proofs of functional
programs are claimed to be easier to construct than proofs of imperative programs� On
the other hand� input�output �I�O� has long been viewed as problematic for functional
languages� I�O mechanisms for functional languages have either been impractically in�
expressive or not been integrated into the language semantics� The working programmer
can argue that there is no published evidence�such as realistic examples�of how prop�
erties can be proved of functional programs that perform realistic I�O� Hence a major
theoretical advantage of functional programming�that programs are easy to understand
and verify�does not carry over to practical programs engaged in I�O�

This dissertation is a study of how to give semantics to I�O mechanisms for functional
languages� and how to use such semantics to prove properties of programs engaged in
I�O� It is meant as a step towards convincing the working programmer that functional
programming can be practical� though much remains to be done�

The purpose of this chapter is to introduce the problem of functional I�O� survey previ�
ous work� and outline the contribution of this dissertation� x��� denes terminology used
here concerning functional programming� x��� discusses previous work on I�O in func�
tional languages� and identies four widely�implemented mechanisms� Any semantics of
functional I�O has to build on a semantics of functional languages� x��� reviews semantic
methods suitable for functional languages� x��� states the hypothesis of this dissertation�
x��� outlines each chapter� x��	 states the original results of this dissertation and x���
o�ers advice to the reader� Finally� x��� introduces some of the mathematical material
needed here�

��� Functional programming

Many functional �or applicative� languages have been put forward since the pioneering
work on LISP ����� ISWIM ���� and POP�� ���� in the ��	
s� For the purpose of this
dissertation� we distinguish two classes of functional languages� depending on the seman�
tics of function application� Recall the terms call�by�value and call�by�name from ALGOL

�

� CHAPTER �� INTRODUCTION

	
� When a function is applied to an actual parameter under call
by
value semantics
the function�s formal parameter is bound to the value obtained by evaluating the actual
parameter� Under call
by
name semantics� the formal parameter is bound to the un�
evaluated actual parameter� and each time the value of the formal is required� the actual
parameter is evaluated� An eager language is one in which function application has call�
by�value semantics� a lazy language is one in which function application has call�by�name
semantics� By this denition� LISP� Scheme and ML are eager� whereas Miranda� Lazy
ML and Haskell are lazy� For the sake of e�ciency� application in lazy languages is usually
implemented using call�by�need� as in graph reduction ��
�� ���� for instance� Call
by

need is the same as call�by�name� except that after the rst evaluation of the actual
parameter its value is retained and used whenever the formal parameter is subsequently
used�

The primary focus of this dissertation is I�O for lazy languages such as Miranda or Haskell�
although we discuss eager languages brie�y� We make no claim to have considered all the
varieties of functional language� for instance� the work here is not immediately applicable
to data�ow languages like Lucid �	� ���� or Silage ���� in which every expression stands
for an innite stream�

Much has been written in praise of functional programming� The curious reader is referred
to the paper by Hughes �	�� or any of the many textbooks on functional programming
��� ��� �
� ��� �
	�� My own motivation when beginning this research was the thought
that unlike imperative programs� lazy functional programs are easy to manipulate when
proving program properties� but it was not clear how to reason about programs engaged
in I�O�

��� A brief history of functional I�O

Many mechanisms have been implemented and proposed for functional I�O� We identify
four classes of I�O mechanism which together cover most of the proposed schemes�

Side�e�ecting I�O

Like functional programming� functional I�O begins with McCarthy ����� LISP ��� had a
side
e�ecting I�O mechanism� The core of LISP ��� can be explained as applications of
functions to arguments� but the LISP Programming System needed other operations such
as �commands to e�ect an action such as the operation of input�output� which were called
�pseudo�functions� ����� The pseudo�function print wrote its S�expression argument to
the printer� The pseudo�function read took no arguments� but returned an S�expression
from the input device� This side�e�ecting style of I�O persists in LISP and is also used in
other eager languages such as Scheme or ML� Many language theorists have viewed side�
e�ecting I�O with suspicion because unlike pure LISP� the evaluation of programs using
side�e�ects cannot simply be explained as the applications of functions to arguments� To
paraphrase Stoy ������ there is more to the meaning of an expression than just its value�
the side�e�ects and order of evaluation of subexpressions become signicant� The same
suspicions are aroused by LISP or ML programs that use the assignment statement�

���� A BRIEF HISTORY OF FUNCTIONAL I�O �

Although suspicious to some� side�e�ecting I�O is by far the most widely�used I�O mech�
anism in eager languages� In an eager language it is fairly easy to predict the order in
which expressions are evaluated so programs using side�e�ecting I�O can be fairly simple
to write and debug� if not to reason about formally� To the best of the author�s knowledge�
Williams and Wimmers� paper ����� is the only work to consider how to prove properties
of programs using side�e�ecting I�O in an eager language� They develop an algebra for
FL ���� a descendant of Backus� FP ���� I�O is achieved in FL by operations on histories�
objects that encode the status of all I�O devices and which are implicitly passed to and
from every function� One can view this as a form of side�e�ecting I�O�

On the other hand� it is not usually easy to predict the order in which a program in a lazy
language will call such side�e�ecting �pseudo�functions�� Evaluation order is determined
by data dependencies which can be hard to predict in advance� Side�e�ects mixed with
lazy evaluation make programs hard to understand� Another reason why side�e�ecting
I�O is hard to use with a lazy language is that call�by�need can cease to be a correct
implementation of call�by�name� as we show in Chapter ��

Landin�stream I�O

A stream is a potentially endless list of values� generated as need arises� Streams were
used by Landin in his ��calculus semantics of ALGOL 	
 to represent the values of loop
variables ��	�� he remarked that streams could have been used to represent I�O in AL�
GOL 	
� Streams were being used about the same time by Strachey in his �imperative�
GPM language to represent I�O ������ Streams can be represented as elements of certain
recursively dened domains� In an in�uential paper ����� Kahn applied domain theory
to concurrency using collections of stream�processing functions to model the semantics
of certain kinds of process network� With MacQueen ���� he showed that these process
networks could be implemented in POP�� extended with certain side�e�ecting operations
on streams�

About the same time� the pioneers of lazy languages ���� ��� argued that the list cons
operation� like any other function� should not evaluate its arguments� In an eager language
like LISP� every list is nite� On the other hand� if the cons operation does not evaluate
its arguments� innite lists can be represented whose elements are computed on demand�
Notionally innite lists are an important tool for the programmer in a lazy language �	���

The idea emerged that the input and output streams used in giving semantics to I�O
could be implemented within a lazy language itself� In what we call Landin
stream
I�O� interaction with a teletype is specied by a functional program that maps a lazy list
of input characters to a lazy list of output characters� The reduction mechanism needs
to be extended so that demand for values in the input stream is met by obtaining fresh
input from the keyboard� Jones and Sinclair �	�� credit Henderson ���� as being the rst
to propose the use of a stream�processing function to implement teletype I�O� By the
mid����
s this was a standard technique ��� ���� ���� covered in introductory textbooks
���� �
���

� CHAPTER �� INTRODUCTION

Synchronised�stream I�O

Synchronised
stream I�O is a generalisation of Landin�stream I�O where the program
is a function mapping a stream of acknowledgements to a stream of requests� In Landin�
stream I�O� inputs and outputs need not be synchronised� inputs occur when demand
arises for the value in the input stream� outputs occur when the value of the next item in
the output stream has been determined� In synchronised�stream I�O� input and output is
synchronised� the functional program must produce an output request before examining
the corresponding input acknowledgement� The power of synchronised�streams is that the
type of requests can encode any kind of imperative command� Synchronised�streams were
rst reported as the underlying implementation technique for Karlsson�s Nebula operating
system ����� The same essential idea was independently discovered by Stoye ���	� in his
operating system for SKIM�II and also by O�Donnell ��
��� Synchronised�streams were
chosen as the basic I�O mechanism in Haskell �����

Continuation�passing I�O

Karlsson derived continuation
passing I�O operations from the underlying
synchronised�stream mechanism of Nebula ����� In the context of teletype I�O�
continuation�passing I�O is based on a type CPS �short for �continuation�passing style��
with three operations INPUT���Char �� CPS� �� CPS� OUTPUT��Char �� CPS �� CPS and
DONE��CPS� The type CPS can be implemented as an algebraic type within the functional
language� There is no change to the language�s evaluation mechanism� but a top�level
program of type CPS can be interpreted or executed as follows� To execute INPUT�k��
input a character v from the keyboard and then execute k v� To execute OUTPUTv q�
output character v to the printer� and then execute program q� To execute DONE� simply
terminate� The style is called continuation�passing because the argument k to the INPUT
operation is reminiscent of continuations in denotational semantics ����� ����� Holm�
str�om used a continuation�passing style in PFL ����� an eager dialect of ML extended
with concurrency primitives� Perry ��
�� and McLoughlin and Hayes ��	� implemented
continuation�passing I�O mechanisms in lazy dialects of Hope� Rebelsky�s recent proposal
of I�O trees is essentially a form of continuation�passing I�O ������ Unlike side�e�ecting
and either kind of stream�based I�O� the continuation�passing style is suitable for either
lazy or eager languages�

The Haskell I�O system ���� is based on synchronised�stream I�O �based on a type called
Dialogue� but there is a standard set of continuation�passing operations� These operations
are programmed in terms of the underlying synchronised�stream mechanism �in the same
spirit as Nebula�� Hudak and Sundaresh discuss translations between the two mechanisms
that were discovered by the Haskell committee �	
�� One fruit of the formal semantics for
functional I�O developed in Chapter � is a proof of correctness of translations between
Landin�stream� synchronised�stream and continuation�passing I�O�

���� A BRIEF HISTORY OF FUNCTIONAL I�O �

Combinators for I�O

Programmers using eager languages nd that programs using side�e�ecting I�O are fairly
easy to understand� if not to reason about formally� The order of evaluation� and hence of
side�e�ects� is fairly easy to control� On the other hand� programs using stream�based I�O
can be hard to develop for two reasons� explicit �plumbing� of streams around a program
is easy to get wrong� the order in which input and output is interleaved can be hard to
predict because of lazy evaluation� Wray ����� and Dwelly ���� report problems of this
sort�

Several authors have derived combinators to abstract operations that are commonly needed
with stream�based programming� Karlsson ���� programmed continuation�passing oper�
ations using a synchronised�stream mechanism� Wray ����� suggested combinators for
sequential composition and iteration� In his seminal work on the semantics and pragmat�
ics of Landin�stream I�O in lazy languages� Thompson suggested a range of combinators
with which to construct Landin�stream programs� The combinators construct programs of
type interact a b� a program of this type is intended to represent an interactive compu�
tation with state of type a that when executed will return a value of type b� Thompson�s
combinators include operations such as sequential composition and iteration� He devel�
oped a trace theory to verify their correctness�the rst work on semantics of I�O for lazy
languages�

In developing the Kent Applicative Operating System �KAOS� ���� ����� a ���

 line
Miranda program� John Cupitt rened Thompson�s combinators� He worked with a type
interact a� which represented interactive computations that return values of type a� He
used two basic combinators� return and comp�

return �� a �� interact a

comp �� �a �� interact b� �� interact a �� interact b

A program return v is the trivial computation that immediately returns the value v� a
program comp f p is a sequential composition� rst execute p to return a value v� and
then execute program f v� Stream�based programs� such as KAOS� written using these
and other combinators have neither of the disadvantages mentioned earlier� There is no
explicit plumbing of streams� The order of input and output is controlled by sequential
composition�

Moggi ��

� �
�� has shown that structures of the form �interact� return� comp� occur
often in the denotational semantics of programming languages� The semantics of such
a structure can be given as a computational model� in the sense of Moggi� a categorical
structure based on a strong monad� Wadler ����� ��
� showed that such structures are a
versatile tool for functional programming� particularly when writing programs to interact
with state�

In�uenced by the work of Cupitt� Moggi and Wadler� Chapter � of this dissertation advo�
cates what we callmonadic I�O� in which combinators like Cupitt�s are used to structure
programs� Monadic I�O is a high�level construct that can be implemented using any of
the four low�level I�O mechanisms� Monadic programs are easier to understand than pro�
grams written in the three low�level styles suitable for lazy languages� there are no explicit
streams or continuations to tangle a program�

	 CHAPTER �� INTRODUCTION

Summary of previous work on functional I�O

We have discussed four classes of I�O mechanism� These will be covered in greater length
in Chapter � in the context of teletype I�O� The semantic tools developed earlier in the
dissertation will allow us to give semantics to each of the four I�O mechanisms�

To summarise� we considered side�e�ecting� Landin�stream� synchronised�stream and
continuation�passing mechanisms of I�O� Side�e�ecting I�O is not suitable for lazy lan�
guages because of the di�culty of predicting the order in which side�e�ects occur� The
semantics of both eager and lazy languages are complicated by the presence of side�e�ects�
making program properties harder to prove� Although the input stream needs to be im�
plemented specially� the semantics of a lazy language need not be a�ected by the presence
of stream�based I�O� input and output streams are simply lazy lists� �I�O mechanisms in
certain eager languages ���� ��� ��� have been based on streams� but the type of streams
is kept distinct from lists and used only for I�O�� Continuation�passing I�O has been used
with both lazy and eager languages� Evaluation of expressions remains unchanged� but
some kind of interpreter needs to be added to the implementation to execute continuation�
passing programs� Various sets of combinators have been proposed for programming at a
higher level than the basic I�O mechanism�

The four classes cover the most widely�implemented mechanisms for functional I�O� To the
best of the author�s knowledge� the only mechanism suitable for teletype I�O not covered
here is the extension of Landin�stream I�O with hiatons ����� as implemented in Lazy ML
���� The problem is for a program to be able to poll the keyboard� Landin�stream I�O has
blocking input in the sense that once demand arises for the next input value� computation
is halted until a key is typed� The solution is that a special value� a hiaton� appears
in the input stream whenever demand has arisen for a character� but none is available
from the keyboard� Hiatons have not been widely implemented� Another solution to the
polling problem is to add a command to poll the keyboard to synchronised�stream ���	�
or continuation�passing I�O ����� but we do not pursue this idea here�

There are good literature surveys on functional I�O by Hudak and Sundaresh �	
�� Jones
�	�� and Perry ��
��� Historically� many ideas about functional I�O have arisen from adding
nondeterminism or concurrency to functional languages� We do not study such mecha�
nisms in this dissertation� We refer the interested reader to papers containing surveys on
the following topics� functional programming and operating systems �	��� nondeterminism
and stream�based semantics ����� real�time functional programming ���� �
� and concur�
rent extensions of ML ����� Kelly�s book ���� cites many works on parallel systems based
on functional languages�

Although there has been a great deal of work on functional I�O� there has been very little
work on semantics� The primary goal of this dissertation is to explain the semantics of
functional I�O� and hence make properties provable of functional programs engaged in
I�O� To the best of the author�s knowledge� Thompson�s paper ����� on the semantics
of Landin�streams in Miranda� is the only prior work on the semantics of I�O in lazy
languages� In the context of eager languages � there is Williams and Wimmers� �����
work on semantics for what is essentially side�e�ecting I�O� and several papers giving
operational semantics for concurrent constructs ���� ��� ��� ��	�� but with no development
of a theory for program proofs� Dybjer and Sander ���� report work on the related problem

���� SEMANTICS OF FUNCTIONAL LANGUAGES �

of expressing concurrency using streams� They verify a communications protocol expressed
as a concurrent network of stream�based functions�

��� Semantics of functional languages

To obtain a theory of functional I�O� we must begin with a theory of functional program�
ming itself� In the context of this dissertation� such a theory has two purposes� to specify
precisely the computational behaviour of functional programs so that implementations
could be veried� and to enable program properties to be stated and proved�

Abramsky ��� points out that although the untyped ��calculus has often been viewed as the
prototypical functional language� actual implementations of lazy languages do not conform
to the standard theory ��
�� Abramsky considers two functional programs� ��x ���� and
�� where � is a looping or divergent program� He points out that according to the standard
theory� the two are equal� but in the implementation of lazy languages such as Miranda
or Lazy ML� evaluation of the rst converges whereas evaluation of the second diverges�
Motivated by this example� Abramsky develops his lazy ��calculus as a step towards a
theory of lazy functional programming� Following Plotkin�s study of PCF ������ Abramsky
equips the lazy ��calculus with a structural operational semantics ���� ���� and a domain�
theoretic denotational semantics� He then proves an adequacy theorem to relate the two
semantics�

As far as this dissertation is concerned� Abramsky�s key manoeuvre is to view his lazy ��
calculus as a process calculus� Led by Milner� a great many operationally�based methods
have been developed for the CCS theory of concurrency ���� ���� Bisimilarity� found by
taking the greatest xpoint of a certain functional ����� is a cornerstone of this theory�
Since it is a greatest xpoint it admits co
inductive proofs ���� ����� Abramsky builds
a bridge between CCS and the ��calculus by proposing applicative bisimulation as
the notion of operational equivalence in the lazy ��calculus� Applicative bisimulation is a
reworking of CCS bisimulation for the ��calculus�

We follow Abramsky and construct a theory of functional programming based on struc�
tural operational semantics and applicative bisimulation� Verication of an implemen�
tation could be based on the operational semantics� but this is beyond the scope of the
dissertation� Proofs of program properties are based on a theory of applicative bisimulation
that parallels that of CCS� It is important that applicative bisimulation is a congruence
relation� that is� a substitutive equivalence relation� Abramsky�s original proof that ap�
plication bisimulation is a congruence depended on domain�theoretic results� Stoughton
and Howe made two suggestions for how congruence could be proved directly from the
operational semantics� Stoughton suggested a variant of Milner�s context lemma ���� ����
Howe� with an ingenious construction� proved congruence for a broad range of lazy compu�
tation systems ����� In Chapter � we will investigate both the context lemma and Howe�s
method� In related work� Milner ���� and Sangiorgi ����� link the lazy ��calculus with the
theory of ��calculus� a development of CCS with mobile processes ��	�� Smith ����� builds
on Howe�s work to construct semantic domains from operational semantics�

A semantics of functional programs ���� ��� has often been based on domain�theoretic
denotational semantics ��
�� ���� ��
� ����� Stoy�s classic paper ����� shows how domain�

� CHAPTER �� INTRODUCTION

theoretic methods such as Scott induction can be applied to prove properties of functional
programs� Instead of domain theory we use operational semantics to specify the I�O be�
haviour of functional programs� Were we to appeal to domain�theoretic principles in proofs
of functional programs� we would need to relate the operational and domain�theoretic se�
mantics� Lester ��
�� Simpson ����� and Burn ��	� have proved such a relation �usually
known as adequacy� in the context of a lazy functional language� other related work is
more theoretical ���� �
� ���� ��
� ����� We leave the relation between the operational and
domain�theoretic semantics of the functional languages studied here as future work� For
the purpose of proving program properties we have not felt the lack of a domain�theoretic
semantics as a loss� examples arising here that might have required Scott induction in a
domain�theoretic setting have been proved using co�induction�

In summary� as a step towards a theory of functional I�O� we develop a theory of functional
programming in which the functional language is viewed as a kind of process calculus� The
theory is based on structural operational semantics and applicative bisimulation�

��� Hypothesis

This dissertation aims to show the following�

� An operational theory of functional programming is suitable for precisely specifying
a functional language and proving properties of functional programs�

� Such an operational theory can be extended to specify and prove properties of the
most widely�implemented mechanisms for I�O in lazy functional languages�

� A semantics for a simple form of monadic I�O may be expressed within the func�
tional language� Hence programs using monadic I�O may be veried using standard
techniques�

��� Synopsis

The rst half of the dissertation denes a semantic metalanguage� M� which is used in
the second half for the investigation of functional I�O�

Chapter �� A calculus of recursive types In this chapter we prove a technical result
needed in Chapter �� Mendler has proved con�uence and strong normalisation for
the Girard�Reynolds polymorphic ��calculus extended with positive recursive types�
This chapter proves strong normalisation for an extension� called ����� of Mendler�s
calculus�

Chapter �� A metalanguage for semantics The metalanguageM is a simply�typed
��calculus with product� sum� function� lifted and recursive types� This chapter
denes its syntax� type assignment relation and its lazy and deterministic operational
semantics� The main result of this chapter is a convergence theorem�that� apart
from terms of lifted types� evaluation of every term converges�

Chapter �� Operational precongruence We investigate two operationally dened
preorders on the terms of M� contextual order �after Morris and Plotkin� and ap�

���� SYNOPSIS �

plicative similarity �after Milner and Abramsky�� We dene a notion of operational
adequacy to mean that a preorder respects evaluation in a certain way� We show
that each preorder is an operationally adequate precongruence� The proofs use a
variant of Milner�s context lemma ���� for contextual order� and a typed reworking
of a method due to Howe ���� for applicative similarity� Given that applicative sim�
ilarity is a precongruence� it is routine to establish operational extensionality
����� that applicative similarity coincides with contextual order�

Chapter �� Theory of the metalanguage We adopt applicative bisimilarity� the
equivalence corresponding to contextual order and applicative similarity as equiva�
lence on terms ofM� We prove equational laws that are analogues of the axiomatic
domain theory of LCF ��	� �
��� We derive a principle of co�induction from the
denition of applicative bisimilarity� We investigate properties of empty� one�point�
iterated sum� iterated product� boolean and natural number types�

The second half investigates a range of ways in which functional languages can be extended
to express I�O�

Chapter �� An operational theory of functional programming We dene a
functional language� H� which is essentially a subset of Haskell� H has lazy al�
gebraic types and both call�by�name and call�by�value function applications� We
give a deterministic operational semantics and a denotational semantics using M�
The denotational semantics is a case study of Moggi�s proposal to use monads to
parameterise semantic descriptions� We prove a close correspondence between the
operational and denotational semantics� We dene operational and denotational
equivalences as object�level applicative bisimilarity and equivalence in the metalan�
guage respectively� We show that a theory of programming� which consists of a
set of equational laws together with a co�induction principle� holds for operational
equivalence� The equational laws are valid for denotational equivalence� but we
leave open whether the co�induction principle holds� We conclude the chapter by
considering the semantics and theory of HX � a language obtained from H by adding
a parameterless exception mechanism�

Chapter �� Four mechanisms for teletype I�O We take teletype I�O�interaction
with a keyboard and printer�as a simple I�O model� In this context� we discuss
the formal semantics of four widely�implemented mechanisms for functional I�O�
side�e�ecting� Landin�stream� synchronised�stream and continuation�passing I�O�
We explain why side�e�ecting I�O combines badly with call�by�name semantics of
function application� The other three mechanisms are suitable for use with call�
by�name semantics� We prove in a precise sense that they are of equal expressive
power�

Chapter 	� Monadic I�O We develop a monadic style of functional I�O to support an
application of functional I�O at the Medical Research Council �MRC� in Edinburgh�
We describe a simple monadic programming model� and express its semantics within
H as a particular form of state transformer� Using the semantics we verify a simple
programming example�

Chapter �� Conclusion Conclusions are drawn and further work suggested�

�
 CHAPTER �� INTRODUCTION

��� Results

The main contribution of this dissertation is to develop an operational theory of lazy
functional programming� to extend it to accommodate various I�O constructs� and to
show how it can be applied to prove properties of functional programs engaged in I�O�
Here are specic original results�

� A theory of a non�trivial functional language� H� based on equational reasoning and
co�induction� and developed operationally from rst principles�

� A case�study of the monadic approach to denotational semantics� based on an
operationally�dened metalanguage�M� Proof that the denotational semantics cor�
responds closely to the operational semantics�

� A formal semantics for side�e�ecting� Landin�stream� synchronised�stream and
continuation�passing I�O�

� A proof that Landin�stream� synchronised�stream and continuation�passing I�O are
equally expressive in the context of teletype I�O�

� A case�study of the monadic approach to I�O� motivated by an application of func�
tional programming to medical electronics�

� An investigation of the relationship between the context lemma and Howe�s method
of proving precongruence for operationally�dened preorders�

��� How to read the dissertation

A bird�s eye view can be had by reading this chapter� reading the unnumbered introductory
sections of Chapters � to �� and then the whole of the last chapter� The introductory
sections are intended to motivate and sketch the results of each chapter without mentioning
any mathematical details�

As mentioned above� the rst half develops a semantic metalanguage� M� for use in the
second half to give denotational semantics for a functional object language� H� H is the
basis for the study of functional I�O in the second half� The argument in the dissertation
is linear in that almost every chapter depends on all its predecessors to some degree� but
none on its successors� That said� a great deal of the second half can be understood
without knowing the development of M in detail� After obtaining a bird�s eye view� the
reader primarily interested in functional I�O might skim x��� to x��� to get an impression
of the denition of M� browse Chapter � on the theory of M� and begin reading more
thoroughly at Chapter 	�

The extension of Mendler�s calculus developed in Chapter � is only used explicitly in x����
The reader wishing to understandM in detail is advised to begin at Chapter � and skip
x��� on rst reading� and then to study Chapter � before reading x����

���� MATHEMATICAL PRELIMINARIES ��

��	 Mathematical preliminaries

Syntax� alpha�conversion and the variable convention

We deal with three formal languages in this dissertation� ���� introduced in Chapter ��
M introduced in Chapter �� and H introduced in Chapter 	� Chapter 	 also introduces
a variant of H� called HX � Here we state general syntactic conventions that apply to all
these languages �except that term variables are treated specially in ������

We assume two countably innite sets of type variables and term variables� ranged
over by the metavariables X� Y � Z and f � g� u� v� w� x� y� z� respectively� We almost
always refer to term variables simply as variables� We will point out binding occurrences
of variables when dening each formal language� If t is a phrase of syntax� we write ftv�t�
and fv�t� for the sets of type and term variables respectively that occur free in t� The
iterated notation fv�t�� � � � � tn� is short for fv�t��� � � � � fv�tn�� we use a similarly iterated
form of ftv � If t and t� are phrases of syntax� we write t�t

�
�X� and t�t

�
�x� for the outcomes of

substituting t� for each free occurrence of X or x� respectively� in t� with change of bound
variables in t to avoid variable capture� We refer the reader to Hindley and Seldin�s
textbook for a clear treatment of substitution and alpha�conversion ��	�� We make free
use of the properties of substitution and alpha�conversion developed in Section �B of their
book�

We follow the standard practice of identifying phrases of syntax up to alpha�conversion�
that is� treating a syntactic phrase as if it were its alpha�equivalence class� We use the
symbol � for alpha�conversion� We adopt Barendregt�s variable convention ��
� and as�
sume that all the bound variables in a term are distinct from each other and from any free
variables� This is legitimate when phrases of syntax are identied up to alpha�conversion�

We will make it clear whenever we are not treating a phrase of syntax as its alpha�
equivalence class� When we are not� we can write bv�t� for the set of bound term variables
in t� A context� C or D� is a term possibly containing one or more holes� written as ���
We write C�t�� which we call an instantiation� for the term obtained by lling in each
hole in C with the term t� Contexts are not identied up to alpha�conversion� we write
C � D to mean that contexts C and D are literally the same� The only signicant use of
contexts is in Chapter �� contexts are covered in greater detail in x����

Types and polymorphic de�nitions

Each of the formal languages ����� M and H is a typed ��calculus in which terms are
tagged with type information� Such type information can often be inferred from the
narrative text� and then we omit it� Occasionally we omit type information from the
dening equation of anM or H term� and specify a type scheme� For instance� we might

make the denition id
def
� ��x� x� and comment that term id has type scheme ������ The

idea of type schemes or polymorphic types ���� is widely used in functional languages like
ML or Haskell� Rather than burden the reader with a formal mechanism of polymorphic

types� we trust that the equation id
def
� ��x� x� �and others like it� can be understood as

the denition of a whole family of terms� id� � ��x��� x� for each type ��

�� CHAPTER �� INTRODUCTION

Relations

If S and T are sets� we treat a binary relation between S and T as a subset of the product
S�T � If R � S�T we write sRt and �s� t� � R interchangeably� Relational composition
is written as juxtaposition� that is� ifR� � S��S� andR� � S��S�� thenR�R� � S��S�
is the composition of R� and R�� If R � S�S� then R� and R� are its transitive closure
and re�exive transitive closure respectively� We write Id for the identity relation� If R is
a relation� R�� is its inverse�

Bisimulation and co�induction

We make extensive use of preorders and equivalence relations dened to be the greatest
xpoints of certain functionals� The prototypical use of this technique in computer science
is bisimilarity in CCS ����� suggested by Park and developed by Milner�

We will introduce such relations by rst dening the functional� denoted parenthetically
by ��� or h�i� Then we dene notions of simulation and similarity as introduced in the
following theorem� which states general properties of the relations dened in this way�

Proposition �� Suppose the following�

� Metavariable t ranges over a set of terms� Term �

� Metavariable S ranges over subsets of Term �Term �

� Functional ��� is a monotone function over subsets of Term � Term

	that is� if S� � S� then �S�� � �S��
�

� A simulation is a relation S such that S � �S��

� Similarity� ��� is de�ned to be the union of all simulations�

We have�

��� Similarity is the greatest �xpoint of ����
	A �xpoint of ��� is a relation S such that S � �S��

��� Similarity is the greatest simulation�

��� t �� t� i� there is a simulation S such that tSt��

��� If the identity relation on Term is a simulation� then �
� is reexive�

��� If S�S� is a simulation whenever both S� and S� are� then �
� is transitive�

�	� If S�� is simulation whenever S is� then �
� is symmetric�

Proof Part ��� is a special case of the Knaster�Tarski theorem in xpoint theory� see
Davey and Priestley ���� pages �������

��� That similarity is a simulation follows from ���� It is the largest since by denition it
contains any other�

��� For the forwards direction� take the simulation S to be �� itself� For the backwards
direction� we have S � �

�� so �t� t
�� � S implies �t� t�� � �

��

��� For any t� pair �t� t� is in a simulation �the identity relation�� so by part ���� we have

���� MATHEMATICAL PRELIMINARIES ��

t �� t�

��� For arbitrary t�� t� and t�� suppose that t��� t� and t� �� t�� Since similarity is a simu�
lation� so is the composition ��

�
�� We have t�

�
�
�
�t� by denition of relational composition�

so pair �t�� t�� is contained in a simulation� Hence by ��� we have t� �� t�� as required�

�	� Suppose that t �� t�� Since �� is a simulation� we have t
� �
� t as required�

Property ��� of this proposition is an important proof technique� to prove t�� t�� it su�ces
to nd some S containing pair �t� t�� and prove that S � �S�� This technique has been
called Park�s rule or greatest xpoint induction or co
induction ���� �����

If the relation�� dened by a functional ��� is a preorder �a re�exive and transitive relation��
we call �� a similarity and any S such that S � �S� we call a simulation �as we did
above�� On the other hand� if relation �� is an equivalence� we call

�
� a bisimilarity and

any S such that S � �S� we call a bisimulation�

�� CHAPTER �� INTRODUCTION

Chapter �

A calculus of recursive types

This chapter prepares the way for Chapter �� where we will dene a simply�typed metalan�
guage for programming language semantics� M� We wish to prove in Chapter � that for
every term in a certain class ofM types� evaluation cannot diverge� This result is used in
Chapter � where we will develop a theory ofM� We obtain this result by translating such
terms ofM into a polymorphic ��calculus that possesses a strong normalisation property�
that no innite reduction sequence starts from any term�

The types of M we wish to encode are sums� products� functions and a certain class of
recursive types� called positive recursive types� A recursive type �X� � is positive
just when each occurrence of the bound type variable X within type � is to the left of an
even number of function arrows� For instance� the types ��X� � X�� of natural numbers�
or ��X� � �	 �X��� of nite lists of type 	 � are positive recursive types� As an example
of a non�positive type� consider ��X�X �X� which can encode any term of the untyped
��calculus� Evidently there are terms of this type whose evaluation diverges�

We seek a calculus with a strong normalisation result whose type structure is expressive
enough to encode the types of M� and hence to be the basis of a normalisation proof
forM� One candidate is the polymorphic ��calculus� ��� of Girard and Reynolds� which
has a rich type structure able to encode a wide range of types� Functions are primitive
in �� and there are standard encodings of sums and products� As for recursive types�
Girard ���� outlines a scheme for encoding the class of recursive types which are sums of
products� and equipping each with primitive recursive functions� Wraith ����� describes
a general scheme for encoding any positive recursive type and primitive recursion within
��� A second candidate is Mendler�s extension of �� ���� ���� which adds new type
constructors for positive recursive types� together with constants and reduction rules to
construct terms of recursive types� and compute primitive recursive functions� Mendler
proves that his extension of �� is Church�Rosser and strongly normalising�

We use Mendler�s calculus because it allows a direct representation of recursive types� In
this chapter we augment Mendler�s calculus with two new families of constants that are
needed to simulate certain operators in M� The purpose of the chapter is to prove that
even with the additional constants� and their reduction rules� all the terms of the calculus

�Paul Francis Mendler is also known as Nax Paul Mendler�

��

�	 CHAPTER �� A CALCULUS OF RECURSIVE TYPES

are strongly normalisable�

x��� denes the type structure of ����� the calculus developed in this chapter� to be the
same as in Mendler�s calculus� x��� denes the term structure of ���� to be the same as
in Mendler�s calculus� but for the addition of two new families of constants� x��� denes
the reduction relation for terms of ����� and states Mendler�s theorem� that any term of
���� is strongly normalisable� provided none of the new constants occurs in it� x��� denes
combinators in Mendler�s calculus that correspond to the new constants� x��� shows in two
examples that the combinators can simulate the new constants� x��	 proves that the new
constants can always be simulated by combinators contained within Mendler�s original
calculus�

��� Types of ����

Calculus ���� is a generalisation of ��� the Girard�Reynolds polymorphic ��calculus� We
assume a countably innite set of type variables� ranged over by metavariables X� Y � Z�
The set of types� with metavariables � and 	 � is given by the grammar�

� ��� X �type variable�
j ��� 	� �function type�
j �	X��� �polymorphic type� X bound in ��
j
 �recursive type�

 ��� � j �
� ��� ��X� �� �initial type� X bound in ��
� ��� ��X� �� �terminal type� X bound in ��

Conventional notions of free type variables and substitution apply� as stated in x���� Types
are identied up to alpha�conversion�

We say that a type variable X occurs positively in a type 	 i� each occurrence of X in
	 is to the left of an even number of ��s� Dually� a type variable X occurs negatively
in a type 	 i� each occurrence of X in 	 is to the left of an odd number of ��s�

Recursive types take one of the forms ��X� �� or ��X� ��� Beware that the symbol � �or
�� is used both as a metavariable for initial types �or terminal types� and as part of the
syntax as the type constructor itself� For anM type 	 to be well
formed we require two
properties of any recursive type� ��X� �� or ��X� ��� that occurs in 	 � First� we require
that each such recursive type is positive� which is to say that the bound variableX occurs
positively in �� Second� we require that each recursive type is closed� or equivalently that
ftv��� � fXg� For instance� type ��X�X�X� is closed but not positive� type ��X��Y�X�
is closed and positive� but is not well�formed because it contains a type ��Y�X� which is
positive but not closed� If we make the standard denitions of sums and products�

� 	
def
� �	Z� ��� Z�� �	 � Z�� Z� Z �� ftv��� 	�

� � 	
def
� �	Z� ��� 	 � Z�� Z� Z �� ftv��� 	�

Mendler points out that X occurs positively in such types i� X occurs positively in types
� and 	 � Let type � be ��X�X�� a one�point type �which we investigate in the context of
M in x����� If 	 is a well�formed closed type� we can dene well�formed types ��X� � X��

���� TERMS OF ���� ��

��X� � �	 �X�� and ��X� 	 �X� of natural numbers� nite 	 �lists and notionally innite
	 �streams respectively�

We insist that recursive types be closed and positive for the following reasons� Recursive
types that are not positive are problematic because they can type terms that are not
normalisable� For instance� the type ��X�X�X� can type a version of the � combinator
from the untyped ��calculus� Positive recursive types that are not closed complicate some
of the syntactic constructions used in this chapter� We rule them out as a convenience
just for this reason� Mendler requires recursive types to be positive� but not necessarily
closed� We will assume implicitly that any type we deal with is well�formed� Note that
the set of well�formed types is closed under substitution�

Parentheses will often be omitted when the intended grouping is implied by associativity
and scope rules� These rules are that the function arrow� ���� associates to the right�
and the scope of bound variables continues as far to the right as possible� For example�
the type �� � �� � �� is short for ��� � ��� � �����

��� Terms of ����

As mentioned in x���� type variables are treated specially in ����� We assume given a
countably innite set of names� ranged over by metavariables f � g� x� y� z� �This set
of names is the same as the set of term variables used in M and H�� In ����� a term
variable �called simply a variable in the following� is of the form x�� where x is a name�
and � is a type� The raw terms of ����� with metavariables L� M and N � are produced
by the grammar�

M ��� x� �typed variable�
j ��x��M� �abstraction� variable x� bound in M�
j �M N� �application�
j �!X�M� �type abstraction� X bound in M �

X not free in any type occurring in fv�M��
j �M �� �type application�
j k �constant�

where constants k are drawn from the set of constants� Con� given below�

Con
def
� fIntro��Elim��R�� Intro� �Elim� �S�g

Let ftv�M� and fv�M� be the sets of all type and term variables that occur free in M �

M ftv�M� fv�M�

x� ftv��� fx�g
��x� �M� ftv��� � ftv�M� fv�M�
 fx�g
�M N� ftv�M� � ftv�N� fv�M� � fv�N�
�!X�M� ftv�M�
 fXg fv�M�
�M �� ftv�M� � ftv��� fv�M�
k � �

Type and term substitution is written as M ���X� and M �N�x�� Alpha�conversion is up to
renaming of the names of bound term variables� but not their type labels� ��x��M� �

�� CHAPTER �� A CALCULUS OF RECURSIVE TYPES

��y�� �M �y
�
�x� ��� if y� �� fv�M�� We identify terms up to alpha�conversion� The restriction

on variables in type abstractions comes from the ��� without it� fv�!X�xX � is not well
dened up to alpha�conversion of terms ����� We adopt a name convention for �����
that all the names of all the bound variables in a term are distinct from each other and
from the names of any free variables� we can always achieve this by alpha�conversion�

The only di�erence between the calculus ���� given here and Mendler�s calculus is the
presence of the constants Elim� and Intro� � To obtain his calculus� Mendler added the
initial and terminal types to ��� the Girard�Reynolds calculus� together with the constants
Intro�� R�� Elim� and S� � �We use a notation slightly di�erent from Mendler�s� Elim instead
of In� Intro instead of out� 	X� 	 instead of "X� 	 � and di�erent metavariables�� We need
the extra constants so as to model corresponding Intro and Elim operators inM�

The type assignment relation of ����� a predicate of the form M ��� where M is a raw
term and � is a type� is dened inductively by the rules

Intro������X�� �
Elim���� ����X�

R���	Y� �	X� �X � ��� �X � Y �� �� Y �� �� Y �
Intro� �����X�� �
Elim� ��� ����X�

S� ��	Y� �	X� ���X�� �Y �X�� Y � ��� Y � ��
x���

M �	

��x��M����� 	�

M ��

�!X�M���	X���

M ���� 	� N ��

�M N��	

M ��	X� 	�

�M ���	 ���X�

where � � �X� � and � � �X� �� If M �� can be inferred we say that M is a term� and
that it has type �� Henceforth the metavariables L� M and N will range over just the
terms� rather than all the raw terms�

For the sake of legibility type superscripts will often be omitted� Parentheses will often
be omitted when the intended grouping is implied by associativity and scope rules� These
rules are that type and term applications associate to the left� and the scope of bound
variables continues as far to the right as possible� For example� the term LM N is short
for ��LM�N�� and the term �x� ��y� x y� y is short for ��x� ���y� �x y�� y���

��� Reduction in ����

Let us say that a binary relation R on terms of ���� is compatible just when it is closed
under the following rules�

MRN

��x��M�R��x�� N�

MRN

�M L�R�N L�

MRN

�LM�R�LN�

MRN

�!X�M�R�!X�N�

MRN

�M ��R�N ��

���� COMBINATORS TO SIMULATE ELIM� AND INTRO� ��

Let Id� stand for the identity function ��x�� x��� The reduction relation on terms� �� is
the least compatible relation closed under the following eight axiom schemes�

� ��x��M�N �M �N�x� �

� �x�� �M x���M if x� �� fv�M�

� �!X�M���M ���X�

� !X� �M X��M if X �� ftv�M�

� Elim� �Intro�M��M

� R� �M �Intro�N��M � Id� �R� �M�N

� Elim� �Intro�M��M

� Elim� �S� �M N��M � Id� �S� �M�N

In this dissertation we take advantage of the following theorem�

Theorem �� �Mendler� If no constant Elim� or Intro� occurs in a term M � then M
is strongly normalisable� which is to say that there is no in�nite sequence of reductions
starting from M �

Proof The proof is contained in an article by Mendler ����� His calculus does not contain
the new families of constants Elim� or Intro� � The reduction rules applicable to terms of
���� that do not contain the new constants are exactly the same as the rules in Mendler�s
article� If M �M � is a reduction� and M does not contain one of the new constants�
then neither does M �� Therefore any sequence of reductions starting from a term not
containing the new constants can be exactly simulated by a sequence of reductions in
Mendler�s calculus� Therefore his result tells us that any term M in ���� is strongly
normalisable� provided that none of the new constants occurs in M �

In a private communication �June ����� Mendler said that he omitted the Elim� and Intro�

constants from his calculus to simplify the con�uence proof �which we make no use of in
this dissertation�� and was not concerned at the loss of expressiveness because they can be
mimicked using the recursion constants R� or S� � respectively� This present work appears
to be the rst to work through a construction of combinators to mimic the constants
omitted by Mendler�

The rest of this chapter is devoted to a proof that any term of ���� is strongly normalis�
able�

��� Combinators to simulate Elim
� and Intro

�

We prove that every term of ���� is strongly normalisable by simulating the new con�
stants Elim� and Intro� with combinators elim� and intro� � denable in Mendler�s original
calculus from constants R� and S� respectively� Before dening these combinators in
Denition ��� we dene two auxiliary functions� Spec and Gen�

De�nition �� We de�ne the partial functions 	not terms of the calculus
� Spec and
Gen� that map quadruples of the form �
�X� ��M� to a term� where
 is a recursive type�
X is a type variable� � is a type and M is a term� First choose some name f � Then de�ne

�
 CHAPTER �� A CALCULUS OF RECURSIVE TYPES

the two functions simultaneously by structural induction on � 	the third argument
�

Spec���X�X�M�
def
� �fX��M�

Spec�
�X� Y�M�
def
� M if X �� Y

Spec�
�X�
��M�
def
� M

Spec�
�X� �	Y� 	��M�
def
� !Y� Spec �
�X� 	�M Y � where Y �� ftv�X�M�

Spec�
�X� �	� � 	���M�
def
� �x ��� � Spec �
�X� 	��M �Gen�
�X� 	�� x

������
where #	� � 	����X�
and name x �� f does not occur in fv�M�

Gen���X�X�M�
def
� �f��X M�

Gen�
�X� Y�M�
def
� M if X �� Y

Gen�
�X�
��M�
def
� M

Gen�
�X� �	Y� 	��M�
def
� !Y� Gen �
�X� 	�M Y � where Y �� ftv�X�M�

Gen�
�X� �	� � 	���M�
def
� �x�� � Gen �
�X� 	��M �Spec�
�X� 	�� x

�����
where name x �� f does not occur in fv�M�

The functions are partial only so far as Spec���X� 	�M� and Gen���X� 	�M� are undened
when 	 is the type variable X� this is unproblematic because we only apply Spec to a
terminal type ��X� �� or Gen to an initial type ��X� �� when X occurs negatively in 	 �

De�nition �� For each initial type � � ��X� ��� let #� be the type ����X�� and de�ne
the combinator family� elim�� as follows�

elim� def
� R� #� �!X��fX��� �gX���� �x�� Spec ���X� �� x���

Dually� for each terminal type � � ��X� ��� let #� be ����X�� and de�ne the combinator
family� intro� � as follows�

intro�
def
� S� #� �!X��f��X � �g���X � �x��� Gen ���X� �� x����

The name f is the same as the one chosen in the de�nition of Spec and Gen �

In x��	 we will prove that these combinators possess the following properties�

� elim��Intro��M���� M

� Elim��intro��M���� M

for any suitably typed term M � Given these properties it is not hard to show that every
term in ���� is strongly normalising� First we show two examples�

��� Two examples

First� recall the type � � ��X�X�� We can calculate the combinator intro� as follows�

intro� � S� � �!X��f��X � �g��X � �x�� Gen ���X�X� x���
� S� � �!X��f��X � �g��X � �x�� f��X x��

���� STRONG NORMALISATION FOR ���� ��

Now we can check that Elim��intro��M���� M for any term M of type ��

Elim��intro��M�� � Elim��S� � �!X��f��X � �g��X � �x�� f��X x��M�

� �!X��f��X � �g��X � �x�� f��X x�� � Id� intro�M
� ��f���� �g���� �x�� f��� x�� Id� intro�M

� ��g���� �x�� Id� x�� intro� M
� ��x�� Id� x��M

� Id�M
� M

Second� let � be the type �X � �� � � and initial type � be ��X� ��� We begin by
calculating Spec���X� �� x��� which has type ��� ��� ��

Spec���X� �� x�� � �y���� Spec ���X� �� x� �Gen���X� �X � ��� y������
� �y���� Spec ���X� �� x�

��zX � Gen ���X� �� y��� �Spec���X�X� zX �����
� �y���� Spec ���X� �� x�

��zX � Gen ���X� �� y��� �fX�� zX����
� �y���� Spec ���X� �� x� ��zX � y��� �fX�� zX���
� �y���� x� ��zX � y��� �fX�� zX��

The combinator elim� is dened as follows� where #� is ��� ��� ��

elim� � R� #� �!X��fX��� �gX���� �x�� Spec ���X� �� x���

We can check that elim��Intro��M���� M for any term M of type #��

elim��Intro��M�� � R� #� �!X��fX��� �gX���� �x� � Spec ���X� �� x���
�Intro��M��

� �!X��fX��� �gX���� �x�� Spec ���X� �� x���
� Id� elim�M

� ��f���� �g����� �x��
�y���� x� ��z�� y��� �f��� z����
Id� elim� M

� ��g����� �x�� �y���� x� ��z�� y��� �Id� z����
elim�M

� ��x�� �y���� x� ��z�� y��� �Id� z����M
� ��y����M ��z�� y��� �Id� z����
� ��y����M ��z�� y��� z���
� ��y����M y����
� M

Notice that the reductions make use of the beta and eta rules� and depend on the variable
named f being replaced by the identity function�

��� Strong normalisation for ����

We prove a series of propositions that culminates in a strong normalisation result for �����
The rst proposition states all the properties that we rely on in the functions Spec and

�� CHAPTER �� A CALCULUS OF RECURSIVE TYPES

Gen� parts ��a� and ��d� are of particular interest�

Proposition �� Let � be any initial type �X� �� and let s be the substitution
����X��Id

�
�f����� Then for any type 	 and term M �

��� If M �	 and X occurs positively in 	 � let N � Spec���X� 	�M�� and then
	a
 N has type 	 ���X��
	b
 fv�N� � fv�M� and name f does not occur in fv�N��
	c
 ftv�N� � ftv�	� � ftv�M� � fXg� and
	d
 Ns�� Ms�

��� If M �	 ���X� and X occurs negatively in 	 � let N � Gen���X� 	�M�� and then
	a
 N has type 	 � and
	b
 fv�N� � fv�M� and name f does not occur in fv�N��
	c
 ftv�N� � ftv�	� � ftv�M� � fXg� and
	d
 Ns�� Ms�

Proof We prove all parts simultaneously by induction on the size of the type 	 � and
proceed by analysis of its structure� For the sake of brevity� we omit all the details of
parts �b� and �c�� They are no harder to prove than the other parts�

Case 	 � X�
��a� Here N � �fX��M� which has type �� which equals 	 ���X��

��d� Ns � �Id �Ms���Ms�

��� Gen���X�X�M� is undened� but this case cannot arise because X occurs pos�
itively in X�

Case 	 � Y �� X�
��a� N �M �Y and Y � 	 ���X��

��d� Ns �Ms��Ms�

��a� N �M �Y and Y � 	 �

��d� Ns �Ms��Ms�

Case 	 �
� This case is trivial because of the restriction in ���� that all recursive
types be closed� If we had not made this restriction� the denitions of Spec and Gen

would be rather more complicated�

��a� Here N �M � which has type
� All recursive types are closed� so
 � 	 ���X��

��d� Ns �Ms��Ms�

��a� N �M � which has type 	 ���X� � 	 � since all recursive types are closed�

��d� Ns �Ms��Ms�

Case 	 � �	Y� ��� We may assume Y �� ftv�X�M� since types are identied up to
alpha�conversion�

��a� Here N � !Y� Spec ���X� ��MY �� By IH� we have that Spec���X� ��MY � is
of type ����X�� Therefore N is of type 	Y� �����X�� � 	 ���X��

��d�Ns � !Y� �Spec���X� ��MY �s�
�� !Y� ��MY �s� �IH�
� !Y� �Ms�Y
� Ms

���� STRONG NORMALISATION FOR ���� ��

��a� N � !Y� Gen ���X� ��MY �� By IH� Gen���X� ��MY � is of type �� Therefore
N is of type �	Y� �� � 	 �

��d�Ns � !Y� �Gen���X� ��MY �s�
�� !Y� ��MY �s� �IH�
� !Y� �Ms�Y
� Ms

Case 	 � �	� � 	���
��a� N � �x� Spec ���X� 	��M �Gen���X� 	�� x���� where x has type 	����X��
Since X occurs negatively in 	�� by IH we have Gen���X� 	�� x��	�� Then
M �Gen���X� 	�� x�� has type 	�� Since X occurs positively in 	�� by IH we
have Spec���X� 	��M �Gen���X� 	�� x��� has type 	����X�� Therefore N has type
	����X�� 	����X� which equals 	 ���X��

��d�Ns � �x� �Spec���X� 	��M �Gen���X� 	�� x���s�
�� �x� ��M �Gen���X� 	�� x���s� �IH�
� �x� �Ms� �Gen���X� 	�� x�s�
�� �x� �Ms� �xs� �IH�
� �x� �Ms�x
� Ms

��a� Dually� N � �x�Gen ���X� 	��M �Spec���X� 	�� x���� where x has type 	�� Since
X occurs positively in 	�� by IH we have Spec���X� 	�� x� has type 	����X�� Then
M �Spec���X� 	�� x�� has type 	����X�� Since X occurs negatively in 	�� by IH we
have Gen���X� 	��M �Spec���X� 	�� x��� has type 	�� Finally� N has type 	� � 	�
which equals 	 �

��d�Ns � �x� �Gen���X� 	��M �Spec���X� 	�� x���s�
�� �x� ��M �Spec���X� 	�� x���s� �IH�
� �x� �Ms� �Spec���X� 	�� x�s�
�� �x� �Ms� �xs� �IH�
� �x� �Ms�x
� Ms

The following is analogous to Proposition ���� but for terminal types�

Proposition �� Let � be any terminal type �X� �� and let s be the substitution
����X��Id

�
�f��� �� Then for any type 	 and term M �

��� If M �	 and X occurs negatively in 	 � let N � Spec���X� 	�M�� and then
	a
 N has type 	 ���X�� and
	b
 fv�N� � fv�M� and name f does not occur in fv�N��
	c
 ftv�N� � ftv�	� � ftv�M� � fXg� and
	d
 Ns�� Ms�

��� If M �	 ���X� and X occurs positively in 	 � let N � Gen���X� 	�M�� and then
	a
 N has type 	 � and
	b
 fv�N� � fv�M� and name f does not occur in fv�N��
	c
 ftv�N� � ftv�	� � ftv�M� � fXg� and
	d
 Ns�� Ms�

�� CHAPTER �� A CALCULUS OF RECURSIVE TYPES

Proof Omitted� but dual to the previous proof�

Now we prove properties of the combinators elim� and intro� �

Proposition �� For any recursive types � � �X� � and � � �X� ��

��� There are no type or term variables free in elim� or intro� � that is� they are combi�
nators�

��� The type assignments elim���������X�� and intro� ������X�� �� are derivable� that
is� the combinators are well�typed�

��� For any term M �

	a
 if M �����X� then elim��Intro��M���� M �

	b
 if M �����X� then Elim��intro��M���� M �

Proof ��� Consider the term elim�� Let #� be the type ����X�� Since
fn�Spec���X� �� x��� � fx� fg� we can calculate fn�elim�� � fn�Spec���X� �� x���

ff� x� gg � �� Therefore fv�elim�� � �� Similarly� ftv�Spec���X� �� x��� � ftv����fXg �
fXg� since ftv��� � fXg� We have�

ftv�elim�� � �ftv��� #��X � ��X � #�� �� � ftv�Spec���X� �� x���
 fXg � �

Similarly we can check that the term intro� has no free type or term variables�

��� Combinator elim� will be well�typed if Spec���X� �� x�� is of type ����X�� and Propo�
sition �����a� says so� Similarly� for intro� to be well�typed� the term Gen���X� �� x��

��X ��
needs to have type �� and according to Proposition �����a� it does�

��� Again let #� be ����X�� By appeal to Proposition �����d� let us calculate�

elim��Intro��M��
� R� #� �!X��fX��� �gX���� �x�� Spec ���X� �� x����Intro��M��
� �!X��fX��� �gX���� �x��� �Spec���X� �� x���

� Id� elim�M
� ��f���� �g����� �x��� �Spec���X� �� x�����X���

Id� elim� M

� ��g����� �x��� �Spec���X� �� x�����X��Id
�
�f������

elim�M

� ��x��� �Spec���X� �� x�����X��Id
�
�f�����elim

�
�g�������M

� ��x��� �Spec���X� �� x�����X��Id
�
�f������M

�� ��x��� �x� ���X��Id
�
�f������M

� Id��M
� M

By a similar calculation we can compute the other part of the proposition�

Now that we know how to simulate the new constants that appear in our extended calculus
in terms of the original calculus� we can simulate each term N of the extended calculus
by a term M with each of the new constants replaced by one of the combinators we have
just dened�

���� STRONG NORMALISATION FOR ���� ��

De�nition �� De�ne the simulation relation� M � N � on terms of ����� as the least
compatible relation closed under the following axiom schemes�

� elim� � Elim�

� intro� � Intro�

� k � k for any k � Con
 fElim�� Intro�g�

Later we will rely on the fact that simulation is preserved by substitution�

Lemma �	 For any terms M and N such that M � N �

��� If M � N then fv�M� � fv�N� and ftv�M� � ftv�N��

��� M ���X� � N ���X� for any � and X� and

��� M �L�x� � N �L
�
�x� for any L� L� and x with L � L��

Proof Part ��� is an easy induction on the depth of inference of M � N � Part ��� is also
by induction on the depth of inference of M � N � We show several cases�

Case M � elim� � Elim� � N � Since neither side contains any free type variable�
M ���X� � M � N � N ���X�� Similarly� since neither side contains a free term
variable� M �L�x� � N �L

�
�x��

Case M � intro� � Elim� � N � The result follows by the same argument as the previous
case� that neither side contains a free type or term variable�

Case M � k � k � N � Same again�

Case M � y� � y� � N � We haveM ���X� � N ���X�� soM ���X� � N ���X�� For ���� either
x � y or not� If so� M �L�x� � L � L� � N �L

�
�x�� If not� M �L�x� � y� � y� � N �L

�
�x��

Case M � ��y� �M�� � ��y� � N�� � N � We may pick the bound variable y such that
y �� x� By induction hypothesis we have M����X� � N����X� and M��L�x� � N��L

�
�x��

Then we can derive that M ���X� � ��y� �
��X ��M����X�� � ��x� �

��X ��M����X�� �
N ���X� and M �L�x� � ��y� �M��L�x�� � ��x

� �M��L
�
�x�� � N �L

�
�x� as required�

Case M � �M�M�� � �N�N�� � N � By induction hypothesis� Mi���X� � Ni���X� and
Mi�L�x� � Ni�L�x� for i � �� �� Then we have

M ���X� � �M����X�M����X�� � �N����X�N����X�� � N ���X�

and M �L�x� � �M��L�x�M��L�x�� � �N��L
�
�x�N��L

�
�x�� � N �L

�
�x� as required�

The case for !�abstractions is similar� Part ��� follows by a similar argument�

Now we come to the key property of the simulation relation� that if M � N � then any
reduction of N can be mimicked by a non�empty sequence of reductions starting from M �

Proposition �� If M � N and N �N � then there exists M � such that M ��M � and
M � � N ��

Proof The proof is by induction on the depth of inference of N � N �� proceeding by
an analysis of how the inference was derived� We show here only the two cases where
combinators do the work of constants� and one of the inductive cases�

�	 CHAPTER �� A CALCULUS OF RECURSIVE TYPES

Case N � Elim��Intro�N���N� � N ��
Since M � N we have M � elim��Intro�M�� with M� � N��
SetM � �M� and by Proposition ��	��a� we have M��M �� and we knowM � � N ��

Case N � Elim��Intro�N���N� � N ��
Since M � N we have M � Elim��intro�N�� with M� � N��
SetM � �M� and by Proposition ��	��b� we have M��M �� and we knowM � � N ��

Case N � ��x�N��� ��x�N �
�� � N ��

where N� �N �
�� Since M � N we have M � ��x�M�� with M� � N��

By induction hypothesis� there is M �
� such that M� �

� M �
� and M

�
� � N �

��
Set M � � ��x�M �

�� and we have M �� M � and M � � N ��

The other cases of the proof follow the same pattern�

A simple consequence of Proposition ��� is strong normalisation�

Theorem ��� Each term N of ���� is strongly normalisable�

Proof Suppose to the contrary� that there is a well�typed term N that admits an innite
chain of reductions� Construct a term M such that M � N by replacing each constant
of form Elim� or Intro� that occurs in N by the corresponding combinator elim� and
intro� respectively� From Proposition ��� it follows that since there is an innite chain of
reductions starting from N � there is also one starting at M � But M is a term of Mendler�s
published calculus� which is known to be strongly normalising� Theorem ���� so we have
reached a contradiction� Therefore each term of ���� is strongly normalisable�

We have extended Mendler�s second�order ��calculus with recursive types� to have two
new families of constants� Elim� and Intro� � This provides a basis for the normalisation
proof of the semantic metalanguage�M� developed in later chapters of this dissertation�

Chapter �

A metalanguage for semantics

The purpose of this chapter is to dene a metalanguage for programming language se�
mantics� calledM� In Chapter 	 we dene a small functional language� called H� We will
give a denotational semantics for H in terms of M� and also show how the denotational
semantics can be extended to account for an exception mechanism and side�e�ecting I�O�
Hence each of the four classes of functional I�O discussed in Chapter � can be dened
from the denotational semantics for H� extended as necessary�

We adopt a variant of Plotkin�s threefold methodology for denotational semantics ���
��
First� he developed a theory of partial functions and so�called bottomless domains� Second�
he proposed a typed ��calculus as a semantic metalanguage� his calculus had product�
sum� function� lifted and recursive types� His calculus had both domain�theoretic and
operational semantics� He proved adequacy results relating the operational and domain�
theoretic semantics of his metalanguage� Third� to study a particular object language� he
gave a direct operational semantics and an indirect domain�theoretic semantics induced by
mapping the object language into the metalanguage� Proof of the correspondence between
the operational and domain�theoretic semantics of the object language can take advantage
of the adequacy results for the metalanguage� This approach is general in that for each
object language studied� the proof of adequacy factors into two� a general result proved
once and for all for the metalanguage� and a comparatively simpler proof relating the
semantics of the object and metalanguages� Plotkin�s work has been developed by Moggi
���� and Jones �		��

We develop in this dissertation a simply�typed ��calculus called M for the denotational
semantics of H and its variants� The most important di�erence between the operational
semantics of Plotkin�s calculus andM is that inM the evaluation of any term of a certain
class of types cannot diverge� In Plotkin�s calculus� there is a divergent term at every type�
We partition the types ofM in two� the possibly
divergent types are the lifted types�
the certainly
convergent types are all the others� One reason for this is to convey
information about operational behaviour in the type system� for instance� any numeral in
H is mapped to anM term of type Num� which is a certainly�convergent type representing
the natural numbers� The type of the translation of the numeral conveys that it cannot
diverge�

In this and the following two chapters we investigate M before applying it to the study

��

�� CHAPTER �� A METALANGUAGE FOR SEMANTICS

of functional programming and I�O in Chapters 	 and �� In this chapter we dene M
and assign it an operationally�based rather than domain�theoretic semantics� M has a
type system similar to Plotkin�s calculus� product� sum� function� lifted and recursive
types� Using a methodology similar to Plotkin�s� we use the metalanguage to decompose
a more complex object language� H� In Chapter � we investigate two operationally�
dened preorders on the terms of M� Morris�style contextual order and a typed form
of Abramsky�s applicative bisimulation� We will prove them to be equal� and take the
equivalence they generate as equivalence on terms of M� In Chapter � we develop a
theory of M based on equational laws and a co�induction principle� We study certain
derivedM types that are needed for the semantics of H� booleans� natural numbers and
iterated sums and products�

x��� denes the syntax of M� The type system is dened in x��� and the operational
semantics in x���� x��� proves the major result of this chapter� that only terms of lifted
type can diverge�

��� Syntax of M

We assume countably innite sets of type variables and term variables� ranged over by
letters X� Y � Z and f � g� x� y� z respectively� The syntactic conventions of x��� apply to
M� The types are given by the following grammar

�� 	 ��� X j � � 	 j � 	 j �� 	 j �� j �X� �

and the terms by the grammar in Table ����

A type is possibly
divergent i� it is a lifted type� that is� has the form ��� Any other
type is certainly
convergent� The main result of this chapter is a convergence theorem
�Theorem ����� which says that evaluation of any closed term of a certainly�convergent
type must converge� A corollary is that only terms of a possibly�divergent type may
diverge� The product� disjoint sum and function types� �� � 	�� �� 	� and �� � 	�
respectively� are certainly�convergent types�

Recursive types are certainly�convergent� They take the form ��X� ��� Just as in Chapter �
the symbol � is used both as a metavariable for recursive types and as part of the syntax
as the type constructor itself� There are two syntactic restrictions on these types� ���
each free occurrence of the type variable X in � must be to the left of an even number of
��s� and ��� the only type variable free in � can be X� Restriction ��� rules out mutually
recursive types� These conditions are required so that the convergence theorem can be
proved by mapping any certainly�convergent type inM to a corresponding type in �����
We will assume implicitly that types are well�formed� The set of well�formed types is
closed under substitution�

��� Type assignment in M

An environment� $� is a nite mapping from variables to closed types� written as
x����� � � � � xn��n� where the variables in the list are pairwise distinct� The domain of

���� TYPE ASSIGNMENT IN M ��

Syntax

U� V ��� hM�Ni �pair�
j Inl� �M� j Inr��M� �injection�
j ��x���M� �abstraction� x bound in M�
j Lift�M� �Lift�term�
j Intro��M� �Intro�term�

L�M�N ��� x �variable�
j V �canonical term�
j Split�M�x� y�N� �Split�term� x� y bound in N�
j Case�M�x�� N�� x�� N�� �Case�term� xi bound in Ni �i � �� ���
j �M N� �application�
j Seq�M�x�N� �Seq�term� x bound in N�
j Fix��x�M� �Fix�term� x bound in M�
j Elim�M� �Elim�term�

Table ���� Terms ofM

� � x � ��x�

� �M � � � � N � �

� � hM�Ni � �� � ��

� �M � �� � �� �� x��� y�� � N � � �

� � Split�M�x� y�N� � � �

� �M � �

� � Inl� �M� � �� 	 ��

� �M � �

� � Inr��M� � �� 	 ��

� �M � �� 	 �� �� x��� � N� � �� �� x��� � N� � ��

� � Case�M�x�� N�� x�� N�� � �
�

�� x�� �M � �

� � ��x���M� � ��� ��

� �M � ��� �� � � N � �

� � �M N� � �

� �M � �

� � Lift�M� � ��

� �M � �� �� x�� � N � ��

� � Seq�M�x�N� � ��

�� x��� �M � ��

� � Fix��x�M� � ��

� �M � �
��X� � � ��X� ��

� � Intro��M� � �

� �M � � � � ��X� ��

� � Elim�M� � �
��X�

Table ���� Type assignment rules forM

�
 CHAPTER �� A METALANGUAGE FOR SEMANTICS

an environment $ is denoted by Dom�$�� We write �$�$�� for the concatenation of two
environments� this notation is well
formed only when Dom�$� �Dom�$�� � ��

De�nition �� TheM type assignment relation� $ M � �� is inductively de�ned by
the rules in Table ���� Each rule has the implicit side�condition that any environments
appearing in the rule are well�formed�

We show that the type assignment relation possesses some standard properties�

Proposition ��

��� If $ M � � and $ M � 	 then � � 	 �

��� If $� x�	 M � � and $ N � 	 then $ M �N�x� � ��

��� If $ M � � then fv�M� � Dom�$��

��� If $ M � � and $ � $� then $� M � ��

Proof ��� By structural induction on M � The proof is straightforward because terms are
labelled with type information where necessary to ensure unique type assignment�

��� By induction on the depth of inference of the type assignment $� x�	 M � ��

����� By simple inductions on the depth of inference of $ M � ��

We dene classes of programs and conned terms�

De�nition ��

��� A program is a term M such that � M � 	 	and hence ftv�M� 	� � �
� for some
	necessarily unique
 type 	 � The type 	 is called the type of M � which itself is
called a 	
program�

��� A con�ned term is a pair �$ M� such that there is a 	necessarily unique
 type
	 with $ M � 	 � The type 	 is called the type of �$ M� and $ is called the
environment of �$ M�� Occasionally we represent a con�ned term �$ M� of
type 	 with the type assignment sentence �$ M � 	� itself�

��� Operational semantics of M

We dene a deterministic operational semantics for M programs� We use an auxiliary
notion of an experiment� E� which is a function on programs such that E�M� is obtained
by wrapping a selector around program M � Experiments are discussed at greater length
in x���� They are an alternative to Felleisen�s evaluation contexts �����

De�nition �� Experiments� E� are de�ned by the grammar at the top of Table ����
Write E�M� for the term obtained by replacing the occurrence of ��� in E by the term
M �

The reduction and evaluation relations forM are the binary relations onM programs�
� and � respectively� de�ned inductively by the rules in Table ����

The canonical programs are the outcomes of evaluation� The operational semantics is
lazy in the sense that subterms of canonical programs may be non�canonical� Witness

���� OPERATIONAL SEMANTICS OF M ��

Reduction Semantics

E ��� Split��� x� y�M� j Case��� x�� N�� x�� N�� j ��M� j Seq��� x�N� j Elim���

M �N

E�M��E�N�

Split�hM��M�i� x�� x�� N��N
M��x��
M��x��

Case�Inl�M�� x�� N�� x�� N���N�
M�x��

Case�Inr�M�� x�� N�� x�� N���N�
M�x��

���x�M�N��M
N�x�

Seq�Lift�M�� x�N��N
M�x�

Fix�x�M��M
Fix�x�M��x�

Elim�Intro�M���M

Evaluation Semantics

V � V

L � hM��M�i N
M��x��
M��x�� � V

Split�L� x�� x�� N� � V

L � Inl�M� N�
M�x�� � V

Case�L� x�� N�� x�� N�� � V

L � Inr�M� N�
M�x�� � V

Case�L� x�� N�� x�� N�� � V

L � ��x�M� M
N�x� � V

�LN� � V

L � Lift�M� N
M�x� � V

Seq�L� x�N� � V

M
Fix�x�M��x� � V

Fix�x�M� � V

M � Intro�N� N � V

Elim�M� � V

Table ���� Evaluation rules forM

�� CHAPTER �� A METALANGUAGE FOR SEMANTICS

Inr�Fix�x� x��� which is canonical but has non�canonical Fix�x� x� as a subterm�

Proposition ��

��� If � M � � and M �N then � N � ��

��� If � M � � and M � V then � V � ��

��� If L�M and L�N then M � N �

��� If L � U and L � V then U � V �

��� The canonical terms are the normal forms of one�step reduction� where a normal
form is a program that cannot be reduced� that is� a term M such that for no term
N does M �N �

�	� Suppose M �N � Then for any V � N � V implies M � V �

��� M � V just when M �� V �

Proof Parts ��� and ��� follow by straightforward inductions on the depth of inference of
M � N and M � V respectively� Parts ��� and ��� follow similarly by inductions on the
depth of inference of L�M and L � U respectively�

For part ���� we must show that each canonical program has no reductions� and that
if a term has no reductions� then it is canonical� First� no canonical program has any
reductions� because none of the reduction rules in Table ��� is applicable to any canonical
program� Second� each program is either canonical� a Fix�term� or of the form E�M� for
some experiment E and program M � There are rules in Table ��� to reduce a Fix�term
and each possible well�typed term E�M�� so any program with no reductions must be
canonical�

Part �	� is by induction on the depth of inference of the reduction M �N � The forwards
direction of ��� is by induction on the depth of inference of evaluation M � V � We prove
the backwards direction of ��� via a method used in Crole�s dissertation ����� Suppose that
M �M��M��� � ��Mn���Mn � V � We show that M � V by lling in the following
diagram from right to left� starting with the fact that Mn � V � V � and establishing for
each i that Mi � V from Mi�� � V and part ��� of the proposition�

M � M� � M� � � � � � Mn�� � Mn � V
� � � �
V V V V

Both directions established� part ��� is proved�

We dene terminology for termination of evaluation�

De�nition �� Suppose that M is a program� Say that M converges and write M�
i� there is a 	necessarily unique
 canonical program V such that M � V � Conversely� say
that M diverges and write M� i� M does not converge�

��� Convergence

The argument that certainly�convergent types deserve the name proceeds as follows�

���� CONVERGENCE ��

Types

X ��
def
� X

� � � ��
def
� ��X� �

����

� ���X��X� where X �� ftv��� ��

� 	 � ��
def
� ��X� �

����X�� �

� ���X��X� where X �� ftv��� ��

�� � ��
def
� �

����

� ���

����
def
� ��X�X�X�

�X� ���
def
� ��X�

����

Terms

� � x��
def
� x����x���

� � hM�Ni � �� � ����
def
� ��X��f ��������� ���X � f

� �M ��

� � N ���

� � Split�M�x�� x�� N� � � ��
def
�

� �M ��

� ��

��x
���� ��
� � �x

������
� �

�� x����� x���� � N ���

where � �M � ��� � ���

� � Inl�M� � �� 	 ����
def
� �X��f ������X � �g��� ���X � f

� �M ��

� � Inr�M� � �� 	 ����
def
� �X��f ������X � �g��� ���X � g

� �M ��

� � Case�M�x�� N�� x�� N�� � � ��
def
�

� �M ��

� ��

��x
���� ��
� �

�� x���� � N����

��x
���� ��
� �

�� x���� � N����

where � �M � ��� 	 ���

� � ��x���M���
def
� ��x������

�� x�� �M ���

� � �M N���
def
� �

� �M ��

� � N ���

� � Lift�M���
def
� ��X��xX � xX�

� � Seq�M�x�N���
def
� ��X��xX � xX�

� � Fix�x�M���
def
� ��X��xX � xX�

� � Intro��M���
def
� �Intro�����

� �M ���

� � Elim�M���
def
� �Elim�����

� �M ��� where � �M � �

Table ���� A translation ofM types and terms into ����

��� In Table ��� we dene a translation ofM types and terms into ����� Proposition ���
proves that well�typed terms of M are translated into well�typed terms of �����
Lemma ��� is a substitution lemma saying that the translation of an M term into
���� is preserved under type and term substitution�

��� We prove a simulation theorem� Theorem ���
� if an M program M of certainly�
convergent type reduces to program N � then the translation of M into ���� reduces
to the translation of N �

��� The Convergence Theorem for certainly�convergent programs� Theorem ����� then
follows easily from the simulation theorem and the fact �Theorem ���
� that no
innite chains of reductions exists in �����

De�nition �� EachM type � is translated to a ���� type ����� according to the mapping
inductively de�ned by the rules in Table ����

�� CHAPTER �� A METALANGUAGE FOR SEMANTICS

Each M con�ned term �$ M� is translated to a ���� term ��$ M �� according to the
mapping inductively de�ned by the rules in Table ���� Any bound names that appear in
the right�hand side of translations but not in the left�hand side are assumed to be new�

The purpose of this construction is to show that each reduction of a certainly�convergent
term in M is simulated by one or more reduction steps in ����� so as to prove by con�
tradiction that no certainly�convergent term diverges� The translations of products and
sums are the standard ones mentioned in x���� For the present purpose there is no need
for reductions of possibly�divergent terms to be simulated by their translations� indeed� it
would be impossible� Hence we simply map each possibly�divergent type to �	X�X�X�
and can map any possibly�divergent term to �!X��xX � xX��

Proposition �	

��� For any M type �� ftv������� � ftv����

��� For any M con�ned term �$ M� of type 	 � ftv���$ M ��� � � and the set of ����
names free in ��$ M �� equals the set of M variables free in M �

��� If M con�ned term �$ M� has type 	 � ���� term ��$ M �� has type ��	 ���

Proof Parts ��� and ��� are by induction on the structure of � and the depth of inference
of �$ M � 	� respectively�

��� By induction on the depth of inference of the type assignment $ M � 	 �

We need some substitution properties of the translation�

Proposition ��

��� ��	 ���

����X� � ��	 ���X����

��� If �$� x�	 M � �� and �$ N � 	�
then ��$ M �N�x��� � ��$� x�	 M ���

� � N ���x��

Proof ��� By induction on the structure of 	 � We show several cases� Suppose 	 � Y � If
X � Y then both sides equal ������ If not� then both sides equal ��	 ��� Suppose 	 � �	��	���
Then lhs � �	Y� ���	����

����X�� ��	����

����X�� Y �� Y � where we may assume that bound
variable Y �� ftv��� 	�X�� By IH� lhs � �	Y� ���	����X���� ��	����X���� Y �� Y � � rhs � The
other cases are similar�

��� By induction on the depth of inference of $� x�	 M � ��

Here is the key theorem of the argument�

Proposition ��� For any two M programs of the same certainly�convergent type� M
and N � if M �N � then ��� M ���� ��� N ���

Proof The proof is by induction on the depth of inference of M � N � As one might
expect as the translations are standard� the reductions of products� sums and functions
go through straightforwardly� We show the case of products as an example� and also the
inductive case�

���� CONVERGENCE ��

Case M � Split�hM��M�i� x�� x��M���M��M��x���M��x�� � N � We may assume type
assignments � hM��M�i � �� � ��� � N � 	 and x����� x���� M� � 	 � We have

��� M �� � ��� hM��M�i�� ��	 �� ��x
���� ��
� � �x

������
� � ��x����� x���� M����

and

��� hM��M�i�� � �!X��f ��������������X � f ��� M��� ��� M�����

So

��� M �� �� ��x
������
� � �x

������
� � ��x����� x���� M���� ��� M��� ��� M���

�� ��x����� x���� M����

� �M����x���

� �M����x��

and hence by the substitution lemma� Proposition ������� we have

��� M �� �� ��� N ��

as required�

Case M � E�M���E�N�� � N where M� �N�� First note from the type assignment
rules in Table ��� that sinceM is a program of certainly�convergent type� then so too
areM� andN�� Therefore the induction hypothesis applies to the reductionM��N��
and we have ��� M����

� ��� N���� Then the conclusion� that ��� M ���
� ��� N ���

follows by inspection of the translation in Table ��� of any possibleE�M�� andE�N���

Reductions involving recursive types also go through straightforwardly� Reductions con�
cerning lifted types do not arise� because only terms of certainly�convergent type are
considered�

Theorem ��� If � is a certainly�convergent type and M is a ��program� then there is
a canonical program V for which M � V �

Proof By contradiction� assume that there is an innite chain of M terms� beginning
M � M� � M� � � � �� By the previous proposition� there is a chain of ���� terms�
beginning ��� M ������� M����

���� M����
� � � �� But this is a contradiction� because

by Theorem ���
 ���� is strongly normalising� so no such chain can exist� Therefore the
theorem follows�

�	 CHAPTER �� A METALANGUAGE FOR SEMANTICS

Chapter �

Operational precongruence

We will develop in the next chapter an entirely operational theory of the semantic meta�
language M� The purpose of the present chapter is to investigate how an operational
equivalence can be dened on terms ofM� For the sake of simplicity we consider in this
chapter operational preorders� Each such preorder induces an equivalence in the usual
way�

The theory ofM in Chapter � depends onM having an operationally adequate precon�
gruence� An operationally adequate preorder is one that respectsM evaluation in certain
ways� A preorder �� is a precongruence i� whenever M �

� N then C�M � �� C�N � for all
contexts C� Roughly speaking� a context� C� is a term containing holes� the term C�M � is
obtained by lling in each hole in context C with the term M �

We consider two candidate preorders� contextual order� ��
C � and applicative similarity�

�
�
A
� x��� investigates contextual order� attributed by Abramsky ��� to Morris� and used

by Plotkin ���	� ���� and Milner ����� If M and N are twoM programs of the same type�

then M �
�
C N i� for all contexts C� if C�M � converges then so does C�N �� It is not hard to

show that contextual order is a precongruence� We show that it is operationally adequate
by dening an auxiliary preorder� experimental order� ��

E
� which is evidently operationally

adequate� and showing that experimental and contextual order are the same� To do so�
we use a variant of Milner�s context lemma �����

The other candidate preorder is applicative similarity� ��
A� investigated in x���� This

is a typed formulation of Abramsky�s applicative bisimulation� Applicative similarity
is the greatest xpoint of a certain functional� Roughly speaking� if M and N are twoM
programs of the same type� then M �

�
A
N i� whenever M �V � there is U with N �U such

that U and V have the same outermost syntactic constructor� and their corresponding
subterms are applicatively similar� It is not hard to prove that applicative similarity is
operationally adequate� We show that it is a precongruence via a typed reworking of an
ingenious method due to Howe �����

In x��	 we prove an operational extensionality result ����� that contextual order equals
applicative similarity� Hence we have two independent characterisations of the same pre�
order� This preorder generates an equivalence in the usual way� which we refer to as
operational equivalence or applicative bisimilarity in the remainder of the disserta�

��

�� CHAPTER �� OPERATIONAL PRECONGRUENCE

tion�

Mathematical material needed to do the work of the chapter is introduced at the beginning�
Contexts are dened in x���� Experiments were used to dene the reduction semantics of
M in Chapter � and they are needed here to dene experimental order� In x��� we recall
the denition of an experiment and dene contextual�experiments� which are experiments
that act on contexts and terms� The detailed syntactic operations in x��� and x��� are
used here only in the study of contextual and experimental orders� The theory of M in
Chapter � is based on programs and conned terms� which were dened in Chapter �� In
x��� we formulate certain properties of relations on conned terms or programs that are
needed later�

��� Contexts

Intuitively� a context is a term possibly containing holes� written ��� A context is pro�
duced from the grammar for M terms� with metavariables C and D instead of M and
N � augmented with an additional rule� C ��� ��� Contexts are not identied up to alpha�
conversion� unlike phrases of abstract syntax� such as terms� which are� Write C � C� to
mean that contexts C and C� are literally the same� The sets of free and bound variables
of a context C are written fv�C� and bv�C� respectively� A canonical context� V� is a
context generated from the grammar forM canonical terms� with metavariable V instead
of V � augmented with an additional rule� V ��� ���

For any termM and context C� dene the instantiation of M in C� C�M �� to be the term
obtained by lling each hole �� in C with the term M � Variables free in M may become
bound in C�M �� such as x when M � hx� yi and C � ��x� ���� If V is a canonical context�
then term V�M � is canonical� for any term M �

Suppose C and D are contexts� and x is a variable� If bv�C� � fv�D� x� � �� dene
the substitution C�D�x� to be the context obtained by replacing each occurrence of the
variable x in C with the context D� This is a literal substitution� there is no renaming of
the variables bound in C� which have been assumed to be distinct from the variables free
in D�

We show that in certain circumstances� substitution and instantiation commute�

Lemma �� Suppose C and D are contexts� x is a variable and M is a term� If bv�C� �
fv�D� x� � � and x �� fv�M� then C�D�x��M � � C�M ��D
M ��x��

Proof By structural induction on context C� We consider the following cases in detail�

Case C � ��� lhs � �����M � �M � rhs �M �D
M ��x� �M since x �� fv�M��

Case C � x� lhs � D�M �� rhs � x�D
M ��x� � D�M ��

Case C � y �� x� lhs � �y��M � � y� rhs � �y��D
M ��x� � y�

���� EXPERIMENTS AND CONTEXTUAL�EXPERIMENTS ��

Case C � �C� C���

lhs � �C� C���D�x��M �
� �C��D�x��M �� �C��D�x��M ��

� �C��M ��D
M ��x�� �C��M ��D
M ��x�� �IH�

� �C��M � C��M ���D
M ��x�

� �C� C���M ��D
M ��x�
� rhs

Case C � ��y� C��� We have y �� x since bv�C� � fxg � ��

lhs � ��y� C���D�x��M �
� ��y� �C��D�x��M ���

� ��y� �C��M ��D
M ��x��� �IH�

� ��y� �C��M ����D
M ��x�

� ��y� C���M ��D
M ��x�
� rhs

The other cases follow similarly to the last two and are omitted�

��� Experiments and contextual
experiments

Experiments were dened in Denition ��� and used in Table ��� as an economical notation
for dening the reduction relation on programs ofM� Recall the dening grammar�

E ��� Split��� x� y�M� j Case��� x�� N�� x�� N�� j ��M� j Seq��� x�N� j Elim���

We use experiments in this chapter to dene experimental order on programs� When we
come to prove that experimental order coincides with contextual order� we will use a variant
of Milner�s context lemma� In this variant� we need to extend the idea of an experiment
to contexts� A contextual
experiment� E � is given by the following grammar�

E ��� Split��� x� y� C� j Case��� x�� C�� x�� C�� j �� C� j Seq��� x� C� j Elim���

The symbol ��� occurs once in each experiment or contextual�experiment� The term E�M�
and the context E�C� are obtained by replacing the occurrence of ��� in E or E by the
term M or context C respectively� Intuitively� an experiment wraps a destructor term
around a term� similarly� a contextual�experiment wraps a destructor context around a
context� Experiments are identied up to alpha�conversion� contextual�experiments are
not� We dene fv�E� and fv�E� to the sets of variables free in experiment E and contextual�
experiment E respectively�

If %E is a possibly�empty list of experiments E�� � � � � En then write %E�M� to mean the term
E��� � � �En�M�� � � ��� Similarly� if %E is a possibly�empty list of contextual�experiments
E�� � � � � En write %E�C� to mean the context E��� � � �En�C�� � � ���

Lemma ��

��� If M is a program� then there is a unique list of experiments %E such that either

� M � %E�V � for some canonical program V � or

� M � %E�Fix�x�N�� for some program Fix�x�N��

�
 CHAPTER �� OPERATIONAL PRECONGRUENCE

��� If C is a context� then there is a unique list of contextual�experiments %E such that
either

� C � %E���� or

� C � %E�x� for some variable x� or

� C � %E�V� for some canonical context V� or

� C � %E�Fix�x� C�� for some context Fix�x� C��

Proof By structural inductions on program M and context C�

Experiments relate to reduction as follows�

Lemma �� For any experiment E� list of experiments %E� and programsM and N � such
that terms E�M�� E�N�� %E�M� and %E�N� are programs�

��� E�M��E�N� if M �N �

��� %E�M�� %E�N� if M �N �

��� whenever E�M� � V there is U such that M � U and E�U� � V �

��� whenever %E�M� � V there is U such that M � U and %E�U� � V �

Proof ��� In Table ��� reduction is closed under this inference rule� so part ��� holds�
Part ��� is a corollary of ���� Part ��� follows by an inspection of the ve kinds of
experiment� and the corresponding evaluation rules in Table ���� The proof of ��� is by
induction on the size of the list %E� The base case when the list is empty follows at once�
Otherwise� suppose that %E�E��M���V � By IH there is some U � such that E��M��U � and
%E�U �� � V � By ��� there is some U such that M � U and E��U� � U �� From ��� we have
%E�E��M���� %E�E��U���� %E�U ���� V � that is� %E�E��M�� � V �

If E is an experimental context and M is a term� then the instantiation of E with M �
E �M � is the experiment obtained by lling in each occurrence of a hole in E with the term
M �

Lemma �� For any contextual experiment E � context C� termM � and list of contextual
experiments %E we have�

��� E�C��M � � E �M ��C�M ��

��� %E�C��M � � %E �M ��C�M ��

Proof ��� Suppose E � Split��� x� y� C��� Then E�C� � Split�C� x� y� C��� and we have
E �M � � Split��� x� y� C��M �� so E�C��M � � Split�C�M �� x� y� C��M �� � E �M ��C�M ��� The
other four cases are similar� Part ��� is a corollary of ����

���� GROUND AND CONFINED RELATIONS IN M ��

Rules of bR
� � x bR x

� �MiRNi �i � �� ��

� � hM��M�i bR hN�� N�i

� �M�RN� �� x��� y�� �M�RN�

� � Split�M�� x� y�M�� bR Split�N�� x� y�N��

� �MRN

� � Inl�M� bR Inl�N�

� �MRN

� � Inr�M� bR Inr�N�

� �M�RN� �� xi��i �MiRNi �i � �� �

� � Case�M�� x��M�� x��M�� bR Case�N�� x�� N�� x�� N��

�� x�� �MRN

� � ��x���M� bR ��x���N�

� �MiRNi �i � �� ��

� � �M�M�� bR �N�N��

� �MRN

� � Lift�M� bR Lift�N�

� �M�RN� �� x�� �M�RN�

� � Seq�M�� x�M�� bR Seq�N�� x�N��

�� x��� �M bRN

� � Fix��x�M�R Fix� �x�N�

� �MRN

� � Intro�M� bR Intro�N�

� �MRN

� � Elim�M� bR Elim�N�

Table ���� Denition of bR
��� Ground and con�ned relations in M

Recall that we dened notions of programs and conned terms in Denition ����

De�nition ��

��� A ground relation� R� is a binary relation between programs of the same type�

��� A con�ned relation� R� is a binary relation between con�ned terms of the same
type and environment� Write $ MRN to mean that �$ M�$ N� � R�

We can immediately make precise the notion of operational adequacy� which we seek to
prove for contextual order and applicative similarity� Let M program � be Fix�x� x�� of
type scheme �� for any ��

De�nition �� A ground relation� R� is operationally adequate i� for all programs
M � N � and canonical programs V �

��� If M �N then NRM �

��� If M � V then VRM �

��� M� i� MR��

�� CHAPTER �� OPERATIONAL PRECONGRUENCE

Properties of Con�ned Relations

Weak
� �MRN

���� �MRN

Stren
���� �MRN

� �MRN

Spec
�� x�� �M�RM� � � N � �

� �M�
N�x�RM�
N�x�

Precong
� �MRN

� � C
M �RC
N �

Comp
� �M bRN

� �MRN

Sub
�� x�� �M�RN� � �M�RN�

� �M�
M��x�RN�
N��x�

Table ���� Rules concerning conned relations�

��� M� i� for some canonical V � VRM �

Conned relations are important for the theory of M in Chapter �� We formulate some
useful operations and properties of conned relations� including precongruence�

De�nition ��

��� If R is a con�ned relation� let the con�ned relation bR be de�ned by the rules in
Table ����

��� We de�ne inference rules Weak� Stren� Spec� Precong� Comp and Sub in Ta�
ble ���� All these rules have the implicit side�condition that any sentence denoting
a pair of con�ned terms is well�formed� A sentence $ MRN is well
formed i�
pairs �$ M� and �$ N� are con�ned terms of the same type�

��� A con�ned relation is natural i� the rules Weak� Stren and Spec are valid�

��� A con�ned relation is a precongruence i� the rule Precong is valid� A congru

ence is a con�ned relation that is both a precongruence and an equivalence relation�

Proposition �	

��� If R is transitive and rules Spec and Precong are valid� then rule Sub is valid too�

��� If R is a preorder� then rule Precong is valid i� rule Comp is valid�

Proof ��� Suppose $� x�� M�RN� and $ M�RN�� By Precong we have
$ M��M��x�RM��N��x� where we treat term M� as a context� By Spec we have
$ M��N��x�RN��N��x�� By transitivity we have $ M��M��x�RN��N��x��

���� GROUND AND CONFINED RELATIONS IN M ��

��� ���� Given that R is a preorder and Precong is valid� we are to prove that �$
M #RN� implies �$ MRN�� We proceed by an analysis of which rule from Table ���
derived �$ M #RN�� We examine the rule for Case�terms as a typical example� Given
the inference

$ M�RN� $� xi��i MiRNi �i � �� ��

$ Case�M�� x��M�� x��M�� bR Case�N�� x�� N�� x�� N��

we are to show that $ Case�M�� x��M�� x��M��R Case �N�� x�� N�� x�� N��� From
Precong we can calculate�

$ Case�M�� x��M�� x��M��R Case �N�� x��M�� x��M��
$ Case�N�� x��M�� x��M��R Case �N�� x�� N�� x��M��
$ Case�N�� x�� N�� x��M��R Case �N�� x�� N�� x�� N��

These together with the transitivity of R prove the result� The other cases are similar�

���� Given that ruleComp is valid for preorderR� we prove by induction on the structure
of context C that for all $� M � and N � if $ MRN then $ C�M �R C�N �� Consider any
C and choose any $� M and N that satisfy the assumption $ MRN � We examine three
cases�

Case C � ��� Goal $ C�M �R C�N � is precisely $ MRN �

Case C � x� $ xRx follows from re�exivity of R�

Case C � Case�C�� x� C�� x� C��� By IH we have $ C��M �RC��N �� $� x��� C��M �RC��N �
and $� x��� C��M �RC��N �� These� together with the rule for Case�terms in Table ���
give $ C�M � bR C�N � and hence $ C�M �R C�N � as required�

The other cases are similar�

We will often need to induce a conned relation from a ground relation� and vice versa�

De�nition ��

��� Let $ be an environment x����� � � � � xn��n� Then a $
closure is an iterated substi�
tution ��L��x�� � � � �Ln�xn�� where each Li is a �i�program� 	The order of substitution
does not matter because the variables are disjoint and each Li is closed�

��� The con�ned extension of a ground relation RG is the con�ned relation R such

that $ MRN i� for all $�closures ���L��x�� M ��L��x�RGN �
�L��x��

��� If R is a con�ned relation� then its ground restriction is the ground relation
f�M�N� j � MRNg�

��� If R is a con�ned relation� write MRN to mean that pair �M�N� is in the ground
restriction of R�

We typically use the same symbol for a ground relation and its conned extension� If RG

is a ground relation� and R is its conned extension� we write dRG to mean bR�
Proposition ��� The con�ned extension of a ground relation is natural�

Proof We are to prove rule Weak� Stren and Spec� To begin with the rst two� we

�� CHAPTER �� OPERATIONAL PRECONGRUENCE

must show the following inferences are valid�

Weak
$ MRN

$�$� MRN
Stren

$�$� MRN

$ MRN

where R is the conned extension of a ground relation RG� for any given $� $
�� M and

N � such that the sentences $ MRN and $�$� MRN are well�formed� By denition
of R� these inferences would be valid if the following condition were true�

M ��L��x�RGN �
�L��x� i� M ��L��x���L

�
��x��RGN �

�L��x���L
�
��x�� ���

for all $�closures ���L��x� and $��closures ���L
�
��x��� But we know that fv�M�N� � Dom�$� from

the well�formedness of sentence $ MRN � and therefore we have M ��L��x���L
�
��x�� � M ��L��x�

and N ��L��x���L
�
��x�� � N ��L��x�� These equations immediately imply condition ���� as required�

Finally� we are to prove the validity of the Spec rule�

$� x�� M�RM� $ N � �

$ M��N�x�RM��N�x�

The sentence $� x�� M�RM� means thatM��
�L��x��L

�
�x�RGN��

�L��x��L
�
�x� for any ��program

L� and suitably typed program list %L� Let L� be N ��L��x�� which we know to be a program

since fv�N� � Dom�$� � %x� SinceMi�
�L��x��L

�
�x� �Mi�

�L��x��N
 �L��x��x� �Mi�N�x��
�L��x� for each

i� we have M��N�x��
�L��x�RGM��N�x��

�L��x�� which is to say that $ M��N�x�RM��N�x�� as
required�

��� Contextual and experimental order

We begin with a notion of operational ordering ���	�� which we call contextual order�

De�nition ��� De�ne contextual order to be the con�ned relation� ��
C � such that

$ M �
�
C
N i�� for all contexts C� such that C�M � and C�N � are programs of the same

type� if C�M � converges so does C�N ��

Programs C�M � and C�N � can be of any type� in Plotkin�s formulation they must be of
ground �integer� type�

Proposition ��� Contextual order is a precongruence�

Proof It su�ces to verify the Precong rule for ��
C � Suppose that $ M �

�
C N � For

some particular context D� we are to show that $ D�M ���
C
D�N �� This is to say that for

all contexts C� such that C�D�M �� and C�D�N �� are programs of the same type� if C�D�M ��

converges� then so does C�D�N ��� This follows at once from $ M �
�
C N by denition�

It is not so straightforward to prove that contextual order is operationally adequate�
We do so by dening a second relation� experimental order� which is not hard to show
operationally adequate� and then showing that contextual and experimental order coincide�

���� CONTEXTUAL AND EXPERIMENTAL ORDER ��

De�nition ��� Ground experimental order� ��
E
� is the ground relation such that

M �
�
E
N i� whenever %E is a list of experiments with %E�M� and %E�N� programs of the

same type� if %E�M� converges so does %E�N�� The con�ned relation experimental order
is the con�ned extension of ground experimental order�

It is not hard to see that ground experimental order is re�exive and transitive� and hence
that experimental order is a preorder� We prove operational adequacy�

Proposition ��� Ground experimental order is operationally adequate�

Proof We are to show for all programs M � N � and canonical programs V �

��� If M �N then N �
�
E
M �

��� If M � V then V �
�
E
M �

��� M� i� M �
�
E
��

��� M� i� for some canonical V � V �
�
E M �

��� We are to show for all experiment lists %E� if %E�N�� then %E�M��� Since M � N we
have %E�M�� %E�N�� So if the latter converges so must the former� ��� Corollary of ���

and the transitivity of ��
E
�

��� For the forwards direction� suppose that M�� To show M �
�
E
�� we need that for

all %E� if %E�M� converges then so does %E���� But for no %E does %E�M� converge� For

the backwards direction� suppose that M �
�
E
�� So for all %E� if %E�M� converges then so

does %E���� Proceed by contradiction and suppose that M converges� Taking %E to be the
empty list� we have that � converges since M does� Contradiction�

��� For the forwards direction� M� means that M � V for some V � Then by part ��� we

have V �
�
E
M � For the backwards direction� suppose that V �

�
E
M � From the denition

of ��
E
we have that if V converges� then so does M �take the list of experiments to be

empty�� But V converges� being canonical�

It is not hard to show the following�

Proposition ��� Contextual order implies experimental order�

Proof Suppose that $ M �
�
C
N for some context $ � x����� � � � � xn��n and terms M

and N � It is necessary to show for any $�closure ���L��x� that #M �
�
E #N � where #M �M ��L��x�

and #N � N ��L��x�� This is to say that for each suitably typed %E� if %E� #M� converges then so
does %E� #N �� Pick some list %E and dene context C � %E���x����� � � � �xn��n� ���L� � � � Ln��
We have C�M ��n %E� #M� and C�N ��n %E� #N�� Then if %E� #M� converges then so must C�M ��

If C�M � converges then so too does C�N �� given that $ M �
�
C
N � But then %E� #N � must

converge� as required�

The other direction is harder� The next two lemmas are needed to prove Proposition �����
that the ground restriction of contextual order coincides with ground experimental order�

Lemma ��� Suppose context C � E�V� for some contextual experiment E and canonical
context V� Then there is a context D such that for all programs L such that C�L� is a

�	 CHAPTER �� OPERATIONAL PRECONGRUENCE

program� C�L��D�L��

Proof We assume that all the bound variables in context C are distinct �if they are not
we can easily nd a context C� in which all bound variables are distinct such that for
any program L� C��L� alpha�converts to C�L��� Since C�L� is a program� fv�C� � fv�E� �
fv�V� � �� Given such a C� the context D can be dened as follows�

� if V � hC�� C�i and E � Split��� x� y� C�� then D � C��C��x��C��y��

� if V � Inl�C�� and E � Case��� x�� C�� x�� C��� then D � C��C
�
�x���

� if V � Inr�C�� and E � Case��� x�� C�� x�� C��� then D � C��C
�
�x���

� if V � ��x� C�� and E � �� C�� then D � C��C��x��

� if V � Lift�C�� and E � Seq��� x� C�� then D � C��C��x��

� if V � Intro�C�� and E � Elim��� then D � C��

Given the assumptions we have made about context C� in each case we can check that the
conditions hold for substitution of a context into another to be well�formed� we omit the
details� From the type assignment rules in Table ��� all the cases when C�L� is a program
are covered above� and from the denition of one�step reduction� it is not hard to see that
C�L��D�L�� given Lemma ����

The proof of the following lemma is based on a similar proof due to Allen Stoughton for
the lazy ��calculus� and based on Milner�s context lemma ���� ����

Lemma ��� �Context� For any two programsM and N of the same type withM�
�
E

N � and any context C such that C�M � and C�N � are both programs of the same type� if
C�M � converges� then C�N � converges�

Proof Choose any two programs M and N of the same type� and assume M �
�
E
N � We

prove the following hypothesis by mathematical induction on n� that for any context C
such that C�M � and C�N � are programs of the same type�

if C�M � converges in n steps� then C�N � converges�

We proceed by a case analysis of C� According to Lemma ������ there is a possibly�empty
list of contextual experiments� %E � such that one of four cases holds�

Case C � %E�V�� Either list %E is empty�in which case both C�M � and C�N � are canonical�
and hence converge�or the list takes the form %E �� E and we have C � %E ��E�V��� Let
C� � E�V� and by Lemma ���	 there is a context D� such that for any program L�
if C��L� is a program� then C��L��D��L�� Let D � %E ��D��� and for any program L�
we have C�L� � %E ��E�V���L� � %E ��L��C��L��� %E ��L��D��L�� � D�L� using Lemmas ���
and ���� SinceM and N are programs we have C�M ��D�M � and C�N ��D�N �� Now
D�M � must converge in n
 � steps� so by the induction hypothesis� D�N � converges�
and therefore so too does C�N �� as reduction is deterministic�

Case C � %E�Fix�x� C���� We may assume that all the bound variables in context C are
distinct �if they are not� we could prove the hypothesis by working with a con�
text C�� in which all bound variables are distinct and such that for any program
L� C���L� alpha�converts to C�L��� Set D � %E�C��Fix�x� C

���x��� For any program L�

���� CONTEXTUAL AND EXPERIMENTAL ORDER ��

we have C�L� � %E�Fix�x� C����L� � %E �L��Fix�x� C��L���� %E �L��C��L��Fix�x� C
�
L���x�� �

%E �L��C��Fix�x� C
���x��L�� � D�L� using Lemmas ���� ��� and ���� Hence we have

C�M �� D�M � and C�N �� D�N �� Just as in the previous case� since D�M � must
converge in n
 � steps� by the induction hypothesis� D�N � converges� and therefore
so too does C�N ��

Case C � %E����� Let context D � %E�M� and then D�M � � %E �M ��M� � C�M �� so D�M �
converges in n steps� But context D must take one of the forms already considered�
so we can conclude that D�N � � %E �N ��M� converges� But we have M �

�
E N � so

%E �N ��N� converges� and %E �N ��N� � C�N ��

Case C � %E�x�� Trivial because for no term L is C�L� a program�

All cases considered� the hypothesis is proved for all n� and the lemma follows�

A corollary of this lemma and Proposition ���� is that ground experimental order and the
ground restriction of contextual order are the same�

Proposition ��	 For all programs M and N of the same type� M �
�
C
N i� M �

�
E
N �

Proof The forwards direction is a special case of Proposition ����� For the backwards
direction� suppose that M �

�
E
N and that C�M � converges� where C is a context� Hence

by the context lemma C�N � converges too�

We can extend this result to open terms via the next three lemmas�

Lemma ��� If M
d�
�
E
N then M �

�
E
N � where programs M and N are as follows�

��� M � hM��M�i and N � hN�� N�i�

��� M � Split�M�� x�� x�� L� and N � Split�N�� x�� x�� L��

��� M � Inl�M�� and N � Inl�N���

��� M � Inr�M�� and N � Inr�N���

��� M � Case�M�� x�� L�� x�� L�� and N � Case�N�� x�� L�� x�� L���

�	� M � Lift�M�� and N � Lift�N���

��� M � Seq�M�� x� L� and N � Seq�N�� x� L��

��� M � Intro�M�� and N � Intro�N���

��� M � Elim�M�� and N � Elim�N���

��
� M � �M�M�� and N � �N�N���

Proof Since each Mi and Ni is a program and Mi��
E
Ni� in each case we have Mi��

C
Ni

by Proposition ����� Contextual order is a precongruence so M �
�
C
N in each case� and

therefore M �
�
E
N by Proposition ����� as required�

Lemma ��� If M
d�
�
E
N then M �

�
E
N � where programs M and N are as follows�

��� M � ��x�M �� and N � ��x�N ���

��� M � Split�L� x�� x��M
�� and N � Split�L� x�� x�� N

���

�� CHAPTER �� OPERATIONAL PRECONGRUENCE

��� M � Case�L� x��M�� x��M�� and N � Case�L� x�� N�� x�� N���

��� M � Seq�L� x�M �� and N � Seq�L� x�N ���

Proof ��� For any list %E� suppose that %E�M��� We are to show that %E�N��� We have that
M� by Lemma ������� Hence L� hL�� L�i and we have M��M ��L��x���L��x�� and N��

N ��L��x���L��x��� From M
d�
�
E
N we can deduce M ��L��x���L��x����

E
N ��L��x���L��x��� Since

%E�M� converges we have that %E�M ��L��x���L��x��� converges� and so %E�N ��L��x���L��x���
converges� Since %E�N��� %E�N ��L��x���L��x��� we have that %E�N� converges as required�

Parts ���� ��� and ��� follow by similar arguments� which we omit�

Lemma ��� If M
d�
�
E
N then M �

�
E
N � where program M � Fix�x�M �� and N �

Fix�x�N ���

Proof The proof is a generalisation of the argument in the context lemma� We prove the
following hypothesis by mathematical induction on n� that for any context C such that
C�M � and C�N � are programs of the same type�

if C�M � converges in n steps� then C�N � converges�

So we actually prove that M�
�
C
N � from whichM�

�
E
N follows by Proposition ����� Just

as in the context lemma� Lemma ����� we proceed by a case analysis of C� There is a
possibly�empty list of contextual experiments� %E � such that one of four cases holds�

Case C � %E�V�� The argument of the context lemma is valid here� because it took no
account of the structure of programs M and N �

Case C � %E�Fix�x� C���� For the same reason� the argument of the context lemma applies�

Case C � %E����� Let D be the context %E�M ��
��x�� �where term M � is being used as a
context� we can assume that the bound variables in context M � are distinct from x��
So C�M � � %E �M ��M�� %E �M ��M ��M�x�� � %E�M ��
��x���M � � D�M � and hence D�M �
converges in n
 � steps� By IH we have that D�N � � %E �N ��M ��N�x�� converges�

Since M
d�
�
E
N we have that M ��N�x� ��

E
N ��N�x�� Therefore� since %E �N ��M ��N�x��

converges� so does %E �N ��N ��N�x��� But C�N �� %E �N ��N ��N�x��� so C�N � converges�

Case C � %E�x�� Trivial because for no term L is C�L� a program�

Proposition ��� If $ M
d�
�
E
N then $ M �

�
E
N �

Proof By considering each rule from Table ��� in turn� We consider the rule for Case�
terms in detail� We have M � Case�M�� x��M�� x��M�� and N � Case�N�� x�� N�� x�� N���

$ M� ��
E
N� $� xi��i Mi ��

E
Ni �i � �� ��

$ M
d�
�
E
N

Let ���L��x� be any $�closure and for any term L� write #L for L��L��x�� We are to prove that
#M �
�
E #N � that is�

Case� #M�� x�� #M�� x�� #M�� �
�
E

Case� #N�� x�� #N�� x�� #N�� ���

���� APPLICATIVE AND COMPATIBLE SIMILARITY ��

Using Lemmas ���� and ���
 we have�

Case� #M�� x�� #M�� x�� #M�� �
�
E

Case� #N�� x�� #M�� x�� #M�� from � #M� ��
E #N�

Case� #N�� x�� #M�� x�� #M�� �
�
E

Case� #N�� x�� #N�� x�� #M�� from x���� #M� ��
E #N�

Case� #N�� x�� #N�� x�� #M�� �
�
E

Case� #N�� x�� #N�� x�� #N�� from x���� #M� ��
E #N�

Then by transitivity of experimental order we have ��� as required� Each of the other
cases follows similarly�

This proposition together with Proposition ���� establishes that experimental and con�
textual order are the same� and hence that contextual order is an operationally adequate
precongruence�

��� Applicative and compatible similarity

We now dene the ground preorder applicative similarity� which we will prove in x��	 to
be an independent characterisation of contextual order�

De�nition ��� De�ne function ��� over ground relations such that

M �S�N i� whenever M � U there is V with N � V and U bS V �
An applicative simulation is a relation S such that S � �S�� De�ne ground applica

tive similarity� ��
A
� to be the union of all applicative simulations� De�ne applicative

similarity� ��
A
� to be the con�ned extension of ground applicative similarity�

Proposition ���

��� Function ��� is monotone�

��� The identity ground relation is an applicative simulation�

��� If each Si is an applicative simulation� then so is S�S��

��� Ground applicative similarity is the greatest �xpoint of ��� and is the greatest ap�
plicative simulation�

��� M �
�
A
N i� there is an applicative simulation S such that MSN

�	� Ground applicative similarity is a preorder�

Proof Parts ���� ��� and ��� are easy to check from the denition� The remaining parts
then follow from Proposition ����

De�nition ��� An applicative bisimulation is a relation S such that both S and
S�� are applicative simulations� Ground applicative bisimilarity� �A� is the ground
relation such that M �A N i� M �

�
AN and N �

�
AM � Applicative bisimilarity� �A� is

the con�ned extension of ground applicative bisimilarity�

Clearly applicative bisimilarity is an equivalence relation� Furthermore� for any programs
M and N � M �A N i� for some applicative bisimulation S� �M�N� � S�

Proposition ��� Ground relations ��
A
and �A are both operationally adequate�

�
 CHAPTER �� OPERATIONAL PRECONGRUENCE

Proof When R stands either for applicative similarity or bisimilarity� we need to prove
each of the following properties�

��� If M �N then NRM �

��� If M � V then VRM �

��� M� i� MR��

��� M� i� for some canonical V � VRM �

To prove parts ��� and ��� it is su�cient to show that S�� is an applicative bisimulation�
where S�� is given by�

S��
def
� f�N�M� jM �� Ng

Observe rst that if M �� N then for any U � M � U i� N � U � from Proposition ����	��
and that Id � S��� Suppose �N�M� � S�� and N �U � ThenM �U and U cId U � Similarly�
suppose �M�N� � S��

�� and M � U � Then N � U and U cId U �
For the forwards direction of part ��� we show that S� below is an applicative bisimulation�

S�
def
� f�M��� j ��U�M � Ug

For any pair �M�N� � S�� neither M� nor N�� so S� is trivially an applicative bisimu�

lation� For the backwards direction of ���� either M �A � or M �
�
A
� implies that pair

�M��� is contained in some applicative simulation� Hence� as � cannot converge� neither
can M �

The forwards direction of part ��� follows immediately from the denition ofM� and part

���� For the backwards direction� either U �A M or U �
�
A
M implies that pair �U�M� is

contained in some applicative simulation� so M� since U��

We prove that applicative similarity for M is a precongruence by a typed reworking of
Howe�s method �����

De�nition ��� De�ne the con�ned relation compatible similarity� ��
�
� to be the

least set closed under the following rule�

$ L c���M $ M �
�
A
N

$ L �
�
�
N

�Beware the ambiguous notation� the &�� in &��
�� does not denote re�exive transitive clo�

sure��

Proposition ��	

��� Applicative similarity is natural 	that is� rules Spec� Weak and Stren are valid
�

��� Con�ned relations c��� and �
�
�
are reexive�

��� Con�ned relations c��� and �
�
A
both imply ��

�

��� If $ M� ��
�
M� and $ M� ��

A
M� then $ M� ��

�
M��

��� 	Sub
 If $� x�	 M� ��
�
N� and $ M� ��

�
N� then $ M��M��x���

�
N��N��x��

���� APPLICATIVE AND COMPATIBLE SIMILARITY ��

�	� If � U �
�
�
M then there is V such that M � V and � U c��� V �

��� If � M �
�
�
N and M � U then � U �

�
�
N �

��� If $ M �
�
�
N then $ M �

�
A
N �

��� Applicative similarity is a precongruence�

Proof ��� Applicative similarity is natural because it is the conned extension of a ground
relation �Proposition ���
��

��� By structural induction onM one can easily verify that $ M�
�
�
M � so ��

�
is re�exive�

A corollary is that c��� is re�exive�
��� Corollary of part ��� and the denition of compatible similarity�

��� If $ M� ��
� M� then for some N � $ M�

c�
�
� N and $ N �

�
A M�� Since ��

A is

transitive� we have $ N �
�
A
M�� Then by denition we have $ M� ��

�
M��

��� The proof is by induction on the depth of inference of $� x�	 M���
�
N�� By denition�

there is N �
� such that $� x�	 M�

c�
�
�
N �

� and $� x�	 N �
�
�
�
A
N�� By Spec we have

$ N �
��N��x���

A
N��N��x�� Proceed by a structural analysis of M� and show in each case�

that $ M��M��x� ��
�
N �

��N��x�� The result will then follow by part ���� We show three
cases� The other cases are similar�

Case M� � x� So N �
� � x� We have $ M� ��

�
N� by assumption�

Case M� � y �� x� So N �
� � y� We have $ y ��

�
y by re�exivity� part ����

Case M� � �y���M�� So N �
� � �y�N� and $� x�	� y�� M� ��

�
N�� By IH $� y��

M��M��x� ��
�
N��N��x�� So $ M��M��x� c��� N �

��N��x� by denition� Then we have
$ M��M��x���

�
N �

��N��x� by part ���� as required�

�	� In each case there must be a program N such that U c��� N and N �
�
A
M � Proceed by

a structural analysis of canonical program U �

Case U � �x�	�M�� So N � �x�N� with x�	 M� ��
�
N�� Then N �

�
A
M implies that

M � �x�N �
� with x�	 N� ��

A
N �

�� Therefore x�	 M� ��
�
N �

� by part ���� which

implies U c��� ��x�N �
�� as required�

Case U � hM��M�i� So N � hN�� N�i withMi��
�
Ni for i � �� �� Then N �

�
A
M implies

that M � hL�� L�i with Ni ��
A Li� So Mi ��

� Li by part ���� and U � hM��M�i so

U c��� hL�� L�i as required�

��� By induction on the depth of inference of M � U � proceeding by analysis of M �

Case M canonical� Immediate�

Case M � �M�M��� We have M� � �x�	�M� and M��M��x� � U � From M �
�
�
N there

are N�� N� such that each Mi ��
� Ni and �N�N�� ��

A N � Since M� � �x�	�M� and
M���

�N� we have ��x�	�M����
�N� by IH� By �	� there is N� with N���x�	�N� and

x�	 M���
�
N�� By Sub�M��M��x���

�
N��N��x�� and then by IH we have U��

�
N��N��x��

Since �N�N���
� N��N��x� we have N��N��x� ��

A
�N�N�� by operational adequacy�

�� CHAPTER �� OPERATIONAL PRECONGRUENCE

From �N�N����
A
N we have N��N��x���

A
N by transitivity� Finally from U��

�
N��N��x�

we have U �
�
�
N by ����

The other cases follow the same pattern as the ones above�

��� First we prove that the ground restriction of compatible similarity is an applicative
simulation� Suppose for any programs M and N that M �

�
�
N � We are to show that

whenever M � U there is V such that M � V and U c��� V � Suppose that M � U � By ���

we have U �
�
�
N � By �	� there is V such that N � V and U c��� V �

Suppose now that $ M�
�
�
N � We are to prove that $ M�

�
A
N � which is to say that for

all $�closures� ���L��x�� programs M ��L��x� and N ��L��x� are paired in an applicative simulation�

But by Sub and re�exivity we have M ��L��x���
�
N ��L��x�� and since the ground restriction of

compatible similarity is an applicative simulation� we are done�

��� A corollary of ��� and ��� is that applicative and compatible similarity are the same
conned relation� We know applicative similarity is a preorder from Proposition �����	��
We know that rule Comp holds for compatible similarity from part ���� Therefore by
Proposition ������ applicative similarity is a precongruence�

��� Contextual order and applicative similarity

Contextual order equals applicative similarity� Our proof is essentially a typed reworking
of Howe�s Theorem � �����

Lemma ��� Ground applicative similarity equals the ground restriction of contextual
order�

Proof Let S be the ground restriction of contextual order�

S
def
� f�M�N� j � M �

�
C
Ng

To see why ��
A � S� it is enough to consider any �M�N� � �

�
A and show that M �

�
C N � If

C�M �� for some context C� then C�M ���
A
C�M � �since ��

A
is a precongruence� and therefore

C�M �� as required�

For the reverse inclusion� it su�ces by co�induction to show that symmetric S is an
applicative simulation� Suppose then that �M�N� � S and that M � V � Since M �

�
C
N

there must be U such that N � U �or else the trivial context C � �� would distinguish M
and N�� Based on the following case analysis of V we show that V bS U � as required for S
to be an applicative simulation�

Case V � Inl�M ��� Since U and V have the same type� U must take one of the
forms Inl�N �� or Inr�N ��� We can rule out the latter� or else the context C �
Case���� x� L� y���� where L is some convergent program such as Lift��x� x�� would

distinguishM and N � Let context D be Case���� x� x� y�M ��� We have D�M ���
C
D�N �

since ��
C is a congruence� Moreover D�M ���M � and D�M ���N �� By operational

adequacy and determinacy the reduction relation � and its inverse ��� are in�
cluded in ��

A
� Hence we have M ��

�
A
D�M � and D�M ���

A
N �� Since ��

A
� S we have

���� CONTEXTUAL ORDER AND APPLICATIVE SIMILARITY ��

�M �� N �� � S and therefore V bS U �
Case V � �x���M �� This time U must take the form �x�N �� To show ��x�M ��bS��x�N ���

it su�ces to prove that �M ��L�x�� N ��L�x�� � S for arbitrary ��program L� Let context

D be ���L�� We have D�M ���
C
D�N �� Since D�M ���M ��L�x� and D�N ��� N ��L�x�

we may obtain �M ��L�x�� N ��L�x�� � S as in the previous case�

Case V � Lift�M ��� Again we may conclude that U takes the form Lift�N ��� To show

that Lift�M �� bS Lift�N ��� it su�ces to prove that M � �
�
C N �� Suppose then for an

arbitrary context C� that C�M �� and C�N �� are programs of the same type� and that
C�M �� converges� We must show that C�N �� converges too� We may suppose that
C�M �� and C�N �� are of lifted type� otherwise by the convergence theorem for M it
follows that both always converge� Set context D to be Seq���� x� C�x��� We have

that D�M ��� C�M �� and D�N ��� C�N ��� As before we have that C�M �� ��
C
D�M �

and D�N � ��
C
C�N ��� Since M �

�
C
N we have also D�M � ��

C
D�N � and therefore by

transitivity that C�M ����
C
C�N ��� Therefore if C�M �� converges� so does C�N ��� Hence

we have established Lift�M �� bS Lift�N ��� as required�

The other cases follow by similar reasoning�

Theorem ��� �Operational Extensionality� �
�
C � �

�
A

Proof We must show

$ M �
�
C
N i� $ M �

�
A
N ���

for arbitrary $� M and N � The backwards direction follows by the same argument as used
in the previous lemma to prove that ��

A
� S� As for the forwards direction� we must show

that

M ��L��x���
A
N ��L��x�

for any $�closure ���L��x�� Set context D to be ��x� � � � xn� ���L� � � �Ln and we have �

D�M ���
C
D�N � by precongruence� By Lemma ���� we have � D�M ���

A
D�N � and since

D�M ��� M ��L��x� and D�N ��� N ��L��x� we have � M ��L��x���
A
N ��L��x�� as required�

In summary� this chapter considered two independent denitions of operational order�
contextual order and applicative similarity� and proved that they are in fact the same
relation� henceforth denoted by ��� We use � for operational equivalence� equal to

�
��

�
�
��
�

also known as contextual equivalence or applicative bisimilarity� Both characterisations
are of interest� By denition� contextual order is perhaps the simplest congruence induced
by the evaluation relation� By denition� applicative similarity is a greatest xpoint�
giving rise to a powerful principle of co�induction used extensively in Chapter �� Given
operational extensionality� Howe�s method and the context lemma method amount to the
same thing� a proof that operational order is an operationally adequate precongruence�
In a calculus where operational extensionality fails� the two methods would be of separate
interest�

�� CHAPTER �� OPERATIONAL PRECONGRUENCE

Chapter �

Theory of the metalanguage

We conclude the three chapters onM by obtaining results about evaluation and equiva�
lence needed in connection with the denotational semantics of H in the next chapter� We
make extensive use in this chapter of the principal results obtained in Chapters � and ��
that no term of a certainly�convergent type can diverge and that operational equivalence
�that is� contextual equivalence or applicative bisimilarity� is an operationally adequate
congruence�

In x��� we prove basic facts about operational equivalence� these facts parallel the axioms
of LCF ��	� �
�� but are simpler in that there are divergent terms only at lifted types� This
is a consequence of the convergence theorem proved in Chapter � via Mendler�s calculus

developed in Chapter �� x��� investigates empty and one�point types inM�

def
� �X�X

and �
def
�
�
 respectively� There are no programs of type
� Any two programs of type �

are operationally equivalent� x��� sketches the standard construction of iterated sum and
product types from binary sums� binary products and the empty and one�point types� We
conclude the chapter by investigating types of booleans and natural numbers in x��� and
x��� respectively�

��� Laws of operational equivalence in M

Recall that operational equivalence and order� � and ��� equal the conned relations of

applicative bisimilarity and similarity� �A and ��
A
respectively� We know that both these

are operationally adequate precongruences� Let ground equivalence be the ground
restriction of operational equivalence�

Proposition �� All the laws from Table ��� hold for operational equivalence�

��� Exhaustion law�

��� Congruence�

��� Canonical Freeness�

��� Beta� strictness and eta laws�

��� Co�induction�

��

�	 CHAPTER �� THEORY OF THE METALANGUAGE

Exhaustion Law

If M is a ��program and � is certainly�convergent then ��V ���M 	 V ��
If M is a �����program then either M 	 � or ��N ���M 	 Lift�N���

Congruence

If �� �M b	N� then �� �M 	 N��

Canonical Freeness

If �� � U 	 V � then �� � U b	 V ��

Beta Laws

� � Split�hM��M�i� x�� x�� N� 	 N
M��x��
M��x��

� � Case�Inl�M�� x�� N�� x�� N�� 	 N�
M�x��

� � Case�Inr�M�� x�� N�� x�� N�� 	 N�
M�x��

� � ���x�M�N� 	M
N�x�

� � Seq�Lift�M�� x�N� 	 N
M�x�

� � Fix�x�M� 	M
Fix�x�M��x�
� � Elim�Intro�M�� 	M

Strictness Law

� � Seq��� x�N� 	 �

Eta Laws

� � Split�M�x�� x�� hx�� x�i� 	M
� � Case�M�x�� Inl �x��� x�� Inr �x��� 	M

� � ��x� �M x�� 	M if x �� fv �M�
� � Seq�M�x� Lift �x�� 	M
� � Intro�Elim�M�� 	M

Co�induction
A bisimulation�up�to�	 is a ground relation� S� such that whenever
MSN � either M 	 N 	 � or there are canonical programs U and V
such that M 	 U � N 	 V and U bS V �

Any bisimulation�up�to�	 is a subset of ground equivalence�

Table ���� Laws of equivalence inM

���� LAWS OF OPERATIONAL EQUIVALENCE IN M ��

Proof ��� Suppose that M is a ��program and that � is certainly�convergent� By the
convergence theorem� Theorem ����� M�� which is to say� ��V�M � V �� By operational
adequacy� we have M � V �

Suppose that M is a �����program� Either M� or M�� In the rst case we are done� In
the second case� there is some canonical program V such that M � V � Since V ���� by
inspection of the typing rules there must be a ��program N such that V � Lift�N�� By
operational adequacy� we have M � V � Lift�N� as required�

��� Congruence for applicative bisimilarity is a corollary of Proposition ����� in which we
showed that applicative similarity and compatible similarity coincide� �The congruence
rule in Table ��� is the same as the Comp rule in Table ���� The Precong rule in
Table ��� is a common way to dene precongruence� We showed in Proposition ������
that for any preorder� such as applicative similarity or bisimilarity� rule Comp is valid i�
rule Precong is valid��

��� Note rst a corollary of Proposition �����	�� for any canonical programs U and V �

U �
� V implies U b�� V �

We are to show for any $�closure� ���L��x�� that U ��L��x� b� V ��L��x�� We have $ U � V � which

is to say that for all $�closures� ���L��x�� U ��L��x� � V ��L��x�� Since U and V are canonical� terms

U ��L��x� and V ��L��x� are canonical programs� Therefore� the corollary of Proposition �����	�

applies� and we have U ��L��x� b�� V ��L��x�� as required�

��� Each law takes the form $ ML � MR� First� we show that each law holds for
ground equivalence when $ is empty� For each beta law we can check by inspection that
ML�

�MR� In the strictness law MR � � andML�� Therefore� by operational adequacy
we have ML �MR�

There are ve eta laws� We can prove each law by a case analysis of program MR based
on the exhaustion law� In the law for Split� there must be programs Mi such that MR �
hM��M�i� By the beta law for Split we have ML � Split�hM��M�i� x�� x�� hx�� x�i� �
hx�� x�i�M��x���M��x�� � MR� �Recall the general convention that bound variables� such
as x� and x� in the table� are distinct�� In the law for ��abstraction� there must be a
term M � such that MR � ��y�M ��� We know that x �� fv�MR�� So by the beta law for
��abstraction� ML � ���x�M

��x�y�� �MR� The other cases are similar�

Second� we prove each law for non�empty $� Suppose we are to prove a law of the form

$ ML � MR� We are to show� for any $�closure ��
�L��x�� that ML�

�L��x� � MR�
�L��x�� Terms

are identied up to alpha�conversion� so we may assume that any bound variable in ML

or MR is distinct from %x� Therefore the $�closure can be distributed into the bodies of
terms ML and MR to obtain programs #ML and #MR to which the law with $ empty can
be applied�

��� Suppose S is a bisimulation�up�to��� We will prove S� � �� where S� is �S� �the
relational composition of �� S and ��� Since S � S� we will have established S � � as
required�

We show that S� is an applicative simulation� Suppose then that M S� N and that
M � U � We must nd V such that N � V and U dS� V � Since M S� N there must be
programs M � and N � such that M �M �� M �SN � and N � � N � SinceM �U and M �M �

�� CHAPTER �� THEORY OF THE METALANGUAGE

there must be a canonical program U � such that M � � U � and U b� U �� Since M � � U � we
have M � � U � which with M �SN � implies there must be canonical U �� and V �� such that
M � � U ��� U �� bS V �� and V �� � N �� Since V �� � N � there must be canonical V � such that
N � � V � and V �� � V �� From N � � V � and N � � N there must be a canonical V such that
N � V and V � b� V � In all we have

U b� U � � U �� bS V �� � V � b� V

and therefore� by canonical freeness� that U b�b�bS b�b�V � Now� for any conned relations R
and R�� it is not hard to verify that bRcR� � dRR�� Hence we have UdS� V � which completes
the proof that S� is an applicative simulation� Since S� is symmetric� we have shown
that S� � � as required�

��� Empty and one
point types in M

Let type

def
� �X�X and �

def
�
�
� in the following propositions we prove that
 is

empty and that � has just one element�

Proposition �� There is no program of type
�

Proof First� consider the relation � on programs of type
� inductively dened by the
following two rules�

M �N

M � N

M � N

Intro��M�� Intro��M�

By denition� includes the reduction relation�� but also reduces beneath Intros� Since
� is a partial function� so is �� In Proposition ���
 we showed that each � reduction of
anM program can be matched by one or more � reductions of its translation into �����
According to Table ��� the translation ��Intro��M��� is ���� program Intro�������M ��� we can
strengthen Proposition ���
 to the following�

If � M �
 and M � N inM then ��� M ���� ��� N �� in �����

Hence we have a corollary analogous to the normalisation result for M� Theorem �����
Let an �
normal form be a program M of type
 such that M ���

For each � M �
 there is an ��normal form N such that M �� N �

Any ��normal form is also an ��normal form� so it must look like Intro��M� where M
is also an ��normal form� So then each ��normal form contains another ��normal form
that contains one less Intro�� If there is an��normal form it must contain a nite number
of Intro��s� Therefore if there is an ��normal form at all there must be one containing no
Intro��s� But this is impossible� as each ��normal form is also an ��normal form� and
hence must contain an outermost Intro�� Hence there can be no ��normal forms� and
therefore no programs of type
 at all�

Proposition �� There is a canonical program� �� of type � such that for any program
M � of type �� M � ��

���� ITERATED PRODUCTS AND SUMS IN M ��

Proof Let �
def
� �x�
� x� To show that � is unique up to �� it su�ces to show that relation

S is a bisimulation�

S
def
� f���M� j � M � �g

Suppose that ���M� � S� Since � is certainly�convergent there must be some canonical
term �x�
� N such that M � �x�
� N � Since � � � � �x�
� x we must show that �
� bS �x�
� N � that is� for all programs L�
 that �x�L�x�� N �L�x�� � S� But this is vacuously
true� as there are no programs such as L�

��� Iterated products and sums in M

Dene iterated product and sum notations by induction on n �
�

��� � � � � � �n�
def
�

�����
� if n �

�� if n � �
�� � ��� � � � � � �n� if n � �

��� � � � �n�
def
�

�����

 if n �

�� if n � �
�� ��� � � � �n� if n � �

Proposition �� Suppose ' � ��� � � � � � �n� and (� ��� � � � �n�� Then
there are canonical terms hM�� � � � �Mni

� and In	i �M� for � � i � n� and terms
Split�M�x�� � � � xn� N� and Case�M�x�� N�� � � � � xn� Nn� such that�

$ Mi � �i �� � i � n�

$ hM�� � � � �Mni
� � '

$ M � ' $� x����� � � � � xn��n N � 	

$ Split�M�x�� � � � xn� N� � 	

$ M � �i

$ In	i �M� � (

$ M � ($� xi��i Ni � 	 �� � i � n�

$ Case�M�x�� N�� � � � � xn� Nn� � 	

M � hM�� � � � �Mni
�

Split�M�x�� � � � xn� N��
�N �M��x�� � � � �Mn�xn�

M � In	i �M�

Case�M�x�� N�� � � � � xn� Nn��
�Ni�M�xi�

Proof We can dene the canonical terms as follows�

hM�� � � � �Mni

��������n� def

�

�����
� if n �

M� if n � �

hM�� hM�� � � � �Mn��i

��������n�i if n � �

In

��������n�
i �M�

def
�

�����
M if n � �

Inl
��������n��M� if n � �� i � �

Inr���In

��������n�
i�� �M�� if n � �� i � �

	
 CHAPTER �� THEORY OF THE METALANGUAGE

Given these denitions� it is straightforward to dene terms Split�M�x�� � � � xn� N� and
Case�M�x�� N�� � � � � xn� Nn�� and to prove the desired properties�

��� Booleans in M

We dene a boolean type Bool and two Bool�programs bttc and b� c�

Bool
def
� � �

bttc
def
� Inl���

b� c
def
� Inr���

Proposition �� Any program of type Bool either equals bttc or b� c� Moreover� bttc
does not equal b� c�

Proof Suppose M is a program of type � �� By the exhaustion law� M either equals
Inl�N� or Inr�N� for some ��program N � By Proposition ���� program N equals �� so M
either equals Inl��� or Inr���� that is� bttc or b� c�

To show that bttc does not equal b� c� proceed by contradiction and suppose that Inl��� �
Inr���� By canonical freeness� Inl��� b� Inr���� But there is no rule in Table ��� which could
derive Inl��� b� Inr���� since the two terms have di�erent outermost constructors� Inl and
Inr� Contradiction�

We dene the notation ifM thenN� elseN� to mean Case�M�u�N�� u�N��� where variable
u �� fv�Ni�� The if�notation has the following properties�

Proposition ��

��� The following type assignment rule is valid�

$ M � Bool $ Ni � 	 �i � �� ��

$ ifM thenN� elseN� � 	

��� The operational behaviour is characterised by the following rules�

M � bttc

ifM thenN� elseN��
�N�

M � b� c

ifM thenN� elseN��
�N�

��� The following equational laws are valid�

$ �ifbttc thenN� elseN�� � N�

$ �ifb� c thenN� elseN�� � N�

$ �ifM thenN elseN� � N

Proof ��� Immediate� ��� In the rst rule� since M � bttc� we have M � Inl�L� for some
��program L� So Case�M�u�N�� u�N���

�Case�Inl�L�� u�N�� u�N���N�� The second rule
follows by a similar argument� ��� These equations are simple consequences of the beta
and eta laws in Table ����

���� NATURAL NUMBERS IN M 	�

��� Natural numbers in M

We dene a type Num and a Num�program bnc for each natural number n � N�

Num
def
� �X� � X

b
c
def
� Intro�Inl����

bn �c
def
� Intro�Inr�bnc��

Proposition �� Any Num�program equals bnc for some natural number n � N� More�
over bnc does not equal bn �c� for any n � N�

Proof The second part follows easily from canonical freeness� For the rst part� we dene
another extension� �� of the reduction relation on Num programs�

M �N

M � N

M �N

Intro�M�� Intro�M�

M � N

Intro�Inr�M��� Intro�Inr�N��

Evidently� is a partial function and is contained in �� It is normalising in the sense that
if M is a Num�program� there exists an ��normal form N such that M �� N � The proof
is by appeal to the embedding ofM in ���� from Chapter �� similar to Proposition ����
If Num�program M is ��normal� then it either takes the form Intro�Inl�N��� where N ���
or Intro�Inr�N�� where N is also ��normal� Hence for any ��normal form M there is a
number n such that M � bnc� by induction on the number of Intro�s in M � Moreover� for
an arbitrary Num�program M there is an ��normal form N such that M � N and hence
a number n such that M � bnc�

Let � � 	 abbreviate the partial function ��	�� The next proposition provides a general
method for dening partial functions by recursion�

Proposition �	 For each term F that satis�es

$ F � �� � 	�� �� � 	�

there is a term RecF such that

$ RecF � � � 	

and� if F is a program

�RecF �M �� F �RecF �M

for any program M ���

Proof Let terms RECF and RecF with types �� � 	�� and � � 	 respectively be as
follows�

RECF
def
� Fix�fx � Lift ��x��� Seq �fx � g� F g x���

RecF
def
� �x��� Seq �RECF� g� F g x�

	� CHAPTER �� THEORY OF THE METALANGUAGE

One can easily verify that RecF is of the desired type� Now� suppose thatM is a program
of type � � 	 � We may calculate as follows�

RECF � Fix�fx � Lift ��x��� Seq �fx � g� F g x���
� Lift��x��� Seq �RECF� g� F g x��
� Lift�RecF �

�RecF �M � ��x��� Seq �RECF� g� F g x��M
� Seq�RECF� g� F gM�
� Seq�Lift�RecF �� g� F gM�
� F �RecF �M

Hence we have the desired reduction behaviour�

In order to dene the elementary arithmetic operations needed in the denotational seman�
tics of H� we need the following programs�

Succ
def
� �x�Num� Lift �Intro�Inr�x���

Pred
def
� �x�Num� Case �Elim�x�� u� Lift b
c� y� Lift �y��

Iter��Z�F �
def
� Rec��g�Num � ���y�Num�

Case�Elim�y�� u� Lift �Z�� y�� Seq �g y�� x� F x���

Proposition ��

��� The type assignments

Succ � Num � Num

Pred � Num � Num

and
$ Z � � $ F � � � �

$ Iter��Z�F � � Num � �

are valid�

��� These programs have the following reduction behaviour� where � Z � � and
� F � � � ��

Succ bnc � Lift�bn �c�
Pred b
c � Lift�b
c�

Pred bn �c � Lift�bnc�
Iter��Z�F � b
c �� Lift�Z�

Iter��Z�F � bn �c �� Seq�Iter��Z�F � bnc� x� F x�

Proof ��� By inspection� ��� From the beta rules of Table ���� We calculate the last two
properties� For any m we have

Iter��Z�F � bmc �� Case�Elim bmc� u� Lift �Z�� y�� Seq �Iter��Z�F � y�� x� F x���

When m �
 we have

Iter��Z�F � bmc �� Lift�Z�

and when m � n �

Iter��Z�F � bmc �� Seq�Iter��Z�F � bnc� x� F x�

���� NATURAL NUMBERS IN M 	�

as required� The other equations are no harder to prove�

We can dene some simple arithmetic operations�

Mb cN
def
� IterNum�M�Succ�N

Mb
cN
def
� IterNum�M�Pred�N

Mb�cN
def
� IterNum�b
c� �x� xb cM�N

Iszero�M�
def
� Case�Elim�M�� y�� bttc� y�� b� c�

Mb�cN
def
� Seq�Nb
cM�x� if Iszero�x� then Lift�b� c� else Lift�bttc��

Mb�cN
def
� Seq�Mb�cN� b� if b then Lift�b� c�else

Seq�Nb�cM� b� if b then Lift�b� c� else Lift�bttc���

Proposition ���

��� bmcb cbnc � Lift�bm nc�

��� bmcb
cbnc � Lift�bm
 nc�

��� bmcb�cbnc � Lift�bm� nc�

��� Iszero�b
c� � bttc

��� Iszero�bn �c� � b� c

�	� bmcb�cbnc � Lift�bttc� if m � n

��� bmcb�cbnc � Lift�b� c� if n � m

��� bmcb�cbmc � Lift�bttc�

��� bmcb�cbnc � Lift�b� c� if m �� n

Proof From the previous proposition by inductive arguments�

	� CHAPTER �� THEORY OF THE METALANGUAGE

Chapter �

An operational theory of
functional programming

The second half of this dissertation� which begins with this chapter� examines a small
functional language called H� and considers how theories for various forms of functional
I�O can be based on a theory of H� This chapter shows how to develop an operational
theory of programming for H� Two parallel theories are developed� one based directly
on an operational semantics of H� the other based on a denotational semantics of H in
M� The former has been developed from rst principles in this dissertation� whereas the
latter depends ultimately on Mendler�s result assumed in Chapter �� This chapter is one
of the most important in the dissertation because of its potential applications far beyond
the study of functional I�O�

H is essentially a fragment of Haskell� H contains the basic data and control constructs of
lazy functional programming�natural numbers� booleans� functions� recursion and lazy
algebraic types�but is small enough that its theory can be developed in this chapter� We
omit from H many constructs needed for practical programming but which are irrelevant
to the study of functional I�O�such as polymorphic types� type inference� modules and
realistic arithmetic�

In x	�� we dene syntax and typing rules for the object language H� The abstract syntax
of H is rather restrictive compared to Haskell notation� We show informally how certain
Haskell notations may be interpreted as H programs� This interpretation allows us to use
Haskell notation in Chapters � and � for H in our development of theories of functional
I�O� In a study like this which is meant to be relevant to practical programming� it is
good methodology to work with as realistic a notation as possible� Another merit of using
Haskell notation is that programs can be type checked and executed��

We follow the pattern set by Plotkin ���
� and give two semantics for H� a deterministic
lazy operational semantics and a denotational semantics in terms of the metalanguageM�
The style of denotational semantics is greatly in�uenced by the work of Moggi ��

� �
��
and Pitts ����� on the computational ��calculus as a semantic metalanguage� The most
striking di�erence between the computational ��calculus and M is that the former�s se�

�We have used Mark Jones� Gofer system and also an implementation of H on top of Standard ML�

	�

		 OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

mantics is ultimately domain�theoretic whereas the latter�s semantics is entirely opera�
tional� We nish x	�� by proving a correspondence theorem between the operational and
denotational semantics� that evaluation of any H term e is exactly matched by evaluation
of itsM denotation ��e���

We base our theory of functional programming on equivalence of H terms� x	�� develops
notions of ground and conned relations� We develop two relations� operational equiv�
alence and denotational equivalence� x	�� develops operational equivalence directly from
the operational semantics of H� We prove that operational equivalence for H is a congru�
ence using Howe�s method� just as we proved the same result for M in Chapter �� x	��
denes denotational equivalence as the equivalence relation induced on H terms from the
denotational semantics inM� The main result of the section is a soundness theorem� that
denotational equivalence implies operational equivalence� We leave open the converse� full
abstraction�

In x	�� we state a collection of basic programming laws� and show that they are valid for
both operational and denotational equivalence� x	�	 shows how a further collection of laws
and proof principles follow from the basic programming laws of the previous section� The
theory of functional programming developed in x	�� and x	�	 is entirely operational� in
that it rests on operational equivalences dened from the operational semantics of either
M or H�

Finally� x	�� considers what happens to the theory of functional programming if an ex�
ception mechanism is added to H� The resulting language is called HX and is needed in
Chapter � in the study of Landin�stream I�O�

��� H� a small functional language

Table 	�� shows the abstract syntax of H� essentially a fragment of Haskell� The only
construct of H not present in Haskell is call�by�value function application� �e�#e��� Call�
by�value is included in H because of the control it gives over evaluation order� such control
is useful when I�O is expressed using side�e�ects�

We assume countably innite sets of type variables and term variables ranged over by
metavariables X� Y � Z� � � and x� y� z� � � respectively� We assume there is a countably
innite set of value constructors� ranged over by metavariable K� There are six cate�
gories of abstract syntax� types� �� 	 � � � � � algebraic datatypes� �� data
clauses� dc�
canonical terms� c� terms� e� p� q� and case
clauses� cc� Binding occurrences of type
and value variables are indicated in Table 	��� The notations and conventions concerning
variables� substitution and alpha�conversion stated in x��� apply to H�

We let metavariable ranges over the set of literals� ftt �� g � N� We use metavariable �
to range over the arithmetic operators f �
����� �g� An H literal or operator is written
as or �� the corresponding canonical program in the metalanguage is written bc or b�c
respectively� The H type Int includes just the natural numbers� we call this type Int for
the sake of compatibility with Haskell�

Suppose that � is the algebraic type �dataX � dc� � � � � � dcn�� Then dene functions

���� H� A SMALL FUNCTIONAL LANGUAGE 	�

Syntax

�� � ��� X �type variable�
j Bool �booleans�
j Int �natural numbers�
j ��� �� ��� �functions�
j � �algebraic datatype�

� ��� �dataX � dc� � � � � � dcn� �algebraic datatype� n 	 ��
Con�dci� � Con�dcj� i� i � j�
X bound in each dci�

dc ��� �K �� � � ��m� �data�clause� m
 ��
c ���
 �literal�
 � ftt �� g � N�

j ��x��� �� e� �abstraction� x bound in e�
j �K� e� � � � em� �constructor application� m
 ��

e ��� x �value variable�
j c �canonical expression�
j �if e� then e� else e�� �conditional�
j �e��e�� �arithmetic� � � f	������ �g�
j �e� e�� �call�by�name application�
j �e��e�� �call�by�value application�
j rec��x� e� �recursion� x bound in e�
j �case� e of cc� � � � � � ccn� �case�expression� n 	 ��

cc ��� �K �� e� �case�clause�

Table 	��� Syntax of H

Con�dc�� Rank �K��� and Arity�K��� as follows�

Con�K �� � � � �m�
def
� K

Rank �K���
def
� i if K � Con�dci�

Arity�K���
def
� m if dci � �K �� � � � �m�

Operations Rank and Arity are well�dened functions because the side�condition on alge�
braic types in Table 	�� requires that no two data�clauses contain the same constructor�

We place a further well�formedness condition on algebraic types� in any algebraic type
�dataX � dc� � � � � � dcn�� for each clause dci � �K �� � � � �m�� in each type �j we insist
that the type variable X occurs positively in each �j� and that the only type variable free
in �j is X� A type variable X occurs positively in a type 	 i� each occurrence of X in 	
is to the left of an even number of function ���s� The only reason we make this restriction
is so that the types of H can be mapped into well�formed types of M� We implicitly
assume that any H type we deal with is well�formed� Just as inM� the set of well�formed
types is closed under substitution�

Type assignment in H

An environment $ is a list of variables paired with closed types� written
x������ � � � � xn���n� where the variables are pairwise distinct�

� We adopt the same no�

�We follow Haskell in using the symbol �� for type assignment�

	� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Type Assignment

�� x��� � x �� �

 � fT� Fg

� �
 �� Bool

n � N

� � n �� Int

� � e� �� Bool � � e� �� � � � e� �� �

� � �if e� then e� else e�� �� �

� � e� �� Int � � e� �� Int

� � �e��e�� �� Int
� � f	���g

� � e� �� Int � � e� �� Int

� � �e��e�� �� Bool
� � f���g

�� x��� � e �� �

� � ��x��� �� e� �� �� �� ��

� � e� �� �� �� �� � � e� �� �

� � �e� e�� �� �

� � e� �� �� �� �� � � e� �� �

� � �e��e�� �� �

�� x��� � e �� �

� � rec��x� e� �� �

� � ej �� ��j
��X�� �� � j � m�

� � �K� e� � � � em� �� �

�
� � �dataX � dc� � � � � � dcn�
dci � �K �� � � ��m�

� � e �� ��� �� � � � �� �m �� ��

� � �K �� e�� �K �� � � ��m� �� �
���

� � e �� � � � cci� �dci
��X�� �� � �� � i � n�

� � �case�e of cc� � � � � � ccn� �� �
� � �dataX � dc� � � � � � dcn�

Canonical Terms

If c��Bool then �b � ftt �� g� c � b�
If c��Int then �n � N� c � n�

If c���� �� �� then �e� c � ��x ��e��
If c��� then �K� e�� � � � � em� c � �K e� � � � em��

Table 	��� Type assignment rules for H

���� H� A SMALL FUNCTIONAL LANGUAGE 	�

tational conventions as dened forM environments at the beginning of x����

De�nition �� The H type assignment relation� $ e �� �� is inductively de�ned by
the rules in Table ���� which make use of an auxiliary relation $ cc� dc �� � de�ned in the
rule marked with ���� Each rule bears the implicit side�condition that any environments
appearing in the rule are well�formed�

Proposition ��

��� If $ e �� 	 and $ e �� � then 	 � ��

��� If $ e �� 	 and $ � $� then $� e �� 	 �

��� If $� x��� e� �� 	 and $ e� �� � then $ e��e��x� �� 	 �

��� If $ e �� 	 then fv�e� � Dom�$��

��� The statements about canonical terms in Table ��� are true�

�	� If $ e �� 	 then ftv�e� 	� � ��

Proof Easy rule inductions� Part �	� depends on the fact that no type variable can occur
free in a type in the range of an environment� and that the environments used to derive
the type assignment relation must be well�formed�

We dene classes of programs and conned terms�

De�nition ��

��� A program is a term e such that � e �� 	 for some 	necessarily unique
 type 	 �
The type 	 is called the type of e� which is called a 	
program�

��� A con�ned term is a pair �$ e� such that there is a 	necessarily unique
 type 	
such that $ e �� 	 � The type 	 is called the type of �$ e� and $ is called the
environment of �$ e��

Just as in M� the syntax of H carries enough type information that any program has a
unique type� We often omit type information from terms�

Interpreting Haskell in H

We show in this section how some Haskell notations absent from H can nevertheless be
interpreted as derived forms of H� For tutorial and reference material on Haskell we refer
the reader to the Haskell report ���� and to Fasel and Hudak�s tutorial ����� We shall use a
Haskell�like notation for the programming examples in the remainder of this dissertation�
We do not attempt a formal description of how Haskell can be interpreted in H� but
instead give a series of illustrative examples� Descriptions of similar interpretations are
well�known� for instance� Peyton Jones� textbook ��
�� discusses in detail how Miranda
can be translated into a ��calculus notation of about the same level as H�

We will use the letters a� b and c to stand for closed types of H� Type and value denitions
in Haskell may be polymorphic� that is� they may depend on one or more type parameters�
We interpret such denitions in H as dening families of closed types or terms indexed by
the type parameters� Here are three examples� the second of which also illustrates how

�
 OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

id �� a �� a

id x � x

fst �� �a�b� �� a

fst �a�b� � a

snd �� �a�b� �� b

snd �a�b� � b

const �� a �� b �� a

const a b � a

curry �� ��a�b� �� c� �� a �� b �� c

curry f a b � f �a�b�

uncurry �� �a �� b �� c� �� �a�b� �� c

uncurry f ab � f �fst ab� �snd ab�

�	� �� �b �� c� �� �a �� b� �� �a �� c�

�f 	 g� x � f �g x�

head ��
a� �� a

head �x�xs� � x

tail ��
a� ��
a�

tail �x�xs� � xs

���� ��
a� ��
a� ��
a�

� �� ys � ys

�x�xs� �� ys � x��xs��ys�

map �� �a �� b� ��
a� ��
b�

map f
� �
�

map f �x�xs� � f x � map f xs

iterate �� �a �� a� �� a ��
a�

iterate f x � x � iterate f �f x�

foldr �� �a �� b �� b� �� b ��
a� �� b

foldr f z
� � z

foldr f z �x�xs� � f x �foldr f z xs�

Table 	��� Some standard functions

���� H� A SMALL FUNCTIONAL LANGUAGE ��

id
def
� ��x ��x�

fst
def
� ��ab�� case ab of Tuple a b �� a�

snd
def
� ��ab�� case ab of Tuple a b �� b�

const
def
� ��a ���b �� a�

curry
def
� ��f ���a �� �b ��f �a� b��

uncurry
def
� ��f ���ab ��f �fst ab� �snd ab��

�	�
def
� ��f ���g �� �x ��f�g x��

head
def
� ��xs�� case xs of

Nil �� �
Cons x xs �� x�

tail
def
� ��xs�� case xs of

Nil �� �
Cons x xs �� xs�

����
def
� rec�app� �xs���ys ��case xs of

Nil �� ys

Cons x xs �� Cons x �app xs ys��

map
def
� rec�map� �f�� �xs�� case xs of

Nil �� Nil

Cons x xs �� Cons �f x� �map f xs��

iterate
def
� rec�iterate� �f ���x �� Cons x �iterate f �f x���

foldr
def
� rec�foldr� �f�� �z ���xs ��case xs of

Nil �� z

Cons x xs �� f x �foldr f z xs��

Table 	��� Interpretations of Haskell functions in H

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Haskell�style algebraic datatypes are interpreted in H�

Polymorphic Haskell denition Interpretation in H

type Endo a � a �� a Endoa
def
� �a �� a�

data List a � Nil � Cons a �List a� Lista
def
� �dataX � Nil � ConsaX�

id �� a �� a

id � ��x �� x�
ida

def
� ��x��a �� x�

We use notation in typewriter font for H literals� for instance� interpret True� False� �	
�
���� and as the boolean literals tt and � � the numeric literals �	� and ���� and the
addition operator � respectively�

Write �a� as an abbreviation for Lista� Dene�

��
def
� Nil �empty list�

�e�� � � � � en���
def
� �Cons e� �e�� � � � � en���� �non�empty list�

�e � e��
def
� �Cons e e�� �inx cons�

Dene a series of polymorphic tuple types� indexed by m �� ��

data Tuplem a� ��� am � Tuplem a� ��� am

Dene the following abbreviations for tuples� where m �� ��

�a�� � � � � am�
def
� �Tuplem a� � � � am� �m�tuple type�

�e�� � � � � em�
def
� �Tuplem e� � � � em� �tuple�

���x�� � � � � xm� �� e�
def
� ��y �� case y of

Tuplemx� � � � xm �� e�
�tupled abstraction��

y �� fv�e��

The
�tuple type� ��� is called the unit type�

To discuss teletype I�O we need to support the Haskell type Char of ASCII characters�
For the benet of simplicity �at the cost of cavalier software engineering� we dene Char
to be Int� We interpret any Haskell character notation to be n� where n is the ASCII
code for the character� For instance� �a�� ��� and ��n� are interpreted as 	�� �� and �

respectively� We interpret the Haskell functions ord�Char �� Int and chr�Int �� Char as
the identity function� id� We dene a type of strings as in Haskell�

type String � �Char�

To illustrate how Haskell function denitions are to be interpreted in H� we show in
Table 	�� some standard function denitions� Each of these function denitions can be
interpreted as anH denition as shown in Table 	��� LetH program ��

def
� rec��x� x�� We

use � to represent undened values �as in head or tail�� The case�clauses in Table 	��
use a derived syntax�

�K x� � � � xn �� e�
def
� �K �� �x� �� � � � �xn �� e�

Indentation is used instead of � symbols to separate multiple case�clauses� Using the
theory developed later in this chapter� one can check that any of the denitions in Table 	���
when treated as an equation between programs� is provable from the corresponding H
denition in Table 	���

���� H� A SMALL FUNCTIONAL LANGUAGE ��

Expressions in Haskell may contain local denitions� An expression �e where x � e�� is to
be interpreted as the H expression ��x �� e��e��� A Haskell list�comprehension of the form
�e � x �� e�� is interpreted in H as �map ��x �� e� e���

Operational semantics of H

The operational semantics of H is deterministic� and lazy in the sense that constructors
of algebraic types do not evaluate their arguments�

De�nition �� Left and right experiments� LE and RE respectively� are functions
from terms to terms de�ned by the grammar at the top of Table ���� A left experiment
de�nes the leftmost position in a term where a reduction may occur� A right experiment
de�nes a position in a term where a reduction may occur provided terms to its left are
canonical� These are analogous to experiments in M� De�nition ����

The reduction and evaluation relations for H are the binary relations on H programs�
� and � respectively� de�ned inductively by the rules Table ����

Proposition ��

��� If � e �� 	 and e� e� then � e� �� 	 �

��� If � e �� 	 and e � e� then � e� �� 	 �

��� If e� e� and e� e�� then e� � e���

��� If e � c and e � c� then c � c��

��� The canonical terms are the normal forms of reduction�

�	� If e � c then e�� c�

��� Suppose e� e�� Then for any c� e� � c implies e � c�

��� e�� c i� e � c�

Proof Similar to the proof of Proposition ����

We dene terminology for termination of evaluation�

De�nition �� Suppose e is a program� Say that e converges and write e� i� there is a
	necessarily unique
 canonical program c such that e � c� Conversely� say that e diverges
and write e� i� e does not converge�

Recall the program �a dened earlier to be reca�x� x�� at each closed type a� We have
�a� �a� hence there is a divergent program at every closed type of H�

Denotational semantics of H

The denotational semantics of the object language H is given usingM as a metalanguage�
The semantics is based on that of Tiny�ML given by Pitts ������ Classical domain�
theoretic semantics ����� ���� use explicit environments to model the binding of object
variables to their values� �These environments are typically denoted by the metavariable

� and are not to be confused with the environments denoted by $ here�� Following

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Reduction Semantics

LE ��� �if � thene� else e�� j ���e� j �� e� j ���e� j �case � ofcc� � � � � � ccn�

RE ��� �
��� j ���x ��e����

�iftt then e� else e��� e�

�if� then e� else e��� e�

�
��
���
� �
�

��x��� ��e�� e� � e�
e��x�

��x��� �� e��c� e
c�x�

rec�x� e�� e
rec�x� e��x�

ccRank�K��� � �K �� e��

�case�K� e� � � � em� of cc� � � � � � ccn�� �e� e� � � � em�

e� e�

LE�e�� LE�e��

e� e�

RE�e��RE�e��

Evaluation Semantics

c � c

e� � tt e� � c

�if e� then e� else e�� � c

e� � � e� � c

�if e� then e� else e�� � c

e� �
� e� �
�

�e��e�� �
� �
�

e� � ��x �� e�� e�
e��x� � c

�e� e�� � c

e� � ��x �� e�� e� � c� e�
c��x� � c

�e��e�� � c

e
rec�x� e��x� � c

rec�x� e� � c

e � �K� e� � � � em� ccRank�K��� � �K �� e�� �e� e� � � � em� � c

�case e of cc� � � � � � ccn� � c

Table 	��� Operational semantics of H

���� H� A SMALL FUNCTIONAL LANGUAGE ��

Pitts� we can take advantage of variable binding in the metalanguage and do without such
environments by mapping object variables to metavariables�

We structure the denotational semantics to re�ect the distinction made by the operational
semantics between canonical and non�canonical terms� Computation is characterised op�
erationally either as a series of reductions or as a single evaluation� Canonical terms�
which are not reducible� are the answers from computation� Non�canonical terms� which
are reducible� represent a computation� which depending on the object language� may
terminate and return an answer or may diverge or may engage in other activity such as
I�O� We parameterise the denotational semantics on a metalanguage type constructor� T �
with associated operations Let and Val that obey the following typing rules�

$ M � �

$ Val�M� � T�

$ M � T� $� v�� N � T	

$ �Let v �M in N� � T	

Free occurrences of v in N become bound in �Let v � M in N�� Type T� represents
computations of type �� To compute Val�N� simply return the answer N � To compute
�Let v � M in N�� rst compute M � If M returns an answer L� proceed to compute
N �L�v� to obtain the answer from the whole computation� In principle� the benet of
this parametric approach is that the same translation rules can be used with di�erent
interpretations of the structure �T�Val� Let�� For instance� in x	�� we give an interpretation
where computations may raise an exception instead of returning an answer�

This parametric approach to denotational semantics was pioneered by Moggi ��

� �
���
who dened a metalanguage� called computational �
calculus� into which object lan�
guages are translated� and whose own semantics is given by a computational model�
a category with a strong monad and other properties� Pitts ����� proposes the devel�
opment of evaluation logic for reasoning about the denotations of object programs in
computational ��calculus� Crole and Pitts ���� ��� investigate how to obtain the power
of general recursion in computational ��calculus� We have adopted Moggi�s parametric
approach but instead of using a metalanguage with a general categorical model� we use
M� a metalanguage based on Plotkin�s ���
� but with a specic operational semantics and
e�ectively a term model� Rather than work in a general categorical framework we work in
a pragmatic operational framework in order to study a particular programming language
and its extensions for I�O�

We now give a denotational semantics of H in which computations may either diverge or
return an answer� to re�ect the operational semantics of Table 	���

De�nition �� Make the following de�nitions of parameters T � Val and Let�

T�
def
� ��

Val�N�
def
� Lift�N�

Let v �M in N
def
� Seq�M�v�N�

Given these parameters de�ne denotations for the abstract syntax of H inductively ac�
cording to the rules in Table ����

� to each type �� an M type ������

� to each data�clause dc� an M type ��dc���

�	 OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Types

X ��
def
� X

Bool��
def
� Bool

Int��
def
� Num

� �� � ��
def
� T

���� T

� ��

dataX � dc� � � � � � dcn��
def
� ��X�

dc��� 	 � � �	

dcn���

Data�clauses

K �� � � ��m��
def
� T

����� � � � � T

�m��

Canonical terms

j�x��� �� ej
def
� �x�T

����

e��

j
j
def
� b
c

jK� e� � � � emj
def
� Intro������InRank�K����h

e���� � � � �

em��i��

Terms

x��
def
� x

c��
def
� Val�jcj�

if e� then e else e���
def
� Let v �

e��� in if v then

e��� else

e���

e��e���
def
� Let v� �

e��� in Let v� �

e��� in

Seq�v�b�cv�� x� Val �x��

e� e���
def
�

e��� �

e���

e��e���
def
� Let v� �

e��� in Let v� �

e��� in v��Val�v���

rec�x� e���
def
� Fix�x�

e���

case�e of cc� � � � � � ccn��
def
� Let v �

e�� in

Case�Elim v� �v��

cc���
�
v�
�� � � � � �vn�

ccn��

�
vn
��

Case�clauses

K �� e���v
def
� Split�v� u� � � � um�

e�� � u� � � � � � um� where m � Arity�K���

Table 	�	� Denotational semantics of H

���� H� A SMALL FUNCTIONAL LANGUAGE ��

� to each canonical term c� an M term jcj�

� to each term e� an M term ��e���

� to each case�clause cc� an M term ��cc���

The bound variables v� vi� ui used to construct M denotations are assumed to be distinct
from any variables occurring free in object language terms� We use a derived notation for
function application�

M �N
def
� Let f �M in f N

The notation associates to the left� that is� M� � M� � M� means �M� � M�� � M��
Finally� if H environment $ � x������ � � � � xn���n� then ��$�� is the M environment
x��T ������� � � � � xn�T ���n���

Operations Val and Let are simply an alternative syntax for primitives Lift and Seq ofM�
we use these abstract operations so that the rules of Table 	�	 can be re�used with other
interpretations of T � Val and Let�

The only rules to make any assumptions about the type constructor T in the denotational
semantics rules in Table 	�� are the ones for recursion and arithmetic� By translating
rec to Fix and using Seq in the translation of arithmetic we are assuming that T has the
property that for any �� T� is a lifted type�

Proposition �	

��� If 	 is an H type� then ��	 �� is a well�formed M type�

��� If $ e �� 	 then ��$�� ��e�� � T ��	 ���

��� If $� x��� e� �� 	 and $ e� �� � then ��e����

e����x� � ��e��e��x����

��� ��e��� � � � � � ��en�� � ��e� � � � en���

Proof Part ��� follows by structural induction on 	 � given the restriction on the form of
algebraic types in H� Part ��� is by induction on the depth of inference of $ e �� 	 � Part
��� is by induction on the depth of inference of $� x��� e� �� 	 � and is straightforward
since the denotational semantics is compositional� Part ��� follows by an induction on n�

Example denotations

We repeat the denition in H of the function head from Table 	���

cc�
def
� Nil �� �

cc�
def
� Cons �� �x �� �xs �� x

head
def
� �xs �� case xs of cc� � cc�

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

To illustrate the denotational semantics� we calculate the following denotations�

������� � ��X� � �T ������ TX��
������
��� � ��Cons���
Nil��

� Val�Intro�Inrh�����
��� ��Nil��i��
� Val�Intro�InrhValb����c�Val�Intro�Inl ���i��

��head�� � Val��xs� ��case xs of cc� � cc����
� Val��xs� Let v � ��xs�� in

Case�Elim v� v�� ��cc���
���Int���
v� � v�� ��cc���

���Int���
v� ��

��cc���
���Int���
v� � Split�v�� ������

� �

��cc���
���Int���
v� � Split�v�� u�� u�� ����x �� �xs �� x�� � u� � u���

���x �� �xs �� xs�� � Val��x� Val ��xs� x��

We will return to these examples when we look at denotational equivalence in x	���

Operational correspondence between the semantics

First we show operational properties of the denotational constants�that is� theM type
constructor T and operations Val� Let�used in the denotational semantics�

Lemma ��

��� For any T��program M � either M� or M � Val�N� for some ��program N �

��� The operational behaviour of the denotational constants obeys the following rules�

M�

�Let v �M in N��

M � Val�L�

�Let v �M in N���N �L�v�

Proof From the denitions of Val and Let�

We conclude this section on the denition of H with the proof of a close correspondence
between the operational behaviour of each H program and its denotation�

Proposition ��� For any H program e� canonical H program c� and canonical M
program V � we have�

��� If e � c then ��e�� � ��c���

��� If ��e�� � V then there is c such that V � ��c�� and e � c�

Therefore e � c i� ��e�� � ��c���

Proof Part ��� is proved by induction on the depth of inference of e � c� We show two
example cases�

Case e � e where e � c is canonical� We have ��e�� � Valjcj which is canonical� so ��e��� ��e���

Case e � �e��e��� We have c � m� �m� where each ei�mi� By appeal to the induction
hypothesis and Proposition ���
 we have the following�

���� GROUND AND CONFINED RELATIONS IN H ��

��e�� � Let v� � ��e��� in Let v� � ��e��� in Seq�v�b�cv�� x� Val �x��
�� Let v� � Val�bm�c� in Let v� � ��e��� in Seq�v�b�cv�� x� Val �x��
� Let v� � ��e��� in Seq�bm�cb�cv�� x� Val �x��
�� Let v� � Val�bm�c� in Seq�bm�cb�cv�� x� Val �x��
� Seq�bm�cb�cbm�c� x� Val �x��
�� Seq�bm� �m�c� x� Val �x��
� Val�bm� �m�c�
� ��c��

Part ��� is proved by induction on the depth of inference of ��e�� � V � proceeding by a
structural analysis of e� Again we show two example cases�

Case e is canonical� We have ��e�� � V where V � ��e��� and e � e�

Case e � �e��e��� We have�

��e�� � Let v� � ��e��� in Let v� � ��e��� in Seq�v�b�cv�� x� Val �x��

Proceed by a case analysis of the evaluation behaviour of ��e��� and ��e���� From
Lemma 	������ either ��ei��� or ��Ni� ��ei�� � Val�Ni�� for each i� But neither ��e��� nor
��e��� can diverge or else by Lemma 	����� ��e�� would diverge� So there are Ni such
that ��ei���Val�Ni�� By IH� we have ei�mi and ��ei���Val�jmij�� Then by a calculation
similar to the one given for part ��� we have that ��e���Val�jm� �m�j� and also that
e �m� �m� as required�

��� Ground and con�ned relations in H

Before developing operational and denotational equivalence� we need several preliminary
denitions� This section reworks basic notions of ground and conned relations developed
rst in x���� Recall the notions of program and conned term from Denition 	���

De�nition ���

��� A ground relation� R� is a binary relation between programs of the same type�

��� A con�ned relation� R� is a binary relation between con�ned terms of the same
type and environment� Write $ eRe� to mean that �$ e�$ e�� � R�

We state a sense in which a ground relation respects the operational semantics� Recall
from x	�� that program � of any type equals rec�x� x��

De�nition ��� A ground relation� R� is operationally adequate i� for all programs
e� e�� and canonical programs c�

��� If e� e� then e�Re�

��� If e � c then cRe�

��� e� i� eR��

��� e� i� for some canonical c� cRe�

The rst half of Table 	�� shows inference rules for constructing the conned relation bR
from any conned relation R� The second half of the table shows six inference rules that

�
 OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Rules of bR
� � x bR x � �
 bR

� � eiRe�i �i � �� ��

� � �e��e�� bR �e���e
�

��

� � eiRe�i �i � �� �� �

� � �if e� then e� else e�� bR �if e�� then e�� else e
�

��

�� x��� � eRe�

� � ��x��� �� e� bR ��x��� �� e��

� � eiRe�i �i � �� ��

� � �e� e�� bR �e�� e
�

��

�� x��� � eRe�

� � rec��x� e� bR rec��x� e��

� � eiRe�i �� � i � n�

� � �K e� � � � en� bR �K e�� � � � e
�

n�

� � eRe� cci � �Ki �� ei� cc�i � �Ki �� e
�

i� � � eiRe�i �� � i � n�

� � �case e of cc� � � � � � ccn� bR �case e� of cc�� � � � � � cc�n�

Properties of Con�ned Relations

Weak
� � eRe�

���� � eRe�

Stren
���� � eRe�

� � eRe�

Spec
�� x��� � e�Re� � � e� �� �

� � e�
e
�
�x�Re�
e

�
�x�

Precong
� � eRe�

� � C
e�RC
e��

Comp
� � e bR e�

� � eRe�

Sub
�� x��� � e�Re�� � � e�Re��

� � e�
e��x�Re��
e
�
��x�

Table 	��� Denition of bR and rules concerning conned relations�

���� GROUND AND CONFINED RELATIONS IN H ��

may be valid for a conned relation�

De�nition ���

��� If R is a con�ned relation� then con�ned relation bR is de�ned by the rules in the
�rst half of Table ����

��� The inference rules Weak� Stren� Spec� Precong� Comp and Sub are de�ned in
the second half of Table ����

��� A con�ned relation is natural i� the rules Weak� Stren and Spec are valid�

��� A con�ned relation is a precongruence i� the rule Precong is valid� A congru

ence is a con�ned relation that is both a precongruence and an equivalence relation�

As usual� the rules in Table 	�� bear the implicit side�condition that any sentence in a rule
is well�formed� In rule Stren for instance� from the lower sentence �$ eRe�� we may
deduce that fv�e� e�� � Dom�$�� and then from the upper sentence �$�$� eRe�� that
Dom�$� �Dom�$�� � �� and hence that fv�e� e�� �Dom�$�� � ��

Proposition ���

��� If rules Spec and Precong are valid for a transitive con�ned relation� then rule
Sub is valid too�

��� If R is a preorder� rule Comp is valid i� rule Precong is valid�

Proof Similar to that of Proposition ����

We will often need to induce a conned relation from a ground relation� and vice versa�
as follows�

De�nition ���

��� Let $ be an environment x������ � � � � xn���n� Then a $
closure is an iterated substi�
tution ��p��x�� � � � �pn�xn�� where each pi is a �i�program� 	The order of substitution
does not matter because the variables are disjoint and each pi is closed�

��� The con�ned extension of a ground relation RG is the con�ned relation R such
that�

�$ eRe�� i� for all $�closures ���p��x�� e��p��x�RGe
���p��x��

��� If R is a con�ned relation� then its ground restriction is the ground relation
f�p� q� j � pRqg�

��� If R is a con�ned relation� write pRq to mean that pair �p� q� is in the ground
restriction of R�

Proposition ��� The con�ned extension of a ground relation is natural 	that is� rules
Weak� Stren and Spec are valid
�

Proof Similar to that of Proposition ���
�

We typically use the same symbol for a ground relation and its conned extension� If RG

is a ground relation and R is its conned extension� we sometimes write dRG for bR�

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

��� Operational equivalence for H

In this section we dene a notion of applicative bisimilarity directly from the operational
semantics of H� In x	�� we will develop a second notion of equivalence from the de�
notational semantics� This operational theory of H parallels the theory of applicative
bisimilarity forM developed in Chapter �� Just as in that chapter� one can also develop a
theory of contextual equivalence for H� and establish an operational extensionality result�
but for the purpose of studying functional I�O applicative bisimilarity is su�cient� We be�
gin with applicative similarity� the ground preorder from which we shall dene operational
equivalence�

De�nition ��� De�ne function ��� over ground relations such that

p�S�q i� whenever p � cp there is cq with q � cq and cp bS cq�

An applicative simulation is a relation S such that S � �S�� De�ne ground applica

tive similarity� v� to be the union of all applicative simulations� De�ne applicative
similarity� v� to be the con�ned extension of ground applicative similarity�

We can restate the denition of ��� as follows�

Lemma ��	 For any ground relation S� p�S�q i�

��� whenever p � then q � �

��� whenever p � ��x��	 �� e��� then q � ��x��	 �� e��
and for all 	 �programs p� �e��p�x�� e��p�x�� � S�

��� whenever p � �K p� � � � pn�� then q � �K q� � � � qn�
and �pi� qi� � S for each i�

Proposition ���

��� Function ��� is monotone�

��� The identity ground relation is an applicative simulation�

��� If each Si is an applicative simulation� then so is S�S��

��� Ground applicative similarity is the greatest �xpoint of ��� and is the greatest ap�
plicative simulation�

��� M v N i� there is an applicative simulation S such that MSN

�	� Ground applicative similarity is a preorder�

Proof Parts ���� ��� and ��� are easy to check from the denition� The remaining parts
then follow from Proposition ����

De�nition ��� An applicative bisimulation is a relation S such that both S and
S�� are applicative simulations� Ground applicative bisimilarity� �� is the ground
relation �v � v���� Applicative bisimilarity� �� is the con�ned extension of ground
applicative bisimilarity�

���� OPERATIONAL EQUIVALENCE FOR H ��

Clearly applicative bisimilarity is an equivalence relation� We have� for any programs e
and e�� e � e� i� for some applicative bisimulation S� eSe��

Proposition ��� Ground relations v and � are both operationally adequate�

Proof Similar to the proof of Proposition ���	�

We adopt v and � as operational order and equivalence respectively on H�

Applicative similarity is a precongruence

We prove that applicative similarity for H is a precongruence by a typed reworking of
Howe�s method� just as we proved that applicative similarity forM was a precongruence
in Chapter ��

De�nition ��� De�ne the con�ned relation compatible similarity� v� to be the least
set closed under the rule�

$ e cv� e�� $ e�� v e�

$ e v� e�

Again� despite the notational ambiguity� v� is not dened to be the re�exive transitive
closure of v�

Proposition ���

��� Applicative similarity is natural 	that is� rules Spec� Weak and Stren are valid
�

��� Con�ned relations cv� and v� are reexive�
��� Con�ned relations cv� and v both imply v��

��� If $ e� v
� e� and $ e� v e� then $ e� v

� e��

��� 	Sub
 If $� x��	 e� v
� e�� and $ e� v

� e�� then $ e��e��x� v
� e���e

�
��x��

�	� If � c v� e then there is c� such that e � c� and c cv� c��
��� If � e v� e� and e � c then � c v� e��

��� If $ e v� e� then $ e v e��

��� Applicative similarity is a precongruence�

Proof The proof takes exactly the same form as Proposition ����� We omit the details of
parts ��� to ���� which are almost identical to the corresponding parts of Proposition �����

�	� In each case there must be a program e� such that c cv� e� and � e� v e� Proceed by
a structural analysis of canonical program c�

Case c � � So e� � � Then v e implies that e � � as required�

Case c � ��x��	 �� e��� So e� � ��x �� e��� with �x��	 e� v
� e���� Then e� v e implies

that e � ��x �� e���� with �x��	 e�� v e����� Therefore �x��	 e� v
� e���� by part ����

which implies c cv� ��x �� e���� as required�
Case c � �K p� � � � pn�� So e� � �K q� � � � qn� with pi v

� qi for each i� Then e� v e

implies that e � �K q�� � � � q
�
n� with qi v q�i for each i� By part ��� we have pi v

� q�i

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

for each i� and therefore c cv� �K q�� � � � q
�
n� as required�

��� By induction on the depth of inference of e � c� proceeding by analysis of e�

Case e canonical� Immediate�

Case e � �e��e��� We have ei � i with c � � � �� From �e��e�� v
� e� there are

e�i �i � �� �� such that ei v
� e�i and �e

�
��e

�
�� v e�� By IH we have i v

� e�i� hence
����� v

� e�� From ����� v
� e� by denition there are e��i such that i v

� e��i and
�e����e

��
�� v e�� By �	� we have e��i � i� So �e

��
��e

��
�� � � � �� and � � � v �e

��
��e

��
��

by operational adequacy� Therefore c v e� by transitivity� and c v� e� by ����

Case e � �e� e��� We have e� � ��x��	 �� e�� and e��e��x� � c� From e v� e� there are e�i
�i � �� �� such that ei v

� e�i and �e
�
� e

�
�� v e�� Since e� � ��x��	 �� e�� and e� v

� e��
we have ��x��	 �� e�� v

� e�� by IH� By �	� there is e
�
� with e�� � ��x��	 �� e

�
�� and

�x��	 e� v
� e���� By Sub� e��e��x� v

� e���e
�
��x�� then by IH we have c v� e���e

�
��x��

Since �e�� e
�
���

� e���e
�
��x� we have e���e

�
��x� v �e�� e

�
�� by operational adequacy� From

�e�� e
�
�� v e� we have e���e

�
��x� v e� by transitivity� Finally from c v� e���e

�
��x� we have

c v� e� by ����

Case e � �e�#e��� We have e� � ��x��	 �� e��� e� � c� and e��c��x� � c� From e v� e�

there are e�i �i � �� �� such that ei v
� e�i and �e

�
�#e

�
�� v e�� Since e� � ��x��	 �� e��

and e� v
� e�� we have ��x��	 �� e�� v

� e�� by IH� Since e� � c� and e� v
� e�� we have

c� v
� e�� by IH� By �	� there is e

�
� with e�� � ��x��	 �� e

�
�� and �x��	 e� v

� e����
By �	� there is c�� with e�� � c�� and c� cv� c��� Therefore c� v� c�� by ���� By Sub�
e��c��x� v

� e���c
�
��x�� then by IH we have c v� e���c

�
��x�� Since �e��#e

�
���

� e���c
�
��x�

we have e���c
�
��x� v �e��#e

�
�� by operational adequacy� From �e��#e

�
�� v e� we have

e���c
�
��x� v e� by transitivity� Finally from c v� e���c

�
��x� we have c v� e� by ����

Case e � �case e� of � � � � Ki �� ei � � � ��� We have e� � �Kj p� � � � pn�� for some j� and
�ej p� � � � pn� � c� From e v� e� there are e�i such that ei v

� e�i and �case e�� of � � � �
Ki��e

�
i � � � �� v e�� Since e���Kj p� � � � pn� and e� v

� e�� we have �Kj p� � � � pn� v
� e��

by IH� By �	� there are p�i such that e
�
���Kj p

�
� � � � p

�
n� and pi v

� p�i� By Sub we have
�ej p� � � � pn� v

� �e�j p
�
� � � � p

�
n�� so since �ej p� � � � pn��c we have c v

� �e�j p
�
� � � � p

�
n� by

IH� Since �case e�� of � � � � Ki �� e
�
i � � � ���

� �e�j p
�
� � � � p

�
n� we have �e

�
j p

�
� � � � p

�
n� v

�case e�� of � � � � Ki �� e
�
i � � � �� by operational adequacy� By transitivity and ���

we have c v� e��

We omit the case for conditionals� which has the same structure as the cases above�

��� First we prove that the ground restriction of compatible similarity is an applicative
simulation� Suppose for any programs e and e� that e v� e�� We are to show that whenever
e � c there is c� such that e � c� and c cv� c�� Suppose that e � c� By ��� we have c v� e��
By �	� there is c� such that e� � c� and c cv� c��
Suppose now that �$ e v� e��� We are to prove that �$ e v e��� which is to say that
for all $�closures� ���p��x�� programs e��p��x� and e���p��x� are paired in an applicative simulation�
But by Spec and re�exivity we have e��p��x� v� e���p��x�� and since the ground restriction of
compatible similarity is an applicative simulation� we are done�

��� A corollary of ��� and ��� is that applicative and compatible similarity are the same
conned relation� just as in Proposition �����

���� DENOTATIONAL EQUIVALENCE FOR H ��

To summarise this section� we have taken operational equivalence on H to be applicative
bisimilarity shown it to be an operationally adequate congruence�

��� Denotational equivalence for H

Two object terms are denotationally equal just when their denotations in the metalanguage
are equal� We take equivalence in the metalanguage to be a operational equivalence on
M� �� the equivalence characterised as contextual equivalence and applicative bisimilarity
in Chapter ��

De�nition ��� De�ne denotational equivalence� �� to be the con�ned relation�

�$ e � e��
def
� ���$�� ��e�� � ��e����

Since operational equivalence on M is a natural equivalence relation� so is denotational
equivalence on H� Next we prove that denotational equivalence respects the operational
semantics of H�

Proposition ��� Denotational equivalence is operationally adequate�

Proof There are four parts to the denition of operational adequacy� Denition 	���� to
establish� We appeal to operational adequacy for ground applicative bisimilarity in M�
Proposition ���	� and the correspondence theorem between the operational and denota�
tional semantics of H� Proposition 	��
� We leave part ��� to the end of the proof�

Part ���� Suppose e � c� Then ��e�� � ��c�� from the correspondence theorem� So ��e�� � ��c��
from operational adequacy ofM� Then e � c by denition�

Part ���� We have been using the symbol � to stand for Fix�x� x� inM and rec�x� x� in
H� Note that ����� � �� where � is interpreted in H and M in the left� and right�hand
sides respectively�

e� i� ���c� e � c�
i� ���c� ��e�� � ��c��� �Correspondence�
i� ��e���
i� ��e�� � � �Operational adequacy forM�
i� ��e�� � ����� �since ����� � ��
i� e � �

Part ���

e� i� ��c� e � c�
i� ��c� ��e�� � ��c��� �Correspondence�
i� ��c� ��e�� � ��c��� �Operational adequacy forM�
i� ��c� e � c�

Finally� part ���� Suppose e� e�� Either e�� or for some c� e� � c� In the former case� e�
too� so e � e� � � by part ���� In the latter case� e � c too� and e � e� � c by part ����

Moggi ��

� denes a notion of computational model� based on a categorical strong monad�
as a general framework for reasoning with denotational semantics� We make an analogous

�	 OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

denition of a computational monad in the context ofM�

De�nition ��� A computational monad is a structure �T�Val� Let� where T maps
anyM type �� to anM type T�� and Val and Let areM operations that obey the typing
rules�

$ M � �

$ Val�M� � T�

$ M � T� $� v�� N � T	

$ �Let v �M in N� � T	

together with the equations

$ M � T� $� v�� N � T��

$ �Let v � Val�M� in N� � N �M�v�

$ M � T�

$ �Let v �M in Val�v�� �M

$ M� � T�� $� v���� M� � T�� $� v���� M� � T��

$ �Let v� � �Let v� �M� in M�� in M�� �
�Let v� �M� in �Let v� �M� in M���

and the injectivity requirement that $ Val�M� � Val�N� i� $ M � N �

Lemma 	�� stated properties of the evaluation behaviour of the operations used in the
denotational semantics as a preliminary to proving the correspondence theorem between
the operational and denotational semantics for H� In the following lemma we prove equa�
tional properties of the operations used in the denotational semantics as a preliminary to
proving the main result of this section� that denotational equivalence implies operational
equivalence�

Lemma ��� The structure �T�Val� Let� that parameterised the denotational semantics
of H in De�nition ���� is a computational monad�

Proof The typing rules in Denition 	��	 follow by inspection� The rst two equations
follow from the beta and eta laws for lifting in Table ���� Associativity of Let follows from
proving the following equation�

$ Seq�Seq�M�� v��M��� v��M��� � Seq�M�� v�� Seq �M�� v��M���

It su�ces to prove the equation for $ empty� from which case the non�empty case follows�
By the exhaustion law in Table ���� eitherM� � � orM� � Lift�L� for some program L� In
the rst case� both sides equal � by the strictness law in Table ���� In the second case� by
the beta law from we have lhs � Seq�M��L�v��� v��M�� and rhs � Seq�M�� v��M���L�v�� �
lhs since v� �� fv�M��� Finally� the injectivity requirement follows from canonical freeness
in Table ����

An example calculation

Before proceeding� we show an example calculation� Recall the denotations calculated on
page ��� We show that ��head����
��� � �����
�� by calculating as follows� where we use

���� DENOTATIONAL EQUIVALENCE FOR H ��

only the laws of M from Chapter �� the equational laws of a computational monad and
substitution properties from Proposition 	���

��head����
��� � Let v � ��head�� in v ������
���
� Let v � Val��xs� ��case xs of cc� � cc���� in v ������
���
� ��xs� ��case xs of cc� � cc���� ������
���
� ��xs� Let v � xs in

Case�Elim v� v�� ��cc���v� � v�� ��cc���v���������
���
� Let v � ������
��� in

Case�Elim v� v�� ��cc���v� � v�� ��cc���v��
� Let v � Val�Intro�Inrh�����
��� ��Nil��i�� in

Case�Elim v� v�� ��cc���v� � v�� ��cc���v��
� Case�Inrh�����
��� ��Nil��i� v�� ��cc���v� � v�� ��cc���v���

� ��cc���v� �h

�������

Nil��i�v��
� Split�h�����
��� ��Nil��i� u�� u�� ���x �� �xs �� xs�� � u� � u��
� ���x �� �xs �� x�� � �����
�� � ��Nil��
� Let v� � ���x �� �xs �� x�� � �����
�� in v� ��Nil��
� Let v� � �Let v� � ���x �� �xs �� x�� in v� �����
��� in v� ��Nil��
� Let v� � ���x� ���xs �� x��� �����
��� in v� ��Nil��
� Let v� � ���xs �� ���
�� in v� ��Nil��
� ��xs� �����
�����Nil��
� �����
��

The calculation is extremely detailed but each step is trivial� A more tractable way to
reason about H programs is to appeal to a set of laws formulated at the object level�
such as those we develop in x	��� Such laws can be proved correct by translation into the
metalanguage� and then used for object level reasoning�

The other point to make about this calculation is that it holds for any computational
monad� not just the one in Denition 	��� An important reason for parameterising the
semantics is so that program calculations that do not depend on the detail of a particular
computational monad can be proved once and for all�

Denotational implies operational equivalence

We prove a soundness theorem� that denotational implies operational equivalence� Com�
pleteness or full abstraction�whether operational implies denotational equivalence�is left
as an open problem�

Proposition ��	

��� If �$ c � c�� then �$ c b� c���

��� For all programs e� e�� if e � e� then e � e��

��� If �$ e � e�� then �$ e � e���

Proof Part ���� We have ��$�� Valjcj � Valjc�j� and therefore by the monadic injectivity
requirement� we have ��$�� jcj � jc�j� By analysis of the type of c and c� there are three
cases to consider�

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Case c � � c� � �� We have ��$�� bc � b�c� therefore � � as required�

Case c � ��x��	 �� e�� c� � ��x��	 �� e��� We have ��$�� ��x� ��e��� � ��x� ��e���� and there�
fore ��$��� x�T ��	 �� ��e�� � ��e��� by canonical freeness inM� as required�

Case c � �K e� � � � em�� c
� � �K � e�� � � � e

�
n�� Suppose c and c

� are of type � in environment
$� We have

��$�� Intro������inRank
K����h��e���� � � � � ��em��i�� � Intro������inRank
K�����h��e
�
���� � � � � ��e

�
n��i��

Therefore we have K � K � and m � n and for each i� ��$�� ��ei�� � ��e
�
i�� by canonical

freeness inM� as required�

For part ��� we prove that the ground restriction� S� of denotational equivalence is an
applicative bisimulation�

S
def
� f�e� e�� j ��e�� � ��e���g

Since S is symmetric we need only prove that it is an applicative simulation� Suppose
then that e � c� By the correspondence theorem we have ��e�� � ��c��� Since ��e�� � ��e��� there
is a V such that ��e����V and ��c�� � V by operational adequacy forM� By correspondence
there is a canonical c� such that e� � c� and V � ��c���� We have that ��c�� � ��c���� and hence
that c � c�� Hence by ��� we have c b� c�� which is to say c bS c� as required�

Part ���� We are to show for any $�closure� ���p�x�� that e��p�x� � e���p�x�� But from ��$��
��e�� � ��e��� and Spec we have ��e���

�p���x� � ��e����

�p���x�� By substitution lemma we have
��e��p�x��� � ��e���p�x���� Then by part ��� we are done�

��� A theory of H programming

We state a collection of programming laws in Table 	��� In his seminal study of program�
ming languages ������ Strachey begins his discussion of expressions and evaluation with the
denition that the �characteristic feature of an expression is that it has a value�� What
we have called canonical expressions correspond to what Strachey calls values� Expressions
in H are more expressive than Strachey�s in that the former include recursive expressions
and hence non�termination� Nonetheless what we have named Strachey�s property in Ta�
ble 	�� conveys the essence of Strachey�s view� that every H program either equals � or
some canonical program�

We show in this section that all these laws hold for both operational and denotational
equivalence� except the principle of bisimulation�up�to��� which has only been proved for
operational equivalence� We conjecture without proof that it holds also for denotational
equivalence� We begin with operational equivalence�

Proposition ��� All the laws from Table ��� hold for operational equivalence�

��� Strachey�s property�

��� congruence�

��� canonical freeness�

��� beta� strictness and eta laws�

��� co�induction�

���� A THEORY OF H PROGRAMMING ��

Proof The proof is similar to that of Proposition ����

We prove the same results� apart from the co�induction principle� for denotational equiv�
alence�

Proposition ��� All the laws from Table ��� hold for denotational equivalence 	with
� in place of �
�

��� Strachey�s property�

��� congruence�

��� canonical freeness�

��� beta� strictness and eta laws�

Proof ��� By denition of evaluation� any program e either diverges or evaluates to some
canonical program c� Then by operational adequacy� in the rst case e � �� and in the
second� e � c�

��� Given �$ e b� e�� we are to show �$ e � e��� Proceed by an analysis of which rule
in Table 	�� derived �$ e b� e��� In each case from the rule�s antecedents� we can use the
denotational semantics rules in Table 	�	 to prove ���$�� ��e�� � ��e���� as required�

��� Canonical freeness for denotational equivalence was proved as Proposition 	�������

��� Each law takes the form $ eL � eR� By denition we are to show� for all ��$���closures�

���L��x�� that ��eL���
�L��x� � ��eR���

�L��x�� Terms are identied up to alpha�conversion so we may
assume that any bound variable in ��eL�� or ��eR�� is distinct from variables in the list %x� For

each beta law we can check by inspection that ��eL���
�L��x�����eR���

�L��x�� For each eta law we
can check the same property� but with appeal also to the laws of canonical programs in

Table 	��� For each strictness law eR � � we can check that ��eL���
�L��x��� Therefore for any

one of the strictness laws the required equation follows from operational adequacy ofM�

As a simple example of co�induction� here is a proof of an equivalence �of two streams�
used by Paulson to illustrate Scott induction ��
��� Since the two streams are unbounded�
structural induction would fail on this example�

Proposition ��� For any f��� �� � and x����

iterate f �f x� � map f �iterate f x��

	De�nitions of iterate and map are shown in Table ����

Proof Consider relation S dened as follows�

S � f�iterate f �f x�� map f �iterate f x�� j f��� �� �� x���g

We shall prove that the union S � � is a bisimulation�up�to��� and hence that S � ��
Suppose then that e and e� are arbitrary programs such that eSe�� Set

e� � iterate f �f �f x��
e�� � map f �iterate f �f x��

�
 OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Strachey�s Property

Any program e either equals � or some canonical term c�

Congruence

If �� � e b� e�� then �� � e � e���

Canonical Freeness

If �� � c � c�� then �� � c b� c���

Beta Laws

� � �
��
�� �
� �
�
� � �ifT then e� else e�� � e�
� � �ifF then e� else e�� � e�
� � ���x��� ��e�� e�� � e�
e��x�
� � ���x��� �� e��c� � e
c�x�

� � �case��Ki e� � � � em� of �K� �� e
�
�� � � � � � �Kn �� e

�
n�� � �e�i e� � � � em�

� � rec�x� e� � e
rec�x� e��x�

Strictness Laws

� � LE��� � �
� � RE��� � �

Eta Laws

� � �if c then e else e� � e

� � ��x��� �� cx� � c if x �� fv�c�
� � �case�c of � � � � �Ki x� � � � xArity�Ki��� �� e� � � � �� � e if no xi � fv�e�

Co�induction

A bisimulation�up�to�� is a ground relation� S� such that whenever eSe��
either e � e� � �� or there are canonical programs c� c� such that e � c�
e� � c� and c bS c��

Any bisimulation�up�to�� is a subset of ground equivalence�

Table 	��� Laws of equivalence in H

���� DERIVED LAWS OF PROGRAMMING ��

and we can calculate as follows�

e � iterate f �f x�
� f x � e�

e� � map f �iterate f x�
� map f �x � iterate f �f x��
� f x � e��

Since �f x� � �f x� and e�Se
�
� we have �f x � e�� �S � � �f x � e���� Since e and e� were

arbitrary we have established that S �� is a bisimulation�up�to��� Hence S � � and the
proposition follows�

��� Derived laws of programming

In this section we derive further laws of program equivalence� Their derivations depend
only on the laws in Table 	�� �not including co�induction� so they hold for both opera�
tional and denotational equivalence� It is reassuring that these familiar results� functional
extensionality and structural induction� can be derived simply from the theory of H�

Functional extensionality

Two canonical functions are equal if whenever they are applied to the same argument they
yield the same answer�

Proposition ��� If �$� x��� cx � c� x� then �$ c � c� �� �� �� 	���

Proof We may assume that the canonical terms c and c� take the forms ��x �� e� and
��x �� e��� We have �$� x��� ��x �� e�x � ��x �� e��x�� Therefore by the beta law for
functions we have �$� x��� e � e��� Then by precongruence �$ c � c���

This principle does not extend to non�canonical functions� Counterexample� let programs
f and g of type � �� 	 be � and ��x ���� respectively� Then �x��� fx � gx� yet f �� g

since f� whereas g��

Structural induction for sum�of�product types

We can derive a familiar structural induction principle for a class of sum�of�product types�

De�nition ��� A sum
of
products type is an algebraic datatype � such that � �
�dataX � dc�� � � � �dcn� and each clause dci takes the form �K �� � � � �m� where each �i
is either the variable X or is closed�

For each such type �� de�ne a program size��

size� �� � �� Int

size�
def
� rec�size� �x �� case x of cc�� � � � �ccn�

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

where for each i� if dci � �K �� � � � �m� we de�ne cci to be�

cci
def
� �K x� � � � xm �� � t� � � � tm�

where each tj
def
�

�
size�xj� if �j � X
� otherwise

De�ne Finite� to be the following set of ��programs�

Finite�
def
� fe j e is a ��program and �n � N� size� e � ng

Finally� say that a ��program e is �nite i� e � Finite��

Proposition ��� Suppose � is a sum�of�product type �dataX � dc�� � � � �dcn�� If �
is a predicate on �nite ��programs� that is� � � Finite�� then the following induction
principle is valid�

for each clause dci � �K �� � � � �m�� 	e� � ��� � � � 	em � �m� �K e� � � � em� � �

where each set �j
def
�

�
� if �j � X
fe j e���jg otherwise

Finite� � �

Proof Suppose that the rule hypothesis holds� By mathematical induction on n we prove
for all ��programs e that if size�e� � n then e � �� This amounts to a proof that
Finite� � � as required�

Suppose then that size�e� � n for some e� By Strachey�s property we have that either
e � � or e equals a canonical program� But size��� � � by the strictness law for case�
expressions� so e must be canonical� So there must be a clause �K �� � � � �m� such that
e � �K e� � � � em�� From size�K e� � � � em� � n we have�

�� t� � � � tm� � n where for each j� tj �

�
size�ej� if �j � X
� otherwise

�

We can show that each ej � �j� Either �j � X or not� If �j � X� from the equation above
we have that size�ej� � m for some m � n� So by IH we have ej � � � �j � Otherwise�
we know that ej���j since e � �K e� � � � em�� and hence ej � �j�

Since each ej � �j we can conclude that e � � from the rule�s hypothesis� Hence we have
that every program e�� of any size is contained in �� So Finite� � � and we have veried
the induction principle�

The list type is a sum�of�products type in the sense of Denition 	���� Given a closed type
a of list elements� the general denition of size given there specialises to the following�

size�a� �� �a� �� Int

size�a�
def
� rec�size� �x �� case x of

Nil �� �

Consx xs �� � � size�xs��

The set Finite�a� consists of those �a��programs xs such that �size xs� � n� for some
n� We call such a list �nite� Lists ��� ��
� or �� are nite� lists �� ���� �� � ���

���� HX � AN EXTENSION OF H WITH EXCEPTIONS ��

rec�xs� � � xs� �which are all distinct� since Cons is lazy� are not nite� in this sense�
Proposition 	��� yields the following structural induction principle for nite lists�

Nil � � 	x��a�	xs � �� �Cons x xs� � �

Finite�a� � �

where � � Finite�a� is a predicate on lists�

��� HX � an extension of H with exceptions

We develop our theory of functional programming by considering what happens when
we add an exception mechanism to H� Languages such as Standard ML and Modula��
have an exception mechanism� which is typically used by programmers to express error
conditions� We use exceptions in Chapter � to model the demand for function arguments
during evaluation� In HX � a computation of type � can either return a value of type ��
diverge� or raise an exception� For the sake of simplicity� we consider a language with just
one exception� the canonical term bang� Raising an exception is represented by a program
evaluating to bang� which is present at every type� For the sake of brevity� we say the
program has banged� Program bang bangs� In general� if a program needs to evaluate
several subterms before terminating� and evaluation of any one of the subterms bangs�
then the whole program bangs� The only exemptions from this rule are programs of the
form �e� �� e��� If evaluation of e� returns an answer or diverges� then evaluation of the
whole program does so too� But if evaluation of e� bangs� then the whole program behaves
the same as e�� The operator� ��� called biased choice� is a new primitive in HX � it is a
version without parameters of exception handling mechanisms found in Standard ML and
Modula���

De�nition ���

� The abstract syntax ofHX is based on the same syntactic categories asH� de�ned by
the H rules from Table ��� augmented by the two new syntactic rules from Table ����

� De�ne the predicate Mute�c� on canonical terms� to hold i� for no type 	 does
c � bang� �

� The type assignment relation� �$ e �� 	�� is inductively de�ned by the H rules from
Table ���� together with the new type assignment rules from Table ����

� The reduction and evaluation relations for HX are the binary relations on HX pro�
grams� � and � respectively� de�ned inductively by the reduction and evaluation
rules respectively� from Tables ��� and ���� The rule for call�by�value reduction in
Table ��� is to apply only when Mute�c�� and the rule for call�by�value evaluation
only when Mute�c���

� Make the following de�nitions of parameters T � Val and Let�

T�
def
� �� ���

Val�N�
def
� Lift�Inl�N��

�Let v �M in N�
def
� Seq�x� u� Case �u� v�N�w� Lift �Inr������

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Syntax

c ��� bang �exception�
e ��� �e� �� e�� �biased choice�

Type Assignment

� � bang� �� �
� � e� �� � � � e� �� �

� � �e� �� e�� �� �

Reduction Semantics

e� � e��

�e� �� e��� �e�� �� e��
�bang� �� e�� e

�c �� e�� c if Mute�c�

LE�bang��� bang� if � � LE
bang� � �� �
RE�bang��� bang� if � � RE
bang�� �� �

Evaluation Semantics

e � bang� � � LE�e� �� �

LE�e� � bang�

e� �
 e� � bang� � � e��e� �� �

�e��e�� � bang�

e� � ��x �� e� e� � bang� � � e��e� �� �

�e��e�� � bang�

e� � c Mute �c�

�e� �� e�� � c

e� � bang� e� � c

�e� �� e�� � c

Denotational Semantics

bang � T�
alt � T�� T�� T�

bang
def
� Lift�Inr����

alt
def
� �x� �y� Seq �x� u� Case �u� v� Val �v�� w� y��

bang���
def
� bang�����

e� �� e���
def
� alt

e���

e���

Table 	��� HX � an extension of H with exceptions

���� HX � AN EXTENSION OF H WITH EXCEPTIONS ��

Given these parameters� together with the polymorphic M constants bang and alt

de�ned in Table ���� inductively de�ne the denotational semantics of HX according
to the rules in Tables ��� and ���� denotational rule ��c�� � Valjcj from Table ��� is to
apply only when Mute�c��

Proposition ���

��� The type assignment laws of Proposition ��� remain valid for HX � except for the
statements about canonical terms in Table ����

��� In HX � we have the following properties of canonical terms�

	a
 If c��Bool then either c � bangBool or ��b � ftt �� g� c � b��

	b
 If c��Int then either c � bangInt or ��n � N� c � n��

	c
 If c���� �� 	� then either c � bang
����� or ��e� c � ��x �� e���

	d
 If c��� then either c � bang� or ��K� e�� � � � � em� c � �K e� � � � em���

��� The operational semantics laws of Proposition ��� remain valid for HX �

��� The denotational semantics laws of Proposition ��� remain valid for HX �

Proof Part ��� follows by easy rule inductions� similar to Proposition 	��� Part ���
follows by inspection of the type assignment rules� Proof of part ��� is similar to that for
Proposition 	��� ��� follows by simple inductions as before�

As in H� we can prove a close correspondence between evaluation of an HX program and
its denotation�

Proposition ���

��� For any T��program M � either M�� orM �bang or M �Val�N� for some ��program
N �

��� The operational behaviour of the denotational constants obeys the following rules�

M�

�Let v �M in N��

M�

�altM N��

M � Val�L�

�Let v �M in N���N �L�v�

M � Val�L�

�altM N��� Val �L�

M � bang

�Let v �M in N���bang

M � bang

�Let v �M in N���N

��� If e � c then ��e�� � ��c���

��� If ��e�� � V then there is c such that V � ��c�� and e � c�

��� e � c i� ��e�� � ��c���

Proof Parts ��� and ��� follow by calculating from the denitions of Val� Let� bang and
alt�

�	 OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Part ��� follows by induction on the depth of inference of e � c as before� Part ��� follows
by induction on the depth of inference of ��e���V � We show one case to illustrate the proof�
Suppose that e is �e��e�� and that ��e�� � V � where � � f �
��g� We have�

Let v� � ��e��� in Let v� � ��e��� in Seq�v�b cv�� x� Val �x�� � V

Since each ��ei�� is a program of type TNum� by parts ��� and ���� either ��ei���� ��mi� ��ei���
Val�bmic��� or ��ei�� � bang� Since ��e�� converges to V by appeal to part ��� we have only
three cases to consider�

�a� ��e��� � bang and ��e�� � bang � V �

�b� ��e��� � Val�bm�c�� ��e��� � bang and ��e�� � bang � V �

�c� ��e��� � Val�bm�c�� ��e��� � Val�bm�c�
and ��e���� Seq�bm�cb�cbm�c� x� Val �x�� � V �

In each case we exhibit c such that e � c and ��c�� � V �

�a� Take c to be bang� By IH� we have e� � bang and then �e��e�� � bang�

�b� Take c to be bang� By IH� we have e� �m� and e� � bang� so then �e��e�� � bang�

�c� Take c to be m� �m�� By IH� we have e� �m� and e� �m�� so e �m� �m�� But
Seq�bm�cb�cbm�c� x� Val �x�� � ��m� �m��� so V � ��m� �m��� as required�

Finally� part ��� is a corollary of parts ��� and ����

We now rework the theory of operational equivalence� We conjecture that denotational
equivalence could be reworked similarly� but leave this as future work�

De�nition ��	 We adopt all the de�nitions to do with con�ned relations and applica�
tive similarity and bisimilarity from x��� and x��� for HX � with the following amendment�
In HX � given a con�ned relation R the con�ned relation bR is de�ned by the rules in the
�rst half of Table ���� together with the additional rules�

$ bang bR bang

$ eiRe�i

$ �e� �� e���
bR �e� �� e���

Proposition ���

��� All the properties of con�ned and ground relations proved in x��� remain true�

��� Applicative bisimilarity is an operationally adequate precongruence�

Proof By reworking x	�� and x	��� We omit the details�

As before we take operational equivalence to be applicative bisimilarity� We nish this
section on HX by reworking the laws of programming introduced in x	���

Proposition ��� The laws of H programming in Table ��� hold for HX given the
following modi�cations�

� The beta law for call�by�value application has a new side�condition that Mute�c��

� There are new beta laws for biased choice�

$ �bang �� e� � e $ �c �� e�� � c if Mute�c�

���� HX � AN EXTENSION OF H WITH EXCEPTIONS ��

� Each eta law has a new side�condition that Mute�c��

� There is a new eta law for biased choice�

$ �e �� bang� � e

� There are additional strictness laws�

$ �� �� e� � �
$ LE�bang� � bang

$ RE�bang� � bang

Proof By reworking the proof of Proposition 	����

We leave a study of denotational equivalence for HX as future work� The following result�
stated without proof� would be useful�

Proposition ��� The structure �T�Val� Let� introduced in De�nition ���� is a compu�
tational monad�

This implies for instance that the example calculation shown earlier for H is valid for HX
too�

�� OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Chapter �

Four mechanisms for teletype I�O

In this chapter we consider four widely�implemented mechanisms for I�O in functional
languages� side�e�ecting I�O� continuation�passing I�O� synchronised�stream I�O and
Landin�stream I�O� In the context of interaction with a teletype� we sketch the semantics
of side�e�ecting I�O and give detailed semantics for the other three mechanisms� These
semantics are based on the theory of H and HX developed in the previous chapter� Tele�
type I�O is a very limited model of I�O in which the computer interacts with a keyboard
and a character based printer� By concentrating on a simple I�O model the contrasts
between the four I�O mechanisms can be clearly seen�

We do not describe related work on using functional languages with more complex I�O
models in any detail� For the record� the interested reader is referred to papers on the
following topics� asynchronous interrupts ����� polling the keyboard ���� ����� real time
behaviour ���� �
�� interaction with a le system ���� 	�� ����� concurrency ���� ��� ��� ���
��	�� controlling a window system ���� ���� writing an operating system shell in a functional
language ���� ��� ��� ���� and even the whole operating system ��� ��� 	�� ��	� ���� �����
Surveys by Hudak and Sundaresh �	
�� Jones and Sinclair �	�� and Perry ��
�� cover much
of this previous work�

In x��� we sketch how the denotational semantics of H can be extended to accommodate
side�e�ecting I�O and discuss why side�e�ecting I�O is unsuitable for lazy languages�

We base the semantics of the remaining three I�O mechanisms on the languageHX dened
in Chapter 	� Continuation�passing and synchronised�stream I�O can be dened in terms
of H� but for Landin�stream I�O we need the exception mechanism in HX � We use
exceptions to represent demand for a value in the input stream�

We use a style of operational semantics for the remaining three mechanisms that was rst
used by Holmstr�om in his semantics of PFL ����� Holmstr�om used a continuation�passing
style to embed CCS�like operations for communication and concurrency in a functional
language� Starting with an evaluation relation for the host language� he dened the
meaning of the embedded operations in the style of a labelled transition system� as used
in CCS ����� A labelled transition system is a way to formalise the idea that an agent
�such as a functional program engaged in I�O� can perform an action �such as input or
output of a character� and then become a successor agent� This style of semantics is

��

�

 CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

attractive for at least three reasons� First� it can model a wide variety of nondeterministic
and concurrent computation� witness the CCS school of concurrency theory� Second� the
evaluation relation for the host language is unmodied� any property of the host language
without I�O will still hold after the I�O mechanism has been added� Third� the method
complements an operational language denition such as that of Standard ML ����� In x���
we dene notions of labelled transition system and bisimilarity on programs of HX �

We go further than Holmstr�om by developing an equational theory of functional I�O based
on labelled transitions� We adopt bisimilarity from CCS as equivalence on programs
engaged in I�O� Bisimilarity is an equivalence on agents induced by their operational
behaviour� two agents are bisimilar i� whenever one can perform an action� the other can
too such that their two successors are bisimilar�

Bisimilarity should not be confused with applicative bisimilarity� Each is dened as the
greatest xpoint of a certain functional� but they relate di�erent kinds of behaviour� Ap�
plicative bisimilarity �as developed forM in Chapter � and for H and HX in Chapter 	�
relates the evaluation behaviour of two programs� Bisimilarity �as dened in this chapter�
relates the observable communication behaviour of two programs� Bisimilarity was intro�
duced in Milner�s theory of CCS� whereas applicative bisimilarity comes from Abramsky�s
theory of lazy ��calculus �which itself followed CCS in part��

Both Landin�stream and synchronised�stream I�O are based on stream transformers� func�
tions of type �inp� �� �out�� where inp and out are types of input and output values re�
spectively� x��� denes some general operations on stream transformers� x��� gives labelled
transition system semantics for Landin�stream I�O� and explains why HX rather than H
is needed� x��� and x��	 give labelled transition system semantics for synchronised�stream
and continuation�passing I�O respectively� The main result of the chapter is proved in
x���� that there are bisimilarity preserving translations between the three mechanisms for
teletype I�O other than side�e�ecting I�O� In this sense we have proved that the three are
of equal expressiveness� The mappings between Landin�stream and continuation�passing
I�O are original� whilst those between synchronised�stream and continuation�passing I�O
were discovered during the design of Haskell ���� 	
�� but have not hitherto been veried
formally� x��� concludes the chapter with a discussion of the practical use of the three
mechanisms suitable for lazy languages�

��� Side
eecting I�O

The original functional language� LISP ��� ����� had a side
e�ecting I�O mechanism�
Side�e�ecting I�O� which is by far the most widely�used mechanism for functional I�O�
persists in LISP and is found in other eager languages such as Scheme and Standard ML�

To accommodate side�e�ecting I�O in H we add two new non�canonical operations to the
syntax of expressions�

e ��� read �read a character�
j write�e� �write a character�

���� SIDE�EFFECTING I�O �
�

with typing rules and informal intended meanings as follows�

$ read �� Int
$ e �� Int

$ write�e� �� ��

� read means
�input a character n from the keyboard and return n��

� writen means
�output character n to the printer and return unit� ����

For example� here is a program to read two characters and output their sum�

main �� ��

main � write �read read�

�Pardon the cavalier identication of Int and Char from x	����

The denotational semantics of H can be extended to accommodate side�e�ecting I�O�
Apart from diverging� there are three things a computation can do� return an answer� ask
for a number as input� or output a number� Accordingly a computation of H type � can be
modelled as a term ofM type T ������ with the following denition of T � and corresponding
denitions of Val�M�� ��read�� and ��write�e����

T�
def
� ��X� � �Num�X�� �Num�X���� �X �� ftv����

Val�M�
def
� Lift�Intro�In��M���

��read��
def
� Lift�Intro�In���v�Num� Val �v����

��write�e���
def
� Let v � ��e�� in Lift�Intro�In�hv� ������i��

This construction is based on Moggi�s notes ��
�� Exercise ��������� but the basic idea
goes back at least as far as Plotkin�s Pisa notes ����� Example � in Chapter ��� This is
just a sketch of the semantics� we omit the denition of Let� An analogous object level
construction is detailed in Chapter �� �Were M to be used in a detailed study of side�
e�ecting I�O it would need to be extended to include mutually recursive M types� such
as ���������

We do not pursue this construction here because the primary focus of this dissertation
is the study of I�O for lazy languages� and� as is well�known� side�e�ecting I�O does not
combine well with lazy languages� There are three reasons why the use of side�e�ecting
I�O in a lazy language is problematic� First� to use side�e�ecting I�O in a lazy language� a
programmer must be concerned with evaluation order� which because of laziness is harder
to predict than in an eager language� Side�e�ecting I�O compels programmers to think
about something that otherwise they can usually leave to the implementation�

The other two reasons depend on the observation that Strachey�s property no longer holds�
Recall Strachey�s property from Chapter 	� that every program either equals � or some
canonical program� Strachey�s property holds for H and HX � but not for H extended
with side�e�ecting operators� Programs read and write�n� neither diverge nor equal any
canonical program�

The second reason� then� that side�e�ecting I�O does not combine well with lazy languages
is that adding side�e�ects makes a functional language harder to reason about� Proofs of

�
� CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

programs are harder to construct� because there are more cases to consider than covered
by Strachey�s property� This applies to eager languages as well� With side�e�ecting I�O�
one would expect that every program either diverges or converges to a canonical program�
or does some I�O to become another program� How to formulate precisely and verify this
expectation is an open question�

The third reason concerns e�ciency� Strachey�s property is important if languages with
call�by�name semantics for function application are to be implemented e�ciently� Such
languages are only practical if call�by�need semantics coincides with call�by�name� If
so� call�by�name applications can be implemented by call�by�need as in graph reduction
��
�� ���� for instance� Recall the di�erence between the two semantics for an application
��x �� e�e�� In both regimes the function body e is evaluated� Under call�by�name seman�
tics� each time need arises for the value of x� argument e� is evaluated� Under call�by�need
semantics� the rst time need arises for the value of x� argument e� is evaluated� but its
value is retained� and re�used if subsequently the value of x is needed�

We give an informal proof that if evaluation is deterministic and operational equivalence
satises operational adequacy and Strachey�s property� then call�by�name semantics co�
incides with call�by�need� Consider an application ��x �� e�e�� If the value of e does not
depend on x then clearly both regimes are equivalent since the argument e� is never evalu�
ated� Otherwise suppose that the value of x is demanded one or more times� By Strachey�s
property� the argument e� either equals � or some canonical form� so by operational ade�
quacy� e� either diverges� or converges to a unique canonical form c� If e� diverges then so
does the evaluation of e under either regime� Otherwise e� deterministically converges to
c so it makes no di�erence whether the second and subsequent uses of the argument use
a retained copy of c or evaluate e� again�

If evaluation of argument e� causes side�e�ects� then call�by�need may not be equivalent to
call�by�name� and hence an important implementation technique is invalid� Witness the
examples ��x �� x x�read or ��x ��x x��write��A��� ����� where we dene �e� e�� to
mean ���y �� e��#e�� with y �� fv�e��� Under call�by�name� execution of the two examples
involves two inputs and two outputs respectively� under call�by�need� execution of the
programs involves just one input and one output respectively�

In summary� side�e�ecting I�O and lazy languages do not combine well because of the dif�
culty of predicting the order of side�e�ects� of constructing proofs of program properties�
and because call�by�need semantics ceases to be a correct implementation technique� This
explains why in practice side�e�ecting I�O is only used with call�by�value languages such
as LISP or ML�

The absence of Strachey�s property by no means rules out proofs of program properties�
but we leave further investigation of H with side�e�ecting I�O as future work� We conjec�
ture that the beta� eta� strictness� precongruence and canonical freeness laws of Table 	��
remain valid� The only work to present a theory of I�O in a call�by�value language is the
algebra for FL programs developed by Williams and Wimmers ��� ����� FL uses what is es�
sentially side�e�ecting I�O� One might dispense with call�by�name semantics and develop
an equational theory for call�by�need semantics� and hence accommodate side�e�ecting
I�O� Such a theory would have to make a distinction between the rst and subsequent us�
ages of bound variables� which on the face of it is much more complicated than the theory

���� LABELLED TRANSITION SYSTEMS AND BISIMILARITY �
�

of call�by�name and call�by�value applications developed in Chapter 	� Previous work on
the semantics of call�by�need in deterministic functional languages has focused on prov�
ing that an operational semantics using call�by�need correctly implements a denotational
semantics specifying call�by�name ��
� �����

In his unpublished dissertation� Redelmeier ����� sketched an I�O scheme that used side�
e�ecting operators together with data dependencies to ensure a predictable order of side�
e�ects� His idea was that each side�e�ecting operator took an additional �state� parameter�
and returned a new state� He argued that if each state value has a unique successor� then
there is a predictable thread of side�e�ects� His scheme was unsatisfactory because he
did not suggest how to guarantee single�threading� Hudak and Sundaresh �	
� describe
a variant� known as systems I�O� Peyton Jones and Wadler ���
� have implemented
the I�O mechanism in the Glasgow Haskell compiler using side�e�ecting operators with
an e�cient translation to C� Their work is a clear advance on Redelmeier�s� They have
ingeniously used an abstract data type based on a monad ����� ��
� to guarantee single�
threading� Their scheme appears to be a promising technique for e�cient implementation
of I�O in lazy languages�

��� Labelled transition systems and bisimilarity

We adopt labelled transition systems and bisimilarity from the theory of CCS ���� ��� to
give semantics for Landin�stream� continuation�passing and synchronised stream I�O�

In each mechanism for functional I�O there is a single object language type whose programs
can be executed to interact with the teletype� We call this type the execution type�
A program is executable i� it is of this type� For instance� executable programs using
Landin�stream I�O are of the stream transformer type �Char� �� �Char�� We formalise
the execution of programs as a labelled transition system�

De�nition �� The set of actions� ranged over by �� is produced by the following
grammar�

� ��� n 	input character n � N

j n 	output character n � N

A labelled transition system is a family of binary relations indexed by actions� f
�

�g�

such that if p
�

� q then p and q are HX programs of an execution type�

We useHX rather thanH for reasons explained in x���� The intuitive meaning of transition
p

n

� q is that program p can input the character n from the keyboard to become program

q� Similarly� the intuitive meaning of transition p
n

� q is that program p can output the

character n to the printer to become program q� If p
�

� q for some � and q we say that

p has a transition�

We dene bisimilarity and prove the standard results�

De�nition �� De�ne function h�i to be the function over binary relations on HX pro�
grams such that phSiq i�

��� whenever p
�

� p� there is q� with q

�

� q� and p�Sq��

�
� CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

��� whenever q
�

� q� there is p� with p

�

� p� and p�Sq��

A bisimulation is a binary relation on agents� S� such that S � hSi� Bisimilarity� ��
is the union of all bisimulations�

Proposition ��

��� Function h�i is monotone�

��� The identity relation is a bisimulation�

��� If each Si is a bisimulation� then so is S�S��

��� If S is a bisimulation� then so is S���

��� Bisimilarity is the greatest �xpoint of h�i and is the greatest bisimulation�

�	� p � q i� there is a bisimulation S such that pSq�

��� Bisimilarity is an equivalence relation�

Proof Parts ������� follow easily from the denition� The remaining parts then follow
from Proposition ����

��� Stream transformers

Many mechanisms for functional I�O or for concurrency ���� have been based on stream
transformers� A stream is a list type whose cons operation is lazy� such as ��� in H�
Stream transformers in H have the general type�

type ST inp out � �inp� �� �out�

The idea is simple� a stream transformer maps a stream of values of type inp into a
stream of values of type out� This mapping represents an interactive computing device
that consumes values of type inp and produces values of type out� Intuition� if the device
has been o�ered the sequence of values in�� � � � � inn for consumption� applying the stream
transformer to the stream �in� � � � � � inn � �� yields a stream containing the sequence
of values the device can produce� The list cons operation� �� has to have lazy semantics
so that the partial list �in� � � � � � inn � �� does not simply equal �� which explains why
stream�based I�O is not typically used with languages like ML or Scheme where cons is
eager� Implementations of stream�based I�O ��� 	�� typically represent the undened value
at the end of a partial list as a memory cell that can be instantiated to hold the next input
character and to point to a fresh undened value� Such a technique is intuitively correct�
but we leave open the question of how to verify formally that it correctly implements
the semantics to be given here� None of the work on verication of functional language
implementation has considered I�O ���� �
� �����

Stream transformers for stream�based I�O have typically been written using explicit con�
struction of the output list and explicit examination of the input list ���� 	��� Such a
programming style can be hard to read� We can avoid explicit mention of input and
output lists by using the following combinators to construct stream transformers�

getST �� �inp �� ST inp out� �� ST inp out

���� STREAM TRANSFORMERS �
�

putST �� out �� ST inp out �� ST inp out

nilST �� ST inp out

getST k xs � case xs of �x�xs�� �� k x xs�

putST x f xs � x � f xs

nilST xs � ��

Thompson ����� and Cupitt ���� suggest other combinators for I�O which are related to
the monadic style discussed in Chapter ��

A programmer would use the combinators above to construct stream transformers� to
give semantics to stream�based I�O we use combinators giveST� nextST and skipST� The
intention is that giveST feeds an input value to a stream transformer� nextST tests whether
a stream transformer can produce an output value without any further input� and skipST

consumes an output value from a stream transformer�

data Maybe a � Nothing � Just a

giveST �� inp �� ST inp out �� ST inp out

nextST �� �ST inp out� �� Maybe out

skipST �� ST inp out �� ST inp out

giveST c f xs � f �c�xs�

nextST f � case f � of

�� �� Nothing

�x�xs� �� Just x

skipST f xs � tail�f xs�

The Haskell committee discovered the technique of using a mock argument � to test
whether a stream transformer is ready to produce output� Of course� if the next output
from a stream transformer f depends on the next value in its input stream� nextST f will
loop�

The following proposition relates the six combinators introduced in this section�

Proposition �� For all programs u��inp� v��out� k��inp �� ST inp out

and f��ST inp out�

��� giveST u �getST k� � k u

��� nextST�putST v f� � Just v

��� nextST�nilST� � Nothing

��� skipST�putST v f� � f

Proof Straightforward calculations�

�
	 CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

��� Landin
stream I�O

Landin ��	� suggested that streams �would be used to model input�output if ALGOL 	

included such�� The simplest kind of stream transformer used for I�O is one that maps a
stream of input characters to a stream of output characters� We call such a mechanism
Landin
stream I�O� Executable programs are stream transformers of type LS�

type LS � ST Char Char

A second kind of stream�based I�O� synchronised�stream I�O� is discussed in x���� We use
the combinators of x��� to specify an intended meaning for Landin�streams�

� getST k means
�input a character n from the keyboard and then execute k n��

� putST n f means
�output character n to the printer and then execute f��

� nilST means
�terminate immediately��

We wish to give a semantics for each I�O mechanism in terms of the operational semantics
of H� Given a function f��LS we are to compute whether f can output a character with
no further input� or whether f needs an input character before producing more output� or
whether f can terminate� More precisely� we need a function ready of the following type

data RWD out � R � W out � D

ready �� ST inp out �� RWD out

and satisfying the equations�

ready�putST n f� � W n
ready�getST k� � R

ready�nilST� � D

We show that in H there is no such program� Consider programs e� and e� of type LS�

e� � getST ��x �� putST ��� nilST�

e� � putST ��� nilST

It is not hard to see that for any xs the following equations hold�

e� xs �

�
����� if �x� xs�� xs � x � xs�

� otherwise

e� xs � �����

and hence that e� v e� and e� �v e� by Strachey�s property� To see why there can be
no function ready that obeys the equations shown above� we assume there is and derive
a contradiction� We have ready�e�� � R and ready�e�� � �W ����� and R �v W ���� But
e� v e� so by precongruence for v �Proposition 	���� we have ready�e�� v ready�e���
Contradiction��

�John Hughes showed me this argument in �����

���� LANDIN�STREAM I�O �
�

Intuitively� the problem is that in H there is no way to tell whether an expression depends
on the value of one of its subexpressions� such as an element of the input stream� We can
remedy this by adding an exception mechanism to H as we did in the previous chapter�
We nd that the above argument does not hold in HX � In HX we have that e� and e�

are incomparable� because e��bang� � bang� e��bang� � ������ and bang and ����� are
incomparable�

Roughly speaking� to tell whether an expression depends on the value of one of its subex�
pressions� replace the subexpression with bang and use the handler operator �� to see if
the whole expression bangs� We can dene ready in HX as follows

ready f �

�case �f bang� of

�� �� D

�x��� �� W x�

�� R

and from the theory ofHX from the previous chapter it follows that the conditions above on
ready are satised� Intuitively speaking� the exception bang inHX provides a computable
test of whether a function needs the value of its argument�

The semantics of Landin�streams can be given for LS�programs in HX as the labelled
transition system dened by the following two rules�

ready f � R

f
n

� giveST n f

ready f � W v v � n

f
n

� skipST f

The following lemma shows that this formal semantics correctly re�ects the informal in�
tended meanings given for Landin�stream programs�apart from termination� which we
have not formalised�

Lemma ��

��� ready�getST k� � R

��� ready�putST v k� � W v

��� getST k
n

��k n

��� putST v p
n

��p if v � n

Proof Parts ��� and ��� follow from the denitions of ready� getST and putST� For parts
��� and ���� we can calculate the following transitions�

getST k
n

� giveST n �getST k�

putST v p
n

� skipST �putST v p�

These� together with Proposition ��� establish the required results�

�
� CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

��� Synchronised
stream I�O

In the synchronised
stream mechanism for functional I�O� the stream transformer pro�
duces a stream of requests and consumes a stream of acknowledgements� The requests and
acknowledgements are in one�to�one correspondence� the computing device specied by
a stream transformer alternates between producing an output request and consuming an
input acknowledgement� It is the programmer�s burden to ensure that the value of each re�
quest does not depend on the corresponding acknowledgement� Synchronised streams were
rst reported as the underlying implementation technique for Karlsson�s Nebula operating
system ����� They were independently discovered by Stoye ���	�� whose terminology we
adopt� and O�Donnell ��
��� They are the underlying mechanism of the Kent Applicative
Operating System �KAOS� ���� ��� ���� ���� and of I�O in Haskell �����

Here is the type SS of executable programs in the setting of teletype I�O� together with
intended meanings of some example programs�

type SS � ST Ack Req

data Req � Get � Put Char

data Ack � Got Char � Did

� putST Get �getST k� means
�input a character n from the keyboard and then execute k �Got n���

� putST �Put n� �getST k� means
�output character n to the printer and then execute k Did��

� nilST means �terminate immediately��

A wide range of imperative activity can be expressed using this mechanism� as illustrated
by the Haskell I�O mechanism� We dene an auxiliary function for use in examining the
acknowledgement obtained from a Get request�

outGot �� Ack �� Char

outGot �Got x� � x

The semantics of synchronised�streams can be given for SS�programs in H or in HX as the
labelled transition system dened by the following two rules�

nextST f � Just r r � Get

f
n

� giveST�Got n��skipST f�

nextST f � Just r r � Put v v � n

f
n

� giveST Did �skipST f�

Unlike Landin�streams� there is no need for the problematic ready operation because of the
synchronisation between input and output� Just as for Landin�streams� we state a lemma
to show that this formal semantics correctly re�ects the informal intended meanings given
for synchronised�stream programs�apart from termination�

Lemma �� Suppose k��Char �� SS and h��SS are programs� de�ne programs f and g to
be�

f
def
� putST Get �getST ��ack �� k �outGot ack���

g
def
� putST �Put v� �getST ��ack �� h��

���� CONTINUATION�PASSING I�O �
�

Then we have�

��� nextST f � Just Get

��� nextST g � Just�Put v�

��� f
n

��k n

��� g
n

��h if v � n�

Proof Parts ��� and ��� follow from the denitions of nextST� putST and getST� For parts
��� and ���� we can calculate the following transitions and equations using Proposition ����

f
n

� giveST�Got n��skipST f�
� giveST�Got n��getST ��ack �� k �outGot ack���
� k �outGot �Got n��
� k n

g
n

� giveST Did �skipST g�
� giveST Did �getST ��ack �� h��
� h

��� Continuation
passing I�O

In continuation
passing I�O� the executable type is an algebraic type with a constructor
corresponding to each kind of expressible imperative activity� In the case of teletype I�O
we have�

data CPS � INPUT �Char �� CPS�

� OUTPUT Char CPS

� DONE

Holmstr�om�s PFL ���� was the rst functional language to take the continuation�passing
mechanism as primitive� In earlier work� Karlsson programmed continuation�passing op�
erations on top of a synchronised�stream mechanism ����� A similar datatype was used by
Plotkin in the Pisa notes ����� as semantics for side�e�ecting I�O� as discussed in x���� The
mechanism is called continuation�passing because of the similarity between the argument
to INPUT and continuations as used in denotational semantics ������

The intended meaning of CPS�programs is easily given�

� INPUT k means
�input a character n from the keyboard and then execute �kn���

� OUTPUTn p means
�output character n to the printer and then execute p��

� DONE means
�terminate immediately��

��
 CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

Landin�stream I�O

ready f � R

f
n
� giveST n f

ready f � W v v � n

f
n
� skipST f

Synchronised�stream I�O

nextST f � Just r r � Get

f
n
� giveST�Got n��skipST f�

nextST f � Just r r � Put v v � n

f
n
� giveST Did �skipST f�

Continuation�passing I�O

p � INPUT k

p
n
� k n

p � OUTPUT v q v � n

p
n
� q

Table ���� Three mechanisms for functional I�O

These intended meanings are re�ected in the following two rules� which dene a labelled
transition system for CPS�programs in either H or HX �

p � INPUTk

p
n

� kn

p � OUTPUTv q v � n

p
n

� q

��� Maps between three of the mechanisms

We gave detailed semantics for each of the mechanisms apart from side�e�ecting I�O� There
are two main results in this section� First� we show that if two executable programs are
operationally equivalent� then they are bisimilar� The force of this result is that the theory
of operational equivalence from Chapter 	 can be used to prove properties of the execution
behaviour of executable programs� Second� we show that each of the three mechanisms
has equivalent expressive power in the following sense� If p is an executable program with
respect to one mechanism� then for each other mechanism� there is a function f such that
f�p� is an executable program with respect to the other mechanism� and p and f�p� are
bisimilar�

We work in HX so that all three mechanisms are supported in the same language� as
discussed in x��� the semantics of Landin�streams based on the ready function cannot be
programming in H�

De�nition �� The teletype transition system is a family of binary relations on HX
programs indexed by actions� f

�

�g� and is de�ned by the rules in Table ����

Lemma �	 If p��	 and p
�

� q then q��	 � Type 	 is one of LS� SS or CPS� depending

on whether transition p
�

� q was derived from one of the Landin�stream� synchronised�

stream or continuation�passing rules� respectively� in Table ����

Proof By inspection�

Given its simple sequential nature� one would expect the semantics of teletype I�O to be

���� MAPS BETWEEN THREE OF THE MECHANISMS ���

determinate� The following result makes this precise�

Proposition �� For any program p� p
�

� p� and p

�

� p�� implies p� � p���

Proof By inspection of each of the inference rules�

Given this determinacy� bisimilarity can alternatively be characterised in terms of traces�
If s � ��� � � � � �n is a nite sequence of actions� say that s is a trace of program p i� there
are programs pi with p

��
� p�
��
� � � �

�n
� pn� Two programs are trace equivalent i�
they have the same set of traces�

In a nondeterministic calculus like CCS� trace equivalence does not in general imply bisim�
ilarity� Given the determinacy result above� however� it is not hard to show that the two
equivalences coincide� We omit the proof� but see Milner�s book for a more general result
���� Chapter ���

Operational equivalence �applicative bisimilarity� implies bisimilarity�

Proposition ��� If p and q are programs of the same type� then p � q implies p � q�

Proof Recall that we take � on terms of HX to be applicative bisimilarity as dened in
Chapter 	� It su�ces to show that ground applicative bisimilarity on HX is a bisimulation�
Suppose that p � q for 	 �programs p and q� We proceed by a case analysis of 	 � If 	
is not one of the three types CPS� SS or LS then p and q have no transitions� so p � q

trivially� Otherwise there are three cases to consider� In each case we establish condition
��� of the denition of bisimulation� that whenever p

�

� p� there is q� such that q

�

� q�

and p� � q�� Condition ��� follows by a symmetric argument�

Case 	 � CPS�
If p

n

� p� then p � INPUT k and p� � k n� Then q� � INPUT k� with k � k� from

applicative bisimilarity� So q
n

� k� n � p��

If p
n

� p� then p � OUTPUT v p� and v � n� Then q� � OUTPUT v� q�� with v � v� and

p� � q�� So v� � n and we have q
n

� q� � p��

Case 	 � SS�
If p

n

� p� then nextST p � Just r� r � Get and p� � giveST�Got n��skipST p��

Since p � q we have nextST q � Just r� with r � r�� so r� � Get� We have q
n

�

giveST�Got n��skipST q�� and the latter equals p� since operational equivalence is a
congruence�

If p
n

� p� then nextST p� Just r� r� Put v� v�n and p� � giveST Did �skipST p��

Again since p � q we have nextST q�Just r�� with r � r�� so r� �Put v� with v � v�

so v� � n� Therefore q
n

� giveST Did �skipST q�� which equals p��

The case for 	 � LS follows by a similar argument and is omitted�

On the other hand� bisimilarity does not imply operational equivalence of H programs�

Proposition ��� There are program pairs� p and q� in each of the types CPS� LS and
SS such that p � q but not p � q�

Proof Witness program pair OUTPUT � Done and � in type CPS� and pair putST � nilST

��� CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

and � in each of the types SS and LS�

Intuitively the proof depends on operational equivalence distinguishing more �junk�
programs than bisimilarity� Given a richer I�O model there would be more signi�
cant distinctions� Suppose we extended the CPS algebraic type with a new constructor
Par��CPS �� CPS �� CPS� with intended meaning that Parp q is to be the parallel execution
of programs p and q� as in PFL� Then if p �� q� programs Parp q and Parq p would be op�
erationally inequivalent �because Par is the constructor of an algebraic type� but bisimilar
�because as in CCS both lead to the parallel execution of p and q��

Before proving the second main result of this section� we import the proof technique of
bisimulation�up�to�� from CCS �����

De�nition ��� A binary relation on programs S is a bisimulation
up
to
� i� pSq
implies

��� whenever p
�

� p� there is q� with q

�

� q� and p��S�q��

��� whenever q
�

� q� there is p� with p

�

� p� and p��S�q��

Proposition ��� If S is a bisimulation�up�to�� then S � ��

Proof We follow the proof on page �� of Milner�s book �����

We prove that �S� is a bisimulation� from which it follows by re�exivity of � that S � ��
��S� is the relational composition of �� S and ��� Suppose that p�S�q� that is� for
some p� and q� we have p � p�Sq� � q� Suppose that p

�

� p�� we are to exhibit q� such

that q
�

� q� and p��S�q�� We make a sequence of deductions� there is p�� such that

p�
�

� p�� with p� � p��� there is q

�
� such that q�

�

� q�� and p���S�q

�
�� and there is q

� such
that q

�

� q� and q�� � q�� Altogether we have p� � p���S�q

�
� � q�� hence p��S�q� by

transitivity of �� This shows that �S� is a bisimulation�

Suppose there are programs p and q such that we wish to prove p � q� Proposition ����	�
says that one proof would be to nd a bisimulation containing the pair �p� q�� On the
other hand� Proposition ���� says that another proof is to nd a bisimulation�up�to�� that
contains the pair� It is often simpler to do the latter� The same idea is used extensively
in the theory of CCS ���� and ��calculus ��	��

We show in Table ��� functions ss�cps and cps�ss to map between the types SS and
CPS� and functions ls�cps and cps�ls to map between the types LS and CPS� Functions
ss�cps and cps�ss are similar to translations discovered by the Haskell committee�

The following is the main theorem of the chapter� that the three I�O mechanisms of
Table ��� are isomorphic in a certain sense�

Theorem ���

��� For any SS�program f� f � ss�cps f�

��� For any CPS�program p� p � cps�ss p�

��� For any LS�program f� f � ls�cps f�

��� For any CPS�program p� p � cps�ls p�

���� MAPS BETWEEN THREE OF THE MECHANISMS ���

�� ��

�� Translations between SS and CPS	

�� ��

sscps �� SS �� CPS

cpsss �� CPS �� SS

sscps f �

case nextST f of

Nothing �� DONE

Just r �� case r of

Get �� INPUT ��v �� sscps �giveST �Got v� �skipST f���

Put v �� OUTPUT v �sscps �giveST Did �skipST f���

cpsss p �

case p of

INPUT k �� putST Get �getST ��ack �� cpsss �k �outGot ack����

OUTPUT v q �� putST �Put v� �getST ��ack �� cpsss q��

DONE �� nilST

outGot �� Ack �� Char

outGot �Got v� � v

�� ��

�� Translations between LS and CPS	

�� ��

lscps �� LS �� CPS

cpsls �� CPS �� LS

lscps f �

case ready f of

R �� INPUT ��v �� lscps �giveST v f��

W v �� OUTPUT v �lscps �skipST f��

D �� DONE

cpsls p �

case p of

INPUT k �� getST ��v �� cpsls �k v��

OUTPUT v q �� putST v �cpsls q�

DONE �� nilST

Table ���� Translations in HX between three styles of I�O

��� CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

Proof ��� We prove that S� given by

S
def
� f�f� ss�cps f� j f is an SS�programg

is a bisimulation� which is to say that S � hSi� Let f be any SS�program and we have
that ss�cps f��CPS� Hence the synchronised�stream rules apply to f and the continuation�
passing rules to ss�cps f� We are to show that �f� ss�cps f� � hSi� We proceed by
analysis of the evaluation behaviour of nextST f� There are ve cases to consider�

�i� nextST f� or nextST f � bang

�ii� nextST f � Nothing

�iii� nextST f � Just r and either r� or r � bang

�iv� nextST f � Just r and r � Get

�v� nextST f � Just r and r � Put v

Here are the possible transitions from programs f and ss�cps f�

�i�iii� There are no transitions from either ss�cps f or f�

�iv� The only transitions of f are of the form
f

n

� giveST �Got n� �skipST f� for any n�

We have ss�cps f � INPUT��c �� ss�cps�giveST �Got c� �skipST f����
So the only transitions of ss�cps f are of the form
ss�cps f

n

� ss�cps�giveST �Got n� �skipST f�� for any n�

�v� There is no transition from f unless v � n� when f
n

� giveST Did �skipST f��

We have ss�cps f � OUTPUT v �ss�cps�giveST Did �skipST f����
So there is no transition from ss�cps f unless v � n�

when ss�cps f
n

� ss�cps�giveST Did �skipST f���

In each case the conditions for �f� ss�cps f� � hSi are satised�

��� It su�ces to show that S� given by

S
def
� f�p� cps�ss p� j p is a CPS�programg

is a bisimulation�up�to��� Suppose that pair �p� cps�ss p� is in S� We have p��CPS and
cps�ss p��SS� so the continuation�passing rules apply to p and the synchronised�stream
rules to cps�ss p� We are to show that whenever p

�

� p� then cps�ss p

�

� q� and

p��S�q�� and vice versa� We proceed by analysis of the evaluation behaviour of p� There
are ve cases to consider�

�i� p�

�ii� p � bang

�iii� p � DONE

�iv� p � INPUT k

�v� p � OUTPUT v q

Here are the possible transitions from programs p and �cps�ss p��

�i�iii� Neither program has any transitions�

���� MAPS BETWEEN THREE OF THE MECHANISMS ���

�iv� The only transitions of p are of the form p
n

� k n for any n�

We have cps�ss p�� putST Get �getST��ack �� cps�ss�k �outGot ack����� So
using Lemma ��	������ the only transitions of cps�ss p are of the form
cps�ss p

n

��cps�ss�k n� for any n�

�v� The only transitions of p are p
n

� q when v � n�

We have cps�ss p�� putST �Put v� �getST��ack �� cps�ss q���

So using Lemma ��	����� the only transition from cps�ss p is cps�ss p
n

��cps�ss q�

In each case the conditions for bisimulation�up�to�� are satised� since � � ��

��� We prove that S� given by

S
def
� f�f� ls�cps f� j f is an LS�programg

is a bisimulation� that is� S � hSi� Suppose that pair �f� ls�cps f� in in S� We have f��LS
and ls�cps f��CPS� so the Landin�stream rules apply to f and the continuation�passing
rules to ls�cps f� We are to show that �f� ls�cps f� � hSi� We proceed by analysis of
the evaluation behaviour of ready f� There are four cases to consider�

�i� ready f�

�ii� ready f � D

�iii� ready f � R

�iv� ready f � W v

A fth possibility� that ready f � bang� is impossible given the form of ready� Here are
the possible transitions from programs f and ls�cps f�

�i�ii� No transitions are possible from either f or ls�cps f�

�iii� The only transitions of f are of the form f
n

� giveST n f for any n�

We have ls�cps f � INPUT��c �� ls�cps�giveST c f���
So the only transitions of ls�cps f are of the form
ls�cps f

n

� ls�cps�giveST n f� for any n�

�iv� There is no transition from f unless v � n� when f
n

� skipST f�

We have ls�cps f � OUTPUT v �ls�cps�skipST f���
So there is no transition from ls�cps f unless v � n�

when ls�cps f
n

� ls�cps�skipST f��

In each case the conditions for �f� ls�cps f� � hSi are satised�

��� It su�ces to show that S� given by

S
def
� f�p� cps�ls p� j p is a CPS�programg

is a bisimulation�up�to��� Suppose that pair �p� cps�ls p� is in S� We have p��CPS and
cps�ls p��LS� so the continuation�passing rules apply to p and the Landin�stream rules to
cps�ls p� We are to show that whenever p

�

� p� then cps�ls p

�

� q� and p��S�q��

and vice versa� We proceed by analysis of the evaluation behaviour of p� There are ve
cases to consider�

�i� p�

��	 CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

�ii� p � bang

�iii� p � DONE

�iv� p � INPUT k

�v� p � WRITE v q

Here are the possible transitions from programs p and cps�ls p�

�i�iii� Neither of the programs has any transitions�

�iv� The only transitions of p are of the form p
n

� k n for any n�

We have cps�ls p�� getST��c �� cps�ls�k c���
So using Lemma �������� the only transitions of cps�ls p are of the form
cps�ls p

n

��cps�ls�k n� for any n�

�v� The only transition of p is If p
n

� q if v � n�

We have cps�ls p�� putST v �cps�ls q��
So using Lemma �������� the only transition of cps�ls p has the form

cps�ls p
n

��cps�ls q if v � n�

In each case the conditions for bisimulation�up�to�� are satised�

��	 Discussion

The main contribution of this chapter is to the semantics of functional I�O� We sketched
a semantics of side�e�ecting I�O but gave three objections to its use with lazy languages�
We considered three mechanisms suitable for lazy languages� and gave an operational
semantics for each� We showed how the notion of bisimilarity from CCS is a suitable
equivalence on programs engaged in I�O� We gave translations between the three styles�
some of which are well known� but gave the rst formal proofs that the translations are
correct�

Our denition of bisimilarity is very simple� but for two reasons one might wish to develop
it further� First� although each of the three I�O mechanisms has a notion of program
termination we have not modelled termination in the labelled transition system� Hence a
program that immediately terminates is bisimilar to one that diverges� Second� we have
assumed that teletype input is observable� Consider two Landin�stream programs f and
g�

f xs � �
g xs � case xs of

�� �� �
���xs� �� g xs

Given an input stream� g unravels it forever whereas f loops immediately� We have f �H g

but f ��HX g and f �� g �because g forever inputs characters whereas f diverges�� One
might argue that they have indistinguishable behaviour because neither ever produces
output� On the other hand� it seems reasonable to distinguish them on the ground that
teletype input is observable to the operating system� if not always to the end user� These

���� DISCUSSION ���

points bring out the simplicity of our model� but then it is meant to be simple so as to
emphasise the di�erences between the I�O mechanisms�

We conclude the chapter with some remarks about the practical use of the three mech�
anisms for I�O in lazy languages� As they stand� the three mechanisms are rather too
low�level for large�scale programming� As we discussed in Chapter �� various sets of com�
binators have been put forward as high�level programming models ���� ���� ����� We will
investigate a set of combinators in the monadic style in Chapter ��

Landin�stream I�O is good for teletype I�O but does not scale to a practical I�O scheme
�such as Haskell I�O�� Several papers have shown how to construct elegant parsers that
act on a lazy input stream of characters ��	� 	�� ����� It is not clear that such parsing
techniques can be based so simply on synchronised�stream or continuation�passing I�O�
Landin�stream programs can be written in either Haskell ���� or Hope C ��
��� This is
because the I�O mechanisms of both provide operations to obtain a lazy input stream�
and hence Landin�stream I�O can be simulated�

A gulf separates the source�level semantics of the stream�based I�O mechanisms given
here from their imperative implementation ��� 	��� The gulf is particularly wide between
the semantics and implementation of lazy input streams� The only other semantics of
stream�based I�O is Thompson�s trace�based work� which is domain�theoretic and also
distant from practical implementations� In contrast� the operational semantics we gave
for continuation�passing I�O corresponds fairly closely to an interpretive implementation
��
��� It is an open question how to relate abstract specications of I�O to e�cient
implementations using side�e�ects ���
��

The principal merit of synchronised�stream I�O over continuation�passing I�O is that the
former can e�ciently simulate the latter via a function such as cps�ss� Simulation of
the former by the latter using a function such as ss�cps is inevitably ine�cient �	
��
Synchronised�stream programs su�er from problems relating to synchronisation between
input and output streams that do not arise with continuation�passing ��
��� High�level
combinators such as for monadic I�O can be implemented on top of either mechanism
���� ���� If all user programs are to use such combinators there seems to be no reason to
choose synchronised�stream I�O as the underlying mechanism rather than continuation�
passing I�O�

��� CHAPTER �� FOUR MECHANISMS FOR TELETYPE I�O

Chapter �

Monadic I�O

The three I�O mechanisms of Chapter � suitable for lazy languages express I�O at a low
level� This chapter explains how to program I�O using higher�level combinators in a style
which we call here monadic I�O� The combinators are higher�level in two senses� the
intended meaning of an executable program is a computation that performs I�O and then
returns a value� rather then just performing I�O as in Chapter �� the combinators of
monadic I�O can be implemented using the lower�level operations given in Chapter ��

This chapter discusses monadic I�O in the context of a specic application of functional
programming� Over the last decade the Medical Research Council �MRC� at the Western
General Hospital in Edinburgh has built a prototype machine to assist the analysis of
cervical smears �	��� The prototype was implemented using dedicated hardware� C and
assembly�code� A team has started work on re�implementing the machine using a commer�
cial workstation coupled with software partly written in a lazy functional language ������
The aim is to compare the gains of using a functional language �such as reliability� ease of
programming and the potential for proofs of program properties� with the losses �such as
computational speed�� The system captures digitised images from a microscope that sights
a movable stage holding a microscope slide� The intention is that the system will be able
to locate automatically the objects on the slide that are most likely to be pre�cancerous
cells� and then display these to a cytologist for diagnosis� If successful� the computerised
system will allow a cytologist to process slides faster than by simply using a microscope�
The MRC team have been prototyping the software for their system using a mixture of
C and a lazy functional language� the prototype uses Gofer and the nal implementation
will use Haskell� Basic image processing will be done by a server running mature C code�
while the top�level main program will be new software written in the functional language�

This chapter addresses two questions� How can the I�O requirements of the MRC computer
be programmed in a lazy functional language) How can properties of programs engaged
in I�O be proved) In the context of a simplied model of the MRC apparatus� we suggest
how the MRC computer could be programmed in a monadic style� We consider a simple
I�O transformation suggested by Ian Poole of the MRC and prove it correct� We show
how the monadic style applies to teletype I�O� because the simplied I�O model for the
MRC computer includes teletype I�O�

x��� is a tutorial on the monadic style of functional I�O� It denes a simplied model of

���

��
 CHAPTER �� MONADIC I�O

MRC I�O� and poses a verication problem� x��� and x��� dene monadic types in H to
model teletype I�O and the MRC I�O model respectively� the latter type is dened in
terms of the former� Finally� in x��� we verify the motivating example�

All the programs given in this chapter are written in Haskell notation� They are to be
understood as H �not HX � programs as discussed in x	��� All the programs have been
type�checked and executed in Mark Jones� Gofer system� Program equivalence� written
�� is operational equivalence as dened in Chapter 	�

	�� Programming I�O in a monadic style

In the monadic style of functional I�O there is a unary type constructor IO such that a
program �closed term� of type IO a is intended to mean

�a computation� which may perform I�O� and may return an answer of type
a��

Let a computation be a program of type IO a� for some a� To program teletype I�O
�as discussed in Chapter �� in a monadic style� one might use the following operations for
constructing computations�

� input �� IO Char

� output �� Char �� IO ��

� return �� a �� IO a

� ����� �� IO a �� �a �� IO b� �� IO b

Here is the intended meaning of computations constructed from these operations�

� input means �input a character v from the keyboard and return v��

� output v means �output character v to the printer and return ����

� return v means �immediately return v��

� p ��� f means �execute computation p� call the answer x and then execute compu�
tation f x��

An example� reading a line from the keyboard

Let us consider the problem of writing a program to read from the keyboard a string �that
is� a list of characters� terminated by the newline character� ��n�� We wish to derive a
function� gettingLine� with the following properties�

� gettingLine �� String �� IO String

� gettingLine vs means �having already read the string vs� continue reading char�
acters until a newline appears��

We can dene gettingLine in terms of the basic computation constructors�

� gettingLine vs �

� input ��� �v ��

���� PROGRAMMING I�O IN A MONADIC STYLE ���

� if v �� ��n� then return vs else gettingLine �v�vs�

We can read o� an interpretation of this denition from the intended meaning of the basic
constructors� computation gettingLine vs means �input a character� call it v� then if v
is a newline� return the accumulated string vs� or else add v to the accumulated string
and repeat�� Here then is a solution to the problem�

� getLine �� IO String

� getLine � gettingLine �� ��� �return � reverse�

Function reverse���a� �� �a� is the list reversal function from the Haskell prelude� The
string returned by gettingLine �� needs to be reversed because the characters are accu�
mulated in reverse order to avoid repeated list concatenations�

Derived operations

Sometimes two computations are to be composed in sequence� but the answer from the
rst is to be discarded� This pattern can be captured by the combinator ���

� ���� �� IO a �� IO b �� IO b

� p �� q � p ��� const

where const is the Haskell version of the K combinator� shown in Table 	�� Commonly
the rst argument to �� is a task� a program of type IO ��� A task is a computation that
returns no informative answer upon termination� The simplest task is skip� given by�

� skip � return ��

Sequential composition of a list of tasks is achieved by the sequence combinator�

� sequence �� �IO ��� �� IO ��

� sequence � foldr ���� skip

The Haskell list combinator foldr is also shown in Table 	��� It is not hard to verify the
following equations�

sequence �� � skip

sequence �p � ps� � p �� �sequence ps�

Here is a combinator that lifts a curried function f of two arguments to one that given
two computations runs them in sequence to obtain two answers x and y� and then returns
the answer f x y�

� lift� �� �a �� b �� c� �� �IO a �� IO b �� IO c�

� lift� f p q � p ��� �x �� q ��� �y �� return �f x y�

We can use lift� to write a generalisation of sequence that runs a list of computations
in sequence and then returns the list of their answers as its own answer�

� accumulate �� �IO a� �� IO �a�

� accumulate � foldr �lift� ���� �return ���

��� CHAPTER �� MONADIC I�O

More examples� printing a line and prompting

To illustrate how sequence can be used� here is a program to output a string of characters
followed by newline to the printer�

� putLine �� String �� IO ��

� putLine vs � sequence �output v � v �� vs� �� output ��n�

�This is an example of a Haskell list comprehension� which can be translated into H as
discussed in x	���� In general we call functions such as putLine that have some type
a� �� � � � �� am �� IO b for m � �� parametric computations�

Finally� here is a parametric computation to print a prompt and then read a line of input�

� askFor �� String �� IO String

� askFor xs � putLine xs �� getLine

Adding exceptions to the programming model

Experience of programming I�O in imperative languages suggests that an exception han�
dling mechanism is a good way to represent and process unexpected events such as errors�
For instance� the implementors of DEC SRC�s Taos operating system argue that repre�
senting operating system errors by exceptions is better than returning an error code� as
in AT*T�s Unix for instance� because it is impossible for an exception to be ignored �����

Exceptions can be incorporated into the monadic programming model by choosing a type
Exn of exceptions� and extending the intended meaning of a program of type IO a to be

�a computation� which may perform I�O actions� and may return an answer
of type a� or may fail with an exception value of type Exn��

For the purpose of this chapter we take Exn to be String� but in general it can be any
type� There are two new primitive ways of constructing computations�

� raise �� Exn �� IO a

� try �� IO a �� �Exn �� IO a� �� IO a

� raise exn means �immediately raise the exception exn��

� try p f means �execute computation p� if an answer v is returned� then return v

and ignore f� otherwise� if p raises an exception exn� execute f exn��

The intended meanings of the other primitive computation constructors are unchanged�
except for sequential composition�

� p ��� f means �execute computation p� if an exception exn is raised� then immedi�
ately raise exn and ignore f� otherwise� if an answer x is returned� proceed to execute
computation f x��

The exception mechanism in HX was obtained by extending the syntax and semantics of
H� Here� instead� we obtain an exception mechanism by object level programming� with
no extension of H�

���� PROGRAMMING I�O IN A MONADIC STYLE ���

Biased choice is a derived form of exception handling where the exception value is
ignored�

� p � q means �execute computation p� if an answer x is returned� then return x and
ignore q� otherwise� if p raises an exception� execute q��

� ��� �� IO a �� IO a �� IO a

� p � q � try p �const q�

An example using exceptions

Here is a parametric computation that if given a numeral�a list of digits�returns the
corresponding number� Otherwise it raises the exception �parseInt��

� parseInt �� String �� IO Int

� parseInt cs �

� accumulate �map toDigit cs� ���

� �return � foldr ���� � � reverse�

� where

� ���� �� Int �� Int �� Int

� toDigit �� Char �� IO Int

� u �� t � t � �� u

� toDigit v �

� if isDigit v then return �ord v � ord ����

� else raise �parseInt�

This function can be used to construct a computation that returns the number found by
reading a line from the keyboard and treating it as a numeral� and repeating if necessary
until a legitimate numeral has been typed�

� getInt �� IO Int

� getInt �

� getLine ��� �vs �� parseInt vs �

� �putLine �Oops� That wasn�t a number�� �� getInt�

A Simpli�ed MRC Computer

We suggest a simplied version of a programming model suitable for the Edinburgh MRC
team� We wish to program a computer equipped with a teletype interface but also an
external microscope assembly consisting of a microscope� an image capture device and
a movable stage containing a microscope slide� Suppose there is a type Image whose
values represent digitised images obtained from the external assembly� Dene a type of
two�dimensional coordinates to represent positions on the slide�

� type Coord � �Int�Int�

We assume that the stage can be moved to a certain range of coordinates� and also to a
distinguished parked position for insertion and removal of the slide�

��� CHAPTER �� MONADIC I�O

The functional program is to run on the main computer� but we assume there is an in�
dependent I�O controller responsible for stage motion� We propose to use the teletype
programming model� with exceptions� extended with the following computation construc�
tors�

� moveStage �� Coord �� IO ��

� capture �� IO Image

� parkStage �� IO ��

� moveStage co means �instruct the I�O controller to move the stage to coordinate
position co� and immediately return ����

� capture means �wait for the I�O controller to signal that the stage is stationary�
capture an image im and return answer im� but if the stage is parked� raise the
exception �capture���

� parkStage means �instruct the I�O controller to park the stage and immediately
return ����

This model motivated the development of this chapter� The MRC team use an I�O model
based on this simplied model� but considerably extended�

Here is a verication problem suggested by Ian Poole of the MRC� We begin with a
parametric computation called jobA� Its parameters are a list of coordinates� cos� and
an image analysis function� f of type Image �� Char� where for any image im� character
f im represents some human�readable result computed about im� The purpose of jobA is
to capture images from each of the coordinates in cos� apply the analysis function to each
of the images� and output the results�

� jobA �� �Image �� Char� �� �Coord� �� IO ��

� analyse �� �Image �� Char� �� IO ��

� jobA f cos � sequence �moveStage co �� analyse f � co �� cos�

� analyse f � capture ��� �im �� output �f im�

Although the main computer together with the I�O controller permit a limited amount of
concurrency� one sees that the program above does not admit any concurrent activity� In
processing each coordinate� the main computer tells the I�O controller to move the stage�
but then immediately tries to capture an image and so undergoes a period of idle waiting�
Similarly� the I�O controller remains idle while the main computer is processing the image
captured at each coordinate�

Clearly the program would run faster if immediately after capturing an image at one
coordinate� the I�O controller could move the stage to the next coordinate during the
same time as the main computer processes the current image� Program jobB is intended
to do this�

� jobB f �� � skip

� jobB f �co�cos�� moveStage co �� jobC f cos

� jobC f cos � sequence �each f co � co �� cos� �� analyse f

� each f co � capture ��� �im �� moveStage co �� output �f im�

���� PROGRAMMING I�O IN A MONADIC STYLE ���

The problem is to verify that parametric computations jobA and jobB are equivalent� The
remaining sections of the chapter develop a theory of the simplied MRC programming
model� by modelling its semantics within H� We conclude in x��� by proving that jobA
and jobB give rise to equal computations�

History

The rst serious use of the monadic style was in the Kent Applicative Operating System
�KAOS�� ���

 lines of Miranda written by John Cupitt ���� ���� KAOS has a type
constructor interact� a type sysErr� and the following operations �in Haskell notation��

return �� a �� interact a

comp �� �a �� interact b� �� interact a �� interact b

raise �� sysErr �� interact a

catch �� �sysErr �� interact a� �� interact a �� interact a

Cupitt�s interact and sysErr correspond to IO and Exn respectively� and his four oper�
ations correspond to return� ���� raise and try respectively� Cupitt based his combina�
tors on a more complex set introduced by Thompson ����� for programming teletype I�O�
Cupitt�s combinators were programmed on top of a primitive synchronised�stream mecha�
nism� He found that these combinators hid many low�level details in his implementation�

Independently of Cupitt� the author proposed an extension of Holmstr�om�s PFL ���� called
PFL ����� which was based on a continuation�passing mechanism� and proposed the use
of a type constructor and operations corresponding to IO� return and ��� �called Beh�
Ret and � respectively�� These high�level operations were dened in terms of the low�
level continuation�passing mechanism� Unlike Cupitt�s scheme� PFL was never fully
implemented� This dissertation grew out of the e�ort to make sense of the intuitive ideas
developed in PFL �

This style of I�O has come to be called monadic because the structure �IO� return� ����
can be modelled categorically as a strong monad� As discussed in Chapter 	� Moggi ��

�
advocated use of such structures to parameterise denotational descriptions of program�
ming languages� Inspired by Moggi� Wadler ����� ��
� has advocated use of monads in the
functional language itself �rather than the denotational metalanguage� to express imper�
ative activity� such as teletype I�O or interaction with a mutable store� The operations
return and ��� used here correspond to Wadler�s operations unit and bind respectively
���
�� A monadic approach to I�O is being developed in the Glasgow Haskell compiler
���� ��
��

Although many lines of code in this style have been written� and it has been realised
that the combinators should obey the monadic laws� there has been no previous work
on reasoning about programs engaged in monadic I�O� The remainder of this chapter
develops a theory of monadic I�O�

��	 CHAPTER �� MONADIC I�O

� data TT a � Read �Char �� TT a�

� � Write Char �TT a�

� � ReturnTT a

� thenTT �� TT a �� �a �� TT b� �� TT b

� p �thenTT� f �

� case p of

� Read g �� Read ��v �� g v �thenTT� f�

� Write v q �� Write v �q �thenTT� f�

� ReturnTT x �� f x

Table ���� A weak monad for teletype I�O

	�� A weak monad for teletype I�O

Our theory of the MRC programming model is based on modelling the semantics of compu�
tations as functional programs withinH� This model admits proofs of program properties�
but it is not being proposed as the basis of an e�cient implementation+ Peyton Jones and
Wadler ���
� discuss implementation techniques for monadic I�O�

We begin by dening what we mean by a &monad� in the context of H�

De�nition 	� For any structure �M� returnM� thenM� where M is a type constructor and
programs returnM and thenM have types

returnM �� � �� M �
thenM �� M � �� �� �� M 	� �� M 	

de�ne three properties as follows�

�M�beta� returnM x �thenM� f � f x 	for all suitably typed f and x

�M�assoc� �p �thenM� f� �thenM� g � p �thenM� �x �� �f x� �thenM� g

	for all suitably typed p� f and g

�M�eta� p �thenM� returnM � p 	for all suitably typed p

A weak monad is such a structure M satisfying �M�beta� and �M�assoc�� a monad is a
weak monad M satisfying �M�eta��

Perhaps surprisingly� the weak monad laws su�ce for the purposes of this chapter� In
fact� the full eta law fails for the two weak monads we consider� We begin with a �weak�
monad� TT� given in Table ���� which models teletype I�O� It is a version of the constructor
T proposed in x��� to model side�e�ecting I�O� Roughly speaking� any program of type
TT a consists of a string of Reads and Writes terminated by a ReturnTT�

Lemma 	� Structure 	TT� ReturnTT� thenTT
 is a weak monad�

Proof �TT�beta� follows immediately by denition of �thenTT�� For �TT�assoc� it su�ces

���� A WEAK MONAD FOR TELETYPE I�O ���

to show that relation S is a bisimulation�up�to��� where S is dened as follows�

S�
def
� f��p �thenTT� f� �thenTT� g� p �thenTT� ��x �� �f x� �thenTT� g��

j p��TT a� f��a �� TT b� g��b �� TT cg

S
def
� S� � f�c�� c�� j c� cS� c�g � ���

To show that S is a bisimulation�up�to��� it su�ces to consider any pair �e�� e�� in S�

and show that either e� � e� � �� or that there are canonical programs c� and c� such
that ei � ci for each i� and that c� bS c�� Accordingly� let e� � �p �thenTT� f� �thenTT� g
and e� � p �thenTT� ��x �� f x �thenTT� g�� By Strachey�s property� one of the following
cases holds�

��� p � �

��� p � returnTT x

��� p � Write v q or

��� p � Read h�

In each case we can establish the required conditions�

��� e� � � � e��

��� e� � �ReturnTT x �thenTT� f� �thenTT� g � f x �thenTT� g�
e� � ReturnTT x �thenTT� ��x �� f x �thenTT� g� � f x �thenTT� g�
So e� � e�� By Strachey�s property� either e� � e� � � �and we are done� or there
is a canonical program c with e� � e� � c� In the latter case we have c b� c so c bS c

as required�

��� In this case� we have�

e� � ��Write v q� �thenTT� f� �thenTT� g
� �Write v �q �thenTT� f�� �thenTT� g
� Write v ��q �thenTT� f� �thenTT� g

e� � �Write v q� �thenTT� ��x �� f x �thenTT� g�
� Write v �q �thenTT� ��x �� f x �thenTT� g��

Dene programs e�i and ci to be�

e�� � �q �thenTT� f� �thenTT� g
e�� � q �thenTT� ��v �� �f v� �thenTT� g�
c� � Write v e��
c� � Write v e��

We have ei � ci� and since v � v and e��S�e
�
� we have c�

bS c� as required�

��� In this nal case case� when p � Read h� either h equals � or some canonical function

��� CHAPTER �� MONADIC I�O

�v �� e�� If h � � we have�

e� � �Read � �thenTT� f� �thenTT� g
� �Read��v ��� v �thenTT� f�� �thenTT� g
� Read��v ���� �thenTT� g
� Read��v ��� �thenTT� g�
� Read��v ����

e� � �Read �� �thenTT� ��v �� �f v� �thenTT� g�
� Read��v ��� v �thenTT� ��v �� �f v� �thenTT� g��
� Read��v ����

Since e� � e� � Read��v ���� and � � � we are done� Otherwise� h � �v �� e� and
we have�

e� � �Read ��v �� e�� �thenTT� f� �thenTT� g
� �Read��v �� e� �thenTT� f�� �thenTT� g
� Read��v �� �e� �thenTT� f� �thenTT� g�

e� � Read��v �� e�� �thenTT� ��v �� �f v� �thenTT� g�
� Read��v �� e� �thenTT� ��v �� �f v� �thenTT� g��

Dene programs c�i and ci to be�

c�� � �v �� �e� �thenTT� f� �thenTT� g
c�� � �v �� e� �thenTT� ��v �� �f v� �thenTT� g�
c� � Read e��
c� � Read e��

We have c��
cS� c

�
� so c

�
�Sc

�
�� But then ei � ci for each i and c� bS c� so the proof for

Read is complete�

The �TT�eta� law is invalid� Here is a counterexample�

Read � �thenTT� ReturnTT � Read��v ��� v �thenTT� ReturnTT�
� Read��v ����
�� Read �

If we had a theory of H which satised � � �v ��� �the intention of the Haskell designers�
we could in fact establish �TT�eta�� For the purposes of this chapter the lack of �TT�eta� is
unimportant� all we need are the weak monad laws� �TT�beta� and �TT�assoc��

	�� A weak monad for the MRC computer

The MRC programming model has three components� teletype I�O� interaction with the
external microscope assembly� and exception handling� We model the state of the external
microscope assembly as a pair� consisting of the current position �either parked or at a
particular coordinate� and a function representing the image that could be captured from
any of the coordinate positions�

� type State � �Maybe Coord� Coord �� Image�

� data Maybe a � Nothing � Just a

���� A WEAK MONAD FOR THE MRC COMPUTER ���

� either �� �a �� c� �� �b �� c� �� �Either a b �� c�

� either f g ab � case ab of

� Left a �� f a

� Right b �� g b

� get �� IO State

� put �� State �� IO ��

� get � �s� �� ReturnTT �Left s�� s��

� put s� � �s� �� ReturnTT �Left ��� s��

� return x � �s� �� ReturnTT �Left x� s��

� raise x � �s� �� ReturnTT �Right x� s��

� p ��� f � �s� �� p s� �thenTT� uncurry �either f raise�

� try p f � �s� �� p s� �thenTT� uncurry �either return f�

� output v � �s� �� Write v �ReturnTT �Left ��� s���

� input � �s� �� Read ��v �� ReturnTT �Left v� s���

� parkStage � get ��� �s �� put �Nothing� snd s�

� moveStage co � get ��� �s �� put �Just co� snd s�

� capture � get ��� �s �� case fst s of

� Just co �� return ��snd s� co�

� Nothing �� raise �capture�

Table ���� Deriving the MRC programming model

Modelling image capture from the loaded slide by a xed function is extremely crude� as it
ignores the e�ects of random camera noise� sloppy stage mechanics and the settings of the
focus� lamp� objective lens and lter� It is a kind of &idealised microscope model� whose
principle virtue is simplicity� We use the type of strings to model exceptions�

� type Exn � String

Intuitively we expect a computation of type IO a to act on some initial state by performing
some teletype I�O before returning an answer� either a value of type a or an exception of
type Exn� We formalise this expectation in the following denition of IO�

� type IO a � PrimIO �Either a Exn�

� type PrimIO a � State �� TT �a� State�

� data Either a b � Left a � Right b

Recall that programs of type TT a can be thought of as a string of I�O operations ending
with a result of type a� Therefore a program p��IO a is a function that given an initial
state s returns p s��TT �Either a Exn� State�� which consists of a string of I�O operations
ending with a result of type �Either a Exn� State�� Such a result consists of a nal state
paired with either a normal result of type a or an exception of type Exn� This denition of
IO allows us to model the semantics of computations within H� and hence use our theory
of H to reason about programs� In practice we would almost certainly want to implement
the IO type more e�ciently�

��
 CHAPTER �� MONADIC I�O

We show in Table ��� how to program the various monadic operations� given our denition
of the IO type� These programs should be understood as formal specications of the
programming model�s semantics� rather than as realistic implementations� There are three
auxiliary operations either� get and put� Functions uncurry� fst and snd are given in
Table 	���

We can verify the laws �IO�beta� and �IO�assoc� as follows�

Lemma 	� Structure �IO � return� ������ is a weak monad�

Proof The proofs are by routine equational reasoning� �IO�beta� follows from the follow�
ing calculations�

�return v ��� f�s � return v s �thenTT� uncurry�either f raise�
� returnTT�Left v� s� �thenTT� uncurry�either f raise�
� either f raise �Left v� s
� f v s

To establish �IO�assoc� rst note the following facts�

either f g v ��� h � either ��x �� f x ��� h� ��x �� g x ��� h� v
raise v ��� f � raise v

e� �thenTT� ��x �� e� x� � e� �thenTT� e�

The third of these� a specialised functional eta law� can be established by a simple co�
induction� We can begin the proof of �IO�assoc� as follows� for any suitably typed programs
p� f� g and s�

��p ��� f� ��� g�s � �p s �thenTT� uncurry�either f raise��
�thenTT� uncurry�either g raise�

� p s �thenTT� ��y �� uncurry�either f raise� y
�thenTT� uncurry�either g raise��

Now set e to be a subexpression of the right�hand side�

e � uncurry�either f raise� y �thenTT� uncurry�either g raise��

From the facts noted earlier we can calculate as follows�

e � either f raise �fst y� �snd y� �thenTT� uncurry�either g raise�
� �either f raise �fst y� ��� g��snd y�
� either ��x �� f x ��� g� ��x �� raise x ��� g� �fst y� �snd y�
� either ��x �� f x ��� g� raise �fst y� �snd y�
� uncurry�either ��x �� f x ��� g� raise� y

Hence via the specialised functional eta law noted above we have

��p ��� f� ��� g�s � p s �thenTT� ��y �� e�
� p s �thenTT� uncurry�either ��x �� f x ��� g� raise�
� �p ��� ��x �� f x ��� g��s

as required for �IO�assoc��

���� PROOF OF THE MOTIVATING EXAMPLE ���

� analyse �� �Image �� Char� �� IO ��

� jobA f cos � sequence
moveStage co �� analyse f � co �� cos�

� analyse f � capture ��� �im �� output �f im�

� jobB f
� � skip

� jobB f �co�cos� � moveStage co �� jobC f cos

� jobC f cos � sequence
each f co � co �� cos� �� analyse f

� each f co � capture ��� �im �� moveStage co �� output �f im�

Table ���� The motivating example

Here is a counterexample to �IO�eta�� Let p be const�ReturnTT ��� We have for any state
s�

�p ��� return� s � ReturnTT � �thenTT� uncurry�either return raise�
� uncurry�either return raise� �
� either return raise � �
� �

but p s � ReturnTT � which does not equal � in H �nor in Haskell� because all datatype
constructors are lazy�

From �IO�beta� and �IO�assoc� we can verify the following facts about �� and skip�

Lemma 	�

��� �p �� q� �� r � p �� �q �� r�

��� skip �� p � p

It would help subsequent calculations if we had the right cancellation law

p �� skip � p

�which would make ���� skip� a monoid� but this fails because of the same counterexample
as �IO�eta�� Furthermore� q � return � is another counterexample� we have q �� skip �
skip � return �� �� return �� The problem is that �� �� � in H and in Haskell�
Undesirable undened elements cause the failure of all these eta and right cancellation
laws� �TT�eta� fails in H because �x ��� �� �� and �IO�eta� fails in both H and Haskell
because ReturnTT � �� �� However� for the purpose of proving our motivating example
all we need is a specic right cancellation law� Lemma �������

	�� Proof of the motivating example

We conclude this chapter by verifying the example set in x��� on page ���� We begin with
a lemma� each part of which can easily proved by equational calculations from what we
have already proved about the IO type�

Lemma 	�

��� output v �� skip � output v

��� CHAPTER �� MONADIC I�O

��� �capture ��� f��Just co� g� � f�g co��Just co� g�

��� �moveStage co �� p��mb� g� � p�Just co� g�

��� �output v �� p��mb� g� � Write v �p�mb� g��

��� �analyse f �� p��Just co� g� � Write �f�g co�� �p�Just co� g��

�	� �each f co� �� p��Just co� g� � Write �f�g co�� �p�Just co�� g��

We need a lemma to relate jobA and the auxiliary function jobC�

Lemma 	� For any �nite cos���Coord�� co��Coord� f��Image��Char� g��Coord��Image
and mb��Maybe Coord�

jobA f �co � cos� �mb� g� � jobC f cos �Just co� g��

Proof By appeal to the structural induction principle� Proposition 	���� as specialised to
lists in x	�	� we may prove the lemma by induction on the structure of nite list cos� We
have�

lhs � �moveStage co �� analyse f �� jobA f cos��mb� g�
� �analyse f �� jobA f cos��Just co� g�
� Write �f�g co�� �jobA f cos �Just co� g��

Now we consider the two possible forms of cos� �i� cos � �� and �ii� cos � co� � cos�� In
case �i� it is not hard to check that both sides equal

Write �f�g co�� �skip �Just co� g���

In case �ii� we may calculate as follows�

rhs � �each f co� �� jobC f cos���Just co� g�
� Write �f�g co�� �jobC f cos� �Just co�� g��
� Write �f�g co�� �jobA f �co� � cos�� �Just co� g�� �IH�
� lhs

In both cases� then� we have the desired equivalence�

The lemma would fail if we were to remove the constraint that cos be nite� Consider
cos � �� which is not nite �in the sense of x	�	�� Program jobA f �co � �� �mb� g� �
Write �f�g co�� � but jobC f � �Just co� g� � ��

Finally� we can verify our motivating example�

Proposition 	� For any �nite list cos� function f� and initial state �mb� g��

jobA f cos �mb� g� � jobB f cos �mb� g��

Proof If cos is nite� then either cos � �� or cos � co � cos�� In the rst case�
lhs � skip �mb� g� � rhs� In the second case� we have rhs � �moveStage co ��

jobC f cos���mb� g� � jobC f cos� �Just co� g� � jobA f �co � cos���mb� g�� by the
previous lemma� and hence lhs � rhs�

Chapter �

Conclusion

��� Summary

We have shown how a theory of functional programming can be developed from structural
operational semantics and applicative bisimulation� We might reckon this a CCS�view of
��calculus� We developed parallel theories of a metalanguage for denotational semantics�
M� and a small functional language� H� essentially a fragment of Haskell� Co�induction� in
the form of bisimulation�up�to�equivalence� was found to be useful in circumstances where
domain�theoretic Scott induction might have been needed�

We identied four basic mechanisms for teletype I�O� We gave a labelled transition se�
mantics for three of these mechanisms and dened a notion of bisimilarity� We proved
that the three mechanisms are of equivalent expressive power in the theoretical sense that
there are bisimulation�preserving translations between the three� Actual implementation
of these translations would not necessarily be e�cient� however�

We advocated a monadic style of functional I�O in the context of an application of func�
tional programming to medical electronics at the Edinburgh Medical Research Council
�MRC�� Motivated by a verication example suggested by the MRC� we developed a
theory of monadic I�O as an extension of our theory of functional programming� By mod�
elling the semantics of the MRC programming model within H� we were able to verify the
example via functional programming techniques�

Ever since McCarthy referred to the I�O operations in LISP ��� as �pseudo�functions�
functional I�O has been viewed with suspicion� The work of this dissertation is important
because it is the rst to show how a theory of functional programming can be smoothly
extended to admit both an operational semantics for functional I�O and verication of
programs engaged in I�O�

To nish o� the dissertation� for each chapter we sketch possible future work� and o�er
some further appraisal�

���

��� CHAPTER �� CONCLUSION

��� A calculus of recursive types

It is a pity that the convergence theorem forM� Theorem ����� must depend ultimately
on Mendler�s theorem ���� which this dissertation takes on trust� It would be interesting
to investigate whether theM convergence theorem could be based on Wraith�s encoding
of recursive types in the Girard�Reynolds calculus itself ������ Another direction to pursue
would be to see whether Mendler�s original strong normalisation proof could be extended
to cope with the new constants� The author has recently obtained a result analogous to
Theorem ���� for a variant ofM via a form of Tait�s method �upon which Mendler�s proof
for ���� was based��

��� A metalanguage for semantics

M is based on Plotkin�s domain�theoretic metalanguage for semantics ���
�� in which
each type represents a particular domain construction� Missing from bothM and Plotkin�s
metalanguage is a type of nondeterministic computations corresponding to a powerdomain
construction� Howe�s original paper ���� showed that applicative bisimulation can be
applied to a nondeterministic calculus� It may be worthwhile to investigate how to extend
M with a type representing nondeterministic computations�

��� Operational precongruence

Chapter � studied how the context lemma and Howe�s method can be used to prove that
an operationally�dened equivalence relation is a precongruence� We expect that Howe�s
method will be extremely useful for constructing operational theories of programming
languages� The context lemma was simple and ingenious in the setting of combinatory
logic ����� but much care appears to be needed to generalise it to a more complex ��calculus�
such asM�

��� Theory of the metalanguage

We developed an equational theory forM� and proved results about certain types needed
for the denotational semantics of H� Although not itself domain�theoretic� the theory
of M can be compared to axiomatisations of domain theory or functional programming�
such as Edinburgh LCF ��	�� Cambridge LCF ��
�� and Thompson�s logic for Miranda
���
�� There are two major di�erences� First� only M types of the form �� contain a
divergent term �� Hence the presentation of the theory in Table ��� is simpler than in
LCF or Thompson�s logic� Second� there is no principle of Scott induction forM� Smith
has shown how to derive such a principle in an operational setting ������ On the other
hand� we have found in this dissertation that co�induction is su�cient to prove theorems
such as Lemma ��� that in LCF would probably have required Scott induction�

���� AN OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING ���

infix � ��� ��

abstype �a Job � JOB of unit �� �a

with

fun exec �JOB f� � f ��

fun unit x � JOB�fn � �� x�

fun �JOB f� ��� q � JOB�fn � �� exec �q �f �����

fun getStr n � JOB�fn � �� input�std�in�n��

fun putStr s � JOB�fn � �� output�std�out�s��

end�

fun p �� q � p ��� �fn u �� q��

fun gettingLine s �

getStr � ��� �fn c ��

if c � ��n� then unit s else gettingLine �s�c���

val getLine � gettingLine ���

val main �

putStr �First name� � �� getLine ��� �fn first ��

putStr �Second name� � �� getLine ��� �fn second ��

putStr ��Hello ��first�� ��second���n�����

Table ���� A monadic style of I�O for Standard ML

��� An operational theory of functional programming

The most original aspect of the theory of functional programming in Chapter 	 is that
it is entirely grounded in operational semantics� Note that the theory of operational
equivalence in H does not depend in any way on Mendler�s normalisation theorem �����
although the theory of denotational equivalence does�

It is interesting to compare the operational and denotational theories of H� The denota�
tional semantics is good for comparing di�erent object languages �e�g�� H� HX � andH with
side�e�ecting I�O�� while the operational semantics allows a simple derivation of program
equivalence�

A useful future project would be to extend H to include eager algebraic type constructors
and a more realistic exception mechanism� Such an extension would contain a non�trivial
fragment of core Standard ML�

��� Four mechanisms for teletype I�O

The main question left open in this chapter is how to integrate an operational semantics of
side�e�ecting I�O into a theory of functional programming� Several authors have suggested
operational semantics for ML extended with side�e�ecting operators for concurrency ����
��	�� however� there has been little work on equational theories for functional languages
extended with concurrency�

��	 CHAPTER �� CONCLUSION

��	 Monadic I�O

This chapter showed how to construct a crude model of the MRC computer withinH� and
use functional programming techniques to verify a simple property� Before this sort of
methodology is to be of any practical use� there needs to be a good deal more mechanised
support for proofs of programs� and experience of specifying more realistic systems�

One can view monadic I�O as a controlled form of side�e�ecting I�O� the monad of side�
e�ects has moved from the denotational semantics into the type system of the object
language�

This dissertation has not discussed practical implementation� though of course the oper�
ational semantics rules give some clues� There is ongoing work at Glasgow on e�cient
implementation of monadic I�O ���
�� Verication of an I�O mechanism is a problem not
previously examined in work on veried functional implementations ���� �
� �����

The monadic style is not conned to lazy languages� Table ��� shows how monadic I�O can
be implemented in core Standard ML on top of side�e�ecting I�O� In naive experiments�
this style of monadic I�O was about six times slower than side�e�ecting I�O� It should
be possible to improve this performance if the Job type were taken as primitive �which is
more or less what is proposed in the Glasgow Haskell compiler ���
��� If side�e�ects are
allowed only in the implementation of the Job type� reasoning about monadic programs
in ML should not be much harder than reasoning about monadic programs in Haskell�

Bibliography

Each reference is followed by a parenthesised list of the pages on which it is cited�

��� Harold Abelson and Gerald J� Sussman� Structure and Interpretation of Com

puter Programs� MIT Press� Cambridge� Mass�� ����� �p ��

��� Samson Abramsky� The lazy lambda calculus� In Turner ���	�� pages 	����	� �pp ��

��

��� Samson Abramsky and Richard Sykes� SECD�M� a virtual machine for applicative
programming� In Jouannaud ��
�� pages ������ �pp ��� ���� ����

��� Peter Achten� John van Groningen� and Rinus Plasmeijer� High level specication
of I�O in functional languages� In Functional Programming� Glasgow �����
Workshops in Computing� Springer�Verlag� ����� �p xi�

��� Arvind and J� Dean Brock� Resource managers in functional programming� Journal
of Parallel and Distributed Computing� ������� ����� �p �

�	� E� A� Ashcroft and W� W� Wadge� Lucid� a nonprocedural language with iteration�
Communications of the ACM� �
����������	� July ����� �p ��

��� L� Augustsson and T� Johnsson� The Chalmers Lazy�ML compiler� The Computer
Journal� �������������� April ����� �p ��

��� John Backus� Can programming be liberated from the von Neumann style) a
functional style and its algebra of programs� Communications of the ACM�
������	���	��� August ����� �p �

��� John Backus� John H� Williams� and Edward L� Wimmers� An introduction to the
programming language FL� In Turner ���	�� pages �������� �pp � ����

��
� H� P� Barendregt� The Lambda Calculus� Its Syntax and Semantics� volume
�
� of Studies in logic and the foundations of mathematics� North�Holland�
revised edition� ����� �pp �� ���

���� Dave Berry� Robin Milner� and David N� Turner� A semantics for ML concurrency
primitives� In Proceedings of the Nineteenth ACM Symposium on Princi

ples of Programming Languages� pages �������� ����� �pp �� ��� ���

���� G,erard Berry� Some syntactic and categorical constructions of lambda�calculus mod�
els� Technical Report �
� INRIA� ����� �pp �� ���

���� Richard Bird and Philip Wadler� Introduction to Functional Programming�
Prentice�Hall International� ����� �pp �� �

���

��� BIBLIOGRAPHY

���� Bard Bloom� Can LCF be topped) Flat lattice models of typed lambda calculus� In
Proceedings of the �rd IEEE Symposium on Logic in Computer Science�
pages �������� IEEE Computer Society Press� ����� �pp �� ��

���� Manfred Broy� Nondeterministic data �ow programs� how to avoid the merge
anomaly� Science of Computer Programming� �
�	����� ����� �p ��

��	� Geo�rey Burn� Lazy Functional Languages� Interpretation and Compila

tion� MIT Press� Cambridge� Mass�� ����� �p ��

���� R� M� Burstall and R� Popplestone� POP�� reference manual� Machine Intelli

gence� ���
������ ��	�� �p ��

���� Luca Cardelli� Stream input�output� Polymorphism�The ML�LCF�Hope
Newsletter� ����� December ����� �p ��

���� Luca Cardelli and Rob Pike� Squeak� a language for communicating with mice�
Computer Graphics� �����������
�� July ����� �pp �� ���

��
� Magnus Carlsson and Thomas Hallgren� FUDGETS� A graphical user interface in a
lazy functional language� In FPCA���� Conference on Functional Program

ming Languages and Computer Architecture� Copenhagen� pages ������
�
ACM Press� ����� �p xi�

���� Robert Cartwright and James Donahue� The semantics of lazy �and industrious�
evaluation� In LISP and Functional Programming� pages �����	�� ACM Press�
����� �p ��

���� P� Caspi� D� Pilaud� N� Halbwachs� and J� A� Plaice� LUSTRE� a declarative lan�
guage for real�time programming� In Fourteenth ACM Symposium on Princi

ples of Programming Languages� pages �������� M�unich� West Germany� �����
ACM Press� �p ��

���� Eric Cooper and J� Gregory Morrisett� Adding threads to Standard ML� Technical
Report CMU�CS��
���	� Computer Science Department� Carnegie�Mellon Univer�
sity� December ���
� �p ���

���� R� L� Crole and A� M� Pitts� New foundations for xpoint computations� FIX
hyperdoctrines and the FIX�logic� Information and Computation� ���������
�
����� Earlier version in LICS��
� �p ���

���� Roy L� Crole� Programming Metalogics with a Fixpoint Type� PhD the�
sis� University of Cambridge Computer Laboratory� February ����� Available as
Technical Report ���� �pp �� �� ���

��	� Roy L� Crole and Andrew D� Gordon� Factoring an adequacy proof �preliminary
report�� In Functional Programming� Glasgow ����� Workshops in Computing�
Springer�Verlag� ����� �p xi�

���� J� Cupitt� Another new scheme for writing functional operating systems� Technical
Report ��� Computing Laboratory� University of Kent at Canterbury� March �����
�pp ���� ���� ����

���� J� Cupitt� A brief walk through KAOS� Technical Report ��� Computing Laboratory�
University of Kent at Canterbury� February ����� �pp �� ���� ���� ����

���� Roger B� Dannenberg� Arctic� A functional language for real�time control� In LISP

BIBLIOGRAPHY ���

and Functional Programming� pages �	��
�� ACM Press� ����� �p ���

��
� J� Darlington� P� Henderson� and D� A� Turner� editors� Functional Programming
and its Applications� Cambridge University Press� ����� �pp ���� ����

���� B� A� Davey and H� A� Priestley� Introduction to Lattices and Order� Cam�
bridge University Press� ���
� �pp �� ���

���� Andrew Dwelly� Synchronizing the I�O behaviour of functional programs with feed�
back� Information Processing Letters� May ����� �p ��

���� Andrew Dwelly� Functions and dynamic user interfaces� In Fourth International
Conference on Functional Programming Languages and Computer Ar

chitecture� Imperial College� London� pages �������� ACM Press� September
������ ����� �p ���

���� Peter Dybjer and Herbert Sander� A functional programming approach to the spec�
ication and verication of concurrent systems� Formal Aspects of Computing�
������
������ October�December ����� �p ��

���� John R� Ellis� A LISP shell� ACM SIGPLAN Notices� ������������ May ���
�
�p ���

��	� Jon Fairbairn� Making form follow function� An exercise in functional programming
style� Software�Practice and Experience� ���	��������	� ����� �p ����

���� Joe Fasel and Paul Hudak� A gentle introduction to Haskell� ACM SIGPLAN
Notices� ������ March ����� Section T� �p ���

���� M� Felleisen and D� Friedman� Control Operators� the SECD
machine� and
the �
calculus� pages �������� North�Holland� ���	� �p ��

���� M� Felleisen and D� P� Friedman� A syntactic theory of sequential state� Theoretical
Computer Science� 	���������� ����� �p xi�

��
� Anthony J� Field and Peter G� Harrison� Functional Programming� Addison�
Wesley� Wokingham� England� ����� �p ��

���� D� P� Friedman and D� S� Wise� Cons should not evaluate its arguments� In
S� Michaelson and R� Milner� editors� Third International Colloquium on Au

tomata� Languages and Programming� Edinburgh University Press� July ���	�
�p �

���� Jean�Yvres Girard� Paul Taylor� and Yves Lafont� Proofs and Types� Cambridge
University Press� ����� �pp ��� ���

���� Andrew Gordon� PFL � A kernel scheme for functional I�O� Technical Report �	
�
University of Cambridge Computer Laboratory� February ����� �pp �� ���� ����

���� Andrew D� Gordon� The formal denition of a synchronous hardware�description
language in higher order logic� In International Conference on Computer
Design� Cambridge� Massachusetts� October ������ ����� pages ��������
IEEE Computer Society Press� ����� �p ��

���� Andrew D� Gordon� An operational semantics for I�O in a lazy functional lan�
guage� In FPCA���� Conference on Functional Programming Languages
and Computer Architecture� Copenhagen� pages ��	����� ACM Press� �����

��
 BIBLIOGRAPHY

�p xi�

��	� Michael J� C� Gordon� Robin Milner� and Christopher P� Wadsworth� Edinburgh
LCF� volume �� of Lecture Notes in Computer Science� Springer�Verlag� �����
�pp �� ��� ���

���� Brian T� Graham� The SECD Microprocessor� A Veri�cation Case Study�
Kluwer Academic Publishers� ����� �pp ���� ���

���� Carl A� Gunter� Semantics of Programming Languages� Structures and
Techniques� MIT Press� Cambridge� Mass�� ����� �p xi�

���� Kevin Hammond� Philip Wadler� and Donald Brady� Imperate� Be imperative �sum�
mary�� Department of Computing Science� University of Glasgow� ����� �p ����

��
� Dave Harrison� Ruth� A functional language for real�time programming� In Parallel
Architectures and Languages Europe Proceedings� volume ��� of Lecture
Notes in Computer Science� pages �������� Springer�Verlag� ����� �pp �� ���

���� B� C� Heck and D� S� Wise� An implementation of an applicative le system� In
International Worshop onMemory Management� St Malo� France� September
�	���� ����� Also available as Technical Report ���� Computer Science Department�
Indiana University� June ����� �p ���

���� Peter Henderson� Functional Programming� Application and Implementa

tion� Prentice�Hall� ���
� �p ��

���� Peter Henderson� Purely functional operating systems� In Darlington et al� ��
��
pages �������� �pp � ��� ����

���� Peter Henderson and James H� Morris Jr� A lazy evaluator� InConference Record
of the Third ACM Symposium on Principles of Programming Languages�
pages ����
�� ACM Press� ���	� Atlanta� Georgia� �pp � ��

���� Matthew Hennessy� The Semantics of Programming Languages� John Wiley
and Sons� Chichester� ���
� �p ��

��	� J� Roger Hindley and Jonathan P� Seldin� Introduction to Combinators and
�
Calculus� Cambridge University Press� ���	� �p ���

���� S�oren Holmstr�om� PFL� A functional language for parallel programming� InDeclar

ative Programming Workshop� pages �������� University College� London�
����� Extended version published as Report �� Programming Methodology Group�
Chalmers University� September ����� �pp �� �� ��� ���� ����

���� Douglas J� Howe� Equality in lazy computation systems� In Proceedings of the
�th IEEE Symposium on Logic in Computer Science� pages �����
�� �����
�pp �� �� �� ��� ��� ���

���� Paul Hudak� Simon L� Peyton Jones� Philip Wadler� et al� Report on the functional
programming language Haskell� A non�strict� purely functional language version ����
ACM SIGPLAN Notices� ������ March ����� Section R� �pp �� ��� ���� ����

����

�	
� Paul Hudak and Raman S� Sundaresh� On the expressiveness of purely functional
I�O systems� Research Report YALEU�DCS�RR�		�� Yale University Department
of Computer Science� March ����� �pp �� �� ��� ���� ��� ����

BIBLIOGRAPHY ���

�	�� John Hughes� Why functional programming matters� The Computer Journal�
����������
�� April ����� �pp �� �

�	�� O� A� N� Husain� K� C� Watts� F� Lorriman� B� Butler� J� Tucker� A� Carothers�
P� Eason� S� Farrow� D� Rutovitz� and M� Stark� Semi�automated cervical smear
pre�screening system� an evaluation of the Cytoscan���
� Analytical and Cellular
Pathology� �����	�� ����� �p ����

�	�� Graham Hutton� Higher�order functions for parsing� Journal of Functional Pro

gramming� ������������� July ����� �p ����

�	�� Evan Peter Ireland� Writing interactive and le�processing functional programs� A
method and implementation� Master�s thesis� Victoria University of Wellington�
March ����� �p ���

�	�� Alan Je�rey� A chemical abstract machine for graph reduction� In Proceedings
Mathematical Foundations of Programming Semantics IX� New Orleans
����� volume �
� of Lecture Notes in Computer Science� Springer�Verlag�
����� �p xi�

�		� Claire Jones� Probabilistic Non
determinism� PhD thesis� University of Edin�
burgh� ���
� Available as Technical Report CST�	���
� Computer Science Depart�
ment� University of Edinburgh� �p ���

�	�� S� B� Jones and A� F� Sinclair� Functional programming and operating systems�
The Computer Journal� �������	������ April ����� �pp � �� ���

�	�� Simon B� Jones� Abstract machine support for purely functional operating systems�
Technical Report PRG���� Programming Research Group� Oxford University Com�
puting Laboratory� August ����� �pp ���� ����

�	�� Simon B� Jones� A range of operating systems written in a purely functional style�
Technical Report PRG���� Programming Research Group� Oxford University Com�
puting Laboratory� September ����� �pp ��� ����

��
� Jean�Pierre Jouannaud� editor� Functional Programming Languages and
Computer Architecture� Nancy� France� volume �
� of Lecture Notes in
Computer Science� Springer�Verlag� September ����� �pp ��� ����

���� Gilles Kahn� A preliminary theory for parallel programs� Rapport de Recherche 	�
IRIA� January ����� �p �

���� Gilles Kahn and David B� MacQueen� Coroutines and networks of parallel pro�
cesses� In B� Gilchrist� editor� Information Processing ��� pages �������� North�
Holland� ����� �pp � �� ����

���� Y� H� Kamath and M� M� Matthews� Implementation of an FP�shell� IEEE Trans

actions on Software Engineering� SE��������������� May ����� �p ���

���� Kent Karlsson� Nebula� A functional operating system� Programming Methodology
Group� Chalmers University of Technology and University of Gothenburg� �����
�pp �� �� ��� ���� ����

���� Paul Kelly� Functional Programming for Loosely
coupled Multiprocessors�
MIT Press� Cambridge� Mass�� ����� �p ��

��	� P� J� Landin� A correspondence between ALGOL 	
 and Church�s lambda�notation�

��� BIBLIOGRAPHY

Parts I and II� Communications of the ACM� �����������
�������	�� February
and March ��	�� �pp � ����

���� P� J� Landin� The next �

 programming languages� Communications of the
ACM� ����������		� March ��		� �p ��

���� John Launchbury� A natural semantics for lazy evaluation� In Proceedings of the
Twentieth ACM Symposium on Principles of Programming Languages�
����� �p xi�

���� John Launchbury and Simon L� Peyton Jones� Lazy functional state threads� In
Proceedings of the ACM Conference on Programming Languages Design
and Implementation �PLDI�� Orlando� June ����� �p xi�

��
� David R� Lester� Combinator Graph Reduction� A Congruence and its Ap

plications� DPhil thesis� Programming Research Group� Oxford University Com�
puting Laboratory� April ����� Available as Technical Report PRG���� �pp �� ���

���� ���

���� I� A� Mason and C� L� Talcott� Equivalence in functional languages with e�ects�
Journal of Functional Programming� ������������� ����� �p xi�

���� David Matthews� A distributed concurrent implementation of Standard ML� In
EurOpen Autumn ���� Conference� ����� Appears as LFCS Report ECS�
LFCS�������� �p ���

���� John McCarthy� Paul W� Abrahams� Daniel J� Edwards� Timothy P� Hart� and
Michael I� Levin� LISP �� Programmer�s Manual� MIT Press� Cambridge�
Mass�� ��	�� �pp �� �� ����

���� Chris S� McDonald� fsh�a functional unix command interpreter� Software�
Practice and Experience� ����
��	����

� October ����� �p ���

���� Paul R� McJones and Garret F� Swart� Evolving the UNIX system interface to sup�
port multithreaded programs� Technical Report ��� DEC Systems Research Center�
Palo Alto� September ��� ����� �p ����

��	� Lee M� McLoughlin and Sean Hayes� Imperative e�ects from a pure functional
language� In Kei Davis and John Hughes� editors� Functional Programming�
Glasgow ��	�� Workshops in Computing� pages �����	�� Springer�Verlag� ���
�
�p ��

���� Silvio Lemos Meira� Processes and functions� In TAPSOFT�CCIPL� volume
��� of Lecture Notes in Computer Science� Barcelona� ����� Springer�Verlag�
�p ���

���� Nax Paul Mendler� Inductive types and type constraints in the second�order lambda
calculus� Annals of Pure and Applied Logic� ���������������� ����� Earlier
version in LICS���� �pp ��� ��� ��� ���

���� Paul Francis Mendler� Inductive De�nition in Type Theory� PhD thesis�
Department of Computer Science� Cornell University� September ����� Available as
Technical Report �����
� �p ���

��
� Albert R� Meyer and Stavros S� Cosmadakis� Semantical paradigms� Notes for an
invited lecture� In Proceedings of the �rd IEEE Symposium on Logic in

BIBLIOGRAPHY ���

Computer Science� pages ��	����� July ����� �p ��

���� Robin Milner� Fully abstract models of typed lambda�calculi� Theoretical Com

puter Science� ������� ����� �pp �� �� �� ��� ���

���� Robin Milner� A theory of type polymorphism in programming� Journal of Com

puter and System Sciences� �������������� December ����� �p ���

���� Robin Milner� A Calculus of Communicating Systems� volume �� of Lecture
Notes in Computer Science� Springer�Verlag� ���
� �pp �� ���

���� Robin Milner� Communication and Concurrency� Prentice�Hall International�
����� �pp �� ��� ��� ��� ���� ����

���� Robin Milner� Functions as processes� Mathematical Structures in Computer
Science� ���������� ����� �p ��

��	� Robin Milner� Joachim Parrow� and David Walker� A calculus of mobile processes�
parts i and ii� Information and Computation� �

����
 and ������ ����� �pp ��

����

���� Robin Milner and Mads Tofte� Co�induction in relational semantics� Theoretical
Computer Science� ����
����
� ����� �pp �� ��

���� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard ML�
MIT Press� Cambridge� Mass�� ���
� �pp �� ����

���� Eugenio Moggi� The Partial Lambda
Calculus� PhD thesis� Department of
Computer Science� University of Edinburgh� August ����� Available as Technical
report CST������� �p ���

��

� Eugenio Moggi� Notions of computations and monads� Theoretical Computer
Science� ��������� ����� Earlier version in LICS���� �pp �� ��� ��� ��� ����

��
�� Eugenio Moggi� An abstract view of programming languages� Technical Report
ECS�LFCS��
����� Laboratory for Foundations of Computer Science� Department
of Computer Science� University of Edinburgh� April ���
� �pp �� ��� ��� ����

��
�� Peter D� Mosses� Denotational semantics� In Jan Van Leeuven� editor� Handbook
of Theoretical Computer Science� chapter ��� pages ����	��� Elsevier Science
Publishers B� V�� ���
� Volume B� �p ��

��
�� Rob Noble and Colin Runciman� Functional languages and graphical user
interfaces�a review and case study� Technical Report YCS�������� Department
of Computer Science� University of York� February ����� �p xi�

��
�� John T� O�Donnell� Dialogues� A basis for constructing programming environments�
In ACM Symposium on Language Issues in Programming Environments�
pages ������ ����� SIGPLAN Notices �
���� �pp �� ����

��
�� Lawrence C� Paulson� Logic and Computation� Interactive Proof with Cam

bridge LCF� Cambridge University Press� ����� �pp �� ��� ��� ���

��
	� Lawrence C� Paulson� ML for the Working Programmer� Cambridge University
Press� ����� �p ��

��
�� Nigel Perry� Hope C� A continuation extension for Hope � Technical Report
IC�FPR�LANG���������� Department of Computing� Imperial College� London�

��� BIBLIOGRAPHY

November ����� �p ��

��
�� Nigel Perry� The Implementation of Practical Functional Programming
Languages� PhD thesis� Department of Computing� Imperial College� London�
June ����� �pp �� ��� ����

��
�� Simon L� Peyton Jones� The implementation of functional programming
languages� Prentice�Hall International� April ����� �pp �� � ��� ����

���
� Simon L� Peyton Jones and Philip Wadler� Imperative functional programming� In
Proceedings ��th ACM Symposium on Principles of Programming Lan

guages� Charleston� South Carolina� January ����� pages ������ ACM Press�
����� �pp xi� ��� ���� ���� ���� ���

����� Andrew Pitts and Ian Stark� On the observable properties of higher order functions
that dynamically create local names �preliminary report�� In SIPL���� ACM
SIGPLAN Workshop on State in Programming Languages� pages ������
June ����� �p xi�

����� Andrew M� Pitts� Evaluation logic� In G� Birtwistle� editor� IVth Higher Or

der Workshop� Ban� ����� Workshops in Computing� pages �	������ Springer�
Verlag� ����� Available as University of Cambridge Computer Laboratory Technical
Report ���� August ���
� �pp ��� �� ���

����� AndrewM� Pitts� Relational properties of domains� Technical Report ���� University
of Cambridge Computer Laboratory� December ����� �p xi�

����� Andrew M� Pitts� A co�induction principle for recursively dened domains� Theo

retical Computer Science� ������������ ����� �pp �� ��

����� Andrew M� Pitts� Computational adequacy via &mixed� inductive denitions� In
Proceedings Mathematical Foundations of Programming Semantics IX�
New Orleans ����� volume �
� of Lecture Notes in Computer Science� pages
������ Springer�Verlag� ����� �p xi�

���	� Gordon D� Plotkin� Call�by�name� call�by�value and the ��calculus� Theoretical
Computer Science� ���������� ����� �pp �� ���

����� Gordon D� Plotkin� LCF considered as a programming language� Theoretical
Computer Science� ���������� ����� �pp �� �� ��

����� Gordon D� Plotkin� The category of complete partial orders� a tool for making
meanings� Unpublished lecture notes for the Summer School on Foundations of
Articial Intelligence and Computer Science� Pisa�� June ����� �pp �� �� ���� ����

����� Gordon D� Plotkin� A structural approach to operational semantics� Technical
Report FN���� DAIMI� Aarhus University� September ����� �p ��

���
� Gordon D� Plotkin� Denotational semantics with partial functions� Unpublished
lecture notes� CSLI� Stanford University� July ����� �pp �� ��� ��� ��� ���

����� Ian Poole� A functional programming environment for image analysis� In Proceed

ings of the ��th International Conference on Pattern Recognition� The
Hague� volume IV� pages �������� August ����� �p ����

����� S� Purushothaman and J� Seaman� An adequate operational semantics of sharing
in lazy evaluation� In B� Krieg�Br�uckner� editor� Proceedings of �th European

BIBLIOGRAPHY ���

Symposium on Programming� ESOP���� Rennes� France� volume ��� of
Lecture Notes in Computer Science� Springer�Verlag� ����� Available as Report
CS������ Department of Computer Science� Pennsylvania State University� �p ���

����� S� A� Rebelsky� I�O trees and interactive lazy functional programming� In Fourth
International Symposium on Programming Language Implementation
and Logic Programming� volume 	�� of Lecture Notes in Computer Sci

ence� pages �������� Leuven� August �	���� ����� Springer�Verlag� �p ��

����� D� Hugh Redelmeier� Towards Practical Functional Programming� PhD thesis�
Computer Systems Research Group� University of Toronto� May ����� Available as
Technical Report CSRG����� �p ���

����� A� Reid and S� Singh� Budgets� Cheap and cheerful widget combinators� In Func

tional Programming� Glasgow ����� Workshops in Computing� Springer�Verlag�
����� �p xi�

���	� John H� Reppy� An operational semantics of rst�class synchronous operations�
Technical Report TR �������� Department of Computer Science� Cornell University�
August ����� �pp �� ��� ���

����� J� C� Reynolds� Denitional interpreters for higher�order programming languages�
In Proc ��th ACM National Conference� pages ������
� ACM� New York�
����� �p ��

����� David Sands� Operational theories of improvement in functional languages �ex�
tended abstract�� In Functional Programming� Glasgow ����� Workshops in
Computing� pages �������� Springer�Verlag� ����� �p xi�

����� Davide Sangiorgi� The lazy lambda calculus in a concurrency scenario� Information
and Computation� ����� To appear� �p ��

���
� David A� Schmidt� Denotational Semantics� A Methodology for Language
Development� Allyn and Bacon� Inc�� ���	� �p ��

����� Jon Shultis� A functional shell� In Proc Symp on Programming Language
Issues in Software Systems� ����� SIGPLAN Notices ���	�� �p ���

����� Todd G� Simpson� Design and veri�cation of IFL� a wide
spectrum interme

diate functional language� PhD thesis� Department of Computer Science� The
University of Calgary� July ����� Available as Research Report �����
���� �pp ��

���� ���

����� Scott F� Smith� From operational to denotational semantics� In MFPS VII�
Pittsburgh� volume ��� of Lecture Notes in Computer Science� pages ���
�	� Springer�Verlag� ����� �pp �� ���

����� Joseph E� Stoy� Denotational semantics� the Scott
Strachey approach to
programming language theory� MIT Press� Cambridge� Mass�� ����� �pp �� ��

�� �� ����

����� Joseph E� Stoy� Mathematical aspects of functional programming� In Darlington
et al� ��
�� pages �������� �p ��

���	� William Stoye� Message�based functional operating systems� Science of Com

puter Programming� 	������������ ���	� Originally appeared as� A New Scheme

��	 BIBLIOGRAPHY

for Writing Functional Operating Systems� Technical Report �	� University of Cam�
bridge Computer Laboratory� ����� �pp �� �� ��� ����

����� Christopher Strachey� A general purpose macrogenerator� Technical Memorandum
	���� University Mathematical Laboratory� Cambridge� March ��	�� �p �

����� Christopher Strachey� Fundamental concepts in programming languages� Unpub�
lished lectures given at the International Summer School in Computer Programming�
Copenhagen� August ��	�� �p ���

����� R� D� Tennent� Semantics of Programming Languages� Prentice�Hall Interna�
tional� ����� �p ��

���
� Simon Thompson� A logic for Miranda� Formal Aspects of Computing� ���������
�	�� October�December ����� �p ���

����� Simon Thompson� Interactive functional programs� A method and a formal seman�
tics� In Turner ���	�� pages ������	� Originally appeared as Technical Report ���
Computing Laboratory� University of Kent at Canterbury� November ����� �pp ��

���� ���� ����

����� Mark Tillotson� Introduction to the functional programming language �Ponder��
Technical Report 	�� University of Cambridge Computer Laboratory� May �����
�pp � ���

����� David Turner� A new implementation technique for applicative languages�
Software�Practice and Experience� �������� ����� �pp �� ����

����� David Turner� Functional programming and communicating processes �some design
considerations for a functional operating system�� In Parallel Architectures and
Languages Europe Proceedings� volume ��� of Lecture Notes in Computer
Science� pages ������ Springer�Verlag� ����� �pp �� ��� ����

����� David Turner� An approach to functional operating systems� In Turner ���	�� pages
�������� �pp ��� ����

���	� David Turner� editor� Research Topics in Functional Programming� Addison�
Wesley� ���
� �pp ��� ����

����� W� Wadge and E� Ashcroft� Lucid� the data�ow programming language�
Academic Press� New York� ����� �pp �� �� ���

����� Philip Wadler� How to replace failure by a list of successes� In Jouannaud ��
�� pages
�������� �p ����

����� Philip Wadler� Comprehending monads� Mathematical Structures in Com

puter Science� ���	������ ����� �pp �� ��� ����

���
� Philip Wadler� The essence of functional programming� In Proceedings of the
Nineteenth ACM Symposium on Principles of Programming Languages�
����� �pp �� ��� ����

����� John H� Williams and Edward L� Wimmers� Sacricing simplicity for convenience�
Where do you draw the line) In Conference Record of the Fifteenth ACM
Symposium on Principles of Programming Languages� pages �	������ Jan�
uary ����� �pp � �� ����

BIBLIOGRAPHY ���

����� Glynn Winskel� The Formal Semantics of Programming Languages� MIT
Press� Cambridge� Mass�� ����� �p xi�

����� G�C� Wraith� A note on categorical datatypes� In D� H� Pitt� D� E� Rydheheard�
P� Dybjer� A� M� Pitts� and A� Poign,e� editors� Category Theory and Computer
Science� volume ��� of Lecture Notes in Computer Science� Springer�Verlag�
����� �pp ��� ���

����� Stuart C� Wray� Implementation and programming techniques for func

tional languages� PhD thesis� University of Cambridge Computer Laboratory�
June ���	� Available as Technical Report ��� �pp � �� ����

��� BIBLIOGRAPHY

Notation Index

Chapter One

X�Y�Z type variable� ��
f� g� u� v� w� x� y� z �term� variable� ��
t phrase of abstract syntax� ��
ftv�t� type variables free in t� ��
fv�t� �term� variables free in t� ��

t�t
�
�X� substitution for a type variable� ��

t�t
�
�x� substitution for a �term� variable� ��

t � t� syntactic identity �up to alpha�conversion�� ��
bv�t� �term� variables bound in t� ��
C� D context� ��
C�t� instantiation of a context� ��
R�R� composition of relations R� and R�� ��
R� transitive closure of relation R� ��
R� re�exive transitive closure of relation R� ��
Id identity relation� ��
R�� inverse of relation R� ��

Chapter Two

�� 	 type in ����� �	

� �� � recursive type in ����� �	
L� M � N term in ����� ��
M �� type assignment in ����� ��
M �N reduction in ����� ��
M � N simulation in ����� ��

Chapter Three

�� 	 type inM� ��
�� � recursive type inM� ��
U � V canonical term inM� ��

���

��
 NOTATION INDEX

L� M � N term inM� ��
$ environment inM� ��
$ M � 	 type assignment inM� ��
E experiment inM� �

M �N reduction inM� �

M � V evaluation inM� �

M� convergence inM� ��
M� divergence inM� ��
����� translation ofM into ����� ��

Chapter Four

V canonical context� ��
C�D�x� substitution for contexts� ��
E contextual�experiment� ��
� a divergent program inM� ��bR a conned relation generated from R� ��
�
�
C

contextual order inM� ��
�
�
E

experimental order inM� ��
��� functional inducing applicative similarity inM� ��
�
�
A

applicative similarity inM� ��
�A applicative bisimilarity inM� ��
�
�
�

compatible similarity inM� �

Chapter Five

� operational equivalence inM� ��
�
� operational order inM� ��
bbc representation of boolean b � ftt �� g inM� 	

bnc representation of number n � N inM� 	�
b�c representation of operator � inM� 	�

Chapter Six

�� 	 type in H� 		
� algebraic type in H� 		
dc data�clause in H� 		
c canonical term in H� 		
e term in H� 		
cc case�clause in H� 		
 representation of literal in H� 		
$ environment in H� 	�
$ e � 	 type assignment in H� 	�

NOTATION INDEX ���

� a divergent program in H� ��
LE left experiment in H� ��
RE right experiment in H� ��
e� e� reduction in H� ��
e � c evaluation in H� ��
e� convergence in H� ��
e� divergence in H� ��
M �N translation of H function application intoM� ��
����� translation of H intoM� �	bR a conned relation generated from R� �

��� functional inducing applicative similarity in H� ��
� operational equivalence in H� ��
v operational order in H� ��
v� compatible similarity in H� ��
� denotational equivalence in H induced fromM� ��

Chapter Seven

� teletype action� �
�
h�i functional inducing bisimilarity� �
�
�

� labelled transition� ��

� bisimilarity� �
�

Chapter Eight

IO type of computations� ��
� ���
input input a character� ��
� ���
output output a character� ��
� ���
return return a value� ��
� ���
��� sequential composition� ��
� ���
�� restricted sequential composition� ���
sequence iterated sequential composition� ���
lift� lift a curried function� ���
accumulate accumulating sequential composition � ���
raise raise an exception� ���� ���
try handle an exception� ���� ���
� biased choice� ���
Coord type of coordinates� ���
moveStage move microscope stage� ���� ���
capture capture an image� ���� ���
parkStage park microscope stage� ���� ���
TT type of teletype I�O� ��	
State type of state� ���
Maybe optional type� ���

��� NOTATION INDEX

Exn type of exceptions� ���
PrimIO primitive type of computations� ���
Either sum type� ���
either sum discrimination� ���
get return the current state� ���
put replace the current state� ���

Index

actions� �
�
adequacy� xi� �� �� ��

operational� ��� ��� ��
advice to the reader� �

ALGOL 	
� �� �� �
	
alpha�conversion� ��

in ����� ��

bisimilarity� �� ��� ��� �

� �
�� ���
applicative� �� ��� ��� ��� ��� �	
compared with applicative bisimilar�

ity� �

� ���
ground applicative� ��� ��
simplicity of� ��	

bisimulation� ��
applicative� xi� �� ��� ��� ��
and nondeterminism� ���

bisimulation�up�to� �	� �
� ���
Booleans inM� 	

Budgets� xi

call�by�name� �� �� 	�� �
�
call�by�need� xi� �� �
���
�
call�by�value� �� �� 		� 	�� ��� �
�
canonical freeness� �	� �

CCS� �� ��� ��� �

� �
�� ���� ���� ��	�

���
certainly�convergent types� ��� ��� ��� �	
co�induction

and bisimulation� �����
and Scott induction� �� ��� ���
principle of� �	� �

combinators for I�O
history� �
monadic programming� ��
����
stream transformers� �
���
�

compatible relation� ��
computation� ��

computational monad� �	� ��

concurrency� �� 	� �� ��
constructor for� ���
in MRC model� ���
Kahn networks� �

Concurrent Clean� xi
conned extension� ��� ��
conned relation� ��� ��
conned term� �
� 	�
congruence� ��� ��
context� ��

canonical� ��
instantiation� ��

context lemma� �� �	
contextual equivalence� ��
contextual order� ��
convergence� ��� ��

denotational equivalence� ��
divergence� ��� ��

eager language� �� �� �

��
�� �
�� ���
empty type inM� ��
environment� ��� 	�
evaluation� �
� ��
evaluation contexts� �

exceptions

in HX � �����
in monadic I�O� ���

execution type� �
�
experimental order� ��
experiments� �

left and right� ��

FL� �
FP� �
Fudgets� xi
functional extensionality� ��

$�closure� ��� ��
Gofer� x� 	�� ���� ��

���

��� INDEX

GPM� �
grammar of

H terms� 	�
H types� 	�
M contextual�experiments� ��
M experiments� ��� ��
M terms� ��
M types� ��
���� terms� ��
���� types� �	

ground relation� ��� ��
ground restriction� ��� ��

Haskell� vii� ix� x� �� �� �� ��� 	��	�� ���
�

� �
�� �
�� ���� �������� ����
���� ���� ���� ��	

committee� �� �
�� ���
interpreted in H� 	����

Hope� �� ���
Howe�s method� �� �
� ��
hypothesis of this dissertation� �

I�O mechanism
continuation�passing� �� ���
semantics� �
����

FL histories� �
semantics� 	

hiatons� 	
I�O trees� �
Landin�stream� �
semantics� �
	��
�

monadic� �������
for Standard ML� ���

side�e�ecting� ���� �

��
�
semantics� �
�

streams for eager languages� 	
synchronised�stream� ���� ���
Dialogue type� �
semantics� �
���
�

systems� �
�
initial types� �	
input polling� 	
io�not�gettingLine� ��

iterated products and sums inM� ��

KAOS� �� �
�� ���

labelled transition system� �
���
�

lambda�calculus� �� ��� ���
computational� 	�� ��
lazy� �� �	� �

polymorphic� ����	
simply�typed� ��
untyped� �� ��

lazy language� �� 	� ���
LCF� vii� �� ��� ���
LISP� ���� �

� �
�� ���
Lucid� �

Miranda� �� ���� 	�� ���� ���
ML� x� �� �� 	� ��� ��� �
�� �
�� ���� ��	

Lazy� �� 	� �
Standard� 	�� ��� �

� ���� ��	

Modula��� ��
monad T of

exceptions� ��
lifting� ��
side�e�ects� �
�

MRC computer� ���� �������

name convention in ����� ��
Nebula� �� �
�
numbers inM� 	�

one�point type inM� ��
operational equivalence� ��� ��
operational extensionality� ��
operational order� ��� ��

PCF� �
PFL� �� ��� �
�� ���� ���
polymorphic denitions� ��
POP��� �
positive types� ��� ��� 	�
possibly�divergent types� ��� ��
precongruence� ��� ��� ��
preorder� ��
program� �
� 	�

reduction� �
� ��
relational operations� ��

Scheme� �� �

� �
�
Silage� �
similarity� ��

applicative� ��� ��� �	

INDEX ���

compatible� �
� ��
ground applicative� ��� ��

simulation� ��
applicative� ��� ��

SKIM�II� �
Strachey�s property� �
� �
�
stream� �

implementation of input� �
�� ���
recursive type for� ��

strong normalisation
for Mendler�s calculus� ��
for ����� ����	

structural induction� ��
substitution� ��
syntax conventions� ��

task� ���
terminal types� �	
trace

equivalence and bisimilarity� ���
semantics� ���

type assignment� ��� ��� 	�

variable convention� ��

